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Résumé

Le domaine de la biologie moléculaire computationnelle n’en est qu’à ses débuts.

En dépit des technologies modernes permettant de produire et d’archiver de grandes

quantités de données. les modèles tentant d’expliquer ces données sont encore bien loill

d’un niveau de réalisme acceptable. Par exemple. la plupart des modèles phylogéné

tiques d’évolution moléculaire reposent sur l’hypothèse que chaque position (site) d’une

protéine évolue indépendamment des autres positions. Cette simplification est évoquée

pour des raisons de calcuL bien qu’elle soit hiologiquement infondée.

Dans cette dissertation, nous explorons différentes techniques computationnelles

pour l’étude de modèles phylogénétiques avec interdépendance entre les acides aminés

d’une protéine, ou entre les codons du gène associé. Ces modèles prennent en compte

les interdépendances résultant de la structure tertiaire de la protéine, utilisant des

représentations structurales simplifiées en combinaison avec des potentiels statistiques.

eux-mêmes dérivés d’une base de données de protéines ayant des structures connues.

Dans ce contexte, les potentiels statistiques procurent une estimation de la compatibilité

d’une séquence d’acides aminés dans une structure donnée. Ainsi, le critére de compati

bilité de l’ensemble de la séquence avant et après un évènement de substitution aura une

influence sur la probabilité d’un scénario évolutif. Nous appliquons une analyse Bayesi

enne de sélection et d’évaluation de modèle—par l’entremise de calculs numériques de

vraisemblances marginales, et de vérification prédictive—étendu sur plusieurs types de

modèles d’évolution, avec et. sans critère de compatibilité structurale. En y considérant

deux niveaux d’interprétation des données (soit focalisé sur des séquences d’acides am

inés, ou bien sur des séquences nucléotidiques codantes), nous proposons le concept

de référence phénoménologique, comme moyen d’évaluer et de dégager des pistes de

modélisation méchanistique.

Notre analyse sur des données réelles nous indique que les modèles incorporant des
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considérations de compatibilités structurales apportent toujours une amélioration de la

vraisemblance marginale. Par contre, l’usage d’un potentiel statistique en soi n’explique

pas des caractéristiques bien connues de l’évolution moléculaire. tel que l’hétérogénité

des taux de substitutions entre sites, ou l’interchangeabilité de paires d’acides aminés.

D’autres études seront nécessaires afin d’établir si de meilleurs potentiels statistiques.

ou d’autres mesures, peuvent arriver à reproduire ces caractéristiques. Pour l’instant,

les meilleurs modèles sont ceux qui combinent un potentiel statistique avec une formula

tion sous-jacente suffisamment riche et bien construite. Nous proposons plusieurs pistes

de recherche, menant à un cadre qui pourrait éventuellement avoir des répercussions

sur l’inférence phylogénétique, la détection et la caractérisation de pressions sélectives.

la prédiction de structure. l’interaction protéine-protéille. et le dessin de séquences pro

téiques.

Mots clés : évolution moléculaire; phylogénie; structure protéique tertiaire: poten

tiel statistique: chaîne de Markov Monte Carlo; statistique Bayesienne: modélisation

phénornenologique; modélisation méchanistique.



Abstract

The field of computational molecular biologv is at an ea.rlv stage. Despite major

advances in producing and gathering large quantities of molecular data, the actual

deveiopment of models capable of adequately explaining such data are stiil a far cry

from a suitable level of realism. For instance. most phylogenetic models of moiecular

sequence evolution assume that each position of an alignment evolves independently

of ail other positions—a computationally motivated simplification well-known to be

biologically unsound.

In this work, we explore different computational methods for the study of phyloge

netic models that allow for a general interdependence between the amino acid positions

of a protein. or hetween the codons of the associated gene. The models are focused

on site-interdependencies resulting from sequence-structure compatihility constraints,

using simplified molecular structure representations in combination with a set of statis

tical potentials. which are themselves derived from a protein database of resolved struc

tures. This structural compatibility criterion defines a sequerice fitness concept. and the

metliods developed eau incorporate different site-interdependent sequence fitness mea

surements. We apply Bayesian methods of model selection and assessment—based on

numerical calculations of marginal likelihoods, and posterior predictive checks—to eval

uate evolutionary models encompassing the site-interdependent framework. Through

our consideration of different levels of data interpretation (either focusing on amino acid

sequences onlv. or focusing on coding nucleotide sequences). we propose the concept of

phenornenologicaÏ benchrnarking. as a means of guiding and assessing mechanistic mod

eling strategies.

Our applications of these methods ou real data indicates that considering sequence

structure compatibility requirements. as doue here, leads to an improved model fit for

ail datasets studied. Yet. we find that the use of potentials alone does not suitably ac
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count for across-site rate lieterogeneity or amino acid exchange propensities. and more

work is needed to establish if richer forms of potentials. or other type of sequence fit

ness concepts. might better capture such features. In the meantime, the most favored

models combine the use of statistical potentials with a. suitablv rich and well-posed site

independent model. We propose several avenues meriting further investigation. leading

to a researci expanse with possible impacts on phylogenetic inference. the detection

and characterization of selective features. protein structure prediction. protein-protein

interactiolls. and computational protein design.

Key words: molecular evolution; phylogeny; protein tertiary structure: statistical

potential; Markov chain Monte Carlo: Bavesian statistics: phenomenological modeling:

mechanistic modeling.
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Preface

In the fail of 2003, I had the good fortune of beginning studies in the bioinformatics

programme at the Université de IViontréaL joining a vibrant research group led by

Hervé Philippe. Well aware of the potential of computational rnethods for studying the

growing banks of biological data. the group’s research activities could be categorized

along two main axes: first, the use of mathematical models of molecular evolution for

inferring the relatedness of species, or phyÏogenies; and second, the development of

new evolutionary models. which. on the one hand, exhibit robustness in phylogenetic

analysis per se, and. on the other hand, elucidate patterns of the underlying substitution

process. With then post-doctoral fellow Nicolas Lartillot. several projects along these

unes were initiated. of which I had the chance to participate.

The present work is my recapitulation of research endeavors along one of these

projects. which has been the focus of my doctoral studies. Tue work could be summa

rized as an exploration of computational methods for implementing richer descriptions

of molecular evolution, with the specific objective of incorporating explicit protein struc

ture considerations within different models of sequence evolution.

The dissertation is organized in three parts. The first briefty overviews the historical

settings for the recent emergence of the field. and presents the core methodological

framework adopted throughout the text. The second part applies the framework to

revising modeling assumptions at different levels of interpretation. The bulk of this

second part has been the subject of puhlished or forthcoming articles. These are the



xxiii

following:

Rodrigue, N., Lartillot, N., Bryallt, D., and Philippe, H. (2005). Site in
terdependence attributed to tertiary structure in amino acid sequence evo
lution. Gene, 347:207-217.

Rodrigue, N., Phulippe, H., and Lartillot, N. (2006). Assessing site
interdependent phylogenetic models of sequence evolution. Molecular Bi
ology and Evolution. 23:1762-1775.

Kleinman, C. L., Rodrigue, N., Bonnard, C., Phulippe, H., and Lartillot,
N. (2006). A maximum likelihood framework for protein design. BIVIC
Bioinformatics, 7:326.

Rodrigue, N., Phulippe, H. and Lartillot, N. (2007). Exploring fast com
putational strategies for probabilistic phylogenetic analysis. Systematic Bi
ology, 56:711-726.

Rodrigue, N., Phulippe, H. and Lartillot, N. (in press). Uniformization
for sampling realizations of IVlarkov processes: Applications to Bayesian im
plementations of codon substitution models. Bioinformatics.

Rodrigue, N., Lartillot, N., and Phulippe. H. (submitted). Mechanistic
modeling of amino acid or codon preferences for protein-coding nucleotide
sequence evolution. Suhmitted to Genetics.

Rodrigue, N., Phulippe, H., and Lartillot. N. (in preparation). Sampling
methods for computing Bayes factors across site interdependent codon sub
stitution models. Planned for Journal of Computational Biology.

The presentation does not, however, follow the “dissertation by articles” format, where

a set of articles would be included untouched. Rather, I have tried to re-work the

material into a more unified whole. This lias considerably reduced the length of the

document. while allowing for a homogenization of the mathematical notation, and a

clearer emphasis on the main themes of the thesis. Portions of text, figures, and tables

from published articles appear with permission from the respective journals, as well as

ah co-authors. finahly, the third part of the dissertation describes specific calculations



xxiv

of interest for future work. as well as several modeling extensions and variations meriting

further exploration.

The work was very muci a collaborative project. with 1-lervé Philippe and Nicolas

Lartillot contributing much of the theoretical ideas throughout. The work was formally

dodllmented by myseif, including fine details of methods and implementations, as well

as initiais drafts of manuscripts. which were then collaborativelv revised and improved.

This is with the exception of chapter 5. which is modified from the work of the third

article listed above. The article in question was primarily written hy Claudia Kleinma.n

and Nicolas Lartillot, and therefore, for the purpose of this dissertation. I have signifi

cantly abbreviated the material, inclilding only that which is directly pertinent to the

main developments of this work. Much of the future work discussed in the final part is

also a resultant from the collaboration with Claudia, Hervé, and Nicolas.

Following this preface. I have opted to retain the first-person plural throughout the

text. as this hest refiects the collaborative effort of ail those involved (although an

errors that may be contained are of mv owu doing). I use footnotes to clarif the

meaning of jargon, or to include non-essential information that mav nevertheless be of

relevance to the reader. Appendices are used for descriptions of data sets, for lengthy

mathematical developments. and to outline the use of a computer package implementing

the methods developed in the main body of the document.

I am very grateful for the financial support and encouragement of many organiza

tions. The first three vears of mv studentship were funded bv Génome Québec. The hiT

hursaries and fellowships for excellence (a Canadian Institute of Health Research strate
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Part I

Foundations



Chapter 1

Historical background

If, during the long course of ages and under varying conditions of life, organic
beings vary at ail in the several parts of their organization, and I think this cannot
be disputed; if there be, owing to the high geometric powers of increase of each
species. at some age. season, or year, a severe struggie for life, and this certainly
cannot be disputed; then, cousidering the infinite cornplexity of the relations of
ail organic beings to each other and to their conditions of existence, causing an
infinite diversitv in structure, constitution. and habits. to be advantageous to
them, I think it would be a most extraordinary fact if no variations useful to any
organic being do occur. assuredly individuals thus characterized wili have the best
chance of being preserved in the struggle for life: and from the strong principle
of inheritance they will tend to produce offspring sirnilariv characterized. This
principle of preservation, I have called, for the sake of brevity. Maturai Selection.

—CHARLES DARWIN. Origin, p. 127

1.1 Introduction

The objective of evolutionarv biologv is to propose a mechanistic and historical expia-

nation for the intricate attributes and similarities of different living things. The core

of this explanation is commoniy associated with Charles Darwin (1809—1882). and bis

famous book On The Origin of Species by Means of Naturat Setection, or the Preser

vation of Favonred Races in the Struggie for Lfe. commonly contracted to the simple

titie Origin (Darwin, 1859). Beyond its pureiy biological implications. Darwin’s main
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message. summarized in the opening citation, bas had a profound impact on conceptu

ahzations of self, and of mmd, stimulating an ongoing revolution of the general world

view. In contrast with the Copernican revolution, which had not attracted wide-spread

interest until the scientific details had been resolved, the Darwinian revolution was en

gaged with important pieces of the theory stili missing. and altogether devoid of precise

mathematical characterization.

