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Résumé

Le domaine de la biologie moléculaire computationnelle n’en est qu’a ses débuts.
En dépit des technologies modernes permettant de produire et d’archiver de grandes
quantités de données. les modeéles tentant d’expliquer ces données sont encore bien loin
d'un niveau de réalisme acceptable. Par exemple, la plupart des modéles phylogéné-
tiques d’évolution moléculaire reposent sur ’hypothése que chaque position (site) d'une
protéine évolue indépendamment des autres positions. Cette simplification est évoquée
pour des raisons de calcul, bien qu’elle soit biologiquement infondée.

Dans cette dissertation, nous explorons différentes techniques computationnelles
pour I'étude de modeles phylogénétiques avec interdépendance entre les acides aminés
d’'une protéine, ou entre les codons du géne associé. Ces modeles prennent en compte
les interdépendances résultant de la structure tertiaire de la protéine. utilisant des
représentations structurales simplifiées en combinaison avec des potentiels statistiques,
eux-mémes dérivés d'une base de données de protéines ayant des structures connues.
Dans ce contexte, les potentiels statistiques procurent une estimation de la compatibilité
d'une séquence d’acides aminés dans une structure donnée. Ainsi, le critére de compati-
bilité de I’ensemble de la séquence avant et aprés un événement de substitution aura une
influence sur la probabilité d'un scénario évolutif. Nous appliquons une analyse Bayesi-
enne de sélection et d’évaluation de modéle—par I'entremise de calculs numériques de
vraisemblances marginales, et de vérification prédictive—étendu sur plusieurs types de
modeles d’évolution, avec et sans critére de compatibilité structurale. En y considérant
deux niveaux d’interprétation des données (soit focalisé sur des séquences d’acides am-
inés, ou bien sur des séquences nucléotidiques codantes), nous proposons le concept
de référence phénoménologique, comme moyen d’évaluer et de dégager des pistes de
modélisation méchanistique.

Notre analyse sur des données réelles nous indique que les modeéles incorporant des
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considérations de compatibilités structurales apportent toujours une amélioration de la
vraisemblance marginale. Par contre, I'usage d’un potentiel statistique en soi n’explique
pas des caractéristiques bien connues de I’évolution moléculaire, tel que I’hétérogénité
des taux de substitutions entre sites, ou Iinterchangeabilité de paires d’acides aminés.
D’autres études seront nécessaires afin d’établir si de meilleurs potentiels statistiques,
ou d’autres mesures, peuvent arriver & reproduire ces caractéristiques. Pour l'instant,
les meilleurs modéles sont ceux qui combinent un potentiel statistique avec une formula-
tion sous-jacente suffisamment riche et bien construite. Nous proposons plusieurs pistes
de recherche, menant & un cadre qui pourrait éventuellement avoir des répercussions
sur l'inférence phylogénétique, la détection et la caractérisation de pressions sélectives,
la prédiction de structure, l'interaction protéine-protéine, et le dessin de séquences pro-

téiques.

Mots clés : évolution moléculaire; phylogénie; structure protéique tertiaire; poten-
tiel statistique: chaine de Markov Monte Carlo; statistique Bayesienne: modélisation

phénomenologique; modélisation méchanistique.



Abstract

The field of computational molecular biology is at an early stage. Despite major
advances in producing and gathering large quantities of molecular data, the actual
development of models capable of adequately explaining such data are still a far cry
from a suitable level of realism. For instance, most phylogenetic models of molecular
sequence evolution assume that each position of an alignment evolves independently
of all other positions—a computationally motivated simplification well-known to be
biologically unsound.

In this work, we explore different computational methods for the study of phyloge-
netic models that allow for a general interdependence between the amino acid positions
of a protein, or between the codons of the associated gene. The models are focused
on site-interdependencies resulting from sequence-structure compatibility constraints,
using simplified molecular structure representations in combination with a set of statis-
tical potentials, which are themselves derived from a protein database of resolved struc-
tures. This structural compatibility criterion defines a sequence fitness concept, and the
methods developed can incorporate different site-interdependent sequence fitness mea-
surements. We apply Bayesian methods of model selection and assessment—based on
numerical calculations of marginal likelihoods, and posterior predictive checks—to eval-
uate evolutionary models encompassing the site-interdependent framework. Through
our consideration of different levels of data interpretation (either focusing on amino acid
sequences only, or focusing on coding nucleotide sequences), we propose the concept of
phenomenological benchmarking, as a means of guiding and assessing mechanistic mod-
eling strategies.

Our applications of these methods on real data indicates that considering sequence-
structure compatibility requirements, as done here, leads to an improved model fit for

all datasets studied. Yet. we find that the use of potentials alone does not suitably ac-
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count for across-site rate heterogeneity or amino acid exchange propensities, and more
work is needed to establish if richer forms of potentials, or other type of sequence fit-
ness concepts, might better capture such features. In the meantime, the most favored
models combine the use of statistical potentials with a suitably rich and well-posed site-
independent model. We propose several avenues meriting further investigation, leading
to a research expanse with possible impacts on phylogenetic inference, the detection
and characterization of selective features, protein structure prediction. protein-protein

interactions, and computational protein design.

Key words: molecular evolution; phylogeny; protein tertiary structure; statistical
potential; Markov chain Monte Carlo; Bayesian statistics; phenomenological modeling;

mechanistic modeling.
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Preface

In the fall of 2003, I had the good fortune of beginning studies in the bioinformatics
programme at the Université de Montréal, joining a vibrant research group led by
Hervé Philippe. Well aware of the potential of computational methods for studying the
growing banks of biological data, the group’s research activities could be categorized
along two main axes: first, the use of mathematical models of molecular evolution for
inferring the relatedness of species, or phylogenies; and second, the development of
new evolutionary models, which. on the one hand, exhibit robustness in phylogenetic
analysis per se, and, on the other hand, elucidate patterns of the underlying substitution
process. With then post-doctoral fellow Nicolas Lartillot, several projects along these
lines were initiated, of which I had the chance to participate.

The present work is my recapitulation of research endeavors along one of these
projects, which has been the focus of my doctoral studies. The work could be summa-
rized as an exploration of computational methods for implementing richer descriptions
of molecular evolution, with the specific objective of incorporating explicit protein struc-
ture considerations within different models of sequence evolution.

The dissertation is organized in three parts. The first briefly overviews the historical
settings for the recent emergence of the field. and presents the core methodological
framework adopted throughout the text. The second part applies the framework to
revising modeling assumptions at different levels of interpretation. The bulk of this

second part has been the subject of published or forthcoming articles. These are the
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following:

Rodrigue, N., Lartillot, N., Bryant, D., and Philippe, H. (2005). Site in-
terdependence attributed to tertiary structure in amino acid sequence evo-
lution. Gene, 347:207-217.

Rodrigue, N., Philippe, H., and Lartillot, N. (2006). Assessing site-
interdependent phylogenetic models of sequence evolution. Molecular Bi-
ology and Evolution, 23:1762-1775.

Kleinman, C. L., Rodrigue, N., Bonnard, C., Philippe, H., and Lartillot,
N. (2006). A maximum likelihood framework for protein design. BMC
Bioinformatics, 7:326.

Rodrigue, N., Philippe, H. and Lartillot, N. (2007). Exploring fast com-
putational strategies for probabilistic phylogenetic analysis. Systematic Bi-
ology, 56:711-726.

Rodrigue, N., Philippe, H. and Lartillot, N. (in press). Uniformization
for sampling realizations of Markov processes: Applications to Bayesian im-
plementations of codon substitution models. Bioinformatics.

Rodrigue, N., Lartillot, N., and Philippe, H. (submitted). Mechanistic
modeling of amino acid or codon preferences for protein-coding nucleotide
sequence evolution. Submitted to Genetics.

Rodrigue, N., Philippe. H.. and Lartillot, N. (in preparation). Sampling
methods for computing Bayes factors across site interdependent codon sub-
stitution models. Planned for Journal of Computational Biology.

The presentation does not, however, follow the “dissertation by articles” format, where
a set of articles would be included untouched. Rather, I have tried to re-work the
material into a more unified whole. This has considerably reduced the length of the
document, while allowing for a homogenization of the mathematical notation, and a
clearer emphasis on the main themes of the thesis. Portions of text, figures, and tables
from published articles appear with permission from the respective journals, as well as

all co-authors. Finally, the third part of the dissertation describes specific calculations
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Part 1

Foundations



Chapter 1

Historical background

If, during the long course of ages and under varying conditions of life, organic
beings vary at all in the several parts of their organization, and I think this cannot
be disputed: if there be, owing to the high geometric powers of increase of each
species, at some age, season, or year, a severe struggle for life, and this certainly
cannot be disputed; then, considering the infinite complexity of the relations of
all organic beings to each other and to their conditions of existence, causing an
infinite diversity in structure, constitution, and habits, to be advantageous to
them, I think it would be a most extraordinary fact if no variations useful to any
organic being do occur, assuredly individuals thus characterized will have the best
chance of being preserved in the struggle for life; and from the strong principle
of inheritance they will tend to produce offspring similarly characterized. This
principle of preservation, I have called, for the sake of brevity, Natural Selection.

—CHARLES DARWIN, Origin, p. 127

1.1 Introduction

The objective of evolutionary biology is to propose a mechanistic and historical expla-
nation for the intricate attributes and similarities of different living things. The core
of this explanation is commonly associated with Charles Darwin (1809-1882), and his
famous book On The Origin of Species by Means of Natural Selection. or the Preser-
vation of Favoured Races in the Struggle for Life, commonly contracted to the simple

title Origin (Darwin, 1859). Beyond its purely biological implications. Darwin’s main



message, summarized in the opening citation, has had a profound impact on conceptu-
alizations of self, and of mind, stimulating an ongoing revolution of the general world
view. In contrast with the Copernican revolution, which had not attracted wide-spread
interest until the scientific details had been resolved, the Darwinian revolution was en-
gaged with important pieces of the theory still missing, and altogether devoid of precise
mathematical characterization.

In this first chapter, we outline the main historical and philosophical developments
contributing to evolutionary thought, beginning with a brief overview leading to the
Darwinian core, and the Ewolutionary Synthesis that subsequently emerged among
biologists in the 1930s and 1940s. We next introduce early discoveries in molecular
biology, and set forth the modern enterprise of computational evolutionary biology.
The literature on the rise of evolutionary thought is vast. For accessible and engaging
accounts of the movement, see Burrow (1966), Oldroyd (1980), or Dennett (1995).
The present overview merely sketches in contour the main turning points leading to
the subject of this thesis, and provides a schematic description of phenomena to be

mathematically modeled in later chapters.

1.2 The Darwinian core and the Evolutionary Syn-
thesis

The basic concept of biological evolution can be traced back to the pre-Socratic Greeks.
Anaximander (610-546 BC) is thought to be one of the earliest proponents of evolution-
ary thinking, proposing the first speculations to an aquatic origin of life. However, the
fizist! influence of Plato (428/427-348/347 BC) and Aristotle (384 322 BC) has dom-

inated most occidental cultures. Judeo-Christian cultures in particular have vehiculed

1A fizist views organismal forms as static, or fixed over time.



the fixist perspective, and only after the Enlightenment would truly transformist! views
take firm rooting in wider discourses. Nonetheless, the concept of species relatedness
was pervasive in some form or another throughout history, which had allowed organ-
isms to be classified into formal groups. The most influential figure in developing such
a classification was Carolus Linnaeus (1707-1778). Yet even Linnaeus did not offer a
causative explanation for the relatedness of organisms. subscribing to the prevailing
fixist view.

The work of Jean-Baptiste Lamarck (1744-1829) was a noteworthy turning point.
Lamarck’s transformist theory proposed that organisms are somehow intrinsically driven
toward complexification—the giraffe stretching and strengthening its neck to attain
higher leaves—and that traits acquired by individuals are passed on in the next generation
having put such efforts into stretching and strengthening its neck, the giraffe’s offspring,
so goes the theory, have longer and stronger necks. Lamarck’s proposal was viewed with
skepticism. Although Darwin himself accepted the possibility that acquired traits might
be passed on, he considered the appeal to the “drive” of organisms of weak explanatory
power. Ultimately, Lamarckian transformists received their final blow from the work of
August Weisnamm (1833-1914), who observed the distinction between germ line and
soma, and generally excluding the possibility of somatically derived characteristics be-
ing passed on to offspring. Nonetheless, the ideas set forth by Lamarck were important
in inspiring truly transformist theories.

The field of geology was also a burgeoning science in the 19* century. In particular,
the principle of uniformitarianism? was expounded by Charles Lyell (1797-1875). who.
based on observations of erosion rates, determined the Earth to be at least millions of
years old. These observations were influential in setting a new time-frame for interpret-

ing the diversity of organisms, and Darwin is said to have brought Lyell’s then recently

! A transformist acknowledges that organismal forms are subject to transformation over generations.
2The principle of uniformitarianism states that basic forces acting in the geological past are the
same as those acting in the present.



published Principles of Geology on his five year voyage around the globe.

Another key contribution came many years earlier from political economics, with
the work of Thomas Malthus (1766-1834). In his Essay on the Principle of Population
(Malthus, 1798), Malthus pointed out that exponential population growth—displayed
under plentiful conditions of existence—must eventually be kept in check, ultimately
by the limited resources of a finite world. Malthus’ examples were anthropomorphic,
but nonetheless had a profound impact on Darwin, helping him crystallize the concept

of natural selection:

In October 1838, that is, fifteen months after I had begun my systematic inquiry,
I happened to read for amusement Malthus on Population, and being well pre-
pared to appreciate the struggle for existence which everywhere goes on from long-
continued observation of the habits of animals and plants, it at once struck me that
under these circumstances favorable variations would tend to be preserved, and
unfavorable ones to be destroyed. The results of this would be the formation of a
new species. Here, then I had at last got a theory by which to work. (From Dar-
win’s autobiography, retrieved online at http://onlinebooks.library.upenn.edu/.)

Darwin was well aware of the epistemological implications of his theory, which di-
verged markedly with the main stream theological, social and political agendas of his
day. For years he remained reluctant to openly come forward with his ideas. until he
received a letter from another naturalist, Alfred R. Wallace (1823-1913), expounding

the basic elements of the theory. Wallace later recounted how he formed the theory:

Something led me to think of the positive checks described by Malthus in his
essay on population. These checks—war, disease, famine, and the like—must
act on animals as well as on man. While pondering vaguely on this fact there
suddenly flashed upon me the idea of the survival of the fittest—that the in-
dividuals removed by these checks must be on the whole inferior to those that
survived. (From Alfred Russel Wallace: Letters and Reminiscences, retrieved
online at http://manybooks.net/)

Upon reading Wallace's first correspondence on the theory, Darwin wrote:

I never saw a more striking coincidence. If Wallace had my M.S. sketch written out
in 1842 he could not have made a better short abstract! Even his terms now stand
as Heads of my chapters (Darwin. 1858. in a letter to Charles Lyell, from The Cor-
respondence of Charles Darwin, retrieved online at http://www.darwinproject.ac.uk/).



Wallace had been influenced by the same body of work as Darwin, and their inde-
pendent convergence on the concept of natural selection testifies to it being a mature
free-floating rational at the time, ripe for articulation and serious consideration. Indeed,
the main ideas of Darwin and Wallace had already been presented in outline, in 1813
by William Charles Wells (1757-1817), and again (independently) in 1831 by Patrick
Mathew (1790-1874). Despite the anticipations of Wells and Mathew, and the conver-
gence of Darwin and Wallace, the theory has historically been attributed to Darwin,
mainly due to the breadth of his treatise.

The basic elements of the theory, which we refer to here as the Darwinian core, can

be broken down into the following argument (modified from Gould, 2002, p. 125):
o Super-fecundity: Organisms tend to produce more offspring than can survive.

e Variation: Organismal forms tend to vary, so that each individual bears distin-

guishing features.
e Heredity: An organism'’s offspring tend to be characterized similarly to it.

e Natural selection: Organismal forms endowed with variations well-suited to the
conditions of existence will tend to be more successful in producing offspring than

ill-suited variations; well-suited variations thus come to dominate the population.

Despite debates among theoreticians from the early-20*" century onward, this basic ar-
gument is not put into question. In the modern literature, the Darwinian core argument
is often taken for granted, for instance, appearing only in footnote in Gould’s big book
The Structure of Evolutionary Theory (2002).

When the theory was first proposed. however, several outstanding questions re-
mained. By far the most important of these was the question of inheritance: how are
organismal attributes transmitted to offspring? In 1865. six years after Darwin’s Origin,

Gregor Mendel (1822-1884) published a work demonstrating the existence of discrete



heritable determinants, now called genes, which can be passed on largely unchanged
over generations. Unfortunately, Mendel's work went unnoticed, and debates regard-
ing the basic workings of inheritance continued until 1900, when Mendel’s work was
rediscovered.

The discovery of Mendelian inheritance had the surprising (in hindsight) effect of
increasing skepticism for the Darwinian core. In particular, the mutationist school, lead
by Hugo de Vries (1848-1935), William Bateson (1861-1926) and others, considered that
most of the variation in organismal forms could be explained as arising by mutation,
without needing to invoke the principle of natural selection. This view was vehiculed
by the leading geneticists of the early 20*" century, and eventually lead to the opinion

that the Darwinian core had been refuted:

Modern critics have often asked themselves how it is that a hypothesis like Dar-
win's, based on such weak foundations, could all at once win over to its side the
greater part of contemporary scientific opinion. If the defenders of the theory
refer with this end in view to its intrinsic value, it may be answered that the
theory has long ago been rejected in its most vital points by subsequent research
(Nordenskiold, 1928, p. 477).

Over the years 1918 to 1931, biometric analysis synthesized the seemingly disparate
concepts of mutationists and selectionists. In another case of largely convergent theoriz-
ing, Ronald A. Fisher (1890-1962), John B. S. Haldane (1892-1964), Sewall G. Wright
(1889-1988) and Sergei. S. Chetverikov (1880-1959) proposed mathematical models in-
tegrating Mendelian inheritance. mutation, and other biometrical knowledge, with the
Darwinian core. Their work was soon corroborated and expanded by biologists at the
time, in particular Theodosius Dobzhansky (1900-1975), Ernst W. Mayr (1904-2005),
Julian S. Huxley (1887-1975) and George G. Simpson (1902-1984). With this firm
theoretical foundation, and empirical substantiations, a general consensus about the

workings of biological evolution emerged, which came to be known as The Evolutionary

Synthesis (or, more simply, the synthesis).



The basic elements of the synthesis are well described in modern terms by Futuyma

(1986):

The major tenets of the evolutionary synthesis, then, were that populations con-
tain genetic variation that arises by random (i.e. not adaptively directed) mu-
tation and recombination; that populations evolve by changes in gene frequency
brought about by random genetic drift, gene flow, and especially natural selection;
that most adaptive genetic variants have individually slight phenotypic effects so
that phenotypic changes are gradual (although some alleles with discrete effects
may be advantageous, as in certain color polymorphisms); that diversification
comes about by speciation, which normally entails the gradual evolution of re-
productive isolation among populations; and that these processes, continued for
sufficiently long, give rise to changes of such great magnitude as to warrant the
designation of higher taxonomic levels (genera, families, and so forth). (p. 12)

As these tenets gained broader acceptance, another revolution was under way with the
rise of molecular biology, which would introduce a new kind of data, lending itself to a

new level of mathematical analysis.

1.3 Molecular biology

In 1869, Friedrich Miescher (1844-1895) isolated a phosphate-rich chemical he called
“nuclein”, since it was found in the nuclei of while blood cells. The chemical was later
isolated from many other cell types, and was renamed nucleic acid. The biological
function of nucleic acids remained elusive, however, for many years. In 1944. after
over ten years of experimental study, Oswald Avery and colleagues (Avery et al., 1944)
gave the first clue that nucleic acids are responsible for the transmission of genetic
information. In the ensuing years, their results were expanded, in particular by Hershey
and Chase (1952), who demonstrated that deoxyribonucleic acid (DNA) alone is the
hereditary material.

In the late 1940s and 1950s, the structure of nucleic acids was worked out in de-
tail: with few exceptions, nucleic acids are polymers of nucleotides; each nucleotide is

constituted of a nitrogenous base (of which there are four types in DNA), a pentose
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Figure 1.1. Double stranded DNA. The left strand, consisting of A (top) and C (bot-
tom), forms hydrogen bonds (dotted lines) with an anti-parallel strand, consisting of
T (top) and G (bottom). The figure was drawn using ChemTool, availible online at
http://ruby.chemie.uni-freiburg.de/.

sugar (deoxyribose), and a phosphate group. The sugar and phosphate group form the
phosphate-deoxyribose backbone linking nucleotides into a strand. In addition, the ni-
trogenous bases adenine (A) and thymine (T), as well as guanine (G) and cytosine (C),
were found in the same proportions in DNA isolates, a property now called Chargaff’s
rule in honor of its discoverer Erwin Chargaff (1905-2002). This property is explained
by the structural pairing of bases, which in turn relates to the overall structure of the
DNA molecule: the bases A and T, as well as G and C, are said to be complemen-
tary, interacting through hydrogen bonds!; complementary anti-parallel single strands
of nucleotide polymers interact through such bonds, playing a central role in the forma-

tion of double stranded DNA. The chemical arrangement of the components of DNA

are displayed in figure 1.12. The chemical structure of DNA was found to induce a

Many exceptions to such pairings have since been established.

2The similar ribonucleic acid (RNA), which differs from DNA only through the oxidized ribose
sugar, follows the same arrangement. Also, the enzymes involved in RNA synthesis have a much
higher affinity for a variant of thymine that lacks a methyl group, called uracil (U). As such, in RNA,
T is replace by U, which nonetheless forms hydrogen bonds with A.



10

coiling pattern in the double strand, in a manner exposing the hydrophilic backbone,
while burying and piling the hydrophobic nitrogenous bases into a central core. The
now-famous double-helical three-dimensional structure of DNA. as first described by

Watson and Crick (1953), is displayed in figure 1.2.

Figure 1.2. Structure of DNA (PDB code 1D66) in “stick™ (left) and “spacefilling”
(right) representations. The figures were generated using RasMol, availible online at
http://www.umass.edu/microbio/rasmol/.

For cells to proliferate, DNA must be replicated, and it is mainly in this replication
process that “errors” are made; enzymes and regulatory factors involved in DNA repli-
cation may occasionally lead to slight differences in sequences. referred to as mutations.
Other factors may also lead to differences in sequences, such as recombination (e.g.,
chromosomal crossover), or even non-replicative changes (e.g.. cytosine deamination),
and altogether these different factors induce genetic variability.

Before the sweeping advances of the 1940’s and 50’s. it was thought that DNA

was too simple to be able to specify the complex features of organisms. Proteins.,
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however, in their enormous varieties, seemed more likely candidates as the carriers of
genetic information. Proteins are chains of amino acids, of which there are 20 types in
most organisms. An amino acid consists of a carboxylate and an amino group. each
attached to a central carbon referred to as the a-carbon. The a-carbon’s tetra-valence
1s completed by a hydrogen and one of 20 organic substituents, or side chains. The full
chemical structure of the twenty amino acids is displayed in figure 1.3.

A condensation reaction between the carboxyl group of one amino acid and the
amino group of another forms a peptide bond between the two. The chemical structure
of the three amino acid chain, or tripeptide®, is displayed in figure 1.4. The sequence
of an amino acid chain is referred to as its primary structure. The secondary structure
refers to the manner in which a chain coils (e.g., a-helices) or folds over to form lat-
eral interactions with itself (e.g., S-sheets), whereas the tertiary structure refers to its
overall three-dimensional configuration (figure 1.5), formed through networks of inter-
action between amino acids. Finally, the quaternary structure refers to the multimeric
assemblage of different protein subunits.

At the time of the publication by Watson and Crick (1953), the relation between
the sequence of amino acid chains and DNA was not known. In the subsequent years,
a flurry of research in molecular biology produced the modern consensus referred to as
the central dogma of information flow in the cell (figure 1.6). Through the concerted
action of several enzymes and regulatory factors. double stranded DNA momentary
“unzips” (hydrogen bonds between A and T, as well as C and G, are disrupted), and
one of the strands serves as a template for the transcription of a “messenger” RNA, or
simply mRNA, with a sequence of ribo-nucleotides of matching base complementarity;
by convention, a gene’s nucleotide sequence corresponds to that of the mRNA, such

that the opposing DNA strand actually serves as the template. The mRNA itself is

'Referring to a three amino acid chain as a tripeptide is a misnomer, because such a chain involves
only two peptide bonds.
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Figure 1.3. Chemical structure of the twenty amino acids (with single letter abbrevi-
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Figure 1.4. Structure of a three amino acid chain, or tripeptide. Here. R stands for
one of the twenty possible side chains. which characterizes each of the 20 amino acids.
The figure was drawn using ChemTool.

Figure 1.5. Structure of 8-globin (PDB code 4HHB), in backbone “stick” (left) rep-
resentation, and “spacefilling” (right) representation. The figure was generated using
RasMol.

a transient macromolecule, which, following some post-transcriptional modifications,
interacts with a molecular machinery for translation of its sequence into an amino acid
sequence. Each nucleotide triplet along the mRNA codes for a specific amino acid; since
there are 64 possible triplets. or codons, and 20 amino acids, the code is degenerate
(table 1.1). The matching of codon to amino acid is accomplished via adapter RNA
molecules called “transfer” RNA, or simply tRNA. A tRNA molecule has three key
features: 1) it binds a particular amino acid; 2) it has an affinity for a specific codon,
via a complementary nucleotide triplet or anticodon; and 3) it binds to the ribosome,

which coordinates the overall process of translation. The ribosome is the multi-unit
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Figure 1.6. The central dogma of molecular biology. Figure made using Gnuplot,
availible online at http://gnuplot.info/.

macromolecular scaffold (mainly constituted of RNA) over which the mRNA is passed,
one nucleotide triplet at a time, with the complementary anticodon of the appropriate
tRNA binding to each successive codon, enabling the formation of peptide bonds in
the sequence order originally specified by the DNA. The amino acid chain folds into a
particular three-dimensional configuration, and takes on some operational role in the
cell’.

A mapping from DNA sequence to amino acid sequence was thus made possible in
the early second half of the 20" century, and many researchers eventually turned to
the much more daunting problem of producing a mapping from amino acid sequence to
tertiary structure and to protein function. This, as we shall see, constitutes one of the

central endeavors of modern molecular biology.

Of course, exceptions to the central dogma abound (e.g., reverse-transcriptase), and the role of
RNA in the cell goes well beyond what is described here, as much recent research has shown.



Table 1.1. The standard or “universal” genetic code

TTT, Phe, F TCT, Ser, S TAT, Tyr, Y TGT, Cys, C
TTC, Phe, F TCC, Ser, S TAC, Tyr, Y TGC, Cys, C
TTA, Leu, L TCA, Ser, S TAA, stop TGA, stop
TTG, Leu, L TCG, Ser, S TAG, stop TGG. Trp, W
CTT, Leu, L CCT, Pro, P CAT, His, H CGT, Arg, R
CTC, Leu, L CCC, Pro, P CAC, His. H CGC, Arg. R
CTA, Leu, L CCA, Pro, P CAA, Gln, Q CGA, Arg, R
CTG, Leu, L CCG, Pro, P CAG, Gln, Q CGG, Arg. R
ATT, 1Tle, 1 ACT, Thr, T AAT, Asn, N AGT, Ser, S
ATC, 1Tle, 1 ACC, Thr, T AAC, Asn, N AGC, Ser, S
ATA, Tie, 1 ACA, Thr, T AAA, Lys, K AGA, Arg, R
ATG, Met, M ACG, Thr, T AAG, Lys, K AGG, Arg, R
GTT, Val, V GCT, Ala, A GAT, Asp, D GGT, Gly, G
GTC, Val, V GCC, Ala, A GAC, Asp, D GGC, Gly, G
GTA, Val, V GCA, Ala, A GAA, Glu, E GGA, Gly, G
GTG, Val, V GCG, Ala, A GAG, Glu, E GGG, Gly, G

Note.—Each codon is followed by the three letter and single letter abbreviations of the amino acids
they encode. Stop codons correspond to a termination of the translation process.

1.4 Computational evolutionary biology

In the early 1960s, the idea that homologous® bio-molecules (DNA or amino acid se-
quences), sampled from different species, could be analyzed to infer their evolutionary
history was gaining ground (e.g., Zuckerkandl and Pauling. 1962. 1965). This idea. cou-
pled with the rise of information technologies enabling the automation of such analyses.
eventually lead to the modern field of computational evolutionary biology. Indeed,

before the advent of molecular data, evolutionary analyses were typically based on

In evolutionary biology, the term homologous refers to similarities between given features that are
a result of shared ancestry.
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morphological features, subjectively defined into characters, and taking on subjectively
defined states. Molecular sequences. on the other hand, lend themselves to a natural
discretization: characters are defined as nucleotide, amino acid, or codon sites along
the sequence, with each site taking on one of 4. 20, or 61 (excluding stop codons) states
respectively. To the mathematically inclined biologist, such data raised numerous ques-
tions that could be addressed through direct calculation.

One such biologist was Motoo Kimura (1924-1994). With a strong background in
population genetics, Kimura stayed in tune with the developments of molecular biology,
calculating the implications of the new data coming out from the field. In 1968, Kimura
published calculations claiming that the rate of molecular evolution is much higher than
expected under the assumed strength of selection (Kimura, 1968). His conclusion was
that many residue changes must be selectively neutral. This idea, later known as the
neutral theory of molecular evolution, would form the hallmark of much of the rest of
his career.

Plainly stated, the neutral theory asserts that many different versions of a molecule
are selectively equivalent in a population. In other words, selection is indifferent to
these different versions, since each. for whatever reason, performs its biological role
equivalently. This idea was not novel. Darwin himself had stated: “variations neither
useful nor injurious would not be affected by natural selection [...]" (Origin, p. 108).
Nonetheless, the neutral theory sparked intense debate regarding the relative impor-
tance of neutral drift versus selection. To onlookers. the debate was unfortunately
viewed as casting doubt on the validity of natural selection, which was of course not

the case. In his later book, Kimura attempts to clarify:

The neutral theory is not antagonistic to the cherished view that evolution of form
and function is guided by Darwinian selection, but it brings out another facet
of the evolutionary process by emphasizing the much greater role of mutation
pressure and random drift at the molecular level (Kimura, 1983. p. ix).
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With some toning down, namely by striking “much greater”. this statement would likely
be endorsed by most of today's molecular evolutionists.

Another prominent figure in the early years of computational evolutionary biology
is Margaret O. Dayhoff (1925-1983). Besides her interests in cataloging and organizing
molecular data, she and her co-workers proposed the first empirical model of amino acid
sequence evolution, now famously known as the Dayhoff substitution matrix (Dayhoff
et al., 1972, 1978). Using the amino acid sequences available at the time, Dayhoff and
colleagues devised a counting approach to construct a 20 x 20 matrix of substitution
probabilities over a short evolutionary distance (of, say, 0.01 changes per amino acid
site). Their procedure involved several ad hoc choices, for accommodating the sparse
data sets of the day, and for reducing the possibility that inferred single amino acid
replacements may be the result of several unobserved replacements. Nonetheless, the
ideas proved inspiring, and highly useful to those interested in inferring evolutionary

relations, or phylogenies!.

1.5 Conclusions

Kimura and Dayhoff are but two (arbitrary) examples of the type of research and evo-
lutionary analysis made possible by molecular biology. From about the 1980’s onward,
novel molecular techniques have made it possible to sequence far greater amounts of
DNA and amino acid sequences (fig. 1.7a). Technical advances have also made it pos-
sible to resolve three-dimensional molecular structures much more easily and quickly
(fig. 1.7b). Over the same years, the capabilities of computing machines have experi-
enced a similar growth trend. sending most practitioners into an ever-lasting overhaul

of information technology infrastructures.

!The term phylogeny comes from the Greek phyle, meaning “tribe” or “race”, and genetikos, meaning
“birth".



.-’\

18

6e+10 T T T

5e+10

T

4e+10

3et+10

T

Base pairs

2e+10

le+10

0 1 I 1
1985 1990 1995 2000 2005

35000 T T T ==

b

30000 -
25000 ~
20000

15000

Structures

10000

5000

0 ] 1 i
1985 1990 1995 2000 2005

Figure 1.7. Increasing amounts of molecular data. In panel a), the number of
base-pairs in GenBank (http://www.ncbi.nlm.nih.gov/Genbank) is displayed over 20
years, spanning 1985-2005. Panel b) shows the number of structures in the PDB
(http://www.pdb.org/) over the same period. This figure was made using Gnuplot,
as were all other quantitative figures.

Altogether, these developments have driven evolutionary biology into the so-called
genomic revolution, where questions about the underlying evolutionary process, or
about phylogenetic relations, can be addressed based on massive amounts of molec-
ular level data. There has also been a movement away from ad hoc methodologies, with
many researchers now attempting to devise richer mathematical models of molecular

evolution within a sound probabilistic framework. The details of such a framework are

the subject of the next chapter.



Chapter 2

Probabilistic phylogenetic analysis

Suppose you’re on a game show and you’re given the choice of three doors. Behind
one door is a car; behind the others, goats. The car and the goats were placed
randomly behind the doors before the show. The rules of the game show are as
follows: After you have chosen a door, the door remains closed for the time being.
The game show host, Monty Hall, who knows what is behind the doors. now has
to open one of the two remaining doors, and the door he opens must have a
goat behind it. If both remaining doors have goats behind them, he chooses one
randomly. After Monte Hall opens a door with a goat, he will ask you to decide
whether you want to stay with your first choice or to switch to the last remaining
door. Imagine that you choose Door 1 and the host opens Door 3, which has a
goat. He then asks you “Do you want to switch to Door Number 27” Is it to your
advantage [if you wish to maximize the probability of wining the car| to change
your choice?

—Re-statement of the Monte Hall problem, from Krauss and Wang, 2003. p. 25.

Yes, you should switch. The first door has a 1/3 chance of winning. but the
second door has a 2/3 chance.

—Marilyn vos Savant. columnist, responding a reader posing the Monte Hall problem.

2.1 Introduction

The famous Monte Hall problem, described in the opening citations, caused a wave

of astonishment in the 1990’s as a vivid example of people’s deficiency in logically
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handling uncertainties. Even in this simple case, with a clearly defined system to
evaluate, most people’s intuition, including that of trained statisticians, fails to correctly
account for all relevant information when making a choice, and columnist Marilyn vos
Savant had to push through a surprising lengthy series of responses before her readers
correctly recognized the solution!. When the situation under consideration is more
complicated, and when the system under study is not clearly understood, intuition
becomes particularly untrustworthy.

Probability theory offers a natural framework for making decisions or inferences,
which reduces to deductive logic in cases of complete information (Jaynes. 2003). The
Bayesian paradigm in particular is considered a full probabilistic framework, in the
sense that it forces the investigator to explicitly state all assumptions during an analysis.
This view is based on interpreting probabilities as expressions of our state of knowledge.

Gelman et al. (2004) succinctly summarize the framework:

The process of Bayesian data analysis can be idealized by dividing it into the
following three steps:

1. Setting up of full probability model—a joint probability distribution for all
observable and unobservable quantities in a problem. The model should be
consistent with knowledge about the underlying scientific problem and the
data collection process.

2. Conditioning on observed data: calculating and interpreting the appropri-
ate posterior distribution—the conditional probability distribution of the
unobserved quantities of ultimate interest, given the observed data.

3. Evaluating the fit of the model and the implications of the resulting posterior
distribution: does the model fit the data, are the substantive conclusions
reasonable, and how sensitive are the results to the modeling assumptions
in step 1?7 If necessary, one can alter or expand the model and repeat the
three steps. (p. 3)

The first step is a creative process. Indeed, the creative nature of this step implies

!The Monte Hall problem has become a useful tool in cognitive psychology as a means of elucidating
mental strategies to problem solving. Krauss and Wang (2003), for instance, point out that the
correct solution, changing your choice, can be derived from Bayes' theorem. and that the solution is
readily seen when approaching the question from Monte Hall's perspective: “|...] the change from the
contestant’s perspective to Monte Hall's perspective corresponds to a change from non-Bayesian to
Bayesian thinking.” (p. 7)
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that no general method is available for constructing the basic form of a model. Choices
at this step are necessarily arbitrary, and must be evaluated retrospectively in the third
step of the Bayesian framework. Given a model M, specified by some high-dimensional
parameter vector 8 € O, the second step is purely technical, and can be formalized as
an update of our state of knowledge about the hypothesis vector § before observing any
data, the prior probability, written as p(6 | M), to our state knowledge after observing
the available data, the posterior probability, written as p(6 | D. M), and calculated

according to Bayes’ theorem:

p(D |6, M)p(6 | M)

p(6 | D, M) = 2.1
where p(D | 8, M) is the likelihood function, and where
p(D1 M) = [ (D 6,M)p(6 | M)t (22)

is a normalizing constant, also called the marginal likelihood or the prior predictive
probability. The distribution given by (2.1) is the focus of the second step of the Bayesian
framework, whereas the quantity in (2.2) is of interest in the third step.

Until relatively recently, adopting full probabilistic approaches was computationally
prohibitive in most contexts. Over the last decade, however, Markov chain Monte
Carlo (MCMC) computational techniques have permeated across several disciplines as
general and unifying approaches to addressing many of these practical difficulties. The
evolutionary analysis of molecular data has greatly benefited from these advances, which
have sparked several research programs in population genetics and phylogenetics.

In this chapter, we present the evolutionary context and models in greater mathe-
matical detail, focusing on two different levels of interpretation: 1) the amino acid level,
with data consisting solely of aligned amino acid sequences. and 2) the codon level. with

data consisting of aligned protein coding nucleotide sequences. We lay out the com-
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putational methods used for approximating the probabilities of interests, and offer a
few practical examples, of prior structure explorations, of parameter expansion-based

MCMC methods. and of simple means of displaying posterior distributions.

2.2 Data

In the present work, the data available consist of aligned sequences of either nucleotides
or amino acids, sampled across different species. A phylogenetic tree is used as an
account of the evolutionary paths relating the sequences (fig. 2.1). Upon considering
such data, one might first object that evolution occurs over populations, and that evo-
lutionary analyses should be based on markers sampled across members of the same
species, so as to characterize the variation and evolution of these markers over time.
This is indeed a central motivation of population genetics. However, the motivations of
phylogenetic analysis can be considered as encompassing those of population genetics,
by studying variation across a broader range of genetic diversity, and thus attempt-
ing to uncover high-order evolutionary features or patterns that might be too subtle
to detect from population level data. In most cases, phylogenetic analyses make the
assumption of nul polymorphism!, and are based on defining a substitution as the fixa-
tion of a mutation in the population. Phylogenetic models thus consider a substitution
as the elementary event. Loosely speaking, the models focus on long-term evolution-
ary patterns, by attempting to describe an evolutionary process which, over time, could
plausibly have panned out to produce the aligned set of extant sequences. Furthermore,
for some types of evolutionary models considered here the link with population genetic
theory can be made mathematically explicit (e.g., Thorne et al., 2007), as a consequence

of their distinct parameters bearing on mutational features and selective constraints,

'In the present context, a polymorphism refers to the occurrence of several different versions of
bio-molecule in a given population.
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which are combined multiplicatively to specify the overall substitution process.

