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RÉSUMÉ

L’entraînement locomoteur est fréquemment intégré au programme de réadaptation chez

les blessés médullaires (SOI) afin de maximiser leurs capacités locomotrices résiduelles.

Cette stratégie est directement inspirée de travaux effectués au laboratoire chez le chat

spinal, un modèle pour lequel les voies réflexes et les réseaux locomoteurs sont bien

décrits. En l’absence des voies supraspinales, la moelle épinière a la capacité de générer

des patrons locomoteurs suite à une stimulation sensorielle répétée procurée par

l’entraînement sur tapis roulant. Cependant, les mécanismes impliqués dans cette

récupération sont peu connus.

Projet I. On assume fréquemment que les changements plastiques dans les réseaux

locomoteurs spinaux sont responsables de cette récupération. Cependant, la stimulation

sensorielle répétée liée à l’entraînement pourrait aussi modifier la transmission dans les

voies réflexes qui contribuent aussi à l’activité musculaire durant la marche. Dans ce

projet, la transmission réflexe est évaluée pat la mesure de réponses intra

motoneuronales de muscles fléchisseurs et extenseurs qui innervent la cheville, le genou

et la hanche évoquées par la stimulation d’un nerf musculaire ou cutané de la patte

postérieure lors d’une expérience en aigu chez le chat décérébré. Les modifications

possibles sont déterminées par une comparaison statistique des résultats provenant de

deux groupes de chats dont la moelle a été complètement sectionnée à 113, dont un seul

groupe est entraîné à la marche sur tapis roulant. Les résultats montrent que la

transmission dans les voies réflexes musculaires et cutanées est modifiée par

l’entraînement locomoteur. L’excitation monosynaptique dans les extenseurs est diminuée

suite à l’entraînement et la modulation phasique normalement observée est récupérée.

Aussi, l’inhibition de groupe lb est diminuée suite à l’entraînement et à l’injection de

clonidine, un agoniste noradrénergique utile à la locomotion. De plus, il a été observé que

la plasticité dans les voies cutanées est spécifique : elle n’est présente que dans quelques

voies dans lesquelles la transmission est le plus souvent diminuée et les voies cutanées

activées pat la plante du pied sont particulièrement modifiées. L’ensemble de ces données

suggère que l’entraînement locomoteur diminue l’hyperexcitabilité réflexe observée chez

les SCIs et qu’il facilite le recrutement des extenseurs importants pour le support de poids.

Projet II. Plusieurs études illustrent que la plasticité des circuits spinaux est affectée par

divers mécanismes moléculaires qui dépendent de l’activité physique et qui influencent la



capacité à récupérer les mouvements locomoteurs et à les maintenir. Plusieurs

recherches récentes s’intéressent à des molécules impliquées dans la formation de la

potentialisation à long-terme (LTP) afin de déterminer si les mécanismes responsables de

l’apprentissage dans l’hippocampe sont similaires lors d’acquisition ou de la modulation de

réflexes dans la moelle épinière. La protéine ERK joue un rôle reconnu lors de la plasticité

synaptique et pour l’intégration des signaux de la surface cellulaire jusqu’aux facteurs de

transcription. Elle apparaît donc comme un candidat idéal pour véhiculer les effets

bénéfiques de l’entraînement et participer dans les événements synaptiques associés à la

récupération de la marche suite à l’entraînement. Dans ce projet, des western blots ont été

effectués pour mesurer l’expression de ERK et de sa forme activée, pERK, dans la moelle

épinière de 3 groupes de chats intacts, spinaux, spinaux avec entraînement locomoteur.

Les résultats montrent que l’activation de ERK est augmentée dans la majorité des

segments lombaires chez les spinaux et qu’elle est spécifiquement diminuée au niveau L5

suite à l’entraînement locomoteur. Nos résultats suggèrent que la SOI peut augmenter

l’activation de ERK et ceci, pendant plusieurs semaines et que l’activation de ERK est

potentiellement nuisible à la récupération locomotrice si elle est présente dans certains

segments spinaux.

Mots clés: CPG, CREB, entraînement sur tapis roulant, enregistrement intracellulaire,

ERK, lésion de la moelle épinière, locomotion, mise-en-charge (support de poids),

plasticité spinale, réflexes musculaires, réflexes cutanés, western blot.
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ABSTRACT

Locomotot training has gained in popuiarity and is more and more integrated in

tehabilitative strategies to enhance stepping recovery in spinal cord injured (SOI)

individuals. This strategy is ditectly inspired from several decades of work performed in the

Iaboratory taking advantage cf a spinal cat model in which reflex and locomotor pathways

are exhaustively described. Compietely isclated from supraspinai influences, the spinal

cord has the capacity to recover stepping movements when given repetitïve and

appropriate sensory feedback related to step-training on a treadmill. However, the

underlying mechanisms for recuperating the appropriate motor patterns are stiil poorly

understood and are the scope of this study.

Project I. It is generally assumed that plasticity in spinal locomotor circuits is

responsible for the stepping recovery. However, the repetitive sensory stimulation

related to step-training couid also modify transmission in reflex pathways, which are

aise known to contribute significantly to the level cf muscle activity during stepping. In

this project, transmission in reflex pathways was evaluated by measuring responses

evoked by a stimulation cf a cutaneous or muscle nerve cf the hindpaw and recorded

intracellularly in motoneurons from extensor and flexor muscles involved in ankle, knee

and hip joint movements during an acute experiment in decerebrate cats. Possible

modifications in reflex transmission were determined by the statistical comparison 0f

responses between 2 groups cf spinal cats (complete transection at T13), but only one

was assigned te a step-training regimen. Results showed that the synaptic transmission

in both group I muscle reflex pathways from extensors and cutaneous pathways were

modified following one month cf step-training. The monosynaptic excitation was

decreased atter step-training and a normal pattern of modulation was recovered during

locomotion. Moreover, group lb inhibition and polysynaptic group I excitation cf

extensors were respectively decreased and increased after step-training and clonidine

injection, a noradrenergic agonist useful for central pattern generation. t was further

observed that plasticity in cutaneous pathways was highly specific: only certain

pathways wete modulated (mostiy depressed). Transmission cf cutaneous input

originating from the sole cf the foot was particularly modified. Overall, step-training is

suggested te both decrease the hyperexcitability observed in reflex pathways after SCI
and te facilitate the recruitment cf antigravity muscles te assist recovery and weight
bearing.
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Project II. There is now strong evidence that spinal circuits can be affected by activity

dependent biochemical processes that influence its ability to recover, perform and

maintain an adequate Iocomotor pattern. Investigations have recentiy been oriented

towatd molecules involved in LTP to determine if similar mechanisms are both implicated

in hippocampal learning and spinal motor learning. Given the preponderant effect of ERK

on synaptic piasticity and function and its role in integrating signais from the ceii surface to

transcription factors, ERK appears to be a potentiai candidate for mediating the beneficial

effects of step-training and may participate in the synaptic events associated with

locomotor recovery aftet SOI. Ptotein expression was compared between 3 groups of cats

(intact, SCI, SOI and step-trained) using western biot analysis of homogenates of spinal

cord segments. The study focussed on assessing relative levels of ERK and pERK

proteins. Resuits showed that ERK activation is up-regulated in a majority of lumbar

segments following SCI and is specificaily down-reguiated in L5 by steptraining. These

resuits suggest that ERK activation is invoived in long-term plasticity foilowing SOI and that

it may be detrimental to iocomotor generation, at Ieast in specific spinal segments.

Keywords: cutaneous reflex pathways, CPG, CREB, ERK, intracellular recording,

locomotion, muscle reflex pathways, trea dm111 training, spinal cord injury, spinal plasticity,

weight-bearing, western blot.
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1. Spinal cord injury

1.1 General facts and problematic

Spinal cord injury (SCI) is a widespread condition which primarily affects young adult

males between 15 and 34 years old. According to the Canadian Paraplegic Association

(CPA)1, 36000 Canadians live with SCI exciuding non-deficit or fatal injuries.

Approximately 1050 new injuries occur every yeat (35 individuals/miflion) resulting in some

level of permanent paralysis or neurological deficit. In Canada, car and motorcycle

accidents are a leading cause of SCI, foltowed by falls, medical conditions, diving and

sports. Approximately 80% of SCI occurs under the age of 30 and many of these

individuals will live a normal lifetime generating important societal costs in terms of

medical, surgical and rehabititative care. Hence, the financial care requirements, over this

period, could vary from 1,25 million for a low thoracic paraplegic to 25 million Canadian

dollars for a high cervical quadriplegic, such as Christopher Reeve, who required

continuous ventilator support and 24/7 care2. Moreover, recent data collected by CPA

suggests that there are a growing number of older adults being paralyzed as a resuit of

disease and othet medical conditions. Given these facts and knowing that the population is

ageing, that physical and psychological consequences of the paralysis have a devastating

effect on the quality of lite of individuals and that cost will necessarily increase in the next

years, research in the SCI field has gained support and popularity within the last ten years.

1.2 Recent advances in SCI research

Traumatic insults to the spinal cord induce both immediate mechanical damage and

subsequent tissue degeneration. Hence, the outcome of SCI depends not only on the

initial tissue injury at the time of the trauma, but also on secondary injury processes that

may extend for hours, days, and even months. Incredible progress has been made in SCI

tesearch over the last decade. Major improvements affecting the quality of life of SCI

individuals including chronic pain and bladder function management were inconceivable

only a few years ago. For example, paraplegic SCI individuals present a syndrome in

which the posture of the legs as well as voluntary and locomotor movements are exten

1- canadian Paraplegic Association (http://www.canparaplegic.org)
2- International collaboration On Repaît Discoveries (http://wwwicord.org)
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sively impaired. Many approaches have evolved to promote the recovery cf function.

Noteworthy, combining multiple strategies to enhance functional improvements in an effort

to teach a satisfactory daiiy life is thought to have a positive effect. Several reviews wete

published recently and summarize the recent advances in SCI reseatch (Fouad et al 2001,

Kwon et al 2002, David & Lacroix 2003, Dobkin 2004, Fouad & Pearson 2004, Hall &

Springer 2004, Kiussmann & Martin-Villalba 2005). Years of fundamental and clinical

research led to these conclusions and a detailed acknowledgment of achievements will be

found in these reviews. The following section is solely aimed at drawing a succinct portrait.

From pre-clinical models to clinical application, therapeutic strategies are commonly

divided in 4 subcategories: protection, regeneration, substitution, and management cf

sublesional networks. These 4 categories are somehow intermingled; for example

neuroprotection or regeneration can actually be achieved via a substitutive process.

Neuroprotection s the first-step strategy targeting secondary injury mechanisms and

intending to limit neuronal loss and inflammation soon aftet the injury onset. The main

rationale is to block secondary biochemical and cellular cascades initiated by tissue

damage due to glutamate excitotoxicity, ischemia, oedema, Ca2 overload and oxidative

stress. In animais, various pharmalocogical agents have been tested to prevent post

traumatic secondary lesions and decrease lesion extent. Among them are antagonists of

opioid receptors (naloxone) or gangiiosides, non-competitive antagonists of NMDA

receptors (phencyclidine and ketamine) or massive doses cf steroids such as

methyiprednisolone. Free radical scavengers have also been shown to preserve white and

grey matter and to enhance motor performance. In human SOI, only methylprednisolone

has been administered routinely. Triais are currently being held for other drugs but

undesirable side effects often prevented therapeutic use.

The second type of intervention, regeneration, is aimed at re-establishing ascending and

descending pathways. Promoting axonai regeneration and reconnection is currently a

mainstream research field and has been the most dynamic in the iast ten years. The

majority cf these interventions target eiements that prevent axonal regeneration and

accumulate in the myelin (arretinin, CSPG, Nogo-A, MAG, OMgp) or around the guaI scar

(CSPG, collagen-IV, tenascin, class-3-semaphorin, Eph3B) to neutralize them (see Kwon

et al 2002, David & Lacroix 2003). Finally, a substitutive strategy can also be used te te

express some factors that are absent or decreased in the subiesional part of the spinal

cord. This can be achieved by various means: trophic factors and graif transplantation
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such as stem ceils, Schwann ceils, embryonic raphe neurons, olfactory ensheathing celis,

etc (Ribotta et al 2002, Bunge & Pearse 2003, Fouad & Pearson 2004). Recently, new

alternatives to neuronal-celI grafts have started to draw attention. Among them figure non-

neuronal cells ttansfected to express a gene coding for tyrosine hydroxylase in order to

express serotonin (astrocytes, fibroblasts), non-neuronal stem celis (muscle or bone

marrow), NT-2 human neuron (testicular tumoral cells) treated not to be tumoral (allows

30% cf differentiated serotoninergic cells).

Contrary te previous interventions aimed at trying to restore the before-SCI neural milieu,

the 4th strategy is based on a different approach that is exclusively directed toward

maximizing the residual function of the spinal cord. It takes advantage cf the intrinsic

capabilities of the spinal cord through the activation ot the sublesional neural networks

either with pharmacological intervention (reviewed in Rossignol et al 2001), transplantation

0f neurons or neural tissue (Ribotta et al 2000, Slawinska et al 2000) or with a specific

motor training regimen. This thesis is especially interested in the latter case and further

details will be given in the following chapters.



2. The ABC of locomotion

Over the years, the study of rhythmic movements has covered a large range of behaviors

existing ail over the animal kingdom. These stereotyped rhythmic pafterns are part of very

primitive behaviors necessary to live in the wildlife such as breathing (respiration rhythm),

eating (mastication and swallowing rhythm), escaping from predators or joining a

companion for reproduction (locomotor rhythm as fiying, stepping, swimming, etc). A given

behavior is produced by networks of interacting celis involving fine-tuning of

molecuie/gene activation and interaction within the ceil, synapse and neural network. From

invertebrate to human investigation, incredible progress has been made in understanding

the fleurai control of such behaviors in the last 100 years. In this thesis, emphasis wiIi be

given to stepping and its control in the cat. This section is a glance at eariy studies of

locomotion and will deal with basic concepts and their evolution.

2.1 The eariy description of the locomotor cycle

Locomotion resuits from the sequentiai activation of numerous muscles. Their activation

pafterns are nearly similar across individuals and to a lesser extent across vertebrates

(Grillner 1981). Nowadays, the motor pattern of the stepping iimbs can be described using

3 different parameters: kinetics (force), kinematics (movements) and electromyographic

activity (EMG). Pioneer experiments

investigating locomotion relied solely on

anatomical studies of the legs. The

____

improvements in photography and in the

development of motion pictures in the late

19 century atlowed analysis of these

images of animate motion for the first time.

Scientists and artists such as Marey and

Muybridge were early explorers of human

and animal motion in images and image

sequences. These pioneers first captured

the sequential positions during gait and

could then take precise measurements of

the Ieg in motion. A few years later,

Marey’s microphotographs were used by
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Figure 1:
Bookcover
from Eadweard
Muybrîdge

The Human Figure
in Motion (1955)
and Animais in
Motion (1957)
report a coilection
of pictures taken
by E. Muybridge at
the beginning of
the 19th century.
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Philippson (1905) to precisely describe the step cycle, which he divided into 4 distinct

portions. The first portion is a flexion of ail joints (flexion phase), followed by an extension

cf the ankle and knee while the hip continues flexion (early extension phase). The thitd

portion takes place at the very onset of the foot contact with the ground: knee and ankle

joints are passiveiy flexed (weight acceptation). The step-cycie ends with an extension of

ail joints to propei the body forward (propulsion phase). The extension phase is thus

divided in 3 subcomponents: eariy extension (E1), weight acceptation (E2) and propulsion

(E3). This nomenclature is still commonly used to describe the step-cycle and a detailed

analysis of the motor pattern of the hindiimbs of the cat has been performed by a number

cf investigators (reviewed in Rossignol 1996). When a detaiied description is not required,

the iccomotor cycle is commonly defined as the period between two successive foot

contacts and ccnsists of two principal parts: stance (support) and swing phase (transfer).

The swing phase starts when the limb reaches the posterior extreme position in relation to

the body. The limb is then lifted above the ground, moves forward until it teaches the

anterior extreme position and the paw s piaced in contact with the ground. Then, the 11mb

(still in contact with the ground) moves backward in relation to the body until it again

reaches the posterior extreme position. During bipedai stepping, each iimb alternatively

performs a cycle starting with foot contact with the ground (stance or extension phase)

follcwed by a lift-off directed in front of the body (swing or flexion phase).

Aithough the activation cf each muscle has a specific temporal relationship with the step

cycle, cf a general point of view, two functional groups of muscles are alternatively

activated during stepping: extensors and flexors. Extensor muscles are generally active

during stance and flexor muscles during the swing phase of locomotion. Extensor muscles

have a very similar pattern cf activity (Pratt et al 1991) and are activated 20 to 80 ms

before paw contact with the ground (Halbertsma 1983). However, they can have a different

profile cf activation. For example, vastus lateralis peaks in E3 whereas both gastrocnemii

(MG and LG) have an abrupt onset and peak in E2. The activation pattern cf flexor

muscles is net as homogenecus as for extenscrs. Many cf the muscles related to the

swing phase are biarticular (eg semitendinosus or St, sartorius or Srt) and may have two

bursts cf EMG activity per step-cycie under some conditions (Engberg & Lundberg 1969,

Perret & Cabeiguen 1980). A detailed description cf EMG activity during locomotion has

been written by Rossignol (1996).
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2.2 Spinal locomotor networks in history

Phiiippson (1905), Sherrington (1910), and Brown (1911) were pioneets in elucidating

some basic features of motor control and locomotion more specificaiiy. Their experiments

suggested that the spinal cord in itself is responsible for the genesis cf an alternate pattern

cf muscle activation similar to locomotion. From these early experiments emerged two

basic concepts: the haif-center hypothesis and the central pattern generator (CPG). The

following 2 sections describe these concepts and their development over the yeats.

2.2.1 HaIf-center hypothesis

Brown’s haif-center hypothesis emerges from experiments demonstrating that the

locomotor pattern could stiil be expressed after a rhizotomy in spinal animais suggesting

that the locomotor pattern is generated centraily (Brown 1911). His modei assumes that

each iimb is controlled by an independent interneuronal spinal circuit compcsed cf twc

haif-centers driving either fiexor or extensor muscles. Moreover, simuitanecus activity in

each half-center is prevented by mutual inhibitory connections. Strong evidence in favor of

this hypcthesis were later obtained by Lundberg and colleagues: the activation cf the

spinal networks with L-DOPA generated Iong-duration bursts aiternating between fiexcrs

and extensors which were suggested ta correspond ta the half-center hypothesis (see

section 3.3.3). According ta the half-center hypothesis, rhythmicity wouid arise from a

decrease in activity of one half-center due te a fatigue process, ie refractoriness (synaptic

fatigue, spike frequency adaptation) until the other haif-center is released from the

opposing haif-center inhibition and takes over. The process repeats and the system

osciilates.

Brcwn’s thecry s also supported by experiments in which a detailed fictive iocomotor

pattern with a characteristic temporal organization is present and net fundamentaiiy

modified in decerebrate and acute spinal cats injected with curare (ie ail afferent feedback

is remcved) and L-DOPA (Griliner & Zangger 1979, Petret & Cabeiguen 1980, Fleshman

et al 1984) and in chronic spinal cats injected with curare and cionidine (Pearson &

Rossignol 1991). Eventually, the haif-center hypothesis became unsatisfactcry ta expiain

the compiexity of the locomotor pattern observed in these reduced preparations. The

simiiarity cf the pattern observed as compared to intact animais and the preservation cf

complex features, such as double bursting within a single step-cycie or deiayed temporal
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activation (or phase shift) of a single motor pool could flot be explained without

modifications to the original version of the model (Griliner & Zangger 1979, 1984).

The term half-center is still in use today; not in its original and strict sense, rather to refer to

the approximative alternance between flexor and extensor muscles during locomotion.

However, one needs to keep in mmd that a precise timing does exist for every single

muscle during the step-cycle.

The original version of the half-center hypothesis led to the concept of the central pattern

generator that is described in the following chapter.

2.2.2 CentraI pattern generator

From early studies of various rhythmic movements, a common characteristic emerges: the

presence cf an interneuronal network located within the spinal cord and responsible for the

basic locomotor commands, the so-called central pattern generator (CPG; Grillner 1981).

This network is able to generate a given motor rhythmic behavior and te model the timing

and amplitude of the output generated by motoneurons (Grillner 1981, Rossignol 1996,

Pearson 2000, Rossignol et al 2006). During locomotion, for example, the CPG is

responsible for the basic alternate activity between extensot and flexor muscles and for

the very detailed muscle-specific temporal pattern (see section 2.1). Several excellent

reviews with teference to the CPG and locomotion have been written recently (Grillner &

Wallen 2002, Dietz 2003, Grillner 2002, 2003, Kiehn & Butt 2003, Kiehn 2006).

Here, the term CPG will refer exclusively te the CPG for locomotion unless mentioned

A fascinating finding from studies of locomotion is the remarkable similarity in the neural

solutions across species from fish to mammals (Grillner 1981, Prochazka 1996, Orlovsky

et al 1999, Duysens et al 2000). Not only does this interneuronal network exist in

invertebrates, primitive vertebrates and mammals but also in non-human primates

(Fedirchuk et al 1998). Yet other evidence suggests the presence of a CPG in humans

(Calancie et al 1994, Harkema et al 1997, Dimitrijevic et al 1998, Gerasimenko et al 2002).

This is supported by the presence and characteristic features of the locomotor pattern

found in young infants (immature descending control) and anencephalic babies (reviewed
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in Yang et al 2004). However, irrefutable and conciusive reports are difficuit to obtain given

the impcssibility te compieteiy discard the influence cf peripheral and supraspinal input to

spinal cord networks. it is believed that the locomotor pattern is innate as t is expressed in

infants and spinalized kittens (Forssberg et al 1980ab, Yang et ai 2004).

Modular organization of the CPG. Several hypotheses evolved concerning the

organization cf the CPG and a variety cf conceptual modeis has been advanced (reviewed

in Grillner 1981, Orlovsky et al 1999). in the 30’s, Von Hoist expressed the idea that each

iimb might be driven by an independent 11mb controller in quadtupeds (Orlovsky et ai

1999). This hypothesis was later supported by experiments in which the hindlimbs of

spinal animais (Forssberg et ai 1980b, Halbertsma 1983) and infants (Yang et ai 2005)

walking on a treadmiii with spiit belts moving at different speeds exhibit appropriate

rhythmic activity on each side. Noteworthy, this divergence is not aboiished foiiowing a

longitudinal split cf the lumbosacral eniargement suggesting that the controiler for each

11mb is iocated within the ipsilateral half (Kato 1990). The Von Hoist model was later

refined and the Unit burst generator concept was proposed by Griiiner (1981). This

concept assumes that several interrelated unit burst generators interact together, le either

one for each limb, for each joint or each group cf close synergists acting around a joint. In

this model, each unit is independent but the global output is generated by the combined

activity cf a series cf individuai, but coupled unit generators (see aiso Stem 2005). This

ailcws several types cf output to be generated by the same networks from changes in

excitabiiity cf a single or a set cf unit burst generators. The different units can be

recombined te achieve different left-right or forelimb-hindiimb coordination to generate

different gaits (walk, trot and gallop for animais or walk and run for humans) or to waik with

a different speed for each iimb. This model impties that the interneurons constituting the

CPG are responsible for the generation and timing cf muscle activity and for the excitatory

drive te mctoneurons. The iatest evidence suggests that the organization cf the CPG must

include a separation of the network for pattern-formation and rhythm generation (Lennard

& Hermanson 1985, Burke et al 2001, Lafreniere-Roula & McCrea 2005). The two half

centers impiied one ievel of control whereas the proposed organization invoives two

interdependent levels cf controt for motoneuron activation (pattern formation) and step

cycle timing (rhythm generation). This could explain, for exampie, an errer in pattern

formation (eg deletion cf a burst) without any effect on the timing cf the subsequent bursts

(Lafreniere-Rouia & McCrea 2005).
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Constitutive elements of the CPG. What is the constitution of the CPG? Among

vertebrates, the CPG was first characterized in the iamprey, a primitive specie in which the

spinal interneuronal networks are simpier to study because thete is a simple right-left

alternation and a restricted number of neurons in each segment. In this preparation, the

circuitry and neurotransmitters underlying iocomotor activity have been weli described and

serve as building blocks for unraveling the complex mammalian CPG structure (Grillner &

Wallen 2002, Griliner 2003). The CPG s controlled by both the reticulospinal pathways

activated by varicus areas of the brainstem (section 3.1) and by monoaminergic pathways

(section 4.1 .3.2). Moreover, glutamate and glycine are essential neurotransmitters for

CPGs in virtually ail vertebrates whereas noradrenalin (NA) and serotonin (5-HT) are

modulators cf the basic iccomotor pattern (Griiiner 2003).

In mammais, considerabie efforts have been made to identify fundamental elements of the

CPG using a wide array cf methods (iesions, intra- or extracellular recordings, labeling cf

Iocomotor-activated ceils with markers; reviewed in Kiehn 2006). StiIl, very little is kncwn

about the identity, characteristics and organization cf the interneurons forming the CPG.

lndeed, it is quite compiex te 1) avoid non specific labeling of celis, 2) distinguish cells

Iabeled because cf sensory feedback cf those responsible for locomotion and 3) te discard

celis specifically activated by supraspinal centers. However, a distinct population cf

commissural inhibitory interneurons has been identified and is suggested te constitute part

of the rhythm coordinating networks in the neonatal rat spinal cord (Kiehn & Butt 2003).

The growing popuiarity cf the transgenic mice preparation and availability cf various

genetic markers has enabied further investigations to precisely identify and characterize

interneurons that might constitute a functionai ccmponent of the CPG. Recently, EphA4

(Kullander et aI 2003, Butt et al 2005) and HB9!GFP excitatcry interneurons (Hinckley et

al 2005, Wilson et ai 2005) have been shown te be rhythmically active duting locomotion

and aise suggested te be an integrai component cf the CPG in the mouse.

Segregation or distribution? Whether the neurai networks responsibie for generating

locomotion are segregated in a specific area cf the spinal cord or distributed along several

spinal segments is still contreversiai. As first shown in the iamprey (Grillner 1981, 2003),

there is evidence cf a distribution cf rhythm generating elements along several spinal

segments in higher vertebrates (Deiiagina et ai 1983, Kremer & Lev-Tov 1997, Kiehn &

Kjaeruiff 1998). However, ether wcrk fayots the concentration of these elements in the

rostral segments cf the iumbosacrai eniargement (Cazalets et al 1995, Bertrand &



10

Cazalets 2002). From these experiments, t s believed that the rhythmogenic capacity of

the mammalian hindlimb locomotor CPG s distributed along the lumbar spinal cord but

with a rostrocaudal excitability gradient. The rostral segments (Ll-L3 in rodents, L3-L5 in

cats) have a greater capacity to genetate rhythmic locomotor output than caudal

segments. Recently, midlumbar segments (L3-L4) were shown to provide essential input to

organize the locomotor pattetn and their integrity s critical to sustain locomotor activity in

the cat (Marcoux & Rossignol 2000, Langlet et al 2005) and to induce locomotion by

intraspinal microstimulation or dorsal root stimulation at L5 to SI in spinal cats (Barthélemy

et al 2007). These results suggest that those segments may contain interneurons strongly

involved in stepping generation in the cat. Noteworthy, a more caudal location of those

interneurons in the cat might be expected given that hindlimb motoneurons are contained

within L4-S1 segments (Vanderhorst & Holstege 1997) whereas these neurons are located

in L1-L6 in the rat (Nicolopoulos-Stournaras & lIes 1983).



3. Control of locomotion

As illustrated in Figure 2, locomotor control relies on complex interactions between the

CPG (blue) and supraspinal, spinal and multimodal sensory feedback to produce an

appropriate temporal response and generate a highly adaptable motor pattern (reviewed in

Armstrong 1986, Zehr & Stem 1999, Rossignol et al 2006). This regulation can be

performed via actions on motoneurons, interneurons or primary afferents by means of

presynaptic inhibition (yellow). Presynaptic inhibition may act on primary afferents, but also

at othet selected areas of the central nervous system (CNS). Moreover, the motor output

may depend on specific motoneuronal properties (gceen) emerging during locomotion. The

following sections describe the different levels of control during locomotion: supraspinal

descending commands, spinal interneurons, sensory feedback and motoneurons. The

focus is essentially directed toward the description of muscle and cutaneous reflex

pathways (section 3.3) because they constitute the basis of our investigation.

Figure 2: Neuronal organizatïon
of the mammalian locomotor
system and dynamic sensory
integration during stepping.

Dunng stepping, multimodal inputs
(supraspinal, cutaneous, muscular
and joints afferents) reach both the
brainstem and the spinal cord. In
the spinal cord, some of these
afferents directly contact
motoneurons, but most of them
synapse onto interneurons. The
activity of primary afferents can be
modulated by presynaptic inhibition
before to reach a spinal target
(yellow). This allows to activate or
close some pathways, or to reverse
the sign of the response (inhibition
vs excitation) in different phases of
the step-cycle (phase
dependency). Phasic presynaptic
inhibition occurs at various levels of
the spinal cord including just before
the afferents contact the CPG
(blue), interneurons (pink) and
motoneurons (green). Moreover,
membrane properties of
motoneurons (green) are
modulated during locomotion and
may change the gain of the
response to a given sensory input.
From Rossignol et al 2006.
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3.1 Supraspinal descending commands

During movement, descending pathways can exert a direct control (monosynaptic) onto

motoneurons (eg control cf fine movements cf the hand by corticospinal pathways) or an

indirect control (polysynaptic) via interneurons that project to motoneurons (eg postural

regulation). Several supraspinal pathways including the reticulospinal, vestibulospinal,

rubrospinal and corticospinal tracts are involved in the control of locomotion and their rote

has been well documented (reviewed in Armstrong 1986, Rossignol 1996, Jordan 1998,

Orlovsky et al 1999, Drew et al 2002, 2004, Rossignol et al 2006). Most of the supraspinal

inputs passes through a set cf interneurons to ensure their integration with the basic

locomotor pattern generated by the CPG and leads te an adequate context-related

locomotor response (Baldissera et al 1981, Jankowska 1992, McCrea 1996, Orlovsky et al

1999, Drew et al 2004).

Our model does flot involve supraspinal inputs to spinal pathways because a complete

spinal cord transection has been performed. For that reason, the role cf supraspinal

pathways in the control cf locomotion will be succinctly described and the functional

consequences cf disrupting these pathways will be emphasized.

Supraspinal pathways have extremely complex effects and interactions during locomotion.

This paragraph is a general and simplified summary cf their role during stepping and will

not deal with specificities and exceptions. The motor cortex exerts a powerful influence on

locomotion and has been shown te be crucial during precise visually guided walking

(Beloozerova & Sirota 1993, Armstrong & Marple-Horvat 1996, Dtew et al 2002, 2004). In

the cat, the corticospinal pathway appears te contribute to the fine control and volitional

positioning cf the limbs in a locomotor context requiring accurate and precise foot

placement such as gait modification te step over an obstacle or walking on a narrow beam

or the rungs cf a horizontal ladder (skilled locomotion). In the hindlimbs, the lateral

corticospinal tract was shown te excite flexor and inhibit extensor motoneutons.

Transcranial magnetic stimulation in human subjects showed that corticospinal inputs

provide part of the drive te activate muscles for walking (Capaday et al 1999, Petersen et

al 2001). The rubrospinal tract has been shown te control hindlimb flexion during swing

when it evokes a facilitatory response in most flexor muscles (Orlovsky 1972, Rho et al

1999) and the vestibulospinal tract controls hindlimb extension during the stance phase of

locomotion (Orlovsky 1972). Finally, beside its role in initiating locomotion (detailed in the
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next paragraph), the reticulospinal tract may modify the activity in both flexor and extensor

muscles tending to reinforce activity in muscles that are aiready active (Orlovsky 1972,

Drew & Rossignol 1984, Drew 1991, Perreault et al 1994). This pathway is also suggested

to be involved, together with the corticospinal pathway, in the control of posture when

locomotion is disturbed (Drew et al 2004). These results confirm that the transmission in

descending pathways to the spinal cord is modulated in a phase-dependent manner.

Noteworthy, many supraspinal structures are also capable of resetting the locomotor

rhythm. This suggests that they may act through interneurons that are part of the CPG

(Orlovsky 1972, Perreault et al 1994, Rho et al 1999, Leblond et al 2000, 2001).

The spontaneous initiation of stepping, ie without drugs or electrical stimulation, requires

the integrity of supraspinal structures. Decerebrated animais are only capable of

spontaneous locomotion if the brainstem is flot transected beiow a specific level. For

exampie, if the decerebration is performed between the rostral border of the superior

colliculus dorsally and rostral to the mammillary bodies ventrally (referred to as pre

mammillary cat), cats will preserve the ability to step spontaneously. Howevet, if the

transection terminates caudally to the mammilary bodies ventrally (post-mammilary or

mesencephalic cat), a 2 weeks period is necessary for the recovery 0f locomotor

movements. No recovery has been reported with more caudal transections. Over years,

severat areas of the brain and brainstem have been identified as being abie to induce

locomotion in decerebrated or intact animais (reviewed in Armstrong 1986, Jordan 1998,

Orlovsky et al 1999): the mesencephalic locomotor region (MLR), the subthalamic

locomotor region (SLR), the pontine locomotor region (PLR) and the cerebeilar locomotor

region (CLR, Mon et al 1999). AIl these areas converge on, and excite, reticulospinal

neurons in the brainstem, which in turn exert their control in the lumbar spinal cord onto

the CPG to initiate locomotion. The specific spinal targets cf the reticulospinal neurons

have flot been clearly identified. However, maximal field potentiai following MLR

stimulation occurs in the dorsomedial area cf the spinal gray matter (laminae V-VII)

suggesting the presence of a concentration cf interneurons receiving reticulospinal input in

this area (Noga et al 1995).

A lesion cf the spinal cord interrupts (complete) or compromises (incomplete transection,

contusion, etc) supraspinal descending tracts and propriospinal pathways te lumbosacral

segments. The observed deficits during stepping can mainly be attributed to the disruption

of the control previously provided by these pathways as revealed by partial spinal lesion

studies (Gorska et aI 1993, Jiang & Drew 1996, Brustein & Rossignol 1998, Rossignol et al
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1999). The response of the spared pathways to the lack cf supraspinal input determines

both the extent cf the recovery and the specific functions that may recover (Heigren &

Goldberger 1993, Bregman et al 2002). Moreover, the amount cf fibers preserved in the

ventral and lateral funiculi of the spinal cord, particularly the white matter associated with

the reticulospinal tract, was shown to be directly related to locomotor performance after

SOI (Schucht et al 2002). However, locomotion has been reported in the absence of

ventral and ventrolateral quadrant in the cat (Brustein & Rossignol 1998). Depending on

the pathways disrupted (corticospinal, rubrospinal, reticulospinal, vestibulospinal), serlous

deficits impairing locomotion may be observed: incapacity to voluntary initiate stepping,

lack of voluntary and anticipatory adjustment of locomotion (eg avoiding obstacles),

impaired weight support, lateral stability and interlimb coordination (fore- vs hindpaw).

Another functional consequence cf lacking supraspinal control is the paw dtag that is

frequently observed at the onset of the swing phase in spinal cats. This behavior seems to

be associated with an inappropriate timing of flexion movements in the hip, knee and ankle

at the beginning of the swing phase. For example, the activation delay between St and Srt

is absent so that the knee and hip joints flex simultaneously instead cf one after the other

to clear the foot before hip flexion onset (Rossignol et al 2004). This could be due to a Iack

of corticospinal and rubrospinal control, which are required for proper intralimb

coordination (Jiang & Drew 1996). lndeed, paw dragging during stepping has been

observed in cats with a restricted lesion to dorsolateral quadrants of the spinal cord (Jiang

& Drew 1996, Rossignol et al 1999).

The disruption of descending input interferes with the ability to walk in a voluntary and

controlled manner. After a complete spinal cord transection, aIl these deficits are

observed. Indeed, the hindlimbs are flaccid and can barely perform weak and

uncoordinated movements when placed over a treadmili beit. Ground contact will be

performed on the dorsal surface of the paw. Moreover, the EMG is more clonic and cycle

length is generally shorter for a given walking speed (Rossignol et aI 2004).

Incomplete SOI may stimulate the reorganization cf synaptic connections such as

increasing collateral branching or shifting the representation of the hindlimbs in the motor

cortex. Here, a complete transection model was chosen in order to assess the plastic

potential cf the spinal cord exciuding any plasticity driven by supraspinal pathways.
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Notably, there is a persistent hyperexcitability of several reflexes following partial or

complete SOI because of the removal of inhibitory descending input from the brainstem

(Holmqvist & Lundberg 1961, Lundberg 1964, Hultborn & Malmsten 1983, Malmsten

1983). This wiIl be discussed in the appropriate section.

3.2 Spinal interneurons

Some afferent inputs may directly contact motoneurons. However, most of them will first

transit thtough the interneuronal networks of the spinal cord. Interneurons are classified in

2 broad categories: segmental interneurons whose axons reside within the gray matter in

the same or few nearby segments and propriospinal interneurons whose axons pass

through the white matter to re-enter gtay matter in distant spinal segments. The latter are

meant to coordinate activity across spinal cord segments. Thete are also interneurons

specialized in relaying spinal and sensory information to the btain. Classically, spinal

interneurons in the cat have been functionally identified according to their dominant

synaptic input, intrinsic properties, target neurons and role in motor activity (reviewed in

Jankowska 1992, 2001). A recent review illustrates that the properties and organization of

the spinal interneuronal networks share several similarities in cats and humans

(Jankowska & Hammar 2002).

Spinal interneurons are involved in mediating both simple reflexes and complex

movements. Descending and peripheral input were assumed to travel along independent

pathways to reach the motoneurons. This was denied by an elegant series of studies

conducted by Lundberg and colleagues showing that the spinal interneuronal networks are

integrative centers, ie supraspinal and primary afferents of various modalities converge on

common spinal interneurons before they reach the motoneurons (reviewed in Lundberg

1979, Baldissera et al 1981, Jankowska 1992). These interneurons then project in a

divergent manner onto motoneurons, onto other spinal interneurons, and onto neurons

projecting back to the supraspinal centers. This is a highly flexible network which includes

mechanisms to select reflex pathways and allow the interaction between interneuronal

populations. This resuits in the reconfiguration of the networks and provides a

multifunctional character to a given set of interneurons. Spinal interneurons are crucial

players involved both in the modulation of reflexes by supraspinal commands and in

modulating the supraspinal command by sensory feedback before teaching the
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motoneurons (Jankowska 1992). The integrated information is projected back to

supraspinal centers whete multiple loops project back downward to control the spinal

circuitry (Armstrong 1986). This allows a rapid adaptation of motoneuron activity to the

central command and environmental constraints. During locomotion, the activity of

interneurons will result from the mix of convergent input from the CPG, sensory feedback,

descending commands and intrinsic membrane properties of the cells.

Obviously, none of the spinal interneurons are interposed in a pathway with input from a

single type of afferents, but their name is meant to identify the dominant input.

Given the diversity of spinal interneurons (anatomical, functional, molecular, source of

input and target neuron) and for the text to be intelligible, their description is located in the

appropriate section according to the reflex pathway in which they are involved

3.3 Sensory feedback

A reflex is a stereotyped motor response generated by the CNS in reaction to a particular

sensory stimulus. Following a given peripheral afferent stimulation, a reproducible

response s evoked (under similar conditions). Spinal reflexes were shown to be a great

experimental tool to explore the organization of the CNS (Burke 1999) and are widely

described in the literature (Baldissera et al 1981, Jankowska 1992, Zehr & Stem 1999,

McCrea 2001). During movement, spinal segmental reflexes are highly flexible adjusting to

the type, intensity and localization of the stimulus and also to the context. It can also be

modulated in a task-dependent and phase-dependent manner. Recent reviews have been

written to describe the spinal reflexes and their dynamic control during locomotion

(Hultborn 2006, Rossignol et al 2006).

