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ABSTRACT

The aim of this study was to define the relative contribution of self-generated

cutaneous and proprioceptive feedback to haptic shape discrimination by

systernatically constraining the exploratory strategy. Subjects (n=1 7) explored pairs

oftwo-dimensional, 2-D, angles (standard angle, 900; comparison angles, 91° -103°)

placed at arrn’s length from the subject, and identified the larger angle of each pair.

The exploratory strategies included: static touch of the intersection of the two bars

that fonued the angle using the index finger, D2 (cutaneous feedback), dynamic scan

of D2 over the entire object [combined cutaneous and proprioccptive (shoulder)

feedback], and dynamic scans of the object using a hand-held tool (propnoceptive

feedback, shoulder). When using D2 for exploration, discrimination thresholds (75%

correct) were very sirnilar for dynarnic touch (5.1 ± 0.09°) and static touch, with

thresholds in the latter case being independent of the duration of the static contact (<

1 s, 5.4 + 0.9°; 3 s, 5.7 ± 0.8°). These observations suggested that cutaneous

feedback alone may be sufficient to explain 2-D angle discrimination, because the

added proprioceptive feedback did not improve performance. Threshold also did flot

vary with the number of dynarnic scans (one or two), suggesting that the critical

information is gathered on the first pass over the angle. In contrast, when the angles

were explored with the tool, threshold was increased, 10.8 + 1.9°, in relation to the

corresponding reference condition from the same session (dynamic scan with D2, 4.5

+ 0.8°). Thus, performance was poorer when only proprioceptive feedback was

present, consistent with cutaneous feedback being relatively more important than

proprioceptive feedback for 2-D haptic angle discrimination, at least in sorne

conditions. The resuits are discussed in relation to clinical sensory testing and the

development of haptic interfaces.

Keywords: active touch; shape; cutaneous; proprioceptive;human psychophysics
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RÉSUMÉ

Le but de cette étude était de définir la contribution relative du feedback

cutané et proprioceptive auto-généré dans la discrimination haptique de la forme en

contraignant systématiquement les stratégies d’exploration. Les sujets (n17) ont

exploré des paires d’angles bidimensionnel, 2-D, (angle standard, 900; angles de

comparaison, 91° - 103°) placées à la longueur de leur bras en identifiant l’angle le

plus grand de chaque paire. Les stratégies d’explorations incluaient: un contact

statique court de l’intersection des deux barres qui formaient l’angle à l’aide du doigt

d’index, D2 (rétroaction cutanée), ainsi qu’un toucher dynamique D2 au-dessus de

l’objet en entier (rétroaction cutanée et proprioceptive combinée) et un toucher

dynamique de l’objet a l’aide d’un outil tenu dans la main (rétroaction proprioceptive,

épaule). En utilisant D2 pour l’exploration, le seuil de discrimination (75% correctes)

était très similaires pour le toucher dynamique (5.1 ± 0.09°) et le toucher statique,

avec des seuils dans le dernier cas indépendant du temps de contact statique (< I s,

5.4 ± 0.9e; —‘3 s, 5.7 ± 0.8°). Ces observations suggèrent que le feedback cutané seul

est suffisant afin d’expliquer une discrimination d’angle 2-D car le feedback

proprioceptif ajoutée n’a pas amélioré la performance. Aussi, le seuil ne varie pas

avec le nombre de scan dynamique (un ou deux), suggérant que l’information critique

est récolté dans le premier scan de l’angle. En contraste, lorsque les angles furent

explorés avec l’outil, le seuil a été augmenté (10.8 ± 1.9°), en relation avec la

condition référence de la même session (scan dynamique avec D2, 4.5 ± 0.8°).

L’observation suggère que la performance est inferieure lorsque seul la rétroaction

proprioceptive est présente, mais non modulée avec setilement la rétroaction cutanée,

que le feedback cutané est relativement plus important que la rétroaction

proprioceptive pour la discrimination haptique d’un angle 2-D, au moins dans

certaines conditions. Les résultats sont discutés en relation à l’examen clinique

sensoriel et au développement d’interfaces haptique.

Mots clés: toucher actif; la forme; cutané; proprioceptive; psychophysique humaine.
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INTRODUCTION
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The skin, whichfrom head tofoot relates us sensitively to the world in which we live,
our matrix, is indeed our most consistentÏy active and informing organ ofsense. In a
dark vacuum where only minimal sight, hearing, taste, smell and muscle activily
would be possible, the skin cotdd stilÏ report something of the nature of the
surroundings: dry, cold, wet, hot, soft, hard, pressure. This was at one time our total
awareness ofthe nature ofthe sheltering womb.

Joan M. Erikson, Wisdom and the $enses; the Way of Creativity, 1988

1.1. INTRODUCTION

The capacity of humans to recognize an object on the basis of its shape using

somesthetic inputs from the hand is a compiex abiiity. Sensory signais aiiow one to

appreciate many parameters of an object such as its size, forrn, texture, consistency

and temperature. The relevant sensory information is itseif derived from multiple

sources inciuding receptors localized in the skin and in deep structures (muscles and

joints). According to Gibson (1966), tactile abilities can be separated into three

categories: 1) Cutaneons touch. This implies stimulation of skin and subcutaneous

tissues, without joint movement. An example would be touching a surface, or being

touched by an object; 2) Haptic totich implies stimulation of cutaneous structures

(skin and adjacent tissues) together with movement of the joints. “Haptic”, according

to Gibson (1966), is derived from Greek word ‘haptikos” which means “to take hold

of “. An example would be grasping and exploring any 3D object and; 3) Dynamic

touch which is similar to haptic touch, with the added elernent being the sense of

effort, as for example. when an obj cet is lified to estimate its weight.
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The aim of this study was to investigate the effects of modifying the

exploratory strategy on the ability of subjects to discriminate small differences in

shape, specifically two-dimensional (2-D) angles, using haptic touch. Exploration

was systematically constrained to determine the relative contribution of cutaneous

and proprioceptive feedback to shape discrimination.
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1.2. LITERATURE REVIEW

This review concentrates on four subjects that are important for haptic touch.

These include a description of 1) the various mechanoreceptors involved; 2) the

exploration strategies used to extract specific object properties; 3) the different modes

of touch and 4) our current knowledge of the human ability to discriminate

differences in shape.

1.2.1. Mechanoreceptors involved in haptic touch

1.2.1.1. Cutaneous mechanoreccptors

Our current knowledge of the cutaneous mechanoreceptors involved in

discriminative touch is based on an extensive body of literature from both animal and

human studies (reviewed in Darian-Smith 1984), derived in great part from studies of

the glabrous, or hairless, skin ofthe hand. Cutaneous afferents have been categorized

according to: 1) their speed of adaptation to mechanical stimulation. Slowly adapting,

or SA, afferents discharge continuously during maintained pressure (over many

seconds); in contrast, rapidly adapting, or RA, afferents respond only to the

application and removal ofmechanical stimulation, falling silent during the period of

maintained stimulation; 2) their location on the skin (superficial or deep). The
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terminais of SAI (type I) and RAI afferents are superficially located while SAlI and

RAIl endings are located in deeper layers of the dermis and; 3) the size of their

receptive field. SAI and RAI afferents have small receptive fields while SAIT and

RAIl afferents have large receptive fieids. Ail four types of cutaneous afferents are

thought to end in relation to specialized end-organs, and ail are innervated by large

diameter, myelinated afferents (A beta).

It is presumed that SAI afferents end in relation to Merkel celis superficiaily

located in the glabrous skin, in the basal lamina of the epidermal ridges. Individual

SAI afferents brandi over an area of approximately 5mm2 in the deepest layers of the

epidermis (Iggo et al. 1982). They are densely distributed over the fingertip. Their

receptive fleld is small and well-defined, approximately 2-3 mm in diameter. In terms

of the transmission of information, recordings from monkey SAI afferents indicate

that they faithfully signal detailed information about the spatial structure of surfaces

(Johnson 2001). They have a high spatial resolution and are extremely sensitive to

local curvature (Lamotte et al.1987 a,b, Srinivasan et al. 1987, Goodwin 1997). In

fact, they are the only type of utaneous afferent that responds with sufficient acuity

to explain human performance in spatial form (e.g. Braille characters) and texture

recognition tasks. Their innervation density on the fingertip is approximately 12-

3$/mm2 in humans (Bolton et al. 1966) and 47-60/mm2 in monkeys (Paré et al. 2002).