The alignments used here were selected or constructed on the basis of them being free
(or virtually free) of gaps, being of relatively short length (for computational reasons),
and consisting of (or encoding for) proteins with one representative having a resolved
tertiary structure (for the structural evolutionary models studied in Part II). We refer
to data sets using a shorthand indicating the protein type, the number of sequences, and

their length, in number of amino acids (or codons, in the case of nucleotide sequences):
e MY020-153: 20 amino acid sequences of tetrapod myoglobin;
e MY060-153: 60 amino acid sequences of mammalian myoglobin;
e MY010-15%: 10 amino acid sequences of mammalian myoglobin;

e MY04-158: 4 amino acid sequences of myoglobin from Physester catodon, Orici-

nus orca, Graptemys geographica and Chelonia mydas caranigra;

e PPK10-158: 10 amino acid sequences of bacterial 6-hydroxymethyl-7-8-dihydroxypterin

pyrophosphokinase;
e F'BP20-363: 20 amino acid sequences of vertebrate fructose bisphosphate aldolase;

e GLOBIN17-144: 17 vertebrate nucleotide sequences of the S-globin gene, described

in Yang et al. (2000a);

e LySIN25-134: 25 abalone sperm lysin coding nucleotide sequences, described in

Yang et al. (2000b);

e HI1v22-99: 22 human immunodeficiency virus type 1 protease coding nucleotide

sequences, described in Doron-Faigenboim and Pupko (2007).

The first six of these alignments are of our own construction, and are detailed in

Appendix A.
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2.3 Markovian models of sequence evolution and

the likelihood function

Standard phylogenetic models consider the states at the positions of an alignment as
the realization of a set of independent Markov substitution processes—one for each
site—running along the branches of the tree. The state space. and the definition of
a site, depends on the level of interpretation adopted. For instance, when analyzing
DNA sequences, the state space consists of the four possible nucleotides, and a site
corresponds to a single nucleotide column, or position, in the alignment; each species’
sequence constitutes a row of the alignment. For amino acid sequences, the state space
consists of the 20 amino acids, and a site is again simply a single amino acid column of
the alignment. When analyzing protein coding DNA sequences, and acknowledging the
basic coding structure, the state space consists of the 61 sense codon (in the universal
genetic code excluding stop codons), with a site defined as a nucleotide triplet (codon)
along the sequence. We have the latter two contexts in mind in the following, although
the description is general, for any Markov process running over an alphabet of A possible
states.

Regardless of the level of interpretation, these processes can be described by a rate
matrix, or Markov generator, Q = (@], specifying the instantaneous rate of substitu-
tion from state a to state b. Rate matrices are typically constructed from two sets of
parameters: a stationary probability vector, otherwise referred to as the equilibrium fre-
quencies, written as m = (m,)1<p<4, With Zg;l 7, = 1, and exchangeability parameters,

written as p = (Pab)1<ab<a, Such that

Qab X papT.a F#b (2.3)

Qaa - _ZQab- (24)

b#a



25

First consider two sequences, denoted s; and Sj,,» Where j,, signifies that the se-
quence is ancestral to j. The models considered in this work are all reversible, such
that one may arbitrarily label any one sequence as ancestral to the other. Specifically,

the models satisfy the detailed balance, given as:

Ta®@ab = TpQba- (2.5)

Let s;; and s;;,, refer to the specific states at position i of these sequences. If separated
by an evolutionary distance (or branch length) );, where the Markov generator has
been scaled, say, to express branch lengths as the expected number of substitutions per
site, the probability of s;,, changing to s; is computed one position at a time, under

the assumption of independence, based on
P(8ij | Siju,, 0, M) = [e’\JQ] J (2.6)

where a = s;5,, and b = s;;, 6 is the set of parameters’. and M represents the overall
construction of the model. Multiplying (2.6) with the stationary probability m,, and
multiplying across all sites, constitutes the likelihood of a particular parameter config-
uration, under the s; and s;,, sequence pair. Now, suppose we are given P aligned
sequences, related according to a given (arbitrarily) rooted phylogenetic tree (which
has 2P — 3 branches) with a set of branch lengths A = (\;)1<j<2p—3. Also, suppose
we know the sequence states of each branching point (or internal node) in the tree. in
addition to the states in the alignment—we will denote this set of states at position

¢ as ;. Then, assuming independence between lineages. equation (2.6) can simply be

1We have been using 8 as a generic hypothesis vector, with a dimensionality and precise configu-
ration implied by the context of the text, and shall continue to do so throughout. Up to this point,
for instance, 8 = {A;, p,7}.
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expanded to

2P-3
p(si | 0. M) =m. [] p(sij | sijuy- 6. M). (2.7)

j=1
where s;p represents the state at position 7 of the sequence at the root of the tree, labeled
as node 0, and 7, accounts for the stationary probability of the Markov process. In
practice, however, internal node states are not generally known, and the probability of

the data at the i*® position (D;) is thus a sum over all possible s;:
p(D; | 6, M) = Zpsz|91\/f (2.8)

Under the assumption of independence, the overall probability of the data is then

computed as a product over all positions:

N
p(D |6, M) =[] p(D: | 6, M), (2.9)

i=1
where N is the total number of sites. This also referred to as the likelihood of 6.
Under the simpler types of models considered in this chapter—all of which have
been previously proposed by others—the likelihood can be calculated in closed form,
exploiting matrix diagonalization routines for computing (2.6) and the pruning algo-

rithm (Felsenstein, 1981) for computing (2.8).

2.3.1 The Dayhoff-like amino acid replacement models

Working with amino acid sequences, the simplest Markovian model treats all states
as equivalent, fixing m, = 1/20 and, say. pa = 1, which we refer to as the POISSON
model. Much more commonly. however, Dayhoff-inspired settings are used. such as an
updated version proposed by Jones et al. (1992b), referred to as JTT, and the maximum

likelihood matrix proposed Whelan and Goldman (2001), referred to as WAG. Although
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derived differently, all of these matrices follow the same general motivations: estimate
a robust set of values for the parameters 7 and p via an analysis of meta-datasets, and
use these parameter values in subsequent phylogenetic analyses.

This is an empirical modeling strategy. Several variations follow. For instance,
rather than fixing 7 to the empirically derived values, it is common to treat these as
free parameters conditional on the data under study, typically designated by adding the
suffix +F to the JTT or WAG acronyms. Also, with the large data sets commonly used
today, which may consist of tens of thousands of amino acid positions, the p parameters
may also be treated as free, referred to as the general time reversible (GTR) model®.

It is also common to combine the above models with the gamma distributed rates
across sites modeling approach proposed by Yang (1993, 1994). Under this model,
referred to as +I', the overall rates of sites are treated as random variables, drawn
from a prior statistical law: the gamma distribution of mean 1, and variance a!. The
likelihood function then takes the form of an integral over the statistical law, and « is
treated as a free parameter governing its shape. In practice, however, integrating over
the gamma distribution is not analytical, and the commonly adopted approximation
procedure discretizes the law into a predefined number of classes (typically 4 or 8),
reducing the integral into a weighted sum (Yang, 1994).

The central application of these types of models of amino acid sequence evolution
is to infer a phylogeny from a set of homologous protein sequences. For instance, using
the WAG+T" model implemented in the PhyML program (Guindon and Gascuel, 2003),
the maximum likelihood topology a of the MY020-153 data set is displayed in figure
2.1a. By performing a heuristic exploration of the possible topologies, associated branch
lengths. and a parameter. PhyML attempts to maximize the likelihood function. and

the inference is then based on this maximum likelihood (ML) estimate. Note that the

'The acronym GTR is more commonly associated with the nucleotide level model, consisting of
six nucleotide relative exchangeabilities, and a four dimensional stationary probability vector. Distin-
guishing between these is obvious from the context, and so we do not give them separate designations.
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a Balaenoptera physalus b Balaenoptera physalus
Physeter catodon Physeter catodon
Ziphus cavirotris Ziphus cavirotris
Bos taurus Bos taurus
Elephas maximus Halichoerus grypus
Halichoerus grypus Zalophus californianus
Zalophus californianus Proechimys guairae
Mus musculus Ctenodactylus gundi
Ochotona princeps Mus musculus
Proechimys guairae Ochotona princeps
Ctenodactylus gundi Pongo pygmaeus
Pongo pygmaeus —— FElephas maximus

Macropus rufus

[ Macropus rufus
Tachyglossus aculeatus Tachyglossus aculeatus

[ Gallus gallus Gallus gallus
Aptenodytes fosteri

Aptenodytes fosteri
Alligator mississippiensis Alligator mississippiensis
Varanus varius Caretta caretta
~ Caretta caretta Graptemys geographica
- Graptemys geographica Varanus varius

Figure 2.1. Tree topologies for MY020-153. Panel a) displays the maximum likeli-
hood topology obtained by PhyML (Guindon and Gascuel, 2003) under the WAG+T
model. Panel b) shows a “hand-drawn” topology, which is in closer agreement with
accepted groupings. The trees were drawn using TreeGraph, available online at
http://www.math.uni-bonn.de/.
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tree inferred from such a small data set (of 153 amino acid positions) should not be
taken too seriously. Indeed, figure 2.1a has several questionable groupings, such as
the position of the red kangaroo (Macropus rufus) with the Prototheria (Tachyglossus
aculeatus), as opposed to a placement as a sister-group to the rest of the Theria; an
alternative topology, which might be considered more reasonable, is displayed in figure
2.1b.

Although the probabilistic framework we expound here offers means of dealing with
phylogenetic uncertainty, this is not the focus of the present work, and we shall always
consider the tree topology as known, based on some external criteria. When studying
previously assembled data sets, we use the same topologies used in the previous works,
and when studying our own data sets, we use the WAG+I" maximum likelihood topol-
ogy, even if it mildly conflicts with established groupings. Our focus is on developing
new Markovian models, and exploring their statistical merits; in such contexts, previ-
ous studies have found model comparisons robust to slight topological differences, so
long as reasonable trees are used (e.g., Yang et al., 2000a; Sullivan and Joyce, 2005).
Furthermore, using a fixed tree greatly simplifies the computational devices, for reasons

that will become apparent later on.

2.3.2 The GY codon substitution models

Despite the practical success of the amino acid level models described above, the codon
level of interpretation offers a theoretically more attractive framework for molecular evo-
lutionary analysis, in actually reflecting basic biological knowledge. The core features
of such models include their parameterizations of nucleotide-level mutational proper-
ties, and their distinction between synonymous substitution events (that do not imply
a change in amino acid) versus nonsynonymous events (implying an amino acid replace-

ment). By accommodating the basic information flow of the central dogma, the models
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offer a wide range of relevant biological applications (Yang, 2006).

These could be qualified as mechanistic modeling strategies, first explored in evo-
lutionary contexts by Goldman and Yang (1994) and Muse and Gaut (1994). In the
present chapter, we shall focus on the widely used codon substitution models in the

style of Goldman and Yang (1994), with the entries of the Markov generator given as

.
wkK™y, if nonsynonymous transition,

wmp,  if nonsynonymous transversion,

Qab X 4 KTy,  if synonymous transition, (2.10)
Tp, if synonymous transversion.
0, if @ and b differ by 2 or 3 nucleotides,

\

where w is the nonsynonymous/synonymous rate ratio, & is the transition/transversion
rate ratio, and m, is the equilibrium frequency of the target codon. This specification
of m as a full 61-dimensional vector is often denoted as F61, and we therefore refer to
this model as GY-F61.

‘The computational demands of the codon state space have prevented its wide-spread
use for phylogenetic inference. This is mainly because the pruning algorithm (Felsen-
stein, 1981, for computing 2.8) has a computational time that increases with the square
of the alphabet size, but also because the time of matrix diagonalization algorithms (for
computing 2.6) increases with the cube of the alphabet size. Rather, the central appli-
cation of these types of evolutionary models has been to uncover amino acid positions
under positive selection, and some of the basic extensions have allowed for heteroge-
neous nonsynonymous rates across codon sites (e.g., Yang et al., 2000a; Huelsenbeck
and Dyer, 2004; Huelsenbeck et al., 2006).

Specifically here, we shall use the Dirichlet process apparatus described in Huelsen-
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beck et al. (2006). The idea behind this model is to assume that rate heterogeneity is a
result of sites coming from a mixture of models, with each component endowed with its
own nonsynonymous rate factor. However, under the Dirichlet process prior. the num-
ber of components—in this case, the number of selection coefficients—of the assumed

mixture is not predetermined, but rather adjusts to the complexity of the data.

2.4 Bayesian MCMC

2.4.1 Plain MCMC

For all models of interest here, the integral in (2.2) has no analytical form. However,
modern computing machines and MCMC approaches allow one to sample from the pos-
terior distribution of parameters of interest, without knowing the marginal likelihood,
which cancels out in the basic Metropolis-Hastings (MH) kernel (Metropolis et al., 1953;
Hastings, 1970): given the current parameter configuration 6. generate a new parameter

configuration ¢ from the density g(f.6’), and set § = §' with probability 9. where

9 = min{l p(ellD'M)q(el‘H)} (2.11)

"p(@| D,M) q(6.6)

p(8'[D.M) s q(8'8) ;1
The factor PID.AT) 1S referred to as the Metropolis ratio and @) 15 known as the Hast-

ings ratio, correcting for asymmetries in proposal densities. Under certain conditions,
repeatedly cycling through these steps forms a Markov chain with (2.1) as its stationary
distribution (see, e.g., Robert and Casella. 2004, for a more extensive exposition). In
general, the first portion of the chain is discarded—the so-called burn-in period—and
hypothesis vectors are drawn at regular intervals as the algorithm proceeds. Based

on this sample, written as () 1<h<k. €xpectations are approximated from the usual
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Monte Carlo relation:

(T) = /e T(0)p(8 | D, M)do (2.12)
~ %ZT(G"”) (2.13)
h=1

where T' is some test statistic of interest, and (.) stands for an expectation with respect
to (2.1).

The proposal densities (6, §') are designed to be easy to implement, and are “tuned”
empirically to optimize mixing kinetics!. We mention the previously proposed MH
mechanisms that are used in this work, and present a brief tuning example in a later

section. The mechanisms are:

e ADDITIVE: Treating 6 as univariate for the moment, this operator proposes a
new value 6’ = 6 + §(U — 1/2), where U is a random draw on the uniform [0,
1] interval, and § is a tuning parameter, with larger values amounting to bolder

moves. The Hastings ratio is 1.

e MULTIPLICATIVE: When # has no constraints except positivity, a new value can

be proposed as §' = 0e*(U=1/2. The Hastings ratio is /6.

e DIRICHLET: For multidimensional profile-like parameters, summing to 1 or some
constant, this is the update procedure described in Larget and Simon (1999).
For instance, updating 7 for an alphabet of size A would be done by drawing
' = X, where X = (0m).0ms..... 0m4). Note that the operator can be applied
on a sub-space of 7, as explained in Larget and Simon (1999). Also note that for

this operator, the lower the value of the tuning parameter, the bolder the move.

In theory, the use of different valid proposal densities should not influence the limiting distribution
of the Markov chain. However, different tunings on proposal densities can lead to vastly different
sampling behaviors, and tuning is aimed at reducing the number of cycles to “turnover”.
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e DIRICHLET PROCESS: This operator actually consists of a set of operators, and
here is only invoked under the Dirichlet process prior modeling of nonsynonymous
rate heterogeneity across sites in the codon context, as described in Huelsenbeck
et al. (2006). Supposing H classes of w factors, updating the Dirichlet process is
accomplished by first drawing a set of L temporary classes from p(w;) = 1/(14+w;)?,
for 1 <1 < L; this can be sampled from w; = In U,/ InU,, where U; and Us are
two distinct random draws on [0, 1]. Then, taking site 4, an update is performed
on an auxiliary variable specifying the affiliation of the site to a particular w class,
written as y;. and which, under the current configuration of the Dirichlet process,
ranges over 1 < y; < H. The number of sites affiliated to the At? of H classes is
written as n,. If y; = h and 7, = 1. the count of existing classes (H) is decreased
by one. Otherwise, 7, is decreased by 1. Then pooling all H + L classes, y; is
reset to the h*" class with a probability proportional to 7,p(D; | 8.wp, M), or to
the I*® class with a probability proportional to 70(D; | 0,wp, M), where 7 is the
“graininess” parameter of the Dirichlet process’. The procedure is repeated for
all sites. With a given configuration of the Dirichlet process, the values of the H
different w classes are updated based on MULTIPLICATIVE mechanisms. and the

7 parameter is updated based on ADDITIVE mechanisms.

2.4.2 Thermodynamic MCMC

With these proposal mechanisms. all of the previously studied models that are included
in this work can be implemented. so as to address the second step of the Bayesian
framework. If our objective is to compare two models (Mg and M), as part of the
third step of the framework, it is interesting to evaluate the Bayes factor (Bo1), defined

as the ratio of their respective marginal likelihoods (Jeffreys, 1935; Kass and Raftery,

N

1This parameter is usually referred to as a in the statistical literature on the Dirichlet process, but
using this symbol would be confusing with the shape parameter of the gamma distributed rates model.
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(2.14)

A Bayes factor greater than (less than) 1 is considered as evidence in favor of M; (Mj).
The Bayes factor does not require models to be nested, and intrinsically penalizes for
higher dimensional formulations; loosely speaking, averaging the likelihood over the
prior distribution implies parameter configurations that induce very low likelihood val-
ues, which has the effect of “bringing down the average”; and higher dimensional models
tend to have more of such parameter configurations leading to low likelihoods. hence
producing a natural Ockham effect. Unfortunately, because the basic MCMC algo-
rithms described above are explicitly designed to avoid computing marginal likelihoods,
more elaborate methods are needed.

The model-switch thermodynamic integration method (Lartillot and Philippe, 2006)
extends the advantages of MCMC sampling by devising a path linking the posterior
distributions of two models. Let § now represent the union of parameters from both
models, some of which may indeed be relevant to both models, while others are only

relevant to one of the two. Two models of interest can be connected by defining

p(D | 0. Mﬁ) — e(l—B) lnp(DIG,Mo)-}—Blnp(DIB,Ml)‘ (215)

p(0 | Mg) = e(1-h) lnp(9|1\’fo)+ﬂlnp(9lM1)’ (2.16)

p(D | 6. Mg)p(6 | Mp)
p(D | Mp) ’

p(6 | D. My) = (2.17)
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and the Metropolis-Hastings kernel as

L, p#|D.Mp) q(6',0)
Vo= {l’pww.Mﬂ) qw.e')} ‘ (2.18)

For any value 0 < § < 1, the kernel given in (2.18) allows one to sample from a posterior
distribution consisting of a partial “morphing” between M; and M;, without knowing
p(D | Mg). The quasi-static method described in Lartillot and Philippe (2006) initially
sets to B = 0, and the resulting sampler has the posterior of parameters under M, as
its limiting distribution. Then, the value of 8 is regularly incremented by a small value
083 after a set of MCMC cycles, until 8 = 1; the sampler finally has the posterior under
M; as its limiting distribution. Note that here, we do not explore models with different
priors on the same parameters, and hence we can dispense with the morphing prior
defined in (2.16), substituting it with p(6 | My, M;). When calling Metropolis-Hastings
operators on components of § that are only relevant to Mj, the prior can be reduced to
p(0 | My, M) = p(6 | Mp): and likewise when calling operators on components relevant
only to M. in which case p(6 | My, M;) = p(f | M;). Based on a sample collected along
the entire path of posterior distributions, written as (§(*)o<p<x, and with the At draw
associated with 8 (By = 0, Bk = Ll and Vh, 0 < h < K, Bry1 — Br = 08), the log Bayes

factor between My and M, can be estimated based on the Monte Carlo relation:

In B()] = lnp(D | Ml) — lnp(D | ]\/[0) (219)
1
~ [ {ap(D ] 6,14) ~Inp(D | 6. M) (2.20)
0
1

1
—|Z (0) - (0)
e [2 (lnp(D | 6% M) —1lnp(D |6 ,J\/fo))+

K-1
(Z Inp(D | §®), My) — Inp(D | 6%, Mg)) +
h=1

1 .
5(m p(D | 6F), My) — Inp(D | 65, MO))], (2.21)
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where (.)5 stands for an expectation with respect to (2.17). The overall precision of
the method depends on a number of factors, such as the step size (63), and whether
the number of cycles between steps is sufficient to allow the chain to re-equilibrate to
(2.17), for instance, but also on the inherent distance between the two models being
compared. These issues need be explored in practice, through a progressive tuning that
depends on the precise application.

In the next section, we will illustrate the properties of the basic Bayesian MCMC
approaches using well-known types of models of amino acid and codon sequence evo-
lution. In later chapters, we will return to the thermodynamic MCMC methods to

evaluate these and other models.

2.5 Practical examples

2.5.1 The WAG model

As a first practical example, we applied the WAG model to the MY020-153 data set.
assuming the tree topology given in figure 2.1a. Under such a model, the only free
parameters are the branch lengths A. Also note that for this particular model, large
Monte Carlo samples of high quality are easily obtained within a few hours on a Xeon
2.4 GHz desktop computer. and so we defer the subject of tuning the MCMC to another
example!. Instead, we go through a simple exploration, for amusement. of the effect of
previously proposed prior probabilities on A on the overall tree length.

We first tried using a uniform prior on branch lengths?, leading to a posterior mean

tree length of 2.41 & 0.12 substitutions per site.

!The computational burden of some of the calculations presented in this dissertation imply over
4 months of CPU time. We mention this here in order to give the reader a general sense of what we
mean by computationally “easy” versus what we consider as computationally “challenging”.

2Strictly speaking, a uniform prior must have bounds, but it is common to explore the behavior of
a sampler without such bounds, referred to as an #mproper prior, since it is not defined to integrate to
1.
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We next tried the commonly used Ezponential prior distribution on branch lengths,
with a mean determined by a hyperparameter! v, in turn endowed with a truncated
uniform hyperprior. The tree length in this case has a posterior mean of 2.15 + 0.12,
and the mean branch length parameter v has a posterior mean of 0.059 & 0.011. Note,
however, that the posterior mean log-likelihood is —2,169.5 for the exponential prior,
and —2.171.7 for the uniform prior, a difference of only 2.2 log units. This indicates
that the likelihood surface may be relatively flat with respect to branch lengths (at
least in this region of branch length space). Finally, we tried a type of prior structure
suggested in Yang and Rannala (2005) (and also used in Lartillot and Philippe, 2006).
where we attribute an Ezponential hyperprior of mean 1 on v. This hyperprior does
not impact on v in practice, as we obtained essentially identical distributions as under
the uniform hyperprior. This last prior structure, however, has the advantage of being
both flexible and proper. Although the prior structure on branch lengths may have
important effects on phylogenetic inference per se (Yang and Rannala, 2005), we have
not found it to have any significant impacts in the fixed tree context of the present
work, either in terms of estimated log-Bayes factors, or on the posterior distributions
of other parameters. We shall see a case in chapter 4, however, where the prior on a

specific parameter does have a significant impact on the log-Bayes factor.

2.5.2 The +I' model via parameter expansion

Model developments can always be cast as revisions in prior structure. For instance,
in the +I" models, rather than fixing a prior of 1 for all sites having a rate of 1, as in
the classic uniform rates model, a flexible prior structure on rate variation across sites
is used, consisting of the gamma distribution of mean 1 and variance a~* (Yang. 1993,

1994). As previously stated, in the ML perspective, the likelihood function takes the

'In general. parameters governing the prior laws are referred to as hyperparameters, and the priors
on them are referred to as the hyperpriors.
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form of an integral over the gamma law, and the o parameter is adjusted to maximize
the likelihood function.

In the present context, one may instead invoke the concept of parameter ezpansion
(PX) (Liu et al., 1998) as we explore here. Let us define a rate vector r = (ri)i<i<n
specifying the overall rate at each site, with the gamma as a prior law, written as
Pa(r) (and o now included in ). The gamma prior is used in its continuous form, with
integration over the law accomplished via MCMC sampling. To see how this works, first

note that the marginal and joint probabilities on 6 and {6. r}, are related as follows:

p(6 | D.M) = /p(G,r | D, M)dr (2.22)

x /p(D | 8, 7. M)pg(r)dr (2.23)

r

The basic idea underlying parameter expansion is that if a sample (6™ 7T(h))15h§K is
drawn from the joint distribution p(6.r | D. M), then, the § component of this sample,
(0™))1<h<k. is distributed according to p(6 | D, M). Therefore, to obtain a sample from
p(8 | D. M), first draw a sample from p(f,r | D, M), and if only the parameter vector
is of interest, discard the r component. This sampling approach can be written more

formally, with a MH kernel defined as

9 = min {1, p(D | 6.7 M)pa(r')p(8' | M) q(9’.r’.9.r)}

p(D | 6.7. M)pa(r)p(6 | M) q(8.7.6.7) (2.24)

In practice, MH operators are typically applied separately on model parameters and
auxiliary parameters; the basic sampling module in this case is referred to as the PX

module. and is written symbolically as

r | 6.D

6 | D
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Figure 2.2. Tuning MH updating of rate vector. The figure shows the autocorrelation
function of the rate entropy when sampling rate vectors under WAG+T".

which is to say that first, a rate vector is sampled conditional on the current parameter
vector and the data, followed by a parameter vector sampled conditional on the current
rate vector and the data. Also note that we may take the sample of auxiliary parameters
seriously, for instance, by constructing the posterior distribution of a site-specific rates
(Mateiu and Rannala, 2006).

We ran a PX-based MCMC sampler under the WAG+T model, assigning a uniform
prior on a. Multiplicative operators are applied on rates, and additive operators are
applied on a. We take this as an opportunity to illustrate one way of determining a
suitable tuning of MH updates. Specifically, we begin by assuming that the rest of our
sampler has already been tuned for sampling over other parameters (branch lengths,
and v), and that we now wish to incorporate sampling for the +I' model, and tune
number of MH updates on rates so as to decorrelate successive draws.

Figure 2.2 displays the autocorrelation function of the rate vector entropy!. More
precisely, we repeatedly computed the autocorrelation of the rate entropy on samples
of 100 successive draws from the posterior distribution, but with an increasing number
of cycles, or lag, between each draw. In this case. a MCMC cycle consists of one MH

update to the rate of each site. Based on this plot. one would estimate that at least

1Writing p; = r;/ Y. 74, the rate entropy is — > . pilnp,.
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Figure 2.3. Posterior density plot of «, approximated using MH sampling.

10 cycles should be done in order to effectually be sampling independent rate vectors.
Of course, tuning must also be validated by running several independent calculations,
checking that the mean and variance of parameter values match closely across chains;
this is part of our basic set of checks, conducted following pilot runs for tuning?.

We collected a sample of 1,000 draws from the posterior, and display the distribu-
tion of a in figure 2.3. The posterior distribution is nearly identical when using an
exponential hyperprior of mean 1 on a (not shown). The posterior distribution of «,
centered around 0.7, suggests a pronounced rate heterogeneity across sites. This is a

property now observed for many data sets (Yang, 1996, 2006).

2.5.3 The GY-F61 model

We next turn to the mechanistic model specified above as the GY-F61. We explored
this modeling framework using the 17 vertebrate sequences of the GLOBIN17-144 data.
described in Yang et al. (2000a). as well as the tree topology used therein. We used an
exponential prior on branch lengths, with a mean v, itself endowed with an exponential

hyperprior of mean 1. For «, we used the prior p(x) = 1/(1 + &)2. the ratio of two

1t is still an open question whether or not it is possible to design the “holy grail” of MCMC
samplers, which would not require such pilot run tuning steps.



Table 2.1. Posterior expectations under the GY-F61 model.

log-likelihood —3656.83+6.66

tree length 7.17+0.35
v 0.23+0.05
K 1.52+0.15
w 0.22+0.02
m-entropy 3.8640.02

Note.—The tree length is in expected number of substitutions per codon site.

independent draws from an exponential distribution, as proposed in Huelsenbeck and
Dyer (2004), and likewise for w (as a constraint on the DP model described above to
H =1, i.e., a single global nonsynonymous rate factor for the entire alignment).
Following the usual tuning procedures, we obtained a sample of 1.000 draws from
the posterior distribution, and produced summarizing statistics in table 2.1 as well as
graphical displays of the substitution model parameters in figures 2.4 and 2.5. These are

simply meant to illustrate the ways in which posterior distributions can be summarized.
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Figure 2.4. Posterior distributions of x and w for the GLOBIN17-1/4 data set.

2.5.4 The Dirichlet process on w

Huelsenbeck et al. (2006) have proposed a flexible extension to this model. based on
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Figure 2.5. Posterior 95% credibility intervals of codon stationary probabilities for the
GLOBIN17-144 data set, sorted according to amino acids.
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Figure 2.6. Posterior distributions of 7 and H under the GY-F61-DP model, for the
GLOBIN17-1/4 data set.

the Dirichlet process apparatus described above. We explored this model as well, using
the same prior structure as Huelsenbeck et al. (2006), except that we endowed hyper-
parameters 7 and v-—respectively the “graininess” parameter of the Dirichlet Process
and the mean of the exponential prior on branch lengths—with exponential priors of
mean 1.

Huelsenbeck et al. (2006) performed analyses under the Dirichlet process prior by
systematically fixing 7 to predefined values. Here. given that we treat 7 as a free
parameter, we inspected its posterior distribution. as well as that of the number of
selection coefficients (H). The results are displayed in figure 2.6. Of particular interest
is the distribution of H, which is situated at relatively low values, in comparison with
the overall length of the alignment, but is still at consistently higher values than the
common usage of finite mixture models of the same type. which are typically fixed at
H =3 (Yang et al.. 2000a).

Finally, as described in Huelsenbeck et al. (2006), we computed site-specific prob-
abilities of positive selection p(w > 1) under the Dirichlet process, simply as the pro-
portion of draws from the posterior in which a site is found to be affiliated to a class
having w > 1. Confirming previous studies (e.g., Yang et al., 2000a; Huelsenbeck et al.,

2006) most positions of the GLOBIN17-1/4 data set appear to be under strong purifying
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Figure 2.7. Posterior probability of each site being under positive selection for the
GLOBIN17-144 data set.

selection (fig. 2.7).

2.6 Evaluating models via phenomenological bench-
marking

The practical examples presented above are mainly focused on the second step of the
Bayesian framework—computing the posterior distribution. There are several ways
of engaging the third step of the framework-—model evaluation—and these different
approaches constitute a main subject of study and debate in modern statistical theory.
In this chapter, we have touched upon methods for computing Bayes factors which have
recently been proposed as versatile tools for model ranking. and which we will make
use of extensively in this work.

One of the reasons for this recent interest in rigorous model comparisons comes
from the observation that even under conditions of very large data sets, consisting of
tens of thousands of residues, phylogenetic reconstruction artifacts! are still observed
in some cases (Philippe et al., 2005), which implies that the models used are too grossly
mis-specified. An active research direction to address these issues consists in devising

new evolutionary models. which more reasonably acknowledge molecular evolutionary

A phylogenetic reconstruction artifact is an inferred tree topology that is obviously wrong, based
on some other knowledge. Phylogenetic contradictions resulting from slightly different choices in data
set construction are also referred to as reconstruction artifacts.
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patterns, and thus exhibit greater robustness in wake of difficult phylogenetic questions
(e.g., Buckley et al., 2001; Brinkmann et al., 2005; Lartillot et al., 2007). An important
part of the assessment of such new models consists of measuring their statistical fit to
real data, as we have discussed.

Beyond the applications to phylogenetic understanding, the development of bet-
ter models is hoped to elucidate and quantify the importance of different aspects of
molecular evolution (Pal et al., 2006). With the objective of acquiring a deeper un-
derstanding of molecular evolution comes the question of the most suitable level of
interpretation to be adopted. The codon level of interpretation is far more attractive
from this standpoint, in enabling one to explore parameterizations that disentangle the
different factors bearing on the overall evolutionary process (Thorne, 2007). As we have
mentioned, these models are often referred to as mechanistic in approach. By this, we
mean that the models recognize basic biological understanding, in terms of an under-
lying mutational process, with selective forces acting at higher levels. Here, we also
use the phrase mechanistic modeling to refer to attempts at formulating an account of
deeper causes. which would explain some of the observed features.

Another modeling perspective is often referred to as phenomenological. The term
phenomenological has several different meanings. In science, generally, a phenomeno-
logical model is one that is not directly derived from theory, but rather provides a
preliminary account of some observed tendency or feature of the data by attributing
parameters directly to the aspects in question. Phenomenological approaches are gen-
erally motivated by a lack of understanding of underlying causative relations, or by
the practical applications that they enable. The approach often explicitly omits some
data, or fails to incorporate basic knowledge, typically because it appears too difficult
in preliminary model explorations. Empirical modeling approaches go one step further

by pre-fitting parameters to large-scale observations. The WAG model used above is of
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this type; it omits the nucleotide data altogether, and is derived by applying the ML
principle under a large meta-data set.

Of course, in practice, models are never strictly phenomenological, since their gen-
eral form is derived from some basic understanding of the case at hand. In the particular
case of the WAG model, for instance, the form of the model attempts to account for
biophysical similarities between amino acid pairs, through the set of exchangeability
parameters p, while capturing global amino acid propensities through the set of sta-
tionary probabilities . Furthermore, aspects of the codon level models used above
may also be cast as phenomenological, as is most clearly the case concerning w: we
have good reason to believe that nonsynonymous rates might be mediated—at least
partially—by structural constraints, such that. for instance, a given site might have
a very low nonsynonymous rate, in comparison with other sites, as a result of being
involved in a set of interactions crucial to establishing the functional shape of a protein.
At this point, however, the phenomenological standpoint consists of ignoring this un-
derstanding, and simply provides a preliminary account of the nonsynonymous rates,
with the richest model here consisting of the Dirichlet process as a so-called infinite
mizture across sites.

We suggest that phenomenological/empirical modeling approaches can provide per-
tinent references in the initial exploratory stages of a new modeling approach. as part
of a phenomenological benchmarking strategy that we propose in this dissertation. Phe-
nomenological benchmarking is mainly concerned with the third step of the Bayesian
framework, but in some sense, also ties into the first step of the framework—in sub-
sequent cycles of development—by concretely indicating model weaknesses, and thus
informing new model constructions. It is meant as an assessment of the ability of a
new mechanistic model to adequately account for basic phenomenological observations.

Loosely speaking, the motivation of a new mechanistic model will be to generalize ex-
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isting phenomenological descriptions of some process or part of the world, under which
well-known features would emerge as basic resultants. Phenomenological benchmarking
is the strategy employed to evaluate if this is indeed the case. If so, we consider that
progress has been made, and that we have formed a better or more precise representa-
tions of our current state of knowledge. If not, we may seek to improve the mechanistic

description, or reconsider its basic form.

2.7 Conclusions

The Bayesian paradigm provides a flexible and attractive framework for formalizing
phylogenetic analysis. Although our survey is not representative of all of the develop-
ments currently under way, we have described up-to-date models of molecular evolution
at different levels of interpretation, and the general motivations associated with each.
In the second part of this work, we build on the types of evolutionary models presented
above, in an exploration of novel strategies allowing for a class of models with depen-
dence between amino acid sites due to a protein’s tertiary structure (Robinson et al.,
2003). We touch all three steps of the Bayesian framework, including our phenomeno-
logical benchmarking strategies, at both amino acid and codon levels of interpretation.
We begin with the amino acid level—over chapters 3 and 4—assessing how the depen-
dence models compare with empirical amino acid replacement matrices. and with the
+I" model. The results from chapter 4 motivate the development of a new statistical
framework for relating the compatibility of an amino acid sequence with a given tertiary
structure—presented in chapter 5. In chapter 6, we explore more economical compu-
tational methods for approximating posterior distributions and marginal likelihoods,
which could render future calculations more tractable. and thereby enabling a pipeline
of development for different forms of sequence-structure measurements. In chapter 7,

we return to the biologically motivated codon level of interpretation, and apply the
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framework anew to construct and evaluate a large set of models, but still assuming in-
dependence between sites. Finally, in chapter 8, we present our progress in the study of
the codon site-interdependent models, which suggest that evolutionary modeling strate-
gies could be extended along three different conceptual levels: 1) parameters describing
the underlying mutational process. operating at the nucleotide sequence level; 2) pa-
rameters accommodating global codon preferences; and 3) parameters bearing on the
overall compatibility of the encoded amino acid sequence with a given (coarse-grained)

tertiary structure.



Part 11

Revising Modeling Assumptions



Chapter 3

Site-interdependent phylogenetics

3.1 Introduction

In the last few years, several modeling advances have been made, beyond those of
the phylogenetic models described up to this point. The general strategy is to pro-
pose biologically motivated parameterizations, relaxing the assumptions of standard
models—such as the assumption of stationarity (e.g., Galtier and Gouy, 1998), or of
homogeneity in the substitution process across sites (e.g., Lartillot and Philippe, 2004;
Pagel and Meade, 2004)—without inducing computationally intractable formulations.
This last condition in particular has been the main justification for the assumption of
independence between sites, which persists in most models currently applied.
Obviously, the assumption of site independence is not biologically sound; as men-
tioned in chapter 1, different positions of an amino acid chain form complex networks
of interactions, important to the overall structure adopted by a protein. Means of
relaxing this assumption in evolutionary models have been pursued, usually with cor-
relations or dependence introduced between a limited number of sites (Felsenstein and
Churchill, 1996; Siepel and Haussler, 2004), or considered for a limited number of se-

quences (Jensen and Pedersen, 2000; Pedersen and Jensen, 2001: Robinson et al.. 2003).
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As previously mentioned in the last chapter, we are particularly interested in the mod-
eling ideas of Robinson et al. (2003), who have introduced sampling techniques that
allow for a general dependence between codons. With their sampling procedure, which
is applicable to pairs of coding nucleotide sequences, one can consider the stochastic
process underlying the evolution of a sequence as a whole, so that the probability of
a given substitution, at any given time and at any site, depends, in principle, on the
states at all other positions.

Robinson et al. (2003) attempt to capture site interdependencies using an empirical
energy function, otherwise known as a statistical potential, derived in the context of
protein threading (e.g., Jones et al.. 1992a). Such potentials are meant to provide an
estimate of the compatibility of an amino acid sequence with a given protein structure.
so that the differences in compatibility, before and after inferred amino acid replacement
events, influence the probability of an evolutionary scenario. This modeling approach is
computationally bold, but provides an attractive mechanistic description of molecular
evolution; the codon substitution process is formulated as combination of a mutational
parameterization, at the DNA level, with an evaluation of the phenotypic effects of
mutations, which are considered for the overall amino acid sequence. In line with the
theoretical objectives of population genetics, their evolutionary model explicitly relates
genotype to the fitness of the corresponding phenotype.