In this first chapter, we outiine the main historical and phulosophical developments

contributing to evolutionary thought, beginning with a brief overview leading to the

Darwinian. coTe. and the Evotutionary Syrithesis that subsequentlv emerged among

biologists in the 1930s and 1940s. We next introduce early discoveries in molecular

biology. and set forth the modem enterprise of computational evohitionary biology.

The literature on the rise of evolutionary thought is vast. For accessible and engaging

accounts of the movement. see Burrow (1966), Oldrovd (1980), or Dennett (1995).

The present ovemview merely sketches in contour the main tumning points leading to

the subject of this thesis. and provides a schematic description of phenomena to be

ma.thematicallv modeled in later chapters.

1.2 The Darwinian core and the Evolutionary $yn

thesis

The basic concept of biological evolution can be traced back to the pre-Socratic Greeks.

Anaximander (610—546 BC) is thought to be one of the eamhest proponents of evolution

ary thinking. proposing the first speculations to an aquatic origin of life. However, the

fixist’ influence of Plato (428/427—348/347 BC) and Aristotie (384—322 BC) bas dom

inated most occidental cultures. Judeo-Christian cultures in particular have vehiculed

‘A fixist views organismal forms as static, or fixed over time.
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the fixist perspective. and only after the Enlightenment would truly transJormist’ views

take firm rooting in wider discourses. Nonetheless, tire concept of species retatedness

was pervasive in some form or another throughout history, which had allowed organ

isms to be classified into formai groups. The most influential figure in developing such

a classification was Carolus Linnaeus (1707—1778). Yet even Linnaeus did not offer a

causative explanation for the relatedness of organisms. subscribing to the prevaiÏing

fixist view.

The work of Jean-Baptiste Lamarck (1744—1829) was a noteworthv turning point.

Lamarck’s transformist theorv proposed that organisms are sornehow intrinsicaliv driven

toward complexification—the giraffe stretching and strengthening its neck to attain

higher ieaves—and that traits acquired by individuals are passed on in the next generation—

having put such efforts into stretching and strengthening its neck, the giraffe’s offspring.

so goes tire theory, have longer and stronger necks. Lamarcks proposai was viewed with

skepticism. Although Darwin himself accepted the possibilitv that acquired traits might

be passed on. ire considered the appeai to tire “drive” of organisms of weak explanatorv

power. Uitimateiv. Lamarckian transformists received their fluai biow from the work of

August Weisnamm (1833—1914), who observed the distinction between germ une and

soma, and generally exciuding the possibihty of somatically derived characteristics 5e-

ing passed on to offspring. Nonetheless. the ideas set forth by Lamarck were important

in inspiring truiy transformist theories.

The field of geology was also a hurgeoning science in the 19th century. In particular.

the principle of uniformitarianism2 was expounded 5v Charles Lvell (1797—1875). who.

based on observations of erosion rates. determined the Earth to be at least millions of

years old. These observations were influential in setting a new time-frame for interpret

ing the diversity of organisms, and Darwin is said to have hrought Lyell’s then recently

‘A transJoTmist acknowledges that organismal forms are subject to transformation over generations.
2The principle of unijormitarianism states that basic forces acting in the geological past are the

same as those acting in the present.
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published Princip tes of GeoÏogy on lis five year voyage around the globe.

Another key contribution came many years earlier from political economics. witli

the work of Thomas Malthus (1766—1834). In lis Essay on the Principle of Population

(Malthus, 1798), Maltlius pointed out tliat exponential population growth—displayed

under plentifiil conditions of existence—must eventually be kept in check, uftimately

by the limited resources of a finite world. Maithus’ examples were anthropomorphic,

but nonetheless lad a profound impact on Darwin. helping him crystallize the concept

of natural selection:

In October 1838, that is, fifteen months after I had begun my systematic inquiry,

I happened to read for amusement Maithus on Population, and being well pre
pared to appreciate the struggie for existence which everywhere goes on from long
continued observation of the habits of animais and plants, it at once struck me that
under these circumstances favorable variations wouid tend to 5e preserved, and
unfavorable ones to be destroyed. The results of this would be the formation of a
new species. Here, then I had at last got a theory by which to work. (From Dar
win’s autobiography, retrieved onhne at http://onlinebooks.library.upenn.edu/.)

Darwin was well aware of the epistemological implications of lis theory. whidli di

verged markedly witli the main stream theological. social and political agendas of lis

day. For years lie remained reluctant to openly conie forward with lis ideas, until lie

received a letter from another naturalist, Alfred R. Wallace (1823—1913), expounding

the basic elements of the theory. Wallace later recounted low lie formed the theory:

Something led me to think of the positive checks described by Malthus in his
essay on population. These checks—war. disease, famine, and the like—must
act on animais as well as on mari. While pondering vaguely on this fact there
suddenly flashed upon me the idea of the survival of the fittest—that the in
dividuals removed by these checks must 5e on the whole inferior to those that
survived. (From AtJred Russet Wattace: Letters and Reminiscences. retrieved
onhne at http://manybooks.net/)

Upon reading Wallace’s first correspondence on tle theory. Darwin wrote:

I neyer saw a more striking coincidence. If Wallace had my M.S. sketch written out
in 1842 he could not have made a Setter short abstract! Even his terms now stand
as Heads of my chapters (Darwin, 1858. in a letter to Charles Lyell. from The C0T-
respondence of Chartes Darwin. retrieved online at http://www.darwinproject.ac.uk/).
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Wallace had been influenced by the same body of work as Darwin. and their inde

pendent convergence on the concept of natural selection testifies to it being a mature

free-fioating rational at the time. ripe for articulation and serious consideration. Indeed.

the main ideas of Darwin and Wallace had already been presented in outiine, in 1813

by William Charles Wells (1757—1817). and again (independently) in 1831 by Patrick

Mathew (1790—1874). Despite the anticipations of Wells and IVlathew, and the conver

gence of Darwin and VTa11ace. the theory has historically been attributed to Darwin.

mainly due to the breadth of his treatise.

The basic elements of the theory, which we refer to here as the Darwinian coTe, can

be broken down into the following argument (modifled from Gould. 2002. p. 125):

• Super-fecundity: Orgauisms tend to produce more offspring than can survive.

• Variation: Organismal forms tend to vary, so that each individual bears distin

guishing features.

• Heredity: An organism’s offspring tend to be characterized similarly to it.

• Natural selection: Organismal forms endowed with variations well-suited to the

conditions of existence will tend to be more successful in producing offspring than

ill-suited variations: well-suited variations thus come to dominate the population.

Despite debates among theoreticians from the early_20tu1 century onward, this basic ar

gument is not put into question. In the modem literature, the Darwinian core argument

is often taken for granted. for instance. appearing oily in footnote in Gou1ds big book

The Structure of Evotutionary Theory (2002).

When the theory was first proposed. however. several outstanding questions re

mained. By far the most important of tiiese was the question of inheritance: how are

organismal attributes transmitted to offspring? In 1865. six years afrer Darwins On gin.

Gregor Mendel (1822—1884) pubïished a work demonstrating the existence of discrete
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heritable determinants. now called genes. which can be passed on largely unchanged

over generations. Unfortunatel. Mendef s work went unnoticed. and debates regard

ing the basic workings of inheritance continued until 1900. when Mendel’s work was

rediscovered.

The discovery of IViendelian inheritance had the surprising (in hindsight) effect of

increasing skepticism for the Darwinian core. In particular. the rn’utationist sciool, lead

by Hugo de Vries (1848—1935), William Bateson (186 1—1926) and others. considered that

most of the variation in organismal forms could be explained as arising by mutation.

without needing to invoke the principle of natural selection. This view was vehiculed

by the leading geneticists of the early 20th century, and eventuafly lead to the opinion

that the Darwinian core had been refuted:

IVlodern critics have often asked themselves how it is that a hvpothesis like Dar
win’s, based on such weak foundations, could ail at once win over to its side the
greater part of conternporarv scientific opinion. If the defenders of the theory
refer with tins end in view to its intrinsic value. it may be answered that the
theory has long ago been rejected in its most vital points bv subsequent resea.rch
(NordenskioÏd, 1928, p. 177).

Over the years 1918 to 1931, biometric analysis synthesized the seemingly disparate

concepts of mutationists and selectionists. In another case of largely convergent theoriz

ing, Ronald A. fisher (1890—1962). John B. S. Haldane (1892—1964), Sewali G. Wright

(1889—1988) and Sergei. S. Chetverikov (1880—1959) proposed mathematical moUds in

tegrating Mendehan inheritance. mutation, and other biometrical knowledge. with the

Darwinian core. Their work was soon corrohorated aid expanded by biologists at the

time. in particular Theodosius Dobzhanskv (1900—1975). Ernst W. Mayr (1904—2005),

Julian S. Huxley (1887—1975) and George G. Simpson (1902—1984). With this firm

theoretical foundation. and empiricai substantiations. a general consensus about the

workings of biological evolution emerged, which came to be kriown as The Eeotutionary

Synthesis (or. more simpÏy, the synthesis).
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The basic elements of the synthesis are well described in modem terms by Futuyma

(1986):

The major tenets of the evolutionary synthesis, then, were that populations con-
tain genetic variation that arises by random (i.e. not adaptively directed) mu
tation and recombination; that populations evolve by changes in gene frequency
brought about by random genetic drift. gene fiow, and especially natural selection;
that rnost adaptive genetic variants have individualiy slight phenotypic effects 50

that phenotypic changes are graduai (although sorne alleles with discrete effects
may be advantageous, as in certain color polyrnorphisms); that diversification
cornes about by speciation, which norrnaliy entails the graduai evolution of re
productive isolation arnong populations; and that these processes, continued for
sufficiently long, give risc to changes of such great magnitude as to warrant the
designation of higher taxonomic levels (genera, farnilies, and so forth). (p. 12)

As these tenets gained broader acceptance. another revolution was under way with the

rise of molecular biology. which would introduce a new kind of data, lending itself to a

new level of mathematical analysis.

1.3 Molecular biology

In 1869, Friedrich Miescher (1844—1895) isolated a phosphate-midi chemical he called

“nuclein”, since it was found in tic nuclei of whule blood ceils. Tic chemical was later

isolated from many otier ccli types. and was renarned n’ucteic acid. Tic biological

function of nucleic acids rernained elusive, however, for rnany years. In 1944. after

over ten years of experimental study, Oswald Avery and colleagues (Avery et al., 1944)

gave tic first due that nucleic acids are responsihie for tic transmission of genetic

information. In tic ensuing years. their resuits were expanded. in particular by Hershey

and Chase (1952). who demonstrated that deoxyribonucleic acid (DNA) alone is tic

hereditary material.