The responses of SAI units to repeated skin indentation are invariant (the variability

is around 1 impulse/trial). and they are the only cutaneous afferents that respond

linearly to skin indentation, up to 1.5 mm (Blake et aÏ. 1997). Overall, these afferents

have properties that are consistent with an important role in signailing surface texture,
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spatial form and also local shape. Along with SAlI afferents, they are the only

cutaneous mechanoreceptors that can signal maintained touchlpressure. finally,

recent resuits indicate that their discharge also contributes to the sense of effort

(Jones 2006).

RAI afferents are presumed to branch to innervate Meissner’s corpuscles. These

end-organs are superficially located in the dermal papillae protruding up into the

epidermis (reviewed in Johnson et al. 2000). Each RA afferent innervates a number

of corpuscles. The receptive field is relatively smali (around 3-5 mm in diameter) on

the fingerpads but larger receptive fields are found on the proximal phalanges and the

paim (Darian-Smith 1984). RAIs are thought to be critical for the detection of light

touch (Johansson and Vailbo 1979) and respond weil to transient deformation,

particularly to low-frequency vibration (flutter) on the skin surface, <60 Hz (Taibot

et al. 1968). The most important function of RAIs may be the provision of feedback

signais for grip control (Johansson 1996, Johnson et ai. 2000).

RAIl afferents innervate Pacinian corpuscies (onè afferentlcorpuscle). The most

sensitive mechanoreceptors, RAils have a large, poorly defined receptive field. Less

densely distributed in the hand than either SAI or RAI units (around 350/finger and

800 in the paim), they are found in the deep dermis (Johnson 2001). They have three

important characteristics:1)they can respond to lOnm of stain motion at 200 Hz

(Brisben et ai. 1999); 2) they have a powerful filtration system (60/dB/decade) so that

low frequencies are filtered out; 3) they can follow (one-to-one) vibration frequencies
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of 100-150Hz. Because ofthese response properties, RAils produce a faithful neural

image of transient stimuli transmitted through objects held in the hand and so may

play an important role in perceiving objects through the use of hand-held tools

(Johnson et al. 2000).

• SAlis are thought to end in relation to Ruffini endings but this has recently been

challenged (Paré et al., 2002). SAlI afferents are reported in human glabrous skin

(Knibestol et al.1970) but flot in monkey glabrous skin (Johnson et al.2000). Slowly

adapting, SAlI receptive fields are five times larger than for SAI afferents. SAIT

sensitivity to skin indentationldeformation is six times poorer than for SAI afferents.

They are more sensitive to lateral skin stretch than the SAI units. SAIT units are

thought to play an important role in signalling the position of the fingers and the

hand, and so potentially contributing to global shape perception (Edin and Abbs

1991; Edin 1992; Edin and Johansson 1995). Cutaneous afferents including SAH

afferents likely play a role in signalling movement about other joints (elbow, knee) as

well (Collins et al. 2005). Microstimulation of SAI, RAI and RAIl afferents elicits

conscious sensations but activation of single SAIT afferents in general does flot evoke

any sensation (Valibo et al.1984).The latter observation, along with their poor spatial

resolution (Phillips et al. 1990), makes it unlikely that SAIT afferents contribute to

discriminative touch.
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1.2.1.2. Proprioceptors in muscle and joint

The term proprioception is derived from the Latin word “proprius”, meaning

“one’s own”. Proprioceptive feedback plays an important foie ifi motor controi, and

this at multiple levels, including the spinal cord (reflexes), and higher centers

(balance, coordination, movement). This term also refers to the perception of three

variables: movement (both amplitude and anguiar veiocity), position and force (Jones

1994). Information about these parameters is largeiy, but flot exciusively (see above),

signaiied by receptors located within the deeper tissues (muscle, tendon, joint

capsules and ligaments).

Skeletal muscles contain two types of slowiy adapting mechanoreceptors:

muscle spindles and Goigi tendon organs.

Muscles spindies, known since before the time of Shenington, are the most

compiex and studied mammalian proprioceptor (Gandevia et al. 1996). They are in

fact considcred the most important source of proprioception (Matthewsl98$).

Anatomicaily, muscle spindles are smaii, encapsulated sensory receptors. Muscle

spindies are found in the body of a muscle, aligned in parallel with, and embedded in,

extrafusal muscle fibers. The muscle spindie is composed of small, specialized

muscle fibers known as intrafusal muscle fibers, of which there are three types:

dynamic nuclear bag fibers (bagi fibres), static nuclear bag fibers (bag2 fibres), and

nuclear chain fibers. Muscle spindles have both a sensory and motor innervation.

There are two types of sensory endings: the primary and secondary endings which
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are found in the central region of the intrafusal fibers. A single group la afferent (the

largest myelinated afferent) innervates ail three types of intrafusal fibers, fonning the

annulospiral ending. A group Il sensoty fiber (intermediate size of afferents)

innervates both the nuclear chain and static bag fibers forming the secondary endings

(flower-spray endings on either side of the primary ending) (reviewed in Clark et al.

1986, Gandevia 1996). The motor innervation of the muscle spindle is provided

mainly by the gamma motoneurons, or fusimotor axons that terminate exclusively on

intrafusal fibers. Some spindies are innervated by beta motoneurons

(skeletofusirnotor) that branch to innervate both extra and intrafusal muscle fibers.

Muscle spindie stretch sensitivity is controlled by gamma motoneurons: shortening

the polar regions of the intrafusal fibers leads to stretching of the noncontractile

central region (region where the sensory endings are located) and increased firing of

the group Ta and fi afferents.

As reviewed by Matthews (1988), during muscle stretch, primary endings

(group Ta afferents) fire more than the secondary endings. la afferents are sensitive to

both muscle length changes (movernent) and the velocity of stretch (dynamic

sensitivity), while the secondary endings (group fi afferents) are sensitive to muscle

length only (length detector/degree of stretch). Thus, the primary ending is more a

movement detector whule the secondary ending is more a length detector. The

perception of limb position and movement are both thought to depend primarily on

muscle spindie signais (Clark et al.1986. Jones 1994; Scott and Loeb 1994; Gandevia

1996). A contribution from the motor command, or efference copy, lias heen

suggested (Gandevia et al. 2006).
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• Golgi tendon organs (GTOs) ai-e another type of encapsulated sensory receptor

located in series with muscle fibers (unlike the muscle spindies which are located in

parallel with muscle fibers) at the junction of the muscle fibers with the tendon. for

the OTOs located at the muculo-tendinous junction, cadi tendon organ typically bas

10-20 muscle fibers inserting into it. It has been shown that more than 90% of Golgi

tendon organs are located at the musculo-tendinous junction, while the remainder are

found in the tendon (Gandevia 1996). The GTO is innervated by a single large

diameter group lb afferent. Tic terminal branches of the afferent are intertwined with

the collagen bundles that form the tendon. When the muscle (and tendon) are

stretched, the terminals are compressed, and the 010 discharges. Golgi tendon

organs respond to stretch of tic tendon fascicles, but are most sensitive to chaiges in

contractile force when the muscle contracts (Jami 1992, Clark and Horch 1986,

Gandevia 1996). Their primary role is to signal active muscle tension and flot passive

tension, je. muscle stretch (Jami 1992). GTOs are considered to play an important

role in the sense of effort, along with contributions from cutaneous afferents and the

motor command or efference copy (Gandevia 1996, Jones 1994).

• Joint receptors are found both in the joint capsule and associated ligaments

(Matthews 198$). A varietv of specialized end-organs have been identified including

Ruffini (especially in the capsule), Golgi (ligaments) and paciniform endings. These

are innervated by larger, myelinated afferents. Both slowly and rapidly adapting

response properties have been reported. In earlier studies. it was the joint receptors
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that were considered the most important proprioceptors for the sense of position and

movement (reviewed in Matthews 1988). But, subsequent studies showed that joint

afferents are most sensitive during extreme positions (flexion and extension) with

only a few responding in the midrange (Clark and Horch 1986, Gandevia 1996).

Muscular contraction can, however, change their operating range (Gandevia 1996). In

general, joint afferents are now considered to play a protective role by signaling and

preventing hyperextension and hyperfiexion of aj oint.

1.2.2. Exploration Strategies

We know that a variety of object properties can be recognized using haptic

exploration. The haptic system uses both cutaneous and kinesthetic inputs generated

during manual exploration and, possibly. knowledge of the motor commands

generating the exploration (corolÏary discharge). Although movement is not essential,

relative motion between objects and the skin improves the perception of qualities

such as texture (Katz 1925). Lederman and Klatzky (1987, 1990) documented a

number of pattems of exploratory procedures (EPs) used by subjects that depend on

the attributes the subjects were instructed to explore: texture, hardness, thermal

properties, weight, volume, and/or object function etc. Different stereotypical

movements are used, depending on the distinct dimensions of knowledge sought. for

example, when extracting information about surface texture the subject moves their

hand repetitively, in a back-and-forth manner across a surface (“lateral motion” EP).