This is a clear example of a new mechanistic modeling strategy; as a byproduct of
the explicit structural modeling, the potential could, in principle. account for observed
rate heterogeneity, or account for uneven amino acid exchangeabilities, and possibly
more complex features as well. However, the suitability of such a model depends on
how well one can approximate the overall fitness of a given amino acid sequence. In the
case of the model proposed by Robinson et al. (2003). the use of this type of potential

was meant as a proof-of-concept investigation of their novel statistical methodology. and
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the extent to which the potential actually captures evolutionary features remains to be
explored. Indeed, there is some cause for concern: protein fold prediction potentials
(e.g., Jones et al., 1992a; Bastolla et al., 2001) were designed to optimally distinguish
which conformation a given sequence is likely to adopt, whereas Robinson et al. (2003)
use a potential under a fixed conformation, attempting to distinguish which sequences
would be suitable to it.

In this chapter, we further explore methodologies and approaches proposed by
Robinson et al. (2003), re-formulating their model directly at the level of amino acids.
In so doing, we relinquish the theoretically attractive description of molecular evolution
at the level of nucleotide sequences. However, the amino acid-level framework will be
used to investigate if statistical potentials can render expected features of amino acid
sequence evolution, with rate heterogeneity and amino acid exchangeabilities constitut-
ing our two basic phenomenological benchmarks. First, however, we must set up the
precise models and computational devices. Our objective here is simply to contrast the
use of a statistical potential (Bastolla et al., 2001) in combination with either a flat
set of amino acid exchangeability parameters (POISSON) or an empirically derived set
(JTT) (Jonmes et al., 1992b), and explore how different combinations may impact on
posterior distribution of parameters. In addition, we generalize the sampling scheme
proposed by Robinson et al. (2003) to multiple sequences. We apply the methods to
three data sets, and prospect the possibility of applying the approach to the comparison

of different tree topologies.
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3.2 Material and methods

3.2.1 Data sets, trees, and protein structures

We used the PPK10-158 MY010-153, and MY04-153 data sets. We apply a simple
structure representation based on a contact map (see below). The contact map is
derived from a reference structure, determined by X-ray crystallography for one of the

sequences included in the data set (PDB accession numbers 1HKA and 1MBD).

3.2.2 Site interdependent notation

A few brief notational remarks are needed for clarifying the site interdependent frame-
work. As before, data sets (D) consist of alignments of P amino acid sequences of length
N, assumed related according to a particular phylogenetic tree. The tree is rooted ar-
bitrarily, as all models considered here are reversible. We use i to index positions of a
sequence, and j to specify the nodes, with a node having the same index as the branch
leading to it, with the exception of the root node, which has index 0 (0 < j < 2P — 3).
We specify the sequence at node j as s; (with sy being the sequence at the root node,
which we place at a leaf node. i.e.. an observed sequence from the alignment), and a
particular amino acid state at position 7 in this sequence as s; ;—in other words, the
absence of the 7 index indicates that the sequence is referred to globally (considering its
entire length). The sampling methods described below utilize a demarginalization, or
data augmentation, method requiring the specification of a detailed substitution map-
pings over the entire tree. We write the set of branch specific substitution mappings
as ¢ = (¢;)igj<2p—3. The total number of substitutions along a branch is written as
zj (z; > 0). We index substitution events as k (k < z;) and refer to the time of an
event on branch j as t;;. A substitution event alters a single site of the sequence, at

position o;,. When specifying the series of substitution events occurring on a branch
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J, let s;x_1 and s;; represent the sequence states before and after substitution event k.
Note that when k = 1, we let s, = Sj.,» Where j,, is the immediate ancestral node

of j. Finally, when k = z; we let s;; = s;.

3.2.3 Structural fitness approximations

We used the knowledge-based protein energy function described in Bastolla et al. (2001)
to estimate the structural fitness of a sequence in a given three-dimensional structure.
Our use of the energy function is straightforward. Given a PDB file, one computes the
distances between all atoms of all amino acids. As defined by Bastolla et al. (2001),
two amino acids are said to be in contact if any of their heavy atoms (atoms other
than hydrogen) are at a distance of 4.5 A or less (contacts due to sequential proximity.
within three positions or less, are ignored). As such, the structure of a protein can be
represented as a contact map. The contact map of a protein structure of length N is

an N x N matrix A = (A )1<icir<n, With elements

1 if amino acids at sites 7 and 7’ are in contact,
Aii’ - (31)

0 otherwise, or if |i — /| < 3.

Given the contact map, the pseudo-energy of a sequence is calculated as:

Es = Z Aii’fs,s,/- (32)

I<i<i’<N
where € = (€q)1<a.b<20 are the coefficients of the amino acid pair potentials of Bastolla
et al. (2001).

As crude first efforts, we impose the same structure over the tree by using the same

contact map on all sequences, both observed and inferred.
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3.2.4 Evolutionary models

In order to build a site-interdependent model directly at the amino acid level, we first
note that the independent Markov processes operating at each site, specified by a 20x 20
infinitesimal generator Q. can equivalently be considered as a single Markov process,
whose state space is now the set of all sequences of length N. There are 20" such

sequences, and thus, the matrix of this Markov process will be a 20V x 20" matrix R:

0 if s and s’ differ at more than one position,
R,y = (3-3)

Qa if s and s’ differ only at site 7, s; = a and s, = b,

with diagonal entries given by the negative sum of the off-diagonal entries. With the
formulation of equation (3.3), it is possible to introduce a site-interdependent criterion:
the pseudo-energy before and after an amino acid substitution. The new matrix R is
then

0 if s and s’ differ at more than one position,
Ry = (3.4)

QuePE—E«) if s and s’ differ only at site i, s; = a and s, = b.
1

where [ acts as a parameter weighting the pseudo-energy difference’s impact on the
rate of substitution. When # = 0, the model simplifies to the usual site-independent
model specified in (3.3). However, when f # 0, the substitution process can no longer
be decomposed into a set of IV independent processes, since the pseudo-energy measure

considers the entire amino acid sequence’. We use the suffix +BAS to indicate the

1t is conventional practice to express branch lengths in terms of the expected number of sub-
stitutions per site. To obtain such a scaling, the rate matrix, here denoted as R, must be properly
normalized. Formally, the normalizing constant is

Zr = ~= Y pls|6)R., (35)

= (B (3.6)
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model with statistical potentials (8 # 0).

3.2.5 Priors

We treated the parameters 7 = (m,)1<p<20, comprised in the matrix Q, as free param-
eters, indicated using the +F suffix. The overall prior structure used in this chapter is

m ~ Dirichlet, B ~ Uniform[-5.5], and A; ~ Uniform|0, 100].

3.2.6 Likelihood function

As previously discussed, conventional models generally invoke pruning-based likelihood
calculations (Felsenstein, 1981), and compute a finite-time transition probability ma-
trix by rate matrix exponentiation. computing the likelihood by summing transition
probabilities for all possible internal node state configurations. Here, given the order
of R (20" x 20"), an equivalent calculation is not tractable. As an alternative, Robin-
son et al. (2003) proposed the use of a data augmentation (DA) framework, based on
substitution mappings. Given a hypothesis vector § € © under model M, the proba-

bility of going from a given sequence to another over branch 7, and through a specific

where the angular brackets (-) represent an expectation with respect to p(s | 8). The sum in (3.5)
is over 20V terms, and calculating it explicitly is not tractable. It can. however, be approximated
via MCMC sampling based on a sample of K sequences, written as s(1),s(®) . --s(K) drawn from
p(s | 8) using the Gibbs sampling procedure described in Robinson et al. (2003). Given this sample,
the normalizing constant can be estimated as

—— Z Rym ot (3.7)

h—

With this estimate of Zg, the non-zero, non-diagonal entries in R become —Q pePB—Es) A sim-
pler alternative, which we found much more convenient in practice, is to leave R unnormalized, and
rather monitor the actual number of substitutions in the mappings of our sample from the posterior
distribution.
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substitution history ¢;, can be calculated as

P(85: G | $jupr 0. M) = (H Rs,k-lsJkrme‘(tfk‘tf’“-l)r(sf'f-l))
k=1

X e'('\i—%)T(sJa), (3.8)

N
where T(sjr—1) = > R, _,s;ri Tepresents the rate away from sequence s;;_;, with

— !
i=1 s;

the inner sum being over the 19 sequence states that differ with 8jk—1 at position ¢, and
where r; is the rate at site 7 (but in this chapter, we omit this level of complication,
fixing all r; = 1 for all 7).

The likelihood computations also require the probability of the sequence at the root

of the tree:

]\7
1,
p(so | 0. M) = e 26850 T s (3.9)
i=1

with Z being the associated partition function (normalizing “constant”)

N
Z =Y ek I (3.10)
s =1

summing over all possible sequences of length N. Assuming lineages evolve indepen-
dently, the product of (3.8) over all branches, along with the probability in (3.9). yields

the overall augmented likelihood function:

2P-3

p(D,¢16.M) =p(so | 6. M) ] p(s;, ;| s5.,.0. M). (3.11)

j=1
3.2.7 Markov chain Monte Carlo sampling

Our MCMC procedure consists of using the Metropolis-Hastings algorithm (Metropolis
et al., 1953; Hastings, 1970) to define a Markov chain with the posterior probability as its

stationary distribution, by updating both mappings and parameters; assuming a current



58

state (6, ¢), an update to a new state (¢', ¢') is proposed according to q(0,4,0'.¢"), and

accepted with a probability ¥:

9 = min (1,200 LM o0.6'0.9) ) 12)

" p(¢,0| D, M) q(6,6.6".¢')
Most implementations, our own included, apply MH operators separately on model
parameters and data augmentations, with the DA sampling module written symbolically

as

¢ | 6.D

0 | ¢,D

As in the case of the PX module described in chapter 2, the effect of cycling over this
module is a sample of parameter vectors distributed according to p(6 | D. M). and is
strictly equivalent to what we would obtain if we had access to the integrated (over

mappings) likelihood function. We describe the MH operators in detail below.

3.2.7.1 Proposing mappings

Substitution mappings are proposed using a model that assumes independence between
sites, here denoted Q*. We set the amino acid relative exchangeability to those of the
underlying site-interdependent model, and the amino acid frequencies to the empirical
values observed in the alignment. Under this model, we used the method proposed by

Nielsen (2002) for drawing site-specific mappings, as part of three MH operators:

e BRANCHHISTORY: This first type of move randomly selects a branch j and a set of
positions, denoted collectively as (gpuis. For each site selected, a new substitution

mapping is drawn using Nielsen's method. given the states at the ends of the
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branch!. The move is then accepted with a probability given in (3.12). The

corresponding Hastings ratio is:

q(¢'. $) P(Sij. Gij | Sijup: Aje 5. Q@)

_ 3.13
q(¢. ¢') 11 P(Sij, B35 | Sijups Xj-Ti, Q%) (3.13)

ie(Bqus

e NODESTATE: This second move randomly selects an internal node j and a set
of sites, denoted collectively as (nypsr. The move then re-samples the amino acid
states of selected sites at node j, again using the Nielsen approach. Having re-
sampled the states, the move also re-samples a substitution mapping for each of
the selected positions along the three branches connected to j, and acceptance of
this overall update is again based on (3.12). The corresponding Hastings ratio is

the same as above. but multiplied over the three branches in question.

e TREEHISTORY: This last move randomly selects a set of sites, denoted as (TrHs,
and re-samples all integral node states and branch-wise mappings. As always, the
move is accepted with probability (3.12), and the Hastings ratio is the product of

(3.13) over the tree.

In this chapter, however. we have only tested the BRANCHHISTORY and NODESTATE

operators. updating a single site at a time as proposed in Robinson et al. (2003).

3.2.7.2 Proposing parameter updates

We applied multiplicative update operators referred to as BRANCHLENGTH: a randomly
selected branch j, as well as the times of each substitution event along that branch,
is multiplied by z = e®U~1/2) The Hastings ratio is z'*>. A Dirichlet operator,

referred to here as the STATIONARY mechanism. can be applied to 7. Finally, ADDITIVE

'We make use of Nielsen's suggestion of sampling conditional on there being at least one event in
cases where the states at the ends of the branch differ.
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operators can be applied to 3, which we call STRUCTURE. For these last two operators,
an additional level of complication arises: evaluating the MH ratio involves the ratio
of (3.9) for two different parameter values, and thus the ratio of two non-analytical
normalizing “constants” is needed.

Robinson et al. (2003) provide an approximation strategy re-implemented in this
work. The strategy rests on sampling a set of K sequences, denoted as (s™)1<ner,
from the stationary distribution of sequences given a third set of parameter values
¢*. These sequences can be sampled using the Gibbs sampling method described in
Robinson et al. (2003)!. For sufficiently large values of K, the importance sampling

argument of Robinson et al. (2003) can be applied to this model to yield

K —2(B—f")E, @ ( u.)
! P A 5 P
~2(B'—B)Esq (H E) Zh—l H1 Ty,

L7 K —2(8'—B")E LN
00/ > ho1€ (I 3,

p(so | 0. M) ~ e

p(so | 6. M)

(3.14)

1

The approximation’s quality depends on two factors: the value of K (high values im-
prove the approximation) and the distance of 8* to both § and ' (a #* at the midpoint
between ¢ and ¢’ gives the best approximation). Robinson et al. (2003) opt to partition
their parameter space into a predefined grid. They then use the grid point 6* this is
nearest to the midpoint of 6 and ¢'.

Our protocol is slightly different, creating new 6*s dynamically, always at the mid-
point of 6 and ¢'. A new 6" is created whenever the distance (x) between the midpoint
of 6 and ', and the nearest #* is beyond a predefined threshold (Xmaz)- In practice. a
limit is set on the number of #* stored in memory. Whenever this limit is reached. and a
new ¢* is to be created, one simply writes over the #* (and the respective K sequences)

that is the furthest away from the midpoint of § and #’. As such, one eventually has

'We also tried a slightly different Gibbs scheme, which performed well: rather than updating
the states at sites at random. we simply perform a full sweep across the sequence. The number of
sweeps is then tuned empirically. for instance, by plotting the autocorrelation function of the sequence
pseudo-energy.
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a “hyper-cloud” of 6*s following the § and ¢ as the MCMC run progresses. We de-
termined empirically the acceptable setting for Xme, and K, fixing Xmes = 0.01 and
K = 1000. However, a larger Ymer and a lower K can be used to obtain faster rough
estimates. Also note that restraining the interval of the uniform distribution used as
the prior over § serves to increase the speed of convergence; an overly wide interval
could lead to initial values that are very far from those at stationarity, which would
require invoking the approximation procedure for p(so | 6', M)/p(so | 8, M) many times

before convergence.

3.2.7.3 General settings and implementation checks

As usual. we explored the call frequency of operators empirically, and the final setting

used here to define a cycle are given in table 3.11. We ran the chain for 100,000 cycles.

Table 3.1. MCMC settings used here.

Operator Call frequency Tuning § Tuning ¢
BRANCHHISTORY 50 NA 1
NODESTATE 50 NA 1
STATIONARY 1 5000 5
STRUCTURE 1 0.1 NA
BRANCHLENGTH 5 1.0 NA
BRANCHLENGTH 5 0.5 NA

discarded the first 10,000 cycles as burn-in, and sub-sampled every 50 cycles from the
remaining sample. The MCMC runs require 10-15 days of CPU time on a Xeon 2.4
GHz desktop computer.

When the parameter § = 0, our model simplifies to the site independent JTT+F

model (or POISSON+F, depending on the exchangeability parameters chosen). We

'In subsequent work, we have found it much more efficient to propose substitution mappings to
several sites at once (say 50), and to use the TREEHISTORY move as well.
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Figure 3.1. Stabilization of § (when combined with JTT+F) in three different MCMC
runs for the MY010-153 dataset. Only the first 2000 cycles (with points every 50) are
shown.

tested our implementation with 8 = 0, and compared the results with those obtained
using the standard pruning-based sampling method. and found both to converge to
essentially identical parameters and branch lengths at stationarity (not shown). We
also verified that when § = 0 and Q = Q*, all substitution mapping moves are accepted

(since in the case, the MH ratio cancels out).

3.3 Results and discussion

3.3.1 Exchangeability parameters in relation to structural fit-

ness considerations

We first applied our model to the MY010-153 data set. We performed several inde-
pendent runs, starting from different initial parameter values. to explore convergence
of the MCMC. Focusing on 3, figure 3.1 shows its evolution over three different chains

starting from different values. These runs consistently stabilize around the same values.

Additionally, # converges to positive values across all data sets (table 3.2), possi-
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Table 3.2. Posterior mean (and 95% credibility intervals) of £.

@ specification PrPk10-158 Myo10-158 Myoy4-153

PoIssoN+F 0.4207 (0.3300, 0.4994) 0.7005 (0.5876, 0.8164) 0.6901 (0.6141, 0.7913)
JTT+F 0.3613 (0.2759, 0.4358)  0.6273 (0.5042, 0.7386) 0.5717 (0.4804. 0.6555)

bly indicating that selection prefers sequences that maintain a good structural fitness.
These results corroborate with those of Robinson et al. (2003).

Interestingly, we note that § consistently stabilizes at higher values when combin-
ing the potential to the POISSON+F model than when combining with the JTT+F
model. For example. for the MY010-158 data set. the mean posterior values (and 95%
credibility intervals) obtained are 8 = 0.7005 (0.5876, 0.8164) and 8 = 0.6273 (0.5042,
0.7386) when using Po1ssoN+F and JTT+F respectively. Being empirically derived,
the JTT matrix has a considerable amount of prior biochemical information regarding
the amino acid substitution process. Accordingly, these results seem to indicate that,
despite being formally site independent, the JTT matrix implicitly captures. to some
extent, the average effects of dependencies between sites, measured by the potential.
Hence, the potential’s weighting (3) need not be as high when using the JTT matrix

in comparison to that when using the naive Poisson model.

3.3.2 Amino acid stationary probabilities and branch lengths

The substitution process, as specified in (3.4), can be viewed as a composition of two
layered elements: 1) a process proposing substitutions, according to @, and 2) a process
selecting substitutions, by accepting or refusing according to ef(Es—Ey) Consequently,
the amino acid stationary probabilities are those of the substitution process in the

absence of the e?E=Es) factor. The potential itself will have an influence on amino
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Figure 3.2. Mean values inferred for the 7 parameters, as well as the induced amino
acid frequencies, and the empirical amino acid frequencies.
acid frequencies, thereby creating an interplay between 3 and 7. A better measure of
the true (or actual) prevalence of each of the 20 amino acids is obtained by looking at the
induced amino frequencies in a set of sequences sampled from the stationary probability
(see eqn. 3.9) implied by §. To monitor the induced frequencies, we found it convenient
to simply look at the relative frequencies of amino acids in the sequences sampled given
6”. as this parameter vector is always in the vicinity of the 8 to ¢’ proposal. When
p is fixed (8 = 0), sequences are directly sampled according to 7, and the stationary
probabilities and induced frequencies are necessarily equivalent (fig. 3.2). When 3 is a
free parameter (8 > 0). the 7 values inferred often differ widely with those when 3 = 0.
However. we found that the induced frequencies, with B > 0 have only mild differences
with those when # = 0 (or with the empirical frequencies observed in the alignment;
fig. 3.2).

Likewise, branch lengths correspond to the expected number of substitutions per
site proposed upstream of the selection step described above, and therefore do not
reflect the true branch lengths induced by the model (i.e., the number of substitutions

having actually occurred once the statistical potential has been taken into account).
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Figure 3.3. Comparison of L = [] p(s;, ¢; | 85,5+ 8, M) for the three possible topolo-
=1

J
gies of the MY04-158 data set.

As expected, we found that these two measures of branch lengths do not correspond
when 8 > 0, with the induced number of substitutions consistently lower. Using the
MYO010-153 data set as an example, we found that the tree length inferred with 8 > 0
was 1.0874 (0.8926, 1.3045), whereas the induced number of substitutions per site was
0.7779 (0.7255, 0.8434), a value only slightly higher to that with 8 = 0, at 0.7678
(0.7190, 0.8235).

3.3.3 Sensitivity to tree topology

Using the MY04-153 data set, we ran a MCMC under each of the three possible tree
topologies. We found that parameter estimates under each topology were essentially
identical (not shown). However. we did find that each tree was clearly distinguishable
utilizing the MCMC methodology; figure 3.3 shows the augmented likelihood factor
L = 2ﬁ3 P(Sj: 95 | 8jup-0. M) in a window of the MCMC. The correct tree, grouping
the tv;o_ lvvhales together and the two turtles together, is indeed favored.

It should be noted that these are not true likelihood-based comparisons, which

would require computing the factor p(sq | 8, M ), as well as the integral over all possi-
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ble substitution mappings. A treatment of the tree topology as a free parameter may
be technically complex. The main complication arises from the fact that a rearrange-
ment of the tree means that the current substitution mapping may not be compatible
with the newly proposed topology. This raises the difficult problem of devising up-
date mechanisms that simultaneously change the topology and the substitution history,
while having a good acceptance rate—a task that would certainly be computationally

very demanding.

3.4 Conclusions

The basic model proposed here can be viewed as having two layers: one layer of un-
derlying parameters that assume site-independence, specified by Q, and a second layer
accounting for site interdependence, weighted using parameter 3. We have found the
value of # to be lower when using a more reasonable matrix Q (i.e., JTT+F) than
when using a less reasonable one (i.e., POISSON), giving some indication that both
layers interact in some way.

Further contrasting is needed. For instance, we have only combined the potential
with JTT+F and Po1sSON+F, whereas several other combinations are obviously pos-
sible (e.g., combining the potential with a GTR matrix. or with +T" settings). Also, it
would be interesting to investigate the impact of different existing statistical potentials
(e.g., Miyazawa and Jernigan. 1985). In all cases, these endeavors are focused on the
first step of the Bayesian framework. We now need quantitative measurements of the

statistical merits of these different choices, which we treat in the next chapter.



Chapter 4

Assessing site interdependent

phylogenetic models

4.1 Introduction

The numerical means of applying general site-interdependent models introduces a wide
spectrum of possible model configurations; the MCMC procedures allow for a broader
class of models than previously proposed methods of incorporating interdependence
(e.g., Felsenstein and Churchill, 1996; Jensen and Pedersen, 2000; Pedersen and Jensen,
2001; Arndt et al.. 2002; Siepel and Haussler, 2004), because the substitution process is
effectively defined in the space of sequences. In other words, invoking some sequence fit-
ness criterion could—in theory—accommodate a total interdependence across all sites.
An ideal perspective would include full knowledge of the posited fitness landscape of
the sequences under study, forming the basis of all evolutionary inferences. In practice,
however, it follows that some proxies for sequence fitness may be better suited than
others, and that their application may produce different results depending on the spec-
ifications of the formally site-independent components of the model. This raises the

question of choosing the most relevant combination for a particular dataset.
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As previously discussed, in the Bayesian paradigm, model evaluations constitute the
third step of the development cycle, and the basic strategies commonly used to engage
this step can be categorized along two broad axes. The first is used to compare the
fit of alternative models, and. as previously mentioned, is often achieved by computing
the Bayes factor (Jeffreys, 1935; Kass and Raftery, 1995). The second, known as
posterior predictive checking (Rubin, 1984; Gelman et al., 1996), is used as an absolute
test, characterizing discrepancies between features of true data and data simulated
under the model of interest. Both strategies have become widely used for the study of
phylogenetic models (Sullivan and Joyce, 2005).

In the present chapter, we explore these model evaluation strategies within the
site-interdependent framework, in order to conduct our first phenomenological bench-
marking of statistical potentials in this new evolutionary context. From a technical
standpoint, posterior predictive checks require nothing more than posterior sampling
and simulation of data replicates under the site-interdependent model. The calculation
of the relative fit of different models, however, requires more elaborate methods, since
the models do not allow for a closed form computation of the likelihood. Indeed, in the
previous study by Robinson et al. (2003), as well as our own first explorations of the
last chapter, the importance of explicit site-interdependent structural considerations
was assessed based on the plausibility of associated parameter estimates. Such model
assessments remain qualitative; they do not allow for selection between alternative fit-
ness proxies, or even for a quantified comparison against site-independent models.

Here, we propose the use of a numerical technique for the evaluation of Bayes factors,
yielding quantitative model comparisons under the fully site-interdependent framework
originally proposed by Robinson et al. (2003). Summarized in chapter 1, the method
is commonly known under the names of thermodynamic integration, path sampling, or

Ogata’s method. The technique has been used extensively in statistical physics for
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evaluating (the ratio of) partition functions (for instructive reviews, see Neal, 1993;
Gelman, 1998). and more recently for the study of phylogenetic models (Lartillot and
Philippe, 2004, 2006). We derive an adaptation of the method, which, in combination
with previously proposed techniques (Lartillot and Philippe, 2006), can provide an
overall ranking of models, with or without site-interdependent criteria.

We have implemented these model assessment strategies and abplied them on real
protein datasets, comparing the relevance of two sets of statistical potentials (Miyazawa,
and Jernigan, 1985; Bastolla et al., 2001), combined with several different and well
known types of models of amino acid sequence evolution. By contrasting different
model configurations. we have evaluated the relative contribution of each component

to the overall model fit.

4.2 Material and methods

4.2.1 Data

We used three data sets: FBP20-363, PPK10-158, and MY0G60-153. As in the previous
chapter, the contact map is derived from a reference structure, determined by X-ray

crystallography for one of the sequences included in the dataset (PDB accession numbers

1ALD, 1HKA and 1MBD for FBP20-363. PPK10-158 and MYO60-153 respectively).

4.2.2 Statistical potentials

We tried the statistical potentials of Bastolla et al. (2001) and of Miyazawa and J ernigan
(1985). Both are based on a contact map of the form given in (3.1). Recall that Bastolla
et al. (2001) define a contact as two amino acids with any heavy atoms (atoms other
than hydrogen) within 4.5 A. whereas Miyazawa and Jernigan (1985) consider side-chain

centers within 6.5 A. Also note that Bastolla et al. (2001) ignore contacts between amino



70

acids within 2 positions along the sequence, while Miyazawa and Jernigan (1985) ignore
contacts between immediate neighbors in the sequence. As in the previous chapter, we
impose the same protein structure over the tree by applying the same contact map to

all sequences considered throughout the inference.

4.2.3 Evolutionary models

We build on the previously mentioned evolutionary models, combining the potentials
with site-independent amino acid formulations. In the simplest case, both equilibrium
frequencies and exchangeability parameters are fixed to uniform values (referred to as
Poi1sson). We also fixed equilibrium frequencies and exchangeability parameters to the
empirically derived values of Jones et al. (1992b) (written as JTT). Other alternatives
might consider equilibrium frequencies as free parameters (designated as +F), or both
equilibrium frequencies and exchangeability parameters as free (indicated as GTR). We
also use the +I" settings (Yang, 1993, 1994), based on the parameter expansion sampling
methods described in chapter 2. To all of these different configurations, we apply either
the potential of Bastolla et al. (2001) (indicated as +BAS) or the potential of Miyazawa

and Jernigan (1985) (indicated as +MJ).

4.2.4 Priors

We used the following priors:

e \ ~ Ezponential. with a mean determined by a hyperparameter v, itself endowed

with an exponential prior of mean 1;

e 7 ~ Gamma, with a ‘shape’ hyperparameter «, in turn endowed with an expo-
nential prior of mean 1 (for notational simplicity in this chapter, we include r in

the generic 6);



e p ~ Dirichlet(1,1,...,1);
e m ~ Dirichlet(1.1,...,1);

e B~ Uniform|—Bmaz, Bmaz), where, unless stated otherwise, Bnae = 5.

4.2.5 Computing Bayes factors

In the present application, the thermodynamic integration method rests in defining a
continuous path connecting a standard site-independent model with the model including
the sequence fitness proxy, i.e. the set of statistical potentials. To do so, we make use
of the fact that when § = 0, the site-interdependent model collapses to the usual site-
independent model. From the partition function formalism (Appendix B), we find that
for a particular value of 3, the derivative of the logarithm of the marginal likelihood
with respect to 3 gives:

dnp(D | B)
B

Olnp(D,¢ | B.6)
9B

= 2 (4.1)

where (.) represents an expectation with respect to the posterior distribution over 6
and ¢ (we momentarily omit the dependence on M from the notation, considering it
as implicit). Based on a sample (™, #™)1<h<r, obtained via the Metropolis-Hastings
algorithm, expectations over the posterior probability distribution can be estimated for

any value of 3 using the standard Monte Carlo relation:

{

Onp(D$16.0), , 1§ 9lnp(D.o% | 5,6%) 42)
~ % . .

0B op

h=1
Our quasi-static procedure then consists of sampling along a path linking the standard
site-independent model, 8 = 0, to some arbitrary point 8 = z, by slowly incrementing
B by a small value §3 after a set of MCMC cycles. The h*h draw of our sample,

(0. ¢M)) chek, is associated with Br, where By = 0, B = z and Vh, 0 < h < K.



Bh+1 — Br = 68. Integrating over the interval [0. z] can then be estimated:

PO 1Br) _ [*8lnp(D |B) .
pD16) Sy op P (43)
* Olnp(D.¢ | B.6)
d 4.4
| e 2R, (4.4
« L[101lnp(D,¢% | By, 6)
7|
<« 8lnp(D. ™M | §,.6M)
+hz=; 35
191np(D. ¢ | By.0U)
+§ a5 . (4.5)

Equation (4.5) provides an estimate of the logarithm of the Bayes factor for the model
including statistical potentials, with # = =z, over the site-independent model. 8 = 0.
The value of z is arbitrary. However, with this procedure. we can monitor the Bayes
factor anywhere we choose along the dimension of 8. Also note that, using the same
sample, Inp(D | Bx+) — Inp(D | fo) can be computed for any value K’ (0 < K’ < K).
In other words, the curve of the log marginal likelihood along 3 can be estimated (fig.
4.1). In practice, since the high-likelihood region is restricted to a very small proportion
of the admissible values of 8, the integration procedure can be constrained to a small
and specific interval; one can consider that outside this specific interval the marginal
likelihood given § is ~ 0. Thus, exponentiating and integrating this curve yields the
overall Bayes factor between the model with statistical potentials (M;) against the

model assuming independence (Mp), with the Monte Carlo estimate derived as

[ (D | B)p(B)ds

o = 08 o
- / B bi6)ds (4.7)
Z p(D | Br) ﬁ (4.8)

(D[ fa)
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where I is the interval size of the uniform prior on 8, and hence 63 /I is the density of
the prior contained between each successive 63 step of the quasi-static procedure.

The analogy with thermodynamics here is that the inverse of 8 can be thought of as
a “site-interdependence temperature”, with § = 0 effectively “melting” out all structural
information. Alternatively, when § > 0 the models can be said to be “annealed” into
site-interdependence. From this perspective, plain MCMC runs are in fact sampling
the appropriate temperature for the particular sequence fitness proxy!.

We also use this analogy in referring to our tuning of the thermodynamic integra-
tion, which we explore by applying the procedure in different directions. Specifically,
annealing integrations work by first equilibrating a MCMC with § = 0, followed by
a slow and progressive increase to § = z. If the value of § is increased too quickly,
the MCMC run will not have sufficient time to equilibrate, always dragging behind
configurations from preceding cycles with each increment of 3. Conversely, melting
integrations work by equilibrating a MCMC at 8 = z and slowing decreasing to 8 = 0.
Performing a bi-directional check. i.e. both annealing and melting integrations, forms
the basis of our empirical exploration of the MCMC settings needed for refining the
estimation procedure (fig. 4.1).

Obviously, obtaining precise integrations is computationally more challenging when
applying the statistical potentials to models with greater degrees of freedom. For exam-
ple, using MYO060-153, figure 4.1a shows that the annealing and melting integrations,
applied under JTT+BAS. are very similar for fast runs (68 = 0.005 and A = 100)
requiring about 2 hours of CPU time on a Xeon 2.4 GHz desktop computer. Slower
runs (68 = 0.0001 and K = 5.000), requiring about 2 days of CPU are essentially
indistinguishable (fig. 4.1b). When applying the integration under JTT-+F+BAS, how-

ever, a clear discrepancy is observed between fast (approx. 30 hours, 68 = 0.001 and

!This is also the reason we use the same notation for this parameter as we do for the model-
switch thermodynamic integration morphing parameter. under site-independent models as described
in chapter 2.
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Figure 4.1. Bi-directional integrations along # for JTT+BAS (a and b) and
JTT+F+BAS (b and d) performed with ‘fast’ (a and c) and ‘slow’ (b and d) set-
tings using the MY060-153 dataset. The trace plots illustrate the empirical tuning of
the thermodynamic MCMC sampling, which is more challenging for the model with
greater degrees of freedom (bottom).
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K = 1.000) annealing and melting runs (fig. 4.1c). Nevertheless, by tuning the call
frequency of the various Monte Carlo operators, the step size of the quasi-static scheme,
and the number of cycles between each increment, the integration settings can be ad-
justed (68 = 0.0005 and K = 20,000) to obtain precise Bayes factors estimates within
about 15 days (fig. 4.1d).

Our integration scheme along § allows us to compute the Bayes factor between
a site-interdependent model and its site-independent counterpart. We also need to
compute Bayes factors between site-independent models, which we do using the model-
switch integration method described in Lartillot and Philippe (2006), and summarized
in chapter 2. For example, in assessing the model GTR+BAS, we first perform the
integration along [, giving the log Bayes factor of GTR+BAS against GTR. Then.
applying the model-switch method, we compute the log Bayes factor between GTR and
PoissoN. With both estimates at hand, we calculate the log Bayes factor of GTR+BAS

against POISSON. simply using the additive quality of logarithms:

1o P(DIGTR4BAS) | p(D|GTR+BAS)  ~ p(D|GTR)

p(D | POISSON) p(D | GTR) p(D | PO1ssON)’

(4.9)

In this way, it is possible to observe the overall ranking of models for a given dataset,
by having all Bayes factors against the simplest POI1sSON model. Note that error of the
integration procedures is cumulative in equation 4.9; for succinct comparisons of models.
we report the mean of the highest and lowest values obtained using bi-directional checks
(table 4.1). For the simpler models, the error can be reduced to less than one natural
log unit, whereas the more challenging models can lead to an error ~ +4.

The following protocol summarizes:

e For a particular model setting, run a quasi-static thermodynamic integration,
estimating the log marginal likelihood curve along S (applying the Monte Carlo

estimate given by eqn. 4.5);
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e Exponentiate and integrate the resulting curve to estimate the overall Bayes factor
between the site-interdependent model and the underlying site-independent model

(applying the Monte Carlo estimate given by eqn. 4.8);

e Given the marginal likelihood comparisons between site-independent models, es-
timated using the model-switch scheme described in Lartillot and Philippe (2006)
(as well as in chapter 2), compute all Bayes factor with respect to POISSON (ap-

plying relations analogous to eqn. 4.9).

4.2.6 Posterior predictive re-sampling

The sampling techniques used here are particularly well suited to performing posterior
predictive checks, as described in Nielsen (2002). A posterior predictive scheme is based
on a simulation procedure, which consists of drawing a sequence from the stationary
probability written in (3.9) under a given 6 € ©, and simulating a substitution mapping
on the branches of the tree to generate a replication of the data—in other words. these
mappings are unconstrained to any states at the leaves of the tree (Nielsen, 2002).
The simulation procedure is repeated on each successive parameter values of the initial
MCMC sampling performed on the true data.

Given a statistic of interest, posterior predictive checks then consist in comparing
the value of the statistic observed on the data, with the distribution obtained on the
replicates; a discrepancy indicates that the model does not adequately account for the
phenomena summarized by the statistic. Here, our statistics are not exactly computed
on the data, but on mappings sampled from their posterior distribution. We refer to
the substitution histories obtained from simulations as predictive mappings, in contrast
with what we call the “observed” mappings. which are compatible with the true observed
data. Note. of course, that these latter mappings are not actually observed, but rather

constitute the data augmentation step of the MCMC methods.
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To explore whether a model can explain the level of rate heterogeneity of a given
dataset, we compared the variance in number of substitutions across sites, calculated
based on the number of substitutions counted at each site in predictive and observed
mappings. This particular statistic was used by Nielsen (2002) as an example demon-
strating the utility of a mapping-based framework.

Also, in order to observe how well a model captures amino acid exchange propen-
sities, we counted each of the 190 possible types of exchange in mappings to generate
what we refer to as the residue ezchange distribution. We then computed the Euclidean
distance between predictive and observed exchange distributions for each sample point

from the posterior distribution.

4.3 Results and discussion

4.3.1 Bayes factors

We applied the thermodynamic integration procedures to all datasets. and for all model
combinations described in this chapter. The resulting Bayes factors. computed against

the simplest model (POISSON), are reported in table 4.1.

4.3.1.1 Overall fit of site-independent models

The most favored site-independent model is JTT+T for FBP20-363 and PPk 10-158. and
JTT+F4T for MY060-153. This is somewhat expected. The POISSON-based models
are obviously unrealistic, since the exchangeability between amino acids is clearly not
uniform, hence giving support to JTT-based models. Also, allowing for rate heterogene-
ity is known to nearly always improve the model fit (Yang, 1996: Buckley et al., 2001:
Posada and Buckley, 2004), as is the case here. The equilibrium frequencies of JTT

appear to be suitable for the two smaller datasets, in as much as the dimensionality



Table 4.1. Natural logarithm of the Bayes factor for all models studied in this chapter,
with POISSON used as a reference (the best site-independent models for each dataset
are emphasized in italics, whereas the best overall models are emphasized in bold).

Model FBP20-363 PPK10-158 MYO060-153
Poisson 0 0 0
Poisson+BAS 10 16 24
PoissoNn+MJ 6 7 18
PoissoN+F 103 34 70
Poisson+F+BAS 158 78 142
PoissoN+F+MJ 144 65 129
PoissoN--T 135 53 138
Poisson+T'+BAS 138 69 162
Poisson+T'+MJ 137 58 156
PoissoN+-F+T 238 89 207
Poisson+F+4+T'+BAS 296 139 280
PoissoN+-F+T'+MJ 285 122 267
JTT 380 144 368
JTT+BAS 391 155 382
JTT4+MJ 386 150 379
JTT+F 365 137 389
JTT+F+BAS 397 159 427
JTT+F+MJ 389 145 417
JTT+T 529 195 499
JTT+I'+BAS 540 206 512
JTT+T+MJ 535 200 508
JITT+F+T 513 186 518
JTT+F+T'+BAS 546 216 551
JTT+F+T'+MJ 539 203 537
GTR 310 102 347
GTR+BAS 346 139 394
GTR+MJ 338 121 383
GTRA4+TI 434 147 466
GTR+I'+BAS 471 185 512

GTR+T+MJ 462 168 501
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penalty renders a specific adjustment of these parameters unreliable. For MY060-153.
however, such a dataset-specific adjustment of equilibrium frequencies seems worth-
while. The GTR matrix is always rejected over the JTT-based models, most likely
since the data sets considered are much too small to reliably infer the 189 additional
free parameters introduced by this model. Note, however, that the GTR-based models

are still far better than PoIssoN-based models.