In tic late 1940s and 1950s, tic structure of nucleic acids was worked out in de

tau: witi few exceptions, nucleic acids are polymers of nucteotides; eaci nucleotide is

constituted of a nitrogenous base (of whici there are four types in DNA), a pentose



9

sugar (deoxyribose), and a phosphate group. The sugar and phosphate group form the

pliosphate-deoxyribose backbone linking nucleotides into a strand. In addition. the ni

trogenous bases adenine (A) and thymine (T). as well as guanine (G) and cytosine (C),

were found in the same proportions in DNA isolates, a property now called Ghargaff ‘s

mie in honor of its discoverer Erwin Chargaif (1905—2002). This property is explained

by the structural pairing of bases, which in turn relates to the overall structure of the

DNA molecule: the bases A and T, as well as G and C, are said to be complemen

tary. interacting through hydrogen bonds’; complementary anti-parallel single strands

of nucleotide polymers interact through such bonds, playing a central role in the forma

tion of double stranded DNA. The chemical arrangement of the components of DNA

are displayed in figure 1.12. The chemical structure of DNA was found to induce a

‘Many exceptions to such pairings have since been established.
2The sirnilar ribonucleic acid (RNA), which differs from DNA only through the oxidized ribose

sugar, follows the same arrangement. Also. the enzymes involved in RNA synthesis have a much
higher affinity for a variant of thymine that lacks a methvl group, called uracil (U). As such, in RNA,
T is replace by U, which nonetheless forms hydrogen bonds with A.

oPî

0

Figure 1.1. Double stranded DNA. The left strand. consisting of A (top) and C (bot
tom), forms hydrogen bonds (dotted lines) with an anti-paraUel strand. consisting of
T (top) and G (bottom). The figure was drawn using ChemTool, availible online at
http: //ruby. chemie.uni-freiburg. de/.
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coiling pattern in the double strand, in a manner exposing the hydrophilic backbone.

while burying and piling the hydrophobic nitrogenous bases into a central core. The

now-famous doublehelica1 three-dimensional structllre of DNA. as first described by

Watson and Crick (1953), is displayed in figure 1.2.

(

-

Figure 1.2. Structure of DNA (PDB code 1D66) in ‘stick” (left) and “spacefiuing”
(right) representations. The figures were generated using RasIViol. availible online at
http://www.umass.edu/microbio/rasmol/.

For cells to proliferate. DNA must be replicated. and it is mainly in this replication

process that terrors are made; enzymes and regulatory factors involved in DNA repli-

cation ma occasionally lead to slight differences in sequences, referred to as mutations.

Other factors may also lead to differences in seqilences. such as recombination (e.g..

chromosomal crossover), or even non-replicative changes (e.g.. cytosine deamination),

and altogether these different factors indiace genetic variability.

Before the sweeping advances of the 1940’s and 50’s. it was thought that DNA

was too simple to be able to specify the complex features of organisrns. Proteins.
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however. in their enormous varieties. seemed more likelv candidates as the carriers of

genetic information. Proteins are chains of amino acids. of which there are 20 types in

most orgaiisms. An amino acid consists of a carboxvlate and an amino group. each

attached to a central carbon referred to as the -carbon. The a-carbon’s tetra-valence

is completed by a. hydrogen and one of 20 organic substituents. or side chains. The full

chemical structure of the twenty amino acids is displayed in figure 1.3.

A condensation reaction between the carboxyl group of one amino acid auJ the

amino group of another forms a peptide bond between the two. The chemical structure

of the three amino acid chain. or tripeptide’. is displayed iII figure 1.4. The sequence

of an amino acid chain is referred to as its primary structure. The secondary structure

refers to the manner in which a chain cous (e.g.. c-helices) or folds over to form lat

eral interactions with itself (e.g.. B-sheets). whereas the tertiary structure refers to its

overali three-dimensional configuration (figure 1.5), formed through networks of inter

action between amino acids. finally. the quaternary structure refers to the muhimeric

assemblage of different prot.ein subunits.

At the time of the publication by Watson auJ Crick (1953), the relation between

the sequence of amino acid chains and DNA was not known. In the subsequent years,

a fiurry of research in molecular biology produced the modem consensus referred to as

the centrai dogma of information ftow in the cell (figure 1.6). Through the concerted

action of several enzymes and regulatory factors, double stranded DNA rnomentary

“unzips” (hydrogen bonds between A and T. as well as C and G. are disrupted). and

one of the strands serves as a template for the transcription of a ‘messenger” RNA. or

simply mRNA. with a sequence of ribo-nucleotides of matching base complementarity:

by convention. a gene’s nucleotide sequence corresponds to that of the mRNA. such

that the opposing DNA strand actuaflv serves as the template. Tlie mRNA itself is

‘Referring to a three arnino acid chain as a tripeptide is a misnorner, because such a chain involves
only two peptide bonds.
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}NNNCOO

Figure 1.4. Structure of a three amino acid chain, or tripeptide. Here. R stands for
one of the twenty possible side chains, which characterizes each of the 20 amino acids.
The figure was drawn using ChemTool.

\

-

Figure 1.5. Structure of /3-globin (PDB code 4HHB), in backbone “stick” (left) rep
resentation. and “spaceffiling” (right) representation. The figure was generated using
RasMol.

a transient macromolecule, which, following some post-transcriptional modifications,

interacts with a molecular machinery for translation of its sequence into an amino acid

sequence. Each nucleotide triplet along the rnRNA codes for a specific amino acid: since

there are 64 possible triplets, or codons. and 20 amino acids. the code is degenerate

(table 1.1). The ma.tching of codon to amino acid is accomplislied via adapter RNA

molecules called “transfer” RNA. or simply tRNA. A tRNA molecule lias three key

features: 1) it binds a pa.rticular amino acid 2) ft lias an affinity for a specific codon.

via a complementarv nucleotide triplet, or anticodon and 3) it hinds to the ribosome.

which coordinates the overall process of translation. The ribosome is the multi-unit
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Strand ofDNA

...ACTCCTGAG...
Transcription to mRNA

• . .ACUC CUGAG...
Translation to polypeptide

rj i
Figure 1.6. The ceitraI dogma of molecular biology. Figure made using Gnuplot.
availible online at http: / / grniplot . info/.

macromolecular scaffold (mainlv constituted of RNA) over which the mRNA is passed.

one nucleotide triplet at a time. with the complementary anticodon of the appropriat.e

tRNA bindi;ig to each successive codon. enabling the formation of peptide bonds in

the sequence order originally specified by the DNA. The amino acid chain folds into a

particular three-dimensional configuration, and takes on some operational role in the

cell’.

A mapping from DNA sequence to amino acid sequence was thus made possible in

the early second half of the 2001 century. and many researchers eventuafly turned to

the much more daunting problem of producing a mapping from amino acM sequence to

tertiary structure and to protein function. This. as we shah see. constitutes one of the

central endeavors of modem molecular biologv.

‘0f course. exceptions to the central dogma abound (e.g.. reverse-transcriptase), and the role of
RNA in the celi goes well beyond what is described here, as much recent research has shown.
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Table 1.1. The standard or “universal” genetic code

TTT, Plie, f TCT, Ser, S TAT, Tyr. Y TGT, Cys, C
TTC, Plie. F TCC, Ser, $ TAC. Tyr. Y TGC, Cys. C
TTA. Leu, L TCA, Ser, $ TAA, stop TGA, stop
TTG, Leu, L TCG, Ser, S TAG, stop TGG, Trp, W

CTT, Leu, L CCT, Pro, P CAT, Ris, H CGT, Arg, R
CTC, Leu, L CCC, Pro, P CAC, Ris, H CGC, Arg. R
CTA, Leu, L CCA, Pro, P CAA, Glu, Q CGA, Arg. R
CTG, Leu, L CCG, Pro, P CAG, Gin, Q CGG, Arg. R

ATT, 11e, I ACT, Thr, T AAT, Asn, N AGT, Ser, S
ATC, 11e, I ACC, Thr. T AAC, Asn. N AGC, Ser, S
ATA, 11e, I ACA, Thr, T AAA, Lys, K AGA, Arg, R
ATG, Met, M ACG, Thr, T AAG, Lys, K AGG, Arg, R

GTT, Val, V GCT, Ala. A GAT, Asp, D GGT. Gly, G
GTC. Val, V GCC, Ala, A GAC, Asp. D GGC. Gly. G
GTA, Val, V GCA, Ala, A GAA, Glu, E GGA, Gly. G
GTG, Val, V GCG, Ala, A GAG, Glu, E GGG, Gly, G

Note.—Each codon is followed by the three letter and single letter abbreviations of the amino acids
they encode. Stop codons correspond to a termination of the translation process.

1.4 Computational evolutionary biology

In the early 1960s. the idea tliat homologous1 bio-molecules (DNA or amino acid se

quences), sampled from different species, could be analyzed to infer their evolutionary

history was gaining ground (e.g., Zuckerkandl and Pauling. 1962. 1965). This idea. cou-

pied with the rise of information technologies enabling the automation of such analyses.

eventuaiiy iead to the modem field of computational evolutionary bio1ogy Indeed.

before the advent of molecular data, evolutionary analyses were typicallv based on

‘In evolutionarv biology, the terrn homologous refers to similarities between given features that are
a result of shared ancestry.
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morphological featiires. subjectively defined into characters, and taking on subjectively

defined states. Molecular sequences. on the other hand. lend themselves to a natural

discretization: characters are deflned as nucleotide, amino acid, or codon sites along

the sequence, with each site taking on one of 4. 20, or 61 (exciuding stop codons) states

respectively. To the mathematically inclined biologist, such data raised numerous ques

tions that could be addressed through direct calculation.

One such hiologist was IVlotoo Kimura (1924—1994). With a strong background in

population genetics, Kimura stayed in tune with the developments of moledular biology.

caldulating the implications of the new data coming out from the field. In 1968. Kimura

published calculations claiming that the rate of molecular evolution is much higher tl;an

expected under the assumed strength of selection (Kimura. 1968). His conclusion was

that many residue changes must be selectively neutral. This idea, later known as the

n entrai theory of motecutar evotution. would form the hallmark of much of the rest of

his career.

Plainly stated, the neutral theory asserts that many different versions of a molecule

are selectively equivalent in a population. In other words, selection is indifferent to

these different versions. since each, for whatever reason, performs its biological role

equivalently. This idea was not novel. Darwin himself had stated: variations neither

useful nor injurious would not 5e affected by natural selection [...]“ (Origin. p. 108).

Nonetheless, the neutral theory sparked intense debate regarding the relative impor

tance of neutral drift versus selection. To onlookers. the debate was unfortunately

viewed as casting doubt on the validitv of natural selection. which was of course not

the case. In his later book, Kimura attempts to clarify:

The neutral theory is not antagonistic to the cherished view that evolution of form
and function is guided by Darwinian selection, but it brings out another facet
of the evolutionary process by ernphasizing the much greater role of mutation
pressure and random drift at the molecular level (Kimura, 1983. p. ix).
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\iVith some toning down. namelv liv striking “much greater”. this statement would likely

be endorsed by most of todavs molecular evolutionists.

Another prominent figure in the ea.rly years of computational evolutionary biology

is Margaret O. Dayhoif (1925—1983). Besides lier interests in cataloging and organizing

molecular data, she and lier co-workers proposed the first empirical model of amino acid

sequence evolution. now famously known as the Dayhoif substitution matrix (Dayhoif

et al.. 1972. 1978). Using the amino acid sequences available at the time, Dayhoif and

colleagues devised a counting approach to construct a 20 x 20 matrix of substitution

probabilities over a short evolutionary distance (of. say, 0.01 changes per amino acid

site). Their procedure involved several ad hoc choices. for accommodating tlie sparse

data sets of the day. and for reducing the possibilitv that inferred single amino acid

replacements may be the resuit of several unohserved replacements. Nonetheless. flic

ideas proved inspiring, aiid highly useful to those interested in inferring evolutionarv

relations. or phytogenies.

1.5 Conclusions

Kimura and Dayhoif are but two (arbitrary) examples of the type of research and evo

Ïutionary analysis made possible by molecular biology. From about flic 1980’s onward,

novel molecular techniques have made it possible to sequence far greater amounts of

DNA and amino acid sequences (fig. 1.7a). Technical advances have also made it pos

sible f0 resolve three-dirnensional molecular structures much more easily and quickly

(fig. 17h). Over tlie same vears. flic capahilities of computing machines have experi

enced a similar growth trend. sending most practitioners into an ever-lasting overha.ul

of information technologv infrastructures.