When hardness is explored, the subject applies a force to one part ofthe object while

another part of the object is stabilized with an opposing force. In the same pattem of
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thought, thermal properties are evaluated by “static contact” (an object is supported

extemally while one of the hands rests on the object passively). Weight is explored

by an unsupported holding procedure and the subject lifts the object. The global

shape and the volume of an object are extracted through an enclosure procedure,

whereby the fingers and the paim of he hand are molded around the contours of the

object. To extract global and precise shape, subjects use a contour following

movement. Lederman and Klatzky noted that manual exploration of object shape

consists of a two-stage sequence. The first stage is a highly generalized routine

(“grasp and lift”) followed by a series of more specialized hand movement pattems.

Thus a wide range of EPs are employed when exploring objects using touch, each

being specialized to extract specific object characteristics.

Turvey (1996) adopted a different conceptual approach towards analysing

haptic exploration. 11e focused on dynamic or effortful touch as a haptic subsystem.

Dynamic touch was defined as the process that occurs when an object is grasped and

wielded in different ways, such as pushed, raised, turned, lowered or transported, in

order to judge the dimensions of the (unseen) wielded object (such as weight, length

or width).

Another way to explore an object is by using some form of interface such as a

hand-held tool. Recently there has been increased interest in determining perceptual

abilities associated with tool use with a view to developing haptic interfaces for

applications such as laparoscopie surgery and surgical training (cg. Kim et al.2004;

Tholey et al.2005; Weiss et al. 2003). for example, Klatzky and Lederman (1999)
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studied the perception of roughness with the bare finger and also with a hand-held

probe. They found that subjects can discriminate differences in surface texture

(roughness) when this is explored using a hand-held probe, but performance was flot

as good as with the bare fingertip. In a similar way, Lederman and Klatzky (2004)

reported that haptic recognition of familiar objects is poor when the objects are

explored indirectly (probe or a rigid sheath) as compared to a bare finger.

In contrast to the resuits obtained with texture and object recognition, Lamotte

(2000) found that subjects can discriminate the softness ofrubber objects equally well

with either the fingertip or a hand-held stylus. $ubsequently, however, Tholey et al.

(2005) reported diminished compliance discrimination when using a hand-held

laparoscopic tool, possibly because of differences in the quality of the feedback with

the tool. Further experiments are thtis needed in order to determine, using other

tasks, the extent to which performance is modified using a hand-held tool.

It is only recently that investigators have began to systematically explore the

limits of human sensory capacities when interacting remotely with the environment.

Soechting and collaborators (Henriques and Soechting 2003, Henriques and

Soechting 2005, Henriques et al. 2004) have been using a 2-jointed arm with a

programmable force field to produce shapes and assess how well subjects can

synthesize information about shape. Their resuits have shown that subjects make

consistent errors when reproducing haptic shapes, including errors in length

estimations and angles (Henriques et al.2004), and distortions in overail shape

depending on the complexity ofthe explored shape (Henriques and Soechting .2005).
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1.2.3. Modes of touch

Sensory information can be gathered using active or passive touch, and there is

an ongoing controversy as to whether the two modes of touch are equivalent. Gibson

(1962) in particular proposed that passive touch should be regarded as an atypical or

unnatural experience because the sensory signais are generated by external sources.

He feit that active touch, being seif-generated and involving simultaneous activation

of deep and cutaneous receptors, is a different and richer sensory experience. In

support of this, he showed that active touch is superior to passive touch in the tactile

recognition of 2-D shapes.

Since Gibson there have been numerous studies comparing active and passive

toucli. Many tactile abilities are similar with active and passive touch (reviewed in

Chaprnan 1994), altbough a few studies have reported a superiority for active touch

(Relier 1984, 1986). Studies that found no difference did not controi exploration time

(Grunwald 1966, Vega-Bermudez et al. 1991), and this may be an important factor

(Sinclair et al. 1991).

The absence of large differences between active and passive touch bas led rnany

authors to assume that sensory processing is the saine in both situations (Vega

Bermudez et al. 1991). This conclusion is difficult to accept because there is

paradoxically, a lot of evidence that sensory signais are suppressed, or gated, during
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active movement (reviewed in Chapman 1994, see also Seki et al. 2003; Bays et al.

2005).

How can we explain why studies do not find evidence that passive touch is

actually better than active? In fact, there are three explanations for this paradoxical

observation. firstly, most psychophysical studies used discrimination tasks. Relative

differences are, flot too surprisingly, preserved with gating. Secondly, psychophysical

studies comparing active and passive touch have generally used very slow

movements. It may be that the movements were so slow that there was no, or minimal

gating during active movement (Chapman et al. 198$). Thirdly, few studies

controlled the length of time that subjects explored the stimuli.

It seems clear, on the other hand, that active touch enjoys an advantage over

passive touch in that subjects collect their own sensory impressions, orienting the

exploring digits so that the most sensitive skin areas are in contact with the object.

Movement may also be slowed as critical features are explored (Chapman 1994).

Together, these factors help to explain the perceptual equivalence of active and

passive touch.

1.2.4. Haptic shape discrimination

Studies of haptic discrimination of object shape are difficult because shape is

multidimensional. Extraction of global shape is difflcult because multiple

somatosensory mechanisms are involved in the extraction of 3-D information. The
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information can corne frorn position cues involving multiple joints, and from a wide

range of skin contact patterns with an object. One approach to the problem has been

to study local curvatures, which are sensed with the fingertips. Goodwin et al (1991,

1992) reported that subjects can discriminate differences in local curvature about 10-

18% (Weber fraction, AS/S) and this ability is independent of the area of skin contact.

Gordon and Morison (1982) reported much less precision (differences of 83-86%) in

discrimination performance with larger macro curvatures.

Another approach to define haptic abilities was taken by Roland and

Mortensen (1987). They fabricated 3 series of solid objects (spheres, ellipsoids and

rectangular parallelepipeda), systematically varying their dimensions. They found

that the mean discrimination threshold for size decreased with decreased size of the

spheres, fotiowing the law of Weber (AS/S) constant. The Weber fraction was of

the order of 1.6%-3.9%. Subjects were ten times better at detecting differences in

curvature (ellipsoids pairs) than differences in size (spheres). The sensitivities for

curvature and size were in turn better than sensitivity for linear variables e.g. side

length ofthe parallelepipeda. It is striking that for atask that recruit’s only cutaneous

feedback (local curvature) the Weber fraction is much larger (10-18%) than for this

task, exploring 3-D objects, that recruits both cutaneous and proprioceptive feedback

is Weber fraction 0f (1 .6%-3.9%). These results suggest that sensory performance is

better in tasks that recruit multiple sources of sensory receptors (cutaneous, muscle,

tendon ami joint receptors) and where both cutaneous and proprioceptive feedbacks

are present.
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More recently, Voisin et al (2002a) measured the hurnan ability to discriminate 2D

angles, using a contour following EP that involved scanning the angles by moving the

digit (D2) of the outstretched arrn over the angle in a single to and fro motion. It was

shown that subjects can discrirninate angular differences as small as 50 (900 vs. 95°).

Subsequently, they showed that that both cutaneous feedback from the skin of the

finger and kinaesthetic feedback from the shoulder joints contribute equally to the

performance of the task (Voisin et al.2002b). Cutaneous feedback was elirninated

with the use of ]ocal anaesthesia of D2; proprioceptive feedback was elirninated by

displacing the angles over the immobile finger. Threshold was increased when either

source of feedback was suppressed.

Subjects could no longer perform the task when both sources of feedback were

eliminated. These findings indicated that 2D angle discrimination is critically

dependent on both cutaneous and proprioceptive feedback, i.e. haptic inputs.