4.3.1.2 Overall fit of site-interdependent models

Models including statistical potentials are always favored over their site-independent
counterparts, under all configurations explored here. This being the case for all three
proteins studied suggests that such an improvement in fit is general. Nevertheless, the
improved fit observed when including statistical potentials is mild, when compared to
the overall fit of rich site-independent models. Specifically, the use of an empirical
amino acid replacement matrix and a gamma distributed rates model both outperform

the sole use of statistical potentials.

4.3.1.3 Interplay between model configurations

Interestingly. the relative improvement brought about by the potentials is very much a
function of the site-independent components of the models. In particular, the amelio-
ration in model fit when applying statistical potentials, as well as the equilibrium value
of B under plain MCMC sampling (table 4.2), is noticeably lower when the m-vector
is fixed, which is the case irrespective of the other site-independent settings. This is
perhaps best understood by observing the stationary probability distribution written
in (3.9). While the stationary distribution is given by 7 under the standard notation
of continuous-time Markov chains. under the site-interdependent models studied here

it is given by a combination of 7 and the exponentiated pseudo-energy factor. This
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Table 4.2. Equilibrium values of 5. Mean posterior values (with 95% credibility inter-
vals) under all model combinations described in the text.

Model

FBP20-363

Prx10-158

Myo60-153

PoissoNn+BAS
Poisson+MJ

Poisson+F+BAS
PoissoNn+F+MJ

Poisson+I'+BAS
Poisson+T'+MJ

PoissoNn+F+I'+BAS
PoissoN+F+I'+MJ

JTT+BAS
JTT+MJ

JTT+F+BAS
JTT+F+MJ

JTT4+T'+BAS
JTT+I'+MJ

JTT+F+T+BAS
JTT+F+I'+MJ

GTR+BAS
GTR+MJ

GTR+TI'+BAS
GTR+T+MJ

0.107 (0.0521, 0.162)
0.0074 (0.0001, 0.0150))

0.402 (0.335, 0.474)
0.0658 (0.525, 0.0787)

0.0989 (0.0509, 0.158)
0.0058 (0.0001.0139)

0.439 (0.373, 0.511)
0.0811 (0.0611, 0.0953)

0.176 (0.126, 0.224)
0.0231 (0.0144, 0.0316)

0.305 (0.232, 0.369)
0.0449 (0.0335, 0.0577)

0.177 (0.130, 0.231)
0.0234 (0.0149, 0.0320)

0.333 (0.264, 0.413)
0.0541 (0.0407, 0.0688)

0.433 (0.351, 0.508)
0.0680 (0.0504, 0.0854)

0.440 (0.362, 0.513)
0.0791 (0.0607, 0.0910)

0.249 (0.176, 0.321)
0.0279 (0.0163, 0.0395)

0.462 (0.378, 0.549)
0.0724 (0.0553, 0.0905)

0.268 (0.197, 0.350)
0.0296 (0.0164, 0.0423)

0.564 (0.463, 0.665)
0.0983 (0.0786, 0.1198)

0.264 (0.193, 0.332)
0.0368 (0.0234, 0.0499)

0.378 (0.228, 0.464)
0.0722 (0.0562, 0.0894)

0.277 (0.206, 0.346)
0.0391 (0.0254, 0.0531)

0.478 (0.368. 0.582)
0.0724 (0.0519, 0.0943)

0.511 (0.412, 0.608)
0.0777 (0.0574, 0.0999)

0.546 (0.442, 0.649)
0.0929 (0.719. 0.1171)

0.268 (0.203, 0.330)
0.0423 (0.0307, 0.0539)

0.637 (0.543, 0.725)
0.1086 (0.0890, 0.1295)

0.239 (0.169, 0.332)
0.0397 (0.0202, 0.0501)

0.717 (0.601. 0.825)
0.1406 (0.1147, 0.1663)

0.240 (0.167, 0.318)
0.0423 (0.0273, 0.0560)

0.501 (0.409, 0.598)
0.0816 (0.0630, 0.1014)

0.244 (0.170, 0.321)
0.0424 (0.0276, 0.0561)

0.575 (0.465, 0.685)
0.0975 (0.0715, 0.1197)

0.625 (0.505, 0.745)
0.1148 (0.0901, 0.1402)

0.679 (0.563, 0.792)
0.1228 (0.0961, 0.1590)
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forces a re-interpretation of the usual meaning given to m: rather than representing
the amino acid equilibrium frequencies, these parameters should be viewed as “chemi-
cal potentials” associated to each residue, and whose effect is combined to that of the
statistical potentials in the final amino acid equilibrium frequencies, as discussed in the
previous chapter. From this perspective—related to random energy approximations
(Shakhnovich and Gutin, 1993; Sun et al., 1995; Seno et al., 1998)—fixing the values of
7. to uniform values (in the case of POISSON) or to the JTT values. effectively prevents
the model from compensating for the coupling to the exponentiated pseudo-energy fac-
tor, and thus leads to a low support for the site-interdependent models. Indeed, while
the +F settings were rejected in favor of JTT for FBP20-363 and PPK 10-158 under site-
independence, when invoking the statistical potentials, this increased parameterization
seems favored.

Also of interest, we find that the relative improvement brought about by the po-
tentials is more important when using P0OISSON-based models than when using a JTT-
based models. This is consistent with the fact that the JTT matrix inherently accounts
for protein structure features, by assigning greater exchange propensities between amino
acids sharing various physico-chemical properties. In other words, explicitly account-
ing for site-interdependencies due to tertiary structure requirements is more important
when using the naive PO1SSON-based model than when using the more informed JTT-
based model.

When invoking the GTR configuration, the potentials give a greater improvement in
fit than when applying the JTT settings. Nevertheless, site-interdependent GTR-based
models are still poorer for these small datasets than the JTT-based models.

The use of a +I" model seems to give an essentially additive improvement in model
fit, with little, or no interaction with other model configurations. Since the statistical

potentials could impact directly on site-specific rates, this result is unexpected; the lack
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of interaction in itself may be indicative that the potentials do not, in fact, acknowledge

significant rate heterogeneity.

4.3.1.4 Comparison of statistical potentials

We find that for these applications the potentials of Bastolla et al. (2001) and Miyazawa
and Jernigan (1985) receive similar support, with +BAS models mildly favored over
+MJ. The comparable merit of these potentials is somewhat expected; both work with
a similar contact-based protein structure representation. The fact that +MJ models
receive lower support than +BAS models may be a consequence of the over-simplified
quasi-chemical approximation used in the derivation of the potentials of Miyazawa and

Jernigan (1985), or to differences in the contact definition itself.

4.3.1.5 Sensitivity to the prior on

It is common practice, when assessing a new class of models, to evaluate the influence
of the prior on the resulting model fit (Kass and Raftery, 1995). Here, we focus on the
distinguishing feature of our model: the prior on 3. Note that the trace plots shown
in figure 4.1 display, up to an additive constant, the marginal likelihood of the model
with § successively fixed to each value along the integration procedure. Treating [ as
a free parameter requires that we define a proper prior probability distribution, over
which these curves are averaged (eqn. 4.8). Since little is known regarding the usage
of statistical potentials in this context, we follow the practice of assigning a bounded
uniform prior, and testing empirically that the posterior distribution of 3 is well within
these bounds (Robinson et al., 2003).

It should be noted that the two sets of potentials studied here are not scaled equiv-
alently, which leads to different temperature factors at equilibrium—the potentials of

Bastolla et al. (2001) lead to higher values of § (table 4.2). This means that ap-
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Figure 4.2. Influence of the interval size (I) of the uniform prior distribution for 8 on
the calculated Bayes factor. Here, the models being compared are JTT+F+I'+BAS
against JTT-+F+T', applied to MY0O60-153. Two thresholds are marked on the graph.
The first (leftmost) indicates the point beyond which JTT+F+I'+MJ (with prior on
B ~ [-5, 5]) is favored over JTT+F+I'+BAS. The second indicates the point beyond
which JTT+F+T is favored over JTT+F+I'+-BAS.

plying the same uniform prior on 8 under +BAS and +MJ models amounts to giv-
ing favor to the potentials of Bastolla et al. (2001); loosely speaking. the differences
in scaling make the space of admissible values for 3 “appear” larger to +MJ mod-
els. To illustrate this problem, we performed a simple exploration of the influence of
the size of the interval (I) of the uniform prior on 8. Using the same sample, the
Monte Carlo approximation given by (4.8) can be re-computed for different interval
sizes. For example, figure 4.2 shows the log Bayes factor comparing JTT+F+I'+BAS
and JTT+F+T as a function of the interval size I. As I increases, the density of
the prior contained in each increment of the quasi-static procedure decreases, lead-
ing to a lower support for JTT+F+T'+BAS. When [ reaches an order of magnitude
around 10°, the JTT+F+I'+MJ model, with prior on 8 ~ [-5, 5]. becomes favored
over JTT+F+I'+BAS. Moreover, when I reaches an order of magnitude ~ 107, the

JTT+F+TI becomes favored over the site-interdependent model. This illustrates a fun-
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damental theoretical consequence of the Bayesian paradigm: model rankings can change
by redefining the space of admissible parameter values (the prior). In the present case,
this means that no matter how strong the signal for site-interdependence, their exists
an interval size I for the uniform prior on # such that the site-independent model is
favored, an example directly related to the so-called Jeffreys-Lindley paradoz (Lindley,
1957; Bartlett, 1957; Lindley, 1980).

In practice, the resulting difference in dimensionality penalty does not appear prob-
lematic in the present case; the potentials do not differ drastically in scaling, and the
maximum marginal likelihood along § was always greater for the potentials of Bas-
tolla et al. (2001) than for those of Miyazawa and Jernigan (1985). For example, for
MYO060-158 under the model JTT+F+T'+BAS, the maximal point along the marginal
likelihood curve gives a log Bayes factor of ~ 553, whereas under JTT+F+I'+MJ the
maximal point gives ~ 540.

For this particular comparison, one simple alternative would be to re-normalize
the potentials to an equivalent scaling. Yet this solution would still not be applicable
when comparing sequence fitness proxies based a fundamentally different rationales.
In the longer run, non-uniform priors could be used. particularly as more datasets
are analyzed; Lempers (1971), for example, suggested setting aside some datasets for
constructing proper priors to be used in subsequent analyses. Along these lines, we
are currently devising other forms of statistical potentials, with each having the same

overall temperature scaling (Kleinman et al.. 2006).

4.3.1.6 Permutations checks

Overall, the pairwise contact potentials studied here appear inadequate; given the choice
between the sole use of statistical potentials and the standard site-independent models,

one would opt for the latter. Yet. a signal for site-interdependence is clearly detected.
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Perhaps the simplest check that can be done when constructing a model accounting
for a particular signal, is the evaluation of the model’s performance when deliberately
removing that signal from the data. Following Telford et al. (2005), we explore this
through simple permutation tests, whereby we swap the positions of a percentage of
random pairs of columns in the alignment. Such permutations have the effect of blurring
the structural signal. Indeed, the tests can be viewed as a randomization of the contacts
in the contact map. We defined four levels of randomization, swapping the position of
25, 50, 75, and 100% of columns. For each randomization, we computed the Bayes
factor in favor of the site-interdependent model. Given the computational burden, we
performed only three replicates for each randomization level.

We performed these permutation checks using the MY060-153 dataset, comparing
the log Bayes factor of PO1sSSON+F+I'+BAS against PO1ssON+F+T" (this is the case
giving the greatest improvement in model fit when applying the sequence fitness proxy).
As expected, the support for site-interdependent considerations is a decreasing function
of the percentage of randomization, essentially dropping to zero for a fully permuted
column ordering (fig. 4.3). Also note that each replicate randomization gives slightly
different results; evidently, the interdependencies between different positions of a protein
are not all equivalent.

This test plainly illustrates the distinguishing feature of the models in simplistic
terms: site-interdependent models give meaning to the order of amino acid columns in

the alignment.

4.3.2 Posterior predictive re-sampling

Two of the most fundamental patterns of amino acid sequence evolution are 1) the
heterogeneity of substitution rates across sites and 2) the heterogeneity of amino acid

exchange propensities. Both of these heterogeneities could be effects induced by struc-
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Figure 4.3. Permutation checks randomizing the order of columns in the alignment.
The log Bayes factor is estimated between POISSON+F+I'+BAS and PoIssoN+F+T,
for three replicates at each randomization level. A line joining the mean values at each
randomization level is drawn as a visual aid.

tural constraints, and, hence, could be accounted for—at least in part—by the sequence
fitness proxy. However, accommodating rate-across sites variations (4+T') and using an
empirical amino acid replacement matrix (JTT) also accounts for these heterogeneities.
As such, the best model obtained for all three datasets (JTT+F-+I'+BAS) seemingly
corresponds to a redundant configuration. To further explore this point. we have applied

simple posterior predictive checks, as described in the material and methods.

4.3.2.1 Rate heterogeneity

Under a model assuming uniform rates across sites, and if there is rate variation in the
dataset considered, the observed rate variance is likely to depart significantly from the
predictive rate variance; by the definition of the model, the predictive rate variance will
tend to be very low. This is indeed the case, as can be seen from figure 4.4a. The
extreme discrepancy between observed and predictive rate variance is in itself enough
to reject the uniform rates model (Nielsen, 2002). Comparing figures 4.4a and 4.4c

shows that using the potentials of Bastolla et al. (2001) essentially leaves the observed
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Figure 4.4. Posterior density plots of the variance in the number of substitution across
sites obtained in predictive mappings and observed mappings of our sample from the
posterior distribution, under the JTT+F (a), JTT+F+I (b). JTT+F+BAS (c) and
JTT+F+I'+BAS (d) models (using MY060-153).
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rate variance unchanged, and the predictive rate variance is only slightly higher than
the simple model assuming uniform rates—the mean predictive rate variance increases
from 2.95 in 4.4a to 3.40 in 4.4c.

In contrast, (fig. 4.4b), under the +I' model, the observed rate variance is even
greater than under the uniform rates model. As can be appreciated graphically, and
according to the calculated Bayes factors, an explicit treatment of rate variation (+T')
gives a better correspondence between model and data. with the predictive distribution
centered on the observed (fig. 4.4b and 4.4d).

Thus, on one hand, the +I' model accommodates rate heterogeneity across sites
very well, but does not explain it. i.e., it is phenomenological. On the other hand, the
+BAS model, which was hoped to explain this heterogeneity on mechanistic grounds.
essentially fails at doing so.

Note that predictive distributions tend to have a greater spread than observed distri-
butions. This is a result of predictive distributions comprising two levels of uncertainty:
the fundamental uncertainty associated with the inferred parameter values of the model
(the posterior distribution)—an uncertainty which tends to be greater for higher dimen-
sional models—and the uncertainty associated to the data replication (the simulation
procedure). Indeed, this effect is displayed in the more pronounced spread in rate

variance under the more complex +BAS model (comparing 4.4b and 4.4d).

4.3.2.2 Amino acid exchange propensities

Figure 4.5 is a comparison of the Euclidean distance between predictive and observed
exchange distributions, as explained in the material and methods. In principle, a model
yielding a lower distance between observed and predictive amino acid exchange distri-
butions would be favored.

In figure 4.5a, the distance between predictive and observed distributions under the
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Figure 4.5. Posterior density plot of the Euclidean distance between predictive and
observed substitution type distributions (see material and methods). In a), the mod-
els used are POISSON+F and Po1ssoN+F+BAS. In b). the models are JTT+F and
JTT+F+BAS.

Po1ssoN+F is high, and is only slightly reduced when applying the potentials of Bas-
tolla et al. (2001)—the mean distance goes from 63.92 under POISSON+F to 62.51 under
Po1ssON+F+BAS. In the case of JTT (fig. 4.5b), the distance between predictive and
observed distributions is much lower. This is indicative that a much better adequation
is obtained between the types of substitutions of mappings conditioned on the data.

with those predicted under the model when using the empirical amino acid exchange

propensities of JTT, even when applying the potentials of Bastolla et al. (2001).
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4.4 Conclusions

The results of the different model assessment strategies converge to the same fundamen-
tal conclusion: while an improved model fit is observed when applying the statistical
potentials. the improvement does not justify abandoning the successful techniques pre-
viously developed for modeling complexities such as across-site rate heterogeneity, or
variations in amino acid exchange propensities. In other words, the model fails to attain
the simple phenomenological benchmarks of interest. It would indeed have been sur-
prising to see such a simple 0/1 contact map, with potentials devised for other purposes,
supplanting all strategies developed under the assumption of independence. Also note
that the mild improvement in model fit brought about by the use of statistical poten-
tials comes at a high computational cost. Indeed, the total CPU time for the present
study is estimated at about 1000 days on a Xeon 2.4 GHz computer.

Two directions for further research are thus pressing. The first is the design of richer
potentials, specifically adapted to the evolutionary framework at hand. The second is
the development of faster computational methods. We explore the first direction in

chapter 5. and return to the second direction in chapter 6.



Chapter 5

Devising statistical potentials for

phylogenetic analysis

5.1 Introduction

The direct use of statistical potentials as done in the model proposed by Robinson
et al. (2003), as well as those studied in the last two chapters, should be considered
as a preliminary step to exploring a novel class of models. As previously mentioned,
currently available statistical potentials may not be ideal for the evolutionary context
that interests us, since they have generally been optimized in the context of protein
fold recognition, i.e., for maximizing the rate of correct structure prediction. given the
sequence. In an evolutionary perspective, and assuming that the protein’s structure is
well conserved over the time span in consideration, we would like to make a reciprocal
prediction: what are the sets of possible sequences relating an alignment of observed
sequences, that are compatible with a given structure? We might simplify the question
by removing the phylogenetic component, and asking: what are the sequences that
stably fold into a pre-specified conformation? This is more generally known as the

inverse folding problem. or protein design (Drexler, 1981; Pabo, 1983; Ponder and
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Richards, 1987).

Several approaches have been proposed for protein design, consisting in maximizing
the z-score between the energy of the native sequence on the target conformation and
its energy on a set of decoy sequences (Chiu and Goldstein, 1998), or, alternatively, in
applying a mean-square criterion on the values taken by the pseudo-energy score on
each structure-sequence pair of a database (Seno et al., 1998). However, these methods
have thus far only been tested in cubic lattice protein models. In addition, they lack
a firm theoretical basis. In particular, it would be interesting to guarantee optimal
predictive power of any given form of potential, and to have a robust methodology for
exploring the merits of different functional forms.

In this chapter’, we set out a general protein-design framework, deriving a new set of
statistical potentials from a database of sequences of known three dimensional structure.
In effect. the framework focuses on the stationary distribution of a site-interdependent
Markov process, but treating the coefficients of the potential as free parameters, which
we adjust to their ML estimates from a large set of sequence-structure pairs. Reformu-
lated in this way, the method maximizes the predictive power of the potential, now in
the structure-seeks-sequence direction. By construction, it yields the optimal parameter
values that can be obtained for a given form of potential. In addition. different func-
tional forms can be devised, and compared based on the likelihood obtained on a test
data set, distinct from the learning data set, in a procedure known as cross-validation
(Stone, 1974). The overall ML framework could also be extended to a full Bayesian
approach, but the ML approach relieves certain computational difficulties, and thus
provides a practical first avenue to investigate the modeling framework. We explore the
same functional form as Miyazawa and Jernigan (1985), which we also supplement with

a solvent-accessibility potential, of a form chosen via cross-validation. Finally, we re-

!We mention here again that this chapter reproduces results from Klienman et al. (2006), the third
paper mentioned in the preface. The material has been considerably shortened for the purpose of this
dissertation.
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inject these potentials into the phylogenetic context to compare them to the potentials

used in the last two chapters.

5.2 Material and methods

5.2.1 Data

We used proteins culled from the entire PDB according to structure quality (resolutions
better or equal to 2.0 A) and with less than 25% mutual sequence identity (Wang and
Dunbrack, 2003). Two subsets of approximately equal size were obtained by partitioning

proteins randomly: DS1, 449 proteins, 100,077 sites. and DS2, 465 proteins, 99.894 sites.

5.2.2 Structure representation

We used the contact representation of Miyazawa and Jernigan (1985). as in the preced-
ing chapter. The accessible surface of a residue is defined as the atomic accessible area
when a probe of the radius of a water molecule is rolled around the Van der Waal's sur-
face of the protein (Lee and Richards, 1971). We used the program NACcCEss (Hubbard
and Thornton, 1993) to make this calculation. When treating PDB files with multi-
ple chains, solvent accessibility was calculated taking into account all molecules in the
structure. The accessibility classes (percentage relative to the accessibility in Ala-X-Ala

fully extended tripeptide) were defined so as to generate W~ equal-sized subsets of sites.

5.2.3 Model

Let us consider a sequence s = (s;)1<i<n, of length N, and of conformation c. By Bayes’

theorem, we write the probability of a sequence conditional on the conformation. (and
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the model M) as

(e s, M)p(s | M)
Plsle M) = S s Mp(s [ M) (51

where the sum in the denominator is over all possible sequences of length N. Given
a statistical potential E(s.c), the conformational probability can be expressed as a

Boltzman distribution:

1
plc| s, M) = Ee‘E(s"’)/’“T (5.2)
— o~ (BsO-F()/kT (5.3)
where,
7 — Z e—E[s,c)/kT (54)

1s a normalizing constant. summing over all possible conformations, and
F(s)=—-InZ. (5.5)

Here. k and T represent the Boltzman constant and absolute temperature respectively.
Without loss of generality, it is possible to rescale the potential so that k7T = 1. which
we will do in the following.

By defining the inverse potential
G(s.c) = E(s.c) — F(s). (5.6)

and assuming a uniform prior p(s | M). the conditional probability of a sequence reads

as

1
p(s|ec. M) = )—fe‘c(s‘c). (5.7)
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where

Y =) e G (5.8)

is the normalizing factor, summing over all possible sequences of length N. We used a

statistical potential made of two terms:

E(s.c)= Y Di€es, + Y =2, (5.9)

1<i<i’<N 1<i<N

where A is the 0/1 contact map according to the definition of Miyazawa and Jerni-
gan (1985), € = (€q)1<ap<a0 is the set of energy coefficients associated with pair-
wise amino acid contacts (¢ is entirely specified from 209 parameters), and where
= = (27)1<a<20,1<w<w is the set of energy coefficients associated with observing each
amino acid in each of the W possible solvent accessibility classes.

Deriving the inverse potential requires the calculation of F (s), which is already
entirely specified, from a sum over all conformations. However, this computation is
difficult in practice. As an alternative, we can give it a simple phenomenological form,
inspired from the random energy model (Shakhnovich and Gutin, 1993; Seno et al.,

1998; Sun et al., 1995):
F(s)=~ Y %,. (5.10)

where ¥ = (X,)1<0<20 18 a set of free parameters analogous to the chemical potential of
each amino acid. Note that in chapters 3 and 4, chemical potentials were given the +F
form, so as to relate more closely to the substitution models studied.

Altogether, our parameter vector is made of three components (6 = {e.Z.X}), and
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the inverse potential reads as

Gls.o)= Y Dk, + 3 Z0+ Y =, (5.11)

1<i<i'<N 1<i<N 1<i<N

Note that the probability (5.7) is invariant under the following transformation:

S =S+ J; (5.12)
€np = €ab + Jo (5.13)
===y g, (5.14)

where J;, J, and J; are arbitrary real constants. Therefore, to ensure identifiability of

our model, we enforce the following constraints:

d % =0 (5.15)
> ew = 0 (5.16)
ab

YEr = 01<w<W (5.17)

Finally, we assume that all sequence-structure pairs in our database are independent.
and multiply the probability in (5.7) over all sequence-structure pairs, based on the same
values of the potential. In the following, however, we retain the single sequence-structure

pair notation for simplicity.

3.2.4 Optimizing the potentials by gradient descent

In the present context, the Bayesian approach of conditioning & on the data is likely to
be computationally demanding, due to the intractable normalizing constant Y. Rather.
we shall adjust our parameters so as to maximize the (log) probability in (5.7), which, in

the ML perspective, is view as the likelihood function. We will work with the negative
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log of (5.7), defining: £ = —Inp(s | c. M), turning the problem into a minimization of
L.

The derivative of £ with respect to the parameters of the potential reads as

ol 0G(s,c) N OlnY

80~ 08 EY] (5.18)

As in the previous chapter, one can applying the partition function formalism (Appendix

B) to Y to express the second term as

L%, (5.19)
where (.) stands for an expectation with respect to (5.7). As before, this expectation
can be approximated from a sample of sequences (s™));<s<x, drawn according to (5.7).
This sample can be obtained using the same Gibbs sampling procedure used in previous
chapters.

The derivatives with respect to € can be expressed as:

ol
8eab

= — [Ny — ()] - (5.20)

where n,;, is the number of contacts between amino acids a and b observed in the data
base. and where (n,;) is approximated from the Monte Carlo average, in a sample of
sequences. of the number of contacts between a and b, with the sequences drawn under
the current values of the energetic coefficients. Formula (5.20) thus leads to an intuitive
characterization of the maximum likelihood estimate ¢ it is the value of ¢ such that
the average number of each type of contact predicted by the potential matches the

number observed in the database. Following a similar derivation. we have the relation
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for solvent accessibility coefficients as

ol

o=w

= - -, (5.21)

where [7’ is the number of amino acids of type a in solvent accessibility class w. Finally,

for the chemical potentials, we have

/4
0X,

= — [me — (Ma)], (5.22)

where m,, is the number of amino acids of type a.
The above relations allow us to approximate the gradient of £, which we may follow

using standard gradient descent: the n'® iteration updates 6 according to

ot
n n—1

where 06 is a pre-defined step vector. The gradient steps are repeated until the gradient
vanishes. In practice, the values of §6 are tuned empirically, allowing for three degrees

of freedom for ¢, = and *.

5.2.5 Evaluating the log-likelihood using thermodynamic in-

tegration

We would like to evaluate the fit of different models based on the log-likelihood, but due
to the intractable normalizing factor Y, we need to invoke more elaborate numerical
techniques. We do this using a similar thermodynamic integration method to that
described by Lartillot and Philippe (2006), and summarized in the second chapter.

First, for 0 < 8 < 1, we define:

Gg(s.c)=ﬂ< > Aweas, + Y 5:;) + )%, (5.24)

1<i<i’<N 1<i<N 1<i<N
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The associated probability distribution is

1
pa(s|c, M) = Fﬁe_cﬂ(s'c), (5.25)
with
Y= e Calsc), (5.26)
S

What we are looking for is InY;. As for InYy, it factors out, and can be computed

directly:

InYy = Nln (Z e‘E°> . (5.27)

We can thus equivalently evaluate the difference InY; — In Yy, given by:

1oy
j— ¢ —
InY; —In} o8 dg. (5.28)

The thermodynamic approximation is obtained by starting a Gibbs sampling of se-
quences with 8 = 0. Following a series of cycles, the value of 8 is incremented by a
small value 43, until # = 1. Based on the sample of sequences over the entire run.

written as (s(h))oghs K, the approximation reads as

1 [10G(s®) R 8G(s™)  18G(sH)
oY gl 96 2 9P

(5.29)

h=1

In the present conditions, K = 1.000 is sufficient to obtain an estimate of In}; — In ¥}

with an error less than one natural log unit.
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Figure 5.1. Stabilization of pairwise energetic coefficients over a gradient descent op-
timization.

5.3 Results and discussion

5.3.1 Optimization of the statistical potential

We first performed an optimization of the pure contact potential (¢ + X) on each of
two data sets. The evolution of a few contact energy coefficients over the course of the
gradient optimization are displayed in figure 5.1. The coefficients converge within a few
hundred iterations of the gradient descent optimization. We started several optimiza-
tions from different initial values and found convergence to essentially identical values
(not shown). indicating that the method does not become trapped in local minima.
The values also appear to be biologically reasonable. attributing negative energies to
known favorable pairwise interactions (e.g.. isoleucine-valine), and positive values to
known unfavorable pairwise interactions (e.g.. glutamate-alanine).

We also compared the values obtained on the two different data sets. Figure 5.2
displays the contact energy coefficients obtained from one data set against those from
a the second data set. The correlation is high (0.96). providing a first indication that

the data sets are large enough for the learning procedure to reach stability.
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Figure 5.2. XY-plot of pairwise contact energy parameters obtained from the 2 data
sets.

5.3.2 Refining functional forms

We next explored different functional forms of statistical potentials, beginning with a
pure solvent-accessibility potential. This form is based on classifying amino acid sites
into one of several solvent accessibility classes. Here, several choices are possible for
the number of classes, but the log-likelihood scores obtained under the different choices
cannot be directly compared, since the models do not have the same dimensionality.
We thus applied a 2-fold cross-validation procedure, consisting of learning the potential
on DS1, and evaluating the log-likelihood using these ML parameter values on DS2
(and vice-versa). Note that since this is a blind test, evaluating the fit of the potential
based on data never “seen” by the model, differences in dimensionality are intrinsically
accounted for in the assessment. Also note that the cross validation score reported is
actually the log-likelihood obtained from the flat potential (based solely on the chemical
potential component) minus that under the potential of interest, and multiplied by —1
to make to score positive (the higher the score, the better the model). For the pure
solvent potential. figure 5.3 displays the cross-validation score as a function of the
number of classes. When W increases, the fit of the model improves, until a point is

reached (W = 16) where the penalization for model dimensionality starts to dominate
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Figure 5.3. Cross-validation score as a function of the number of solvent accessibility
classes.
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Figure 5.4. Cross-validation score as a function of the number of solvent accessibility
classes, with a potential also based on pairwise contacts.
the score.

We applied the same approach utilizing the contact potential as well, displayed in
figure 5.4. The model fit displays a similar trend as with the pure solvent potential,
reaching an optimal setting at W = 14.

We compared the fit of the different forms of potentials, taking the average of the
2-fold CV score: for the pure solvent potential (but always including the chemical
potential component) we obtained a score of 14.394; the pure contact potential performs

better, with a score of 17,798: and the combined contact and solvent potential performs
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best, with a score of 21,058. We also tried using the contact potential of Miyazawa
and Jernigan (1985), in which case we include a scaling factor; the £ parameter in
front of the contact component is optimized by ML, along with the chemical potentials.
The resulting potential was the poorest of all, with a score of 11,236. The fact that our
potential has a significantly better predictive power than that of Miyazawa and Jernigan
(1985) is trivially expected, by construction of the ML potential, and the much larger
data set used to derive it. What is more surprising is that the Miyazawa and Jernigan
(1985) potential is less fit than a site-independent solvent accessibility profile. A possible
explanation would be that their potential is based on the quasi-chemical approximation.
which is now known to be somewhat drastic (Godzik et al., 1995; Thomas and Dill, 1996;
Skolnick et al., 1997), as it neglects correlations between observed pairing frequencies
due to chain connectivity and multiple contacts. Alternatively. this poor fit could mean
that potentials optimized for folding are really not suited for protein design purposes.
Testing other pairwise contact potentials, in particular those that do not rely on the
quasi-chemical approximation (e.g., Maiorov and Crippen, 1992; Tobi and Elber, 2000;

Bastolla et al., 2001; Tiana et al., 2004), would be a way to address this issue.

5.3.3 Phylogenetic comparisons

Finally, we computed Bayes factors, as done in the last chapter, but utilizing the newly
derived potential. As previously discussed, when using potentials such as those of
Miyazawa and Jernigan (1985) in the phylogenetic context, the +F configuration plays
the role of a chemical potential. As such, to set up an equivalent dimensionality, we
dispensed with the chemical component of the potential, and used the +F configuration
in this case as well. Using the MY060-158 data set, recall that the log Bayes factor in
favor of POISSON+F over POISSON obtained in chapter 4 was 70 natural log units. As

a first contrast, we combined our pure contact potential with the POISSON+F config-
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uration and obtained a log Bayes factor of 158 (always using the flat POISSON model
as a reference). This is already better than the MJ potential in the same combina-
tion, which resulted in a log Bayes factor of 129. Thus, using the exact same protein
structure representation and parametric form, the method developed in this chapter
produced an amelioration of 29 natural log units. Using the richer form of potential,
based on both contact and solvent accessibility components, with the same underlying
Po1sSON+F configuration, yields a Bayes factor of 208 natural log units. This is en-
couraging; using a more refined description of protein structure leads to a better model
fit. Note, however, that much work remains, as the overall fit is still much poorer than
even the simple rigid JTT matrix, which yields a log Bayes factor of 368. We may be a
long way to attaining our basic phenomenological benchmarks with this type of model.

and much more work is needed in this direction.

5.4 Conclusions

The central idea of the present chapter is to reformulate the problem of devising statis-
tical potentials for protein design as a statistical inference problem. This formulation.
based on the ML principle, led us naturally to a gradient descent method, with the
only additional aspect being that the gradient to follow is itself estimated by Monte
Carlo averaging. The main advantage of this ML framework is that it guarantees an
optimal predictive power of the resulting potential. In addition, it is very general, and
can in principle be applied to any form of statistical potential. In particular. it is not
restricted to coarse grained descriptions of proteins, and it could also be applied at the
atomic level.

In general, the present methodology could be used to investigate many other forms
of potentials. As the last sub-section suggests. it would be interesting to extend the

overall framework into a pipeline of comparisons within the phylogenetic context as
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well. The main hurdle for this last objective is computational, and further algorithmic
developments are needed to reduce CPU time. We explore avenues to address this issue

in the next chapter.



Chapter 6

Exploring computational strategies

6.1 Introduction

The MCMC methods used in chapters 3 and 4 may be viewed as brute-force approaches
to approximating posterior distributions and marginal likelihoods. By this we mean
that whenever some density is unavailable by analytical means, we pose a new MH
kernel, and revise sampling modules with new update operators, always sampling over
the full posterior distribution, or a full path in the space of posterior distributions
linking two models. Such brute-force sampling is computationally costly. Alternatives
to brute-force sampling. however, are commonly applied in the statistical literature.
with first approximations often based on assumptions of normality about a dominant
posterior mode (Gelman et al., 2004; Robert and Casella, 2004). These techniques
have been adapted to cases of non-analytical models, for instance using MCMC-based
optimization schemes (see Robert and Casella, 2004, chapter 5), and while they may
fail when the posterior is not normally distributed, or if modes of significant density
are missed or ignored, they may still serve as guides for constructing distributions (e.g.,
as posterior mode finders), and can provide rough estimates of Bayes factors (Gelman

et al., 2004).
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In this chapter, we further explore the use of different MCMC-based approaches for
statistical computation in a phylogenetic context, with the objective of enabling more
tractable applications of evolutionary models that are too complex to be manipulated
using conventional methods. Utilizing previously presented MH operators, we first
illustrate MCMC-based optimization algorithms, which can be used to estimate ML
parameter values, even under non-analytical models. The methods are directly related
to those developed in the previous chapter. In a second step, MCMC approaches are
applied in conjunction with normal developments around the optimal point in order
to approximate the posterior distribution. We further combine these different MCMC
schemes and normal approximations into a Bayes factor estimator, based on a variant
of the Laplace method (Raftery, 1996). The approaches are applied under a fixed tree
topology, using three different types of models of amino acid sequence evolution, and the
resulting approximations are compared with those obtained under previously available

brute-force MCMC methodologies.

6.2 Material and methods

6.2.1 Models

In this chapter, we use the PO1ssoN and WAG models, with the +I" extension in each
case. Borrowing the nomenclature of Parisi and Echave (2001), we also use a structurally
constrained (SC) model, based on the optimal potential derived in chapter 5. Recall
that the potential is formulated in terms of a pseudo-energy score of a sequence given

a conformation c, written here as G(s, c¢), and having the following form:

G(s,c)= > Dues, + > Zut Y I, (6.1)

1<i<i' <N 1<i<N 1<i<N
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As discussed in chapter 5, the first term in (6.1) is the contact component, the second
term is the solvent accessibility component, and the last term accounts for compositional
effects. Note that here, because we use the chemical component of the potential, we
do not need to (but could) invoke the +F configurations. We thus focus on a model
entirely based on the potential. As before, the continuous-time Markov chain under this
model is specified as a sequence-wide process, with the infinitesimal generator being a

20" x 20" matrix R with off entries

0 if s and s’ differ at more than one position,
Rgo = (6.2)

e?lG(s)=Cls"el  if 5 and ¢ differ only at one site,

where 3 is a parameter weighting the impact of G(s. ¢) on the rate of substitution, and
where diagonal entries are given from the negative sum of off-diagonal entries. Note
that here, because the potentials used have been pre-optimized so as to maximize the
stationary probability of the Markov process (on the meta-data set) but with a scaling
that implies 8 = 1/2, we may fix the 8 parameter as such, and we refer to the model
simply as SC. In others cases, it may be worthwhile to treat 8 as a free parameter
(SC+p). in order to give some flexibility to the model, or if the scaling of the potential
is unclear. In addition, it may be pertinent to combine SC and SC+/3 models with a

direct account of rate heterogeneity (+T"), as was suggested from chapter 4.

6.2.2 Priors
Unless specified otherwise, we use the following default priors:
e \ ~ Ezponential, with a mean determined by a hyperparameter fixed at 0.1;

e a ~ Exponential. with mean 1;

4 :6 ~ Uniform[_ﬁmax; ﬂmam]n where ﬁmaz = 9.
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6.2.3 Alignment, tree, and protein structure

For illustrative purposes, we apply the techniques to the MY020-153 data set. The
contact map and solvent accessibility profile are derived from PDB accession number

1MBD.

6.2.4 Normal approximation methods
6.2.4.1 Posterior distributions

An alternative to brute-force sampling is to assume that the posterior is normally
distributed, and attempt to estimate its mean and variance. For simplicity, we focus
on estimating the mean and variance of the posterior of a particular component of the
parameter vector, and assume, for now, that the rest of the parameter vector is known
(i.e.. § is now univariate). We begin by estimating the mean, and will assume that
the prior on # is uniformly distributed over some interval. Under these conditions, the
mean of the posterior distribution corresponds to the maximum likelihood parameter
estimate.

First, under analytical models, it is possible to apply the simulated annealing tech-
nique proposed by Kirkpatrick et al. (1983). Drawing on an analogy with thermody-
namics, the method consists in heating the MCMC sampler. by introducing a parameter
7, mediating the temperature (1/7) of the chain. Setting uniform a prior, the MH kernel
becomes

_ . p(D |6, M)]" q(8.6) _
0 = min{1 (B0 fe) Y

As 7 — o0, the chain freezes, since an update leading to a lower likelihood has a
progressively lower probability of acceptance. The algorithm is thus hoped to converge

to the ML point.
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An important aspect of simulated annealing is the cooling schedule, which is typically
explored empirically (Nourani and Andresen, 1998). We explored two types of simple
cooling schedules here. The first, which we refer to as proportional cooling, updates the

value of T at iteration n according to

= 7_'n—l X 67 (64)
where § > 1 serves to tune the cooling scheme. In another cooling schedule. referred to

as linear cooling, 7 is updated according to
" = Tn—l + é. (65)

now with § > 0, again serving to adjust the cooling rate.