Sensory inputs are not required to generate a basic locomotor pattern but does

substantially contributes to the motor output and adapts the central activation to

environmental constraints. This feedback can have a global influence in allowing,

preventing and selecting motor patterns. Whether of muscular (Duysens & Pearson 1980,

Pearson 1995, Dietz & Duysens 2000), cutaneous (Duysens & Pearson 1976) or articular

(Grillner & Rossignol 1978) origin, this dynamic sensorimotor interaction powerfully

influences the basic motor output acting directly or indirectly on the CPG (Grillner 1981,
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Gossard & Hultborn 1991, Pearson et al 1998, Rossignol et al 2006). This process is

performed in the spinal cord and can modify the frequency, amplitude and structure of the

motor output, which is crucial for estabiishing the final stepping pattern. This is illustrated

by the capacity of spinal animais (Forssberg et al 1980ab, Grillner 1981, Lovely et ai 1986,

Pearson 2000, Leblond et al 2003) and babies with immature descending tracts (Yang et

al 1998) to adapttheir locomotor pace to the treadmiil speed. When the locomotor pace is

increased, the duration of extensor activity is decreased while the duration of flexor activity

is relatively constant (Halbertsma 1983, Yang et al 1998, Oriovsky et al 1999). Fiexor

bursts vary littie with change in step-cycle length as compared to extension and this basic

feature of walking conserved in reduced preparation (Grillner & Zangger 1979, however

see Yakovenko et al 2005). Weii-coordinated locomotion depends heavily on sensory

inputs signaling 11mb kinematics and loading (Pearson 1996, Rossignol 1996, Duysens et

al 2000).

Anatomical and behaviorai evidence suggest that sensory feedback piays a crucial role in

the recovery of function after SCI in humans and animaIs to compensate for the loss of

supraspinal input to spinal circuits. This is weil illustrated by the ability to regain rhythmic

locomotor movements after repetitive sensory stimulation provided by step-training

(section 4.1.3.1).

Here, we wiil emphasize the description of spinal refiexes under investigation, le reflexes

evoked by muscle group la-lb afferents and by specific cutaneous afferents. Reflexes will

both be described in the absence 0f locomotion and when the spinal cord circuitry is

conligured for locomotion.

3.3.1 Muscle reflex pathways

Group I afferents, large diameter and high conduction velocity fibers, carry information

originating from muscle receptors. Group la fibers innervate muscle spindles and transmit

information concerning the extent and velocity of muscle stretch. The lengthening of the

intrafusal fibers increases la afferents firing frequency (together with group Il, see section

3.2.1.3). Group lb fibers innervate Golgi tendon organs and carry information related to

changes in tension applied to a given muscle. As shown in Figure 3, muscle afferents

synapse either directly on motoneurons in the ventral horn (pathway 1) or on interneurons
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in the intermediate zone of the ventral horn gray matter. In the latter case, the motoneuron

is either contacted via a single interneuron (disynaptic pathway; Fig.3 pathways 2-3) or a

chain of intemeurons (polysynaptic pathway; Fig.3 pathways 4-5).

Figure 3: Proprioceptive pathways from

_________________

5 extensors and flexors during locomotion

Left: 4 pathways project to extensor
motoneurons fE-Mn): monosynaptic
pathway from la afferents (1), disynaptic
group la÷lb inhibitory pathway (2), the
disynaptic group la-i-lb excitatory pathway
(3), polysynaptic excitatory pathway (4).

_____

Group lb afferents input are abie to interrupt
flexion (5).

Right: Pathways to flexors are similarly

__________ __________

organized to the pathways to extensors (left,
pathways 1-4). However, most group I and II
afferents from flexors can end the extension
and reset the rhythm to flexion (5) while only

__________ __________

a few can prolong the flexion phase (4).

Black circle, inhibitory interneuron; empty circle, excitatory interneuron; E-Mn, extensor
motoneuron; F-Mn, flexor motoneuron; E, extensor generator; F, flexor generator; la afferents, blue;
lb afferents, green; group Il afferents, brown. From Rossignol et al 2006.

3.3.1.1 Pathways from group la muscle afferents

The monosynaptic reflex. Ihe activation of muscle spindles mainly evokes a

monosynaptic EPSP in homonymous and synergistic a-motoneurons (simplified to

motoneuron in the text unless mentioned) acting at the same joint (Eccles et al 1957ab).

According to Mendell and Henneman (1971), each la afferent from a given muscle directly

projects to every motoneuron innervating the same muscle; conversely, each motoneuron

is contacted by every la homonymous fiber (Fig3, pathway 1) representing 1-5% of ail

afferent terminaIs on motoneurons. During muscle stretch, la fibers discharge and excite

motoneurons producing contraction of the muscle to counter its own stretch. The

monosynaptic stretch reflex is thought to make a major contribution to the level of EMG

activity during stepping in cats walking on the treadmill (Stem et al 2000). Howevec, recent

evidence in humans suggests otherwise: la afferent feedback generated during normal

walking seems to make only a minor contribution to the SOL actïvity but would contribute

significantly when the muscle is unexpectedly lengthened during walking (discussed in

4 EZF

I/2

Flexor I
Muscles

j T I Extensor
Muscles
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Sinkjaer et al 2000, see also Yang et aI 1991 b, Sinkjaer et al 1996). It is suggested that

the ongoing la feedback is gated by presynaptic inhibition wheteas unexpected la signais

trigger reflex activity to adjust the movement.

Task- and phase-dependency. The input-output relationship of the monosynaptic reflex

is rather flexible and can be modulated to adapt to functional requirements of motor

activity. The gain of the reflex is either increased to facilitate the motor task or reduced to

ensure that the task is not compromised. In cats, the gain of the tricep surae stretch reflex

is lower during stepping as compared to tonic contraction (state-dependent). Although

gamma bias could contribute to modifying the gain of this reflex (Bennett et al 1996),

intracellular recordings of lumbar motoneurons have shown a tonic reduction in la-EPSP

amplitude during MLR-evoked fictive locomotion that was ascribed to an increased

presynaptic inhibition of la afferents (Gosgnach et al 2000). Similarly, the H-reflex was first

shown to be maximal during standing, decreased during walking and even more during

running in humans (Capaday & Stem 1986, 1987, Edamura et al 1991) because of

presynaptic inhibition of la afferents (Faist et al 1996). However, this was recently denied

by Simonsen & Dyhre-Poulsen (1999). They demonstrated that there is no modulation of

the H-reflex during various speed of running as compared to walking and that

discrepancies with previous investigations arise from inadequacy of the stimulus intensity

(Simonsen & Dyhre-Poulsen 1999).

Additionally, the monosynaptic reflex is modulated according to the phase in which it

occurs during rhythmic behaviors. For example, the stretch reflex is modulated with a

maximal amplitude during the stance phase of locomotion in SOL, when the motoneuronal

pool is depolarized and the muscle active (Akazawa et al 1982, Capaday & Stem 1986,

Crenna & Frigo 1987, Simonsen & Dyhre-Poulsen 1999). This is suggested to reinforce

extensor activity during the ongoing stance phase (Guertin et aI 1995). Intracellular

recordings also provided evidence for a phase-dependent modulation of la-EPSPs in

hindlimb motoneurons during fictive locomotion in spinal, decerebrate or decorticated cats.

The presence of modulation in reduced preparation suggests that this cannot be soiely

attributed to the absence of reafference and depends, at Ieast partially, on spinal

mechanisms (Schomburg & Behrends 1978b, Perret & Cabelguen 1980, Shefchyk et al

1984, Gossard 1996, Ménard et al 1999, 2003). The gain of this reflex is believed to

depend on cyclic changes in the excitability of motoneurons (section 3.4) and strength of

synaptic transmission by means of presynaptic inhibition (section 3.3.4.3).
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la interneurons and Renshaw cells: last-order inhibitory interneurons. Not only does

la afferents activation evokes an excitatory response in agonist motoneurons, but also an

inhibition in antagonists, the so-called reciprocal inhibition (Lloyd 1946). This reciprocal

inhibition is mediated by a group of glycinergic interneurons, referred to as la interneurons,

that innervates motoneurons within a spinal segment or adjacent segments (Eccles et al

1956, Baldissera et al 1981, Jankowska 1992). la interneurons are characterized by a

strong activation by la afferents and the ability to discharge at high frequency (Hultborn et

al 1971). lndeed, most of la interneurons respond to a synchronous volley in la afferents

with a single discharge; however, high frequency trains of action potentials can be evoked

by the stimulation of other peripheral afferents such as FRA (section 3.3.3) or during

walking (Hultborn et al 1971, McCrea et al 1980).

As exhaustively reviewed by Jankowska (1992), la interneurons receive multiple

converging inputs from supraspinal (pyramidal tracts, corticospinal, rubrospinal,

reticulospinal and vestibulospinal), spinal (propriospinal, CPG interneurons) and peripheral

(cutaneous, muscle, joint, FRA) afferents. la interneurons have been shown to contribute

to the inhibition of motoneurons of antagonists during muscle stretch, the crossed extensor

reflex, postural reflex, centrally induced locomotion and voluntary movements. In humans,

reciprocal inhibition can be evaluated by means of the H-reflex: an inhibition of the H-reflex

of a given muscle is observed following a conditioning activation of the antagonistic motor

nerve (Pierrot-Deseilligny et al 1981 b). Ia-IPSPs are also modulated in a phase-dependent

manner with a maximum occurring during the hyperpolarized phase of fictive locomotion

(Pratt & Jordan 1987, Degtyarenko et al 1998). Accordingly, reciprocal inhibition of

extensors is maximal during swing in humans (Petersen et al 1999).

Notably, la interneurons are also contacted by Renshaw ceils associated with the agonist

motoneuron and from la interneurons associated with the antagonist (Baldissera et al

1981). Most Renshaw cells are glycinergic and respond with a train of high frequency

discharges by recurrent collaterals originating from motoneurons. The activation of

Renshaw cells leads to the inhibition of surrounding synergistic o- and y-motoneurons,

other Renshaw celis and la interneurons to antagonistic motor nuclei (Hultborn et al 1971,

Baldissera et al 1981, Jankowska 1992). They also receive information originating from

cutaneous afferents, group Il-III muscle afferents and descending pathways. Renshaw

cells have been found to adjust the excitability of la inhibitory interneurons and o

motoneurons to regulate the gain of motoneuron output. A strong stimulation of Renshaw

cells both decreases the activation of the agonist muscle and the inhibition of the
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antagonist te facilitate coactivation whereas a weaker stimulation leads to a selective

activation cf agonist muscle. This system is organized in otder for the agonist meteneuren

and antagenist la interneuron te be under the centrol cf the same afferent input. This

organization leads te a clesely linked activation cf the agonist te the inhibition cf the

antagonist during movement. Reciprecal and recutrent inhibitions have indissociable

functions and are bcth invclved in the ccntrol cf mctcneurcn activity during vatious types

cf reflex and rhythmic mcvements such as stepping.

la inhibitery interneurons and Renshaw cells are rhythmically active during fictive

loccmeticn respectively during the inactive and active pericd cf the target mcteneurcn

(McCrea et al 1980, Pratt & Jcrdan 1987). When strychnine is added te the system te

blcck glycinergic transmission, fictive lcccmcticn still eccurs suggesting that la

interneurens and Renshaw cells are net essential te locomotion (Ptatt & Jerdan 198f).

Mcreever, their rhythmic activity cannet be attributed te the phasic activaticn cf peripheral

recepters as shewn during fictive locomotion (McCrea et al 1980, Pratt & Jerdan 1987).

Altheugh net essential, reciprecal inhibiticn is thcught te centribute te the generatien cf the

basic leccmetcr pattern and recurrent inhibition is believed te help terminate the activity cf

mcteneurens and la interneurcns and help fer the transition te the antagenist (McCrea et

al 1980, Pratt & Jcrdan 1987).

Monosynaptic reflex and SCI. Inccnsistencies arise as te the effect cf SOI en the

mcnesynaptic reflex and la-EPSPs. Seme studies report that synaptic transmission is

increased by a cemplete spinal transectien enhancing the amplitude cf la-EPSPs and

projection frequency and efficacy cf group la fibers (Cepe et al 1988). Hence, beth

hemenymeus and hetercnymcus la-EPSPs were repcrted te be larger and have a faster

rise time after a ccmplete acute or chrenic SCI (Ccpe et al 1986, 1988, Munscn et al 1986,

Hcchman & McCrea 1994ab). On the ether hand, hcmcnymeus la-EPSP amplitude has

aise been reperted te be unchanged after a cemplete SCI (Mayer et al 1984). In fact,

changes in la-EPSP amplitude seem te be a very specific prccess. Fer example, Hcchman

and McCrea (1994a) ebserved a general increase in hemenymcus la-EPSP amplitude in

the triceps surae meteneurens. When PSPs were grcuped acccrding te mctcneurcnal

pools, LG-EPSPs were cf larger amplitude whereas MG-EPSPs wete net mcdified in

spinal animaIs as ccmpared te intacts. Unchanged hcmcnymeus EPSPs in MG

meteneurons cf chrenic spinal cats were aise repcrted by cthers (Nelsen & Mendeli 1979,

Mayer et ai 1984, Munsen et al 1986, Hechman & McCrea 1994a). Mereover, Munscn and
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colleagues (1986) did flot report a difference in homonymous la-EPSPs amplitude in MG

whereas they observed a transient increase in heteronymous EPSPs up to three months

after SCI which was back to normal within 7 months. Finally, this increase in

heteronymous Ia-EPSP amplitude was present only if the spinal transection was

performed at L4-L5 level and not at Li or L3 (Munson et al 1986). Thus, it seems that the

transection level, the time post-injury and the selected motor pool have an important

impact on variations of la-EPSP amplitude and can affect differentially homonymous and

heteronymous la-EPSPs. This may prevent a conclusive comparison between studies. It

was further shown that la-EPSP amplitude modulation could not solely result from

alterations in motoneurons passive properties that would affect both heteronymous and

homonymous similarly (Hochman & McCrea 1994b). Moreover, la-EPSP amplitude varies

between different motor unit types, which were shown to be modified following SCI (Mayer

et al 1984, Cope et al 1986, Munson et al 1986, Hochman & McCrea 1994c).

Facilitation of the monosynaptic reflexes after a spinal cord injury has been reported in SOI

rats (Malmsten 1983, Lavrov et al 2006), cats (Hultborn & Malmsten 1983) and humans

(Hiersemenzel et al 2000). n humans, the contributing factors associated with the

increase in H-reflex amplitude have been suggested to include decreased presynaptic

inhibition resulting from the disruption of supraspinal pathways (Calancie et al 1993, Faist

et al 1994) and altered reciprocal inhibition (Trimble et al 2001). Moreover, load-related

afferent input and changes in hip kinematics were shown to decrease the H-reflex in

complete SOI suggesting that afferent input can modulate the H-reflex at the spinal level

(Knikou & Conway 2001, Knikou & Rymer 2002). A lack or absence of phase-dependent

modulation of the H-reflex and stretch reflex has also been reported during stepping and

bicycling in SOI individuals (Yang et al 1991a, Boorman et al 1992, Fung & Barbeau

1994). However, it can be recovered with functional electrical stimulation with a

conditioning stimulus to the medial plantar surface of the foot in incomplete 5CC (Fung &

Barbeau 1994). Locomotor treadmill training has also been shown to decrease and

improve the gating of la reflexes in SCI individuals (Trimble et al 1998) and reinstate

phase-dependent modulation of the H-reflex in complete SOI humans (Beres-Jones et al

2004). This suggests that the appropriate sensory input can be used to normalize such

reflex output of the spinal cord that is disrupted after SOI.
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3.2.1.2 Pathways from group lb muscle afferents

Group lb autogenetic inhibition. Laporte & Lloyd (1952) reported that stimulating

muscle afferents at a greater intensity than that required to activate la fibers inhibited

homonymous and synergistic motoneurons and excited the antagonists. This reflex

pathway activated by lb afferents s referred te as non-reciprocal inhibition or group lb

autogenetic inhibition (Jankowska et al 1981ab). This inhibitory action is performed

through one or two interneurons, lb interneurons, positioned between lb afferents and

motoneurons because central latencies of lb IPSPs are distributed from 1.3 to 3.5 ms

(Eccles et al 1957ab, Baldissera et al 1981). Stimulating lb fibers has a widespread effect

that can involve ail the muscles of a limb. For example, the activation of lb afferents from

an extensor evokes an IPSP in every motoneuron innervating extensor muscles (Fig.3,

left pathway 2, green) together with an EPSP in severai motoneurons innervating flexor

muscles cf the hindlimb (Eccles et al 1957a). This reflex provides a negative feedback

loop in order to regulate muscle tension, lb inhibition can be studied by means cf the H-

reflex in humans. A sustained inhibition cf the H-reflex in the quadriceps and SOL is

observed following a conditioning stimulus te the SOL nerve suggesting a similar

organization cf this circuit in cats and humans (Pierrot-Deseilligny et al 1981ab). lb volley

from flexcrs is usually withcut much effect (Fig.3, right pathway 2, green; Eccles et al

1957a, Jankcwska 1992).

lnhibitory and excitatory lb interneurons. lb interneurons are contacted by lb fibers

from several muscles acting at a same joint and on different joints (Eccies et al 1957a).

Although lb afferents are the main source cf input to lb interneurons, it is net exclusive: 30-

50% also receive la afferent inputs which can be sufficient te evoke non-reciprocal

inhibition by itself (Jankowska & McCrea 1983). The convergence of the la and lb signal

allows te increase the sensitivity cf lb interneurons during the dynamic phase cf muscle

stretch because the reflex is influenced by muscle length and the fusimotor system

(Lundberg & Malmgren 1988). In addition to la and lb afferents, lb interneurons are

contacted by converging input cf supraspinal (corticospinal, rubrcspinal and reticulospinal),

spinal (propriospinal, group lb and Il interneurcns) and peripheral (10w threshcld

cutaneous and jcint) afferents either directiy or via interneurons (Pierrct-Deseilligny et al

1981ab, Jankowska 1992). lb inhibitcry interneurcns, contact a- and y-motoneurcns cf

extenscr muscles while lb excitatory interneurons contact motoneurcns te flexor muscles.
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Each lb interneuron projects to several motor nuciei and every motoneuron receives input

from numerous lb interneurons (Eccies et ai 1957a). The pattern of activity of lb

interneurons shows a dominant inhibition in extensots and lb excitation in fiexors both in

cat and humans (Eccles et ai 1957a, Pierrot-Deseilligny et ai 1981ab). Not that ail the

patterns described above wete observed in non-iocomoting preparations or subjects.

State-dependent transmission in group lb reflex pathway. The lb autogenetic inhibitory

pathway s deeply reconfigured during locomotion (Fig.3, pathway 4): it is replaced by an

excitation in extensors that reinforces weight-bearing during the stance phase (Conway et

al 1987, Gossard et al 1994, Pearson 1995, Guertin et al 1995, Prochazka 1996, Pearson

et al 1998, Dietz & Duysens 2000). It was shown that the administration of nialamide and

L-DOPA rapidly reverses disynaptic lb inhibition to a polysynaptic excitation in extensot

motoneurons in spinal cats (Gossard et al 1994). During this reversaI, the disynaptic IPSP

evoked by lb afferents of extensors disappears (McCrea et al 1995, Quevedo et al 2000,

McCrea 2001) because of a locomotor-related tonic inhibition of lb inhibitory interneurons

located in the intermediate nucleus in L6-L7 that hardly tespond to a stimulation during

MLR-induced locomotion (Angel et al 2005). The polysynaptic excitation is suggested to

be mediated by another set of interneurons (Jankowska 1992) and may be part of the

CPG network (Gossard et al 1994). This positive feedback loop would enhance extensor

muscle activity and control the tension level during the loading of the stance phase and

decrease the activity in flexors during swing (Conway et al 1987, Gossard et al 1994,

Pearson 1995, Guertin et al 1995, Prochazka 1996, Pearson et al 1998, Dietz & Duysens

2000). lndeed, Golgi tendon otgans continuously monitor muscle tension during

movements and could control extensor yield and muscle tension during walking (Eccles &

Lundberg 1959). Moreover, it may regulate the transition from stance to swing to assure it

s not initiated before unloading (see section 3.3.4.1).

In humans, it was found that there is a significant decrease in lb inhibition during

locomotion but it is not necessarily reversed to excitation (Stephens & Yang 1996). Further

experiments suggest that this decrease in lb inhibition does flot require locomotion but

loading of the limb; however, the reversaI into excitation is expressed only during stepping

episodes (Faist et al 2006). After SCI, lb inhibition does not differ from intact subjects at

rest (Downes et al 1995, Monta et aI 2006, however see Delwaide & Oliver 1988) but a

Iack of modulation of lb inhibition during tonic antagonist contraction in patients with
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spasticity is reported (Monta et al 2006). More details regarding load signais conveyed by

lb afferents and SCI will be reported in section 3.3.4.2.

Disynaptic lb excitation. During locomotion, group la-lb afferents from extensors can

also evoke an additional disynaptic excitatory component with a central latency of about

1 .5 ms (Fig.3, pathway 3) superimposed on the monosynaptic EPSP in homonymous and

synergistic extensor motoneurons. This EPSP reaches a maximal amplitude during the

stance phase of MLR-induced locomotion in decerebrate cats (Schefchyk et al 1984,

McCrea et al 1995, Angel et al 1996, McCrea 1998, Quevedo et al 2000) and nialamide

and L-DOPA induced locomotion in acute spinal cats (Schomburg & Behrends 1978b).

This action is recorded only in extensor motoneurons during the extension phase of

walking. The latency of this response indicates that a single interneuron is intercalated in

this pathway. This population of interneurons has been identified and localized in the

intermediate nucleus in lamina V-VI in mid and caudal L7 (McCrea 1998, Quevedo et al

2000, Angel et al 2005). These candidates excitatoty lb intetneurons cannot be activated

at test but become tesponsive and also fite spontaneously duting the extensot phase of

fictive locomotion. Although this excitatory disynaptic pathway is exclusively observed

during locomotion, it is not believed that transmission in this pathway passes thtough the

CPG but rather that it is strongly under its influence. This pathway needs furthet

investigation to undetstand why it is absent during fictive locomotion evoked by clonidine

(McCrea et al 1995, McCrea 1998) or DOPA in spinal cats (Gossard et al 1994). Note that

the measurement of monosynaptic EPSP peak amplitude in previous studies ignored a

possible disynaptic component.

3.2.1.3 Pathways from other muscle afferents

Group Il afferents and interneurons. Group Il fibers innervate muscle spindles and carry

information concerning muscle length thtough a chain of spinal interneurons (group Il

interneurons). These interneurons may respond to group Il afferent input either by a train

or a single action potential (Schefchyk et al 1990). Group II interneurons are divided in 2

subpopulations according to their localization: ventral horn (lamina VI-VIII) or dorsal horn

(lamina IV-V) (Jankowska 1992). Here, only the ventral group will be described because of

its possible involvement in locomotion.
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This population of interneurons flot only receives excitatory input from group Il afferents

originating from several synergists and a number of antagonists but also from supraspinal

(corticospinal, rubrospinal, reticulospinal, vestibulospinal) and other peripheral afferents

(group la-lb, cutaneous, joints, high threshold afferents) (Edgley & Jankowska 1987,

Jankowska 1992). Moreover, they can be activated by a stimulation of the MLR and by

propriospinal neurons (Shefchyk et al 1990, Jankowska 1992). Their main source of

inhibition is the monoaminergic pathway although other group Il interneurons, lb

interneurons and reticulospinal fibers can also inhibit them. Group Il interneurons

terminate on a-motoneurons (excite flexors, inhibit extensors) and y-motoneurons (Edgley

& Jankowska 1987). Similar to la and lb interneurons, group II interneurons are under the

control of presynaptic inhibition resulting from cutaneous, joint and muscles afferents.

Group Il interneurons are involved in reflexes involving flexor muscle activation and

extensor muscles inhibition (Eccles & Lundberg 1959) and participate in the coordination

of muscle activity of a limb particularly during postural reactions and locomotion. In the cat,

flexor group II afferents have been found to project to a group of mid-lumbar interneurons,

which are closely integrated into the spinal neural locomotor circuitry (Edgley et al 1988,

Perreault et al 1995). There is a population of group Il interneurons that is localized around

L3-L5 (Edgley & Jankowska 1987, Shefchyk et al 1990, Jankowska 1992) and part ofthis

population is rhythmically active during swing and during the transition from the stance to

swing phase of locomotion in MLR-induced locomotion (Schefchyk et al 1990). These

interneurons tespond in a phase-dependent manner to group l-Il and cutaneous afferents

stimulation, but only during the swing phase. During locomotion, group Il interneurons are

thought to carry information concerning hip position, a signal known to be important during

the transition from stance to swing. Group II muscle afferents from knee and ankle

extensors evoke a flexion reflex in spinal cats injected with L-DOPA and are considered to

be included in the flexor reflex afferents fERA, see section 3.3.3).

Group III and IV afferents. Group III and IV afferents originate from thermoreceptor,

chemoreceptor, mechanoreceptor, nociceptors and free endings. Very few studies have

described the individual activity of these high threshold afferents during locomotion.

Preliminary results showed that the response of dorsal horn cells receiving group III and IV

muscle afferent input in the lumbar spinal cord is greatly depressed by a central motor

command originating from the MLR in paralyzed decerebrate cats (Degtyarenko &

Kaufman 2000). Further experiments showed that biccuculine or strychnine suppresses
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the inhibition in dorsal horn ceils receiving group III efferents and suggest a locomotor

related release of GABA and glycine to gate group III afferents transmission (Degtyarenko

& Kaufman 2003). The authors speculated that this might be a mechanism to prevent

vasoconstriction and the associated decrease in blood flow to muscles or to decrease

nociceptive inputs from working muscles. Note that group III and IV muscle afferents are

also part ofthe FRAs (see section 3.3.3).

3.3.2 Pathways from cutaneous afferents

It was found that stimulation of skin areas overlying an extensor muscle tended to facilitate

monosynaptic reflexes of that muscle, whereas stimulation of other skin areas tended to

depress them (Engberg 1964). On the other hand, a flexor muscle tended to be excited by

stimulation of the skin of the entire limb and inhibited by the skin over the extensor

antagonist (Hagbarth 1952). The majority of the work for assessing the rote of cutaneous

information during locomotion was performed using neurectomies, anesthesia or

mechanical stimulation of the skin or cutaneous nerves in different phases of the step

cycle. The hindleg of the catis innervated by 5 different cutanous nerves: tibial, superficial

peroneal, deep peroneal, saphenous and sural.

In this project, 3 cutaneous nerves were stimulated to evoke responses in motoneurons:

superficial peroneal, caudal cutaneous sural and medial plantar.

Caudal Cutaneous Sural SuperHcial Peroneal Medial Plantar
(CCS) (SP) (MPL)

‘ fl fl fl t • C’ j’i ( t

Figure 4: Cutaneous territories of the cat hïndpaw
(modified from Bernard et al 2000).

As illustrated in figure 4, SP innervates the dorsal and distal surface of the hindpaw and

toes, MPL ta branch of tibial) ïnnervates the ventral surface of the foot and the central

plantar pad and CCS (a branch of sural) innervates the lateral margin of the foot.
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At the beginning of the 20th century, low threshold cutaneous stimulation of the distal

hindlimb was found to produce extensor reflexes at test (Philippson 1905, Sherrington

1910, see aiso Engberg 1964). During locomotion, a similar role has been proposed as to

reinforce extension during the stance phase of locomotion. The idea was later discatded

because the removal of cutaneous input of the hindpaw (denervation, local anesthesia,

taking off the skin) did not prevent stepping and yielded only small deficits even after

spinalization (Sherrington 1910, Engberg 1964, Forssberg et al 1977, Duysens & Stem

1978, Ptochazka et al 1978). Therefore, cutaneous inputs wete thought to be useful but

not criticai to locomotion. In a series of experiments, it was tecently shown that after an

extensive cutaneous neurectomy, cats could waik almost normally over the treadmill belt

but had deficits duting precision walking such as stepping on the rungs of a horizontal

ladder or on inclines suggesting that cutaneous input provides input necessary to adjust

walking (Bouyer & Rossignol 2003a).

The role of cutaneous afferents in adapting the motor response to perturbations during

stepping is now obvious. Latet experiments using other methods such as stimulation of

cutaneous afferents shed some light on the nature of cutaneous contribution to

locomotion. It was shown that the simulation of the dorsal surface of the foot in spinal cats

resuited in phase-dependent reversai of the reflex: enhancement of flexion during swing

and a shorter but more pronounced extension during stance (Forssberg et al 1975). During

swing, a coordinated reflex is evoked: the stumbling corrective reaction. The contact of the

limb with an obstacle (or electrical stimulation of the dorsum of the foot) ieads to an

additional and sequential activation of flexors at ail joints to allow the perturbed limb to

step over the obstacle (Prochazka et al 1978, Forssberg 1979, Wand et al 1980). The

same stimulus applied during the stance phase enhances the ongoing activation of

extensors in cats and humans (Forssberg et aI 1975, 1977, Duysens & Pearson 1976,

Yang et al 2004). The stimulation of the pad or the piantar surface of the foot also prolongs

the ongoing extensor activity during stance and delay the following flexion (Duysens &

Pearson 1976). Notably, the excitatory response foliowing a cutaneous stimulation is

preceded by a short iatency inhibition in the intact cat (Abraham et al 1985, Bélanger et ai

1986, Duysens & Loeb 1980, Forssberg et al 1977, Forssberg 1979). This short-patency

inhibition is less pronounced in spinal cats or repiaced by a short-iatency excitation

(Forssberg 1979, Abraham et al 1985)

These reflexes seem to be useful in adapting the gait to unpredictable terrain, If an

unexpected loading of the foot occurs, cutaneous feedback wiil induce an increase in
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extensot activity to counteract the applied load and delay the onset of swing. Cutaneous

afferents thus evoke a powerful corrective response to overcome a perturbation during gait

by maintaining the ongoing locomotion as unperturbed as possible (McCrea 1980).

Although slightly different, reflexes evoked by cutaneous afferents in the human are

reminiscent cf the stumbling corrective tesponse (Forssberg 1979) and meant to avoid a

destabilizing stumble (Bélanger & Patla 1987, Van Wezel et al 1997, Zeht et al 1997). The

common synergy of flexors during swing and extensors during stance can be observed

independent cf the location of the stimulus (Duysens & Stem 1978, Duysens & Loeb 1980,

Abraham et al 1985), However, nerve-specific tesponses are also observed during

locomotion in cats (Abraham et al 1985, Moschovakis et al 1991, Pratt et al 1991, LaBella

et al 1992, Degtyarenko et al 1996) and humans (Van Wezel et al 1997, Zehr et al 1997)

to provide location-specific information from the skin of the foot. In some cases, the

anatomical location of the nerve seems crucial in determmning the functional nature and

sign (inhibitory or excitatory) of any reflex response, particularly those evoked to clear an

obstacle.

In the cat, latencies of cutaneous responses are minimally trisynaptic (Lundberg et al

1977, Baker & Chandler 1987b, Fleshman et al 1988, LaBella et al 1989, LaBella &

McCrea 1990) although exceptional disynaptic linkage in specific cutaneous pathways

during the depolarized phase of stepping has been observed (Burke 1999). Some studies

have described short-latency excitatory pathways from cutaneous afferents to extensor

motoneurons in decerebrate and acute spinal cats (Hagbarth 1952, Fleshman et al 1984,

LaBella et al 1989, LaBella & McCrea 1990). Cutaneous stimulation produces a differential

distribution of early PSPs within the 3 extensor motor pools comprising the triceps surae in

decerebrate cats (LaBella et al 1989), spinal cats (LaBella et al 1992) and also in humans

(Duysens et al 1996). CCS preferentially evokes an excitation in MG whereas SP rather

facilitates transmission to LG (LaBella et al 1989, 1992). The dominant excitatory effect on

extensor muscles from the foot may participate in the regulation of stance together with

muscle proprioceptors (Duysens & Pearson 1976).

Cutaneous refiexes are phase-dependent. As mentioned in the preceding paragraph,

the amplitude of cutaneous reflexes is powerfully modulated during locomotion in intact

cats (Prochazka et al 1978, Forssberg 1979, Duysens & Loeb 1980, Wand et al 1980,

Drew & Rossignol 1987), duting fictive locomotion in decetebrate (Duysens & Pearson
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1976) and spinal cats (Forssberg et al 1975, 1977, Andersson et al 1978, LaBella et al

1992) and in humans (Van Wezel et al 1997, Zehr et al 1997).

Intracellular motoneuronal recordings showed that a cutaneous stimulation evoked

maximal EPSPs during the active phase of motoneurons during fictive locomotion while

IPSPs were maximal during the reciprocal phase (Andersson et al 1978, Schomburg &

Behrends 1978a). These results suggest a mechanism of central origin rather than an

effect of afferent feedback. However, ail cutaneous responses do not foliow this simple

scheme as iliustrated by the stimulation of the superficial radial nerve, which evokes an

excitatory response in the forelimb extensor triceps during the swing phase of locomotion

even though it is generally active during stance (Drew & Rossignol 1987, see also Wand et

al 1980). Thus, a cutaneous stimulation of the foot during different phases of the step

cycle evoke adapted phase-dependent responses to adequately compensate for the

perturbation applied, even after a complete spinal lesion. This modulation is primarily

attributed the convergence of primary afferents on common spinal interneurons. lndeed,

cutaneous afferents have disynaptic excitatory connections with lb interneurons and

facilitate the interneuronal transmission in inhibitory and excitatory pathways from lb

afferents to motoneurons (Lundberg et al 1977).

Interneurons intercaled in cutaneous pathways. As mentioned in the preceding

paragraph, cutaneous pathways ftom the hindpaw are trisynaptic in general although

some exceptional disynaptic cutaneous pathways does exist (Moschovakis et al 1991,

Degtyarenko et al 1996, 1998, Burke 1999, Burke et al 2001). Interneuron identification is

rather difficult, particularly when several interneutons are intercalated between the afferent

and the motoneuron. Thus state-dependent modulation of spinal reflexes was used as a

tool to investigate the organization of spinal interneurons activated by the stimulation of

cutaneous afferents of the hindpaw (Burke 1999). However, reflexes evoked by skin

afferents recorded in forelimb motoneurons are known to be mediated by disynaptic

pathways (some are also polysynaptic). Hence, a little more is known about those

cutaneous interneurons and cervical (C7) interneurons that mediate cutaneous reflexes in

the foreiimbs have been identified (Hongo et al 1989, Kitazawa et al 1993). These

interneurons can be excitatory or inhibitory and receive excitatory inputs from corticospinal

and rubrospinal tract fibres (Hongo et al 1989). Their activity during locomotion remains to

be determined.
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Cutaneous pathways and SCI Chronic spinal animais exhibit an increase in reflex activity

to cutanecus input (Hultborn & Maimsten 1983). Changes in cutaneous pathways have

been atttibuted to specific alterations in premotoneuronai mechanisms and not to the

changes in passive membrane properties of motoneurons between acute and chronic

spinal cats (Chandier et al 1984, Munson et al 1986, Baker & Chandler 1987b).

The participation cf cutaneous input in locomotor recovery after SCI is poerly documented

particuiariy because it has been difficult to separate the contribution of proprioceptive from

cutaneous input. It has been shown that phasic cutaneeus input impreves metor recovery

of the hindlimbs after a lateral spinal hemisection in chicks (Muir & Steeves 1995, 1997). It

was shown that the selective phasic stimulation of cutaneous receptors from the plantar

surface of the foot, without the activation of proprioceptors signaling limb loading, is

sufficient to increase iimb extension during swimming. An enhanced cutaneous feedback

ptovided te the hindlimbs by buoyant tubes suspended from the bettem cf the pool during

swim-training has aise been shown te impreve meter recevery as compared te standard

swim-training in centused rats (Smith et al 2006). In addition, cutaneous inputs have been

shewn te be essential te recever stepping in spinal cats after a cutaneeus denervatien cf

the hindlimb (Beuyer & Rossignol 2003b). Indeed, if a single source cf cutaneeus input te

the hindlimb was left, foot placement was adequate. Hewever, plantar foot placement was

neyer recevered if this source was remeved. A cutanec-muscular stimulation cf the medial

plantar cf the foot threughcut the late swing and eariy stance phase cf the step-cycle can

aise restere a normal reflex modulation in spastic SCI individuals by inhibiting the SOL H-

reflex (Fung & Barbeau 1994). Together, these results suggest a crucial rele fer cutaneeus

feedback in the recevery cf stepping.

3.3.3 Pathways from flexion reflex afferents (FRA)

The term flexor reflex afferent (FRA) was assigned te the ensemble cf afferents that

terminate en a cemmen group cf interneurons te generate the flexion reflex. These

afferents include large and small cutanecus afferents, jcints afferents and the high

thresheld group Il-III-IV muscle afferents. The fiexicn reflex is a polysynaptic and

polysegmental spinal reflex that induces a cempiex flexion synergy cf the ipsilateral limb

with a reciprocal extension cf the contralateral limb (cross extension reflex).
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The Swedish group of Lundberg extensively studied these reflexes in the cat (Eccles &

Lundberg 1959, Holmqvist & Lundberg 1961, Jankcwska et al 1967ab, Engberg &

Lundbetg 1969, Lundberg 1979). The stimulation cf FRA in acute spinal cats evokes a

polysynaptic excitation in ipsilateral flexors and contralateral extensors. Fellowing L-DOPA

injection, FRA pathways are reorganized and produce suppression of the short latency

flexor reflexes accempanied by the release of long latency and long lasting discharges in

flexor and reciprocally organized extensor nerves. Lundberg and colleagues realized that

the organization of FRA pathways in the L-DOPA preparatien resembled Brcwn’s (1911)

haif center organization for locomotion (section 2.2.1). Aftet a further administration cf

nialamide (MAO inhibitor), FRA stimulation evokes alternating bursts cf activity in flexors

and extensors. On the basis cf these observations, FRA pathways were proposed to be

forerunners cf locomotion and assumed te be part cf the central core et rhythm generaticn.

FRAs terminate on spinal interneurens (FRA interneurons) which are subdivided in many

subpcpulation invelved in varieus features cf the reflex and have been recerded in the

Rexed’s lamina VII in the ventral hem cf the spinal cerd (Jankowska et al 1967b, Gessard

et al 1994). The majcrity ef FRA interneurens are contacted by a numbet cf inhibitcry and

excitatery interneurens whereas some cf them are first-order interneurons,

mcnosynaptically centacted by cenverging FRA (Jankewska 1992). The same afferents

can thus excite or inhibit FRA interneurens depending on the number and features cf the

intercalated interneurens. Yet, the excitatery effect cf FRA is usually more powetful on

ipsilateral flexor muscles while the ptedcminant effect on ipsilateral extensers is inhibitery.

Transmission in this pathway is medulated by descending input te adapt the response te

motet activity. Fer example, during walking, the same stimulus evekes a flexion during

stance and beginning cf swing and an extension during the test ef the swing phase

(Schemburg & Behrends 1978a).

Clearly, a simple alternaticn between the two haif-centers et FRA interneurens is net an

appropriate mcdel te explain the variety ef muscle activity patterns (section 2.2.1).