Cutaneous feedback cornes from the pattern of the skin in contact with the angle,

especially at the intersection of the angle. Proprioceptive feedback. in contrast,

reflects the orientation of the two bars that forrn the angle. There was, however, sorne

indication that proprioceptive feedback rnight be more important than cutaneous

feedback because there was a larger increase in threshold when only cutaneous

feedback was available (4.5°) as cornpared to when only proprioceptive feedback vas

present (3.2°). The authors concluded, conservatively, that both sources of

information were equally important for haptic angle discrimination.
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1.3. AIM 0F THE STUDY

This study is a logical extension of previous work, 110W concentrating on

defining the relative contribution of self-generated cutaneous and proprioceptive

feedback to haptic shape discrimination by systematically constraining the

exploratory strategy. In order to determine the contribution of cutaneous feedback to

2-D angle discrimination, we tested the ability of subjects to discriminate 2-D angles

when the exploration was restricted to the angle of intersection. In this study, in

contrast to Voisin et al. (2002b) which used passive touch, exploration was controlled

by the subject (active touch), and consisted of either a short static touch (<1 s,

reproducing the pattem of contact during scans of the whole angle), or long static

touch (— 3s) to eliminate the possible contribution of any movement-related gating of

sensory input to the results (Chapman 1994; Williams and Chapman 2002). In order

to determine the contribution ofproprioceptive feedback to 2-D angle discrimination,

exploration was performed using a hand-held tool instead of the finger. Using a tool,

subjects evaluated either the orientation ofthe modified bar (so reducing the task to a

single dimension) or the global 2-D form. for ail experiments, the reference condition

corresponded to an active scan of the index finger over the whole angle, providing

both cutaneous feedback from the finger, and proprioceptive feedback from shoulder

rotation.
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Abstract

The aim of this study was to define the relative contribution of self-generated

cutaneous and proprioceptive feedback to haptic shape discrimination by

systematically constraining the exploratory strategy. Subjects (n17) explored pairs

oftwo-dimensional, 2-D, angles (standard angle, 90°; comparison angles, 91° -103°)

placed at arm’s length from the subject, and identified the larger angle of each pair.

The exploratory strategies included: static touch of the intersection of the two bars

that formed the angle using the index finger, D2 (cutaneous feedback), dynamic scan

of D2 over the entire object [combined cutaneous and proprioceptive (shoulder)

feedback], and dynamic scans of the object using a hand-held tool (proprioceptive

feedback, shoulder). Discrimination thresholds (75% correct) were very similar for

dynamic touch (5.1 ± 0.9°) and static touch (D2). In the latter case, the thresholds

were independent of the static contact duration (< 1 s, 5.4 ± 0.9°; 3 s, 5.7 ± 0.8°).

These observations suggested that cutaneous feedback alone may be sufficient to

explain 2-D angle discrimination, because the added proprioceptive feedback did flot

improve performance. Also, threshold did not vary with the number of dynamic scans

(one or two), suggesting that the critical information was gathered on the first pass

over the angle. In contrast, when the angles were explored with the tool, the threshold

increased, 10.7 ± 1 .8°, in relation to the corresponding reference condition from the

same session (dynamic scan with D2, 5.2 ± 1.4°). Performance was poorer with

proprioceptive feedback alone, which suggests that cutaneous feedback was relatively

more important for 2-D haptic angle discrimination in the present experiment.

Keywords: active touch, shape, cutaneous, proprioceptive, human psychophysics.



22

Introduction

The human capacity to recognize objects on the basis of their shape, as

defined by active exploration using the hand, is a complex ability. The actual

exploration generally requires active movements, and so involves the motor system.

The sensory information itself is derived from multiple sources, including receptors

located in the skin and in deep structures (muscles, joints). Together this is referred to

as haptic feedback (Gibson 1962). This laboratory recently developed a novel sensory

task, two-dimensional (2-D) angle discrimination (Voisin et al. 2002a,b), with the

aim of describing the sensitivity of the haptic system to features that contribute to

defining haptic shape. A series of 2-D angles (900 to 103°), consisting oftwo bars

and an intersection, were constructed, and subjects were asked to scan pairs of angles

by sliding the index finger (D2) ofthe outstretched arm over the angles using a single

to-and-fro movement. To date, we have shown that humans can discriminate angular

differences of the order of 5°, 90° versus 95° (Voisin et al. 2002a), and that both

cutaneous and proprioceptive (deep) feedback contribute to this ability (Voisin et al.

2002b). In ail cases, the motor strategy was defined for the subjects (above).

This study is a logical extension of our previous work, now concentrating on

defining the relative contribution of self-generated cutaneous and proprioceptive

feedback to haptic shape discrimination by systematically constraining the

exploratory strategy. Based on the results of our previous study (Voisin et al. 2002b),

we concluded that cutaneous and proprioceptive feedback contribute in equal

measure to 2-D angle discrimination, since threshold was systematically higher when

either source of feedback was disrupted (local anaesthesia to block cutaneous

feedback; passive movement of the angles over the immobile finger to eliminate
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proprioceptive feedback). These were, however, fairly dramatic disruptions in

sensory feedback, and we could flot rule out the possibility that the quality of the

remalmng sensory feedback was compromised. That is, the scanning movements

might have been modified by the cutaneous anaesthesia of the index finger (D2), thus

modifying the quality of the proprioceptive feedback. Similarly, the pattem of skin

contact during passive scanning of the angles over the immobile D2 may flot have

been identical to that generated during active to-and-fro scans over the 2-D angle.

furthermore, the exploratory strategy was changed from active, self-generated

feedback during the reference condition to passive touch (subject immobile) in the

modified condition. Although we matched the parameters of movement used by the

subjects themselves, it remains that the subject was immobile so that the sensory

input may not have been optimized as in active touch (e.g. small adjustments in digit

orientation that may occur during active scans).

In this study, we took another approach, systematically modifying the

exploratoîy strategy in order to limit the source of sensory feedback available for 2-D

angle discrimination. The aim was to determine whether one source of feedback is

more precise than the other, or altemately whether there is some redundancy in the

encoding of 2-D angles across the two modalities, cutaneous and proprioceptive. In

ail cases, the explorations themselves were active so that the inputs were self

generated.

In our task, salient cutaneous feedback is generated by the pattem of skin

contact when D2 is scanned over the two bars that form the angle, but most

particularly when the finger contacts the intersection of the two bars. Indeed, most

subjects report using the pattem of cutaneous feedback from the intersection to
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perform the task, along with a mental image of the whole angle (Voisin et al. 2002a).

In this study, we tested the ability of subjects to discriminate 2-D angles when the

exploration was restricted to the angle of intersection (range, 90 to 103 o) a simple

static touch (< 1 s), approximating the time spent in contact with the intersection

during active to-and-fro scans. For comparison, a longer static touch (—.3 s) was also

tested to eliminate the possible contribution of any movement-related gating of

sensory input to the results (Chapman 1994; Williams and Chapman 2002).

In our original design, movement was limited to the shoulder by placing the

apparatus at arm’s length from the subject. This was repeated here, but cutaneous

feedback from the finger was now eliminated by substituting a hand-held tool for the

finger. Using the tool, subjects evaluated either the orientation ofthe modified bar (so

reducing the task to a single dimension) or the global 2-D form. For ail experiments,

the reference condition corresponded to an active scan of the whole angle, with

cutaneous feedback from D2 and proprioceptive feedback from shoulder rotation.

Surprisingly, the results suggest that, at least for this range of 2-D angles,

cutaneous feedback alone can be as good as combined cutaneous + proprioceptive

feedback. In contrast, performance in conditions with only proprioceptive feedback

was poorer than the combined condition. Aitogether the results are consistent with

cutaneous feedback making a relatively larger contribution to 2-D angle

discrimination than proprioceptive feedback.
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Materials and Methods

Subjects

Subjects were 17 healthy aduits (11 women and 6 men; 19-32 years of age).

Ail subjects were right-handed with the exception of one left-handed subject in

experiment 2. Participation was voluntary and compensated. The institutional ethics

committee approved the experimental protocoi, and ail subjects gave their informed

consent before participating in the experiment. The first experiment (n1 1) consisted

of two sessions (60 and 90 min long). The second experiment (n=6) comprised a

single $0-min session.

Angles

The angles were constructed of 1cm thick Plexigiass, as described by Voisin

et al (2002a). The angles were formed by the intersection of two 8-cm long arms.

The range of angles varied from 90° to 103°. During each trial, a pair of angles was

presented consisting of the standard 90° angle and one of four comparison angles of

91°, 95°, 99°, or 103° (Fig lB) inserted into an apparatus (Fig lA). The first angle

presented of each pair was either the standard or the comparison angle (order quasi

random and counterbaianced).

Haptic discrimination task

Subjects were seated in a chair with the experimental apparatus positioned at

arm’s length, at the level ofthe shoulder. The experimenter adjusted the apparatus SO

that the angles, once inserted into the apparatus, were perpendicular to the subject’s



26

outstretched arm. Ail testing was performed with the angles positioned at 300 to the

right ofthe subject (Fig lA). View ofthe apparatus was blocked with a mask attached

to a hat (shaded area, F ig lA). Auditory eues were blocked by having the subjects

wear ear muffs (20dB noise reduction). At the beginning of the session, each subject

received written and verbal instructions indicating that they were going to explore

pairs of two-dimensional (2-D) angles and that their task would be to identify which

angle of each pair was larger. Subjects were asked to keep their arm and finger

straight throughout the scan, in order to limit angular changes to the shoulder joint,

and were directed to position their finger on the angle such that the glabrous skin of

the middle phalanx of the right index finger (D2) contacted the angle during the scan

(nail up).