The simulated annealing optimization may be useful in a variety of situations, but
may nevertheless be unsuitable when the likelihood is unavailable in closed form. For
such situations. however. we may rely on latent state methodologies. Note that when
working with a non-analytical model, for instance relying on a DA scheme. the gradient
of the log-likelihood is given by

Olnp(D |0.M)  Olnp(D.¢|6.M)
06 = 06 )

(6.6)

where (.) stands for an expectation over the distribution of latent states. In practice.
the gradient can be approximated by

81np(D.¢|0.M)> N _l_ic'“)lnp(D.d)(h)w.]\/[)
a0 - K 96 ‘

h=1

(

(6.7)

where (¢(h))15h5 K is a set of sampled augmentations, drawn using the first element of
the DA module (derivatives are given in Appendix A). This gradient approximation

can then be embedded within classical optimization methods, for example, following
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the gradient according to an iterative updating. with cycle n given by

071 e en—l + Ven—l. (68)
where
K
1 dlnp(D, oM | 67. M)
" = 56— .
v 60 7 hE=1 50m , (6.9)

with 06 being a pre-defined step parameter. The iterative cycling between augmentation
steps and gradient steps can be repeated until the gradient vanishes, thus declaring the
maximum likelihood estimate 8. We refer to this algorithm as Monte Carlo gradient
(MCG) optimization.

It is often also possible to apply the ezpectation mazimization (EM) algorithm
(Dempster et al., 1977) in conjunction with data augmentation schemes (Wei and Tan-

ner, 1990), using (6.7) as the expectation (E-step) estimate, followed by a maximization

(M-step):
6" = argmax(lnp(D.¢ |6, M)) (6.10)
6
1 &
= argmax — Inp(D, o™ | 671 . M 6.11
g 2 S np(D, 8 1) (6.11)

This inner maximization step is often analytical, but can otherwise be accomplished
using gradient or Newton-like methods (see Appendix D). We refer to this algorithm
as Monte Carlo EM (MCEM) optimization.

Once the mean of the posterior (here, equivalent to the maximum likelihood esti-

mate) has been found, we may estimate the variance at this point as

Var(d) ~ - [a2lnp(p | 9.A1)J-1_

062
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The second derivative of the log-likelihood may be expressed as

&*Inp(D | 6, M) &*Inp(D, o | 8, M)

06° = 062 )
2
N <[81np(D,8(g.|6,M)} )
[(alnp(D;;._w,M))r (6.13)
and the Monte Carlo evaluation is given by
&?Inp(D | 4. M) N 252lnpD oM | 8. M)
06? - K 062
(k) 2
Kz[alnpD¢ ,] 6, M)]
~ Kzalnp(D oM |6, M)] (6.14)

Analogous schemes for estimating the mean and variance under PX and PX-DA con-
texts can be devised, and can be extended for joint applications over many parameters

(see Appendices C and D).

6.2.4.2 Bayes factors

The Laplace method for estimating the marginal likelihood is given as (see. e.g., Tierney

and Kadane, 1986):
p(D | M) =~ (2m)*|H|"*p(8 | M)p(D | 6, M), (6.15)

where y is dimension of the model. § is the parameter vector maximizing the posterior
probability, and H is minus the inverse Hessian matrix (of second derivatives) evalu-
ated at 6. An important variant on (6.15), suggested by Raftery (1996), consists of

substituting  with 6 and H with A (the inverse of H is otherwise referred to as the
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Fisher information matriz). This variant slightly simplifies the mathematical develop-
ments, and has the advantage of potential applicability with any maximum likelihood
implementation. As such, based on the maximum likelihood parameter vectors of two

models (f, 6;). we will use the following Laplace approximation to the Bayes factor:

—

H) fPRLGM) Pl M) o

1
In BOl =~ _(yl — yo) 11’1(271') +=In| — = =
2 Hy p(D | 6. My) p(6o | Mp)

[\]

The second term in (6.16) can be calculated from the developments in Appendix A.
If the models are not analytical, the third term is calculated using a thermodynamic
integration method, which, for a given tree configuration, computes the log-likelihood
difference under two different models. These calculations are restricted versions of
the more general thermodynamic integrations methods for evaluating differences of log

marginal likelihoods between pairs of models.

6.3 Results and discussion

6.3.1 MCMC-based optimization: an analytical example

Before applying the methods developed above to non-analytical models, we first explore
the properties of MCMC-based optimizations under a simpler case, where comparisons
can be made with other implementations. In particular, we apply different approaches
to maximizing the likelihood with respect to branch lengths for a given topology under
the WAG model.

First. under this model, the simulated annealing method can be applied. Figure
6.1a shows the evolution of the overall tree length during the first 100 iterations of
a simulated annealing run, based on a proportional cooling schedule, with the initial
7 = 1 increased to 7 > 10.000 according to (6.4), with § = 1.1. As can be seen, the

chain begins with a somewhat erratic behavior, oscillating around, yet progressively
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Figure 6.1. Markov chain Monte Carlo maximum likelihood estimation of the tree
length. In a), b), and c) simulated annealing is used. In d). e) and f) we use MCG
based on a sample of 100 mappings. In g), h), and i) we use MCEM, based on 10 (g),
100 (h), and 1000 (i) mappings. In each panel, a dashed line is drawn for the tree length
returned by PAML (Yang, 1997).
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gravitating towards, the tree length obtained using the PAML package (Yang, 1997).
Ultimately, however, after 100 iterations, the chain slightly misses the mark.

We found the linear cooling scheme easier to adjust than proportional cooling. and
less likely to become trapped in sub-optimal configurations as the chain approaches
the freezing point. In figure 6.1b, we started from 7 = 1, and updated according to
(6.5), with 6 = 100. The chain converges to essentially identical branch length values
as returned by PAML in about 35 iterations. Tuning § = 500 (fig. 6.1c), the maximum
likelihood branch lengths were obtained in about 18 iterations.

We next explored the MCG algorithm. as a first latent state optimization scheme.
Nielsen (2002) has proposed a straightforward DA method, which, under models like
WAG, allows for a direct sampling of substitution mappings. We used Nielsen's method
to draw a sample of mappings for estimating the log-likelihood gradient, as written in
(6.7), in a MCG optimization of branch lengths. The needed derivatives are given in
the Appendix A. As illustrated in figure 6.1d, e and f, a significant amount of trial-and-
error tuning of the gradient optimization method can be important for reducing CPU
time. In this case. expectations were estimated based on a sample of 100 mappings, and
only the step parameters (6);) were adjusted. As crude explorations, we set the same
value for each branch length step parameter throughout the run, with §); = 0.000001
in 6.1d, 6A; = 0.00001 in 6.1e, and finally §A; = 0.00005 in 6.1f.

We also tried the MCEM algorithm in the present example. We once again relied
on Nielsen’s method, drawing samples of substitution mappings for estimating expecta-
tions, followed by the maximizations step given in (6.11). In this case. the precision of
the algorithm depends solely on the sample size used to estimate the expectation, since
the maximization step is analytical (see Appendix D). Using a sample of 10 mappings.
significant fluctuations of the overall tree length are observed from one MCEM iteration

to the next (fig. 6.1g). Fluctuations are reduced using 100 mappings (fig. 6.1h), and
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become negligible (+0.001 natural log-likelihood units) using 1000 mappings (fig. 6.1i).

This corroboration across methods, as well as with the PAML package, is a useful
check. and helps in getting a sense of the general behavior of the MCMC methods. In
this particular case, we give preference to the MCEM algorithm, if only for the fact the
tuning is exclusively based on sample size for the E-step. In fact, the sample size can be
increased “online”, for instance, by a factor of 10 every 10 iterations, or according to any
other scheme. It should be noted, however, that the Monte Carlo error only decreases
with the square root of the sample size, and that the MCEM is not necessarily the best
choice for all contexts in terms of computational requirements. as we illustrate in an

example below.

6.3.2 MOCMC-based optimization: non-analytical examples

In the preceding subsection, we applied Monte Carlo techniques for parameter opti-
mization to a case where such methods are unnecessary. In this section, we explore
non-analytical models for which standard optimization techniques are not directly pos-
sible.

Our first non-analytical example consists of optimizing the shape parameter a for
the +T" model, still using the WAG matrix. and, for now, with fixed branch lengths (as
obtained under WAG). Figure 6.2 shows the progression of a as a function of the MCEM
iterations, with two different initial values. Once again, the MCEM algorithm converges
quickly—within about 20 iterations—and the fluctuations of the estimate progressively
decreases as the sample size used in each iteration increases from 10 (fig. 6.2a) to 100 (fig.
6.2b), to 1000 (fig. 6.2c). The final value reached is & = 0.73. Although this estimate is
not directly comparable with the discrete gamma models, we ran PAML using different
numbers of categories. In general, the estimates are quite similar; using 4 categories,

PAML returns & = 0.72, 8 categories gives & = 0.69, 16 categories gives & = 0.68, and
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Figure 6.2. MCEM algorithm for estimating &. The E-step of the algorithm—Monte
Carlo estimate of the expectation—is done with 10 (a), 100 (b) and 1000 (c) draws.
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finally, using 32 categories, the estimate is & = 0.70. These mild fluctuations illustrate
how the number of categories used alters the gamma approximation, and while the
discrete approximation may be suitable for many practical applications, PX methods
for continuous distributions could have several advantages (Mateiu and Rannala, 2006),
particularly when discretization procedures are in doubt (e.g., Yang et al., 2000a; Susko
et al.. 2003; Mayrose et al., 2005), or when site-specific random variables are multivariate
(e.g., Lartillot and Philippe, 2004; Kosakovsky Pond and Muse, 2005).

Our next non-analytical example concerns the SC+8 model, where we wish to op-
timize [, still based on a fixed set of branch lengths. We first ran an MCEM opti-
mization using a sample of 100 mappings, and 100 sequences (for the approximation
given in (C.13)). Figure 6.3a shows the first 20 iterations of the MCEM, which displays
a jagged behavior in attempting to adjust the value of § so as to cancel out two key
components of the derivative of the log-likelihood function (see eqn. C.9). In contrast.
the MCG optimization under the same sample size conditions is much more efficient,
converging with 5 iterations (fig. 6.3b).

In both of these examples, it is interesting to note that while we have adjusted pa-
rameters so as to maximize the log-likelihood, we have not computed the log-likelihood
itself. This decoupling between log-likelihood optimization and log-likelihood calcula-
tion is a key feature of latent state methodologies, and is analogous to the property

allowing us to sample from the posterior without having a closed form likelihood.

6.3.3 Normal approximations of posterior distributions

The use of normal approximations in Bayesian analysis often serves as a first step to
constructing posterior distributions under new statistical models (Gelman et al.. 2004).
We consider +I" and SC-type models here, and focus on their distinguishing parameters

(a and S respectively).
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Figure 6.3. Monte Carlo estimation of 4. In a), the MCEM is used, with the Monte
Carlo estimate of the expectation based on 100 draws. In b), the MCG is used with
100 draws.
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Figure 6.4. Posterior density plot of a, approximated using full MH sampling (his-
togram) and a normal approximation (dashed line).

First, under the WAG+I" model. we marginalized over branch lengths using a PX
sampling module, while optimizing with respect to a (here given a uniform prior) using
the MCEM algorithm. Doing so simplifies the example, in that it remains univariate,
while allowing us to focus on the full posterior of a. The final MCEM iterations were
based on a sample of 100 sets of branch lengths and rate vectors, as was the variance
estimate (referring to eqn. 6.12). We used these estimates as the mean and variance for
tracing a normal probability density function. and compared this trace to the density
histogram obtained using the PX module sampling branch lengths and a (fig. 6.4).
The two different density plots are reasonably similar. although the histogram appears
skewed to the right, particularly when o > 1. Indeed. in this range. the shape of
the gamma distribution does not undergo dramatic changes with small variations in a,
which leads to a flattened out likelihood surface. This illustrates an important point:
the full posterior may differ from a normal distribution. and such approximations are
only meant to give a general sense of location and diffuseness for a parameter of interest.

Our second example concerns the SC+3 model. where alternatives to constructing

posterior distributions are of particular interest. Under these models, the MH kernel
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includes the ratio p(so | &', M)/p(so | 8, M), which requires the evaluation of the ratio

of normalizing constants given by
Y = 3 e-20000) (6.17)

The normalizing constant in (6.17), however, is not tractable, and the MH kernel itself
must therefore be approximated. Previous works investigating SC-type models have
relied on an importance sampling approximation proposed by Robinson et al. (2003).

Adapted to the present context, the approximation reads as

Yﬁ ZS e—2ﬁG(s.c)
Y T 5w 29
R —2(-67)G(sMe)
~ 2 (6.19)

SR e 286G )’

where (S(h))lghs K 1s a set of sequences sampled using a Gibbs sampling approach dis-
cussed in chapter 3. and where §* is chosen to be as close as possible to the middle of
B and §’. We used our variation given in chapter 3 for choosing #* during the MCMC,
and ran a full sampling over branch lengths and . In another run, we marginalized
over branch lengths using a DA module, while optimizing 8 using the MCG algorithm.
We relied a sample of 100 sets of branch lengths (and mappings) and 100 sequences
(see Appendix C, eqn. C.13 and C.30) for the final iterations of the MCG method,
and for the subsequent variance estimate. As shown in figure 6.5a, the normal prob-
ability density function based on the mean and variance estimates matches well with
the density histogram obtained using the full MCMC, although the normal approxi-
mation comparatively underestimates the variance to a small degree. Given that the
full MCMC sampling of 3 is based on the approximation in (6.18), which could breach
the conditions of Markov chain convergence theorems. we performed a third run, using

the thermodynamic integration method described in chapter 4. This last method has
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Figure 6.5. Posterior density plot of 8. In panel a) a histogram was generated using
a full MH sampling. Panel b) shows a density trace generated using thermodynamic

integration, as presented in chapter 4. In both panels, the normal approximation is
shown (dashed line).
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the advantage of arbitrary accuracy, at the cost of CPU time, and the slight rugged-
ness of the posterior density trace (fig. 6.5b) gives a qualitative sense of the Monte
Carlo fluctuations over the course of the integration. Here again, though, the posterior
density of [ obtained using the thermodynamic method matches well with the normal
approximation, providing a reasonable corroboration across all methods. On the other
hand, the normal approximation requires only a fraction of the CPU time of either of
the two other methods. This may prove useful when the main interest is the posterior
distribution of B or analogous parameters (Robinson et al., 2003), particularly when

approximating posteriors over several different data subsets (Yu and Thorne, 2006).

6.3.4 Normal approximation of Bayes factors

Finally. we applied the Laplace normal approximation approach to estimate Bayes fac-
tors across all models mentioned herein, as well as the thermodynamic integration
methods. As mentioned previously, the thermodynamic method can be tuned to any
desired accuracy, and we use the results under this approach as our reference values.
Our crude strategy here consisted in running triplicates of each type of calculation, pro-
gressively tuning the MCMC samplers such that, when rounding to the nearest natural
log unit, identical results are obtained for all three runs. We then compared accuracy
and CPU time of the two methods.

For the Laplace method, we first maximized the log-likelihood with respect to branch
lengths and, as applicable, o and 3. For all but SC-type models we used the MCEM
algorithm for the overall optimization. For SC+(-type models. however, we used a
combined MCEM-MCG algorithm, which, at each iteration. performs an M-step on
branch lengths (and «, if applicable) and a gradient step on 3. In all cases, the final
expectation estimates for optimization and for the Laplace approximation were based

on samples of 10.000 substitution mappings and rate vectors. For a particular configu-
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Table 6.1. Natural logarithm of the Bayes factor for models considered, with PO1SSON
used as a reference.

Model Thermodynamic Laplace
PoissonN 0 0

PoissoN+T 81 (11) 81 (2)
WAG 204 (14) 294 (2)
WAG+T 373 (26) 372 (5)
SC 162 (65) 162 (4)
SC+T 253 (131) 253 (6)
SC+p 167 (129) 167 (5)
SC+8+T 268 (197) 269 (8)

Note.—Numbers in parenthesis indicate approximate CPU time in hours.

ration, computing log-likelihood differences between an analytical and a non-analytical
model was done using a constrained thermodynamic method.

The resulting Bayes factors are remarkably accurate, when compared to full ther-
modynamic estimates, with at most one log unit difference (table 6.1). Importantly.
however, the Laplace approximation required much less CPU time. The reasons for
such a reduced computational time are a combination of several factors. First, as op-
posed to a full MCMC sampling over all admissible parameter settings, optimizations
are directed toward a single optimal point. If convergence to this point is fast, far
fewer likelihood function evaluations will be needed than would a full-blown sampling
from the posterior. Also, the algorithms can be used with very small samples (of say
10) to obtain crude parameter estimates to be used as the starting point of a more
refined MCEM or MCG runs, and so on. Indeed, in our analyses, we always preceded

the final iterations of MCEM or MCG with such crude estimations. which could be
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obtained within minutes. Next, the MCEM and MCG algorithms, and the constrained
thermodynamic method considerably reduce the overall sampling, as marginalization
via MCMC is focused on latent states. Lastly, the Laplace approximation for Bayes
factors makes the assumption of normality around the optimal point, and makes use of
an estimate of the curvature of the likelihood surface; loosely speaking, the full thermo-
dynamic method must effectively obtain this information using brute-force sampling.
The model rankings obtained using Bayes factors give favor to the WAG+I" model.
Note, however, that the pure SC model outperforms the PoissoN+T, although it is in
turn outperformed by the pure WAG model. This ranking is reasonably encouraging for
SC-type models, and additional work is needed to determine if more sophisticated sta-
tistical potentials can achieve, or surpass, the performance of the best site-independent

models.

6.4 Conclusions

Complementing MCMC methods and normal approximations considerably reduces the
needed computational resources for conducting Bayesian calculations. Also, we stress
here that while common Bayesian discourses often describe MCMC methodologies as
alternatives giving non-analytical modeling flexibility (e.g., Paap. 2002; Brooks, 2003;
Beaumont and Rannala, 2004). such features are not exclusive to Bayesian contexts.
As we have shown here, MCMC techniques can also be used to instantiate the ML
principle, such that they may be viewed general. and independent of any particular
probabilistic paradigm.

However, as evolutionary models increase in sophistication, and as the needed sam-
pling schemes become more elaborate, or based on additional levels of approximation,
the difficulties commonly associated with MCMC devices (e.g., assessment of conver-

gence and mixing behavior) are likely to be exacerbated. and the methods should be
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approached with caution. Also, the choice among possible MCMC methods can be
bewildering (see, e.g., Gelman et al., 2004; Robert and Casella, 2004), and it may be
difficult to know beforehand which overall scheme gives sufficiently accurate estimates
in reasonable compromise with computational effort. As as we illustrated for optimiza-
tions of 3, sampling and algorithmic choices will likely need to be explored empirically
for each new context.

The approaches employed here could also be adapted and reconfigured in several
ways. For instance, here, for estimating Bayes factors, we used thermodynamic MCMC
to integrate over latent states and the Laplace method to integrate over parameter space.
However, if greater accuracy were needed, or if assumptions of normality no longer
hold, we could also extend the thermodynamic method over any sub-set of parameters
and apply the Laplace method over the remaining parameter(s). In addition. other
approaches to the Laplace method have been proposed, several of which do not require
computing derivatives. Referring to equation (6.15), 6 and H could be approximated
based on the output of a plain MCMC run, using the component-wise posterior mean
or median and the posterior variance-covariance matrix; other choices are also given in
Lewis and Raftery (1997).

These sorts of approaches could enable a larger scale empirical project, in order to
compare a broader set of models, and in particular, models based on the gamut of forms

of statistical potentials.



Chapter 7

Comparing codon models of

substitution

7.1 Introduction

In chapter 3 we initiated the first and second steps of the Bayesian framework: setting
up a full probability model, and conditioning on true data. The third step of assessing
model fit was addressed in chapter 4. Our phenomenological benchmarking approach
of measuring the fit of site-interdependent models based on the simple forms of sta-
tistical potentials has suggested that the modeling approach poorly anticipates basic
properties of the substitution process, while inducing heavy computational demands.
Nonetheless. the models do show some promise; they always lead to some improvement
in fit. To address the problems raised in chapter 4, we have proposed a framework for
ameliorating the form of statistical potentials in chapter 5, and we have investigated
possible computational alternatives in chapter 6.

As previously stated in chapter 3, however, in performing this exercise at the amino
acid level only. we have relinquished the more attractive codon level interpretation of

molecular evolution. Indeed, evolutionary models at the amino acid level should not
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be viewed as reflecting basic biological knowledge. Rather, we have proposed they
should be viewed as phenomenological benchmarks. Loosely speaking, in this partic-
ular modeling context, we would like to see basic evolutionary properties such as rate
heterogeneity. and plausible amino acid exchangeabilities, emerge as a result of our
ezplicit structural modeling. These are but the first evolutionary structural modeling
attempts, and as progress is made in this direction it will be of interest to return to the
codon-based mechanistic modeling, as proposed by Robinson et al. (2003), in order to
construct a more realistic description of molecular evolution, which better formalizes
basic biological understanding.

We presented one form of site-independent codon model in chapter 2, based on the
formulation of Goldman and Yang (1994) (GY). However, another formulation was pro-
posed by Muse and Gaut (1994) (MG), and both formulations have since been extended
and modified in numerous ways. Many of these codon substitution models have not
been assessed in the Bayesian framework we adopt in this work, and, more importantly,
several do not appear to be based on a logical mechanistic modeling construction. These
issues raise many questions, forestalling the development of structural models based on
statistical potentials in the codon context. We expand these questions below.

Recall that the traditional nucleotide-level of interpretation surmises the data as
arising from a continuous-time Markov process running along the branches of the phy-
logeny, with a state space consisting of the four different nucleotides. In its general
form (e.g.. Lanave et al., 1984), the model is specified from six relative exchangeability
parameters, for each possible pair of nucleotides, and four stationary probabilities, or
nucleotide propensities, and is often referred to as the general time reversible (GTR)
model. Taking this model as a starting point in the case of protein-coding sequences,
a first step to mechanistically acknowledging the coding nature of the data is to sup-

pose a strong purifying selection against stop codons, and to re-formulate the process
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in a state space consisting of nucleotide triplets, but now omitting triplet states corre-
sponding to stop codons. In effect, such a model is equivalent to the same GTR-type
of model applied at the nucleotide level, but with the constraint that the nucleotide
sequence must encode some full length amino acid sequence (one third the length of the
nucleotide sequence). This is the rational of the MG-style of codon substitution model.
From this point, a further model construction step in the MG-style is to distinguish
between synonymous and nonsynonymous events, for instance utilizing the parameteri-
zation presented in the original work, or the more compact representation of fixing the
synonymous rate factor at one, and treating the nonsynonymous rate factor as a free
parameter.

In contrast with the MG-style of model formulation, which the authors first de-
scribed as having entries of the Markov generator proportional to “the equilibrium
frequency of the target nucleotide” (Muse and Gaut, 1994, p. 717), the GY models have
entries of the Markov generator proportional to the stationary probability of the target
codon. The contrast between the two formulations can be made very subtle. Indeed, a
GY-style model can be specified from the same six nucleotide relative exchangeability
and four nucleotide propensity parameters used in the MG-style model above: codon
stationary probabilities are approximated as proportional to the product of the three
propensity parameter values associated with the nucleotides at the three codon posi-
tions. However, such a model entails peculiar properties. For instance, in a mutational
context prone to events leading to A or T, a substitution from codon CGC to CTC
would have a lower instantaneous rate than a substitution from codon ATA to AGA;
the rate of an event involving the second codon position depends on the nucleotide
states at the first and third positions, which, in this case. leads to the higher rate for
the substitution going against the mutational bias. From the mechanistic model con-

struction described above, however, there are no obvious reasons for linking a change
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at the second position to the states at the first and third positions, unless this is me-
diated by selective effects at the codon level (e.g., stop codons). Accordingly, for this
same instance, the MG model displays the reverse situation, with the CGC to CTC
substitution having a higher instantaneous rate than the ATA to AGA substitution in
a manner consistent with the mutational bias.

Another widely used modeling idea, adopted in both MG and GY formulations, has
been to assign a separate set of nucleotide propensity parameters to each of the three
codon positions. The distinction with the previously mentioned models is commonly
referred to as F1x4 versus F3x4. reflecting the use of a single versus three vectors
of dimension 4. From the mechanistic standpoint, however, the F3x4 configuration
stands only as a phenomenological account of how the coding structure of the data
induces a periodic pattern at each codon position. There is no natural interpretation
to modeling features induced by the coding nature of the sequences via an expanded
parameterization at the nucleotide level. Differences observed at each of the three
codon positions are most likely the result of factors bearing on amino acid or codon
preferences, or other high-order features, and should logically be modeled as such.

A further option available in the GY-style is based on a full 61-dimensional (assum-
ing the universal genetic code) vector of codon stationary probabilities (indicated as
F61, e.g., Huelsenbeck and Dyer, 2004; Huelsenbeck et al., 2006; Yang, 2006). The GY-
F61 approach has been suggested as important in giving “more freedom for the model to
explain the data by modifying substitution rates using codon frequencies” (Huelsenbeck
and Dyer, 2004, p. 670). This may be the case, but the GY-F61 model again has no
natural mechanistic interpretation; nucleotide propensities have no direct parameteri-
zation in this formulation, but are only implicitly modeled, in manner confounded with
other effects inducing uneven codon stationary probabilities.

The impacts of the MG versus GY formulations, and the F1x4, F3x4 and F61 (in
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the GY context) configurations. on overall model fit have not yet been explored within
a single encompassing probabilistic framework. Most works promoting the GY-F61
formulations (e.g., Huelsenbeck and Dyer, 2004) are based on qualitative inspections
of parameter values, but without any quantitative model comparison measurements.
Perhaps even more surprisingly, the majority of codon-based model explorations have
focused on distinctions other than those of the GY versus MG approach, and the few
notable exceptions to this trend (Kosakovsky Pond, 2005; Kosakovsky Pond and Frost,
2005; Ren et al., 2005; Aris-Brosou and Bielawski, 2006) have only considered the F3x4
configurations. In such contexts. Kosakovsky Pond and Muse (2005) have concluded
that the GY versus MG distinction “[...] leads to small (but typically negligible) dif-
ferences [...]" (p. 2375). Also based on results from the F3x4 versions of the GY and
MG formulations, Aris-Brosou and Bielawski (2006) have suggested that the optimal
choice may often vary with the data considered, and have called for “[...] more effort
devoted to understanding and carefully modeling the relationship between mutation
process acting on protein coding genes and the precise parameterization of equilibrium
frequencies in codon substitution models.” (p. 63)

In this chapter, we construct a Bayesian ranking of codon substitution models,
based on the evaluation of Bayes factors (Jeffreys, 1935; Kass and Raftery, 1995). To
this analysis. we incorporate new models in the MG-style, which allow for a flexible
account of either global amino acid preferences or global codon preferences, and which
subscribe more closely to the mechanistic standpoint of separating mutational and se-
lective features of the overall evolutionary process. We also include in our analysis all
of the above-mentioned GY and MG-style models. comparing the F1x4. F3x4 and
F61 (in the GY context) configurations, and contrasting each case with a modeling of
nonsynonymous rate heterogeneity using the Dirichlet process apparatus (Huelsenbeck

et al.. 2006). Using three real data sets, our findings indicate that alternative configu-
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rations of the GY and MG-style models can lead to considerable differences in overall
model fit, to an extent sometimes greater than the contrast between homogeneous and

heterogeneous (across sites) nonsynonymous rates.

7.2 Material and methods

7.2.1 Data

We used the GLOBINI7-1/4, LySIN25-18/, and H1v22-99 data sets, and in all three
cases used the same topologies as those used in the works cited for each data set (see

chapter 2).

7.2.2 Models

In the next subsections, we describe the model components in detail, constructing the
entries of rate matrix @ following modeling approaches inspired from Muse and Gaut
(1994) and Goldman and Yang (1994). The models are not identical to those presented
in these original works, but correspond to flexible generalizations, while allowing us to

focus on the distinguishing features of interest.

7.2.2.1 MG-style models

We begin with the mechanistic modeling standpoint proposed by Muse and Gaut (1994),

with a Markov generator given by

4

Oacb.Pb, - if .A

Qab X 4 Wb Pb.. If B. (7.1)

0. otherwise.

\
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where

A: a and b are synonymous, and differ only at codon position c;

B: a and b are nonsynonymous, and differ only at codon position c;
and where

® 0= (0im)1<t.m<4 is a set of (symmetrical) nucleotide relative exchangeability pa-

rameters, with the (arbitrary) constraint 3, ,.cs Om = 1;

® ¢ = (Pm)1<m<a, With an=1 ©m = 1, represents a set of global nucleotide equilib-

rium propensities;

e and w is the coefficient bearing on nonsynonymous rates, for now treated as a

global parameter.

When w = 1. this model corresponds to the well-known GTR model invoked for nu-
cleotide level interpretations, but with the purifying constraint against all stop codons.
Here, however. w is always treated as a free parameter, and the model is referred to as
MG-F1x4.

Following in the MG-style, one way of modeling factors bearing on codon preferences
is given as

4

Oache P (w )— if A,

1
Qub % { wou s 01, ( “ ) 3 (7.2)

0. otherwise,
\

where ¥ = (y)1<b<61, With Zgil 1, = 1, represents a set of 61 codon preference param-
eters. and where the exponent % ensures reversibility (see Appendix E). Entries corre-
sponding to substitutions from an unpreferred codon to a preferred codon (w“ > 1) will
thus be higher than entries corresponding to substitutions from a preferred to an unpre-

ferred codon (% < 1), and in this way, an explicit account of global codon preference
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(CP) is included, while maintaining an account of background nucleotide propensities.
We refer to this model as MG-F1x4-CP.

Note that the codon preferences captured by 1 can be the result of several factors,
including, for instance, global amino acid preferences. One way of assessing whether
the CP model is capturing effects beyond those of global amino acid preferences is to
compare it with a simplified version of the CP formulation, which accounts only for

such features as given by

,
Oacb. b if Aa
1
Qab o< 4 WP0a.b.Pb, (%) ’ , if B. (73)
0, otherwise,
\

where @ = (@ )1<k<20 Is a 20-dimensional vector associated with amino acid preferences
(AAP), and where f(a) returns an index corresponding the amino acid encoded by
codon a. As in the case of the CP model, entries corresponding to substitutions from
an unpreferred amino acid to a preferred amino acid (g—f% > 1) will thus be higher
than entries corresponding to substitutions from a preferred to an unpreferred amino
acid (:;—‘ < 1). We refer to this model as MG-F1x4-AAP model.

Finally, despite departing from the mechanistic modeling perspective. we also in-
vestigate the F3x4 configurations for the models defined in (7.1), (7.2). and (7.3), by
substituting ¢ appropriately with codon position specific nucleotide propensity parame-
ters, written as (¢ = (gos,cl))lsmg, where Ve, 1 < ¢ < 3, an:l gpgﬁ) = 1. The MG-F3x4
model is thus given by

,

Oagb, 90,(,?. if A,

Q< { wous ol B, (14

0. otherwise.
\



the MG-F3x4-CP model by

( 1
ool ()7, i 4

1
Qx4 wounsl? (2)7. i B,

0, otherwise,

\

and the MG-F3x4-AAP model by

’

Oach 05, if A,

1
(© (®rw \2
Qab X J wQacbc‘f’bc (m) .if B,

0, otherwise.
\

7.2.2.2 GY-style models
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(7.5)

The models in the style proposed by Goldman and Yang (1994) have Markov generators

specified as

)
Oacb. My,  if A,

Qab X 4 WPa b T if B.

0, otherwise,
\

. 61 . .
where m = (y)1<p<61, With 3 ,_; 7, = 1, represents a 61 dimensional vector of codon

stationary probabilities (distinct from ).

Several options for 7 are available. First, it can be based on a set of global nucleotide

propensity parameters according to

Mg X Loy PasPag-

(7.8)

We refer to this model as GY-F1x4. Another similar choice is to base 7 on codon-
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position-specific nucleotide equilibrium frequencies:
) (7.9

in which case we refer to the model as GY-F3x4. Note that the GY-F1x4 and MG-
F1x4 models, as well as the GY-F3x4 and MG-F3x4, are respectively constructed
from the exact same parameters; they also have the same stationary distributions, and
hence differ only in terms of their transient specifications (further details on this point
are given in Ren et al., 2005, as well as in the Appendix E). Finally, we consider the
case where 7 is directly free, conditioning the full 61-dimensional vector to the data,
which we refer to as GY-F61.

The limiting distributions of all models are given in full in Appendix E, along with

further details specific to our implementation.

7.2.3 Priors

Our prior on branch lengths is Ezponential, with a mean determined by a hyperpa-
rameter v. itself endowed with an Exzponential prior of mean 1. Adopting the approach
presented by Huelsenbeck et al. (2006), our most general prior on nonsynonymous rate
factors of the models is the Dirichlet process (DP)as an infinite mixture across
sites—with hyperparameter o, modulating the assumed “graininess” of selection coeffi-
cients; a is endowed with an Exponential prior of mean 1. The Dirichlet process prior
also utilizes a base measure. defining the probability distribution of each component; as
in Huelsenbeck et al. (2006), we use p(w) = 1/(1 + w)?, the probability density of the
ratio of two identically distributed draws from an Exponential. This same base prior is
used when dispensing with the DP framework. with the model based on a single global

w factor. All other parameters have flat Dirichlet priors on their respective state space.
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7.2.4 Model comparisons

We used the model-switch thermodynamic integration framework described in Lartillot
and Philippe (2006). and summarized in chapter 2, to evaluate Bayes factors across
all codon substitution models described above. Recall that the overall precision of the
method depends on a number of factors, such as the step size of the model morphing
parameter (63), and whether the number of cycles between steps is sufficient to allow
the chain to re-equilibrate to the intended posterior distribution (see eqn. 2.17), for
instance; but also on the inherent distance between the two models being compared.
With a large set of candidate models, a reasonable traversal across the space of all
models must be designed for efficient computation. In the following sub-sections, we
describe a set of model-switch thermodynamic integrations linking together all models

under study.

7.2.4.1 GY-MG-switch

The first model-switch scheme links together the GY-F1x4 and the MG-F1 x4 models.
This particular thermodynamic integration represents the ideal case, where all param-
eters are involved in both models; parameters are always sampled from the posterior

distribution of one model or the other (or the partially morphed posteriors along the

path). The GY-MG-switch is also applied to link GY-F3x4 and MG-F3x4 models.

7.2.4.2 F1x4-F3x4-switch

The F1x4-F3x4-switch is only used in the GY context, although it could be used in
the MG context as well; here. only one of the two contexts need be calculated to link
all models together. For this model-switch, the single nucleotide frequency vector of
the GY-F1x4 model is also used as the first codon position nucleotide vector under the

GY-F3x4 model. As such. at one end of the path, this set of nucleotide frequencies
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corresponds to the single-nucleotide-vector-approximation of codon frequencies under
the GY-F1x4 model, whereas at the other end, it corresponds to the first position vector
of the three-vector-approximation of codon frequencies under the GY-F3x4 model. As
for the other two nucleotide vectors associated with the the GY-F3x4 model, they are
effectively sampled from the prior at one end of the path, and the posterior at the other

end of the path. All other parameters are relevant to both models.

7.2.4.3 F1lx4-F61-switch

This model-switch is only pertinent to the GY context, connecting the GY-F1 x4 model
and the GY-F61 model. At one end of the path, the vector of nucleotide frequencies
used to approximate codon frequencies is sampled from the posterior under the GY-
F1x4 model, while sampling from the prior of a (distinct) full 61-dimensional codon
frequency vector. At the other end of the path, the vector of nucleotide frequencies used
to approximate codon frequencies is sampled from the prior. whereas the 61-dimensional
codon frequency vector is sampled from the posterior. All other parameters are relevant

to both models.

7.2.4.4 CP-switch and AAP-switch

The CP-switch is only pertinent in the MG context. linking the MG-F1x4 and MG-
F1x4-CP models. One end of the path samples the codon preference parameters from
the prior, whereas the other samples these parameters from the posterior. All other
parameters are relevant to both models. The CP-switch is also used to link the the
MG-F3x4 and MG-F3x4-CP models. The AAP-switch is analogous to the CP-switch,

but involving the amino acid preference parameters instead.
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7.2.4.5 DP-switch

This last model-switch links together a model with a single w factor and a model based
on the Dirichlet process prior modeling heterogeneous w factors across sites. At one end
of the path. the sampler draws from the posterior of a model with a single w factor. and
from the prior (and hyper-prior) of the Dirichlet process. At the other end of the path.
sampling is under the full posterior of the Dirichlet process, and the prior of the global
w factor. As before, all other parameters are relevant to both models. The DP-switch

scheme is applied separately to each underlying GY and MG-style model.

7.2.4.6 Overall model ranking

From the set of model-switch methods described above, we can evaluate all models by
computing Bayes factors with respect to a common reference. We use GY-F1x4 as the
reference model here, which implies that as many as four different sets of model-switch
schemes may be involved in reporting a particular Bayes factor. For instance, taking
the example from the main text, the (log) Bayes factor between MG-F3x4-CP-DP and

GY-F1x4 is assembled from four separate calculations:

|, P(D | MG-F3x4-CP-DP) _ | p(D | MG-F3x4-CP-DP)
p(D | GY-F1x4) p(D | MG-F3x4-CP)
p(D | MG-F3x4-CP)
p(D | MG-F3x4)

p(D | MG-F3x4)

p(D | GY-F3x4)

p(D | GY-F3x4
p(D | GY-F1x4

In

1

n
)

In ’ (7.10)

where the first term is computed using the DP-switch, the second using the CP-

switch. the third using the GY-MG-switch, and the fourth using the F1x4-F3x4-

switch. This approach can be viewed as a way of parallelizing the computation of

Inp(D | MG-F3x4-CP-DP) — Inp(D | GY-F1x4), as opposed to performing a single
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long integration directly between the two models. Note. however, that the log Bayes
factor for each intermediate model is computed along the way; when building the entire
set of Bayes factors against GY-F1x4, this model space traversal will result in much
less overall CPU usage than would performing integrations from each model directly to
GY-F1x4. The procedure also implies a level of error. which we explore empirically by
running each calculation in duplicate, using the quasi-static bi-directional method de-
tailed in Lartillot and Philippe (2006) and discussed below. Each pair of model-switch
integrations produces two values, reported as an interval. and giving a sense of the

precision of the Monte Carlo settings.