Nevertheless, one could ask if FRA interneurons are part cf the CPG? This issue is still

ccntrcversial. In nialamide and L-DOPA acute spinal cats, it was shcwn that ipsilateral

FRA could reset the rhythm by initiating or prelcnging the flexion phase during Iccemction

and FRAs are censidered te be part cf the CPG. In contrast, the stimulation et

centralateral FRA evekes activity in the extensers (Jankcwska et al 1967ab, Lundberg

1979, Ccnway et aI 1987, Gessard et al 1994). As ctiginally described by Pearsen in the

Iecust and cat, tension in extenser muscles recruiting lb afferents was shewn te have a
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profound effect on the extensor activity (Pearson 1995, see section 3.2.1.2). It was shown

that coFRAs and group la-lb inputs from extensors converge on common interneurons

(Gossard et ai 1994). it was suggested that the depolarization in extensor motoneurons

foilowing lb stimulation was transmitted through the interneuronal network (C0FRA

interneurons) responsible for extensor burst generation during locomotion (Conway et al

1987, Gossard et al 1994). Howevet, the long-latency discharges evoked by the

stimulation cf FRAs in acute spinal cats injected with L-DOPA cannot be evoked in chronic

spinal cats even if they have recovered locomotor movements. This suggests that FRA

networks are flot necessary to generate a locomotor pattern and those pathways

transmitting inputs from FRAs are reorganized after SOI (Barbeau et al 1987). Notably,

FRAs still evokes long latency and long duration discharges similar to those cbserved in

acute spinal cats in individuals with a compiete SOI (Roby-Brami & Bussel 1992).

3.3.4 Specific functional features of sensory feedback

Proprioceptive inputs ptovide a powerful source cf modulation cf the CPG and their role is

well described in the generation and adaptation cf locomotion (Pearson 2000, Dietz 2003).

Two specific types cf senscry input appear te have a direct access te the CPG and te be

important for rhythm entrainment and phase transition: afferents signaling load and

afferents criginating from muscles arcund the hip. The importance cf lcad signais and

afferents involved in phase transition during locomotion will be described in the following

sections. An additional section wiil succinctly illustrates hcw the afferent feedback can be

moduiated befcre reaching its spinal target and influencing the motor output.

3.3.4.1 Importance of Ioad signais

Among the various types cf sensory feedback, it has been shcwn that senscry feedback

originating from load proprioceptors in the legs has a critical and pcwerful effect on CPG

activity and gait regulation (reviewed in Duysens et ai 2000, Dietz & Duysens 2000).

Propricceptive feedback from muscle and tendon afferents is especiaiiy increased during

stance as the limb s loaded. This feedback s used as extensor reinforcing feedback as

shcwn in many species including humans (reviewed in Duysens et al 2000). Lcad-reiated

feedback during the stance phase contributes significantly te the generaticn cf activity in
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extensors (30 to 50%; Ghcri & Luckwill 1985, Dietz et al 1992, Hiebert & Pearson 1999,

Stephens & Yang 1999, Sinkjaer et al 2000). Ccnsequently, unloading of the extensors

such as stepping into a hcle causes a marked reduction in the magnitude of extensor

activity (Gorassini et al 1994, Hiebert & Pearson 1999). In humans, this type cf respcnse

was ascribed te group lb and II muscles afferents because an ischemic block (no

transmission in la afferents) did net prevent a decrease in extensor activity after unloading

(Sinkjaer et al 2000). Also, unloading cf the leg s essential fer the enset cf swing in cats

(Duysens & Pearson 1980, Pearson 1995, Whelan et al 1995, Pearson et al 1998) and

humans, especially when supraspinal input is lacking (Harkema et al 199f, Yang et al

1998).

Load signais may be transmitted te the spinal cerd not only by proprioceptors in extensor

muscles but aise by mechancreceptors situated in the skin under the foot. It has been

shown that cutanecus input from the sole cf the foot and la-lb inputs from the hip and

ankle muscles are especially important drives for walking (Capaday 2002, Dietz 2003).

The effects cf lcad afferents on locomotion have aise been implicated when supraspinal

input are lacking in infants and SOI individuals. A body lcad applied during the stance

phase cf stepping prclcngs the stance phase and delays the swing phase cf gait in infants

(Yang et al 1998, Pang & Yang 2000). The beneficial effects cf lccomotcr training en

functional recevery can be attributed, at least in part, te load application on the affected

limbs: progressively increasing weight-bearing facilitates the generaticn cf an adequate

pattern cf activity and stimulates plasticity (Barbeau & Rossignol 198f, Barbeau et al

198f, de Leon et al 1998b, 1999, Edgerton et al 1992, Harkema et al 199f). Several

studies have shewn that lecomotor-like movements alcne (withcut loading) generated by

the application cf a driven gait orthosis or by manually assistance are net sufficient to

generate leg muscle activation in subjects with complete SOI (Harkema et al 199f, Dietz et

al 2002, Ferris et al 2004). However, leg movements combined with leading lead te

apprepriate leg muscle activation. If limb Icading is increased during the stance phase cf

stepping in the course cf a step-training regimen, recovery occurs over a shorter period cf

time as ccmpated te animais that have net experienced a larger 11mb leading (Edgertcn et

al 1992). Mereover, leg muscle activity has been shcwn to vary with the level cf bcdy

weight support even following a cemplete SCI (Harkema et al 199f, Dietz & Duysens

2000, Dietz et al 2002). For example, the modulation cf EMG amplitude in SOL and MG is

related te peak load rather than muscle-tendon stretch (Harkema et al 199f). Further

experiment illustrated that varying weight support provided te rats affect both the quantity

and quality of stepping (Timoszyk et al 2005). Together, these studies suggest that load
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related feedback contributes to the generation of locomotion and recovery of function in

both humans and animais.

3.3.4.2 Regulation of phase transition during stepping

The transition from stance to swing phase during locomotion s under powerful sensory

influence. Certain mechanisms are of prime importance to prevent the initiation of the

swing phase during the ongoing stance phase. The swing phase is only initiated when

specific critetia are met (reviewed in Prochazka 1996, Duysens et al 2000).

Hip extension and unloading the ipsilateral limb are important sensory signais that promote

the initiation of the swing phase in both invertebrates and vertebrates (Grillner & Rossignol

1978, Duysens & Pearson 1980, Wheian et al 1995, Hiebert et al 1996, Pang & Yang

2000). lndeed, many studies revealed the importance of afferents signais from the hip in

controlling the initiation of the swing phase of locomotion. The hip needs to reach a certain

amplitude of extension, normally attained at the end of the stance phase, and the

controlateral limb to be in a position to accept body load for the swing phase to be initiated

(Griliner & Rossignol 1978, Pang & Yang 2000). Conversely, a flexion of the hip abolishes

stepping on the ispilaterai side. During fictive locomotion, the static position of the hip

markedly influenced the pattern recorded in the hindlimb muscle nerves and gradualiy

extending the limb increases the vigor of the rhythm (Pearson & Rossignol 1991).

Moreover, unloading the extensor muscles was shown to be critical to initiate the swing

phase; the ankle extensor proprioceptors would signal weight support by the ankle and

inhibit the flexor burst generator (Duysens & Pearson 1980). Little is known about the

sensory receptors involved in mediating the transition, but they include Golgi tendon

organs signaling load in ankle extensors (Duysens & Pearson 1980, Wheian et al 1995,

Pearson et al 1998) and muscles spindies signaling length (group I and II afferents) from

the hip flexors (Hiebert et al 1996).

The transition from swing to stance is less affected by sensory feedback, the activity in

ankle and knee extensors precedes ground contact suggesting that sensory feedback

carrying information about foot landing would unlikely trigger the transition (Engberg &

Lundberg 1969, Halbertsma 1983). Thus, neuronal mechanisms responsible for initiating

burst activity in the knee and ankle extensor muscles near the end of the swing phase may

depend on mechanisms of central origin. This hypothesis is supported by other
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investigations showing that when a trap opens under the feet just before foot contact, the

initiation of extensor activity in ankle extensor muscles is stili present whether the foot

touches the ground or falis in the hole (Gorassini et al 1994).

Proprioceptive afferents play a significant role in setting the frequency of locomotion in

animais and humans and can modify the timing of the step-cycle. This may expiain how

spinal cats and infants can adapt their walking speed to the treadmill (Forssberg et al

1980a, Barbeau & Rossignol 1987, Yang et al 1998). Experimentally, group I stimulation of

knee, ankle and toe extensors are effective in resetting the fictive locomotor rhythm either

by prolonging the extension phase and delaying flexion during stance or terminating the

flexion phase during swing (Conway et al 1987, Cossard et al 1994, Guertin et al 1995).

Both la and lb afferents appear to contribute, but it seems that the dominant effect comes

from lb afferents (Conway et al 1987). A stimulation occurring during the swing phase

terminates ipsilateral flexor activity and initiates extension wheteas if it occurs during

stance, the extensor activity will be prolonged and the onset of flexion delayed suggesting

that these afferents have a facilitatory effect onto the extensor half center (Cossard et al

1994). Although not a general rule, la afferents can affect the rhythm. indeed, stretch

evoked la input from plantaris during the stance phase have also been shown to prolong

extension and delay flexion as lb afferents but not to reset the step-cycle during swing

(Guertin et al 1995).

It is assumed that lb afferents from extensors directly access the rhythm generator, we

thus believed that activity in these afferents following a step-training regimen after a

complete SOI should induce plasticity in the lb reflex pathway.

The effect of flexor on rhythm generation is less homogenous. During fictive locomotion,

the stimulation of group I afferents from flexors had little effect on rhythmicity in spinal cats

(Conway et al 1987), but more intense stimulation recruiting group II afferents can reset

the rhythm in the same way as group I afferents from extensors in MLR-evoked locomotion

(Perreault et aI 1995). However, Pearson group (Hiebert et al 1996, Lam & Pearson 2001,

2002) reported that in decetebrated walking cats, la afferents from Srt, lp and EDL and

group Il afferents from TA can interrupt the extension phase and reset the rhythm to

flexion (Fig.3, right pathway 5). Only input from group I afferents of Srt and ftom group Il

afferents of EDL could prolong the flexion phase (Fig.3, right pathway 3). Thus it seems
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that group Il afferents from flexors can either promote extension or flexion depending on

the preparation.

3.3.4.3 Presynaptic inhibition

Sensory input can be modulated through primary afferent inhibition or presynaptic

inhibition (reviewed in Rudomin & Schmidt 1999). This may occur at various sites (Fig.3,

yeliow) to regulate the efflcacy of the transmission by stopping or decreasing the sensory

feedback before it reaches the spinal target. Presynaptic inhibition of sensory afferents is

manifested by a depolarization of their terminais, which can be seen by a negative

potential recorded in dorsal roots near the spinal cord (dorsal root potential, DRP) or intra

axonal depolarization (primary afferents depolarization, PAD). This depolarization is due to

axo-axonic GABAergic synapses: GABAA receptors activate a chloride conductance

leading to a movement 0f chloride to the extracellular compartment. Presynaptic inhibition

can be highly specific and may reduce terminal release in a phase-dependent manner, in a

chosen pathway or in selected collaterais of the same afferents (Rudomin & Schmidt

1999). Muscle group l-Il and cutaneous afferents are under the control of presynaptic

inhibition. The interneurons involved in presynaptic inhibition are undet the excitatory and

inhibitory influence of a wide group of afferents including most of the supraspinal

pathways, FRAs, group la-lb afferents and cutaneous afferents. Peripheral and

supraspinal input can modulate presynaptic inhibition on la and lb fibers in a different

manner. This can be explained by the fact that different sets of interneurons would

respectively exert their effect on la or lb terminaIs to allow a selective control of information

concerning the length or the tension cf a given muscle (Rudomin & Schmidt 1999). It is

believed that the modulation of the presynpatic inhibition may play more critical role in the

control of transmission to lb interneurons than to la inhibitory interneurons since lb

interneurons depend on peripheral input from a wider variety of afferents (Jankowska

1992).

Presynaptic inhibition is another source of modulation for sensory feedback and is thought

to be involved in the gating of reflexes during locomotion. It is thus a potentiai site for

plasticity to occur. However, very few data on the subject are available. PAD patterns in la

and lb afferents were shown to be modulated foilowing peripheral nerve injury whereas

PADs in cutaneous afferents almost dissappear (Rudomin & Schmidt 1999). Moreover,

indirect evidence suggests that tactors contributing to change in the gain of reflex
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pathways in SOI individuals may include decreased presynaptic inhibition resulting from

the distuption of supraspinai pathways (Calancie et al 1993, Faist et al 1994). The effect of

SOI on presynaptic inhibition needs further investigations. However, presynaptic inhibition

is likely to be modified after SCI and step-training.

3.4 Motoneurons

3.4.1 Localization

Ail afferent inputs involved in the control of locomotion, either from supraspinai or

peripherai origin, ultimately converge on motoneurons, the final common pathway for

motor output. Motoneurons are connected to muscles fibers, their effectors. Striated

muscles fibers, responsible for muscle contraction, are innervated by a-motoneurons

whereas y-motoneurons innervate specialized striated muscle fibers of muscle spindles.

The excitability of primary and secondary terminais of muscle spindles is modulated by y

motoneurons, which are coactivated with a-motoneurons. a-motoneurons have the larger

diameter (30-7Opm) and receive up to 20000 to 50000 synaptic contacts allowing an

important integration of the information. Motoneurons are contacted monosynaptically by

la sensory afferent innervating muscle spindles, descending pathways, axons of spinal

interneurons and propriospinal interneurons. Ail these synaptic contacts contribute to

modulate the excitability of the motoneuron.

In this project, a-motoneurons from various motor pools including ankle and toe extensors

(plantaris, laterai gastrocnemius-soleus, flexor hallucis longus, medial gastrocnemius), hip

extensors (quadriceps, semimembranosus-anterior biceps), ankle and toe flexors (tibialis

anterior, extensor digitorum longus, flexor digitorum longus) and a bifunctional muscle

(posterior biceps-semitendinosus) were recorded during fictive locomotion. In the spinal

cord, motoneurons are segregated accord ing to their target muscle in the ventral horn gray

matter (laminae IX and X) of a given lumbosacral segment of the ventral horn gray matter.

A precise anatomical description of their localization was preformed in the cat by

Vanderhost and Holstege (1997).

In this project, the motoneurons innervating the extensor and flexor muscles cf the

hindlimb were targeted. These pools are mainly Iocalized in segments L5 to L7.
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Motoneurons are depolarized by the summation of repeated excitatory input and respond

with action potentials when the depolarization is sufficient to reach firing threshold.

Motoneutons should not be considered as passive players simply involved in the spatial

and temporal summation of afferent synaptic inputs originating from premotoneuronal

networks. Several mechanisms affect motoneuronal excitability and may change the final

motor output. Among them, motoneurons display intrinsic membrane properties able to

shape the motor output and movement dynamics (reviewed in Kiehn et aI 2000). Some of

these properties are modulated following a chronic SCI (Cope et al 1986, Munson et al

1986, Hochman & McCrea 1994b) or altered during locomotion (Krawitz et al 2001).

Hence, motoneurons participate actively in the patterning of motor commands duting

locomotion, with several intrinsic properties being turned “on” resulting in a non-linear

input-output relationship (Kiehn et al 2000, Krawitz et al 2001, Powers & Binder 2001,

Hultborn et al 2004).

3.4.2 Passive properties of motoneurons

The post-spike afterhyperpolarization (AHP) has a key function in transducing the

processed synaptic input into a variable spike frequency depending on its duration that

modulates the refractory period and return to excitability of the motoneuron. In

anesthetized and acute decetebrate cats, a short duration AHP is typically associated to a

fast conduction velocity, a high rheobase and low input resistance (R) within a

motoneuron whereas a long dutation AHP is associated to a slow conduction velocity, a

low rheobase and a high (Gustafsson & Pinter 1984b). This relation is maintained after

an acute or chronic SCI (Mayer et al 1984, Cope et al 1986, Munson et al 1986, Baker &

Chandler 1987a).

Membrane electrical properties of motoneurons such as R, rheobase, membrane time

constant (Tm) and the length constant (L) are important because they influence the shape

and the size of PSPs (Lev-Tov et al 1983, Gustafsson & Pinter 1984a). Changes in

motoneuronal properties following a complete SCI remain controversial. A significant

increase in axonal conduction velocity, rheobase and threshold voltage (Vth) together with

a decrease in AHP duration and were reported in SOL motoneurons (Czéh et al 1978,

Gallego et al 1978, Cope et al 1986) whereas others did not observe any significant

changes in MG motoneurons (Czéh et al 1978, Gallego et al 1978, Mayer et al 1984,

Munson et al 1986). lt is possible that there is a differential effect of SCI on in SOL vs MG
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and that SOL motoneurons are more Iikely to have their properties modified than MG

because SOL is solely composed of slow muscle fibets (Czéh et al 1978, Gallego et al

1978). However, others reported that there s no difference in motoneuronal properties

after chronic SOI in ankle extensots (grouped together). Howevet, when an analysis was

conducted according to the motor pool, Vth was significantly increased whereas the AHP

was decreased only in MG motoneurons (Hochman & McCrea 1994b). Moreover,

motoneurons properties are eithet reported to change (Czéh et al 1978) or not to be

modified (Baker & Chandler 1987a) in comparative studies between acute and chronic

SOI, revealing an uncertain effect of time post-injury. Although further experiments need to

be conducted to elucidate the precise effect of SCI on motoneuronal properties; it is

thought that in chronic spinal cats, these properties may not solely account for the

variability in PSPs (Hochman & McCrea 1994b).

Motoneuron properties depend also partly upon factors associated with activity of the

innervated muscles (reviewed in Gardiner et al 2006). Mimicking activity by stimulating the

sciatic nerve periodically or performing passive cycling may prevent changes in

motoneuronal properties after complete SCI (Czéh et al 1978, Beaumont et al 2004).

3.4.3 Dynamic properties of motoneurons

Motoneurons of many vertebrates, such as rodents, turtles, cats and humans, exhibit

plateau potentials and have been described extensively (Kiehn 1991, Gorassini et al 1998,

Kiehn & Eken 1998, Powers & Binders 2001, Hultborn 2002, Hultborn et al 2004). The

plateau potential is used to described the fact that a short duration synaptic excitation (or

brief depolarizing pulse) lead to a sustain shift in the membrane potential largely outlasting

the initial depolarization. The plateau potential occurs predominantly in dendrites and is

expressed in motoneurons as a shift in frequency discharge resulting from voltage

dependent non-inactivating Ca2 currents due to a facilitation of L-type Ca2 channels also

known as persistent inward currents (PICs). The activation of the plateau potential evokes

discharges that can be maintained for several minutes when the celI is sufficiently

depolarized. These PICs contribute to shape motor output and amplify dramatically the

effect of the synaptic input from descending and sensory afferents (Kiehn 1991, Kiehn &

Eken 1998, Powers & Binder 2001, Hultborn 2002). Noteworthy, some authors also report

the presence of plateau potentials in spinal interneurons (Hounsgaard & Kjaerulff 1992).



41

The presence cf plateau potential in motoneurons seems to depend on the tonic activity cf

serotoninergic and/or noradrenergic descending pathways in the cat and turtle (Ccnway et

al 1988, Hounsgaard et al 1988). Thus, PICs may be activated by the action of these

neuromodulatcrs to amplify synaptic input during locomotion. Plateau potentials are largeiy

eliminated following an acute SCI but may be revealed with the application of drugs

(Conway et al 1988, Hounsgaard et al 1988, Bennett et al 2001). lt seems likely that

similar PICs may be evoked in spinal motoneurons by other neuromodulators in chronic

SCI animais in the absence cf descending pathways because motoneurons may reccver

the ability te generate plateau potential in chronic spinal rats and cats (ken et al 1989,

Bennett et al 2001). This suggests a latent endogenous capacity to genetate plateau

potential.

During locomotion, mctcneurcns also exhibit a wave cf depolarization of the membrane

potential during ts active phase that alternates with a wave cf hyperpclarizaticn during the

antagonist phase: the locomotcr drive potential (LDP) (Edgerton et al 1976, Schcmburg &

Behrends 1978ab, Perret & Cabelguen 1980, Chandler et al 1984, Shefchyk et al 1984,

Pratt & Jcrdan 1987). The excitability cf motoneurons is thus phasically modulated in part

by the LDP excursion. The amplitude cf the LDP is crucial te determine if PSP5 reach the

fiting threshcld and the depclarizaticn facilitates the response occurring during the active

pericd cf the mctcneurcn.

Tcgether, PICs and LDP ccntribute to a lcccmctcr-dependent increase in mctcneurcnal

excitability.



4. Nervous system plasticity

The amount of neurotransmitter released at a synapse or synaptic strength may change

according to previous experience. Two main types of change in synaptic strength have

now been associated with learning in a variety cf systems and animal medels. Short-term

changes, without permanent structural modifications in the neurons themselves, last from

seconds to hours. These involve strengthening existing synapses through modification of

pre-existing proteins (ion channels, protein kinases, receptors, etc). Long-term changes

(eg long-term potentiation or LTP) largely rely on the activation of gene expression and

synthesis of new proteins in the nucleus. Continuous or repetitive synaptic activation can

resuit in the activation of an intracellular cascade that initiates protein synthesis and resuits

in alterations in the neuron itself. Changes in the efficiency, size and number cf synapses

imply that the aduit nervous system is dynamic and that behavioral experience may

ultimately sculpt synapse activation, addition or removal (Hawkins et aI 1993). This

concept is commonly referred as synaptic plasticity. The following sections wiII illustrate

that the CNS displays a high Ievel of plasticity, provide insights concerning possible

molecular candidates mediating synaptic plasticity, with a focus on the spinal cord.

4.1 Spinal plasticity

It was long assumed that spinal reflex pathways were hardwired (Forssberg & Svartengren

1983), simply responding quickly and in a stereotyped fashion to. descending and afferent

inputs. There is now experimental and clinical evidence suggesting a certain level cf spinal

plasticity in response te central or peripheral lesions or eperant conditioning (Mendeli

1984, Durkovic 1996, Wolpaw 1997, Wolpaw & Tennissen 2001). The concept cf spinal

plasticity s critical te lecomoter rehabilitatien: it is critical te understand the precise

mechanisms evcked bcth in respense te a SCI or follewing a step-training regimen in

order te enhance the residual potential cf the spinal cord and build targeted and adapted

pharmacological strategies that premote recovery of function. The follewing section will

demonstrate briefly the plastic potential cf the spinal cord in varicus conditions. It will be

followed by 2 sections respectively describing observations made eithet after a SCI or

after step-training.
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4.1.1 Reflex conditioning and denervation

Peripheral and supraspinal inputs can evoke short- and long-term changes modeling the

motor output generated in the spinal cord (Wolpaw & Tennissen 2001). The acquisition of

simple extension and flexion responses in the hindlimb is caused by associative and non-

associative mechanisms in spinal animais. Suggested several years ago by Shurtager and

Culler (1940) and later confirmed by others, it was shown that a modulation in the

amplitude of the withdrawal reflex can be acquired and maintained several hours after

conditioning in spinal animais (Beggs et al 1983, Durkovic 1985, Durkovic &

Damianopoulos 1986). The resuits obtained by Durkovic and colleagues exhibited the

features of classical conditioning, including the typical dependence on the delay between

the conditioned and the unconditioned stimulus. Their experiments suggested that the

underlying spinal plasticity might involve interneurons conveying sensory input, rather than

the sensory afferents or the motoneurons themselves. This spinal learning was maintained

and somehow imprinted in the spinal cord: a subsequent acquisition was facilitated by the

initial conditioning of the reflex. Wolpaw and colleagues aiso demonstrated the plastic

potential of the spinal cord. In operant conditioning experiments, they trained rats and

monkeys to eithet up- or down-regulate the H-reflex (reviewed in Wolpaw 1997, Wolpaw &

Tennissen 2001). This modulation was further shown to produce a complex pattern of

plasticity in the spinal cord itseif that includes changes in motoneuron physiological

properties as weil as in synaptic terminais (Feng-Chen & Wolpaw 1996, Wolpaw 1997).

Locomotor recovery following muscle (Bouyer et al 2001) or cutaneous (Bouyer &

Rossignol 2003b) neurectomy is another significant example of adaptive spinal plasticity in

chronic spinal cats.

Together, these studies suggest that the lumbar spinal cord, by itself, is able to memorize

selected motor responses and that plastic modifications in spinal networks may be initiated

by a specific pattern of afferent activity and acquired by sensory experience. The spinal

cord has the capacity to adapt to major changes.

4.1.2 Spinal cord injuryand plasticity

As summarized in Figure 5, a physiological, biochemicai and functional reorganization

occurs in the spinal cord caudal to the lesion following a SOI (Edgerton et ai 1997a, 2004,
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(Edgerton et al 1997a, 2004, de Leon et al 1999b,

Tillakaratne et al 2000, 2002, Rossignol et al 2001). Ihïs

reorganization involves, to different extent and with

different time course, both excitatory and inhibitory

neurotransmitter systems: monoaminergic, GABAergic,

glycinergic, glutamatergic (Giroux et al 1999, Tillakaratne

et al 2000, Chau et al 2002, Edgerton et al 2001, Giroux et

al 2003) and probably others. However, species- and type

dependent discrepancies (complete vs partial SCI,

contusion vs transection) have been observed drawing a

quite complex portrait of lesion-induced plasticity.

Nacimiento and colleagues (1995) illustrated an example

of synaptic reorganization in spinal networks caudal to the

lesion after injury. Synaptophysin immunoreactivity on the

ispilateral lumbar spinal cord of hemisected rats was signi

ficantly decreased for several weeks after the injury but returned to the intact side values

within 90 days. Yet, the afferents forming these synapses are flot identified (cutaneous,

articular, tendinous, muscular or interneuronal). The supraspinal contribution of the intact

side remains also largely undetermined although it is thought to be involved in this

synaptic reorganizatïon.

Edgerton and colleagues (2001) hypothesized that in the complete spinal cat, the number,

size and distribution of synapses on motoneuron and interneuron membranes may change

(Fig.6). These modifications together with the complete loss of supraspinal input could
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Figure 5: Plasticity of the
spinal cord after SCI

A) Intact individual:
Although the basics of the
locomotor pattern and
sensory processing are
automatic to a certain extent
(yellow), several inputs
originating from supraspinal
(blue) and sensory afferents
(red) model the motor
output (pink). They are
integrated to adapt the
locomotor pattern to the
moment - to - moment
environmental constraints.

B) SCI individual: spinal
automaticity becomes
evident following SCI. After
supraspinal afferents are
disconnected (gray arrow),
the spinal networks adapt to
an altered combination of
inputs in order to tacilitate
motor output. For example,
the locomotor pailem after
step-training illustrates not
only a high level of spinal
automaticity but also the
ability of the spinal cord to
leam and perform motor
tasks. As compared to intact
individuals (A), the relative
importance of the spinal
networks and of the sensory
inputs terminating upon
them is greater (thick unes).
Several strategies are
employed to enhance
locomotor recovery after
SCI (gray box). From
Edgerton et al 2004.
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contribute to modulate neuronal input efficiency and increase the relative effect of any

segmental or peripheral synaptic input. Consequently, the sources of control during

movement differ substantially from that which existed prior to the injury: the spinal cord is

altered (Edgerton et al 199fb, 2001).

supraspinal

A Pre-spinal _-_. Figure 6: Schematic diagram of afferents
j I (supraspinal, segmental and peripheral)

À À to the spinal cord networks before and
afterSCl.

ntraspina eriPheraI
Before SCI (A), supraspinal and peripheral
afferents enter the spinal cord and, together
with segmental inputs (ie intraspinal),

B Post-spinal influence the motor output. After a complete
SOI (B), the synapses of supraspinal origin

o—I I are disrupted and the relative efficiency of
intraspina o—1 î p3riphetI the remaining synapses of segmental or

î peripheral origin s increased. From Edgerton
etal 2001.

After a SCI, the interaction between the CPG network and peripheral inputs of varlous

origin is critical because major sources of control, the brain and brainstem nuclei, have

been eliminated. It is doubtful that the residual motor pathways evet executed locomotion

independently and it seems plausible that these networks have to develop new strategies

to perform stepping movements. The interpretation of a given sensory input may

significantly differ from the intact animal (Fig.6, see also Edgerton et al 2001).

Similar to the developing nervous system which is structurally and functionally dynamic,

the injured spinal cord undergoes a substantial process of reorganization that may make it

especially responsive to be primed by external cues such as activity-dependent feedback.

4.1.3 Spinal plasticity and locomotion

4.1.3.1 Activity- and task-dependent

Early evidence for the beneficial eftect of treadmili walking in spinalized kittens came as

early as the 50s (Shurrager & Dykman 1951). This phenomenon was later confirmed in the

adult and detailed by others (Lovely et al 1986, Barbeau & Rossignol 1987). Although

anecdotic cases of spontaneous recovery have been reported (Pratt et al 1994, de Leon et

al 1998b), step1raining is usually essential to tecover and enhance locomotor movements.
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The recovety specifically depends on the task performed during training (Edgerton et al

1997a, de Leon et al 1998a) and is not simpiy due to an increased level of activity in

neural networks or to an activity-related effect on musculature provided by training (Roy &

Acosta 1986, Roy et al 1999). For example, spinal cats can either be trained to step or to

stand (Pratt et al 1994). However, stand-training does not improve stepping recovery and

converseiy, the duration of standing episodes is flot enhanced after a step-training

regimen (de Leon et ai 1999b). Another example of the specificity of a training regimen is

illustrated by experiments in which spinal rabbits preferentially express a stepping pattern

with an alternate or in-phase coupling of the hindlimbs (Viala et al 1986). The benefits of

locomotor training can be retained for —6 months to 6 years after the training is

discontinued (de Leon et al 1999a, Wernig et al 1998) and re-learning is faster following

the initial training (de Leon et al 1999a).

Taken together, these resuits suggest that practicing a given motor task using specific

sensory pathways largeiy defines the subsequent abiiity to perform this task in spinal

animais.

To date, mechanisms known to be involved in the learning of spinal reflex are not sufficient

to elucidate the recovery of complex motor tasks such as locomotion in spinal, denervated

or deafferented animais. Locomotor recovery requires a longer learning period and

presumably the induction of iong-term changes in spinal pathways controlling hindlimb

movements.

4.1.3.2 Neurotransmitters and neuromodulators

The CPG is under the control of the reticuiospinal pathways activated by various areas of

the brainstem and aiso by monoaminergic pathways (5-HT, NA). Moreover, glutamate and

glycine are essential neurotransmitters for CPGs in virtually ail vertebrates whereas NA

and 5-HT are modulators of the basic iocomotor pattern (Rossignol 2000, Griliner 2003).

Several pharmacological agents have been tested to assess the role of different

modulatory neurotransmitter systems in initiating early and late spinal locomotion and

subsequentiy maintaining the expression of the stepping pattern in various animais

inciuding rodents, cats and humans (reviewed in Rossignol et ai 2001). The effect of a

given neurotransmitter is not necessarily similar across species or preparations. it was



47

shown that only the activation of Œ2-noradrenergic receptors could trigger locomotor

movements in spinal cats (clonidine, tizanidine, oxymetazoline, NA, DOPA). Other

systems (glutamatergic, serotoninergic, dopaminergic) have failed to trigger sustained

locomotion in this prepatation although they can in other species such as rats and mice

(reviewed in Rossignol 2000). Indeed, iocomotor movements are much more improved by

5-HT agonists or by transplantation of serotoninergic neurons in spinal rats (Ribotta et al

2000, 2002). They can also be triggered by excitatory amino acids (EAA), 5-HT in neonatal

rats (Cazalets et al 1992) and by EAA in decerebrate cats (Douglas et al 1993). Thus, the

focus in the next paragraphs is oriented toward results obtained in the spinal cat.

lnhibitory neurotransmitters: GABA and glycine. It is a generally accepted concept that

movement-related afferent inputs result in synaptic activity-dependent alteration in

synaptic strength, patterns of synaptic connectivity and structural modeling of spinal cord

circuitry after SCI. For example, plasticity in the lumbar spinal inhibitory systems has an

important impact on waiking ability in complete SOls. A global reduction of GABAergic

(with bicuculline) or glycinergic inhibition (with strychnine) improves locomotor

performance in spinal cats and dogs (Hart 1971, Robinson & Goldberger 1986). The

specificity of these changes in inhibitory transmission is further supported by experiments

in which strychnine improved the stepping ability cf untrained and stand-trained cats but

not of step-trained cats (de Leon et al 1 999b). It was later shown that gephyrin (the protein

responsible for the postsynaptic clustering cf the glycinergic receptor), GAD67 fa GABA

synthesizing enzyme) and GABAA receptors are up-regulated in the lumbar spinal cord of

SCI animais whereas they are near normal values in step-trained animais (Tillakaratne et

al 2000, Edgerton et al 2001, Bravo et al 2003). Again, this suggests that spinal plasticity

is not only activity-dependent, but also specifically task-related. Moreover, the GAD67 level

around motoneurons is inversely correlated with stepping performance of step-trained

spinal cats (Tillakaratne et al 2002) suggesting that step-training could reduce the overail

inhibitory potential and result in a net excitatory effect on spinal networks controlling

hindlimb stepping (de Leon et al 1999b). Notably, recent investigations showed that

sensory stimulation mimicking sensory feedback provided by step-training increased

reciprocal inhibition in humans (Perez et al 2003). In addition, step-trained cats were

shown to have a better capacity to reciprocally inhibit antagonistic motor nuclei during

walking as compared to stand-trained spinal or intact cats (Edgerton et al 1997a, de Leon

et al 1999b). Some inhibitory pathways are thus enhanced whereas others are depressed.
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This shows that spinal plasticity presents a high level of specificity and may be modulated

according to a given reflex pathway or motor pool as a function of the specific needs of a

particular task.

Monoaminergic pathways. The effect cf the noradrenergic (NA) control of the spinal cord

has been studied in animais with an acute spinal cord transection. The NA precursor, L

DOPA, increases the synthesis and liberation of NA from these terminais and mimics the

effect cf descending fibers. The effect cf L-DOPA can be enhanced by nialamide, a MAO

inhibitor, that blocks the enzyme responsible for NA breakdown. This technique has been

used for years to fayot the emergence of stepping in acute spinal cats (Grillner & Zangger

1979). Clonidine, an Œ2-noradrenergic agonist, was also shown to facilitate the emergence

of the fictive stepping pattern in spinal cats (Forssberg & Grillner 1973, Pearson &

Rossignol 1991).

In chronic spinal cats, noradrenergic drugs such as clonidine were shown to ttigger or

improve the initiation and modulation cf the locomotor pattern and accelerate stepping

recovery (Barbeau et al 1987, Barbeau & Rossignol 1991, Chau et al 1998ab). lndeed,

during early step-training, clonidine favored the emergence cf coordinated stepping on the

treadmiil, teduced the need for sensory stimulation and improved the stepping rate. This

effect is initiated only a few minutes after the injection and is maintained for 4-6 heurs

(Chau et al 1998a). A daily injection cf clonidine aise enables earlier recovery cf

locomotion (6-1 1 days vs 3-4 weeks) with plantar foot contact and weight support. In step

trained spinal cats that have already recovered locomotor movements, clonidine exerts a

neuromodulatory effect and increases the duration of the step-cycle (Barbeau et al 1987,

Barbeau & Rossignol 1991, Chau et al 1998b). Although doubts persist concerning the

positive effect cf clonidine for stepping recovery in humans SOls, at least some patients

showed an improved gait and decreased spasticity with clonidine and treadmiil step

training (Fung et al 1990, Rémy-Néris et al 1999).

In cats, locomotion can be exptessed in the total absence of NA descending fibers and

yohimbine, a NA blocker, does net impair locomotion once the stepping pattetn s

recovered with step-training (Giroux et al 2001). In contrast, application of a serotoninergic

(5-HT) agonist failed te initiate locomotion but enhanced the duration and amplitude cf

locomotor bursts in spinal cats that already recovered stepping (Barbeau & Rossignol
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1991). Further autoradiographic receptor-binding studies showed elevated levels of a1-

and a2-noradrenergic and 5-HT1A receptors in selected laminae cf the lumbar spinal cord

following SOI (Giroux et al 1999). The respective role of SOI and step-training in this

modulation remains to be determined. Together, these studies suggest that the basic

locomotor rhythmicity in spinal cats is not dependent, but only modulated by

neurotransmitters such as 5-HT and NA and that those pathways are candidates to be

modulated by SOI and!or step-training.

In our experiments, clonidine was solely used during acute experiments to facilitate the

emergence cf fictive stepping but was flot used during step-training to facilitate Iocomotor

recovery.

Glutamatergic pathways. The role of glutamate-related amino acids in the control of

locomotion is well documented. Glutamate release and subsequent activation of ionotropic

glutamatergic receptors induces locomotion in a variety of species (Douglas et al 1993,

Walwyn et al 1999). Application of NMDA together with an EAA uptake blocker

(dihydrokainic acid) produces a well-coordinated locomotor pattern. Conversely, the

administration of NMDA or non-NMDA antagonists (APV and CNQX) blocks fictive

locomotion in the decerebrate cat (Douglas et al 1993). Although NMDA does not ttigger

locomotion in early spinal cats in the same way as NA agonists, the glutamatergic system

is important in mediating locomotion in chronic spinal cats (Chau et al 2002). When

locomotor movements are recovered, the NMDA blocker AP-5 completely abolishes

locomotion and a further injection of NMDA reinitiates the motor pattern. These results

suggest that the basic locomotor rhythmicity in spinal cats is NMDA-dependent (Giroux et

al 2003). Even though the general decrease in total glutamate is observed after SOI is

probably due to the disruption of giutamatergic supraspinal pathways, an increase in

extracellular glutamate has been observed and significantly correlated to stepping

performance in spinal rats. This suggests that extracellular glutamate in the dorsal horn is

modulated at least in part by primary afferent depolarization during hindlimb stepping

(Walwyn et al 1999). Further studies need to be conducted to understand how the

organization of the spinal cord following transection changes the biochemical environment

of the neural networks that generate stepping. It can be hypothesized that many if flot ail

neurotransmitter systems are involved and modulated.
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Other systems involved in synaptic plastîcity. Although the mechanisms by which step

training improves gait and triggers and maintains spinal plasticity are flot well understood,

this most likely involves synaptic activity-dependent processes that can influence the

ability of the spinal cord to learn and perform locomotion (Wolpaw & Tennissen 2001,

Dobkin & Havton 2004, Edgerton et aI 2004). Hence, investigations have recently been

oriented toward molecules and processes involved in hippocampal learning to address the

question of whether similar mechanisms are implicated in spinal learning. Recently, BDNF,

initially known for its role in survival, growth and differentiation of neurons during

development (Barde 1994) has emerged as a critical modulator of synaptic plasticity in the

brain (Lo 1995, 1998, Patterson et al 2001). Promising experiments also showed that

BDNF could promote recovery after SOI in vivo: t positively affects neuroprotection (Yan

et aI 1992, 1994), regeneration (Tuszynski et al 1994, Kishino et al 1997) and enhances

locomotor recovery (Jakeman et aI 1998). The next section succinctly describes

neurotrophins, particularly BDNF and its downstream effectors, and other signaling

pathways known to be involved in synaptic plasticity.

4.2 Neurotrophins

Neurotrophins (NTs), which in mammals include neive growth factor (NGF), brain-derived

neurotrophic factor (BDNF), NT-3 and NT-4/5, are by far the best-characterized famiiy of

neurotrophic factors (Lewin & Barde 1996). These smali proteins share a common basic

structure, along with variable domains, that determine the specificity of their biological

actions resulting from the activation of their receptors. NTs are widely expressed in many

celi types in the spinal cord including interneurons, a-motoneurons and glia (Dreyfus et ai

1999, Scarisbrick et al 1999, Buck et aI 2000). lndeed, motoneurons can accumulate NTs

(Conner et al 1997, Yan et al 1997) and synthesize them (Dteyfus et aI 1999, Scarisbtick

et ai 1999, Buck et al 2000, Copray & Kernell 2000). NTs effects are mediated by two

types of receptors: p75NTR and the Trk family, a family of specific transmembrane tyrosine

kinase receptors with conserved intracellular domains mediating relatively well described

signal transduction pathways (teviewed in Kaplan & Millet 2000, Huang & Reichardt 2001).