The general sequence ofevents in each condition was as follows: (1) the first

angle was installed in the apparatus; (2) the experimenter guided the subject’s finger

to the starting position; (3) the subject explored the first angle then withdrew from the

angle; (4) the second angle was installed in the apparatus and the exploration

sequence was repeated (— 5-s delay between scans); and (5) the subject then verbally

reported which angle was greater, and the experimenter recorded this response. No

feedback on performance was given. For the experimentai conditions that involved

dynamic scanning of the entire angle (see beiow), one angle of cadi pair was slightly

shifted 40 on its vertical axis to encourage the subjects to evaluate the whole angle

rather than only the second arm of the angle (Voisin et ai. 2002a). Subjects were not

informed of this shifi, and the order of the shifted angle was counterbalanced across

trials. Before starting a condition, the exploratory strategy vas explained to the

subject. This was then practised. The perceptual task was tien described and
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practised by having the subject scan a pair of angles with a large difference (900 and

103°). Data collection began afier subjects made two correct discriminations (2-6

trials). To minimize the subject’s fatigue, there was a short pause between each

condition. There was a total of 40 trials (10 trials for each pair of angles) per

condition, order randomized according to a preset list (same for ail conditions and

subj ects).

Afier each condition, subjects were asked to rate the difficulty of the

condition using a scale of O (flot at ail difficuit) to 10 (very difficuit). At the end of

each session, subjects were posed a series of questions regarding the strategy used to

represent the angles. They were aiso asked to estimate the range of angles presented.

In order to describe the physical contact between D2 and the angles, subjects

scanned several angles (90°, 95°, 990 and 103°) coated with ink and an imprint was

then taken. Two conditions were tested: long static touch of the intersection and a

one-pass dynarnic scan over the angles (see below).

Experiment 1

The type of feedback, cutaneous (from the index finger) and/or proprioceptive

(from the shoulder joint), was modified across six conditions tested over two sessions

(A and B, order counterbalanced) separated by an interval of one week. For ail

sessions, testing in one condition was completed before proceding to the next. The

order ofthe conditions was counterbalanced across ah sessions and experiments.

The reference condition in Session A consisted of a single dynamic scan over

each angle tising the right D2 following the sequence abc (Fig lB). Cutaneous

feedback from the index finger and proprioceptive feedback from the shoulder
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contributed to the performance of the task in this condition. Three modified

conditions were tested: two static and one dynamic. For the static exploration (fig

1C), the subject was guided to contact the intersection, b, using either a brief touch

(haptic glance: Klatzky and Lederman 1995) or a longer touch ( 3 s). In both cases,

only cutaneous feedback was available and subjects were specffically instructed to

remain motionless during the contact. The dynamic modified condition substituted a

tool (fig 1C) for the finger, so that only proprioceptive feedback from the shoulder

was available. The scan was Iimited to one sweep over the modified arm (bc, fig lB).

The subject held a molded hand grip (fig lC), with a rigid circular rod (2-mm

diameter, length adjusted to the length ofthe subject’s D2) extending out between D2

and D3.

In session B, the reference condition was the same as that of session A, with

the exception that subjects scanned each angle with two passes over the intersection,

following the sequence abcba (figlB). This was identical to the exploratory strategy

used in previous experiments from our laboratory (Voisin et al. 2002a,b; 2005). In the

modified condition, the two-pass exploration was repeated using the tool instead of

the index finger, in order to test performance in the presence of proprioceptive

feedback only.

Experiment 2

Six additional subjects were recruited to repeat a combination of the

conditions tested in sessions A and B of experiment 1. This approach was necessary

as subjects show considerable intersession variability in threshold (Voisin et al
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2002a). The testing in session B was repeated, adding up the reference condition from

session A (single scan with D2, abc).

Data analysis

for each subject and each condition, (40 trials; 4 comparison angles paired

with the standard angle), the discrimination performance was calculated by

computing the proportion of correct responses (PC) for each angle pair. The resuits

were fitted to the following logistic function (Voisin et al 2002a)

PC1/ (1+ e
U (comparison angle-standard angle)

In this equation d is the unique degree of freedom of the logistic curve that was

adjusted to fit the raw data. Discrimination threshold, T (75% correct), was then

computed as follows:

T=d -l ln 1/3

The data from each session were analysed separately using either a repeated

measures analysis of variance (ANOVA, Expt lA and 2) and post hoc contrasts, or a

paired t-test (Expt lB). Ah analysis was done with Systat 9.0 (SPSS, Chicago, IL).

The level of significance xvas set at P< 0.05.

Resuits

Experiment 1

Data were collected in two sessions from 11 subjects. Discrimination

thresholds for short and long duration static touch of the angle of intersection, b, are

plotted in fig. 2A as a function of threshold measures obtained using dynamic toucli
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(one-pass with D2, abc). Inspection shows that the data points are distributed equally

on either side ofthe diagonal une (equality), i.e. there was little difference across the

three conditions [short, 5.4 ± 0.9° (mean ± SEM) and long static touch, 5.7 ± 0.8°; D2

one pass, 5.1 ± O.9°J. An ANOVA confirmed the lack of difference across the four

conditions tested in session A (P=0.908; see also below). The similarity of the resuits,

static versus dynamic, suggests that cutaneous feedback alone is sufficient to explain

2-D angle discrimination. Moreover, this information appears to be gleaned from the

pattern of initial contact with the intersection, since there was no difference as a

function of the duration of the static contact.

figure 2B plots the resuits obtained using the tool (one pass, bc) as a function

of the threshold measures obtained using D2 (one pass, abc; same as in Fig 2A).

Inspection shows that the majority of data points are located above the diagonal,.

consistent with a modest but non significant increase in threshold from 5.1 + 0.9° to

6.6 ± 1.0° when only proprioceptive feedback related to the orientation of the second

arm of the angle was available. It should be noted, however, that the proprioceptive

feedback when using the tool differed from that in the reference condition because the

first arm ofthe angle was not explored. This was addressed in session B: both arms of

the angle were scanned using either the tool or D2. The results (fig 3) showed a

significant increase in threshold when the tool was used (9.6 + 1.0°) as compared to

D2 (6.2 ± 1.00, P=0.018).

The pattems of contact between the glabrous skin of D2 and the angles (90 -

103 0) were characterized in six subjects. for both static (long) and dynamic (one

pass) scans, each imprint consisted of two distinct skin areas on the middle phalanx

(the radial and ulnar sides). The prints were digitized and a number of parameters
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measured: width and area of each skin area in contact; and the distance between the

radial and ulnar contacts. No differences were observed as a function of the mode of

exploration (static versus dynamic, independent t-tests). Two of the parameters were

significantly correlated with angle (P<0.01): as the angle value increased: the distance

between the radial and ulnar skin contacts declined as did the width of the ulnar skin

area. In contrast, none of the parameters showed a significant difference when

comparing measures at 900 with those obtained at 950 (conesponding, approximately,

to threshold in these experiments).

Experiment 2

One possible explanation for the failure to obtain a significant difference

when using either static touch or the tool in the first experiment (session A), as

compared to the reference condition (one dynamic scan with D2, abc), was that

performance in the reference condition may flot have been optimal. In other words,

threshold may have been higher in this condition as compared to when two scans

(abcba) were used. This was addressed by recruiting a further six naive subjects and

having them perform the conditions tested in session B of experiment 1 along with

the reference condition from session A. The resuits confirmed those obtained in

session B. Figure 4A shows that the thresholds were increased when the tool was

substituted for D2 (10.7 ± 1.80 versus 5.2 ± 1.4° respectively). In contrast, no

difference was seen for one-pass (4.9 ± 1.3°) versus two-pass scans using D2 (Fig.

45). These impressions were confirmed with an ANOVA: there was a significant

difference across the three conditions (P=0.005). Post hoc analyses indicated that

thresholds were higher using the tool (P=0.03) as compared to the reference
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condition. No difference was seen between a single or double pass using D2

(P=0.49), indicating that a single pass provided sufficient information on which to

base the perceptual response.