‘The terrn ph ytogeny cornes from the Greek phyte. Ineaning “tribe” or “race”. and genetikos. meaning

“birth”.
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Figure 1.7. Increasing amounts of molecular data. In panel a). the number of
base-pairs in GenBank (http: //www.ncbi.nlm.nih. gov/ Genbank) is displayed over 20
years, spanning 1985—2005. Panel b) shows the number of structures in the PDB
(http://www.pdb.org/) over the same period. This figure was made using Gnuplot.
as were ail other quantitative figures.

Altogether, these developments have driven evolutionary biology into the so-called

genomic revotution. where questions about the underlying evolutionary process, or

about phylogenetic relations. can be addressed hased on massive amounts of molec

ular level data. There has also been a movernent away from ad hoc methodologies. with

many researchers now attempting to devise richer mathematical models of molecular

evolution within a sound probabilistic framework. The details of such a framework are

the subject of the next chapter.
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Chapter 2

Probabilistic phylogenetic analysis

Suppose you’re on a game show and you’re given the choice of three doors. Behind
one door is a car; behind the others, goats. The car and the goats were placed
randomly behind the doors before the show. The rules of the gaine show are as
follows: After you have chosen a door, the door remains closed for the time being.
The game show host, Monty Hall, who knows what is behind the doors. now has
to open one of the two remaining doors, and the door he opens must have a
goat behind it. If both remaining doors have goats behind them, he chooses one
randomly. After Monte Hall opens a door with a goat, he will ask you to decide
whether you want to stay with your first choice or to switch to the last remaining
door. Imagine that you choose Door 1 and the host opens Door 3, which has a
goat. 11e then asks you “Do you want to switch to Door Number 2?” Is it to your
advantage [if you wish to maximize the probability of wining the car] to change
your choice?

—Re-statement of the IVionte Hall problem. from Krauss and Wang. 2003. p. 25.

Yes, you should switch. The first door has a 1/3 chance of winning. but the
second door has a 2/3 chance.

—Marilyn vos Savant. columnist. responding a reader posing the Monte Hall prohiem.

2.1 Introduction

The famous Monte Hall prohiem, described in the opening citations. caused a wave

of astonishment in the 1990’s as a vivid example of people’s deficiency in logically
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handiing uncertainties. Even in this simple case, with a clearly defined system to

evaluate, most people’s intuition. including that of trained statisticians, fails to correctly

account for ail relevant information when making a choice, and columnist Marilyn vos

Savant had to push through a surprising lengthy series of responses before her readers

correctly recognized the solution’. When the situation under consideration is more

complicated, and when the system under study is not clearly understood, intuition

becomes particularly untrustworthy.

Probability theory offers a natural framework for making decisions or inferences.

which reduces to deductive logic in cases of complete information (Jaynes. 2003). The

Bayesian paradigm in particular is considered a full probabilistic frarnework. in the

sense that it forces the investigator to explicitÏy state ail assumptions during an analysis.

This view is based on interpreting probabilities as expressions of our state of knowledge.

Gelman et al. (2004) succinctly summarize the framework:

The process of Bayesian data analysis cnn be idealized by dividing it into the
following three steps:

1. Setting up of futt probabitity modet—a joint probability distribution for ah
observable and unobservable quantities in a problem. The model should be
consistent with knowledge about the underlying scientific problem and the
data collection process.

2. Couditioning on observed data: calculating and interpreting the appropri
ate posterior distTibntion—the conditional probability distribution of the
unobserved quantities of ultirnate interest, given the observed data.

3. Evaluating the fit of the model and the implications of the resulting posterior
distribution: does the model fit the data, are the substantive conclusions
reasonable. and how sensitive are the results to the modeling assumptions
in step 1? If necessary, one can alter or expand the model and repeat the
three steps. (p. 3)

The first step is a creative process. Indeed. the creative nature of this step imphies

‘The Monte Hall prohiem has become n useful tool in cognitive psvchology as a means of elucidating
mental strategies to problem solving. Krauss and Wang (2003), for instance, point out that the
correct solution, changing your choice, cnn be derived from Bayes theorem. and that the solution is
readilv seen when approaching the question from Monte HaWs perspective: “[...] the change from the
contestant’s perspective to Monte HaWs perspective corresponds to a change from non-Bayesian to
Bayesian thinking.” (p. 7)
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that no general rnethod is available for constructing the basic form of a model. Choices

at this step are necessarily arhitrary, arid must he evaluated retrospectively in the third

step of the Bayesian framework. Given a model M, specified by some high-dimensional

parameter vector 6 e e. the second step is pureiy technical, and cari be formaiized as

an update of oui state of knowiedge about tire hypothesis vector & before observing any

data. tire prior pro babitity. written as p(O M), to oui state knowledge after observing

tire availabie data. tire poster2or probability. written as p(6 D. M). and caiculated

according to Bayes’ theorem:

D, M)
= p(D M)p(6 M)

(2.1)
p(D I M)

where p(D I 6, M) is tire Ïiketihood function. aird wirere

p(D I M)
= f p(D &.M)p(& M)d6 (2.2)

is a normalizing constant. also caiied tire marginal likeÏihood or tire pTiOT pTedzCtive

probabîlity. The distribution given bv (2.1) is tire focus of tire secoird step of tire Baesian

frarnework, wirereas tire quantity in (2.2) is of interest in tire third step.

Untii relativeiy recentiy, adopting full probahibstic approacires was computationaliy

prohibitive in rnost contexts. Over tire iast decade. however. IVlarkov dam Monte

Cario (MCIVIC) computational techniques irave permeated across several disciplines as

general and unifying approaches to addressing manv of these practical difficulties. Tire

evolutionary anaiysis of moiecular data iras greativ henefited from tirese advances. whicir

irave sparked several researcir programs in popuiation genetics aird phviogenetics.

In this chapter, we present tire evolutionary context and modeis in greater matire

matical detaii. focusing on two different ieveis of interpretation: 1) tire arnino acid levei,

with data coirsisting soieiy of aiigned anrino aeid sequences. and 2) the codon ievel. with

data consisting of aiigned protein coding nucleotide sequences. We iay out tire com
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putational methods used for approximating the probabilities of interests, and offer a

few practical examples, of prior structure explorations, of parameter expansion-based

MCMC methods. and of simple means of displaying posterior distributions.

2.2 Data

In the present work, the data available consist of aligned sequences of either nucleotides

or amino acids, sampled across different species. A phylogenetic tree is used as an

account of the evolutionary paths relating the sequences (fig. 2.1). Upon considering

such data. one might first object that evolution occurs over populations. and that evo

lutionarv analyses shoiild 5e hased on markers sampled across members of the same

species. so as to ciaracterize the variation and evolution of these markers over time.

This is indeed a central motivation of population genetics. However, the motivations of

phylogenetic analysis can be considered as encompassing those of population genetics.

by studving variation across a broader range of genetic diversity. and thus attempt

ing to uncover high-order evolutionary features or patterns that. might he too subtie

to detect from population level data. In rnost cases. phylogenetic analyses make the

assumption of nul polymorphism1. and are based on defining a substitution as the fixa

tion of a mutation in the population. Phylogenetic models thus consider a substitution

as the elementarv event. Looselv speaking, the models focus on long-term evolution

arv patterns. by attempting to descrihe an evolutionary process which, over time. could

plausihlv have panned out to produce the aligned set of extant sequences. furthermore.

for some types of evolutionary rnodels considered here the link with population genetic

theory can be made mathematically explicit (e.g.. Thorne et al., 2007), as a consequence

of their distinct parameters bearing on mutational features and selective constraints.

‘In the present context. a polvmorphism refers to the occurrence of several different versions of
bio-molecule in u given population.
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which are combined multiplicatively to specify the overali substitution process.

The aliguments used here were selected or constructed on the basis of them heing free

(or virtually ftee) of gaps. being of relatively short length (for computational reasons).

and consisting of (or encoding for) proteins with one representative having a resolved

tertiarv structure (for the structural evolutionary models studied in Part II). We refer

to data sets using a shorthand indicating the protein type, the number of sequences. and

their length. hi number of amino acids (or codons. in the case of nucleotide sequences):

• Myo2Q-153: 20 arnino acid sequences of tetrapod rnyoglobim

• Myo6O-153: 60 amino acid sequences of mammalian myoglobin;

• IVIYOJO-153: 10 arnino acid sequences of mammalian rnyoglobin:

• Myo-153: 4 amino acid sequences of myoglobin from Physester catodon. Orici

nus orca. Graptemys geographica and Chetonia mydas caranigra;

• PPK1O-158: 10 amino acid sequences of bacterial 6-hydroxvmethyl-7-8-dihydroxypterin

pvrophosphokinase;

• FBP2O-363: 20 amino acid sequences of vertebrate fructose bisphosphate aldolase;

• GL0BIN1 7-1: 17 vertebrate nucleotide sequences of the -globin gene, described

in Yang et al. (2000a):

• L’sIN25-134: 25 abalone sperm lvsin coding nucleotide sequences, described in

Yang et al. (2000b);

• Hiv22-99: 22 hurnan irnrnuiodeficiency virus type 1 protease codillg nucleotide

sequences. described in Doron-faigenboirn and Pupko (2007).

The first six of these alignmellts are of our own construction, and are detailed in

Appendix A.
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2.3 Markovian models of sequence evolution and

the likelihood function

Standard phylogenetic models consider the states at the positions of an aLignment as

the realization of a set of independent Markov substitution processes—one for each

site—running along the branches of the tree. The state space, and the definition of

a site. depends on the level of interpretation adopted. for instance. when analvzing

DNA sequences. the state space consists of the four possible nucleotides. and a site

corresponds to a single nucleotide column, or position, in the alignment; each species’

sequence constitutes a row of the alignment. for amino acid sequences. the state space

consists of the 20 amino acids. and a site is again simplv a single arnino acid colunrn of

the alignment. When analyzing protein coding DNA sequences, and acknowledging the

basic coding structure, the state space consists of the 61 sense codon (in the universal

genetic code excluding stop codons). with a site defined as a nucleotide triplet (codon)

along the sequence. We have the latter two contexts in mmd in the following. although

the description is general. for any Ivlarkov process running over an alphabet of A possible

states.