Ail NTs bind to p75NTR. however, they show a high degree of specificity for the Trks.

Individuals NT5 activate different Trk receptors (NGF acting at TrkA, BDNF and NT-4/5 at

TtkB and NT-3 acting primatily although not exclusively at TtkC (Barbacid 1994). An

example of an intracellular cascade is simplified in Figure 7. BDNF, which binds to its

specific receptor TrkB, induces its dimerization and furthet autophosphorylation. The



51

activation of TrkB creates a docking site for adapter proteins containïng a Src-homoiogy-2

domain (SH-2, Birge & Hanafusa 1993). Grb2-SOS, P13k and PLCy ail contain SH-2

motifs, associate with Trk receptors as adapters (Pleiman et al 1993) and respectively

propagate signais through the Ras/ERK (extracellular signai-regulated kinase) protein

kinase pathway, the phosphatidylinositol-3-kinase (P13K)fAkt kinase pathway and

phospholipase Cy (PLCV) f Kapian & Millet 2000, Huang & Reichardt 2001). Following the

kinase cascade, transcription factors may subsequently be activated to regulate the

transcription of selected genes.

Figure 7: Schematic diagram of BDNF-activated
pathway via Trk receptor.

BDNF binds ta its specific receptor, TrkB. Grb2-SOS, PI3K
and PLCy are known ta associate with Trk receptors as
adapters and propagate signais through the Ras/ERK
protein kinase pathway, the PI3KIAkt kinase pathway and
PLCy pathway. Following the kinase cascade, transcription
factors such as CREB may subsequently be actïvated ta
regulate the transcription of selected genes.

CaMK, calcium/calmodulin-dependent kinase; CREB,
cAMP response element binding; DAG, diacylgIycerol;
1P3, inositol (1,4,5)-triphosphate; PI3K, phosphatidyl
inosftol-3-kinase; PLCy, phospholipase Cy; ERK, extra
ceilular signal-regulated kinase. From Ernfors & Bramham
2003

Through the activation of these pathways, NTs may mediate cellular events ta promote ceil

survival, differentiation and maintenance, neurite outgrowth and the activation of

neurotransmitter synthesis and release. Recent studies strongly suggest a raie for NTs in

regulating synaptic function in the hippocampus, cortex and cerebellum of both developing

and adult animais (reviewed in McAllister et aI 1999, Thoenen 1995, 2000). They were

also shown to be important in modulating activity-dependent neuronal plasticity and

essential for the functional and structural refinement of neuronal circuits in the visual and

somatosensory cortex, and in the hippocampus for learning and memory (McAllister 2001,

Zhang & Poo 2001). Recent work from several laboratories demonstrated that the

contribution of NTs to synaptic plasticity depends on the type of stimuli and involves pre

and post-synaptic actions, as weii as immediate and deiayed effects (Pailerson et al

2001).



52

We directed our investigation towatd potential roles for BDNF for the following reasons: it

is regulated in an activity-dependent manner and released in response to extracellular

cuis. lndeed, the secretion of NTs can either be regulated or constitutive. In constitutive

secretion, NTs are spontaneously released shortly after being synthesized, thereby

enabling a NT to be continuously available to a cell that requires it. In contrast, in the

regulated pathway, once synthesized, NTs are stored in secretory granules and released

in response to extracellular cues. BDNF is sorted in the regulated pathway as other NTs

are mainly sorted in the constitutive pathway (Mowla et al 1999, Farhadi et al 2000).

Moreover, BDNF seems to be especially susceptible to regulation by activity for both its

expression and release (Neeper et al 1995, Lu & Chow 1999, Schinder & P00 2000).

Finally, only BDNF has previously been shown to exert complex actions at multiple

synaptic levels, causing both translational and posttranslational changes in presynaptic

proteins associated with exocytosis and in multiple postsynaptic receptors (Suen et al

1997).

BDNF-dependent signaling cascades emerge as potential candidates to mediate the effect

of activity-dependent plasticity.

4.2.1 From the brain to the spinal cord

Although BDNF function in the developing animal has been extensively investigated and

well documented in the last 20 years (Huang & Reichardt 2001), few reports account for its

role in the adult. Increasing evidence suggests that BDNF is involved in synaptic plasticity

in the adult CNS, particularly in the formation of LTP in the hippocampus (Lo 1998,

Patterson et al 2001). lndeed, the hippocampal LTP is an extensively studied model for

learning and memory and has been used as an effective paradigm to understand how the

nervous system undergoes plasticity. Recent experiments point to the presence of similar

mechanisms in the hippocampus and spinal cord: LTP like phenomena are also exhibited

in spinal dorsal horn neurons in response to nociceptive stimuli (Ji et al 2003, Rygh et al

2005, Crown et al 2006) and in the gray matter of the ventral horn (Pockett & Figurov

1993). It is also known that several simple forms of learning such as sensitization and

habituation can be induced in the spinal cord (Mendell 1984). More than 100 molecules

have been implicated as mediators or modulators of hippocampal LTP and many are also

involved in spinal sensitization. Like the consolidation of early-LTP into late-LTP in the
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hippocampus, activity-dependent gene expression or transcription, which can increase the

expression of pain-related receptors and signal proteins in the spinal cord, plays an

important role in conversion from acute nociceptive injury to chronic pain states (Ji et al

2003, Ji 2004). The similarities between these 2 forms of synaptic plasticity are striking,

particularly the post-translational regulation of AMPA and NMDA receptors and the

activation of the ERK-CREB pathway (Ji et al 2003). In the hippocampus, BDNF and TrkB

are required to strengthen LTP and may play a role in consolidating short-term memories

into long-term memories (Xu et aI 2000). Moreover, BDNF gene deletion or inhibition

(Schinder & Poo 2000, Patterson et al 2001, Minichiello et al 2002) impairs hippocampal

LTP. Not only does BDNF impact LTP in the hippocampus, but [t may also facilitate

synaptic efticacy via NMDA receptors to contribute to central sensitization in the spinal

cord. Moreover, both the maintenance and performance of the flexion reflex is known to be

NMDA-mediated in the spinal cord (Joynes et al 2004). Together, these observations

suggest that learning phenomena can also occur in the spinal cord and be modulated by

similar molecules. Whether complex spinal motor learning occurs via similar mechanisms

is unknown.

The activation of NMDA receptors and their subsequent associated intracellular signal

transduction cascades are involved in the induction, development and maintenance of

synaptic plasticity in the hippocampus may also be effective in the spinal cord.

4.2.2 Intracellular cascade

The ras/ERK MAP kinase and Pl3KIAkt pathways are the best-characterized signaling

pathways activated by Trk receptors upon NT binding and will be described in the next

section (see also Fig.7, Kaplan & Miller 2000, Huang & Reichardt 2001).

4.2.2.1 Ras/ERK MAPK pathway

Extracellular signal-regulated kinases (ERKs), members of the mitogen-activated protein

kinase (MAPK) family, transduce a broad range of extracellular stimuli into diverse

intracellular responses producing changes in the level of gene expression or transcription.

Two isoforms of ERKs exist: 44kDa and 42kDa. In the spinal cord, ERK phosphorylation is

regulated by the synaptic actions of both NTs and glutamate on fleurons. ERK pathways
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are major downstream signaling cascades for TrkB receptor stimulation through NT

binding (Segal & Greenberg 1996). Briefly, Grb2-SOS, the adapter protein containing the

5H-2 domain, was shown to Iink Ras-GTP and to lead to ERK. The activation 0f ERK1 and

ERK2 requires sequential phosphorylation by Raf cf MEK1 and MEK2, which in turn

activate ERK1!2 through the phosphorylation of threonine and tyrosine residues (Kolch

2000, Ji & Woolf 2001). The activated ERK then transiocates from the cytosol into the

nucleus.

The phosphorylation cf ERK proteins has been extensively used as a criterion of the

degree of activation of the Ras/ERK kinase pathway. In this project, specific antibodies

that recognize phosphorylated ERKII2 (pERKII2) were used.

BDNF is reported to activate ERK1/2 in various brain areas including cortical, hippocampal

and cerebellar neuronal ceils (Marsh & Palfrey 1996, Bonni et al 1999, Hetman et al 1999)

and also in the spinal cord (Becker et al 1998, Pezet et al 2002). ERK signaling pathways

are primarily mediators of axonal growth and neuronal survival (Kaplan & Millet 2000).

Furthermore, ERK signaling promotes plasticity changes both in the hippocampus (Sweatt

2004) and in the spinal cotd (Ji et al 1999, Ji 2004). The ERK1/2 cascade is involved in

both the regulation cf post-ttanslational phosphorylation cf key membranes receptors and

transcriptional expression of critical genes, leading to short and long-term functional

changes in spinal sensory neurons (Kolch 2000, Ji & Woolf 2001, Ji 2004). ERK is net only

activated by BDNF (Jovanovic et al 1996, Ying et al 2002), but also exhibits a well

established interaction with NMDA receptors (Platenik et al 2000) and can be activated by

glutamate by increasing intracellular calcium levels or by activating Ras (Lever et al 2003,

Kawasaki et al 2004). To date, various kinds of molecules have been demonstrated to be

downstream targets of ERK1/2, and these could be roughly divided in 4 groups: protein

kinases, transcription factors such as CREB, celI surface molecules and cytoskeleton

associated molecules (Lewis et al 1998). Among them, ERK is notable for regulating

CREB (Finkbeiner et al 1997) and synapsin I (Jovanovic et al 1996) te induce long-term

changes in synaptic plasticity. ERK has also been shown to be required for long-term

facilitation of excitatory transmission between sensory neurons and motoneurons in culture

(Martin et al 1997). The ERK cascade flot only amplifies extracellular stimuli but also

integrates many signaling pathways and functions as a vehicle that imports the information

into the nucleus.
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4.2.2.2 PI3KIAkt pathway

The activation of PI3K by Ras s the major pathway by which NTs convey their survival

promoting signais (Vaillant et al 1999) leading to the activation of the serine/threonine

kinase Akt (PKB). The autophosphorylation of Trk receptor and phosphorylation of Shc

ailows the recruitment of severai adaptor proteins, which upon tyrosine phosphorylation

interact with and activate PI3K. Akt then transiocates to the nucieus. The 3 Akt isoforms

(Aktl, Akt2, Akt3) mediates many of the downstream events regulated by PI3K. The

P13K/Akt signaling pathway has been shown to piay an important role in celI death/survival

pathways by stimulating both neuronal survival and axonal growth. Akt is a major mediator

of ceil survival by directly inhibiting different pro-apoptotic signais such as Bad, a Bd-2

family member that promotes apoptosis, to prevent cytochrome C release (Datta et al

1997). Notably, Bad is also a substrate for MAPK, which similarly inactivates its apoptosis

promoting function (Bonni et al 1999). Other identified targets of Akt are pro-caspase9 and

the Forkhead famiiy of transcription factors.

4.2.2.3 cAMP response element binding

The transcription factor cAMP response element binding protein (CREB), one of the best

characterized transcription factors in the brain, is under the regulatory control of BDNF.

lndeed, CREB was shown to be involved in several intracellular events associated with the

action of BDNF on neuronal piasticity (Barde 1994). CREB can be phosphorylated by

multiple intraceliular kinases in response to a vast range of physiological and pathological

stimuli. Both ERK and Akt pathways lead to CREB activation (Xing et al 1998). Btiefly, the

translocation of either ERK or Akt to the nucieus, will iead to the phosphorylation of CREB

at serine residue 133 followed by its binding to the cAMP response element (CRE) of the

target gene to regulate gene expression. More than 100 genes have been reported to be

up-regulated following the activation of CREB (Lonze & Ginty 2002). These genes are

implicated in different neuronal process such as survival, synaptic plasticity, memory, and

learning (Silva et al 1998, Kandei 2001, Lonze & Ginty 2002). Many studies found that

ERK-mediated CREB phosphorylation is required for synaptic plasticity associated with the

induction of stable, late-phase LTP and long-term memory (Kelieher et al 2004, Thomas &

Huganir 2004). CREB also appears to piay a role in neuronal resistance to insult in

conjunction with BDNF (Walton et al 1999). Noteworthy, flot only can CREB be modulated

by BDNF but CREB influences expression of BDNF itself via a calcium-dependent
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mechanism (Finkbeiner 2000). In the spinal cord, CREB is a common target for multiple

other intracellular kinases pathways including PKA, PKCy and CaM KIl.

4.2.2.4 Selected molecu les involved in synaptic transmission

Synapsin I and synaptophysin are 2 molecules involved in synaptic transmission. Synapsin

I is a member of a family of terminal-specific phosphoptoteins involved in synaptic vesicle

clustering and release, which mediate synaptic transmission (Jovanovic et al 1996).

Synapsin I is a downstream effector for the action 0f BDNF on synaptic plasticity. BDNF

phosphorylates synapsin I primarily through the TrkB receptor to activate the ERK1/2

signaling pathway, leading to modulation of neurotransmitter release (Jovanovic et al

2000). On the other hand, synaptophysin s a major integral protein of the membrane of

presynaptic vesicles and is thought to be important for the biogenesis of synaptic vesicles,

vesicle budding and endocytosis. Synaptophysin has been associated with

synaptogenesis (Bergmann et al 1997). An increase in synaptophysin likely indicates that

synaptic vesicles are formed either due to an increase in synapse formation or an increase

in the number of vesicles in existing synapses (Sarnat et Born 1999). In the hippocampus,

BDNF has been shown to act on presynaptic neurons and enhance vesicle release (Lu &

Chow 1999). Synapsin and synaptophysin synthesis and phosphorylation are affected by

BDNF via TrkB receptor resulting in an elevated transmitter release.

4.2.3 Lesion-induced plasticity

In the nervous system, ceIl death may involve aspects of both apoptosis and necrosis

(Beattie et al 2000, 2002). Apoptotic cell death can be detected hours to several weeks

aftet SCI and occurs in numerous cell types including neurons, glia and inflammatory cells

(Crowe et al 1997, Liu et al 1997, Yong et al 1998, Beattie et al 2000, 2002). BDNF has

been described as a key factor that regulates the survival and differentiation of selected

neurons during CNS development (Huang & Reichardt 2001) and rescues a significant

proportion of motoneurons that would otherwise die during the embryonic late period of

massive cell death in vivo (Oppenheim et al 1992, 1993, Yan et al 1993). Some studies

suggest a preservation of this role in adults. The action of BDNF on motoneurons has

been extensively studied particularly in injury models. BDNF enhances survival and growth

of motoneurons affected by several types of insults (Koliatsos et al 1993, Friedman et al
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1995) and promotes functional recovery (Jakeman et al 1998, Bregman et ai 2002).

However, further investigations are needed te address if a physioiogicai concentration cf

BDNF newiy synthesized by motoneurons or transported from DRG, for example, weuld

be sufficient te achieve such a functionai change.

Apeptesis plays an important role in neuronal iess after SOI. it was shown that

oligedendrecytes, neurons and glia undergo apoptosis (Crowe et ai 1997, Liu et ai 1997,

Yeng et ai 1998) and that caspase cascades are invelved in apoptosis after SCI (Springer

et ai 2001). Te stimulate survival, TrkB activation by BDNF may iead te Akt-induced

suppression cf pre-apeptotic mechanisms and te ERK activation cf anti-apeptetic preteins.

Indeed, a transient increase in pAKT level is observed foilowing a SOI returning te intact

control values within 7 days (Yu et al 2005). lndeed, apoptosis is typicaIIy a rapid precess

(Bursch et ai 1990). On the ether hand, in CNS-derived cells cultured in vitro, the

activation cf ERK is implicated in beth neuropretective responses and in premeting ceil

death. The ERK1/2 pathway has been reported te be involved in a neurepretective

mechanism against the apoptesis cf cortical neurens (Hetman et ai 1999) and cerebeilar

granule neurens (Benni et al 1999). Recent studies lend support te the hypethesis that

excitotexicity, neurai apeptesis, inflammation, brain ischemia and nerve injury aise induces

activation cf ERK1I2 cascades (Ji et al 1999, Ji & Weeif 2001, Ferrer et ai 2001, Ji 2004).

Mcreever, BDNF is reported te prctect neurens frem celi death in vive via the ERK

pathways (Han & Heitzman 2000) including chelinergic maintenance cf meteneurens

(Kishine & Nakayama 2003). Hewever, recent studies using in vive medeis cf cerebrai

ischemia (Namura et ai 2001, Wang et ai 2003) or traumatic brain injury (Mon et ai

2002ab) have shewn that inhibiters cf MEK1!2 reduce neuronal iess. This suggests that

the activation cf ERK in response te acute CNS injury may aise be detnimentai. Evidence

was aise previded for an essentiai contribution cf the Pi3KIAkt pathway te meteneurens

survivai induced by BDNF centrary te the ERK pathway (Doicet et al 1999). A rele fer the

Ras!ERK kinase pathway in celI survival thus still remains centreversiai.

As briefiy mentioned in section 4.1.3.2, it has been weli decumented that SOI aise resuits

in glutamate release (Nesic et al 2002) and up-regulation in gene expression cf NMDA

recepters (Gressman et al 2000). NMDA recepters are aise transiteny up-regulated

feliewing a cempiete spinal lesien in the cat and the basic iccometer rhythmicity in spinal

cats is suggested te be NMDA-dependent (Gireux et al 2003). in the spinal cerd, the

phespherylation cf the NMDA receptor via the stimulation cf ERK and PKC was shewn te

facilitate synaptic efficacy (Garraway et al 2003, Slack et al 2004). Mereever, an excessive
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release 0f glutamate is aise implicated in neuronal death associated with SOI. lmportantiy,

EAA antagonists protect against deficits associated with SOl and loss cf gray and white

matter (Gomez-Pinilla et al 1989, Wrathall et al 1997, Beattie et al 2002). Glutamate is the

major excitatory neurotransmitter cf projection neurons and dorsal root afferents entering

the spinal cord. It is thought that because BDNF is synthesized, stored and released from

glutamatergic neurons (Lessmann et al 2003), BDNF may enhance the activation of

NMDA receptors due to the increased release of glutamate.

Downstream effectors of BDNF induced synaptic plasticity were also found to be

modulated after varicus kind insuits to the CNS. In the isolated lumbar spinal cord, with a

complete elimination of supraspinal and peripheral input, BDNF and synapsin I, are down

regulated (Gemez-Pinilla et al 2004). A similar down-regulatien in BDNF, synapsin I and

CREB expression was aise observed in the lumbar spinal cord ipsilateral to the lesion in

rodents with an hemisected spinal cerd as compared te intact animais (Ying et al 2005).

However, BDNF, TrkB, p75, MEK and ERK1 expression were shown te be up-regulated in

motoneurons after a facial nerve injury (Kitahara et al 1994) contrary to PLCy and PI3K

expression which was net modified (Saika et al 1994). BDNF mRNAwas also shown to be

dramatically up-regulated in guai celis and neurons cf the spinal cord after kainic acid

delivery (Scarisbrick et ai 1999). TrkB expression was aise shewn te be up-regulated in

the astrocytes and motoneurens near the guai scar fermed after an incomplete SOI in the

adult rat and cat (Frisen et ai 1992). Finally, an up-regulation cf TrkB, BDNF, pERK1/2 and

pCREB levels was aise observed in DRG or dorsal hem cf the spinal cord in a majcrity cf

segments after a complete SOI and the injury-induced CREB activation was suggested te

be partIy mediated by ERK pathway (Qiao & Vizzard 2005, Cruz et aI 2006).

4.2.4 Exercise-induced plasticity

Both clinical and animal studies have repeatediy demonstrated that exercise enhances

neuronal function in intact individuals. But what are the mclecular mechanisms and

signaiing pathways through which activity promotes synaptic plasticity and functional

recovery? In the CNS, the specific mechanisms remain largeiy unexplered, although

recent data points te the involvement cf NTs as a possible facter given their powerful role

in modifying neuronal excitability and synaptic transmission (Kafitz et aI 1999, Mendeil et

ai 1999, Pec 2001). In an eiegant werk, the Iaboratory cf Dr Gemez-Piniiia investigated

changes in the relative expression cf more than 1000 genes in the hippocampus cf
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running-wheel exercised rats (Molteni et al 2002). Their results suggest that exercise

modulates molecular systems involved in maintaining neuronal function and piasticity in

the brain (see Fig.8). BDNF is the only trophic factor gene modulated by exercise.

Remarkabiy, most of the other genes affected by exercise have a recognized association

with BDNF and are either members of synaptic trafficking machinery or part of signal

transduction pathways. As summarized in Figure 8, exercise would impact the NT

signaling pathways in the hippocampus. Biocking the action of BDNF during exercise was

found to be sufficient to abolish the exercise-induced enhancement of both leaming and

memory (Vaynman et ai 2004). Results from severai experiments suggest that the same

molecules may be involved in synaptic plasticity in other parts of the CNS. Various

paradigms of locomotor training up-regulate BDNF and TrkB mRNA and protein

expression in the hippocampus, cerebral cortex, cerebellum, spinal cord and muscles in

otherwise intact rats (Neeper et al 1995, Gomez-Pinilla et ai 2001, 2002, Molteni et al

2002, Hutchinson et al 2004, Kiintsova et ai 2004). In the spinal cord, further

immunohistochemical experiments precïsely demonstrated that BDNF (protein or mRNA)

Figure 8: Hypothetïc mechanisms
by which exercise may impact
neuronal plasticity.

Exercise increases the expression of
BDNF and TrkB receptor. Ligand
receptor binding both at the
presynaptic and postsynaptic
terminais resuit in an up-regulation of
severai downstream effectors such as
MAPK1/2, PKCy and CaMKII.
Furthermore, synapsin, synaptogamin
and syntaxin at the presynaptic
terminais modulate neurotransmitter
release. NMDA receptor is also up
reguiated at the postsynaptic levei,
increasing calcium influx and leading
to the activation of the MAPK cascade
via CaM Kil. MAPK activation causes
the up-reguiation of transcription
factors such as CREB. From Molteni
et al 2002.

staining intensity was especially increased in motoneurons and theïr axonal processes in

the ventral horn of the spinal cord (Gomez-Pinilla et aI 2001, 2002). A parallel increase in

TrkB and BDNF (protein or mRNA) expression in some large neurons of the lamina IX,

presumably u-motoneurons, was aiso observed (Skup et al 2002).
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Given these data, it appears that the BDNF system plays a central role in the molecular

mechanisms by which exercise activates neuronal plasticity and translates into functional

changes in the neuromuscular system. But how does an activity-related increase in BDNF

modulate critical aspects of plasticity? lt was shown that the modulation of TrkB mRNA

was closely associated with changes in the levels of synapsin I in the spinal cord, which

suggests that exercise could impact the synapse via the BDNF system by activating

specific pathways to modify the way that information is transmitted across the synapse

(Gomez-Pinilla et al 2001, 2002). Hence, synapsin I was shown to be primarily

phosphorylated by BDNF through TrkB to activate the ERK pathway and modulate

neurotransmitter release (see section 4.2.2.4, Jovanovic et al 2000). The time course of

BDNF up-regulation is different in the spinal cord and in SOL muscle: after an initial up

regulation, a down-regulation s observed in the muscle with a concomitant up-regulation

in the spinal cord suggesting that BDNF is retrogradely transported from the muscle to the

spinal cord (Gomez-Pinilla et al 2002). The exercise-dependence of these changes is

further supported by experiments where BDNF and synapsin I mRNAs were shown to be

down-regulated in the spinal cord after the pharmacological inactivation of the SOL

muscle. Moreover, in another set of experiments performed by the same group in the rat

hippocampus, it was shown that exercise increased both synapsin I and synaptophysin

levels and that blocking BDNF action was sufficient to ptevent this change (Vaynman et al

2006). Both synapsin I and synaptophysin are thus under the regulation of BDNF and it

was suggested that this may contribute to the ability of BDNF to reg ulate both the number

of synapses and the complexity of the axonal arborization in the hippocampus. Moteover,

there is a positive correlation between synapsin I and synpatophysin in exercised rats and

also between synapsin I and the amount of exercise they received (Gomez-Pinilla et al

2002, Vaynman et al 2006). Synapsin I and synaptophysin may thus be involved in events

characterizing synaptic function during exercise.

In the brain, exercise impacts downstream effectors of BDNF action on gene expression

through CREB activation. The ability of exercise to activate transcription factors is

fundamental to the proficiency of activity to induce Iong-lasting or permanent changes in

function of the nervous system and the activation of CREB may be a critical step. CREB

seems to be an important link in the BDNF-mediated cascade responsible for the effects of

exercise on learning and memory. Indeed, the modulation of BDNF and CREB mRNA

levels were positively correlated and associated with memory recali performance following

exercise. CREB activation may serve as a molecular switch to transform short lasting into

Iong-lasting synaptic plasticity in the hippocampus. Moreover, blocking the NMDA receptor
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prevented the exercise-induced mRNA up-cegulation of BDNF, TrkB, CREB and Synapsin

I (Vaynman et al 2003) suggesting that the action of BDNF may depend on an interaction

with the NMDA receptor. CREB mRNA expression was also shown to be up-regulated in

the spinal cord after exercise (Gomez-Pinilla et al 2002) suggesting again that a similar

cascade may be induced by exercise both in the hippocampus and the spinal cord.

Notably, similar mechanisms have been demonstrated in the spinal cord for the

development and maintenance of chronic pain (Ji et aI 2003). lndeed, in the dorsal horn,

CREB has been suggested to contribute to central sensitization associated with persistent

pain states. It has been proposed that NMDA activation-induced Ca2 influx can trigger an

early phase of CREB phosphorylation and a persistent phase of CREB phosphorylation is

mediated by a delayed ERK cascade (Crown et al 2006).

Furthermore, recent experiments showed that the expression of several neurotrophic

factor genes was affected by voluntary exercise with differential time-profile (Molteni et al

2002). CaMK pathways, closely regulated by the NMDA receptor system, were shown to

be markedly up-regulated with short-term exercise in rats trained in running wheels. In

acute in vitro exposure of cortical neurons to BDNF, a rapid enhancement of NMDA

receptor activity by increasing channel open probability is observed (Levine & Kolb 2000).

Similarly, the increase in NMDA receptor subunits in the spinal cord could represents the

downstream effect of exercise during the acute phase (Molteni et al 2002). On the other

hand, ERK pathways seem to become more important with time, when exercise extends

for longer periods (Molteni et al 2002).

The objective of this thesis was to investigate the effect cf long-term step-training, ERK

pathway wilI be especially targeted.

4.2.5 Step-training induced plasticity after SCI

Are the molecular mechanisms involved in exercise-dependent plasticity the same in the

intact state and following SCI? Exogenous administration of BDNF has been shown to

stimulate locomotor activity in rats after incomplete SCI suggesting the potential to

modulate the excitability of spinal netwotks (Jakeman et al 1998). Whether a physiological

concentration of BDNF is sufficient to facilitate stepping is not known. However, after a

spinal cord hemisection in rodents, a down-regulation of BDNF, synapsin I and ORES is



62

observed in the lumbar spinal cord ipsilaterai to the lesion as compared to intact animais

(Ying et ai 2005). After being exposed to voluntary wheei running (up to 28 days), BDNF

mRNA and protein expression was shown to be up-regulated in motoneurons and their

axonal process in the iesion side of the spinal cord as compared to the unlesioned side.

Thus, physicai activity may restore the expression of these proteins near normai ieveis

after incompiete SCI. Contrary to exercise enhanced expression of these moiecuies in

intact animais; exercise did not increase expression in iesioned animais as compared to

control. It was suggested that the lesion might limit the effectiveness of exercise (Ying et ai

2005).

Moreovet, motoneurons from rats with compiete SCI dispiayed a marked atrophy with ioss

cf dendritic membrane and eiimination of branching within a few days aftet the injury,

which is flot observed in step-trained animais (Gazuia et ai 2004). This suggests that the

functionai benefits of exercise may invoive stabilizing or remodeiing processes in the

dendritic tree of motoneurons beiow the injury site foiiowing the ioss of excitatory drive

from descending input on segmentai interneurons.



5. Model and hypothesis

The introduction underlined the complexity of locomotor control together with the capacity

of the spinal cord to reorganize in response to insuit or muscle activity. Our genetal

interest in both locomotion and plasticity of the spinal cord led us to investigate the

changes that occur in the spinal cord that might provide insight into methods that will

promote stepping recovery after SOI.

5.1 The model: Step-training in chronic spinal cats

The isolated spinal cotd, deprived of descending influence from the brain, has been a

popular and productive experimental model for more than a century. Our model is based

on earlier studies that revealed the effectiveness of a step-training program in the adult cat

to promote the capability to walk following a SCI (Lovely et al 1986, Barbeau & Rossignol

1987, Bélanger et al 1996). During the recuperation process, the spinal networks are

continuously stimulated by sensory feedback and the individual progressively recovers

rhythmic and alternate locomotor movements.

5.2 Project I: Plasticity of spinal reflexes

The decerebrate cat paralyzed with curare to prevent movement-related sensory feedback

is a widespread model to investigate the control of locomotion. In this preparation, the

locomotor activity is recorded by electrodes directly positioned on the muscle nerves

(electroneurogram, ENG). The curare-evoked paralysis prevents the occurrence of any

movement and thythmic patterns of nerve activities are reported as fictive locomotion. The

pattern of ENG bursts during fictive locomotion is roughly similar to overground stepping or

locomotion on the treadmili (Grillner & Zangger 1979, Fleshman et al 1984).

Two to 4 weeks after a complete SCI and onset of step-training, adult cats are able to

perform proper plantigrade contact of the paw with the treadmill belt and execute weight

bearing on the hindlimbs during stepping (Lovely et al 1986, Barbeau & Rossignol 1987,

Bélanger et al 1996). In this project, the terminal experiment took place one month after

the spinal transection (spinal group) and step-training (trained group). Fictive locomotion is
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a privileged tool to study details of synaptic transmission mechanisms and presents 2 main

advantages: the absence of movement-related rhythmic sensory feedback and stable

intracellular recordings. Fictive locomotion was monitored with ENGs and intracellular

recordings of lumbar motoneurons were obtained at rest and during fictive locomotion

evoked by iv. injection of clonidine (Pearson & Rossignol 1991) in step-trained and

untrained spinal cats.

lt was previously suggested that locomotor recovery depended, at least in part, on slow

modifications of the CPG in chronic spinal cats (Pearson & Rossignol 1991). Indeed, the

complexity cf the fictive locomotor pattern increased as a function of time post

spinalisation suggesting that a progressive increase in the transmission of afferent

pathways may enhance the excitability of the spinal networks inducing slow modifications

cf the CPG. Although it s generally assumed that plasticity occurs within the CPG, we

hypothesize that changes in sensory afferent pathways could also occur. In the complete

absence of supraspinal commands, it s known that the repeated sensory stimulation

provided by step-training induces long-term plastic changes in the spinal cord but the role

of the different sensory inputs and neurophysiological mechanisms leading to Iocomotor

recovery are still poorly understood.

The first objective of this thesis is thus to examine the effect of step-training on

transmission in specific sensory pathways originating either from muscle group I afferents

or cutaneous afferents. We tested our hypothesis by comparing motoneuronal responses

to nerve stimulation in trained and untrained cats spinalized 3-5 weeks prior to the acute

experiment.

Proprioceptive input can act directly on the CPG, particularly those transmitted by group I

afferents from extensors (Conway et al 1987, Gossard et al 1994, McCrea 1998, Pearson

1998). We speculated that transmission in these pathways, which are involved in body

weight support during stance, s especially modified by step-training. We further

hypothesize that transmission in muscle group I afferents of extensors to extensor

motoneurons would be increased in excitatory pathways and decreased in inhibitory

pathways to facilitate weig ht-beari ng.

Contrary to proprioceptive feedback, cutaneous inputs usually do not have such a powerful

action on rhythm generation. We therefore expected less plasticity in these pathways.

However, because cutaneous inputs have been shown to be involved in Iocomotor
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recovery after a SCI (Muir & Steeves 1995, 1997, Bouyer & Rossignol 2003b), we

hypothesize that at ieast some cutaneous pathways would be modified by step-training,

particulariy those that may be involved in proper foot placement.

5.3 Project Il: Modulation of intracellular sïgnaling pathways associated with

activity-dependent plasticity

These studies are based on the assumption that the activation of specific neurai networks

by physical activity leads to the expression of molecules related to synaptic plasticity in the

spinal cord of intact animais. ERK was chosen as the main target ot investigation as its 2

main activators, BDNF and glutamate, have been shown to be involved in exercise

induced plasticity in intact animais. ERK may therefore be required for the functional

reorganization cf spinal networks following SCI and step-training.

This second project takes advantage of a completely spinalized preparation in which no

supraspinal influence is possible and allows for the investigation of the induction of

intracellular cascades, using the neurotransmitters that are intrinsic to the neuromuscular

system, in order to recover an adequate locomotor pattern. The second objective of this

thesis is to investigate signal transduction pathways through which long-term step-training

may affect spinal cord plasticity after a complete SCI. However, little is known about the

involvement of these moiecules following a SOI. The varlous injury models (contusion,

hemisection, peripheral nerve transection, kainic acid delivery) have generated highly

variable results probably as a resuit of the complex interaction of sensory and spinal

interneuronal pathways together with the remaining supraspinal fibers that may influence

such plasticity. Moreover, many lumbar segments were merged together in most studies

and this prevents the capacity to detect any significant segmental difference in modulation,

such as we hypothesized to occur. Thus in addition to the effect of step-training, we

investigated the effect of a chronic and complete SOI.

As decribed above, 2 to 4 weeks of step-training after a complete SOI allows aduit cats to

perform proper plantigrade placement of the paw and execute weight-bearing stepping

(Barbeau & Rossignol 1987, Lovely et al 1986, Bélanger et al 1996). However, if step

training is prolonged beyond that time window, the improvement in stepping ability further

progresses with an increase in the maximum walking speed and in the number of plantar

steps performed. Stepping performance typically reaches a plateau at approximately 3
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months aftet the onset cf step-training (Lovely et al 1986, Barbeau & Rossignol 1987). For

these reasons, J and 3 months were chosen as time points for investigation. Protein

expression was compared between intact, spinal (1 or 3 months) and spinal and step

trained cats using western blot analysis of homogenates of spinal cord segments. The

study focussed on assessing relative levels cf ERK and pERK protein. We hypothesïze

that ERK activation may participate in the synaptic events associated with locomotion after

SOI and that the most important changes would take place in spinal segments known to be

important for locomotion. Additional experiments assessed possible changes in expression

of the transcription factor CREB, known to be activated by ERK and changes in expression

ofAkt, a protein kinase known to be activated by BDNF.
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PUBLICATION #1: SPINAL CATS ON THE TREADMILL: CHANGES IN LOAD PATHWAYS

Côté MP, Ménard A and Gossard JP (2003). Spinal cats on the treadmill: changes in load

pathways. J. Neurosci. 23:2789-2796.

Abstract

Treadmill training and clonidine, an a-2 noradrenergic agonist, have been shown to

improve locomotion affer spinal cord injury. We speculate that transmission in load

pathways, which are involved in body support during stance, is specifically modified by

training. This was evaluated by comparing two groups of spinal cats; one group (n=11)

was trained to walk until full-weight-bearing (3-4 weeks), and the other (shams; n7) was

not. During an acute experiment, changes in group I pathways, monosynaptic excitation,

disynaptic inhibition, and polysynaptic excitation were investigated by measuring the

response amplitude in extensor motoneurons before and after clonidine injection.

Monosynaptic excitation was not modified by clonidine but was decreased significantly by

training. Disynaptic inhibition was significantly decreased by clonidine in both groups, but

more significantly in trained cats, and significantly reduced by training after clonidine. Also,

clonidine could reverse group lb inhibition into polysynaptic excitation in both groups but

more frequently in trained cats. We also investigated whether fictive stepping revealed

additional changes. In trained cats, the phase-dependent modulation of ail three

responses was similar to patterns reported previously, but in shams, modulation of

monosynaptic and polysynaptic responses was not. Overall, training appears to decrease

monosynaptic excitation and enhance the effects of clonidine in the reduction of disynaptic

inhibition and reversai to polysynaptic excitation. Because it is beiieved that polysynaptic

excitatory group I pathways transmit locomotor drive to extensor motoneurons, we suggest

that the latter changes would facilitate the recruitment of extensor muscles for recovering

weight-bearing during stepping.

Introduction

Treadmill training has been shown to successfuiiy enhance and maximize residual

Iocomotor capacities of spinal cord injured (SCI) patients (Fung et al 1990, Wernig et al

1995, Harkema et al 1997, Harkema 2001). Previous studies first demonstrated this
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beneficial effect in adult spinal cats that have a remarkable capacity to recover locomotion

(Lovely et al 1986, Barbeau & Rossignol 1987, Bélanger et al 1996, de Leon et al 1998b).

Moreover, clonidine, an a-2 noradrenergic agonist, improves and accelerates the recovery

of stepping early after spinalization in cats (Forssberg & Grillnet 1973, Barbeau &

Rossignol 1991, Chau et ai 1998a) and, when combined with treadmill training, improves

walking patterns in SCI humans (Fung et al 1990, Rémy-Néris et al 1999). The repeated

sensory stimulation provided during treadmill training is the oniy source of input that the

transected spinal cord can use to trigger recovery and underlying plastic changes (de Leon

et al 1 999a). But which sensory input is most important for recovery? It has been shown in

many species, including humans (Prochazka 1996, Duysens et al 2000), that sensory

feedback from load receptors in the legs has a particularly powerful effect on the activity of

the central pattern generator (CPG) for locomotion. 0f particular interest is the reflex

reversaI occurring when lb inhibition (negative feedback) in extensors is replaced by

excitation (positive feedback), reinforcing weight support during the stance phase of

stepping (Gossard et al 1994, Prochazka 1996). This reversai is state dependent [i.e., it

occurs only when the spinal cord is generating locomotion (Gossard & Hultborn 1991,

Stephens & Yang 1996) or after injection of L-DOPA (Gossard et al 1994) or clonidine

(McCrea et ai 1995)]. Here, we hypothesize that transmission of group I (la plus lb)

pathways is specificaliy modified by training to assist extensors during stance. We tested

this by comparing two groups of cats transacted at T13; one group was trained on a

treadmili until “fuil-weight-bearing” (3-4 weeks), and the other was spinaiized but not

trained. Synaptic transmission was evaiuated during an acute experiment using

intracellular recordings of motoneurons before and after cionidine injection. We found that

treadmili training did induce plastic changes in the transmission of group I pathways from

extensors that could be heipfui for recovering weight-bearing during stance.

Materials and Methods

Ail procedures were conducted according to the Guide for Care and Use of Experimentai

Animais of Canada using protocois approved by the Ethics Committee of Université de

Montréal.

Spinalization and Iocomotor training. Eighteen aduit female cats (2.5-4.1kg) were used for

this study. After administration of preoperative medication, the cats were anesthetized

(isoflurane, 2%; Abbott Labs, Montréal, Canada) and spinalized at T13 under aseptic
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conditions. Protocols for spinalization procedures and subsequent postoperative care were

analogous to those described previously (Chau et al 1998a). A patch of fentanyl

(Duragesic, 25pg; Janssen-Ortho, Markham, Canada) was sutured on the back of the cat

for continuous and stable delivery cf analgesic over a 2d period. The first group of cats

(sham) was only spinalized, whereas the second group (trained) was also trained to walk

until they could support the weight of their hindquarters (referred to as full-weight-bearing,

as in previous reports), which took —1 month (mean, 28d). Training on the treadmill (0.2-

0.4m!sec) started 2d after surgery and consisted of one to four daily training sessions for

periods of lOmin. In early training, hindquarters were sustained by the experimenter to

provide weight support, and perineal stimulation was used to induce and maintain

locomotion. The animal gradually became able to support its hindquarters, and perineal

stimulation was no longer needed. No drugs were used to assist the locomotor training.

The training was stopped when the cat was able to walk continuously on the treadmill for

>5 min while the experimenter assisted only for Iateral stability by holding the tail.