Subject reports

The perceived difficulty of the tasks varied considerably between subjects,

from a Iow of 3/10 (relatively easy) to 10/10 (very difficuit). Overail, the difficulty

ratings showed no systematic changes across the various test conditions. For

example, in session A (expt 1), subjects rated long static touch as the easiest of the

four conditions (mean, 5.6 ± 0.5) and the tool as the most difficult (6.8 ± 0.5). The

differences were flot, however, significant (ANOVA, P0.437). Although there was a

weak trend for thresholds to covary with difficulty (linear regression, P0.056), this

was not conflrmed in the other sessions.

For the conditions in which subjects explored both arms of the angle, most

subjects used some form of mental imagery, visual or otherwise, to representthe

angles (15/17). A majority of subjects recognized that one ofthe angles was 90°. The

estimated range of angles was much larger (mean, 50°) than the actual range

presented (13°, from 90°-103°) and the majority of subjects (9/17) thought that angles

smafler than 90° had been presented.



33

Discussion

11e present study showed that haptic discrimination of 2-D angles is

surprisingly insensitive to large changes in the exploratory strategy, including

restricting the exploration to a single pass over the angle or a single static contact

with the intersection. Only one strategy, substituting a tool for the exploring finger,

produced an increase in threshold. Taken together, the results suggest that cutaneous

feedback may be relatively more important than proprioceptive feedback for haptic

angle discrimination, at least in the experimental conditions studied here.

One- versus two-pass haptic exploration

The approach taken in this study was to strictly control the exploration

strategy, to ensure that between-subject differences in search strategy did flot

contribute to the resuits. Many studies put no, or minimal, lirhits on exploration time,

and there is evidence that some tactile sensory abilities are improved with increased

exploration. for example, Sinclair and Burton (1991) fottnd that texture

discrimination threshold decreases when the number of passes over the surfaces is

increased. Soechting et al (Epub 2005) more recently reported a similar observation

for haptic recognition of shape, whereby accuracy in reproducing the contours of

virtual objects is highest for contours that are explored the most. The present resuits,

in contrast, showed no difference as a function of the number of passes over the

angle, one or two. One explanation for this resuit is that it may be that further

exploration (three or more passes) is required in order to demonstrate an advantage

for haptic discrimination of 2-D angles with increased exploration. We would argue
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against this interpretation because similar resuits were achieved with an even more

limited exploration strategy, static touch. An altemate explanation is that the critical

information for haptic discrimination of angles is obtained during the first pass over

the angle, with the second pass contributing littie or nothing to task performance.

Indeed, several subjects in one of our previous studies (Voisin et al. 2002a) reported

using sensory cues generated mainly on the first pass over these same angles. Further

to this, we have also found that the motor strategy used during haptic categorization

of these same 2-D angles is characterized by slower movements on the flrst as

compared to the second pass over the angles (unpublished observations, G Michaud, J

Voisin, CE Chapman). The latter observation may, on the other hand, be task

specific: Voisin et al (2002a) reported that in the task used here there is no significant

difference in speed across the first and second spans. Nevertheless, they pointed out

that there was a trend for slower movements on the flrst (versus the second) pass.

Static versus dynamic haptic touch

No difference was found in 2-D angle discrimination threshold when static

touch (cutaneous feedback from the intersection) was compared with dynamic touch

(proprioceptive + cutaneous feedback as the subject scanned the two bars and the

intersection). Thus, the presence of proprioceptive feedback did flot appear to provide

any additional information, so that cutaneous feedback alone may be sufficient for the

task of 2-D angle discrimination. At first gtance, this finding contradicts our previous

conclusion that both proprioceptive and cutaneous feedback contribute to 2-D angle

discrimination (Voisin et al 2002b). The latter conclusion was based on the

demonstration that threshold increases when either source of feedback is selectively
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eliminated (see Introduction). Thus, logically, we expected to see an increase in

threshold during static touch. Several factors may have contributed to our resuits.

First, the resuits obtained with static touch may have been biased to lower values by

the fact there was no shifi applied to one of the pair of angles explored. In contrast,

the reference condition testing (dynamic scan with D2) included a small 40 shifi

applied to the orientation of one of each pair of angles presented. We previously

showed that threshold tends to be lower when no shift is applied (Voisin et al 2002a).

Second, the results may reflect that fact that there is redundancy in the coding of 2-D

angles — that both sources contribute equally, but the relative weight of each

contribution may vary with the testing condition. At a minimum, the resuits confirm

that cutaneous afferent feedback is important for 2-D haptic discrimination. Third,

and perhaps rnost importantly, the methods for acquiring the cutaneous feedback

were very different in the two studies. In this study, the cutaneous feedback was self

generated (active touch): subjects actively lowered their finger onto the unseen

intersection. In our previous study, the cutaneous input vas externally generated

(passive touch): the subject was immobile, and the angles were displaced over the

passive finger. Sensory feedback may flot have been optimized in the latter study, as

the subjects did flot make the normal small adjustments in digit orientation and/or

contact force that may occur during active scans. following this reasoning, our failure

to find the expected increase in threshold with static touch may, in fact, reflect the

superiority of active touch over passive touch. This topic has been the subject of

debate since the time of Gibson (1962), with some authors arguing that the two

modes of touch are equivalent (Vega-Bermudez et al 1991). There is, on the other

hand, considerable evidence that tactile inputs are gated during active movement, yet
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paradoxicaÏly there is almost no evidence to show that passive touch is superior to

active touch (Chapman 1994).

Further to this, the long static touch condition (-3 s) was included to

determine whether movement-related gating of cutaneous feedback contributed to

haptic angle discrimination. We reasoned that cutaneous feedback during short touch

(< 1 s), or what Lederman and Klatzky (1995) terrned a “haptic glance”, might be

compromised by the presence of movernent-related gating (Chapman 1994; Williams

and Chapman 2002). As threshold was similar in both conditions, we conclude that

gating did flot contribute significantly to the results. A role for gating cannot, on the

other hand, be cornpletely excluded because subjects tended to rate the long touch

condition as less djfflcult than the short touch condition.

Tool use and haptics

When only proprioceptive feedback was available (tool substituted for the

finger), threshold increased. This observation was in marked contrast with the lack of

any change in 2-D angle discrimination threshold when only cutaneous feedback was

available (static vs dynamic touch). Although we believe that the static results may

have been modestly biased by the lack of a shift (see above), the results suggest

overali that cutaneous feedback may be relatively more important than proprioceptive

feedback for this task of 2-D angle discrimination.

Two factors may have contributed to the reduced performance when the

subject wielded the tool. first, the cognitive demands of the task were modified by

requiring that the subject manipulate the tool. The increased attentional demands

when using the tool may have contributed to the increased threshold (Post and
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Chapman 1991; Zompa and Chapman 1995). Second, the increased threshold may

have reflected an interaction between the proprioceptive feedback and the diffuse

cutaneous feedback from the hand holding the foam-covered handie of the tool. The

latter may have served as a source of noise, degrading the quality of the

proprioceptive signais generated during the exploration. Such a possibility could be

tested by systematically changing the quality of this diffuse feedback, for example by

replacing the polished surfaces of the angles with textured surfaces varying in, for

example, spatial period. An increase in non-specific feedback would be expected to

worsen performance.

The influence of tool use on other sensory abilities has been addressed by

others, and mixed results have been obtained. Katz (1925), for example, showed that

some textures can be discriminated as weli with a hand-held probe as with the bare

finger. More recently, Klatzky and Lederman (1999) reported that roughness

discrimination is impaired when using a probe. They pointed out, however, that their

resuits may have reflected some confusion as to what the subjects meant by their

“rougher” judgments, given that the spacing of the tactile elements on the surfaces

employed varied in more than one dimension (Coimor et al 1990; Mefiah et al 2000).

As regards softness or compliance of objects, LaMotte (2000) found that subjects

could discriminate the sofiness of rubber objects (with variable compiiance) equally

well with direct contact through the fingertip and through a hand-heid stylus.

Diminished performance was, on the other hand, reported by Tholey et al (2005).

Finally, Lederman and Klatzky (2004) found that haptic recognition of familiar

objects is reduced when a probe is substituted for the finger, or if the feedback is

degraded (e.g. encasing the exploring finger in a rigid sheath). Clearly further

.4-
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experiments are needed in order to more fully characterize the human ability to

explore the environment indirectly, using hand-heId tools.

The importance of this issue cornes from the fact that there is now

considerable interest in developing haptic interfaces for different applications,

including the remote operation of instruments and training surgical skills within

virtual-reality environments. The various approaches taken ail share a common theme

in using force-feedback through a hand-held tool or implement to guide the operator

in interacting with the remote or virtual environruent. Studies have shown that force

feedback can significantly improve human performance in real and virtual

environments (Kim et al. 2004; Tholey et al 2005; Yao and Hayward 2005).