Regardless of the level of interpretation, these processes can be descrihed by a rate

matrix, or IVlarkov generator, Q = [Q], specifying the instantaneous rate of substitu

tion from state o to state b. Rate matrices are typicail constructed from two sets of

parameters: a stationary prohahilitv vector. otherwise referred to as the equilibrium fre

quencies. written as n = (nb)y<b<A. with = 1, and exchangeability parameters.

written as p = (Pab)1<a.h<A, such that

Qab DC 7Oj. i b (2.3)

Qaa = — Qa. (2.4)
b#a
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Pirst consider two sequences, denoted s and sj, where j signifies that the se

quence is ancestral to j. The models considered in this work are ail reversihie. such

that one may arbitrarily label anv one sequence as ancestral to the other. Specificafly.

the models satisfy the detaited balance. given as:

bQba. (2.5)

Let s and sj refer to the specific states at position i of these sequences. If separated

by an evolutionary distance (or brandi length) ,j, where the Markov generator lias

been scaled, say, to express branch lengths as the expected number of substitutions per

site, the probability of changing to s is computed one position at a tirne. under

the assumption of independence, based on

p(s 6. M) [eÀ3Q]ab. (2.6)

where a sj and b = sj, O is tlie set of pararneters’, and M represents the overail

construction of the model. Multiplying (2.6) with the stationarv probability n. and

multipiving across ail sites. constitutes the Ïiketihood of a particular parameter collfig

uration, under the s and sequence pair. Now, suppose we are given P aligned

sequences. related according to a given (arbitrarily) rooted phylogenetic tree (which

lias 2P — 3 branches) with a set of brandi lengths ) = (‘\j)y<j<2p_3. Also. suppose

we know the sequence states of each branching point (or interna.l node) in the tree. in

addition to the states in the alignrnent—we will denote tus set of states at position

j as s. Then, assurning independence between lineages. equation (2.6) eau simply be

‘We have been using as o generic hvpotliesis vector. with a dimensionalitv and precise configu
ration irnplied bv the context of the text. and shah continue to do so throughout. Up to this point.
for instance, = {Àj,p.7r}.
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expanded to

2F-3

p(Sj M) = ir fl p(sjj I sij. &. M), (2.7)
i=1

where s represents the state at position i of the sequence at the root of the tree. laheled

as node O, and ir50 accounts for the stationary probability of the IVlarkov process. In

practice. however, illternal node states are not generally known. a;id the prohahility of

the data at the th position (Di) is thils a sum over ail possible s:

p(D I . M) = 6. M). (2.8)

Under the assumption of independence. the overalÏ prohabffity of the data is then

computed as a product over ail positions:

p(D 6.M) = flp(D I 8.M). (2.9)

where N is the total number of sites. This also referred to as the likelihood of .

Under the simpler types of models considered in this chapter—ali of which have

been previously proposed by others—the likelihood eau be caldlllated in closed form.

exploiting matrix diagoualization routines for computing (2.6) and the pruning algo

rithm (Felsenstein, 1981) for computhig (2.8).

2.3.1 The Dayhoif-like amino acid replacement models

Workiug with amino acid sequences. the simplest I\’Iarkovian model treats ail states

as equivaient. fixing 7rb = 1/20 and, sav. p, = 1. which we refer to as the POISSON

model. Much more commonlv. however. Davhoff-inspired settings are used. such as an

updated version proposed bv Joues et al. (1992b), referred to as JTT. and the maximum

likelihood matrix proposed Whelan and Goldrnan (2001). referred to as WAG. Although
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derived differently, ail of these matrices follow the same general motivations: estimate

a robust set of values for the parameters ir and p via an analysis of meta-datasets. and

use these parameter values in subsequent phylogenetic allalyses.

This is an empiricat modeling strategy. $everal variatiolls follow. For instance.

rather than fixing r to the empirically derived values, it. is commo to treat these as

free parameters conditional on the data under study. typicallv designated b adding the

suffix +F to the JTT or WAG acronyms. Also, with the large data sets commonly used

today, which may consist of tels of thousands of amino acid positions, the p parameters

ma also be treated as free, referred to as the generat tirne reversibte (GTR) model’.

It is also common to combirie the above models with the gamma. distributed Tates

across sites modeling approach proposed by Ya.;ig (1993, 1994). Under this model.

referred to as +F. the overail rates of sites are treated as random variables. drawn

from a prior statistical law: the gamma distribution of mean 1. and variance o. The

likelihood function then takes the forrn of an integral over the statistical law, and ci is

treated as a free parameter governing its shape. In practice. however. integrating over

the gamma distribution is not analytical. and the cornmonly adopted approximation

procedure discretizes the law into a predefined number of classes (typically 4 or 8).

reducing the integral into a weighted sum (Yang. 1994).

The central application of these types of models of amino acid sequence evolution

is to infer a phvlogenv from a set of homologous protein sequences. For instance, using

the WAG+f model implemented in the PhvML program (Guindon and Gascuel. 2003).

the maximum likelihood topology a. of the Myo2O-153 data set is displaved in figure

2. la. By performing a heuristic exploration of the possible topologies. associated branch

lengths. and ci parameter. PhyML attempts to maximize the hkelihood function. and

the inference is then based on this maximum likelihood (ML) estimate. Note that the

The acronvrn GTR is more commonlv associated with the nucleotide level model. consisting of
six nucleotide relative exchangeabilïties. and a four dimensional sta.tionary probabilitv vector. Distin
guishing between these is obvious from the context. and so we do not give them separate designations.
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Figure 2.1. Tree topologies for MyoO-153. Panel a) displavs the maximum likeli
hood topology obtained by PhyML (Guindon and Gascuel. 2003) under the WAG+F
modeL Panel b) shows a “hand-dra.wn” topologv. which is in doser agreement with
accepted groupillgs. The trees were drawn using TreeGraph. available online at
http://www.math.uni-bonll.de/.
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tree inferred from such a small data set (of 153 arnino acid positions) should not be

taken too seriously. Indeed, figure 2.la lias several questionable groupings, such as

the position of the red kangaroo (Macrop’us rufus) with the Prototheria (Tachygtossus

acuÏeatus). as opposed to a placement as a. sister-group to the rest of the Theria: an

alternative topologv, which rnight be considered more reasonahie, is displayed in figure

21h.

Although the probahilistic framework we expound here offers means of dealing with

phylogenetic uncertainty, this is not the focus of the present work, and we shah aiways

consider the tree topology as known, based on some external criteria. When studying

previously assemhled data sets. we use the same topologies used in the previous works.

and when studving our own data sets. w’e use the WAG±f maximum hikelihood topol

ogy, even if it mildly confticts with estabhished groupings. Our focus is on developing

new Markovian models. and exploring their statistical merits; in such contexts. previ

ous studies have found model comparisons rohust to shight topological differences, so

long as reasonable trees are used (e.g.. Yang et al.. 2000a: Sullivan and Joyce. 2005).

furthermore. using a fixed tree greatly simplifies the computational devices. for reasons

that will become apparent later on.

2.3.2 The GY codon substitution models

Despite the practical success of the amino acid level models described above. the codon

level of interpretation offers a theoreticallv more attractive framework for molecular evo

lutionary analysis, in actually refiecting basic biological knowledge. The core features

of such models include their parameterizations of nucheotide-level mutational proper

ties, and their distinction between svnonymous substitution events (that do not imply

a change in amino acid) versus nonsvnonvmous events (implving an amino acid replace-

ment). Bv accommodating the basic information fiow of the central dogma, the models
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offer a wide range of relevant biological applications (Yang, 2006).

These could be qualifled as mechanistic modeling strategies, first explored in evo

lutionary contexts by Goidman and Yang (1994) and Muse and Gaut (1994). In the

present chapter, we shah focus on the widely used codon substitution models in the

style of Goidman and Yang (1994). with the entries of the Markov generator given as

w’irb, if nonsynonymous transition,

wrrb, if nonsynonymous transversion,

Qab lfTh. if svnonymous transition. (2.10)

n6, if svnonvrnous transversion.

0, if a and b differ hy 2 or 3 nucleotides.

where w is the nonsynonyrnous/synonyrnous rate ratio, is the transition/transversion

rate ratio, and ir6 is the equilibrium frequency of the target codon. This specification

of n as a full 61-dimensional vector is often denoted as f61. and we therefore refer to

this model as GY-F61.

The computational demands of the codon state space have prevented its wide-spread

use for phylogenetic inference. This is mainly because the pruning algorithm (felseil

stem, 1981, for computing 2.8) lias a computational time that increases with the square

of the alphabet size. but also because the tirne of matrix diagonalization algorithms (for

cOffipilting 2.6) increases with the cube of the alphabet. size. Rather, the central appli

cation of these types of evolutionary models lias been to uncover arnino acid positions

under positive selection, and some of the basic extensions have allowed for heteroge

neous nonsynonymous rates across codon sites (e.g., Yang et al., 2000a: Huelsenheck

and Dyer. 2004: Huelsenbeck et al.. 2006).

Specifically here. we shah use the Dirichiet process apparatus descrihed in Huelsen
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beck et al. (2006). The idea behind this model is to assume that rate heterogeneity is a

resuit of sites coming from a mixture of models, with each component endowed with its

own nonsynon mous rate factor. However. under the Dirichiet process prior. the num

ber of components—in this case. the number of selection coefficients—of the assumed

mixture is not predetermined. but rather adjusts to the complexity of the data.

2.4 Bayesian MCMC

2.4.1 Plain MCMC

For ail models of interest here, the integral in (2.2) lias no analytical form. However.

modem computing machines and MCMC approaches aflow one to sampie from the pos

terior distribution of parameters of interest. without knowing the marginal likelihood.

which cancels out in the basic Metropolis-Hastings (MH) kernel (Metropolis et al., 1953:

Hastings, 1970): given the current parameter configuration 6. generate a new pararneter

configuration O’ from the density q(O. O’). and set 0 0’ with prohability O. where

( (0’ I D.M)q(0’.0)
= min 1,

(0 I D. M) q(O. 9’) j• (2.11)

p(0’ID.]’vI) . . . q(6’.O)The factor
p(9IDAJ)

is referred to as the Metropolis ratio and q(80’) is known as the Hast

ings ratio. correcting for asymmetries in proposai densities. Under certain conditions.

repeatediy cycling through these steps forrns a Markov chain with (2.1) as its stationary

distribution (see. e.g.. Robert and Casella. 2004. for a more extensive exposition). In

general. the first portion of the chain is discarded—the so-called bnrn-in period—and

hvpothesis vectors are drawu at regular int.ervals as the aÏgorithm proceeds. Based

on this sample. written as (0(h))j<h<J.. expectations are approximated from the usual
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Monte Carlo relation:

(T)
= f T(6)P( D.M)dO (2.12)

T(6(h)) (2.13)

where T is some test statistic of interest, and (.) stands for an expectation witli respect

to (2.1).

The proposai densities q(O. 6’) are designed to 5e eas to implement. and are “tuned”

empirically to optimize mixing kinetics’. We mention the previously proposed MH

mechanisms that are used in this work. and present a brief tuning exampie in a later

section. The mechanisrns are:

• ADDITIVE: Treating O as univariate for the moment. this operator proposes a

new value 0’ 6 + 6(U — 1/2). where U is a random draw on the uniform [O.

1] intervai. and 6 is a tuning parameter, with larger values amounting to boider

moves. The Hastings ratio is 1.

• MULTIPLICATIVE: When O lias no constraints except positivity. a new value can

5e proposed as O’ Oe6tU_/2). The Hastings ratio is O’/O.

• DIRICHLET: For multidimensional proflie-like pararneters, summing to 1 or soute

constant. this is the update procedure described in Larget and Simon (1999).

For instance, updating n for an alphabet. of size A would 5e doue hy drawing

n’ X, where X = (6n1. 6n2 6nA). Note that the operator can 5e apphed

on a sub-space of n. as explained in Larget and Sirnon (1999). Aiso note that for

this operator. the lower the value of the tuning parameter. the bolder the move.