Acute experiment. Cats were first anesthetized by inhalation of an oxygenated mixture

(50%) of nitrous oxide (50%) and halothane (2-3%; MTC Pharmaceuticals, Cambridge,

Canada). Cannulas were inserted in the right common carotid artery to monitor blood

pressure and in the jugular and cephalic veins for administration of pharmacological

agents or fluids. Cats were then decerebrated and curarized (Pavulon, 0.2mglkg, 45min;

Sabex, Boucherville, Canada) and artificially ventilated as detailed previously (Ménard et

al 1999, Leblond et al 2000). The following muscle nerves from the left hindlimb were

dissected free, cut, and mounted on bipolar silver chloride electrodes for recording

[electroneurogram (ENG)J and stimulation: posterior biceps-semitendinosus (PBSt),

semimembranosus-anterior biceps (SmAB), lateral gastrocnemius-soleus (LGS), medial

gastrocnemius (MG), plantaris (PI), flexor hallucis longus (FHL) and flexor digitorum

longus together, tibialis anterior, extensor digitorum longus, and the sciatic nerve (uncut).

Quadriceps nerves (Quad) were not cut and were inserted in a polymer-cuif electrode.

SmAB and PBSt nerves from the right hindlimb were also mounted for recording and

stimulation.

Stimulation, recordings, and analysis. The cord dorsum potential (CDP) was recorded with

a silver chloride-balI electrode located near the dorsal root entrance at the L6-L7 border.

Stimulation intensity required to just evoke a deflection in the CDP determined the

threshold for the most excitable fibers for each nerve (1T). Stimulus intensity wiII be

expressed as a multiple of the threshold. Intracellular potentials evoked by the stimulation
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cf group I afferents cf extensors [PI, LGS, MG, sometimes together (gastrocnemii-soleus,

GS), Quad; six pulses (p), 1.4—1.8T, 200-300Hz] were recorded in identified motoneurons

(Leblond et al 2000) with glass micropipettes filled with K-acetate (2M) and N-(2,6-

dimethylphenylcarbamoylmethyl) triethylammonium bromide (1 00mM; Alamone Lab

oratories, Jerusalem, lsrael) to prevent sodium spikes. The duration of the

afterhyperpolarizaticn (AHP) was measured in every ceil, from the spike onset to the point

at which the AHP crosses the baseline (Gustafsson & Pinter 1984b). Stimulation trains of

peripheral nerves were given every 0.3, 0.4, or 0.5sec. The amplitude cf EPSPs and

IPSPs in motoneurons evoked by monosynaptic, disynaptic, and/cr polysynaptic pathways

was measured (Fig.1). A “trial” is the averaged response in one motoneurons evoked by

the stimulation cf a given pathway (an afferent-motoneuron pair). Several trials could be

studied from the responses cf a given mctoneuron.

Figure 1. Spinal proprioceptive pathways
under study. A schematic representation of
three sensory pathways transmitting inputs
from muscle group I afferents to extensor
motoneurons (ExtMn) s shown to the Ieft:
the monosynaptic (stretch reflex) pathway
(from group la afferents originating in
muscle spindles cf extensors), the
disynaptic inhibitory pathway (from group lb
afferents cf extensors originating in Golgi
tendon organs plus some group la fibers),
and the polysynaptic excitatory pathway

_j (from group lb and la afferents cf
lOms extensors). In the acute spinal cat, this latter

pathway shares interneurons with the
network generating the excitatory locomotor
drive in extensors (box E). Sample records
cf motoneuronal postsynaptic potentials
used for measurements are on the right. a,
The amplitude of monosynaptic EPSPs was
measured at a latency cf 1.4 msec (rising

.]- phase in this example; i.e., just before the
onset of possible disynaptic components).

® Monosynaptic excitation

I ma

) Disynaplic lB inhibition

Ç) Polysynaptic excitation

b, The disynaptic lb inhibition was evoked by a short train of stimuli (6p, 1.4-2.OT, 200-300Hz),
and the IPSP amplitude was measured at the maximal negative deflection in the intracellular
trace. Note that there were often monosynaptic EPSPs (six positive humps) overriding the
inhibitory trough (dotted une). c, Polysynaptic excitation was evoked by a similar short train cf
stimuli, and the amplitude was measured at the maximal positive deflection (dotted une)
underlying monosynaptic EPSPs.

The amplitude cf monosynaptic EPSPs was measured at a latency cf 1.4msec (i.e., just

befcre the onset cf possible disynaptic ccmpcnents) (McCrea et al 1995, Gcsgnach et al

2000). A train cf stimuli evoked either disynaptic inhibition or polysynaptic excitation
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depending on the conditions (Gossard et al 1994). The amplitude of IPSP attributable to lb

inhibition was measured at the maximal negative deflection in the intracellular trace in

response to the stimulation train, and the amplitude of EPSP resulting from polysynaptic

excitation was measured at the maximal positive defiection, as iiiustrated by dotted fines in

Figure 1. McCrea et al (1995) have shown that polysynaptic excitation is flot just masking

the lb inhibition, but that the latter completely disappears when there is a reversai. Thus, in

our calculation, the finding of an excitation (reversai) was considered a 100% reduction of

inhibitory transmission. Conversely, a ceil showing lb inhibition was considered to have

zero transmission in excitatory pathways. We also studied the iong-lasting motor

responses to the stimulation of flexor reflex afferents (FRA) from each ieg. For this, the

PBSt and SmAB nerves of either leg were stimuiated together with a train of 50 puises at

50T. AIl responses were aiso studied during a period cf 2hr after 500pg/kg intravenous

cionidine injection (Sigma, St. Louis, MD) and during fictive locomotion induced by

perineai stimulation. Up to two doses cf cionidine were injected in an experiment, and data

were recorded for the next 2hr. Once clonidine was injected, there was no return to controi

conditions, and ail subsequent recordings were considered postclonidine data. Bursts of

ENG activities were used to divide the step cycle into flexion (corresponding to swing) and

extension (corresponding to stance) phases. The iocomotor cycle, defined as the period

between the onsets of two successive bursts of ENG activity in extensors, was normalized

to the duration cf the averaged cycle. Postsynaptic potentials evoked during flexion and

extension were separated and averaged to study phase-dependent modulation.

Statistical analysis. Results in figures are expressed as means ±SEM. Statistical anaiysis

was performed to disciose differences between the sham and trained groups, between the

averaged responses in ail motoneurons obtained before and after clonidine injection,

between rest and fictive locomotion (state-dependent changes), and between flexion and

extension phases (phase-dependent changes). The Koimogorov-Smirnov-Liliefcrs (KSL)

test was used to compare the shape and location cf the distribution of responses with a

normai distribution, if KSL ccnfirmed that the sample variables did fit a normai distribution,

a one-way ANOVA was performed; if not, the Kruskal-Waiiis one-way ANOVA on ranks

was used. The x2 test with the Yates correction factct was used to compare the

occurrence cf polysynaptic excitation between groups. Significant differences are indicated

by astetisks (*p<Q05 **p<001 ***p<0 001)
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Resuits

Changes in the transmission of group I pathways from extensors were monitored by

measuring the peak amplitude of EPSPs and 1PSPs at specific latencies in several

extensor motoneurons of 11 trained (22 LGSs, 18 MGs, 12 PIs, 14 FHLs, 19 SmAB) and

seven nontrained (12 LGSs, 20 MGs, 10 PIs, 9 FHLs, 13 SmAB, 3 Quad) cats. Overail, we

measured the responses evoked by 314 afferent-motoneuron pairs (134 in shams, 180 in

trained cats) with a mean of 2,29 pairs (range, 1-5) per motoneuron. Although responses

varied between motoneurons, similar trends were observed among shams and trained

cats. Data pooled according to motor nuclei or stimulated nerves did not show significant

trends. For this reason, and because there is extensive convergence and divergence in

the three pathways under study (Jankowska 1992), we grouped ail extensor motoneurons

in the different conditions for additionai anaiysis. in the first part, we compared the effects

of clonidine in trained and nontrained cats. in the second part, responses were studied

during fictive locomotion, which occurs in a curarized cat (i.e., without movement-related

sensory feedback or reafference).

Training and clonidine

The monosynaptic stretch reflex is thought to make a major contribution to the level of

EMG activities during stepping (Stem et al 2000), although this role in humans was

questioned previously (Sinkjaer et al 2000). Clonidine did not affect the amplitude of

monosynaptic EPSP significantly (Fig.2). When preclonidine and postclonidine values

were grouped together, it was found that the amplitude of monosynaptic excitation was

significantly decreased (by 36%) by training (Fig.2). Motoneurons, divided in two groups

4
* Figure 2. Clonidine did flot modify monosynaptic

rL

excitation. The mean amplitude of monosynaptic EPSPs

fl
(109 triais in 73 cells) evoked by the stimulation of knee
and ankle extensor group I afferents (Quad, PI, LGS, MG)
was not changed significantly by clonidine injection. if we

Sham Trained grouped ail values together (precionidine and post
clonidine), there is a significant decrease in the amplitude

• Clonidine monosynaptic EPSPs (*p<O.05) caused by training. FiIed
L No dmg bars, Clonidine; gray bars, no drug; open bars, preclonidine

Pre+post clonidine and postclonidine.
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according to their AHP duration, corresponding approximately to slow (>50 msec) and fast

(20-50msec) motor units, were also compared befote and after clonidine and between

shams and trained cats, but no significant changes were observed.

To evaluate transmission in the lb inhibitory pathways, we measured and compared

disynaptic IPSPs in response to a short train of stimuli (appropriate to recruit interneurons)

in group I (la plus lb) (Jankowska & McCrea 1983, Jankowska 1992) afferents from

extensors in sham and trained cats. In Figure 3, the trough of lb inhibition was reduced in

the extensor motoneurons after clonidine in both groups of cats (Fig.3a,b). Overall

(Fig.3c), lb inhibition was decreased by clonidine injection in sham cats (by 30.5%; p<0.O5)

and, even more so, in trained cats (by 61.0%; p<0.001). Training was able to enhance the

reduction of lb inhibition for responses evoked after clonidine (p<0.01).

a Sham b Trained Figure 3. Training plus
clonidine injection decreased

PI Mn LGS Mn
disynaptic lb inhibition. a,b,
IPSPs evoked by stimulation of

JL Gsgroupiafferents[6p1.8T)in

\7 1.81) in an LGS motoneuron
(similar AHP as the PI celi) in a

CDP CDP trained cat (b) before (gray

—---——---— -
-__,_____ trace) and after (black trace)

GSf6p 1.81) Pl(6p1.8T) clonidine. Clonidine decreased
lb inhibition in both groups of
cats. Mn, Motoneuron. c,
Afferent volley was monitored by

C U the CDP. Overali, disynaptic
Sham Trained • Sham IPSPs (314 trials in 143 cells)

o
i.

o raine
evoked by stimulation of knee

- I • 8 and ankle extensor group I
g g

• afferents (Quad, PI, LGS, MG,
-2 6

• GS) were significantly decreased
-3 4 by clonidine in shams (30.5%;

4 2
*p<005) and even more

- *

_________

g .• • ° significantly in trained cats
Q . ° ,

. Io,.l no,. *** n nn4\
• Clonidine O -2 -4 -6 -8 -10 I .U /0, p<v.uv

.
raining

No dwg Disynaptic inhibition amplitude (mv) enhanced significantly the te
duction of lb inhibition after cloni

dine (**p<O.O1). U, Plot of EPSP amplitude versus IPSP amplitude measured from the same ceII in
shams (fihled circles) and trained cats (open circles).

Decreases in both monosynaptic excitation and disynaptic inhibition could result from a

similar modification in motoneuronal properties (e.g., a decrease in membrane resistance).

In Figure 3d, we plotted the amplitude of monosynaptic EPSP against the amplitude of

disynaptic IPSP measured from the same celI in shams (filled circles) and trained cats
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(open circles). If both responses were to change together, because of the same

motoneuronal modification, one would expect the values from shams to be grouped in the

top right corner (i.e., large EPSP and large IPSP together) and the values from trained

cats, which are both significantly reduced, to be grouped in the bottom left corner. The

considerable scattering of points in this graph suggests on the contrary that these two

pathways wete modified independently.

The reversaI of lb inhibition into excitation was first described in acute spinal cats (Gossard

& Hultborn 1991, Gossard et al 1994, McCtea et al 1995). In this system, group I afferents

from knee and ankie extensors converge on pathways to produce the excitatory drive to

extensor muscles during stance. Here, we investigated the occurrence and amplitude of

polysynaptic excitation of extensors in chronic spinal cats after clonidine and training.

Surprisingly, there were instances of reversais without drugs or locomotion in both sham (8

cf 94 trials) and trained (9 of 103 trials) cats. This indicates that after 3-4 weeks of

spinalization, interneurons in the polysynaptic excitatory pathways recovered some level of

excitability. As expected, clonidine injection succeeded in revetsing lB inhibition into

excitation in motoneurons from both groups cf cats, as shown in Figure 4. In shams, the

occurrence cf reversais was more frequent (21.5%; p<0.01) and its amplitude was greatly

increased (from 0.09 to 0.60 mV; 535.6%; p<0.001) with clonidine. In trained cats, there

was a significant inctease in amplitude of polysynaptic excitation (from 0.17 to 0.68 mV;

a Sham

MG Mn

LGS f6p 18T)

C

E
G)

0.5
Œ
E

Sham Trained

u clonjdjne

E] No dwg

Figure 4. Clonidine increased
polysynaptic group I excitation in
both groups of cats.

a, b, EPSPs evoked by stimulation of
LGS afferents [6p 1 .8T1 recorded in
MG motoneurons (with similar AHPs)
in a sham cat (a) and a trained cat (b)
before and after clonidine. Here,
clonidine reversed lb inhibition (gray
trace) te polysynaptic excitation (black
trace) both in sham and trained cats.
Mn, Motoneuron. c, Overali, the
amplitude cf polysynaptic EPSPs (313
trials in 143 cells) evoked by
stimulation cf knee and ankle extensor
group I afferents (Quad, PI, LGS, MG,
GS) was increased by clonidine in
sham (535.6%; ***p<o 001) and in
trained (307.8%; ***p<0 001) cats.

b Trained

MG Mn

CDP

LGS (6p 1.8T)
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307.8%; p<0.001) and a highly significant increase in occurrence (30.2%; p<0.001)

attributable to clonidine.

We succeeded in keeping intraceliular recordings of four motoneurons while injecting

clonidine and had the opportunity to observe changes in responses. In a sham, a PI cell

showed a decrease in lb inhibition (from -7.2 to -4.1 mV), and in another sham, an FHL

ceil showed a reversai from inhibition to excitation (from -2.2 to 1.4 mV). In a trained cat,

an LGS cell showed a decrease in lb inhibition (from -1.6 to -0.8 mV) and, in another

trained cat, an MG ceii showed a reversai (from -2.7 to 1.6 mV). Simiiar results were found

in the overali population, as teported above. Table 1 gives the mean amplitude of

monosynaptic excitation, disynaptic inhibition, and polysynaptic excitation in shams and

trained cats before and after clonidine injection.

Table 1. The effects of clonidine and training on the mean amplitude of responses in the specifled pathway and on
occurrence of reversais

Sham Trained

No drug Clonidine Effect No drug clonidine Effect

Effect of clonidine

Monosynaptic excitation 2.55 2.69 1.65 1.66

Disynaptic inhibition -3.01 -2.09 .1.305% -2.75 -1.07 .1.61.0%

Polysynaptic excitation 0.09 0.60 t535.6% 0.17 0.68 t307.8%

Occurrence 0f reversais 8 ot 94 12 of 40 t21 5% 9 0f 103 30 of 77 t302%

Without drug With clonidine

Sham Trained Effect Sham Trained Effect

Effect of training

Monosynaptic excitation 2.55 1.65 2.69 1.66

Disynaptic inhibition -3.01 -2.75 -2.09 -1.07 -1-48.7%

Polysynaptic excitation 0.09 0.17 0.60 0.68

Occurrence of reversais 8 of 94 9 cf 103 12 cf 40 30 ot 77

OnIy significant changes are indicated

The long-lasting reflexes evoked by stimuiating FRA aftet administration of L-DOPA in

spinal cats are beiieved to be part of the iocomotor circuitry (Jankowska et al 1967ab,

Schomburg et aI 1998). Moreover, it was shown that group I afferents from extensors and

contralateral FRA (coFRA) converge on common interneurons to excite extensors after L-

DOPA injection (Gossard et ai 1994). The invoivement 0f the FRA pathways in chronic

spinal cats has been questioned (Griiiner 1973, Barbeau et ai 1987). In this study, we

found that primariiy flexors (16 of 18 cats) and not extensors were excited by coFRA

stimulation, with or without clonidine. Similar patterns were obsetved both in sham cats (18
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cf 24 trials) and trained cats (30 cf 38 trials). This strongly suggests that pathways

mediating flexion reflexes are deeply reorganized after chronic spinalization.

Training and fictive locomotion

Before clonidine injection, rhythmic bursts cf ENG activity were scarcely evcked by

perineal stimulation (Barbeau & Rossignol 1987, Bélanger et al 1996) in shams (two of

seven cats) (Fig.5a). Surprisingly, training did flot increase significantly the occurrence cf

fictive locomotor activities (7 of 11 cats) (Fig.5b). After clonidine, perineal stimulation

induced robust and well organized episodes of fictive locomotion in both groups cf cats

(Fig.5c,d). As exemplified by reflex reversais, it is now well established that transmission in

several sensory pathways is deeply modified during locomotion (Rossignol 1996). We thus

investigated whether fictive stepping disclosed additional effects cf training on the

transmission cf group I pathways (state-dependent changes). We aise studied whether

training modified the CPG-dependent

modulation in reflex transmission

(phase-dependent changes). The

amplitude cf moncsynaptic EPSPs in

motoneurons was reported to be

decreased during fictive locomotion

(by 34%) induced by mesencephalic

stimulation in decerebrate cats

because cf a tonic level cf presynaptic

inhibition (Gosgnach et al 2000). In

this study with chronic spinal cats,

fictive stepping did not induce a

significant decrease in monosynaptic

EPSP amplitude compared with test in

i.1--!rJ—I ..Jj)._.pJ

is

d +Clonïdine

Iø*__ *•i

‘ t #-.s ‘

î t 4*.»

, .ê•IøI mL

Shama
Ext
Mn

LGS

PBSt

EDL

FDHL

b Trained

— IZ j.4
.L.. t4It4.r4 ,

is

C + Clonidine

LGS

PBSt

EDL

FDHL

both sham (by 31 .2%) and trained (by

29.2%) cats. During walking,

transmission in the monosynaptic

reflex pathway is phasically modulated

in the cat (Fcrssberg & Grillner 1973,

Akazawa et al 1982, Gossard 1996,

Figure 5. Fictive locomotion can be induced in
shams and trained cats. a, b, Motoneuronal intra
cellular potential and ENG activity in flexor and
extensor muscle nerves in a sham fa) and a trained
(b) cat. Rhythmic bursts of activity evoked by
perineal stimulation before clonidine injection were
observed in trained cats (7 of 11) and in shams (2 of
7). c, U, After clonidine, perineal stimulation induced
robust locomctor episodes in both groups cf cats.
ExtMn, Extensor motoneuron.
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Ménard et al 1999) and in humans (Capaday & Stem 1986, Simonsen & Dyhre-Poulsen

1999), being maximal during stance in extensors when motoneuronal poois are

depolarized. Figure 6 illustrates that the phases for maximal amplitude of monosynaptic

EPSPs are opposite in a sham and a trained cat. Phase-dependent modulation was found

to be significant only in a few trials (5 of 29 in 4 of 22 cells) (Gosgnach et aI 2000). Among

those, t was found that training significantly modified the pattern of modulation (p<0.0l),

the maximum amplitude occurring during the depolarized active phase (Fig.6c). This very

limited sample suggests that training may modify the monosynaptic la-transmission

pathway to extensor motoneurons so that it is maximally transmitting during the extensor

(stance) phase.

a Sham b Trained

/.oep Figure 6. Training could change the pattern of
CGSMn MG Mn / CPG-related modulation of monosynaptic

Hyp
excitation a The amplitude of monosynaptic EPSPs

.I L— !I f evoked by PI stimulation [lp, 1.STJ was larger during
J’ \ J the hyperpolarized (Hyp) phase in an LGS

motoneuron from a sham cat. b, The amplitude of
monosynaptic EPSPs evoked by LGS stimulation

PI(lpl8T) — CGS(Ipt8T) (lp, 1.8T) was larger during the depolacized (Dep)
phase in an MG motoneuron from a trained cat. Mn,

c Motoneuron. c, Training modified significantly the
100 pattern of phase-dependent modulation of
50 monosynaptic EPSPs (5 trials in 4 cells; **p<ool)

Fi evoked by group I afferents of ankle extensors (PI,
I MG, LGS), with the maximum amplitude occurring

during the hyperpolarized phase in sham cats and
during the depolarized phase in trained cats.

U Sham

Trainnd

We also investigated whethet fictive stepping disclosed additional effects of training on the

transmission of lb inhibitory pathways. It was found that fictive locomotion did not change

significantly the amplitude of disynaptic IPSPs compared with test in both sham (48 trials

in 27 cells) and trained (35 trials in 26 cells) cats. We also assessed the phase-dependent

modulation in IPSP amplitude. Figure 7 illustrates that the amplitude of IPSPs was larger

during the depolarized phase in motoneurons in both sham (Fig.7a) and trained (Fig.7b)

cats. From motoneurons presenting a signiticant phasic modulation (40 of 59 trials in 33 of

41 cells) between depolarized (active) and hyperpolarized phases, t was found that the

average depth of modulation was not significantly changed by training (sham, 28.8%;

trained, 29.3%). Analysis also showed that the IPSP reduction was not related to the

amplitude of locomotor depolarization in motoneurons. This suggests that the CPG-related
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a Sham b Trained

MGMn MGMn
Hyp

Figure 7. Training did flot change the ‘ Dep

pattern of CPG-related modulation 0f lb
inhibition. a, b, IPSPs evoked by Quad
(6p, 1.8T) in MG motoneurons during
fictive locomotion in a sham (a) and a CDP

trained (b) cat. The amplitude of IPSPs
(trough) was increased during the Quad (Gpl

depolatized (dep) phase in the sham (black lOms

trace) and the trained (gray trace) cat. Mn,
Motoneuron. c, The depth of modulation in 100

IPSPs (40 trials in 33 cells) was not 80

significantly changed by training. Hyp, 60

hyperpolarized. 40

2oÏh
• Sham

Trained

modulation that was similar in both groups probabiy occurred in lb interneurons.

Compared with rest, the occurrence of reversais from lb inhibition to excitation was more

frequent during fictive locomotion in shams (25.1%; p<O.001) but flot in trained cats

(11.7%; flot significant). Aiso, the amplitude of responses was much increased during

fictive stepping in shams (48 trials, by 225.5%; p<O.05), whereas it was unchanged in

trained cats (36 triais). We also assessed its phase-dependent modulation. For example,

in Figure 8, the amplitude of polysynaptic EPSPs was increased during the depolarized

phase in the motoneuron from a sham (Fig. 8a), whereas it was decreased during that

same phase in a motoneurons from a trained cat (Fig. 8b). From motoneurons presenting

a significant phasic modulation (19 of 29 triais in 15 of 21 ceiis), it was found that the

average depth of modulation was flot significantiy changed by training. However, the

poiysynaptic excitation was larger (by 8.1%) during the depolarized phase in sham cats,

whereas it was decreased (by 19.3%) during that same phase in trained cats (Fig.8c). The

tact that, in trained cats, the amplitude of polysynaptic excitation is smaller during fictive

stepping compared with test and smaller during the depoiarized phase may be attributable

to the occlusion of this pathway caused by its recruitment by the CPG to produce extensor

activities (Gossard & Huitborn 1991, Gossard et al 1994). This was evaiuated by

comparing in both groups of cats the iinear regressions relating the amplitude of

polysynaptic excitation and the amplitude of locomotor bursts of activity of the parent

extensor nerve. In shams, the amplitude of polysynaptic excitation was growing with

CDP

Quad (6p 1 8T) —

10 ma
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increasing ENG-burst amplitude (upward slope), whereas in trained cats, it decreased with

increasing ENG bursts (downward siope), and this diffetence was significant (p<0.03).

a Sham

I

b Trained

500 ms

>
E

500 ms

Discussion

100

50

-bai

• Sham

Trained

Figure 8. Different patterns of CPG
related modulation of polysynaptic
excitation. a, EPSPs recorded in an
MG motoneuron (tilted 900) in a sham
were evoked by Quad stimuli [6p 1.8TJ
at different moments in the step cycle
illustrated by the rectified and filtered
ENG activity of the LGS nerve. The
amplitude of polysynaptic EPSPs was
maximal (gray trace) when occurring
during the active period of LGS (i.e.,
during the extension phase). b, The
amplitude of polysynaptic EPSPs
evoked by PI stimulation and recorded
in an FHL motoneuron (tilted 90°) from a
trained cet (6p, 1 .8T) was minimal
(black trace) during the extension phase
when LGS was maximally active. Mn,
Motoneuron. c, Overall, the pattern of
phase-dependent modulation of
polysynaptic EPSPs (19 triais in 15
cells) tended to be opposite in shams
and trained cats, but this difference was
not statistically significant.

Acute experimentation in curarized animais is advantageous to investigate transmission of

sensory pathways because it aiiows stable intracellular recordings, and responses can be

soieiy attributed to the operation of centrai networks. The effects of training or clonidine

observed in this study can then be atttibuted to changes occurring in spinal pathways and

not to an alteration in peripheral sensory events or muscle fibers. There is now growing

evidence that reflex pathways are not “hard-wired” (Forssberg & Svartengren 1983), and

that they can display a certain ievel cf plasticity in response to central or peripheral lesions

or operant conditioning (Mendell 1984, Durkovic 1996, Wolpaw 1997, Wolpaw &

Tennissen 2001). The recovery cf stepping with treadmill training has been attributed

solely to plasticity of the CPG (Lovely et al 1986, Rossignol 1996, Harkema 2001). This
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study is the first to report that recovery cf locomotion may also involve changes in several

reflex pathways. Plastic changes in a reflex arc can occur in motoneurons, interneurons, or

primary afferents. Our results showed that stimulation cf the same group I afferents couid

elicit opposite response patterns in twc different pathways (monosynaptic and

polysynaptic), ene being incteased and the other decreased in amplitude, in the same

moteneuron. Aiso, decreases in monosynaptic and disynaptic respenses did net appear te

covary in the same motoneuren. Additionally, clenidine injection significantly mcdified

transmission in disynaptic pathways withcut affecting monosynaptic transmission.

Morecver, AHP duraticn, which varies systematicaiiy with input resistance and membrane

time constant (Gustafssen & Pinter 1984b), was feund net te be mcdified by 1 month cf

training (data net shewn). Therefere, premotoneuronal mechanisms can most easiiy

explain eut respense patterns. Finally, there is an unknewn contribution and plastic

modification cf recuttent inhibition in eur reccrdings. Hewever, lb inhibition and its

teductien caused by training were cbserved between moteneurons (e.g., Quad) and group

I fibers from muscle nerves (e.g., PI) kncwn te lack recurrent inhibitory connections

(Baidissera et al 1981). We thus believe that plasticity induced by training in Icad pathways

was occurring primariiy in interneurons cf the group I pathways te extensors and

interneurens cf presynaptic inhibitien. The first finding cf this work is that training

decreases mcncsynaptic excitation by 36%. This was apparent when we pcoled ail

amplitude values because cf the lack cf significant effect cf clonidine on this transmission.

in the few ceils in which it was possible te test, the phase-dependent modulation shewed a

maximum monosynaptic transmission eccurring during the extenser phase in trained cats

in which it ceuld help the excitation cf meteneurens. Intrathecal injection cf cionidine aise

failed te change the H-reflex in inccmpiete parapiegic subjects (Rémy-Néris et al 1999).

Aise, treadmili training decteased and impreved the gating cf lA refiexes in spinal-cerd

injured humans compared with normal subjects (Trimbie et ai 1998). Transmission in this

pathway can be changed by presynaptic inhibiticn and!er mctoneurcnai preperties. As

expiained abeve, postsynaptic changes alone cannot easiiy explain ail cf the respense

patterns cbserved in this wcrk. We thus believe that training may have increased the ievei

cf presynaptic inhibition in la terminais ending in the ventral hem. Such an increase was

inferred te explain a generai (ncn-muscle-specific) tonic decrease in ia-EPSPs (by 34%) in

a majcrity cf hindiimb mctcneurons duting fictive locomotion evcked by mesencephalic

stimulation in the cat (Gosgnach et al 2000). We thus suggest that training couid heip

reduce spasticity by decreasing lA transmission and impreve phase-dependent mcdulaticn

cf the stretch refiexes during stepping. Another main finding frem this wcrk is that the

decrease in lb inhibition after clenidine is enhanced by training. A normalizatien cf
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inhibitory systems in the spinal cord may be of prime importance in recovering stepping

(Robinson & Goldberger 1986, de Leon et al 1999a). For example, it was recently

described that the number of ceils stained for GAD67 mRNA was specificaiiy decreased

by step training in laminas V and VI (in which lb interneurons are located) in spinal cats

(Tillakaratne et al 2002). Note that during reflex reversaI, the disappearance of disynaptic

inhibition precedes the appeatance cf polysynaptic excitation (Gossard et al 1994, McCrea

et al 1995). We thus interpret the observed reduction of lB inhibition as a first step toward

reversais. The results aiso showed that cionidine increased more significantly the

occurrence of polysynaptic excitation in trained cats than in shams. However, it was

surprising not to see more effects cf training on the amplitude of polysynaptic excitation.

Perhaps smailer doses of cionidine wculd have revealed more differences. lndeed, the

dose used (500 pglkg) was determined from previous reports on acute spinal cats and is

possibly more than sufficient to evoke reflex reversais in ail spinal cats. Fictive locomotion

did not reveal additionai training-related changes in lb inhibition amplitude or phase

dependent modulation pattetns. However, t showed that the minimal amplitude in

polysynaptic excitation occurred during the extensor phase when the iocomotor excitation

is maximal in trained cats. We interpret this pattern as being attributable to the occlusion of

the pathways by the action cf the CPG during the extensor phase as it was proposed in

the acute spinal cat (Gossard et al 1994). We interpret this as being another step toward

the establishment cf lccomotcr-reiated polysynaptic excitatory pathways te extensors

caused by training. The same reasoning may heip explain why the occurrence and

amplitude cf polysynaptic excitation in shams were increased during fictive stepping. If

iocomotor circuitry is not as weB established in shams as in trained cats, there is less

occlusion in these pathways and the segmentai responses become more apparent. In the

decerebrate cat walking on a treadmiil, it was estimated that up to 50% cf the force

genetated during the stance phase was caused by muscle reflexes (Hiebert & Pearson

1999, Stem et ai 2000). We may presume that the isolated spinal ccrd wcuid depend even

more on sensory feedback to generate force during stepping. Althcugh mcdest, the

reported plastic changes indicate that after spinal cord injury, lcad pathways wculd have a

iarger contribution in the ccntrol cf stance if trained regulariy and together with

pharmacological intervention. Our results support previous reports that lcad receptcrs may

ccntribute te the activation cf ieg extensors during waiking in humans (Ghori & Luckwill

1985, Dietz et ai 1992, Stephens & Yang 1999, Sinkjaer et ai 2000, Stem et al 2000). For

example, it was prcpcsed that afferent inputs from receptcrs signaling contact forces

during the stance phase are essential for the activation cf spinal Iccomotor centers in SOI

subjects (Harkema et al 1997). Moreover, the improvement in treadmill and cverground
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locomotot patterns was attributed to the tepetitive alternating-limb loading using body

weight support (Wernig et al 1998). Whether treadmiil training or repetitive loading revived

the previous (prespinalization) CPG or whethet it set up a new locomotor circuitry is stiil

debatable. Our resuits indicate clearly that some pathways involved in locomotion in the

acute spinal cat, namely the FRA networks (Jankowska et al 1967ab), are reorganized

after chronic spinalization (Barbeau et al 1987). Moreovet, fictive stepping sometimes

occutred without concomitant appeatance of group I polysynaptic excitation in some

extensor motoneurons, which was not seen in the acute cat injected with L-DOPA

(Gossard et aI 1994). Thus, as proposed previously (Hodgson et al 1994, de Leon et al

1999a), our resuits support the idea that the isolated spinal cord ‘Iearned” how to walk by

establishing new locomotor pathways.
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PUBLICATION #2: STEP TRAINING-DEPENDENT PLASTICITY IN SPINAL CUTANEOUS PATHWAYS

Côté MP and Gossard JP (2004). Step training-dependent plasticity in spinal cutaneous

pathways. J. Neurosci. 24:11317-11327.

Abstract

Plasticity after spinal cord injury can be initiated by specific patterns of sensory feedback,

leading to a reorganization of spinal networks. For example, proprioceptive feedback from

limb loading during the stance phase is crucial for the recovery cf stepping in spinal-injured

animais and humans. Our recent resuits showed that step training modified transmission

from group I afferents of extensors in spinal cats. However, cutaneous afferents are also

activated during locomotion and are necessary for proper foot placement in spinal cats.

We therefore hypothesized that step training would aiso modify transmission in cutaneous

pathways to facilitate recovery of stepping. We tested transmission in cutaneous pathways

by comparing intracellular responses in lumbar motoneurons (n=136) in trained (n=11) and

untrained (n=7) cats spinalized 3-5 weeks before the acute electrophysiological

experiment. Three cutaneous nerves were stimulated, and each evoked up to three

motoneuronal responses mediated by at least three different pathways. Overall, of 71

cutaneous pathways tested, 10 were modified by step training: transmission was reduced

in 7 and facilitated in 3. Remarkably, 6 of 10 involved the medial plantar nerve innervating

the plantar surface of the foot, including two of the facilitated pathways. Because the

cutaneous reflexes are exaggerated after spinalization, we interpret the decrease in most

pathways as a normalization of cutaneous transmission necessary to recover locomotor

movements. Overall, the resuits showed a high degree cf specificity in plasticity among

cutanecus pathways and indicate that transmission of skin inputs signaling ground contact,

in particular, is modified by step training.

Introduction

Growing experimental and clinical findings provide evidence for activity-dependent

plasticity of spinal networks (Wolpaw & Tennissen 2001). These studies indicate that

physiologicai, biochemical, and functional reorganization of lumbar spinal cord occur over

time (Nacimiento et al 1995, Edgerton et al 1997ab, Giroux et al 1999). Consistent with
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this, strategies to recover motor functions aftet spinal cord injury (SCI) include the

management cf sublesional spinal cotd based on the reorganization of the remaining

undamaged neural pathways.

Sensory feedback plays a crucial role in the recovery cf function after SCI in humans and

animais. This is well illustrated by the ability to regain rhythmic locomotor pattetns after

repetitive sensory stimulation provided by step training (Lovely et al 1986, Barbeau &

Rossignol 1987, Fung et al 1990, de Leon et al 1998b, Harkema 2001, Leblond et al

2003). Improvement depends on specific activity-dependent sensory feedback (de Leon et

al 1998a) and flot on the effect cf training on musculature (Roy & Acosta 1986, Roy et al

1999). For instance, step-trained spinal cats improve their gait pattern but are not better at

standing, and conversely, stand-trained animais are net better at stepping (de Leon et al

1998a, 1999b). Also, functional stepping recovery and precise limb placement in spinal

hemisected cats is correlated with sprouting cf primary afferents (Heigren & Goldberger

1993). Thus, both anatomical and behavioral evidence suggests thatthe sensory feedback

can be used to compensate for the ioss cf supraspinal inputs to spinal circuits. However,

little is known about the mechanisms and pathways underlying the beneficial action cf

sensory feedback.

Proprioceptive feedback during limb loading contributes to the recovery cf stepping. In

both humans and cats recovering from SCI, progressively increasing weight-bearing

improves stepping ability (Barbeau & Rossignol 1987, Barbeau et al 1987, Edgerton et al

1992, Harkema et al 1997). Moreover, we recently showed that step training modified

transmission from group I afferents cf extensors in spinal cats (Côté et al 2003a).

However, cutaneous afferents are also activated by locomotor movements and may

participate in recovery. Cutaneomuscular stimulation can partialiy restore normal reflex

modulation in spastic SCI patients (Fung & Barbeau 1994). Previcus experiments showed

that the selective phasic stimulation of cutaneous receptors from the plantar surface cf the

foot (without activation of propricceptors signaling limb loading), was sufficient to

permanently increase limb extension during swimming in spinal hemisected chicks (Muir &

Steeves 1997). Also, progressive cutaneous denervation cf the hindlimb in spinal cats

indicates that proper foot placement during stepping tequites a minimum cutanecus input

(Bouyer & Rossignol 2003b). Because cf its influence on Iccomotor networks, we

hypothesized that step training would aise modify transmission in cutaneous pathways.

We tested this by comparing motoneuronal responses te cutaneous nerve stimulation in

trained and untrained cats spinalized 3-5 weeks before an acute experiment. Our findings
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indicate that plasticity occurs only in specific cutaneous pathways, with decreased

transmission detected in most. The tesuits also reveal selective modification of skin inputs

signaling ground contact, suggesting that plasticity of these connections may be of

particular importance during step training.

Materials and Methods

Ail procedures were conducted according to the Guide for Care and Use of Experimentai

Animais (Canada), using protocols approved by the Ethics Committee of the Université de

Montréal.

Spinaiization and iocomotor training. Eighteen adult female cats (2.5-4.1kg) were used for

this study. After administration of preoperative medication, the cats were anesthetized (2%

isoflurane; Abbott Laboratories, Montréal, Québec, Canada) and spinalized at T13 under

aseptic conditions. Protocols for spinalization procedures and subseq uent postoperative

care were analogous to those described previously (Chau et al 1998a, Côté et al 2003a).

A patch of fentanyl (Duragesic; 25 pg; Janssen-Ortho, Markham, Ontario, Canada) was

sutured on the back of the cat for continuous and stable delivery of analgesic over a 2d

period. The first group of cats was only spinalized [sham operated (sham)J, whereas the

second group was locomotor trained until they could support the weight of their

hindquarters (mean, 28d). Training on the treadmili (0.2-O .4mlsec) started 2d after surgery

and consisted of two to four daily training sessions for periods of 10 min. In early training,

hindquarters were supported by the experimenter to provide weight support, and perineal

stimulation was used to increase central excitability and to maintain locomotion. The

animal became gradually able to support its hindquarters and to walk, and perineal

stimulation was no longer needed in most cases. No drugs were used to assist the

locomotor training. The training was stopped when the cat was able to walk continuously

on the treadmill for >5 min while the experimenter assisted only for lateral stability by

holding the tau.

Acute experiment. Cats were first anesthetized by inhalation of an oxygenated mixture

(50%) of nitrous oxide (50%) and halothane (2-3%; MTC Pharmaceuticals, Cambridge,

Ontario, Canada). Cannulas were inserted in the right common carotid artery to monitor

blood pressure and in the jugular and cephalic veins for administration of pharmacological

agents or fluids. Cats were then decerebrated and curarized (Pavulon; 0.2 mg/kg/45 mm;
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Sabex, Boucherville, Ontario, Canada) and artificially ventilated as detailed previously

(Ménard et al 1999, Leblond et al 2000).

To monitor locomotor episodes and antidromically identify motoneurons, the following

muscle nerves from the Ieft hindlimb wete dissected free, cut, and mounted on bipolar

silver chloride electrodes for recording [electroneurogram (ENG)J and stimulation: posterior

biceps-semitendinosus (PBSt), semimembranosus-anterior biceps (SmAB), lateral

gastrocnemius-soleus (LGS), medial gastrocnemius (MG), plantaris (PI), flexor hallucis

longus (FHL) and flexor digitorum longus (FDL) together, tibialis anterior (TA), extensor

digitorum longus (EDL), and sciatic nerve (uncut). Three cutaneous nerves were also

dissected free for subsequent stimulation: caudal cutaneous sural (CCS), medial plantar

(MPL), and superficial peroneal (SP).