Nevertheiess, it does flot appear that performance with the types of haptic feedback

generated now is as good as with the bare hand (Tholey et al 2005), so that future

applications may need to consider methods to amplify the feedback in order to

enhance performance (e.g. Yao and Hayward 2005). Certainly one implication of the

present restiits is that haptic interfaces should concentrate in providing cues

transduced by cutaneous mechanoreceptors.

Nature of the sensory signais

Another implication of the present resuits is that the pattern of skin contact

from the intersection of the two bars forming the angle provides sufficient

information on which to base the discrimination. Although our imprint measures were

not sufficiently precise to show differences across the pattems for the standard and

modified angles at threshold level, the critical parameters appeared to be the distance

between the radial and ulnar contact sites on the middle phalanx and the width of the
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ulnar contact, corresponding to the side of D2 that contacted the modified bar.

further studies are needed to clarify the important parameters. These observations do,

however, provide some insight into the necessary response properties of cutaneous

afferents that contribute to haptic 2-D angle discrimination. Thus, the afferents must

have small, discrete receptive fields that can reliably discriminate small changes in

the pattem of contact. The rnost likely candidates are slowly adapting type I (SAI)

afferents andlor rapidly adapting (RA) afferents (see review by Johnson 2001), as

both have been characterized as having small receptive fields. 0f particular interest

for this study, the spatiotemporal response profile of SAI and RA afferents elicited by

scanning wavy surfaces (alternating convex and concave bars) and other shapes such

as ellipsoids over their receptive field is relatively independent of the way in which

the object cornes into contact with the skin (contact force, orientation of the shape)

(LaMotte et al 1994; LaMotte and Srinivasan 1996; cf Goodwin et al. 1995). Such

characteristics would contribute to generating an invariant central representation of 2-

D shape.

The latter suggestion is complementary to our recent proposal (Voisin et al

2005) that regional variations in proprioceptive acuity (proximal joints more sensitive

than distal joints: reviewed in Clark and Horch 1986) may reflect an adaptation to

generate an invariant central representation of haptic shape. This suggestion was

based on our demonstration that 2-D angle discrimination is identical for explorations

made with proximal and distal joints. Given that both explorations involved the index

finger, however, we need to consider whether the previous findings should be

reinterpreted. Could cutaneous feedback from the exploring digit have been

responsible for the similar thresholds? While cutaneous inputs undoubtedly
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contributed, this was flot the sole source of information because threshold increased

when the proprioceptive feedback from the shoulder was modified by dispiacing the

angles to a more eccentric position, further from the midiine. Under the same testing

conditions, threshold declined when the exploration was restricted to distal

movements, consistent with both cutaneous and proprioceptive feedback contributing

to 2-D haptic discrimination.
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fig. lA. Start position for the reference conditions of the haptic discrimination task.

The angles were held in an apparatus positioned 30° to the right. B. Schematic

representation of the 2D angles, including the standard angle of 90° and two of the

comparison angles, 95° and 103°. The thick unes represent the surface scanned by the

subjects. For all angles, the first arm (lefi, ab) was identical. The scans began either at

position a (shown in A) or position b (shown in C). Subjects made either one pass

(abc, bc or b) over the intersection or two passes (abcba). C. Angles were scanned

with either the right index finger (top, static condition) or a tool (bottom).
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when the angles were scaimed with the tool (two passes, abcba). Plotted as in Fig. 2.
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III. DISCUSSION

The present study has shown that haptic discrimination of 2-D angles is

surprisingly insensitive to large changes in the exploratory strategy, including

exploration that is restricted to a single pass over the angle (cutaneous and

proprioceptive feedback) or a single static contact (cutaneous feedback) with the

intersection. These resuits suggest that the presence of proprioceptive feedback does

flot appear to provide any additional information. Thus, cutaneous feedback alone

may be sufficient to perform the 2-D angle discrimination task. This finding

contradicts the resuits of a previous study from this laboratory, that suggested that

both cutaneous and proprioceptive feedback contribute equally to 2-D angle

discrimination (Voisin et al. 2002b). Several factors may have contributed to the

apparent discrepancy. In particular, the quality of the remaining of sensory feedback

may have been compromised by the procedures employed to suppress cutaneous or

proprioceptive feedback. In addition, the methods tised to acquire the cutaneous

feedback were very different: in this study, the cutaneous feedback was self

generated (active touch), whereas in the previous study it was extemally generated

(passive touch). The sensory feedback may then not have been optimized in the

earlier study (exact orientation of the digit, optimal contact forces).

Only one strategy- substituting a tool for the exploring finger produced a

decrease in performance in this study. While this suggests that proprioceptive

feedback on its own is not as precise as cutaneous feedback, we could not exclude the
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possibility that the other factors contributed to the increased threshold (cognitive

demands, interaction between diffuse cutaneous feedback through the handle with the

proprioceptive signals).Taken together, our resuits suggest that cutaneous feedback is

relatively more important than proprioceptive feedback for haptic angle

discrimination

111.1. Methodological considerations

In this study, several factors may have contributed to the resuits, including the

orientation ofthe head, the delay between successive scans, and the choice of angles.

Other experiments (G.Michaud, J.Voisin, CE Chapman, unpublished) showed

no differences in haptic perception as a function of head orientation when the angles

were explored either in front ofthe shoulder or 300 to the right-corresponding to the

test position here, Therefore it is unlikely that this vas a factor in the present study.

The delay between successive scans can also influence performance. Voisin et

al. (2005) showed that under some conditions, performance was better with a longer

delay (15 vs.5 s). This was not a factor in this experiment because the delay was

constant across ah conditions (— 5s). We can speculate, on the other hand, that

performance with the tool might improve with an increase in delay. future

experirnents could test this hypothesis.

The range of angles used here was limited to 90°-103°. Angles less than

90° were not used because in this case, there is no guarantee that the finger can

explore the entire intersection. Angles greater than 1800 were also flot tested: previous

experiments from this laboratory (unpubhished observations, J.Voisin and CE

Chapman) found that the finger loses contact with the obj cet at the intersection for
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this range of angles. Thus, cutaneous feedback is potentially compromised, justifying

restricting the range of angles to 900l030.

The following text probes several practical applications ofthis haptic angle

discrimination task, specifically its potential clinical applications and the design of

haptic interfaces. To put the former into context, a brief summary of functional

localization in the parietal lobe is first provided.

111.2. Potential clinical applications of the 2D angle discrimination task

Our knowledge of die functional role of different parts of the parietal cortex

cornes from anatomical, physiological and lesion studies. Inferences about function

are, however, dependent on the functional measures used. In the following section, a

surnmary of our current knowledge is presented followed by a brief description of the

types of sensory testing used at present. At the end, the 2D angle discrimination task

is proposed as a potential new clinical measure of haptic function.

111.2.1. Functional localization in the parietal lobe

The prirnary somatosensory cortex (SI) is located in the rostral portion of the

parietal lobe, and the secondary somatosensory cortex (SU) is within the lateral

sulcus. The posterior parietal cortex (PPC) is located caudally, and includes areas 5

and 7. $1 comprises four distinct cytoarchitectonic regions (Brodmaim’s areas 3a, 3h,

1 and 2). Neurons in areas 3a and 3h project their axons to areas I and 2. Experiments

on primates indicate that neurons in areas 3b and I respond mainly to cutaneous

inputs whereas neurons in areas 3a and 2 receive proprioceptive information mainly
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from muscles and joints (reviewed in Chapman et al. 1996). The hand representation

of area 2 is a special case, in that 50% of ceils have a cutaneous receptive field. The

remainder receive proprioceptive input (Iwamura et al. 197$ a,b 1983 a,b 1985 a,b

1993, Hyvarinen and Poranen 1974, 1978 a,b, 1980). The present results indicate that

damage to either the cutaneous or the proprioceptive representations of the hand can

be expected to affect haptic perception.

Lesions of the various somatic sensory areas have provided valuable

information regarding the functions of the different areas. Lesions in area 3 cause

deficits in the discrimination of the texture, size and shape an objects; area 1 lesions

result in difficulties in texture discrimination; and area 2 lesions result in difficulties

in differentiating between objects on the basis of size and shape (Bannister 1985).

Lesions of areas 5 and 7 (posterior parietal cortex) induce deficits that are more subtle

(smaller increase in discrimination tbreshold) and more complex disorders. For

example, lesions of the nondominant PPC can result in a neglect syndrome; with

problems affecting both visual and somatosensoiy perception (body image, extinction

of tactile and visual stimuli etc.)