7.3 Results and discussion

7.3.1 Empirical explorations of thermodynamic integrations

We performed several pilot runs to tune each type of model-switch thermodynamic in-
tegration. Incorporating the bi-directional approach described in Lartillot and Philippe
(2006), each model-switch scheme was explored by running integrations in duplicates,
one with the morphing parameter 8 going from 0 to 1, and another with £ going from
1 to 0. We report both values obtained from the bi-directional approach as an interval
throughout. Figures 7.1 and 7.2 display examples of this tuning process in two cases.
Each panel in these figures plots the values Inp(D | 6, M;) — Inp(D | 6. My) collected
during bi-directional quasi-static runs. Graphically, the log Bayes factor corresponds to
the area between the curve and the abscissa (negative below the abscissa, and positive
above it), and is estimated using the relation given in (2.21).

Using the GLOBIN17-1/4 data set, figure 7.1 corresponds to a case that we qualify
as computationally easy: the GY-MG-switch, linking GY-F1x4 and MG-F1x4. These

two models have the exact same parameters, and only differ in how parameters are
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Figure 7.1. Log-likelihood differences recorded during GY-MG-switch thermodynamic
integrations linking GY-F1x4 and MG-F1x4. Two integrations are plotted in each
panel, one with 3 going from 0 to 1 (+), and another with 8 going from 1 to 0 (x).
The collection of K + 1 values is used to approximate the log Bayes factor according to
(2.21). Panel a) displays “fast” runs, with K = 100. panel b) displays “medium” runs.
K =1,000, and panel c) displays “slow” runs, with K = 10, 000.
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assembled to specify the final model. At one end of the path (8 ~ 0), the plot displays
the difference in log-likelihood between MG-F1x4 and GY-F1x4, when the param-
eters from the posterior under GY-F1x4 are “imposed upon” the MG-F1x4 model.
Reciprocally, at the other end of the path (8 ~ 1), the plot displays the difference
in log-likelihood when the parameters of the posterior under MG-F1x4 are “imposed
upon” GY-F1x4 model. Based on the K + 1 draws along the path, the approximation
given in (2.21) for K = 100 (fig. 7.1a). K = 1.000 (fig. 7.1b), and K = 10,000 (fig.
7.1c),is [2.9 ; 5.4], [3.7 ; 4.1] and [3.8 ; 3.9] respectively. These two models are quite
close to each other, in terms of overall fit, but the model-switch integration procedure
nonetheless allows for a very precise estimation in this case, because the models can be
connected through a very short overall path. In this case, the final runs (K = 10.000)
each required about 6 days of CPU time on an Intel P4 3.2 GHz computer node.

Still using the GLOBINI7-144 data set, figure 7.2 corresponds to a case that we
qualify as computationally challenging: the F1x4-F61-switch, linking GY-F1x4 and
GY-F61. In contrast with the GY-MG-switch, in which all parameters were involved
in both models. this thermodynamic integration has a set of parameters in each model
that are irrelevant to the other. When 8 ~ 0, the plots display the difference in log-
likelihood between GY-F61 and GY-F1x4 when the 61-dimensional vector of codon
frequencies attributed to GY-F61 is sampled from the prior, and other parameters are
those “imposed by” the posterior under GY-F1x4. Such a sampler will induce very
poor log-likelihood values under GY-F61. and indeed the plots display negative values
at this end of the path. At the other end of the path (8 ~ 1), the plots display the
difference in log-likelihood between GY-F61 and GY-F1x4 when the 61-dimensional
vector of codon frequencies is sampled from the posterior under GY-F61, the single-
nucleotide-vector-approximation of codon frequencies is sampled from the prior under

GY-F1x4. but with other parameters being those “imposed” by the posterior under GY-
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Figure 7.2. Log-likelihood differences recorded during F1x4-F61-switch thermody-
namic integrations linking GY-F1x4 and GY-F61. Two integrations are plotted in
each panel, one with § going from 0 to 1 (+), and another with 8 going from 1 to 0
(x). The collection of K + 1 values is used to approximate the log Bayes factor accord-
ing to (2.21). Panel a) displays “fast” runs. with K = 100, panel b) displays “medium”
runs. K = 1.000, and panel c) displays “slow” runs, with K = 10. 000.
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F61. Thus, this other end of the path will induce very poor log-likelihood values under
GY-F1x4, and indeed the log-likelihood difference displayed in the plots become highly
positive. As can be appreciated graphically, the tail-ends of the integrand represent the
main source of error in this model switch. The interval obtained from bi-directional
quasi-static runs with K = 100 (fig. 7.2a) is extremely broad, at [84.9 ; 175.6]. Also
note that in this case the sampler does not appear to include a sufficient number of
cycles between steps to decorrelate successive draws. Several tuning options could be
explored, but here, we simply increase the overall sample size (or equivalently, decrease
the step size 63). With K = 1,000 (fig. 7.2b) the interval obtained is [113.4 ; 126.2],
and finally, the longest runs (K = 10.000, fig. 7.2c), each requiring about 20 days of
CPU time. produce the tightest interval. at [115.6 ; 117.6].

However, when computing log Bayes factors for the more complex models, involv-
ing several distinct model-switch schemes, the interval of the overall log Bayes factor
against GY-F1x4 is constructed conservatively (to produce the broadest possible in-
terval), and in some cases an entirely unambiguous model ranking is not possible.
For instance, with the GLOBINI7-1/4 data, the log Bayes factor of MG-F3x4-CP-DP
against GY-F1x4, and the log Bayes factor of MG-F1x4-CP-DP against GY-F1x4,
overlap with each other (table 7.1), which thus prevents us from clearly distinguishing
the two models. Similarly, for the LySiN25-13/ data set, four models are ambiguously
top ranking, as are three for the H1v22-99 data set (see bold emphasis in table 7.1). In
the present context, obtaining the required level of precision for distinguishing between
log-marginal-likelihoods that differ by a few units is relatively uninteresting, and not
worth the computational investment that would be needed when utilizing the present
methods. Our objective here is rather to map out the main effects of different formu-

lations in terms of overall model fit.
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7.3.2 Bayes factors

The series of log Bayes factors reported in table 7.1 reveals considerable differences in
model fit, indicating the importance of performing a careful examination of alternative
parametric choices. We note that the MG-F1x4-CP-DP model is among the top ranking
models for all three data sets. This result is somewhat expected. First, nonsynonymous
rate heterogeneity has now been observed across numerous data sets (Yang, 2006). and
it thus seems reasonable to anticipate an improved model fit under the Dirichlet process
(DP) framework proposed by Huelsenbeck et al. (2006). The other specifications of this
top model are also reassuring, in the sense that adhering closely to the mechanistic
perspective of teasing apart mutational features and selective constraints produces. at
worst, a model of roughly equivalent fit to models lacking such a natural interpretation.
In addition, all three data sets suggest uneven codon preferences (CP). although such
preferences appear to go well beyond amino acid preferences (AAP) only in the case of
the GLOBIN17-1/4.

We next note that under the simpler settings of MG-style models. suppressing AAP
or CP parameters, the F3x4 configuration is generally preferred over the F1x4 configu-
ration for all three data sets. The periodic pattern of codon-position-specific nucleotide
propensities is a feature expected from the structure of the genetic code. Such an in-
terpretation, however, is not accurately represented by expanding the nucleotide level
parameterization. Indeed, with the richer models, including the CP parameters in
particular, the F3x4 configurations are only mildly preferred over the F1x4 configura-
tion, and when invoking the Dirichlet process, modeling heterogeneous nonsynonymous
rates, the numerical error no longer allows for a clear distinction between these two
configurations (expect for the Hiv22-99 data set, which gives preference to the F1x4
configuration).

The GY-style of models based on the F1x4 and F3x4 configurations are generally



146

Table 7.1. Natural logarithm of the Bayes factor for models considered, with GY-F1x4
used as a reference.

Model GLOBIN17-144 LysiN25-134 Hiv22-99
GY-F1x4 - - -
GY-F3x4 [69.4 ; 70.3] [-4.7 ; -4.2] [11.7 ; 12.0]
GY-F61 [115.6 ; 117.6] [28.9 ; 31.4] [24.9 ; 26.2]
MG-F1x4 3.8 ; 3.9] (3.0 : 3.2] [11.7 ; 11.§]
MG-F3x4 [45.8 ; 47.0] (3.6 ; 4.4] [17.9 ; 18.3]
MG-F1x4-AAP [42.0 ; 43.8] [46.3 ; 47.7] [24.5 ; 25.4]
MG-F3x4-AAP [83.3 ; 85.4] [50.9 ; 53.1] [20.6 ; 22.2]
MG-F1x4-CP [125.9 ; 127.7] [65.9 ; 68.4] [26.4 ; 28.0]
MG-F3x4-CP [128.1 ; 130.7] [69.6 ; 73.3] [22.3 ; 23.9]
GY-F1x4-DP [102.3 ; 104.2] [183.7 ; 185.9] [54.7 : 55.1}
GY-F3x4-DP [166.7 ; 169.5] [176.6 ; 179.8] [65.5 ; 66.8]
GY-F61-DP [218.5 : 222.0] [213.8 ; 219.1] [76.8 ; 78.3]
MG-F1x4-DP [106.0 ; 108.1] [187.1 : 190.0] [69.0 ; 70.3]
MG-F3x4-DP [148.6 ; 152.3] [186.7 ; 189.8] [74.3 ; 76.0]
MG-F1x4-AAP-DP  [166.0 ; 170.2] [240.0 ; 245.4] [77.4 ; 79.3]
MG-F3x4-AAP-DP  [206.8 ; 211.5] [240.0 ; 245.9] [74.5 ; 76.5]
MG-F1x4-CP-DP  [240.3 ; 244.9] [240.6 ; 246.9] [78.0 ; 80.0]
MG-F3x4-CP-DP  [237.0 ; 242.7] [240.7 ; 248.1] [74.6 ; 76.7]

Note.—Values given are the upper and lower estimates obtained from bi-directional thermodynamic
integrations. Top models are emphasized in bold.
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disfavored over their MG-style counterparts (except for the GLOBIN17-1/4 data set.
which gives favor to GY-F3x4 over MG-F3x4). Surprisingly, for the LySIN25-15/
data set, the simpler GY-F1x4 model is slightly preferred over the GY-F3x4 model.
However, for all three data sets, the GY model based on F61 configurations outperforms
the other GY-style models, as well as the simpler MG-style models. In the case of the
GLOBIN17-144 data set, the contrast of the F61 configuration is even greater than that
observed between homogeneous and heterogeneous models of nonsynonymous rates; for
instance, the log Bayes factor of GY-F61 against GY-F1x4 is [115.8 ; 117.4] whereas
for GY-F1x4-DP against GY-F1x4 is [102.3 ; 104.2]. These results for GY-F61 model
are also indicative of uneven codon preferences. However, as previously mentioned,
the codon preferences accounted for in this GY formulation are confounded with other
features, including the background of nucleotide propensities, making the model less
attractive on interpretive grounds. Accordingly. when contrasted with the richer MG
formulations accounting for codon (or amino acid) preferences, the GY-F61 model is
less attractive on quantitative grounds (except for Hiv22-99, in which case it matches

the top MG-style models).

7.3.3 Posterior distributions

Here, we display posterior distributions (obtained using plain MCMC sampling) for
parameters of the MG-F1x4-CP-DP model. Our main focus is on the distinguishing
features of the model, namely, the combination of background nucleotide propensities
with global codon preference parameters. To illustrate certain features, we also contrast
the distributions with those obtained under the MG-F3x4-CP-DP model, as well as
under the simpler models suppressing CP parameters.

The results of table 7.1 suggest that disparities in nucleotide propensities at the first.

second. and third positions could be reduced to codon (or amino acid) preferences. To
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investigate this point, we first inspect the posterior distributions of nucleotide propen-
sity parameters under various model configurations. Figure 7.3 displays the 95% cred-
ibility intervals of the global nucleotide propensity parameters for each data set. The
full lines correspond to the interval obtained under MG-F1x4-DP, whereas the dashed
lines are obtained under MG-F1x4-CP-DP. The distributions are far more diffuse un-
der the CP version, although their general locations appear similar. Inversely, one can
interpret that without the CP parameters, the posterior nucleotide propensity distribu-
tions are misleadingly overconfident. Figure 7.4 explores this same behavior under the
F3x4 configurations. First note that without the CP parameters (full lines), the three
positions show striking differences in overall distributions, and that the magnitude of
the credibility intervals are much greater than under the F1x4 configuration. When the
CP parameters are introduced (dashed lines), several credibility intervals considerably
shift and increase in magnitude. Also note that under the CP settings, the distributions
of each position tend to overlap. To show this more vividly, we reconstituted the results
displayed in figures 7.3 and 7.4 into a single figure for the GLOBIN17-1// data (fig. 7.5).
Figure 7.5a displays the global nucleotide propensity parameter values obtained under
the the MG-F1x4-DP model (full line) as well as each of the three nucleotide propen-
sity parameter values under the MG-F3x4-DP (in progressively finer dashed lines for
position 1, 2, and 3). In this case, the disparity between the different distributions is
high. When including the CP parameters (fig. 7.5b), however, the disparity is much
lower, suggesting the redundancy of the F3x4 configuration in combination with the
CP parameters. We note that some values are still markedly divergent (e.g., 3 position
A and 2™ position T), indicating that other model violations may be at play. In other
words, codon and/or amino acid preferences seem to explain (albeit not entirely) the
observed disparities of nucleotide equilibrium frequencies at the three codon positions.

We next inspect the posterior distributions of codon preference parameters. Figure
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eters obtained under MG-F3x4-DP (full lines) and under MG-F3x4-CP-DP (dashed
lines). The three panels (a, b, c) refer to the GLOBINI7-144 data set, followed by
LysiN25-134 (d, e, f), and H1v22-99 (g, b, i).
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Figure 7.5. A composite from figures 7.3 and 7.4 for the GLOBINI7-1/4 data set. Panel
a displays the 95% credibility intervals of global nucleotide propensity parameters under
the MG-F1x4-DP model (full line) as well as the 95% credibility of the three nucleotide
propensity parameters under the MG-F3x4-DP (with progressively finely-dashed lines
for position 1, 2, and 3 respectively). Panel b displays the 95% credibility interval for
same parameters but now, under the MG-F1x4-CP-DP and MG-F3x4-CP-DP models.
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7.6 displays the 95% credibitility intervals of codon preference parameters under the
F1x4 (full line) and F3x4 (dashed line) configurations. The parameters appear to
be only moderately sensitive to the F1x4/F3x4 choice, although a few notable shifts
and increases in magnitude of credibility interval are observed. This suggests that the
although the F3x4 configuration is impertinent with the CP parameters, it is not too
costly in terms over-parameterization, which corroborates with the results from table
7.1. The overall CP distributions suggest pronounced overall codon preferences for
the GLOBINI17-144, but milder preferences for LYSIN25-134 and H1v22-99. This also
corroborates well with our computed Bayes factors, which indicate that for LySIN25-154
and H1v22-99, the improvement brought about by the CP parameters is less important
than for the GLOBIN17-144 data. Observing the distributions for the GLOBIN17-144
data set in detail, we find that that the parameter values appear to capture long observed
tendencies of codon preferences on similar data, such as the elevated use of CTG for
encoding leucine, GTG for valine, or GGC for glycine; indeed, these were some of the
first observations stimulating research into the causes of codon preferences (e.g.. Fitch,

1980; Modiano et al.. 1981; Kimura. 1983).

7.3.4 Detection of positive selection

Finally, we contrasted the conclusions of the GY-F61-DP. MG-F1x4-DP and MG-
F1x4-CP-DP models with regards to the amino acid positions inferred to have un-
dergone positive selection. Under the DP settings, the posterior probability of a site
being under positive selection can be computed from the proportion of draws from a
sample (obtained via plain MCMC sampling) found to be in a class w > 1, as de-
scribed in Huelsenbeck et al. (2006). We first note that for the GLOBIN17-144, focusing
on posterior probabilities at 0.9. 0.95. and 0.99 cutoff levels, the MG-F1x4-DP and

MG-F1x4-CP-DP models infer sites under positive selection at each level. whereas the
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Figure 7.6. 95% credibility intervals of codon preference parameters. sorted according
to amino acids. The full lines are values under MG-F1x4-CP-DP. whereas the dashed
lines are values under MG-F3x4-CP-DP. The leftmost panel (a) refers to the GLOBIN17-
144 data set. followed by LysIN25-13/ (b).and H1v22-99 (c).
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(full lines), and MG-F1x4-CP-DP (dashed lines).

GY-F61-DP model infers no sites at either level (table 7.2). The list of sites under pos-

itive selection under the three models considered also differs for the other two data sets

F1x4-CP-DP models specifically,

(table 7.2). Comparing the MG-F1x4-DP and MG

) across all sites. Overall. the spike patterns have

w>1

(

the same general aspect, although the CP parameters appear to attenuate the p(w > 1)

7 displays the values p

figure 7.

values. There are a number of exceptions, however, and it will be important to conduct

a broader empirical study of the impacts of these and other parametric choices on the

detection of positive selection.
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Table 7.2. Amino acid sites under positive selection.

Data Model Sites
GY-F61-DP -
GLOBIN17-144 MG-F1x4-DP 7, 48, 50, 54, 67, 85, 123,

MG-F1x4-CP-DP 7, 11, 50, 67, 85, 123

2,3 4,6,7,9,10, 11, 12, 14, 32, 33, 36, 37,
GY-F61-DP 41, 44, 64, 67, 68, 70, 74, 83, 86, 87, 100,
106, 107, 113, 115, 116, 120, 123, 126, 132

4,6,7,9,10, 11, 12, 14. 32, 33, 36, 40, 41. 44,
LySIN25-134  MG-F1x4-DP 45,, 64, 67, 68, 70, 74, 75. 82, 83, 86, 87, 100,
106, 107, 113, 115, 119, 120, 126. 127, 132

4,6,7,9, 10,12, 14. 32, 33. 36, 37, 41, 44,
MG-F1x4-CP-DP 64, 67, 68, 70, 74, 75, 83, 86, 87, 100, 106,
113, 115, 119. 120, 123, 126, 127, 132

GY-F61-DP 54, 37, 63
Hiv22-99 MG-F1x4-DP 10, 12, 32, 33, 37, 41, 46, 47, 50, 54, 63, 82

MG-F1x4-CP-DP 10, 32, 33. 37, 50, 54, 63

Note.—Numbers in italic font are at the 0.9 level, in plain font at the 0.95 level and in bold font at
0.99 level.
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7.4 Conclusions

The distinction between GY and MG-style models has generally been considered as rel-
atively subtle, and most researchers have chosen to explore modeling extensions from
one of the two perspectives (e.g.. Nielsen and Yang. 1998; Yang et al., 2000a: Sain-
udiin et al., 2005; Huelsenbeck et al., 2006; Wong et al., 2006; Kosakovsky Pond and
Muse, 2005; Schaldt and Lange, 2002). In light of all of these recent developments,
the study in this chapter effectively takes a step back, to re-assess the core motivations
underlying codon-based models: the formulation of a biologically meaningful and read-
ily interpretable parameterization. We have argued that the MG-style models, with
the extensions studied here, subscribe most closely to these motivations. From the
Bayesian standpoint, sorting the importance of different model formulations becomes
an empirical issue, explored here by evaluating Bayes factors. Results confirm that a
careful modeling in the MG-style. so as to acknowledge amino acid or codon prefer-
ences, tends to surpass, or at least match, the optimal GY-style model. Furthermore,
the top GY and MG-style models reach different conclusions with regards to amino
acid sites under positive selection, with the top-performing GY-style model compara-
tively over-estimating selective factors bearing on nonsynonymous substitution rates.
We recommend future modeling investigations to consider incorporating any extensions
in the MG context specifically, and to monitor how these alternative choices compare,

in terms of model fit, but also in terms of logical interpretation (Thorne. 2007).



Chapter 8

Evaluating structural models of

codon substitution

8.1 Introduction

Having now studied codon substitution models assuming independence. we are in a po-
sition to re-introduce the statistical potential into a set of different model formulations.
Recall that the practical complications of the model presented by Robinson et al. (2003)
led these authors to propose a set of MCMC techniques based on two different forms
of auxiliary variable methods: 1) a data-augmentation system. providing a numerical
means of integrating over detailed substitution mappings; and 2) an importance sam-
pling argument, providing an approximation of the ratio of two intractable normalizing
constants. Together, these approaches provided the first proof-of-concept that such
models could be implemented.

In this chapter, we revise both forms of MCMC schemes for the study of site-
interdependent models in the codon context. and suggest the use of flexible sampling
approaches that can be more readily expanded to accommodate richer statistical po-

tentials, as well as higher dimensional parameterizations bearing on the stationary dis-
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tribution of the site-interdependent Markov process. Specifically, we first describe a
method for producing data-augmentations under a proposal density designed to be as
close as possible to the target site-interdependent density. The procedure is based on
a definition of site-specific codon substitution matrices, and utilizes a uniformization
technique previously used by Fearnhead and Sherlock (2006) to explore the occurrence
of rare DNA motifs. Next, we adapt recent techniques derived for approximating pos-
terior distributions involving intractable normalizing factors in the likelihood function
(Murray et al., 2006). Our focus is on embedding these different techniques within ther-
modynamic integration methods, as described in chapter 4, to evaluate Bayes factors
for different codon model versions. and to present preliminary analyses in this context.
We also present preliminary posterior predictive checks, displaying how different models
render features of nonsynonymous rate heterogeneity, and amino acid exchanges. Al-
together, the methods proposed here amount to setting up another phenomenological

benchmarking, now at the codon level of interpretation.

8.2 Material and methods

8.2.1 Data

We used the GLOBIN 17-144 data set, with PDB code 4HHB chain B used as a reference

structure.

8.2.2 Evolutionary models

We again borrow the nomenclature of Parisi and Echave (2001), and refer to the models
as structurally constrained (SC), utilizing the combined contact and solvent accessibility

potential developed in chapter 5. Recall the form of the potential, with the pseudo-
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energy score of as sequence s given by:

G(S) = Z Aii'esisi,+ Z EZ:'*‘ Z z:s,- (81)

1<i<i’ <N 1<i<N 1<i<N

The first term in (8.1) is a contact potential, the second is a solvent accessibility po-
tential, and the last term accounts for compositional effects, inspired from the random
energy approximation (Shakhnovich and Gutin, 1993; Sun et al., 1995; Seno et al.,
1998).

Let G;(a) represent the pseudo-energy associated with observing amino acid a at
site ¢, but without consideration of the contact component; with the present form of
potential, G;(a) = Z% + Z,. In the most general case studied in this chapter, we begin
by constructing site-specific codon substitution matrices of the form

(

2|~

%l&

Oach.Pb. ( :) ; if A,

—_

() _
Qa}] - < wga-cbz:sobc

N

%) ? BlGa)-Gi)  if B, (8.2)

0, otherwise.

\

Note that as written above, the model would imply 14 different () matrices. for the
14 solvent accessibility classes as derived in chapter 5. However, when invoking the
Dirichlet process prior on w, it is more practical to assemble site-specific matrices as
above, but with the w factor coming from the current “pool” of w factors. according to
the configuration of the Dirichlet process.

Now let Ga(s) be the contact energy of sequence s, i.e., Ga(s) = 21§i<i’§N AVET I

Then, we construct the overall sequence process by specifying off-diagonal entries of the
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Markov generator as

Q(i),eﬂ(GA(S)‘GA(s')), if s and s’ differ by one codon at position 1,

518,

Ry = (8.3)

0, otherwise,

and with diagonal entries given by the negative sum of off-diagonal entries. We can see
that from this construction, nonsynonymous rates will be proportional to e#(G(s)=G(s")
i.e., the measure based on the overall statistical potential. Here, 3 can be treated
as a free parameter, with a uniform prior on [—5, 5], which we again indicate as +2.
However, we may also fix § = 1/2, given that the potential was originally derived with
this scaling. Fixing # = 0 recovers the MG-F1 x4-CP-DP model studied in the previous
chapter—we use the same prior structure on all other parameters as we did in the last
chapter.

An attractive aspect of the model is that it acknowledges that the evolutionary
process producing the different protein-coding nucleotide sequences involves several
distinct features, specifically bearing on mutational tendencies at the nucleotide level,
on global codon preferences, on nonsynonymous heterogeneity, as well as constraints
operating at the level of the overall amino acid sequence; and we can explore the
relative importance of these features by measuring the fit of specials cases, which can

be recovered by suppressing (or prefixing) certain parameters.

8.2.3 Data augmentation

Although we still utilize the BRANCHHISTORY, NODESTATE, and TREEHISTORY oper-
ators in our data augmentation-based sampler, we use a different scheme for generating
proposal mappings in this chapter. The mappings are proposed from the site-specific
() matrices, which include all aspects of the model, but not the contact component

of the potential. The mappings are then accepted or rejected, according to the full
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site-interdependent MH rule. The idea here is that as the potentials used become more
sophisticated, it will become increasingly important to generate mappings from a model
that is as “close” as possible to the target model, in order to have high acceptance rates
and good mixing kinetics.

Thus far, we have relied on the method proposed by Nielsen (2002) to generate
mappings under site-independent models. Recall that the algorithm proceeds in two
basic steps: 1) sample internal node states from their joint distribution, conditional
on the data and the parameters of the Markov process; and 2) sample the series of
substitution events along each branch, conditional on parameters of the Markov process,
and the states at both ends such as determined in step 1). The second step of the
algorithm is an accept/reject approach: starting from the state at the ancestral node,
run the Markov process—sampling the timing and nature of events to the end of the
branch—and accept the resulting substitution mapping if the last event is consistent
with the state of the descendant node; if not. reject the mapping and start over. until
a consistent mapping is drawn. “The simulation scheme is efficient assuming that the
rates of change between all nucleotides [states] is large [...],” (Nielsen. 2002, p. 732) and
a provision is made to enforce the sampling of at least one event in cases where the
ancestral and descendant states differ. However, the site-specific codon substitution
models of interest here have instantaneous rates of change of 0 between states differing
by 2 or 3 nucleotides. This has the effect of inducing stricter constraints on the possible
coherent mappings, and under some conditions, Nielsen’s second step stalls, entering a
prolonged while-loop in attempting to sample an acceptable mapping.

Instead, in such problematic cases, we use a procedure is based on a uniformization
technique. The uniformization procedure (see, e.g., Jensen, 1953; Gross and Miller.
1984; Mateiu and Rannala, 2006; Lartillot, 2006; Fearnhead and Sherlock, 2006) trans-

forms the process defined by @ (we shall omit the site index 7 in the developments that
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follow) into a process allowing for virtual events, or self-substitutions (from a to a). Let

P = [Py] be the matrix of this process, obtained from
1
P= ;Q +1. (8.4)

where 4 > maz{—Q,.} is the uniformization rate, and I is the identity matrix. Note
here that the sum of each row in R equals 1: this is also called a stochastic matriz.
Under the uniformized process, the waiting time until an event no longer depends on
the current state, and the probability of having n events (including self-substitutions)
over a branch length A (we drop the j index below) is given by a Poisson distribution:

p(n|A)= e""\(l%)n. (8.9)

Also, taking powers of the matrix P yields the probability of starting in state a and

ending at state b after n events:
p(b|n,a) = Py, (8.6)

We will suppose that we now want to draw a mapping along a branch, and that the
states at the ends of the branch (a and b. for the beginning and ending states respec-
tively) have already been sampled (using Nielsen's first step). The overall method can
be summarized as a three stage progressive demarginalization: 1) sample the number
of events (always including virtual events) marginalized over their nature and timing;
2) sample the nature of events in order, marginalized over their exact timing; and 3)
sample the timing of events.

We first begin by drawing the number of events from the distribution p(n | a.b. \).



)

163

which can be calculated from (8.5) and (8.6) according to Bayes' theorem:

p(b|n,a)p(n | )

p(n|a,b,A) (b a N (8.7)
Note that the denominator in (8.7) can be developed as follows:
p(b|a,X) = ip(b | n,a)p(n | A) (8.8)
n=0
_ f: P;b(“’\) e~ (8.9)
_ { —uAZ =0 “’\P )_] (8.10)
= [eTMerF } "’ (8.11)
= [em-D] (8.12)
= [e)‘Q} (8.13)

This development highlights the fact that ) and P are different representation of the
same underlying process, and hence both representations may be exploited in the overall
sampling scheme. In particular, the form in (8.13) can be calculated employing a matrix
diagonalization routine for matrix exponentiation, and thus used to draw the number
of events: first sample g = p(b | a.A) x U, where U is a random number on the unit
interval; and next, starting from n = 0, cumulate p(b | n.a)p(n | A) over successive
values of n, until surpassing g: the final n is thus the number of events sampled.
Having sampled the number of events n, we now wish to sample the specific series

of events leading from a to b. The state after the first event (s;) is sampled from

s1~p(s1=1]|s=a.s,=0b)oc PyPy " (8.14)

Then. having sampled the state after first event. the state after the second event (s3)
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is sampled from

Sa~p(sa=m|s =1,8, =b) x P, P";? (8.15)

mb

and so on, until the n events have been sampled. Note that the second factor on the
right hand side of (8.14) and (8.15) ensures that the state sampled will not “trap” the
mapping into a state s; which could not lead to s, = b in n — k events. For instance, if
n =3, s, = m, and m differs with b by two nucleotides. then P:L;Z = 0, and thus this
particular state m could not have been sampled in (8.15).

Finally, we can draw n values uniformly distributed on [0, )], and sort the values
to obtain the timing of events. Virtual events can then be removed so as to obtain
a substitution history directly sampled from the posterior distribution under the site-
specific model, which constitutes the proposed mapping for that site.

Note that the uniformization technique for sampling mappings is computationally
demanding. Calculation of the successive powers of stochastic matrices is the rate-
limiting step of the overall operation. Always setting u = maz{—Qq.} as the uni-
formization rate, we sometimes observed cases with up to 100 virtual events, without
any bona-fide events, which nonetheless implies as many powers of the stochastic ma-
trix. As such, we have set our sampler to only use the uniformization technique when
the states at both ends of a branch differ by 2 or 3 nucleotides, and to use Nielsen's
method when the states are identical, or differ by only one nucleotide®.

Altogether, this scheme enables us to propose mappings for any number of sites, from
a proposal density that only differs with the target density by the contact component

of potential.

1'We have never observed Nielsen's method to stall in such conditions.
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8.2.4 Updating model parameters

The same types of update operators as used previously can be applied in the present
context to approximate the posterior distribution, based on the site-interdependent MH
rule. However, as in previous chapters, for parameters bearing on the stationary dis-
tribution of the substitution process. the ratio of two intractable normalizing factors
appears in the MH ratio, requiring a more elaborate approach. The importance sam-
pling method proposed by Robinson et al. (2003) for approximating this ratio would
involve an extensive design and tuning phase in the high-dimensional context of inter-
est here. Instead. we used the single variable exchange method recently proposed by
Murray et al. (2006), as we describe below.

The stationary distribution of full site-interdependent codon model given above

reads as

N 3
1
plso | 0. M) = e ] (w Hsos,oc) . (8.16)
i=1 c=1

where Zy is the normalizing factor:

N 3
Zyg = Z e~ 28G(s) H (d"s. H (pslc) . (8.17)
s i=1 c=1

with the sum being over all 61V possible sequences. Of course, this sum is not tractable.
When proposing new values for any of the parameters implicated in the stationary
distribution, the ratio of two of these terms appears. For simplicity, let f(so.6) be the

unnormalized density:

N 3
f(So. 9) = e_ZBG(So) H <¢szo H g05105> . (818)
i=1 c=1
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Expanding the MH rule for the present context, we have

9 = min {3 HDE] 00 M0 | M0 o0, .19

" p(D, ¢ | 50.6. M)p(8 | M) f(s0,0)q(6.0") Zy
where we have written the complicating factors at the end of the ratio for emphasis.
Applying the single variable exchange method given in Murray et al. (2006) to the
present problem, we draw an auziliary sequence ¢ from the distribution induced by 6’
using the Gibbs sampling method used in previous chapters. Then, the MH kernel is
expanded to

p(D.d | s0.6, M)p(# | M)f(s0.0)f(s. 9)q(9/,0)Zngr} (8.20)
" p(D, ¢ | 50,0, M)p(6 | M)f(s0,0)f(.0)9(0.6) 2025 | '

g = min{l

where all intractable factors at the end of the ratio cancel.

The validity of this MH kernel rests on having truly sampled ¢ from the stationary
probability induced by €. As always. we explored empirically the properties of our
Gibbs sampler, and devised our implementation to follow a simple procedure: upon
starting the overall MCMC., the sequence ¢ is initialized by performing a random draw
from the 61 possible codons at each site; when calling an operator on a parameters bear-
ing on the stationary distribution of the substitution process. 5 Gibbs sweeps across
the positions of ¢ are performed: subsequent calls on parameters bearing on the sta-
tionary distribution start from the current ¢, and again perform 5 Gibbs sweeps across
the sequence. In this manner, we avoid performing a long burn-in of this inner (Gibbs)
MCMC when calling parameter updates in the main (MH) MCMC, since at each cycle.
¢ was previously updated conditional on a parameter vector that was “not too far” in
parameter space. Of course, the assumption that the ¢ sequence is drawn from the

intended distribution forms part of the Monte Carlo approximations.
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Figure 8.1. Quasi-static thermodynamic integration along 3 for the MG-F1x4-SC
model.

8.2.5 Thermodynamic integrations

The same thermodynamic integration methods described in chapter 4 can be applied
here, to contrast a model including the statistical potential with its non-structural
counterpart. Recall that the procedure from chapter 4 first produces a trace of the
marginal log-likelihood along the @ parameter (displayed in fig. 8.1 using the MG-
F1x4 as the underlying model), and in the case of SC+4 settings, this is followed by
an exponentiation and averaging of the curve over the prior distribution (see eqn. 4.8).
When using the more rigid SC settings, the value at the § = 1/2 point along the curve
shown in figure 8.1 is the log Bayes factor in favor of the structural model.

Again as in chapter 4, these methods, in conjunction with the model-switch thermo-
dynamic methods proposed in the last chapter, allow for an overall ranking of models

based on Bayes factors.
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8.3 Results and discussion

8.3.1 Bayes factors

We ran the thermodynamic method combining the statistical potential with a select set
of underlying models. These underlying models were chosen based on the results from
chapter 7. showing that the MG-F1x4-CP-DP was the preferred model; other models
considered suppress either the codon preference parameters or the Dirichlet process on
w factors (in which case a single global w factor is used), or suppress both of these

model settings. The log Bayes factors computed are displayed in table 8.1.

Table 8.1. Natural logarithm of the Bayes factor for models considered, with MG-F1x 4
used as a reference.

Model Non-structural SC SC+p
MG-F1x4 0 [48.5;49.2]  [49.2; 49.6]
MG-F1x4-CP [122.1;123.8] [184.8; 188.3] [180.3; 183.7]
MG-F1x4-DP [102.2; 104.2]  [185.7; 188.4] [180.9; 183.8]

MG-F1x4-CP-DP  [236.5; 241.0]  [316.4; 321.5] [313.0; 317.7]

Note. Values given are the upper and lower estimates from bi-directional thermodynamic integrations.

In all cases, the use of the statistical potential provides an increased model fit. We
note that for the results to date. considering 3 as a free parameter has a very mild
effect; indeed. the posterior distributions of 3, when it is considered as free, do not
depart too drastically from g = 1/2 (fig. 8.2).

Interestingly, we observe a synergistic interplay between the CP. DP and SC con-
figurations. For instance, had the improvement in model fit by combining CP and SC
settings been additive, we would have obtained a log Bayes factor of ~ 172 in favor of
the MG-F1x4-CP-SC over the reference model. Instead we find a log Bayes factor of

[184.8; 188.3]. The synergy between DP and SC settings appears even greater than that
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between CP and SC. The combined CP-DP-SC configurations also display a synergistic
effect on model fit, although it appears roughly equivalent in magnitude to the synergy
between DP and SC alone. Note that since w factors do not appear in the stationary
distribution of the Markov process, the interaction of the DP and SC settings suggests
that the potential has an effect on the transient properties of the substitution process.

We are currently implementing graphical displays of posterior distributions based
on “heat” maps, which should allow a visual display of the shifts induced by the SC
(+B) framework (forthcoming!). We note, however, that the use of the statistical po-
tential, without CP or DP settings, produces a model of much poorer fit than the
site-independent formulations including these components. Of course, the CP param-
eters can capture features that the potential cannot. Focusing on the DP settings as
a phenomenological account of nonsynonymous rate heterogeneity, the Bayes factors
indicate that the potential in itself fails to attain this benchmark. However, we note
that the use of a statistical potential is likely to be focused on negative selection, and
is unlikely to acknowledge much, if any, positive selection. In contrast, with the DP
settings, positive selection is flexibly accounted for, and thus more apt to accommodate
a high variance in nonsynonymous rates across sites. In this sense, the DP model does
not constitute an entirely fair benchmark. We explore this in greater detail in the next

subsection.

8.3.2 DPosterior predictive checking

We re-visit the types of posterior predictive checks performed in chapter 4, but now for
the codon substitution models. First, using the MG-F1x4-CP model, we computed the
variance in number of nonsynonymous substitutions across the codon sites of the align-
ment, for both predictive mappings (simulations of the Markov process over the tree. all

the way to the tips of the leaf nodes without any constraints) and “observed” mappings
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Figure 8.3. Posterior (full line) and posterior predictive (dashed line) variance in the
number of nonsynonymous substitutions across the codon positions of the alignment.
Panel a) corresponds to the MG-F1x4-CP model, whereas panel b) also includes the
DP settings to this model as well. Panel c¢) corresponds to the MG-F1x4-CP-SC+,
and panel d) includes the DP settings as well.

(instantiations of the Markov process that are compatible with the true observed align-
ment). These statistics were computed conditional on parameters from 2,000 draws
evenly inter-spaced across our MCMC sample from the posterior. As expected. the
variance for the predictive mappings tends to be low, by definition of the homogeneous
model, whereas the variance for observed mappings, owing to the constraints induced by
the data, tends to be higher (fig. 8.3a). Also as expected, when invoking the Dirichlet
process modeling nonsynonymous rate heterogeneity across sites (MG-F1x4-CP-DP),
the observed mappings have a much higher variance, and the predictive mappings follow
a well-matching distribution (fig. 8.3b).

As previously mentioned, the statistical potential used here could. in principle. in-

duce nonsynonymous rate heterogeneity across sites—albeit likely focused on negative
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selection. However. as displayed in figure 8.3c for the MG-F1x4-CP-SC+/, nonsynony-
mous rate heterogeneity is very low in practice, leading a broad discrepancy between
distributions. The combined model (MG-F1x4-CP-DP-SC+/3) also produces reason-
ably well-matching observed and predictive distributions (fig. 8.3d). and according to
our calculated Bayes factors, the best overall model fit as well.