Stimulation, recordinys, and analysis. The cord dorsum potential (CDP) was recorded with

a silver chloride bail electrode located near the dorsal root entrance at the L6-L7 border.

Stimulation intensity required to just evoke a deflection in the CDP determined the

threshold for the most excitable fibers for each nerve (1T). Stimulus intensity was

expressed as a multiple of the threshold. intracellular potentials evoked by the stimulation

of low-threshold cutaneous afferents (CCS, MPL, SP; one pulse; 2T) wete recorded in

identified extensor and flexor!bifunctional motoneurons (Leblond et al 2000) with glass

micropipettes filled with K-acetate (2M) and QX3 14 [N-(2,6-d imethylphenylcarbamoyl

methyl) triethylamonium bromide; lOOmM; Alamone Laboratories, Jerusalem, israelJ to

prevent sodium spikes. FDL and FHL motoneurons could be distinguished by their

responses to SP stimulation and the phase of peak depolarization during fictive stepping

(Burke 1999). The duration of the afterhyperpolarization (AHP) was measured in every

celi, from the spike onset to where the AHP crosses the baseline (Gustafsson & Pinter

1984b). Stimulation of peripheral nerves was given every 0.3, 0.4, or 0.5sec.

Ail responses were further studied during a period of 2hr aftet intravenous clonidine

injection (a2-noradrenergic agonist; 500pg!kg; Sigma, St. Louis, MO) and during episodes

of fictive locomotion induced by perineai stimulation. Up to two doses of clonidine were

injected in an experiment, and data were recorded for the foilowing 2hr. Once clonidine

was injected, there was no return to control conditions, and ail subsequent recordings

were considered post-cionidine data.
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A “trial” is the averaged response in one motoneuron evoked by the stimulation (n40) of a

given pathway (a cutaneous afferent-motoneuron pair). Several pathways could be studied

in a given motoneurons corresponding to different cutaneous stimulation. The transmission

of cutaneous pathways was monitored by measuring the peak amplitude of IPSP and

EPSP in motoneurons. The amplitude of IPSPs fR2) was measured as the maximal

negative deflection from the baseline in the intracellular trace in response to the

stimulation, and the amplitude of EPSPs (R1-R3) was measured as the maximal positive

deflection from the baseline, as illustrated in Figure 2 (upward and downward arrows) and

described in Results. Changes attributable to training, clonidine, or locomotion were

determined by comparing the avetage amplitude obtained in each of these three

conditions.

Data collected during test (silent ENG5) and during fictive stepping were compared to

study state-dependent changes in cutaneous transmission. During locomotor episodes,

bursts of ENG activities wete used to divide the step cycle into flexion (corresponding to

swing) and extension (cortesponding to stance) phases. The locomotor cycle, defined as

the period between the onsets of two successive bursts of ENG activity in extensors, was

normalized to the duration of the averaged cycle. PSPs evoked during flexion and

extension were separated and averaged to study phase-dependent modulation.

Statistical analysis. Histograms in the figures are expressed as means ± SEM. Statistical

analysis was performed to disclose differences between responses obtained (1) in sham

operated and trained groups (training-dependent plasticity), (2) at rest and during fictive

locomotion (state-dependent changes), (3) during flexion and extension phases of

locomotion (phase-dependent changes), and (4) befote and after clonidine injection. The

Kolmogorov-Smirnov-Liliefors test was used to compare the shape and location of the

distribution of responses to a normal distribution, and the Levene median test was used for

equal variance, If these two tests confirmed that the sample variables did fit a normal

distribution and were equally variant, a one-way ANOVA was performed; if not, the

Kruskal-Wallis one-way ANOVA on tanks was used. The X2 with the Yates correction

factor or Fisher’s exact test evaluating ftequency distributions was used to further identify

differences in the occurrence of type of responses between groups. For aIl statistical tests,

the significance level was set to p<O.05. In histograms, significant difference is indicated

as follows: *p<005 **p<OO1 or ***p<O 001 When no significant changes were found in

data measured before and after clonidine injection, the data were merged together.



Resu Its

In the first section, we present the effect cf training on response amplitude recorded at test

and duting fictive locomotion episodes. In the next section, we compare tesponse

amplitude between locomotion versus test in shams and aiso in trained cats. In the last

section, the effect of cionidine is compared with the effect of training. In each section,

changes in the transmission cf cutaneous pathways were monitored by measuring the

peak amplitude cf IPSPs and EPSPs in several motoneurons. AHP duration, which varies

systematically with input resistance and membrane time constant (Gustafsson & Pinter

1984b), was ccmpared between sham

and trained cats as an indication cf the
a

size and membrane resistance cf

mctcneurcns. Figure la shows the

simiiarity cf AHP duraticn distribution for

bcth groups cf cats. Overali, there was no

significant difference between mean AHP

duraticn (±SE) measured in the twc

groups cf cats (sham, 76±4.3 msec;

trained, 68±3.7 msec), even if grcuped
b

according to the mctcr pool (data not

shown). Aise, a change in PSP amplitude

ccuid be partiy attributable te differences

in membrane potential (Pcwers & Binder

1985, Coombs et al 1955). We therefore

compared the levels cf membrane

potential at rest cf ail motoneurons cf

shams (average, 62.1 ± 1.1 mv) and

trained cats (average, 60.5±0.9 mV) and

found no significant difference (p=0.24).

Figure lb shows the similarity cf

membrane potentiai distribution for both

groups cf cats.
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Figure 1. Training dïd not modify AHP
duration and membrane potential. The
histograms of AHP duration ta) and
membrane potential (b) of motoneurons in
shams (gray) and trained cats (black) show
a similar distribution.



Cutaneous PSP patterns

We evaluated the effect of training on

patterns of PSPs evoked by cutaneous

afferents recorded at rest in five

extensor (22 FHL, 17 MG, 16 SmAB, 15

LGS, 12 PI) and three fiexor/bifunctionai

(21 PBSt, 20 EDL, 13 FDL)

motoneuronal pools of 7 shams and 11

trained cats. Figure 2 illustrates six

different patterns of PSPs elicited by a

single shock in cutaneous afferents in

various motoneurons. These muitiphasic

records were typicai of the effects

observed intraceiiularly. Responses

were composed of one to three

components: eariy excitation (Ri),

inhibition (R2), and late excitation (R3)

(Baker & Chandier 1987b). More

precisely, type A response was

composed of Ri-R2-R3 (Fig. 2a), type B

response was composed of R2-R3 (Fig.

2b), type C response was composed of

R2 (Fig. 2c), type D response was

composed of R1-R3 (Fig. 2d), type E

response was composed of R1-R2 (Fig.

2e), and type F response was

composed of Ri (Fig. 2f). The relative

frequency of type A—F responses is

reported in Table 1. As noted in

previous reports (Baker & Chandier

1987b), the most represented type of

response was composed of ail three

components (i.e., the pattern referred to

as type A here). in shams, the type A
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a TypeAresponse

b

C Typo C rosponse

U Type D response

e Ri Type E response

f RI TypeFresponse

J.
CCS,SPorMPL; lp2T I

Figure 2. Type of responses to cutaneous
stimulation recorded in motoneurons.
Representative averaged PSP patterns (n=62)
evoked by cutaneous afferents (CCS, MPL, or
SP) recorded in extensor or fiexor/bifunctionai
motoneurons are shown. The initial
depoiarization is referred to as Ri, the
subsequent hyperpolarization referred to as
R2, and the following depoiarization referred
to as R3. a, Type A response: Ri-R2-R3; b,
type B response: R2-R3; c, type C response:
R2; U, type D response: Ri-R3; e, type E
response: Ri-R2; t type F response: Ri.
Baseline is represented by a dotted une from
which amplitude is measured for each
component (upward and downward arrows).
Calibration pulse, 1 mV.
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response was most prevalent in seven cf eight motoneuronal pools, except for PBSt

(Table 1, gray highlight), wheteas in trained cats, the type A response was most

prevalent in six of eight motoneuronal pools (Table 1, black highlight), except for MG

and PBSt. In those two cases, type D response (R1-R3) was the most prevalent. We

then performed an analysis of frequency cf type A-F responses to assess the effect cf

training.

Table 1. Effect of training on the type of responses to cutaneous stimulation according to
motoneuronal pool

FHL LGS MG SmAB PI EDL FDL PBSt TOTAL
Cham Tr&nd $hn, T,nd Si, Trned Se T,ined SI, Trrnd SI, Tr&r,,d Shm Trnd 5 Trn Shm T,ned

n=23 n=31 n=15 n=25 n=21 n=28 n=16 n=27 n=22 n=11 n=12 n=36 n=12 n26 n=24 n=28 n=145 n=214

Type A (R1-R2-R3) 783% 1000% 619% 42.9% 75.0% 63,6% 50.0% 100.0% 250% 179% 66.2%

Type B (R2-R3) 8.7% 97% 8 0% 19.0% 3.6% 27.3% 8.% 2.6% 4.8% 47%
Type C (R2) 43% 3.2% 9.1% 2.1% 0.5%

Type DfR1-R3) 8.7% 194% 160% 19.1% 250% 18.5% 18.2% 9.1% 25.0% 36.9% .308%:: 41.7% 186% 336%
Type E (R1-R2) 40% 74% 91% 8.3% 2.6% 7.7%!. 8.3% 3.5% 2.8%

Type F(R1) 3,5% 250% 107% 4.1% 1.8%
No response 3.7% 8% 0 7% 05%

The proportion of the type cf responses evoked by cutaneous stimulation (CCS, MPL, and SP) is
reported according te the motor pool (extensor: FHL, LGS, MG, SmAB, and PI; flexor/bifuncticnal:
EDL, FDL, and PBSt) in shams and trained cats. The number of observations or trials (n) for a given
type s expressed as the percentage of the total trials recorded in that motet pool in shams or in
trained cats. The most represented type is highlighted in gray for shams and in black for trained
cats. Note that the training did net modify the distribution cf types cf cutaneous respcnses evcked
in mcst motor pools. Training did change the distribution of respcnses evoked in FDL motoneurons
(p<O.05) with the appearance cf type D and type E responses (dotted square).

Overall, training did net modify the distribution cf the different types cf respcnses (Table

1), the type A response being the most ccmmon finding in both groups (66.2% sham,

56.1% trained). Also, the type A response was the most represented type in both extensor

(74.2% sham, 63.1% trained) and flexcr/bifuncticnal (50.0% sham, 46.7% trained)

mctoneurcns. When grouped acccrding te mctoneuronal pools, training tended te increase

the cccurrence of type D responses in six cf eight motet pools. However, only the

distribution of responses recorded in FDL motoneurons was significantly mcdified by

training (p<0.05); the type A response was recorded in 100% cf trials in shams, whereas in

addition te type A, both types D and E were recorded in trained cats (Table 1). Type D has

no inhibitcry respcnse fR2), and this absence is flot simply attributable te a difference in

membrane potential levels in FDL motoneurons between shams (average, 71 .0±3.3 mV)

and trained cats (average, 61.4±3.9 mV; p=0.16).
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Because the type A response was the most common finding both in shams and in trained

cats, as reported for chronic and acute spinal cats (Baker & Chandier 1987b), the

amplitude of ail three components were collected for additional analysis. Here the three

components were considered as the outcome of three different pathways involving a

different number of interneutons inserted between cutaneous afferents and motoneurons

(Pinter et ai 1982). Data were pooied according to motor nuciei and stimulated cutaneous

nerve (see below). The mean amplitude for each of the three components was compared

between sham and trained cats. The absence 0f one of the components (Fig.2b-t) was

considered as OmV of amplitude for that component and 100% reduction in synaptic

transmission in that pathway.

Effect of training recorded at test

Significant changes in transmission in cutaneous pathways attributed to training were

calculated by comparing data measured in the sham and trained groups. Table 2 depicts

the effect of training on cutaneous responses evoked by CCS, MPL, or SP in various

extensor and flexor/bifunctionai motoneuronal pools. Among ail the possible afferent

motoneuron pairs, we succeeded in testing 71 of 72. 0f the 71 pathways tested at rest, 10

were significantly modified by training, In a majority of these cases (7 of 10), training

decreased the mean amplitude of responses. Each cutaneous source tested was

significantly modified in at least one pathway, and MPL was the most potent (6 of 10

pathways). Training barely affected the amplitude of R2 (2 of 10). Also, when significantly

modified by training, R3 amplitude was reduced in extensor motor pools (CCS-MG-R3,

MPL-MG-R3) and increased in flexor/bifunctional motor pools (CCS-EDL-R3, MPL-PBSt

R3). Data from several cats were used to reveal the modifications attributable to training

on pathways to MG (4-5 cats), PI (3-5 cats), EDL (8-12 cats), and PBSt (7-11 cats) motor

pools.

The effect of training was predominantiy observed in MG motoneurons. 0f the 10

pathways significantly modified, six had MG as a target (Table 2). Actuaily, training

significantly modified the mean amplitude of the responses in six of nine pathways

recorded in MG motoneurons as reported in Table 2. AIl significant changes were a

decrease in amplitude (Fig.3a—c) (CCS-MG-R1, MPL-MG-R2, SP-MG-R2, CCS-MG-R3,

MPL-MG-R3), except for MPL-MG-R1, which increased in amplitude (Fig.3b). Moreover,

one should note that training reduced R2 amplitude only in MG motoneurons (MPL-MG
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R2, SP-MG-R2). This training-induced reduction in the amplitude of R2 in MG motoneuron

was not attributable to a reduced occurrence of inhibition. As noted above, a change in

1PSP amplitude could also be attributable to a difference in membrane potentials in the two

groups. We therefore analyzed the relationship between IPSP amplitude and membrane

potential levels in ail MG cells and found no significant linear relationship [as did Powers &

Binder (1985)] in shams (r=0.20; p=0.45) or trained cats (r0.50; p=0.08). Restricting

comparisons to cells with membrane potential between 50-65 and 65-80 mV did not

eliminate differences in 1PSP amplitude either.

It was reported before that cutaneous stimulation produced a differential distribution of

early EPSPs (referred to as Ri here) within the three extensor motor nuclel comprising the

triceps surae in decerebrate cats (LaBella et al 1989), semichronic spinal cats (LaBella et

al 1992), and humans (Duysens et al 1996). CCS afferent stimulation preferentially evoked

excitation in MG motoneurons, whereas SP afferents preferentially evoked excitation in LG

Table 2. Effect of training on the mean amplitude of responses in specific cutaneous
pathways

CCS MPL SP
FHL 13-19

LGS
MG -7 ®4% 61% ®t89% ,54% 46%

PI 10-12

SmAB 14-15

EDL 15-19 t274% ®43%

FDL

PBST t582%

The effect of training s reported according to the afferents (CCS, MPL, and SP) and motoneurons
(FHL, LGS, MG, Pi, SmAB, EDL, FDL, and PBSt). Pathways (Ri, R2, or R3) significantiy modified
(10 of 71 tested pathways) by training are represented as circled numbers. Upward arrows indicate
an increase and downward arrows indicate a reduction in mean amplitude between shams and
trained cats. These are foiiowed by the mean percentage of change in amplitude as caicuiated by
comparing the mean amplitude (on the basis of ail trials) obtained in trained cats to the one
obtained in shams. The number of trials for each pathway for the corresponding motor pool is
shown in the second column.

C

o
C
G)
X
w

C

I

o
X
G)
w



a CCS-MG
MG Mn

-10 ShamSham >
• Trained

61%

R2 •Trained O
Ri L R3

OsCCS (lp 2T)

b MPL-MG
MG Mn Sham

jJTraIne,

R
R2

E -3 ShamSham
- L • Trained

6%
cop

SP(lp2T)

Figure 3. Training specifically modified
transmission from cutaneous afferents to
the MG motor pool. Left, PSPs (n40)
evoked by stimulation of CCS (a), MPL (b),
and SP (c) afferents recorded in MG
motoneurons with similar AHPs (range, 70-91
msec) in a sham (gray) and a trained cat
(black). Right, Histograms of the mean
amplitude of responses evoked by CCS (a),
MPL (b), and SP (c) afferents recorded in ail
MG motoneurons in shams (gray) and ttained
cats (black). Six of the fine pathways tested
in MG motoneurons were modified by
training. Significant differences are indicated
as follows: *p<005 **p<001 Overall,
training decreased both CCS-MG-R1 (by
47%) and CCS-MG-R3 (by 61%) (a)
amplitude, increased MPL-MG-R1 amplitude
(by 89%), decreased MPL-MG-R2 (by 54%)
and MPL-MG-R3 (by 46%) (b) amplitude, and
decreased SP-MG-R2 amplitude (by 67%)
(c). Mn, Motoneuron.
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(LaBella et al 1989, 1992). We therefore

tested whether the differential distribution

of PSPs in MG and LGS motoneurons

was maintained both in chtonic spinal

shams and trained cats. In agreement

with these previous reports, the amplitude

cf Ri evoked by CCS was greater in MG

than in LGS both in shams (p<O.05) and in

trained cats (p<0.001). In addition, we

further Iooked at R2 and R3 amplitude. R2

amplitude was smaller in MG than in LGS

in trained cats (p<O.O1) but flot in shams,

whereas R3 amplitude was greatet in MG

than in LGS in shams (p<O.O1) but net in

trained cats. Also, CCS afferent

stimulation more frequently produced

responses without R2 (type D) in MG than

in LGS in shams (p<O.05) but not in

trained cats. The results suggest that CCS

afferents are more Iikely to transmit exci

tation (early and late) to the MG than LGS

motor pool and that no dramatic difference

was observed because of training.

However, training did change the

differential excitation from SP afferents to

MG and LGS motoneurons. As in

decerebrate cats (LaBella et aI 1992), Ri

amplitude was more frequently absent in

MG than in LGS motoneurons in shams

(p<O.05) (LaBella et al 1992). Conversely,

in trained cats, R2 amplitude was more

often absent in MG than in LGS

motoneurons (p<O.05).

C SP-MG
MG Mn
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Locomotion versus rest in sham and trained cats

As shown in other pathways (Conway et al 1987, Gossatd et al 1994, McCrea et al 1995),

modification in cutaneous transmission could emerge only during the operation of

locomotor networks. We therefore evaluated state-dependent changes in the transmission

of cutaneous pathways by comparing responses recorded at rest and during fictive

locomotion both in shams and in trained cats. lntracellular recordings during locomotor

episodes feither spontanecus or after perineal stimulation) and test wete performed in five

extensor (13 MG, 10 FHL, 10 SmAB, 6 LGS) and one flexor (10 EDL) motot pools of six

shams and seven ttained cats. Among ail possible afferent-motoneuron pairs, we

succeeded in testing 38 of 45 pathways both in shams and in trained cats.

Table 3a depicts the effect of locomotion obtained without drugs on cutaneous tesponses

evoked eithet by CCS, MPL, or SP in various motot pools in shams and ttained cats. More

pathways wete modified duting locomotion in shams (13 of 38) compared with ttained cats

(4 of 38; p<0.05). The amplitude of most of these 17 tesponses decteased duting

locomotor episodes (10 of 13 shams, 3 0f 4 ttained), except for MPL-MG-R1, SP-MG-R1,

and CCS-EDL-R3 in shams and CCS-MG-R2 in trained cats. Again, change in

transmission from cutaneous afferents to MG motoneurons was the major modification

caused by locomotion (6 cf 13 shams, 2 of 4 ttained). Note that R2 amplitude was rarely

modified by locomotor networks in shams (2 cf 13) compared with trained cats (3 of 4).

Aitered transmission in pathways originating from CCS afferents was the major

modification in shams (6 of 13), whereas those originating from CCS (2 of 4) and SP (2of

4) afferents exhibited the largest changes in trained cats.

Effect of training during fictive Iocomotor episodes

We also assessed the effect of training by comparing responses obtained during

locomotor episodes in two to five shams and two te nine trained cats depending on

pathways. We first compared the overali amplitude evoked by a given pathway during

entire locomotor episodes in shams or trained cats. 0f the 31 pathways tested during

locomotor episodes, training reduced transmission in only two: CCS-MG-R1 and SP-MG

Ri (data not shown).
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Table 3. State-dependent (locomotion vs rest) changes in mean amplitude of responses in
specific cutaneous pathways

a no drug

b with clonidine

Same display as in Table 2. The effect of locomotion is reported according to the afferents (CCS,
MPL, and SP) and motoneurons (FHL, LGS, MG, SmAB, and EDL) without drug (a) and after
clonidine injection (b). a, Pathways (Ri, R2, or R3) significantly modified (17 of 38 tested pathways)
with no drug are represented as filled circles in shams and as empty circles in trained cats. b,
Pathways significantly modified (4 of 26) after clonidine are only in trained cats and are represented
as empty circles. The percentage is calculated by comparing the mean amplitude recorded during
locomotion to the one recorded at rest. The number of trials for each pathway in the corresponding
motor pool is shown in the second column.

We then analyzed whether training modified the phase-dependent modulation pattern of

cutaneous transmission. Transmission through cutaneous reflexes is modulated in a

phase-dependent manner during the locomotor step cycle in intact cats (Forssberg et al

1975, Drew & Rossignol 1987) as well as during fictive stepping in immobilized,

decerebrate semichronic (LaBella et al 1992) and chronic (Forssberg et al 1975, 1977,

Andersson et al 1978) spinal cats. Overall, we found that, when significantly modulated

during the fictive step cycle, SP-EPSPs and CCS-EPSPs (Ri) were of maximal amplitude

Nb ccs MPL

E
n
u,

j-

sP

FHL 10

LGS 7-8

MG 8-16 ®58 y85% ®Â612% 82% y90%

SmAB 8-13 ®,48% 88%

EDL 6-8 +3l0% 74% +76%

FHL 9-17

LGS 10-12

MG 0-15 ()*64% )I27%

SmAB I’

EDL 17-20 y81%

CCS MPL SP

E
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u,

w
C
w
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FHL 4

MG 5-6

EDL 4

FHL JI8I%

LGS 4

MG 5-10 -100%

SmAB 6

EDL 487x



during flexion in a majority of cases

both in flexors/bifunctional (5 of 6) and

in extensors (20 of 23), whereas MPL

EPSPs (Ri) were cf maximal

amplitude in extension both in

flexors/bifunctional (9 cf 9) and in

extensots (2 cf 4). Moreover, contrary

to previcus reports (Andersson et al

1978, Schomburg & Behrends 1978a),

the maximum amplitude cf SP-IPSPs,

MPL-IPSPs, and CCS-IPSPs (R2)

occutred during the extension phase

in extensors (39 cf 44) and duting the

flexion phase in flexors/bifunctional

motoneurons (6 cf 6). For example, in

Figure 4 we superimposed the

averaged responses to CCS

stimulation in a MG motoneurons

evoked during the depolarized (gray

traces) and the hyperpolarized (black

traces) phases cf the fictive step cycle

in a sham (Fig.4a) and in a trained cat

(Fig.4b). The amplitude cf the IPSP in

both cases was increased during the

depolarized phase. As mentioned

above, the IPSP amplitude fR2) could

depend on variations in membrane

potentials. Figure 4c shows the R2

amplitude plotted against the

locomotor-drive potential (LDP)

amplitude for aIl motoneurons, and

there was no linear relationship

between these two values neither in

shams (r=0.41) nor in trained cats

(r=0.48). We also found that training
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Figure 4. Training did flot modify the phase
dependency of cutaneous responses. a,b,
PSPs recorded in MG motoneurons evoked by
CCS stimuli during the depolarized (gray traces)
and hyperpolarized (black traces) phases of the
fictive step cycle in the sham (a) and the trained
cat (b). The amplitude of the IPSP was
decreased in the sham (by 50%) and in the
trained cat (by 92%) during the hyperpolarized
phase. c, IPSP amplitude was plotted against
the LDP for ail tested motoneurons in shams
(gray) and trained cats (black). No linear
relationship was observed between the two
values neither in shams (r=0.41) nor trained cats
(r=0.48). Mn, Motoneuron.
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did not significantly modify the peak-to-peak amplitude of LDPs (data not shown). Overall,

there were no significant differences in the ratio of ceils significantly modulated, in the

phase-dependency patterns or in the depth of modulation between shams and trained

cats.

Effect of clonidine

Clonidine is an o2-noradrenergic agonist known to improve the initiation and modulation of

locomotor patterns, to accelerate locomotor recovery in chronic spinal cats (Barbeau et al

1987, Barbeau & Rossignol 1991, Chau et al 1998a), and to facilitate the emergence of

fictive walking patterns (Forssberg & Grillner 1973, Pearson & Rossignol 1991). Moreover,

reduced spasticity and facilitation of locomotor recovery was seen in two SCI subjects after

clonidine and cyproheptadine (serotoninergic antagonist) treatment (Fung et al 1990).

Clonidine also reduced spasticity dramatically in eight SCI subjects and improved gait

patterns in three subjects (Rémy-Néris et al 1999). Overall, two to five shams and two to

eight trained cats were used to test the effect of clonidine on pathways ending on the

different motor pools. In most cases, we compared responses from motoneurons recorded

before drug injection with those from motoneurons tecorded after injection. However, we

succeeded in maintaining intracellular recordings of seven motoneurons while injecting

clonidine and had the opportunity to folIow changes in cutaneous responses. In Figure 5,

we compared responses in five of these motoneurons (superimposed traces) obtained

before (gtay) and aftet (black) clonidine injection. The mean amplitude of the overall

population of motoneurons (before and after injection) is reported as histograms. For

example, SP-FHL-R2 amplitude was decreased by clonidine in an FHL motoneuron in a

sham cat (Fig.5a, traces), and MPL-FHL-R2 amplitude was also decreased in an FHL

motoneuron in a trained cat (Fig.5b, traces). The membrane potential in the same

motoneuron did not change after clonidine injection. Note that the decrease in R2

amplitude was also significant in the overall FHL population of shams (Fig. Sa, histogram)

and trained cats (Fig.5b, histogram). There was also an increase in MPL-FHL-R1

amplitude attributable to clonidine in FHL motoneurons of shams (Fig.5a, histograms). The

effects of clonidine on SP-, MPL-, and CCS-evoked PSPs are also illustrated in one MG

motoneuron of a trained cat (Fig.5c-e). Only SP-MG-R2 amplitude was significantly

reduced by clonidine in this celI, as well as in the overali population (Fig.5c).

Table 4 depicts the effect of clonidine on cutaneous responses. Among ail the afferent

motoneuron pairs, we succeeded to test 65 of 72. 0f the 65 pathways tested at rest, five
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Figure 5. Clonidine specifically modified transmission from cutaneous afferents to extensor
motor pools. Left, PSPs evoked in the same motoneuton before (gray) and after (black) clonidine
injection by the stimulation of SP (b,c), MPL (a,e), and CCS (d) in FHL (a,b) and MG (c-e)
motoneurons of shams (a) and trained cats (b-e). Right, Histograms of the mean amplitude of
responses recorded in ail motoneurons in shams (gray) and trained cats (black). Significant
differences are indicated as follows: *p<005 **p<001 Overali, clonidine increased MPL-FHL-R1
(by 258%) and decreased MPL-FHL-R2 (by 100%) amplitude in shams (a), decreased SP-FHL-R2
amplitude in trained cats (by 77%) (b), decreased SP-MG-R2 amplitude in trained cats (by 100%)
(c), did not modify amplitude in CCS-MG pathways in trained cats (d), and did not modify amplitude
in MPL-MG pathways in trained cats (e). Mn, Motoneuron.

were significantly modified by clonidine in shams and two were significantly modified by

clonidine in trained cats. The number cf modified pathways in shams (two cf seven) was

flot significantly different from the number of pathways in trained cats (five of seven).

Overall, in shams, MPL-FHL-R1 amplitude was increased (Fig.5a), and the amplitude 0f

the following pathways was decreased: MPL-FHL-R2 (Fig.5a), CCS-MG-R1, CCS-MG-R3,

and SP-Pl-R2. Overall, in trained cats, the amplitude of SP-FHL-R2 and SP-MG-R2 was

decreased (Fig.5a,c). lnterestingly, only pathways activated by SP afferents wete

SP-MG in traincd cats
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Table 4. Effect of clonidine on the mean amplitude of responses in specific cutaneous
pathways

99

F H L
A 258% 100% 77%

LGS 0 10

MG 6-8 8-10 ®y7% 62% 100%

PI 6-8 0

SmAB 0 8-10

E DL 6 12-13

FDL 4 0

PBST 6-9 8-II

Sham

Q

Same display as in Table 2. The effect of clonidine is reported according to the afferents (CCS,
MPL, and SP) and motoneurons (FHL, LGS, MG, PI, SmAB, EDL, FDL, and PBSt). Pathways (Ri,
R2, or R3) significantly modified by clonidine (7 of 65 tested pathways) are represented as filled
circles in shams and as empty circles in trained cats. The percentage is calculated by comparing
the mean amplitude obtained after clonidine ta the one obtained before clonidine. The number of
trials for each pathway in the corresponding motor pool is reported in the second (sham) and third
(trained) columns. A zero indicates that there was flot enough data ta perform statistical tests in that
grau p.

In contrast to training, clonidine more power[ully modified transmission in R2 pathways

(four of seven). Clonidine was more Iikely to act on R2 flot only to diminish its amplitude

but also to reduce it to zero. Moreover, with clonidine there was significantly Iess

occurrence of inhibition in two of four pathways: MPL-FHL in shams (p<O.05) and SP-MG

in trained cats (p<O.O1). No significant modification was observed in flexor/bifunctional

motor pools of either sham or trained cats. Although clonidine and training both had a

major influence on pathways to MG motoneurons (three of seven modified pathways),

clonidine produced a supplementary effect on transmission in pathways to FHL

motoneurons (three of seven).

We also assessed the additional effects of clonidine on state-dependent changes in the

transmission of cutaneous pathways by comparing responses obtained at rest and during

fictive locomotion both in shams and in trained cats (Table 3b). Among aIl the possible

afferent-motoneuron pairs, we succeeded in testing 14 in shams and 26 in trained cats.

Additional locomotor-dependent changes attributable to clonidine were observed solely in
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4 of 26 pathways in trained cats (Table 3b) and mostly for pathways from SP (2 of 3).

Again, changes in transmission to MG motoneurons were the most frequent (two of three).

Thus, once locomotor networks are activated (Table 3a) (17 modified pathways), the effect

of clonidine per se is minimal (4 modified pathways). We finally assessed the effect 0f

cionidine on state-dependent changes in shams and trained cats that displayed locomotor

episodes before and after clonidine injection. 0f the 23 pathways tested, cionidine

significantly decreased inhibitory transmission in only one pathway in shams: CCS-MG

R2.

Dïscussion

Plasticity in spinal pathways

lt s now recognized that reflex pathways exhibit piasticity in response to central or

peripherai lesions or operant conditioning (Mendell 1984, Dutkovic 1996, Wolpaw &

Tennissen 2001). Recovery of function may occur after spinal lesion; however, the role of

plastic reflex pathways underlying the recovery remains to be defined.

The preparation in this study (i.e., acute experiments in curarized animais) allows stable

intraceliular recordings of responses in motoneurons that are flot influenced by rhythmic

sensory feedback. The effect of training can therefore be attributed to changes occurring in

spinal pathways and flot to alterations in peripheral sensory events or muscle properties

(Roy & Acosta 1986, Roy et ai 1999). Changes in cutaneous reflexes have been

pteviously attributed to specific alterations in premotoneuronai mechanisms and not to

changes in passive membrane properties of motoneurons between acute and chronic

spinal cats (Chandler et al 1984, Munson et al 1986, Baker & Chandier 1987a). Moreover,

modified properties of motoneurons could not explain increased monosynaptic reflexes in

chronic spinal animais (Hochman & McCrea 1994b). In this study, training did not modify

AHP duration, which varies with input resistance and membrane time constant

(Gustafsson & Pinter 1984b, Côté et al 2003a). Moreover, a general change in membrane

responsiveness is unlikely to expiain the simultaneous increase in Ri amplitude and

decrease in R3 amplitude observed in the same motoneuron (Table 2). We therefore

consider that most of the plasticity after step training resuited from interneuronal

mechanisms. However, a complete investigation of motoneuronal properties after chronic

spinalization and step training is clearly needed to understand their contribution to the
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plasticity of sensory transmission. Latencies of cutaneous responses in hindlimb

motoneurons are minimally trisynaptic (Lundberg et al 1977, Baker & Chandler 1987b,

Fleshman et al 1988, LaBella et aI 1989, LaBella & McCrea 1990), and such Iinkage is

appropriate for Ri responses in this study. There is an exceptional disynaptic linkage

between SP and FDL motoneurons during the depolarized phase of fictive stepping in

decerebtate cats (cf. Burke 1999). Later responses (R2 and R3) most probably involve

longer chains of spinal interneurons, the exact number of which is precarious to estimate.

Previous work suggested that removal of cutaneous inputs does not exert an important

eftect on rhythm generation in intact quadrupeds because they may use alternative inputs

to compensate (Sherrington 1910, Forssberg et aI 1977, Duysens & Stem 1978). However,

in spinal cats, at least one source of cutaneous information is necessary to recover proper

foot placement during stepping (Bouyer & Rossignol 2003ab). In this study, we present

experimental evidence that step training induced robust plasticity in the transmission of

particular cutaneous pathways that was apparent at rest, without neuromodulators or

locomotor network configuration. Moreover, the results show that the addition of clonidine

or the activity of locomotor networks induced additional changes in cutaneous

transmission, most of them in shams (see above). This study therefore supports the idea

that cutaneous feedback from the hindlimbs is important for the full expression of

locomotion after spinal transection.

Cutaneous transmission was modified by training only in a few specific pathways (10 of

71), transmission being decreased in the majority (7 of 10). The changes observed may

tepresent training-related plasticity superimposed on spinalization-induced plasticity or a

removal or prevention of spinalization-induced plasticity. For example, there is a persistent

hyperexcitability of several reflexes following SCI because of the removal of inhibitory

descending inputs from the brainstem (Hultborn & Malmsten 1983, Holmqvist & Lundberg

1961, Lundberg 1964). A recent study showed that some flexor reflex components

mediated by thick sensory afferents increased permanently their excitability after SOI in

rats (Malmsten 1983, Valero-Cabré et al 2004). A similar hyperexcitability seen in

withdrawal reflexes would contribute to spasms and spasticity (Bennett et al 1999, Rémy

Néris et al 1999, Ashby & McCrea 1987). Thus, because chronic spinalization induces an

enhanced cutaneous reflex responsiveness, step training may compensate for this by

normalizing the level of cutaneous transmission. In such a case, the comparison between

trained and untrained spinal cats would show up as a decrease in cutaneous transmission.



102

Plasticity in cutaneous pathways is highly specific

Training alone evoked modifications in 10 of 71 pathways involving three of three tested

cutaneous nerves and four of eight motot other pathways between the two groups was far

from reaching statistical significant difference (54 of 61; p>0.1). We therefore believe that

these changes represent a ttue task-specific plasticity in cutaneous transmission (de Leon

et al 1998a, 1999b). It is not known whether longer periods of step training or a larger

sample wouid have revealed changes in additional pathways. Nerve-specific reflex

responses to cutaneous stimulation were previously observed during locomotion in cats

(Abraham et al 1985, Moschovakis et al 1991, Pratt et al 1991, LaBeila et al 1992,

Degtyarenko et al 1996) and humans (van Wezel et al 1997) to provide location-specific

information from the skin of the foot. However, a common synergy of flexor responses in

the swing phase and of extensor responses in the stance phase was also observed,

independent of the location of the stimulus in cats walking on a treadmill (Duysens & Loeb

1980, Abraham et al 1985, Duysens & Stem 1978). Thus, during locomotion, both common

and nerve-specific controls of cutaneous reflex responses were observed. Dur results did

show specificity but no simple swing- or stance-related patterns during fictive stepping.

Clonidine markedly reduces cutaneous excitability while accelerating the recovery of

stepping in spinal cats (Barbeau et al 1987, Chau et al 1998ab). Here clonidine was flot

used during training but only during the acute experiment to facilitate the emergence of

fictive stepping (Pearson & Rossignol 1991). As expected, when significantly modified by

clonidine, transmission in cutaneous pathways was decreased in ail cases but one (Table

4). lt is remarkabie that cionidine modified pathways mostly in shams (five of seven). This

is surprising because we expected training to favor the responsiveness of spinal networks

to cionidine (Côté et al 2003a). An alternative interpretation for these findings is that both

training and clonidine target the same pathways so that clonidine only added a small effect

because training already decreased cutaneous transmission. We may further speculate

that some cutaneous reflexes are detrimental to recovery of stepping and that clonidine or

step training is a different mean to normalize the cutaneous feedback onto spinal

locomotor networks.

Recent studies (Edgerton et al 2001, Tillakaratne et al 2002) reported that a complete

spinal section in cats increased levels of GABA and glycine in spinal tissues and that step

training (but not stand training) decreased these levels toward normal values. Dur results
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showed that only 2 of 10 (Table 2, R2) inhibitory cutaneous pathways were modified by

step training, so global changes in inhibitory systems may be affecting other pathways.

Possible role of modified cutaneous transmission

A major finding is that training predominantly modified transmission in pathways to MG

motoneurons, particularly when activated by MPL afferents. MG is an ankle extensor

muscle involved in weight support during stance. The plantar surface of the foot (MPL

receptive field) presumably provides phasic information about the ground surface.

Previous stud les show that extensor reflexes evoked by the plantar surface of the foot can

promote extension during stance and stop the swing phase of locomotion (Duysens &

Pearson 1976, Duysens 1977, Guertin et al 1995). Our results indicate that both training

(Table 2) and fictive locomotion in shams (Table 3a) result in a net excitatory action from

MPL to MG motor pool. Thus, we suggest that at least some cf the modified pathways

would resuit in a better recruitment of the MG pool during ground contact that may help to

recover weight-bearing.

Our study also showed there was no remarkable change in the distribution of types of

motoneuronal responses after training. Step training is therefore upregulating or

downregulating transmission in existing pathways. However, a significant change in

transmission to FDL motoneurons was observed (ail cutaneous nerves pooled together):

going from type A to type D response (i.e., without inhibition, R2). FDL is a toe plantar

fiexor active just at the onset of swing (Fleshman et al 1984, Schmidt et al 1988,

Moschovakis et al 1991, Degtyarenko et al 1996) to clear the toes from the ground (as St

burst) (Rossignol 1996). We suggest that inhibitory transmission to FDL is decreased in

general to facilitate the excitatory effects 0f cutaneous signaIs related to paw drag during

early training sessions. Together with the increase in transmission in the MPL-PBSt-R3

excitatory pathway, this would result in a better clearing of the toes at the onset of swing.

However, it is difficuit to interpret the exact role of modified cutaneous transmission in the

control or recovery of locomotion, because there is little understanding of its role in normal

locomotion. For example, some receptors from the plantar surface of the foot were found

to fire during swing and to be suent during stance (Loeb et al 1977). Thus, the influence of

cutaneous inputs on spinal pathways in a particular phase of stepping cannot be predicted

solely based on its anatomical localization.



104

Load or skin?