Deficits in tactile shape perception are associated with a variety of lesions in

the parietal lobe. One specific deficit is astereognosia whereby subjects are unable to

identify objects by touch. This is now often referred to as a deficit in a tactile object

recognition (TOR). Patients with astereognosia can have problems with elernentary

sensory abilities (afier lesions of the hand region in SI) or can have preserved

elernentary sensory abilities and yet be unable to identify objects by touch. The latter
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is seen afier lesions of Su (Garcha and Ettiinger 1980, Casselli 1993) and PPC

(Binkofski et al. 2001).

Another approach to the localization of brain areas associated with haptic

toucli is through neuroimaging studies using methods such as positron emission

tomography (PET) and functional magnetic resonance imaging (fMRI). The resuits of

Bodegard et al. (2001) using PET support the notion that the representation of shape

in humans is a distributed function that is hierarchically organized. Areas 3b and 1

are activated by a variety of stimuli, including surface curvature, and so may

represent a low level analysis of shape. Area 2 is activated more by shape and

curvature, as cornpared to rouglmess or brush velocity. Finally, regions in the

intraparietal sulcus and the supramarginal gyrus are particularly active during active

and passive shape discrimination, and so may represent a higher level representation

of shape.

The picture that now emerges is that visual and haptic shape discrimination

engage, in part, common cortical areas that are generally regarded as visual

association regions. These include the lateral occipital cortex (an occipito-temporal

region) (Amedi et aI.2001; Zhang et al. 2004) and also the rniddÏe occipital area

(Jarnes et al. 2002).
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111.2.2. Brief description of tests used for somatosensory function

Neurological examinations consist of three categories of somesthetic tests

classffied as basic, intemiediate and complex. Note that the following description

concentrates on haptics, and so testing for pain and temperature sensitivity is flot

addressed.

1. Basic somatosensory functions are tested using reÏatively simple standard

cÏinical tests. These can include a variety of measures to evaluate: touch, vibration,

kinaesthesia (movement sense), position sense as well as quantitative measurements

such as a two-point discrimination (calibrated in millimeters) or touch thresholds

(Von frey filaments). Some more sophisticated measures have also been developed

(Novak et al. 2001).

2. Intermediate somatosensory functions can be evaluated in standard clinical

assessments, for example double stimulation to test for the presence of tactile

extinction. Quantitative measurements may be employed (weight, texture, dimension,

shape, orientation), but these are generally used in research studies.

3. Even more complex somatosensory functions can be tested in the standard

exam. The rnost complex and important ability, is TOR, or what was originally called

stereognosia. It is evaluated by placing an unseen object in the hand and asking the

subject to identify it. Common objects used can include a pencil, key, change, paper

clip, etc. If patients are unable to describe an object and its function, this is

categorized as a recognition failure (Casselli 1991,1993).
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111.2.3. The benefits of using a 2D angle discrimination task

At present, reÏatively crude and unsophisticated measures of haptic perception

are employed clinically. These range from simple tests of position sense (finger up or

down) to TOR. More elaborate measures of position sense have been developed for

experimental purposes, but none are easily transposed to the clinic. It is suggested

that the 2-D angle discrimination task might provide a new measure for the clinical

evaluation of haptic perception. Testing with the task is done rapidly. The task is

easy, rapidly leamed by subjects and the results are independent of the joints involved

in the exploration (proximal vs. distal, Voisin et al. 2005). If subjects have some

motor deficits (e.g. stroke), testing could be restricted to static touch. finally, the 2-D

angles are relatively inexpensive to fabricate.

To apply this 2-D discrimination task within a clinical setting, however, there

is a need to collect normative data from a rnuch larger sample of subjects, and this

covering the lifespan (from chiidren to the elderly, including both sexes). The first

step, however, would be to perform some pilot studies to judge the interest of such a

test for patients with neurological lesions. A range of disorders would need to be

tested (peripheral neuropathies to central lesions including stroke victims).

111.3. Potential application of the resuits to the design of haptic interfaces

A haptic interface is defined as a mechanical system that senses forces in

rernote environrnents and delivers these forces to the hand of the user in the forrn of a

haptic display accessed via a rigid link (Lederman and Klatzky 2004). There is now

considerable interest in developing haptic interfaces for applications such as the
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remote operation of devices (e.g. Canadarrn in the space station), minimally invasive

surgery and training surgical skills within virtual-reality environments.

Minimally invasive sïtrgery (MIS), ofien called laparoscopic surgery, has

profoundly influenced modem times. This is a new and growing fleld that, as

reviewed by Badsogan et al.(2004), requires extensive training. This type of surgery

is done by inserting a long slender surgical tool along with a miniature camera into a

smaÏÏ incision to explore and manipulate intemal tissues (abdomen, joints etc): Tt bas

a number of important benefits for patients: they experience less pain, trauma and

recovery is faster. Nevertheless, there are disadvantages for surgeons. First of ail, the

required psychomotor and perceptual skills differ frorn the traditional requirements

because of limitations associated with the technique (Gailagher et ai 2004). With this

type of surgery, surgeons do not have vision of the entire fieid (oniy a srnail region).

Aiso, the haptic feedback is greatiy diminished. The surgeon cannot directiy

manipulate tissues with his hands. Instead ail sensory feedback cornes through the

surgical instrument, and the haptic feedback is not as good as with direct expioration.

The resuits of this study suggest that haptic interfaces should concentrate on

enhancing cues transduced by cutaneous mechanoreceptors.

To date, there bas been relativeiy few atternpts to enhance surgicai feedback.

Severai recent developrnents are. however, notable. Yao and Hayward (2005)

deveioped a probe, consisting of an actuator and an acceierorneter, to ampiify the

tactile feedback as the surgeon probes surfaces in the joint that are out of range of the

camera. This was combined with auditory feedback as well. Their resuits indicated
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that performance is best with combined feedback, suggesting some crossmodal

facilitation, but that either source of feedback alone improved task performance.

Weiss and Okamura (2004) are developing another approach, mimicking the forces

between the fingers that are feit when using scissors on tissue. At present, this new

field is only just developing — further advances are expected in the near future.

A second, but related, approach has been the development of software and

hardware so that medical students and residents can leam and practise surgical

techniques within a virtuat environrnent. This new approach is essential for training

for laparoscopic surgery, and provides a number of advantages such as training

without risk of injury to the patient, constant availability for practising, and

immediate quantitative feedback on performance. One important question is,

however, to know whether skills learned in a virtual environment transfer to a real

environment. Kim et al (2004) recentiy compared real laparoscopic surgery with

virtual surgery, modeling the real environment with various degrees of fidelity (linear

vs. nonlinear modeling of organ eiasticity). Force feedback led to significantly

improved training transfer as compared to training without force feedback and the

different leveis of haptic fidelity affected the training. The latter is an important

observation as it suggests that the quaiity of sensory feedback is a critical factor, an

observation that is consistent with the present results.

The various approaches mentioned above ail share a common theme in using

force-feedback through a hand-held tooi or impiement to guide the operator in

interacting with the remote or virtuai environment. further studies are cleariy needed
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to explore the lirnits of human sensory capacities when interacting remotely with the

environrnent. It is also essential to determine how haptic feedback could be improved.

As reviewed above, the quality of the sensory feedback is a key factor. The present

resuits suggest that future efforts should concentratc on increasing haptic feedback.

Although cutaneous feedback looks to be the most important source of information,

we cannot exciude the possibility that proprioceptive feedback (e.g. actual joint

excursion) may also be an important factor.



CHAPTER IV
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IV. CONCLUSIONS

1. In the present experiment no differences were found in 2-D angle

discrimination when static touch (cutaneous feedback from the intersection; short or

long contact) was compared with dynamic touch (proprioceptive + cutaneous

feedback as the subject scanned the two bars and the intersection). The presence of

proprioceptive feedback did not appear to provide any additional information, so that

cutaneous feedback alone may be sufficient for haptic discrimination of 2-D angles.

2. When only proprioceptive feedback vas available (tool substituted for the

finger), threshold increased compared to the reference condition (cutaneous +

proprioceptive feedback). This observation vas in marked contrast with the lack of

any change in 2-D angle discrimination threshold when only cutaneous feedback was

available (above). Together, the resuits suggest that cutaneous feedback may be

relatively more important than proprioceptive feedback for this task of 2-D angle

discrimination.

3. The resuits indicated that there were no differences in 2-D angle

discrimination as a function of the number of passes over the angle, one or two. This

resuit was interpreted as suggesting that the critical information for haptic

discrimination of angles is obtained during the flrst pass over the angle, with the

second pass contributing littie or nothing to task performance. It remains possible that
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further exploration (>two passes) is needed to demonstrate an advantage for haptic

discrimination of 2-D angles with increased exploration.
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