‘In theor. the use of different. valid proposai densities should not influence the limiting distribution
of the Ivlarkov chain. However. different tunings on proposai densities can lead to vastiy different
sampling behaviors, and tuning is aimed at reducing the number of cycles to “turnover”.
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DIRICHLET PRocEss: This operator actllally consists of a set of operators, and

here is ouiy invoked under the Dirichiet process prior modeling of nonsynonymous

rate heterogeneity across sites in the codon context. as described in Huelsenbeck

et al. (2006). Supposing H classes of w factors. updating the Dirichiet process is

accomplished hy first drawing a set of L temporary classes from p(wt) = 1/(1+wt)2.

for 1 < t < L; this eau be sampled from w1 = lu U1/ in U2, where U1 and U2 are

two distinct random draws on [0. 1]. Then. taking site i, an update is performed

on an auxiliary variable specifving the affiliation of the site to a. particular w class.

written as y. and which. under the current configuration of the Dirichiet process.

ranges over 1 < < H. The number of sites affihiated to the ,1th
of H classes is

written as If y = h and i», = 1. the count of existing classes (H) is decreased

5v one. Otherwise. is decreased 5v 1. Then pooling ail H + L classes. y is

reset to the hth elass with a probability proportional to ?hp(D1 6, wh. M), or to

the 1th class with a probability proportional to p(D1 I 6. w. M), where r is the

“graininess” parameter of the Dirichlet proeess’. The procedure is repeated for

ah sites. With a given configuration of the Dirichiet process, the values of the H

different w classes are updated based on MULTIPLICATIVE mechanisms. and the

r parameter is updated based on ADDITIVE meehanisms.

2.4.2 Thermodynamic MCMC

With these proposai mecharxisms. ail of the previousiy studied models that are included

in this work can 5e implemented. so as to address the second step of the Bayesian

framework. If our objective is to compare two models (M0 and M1), as part of the

third steJ) of the framework. it is interesting t.o evaluate the Bayes factor (Bo’), defined

as the ratio of their respective marginal likelihoods (Jeffrevs. 193.5: Kass and Raftery.

1This parameter is usually referred to as a in the statistical literature on the Dirichiet process. but
using this symbol would be confusing with the shape parameter of the gamma distributed rates model.
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1995):

p(D M1)
B01

= p(D I M0)
(2.14)

A Bayes factor greater than (less than) 1 is considered as evidence in favor of M1 (M0).

Tire Bayes factor does not require models to 5e nested. and intrinsicali penalizes for

higher dimensional formulations; loosely speaking, averaging the likelihood over the

prior distribution implies parameter configurations that induce very low likelihood val

ues, which has the effect of “bringing down the average’; and higher dimensional models

tend to have more of such parameter configurations leading to low likelihoods. hence

producing a naturai Ockham effect. Unfortunatelv. because tire basic IVICI\’IC algo

rithms described above are expïicitÏy designed to avoid computing marginal likelihoods,

more elaborate methods are needed.

Tire model-switch thermodynamic integration rnethod (Lartillot and Philippe. 2006)

extends the advantages of MCMC sampling hy devising a path iinking tire posterior

distributions of two models. Let O now represent tire union of parameters from hoth

models. sorne of winch may indeed he relevant to both models. while others are only

relevant to one of tire two. Two models of interest can be connected by defining

p(D 6. M) = e(l_3)lnp(DI8Mo)+1np(DI0JLI1) (2.15)

p(O I M3) = e(Obo»1) (2.16)

p(6 D.M3)
= p(D M3)

(2.17)
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and the Ivletropolis-Hastings kernel as

t p(O’ D,M)q(6’,O)
= min

D M) q(&
(2.18)

For any value O </3 < 1, the kernel given in (2.1$) allows one to sample from a posterior

distribution consisting of a partial “morphing” between M0 and M, witliout knowing

p(D M3). The quasi-static method described in Lartiliot aid Phuippe (2006) initiail

sets to /3 = 0. and the resulting sampler lias the posterior of parameters under M0 as

its lirniting distribution. Then. the value of /3 is regularly incremented by a srnall value

3 after a set of MCMC cycles. until /3 = 1; the sampler finally lias the posterior under

M1 as its lirniting distribution. Note that here. we do not explore models with different

priors on the same pararneters. and hence we eau dispense with the morphing prior

defined in (2.16), substituting it with p( M0. M1). When calling lVletropolis-Hastings

operators on components of 9 that are onlv relevant to 11o, the prior can be reduced to

I Mo, M1) p(O I M0) and likewise when calling operators on components relevant

only to M1. in which case p(& M0. M1) = p(O I M1). Based on a. sample colleeted along

the entire path of posterior distributions. written as (9(hl))o<h<j., and with the hth draw

associated witli /3, (/3e = 0, t3K = 1 and Vii. O < h < K, /3h+1 —t3h = &6), the Ïog Bayes

factor between M0 and M1 can be estimated hased on the IVionte Carlo relation:

mB01 = lnp(D M1) —lnp(D M0) (2.19)

= f (lnp(D I 9. M1) — lnp(D I O. M0))5d (2.20)

[(nt o(0)) —lnp(D

K—1

( lnp(D 9(h) M1) — lnp(D I Mo)) +

(np(D 9(K), M1) — lnp(D 9(K) M0))] (2.21)
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where (.) stands for an expectation with respect to (2.17). The overali precision of

the method depends on a number of factors, sucli as the step size (&8). and whether

the number of cycles between steps is sufficient to allow the chain to re-equilibrate to

(2.17), for instance, but also on the inherent distance between the two models being

compared. These issues need be explored in practice. through a progressive tuning that

depends on the precise application.

In the next section. we will ifiustrate the properties of the basic Bayesian MCMC

approaches using well-known types of models of amino acid and codon sequence evo

lution. In later chapters. we will return to the thermodvnamic IVICMC methods t.o

evaluate these and other moUds.

2.5 Practical examples

2.5.1 The WAG model

As a first practical example. we applied the WAG moUd to the MY020-153 data set.

assuming the tree topologv given in figure 2.la. Under such a. modeL the only free

parameters are the brandi lengths À. Also note that for this particular model. large

Monte Carlo samples of high quality are easily obtained within a few liours on a Xeon

2.4 GHz desktop computer. and so we defer the subject of tuning the IvICMC to another

example’. Instead. we go through a simple exploration, for amusement. of the effect of

previously proposed prior probabilities on À on the overail tree length.

We first tried using a uniform prior on branch lengths2. leading to a posterior mean

tree length of 2.41 ± 0.12 substitutions per site.

‘Tle computational burden of some of the calculations presellted in this dissertation imply over
4 months of CPU time. We mention this here in order to give the reader a general sense of what we
mean by computationally “easv” versus what we consider as computationallv “challenging’.

Strictlv speakmg. a umform pnor must have bounds. but. it is corumon to explore the behavior of
a sainpler without such bounds. referred to as an improper prior. since it is not defined to integrate to
1.
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We next tried the commonlv used ExponentiaÏ prior distribution on branch lengths.

with a mean determined hy a hyperparameter’ y, in turn endowed with a truncated

uniform hyperprior. The tree length in this case lias a posterior mean of 2.15 + 0.12.

and the mean brandi length parameter y lias a posterior mean of 0.059 + 0.011. Note.

liowever. that tlie posterior mean log-likehhood is —2, 169.5 for the exponential prior,

and —2. 171.7 for the uniform prior, a difference of only 2.2 iog units. This indicates

that the iikelihood surface may be relativeh- flat with respect to brandi lengths (at

least in this region of brandi length space). finally. we tried a type of prior structure

suggested in Yang and Rannala (2005) taud aiso used in Lartillot and Phuippe, 2006),

where we attribute an ExponentiaÏ hyperprior of mean 1 on y. Tus hvperprior does

not impact on ii in practice. as we obtained essentiailv identical distributions as under

the uniform hyperprior. This iast prior structure. however. lias the advantage of being

both flexible and proper. Aithough the prior structure on branch lengths may have

important effects on phylogenetic inference per se (Yang and Rannala. 2005), we have

not found it to have any significant impacts in the flxed tree context of the present

work, eitlier in terms of estimated log-Bayes factors. or on the posterior distributions

of other parameters. We shah see a case in chapter 4. however. where the prior on a

specific parameter does have a significant impact on the log-Bayes factor.

2.5.2 The +F model via parameter expansion

Model developrnents can aiways be cast as revisions in prior structure. For instance.

in the +f modeis. ratier than fixing a prior of 1 for ail sites having a rate of 1. as in

the chassie uniform rates model. a flexible prior structure on rate variation across sites

is used. consisting of the gamma distribution of mean 1 and variance (Yang. 1993.

1994). As previouslv stated. in the ML perspective. the hikelihood function takes the

‘in general. pararneters governing the prior laws are referred to as hyperpararneters. and the priors
on them are referred to as the hyperpriors.
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form of an integral over the gamma law, and the o parameter is adjusted to maximize

the likelihood function.

In the present context. one may instead invoke the concept of parameter expansion

(PX) (Liu et al.. 1998) as we explore here. Let us define a rate vector r = (r)1<5<AT

specifying the overali rate at each site. with the gamma as a prior law, written as

p(r) taud c now included in 8). The gamma prior is used in its continuous form, with

integration over the law accornplished via IvICMC sampling. To see how this works. first

note that the marginal and joint prohabilities on & and {& r}, are rela.ted as follows:

D M) = fp(&. r D. M)dr (2.22)

fp(D &.r.M)p(r)dr (2.23)

The basic idea underlving parameter expansion is that if a sample (o”, rt1)1<h<K is

drawn from the joint distribution p(O. r D. M). then. the & component of this sample.

(&(“)y<h<k is distributed according to i(8 I D. M). Therefore. to obtain a sample from

I D. M). first. draw a. sample from p(&, r D. M). and if onlv the parameter vector

is of interest. discard the r component. This sampling approach can he wiitten more

formally. witli a MH kernel defined as

= mi f1 p(D 8’. r’. M)p(r’)p(8’ I M) q(&’. r O. r)
(9 94)

p(D &.r.M)p(r)p(& M) q(&.r.9’,r’) J

In practice. 1H operators are typicallv applied separately on model parameters and

auxiliary parameters; the basic sampling module in this case is referred to as the PX

module. and is written symholically as

r

O I r,D
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Figure 2.2. Tuning IvIE updatiilg of rate vector. The figure shows the aut.ocorrelation
function of the rate entropy when sampling rate vectors under WAG+f.

which is to say that first. a rate vector is sampled conditional on the current pararneter

vector and the data. followed bv a. pararneter vector sampled conditional on the current

rate vector and the data. Also ilote that we n;ay take the sample of auxiliary parameters

seriously, for instance, by constructillg the posterior distribution of a site-specific rates

(Mateiu and Rannala, 2006).

We ran a PX-hased MCMC sampler under the WAG+f model. assigning a uuiforrn

prior on c. Multiplicative operators are apphed on rates, and additive operators are

applied on a We take this as an opportunity to illustrate oie way of determiuillg a

suitable tuning of MH updates. $pecifically. we hegin by assurning that the rest of our

sampler lIas alreadv been tuned for sampling over other pararneters (branch lengths,

and ii). and tha.t we now wish to incorporate sampling for the +F model. and tuile

number of MH updates on rat.es so as to decorrela.te successive draws.

figure 2.2 displays the autocorretation function of the rate vector entropy’. IViore

precisely. we repeatedly computed the autocorrelation of the rate entropy on samples

of 100 successive draws from the posterior distribution, but with an increasing number

of cycles, or tag. between each draw. In this case. a MCMC cycle consists of one MII

update to the rate of each site. Based on this plot. one would estirnate that at least

‘Writing pj = r/ r, the rate entropv is — 1np.

2 4 6 $ 10 12 14 16 18 20

Lag
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Figure 2.3. Posterior densitv plot of a. approximated using IVIH sampling.

10 cycles should be drnie in order to effectually be sampling independent rate vectors.

0f course. tuning must also be validated by running several independent calculations.

checking that the mean and variance of para.meter values match closel across chains:

this is part of our basic set. of checks. conducted following pilot runs for tuning’.