We next performed a preliminary analysis computing the relative frequency of the
different amino acid replacements implied by the observed and predictive mappings.
Figure 8.4 displays the mean distribution over the sample, scaled such that the total
area of all circles is equivalent across the different panels. The first striking feature of
this figure is that several amino acid pairs never exchange with one another. This is of
course the effect of considering all substitutions as arising from point mutations, and as
originally pointed out by Zuckerkandl and Pauling (1965), single base differences very
often lead either to a synonymous codon. or to an amino acid of similar physico-chemical
properties.

Among the remaining amino acid pairs that can undergo replacement, we first ex-
amined the distribution for observed mappings under the MG-F1x4-CP-DP (fig. 8.4a)
and find, as expected, that the mappings suggest uneven exchangeabilities. The corre-
sponding predictive mappings (fig. 8.4b) lead to slightly more even exchangeabilities.
but nonetheless already display a surprisingly reasonable skewness in inducing higher
values for well-known amino acid pairs (e.g., A-V, A-T, A-S, D-E, I-V). This may be
explained by the Zuckerkandl-Pauling effect discussed above. Using the MG-F1x4-CP-
DP-SC+f model, the observed distribution (fig. 8.4c) is very similar as observed in
figure 8.4a. and the predictive distribution tends to induce slightly higher values for
amino acid pairs well-known to being readily exchangeable (fig. 8.4d) than the predic-
tive mappings under the non-structural counterpart (fig. 8.4b). although this is very

mildly discernible. This may be one way in which the statistical potential brings an
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Figure 8.4. Mean amino acid exchange distributions.
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improvement, but more work is needed to clarify this question.

8.4 Conclusions

The set of techniques presented in this chapter completes the site-interdependent method-
ological context in the case of the codon-based level of interpretation, providing a
means for quantitative comparisons of several possible phylogenetic model configura-
tions. While the methods are computationally manageable when coupling the potential
to a homogeneous model (with thermodynamic integrations requiring about one week
on Xeon 2.4 GHz desktop computer), they become very demanding when invoking the
Dirichlet process model (with thermodynamic runs requiring up to four months). The
Dirichlet process framework was designed for the context where the data (in this case
codon columns) are all considered independent. As presented in chapter 2, the MCMC
operators for updating the configuration of the Dirichlet process are applied one codon
site at a time, and under the assumption of independence, the likelihood can be cal-
culated for that site only within the operators; for the site-interdependent models, all
likelihood calculations are sequence-wide, and thus very costly. It may be possible to
design update mechanisms for the Dirichlet process that simultaneously update sev-
eral sites. thereby “making the most” of each call to the site-interdependent likelihood
calculation.

Use of the Dirichlet process approach on nonsynonymous rate factors across sites
in combination with the use of the statistical potential could be said to constitute a
phenomenological supplement, capturing those features which are beyond the current
capabilities of potentials. However. this has the less attractive property of confounding
modeling approaches. In any case. we stress here again that judging the relevance of
a new class of models should be explored by contrasting such new approaches with

existing model forms. In the present case, such a contrasting reveals the importance
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combining different modeling strategies into a single framework, with parameterization
at the nucleotide. codon. and protein level all meriting further explorations. We propose
concrete future research perspectives that could be explored in the last part of this

dissertation.



Part 111

Perspectives



Chapter 9

Further calculations

9.1 Introduction

The study of site-interdependent models is at an early stage. Most of the work to date
has been geared to developing the basic computational techniques needed to instantiate
the Bayesian cycle of model development in such contexts. More work is now needed
to study the properties of the new models, on much more data. Choi et al. (2007)
recently presented a large scale analysis focusing solely on the limiting distribution of
the Markov process; by considering data sets consisting of single sequence-structure
pairs, the phylogenetic factor of the likelihood function is eliminated. which implies
that the data-augmentation-based MCMC device is no longer needed. They find that
the modeling approach nearly always improves the model fit. In our own analyses of
real data, which include phylogenetic factors, we have also found the approach to show
promise in terms of model fit, but from the results of these initial studies, it remains
unclear exactly which aspects of the data are better explained by the model. Future
cycles of the Bayesian framework will hopefully clarify these issues.

In this chapter we suggest a few more calculatory methods to include in this iterative

model development process. We focus on the question of the contact map representa-
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tion, and outline a crude yet relatively fast means of assessing the complete set of
nearest neighbor contact maps. We next describe thermodynamic schemes to evaluate
different forms of potentials in a computationally sensible manner. Finally, we propose
simple approaches to explore if the use of potentials plays a more important role in
ameliorating the stationary probability of the site-interdependent Markov process or

the transient attributes of the process.

9.2 Contrasting nearest-neighbor contact maps

In our present framework, it would be interesting to compute the marginal likelihood
of alternative contact maps. In the short-term, this could highlight the sensitivity of
the model to mildly different contact maps, and in the long-term one might envisage
approaching the protein folding problem with a phylogenetic component. We have
already done crude explorations along these lines in chapter 4. where we deliberately
made the contact map “worse” than the true native one. and, as expected. found support
for the native contact map. However. we would like a more sensible exploration, by
evaluating, for instance, the sensitivity of each contact map entry (0 or 1). In this
subsection, we describe a crude procedure and an importance sampling argument that
could be used to approximate the Bayes factor of the nearest neighbor contact maps
(with respect to the native contact map), although it could perhaps be applied to more
diverging contact maps. We present the developments under the site-interdependent
model allowing for gamma distributed rates across sites; codon-based developments are

a special case of the developments that follow.
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First, recall that the marginal likelihood can be decomposed as

WDIM) = [o(D]6,M)p(6 | M) (9.1)
[S]
= ///p(D.¢ | 6, 7. M)po(r)p(0 | M)dpdrds. (9.2)
Or d

Our objective is to compare the marginal likelihood obtained under two different
contact maps A and A’, which differ only by one entry (changed to 1 if the native contact
map entry of interest is 0, or changed to 0 if the native contact map is 1). However, to
be able to do a relatively quick exploration, we could ease-up on the outermost integral
of equation 9.2. Specifically, we will make two approximating assumptions: 1) let us
suppose that the values of all parameters involved in the stationary probability, which
we refer to as 0,4, are known (the reasons for this will become apparent shortly),
and 2) these values are the same under both A and A’ (the importance sampling
approximation). Under these two conditions, we write the ratio of contact map log-
marginal-likelihoods as:

p(D ' 63tat~A,)

In
p(D | Ostat . A)

(lnp(so | Ostar. A') — Inp(so | Hsmt.A))

+|In ///p(D.d) | A 80,8, 7)pa(r)p(0)dpdrdl

Or d

—1In ///p(D.d) | A. sg,6,7)pa(r)p(0)depdrdd (9.3)

or d

where the integration over © is now limited to integrating over parameters not involved
in the stationary distribution, and where we have dropped the dependence on M from
the notation. This approximation can be developed separately for the terms at the
root (in the first set of parenthesis) and the terms over the tree (in the second set of

parenthesis).
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First, for the terms at the root we get:

p(SO l Hsta.t- AI)

In m = h'lp(SO | Bsmt, AI) b lnp(so | 0sm. A) (94)
= (_2IBGSOIA’ —In ZA) — (—2BG30|A —1In ZAI) (95)
AN
= (26Gsa — 28Gsa) —In Z—A (9.6)
A
= (2,3G30|A - QﬂGSO A’) - (2,BGSIA - ZﬂGs[A/) (97)

where Za is the normalizing factor under A, and where (.) represents an expectation
with respect to the stationary probability under A. This expectation can be estimated
based on a sample of sequences (")), <p<x obtained using the Gibbs sampling procedure

we have been employing:

K
1
(26Goa = 26Gsar) = 2= > 26G s — 26G 00 (98)
h=1

We will refer to (9.8) as the root importance sampling approximation.

Similarly, for the terms over the tree, we get:

gf({ p(D.¢ | A sg.0,7)pa(r)p(0)dpdrdd
In =%

g‘f{P(Dy & | A.50.0.7)po(r)p(8)dpdrds

.
~ %Z ( Inp(D,¢® | A’ 55.6M +®M) —Inp(D. o™ | A, SO,G(h).r(h))) (9.9)

h=1

where (61 ¢(P), (M) 1<n1<k is a sample of parameters with no bearing on the stationary
distribution of the Markov process, as well as mappings and rates, obtained using the
Metropolis-Hastings algorithm. We will refer to (9.9) as the tree importance sampling
approximation.

From the developments explained above, the difference in log-marginal-likelihood
between two nearest neighbor contact maps is computed in two parts, applying the root

importance sampling approximation and the tree importance sampling approximation
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separately, and based on two distinct MCMC sampling schemes. The following protocol

summarizes:

e Run a MCMC sampling over parameters not involved in the stationary distribu-
tion, and with those that are pre-fixed to sensible values; one crude approach is
to first run a full MCMC sampling over all parameters, as in previous chapters,
and then run a second MCMC fixing all parameters involved in the stationary

probability to their mean posterior values from the first run.

e Run a Gibbs sampling MCMC to obtain a sample of sequences from the stationary

probability. induced from the relevant pre-fixed parameter values.

e Make a modification to the contact map. and, based of the two samples above.
apply the root and tree importance sampling approximations to compare the

contact map log-marginal-likelihoods.

e Repeat for each contact map of interest, always based on the same samples.

This last point. using the same sample for each contact map of interest, is what should
make these preliminary explorations reasonably fast. Note, in particular, that had the
parameters involved in the stationary distribution also been integrated over, a new
sample of sequences would be needed for the root importance sampling approximation
for each parameter vector sampled. This would undoubtedly slow down the procedure.
although it is not entirely unfeasible either.

Finally, it should also be noted that the importance sampling arguments suggested
here are best when our second approximating assumption (the assumed equivalent pa-
rameter values under both A and A’) is reasonable. This assumption is likely to become
markedly erroneous if the two contact maps compared are significantly different. which
is the reason for constraining our preliminary analyses on nearest neighbor contact

maps.
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9.3 Contrasting different structural representations

In chapter 5, we performed a simple contrast via Bayes factors of the potentials of
Miyazawa and Jernigan (1985) to our own potential of the same form, and found our
potential to have a better fit. Furthermore, we found the combined potential, including
contact map and solvent accessibility components, to outperform all of these. Several
other forms of potentials are of interest. Even among those already derived, we have not
yet evaluated the pure solvent accessibility potential in the phylogenetic context. Note
that this last potential does not lead to site-interdependence, so that the thermodynamic
methods can be based on a sum (of log terms) across sites. without additional MCMC
sampling for intractable normalizing factors, and therefore computed much more quickly
than under the full sequence-wide framework. In theory. such models could even be
manipulated using the traditional pruning-based likelihood calculations, although this
is unadvised, because data-augmentation-based schemes yield much faster samplers (not
shown, but see Lartillot, 2006).

Different forms of site-independent potentials could be evaluated in this way, and
when re-introducing the contact map component, the resulting potential can of course
be evaluated directly, based on the methods expounded in this work. However. a slightly
different approach might be more efficient when working with the SC-type models with
B = 1/2. Taking the contact and solvent accessibility potential as an example. the

approach first defines
G(s) = ﬂdep < Z Aii'Es,sll> + ,Bindep< Z EZ: + Z 231) . (910)
1<i<i'<N 1<i<N 1<i<N

In a first step, we set (4, = 0. and perform a site-independent data-augmentation-
based thermodynamic integration from Binge, = 0 to Bindep = 1/2. This provides

the log Bayes factor in favor of the model including the site-independent components
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of the potential over the underlying non-structural model. Then, in a second step.
we set [ingep = 1/2, and perform a site-interdependent thermodynamic integration
from Byep = 0 to Baep, = 1/2. This provides the log Bayes in favor of the model
including the contact component over the model without it. The overall log Bayes
factor, in favor of the overall potential, is then simply the sum of both log Bayes
factors. The advantage of separating the calculation into two steps is that the first step
is very efficient, whereas the costly site-interdependent thermodynamic integration is
differed to a path in the space of posterior distributions that is as short as possible.
The computational advantages need be assessed in practice, and our implementation is
already equipped to do so.

Also note that Bingep and By, could be treated as free parameters!. In this case,
a similar two-stage procedure could be applied. First run a site-independent data-
augmentation-based thermodynamic integration along the dimension of Binge, (With
Baep = 0), tracing log-marginal-likelihood curve as a function of Bindep- Then exponen-
tiate and average this curve over the prior, as in chapter 4. This provides the log Bayes
factor in favor of the model including the site-independent components of the potential.
but now with B;n4., treated as a free parameter of the model. Then, in a second thermo-
dynamic run, apply plain MH operators on Singep- and trace the log-marginal-likelihood
curve as a function of f4,. Exponentiating and averaging this curve provides the log
Bayes factor in favor of the model including the contact component over the model
without it, but now with f,., being a free parameter. The sum of both these log Bayes
factors again provides the overall log Bayes factor in favor of the full structural model.

with both Bingep and By, treated as free parameters.

'The parameter Bindep could also be further subdivided into two parameters: one in front of the
solvent component. and one in front of the chemical component.
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9.4 Evaluating transient versus stationarity contri-
butions to model fit

The use of statistical potentials within evolutionary models induces differences in both
transient and stationary probabilities under the Markov process. This can be plainly
seen from equation (C.9), in Appendix C, where the derivative of the augmented log-
likelihood with respect to 3 involves both the stationary probability and the transient
probability, in two distinct terms. It would be interesting to evaluate if the amelioration
in model fit is mainly a result of a greater stationary probability, or a greater transient
probability. However, in spite of the overall log Bayes factor being invariant to the
position of the root node. the relative contribution of each term is not.

A very simple exploration of this question would start by analyzing pairs of se-
quences, and repeating calculations twice, taking each sequence in turn as the root.
The results of calculations under both rootings should provide a first indication of sta-
tionary versus transient ameliorations. This should probably be explored for different
levels of evolutionary divergence, and the natural extension of such an analysis would
be applied to multiple sequence alignments. Our current implementation is based on
rooting the tree at a leaf node (an observed sequence). As such, we could first try
repeating calculations with a different leaf node rooting in each instance (perhaps a
random subset, of say 10 leaf nodes, could suffice for these first explorations). The
relative contribution of each term could then be averaged over these instances. Char-
acterizing these properties in practice, under different model configurations, and for
different data sets. should help clarify strengths and weaknesses of different choices in
terms of stationary and transient amelioration.

These sorts of evaluations need not be restricted to the structural models studied in

the present dissertation. We stress that the distinction between stationary and transient
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probabilities should not be overlooked in the development of phylogenetic models, and
that models focused solely on parameterizations of transient aspects (e.g., Kosiol et al.,
2007), may be ill-suited under certain data set conditions, due to their inability to

anticipate sequence saturation (Lartillot et al., 2007).

9.5 Conclusions

We have focused here on calculations of interest that require little, or no further de-
velopments within our implementation. Several other calculations are also of interest,
including many other possible statistics for posterior predictive analysis (e.g., Dimmic
et al., 2005; Lartillot et al., 2007), and assessments of other structural features. We
hope to set up a pipeline of analysis, applied to numerous data sets, incorporating
these calculations.

Also note that the different evaluations outlined in this chapter can be intersected:;
one might speculate that uncovering better site-independent components for structural
models—utilizing the site-independent thermodynamic integrations discuss above—
could “take charge” of certain structural features, in a sense “freeing” the contact com-
ponent to focus on actual correlations—which might be reflected in our assessments of
nearest neighbor contact maps. The impact of stationary and transient probabilities
could also be investigated within assessment of nearest neighbor contact maps, by fo-
cusing either on the root or tree importance sampling approximation, perhaps averaged
over root placements.

Eventual studies could also expand the research pipeline to include several other

types of models, as we discuss in the next chapter.



Chapter 10

Model variations and extensions

10.1 Introduction

Several of the models studied in the present work remain relatively rudimentary. For
instance, the codon models proposed in chapter 7 are all based on global amino acid
or codon preferences. However, other modeling strategies have already shown, at least
for amino acids. that such preferences are markedly heterogeneous across sites (e.g.,
Lartillot and Philippe, 2004, 2006). As far as the structural models are concerned.
several crude simplifications are relied upon, such as the simple, static contact map
representation. It would have been quite surprising, in fact, to find such a representation
constituting an adequate description of amino acid interactions, and computationally
simple means of enriching the basic contact map approach are of pressing interest. It
would also be interesting to give greater flexibility to the coefficients of some or all
components of the statistical potential directly within the phylogenetic context.

In this chapter, we describe these modeling themes in greater detail, as examples
of some of the possible extensions. Our focus is on the codon-based models, and we

present specific models addressing issues mentioned above.
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10.2 Dirichlet process modeling

A broad range of model extensions are evident from the AAP and CP approaches
proposed in chapter 7: given that these richer MG-style models lead to an improved
overall fit, models based on mixtures of AAP or CP parameters could also be of merit.
so as to capture site-specific preferences rather that global effects. To this end, the
Dirichlet process prior, applied to model nonsynonymous rate heterogeneity across sites
(Huelsenbeck et al., 2006), could also be applied to the AAP parameters, or to the CP
parameters. Indeed, the necessary MCMC operators for manipulating such models,
as well as models incorporating heterogeneities along the tree, have all been described
previously (Lartillot and Philippe. 2004; Blanquart and Lartillot, 2006).

As an initial specific example. let us specify a model incorporating two independent
Dirichlet processes: one acting on overall nonsynonymous rate heterogeneity across
sites, and another acting on amino acid preferences across sites®. First, let us suppose
that the current configuration of the Dirichlet process on w consists of H classes. and let
¥ = (¥i)1<i<n be the allocation vector for omega classes, with y; giving the index of the
w factor affiliated to site i. Next, let w,, = (w,, k)1<k<20 be the amino acid preference
parameters currently affiliated to site ¢, where z = (z;)1<i<n is the allocation vector on

amino acid vectors. Then, site-specific codon substitution matrices are given by:

.
Qacbe Pb. - if A,
. 1 .
Q%) % < w,, 0aut. 5, (g—;;%)z , if B, (10.1)
0, otherwise.

\

Note that omitting the w factor (i.e., fixing w = 1 across all sites) would constitute

a negative-selection model; a site could have a very low effective nonsynonymous rate

1The extension of the AAP model described here could also be applied to the CP model. to account
for heterogeneous codon preference across positions.
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by being affiliated to an amino acid preference class having most of its mass on a sin-
gle amino acid, but a high effective nonsynonymous rate, say higher than the overall
synonymous rate, would not be possible. In other words. such a model selects against
certain amino acids, by attributing little mass to these. With the two Dirichlet pro-
cesses, on both amino acid preference parameters and nonsynonymous rate factors,
therefore, a re-interpretation of the traditional meaning given to w, as the ratio of the
nonsynonymous to synonymous rates, will need to be formulated; negative selection
does not strictly correspond to w < 1 in this case. since, as described above. the model
can accommodate negative selection via amino acid preference parameters. Indeed. we
foresee possible identifiability problems between w factors and amino acid preference
parameters.

These models in themselves are of much interest, providing a more flexible approach
than using pre-determined amino acid preferences (e.g., Sainudiin et al.. 2005: Wong
et al., 2006), and a less drastic alternative to using a distinct set of amino acid parame-
ters at each site (Halpern and Bruno, 1998). However, our motivation here is to combine
such a model with a contact potential. The contact potential can be incorporated by
applying the same re-formulation of the Markov process given in equation (8.3). We
speculate that with well-defined site-specific amino acid preferences, the contact poten-
tial could more clearly recognize pairwise correlations, since for a given pairwise contact,
the possible amino acid state interactions become much more restricted.

The model proposed here poses significant computational challenges, in particular
with regards to Dirichlet process update operators under site-interdependence. Further
technical investigations are needed to address these difficulties in practice. Also, the
model should be viewed as a phenomenological supplement. as part of an exploratory

stage of development, particularly given the interpretative difficulties that it poses.
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10.3 Multiple protein structures, and interdepen-
dence across genes

As previously mentioned, the single, fixed contact map structure representation utilized
in this work is very crude. While it may be pertinent to design a class of model where
a contact map. or some other representation, is allowed to change over the tree, we first
consider a few simple ideas, which attempt to acknowledge that a protein has some
level of structural flexibility in the course of its own half-life.

Let us first build upon the basic contact potential, with the form

G(S) = Z Aii’esls,/ + Z z:s,- (102)

1<i<i’'<N 1<i<N

The contact map A is derived from a single reference structure. One may also consider
that many proteins, in performing their biological function, exist in two or more struc-
tural states. Structural states may be difficult to characterize in a clear-cut manner,
but some cases offer natural discretizations. such as the well-studied oxy- and deoxy-
myoglobin structures. In this specific instance we could define a pseudo-energy score

with the form

Gls)= Y Afes,+ Y. A, + . I, (10.3)

1<i<i’<N 1<i<i’'<N 1<i<N

where A" and A%°%¥ are the contact maps derived from the resolved structures of
oxy- and deoxy-myoglobin respectively. The idea here is that an amino acid sequence
should fit well with all structural states of the protein.

Along similar lines, it might be interesting to explore whether it is possible to account
for the fact that an amino acid sequence must adhere to the conformational constraints

of a particular stand-alone structure as well as the conformational constraints imposed
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by interactions with other proteins. Data sets have already been constructed with this
in mind, in the context of the protein-docking problem (e.g., Mintseris et al., 2005).
More specifically, let s4? represent the joint sequence state of proteins A and B (with
their respective lengths written as N4 and NB. and with the joint length as N4B).

Focusing on the contact components, the potential is given by

ABy _ AB A
G(s*7) = E A €saBsAE + § Aiifesf‘s;}

1<i<i'<NAB 1<i<i’!<NA

+ Z Ag'esfsf?"_ Z Es:w (10.4)

1<i<i'<NEB 1<i<NAB

where A48 is the contact map of the complex composed of protein A and B, and A4
and A® are the contact maps of each individual subunit. Perhaps a weighting scheme
should be applied to each of the subunits and the resulting complex.

Note that such a model can lead to interdependencies across sites of two different
genes. One might even imagine studying a multi-gene data set, modeling networks of

interaction across multiple gene sites, within the phylogenetic context.

10.4 Coefficients of the potential as free parameters

We have stressed that relying too heavily on a statistical potential leads to a model of
poor fit. It remains unclear as to whether this is due to the basic form of the structural
representation and potentials investigated here, or if it is a result of the fact that the
potentials themselves were not derived in a true evolutionary framework. One way of
addressing this question would be to construct a large data set, and treat the coefficients
of the potential as free parameters. Such a data set might consist of a single multi-gene
alignment. with each gene encoding for a protein of known structure. Alternatively, we
could use several single gene data sets, each with their own tree structure, but with the

coefficients of the potential acting as global parameters, over the entire meta-data set.
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Once again, the computational challenge of such a model is significant. The sin-
gle variable exchange algorithm employed in chapter 8, or other approaches discussed
in Murray et al. (2006), however, could provide useful avenues in this direction. If,
under a data set (or meta-data set) of sufficient size, leading to well-focused posterior
distributions, the model still does not induce any significant rate heterogeneity, or any
other expected evolutionary feature, one could reasonably speculate that the form of
the potential simply cannot produce such features, and that other forms of structural

representations—or other sequence fitness proxies in general—should be considered.

10.5 Conclusions

Numerous modeling extensions can be envisaged based on the ideas already discussed
in the present dissertation. These models, when passed through the pipeline of anal-
ysis discussed in the previous chapter, should better inform further instances of the
Bayesian model development cycle. In particular, we are very interested in engaging this
development cycle with richer structural descriptions than the simple contact /solvent
accessibility versions used and discussed in this work, in order to quantify the relative
importance of different structural features, and how these relate to each other in the

overall evoutionary process.



Afterword

All models are based on a blending of both phenomenological and mechanistic ap-
proaches. This makes the concepts somewhat difficult to grasp. Perhaps models them-
selves should not be viewed as being either phenomenological or mechanistic. and that
these terms should be restricted to the process of model development: phenomenological
modeling consists of drawing up a preliminary sketch of the most blatant features sug-
gested from the data, whereas mechanistic modeling aims to provide a generalization
or a synthesis of such a preliminary sketch, by attempting to describe the underly-
ing causes that would lead to the observed features. Note that a description of the
underlying causes may itself be based on a phenomenological interpretation.

We have seen examples of this modeling process in the present work. Working
with non-structural models, we encountered an example in chapter 7 of a phenomeno-
logical modeling approach (the MG-F3x4 formulation, designed to accomodate the
periodic pattern of nucleotide propensities at the three positions a codon) reappraised
mechanistically (into the MG-F1x4-CP model. which considers the periodic pattern
of nucleotides as arising from the coding nature of the data). Nonetheless, the CP
parameters themselves constitute a phenomenological account. The structural model-
ing approaches studied here also subscribe directly to this modeling process; we have
attempted to use an explicit protein structure description and statistical potential to
mediate nonsynonymous rates of substitution. but the potential is itself based on phe-

nomenologcial interpretations, and goes one step further in fixing parameter values
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according to empirical observations. In loose terms. all models have a phenomeno-
logical lining, that could potentially be revised mechanistically. For instance, rather
than simply attributing a free set of nucleotide exchangeability parameters, we could
focus on encoding structural aspects of nitrogenous bases, or perhaps a modeling of
deamination tendencies. Nucleotide propensity parameters could perhaps be replaced
with a modeling of bio-energetic costs of de novo nitrogenous base synthesis. Codon
preference parameters could be elaborated, into a modeling of tRNA abundance and/or
translational accuracy. The stability of mRNA could also be considered, possibly using
similar formulations to those used herein.

Many other developments can be envisioned. Each of these developments would
undoubtedly rest on further phenomenological strategies. However, as in the case of
the structural models studied here, such efforts are geared to “pushing down” the phe-
nomenological line of interpretation. It would seem naive at this point to strive for
some sort of ultimate mechanistic floor (as in the traditional aspirations of physics).
particularly given the relatively rudimentary forms of current models; even the rich-
est phenomenological modeling approaches studied in this dissertation are quite crude,
completely ignoring the possibility of recombination. insertions or deletions, or any
other high-order events. In other words, much more preliminary sketching is needed in
order to stimulate further mechanistic strategies: the pursuit of both phenomenological
and mechanistic modeling approaches, in combination with quantitative and qualitative
probabilistic assessments aimed at determining if mechanistic approaches compare with
phenomenological schemes, constitutes what we have called phenomenological bench-
marking.

As computational biology enters its pubescent phase as a discipline, we can think
of at least three main advantages to pursuing phenomenological benchmarking. The

first is that it provides a concrete framework for attempting to formalize our current
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state of understanding. This is well illustrated with the last of the codon-based models
studied here, which, to the best of our knowledge, are the first to parameterically
recognize the possibility of evolutionary influences coming from each level of the central
dogma of molecular biology. The fact that no previous evolutionary model has ever
explicitly recognized this basic biological understanding highlights the infancy of the
field. The second advantage is that when mechanistic approaches appear weak, they
can at least be combined with a phenomenological supplement, as a pragmatic short-
term alternative. The third and most important advantage is that it generally leads to
models that incorporate seemingly disparate data within an encompassing probabilistic
framework; in sharp contrast with our reductionist heritage, it offers the means of
integrating different biological sub-disciplines into a broad evolutionary framework. The
present work highlights this advantage: from the methods we have expounded, and
the future calculations and modeling extensions suggested, a vast research landscape
emerges, in which the distinctions between structural and evolutionary biology become
artificial. With the growing banks of data coming from the numerous domains of the
life-sciences, sound probabilistic approaches that offer means of merging sub-disciplines
will be essential to building a strong scientific structure, and to deepening our basic

understanding of evolutionary biology.
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Appendix A: Data sets

MYO060-153

This is a set 60 amino acid sequences of mammalian myoglobin: Orcinus orca (P02173),
Delphinus delphis (P02172), Globicephala melas (P02174), Phocoenoides dalli (P02176).
Inia geoffrensis (P02181), Balaenoptera acutorostrata (P02179), Balaenoptera physalus
(P02180), Megaptera novaeangliae (P02178), Eschrichtius robustus (P02177), Physeter
catodon (P02185), Kogia simus (P02184), Mesoplodon carlhubbsi (P02183), Ziphius
cavirostris (P02182), Halichoerus grypus (CAA23743.1), Phoca sibirica (P30562), Bos
taurus (BAA00311.1), Cervus elaphus (P02191). Ouwis aries (P02190), Elephas maz-
imus (P02186), Lozodonta africana (P0O2187), Lepilemur mustelinus (P02169), Equus
burchelli (P02188), Oryctolagus cuniculus (P02170), Otolemur crassicaudatus (P02168).
Nycticebus coucang (P02167), Perodicticus potto (P02166), Meles meles (P02157), Ly-
caon pictus (P02159), Otocyon megalotis (P02158). Vulpes chama (P02160), Zalophus
californianus (P02161), Rattus norvegicus (AAF05848.1), Mus musculus (CAA27994.1),
Spalax ehrenbergi (P04248), Ochotona princeps (P02171). Sus scrofa (XM14433_AAA31073.1),
Tupaia glis (P02165), Orycteropus afer (P02164). Erinaceus europaeus (P02156). Cten-
odactylus gundi (P20856), Proechimys guairae (P04249). Lagostomus mazimus (P04250),
Homo sapiens (CAA25109.1). Pan troglodytes (P02145). Pongo pygmaeus (P02148),

( )
Hylobates syndactylus (P02146). Gorilla gorilla (P02147). Presbytis entellus (P02149),
( )

Macaca fascicularis (P02150), Callithriz jacchus (P02152). Aotus trivirgatus (P02151),



-~

210

Lagothriz lagotricha (P02154), Saimiri sciureus (P02155), Cebus apella (P02153). Rouset-
tus aegyptiacus (P02163). Didelphis virginiana (P02193), Macropus rufus (P02194), Or-

nithorhynchus anatinus (P02196), Tachyglossus aculeatus (P02195), Lutra lutra (P11343).

MYO020-153

This is a set 20 amino acid sequences of tetrapod myoglobin: Balaenoptera physyalus
(P02180), Physeter catodon (P02185), Ziphus cavirostris (P02182), Bos taurus (BAA00311.1),
Halichoerus grypus (CAA23743.1), Zalophus californianus (P02161), Proechimys guairae
(P04249), Ctenodactylus gundi (P20856), Mus musculus (CAA27994.1), Ochotona prin-
ceps (P02171), Pongo pygmaeus (P02148), Elephas mazimus (P02186), Macropus rufus
(P02194), Tachyglossus aculeatus (P02195), Varanus varius (P02203). Gallus gallus
(P416292), Aptenodytes fosteri (P02199), Alligator mississippiensis (P02200), Caretta

caretta (P56208), Graptemys geographica (P02201).

Myo10-158

This is a set 10 amino acid sequences of mammalian myoglobin: Physester catodon
(P02185), Orcinus orca (P02173). Bos taurus (BAA00311.1), Rattus norvegicus (AAFO5848.1),
Mus musculus (CAA27994 . 1), Nannospalaz ehrenbegi (P04248). Homo sapiens (CAA25109),
Gorilla gorilla (P02147), Ornithorhynchus anatinus (P02196), Tachyglossus aculeatus

(P02195).

Myo04-158

This is a set 4 amino acid sequences of myoglobin: Physester catodon (P02185), Orcinus

orca (P02173), Chelonia mydas caranigra (P56208). Graptemys geographica (P02201).
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FBP20-363

This is a set of 20 amino acid sequences of vertebrate fructose bisphosphate aldolase:
Canis familiaris (P536914), Oryctolagus cuniculus (P00883), Mus musculus (P05064),
Rattus norvegicus (AAA40714), Xenopus tropicalis (NP0O01005643), Xenopus tropicalis
(NP989131), Xenopus laevis (BAA19524), Xenopus laevis (AAH84132), Danio rerio (AAH65847),
Danio rerio (AAH44379), Lethenteron japonicum (P53446), Sparus aurata (P53447),
Tetraodon nigroviridis (CAG06274), Gallus gallus (AAA48S87), Mus musculus (Q91Y97),
Rattus norvegicus (AAH81697), Oryctolagus cuniculus (P79226). Pongo pygmaeus (CAI29598),

Homo sapiens (P04075). Macaca fascicularis (BAB84033).

Prk10-158

This is a set 10 amino acid sequences of bacterial 6-hydroxymethyl-7-8-dihydroxypterin
pyrophosphokinase: Escherichia coli (BAB96719), Shigella flexneri (AAP15678), Salmonella
typhimurium (AAL19147), Salmonella enterica (AA067923), Photorhabdus luminescens
(CAE13168). Yersinia pestis (AAS60560). Erwinia carotovora (CAG76218), Vibrio vulnifi-

cus (BAC95526). Vibrio cholerae (AAF93760), Photobacterium profundum (CAG21480760).



Appendix B: Partition function

formalism

Here, we apply the principles of cumulant development of the log of a partition function
to derive the first and second moment identities, which are needed for the Monte Carlo
approximations used in this dissertation.

Suppose some unnormalized density f(6), formulated according to some high-dimensional

parameterization § € ©. The normalized probability density is given by

p(6) = 5 1(6) (B.1)
where
Z = /e £(6)d6 (B.2)

is the normalizing factor, which ensures that the total probability equals 1.

The derivative of the logarithm of (B.2), with respect to a particular parameter 6;
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of the parameter vector, is developed as follows:

o
- Z 5 / £(0 (B.4)
- Z o ae (B-5)
_ /f(l)af( )f;)de (B.6)
- /e algi ©) ) 6)d0 (B.7)
= (mg—(i(m) (B.8)

where (.) stands for an expectation with respect to (B.1). We refer to (B.8) as the
first moment identity. Following a similar derivation, the second derivative of the log

of (B.2), is expressed as:

Pz _ 07(6)
56,96, /9 59, ¥ (B.9)
af(9) 19 [0f(6)
] e o+ 755 |, ae df (B.10)
e da} eaf df 260 /f alnf (B.11)
3f( ) 1 [ 0f(6)
{Z o 00 d(’] [E o ae de]
/f 3115‘;‘ Blnf d9 ——/f 8;;(;; (B.12)
_,0Inf(0), Oln f(9) Blnf( )O0ln f(6) d%In f(6)
=~ a5, T a6 as, ) " oe0e, ) (B.13)
[,0nf()0lnf(6), ,0lnf(®), ,0lnf®).] ,5nf(®)
- (GOS0, _ SO, SR O)) . Z il ®.19)

We refer to (B.14) as the second moment identity. Note that the terms within [.] of

equation (B.14) correspond to the variance-covariance matrix.



Appendix C: Derivatives of the

augmented log-likelihood

Here, we outline first and second derivatives needed for the thermodynamic integration
along (3, as well as for the Monte Carlo optimizations and Laplace approximations of
chapter 6. We present the developments under the site-interdependent models (allowing
for gamma-distributed rates) with the understanding that the equations can be easily
factored out under models assuming independence.

For a data set D, composed of an alignment of P amino acid sequences, and given

a tree topology and parameters 6, the demarginalized likelihood function is given as:

2P-3
p(D,¢16.7) = p(so|8) J] p(ss, 51 85y, 0-7). (C.1)

Jj=1

where the dependence on M has been dropped out from the notation. Each factor in
(C.1) is detailed here.

For a specific branch j, the augmented transition probability is given as

23
p(sj,qb]- | Sjup_e,r) = (H Rs]k_ls]k'rajke_(tjk—tjk—l)T(Sjk—l))
ksl

X e_()‘z”tﬁ])r(s“ﬂ). (C.2)

where,
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e s; represents the sequence at node j (a node has the same index as the branch

leading to it), and s;,, is the sequence at the node ancestral to j;
e o; represents the substitution mapping along branch j;
e ); is the length of branch j;
e z; stands for the total number of substitution events along branch j;
e t;; represents the timing of substitution event k on branch j;

® s;r-1 and sy, represent the amino acid sequence states before and after substitu-
tion event k— the states before the first and after the last substitution leading to
node j are equivalent to the states at the ends of the branch, written symbolically

as Sjo = 8j,, and s, = S;;
® 0j; is the site of substitution & along branch j;

N
o Y(sjk-1) = > > R, ,s7i Tepresents the rate away from state sj;_1, with the

 — '
i=1 s

inner sum being over the 19 sequence states that differ with s;,_; at position i.

The stationary distribution of the Markov process, appearing in (C.1), is given by:
1 —26G(s0,¢)
p(so | 0) = ve 0}, (C.3)

where so represents the sequence at the root node (labeled as node 0), and Y is the

associated normalizing constant
Y = Z e~ 28G(s.c). (C4)
S

summing is over all 20"V sequences.
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Let y be the dimension of #, and let v and w index the entries in 8 (i.e. 1 < v.w, < y).

The first derivative of the actual log-likelihood function is written as

Olnp(D | 6)
06,

Olnp(D,¢ | 0.7)pa(r)

= ( agv )7

and the second derivative as

Flnp(D]80) (8lnp(D- ¢|6.m)pa(r)  Olnp(D.¢| (9,7")1%,1(7‘)>
06,00, o 08, 00,
(alnp(D~¢> | 9,T)pa(r)) g (3lnp(D- ¢ | «9,7')%("")>
a0, 00,
(52 Inp(D. ¢ | (9,7‘)10a(r)>
00,00, )

(C.5)

(C.6)

Each of the expectations in (C.5) and (C.6) can be estimated based on samples drawn

using the first two elements of the PX-DA module. The last term in (C.6) requires that

we compute the second derivatives. The first derivative is a vector. written as

" 81np(D.dl0.r)palr) ]
e

91np(D,d16,7)pa(r)
Olnp(D.¢ | 0.7)pu(r) _ SRRl 50, £

06

81n p(D,8|9.7)pa (1)
NS i

(C.7)

The second derivative therefore yields a matrix, where, for each entry in (C.7), the

derivative is taken once again with respect to each parameter:

[ 8*Inp(D,gl0.7)pa(r) 8% Inp(D.$l6.1)pa(r)

067 99298, N 96,66
8% In p(D.¢l0.7)pqg ()

8% Inp(D,d|0.7)pa (7)

8% Inp(D.6|8.7)pa (r)
8 Inp(D, ¢ | 0,7)pa(r) 90,00, 963 o

36,90,

8% Inp(D.8|0.1)pa(r) 8% Inp(D.4l0.r)pa(r)

L 56,00, 80,86,

v

. 8%Inp(D.9|6.r)pa (1)
o0+

9 Inp(D.6[6.r)pa(r) |

Observing the structure of (C.7) and (C.8). we compute the necessary derivative com-

binations in the following subsections.