Proprioceptive inputs can act directly on the CPG, particularly those evoked by group I

afferents from extensors (Conway et ai 1987, Gossard et al 1994, McCrea 1998, Pearson

et al 1998). Our recent experiments demonstrated that step training decreased group lB

inhibition and increased polysynaptic group I excitation of extensors after clonidine

injection in spinal cats, suggesting a better recruitment of antigravity muscles to assist the

recovery of weight-bearing (Côté et al 2003a). Cutaneous inputs do not have such a

powerful action on rhythm generation, and we therefore expected less pIasticity in these

pathways than in proprioceptive pathways. However, significant changes in cutaneous

transmission couid be seen even without cionidine or fictive locomotion. The plasticity in

cutaneous pathways was therefore more robust than in group I pathways studied in the

same animais (Côté et al 2003a). The relative contribution of different sensory modalities

for the recovery of stepping after SCI is still unclear. This knowledge is necessary to focus

and improve training strategies in SCIs (Dietz et al 2002, Ferris et aI 2004).
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PUBLICATION #3: LESION-INDUCED ERK ACTIVATION IS DECREASED FOLLOWING STEP

TRAINING IN CHRONIC SPINAL CATS

Côté MP, Cossard JP and Kennedy TE (2006) Lesion-induced ERK activation is

decteased following step-training in chronic spinal cats. To be submitted.

Abstract

Step-training has been shown to enhance locomotor pattern recovery after spinal cord

injury (SCI). Plasticity in spinal networks that impact on walking ability involves several

neurotransmitters including monoamines, GABA, glycine, and glutamate. However, the

precise mechanisms and transduction pathways through which step-training promotes

synaptic plasticity and translates into functional changes are not well understood. It has

become evident that spinal networks can be affected by activity-dependent processes that

influence the ability to recover, perform and maintain an adequate locomotor pattern.

Recent investigations address the possibility that molecules involved in forms synaptic

plasticity, such as long-term potentiation in the hippocampus, might also be implicated in

spinal motor learning.

Brain-derived neurotrophic factor (BDNF) has recently emerged as a critical modulator of

synaptic plasticity. BDNF-induced ERK activation may facilitate the expression cf genes

essential for short and long-term functional changes. Moreover, ERK activation is aIse

regulated by glutamate through NMDA receptors to facilitate synaptic efficacy. lmportantly,

the glutamatergic system is important in mediating locomotion in chronic spinal cats. Given

the predominant effect of ERK on synaptic plasticity and function, we hypothesized that

ERK might mediate the beneficial effects of step-training and participate in the synaptic

events associated with locomotor recovery after SCI.

To evaluate potential modulation of ERK activation, Western blets assessing the

expression et ERK1/2 and pERK1/2 in spinal segments (L3-L7) were run and results

compared between intact, spinal (1 or 3 months after a complete SCI) and trained (1 or 3

months after SCI and step-training onset). We report that ERK activation is up-regulated

following chronic SCI and down-regulated by step-training in SCI cats.
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Introduction

Gait is frequentiy reported to be impaired in individuais with a spinal cord injury (SCI). The

beneficiai effect of step-ttaining over a treadmiil beit on locomotor pattern recovery is now

weli established in both animais and humans (Loveiy et ai 1986, Barbeau & Rossignol

1987, Wernig et ai 1995, Harkema et ai 1997, de Leon et ai 1998b, Harkema, 2001).

Piasticity in the iumbar spinal networks that impact on waiking abiiity invoives both

excitatory and inhibitory neurotransmitter systems: monoaminergic (reviewed in Rossignoi

et ai 2001), GABAergic (Robinson & Goldberger 1986, Tiiiakaratne et ai 2000, Bravo et ai

2003), giycinetgic (Hart 1971, de Leon et ai 1999, Edgerton et ai 2001), giutamatergic

(Giroux et al 2003) and probabiy others. However, the precise mechanisms and signal

transduction pathways through which step-training promotes synaptic piasticity and

translates into functional changes are flot weii understood. Nevertheless, it has become

evident that spinal circuits can be affected by activity-dependent processes that influence

the abiiity to recover, perform and maintain an adequate iocomotor pattern (Woipaw &

Tennissen 2001, Dobkin & Havton 2004, Edgerton et ai 2004). Recent investigations have

begun to addtess the possibility that molecuies invoived in forms cf CNS synaptic

plasticity, such as iong-term potentiation (LTP) in the hippocampus, might aiso be

impiicated in spinal motor learning.

Brain-detived neutotrophic factor (BDNF), initiaiiy described for its important roie during

deveiopment, reguiating the survivai, growth and differentiation of immature neurons

(Barde 1994), has emerged as a criticai modulator of synaptic plasticity in the brain (Lo

1995, 1998, Patterson et ai 2001). importantiy, it has aiso been shown to promote

recovery after SCi in vivo by enhancing neuroprotection (Yan et ai 1992, 1994),

regeneration (Tuszynski et aI 1994, Kishino et ai 1997) and iocomotor recovery (Jakeman

et ai 1998). The key role of BDNF and TrkB in activity-dependent synaptic piasticity is

strongly supported by experiments in which theit expression is up-regulated in the

hippocampus, cerebrai cortex, cerebeiium, spinal cord and muscles of intact animais by

various locomotor training paradigms (Neeper et al 1995, Gomez-Piniila et al 2001, 2002,

Moiteni et ai 2002, Hutchinson et ai 2004, Kiintsova et al 2004). BDNF was also shown to

be down-regulated foilowing incompiete and compiete SCi. Notabiy, step-training was

shown to either prevent this decrease, or in fact, increase BDNF expression (Gomez

Piniila et ai 2004, Ying et ai 2005). BDNF activates ERK in neurons in brain and spinal

cord (Marsh & Paifrey 1996, Becker et al 1998, Bonni et al 1999, Hetman et ai 1999, Pezet
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et al 2002) and this activation promote synaptic plasticity (Sweatt 2004, Ji 2004). lndeed,

ERK activation leads to the phosphorylation of key membrane receptors and the

expression of gene products essential for the short and iong-term functional changes in

spinal sensory neurons (Ji & Woolf 2001, Kolch 2000). ERK has also been shown to be

required for long-term facilitation of excitatory transmission between sensory neurons and

motoneurons in vitro (Martin et al 1997). In the spinal cord, ERK activation is regulated

both by BDNF (Jovanovic et al 1996, Ying et al 2002) and also by glutamate via a well

established interaction with NMDA receptors (Platenik et al 2000) ultimately contributing to

facilitation of synaptic efficacy (Garraway et al 2003, Slack et al 2004). Notably, the

glutamatergic system is important in mediating locomotion in chronic spinal cats (Chau et

al 2002, Giroux et al 2003). Given the predominant effect cf ERK on synaptic plasticity and

function and its role in integrating signais from the celI surface to transcription factors, we

hypothesized that ERK might mediate the beneficial effects of step-training and participate

in the synaptic events associated with locomotor recovery after SOI.

The spinal cord undergoes major biochemical and functional reorganization following SOI

(de Leon et al 1999, Edgerton et al 199fb, Rossignol et al 2001, Tillakaratne et al 2000,

2002) involving at least two possible activators of ERK, BDNF and glutamate (Gomez

Pinilla et al 2001, 2004, Ying et al 2005). For example, SCI has been documented to result

in glutamate release (Nesic et al 2002) and up-regulation of NMDA receptor gene

expression (Grossman et al 2000, Rossignol et al 2004). Moreover, an excessive release

of glutamate has been implicated in neuronal death associated with SCI and excitatory

amino acid antagonists protect against deficits associated with SCI and loss of gray and

white matter (Wrathall et al 1997, Beattie et al 2002, Gomez-Pinilla et al 1989).

Together, these results suggest that ERK activation may flot only be involved in plasticity

following a spinal lesion but also following step-training. However, the effect cf a complete

SCI on ERK activation has not been previously reported in the adult cat. We thus

considered that investigating the occurrence of lesion-dependent plasticity in the lumbar

spinal cord to be a critical step in accurately assessing the effect of step-training on ERK

activation in a spinal cotd that has been altered by the loss of supraspinal afferents.

To evaluate potential modulation of ERK activation, Western blots assessing the

expression of total ERK1/2 and pERK1/2 (activated phosphorylated form) in spinal

segments L3 to L7 were run and resuits compared between different groups of cats: intact,

spinal (1 or 3 months after a complete spinal lesion) and trained (1 or 3 months after the
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lesion and step-training onset). We report that ERK activation is up-regulated following

chronic injury and down-regulated by long-term step-training in compietely spinalized cats.

Material and Methods

Ail procedures were conducted according to the Guide for Care and Use of Experimental

Animais (Canada), using protocols approved by the Ethics Committee cf Université de

Montréal.

Experimental groups. Twenty three adult female cats (2.5-5.2kg) were used for this study

divided in 5 groups: a) a first group was spinalized and step-trained over a treadmiil belt

until weight-bearing by the hindlimbs without assistance (J-month-trained, n=4, p=29d); b)

a second group was spinalized, and step-training was maintained for a longer period in

order to strengthen weight-bearing and locomotor pattern (3-months-trained, n=6, p=84d);

c) a third group was spinalized and the terminal experiment teck place at an equivalent

pericd cf time after spinalization as group A and served as control te assess the effect cf J

month cf step-training (1-mcnth-spinal, n=3, p=30d); d) a fourth group was spinalized and

the terminal experiment teck place at an equivaient period after spinalizaticn as group b

and will serve as ccntrcl te assess the effect cf 3 mcnths cf step-training (3-months-spinai,

n=6, p=86d); e) the fifth group is compcsed cf intact cats which served as control to

assess the effect cf spinal transection (intact, n=4). But for the intact group, aIl cats were

previously used in acute electrophysioicgical experiments (see Côté et al 2003a, Côté &

Gcssard 2004).

Spinaiization. Following administration cf precperative medication, the cats were

anaesthetized (isoflurane, 2%; Abbott Laboratcries; Montreal, Canada), a small

laminectomy was perfcrmed at T13 under aseptic conditions. The dura was incised, fold

apart and lidocaine hydrcchicride (xylocaine 2%; Astra Zeneca, Mississauga, Canada) was

applied tcpicaily on the area cf spinal cord to be transected. The spinal ccrd was

completely transected with a pair cf surgical scissors se that the spinal canal could be

clearly visualized. The space between the rostral and caudal ends cf the spinal cord was

filled with abscrbable hemcstat (Surgicel; Ethicon, Somerville, NJ) helping local

hemcstasis, blocd coagulation and preventing any regrcwth cf the spinal cord. Back

muscles and skin were then sutured in layers. Subsequent pcstoperative care was

analcgcus te previcusly described (Chau et al 1998a). A patch cf fentanyl (Duragesic 25
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g; Janssen-Ortho; Markham, Canada) was sututed on the back of the cat for continuous

and stable delivery cf analgesic over a two-day period.

Step-training. Training on the treadmili (0.2-0.4mIs) started 2 days after surgery and

consisted of 2-4 daily training sessions for periods of 10 minutes. Early in the recovery, the

hindquarters were supported by the experimenter to provide weight support and perineal

stimulation was used to induce and maintain locomotor movements. Over days, the animal

became gradually able to walk and support its hindquarters and perineal stimulation was

no longer needed. The training was stopped when the cat was able to walk continuously

on the treadmiil for more than five minutes while the experimenter assisted only for lateral

stability by holding the tail for the 1-month-trained group whereas the training regimen was

continued for two more months after these criteria were reached for the 3 month trained

group. This allowed 2 additional months of step-related sensory feedback and weight

bearing to stimulate the spinal cord networks. No drugs were used to assist locomotor

training during sessions, but clonidine was used during the acute electrophysiological

experiments prior to tissue collection (Côté et al 2003a, Côté & Gossard 2004).

Tissue processing. Cats were killed by an overdose of sodium pentobarbital (Somnotol;

MTC Pharmaceuticals, Cambridge, Canada) and the spinal cord was removed, dissected

and transversely sectioned according to lumbar segments (10mm, L3 to L7) for

subsequent regional analysis. Spinal cord tissues were rapidly frozen by immersion in 2-

methylbutane and stored at —80°C until further processing. Every spinal cord segment was

embedded in optimal cutting temperature (O.C.T.) compound (Tissue Tek O.C.T.; Sakura

Finetek, Torrance, CA) and 20 pm cryostat sections of the spinal cord were performed,

homogenized in lysis buffer (RIPA; 150 mM NaCI, 1% NP-40, 0.5% deoxycholate sodium,

0.1% SDS, 10 mM Tris—HCI pH 8.0) and manually gtound with a Teflon-in-glass

homogenizer. The total protein concentration of homogenates was quantified using BCA

protein assay (Pierce, Rockford, IL) with bovine serum albumin (BSA) as the standard.

Spinal cord homogenates were then prepared in 4x Laemmli sample buffer (0.24 M Tris—

HCI pH 6.8, 8% SDS, 3% -mercaptoethanol, 20% glycerol, 30.8mM dithiothreitol (DTT),

btomophenol blue), denatured at 95 °C for 5 minutes and clarified by centrifugation at

13,000g for 2 minutes.

Western blotting. The following antibodies were used for Western blot analysis:

monoclonal anti-phospho-p44/42 MAP kinase (Thr202/Tyr204) (1:2000; CelI Signaling

Technology, Beverly, MA), rabbit polyclonal anti-p44/42 MAP kinase (1:1000; Cell
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Signaling Technology), rabbit polyclonal anti-Akt (1:1000; CelI Signaling Technoiogy),

rabbit polyclonal anti-CREB (1:1000; CelI Signaling Technology) and monoclonal anti

synaptophysin (1 :4000,Sigma-Aldrich, Mississauga, Ontario, Canada). Briefly, the

equivalent of lOpg cf total protein was separated on a 8-12% acrylamide resolving gel

(SDS-PAGE) and transferred to a nitrocellulose membrane (Amersham Biosciences,

Piscataway, NJ). After a brief wash in 0.1% Tween-20 in Tris-buffered saline (TBST),

membranes were blocked for 1—3h at RT in TBST with 5% non-fat dry milk and incubated

with primary antibodies overnight at 4°C. The blots were then extensively washed with

TBST and incubated for 1h at room temperature with an HRP-conjugated donkey anti

rabbit (1 :5000) or donkey anti-mouse secondary antibody for 1h at RT (1 :7500; Jackson

lmmunoresearch, West Grove, PA). Reactive bands were visualized using

Chemiluminescence Reagent Plus protein kit (Perkin Elmer, Boston, MA) and optical

density quantified on scanned images cf immunoblots using Adobe Photoshop software

(Adobe Systems, San Jose, CA). Molecular weights were estimated using broad range

prestained molecular weight markers (New Eng land BicLabs).

Statistical analysis. Results are presented as the mean ± SEM. Statistical analysis was

carried eut using one-way ANOVA to disclose differences between mean optical density

obtained for different groups: 1) spinal vs. intact group (lesion dependent-plasticity); 2)

spinal and step-trained group (training dependent-plasticity) and 3) intact and step-trained

group (combined effect cf spinal lesion and training). The Kolmogorov-Smirnov-Liliefors

test was used te compare the shape and location cf the distribution cf respcnses te a

normal distribution and the Levene median test was used te examine for equal variance, If

these twc tests confirmed that the sample variables did fit a normal distribution and were

equally variant, a one way analysis cf variance (ANOVA) was performed. If not, the

nonparametric Kruskal-Wallis cne-way analysis cf variance was perfcrmed with Dunn’s

post-hoc multiple comparison test. In ail tests, the ci level for statistical significance was set

at p<0.05. In histcgrams, significant differences are illustrated by * (p<0.05), ** (p<0.01) cr

(p<0.001).
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Resu Its

Les ion-induced plasticïty of ERK activation

Antibodies that specifically recognize the phosphorylated active form of ERK1!2 (pERK) on

Western blots provide a sttaight forward method to assess the relative leveis of ERK

activation in tissue homogenates and have been extensively used as a criterion to judge

the degree of activation of the ERK pathway. In the present study, we used a compiete

spinal cat model to determine if ERK signaling was moduiated 1 and 3 months after a

compiete thoracic (T13) spinal lesion. Western biot analyses of protein homogenates

derived from spinal lumbar segments L3 to L7 were carried out and resuits for intact and

completely spinaiized animais compared. Figure 1 iiiustrates 44kDa and 42kDa

immunoreactive bands detected on a Western biot incubated with an antibody recognizing

endogenous p44 and p42 MAPK duaiiy phosphorylated at threonine 202 and tyrosine 204

(pERK1 and pERK2). Protein homogenates on this blot were derived from an intact, a

spinal and a step-trained cat, 1 month (Fig.la) or 3 months (Fig.lb) after spinalization

and/or onset of step-training. Increased optical density of p44 and p42 bands was detected

in the 1-month-spinal cat(Fig.la, lane 2) thatwas even more pronounced in the 3-months-

spinal (Fig.lb, lane 2) as compared to the intact (lane 1). In the overall population, no

modulation in pERK1/2 expression was observed in any lumbar segment in 1-month-spinai

as compared to intact cats (Fig.2ab, gray). However, the expression of pERK1 was up

a C Figure 1. Western immunoblots
analysis showing pERKII2 and
total ERKII2 expression in the

1 month lumbar spinal cord of cats
a-b, Western blots incubated with
anti-pERK1/2 (1 :2000) showing the

b U expression of pERKJ/2 in spinal

3 months

_______

),a inonthspinaI
(lane 2) and a 1-month-trained cat

(lane 3) and of b, an intact (lane 1), a 3-months-spinai (lane 2) and a 3-months- trained cat (lane 3);
c-d, Western blots incubated with anti-ERK1/2 (1:1000) showing the expression of total ERK1/2 in
spinal homogenates of L3 segments of c, an intact (lane 1), a 1-month-spinal (lane 2) and a 1-
month-trained cat (lane 3) and cf U, an intact (lane 1), a 3-months-spinal (lane 2) and a 3-months-
trained cat (lane 3).

regulated in aIl segments (L3, 249.1%; L4, 153.7%; L5, 491.1%; L6, 148.0%; L7, 125.2%)

and pERK2 in ail segments but L7 (L3, 183.2%; L4, 99.0%; L5, 231.7%; L6, 134.0%) in 3-

months-spinal when compared to intact cats (Fig.2ab, black).
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To determine if the increase in pERK1/2 detected after the spinal lesion was due to

increased activation of ERK1/2 ot simply an increase in expression, increasing the total

pool cf ERKJ/2 available, we used, in another set cf experiments, an antibody recognizing

total ERK1I2. This antibody detects p44 and p42 MAPK (ERK1 and ERK2), irrespective cf

phosphorylation state. Increased ERK1 and ERK2 immunoreactivity (Fig.lcd) was

detected in homogenates 0f 3-months-spinal cat (Fig.ld, lane 2) as compared to an intact

(lane 1) in the L3 spinal segment. Notably, a corresponding difference was net detected in

1-month-spinal cats (Fig.lc, lane 2). Overall, total ERK1 expression was up-regulated

specifically in L6 segments (16.6%) in 1-month-spinal (Fig.2c, gray) while no significant

change in ERK2 expression was observed as compared to intact cats (fig. 2d, gray). In 3-

months-spinal, ERK1 expression was up-regulated (Fig.2c, black) in ail segments but L7

(L3, 39.1%; L4, 68.5%; L5, 28.1%; L6, 38.3%). An increase in ERK2 expression was

detected (Fig.2d, black) in L3 segments only (21.6%) as compared to intact cats. Finally,

Figure 2. The expression of a C
pERKI/2 and total ERKI/2 is pERK1 expression ERK1 expression
increased following a complete *

spinal lesion. 700 700

a-d, Averaged pERK1/2 (a,b) and
600- 600-total ERK1/2 (c,d) protein level in

the spinal lumbar segments (L3 to 500 500

L7) cf 1-mcnth-spinal (gray) and 3- . *

months-spinal cats (black). Data in 400

histograms are represented as * *
0300- * 0 300-

percent cf intact cats +1- SEM. a, J
*

pERK1 was up-regulated in L3 200 I I 200
- * *

(249.1%), L4 (153.7%), L5 I I * j

(491.1%), L6 (148.0%) and L7 100- l 100 -

(125 2%) 3 months after SCI (black)
but was not modulated I month L3 L4 L5 LB L7 L3 L4

after SOI (gray); b, pERK2 was up
regulated in L3 (183.2%), L4 b U
(99.0%), L5 (231 .7%) and L6 pERK2 expression ERK2 expression
segments (134.0%) 3 months after
SOI (black) but was flot modulated 600 - 600 -

1 month after SCI (gray); c, total
ERK1 was up-regulated oniy in L6 500

-

500

spinal segment (16.6%) 1 month *

after SOI (gray) and in L3 (39.1%), * ï
L4 (68.5%), L5 (28.1%) and L6

‘
- * ‘5 300

(38.3%) spinal segments 3 months *

after SOI (black); U, ERK2 200 - J 200
*

expression was up-regulated oniy in , î J T

* - - - -

L3 segments (21 6%) 3 months
100

_ ]_ Iafter SOI (black) but was flot
L3 L4 L5 LB L7 L3 L4 L5 LB L7

modulated 1 month after SOI (gray).
Sig nHicant differences are indicated 1 -nth-spinai

y (p
. ), (p

. ) or •3-manths-spirlai
(p<0.001).
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assessment of ail lumbar segments as a single group indicate that, total ERK1 and ERK2

expression increased of 44% and 22% respectively, while pERK1 and pERK2 increased

233% and 162% in 3-months-spinal as compared to intact cats (data flot shown).

Step-training induced plasticity of ERK activatïon

Assessment of relative levels of pERK1/2 in homogenates of L3 segments of an intact cat

(lane 1), a 1-month-trained (lane 3, Fig.la), and a 3-months-trained (lane 3, Fig.lb)

revealed an increase in pERK1/2 immunoreactivity as compared to the intact cat (lane 1)

but not as compared to the 1-month- or 3-months-spinal (lane 2). Overall, no modulation in

pERK1/2 expression was observed in any lumbar segment following one month of step

training as compared to spinal cats (Fig.3ab, gray). Aftet 3 months, step

trainingselectively down-regulated pERK1 (69.3%) and pERK2 (74.5%) expression in L5

segments (Fig.3ab, black). Further Western blots analysis of total ERK1/2 expression

density in L3 spinal segments of a 1-month-trained

1-month-spinal cat (lane 2). Overall, step-training

Figure 3. Step-traïning
following a complete spinal
transection modulates
pERKJI2 and total ERKII2
expression in the lumbar
spinal cord of cats.
a-d, Averaged pERK1/2 (a,b) and
total ERK1I2 (c,d) protein level in
the spinal lumbar segments (L3
to L7) of 1-month-trained (gray)
and 3-months-trained cats
(black). Data in histograms are
represented as percent of 1-
month-spinal for 1-month-trained
cats and of 3-months-spinal for 3-
months-trained cats ÷1- SEM. a,
pERK1 was down-regulated in L5
(69.3%) after 3 months of step
training (black) but was not
modulated after 1 month (gray);
b, pERK2 was down-regulated in
L5 (74.5%) after 3 months of
step-training (black) but was not
modulated after 1 month (gray);
c, total ERK1 was up-regulated in

L3 (34.8%) and down-regulated in L4 (23.3%) after one month of step-training (gray) whereas
no modulation was observed after 3 months (black); U, No modulation in ERK2 expression was
observed after 1 month (gray) or 3 months of step-training (black). Significant differences are
indicated by *(p<O 05) or ***(p<O.00l).

demonstrated an increased optical

(Fig. ic, lane 3) as compared to
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selectively modulated the expression of ERK1 being up-regulated in L3 (34.8%) and down

regu!ated in L4 segments (23.3%) in 1-month-trained as compared to 1-month-spinal cats

(Fig.3c, gray). This change was ttansient and was not detected in 3-months-trained cats

(Fig.3c, black).

CREB up-regulation after a complete spinal cord injury independent of step-training

CREB is a transcription factor known to have roles promoting neuronal survival, regulating

neural plasticity, and an involvement in learning and memory (Silva et al 1998, Kandel

2001, Lonze & Ginty 2002). ERK-mediated CREB phosphorylation is required for synaptic

plasticity associated with the induction of stable, late-phase LTP and long-term memory

(Kelleher et al 2004, Thomas & Huganir 2004). Here, we observed modulation of pERK

expression was mainly at 3 months after a complete spinal lesion with or without step

training. We then investigated the possibility that CREB expression might be similarly

regulated at the 3 months post-injury time point. Examination cf endogenous CREB

protein in homogenates of spinal cord segments revealed an appropriate single —43kDa

immunoreactive band. Figure 4a illustrates increased CREB immunoreactivity detected in

Figure 4. CREB expression is up
regulated following a complete spinal
lesion in the lumbar spinal cord of cats.

______

a, Western blot incubated with anti-CREB
(1:1000) showing the expression of CREB
protein in homogenates of L4 spinal
segments of an intact (lane 1), a 3-months-
spinal (lane 2) and a 3-months-trained cat
(lane 3); b, Averaged CREB protein level in
the spinal lumbar segments (L3 to L7) cf 3-
months-spinal (gray) and 3-months-trained
cats (black). Data in histograms are
represented as a percent of intact cats +I
SEM. CREB protein level was specifically up
regulated in L3 (21 9.0%) and L4 (1 03.8%) in
3-months-spinal as compared to intact cats
(gray). A similar up-regulation was observed
in L3 segments (138.8%) in 3-months-trained
as compared to intact cats. No further effect
cf step-training was observed in any lumbar
segment when 3-months-trained were
compared to 3-months spinal cats. Significant
differences are indicated by *(p<005) or **

(p<0.01).
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3-months-spinal and 3-months-trained animais as compared to intact cat. Overall, CREB

protein ieveis wete specificaiiy up-regulated in L3 (219.0%) and L4 (103.8%) in 3-months-

spinal, and aiso up-reguiated in L3 spinal levels (138.8%) in 3-months-trained as

compared to intact cats (Fig.4b). No additionai eftect of stop-training was observed when

step-trained were compared to spinal cats. Attempts to assess levels of phospho-CREB

expression were unsuccessfui. No phosphc-CREB immunoreactivity was detected in any

condition, possibility due to inccmpatibility between available phospho-specific CREB

antibodies and feiine CREB protein (data not shown).

PI3KIAkt signalïng not detectably altered by long-term spinal injury or step-training

In addition, we investigated the expression of Akt, a protein kinase activated by

neurotrophins and well characterized to function upstream of CREB activation. Figure 5

illustrates a Western blot of protein homogenates from L4 spinal segments of an intact, a

1-month-spinal and a 1-month-trained cat with an antibody recognizing Aktl, Akt2 and

Akt3 proteins. A single —6OkDa immunoreactive band was detected for ail groups of cats, I

month (Fig.5a) or 3 months (Fig.5b) with or without step-training. These findings reveal no

modulation of Akt expression following a complote spinal lesion with (black) or without
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1 -month-spinal 3-months-spinai

Ii -month-trained I 3-months-trained

Figure 5. Akt expression is flot modified because of a complete spinal lesion or stop-
training in the lumbar spinal cord of spinal cats. a-b, Western blots incubated with anti-Akt
(1 :1000) showing the expression cf Akt protein in homogenates cf L3 spinal segments cf a, an
intact (lane 1), a 1-month-spinal (lane 2) and a 1-month-trained cat (lane 3) and of b, an intact
(lane 1), a 3-months-spinal (lane 2) and a 3-mcnths-trained cat (lane 3); c,d, Averaged Akt protein
level in the spinal lumbar segments (L3 to L7) cf c, 1-month-spinal (gray) and 1-month-trained
cats (black) and of U, 3-mcnths-spinal (gray) and 3-months-trained cats (black). Data in
histograms are represented as a percent cf intact cats +/- SEM. No difference in the expression cf
Akt protein in any spinal segment was cbserved because cf the spinal lesicn or step-training after
1 or 3 mcnths.
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step-training (gray) in any spinal level either after one (Fig. 5c) or three months (Fig. 5d).

This result provides evidence that plasticity induced by lesion and step training specifically

impacts the ERK pathway, and does not reflect a general increase in the expression of

kinase pathways related to BDNF and TrkB activated signaling.

Synpatophysïn is down-regulated after spinal cord injury wïth or without training

In the hippocampus, BDNF acts on presynaptic neurons and enhances vesicle release via

TrkB activation (Lu & Chow 1999). lncreased leveld of synaptophysin protein is a

molecular cortelate of increased numbers of synaptic vesicles, either due to incteases in

synapse formation or an increase in the number of vesicles in existing synapses (Sarnat &

Bern 1999). In the spinal cord, exercise leads to the modulation of TrkB mRNA expression,

which is closely associated with changes in the levels of protein components of the

synaptic machinery, potentially providing a mechanistic link between exercise and the

modification of information transmission across the synapse (Gomez-Pinilla et al 2001,

1 month SynP

L3 L4 L5 L6 L7 L7

1 -month-spinal 3-months-spinal

I 1-month-trained 13-months-tcained

Figure 6. Synaptophysin (SynP) expression is down-regulated following a spinal lesion in
the lumbar spinal cord cf cats. a-b, Western blot incubated with anti-SynP (1 :4000) showing the
expression cf SynP protein in homogenates of L4 spinal segments of a, an intact cat (lane 1), a 1-
month-spinal (lane 2) and a 1-month-trained cat (lane 3) and cf b, an intact cat (lane 1), a 3-
months-spinal (lane 2) and a 3-months-trained cat (lane 3); c,d, Averaged SynP protein level in
the spinal lumbar segments (L3 to L7) of C, 1-month-spinal (gray) and 1-month-trained cats (black)
and cf d, 3-months-spinal (gray) and 3-months-trained cats (black). Data in histograms are
represented as a percent cf intact cats +1- SEM. One month (c) was net sufficient te reveal a
medulation in the expression cf SynP whether the spinal cats were step-trained (black) or not
(gray). Hewever, SynP pretein level was specifically down-regulated in L3 (60.6%), L4 (44.7%)
and L5 (50.8%) in 3-menths-spinal and in L3 (54.1%), L4 (40.2%) and L5 spinal segments (59.0%)
in 3-months-trained as compared te intact cats (d, gray). No further effect cf step-training was
observed in any lumbar segment when step-trained cats were cempared te spinal cats. Significant
differences are indicated by * (pcO.05) or ** (p<0.01).
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2002). As illustrated in Figure 6, an antibody against synaptophysin recognizes a single

«38kDa immunoreactive band that is significantly reduced in spinal and step-trained as

compared to intact cats 1 month (Fig.6a) and 3 months (Fig.6b) after the complete spinal

lesion (gray) and onset cf step-training (black). Overali, the level of synaptophysin protein

was significantly down-regulated in L3 (60.6%), L4 (44.7%) and L5 (50.8%) in 3-months-

spinal and in L3 (54.1%), L4 (40.2%) and L5 spinal segments (59.0%) in 3-months-trained

as compared to intact cats (Fig.6d). Although it was flot sufficient to reach statistical

significance, a similar trend was observed one month aftet injury (Fig.6c). No further effect

of step-ttaining was observed in any lumbar segment when step-trained cats were

compared to spinal cats.

Discussion

Spinal networks were long assumed to be hardwired, simply responding quickly and in a

stereotyped fashion to afferents or descending inputs (Forssberg & Svartengren 1983).

Substantial experimental and clinical evidence now supports the conclusion that the spinal

cord exhibits a remarkable capacity for plasticity in response to central or peripheral

lesions, operant conditioning or step-training (Mendell 1984, Durkovic 1996, Wolpaw &

Tennissen 2001, Côté et al 2003a, Côte & Gossard 2004). The prepatation used in this

study, a complete spinal cord transaction model, allowed us to attribute lesion- and

training-induced plasticity in ERK pathways to the intrinsic competence of the spinal cord

to reorganize without any contribution of regeneration or supraspinal influence to induce or

model this rearrangement.

In an elegant series of studies, Dr Gomez-Pinilla and colleagues investigated the

molecular mechanisms and signaling pathways by which activity promotes synaptic

plasticity and functional recovery in the hippocampus, spinal cord and muscles in intact

and SCI animaIs (Neeper et al 1995, Gomez-Pinilla et al 2001, 2002, Molteni et aI 2002,

Hutchinson et al 2004). In an exercised but otherwise intact animal, their results suggest

that exercise modulates molecular systems involved in maintaining neuronal function and

plasticity in the brain: BDNF was the single trophic factor whose expression was

determined to be modulated by exercise. Additionally, the majority of other genes found to

be affected by motor activity had a recognized association with BDNF (Molteni et al 2002).

Further experiments indicated that the same molecular mechanisms were involved in
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short-term exercise-dependent piasticity in incompiete SOI animais, BDNF, CREB and

synapsin I being down-regulated in the iumbar spinal cord as compared to intact animais

and up-reguiated after exercise suggesting that motor training may restore the expression

of these proteins to neat normai leveis (Ying et ai 2005). Here, we aimed to investigate the

involvement of pathways activated by BDNF, in particular ERK pathways, in Iong-term

step-training and chronic spinal cord transection in the cat.

Duting Iocomotor recovery, spinal networks are continuously stimulated by sensory

feedback and the injured animai progressiveiy recovers rhythmic and alternate iocomotor

movements. The abiiity to relearn motor tasks such as stepping in the absence of any

descending infiuence has been attributed to the reorganization of locai connections within

the spinal cord (Edgerton et ai 2004). Two to 4 weeks after a compiete spinai iesion and

onset of step-training, aduit cats are abie to perform proper piantigrade contact of the paw

with the treadmiil belt and execute weight-bearing on the hindlimbs during stepping (Lovely

et ai 1986, Barbeau & Rossignol 1987, Béianger et ai 1996). if step-training is proionged

beyond that time window, stepping ability further progresses: the maximum walking speed

and the number of steps performed on the plantar surface of the foot increase. Stepping

performance typicaiiy reaches a plateau approximateiy 3 months after step-training onset

(Loveiy et ai 1986, Barbeau & Rossignol 1987). We therefore chose to assess the training

induced piasticity in ERK pathway at these 2 time points. it is important to consider that

any potentiai plasticity induced by step-training wiii be superimposed on an initiai massive

plastic change induced by the compiete spinai injury itseif, data which are flot availabie in

the iiterature. it was thus of criticai importance to first characterize changes associated

with the injury-induced piasticity alone in order to accurateiy identify plasticity soieiy

attributable to step-training.

in this study, moduiation of the expression of proteins in signaiing pathways in the spinal

cord were soiely observed after 3 months, one month being insufficient to reveal

detectabie biochemical correiates of plasticity change. Recent findings have revealed that

the expression of severai genes can be affected by voiuntary exercise, with a number of

different temporal-profiles, in otherwise intact animais (Molteni et ai 2002). CaMK

signaling, closeiy regulated by the NMDAR system, was shown to be highiy up-regulated

by short-term wheel running and was suggested to represent the downstream effect of

exercise during the acute phase (Moiteni et al 2002). On the other hand, ERK pathways

were not modulated in the first days foilowing the onset of exercise and a significant up

regulation was soiely observed when exercise extend for longer periods of time (Molteni et
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al 2002). Dur results support the hypothesis that modulation of ERK pathway signaling is

involved in the chronic effect of exetcise, being predominantly modulated 3 months after

step-training onset.

Modulation of ERK signaling following injury and step training-induced plasticity

Here we provide the first evidence for increases in ERK1/2 and ERK activation, inferred

from levels of pERK1/2, in the feline lumbar spinal cord, from L3 to L7, as a result of step

training, in the injured spinal cord. Western blot analyses revealed that pERK1/2 and

ERK1 protein levels were up-regulated in a majority of lumbar spinal segments 3 months

after a complete spinal transection. Furthermore, our results suggest that the increased

level of pERK was not only due to synthesis of new proteins but also to a higher rate of

phosphorylation. lndeed, it was shown that following a facial nerve lesion, ERK1 protein

expression was up-regulated until at least 8 weeks after the injury although ERK1 mRNA

levels returned to levels similar to control within the 4th week (Kitahara et al 1994). In vitro,

ERK1I2 signaling is implicated in neuroprotective mechanisms that inhibit apoptosis of

cortical neurons (Hetman et al 1999) and cerebellar granule neurons (Bonni et al 1999).

Moteover, recent studies lend support to the hypothesis that excitotoxicity, neural

apoptosis, inflammation, brain ischemia and nerve injury also induce activation of ERK1I2

cascade (Ji et aI 1999, Ferrer et al 2001, Ji & Woolf 2001, Ji 2004). Additionally, the

increase in ERK phosphorylation following SOI might be as a result of a loss of supraspinal

modulation leading to a loss of inhibitory control to spinal neurons. The observed down

regulation in synaptophysin expression supports such a possibility. The decrease detected

was specific to L3-L5 spinal segments suggesting a substantial loss of synaptic

transmission in this area. Synaptophysin expression is associated with synaptogenesis

(Bergmann et al 1997) and an increase in synaptophysin likely indicates that synaptic

vesicles are formed either due to an inctease in synapse formation or an increase in the

number of vesicles in existing synapses (Satnat & Born 1999). Dur results suggest that

step-training does not induce an increase in “net” synaptogenesis, but may simply reflect

the loss cf the multiple supraspinal contacts projecting onto these lumbar segments.

We also showed a step-training induced. down-regulation in pERK expression selective to

L5 spinal segment. In this specific case, it is doubtful that this reduction would subserve a

decreased neuroprotective effect evoked by step-training. Several recent studies using in

vivo models of cerebral ischemia (Namura et al 2001, Wang et al 2003) or traumatic brain
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injury (Mon et al 2002ab) have shown that inhibitors of MEK1/2, the upstream activator of

ERK, reduce neuronal loss suggesting that the activation of ERK in response to acute

CNS injury may also be detrimental. The down-regulation in pERK expression in step

trained spinal cats supports this hypothesis and suggests an interfering effect 0f ERK

activation with locomotor recovery. To date, various kind of molecules have been

demonstrated to be downstream targets of ERK1/2 ranging from cytoskeleton-associated

molecuies to other kinases, phosphatases, enzymes, transcription factors and celi surface

molecules (Lewis et al 1998). ERK cascade flot only amplifies extracellular stimuli but also

integrates many converging signaling pathways and functions as a vehicle that imports the

information into the nucleus. This may explain the variety of functions transmitted by ERK

pathway. Together, these results suggest that the decrease observe in pERK in L5

expression is triggered by sensory afferents activated by repetitive walking on the treadmill

surface. How a decrease in ERK activation contributes to locomotor recovery in chronic

spinal cats remain to be determined.

CREB expression is altered by injury but flot step-training

Our findings reveal detectable levels of ORES protein in the feline lumbar spinal cord, from

L3 to L7, whether intact or injured. A significant up-regulation in total CREB expression 3

months after a complete SCI was detected in the lumbat cord. In conjunction with BDNF,

ORES plays a key role in neuronal resistance to insult (Walton et al 1999). lnjury-elicited

ORES activation in the spinal dorsal hotn or in DRG, is at least partly mediated by ERK

signaling following a spinal cord injury (Qiao & Vizzard 2005, Ctuz et al 2006). In addition,

several studies have found that ERK-mediated CREB phosphorylation s required for

synaptic plasticity associated with the induction of stable, late-phase LTP and long-term

memory in the hippocampus (Kelleher et al 2004, Thomas & Huganir 2004) and plasticity

associated with neuropathic pain in the spinal cord (Ji et al 2003, Rygh et al 2005, Orown

et al 2006). lndeed, OREB was shown to be involved in several intracellular events

associated with the action of BDNF on neuronal plasticity (Barde 1994). Our results

suggest that lesion-induced plasticity impacts on OREB expression in celI populations

speciflcally Tocated in L3 and L4 spinal segments. However, the up-regulation of pERK

expression in ail lumbar segments examined (L3-L7) may not, in itself, account for the

specific increase in OREB expression. CREB can be phosphorylated by multiple

intracellular kinases in response to a vast range 0f physiological and pathological stimuli.

Among them, both ERK and P13-KIAkt kinase pathways lead to CREB activation (Xing et
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al 1998) to regulate gene expression. Together, these resuits suggest that other

intracellular kinases pathways known to activate CREB in the spinal cord such as PKA,

PKCy and CaM KIl may also be invoived in chronic Tesion-induced plasticity.

Moreover, CREB was shown to be up-reguiated after short-term step-ttaining in intact and

incomplete SOI animais (Gomez-Pinilla et al 2002, Ying et al 2005). No long-term step

training-induced modulation in CREB expression was observed in this study as previously

observed (Molteni et al 2002). Whether CREB is solely involved in plasticity occurring in

the fitst weeks following step-training or if a complete spinal lesion prevents a modulation

in CREB expression is not known.