We collected a sample of 1,000 draws from the posterior, and display the distrihil

tion of a in figure 2.3. The posterior distribution is nearly identicaÏ when using an

exponential hvperprior of mean 1 on n (flot shown). The posterior distribution of n.

centered around 0.7, suggests a pronounced rate heterogeneity across sites. ihis is a

property now observed for many data sets (Yang, 1996, 2006).

2.5.3 The GY-F61 model

We next turn t.o the mechanistic model specified ahove as the GY-f61. We explored

this modeling framework using the 17 vertebrate sequences of the GL0BIN1 7-1g data.

described in Yang et al. (2000a). as well as the tree topology used therein. We llsed an

exponential prior on branch lengths, with a mean y. itself endowed with an exponential

hvperprior of mean 1. for i. we used the prior p(t) = 1/(1 + )2. the ratio of two

‘It is stiil an open question whether or not it is possible to design the “holv grail’ of MCMC
samplers, which would not require such pilot mn tuning steps.

o
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independent draws from an exponential distribution, as proposed in Huelsenbeck and

Dyer (2004), and likewise for w (as a constraint on the DP model described above to

H = 1, i.e.. a single global nonsynonymous rate factor for the entire alignment).

Following the usual tuning procedures. we obtained a sample of 1.000 draws from

the posterior distribution. and produced summarizing statistics in table 2.1 as well as

graphical displays of the substitution model parameters in figures 2.4 and 2.5. These are

simply meant to illustrate the ways in which posterior distributions can be summarized.

Figure 2.4. Posterior distributions of i and w for the GLoBIN17-1%. data set.

2.5.4 The Dirichiet process on w

Table 2.1. Posterior expectations under the GY-F61 model.

log-likelihood —3656.83+6.66
tree length 7.17±0.35
u 0.23+0.05

1.52+0.15
w 0.22±0.02
7r-entropy 3.86+0.02

Note.—The tree length is in expected number of substitutions per codon site.
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Huelsenbeck et al. (2006) have proposed a flexible extension to this modeL based on
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Figure 2.5. Posterior 95% credibilitv intervals of codon stationary probabulities for the
GLoBIx17-1 data set. sorted according to amino acids.



the Dirichiet process apparatus described above. We explored this model as well, usillg

the sarne prior structure as Huelsenheck et al. (2006), except that we endowed hyper

parameters r and v—respectivelv the “graininess” parameter of the Dirichiet Process

and the mean of the exponential prior on brandi lengths—with exponeiltial priors of

mean 1.

Huelsellbeck et al. (2006) perforrned analyses under tic Dirichiet process prior hy

systematically fixing r to predeflned values. Here. given that we treat T as a free

parameter, we iuspected its posterior distribution, as welI as that of the number of

selection coefficients (H). The resuits are displayed in figure 2.6. 0f particular illterest

is the distribution of H. which is situated at relativelv low values, in comparison with

the overail length of the aligument, but is stili at consistently higher values than tue

commou usage of fuite mixture models of tic same type. which are typically flxed at

H 3 (Yang et al.. 2000a).

fillally. as described in Huelsenbeck et al. (2006). we computed site-specific prob

abilities of positive selection p(u’ > 1) under the Dirichlet process. simpÏv as tic pro

portion of draws from the posterior in which a site is found to be affiliated to a class

haviig > 1. Coilfirming previous studies (e.g.. Yang et al.. 2000a: Huelsenbeck et al..

2006) most positions ofthe GLoBIN17-14 data set appear to be under strong purifyillg
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Figure 2.6. Posterior distributions of r and H uider the GY-F61-DP model. for the
GLoBIN17-1 data set.
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Figure 2.7. Posterior probability of each site being under positive selectiori for the
GLoBIN17-1 data set.

selection (fig. 2.7).

2.6 Evaluating models via phenomenological bench

marking

The practical examples presented above are rnainly focused on the second step of the

Bayesian framework—computing the posterior distribution. There are several ways

of engaging the third step of the framework—model evaluation—and these different

approaches constitute a main subject of study and debate in modem statistical theory.

In this chaptem. we have touched upon methods for computing Bayes factors which have

mecently been proposed as versatile tools for model ranking, and which we will make

use of extensively in this work.

One of the reasons for this recent interest in rigorous model comparisons cornes

from the observation that even under conditions of very large data sets, consisting of

tens of thousands of residues. phylogenetic reconstruction artifacts’ are stili ohserved

in sorne cases (Phulippe et al.. 2005). which implies that the n;odels used are too grossly

mis-specified. An active research direction to address these issues consists in devising

new evolutionary models. which more reasonably acknowledge molecular evolutionary

phvlogenetic reconstruction artifact is an inferred tree topology that is obviously wrong, based
on some other knowledge. Phvlogenetic contradictions resulting from slighth’ different choices in data
set construction are also referred to as reconstruction artifacts.
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patterns, and thus exhibit greater robustness in wake of difficuit phylogenetic questions

(e.g., Buckley et al., 2001; Brinkmann et al., 2005: Lartillot et al.. 2007). An important

part of the assessrnent of such new models consists of measuring their statistical fit to

real data. as we have discussed.

Bevond the app1icatiois to phvlogenetic understanding. the development of bet

ter models is hoped to elucidate and quantifv the importance of different aspects of

molecular evolution (Pal et al., 2006). \Vith the objective of acquiring a deeper un

derstanding of molecular evolution cornes the question of the most suitahie level of

interpretation to lie adopted. The codon level of interpreta.tion is far more attractive

from this standpoint, in enahuing one to explore pararneterizations that disentangle the

different factors bearing on the overail evolutionary process (Thorne, 2007). As we have

rnentioned, these models are often referred to as mechanistic in approach. By this. we

mean that. the models recognize basic biological understanding. in terrns of an under

lying mutational process, with selective forces acting at higher levels. Here. we also

use the phrase meckanistic modeling to refer to attempts at formulating an account of

deeper causes. which would explain some of the observed features.

Another modeling perspective is ofren referred to as phenornenotogical. The terrn

phenomenological has several different meanings. In science, generally. a phenomeno

logical model is one tha.t is not directly derived from theorv. but rather provides a

prelimiiary account of some observed tendency or feature of the data by attributing

parameters directly to the aspects in question. Phenomenological approaches are gen

erail motivated hy a lack of understa.nding of underiving causative relations. or bv

the practical applications that they enable. The approach often explicitlv omits some

data, or fails to incorporate basic knowledge. typically because it appears too difficuit

in preliminary model explorations. Empirical modeling approaches go one step further

liv pre-fitting pararneters to large-scale observations. The WAG model used above is of
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this type; it ornits the nucleotide data altogether. and is derived hy appiving the ML

principle under a large meta-data set.

0f course, in practice, models are neyer strictly phenomenologicaL since their gen

eral form is derived from some basic understanding of the case at hand. In the particular

case of tire WAG model, for instance. the form of the model atternpts to account for

biophysical sirnilarities between amino acid pairs, through tire set of exchangeahility

parameters p. whule capturing global arnino acid propensities through the set of sta

tionary probabilities n. Furtherrnore. aspects of the codon level modeis used above

may also be cast as phenomenological, as is most clearly tire case concerning w: we

have good reason to helieve that nons nonyrnous rates might be rnediated—at least

partially—by structural constraints, such that, for instance. a given site rnight have

a very low nonsynonymous rate. in comparison with other sites, as a result of being

involved in a set. of interactions crucial to establishing the functional shape of a protein.

M this point. irowever. the phenomenological standpoint consists of ignoring this un

derstanding, and simply provides a preliminary account of tire nonsynonymous rates.

with the richest model here coirsistiirg of tire Dirichlet process as a so-cailed irzfinite

mixhtre across sites.

We suggest tirat phenomenological/ernpiricai modehng approacires can provide per

tinent references in the initial exploratory stages of a new modeling approach. as part

of a phenomenological benchmarking strategy that we propose in tins dissertation. Phe

nonrenologicai benchrnarking is rnainiy concerned with the third step of tire Bayesian

framework, but in sorne sense, also ties into the first step of tire frarnework—in sub

sequent cvcies of developrnent—by concretely indicating model weaknesses. and thus

informing new nrodel constructions. It is meant as an assessn;ent of the ahility of a

new mechairistic nrodel to adequately account for basic phenonrenologicai observations.

Loosely speaking. the motivation of a new mechanistic model will be to generaÏize cx-
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isting phenomenological descriptions of some process or part of the world, under which

well-known features would emerge as basic resultants. Phenornenological benchmarking

is the strategv employed to evaluate if this is indeed the case. If se, we consider tha.t

progress lias been made. and that we have formed a better or more precise representa

tions of our current state of knowledge. If net. we may seek to improve the mechaulstic

description, or reconsider its basic forrn.

2.7 Conclusions

The Bayesian paradigm provides a flexible and attractive framework for formalizing

phylogenetic analysis. Although our survey is not representative of ail of the develop

ments currently under way, we have described up-to-date models of molecular evolution

at different levels of interpretation. and the general motivations associated with eaci.

In the second part of this work, we build on the types of evolutionary models presented

above, in an exploration of novel strategies allowing for a class of models with depen

dence between a.mino acid sites due to a proteiiis tertiary structure (Robinson et al..

2003). We touch ail three steps of the Bayesian framework. including our phenomeno

logical benchrnarking strategies. at both arnino acid and codon levels of interpretation.

We begin with the arnino acid level—over chapters 3 and 4—assessing how the depen

dence models compare with empirical amine acid replacement matrices. and with the

+F modei. •The resuits from chapter 4 motivate the development of a new statistical

framework for relating the cornpatibilitv of an amine acid sequence with a given tertiary

structure—presented in chapter 5. In chapter 6. we explore more economical compu

tational methods for approximating posterior distributions and marginal likelihoods.

which could render future calculations more tractable. and thereby enabling a pipeline

of development for different forms of sequence-structure measurements. In chapter 7,

we return to the biologically motivated codon level of interpretation. and apply the
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framework anew to construct and evaluate a large set of models. but stili assurning in

dependence between sites. finally. in chapter 8, we present our progress in the study of

the codon site-interdependent models. which suggest that evolutionarv modeling strate

gies could be extended along three different conceptual levels: 1) parameters describing

the underlying mutational process. operating at the nucleotide sequence level; 2) pa

rameters accommodating global codon preferences: and 3) parameters bearing on the

overall compatihility of the encoded amino acid sequence with a given (coarse-grained)

tertiarv structure.
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Part II

Revising Modeling Assumptions
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Chapter 3

Site-interdependent phylogenetics

3.1 Introduction

In the last few vears. several modeling a.dvances have been made. beyond those of

the phvlogenetic models described up to this point. The general strategy is to pro

pose biologically motivated parameterizations, relaxing the assumptions of standard

modeis—sucli as the assumption of stationaritv (e.g., Galtier and Gouy. 1998), or of

homogeneitv in the substitution process across sites (e.g.. Lartiilot and Philippe. 2004;

Pagel and Meade, 2004)—without inducing computationally intractable formulations.

This last condition in particular lias been the main justification for the assumption of

independence hetween sites. which persists in most modeis currently applied.