217

Computing 3%

The first derivative of the augmented log-likelihood with respect to 3 involves two types

of terms:

Olnp(D.¢ |.0,r) _ Olnp(se | 0) +2i—:3 Olnp(s;. ¢; | s, 9. r)_

C.9
o o P ag (G.9)
The first term in (C.9) is given by
Olnp(so |6) _  92B8G(s0.c) _ Oy
= 95 35 (C.10)
= —2[G(sp.c) — (G)] (C.11)

where (.) stands for an expectation with respect to (C.3). This expectation can be
estimated based on a sample of sequences (s™),<p<r, drawn from (C.3) using the

Gibbs sampling procedure described in Robinson et al. (2003):

(G) = > G(s.op(s | 6) (C.12)
~ %ZG(S(’I),C). (C.13)
h=1

The second term in (C.9) is given as:

a]‘np(sj ¢J | sjuﬂ‘ 9. Ir) - (zzj Oln Rs]k—ls:lk’r”]k _ 0 (t]k B tjk—l) T (Sjk—l))

96 2 op 96
8 (N —t3,) T (s5,)
- J Z .14
) (C.1y
which can be calculated from
am&“:c@q—awi) (C.15)

9B



and

aIzss’
op

= [G(s,c) — G(5'.¢)] Rss'- (C.16)

Computing %
7

For computing derivatives with respect to branch lengths, it is more practical to re-

parametrize (C.2) using the following change of variables:

a .
p(s5.u; | 85,.0. M) = é%p(sj,@ | 85000, M), (C.17)
7

with u; = (u;k)k<:, defined as

ik
o = (C.18)
2 )‘j

In equation (C.17), the factor % can be developed as

Bty Otjo ot, ]
Buﬂ 6u11 8u11 )\.7 0 0
Ot ;1 Ot,2 at]-'--,
6¢j _ du,2 Ou,o Ou;o _ 0 )‘J 0 (C 19)
au]. . . . . . . . . !
By Btp Oy 0 0 Aj
i c")u.J;J Bu]=J au]:] J L e 7

such that an alternative to the augmented transition probability can be written as

23
p(s;.u; | Sjup0.7) = )\;’ (H stk_lsjkrajke_'\’(“Jk”“Jk—l)T(sJk—l))

k=1
x e (1=w=, )T (ss,) (C.20)
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In logarithmic form, the derivative is thus given by

Olnp(sj,u; | s;,,,0. M) _ dln X7 B (i OAj(ujk — Ujk_l)T(Sjk_1)>

0A; 0A; P 0A;
0N (1 = w5z, )T (s52,)
— 2 g C.21
which can be evaluated based on
Oln\? 2.
I =4 C.22
A (C.22)
and
O (U — Ujh_
. ]g)\j at) _ Ujk — Ujk—1- (C.23)
Computing %
Computing the derivative with respect o only involves the prior on rates:
R R
= a-lg-am, .24
i) = i) 7 (24
The derivative is thus given by
81n pa(r) il
5 =Nn(@) +1-¥(a)] + ;m ri — Ti. (C.25)
where V(o) = a—aa-ln I'(a) is known as the digamma function, for which estimating

routines are available (Galassi et al., 2003).
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C ing 2
omputing i
Computing this second derivative requires two terms. First, we have the following:

8?Rss
02

% [G(s,¢) — G(5',¢)] Rss (C.26)

= [G(s,¢) = G(5". )] Rs'. (C.27)

The next term involves the stationary probability:

Plnp(se|0) = &Y
- - @], (©.20)

where the expectations can again be estimated using the Gibbs sampling method of

Robinson et al. (2003), giving

=

(G?) ~ %Z [G(s®. o)) (C.30)

h=1

and

(G)? ~ [% 3G, c)} . (C.31)
h=1

Computing a/g%
o)

This only requires terms already derived, as given in (C.16).
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Computing aa—;
J

Referring to (C.22), this second derivative requires the following term:

62 In A% 0 Z5
—_ = =3 (C.32)
6/\5 OAj Aj
= _%. (C.33)
J
Computing 3672,2
For gamma distributed rates, we get:
9% Inpy(r) 1
—————~=N|—=-V C.34
ok ~ V()| (34

where ¥/ = a%ln I'(a) can again be approximated using standard routines (Galassi

et al., 2003).



Appendix D: Maximization step for

the EM algorithm

In this appendix, we give details of the M-step for the MCEM algorithm used in chapter
6.

The M-step in the case of branch lengths is an example of the ideal case, where we
have an analytical solution. Specifically, at iteration n of the MCEM algorithm, each

branch length is updated as

n_ {2)

A= (A;) (D.1)
where

Ay = (1= ) T (555,) + > (atz — s (). (0.2)

k=1

Writing (zJ(-h) Ji<h<k for the number of substitutions along branch j of draw h. and
(U;Z))lshs  for the re-parameterized configuration of each mapping, the needed expec-

tations are estimated as

() = 2> (D.3)

I'%
h=1



—
F \
\

and
K S(h)
1 J
() = >0 (= w0 sse,) + D (ug) —ufi ) (s0) | - (D-4)
h=1 k=1

The M-step for optimizing o and £, however, is not direct, since solving for these
parameters is not possible. Nonetheless, this inner maximization can be readily done
using a gradient scheme similar to that described in the main text; using the same
sample, gradient steps are performed repeatedly until the maximum is reached, following
which a new sample is drawn for the next MCEM cycle, and so on. In the case of
a, we also tried maximization using a Newton-Raphson-like method; the M-step is

accomplished through an iterative updating, with cycle m given by

where

K m
B(a™) = }1\ h=1 aa lnp(D | 6 ), M)pam (T h)))-
= Zh_l sz Inp(D | 0™ 7). M)pom (r(h)



Appendix E: Codon model

specifications

In our implementation the entries of @ are based on two sets of specifications: a 61
dimensional vector of stationary probabilities, w, and a set of transient specification p

according to

Qab X papTy. @ # b (E.1)
Qaa = - Z Qab- (E2)
b#a

In this appendix, we write out in full the stationary probabilities under the codon
models, as well as the full transient specifications, and give an example of the detailed

balance check.

Stationary probabilities

First, expanding (7.8) for the stationary distribution under GY-F1x4, we have

¥a; PazPay (E.3)

g =

- 61 ‘
Zb:l by Pbo Py
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Similarly, with GY-F3x4, we have

(1) (2 3
Soal) ‘Pr(zz) (3)

(1) (2) (3)
Zb 1%, Pb, P

Mg =

(E-4)

The stationary probability under GY-F61 is already entirely specified and the models
MG-F1x4 and MG-F3x4 have the same stationary distributions as (E.3) and (E.4)
respectively.

Under the MG-F1x4-CP model, the stationary probability is given by

Ty = Doy PasrPasVa _ (E.5)

61
Zb:l b1 Pba Pby "pb

and under the MG-F1x4-AAP model by

Pa1 PazPaz W f(a) (E.6)

Ta = 61 :
Zb=1 Pb1 Pbo Pb3 W £ (b)

The stationary distributions under the MG-F3x4-CP and MG-F3x4-AAP models fol-

low directly as

o) o soas)tba

Ta 61 0 (E.7)
Po, ‘qu (pr 'Qb
and
o8 0 ol w0
al ¥az yag a
Te= 561 0, @ @ (E.8)
b=1 (‘Dbl (pb') (pb:j wf
respectively.

Under the SC-type models utilizing only the site-independent components of the

statistical potential, the stationary probability is a site-specific vector written as 7.
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P

and under a F1x4-type models is given by

7@ = Pa;Pas <pa3e—2ﬂG,(a)

’ Zgil (‘pbl (Pb2 Sobse—zﬁct(b) ’

Transient specifications

In the case of GY-type models, the transient specification is simply (2.10) without T

the factor. In the case of the MG-F1x4 model, we have

.
Oa b, :
rsenn Z, if A,
Pab = § Lacbe_7 it B (E.10)
(pbcl ‘pbcu
0. otherwise,
\

where ¢’ and ¢” are the two constant codon positions, and Z is the normalizing factor
of the stationary distribution (in this case Z = Zgil Vb, Pb,Pbs)- Note that this latter
Z factor is not needed when scaling ). Once again, substituting ¢;_ with got(:), and the
appropriate Z, yields the transient specification for MG-F3x4.

For the MG-F1x4-CP model. the transient specification is given by

(

Gacb :
—rtacbe 7 if A,
Pb Py VPatb

= _Woach, ] E 11
Pab = 3 oL, B, (E.11)

0. otherwise.

\

and the specification of MG-F1x4-AAP by:

2

——Lacke __ 7 if A,

Pb s Pb_y W[ (b)

Pab = 4 Weache Z. ifB. (E.12)
Wbr/ Qobrum

0. otherwise.
\
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As always, substituting ¢, with gol(:", and the appropriate Z, yields the transient spec-

ifications for the F3x4 versions of (E.11) and (E.12).

For SC-type models, for instance under the MG-F1 x4 model, the transient specifi-

cation is given as

,

Carbe :
——~facke if A
‘pnc' ‘Pacll e—zﬂGl (a)s i

(i) _ w .
Pab = Ca b if B,

Pa s Pa n e=AGi(e)g=BG,(b)

0, otherwise.
\

(E.13)

We have now fully specified 7 and p used in equation (E.1). We can see that upon

substituting stationary and transient specifications appropriately into (E.1), the models

defined in the main body of the text are obtained. For instance, for a nonsynonymous

substitution under the MG-F1x4-CP model, we have

Woacb. ©Oby PbyPbs Vb
S ©b,, wbc,,vwawbz 8 A
W0a.b, Pb. Vb
VWap
W0a,b. Vo V6V Yo
VORI

1
by \ 2
= w Qac be Sobc .’d)_ 3

corresponding to the entry obtained from (7.2).

Checking the detailed balance

(E.14)
(E.15)

(E.16)

(E.17)

The models studied here all satisfy the equality 7@ = 0, and are time-reversible, satis-

fying the equality Qup7m, = Que7p. These developments are lengthy, and so we display

only one example. for the detailed balance check under MG-F1x4-CP in the case where
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a and b differ a one nucleotide position and implying a nonsynonymous substitution:

Qabﬂ'a
wgarbr' (pbl (10b2 (pb.j 'be
Pay PayPas P
Do o atpy TR
W0a, b b P58 Wb
PayParPas ¥
(lpbcl(pbcll V"/}awb mre sre
e asle =
@b P VPV s Te
WPqa. b,
! a"/)b
wgarbr

Qab,

Qba'n—b
wacac Qpal ‘pag ‘pag "pa
———— Db, Vb, Pbs Vb
(pac/ (pacll ¢b¢a P
WOb.a,Pa;y ParPazPa

(Pacl (pacll wb¢a ¢
W0b.a Por'PusPasPa
PayPanV ¢b¢a

Wop.a,
i v¥a
Mgbcac

Obea,. -

where the array ¢ is symmetrical, satisfying the equality.

(E.18)

(E.19)
(E.20)
(E.21)
(E.22)

(E.23)

(E.24)

Finally, we mention here that we follow the practice proposed by Huelsenbeck et al.

(2006), and (under non-structural models only) scale @ matrices such that branch length

represent the expected number of synonymous substitutions per codon site, although

we have also tried the model comparisons without any scaling of @ (such that branch

lengths have no meaningful units) and obtained essentially identical results (not shown).



Appendix F: Implementation

The following is meant to give some entry points for using the version of the PhyloBayes
package in which the developments of the present thesis were implemented. Through
examples, we describe how to run several MCMC-based calculations. as well a perform-
ing posterior predictive model checking. One should keep in mind that the program
is still very much an experimental tool, and that developments and modifications are

continuously being made (almost daily).

Running the PhyloBayes package

Overview

PhyloBayes was developed by Nicolas Lartillot (Nico) to provide a flexible set of tools
for implementing and comparing various models of amino acid replacement (Lartillot
and Philippe, 2004). The package described here is an offshoot from Nico’s version from
around December 2003. The program has been modified and adapted in numerous ways.
to handle site-interdependent models based on statistical potentials, to perform several
types of thermodynamic integration, as well as maximum likelihood estimation. and
Laplace approximations of marginal likelihoods. In addition. modifications have been
made in order to handle nucleotide models, as well as dozens of codon models. also

with specialized thermodynamic integrations. How the program threads through these
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various options is controlled by a initialization file (contract to ‘initfile’). Examples will

follow, but first, we describe the typical work setup.

Requirements and work setup

PhyloBayes was developed in the C++ programming language, on Linux systems. To
compile the program, you will need the freely available GNU g+ compiler (usually
installed by default on most work stations). Also, you will need to install the GNU
scientific library, which can be downloaded from http://www.gnu.org/software/gsl/.
Usually. we make a directory called ‘phylobayes’, which contains two sub-directories
called ‘data’ and ‘sources’. The ‘sources’ directory contains a makefile that will compile
the programs (actually, there are several make files), placing them in the ‘data’ direc-
tory. Then, we make additional sub-directories within ‘data’, each of which contains
an alignment file, and any other files that may be needed. For instance, suppose you
have a dataset called myo20. All files pertaining to this dataset would be found in
~ /phylobayes/data/myo20. From here, the programs are called one repertoire up. For

example,

$ ../newchain <initfile> <chainname>
will initialize a particular calculation, whereas
$ ../phylobayes <chainname>

will launch the sampler. Other programs (monitor, diagnostics, readthermo....) read
and process the sample in various ways, and are called similarly.
Of course, you may prefer to arrange things otherwise, but we will assume this

set-up in the following descriptions.
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‘Classical’ Bayesian MCMC sampling under amino acid models

Although Nico has already explained the usage of PhyloBayes for phylogenetic Bayesian
MCMC sampling in other texts, given the many versions now going around, it might

be best to outline this again. Here is an example initfile:

DataFile myo20.nex
RatePrior GammaInv
LengthPrior Exponential

ModeFastCompute No

MoveType AllBranchLength 5 0.1 1
MoveType AllBranchLength 5 0.5 1
MoveType OneBranchLength 5 1 1
MoveType OneBranchLength 5 1.5 1
MoveType MeanBranchLengthMove 1 0.5 1
MoveType Gamma 1 1 1
MoveType Gamma 1 0.1 1
MoveType Rate 1 0.5 1
MoveType Rate 1 1 1
MoveType Rate 1 1.5 1
End

SaveEvery 50

StopAfter -1

InitState

Tree (PONPY:0, (((MOUSE:0.1214,0CHPR:0.0138) :0.0234, (PROGU. . .

Nmode 1

ModeStationaries WAG
ModeRR WAG
Rates Uniform
//

This will perform a sampling from the posterior distribution, integrating over branch

lengths and site-specific substitution rates, under exponential and gamma laws respec-
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tively, and using the WAG amino acid replacement matrix. The first line specifies the
name of the file containing the alignment (myo20.nex). For now, this file must be in
nexus format. The next two lines specify the prior laws to by applied for rates and
branch lengths. Next is indicated ModeFastCompute No. This will bypass a recoding
scheme used to accelerate likelihood calculations [explained in Lartillot and Philippe
(2004)], but which is only applicable under a POISSON-based (site-independent) model.

The next series of lines specifies the set Metropolis-Hastings (MH) update operators
to be applied per cycle, with their respective tunings. The three columns of numbers
to the right correspond to the call frequency per cycle, the MH tuning, and, if the
operator performs some type of multidimensional update, the order of the sub-space to
be considered (usually put to 1 if the update is not multidimensional). More specifically,
the first two operators listed, Al1BranchLength, are applied 5 times each, but with 2
distinct tuning parameters (0.1 and 0.5). Here. the higher the tuning, the bolder the
update attempt. The move OneBranchLength works similarly. The next operator,
MeanBranchLengthMove, applies a MH update to the hyperparameter governing the
prior law on branch lengths. Two MH operators are applied to the ‘shape’ parameter
a for the prior law on rates!. Finally, three update operators are applied to the site-
specific rates themselves. Note that, in this case. a call to the Rate operator in fact
loops over all sites, performing a distinct MH update to each rate.

The SaveEvery line specifies how many cycles are performed between each draw
saved, whereas StopAfter defines the total number of points you want the chain to
draw: when set to -1. the chain will run indefinitely.

The keyword InitState indicates that the following lines will define the starting
configuration of the chain. The tree topology is indicated here, and is always kept fixed

for now. The next line, specifying Nmode, pertains to the CAT model, and should be

In PhyloBayes, a is referred to as ‘gamma’: the name ‘alpha’ is used for another type of model
(CAT). In general, you should not expect names in the program to necessarily correspond to the names
or symbols given in articles or other texts.
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set to 1 for the classical single matrix models. The equilibrium frequencies and amino
acid exchangeability parameters are specified in the next two lines; given the list of
operators, these are kept fixed in this case. Finally, the site-specific rates will start out
all being uniform (equal to 1).

From this initfile, it would be easy to expand or contract the model in various ways.

For instance, we could add the following update operators to sample under a GTR+T"

model:
MoveType ModeStationary 10 1000 5
MoveType ModeRelativeRate 20 1000 10

This would include ten update attempts to amino acid equilibrium frequencies (ModeStationary),
each update applied to 5 out of 20 (picked at random) stationary probabilities, and
twenty update attempts to amino acid exchangeability parameters (ModeRelativeRate).
each randomly picking 10 out of the set of 190. Note that both of these operators are
Dirichlet type moves [see Larget and Simon (1999)]. Their MH tuning parameters work
differently; in this case, the smaller the tuning the bolder the update attempt.

Alternatively, we could contract the model to a uniform rates across sites model, by
simply removing update operators Rate. as well as Gamma. Other possible configurations
could include setting ModeStationaries Uniform and ModeRR Poisson; in the case of
the latter, you could set ModeFastCompute Yes to take advantage of Nico’s recoding
system. which can substantially increase computational performance. Overall, by play-
ing with these different update operators and InitState settings, we now have the
means of sampling under several common amino acid replacement models (POISSON,
PoissoN+F, PoissoN+T', POISSON+F+I', WAG, WAG+F. etc.).

For sampling under nucleotide data. the initfile would look much the same. Only
now, ModeRR should be initialized to Poisson. with calls to at least ModeStationary

(F81), but preferably with calls to ModeRelativeRate as well (GTR).
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‘Classical’ Bayesian MCMC sampling under codon models

When using codon models, the alignment should be checked carefully, to start at a
clear codon break, and to be of length that is some multiple of three. Also, only nexus
formats are available, which must contain the entry datatype=codon. The following
initfile will run an MCMC to sample under the GY model specified in chapter 2, with
the Dirichlet process on nonsynonymous rate factors. Albeit here, we are using a must

more efficient data-augmentation-based sampling approach.

DataFile bglobin.nex
Normalise Yes

Syn0Only Yes

Uniformization Yes

OmegaPrior DirichletProcess
OmegaBasePrior PairRatioOfExpOneRVs
AlphaPrior Exponential
LengthPrior Exponential

ModeFastCompute No
RefFastCompute No

MoveType AllBranchLength 50 1.0 1
MoveType AllBranchLength 50 0.5 1
MoveType MeanBranchLengthMove 50 0.5 1
MoveType MeanBranchLengthMove 50 0.1 1
MoveType MeanBranchLengthMove 50 1.0 1
MoveType CodonStat 50 1000 10
MoveType CodonStat 50 5000 10
MoveType Kappa 25 0.1 1
MoveType Kappa 25 0.5 1
MoveType Omega 10 1.0 1
MoveType Omega 10 0.5 1
MoveType Omega 15 0.25 1
MoveType Alpha 50 0.5 1
MoveType Alpha 50 1.0 1
MoveType Alpha 50 1.5 1
MoveType SwitchOmega 10 1 5
MoveType ResampleMapping 1 1 1

End
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CodonStatModelType GY_F61
CodonRRModelType HKY

withMappings Yes

SaveEvery 10
StopAfter -1
InitState

Tree (xenlaev:0.51040247,xentrop:0.78663390, .. .

//

As before, the top line specifies the data set. The following two lines will scale
all matrices as described in Huelsenbeck et al. (2006). We also indicate the use of
the uniformization technique for drawing substitution mappings. The prior structure
described in chapter 2 is specified in the next lines, and the sampling is reasonably self
evident. Note the operator ResampleMapping. which draws a new mapping after the
round of updates. To revert to pruning-based sampling, simply remove the operator,
as well as withMappings Yes. To generalize the model slightly. as in chapter 7, replace
operators Kappa with
MoveType NucleotideRelRate 25 1000 4
MoveType NucleotideRelRate 25 500 4
and set CodonRRModelType GTR. The model can also be contracted by setting OmegaPrior Flat,
replacing the Omega operators with GlobalOmega. and removing operators Alpha and

SwitchOmega.

Site-interdependent Bayesian MCMC sampling for amino acid

models

Sampling under site-interdependent amino acid models involves several differences and

additions to the initfile. Here is an example:
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DataFile myo20.nex
RatePrior GammalInv
LengthPrior Exponential

ModeFastCompute No
RefFastCompute No

MoveType AllBranchLength 1 1 1
MoveType AllBranchLength 1 2 1
MoveType MeanBranchLengthMove 1 0.5 1
MoveType MeanBranchLengthMove 1 1 1
MoveType NodeSiteStateOverTreeMove 5 1 10
MoveType NodeSiteStateMove 5 1 50
MoveType PathSiteMove 5 1 100
End

withDependence Yes

contactMap 1MBD.mj.cm

solventAccess IMBD.mj.av

potential homeMadeMJstyleWithAV

chemicalPotentials Yes

MValue 500

gibbsIterBtwSeqs 5

thetaStarThreshold 0.01

SaveEvery 10

StopAfter -1

InitState

Tree (PONPY: 0, (((MOUSE:0.1214,0CHPR:0.0138) :0.0234, (PROGU. . .

Nmode 1

ModeStationaries Empirical
ModeRR Poisson
RefStationaries Uniform
RefRR Poisson
Rates Uniform

pFactor 0.5



//

First, note that the tunings of Al1BranchLength have changed; under the conditions
of the model, this operator name actually calls a different update operator, working on
the basis of the data augmentation (mapping) scheme. The last three MH operators
are each called five times. proposing updates to substitution mappings of a sub-set of
positions: NodeSiteStateOverTreeMove proposes a mapping for ten (randomly picked)
sites over the entire tree; NodeSiteStateMove proposes a mapping for fifty sites over
three branches connected to a (randomly picked) internal node; PathSiteMove proposes
a mapping to one hundred positions over a single branch.

The next lines engage the site-interdependent calculations (withDependence Yes),
give the protein structure files (1MBD.mj . *), and define the potential used homeMadeMJstyleWithAV
with chemical potentials, from chapter 5.

Stationary probabilities under the model involve an additional MCMC sampler
(sometimes buried within the main chain), which draws amino acid sequences using
the familiar Gibbs method. The number of sequences drawn is set using MValue,
whereas the number of sequence-sweeping Gibbs cycles between draws is set using
gibbsIterBtwSegs. A cut off for an importance sampling procedure is set using
thetaStarThreshold.

It is important to note the settings for ModeStationaries, ModeRR, RefStationaries,
and RefRR. The Mode settings correspond to the model proposing substitution mappings,
whereas Ref settings have a bearing on the target model. Here, we are sampling under
the pure potential. and so we set Ref to a completely flat configuration.

Also note that pFactor. or §, is set to 0.5 to have the proper scaling of the energy

function. However, we can give this some flexibility as well, by including the operator

MoveType pfactorTypeB 1 0.1 1



Other models can also be combined, for instance

MoveType
MoveType
MoveType

Gamma 1
Gamma 1
Rate 20

O

10
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will sample under a +I" model. Here again, the Rate operator actually calls a different

operator than would be called under site independence; in this case. it is better to

perform update attempts for several rates at once (typically 10 to 50).

Site-interdependent Bayesian MCMC sampling for codon mod-

els

The following initfile will sample from the MG-F1 x4-DP-SC model:

DataFile

Normalise
SynOnly
OmegaPrior
OmegaBasePrior
LengthPrior
AlphaPrior

bglobin.nex

No

No

DirichletProcess
PairRatioOfExpOneRVs
Exponential
Exponential

ModeFastCompute No
RefFastCompute No

MoveType
MoveType
MoveType
MoveType
MoveType
MoveType
MoveType
MoveType
MoveType
MoveType
MoveType
MoveType

AllBranchLength
AllBranchlLength
MeanBranchLengthMove
MeanBranchLengthMove
MeanBranchLengthMove
NucleotideStat
NucleotideStat
NucleotideRelRate
NucleotideRelRate
Omega

Omega

Omega

100
100
50
50
50
10
20
10
10

¢y}

= O O O -
= o oo

1000
2000
1000
500

0.5
0.25
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MoveType Alpha

MoveType Alpha

MoveType Alpha

MoveType SwitchOmega

MoveType NodeSiteStateOverTreeMove
MoveType NodeSiteStateMove
MoveType PathSiteMove

End

CodonStatModelType MG_F1X4
CodonRRModelType GTR
withStructure Yes
withDependence Yes

potential homeMadeMJstyleWithAV
chemicalPotentials Yes

solventAccess 4HHBB. av
contactMap 4HHBB. cm. temp
gibbsIterBtwSegs 5

SaveEvery 1

StopAfter -1

InitState

50
50
50

10
50
50

Tree (xenlaev:O.51040247,xentr0p:0.78663390...

//

The model can be contracted as before.

Maximum likelihood parameter estimation

= T S o

o
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We focus here on Monte Carlo EM optimization, beginning with the WAG+TI" model.

DataFile myo20.nex
RatePrior GammaInv
LengthPrior Exponential

ModeFastCompute No
RefFastCompute No



MoveType Rate 10 1 1
End

MLmode

EMmode

decorrelate 1
reburn 1
gradEstimateBasedOn 100

branchLengthMLtuning 1
gammaMLtuning 1

SaveEvery 1
StopAfter -1

InitState
Tree (PONPY: 0, (((MOUSE:0.164107,0CHPR:0.0224974) :0.0236, (PROGU. . .

Nmode 1
ModeStationaries WAG
ModeRR WAG

RefStationaries WAG

RefRR WAG
Rates Uniform
//

MLmode engages the chain through optimization cycles. The default optimization is
a gradient scheme, but the EM scheme is engaged with the keyword EMmode. Although
they are set to 1 here, decorrelate and reburn give some flexibility when making draws
for each EM cycle. Here, branchLengthMLtuning and gammaMLtuning act as switches
indicating that the associated components are to be optimized; in the case of gradient
optimization, these are actually the step parameters (which must be tuned, hence the
name). Note that while the algorithm relies on a sample of substitution mappings. under

site-independence these can be drawn directly from their posterior distribution: no MH
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updates over mappings are needed (but you can perform mapping-based sampling if

you want...).

EM optimization under site interdependence is very similar.

DataFile myo20.nex
RatePrior GammaInv
LengthPrior Exponential

ModeFastCompute No
RefFastCompute No

MoveType NodeSiteStateOverTreeMove
MoveType NodeSiteStateMove
MoveType PathSiteMove

End

withDependence Yes

contactMap 1IMBD.mj.cm
solventAccess 1MBD.mj.av
potential homeMadeMJstyleWithAV
chemicalPotentials Yes

MValue 500

thetaStarThreshold 0.01
gibbsIterBtwSegs 5

MLmode

EMmode

decorrelate 1

reburn 1
gradEstimateBasedOn 100

branchLengthMLtuning 1

SaveEvery 1
StopAfter -1

InitState

Tree (PONPY:0, (((MOUSE:0.2277,0CHPR:0.0283) :0.0336, (PROGU. . .

Nmode 1

10
25
25

10
50
100
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ModeStationaries Empirical
ModeRR Poisson

RefStationaries Uniform
RefRR Poisson

Rates Uniform

pFactor 0.5

//

This initfile will optimize branch lengths under the structural model. To optimize
pFactor (), add pFactorMLtuning 0.0005 as well. Note that here, each cycle per-
forms a gradient step to pFactor, and an EM step to branch lengths; this combination
for optimizing pFactor was found to work best under these models. You can also com-
bine an optimization of the shape parameter under gamma distributed rates. by simply
setting gammaMLtuning 1 and including calls to Rate operators.

In fact, by playing with these settings, you can imagine many ways of marginalizing

over some parameters, while optimizing over others...

Thermodynamic integration for amino acid models

There are a few different reasons for using thermodynamic integration with the pro-
grams. From the WAG+T optimization, for example, we adjusted the parameters so as
to maximize the log-likelihood, but we have not yet computed the log-likelihood itself.

The following initfile will initialize a chain to make this calculation.

DataFile myo20.nex
RatePrior GammaInv
LengthPrior Exponential

ModeFastCompute No
RefFastCompute No



QuasiStatic 0 1 0.001 10

MSMode RAS
MoveType
End

SaveEvery
StopAfter

InitState

Tree (PONPY: 0, (((MOUSE:0.1265,0CHPR:0.0198) :0.017, (PROGU. . .

Nmode 1
ModeStationaries
ModeRR

RefStationaries
RefRR

Rates

Gamma 0.73

//

Rate

10

Uniform

WAG
WAG

WAG
WAG

10
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The first key line here is QuasiStatic. This will run the MCMC sampler across a

path linking two models. The 0 1 that follow indicate the starting and ending values of

the temperature or “morphing” parameter; in this case. at the beginning of the run, the

sampling is with respect to the WAG model with uniform rates, and gradually switches

(by steps of 0.001) to the gamma distributed rates model. The last value of this line

defines a burnin; here, the sampling is equilibrated drawing ten points, before engaging

the model switch. Also note that you can run the sampler from 1 to 0 (steps of -0.001)

as well, to get a sense of the precision of the estimate. When the run is done, read the

result calling

$ ../readthermo <chainname>
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This will give you the difference in log-likelihood between uniform and gamma dis-
tributed rates, under this particular tree and with the given set of branch lengths.
Note that including updates to Gamma, as well as branch lengths operators, you would
be computing the difference in log marginal likelihood under the two models (the log
Bayes factor).

The MSMode used here is RAS (for Rates Across Sites). Other settings can be used for
analogous calculations across substitution matrices (MSMode SUB), or a straight-across
path from a particular matrix with uniform rates to another matrix with gamma rates
(MSMode SUBRAS).

Site-interdependent thermodynamic integration works similarly.

DataFile myo20.nex
RatePrior GammaInv
LengthPrior Exponential

ModeFastCompute No
RefFastCompute No

QuasiStatic 0 0.5 0.001 10
MSMode pFactorModelSwitch

MoveType NodeSiteStateOverTreeMove 5 1 10
MoveType NodeSiteStateMove 15 1 50
MoveType PathSiteMove 25 1 100
End

withDependence Yes

contactMap 1MBD.mj.cm

solventAccess IMBD.mj.av

potential homeMadeMJstyleWithAV

chemicalPotentials Yes

MValue 500

thetaStarThreshold 0.01

gibbsIterBtwSeqgs 5
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SaveEvery 5
StopAfter -1

InitState
Tree (PONPY: 0, (((MOUSE:0.2277,0CHPR:0.0283) :0.0336, (PROGU. . .

Nmode 1
ModeStationaries Empirical
ModeRR Poisson

RefStationaries Uniform
RefRR Poisson

Rates Uniform

//

This will give you the log-likelihood difference between the flat model (Poisson.
Uniform) and the structural model. Here, the path linking the models is defined with
the pFactor parameter itself, hence the name pFactorModelSwitch for the MSMode. If
you want to marginalize over other elements (e.g. to compute Bayes factors) simply
include the update operators in question. For marginalizing over pFactor. run the
integration across the range of interest. Calling readthermo here again will give you

the results once the chain is done.

Thermodynamic integration for codon models

The following initfile will run the GY-MG-switch. described in chapter 7:

DataFile bglobin.nex
Normalise Yes

SynOnly Yes
OmegaPrior Flat
LengthPrior Exponential

ModeFastCompute No
RefFastCompute No



QuasiStatic 0 1 0.0005 100

MSMode SUB

CodonThermo MG_GYSwitch
MoveType AllBranchLength
MoveType AllBranchLength
MoveType AllBranchLength
MoveType MeanBranchLengthMove
MoveType MeanBranchLengthMove
MoveType MeanBranchlLengthMove
MoveType NucleotideStat
MoveType NucleotideStat
MoveType NucleotideStat
MoveType NucleotideRelRate
MoveType NucleotideRelRate
MoveType GloballOmega
MoveType GlobalOmega

End

CodonStatModelType MG_F1X4
CodonRRModelType GTR
SaveEvery 5

StopAfter -1

InitState

Tree (xenlaev:0.51040247 ,xentrop:0.78663390. ..

//
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Numerous other thermodynamic schemes are implemented. following similar speci-

fications, and each requiring calls to readthermo once the runs are completed.

Under the structural models, a thermodynamic run can be specified by:

DataFile

Normalise
SynOnly
OmegaPrior
LengthPrior
AlphaPrior

bglobin.nex

No

No

Flat
Exponential
Exponential



ModeFastCompute No
RefFastCompute No

(QuasiStatic 0 1 0.0001 100

MSMode pFactorJointSwitch

MoveType AllBranchLength 100
MoveType AllBranchLength 100
MoveType MeanBranchLengthMove 50
MoveType MeanBranchLengthMove 50
MoveType MeanBranchLengthMove 50
MoveType NucleotideStat 10
MoveType NucleotideStat 20
MoveType NucleotideRelRate 10
MoveType NucleotideRelRate 10
MoveType GlobalOmega 5
MoveType GlobalOmega 5
MoveType NodeSiteStateOverTreeMove 10
MoveType NodeSiteStateMove 50
MoveType PathSiteMove 50
End

CodonStatModelType MG_F1X4

CodonRRModelType GTR

withStructure Yes

withDependence Yes

potential homeMadeMJstyleWithAV
chemicalPotentials Yes

solventAccess 4HHBB.av

contactMap 4HHBB. cm.temp

MValue 100
gibbsIterBtwSeqgs 5

SaveEvery 5
StopAfter -1

InitState
Tree (xenlaev:0.51040247 ,xentrop:0.78663390
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Several other schemes are available here as well, with relatively few modification to

this initfile.



Laplace approximation

Before running a Laplace approximation of the marginal likelihood, you should have
performed a ML run and, if the model is not analytical, a thermodynamic run to com-
pute the log-likelihood. Setting the InitState to the ML point, and including the log
likelihood value in the initfile, a Laplace approximation run can be performed; engage
the calculation using the keyword LaplaceMode, and indicate which components were
optimized. The following is an example initfile for computing the marginal likelihood

under the structural model, with pFactor treated as a free parameter.

DataFile myo20.nex
RatePrior GammalInv
LengthPrior Exponential

ModeFastCompute No
RefFastCompute No

MoveType NodeSiteStateOverTreeMove 5 1 10
MoveType NodeSiteStateMove 25 1 50
MoveType PathSiteMove 25 1 100
End

withDependence Yes

contactMap IMBD.mj.cm

solventAccess 1MBD.mj.av

potential homeMadeMJstyleWithAV

chemicalPotentials Yes

Mvalue 100

thetaStarThreshold 0.01

gibbsIterBtwSeqgs 5

LaplaceMode

logLikelihood -2289.4

decorrelate 1

reburn 1

gradEstimateBasedOn 1000
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pFactorMLtuning 1
branchlLengthMLtuning 1

SaveEvery 1
StopAfter -1

InitState
Tree (PONPY: 0, (((MOUSE:0.1724,0CHPR:0.0238) :0.0313, (PROGU. . .

Nmode 1
ModeStationaries Empirical

ModeRR Poisson

RefStationaries Uniform
RefRR Poisson

Rates Uniform
pFactor 0.64

//

The Laplace estimate is written in the file <chainname>.laplace. Other extensions

for other models follow as before.

Monitoring and diagnostics

Regardless of the type of MCMC performed, it will be important to assess the general

behavior of the sampler. Try the following call
$ ../monitor -v <chainname>

The -v option will give you additional information about the time spent in each op-
erator, as well as the update success rates. The monitor program will produce many
files containing the values of the hypothesis vector and associated statistics, for each

sample point. Some gnuplot scripts are also made. to view multidimensional elements
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more quickly (for instance <chainname>.gnuplot_length). Load these into gnuplot,

e.g.
gnuplot> load "<chainname>.gnuplot_length"

and zoom over each value (in this case branch lengths) by hitting the carriage return.

Also, some simple statistics about the chain can be computed using
$ ../diagnostics <chainname>

Options are available to burn over a first set of points, and/or sub-sample from the
chain; just make the call without arguments to see how to do this. This program
will give a snapshot to the screen of the mean, variance, min. max, and autocorre-
lation of the components of the model. A bit more details are written into a file

(<chainame>.diagnostics).

Posterior predictive resampling

In the previous section, we outlined how to run the MCMC-based statistical computa-
tions. While important, many of the calculations would typically be done only later in
the model building cycle. Basic checks that the model is reproducing features of the
data are perhaps more fundamental, and more informative. In a Bayesian context, this
is known as posterior predictive checking.

For our purposes, posterior predictive checking works as follows. Suppose that you
have run a Bayesian sampler under an evolutionary model of interest. For each draw
from the posterior, simulate evolution over the tree based on the parameter values,
producing a data replicate. Compute some statistic on each replicate. thereby gener-
ating the posterior distribution of the statistic. Compare with the true data. Under

our specific applications, statistics may also be computed on the mappings. in which
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case we compare the statistics from the unconstrained (predictive) mappings to the

data-constrained (“observed”) mappings.

Simulation

Simulation is simple. First, a chain sampling from the posterior of interest should have

been made. Then, make the following call
$ ../postpredictive <chainname>

Use the —progress (or -p) option to count out on screen how many points have been
treated. Options to burn over a first set of points, and/or to sub-sample. are also
available here.

Many statistics could be explored under the posterior predictive scheme. Two ex-

amples are given below.

Rate variance

Among the files generated by the postpredictive program are <chainname>.observedRateVar
as well as <chainname>.predictiveRateVar. As the names suggest, these statistics
reflect the observed and predictive rate heterogeneity (e.g., Nielsen, 2002).

In the ‘sources’ directory, you will find a sub-directory called ‘utilities’. The makefile
found in this directory will compile some small programs, placing them in the ‘data’
directory, with the other programs. Among these. you can use the makehisto and
normhisto to produce posterior density plots of the rate variance, which you can then

use to produce figures.

Exchange distributions—bubble plots

The program postpredictive also produces files with an extension finishing with

ExchangeDist. The files contain 190 values corresponding to the posterior mean pro-
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portion of times an amino acid exchange occurred between a given pair.

You could compute some sort of distance between predictive and observed exchange
distributions, corresponding directly to a discrepancy statistic. It may be more infor-
mative, however, to display exchange distributions graphically. If you’ve compiled the

utility programs, try the following call
$ ../bubbleplot <chainname>.meanPredictiveExchangeDist <plotname>

This will read the .meanPredictiveExchangeDist file, and use gnuplot to produce
a-la-Goldman bubble plots (fig. 8.4). The figure is produced as an EPS file. but the
gnuplot script is also left behind for tweaking (<plotname>.gnuplot).

The area of each circle corresponds to the (normalized) values in the exchange

distribution file (i.e. the total area of all circles equals 1).

Caveats

The programs have not yet been made user-friendly, and continue to be modified, re-
vamped, and expanded. Likewise, the above descriptions are likely to be quickly out-
dated, and will require much revision before a true program release can be considered.
Indeed. much more is available than has been described here, including many unpub-

lished models. Much work remains.