Specificity of plasticity induced by Iong-term injury and step-training to ERK

pathways

Based on evidence that exercise preferentially modulates genes associated with BDNF

(Moiteni et al 2002) and also impacts on CREB expression in the hippocampus and spinal

cord (Gomez-Pinilla et al 2002, Vaynman et al 2003), we choose to investigate Pl3KIAkt, a

pathway known to be activated by BDNF, and lead to regulation of CREB. Our resuits

suggest that this pathway is not involved in long term lesion-induced or step-training

induced plasticity and that the cascades downstream of BDNF/TrkB may be differentially

modulated following injury or step-training. The Pl3KIAkt signaling pathway has been

shown to be activated by different tyrosine kinase receptors and plays an important role in

cell/death survival pathways by stimulating neuronal survival of many populations of

neurons and axonal growth. It was also shown to play an important role in motoneuronal

survival induced by BDNF (Dolcet et al 1999). Akt phosphorylation was shown to be

transiently up-regulated in the spinal cord foilowing SOI for 7 days (Yu et al 2005).

Apoptosis being typically a rapid process (Bursch et al 1990), our resuits suggest that

PI3KIAkt pathway might flot be involved in long term plasticity.

Segmental distribution of spinal plasticity

Our results suggest that lesion-induced modulation of ERK signaling is spread thtoughout

the lumbar spinal cord while step-training plasticity exhibits a more restricted local

modulation. One month following the onset of the step-training regimen, the expression of
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ERK1 was transiently increased in L3 and decreased in L4 spinal segments. Howevet,

concomitant changes were not observed in pERK levels and were not present in 3-

months-trained cats. The main observation regarding modulation in this pathway following

step-ttaining was a decrease in pERK expression selectively observed in L5 spinal

segment. The L5 spinal segment contains motoneuronal pools that innervate proximal

muscles of the hip (Vanderhorst & Holstege 1997) which is particularly important in

initiating the swing phase of locomotion and entraining the locomotor rhythm (Griliner &

Rossignol 1978, Andersson & Grillner 1983, Lam & Pearson 2002). Moreover, the L5

spinal level contains a population of intetneutons activated by the mesencephalic

locomotor region (MLR, Noga et al 1995), an area known to induce locomotion (Jordan

1998). Together, these results suggest that L5 level exhibits particularly high levels of

plasticity following step-training.

Chronic lesion-induced spinal plasticity particularly impacts on CREB expression in cell

populations localized in L3 and L4 spinal segments. In cats, midiumbar segments provide

essential inputs to organize the locomotor pattern. The integrity cf the L3-L4 spinal

segments is necessary to sustain locomotor activity suggesting they may contain

interneurons strongly involved in stepping generation (Marcoux & Rossignol 2000, Langlet

et al 2005). Moreover, L3 and L4 segments contain group II afferents-activated

interneurons suggested to target a great variety of other interneurons and ascending tract

cells (Bannatyne et aI 2006). These interneurons are thought to be involved in the

adequate activation of motoneurons in a variety of centrally initiated movements mediated

by reticulospinal neurons and commissural interneurons (Edgley et al 2004). These resuits

suggest that the complete disruption of supraspinal afferents to the lumbar spinal cotd in

chronic spinal cats may particularly impact gene transcription in areas containing these 2

types of interneurons.

Notably, plasticity occurring in these areas of the lumbar spinal cord may be due to

regulation cf expression in different cell types. Although plasticity in ERK pathways has

been previously demonstrated in motoneurons (Kitahara et al 1994, Kishino & Nakayama

2003), several othet celI types express these proteins, including interneurons, guaI ceils

and endothelial ceils. Western blot analysis is constrained to identifying changes in overall

expression. Thus, small changes in expression within a subpopulation of celis may not be

detected and will require additional immunohistochemical analysis.
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Spinal cord plasticity is highly specific

Spinal plasticity may depend on the duration of injury (acute vs. chronic), extent (complete

or partial) and type (contusion, hemisection, transection) and has also been shown to be

task-dependent (de Leon et al 1998a, Edgerton et al 1997a). The amount of activity

performed, for example the amount of wheel running by rodents, has also been found to

correlate with spinal plasticity (Bravo et al 2003, Vaynman et aI 2006). Previous studies

have reported that the majority of proteins involved in activity-dependent plasticity rapidly

returned toward normal values within few days (Molteni et al 2002). In the past, lesion

induced and activity-related plasticity in the pathways studied here have been largely

investigated only in the few minutes or hours following lesion, a single bout on a treadmill

or few days of locomotor activity (Gomez-Pinilla et al 2001, 2002, Yin9 et al 2003, 2005,

Bravo et aI 2003). Here we demonstrated that regulation of ERK and CREB protein levels

may also be involved in long-term plastic changes in the CNS following a chronic and

complete spinal lesion and also following a Iong-duration step-training regimen in the case

of pERK. These changes does flot exclude an acute modulation in these pathways but

suggest that they may also be involved in chronic spinal plasticity occurring several weeks

after the injury and step-training onset since it is observed after 3 months, but flot after 1

month. From previous experiments, we expected a decrease in ERK and CREB following

injury and an increase after step-training. Although pERK returned to normal values in L5

homogenates after 3 months, an increase in ERK, pERK and CREB was observed

following injury. This suggests the involvement of spared supraspinal fibers in triggering or

modulating spinal plasticity following a partial (hemisection or contusion injury) spinal

lesion and also in motor recovery. Notably, such a down-regulation following exercise has

been observed following locomotor training and traumatic brain injury, but only if training

begins immediately after the injury onset without a recovery period and s associated with

cognitive impairment (Griesbach et al 2004). Finally, our detailed segmental analysis

confirms that it is fruitful to carefully interpret changes in protein expression following

injury, as general increases or decreases in protein level in the whole spinal cord observed

when several segments are merged together, may flot reveal more dramatic changes that

are specifically localized to a subset of spinal segments. The findings obtained here

identify changes in protein expression and activation Iimited to specific regions along the

longitudinal axis of the spinal cord and provide further evidence for the remarkable

plasticity of the spinal cord following injury.
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DISCUSSION

The introduction desctibed the plasticity cf spinal reflex pathways after SCI, particularly

related te improvements in motet function with activity-dependent rehabilitation. Such

paradigms aim at maximizing the residual functions cf the spinal cord caudal te the lesien.

lndeed, several mechanisms which modulate spinal reflex activity are deficient in

individuals with SCI. Consequently, the motet output is distupted and the gait abnormal. It

is generally assumed that plastic changes related te step-training are located within the

CPG. Without excluding this possibility, we illustrate that spinal plasticity may aise occur in

both muscle (1st manuscript) and cutaneous reflex pathways (21c manuscript). In addition,

we demonstrate that it might involve plastic changes in intracellular cascades located in

lumbar segments net necessarily asscciated te the localization cf the CPG in the cat (3td

manuscript). It is believed that plastic changes in these pathways can impact and medel

the excitability cf the CPG te genetate a more functienal locomotor cutput. It is worth

noting that the modulation observed in reflex pathways may tepresent a training-related

plasticity superimposed on spinalization-induced plasticity, or a prevention cf spinalization

induced plasticity. Additicnal experiments are needed te address this complex question.

Functional stepping recevery aftet SCI suggests that preperties cf networks and cells

invclved in the centrol cf locomotion have been mcdified te optimize the motet cutput

through a reduced citcuitry. Our studies highlight the cemplexity cf spinal plasticity: it can

occur at multiple sites, involve several systems thtcughout the spinal cord, may target

specific pathways or molecules, and engage dynamic precesses that have specific and

different time coutse. It is believed that ail these changes are interrelated and integrated te

ultimately contribute to improve the motet eutput aftet SCI.

Incomplete SOI may stimulate the reorganization cf synaptic connections such as

increasing collatetal branching or shifting the representation cf the hindlimbs in the metor

cortex. Moreover, indirect evidence suggests that at least part cf the recrganization cf the

spinal networks caudal te the spinal lesion depend on spared supraspinal afferents

(Helgren & Goldberger 1993, Nacimiente et al 1995, Bregman et al 2002, Schucht et al

2002). Here, a cemplete SCI model was chesen te assess the plastic petential cf the

spinal cerd exciuding any plasticity driven by supraspinal pathways. Althcugh partial spinal

injuty such as contusion ate reminiscent cf what is seen in the clinic, we considet that it is

important te teveal the extent cf the plasticity that can occur independently, within the
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spinal cord, and without the influence cf the brain. This knowledge is crucial te design the

basics cf a successful rehabilitatien programs after SCI. It could serve as building blocks

te identify the important physiological features cf the reccvery that may be targeted by the

spated supraspinal pathways, if any, and futther enhance the motet recovery.

Step training-related plasticity does occur in both Ioad and skin reflex pathways

Load-related inputs can act directly en the CPG, particulariy those eveked by group I

afferents from extensers (Conway et al 1987, Gossard et al 1994, McCrea 1998, Pearson

et al 1998). In addition, it has been shown that phasic load input related te stepping are

required because stand-training, which prevides static load, is not sufficient te improve

locomotor movements (de Leon et al 1 999b). We thus hypothesized that this pathway is a

potential candidate for step training-related plasticity. In addition, we believed that

widespread and evident changes in transmission weuld take place te reinforce weight

bearing. The preparation used in this study for electrophysiological recordings allcws the

lecomotor program to be active. The actual movements are prevented by blocking the

neuromuscular transmission te perform stable intracellular recotdings. Moreover,

motoneuronal responses are net submitted te the dynamic influence cf sensory feedback

related te stepping movements. The effect cf step-training can thus be attributable te

changes within the spinal pathways and net te alteration in peripheral sensory events or

muscle properties (Roy & Accosta 1986, Roy et al 1999).

In these experiments, we showed that transmission in the mcncsynaptic pathway is

decreased following step-training. Most studies reperted the effect cf SCI alone on

monosynaptic EPSP amplitude and revealed plastic changes that seem te be highly

dependent on the ccntext, preparation, level cf spinal lesion and motet pool recorded (cf

monosynaptic reflex and SCI, p21). This issue was net investigated in our study. Te eut

kncwledge, this is the first study te report the effect cf step-training on the amplitude cf the

monosynaptic EPSP after a ccmplete SCI. Hcwever, lecomotor training has been shewn

te decrease and improve the gating cf the H-reflex (Trimble et al 1998). Whether the

decrease in moncsynaptic EPSP amplitude in eut expetiment would result in a decrease in

the amplitude cf the monosynaptic reflex is probable but this requires further investigation.
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We also illustrated that step-training decreased lb non-reciprocal inhibition and improved

polysynaptic excitation evoked by la/Ib afferents of extensors in synergistic motoneurons.

However, plasticity in this pathway seems less robust than expected because it needed

clonidine to be revealed. We expected that stimulation of these pathways would be so

strong that plasticity would be measurabie at rest. More data collected during locomotor

episodes may have revealed more plastic changes. Most of the intracellular recordings

were recorded at rest because it is difficult to obtain fictive locomotion in this preparation.

In addition, one month of step-training may not be sufficient for plasticity to fully develop in

these pathways. Preiiminary data suggest that plasticity in group I reflex pathways is more

robust at test in extensor motoneurons of animais that wete ttained for 3 months (Côté et

al 2003b).

Plasticity in each pathway measured separately appears to be modest considering the

remarkable effect of step-training. Notably, during locomotion multiple pathways would be

active simultaneously and their input converge on common interneurons (Baldissera et al

1981, Jankowska 1992). Spatial facilitation is known to occur at the interneuronal level and

amplifies the motor response. So, taken altogether, the modified transmission in sensory

pathways would certainiy contribute to the recovery of stepping.

Cutaneous inputs are also activated by locomotor movements and several studies

reported that cutaneous feedback might take part in the recovery of motor function after

SCI (Fung & Barbeau 1994, Muir & Steeves 1995, 1997, Bouyer & Rossignol 2003b,

Smith et al 2006). However, cutaneous inputs do flot have a powerful effect on rhythm

generation such as group I muscle afferent inputs. We thus expected less step training

dependent plasticity in skin reflex pathways. Results confitm that, in addition to plasticity in

group I muscle pathways, step-training induces significant plastic changes in cutaneous

transmission from at least three different skin territories (CCS, SP, MPL) to motoneutons

of flexor and extensor muscles acting at the hip, knee, ankle and toe joints. Surprisingly,

plasticity in these pathways turned out to be more vigorous than we expected: it was

apparent at rest, without the activity cf the CPG (fictive locomotion) or the addition of

cionidine.
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Proteins ïnvolved in learning phenomena are present in the cat spinal cord and up

regulated after SCI

Importantly, locomotor recovery may either be seen as a recovery of existing function or as

a novel learning that could potentially involve mechanisms implicated in different forms of

learning processes in the hippocampus (sensitization, habituation, LTP, etc). It is worth

noting that this second ptoject did not aim to correlate changes in the biomolecular content

of the spinal cord with the plasticity in spinal reflex pathways but rather to investigate the

same issue from another point of view.

We chose the ERK pathway as a potential candidate involved in spinal plasticity for

several reasons. It has been associated with learning mechanisms in the hippocampus

(Sweatt 2004) and is activated by BDNF, the expression of which is regulated in an

activity-dependent manner both in the brain and in the spinal cord (Neeper et al 1995,

Gomez-Pinilla et al 2001, 2002, Molteni et al 2002, Hutchinson et al 2004, Klintsova et al

2004). ERK activation is also regulated by the action of glutamate/NMDA receptors to

facilitate synaptic efficacy (Garraway et al 2003, Slack et al 2004). It is worth noting that

glutamate is an important neurotransmitter for stepping generation in chronic spinal cats

(Chau et al 2002, Giroux et al 2003) and that NMDA receptors were shown to be up

regulated following SOI and step-training (Rossignol et al 2004). Also, sensory afferents

activated by step-training release glutamate on their postsynaptic targets. Antibodies that

specifically recognize the phosphorylated active form of ERK1/2 (pERK) on Western blots

provide a straightforward method to assess the relative levels of ERK activation in tissue

homogenates and have been extensively used as a criterion to judge the degree cf

activation of the ERK pathway. We first investigated the plasticity after SCI given the initial

massive plastic changes induced by the complete SCI itself, data that is not available in

the literature. It was thus of critical importance to first characterize changes associated

with the injury-induced plasticity alone in order to accurately identify plasticity solely

attributable to step-training. We chose to investigate changes in this pathway at two

different critical time post-injury, 1 month and 3 months because weight-bearing is known

to be recovered approximately one month after the onset cf step-training and

improvements in the locomotor pattern were shown to reach a plateau after 3 months.
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We demonstrate for the first time that ERK1/2, pERK1/2, CREB and Akt are present in the

spinal cotd both in the intact and cempletely spinalized aduit cat. The activation cf ERK

was shown to be increased aftet a complete SCI. We aise previde evidence that pIasticity

induced by SCI and step-training specifically impacts the ERK pathway, and does net

reflect a general inctease in the expression cf kinase pathways reiated te BDNF and TrkB

activated signaling. The increased ERK activatien observed 3 mcnths after SC1 is

consistent with previeus investigations that illustrate a persistent up-reguiaticn cf NMDA,

AMPA and kainate receptors, contrary te NA and 5-HT recepters which eventually returns

te ccntrcl values (Rossignol et al 2004).

We aise show an increase in CREB expression 3 months after a complete SCI. This

increase is restricted te L3 and L4 spinal segments contrary to the widespread increase in

ERK activation (L3 te L7). In the spinal cord, CREB is aise a commen target for multiple

intracellular kinases including PKA, PKCy and CaMKII. Because CREB appears te play a

role in neuronal resistance te insult (Walten et al 1999) it ceuld imply that a population cf

cells in these areas is undergeing neurepretective ptecesses. On the ether hand, these

segments were shown te previde essentiai inputs te organize the lecemeter pattern. The

integrity cf L3 and L4 spinal segments was shcwn te be necessary te sustain Iccemeter

activity suggesting they may ccntain intetneurcns strcngly invelved in stepping generatien

in cats (Marcoux & Rossignol 2000, Langlet et al 2005). Mereover, L3 and L4 segments

centain group ii afferents-activated interneurons suggested te target a great variety cf

other interneurons and ascending tract celis (Bannatyne et al 2006). These interneurons

are thcught te be involved in the adequate activation cf meteneurens in a variety cf

centraiiy initiated movements mediated by reticulospinal neurons and commissurai

interneurons (Edgley et ai 2004). These results suggest that the complete disrupticn cf

supraspinal afferents te the lumbar spinal cord in chronic spinal cats may especially target

gene transcription in these areas.

The specific character of step training-induced spinal plasticity

Our studies greatly illustrated that step training-dependent plasticity is specific and target

particular pathways and areas cf the spinal cerd.
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Inhibitory systems: an example The inhibitory potential is increased in the neurons

located in the ventral and dorsal horn of the lumbosacral spinal cord below the SOI and is

related to the loss of supraspinal inputs which are mainly excitatory to the spinal cord

(Edgerton et al 20011 Tillakaratne et al 2000, 2002). Step-training would either prevent this

increase in inhibition to happen or return those levels of inhibitory molecules towards intact

values (Tillakaratne et al 2002). Precise measurements illustrate that the labeling of

GABAA receptors (cx12.3, f32, Y2) of sensory and motor neurons associated with SOL and TA

muscles is inversely correlated to stepping performance (Bravo et al 2003). These

experiments carried by the group of Edgerton suggest that by reducing inhibition of spinal

networks, sensory inputs can be integrated to generate locomotor activity. One could thus

think that the activity in reflex pathways would result in less inhibition and more excitation

of motoneurons after step-training. Our study shows that plasticity in reflex pathways is by

far more complex. On one hand, there is a decreased transmission in the lb inhibitory

pathway together with an improved polysynaptic excitation in step-trained cats that follows

this general rule. On the other hand, inhibitory transmission is facilitated in some

cutaneous pathways and the monosynaptic reflex decreased after step-training. In those

cases, the net result is more inhibitory after step-training. Moreover, indirect evidence also

suggests a better reciprocal inhibition after step-training in human SOIs (Maegele et al

2002). Among other spinal synaptic actions involving inhibitory neurotransmitter is

presynaptic inhibition of primary afferents and interneurons. An increased in presynaptic

inhibition is believed to be one of the mechanisms involved in step-training plasticity

(further discussed in Potential mechanisms involved in step-training plasticity in reflex

transmission section, p133). Together, these results illustrate that spinal plasticity is highly

specific.

Cutaneous transmission We also illustrate that plasticity in cutaneous pathways is highly

specific depending on the stimulated nerve and target motoneuron. Among the pathways

tested (n=71), transmission was modified in only 10 and the other pathways were far from

reaching statistical significance. We thus believe this is a true activity-dependent plasticity

in very specific cutaneous pathways. As reported in the introduction, nerve-specific

responses are observed in response to cutaneous stimulation during stepping (Abraham et

al 1985, Moschovakis et al 1991, Pratt et aI 1991, LaBella et al 1992, Degtyarenko et al

1996, Van Wezel et al 1997) to provide location specific information from the skin of

hindlimb. On the other hand, a common synergy enhancing flexion during swing and

facilitation extension during stance can also occur and this, independently on the location
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of the stimuTus (Duysens & Stem 1978, Duysens & Loeb 1980, Abraham et al 1985). Our

results show specificity in the responses and no simple stance- or swing-related patterns.

For example, step-training induce an increase in early excitation amplitude (Ri) in MG

motoneurons and a decrease in a synergist motor pool such as PI. Moreover, most of the

plastic changes occur in the MG motor pool in response to a stimulation of MPL. This

could suggest a preferential roTe of the plantar skin during weight-bearing. However, the

role of different skin territories in the recovery of locomotion is difficult to interptet beca use

patterns of activity of skin receptors during the different phases of the step cycle remain

mostly unknown. There s Iittle understanding cf its role in normal locomotion. For

example, some receptors from the plantar surface of the foot were found to be sUent

during stance and fire during swing (Loeb et al 1977). Thus the influence of cutaneous

inputs on spinal pathways during a given time of locomotion cannot rely solely on its

anatomical localization.

Another example of specificity of step-training related plasticity is illustrated again in

changes in cutaneous transmission. The only motor pool in which the occurrence of

responses without an inhibitory component (type D) increases following step-training is

FDL (0% in untrained, 30.8% in step-trained). FDL is a toe plantar fiexor active at the

onset of swing (Fleshman et al 1984, Schmidt et al 1988, Moschovakis et al 1991,

Degtyarenko et al 1996) to help clear the toes from the ground (Rossignol et al 1996). It

acts as an extensor of the toes and is active in early flexion. We suggest that the inhibitory

transmission to FDL is decreased to facilitate extension of the toes and teduce paw drag in

early swing. There s indeed a paw drag at the beginning cf the locomotor recovery in

chronic spinal cats (Lovely et al 1986, Barbeau & Rossignol 1987, Bélanger et al 1996)

and babies with immature descending tracts (Yang et al 2004). It seems to be associated

with the inappropriate timing of flexion movements (hip, knee and ankle) at the beginning

of the swing phase. This is thought to result from the disruption of the corticospinal and

rubrospinal tracts (Jiang & Drew 1996). Notably, paw drag is especially pronounced in

spinal cats when cutaneous inputs from the paw are removed (Bouyer & Rossignol

2003b).

ERK activation The assumption of our study was that, to exert their beneficial effect on

the spinal cord networks, step-training would affect ERK pathway in the spinal cord.

Furthermore, we expected that the clearest effect of training would be detected in the

spinal interneuronal networks involved in the control of locomotion. In fact, step-training do
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affect the expression and activation of ERK in the spinal cord cf cats, but the most striking

change occur in the L5 segment and not in the rostral lumbar segments potentialiy

associated to the CPG (Kiehn 2006). In the cat, the L5 spinal segment contains a

population cf interneurons presumably activated by the MLR. Cord dorsum potential

evoked by MLR stimulation and recorded at the dorsal root entry zone at the medial level

cf the spinal cord is maximal near the L5 level (Noga et al 1995). Accordingly, c-fos

labeled cells follcwing MLR-induced locomotion are mcst numerous in the spinal segments

with the Iargest MLR-evoked field potentials (Dai et al 2005). Consistent results have been

cbtained after locomotion on the treadmili in corresponding spinal segments cf the rats

(Anh et al 2006). In these experiments, the number cf fcs+ neurons was directly related te

the duration cf treadmill stepping. In addition, preliminary results frcm the group cf Dr

Edgertcn illustrate that the fos+ neurcns activated by lcccmcticn in the lumbar spinal ccrd

cf intact and spinal rats overlap with thcse neurcns that express mclecules such as CREB,

NMDA receptcr subunits and CaMKII (see Anh et al 2006). ERK-mediated CREB

activation has been shown te be required for synaptic plasticity associated with the

induction cf stable, late-phase LTP and lcng-term memcry in the hippocampus (Keileher et

aI 2004, Thomas & Huganir 2004) and to shcrt- and lcng-term synaptic changes in spinal

senscry neurons (Kolch 2000, Ji & Wolf 2001, Ji 2004). However, we did not observe any

change in CREB expression in step-trained animais.

It is notable that the rhythmcgenic capacity is highest in the rcstral spinal cord where hip

mctcneurcns are located. This includes the L5 spinal segment in the cat. It has been

suggested that the rhythmcgenic network controlling hip mevements act as a leading

cscillatcr, entraining the more caudal and less excitable cscillatcrs (Stem et al 2005).

Further experiments may investigate if changes in ERK activation specifically target

interneuronal and mctoneuronal networks asscciated with hip muscles.

The general assumption is that the easier access cf spinal neurons te neurctrophins

following step-training might Iead te the pctentiaticn cf the excitatcry drive te mctcneurcns

thrcugh an interaction with glutamatergic receptcrs (Gcmez-Pinilla et al 2001, 2002, Skup

et al 2002, Molteni et al 2002, Vaynman et al 2003). Surprisingly, we obtain a decrease in

ERK activation. It has been reported that SCI might limit the effectiveness 0f exercise te

enhance the expression cf BDNF and CREB proteins (Ying et al 2005). lmportantly, it is

rather difficult to contrast data from previcus and current experiments. There is

unfortunately a great variety in the results frcm one preparation te the other, depending on

the extent cf the spinal lesion, on the time pcst-injury, and aise on the exercise regimen
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(chronic and repetitive or acute treadmiil bout). Also, most of previous studies merged ail

lumbar spinal segments together. Our study shows that significant changes are specifically

localized to a subset of spinal segments. In addition, our results suggest that in chronic

spinal cats, ERK may be detrimental for stepping generation.

Potential mechanisms responsible for step training-induced plasticity in reflex

transmission

A variety of mechanisms may explain the occurrence of modulation in the transmission of

input in reflex pathways after SOI and step-training including morpho-functional changes in

motoneurons and/or changes at the premotoneuronal level arising from dishinibition. The

first type could include changes in intrinsic properties of the motoneurons, changes in

motoneurons morphology and or synaptic growth. The second type might be attributable to

a modulation of presynaptic inhibition and or postsynaptic transmission from afferent

fibers. Plastic changes in a reflex pathway can occur in motoneurons, interneurons, or

primary afferents.

Motoneuronal properties In previous reports, changes in spinal reflex pathways have

been previously attributed to specific alterations in premotoneuronal mechanisms and not

to changes in membrane properties of motoneurons between acute and chronic spinal

cats (Chandler et al 1984, Munson et al 1984, Baker & Chandler 1987a). The same

conclusion was reached as to explain the increase in monosynaptic reflexes in chronic

spinal cats as compared to intacts (Hochman & McCrea 1994b).

In our experiments, a concomitant decrease in monosynaptic excitation, disynaptic

inhibition and early and late cutaneous excitatory transmission could result from a general

change in membrane responsiveness. However, we show that monosynaptic excitation

and disynaptic inhibition do not covary in the same motoneuron. Additionally, the AHP

duration, which varies systematically with and membrane time constant (Gustafsson &

Pinter 1984b), is found not to be modified by step-training even when motoneurons are

grouped according to motor pools. Changes in resting membrane potential could also be

responsible for a change in PSP amplitude (Powers & Binder 1985, Coombs et al 1955)

but are shown not to be modified. Moreover, our resuits indicate that the stimulation of the

same group I afferents could elicit opposite response patterns in two different pathways: a
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decrease in monosynaptic excitation together with an increase in polysynaptic excitation in

the same motoneuron. Also, a general change in membrane responsiveness is unlikely to

explain the simultaneous increase in cutaneous early excitation amplitude (Ri) and

decrease in late excitation amplitude fR3) observed in a single motoneuron. In addition,

changes in PSP amplitude are shown not to be related to changes in membrane potential

levels during fictive locomotion (LDP) and step-training do not modify LDP peak-to-peak

amplitude. In agreement with others, (Baker & Chandler 1987ab, Hochman & McCrea

1994a-c, Gosgnach et al 2000, Shefchyk & Jordan 1985), we consider that most cf the

plasticity after step-training result from premotoneuronal mechanisms. The exact

contribution of motoneuronal properties to reflex transmission following SCI and step

training remains to be elucidated.

Presynaptic inhibition The previous results suggest that premotoneuronal mechanisms

are mostly responsible for the changes in PSP amplitude in step-trained cats. These

include plasticity induced by training in interneurons of group I pathways and cutaneous

pathways and/or interneurons of presynaptic inhibition. For example, the decrease in

monosynaptic excitation, a pathway in which there is no intercaled interneuron, support

that there could be a role for presynaptic inhibition in step-training related plasticity.

Indeed, presynaptic inhibition is associated with a decrease in transmission in this pathway

during MLR-evoked locomotion as compared to rest (Gosgnach et al 2000) but has not

been reported in spontaneous fictive locomotion in the same preparation (Ménard &

Gossard, personal communication). Cyclic variations of afferent depolarization that could

represent phasic presynaptic inhibition are also observed in many muscle and cutaneous

afferents during locomotion in cats and other species (Nusbaum et al 1997). However, the

extent of plasticity in presynaptic inhibitory networks is still very much unknown. There is

one report of modified presynaptic inhibitory patterns following a nerve crush (Enriquez et

aI 1996). Because presynaptic inhibition may be regulated in a highly selective fashion

(Rudomin & Schmidt 1999), we believe it has a potential role in the plasticity observed

after step-training. Further experiments should be designed to specifically address this

question.

Functional consïderations

Following SOI, supraspinal centers will no longer excite interneurons in inhibitory pathways

from la-lb afferents and Renshaw ceils. Enhancement of the actions of excitatory
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interneurons could on the othet hand be secondary to the Ioss of inhibitory contrai by

descending tract neurons. lndeed, when supraspinai controi cf spinal reflexes is impaired,

the inhibition of the monosynaptic reflex s missing in addition ta a reduced facilitation of

polysynaptic reflexes. In the next sections, we suggest that step-training may help ta

counter the lesion-induced modifications in reflex pathways ta re-express stepping.

Step training-related plasticity may decrease reflex hyperexcitability associa ted with

cionicity and spasticity. There is a persistent hyperexcitability of several spinal reflexes

faliowing SOI because cf the removal cf inhibitory descending inputs from the brainstem

(Holmqvist & Lundberg 1961, Lundberg 1964, Huitborn & Malmsten 1983, Malmsten

1983). Far example, some components cf the flexor reflex mediated by law threshold

sensory afferents increased permanentiy their excitability after SOI in rats (Malmsten 1983,

Valeta-Cabré et al 2004). The withdrawal reflex was aise shown ta be hyperexcitabte after

SOI and suggested ta cantribute ta spasms and spasticity (Ashby & McCrea 1987, Bennett

et al 1999, Rémy-Néris et aI 1999). Similariy, an enhanced monosynaptic reflex has been

asscciated ta spasticity and reported ta interfere with the generatian cf iccamatian after

SOI (Calancie et al 1993, Faist et al 1994, Trimble et al 2001). In aur experiment, step

training decrease the manasynaptic EPSP. Also, cutaneous pathways that shaw a

significant modulation in transmission are mostly depressed by step-training. Because

chronic spinalization induces a facilitation cf reflex responsiveness, step-training may

campensate by narmalizing the levei cf transmissian in these pathways. We suggest that a

concomitant decrease in the amplitude cf cutaneous EPSPs and cf the moncsynaptic

EPSPs following step-training would serve ta counter the hyperexcitabiiity cf reflexes after

SOI and lead ta a mare functional locomotor autput.

Step-training may facilitate the recruitment of extensors to help recover weight

bearing. A raie for group I afferents in the recovety cf motor functians after a lesian ta the

nervous system has previously been demonstrated. Indeed, reflexes regulating the timing

cf phase transitions during stepping and also those reinfarcing the generaticn cf extenscr

activity are enhanced by partial denervation cf ankle extensor muscles (Pearson &

Misiasek 2000) and this would depend an group I afferent feedback (Pearson et al 2003).

Inputs from group I afferents from extensors, Deiter’s nucleus, some reticulospinai fibers in

the medial longitudinal fasciculus (MLF) and pyramidal tract are transmitted thtaugh
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common polysynaptic pathways that can enhance and promote extensot activity foilowing

L-DOPA injection (Leblond et al 2000, 2001). in spinal animais, the facilitatory effect of

descending tracts on extensors during the stance phase is lost and weight-bearing is

greatly impaired. Thus, it is likely that after SOI, lb interneurons are mainly excited by

group I afferents and also from cutaneous afferents. Our resuits showed that step-training

appears to enhance the effects of clonidine in the reduction of disynaptic group I inhibition

and reversai to polysynaptic excitation. Because it is believed that polysynaptic excitatory

group I pathways transmit locomotor drive to extensor motoneurons (Gossard et al 1994)

and that load-related feedback during the stance phase contributes signiflcantly to the

generation of activity in extensors (Ghoti & Luckwiil 1985, Dietz et al 1992, Hiebert &

Pearson 1999, Stephens & Yang 1999, Sinkjaer et al 2000), we suggest that the latter

changes would facilitate the recruitment of antigravity muscles to assist the recovery of

weight-bearing during stepping. In addition, longer periods of locomotor training (3 months)

further decteased the group lb disynaptic inhibition and increase polysynaptic excitation in

extensors, and this even without clonidine (Côté et al 2003b). This further suggests that

plasticity in group I pathways after step-training is not transient, but persist over months,

and it develops and progresses over a period of time. This wouid further facilitate extensor

activity during the stance phase of stepping.

Normally, the monosynaptic reflex in ankie extensors reaches its maximum soon after the

onset of the EMG, at the time the foot normaily touches the ground. Conversely, the reflex

is minimal late in the extension phase, just before the foot leaves the ground so that a

perturbation will flot interfere with the forthcoming swing phase (Akazawa et al 1982,

Capaday & Stem 1986, Crenna & Frigo et al 1987, Simonsen & Dyhre-Poulsen 1999).

Intracellular recordings show that the maximal amplitude of the monosynaptic EPSP

occurs during the depolarized phase of the motoneuron when the muscle is active

(Schomburg & Behrends 1978b, Pertet & Cabelguen 1980, Shefchyk et al 1984, Gossard

1996, Ménard et al 1999, 2003). We report that the maximal amplitude of monosynaptic

EPSPs occurs in the opposite phase in the chronic spinal cat. It was shown that the

monosynaptic stretch reflex might contribute to the level of EMG activity during stepping

(Yang et al 1991b, Sinkjaer et al 1996, 2000, Stem et al 2000). A disrupted modulation of

monosynaptic transmission could lead to a decrease in ankle extensor muscle activity

during stepping and this may interfere with functional walking in untrained animais. We

also report that step-trained animais recovered a normal modulation pattern of the

monosynaptic reflex mndicating a maximal la-motoneuron transmission during the stance

phase to enhance weight-bearing.
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In addition, a major finding in our studies is that cutaneous transmission is predominantly

modified in pathways to MG motoneurons, par(icularly when activated by MPL afferents.

MG is an extensor muscle invclved in weight support during the stance phase cf stepping.

The plantar surface cf the foot, MPL receptive field, presumably provides phasic inputs

during ground contact and also cenvey information concerning ground surface. Reflexes

evoked by the plantar surface cf the foot can promote extension during stance and

interrupt the swing phase duting locomotion (Duysens & Pearson 1976, Duysens 1977,

Guertin et al 1995). Our results indicate that both step-training or CPG activity in untrained

spinal cats (fictive locomotion) result in a net excitatory action from MPL te MG motet pool.

Thus, we suggest that plasticity in at least some cutanecus pathways wculd result in a

better recruitment of the MG motet pool during ground contact. This may further help to

recover weight bearing.

Do plastic changes in reflex pathways contribute to locomotor recovery? During

locomotion, reflexes function as te preserve balance and ensure a stable walking pattern

througheut the cycle. Muscle and cutanecus reflexes act tcgether in an integrated manner

to adapt the motor output but aIse contribute significantly te the generatien cf force. After

SOI, reflex may ne longer function as efticiently during stepping. Modifications are

observed in beth muscle and cutaneous pathways following step-training, but ene may ask

if these changes are effectively invclved in the reccvery cf locomotion and if the

electrophysiolegical assessment cf spinal cord reflexes is a useful teol te investigate spinal

cerd functional reorganization follewing SCI and step-training. It was recently shewn that

the resteration cf stepping, when facilitated by epidural stimulation cf the spinal cord,

coincide with the restoration of late polysynaptic responses (Lavrcv et al 2006). Morecver,

a contributien cf enhanced reflex function in improving locomotor performance is indicated

by recent experiments in which aduit spinal rats were treated with olfactory ensheathing

cells (Ramon-Cueto et al 2000). The Iccomotor performance on an incline grid was

strengly cerrelated te the appearance of cutaneeus and proprioceptive reflexes. This may

suggest a contribution cf enhanced reflex functien in improving the locemetor

performance.

However, scme cases were reported in which alteratiens in descending and segmental

reflexes did net correlate with functienal reccvery (Nerrie et al 2005). The recovery cf a

skilled lecomotor task in the trained group occurred before the recovery in ground support

and prcprieceptive reflexes. The authers thus suggest that reflexes had littie impact en the
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improvement in accurate stepping. Accurate placing movements may indeed recruit direct

cortical pathways. However, it is important to note that in this latter experiment, reflexes

were studied in a stationary position and might have needed the locomotor program to

reveal further changes in reflex pathways. Another important factor is the time course of

plastic processes. It is quite possible that plasticity involving upper motor areas precedes

piasticity in lower levels. For example, the increase strength of reflexes regulating the

timing of stance to swing transition and reinforcing the generation of extensor activity in

denervated animais was shown to take days to weeks to fully deveiop and are estabiished

while animais are behaving normally (Wheian & Pearson 1997, Pearson & Misiaszek

2000, Gritsenko et al 2001). Plasticity is a dynamic process and invoive mechanisms that

evotutes over time. An additional example is the peak facilitation of the H-reflex that was

observed 45 days post-lesion in SOI rat and then decreased over time (Valero-Cabré et al

2004).

In our study, reflex transmission was evaluated one month after the complete spinal cord

lesion and!or onset of step-training. Further studies are needed to directly address the

question whether the changes in reflex pathways parallel the improvement of the

locomotor pattern over time. Also, the extent of piasticity in so many sensory pathways

(group Il, articular, nociceptive) and circuits (propriospinal, recurrent and reciprocal

inhibitory) is stili unknown. it is most likely that severai mechanisms and networks

(including CPG piasticity) are involved to ultimateiy iead to stepping recovery and none of

them taken independentiy may fuliy correlate with the improvement in the stepping pattern.

Future directions

Among the many unknowns, issues and experiments that our study raised, some of the

most important inciude the unknown gamma bias and the role of converging lb and

cutaneous inputs.

The parallel excitatory control of cx- and y-motoneurons projecting to one muscle and the

corresponding la inhibitory interneuron activation ailows a coordinated activation and

relaxation of antagonist muscle pairs. Moreover, another way to alter proprioceptive

feedback is to change the y drive to muscle spindies. Different explanations have been

proposed for the alterations observed in the spinal cord after SCI such as y-motoneuron

depression (Weaver et al 1963) because of the loss of excitatory drive by supraspinal
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afferents. From studies on H-reflexes and monosynaptic EPSPs during fictive locomotion

we better understand the central contribution to sensory modulation. However, during real

locomotion, the la transmission can possibly be determined by the gamma drive. What

happens to gamma activation after SCI and /or step-training is stili very much unclear. This

is also an important issue regarding training and stimulating SCI subjects on the treadmill.

Afferent inputs from load receptors are involved in the modulation of cutaneous reflex

responses which were decreased in amplitude with increasing load. The authots suggest

that a highet body load would improve stability and less reflex activity in cutaneous

pathways is needed (Bastiaanse et al 2000). Conversely, lb reflex pathway s strongly

depressed in motoneurons innervating muscles of the knee following a cutaneous

stimulation (Pierrot-Deseilligny et al 1981a). There is a control of lb interneutonal

transmission evoked by the plantar surface of the foot. Are those pattetns maintained after

SCI? It was shown that plantar cutaneous afferent inputs modulate the SOL H-reflex

differently in intact and SOI subjects (Knikou 2007) suggesting that it may not be the case.

Further research is needed to evaluate the sensorimotor integration between lb and

cutaneous pathways and their relative contribution to the motor output after step-training.

Activity-dependent plasticity after SOI involves essentially ail the elements of the nervous

system from neuromuscularjunction to the brain. It most likely extend beyond neurons and

synapses to invoive glia and vasculature. Our resuits suggest that stimulation of particular

sensory pathways could contribute to the plasticity underlying locomotor recovery. This

basic knowledge may help refine therapeutic strategies by means of electrical stimulation

or neurorehabilitation to decrease spasticity, reduce neuropathic pain, or optimize the

walking pattern in SOI patients. Experimental protocols can be conceived to emphasize

some sensory modalities.
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