Obviously, the assumption of site independence is not biologically sound: as men

tioned in chapter 1. different positions of an amino acid chain form complex networks

of interactions, important to the overail structure adopted by a protein. Means of

relaxing this assumption in evolutionary models have been pursued. usually with cor-

relations or dependence introduced between a lirnit.ed number of sites (felsenstein and

Churchill, 1996; Siepel and Haussier. 2004). or considered for a lirnited number of se

quences (Jensen and Pedersen, 2000; Pedersen and Jensen, 2001; R.obinson et al., 2003).
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As previously mentioned in the last chapter, we a.re particularlv interested in the mod

eling ideas of Rohinson et al. (2003). who have introduced sampling techniques that

allow for a general dependence between codons. With their sampling procedure. which

is applicable to pairs of coding nucleotide sequences. one can consider the stochastic

process underiving the evolution of a sequence as a whole, so that the probability of

a given substitution, at any given time and at any site, depends. in principle. on the

states at ail other positions.

Robinson et al. (2003) atternpt to capture site interdependencies using an empirical

energy function. otherwise known as a statisticat potentiat. derived in the context of

protein threading (e.g.. Joncs et al.. 1992a). $uch potentials are meant to provide an

estimate of the cornpatihility of an amino acid sequence with a given protein structure,

so that the differences in cornpatibility, hefore and after inferred amino acid replacernent

events. influence the probabilitv of an evolutionary scenario. This modeling approach is

computationally bold, but provides an attractive mechanistic description of molecular

evolution; the codon substitution process is formulated as combination of a mutational

parameterization. at the DNA leveL with an evaluation of the phenotvpic effects of

mutations, which are considered for the overall amino acid sequence. In une with the

theoretical objectives of population genetics, their evolutionary model explicitly relates

genotype to the fltness of the corresponding phenotype.

This is a clear example of a new mechanistic modeling strategr; as a byproduct of

the explicit structural modeling, the potential could, in principle. account for ohserved

rate heterogeneity. or account for uneven amino acid exchangeahilities. and possibly

more complex features as well. However, the suitability of such a model depends on

how well one can approximate the overail fltness of a given amino acid sequence. In the

case of the model proposed hv Robinson et al. (2003). the use of this type of potential

was meant as a proof-of-concept investigation of their novel statistical methodologv. and
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the extent to which the potential actually captures evolutionarv features remains to be

expÏored. Indeed. there is some cause for conceru: protein fold prediction potentials

(e.g., Joncs et al.. 1992a; Bastolla et aL. 2001) were designed to optimally distinguish

which conformation a given sequence is likely to adopt. whereas Rohinson et al. (2003)

use a potential under a fixed conformation, attempting to distinguisli which sequences

would 5e suitable to it.

In this chapter, we further explore methodologies and approaches proposed hv

Robinson et al. (2003). re-formulating their model directly at the level of amino acids.

In so doing, we relinquish the theoretically attractive description of molecular evolution

at the level of nucleotide sequences. However. the amino acid-level framework will 5e

used to investigate if statistical potentials can render expected features of amino acid

sequence evolution. with rate heterogeneity and arnino acid exchangeabilities constitut

ing our two basic phenomenological benchmarks. first. however. we must set up the

precise models and computational devices. Our objective here is simply to contrast the

use of a statistical potential (Bastolia et al.. 2001) in combination with either a fiat

set of amino acid exchangeability parameters (Poissox) or an empiricallv derived set

(JTT) (Joncs et al., 19925). and explore how different combinations may impact on

posterior distribution of parameters. In addition, we generalize tire sampling scheme

proposed by Robinson et al. (2003) to multiple sequences. We applv tire methods to

three data sets, and prospect tire possibilïtv of applying tire approach to tire comparison

of different tree topologies.
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3.2 Material and methods

3.2.1 Data sets, trees, and protein structures

We used the PPK1O-158. MYO1O-153, and IV1yo4-153 data sets. We apply a simple

structure representation based on a contact map (see beiow). The contact map is

derived from a reference structure. determined by X-ray crystallography for one of the

sequences inciuded in the data set (PDB accession numbers 1HKA and 1MBD).

3.2.2 Site interdependent notation

A few brief notational remarks are needed for clarifving the site interdependent frame

work. As before, data sets (D) consist of alignments of P amino acid sequences of length

N. assumed reiated according to a particular phylogenetic tree. The tree is rooted ar

hitrarily. as ail models considered here are reversible. We use i to index positions of a

sequence, and j to specify the nodes. with a node having the same index as the brandi

leading to it, with the exception of the root node. which lias index O (O j 2F — 3).

We specify the sequence at node j as s (with s0being the sequence at the root node.

which we place at a leaf noUe. i.e.. an observed sequence from the alignment), and a

particular arnino acid state at position i in this sequence as s—in other words, the

absence of the i index indicates that tic sequence is referred to globallv (considering its

entire length). Tic sampling methods described below utilize a demarginalization, or

data augmentation. method requiring the specification of a detailed substitution map

pings over tic entire tree. We write tic set of brandi specific substitution mappings

as = (j)1<j<2P.3. The total number of substitutions along a brandi is written as

z (.D > O). We index substitution events as k (k < z) aid refer to the time of a.n

event on brandi j as tjk. A substitution event alters a single site of the sequence, at

position jk. When specifying the series of substitution events occurring on a brandi
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j, let 8jk—1 and Sjk represent the sequence states before and after substitution event k.

Note that when k 1. we let 8jk—1 = sj, where up is the immediate ancestral node

of j. Finally, when k z we let 3jk =

3.2.3 Structural fitness approximations

We used the knowledge-based protein energy function described in Bastolla et al. (2001)

to estimate the structllral fitness of a sequence in a given three-dimensional structure.

Our use of the energy function is straightforward. Given n PDB file, one computes the

distances hetween ah atoms of ah amino acids. As defined bv Bastolla et al. (2001),

two amino acids are said to he in contact if any of their heavy atoms (atoms other

than hydrogen) are at a distance of 4.5 Â or less (contacts due to sequential proximity,

within three positions or less. are ignored). As such, the structure of a protein can be

represented as a contact rnap. The contact map of n protein structure of length N is

an N x N matrix = (ii’)1<i<i’<N, with elernents

1 if arnino acids at sites i and i’ are in contact.
ii’ = (3.1)

O otherwise. or if j — < 3.

Given t.he contact rnap. the pseudo-energv of a sequence is calculated as:

= (3.2)

where c (ab)1<ab<20 are the coefficients of the amino acid pair potentials of Bastolla

et al. (2001).

As crude first efforts, we impose the saine structure over the tree by using the same

contact rnap on ahi sequences, both observed and inferred.



3.2.4 Evolutionary models

In order to build a site-interdependent model directly ai the amino acid level. we first

note that the independent Markov processes operating at each site. specified by a 20 x 20

infinitesimal generator Q. can equivaiently be considered as a single Markov process.

whose state space is now the set of ail sequences of length N. ihere are 20]\T such

sequences, and thus, the matrix of this Markov process will lie a 20N x 20N matrix R:

o if s and s’ differ at more than one position,
R88 (3.3)

Qab if s and s’ differ onlv at site i, s = a and s = b.

with diagonal entries given by the negative sum of the off-diagonal entries. With the

formulation of equation (3.3), it is possible to int.roduce a site-interdependent criterion:

the pseudo-energv hefore and afrer an amino acid substitution. The new matrix R is

then

O if s and s’ differ ai more than one position.
= (3.4)

QabeFs’) if s and s’ differ onlv at site i. s = a and s b.

where acts as a parameter weighting the pseudo-energy difference’s impact on the

rate of substitution. When = 0. the model simplifies to the usual site-independent

model specified in (3.3). However, when 0, the substitution process can no longer

lie decomposed into a set of N independent processes. since the pseudo-energy measure

considers the entire amino acid sequence’. We use the suffix +BAS to indicate the

‘It is conventional practice to express branch lengths in tenus of the expected number of sub
stitutions per site. To obtain such a scaling. the rate matnix. here denoted as R, must be propenlv
normalized. Formally, the normalizing constant is

ZR = _p(s 9)R5 (3.5)

= -(R,) (3.6)
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C model with statistica.l potentials ( 0).

3.2.5 Priors

We treated the pararneters 7T
— (ltb)y<b<20. comprised in the matrix Q, as free param

eters, indicated usiirg the +F suffix. The overail prior structllre used in this chapter is

DiTichtet, 3 -‘ UniJoTm[—5. 5], and UniJorm[O, 100].

3.2.6 Likelihood function

As previously discussed. conventional models generally invoke pruning-based likelihood

calculations (felsenst.ein. 1981). alld compilte a finite-tirne transition probability ma

trix by rate matrix exponentiation. computing the likelihood by summing transition

probabilities for ail possible internai node state configurations. Here. giveil the order

of R (20M x 20A), an equivalent caldulation is flot tractable. As an alternative. Robin-

son et al. (2003) proposed the ilse of a data augmentation (DA) framework, based on

substitution mappings. Given a hvpothesis vector e under model M. the proba

hulitv of going from a given sequence to another over branch j. and through a specific

where the angular brackets (.) represent an expectation with respect to p(s 9). The sum in (3.5)
is over 20” terms, and calculating it explicitly h not tractable. It can. however, 5e approximated
via MCMC sampling based on a sample of K sequences. written as sf1). (2) drawn from
p(s 9) using the Gibbs sampling procedure described in Robinson et al. (2003). Given this sample.
the normalizing constant cari be estimated as

ZR —ZRs(h)s(h). (3.7)
h=1

With this estimate of ZR, the non-zero. non-diagonal entries in R become _QabCO A sim
pler alternative. which we found much more convenient in practice. is to leave R unnormalized, and
rather monitor the actual number of substitutions in the mappings of our sample from the posterior
distribution.
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substitution history cb. can be calculated as

j sj , M)
= (n RsiklsJkrUJke_(i3k_tJk_1)Tt8_1))

x e_(jtjj )T(sj3) (3.8)

N
where T(sjk_1) Z Z Rsk_lsTi represents the rate away from sequence with

i=1

the inner sum being over the 19 sequence states that differ with 3jk1 at position i. and

where r is the rate at site i (but in this chapter. we omit this level of complication.

fixing ail r = 1 for ail i).

The likelihood computations also reqilire the probabilitv of the sequence at the root.

of the tree:

p(so O. M) = e_2o (3.9)

with Z being the associated partition function (normalizing ‘constant”)

Z = fi (3.10)

sllmming over all possible sequences of length N. Assurning hneages evolve indepen

dently. the product of (3.8) over ail branches. aiong with the probabilitv in (3.9). yields

the overali aagmented Ïiketihood function:

2P—3

p(D, I O M) = p(s I O. M) fi p(s. j 3up’ O. M). (3.11)
i=’

3.2.7 Markov chain Monte Carlo sampling

Our MCMC procedure consists of ilsing the Metropolis-Hastings algorithm (Metropoiis

et al.. 1953; Hastings. 1970) to define a Markov chain with the posterior prohability as its

stationary distribution. by updating both mappings and parameters; assuming a current
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state (6. ). an update to a new state (O’. cii) is proposed according to q(&. v. 6’. d/). and

accepted with a probability î9:

t p(qY. O’ D. M) q(O’. ç5’, 6, ) \
‘O = m’rn Ç,1. ). (3.12)

p. O D, M) q(9, . O’. ‘)

Most implementations, our own included. apply MH operators separately on model

parameters and data augmentations. with the DA sampling module written symbolicaliy

as

I O.D

0

As in the case of the PX module described in chapter 2, the effect of cycling over this

module is a sample of parameter vectors distribut.ed according to p(0 D. M), and is

stnctfy equivalent to what we would obtain if we had access to the integrated (over

mappings) likelihood function. We describe the MH operators in detail below.

3.2.7.1 Proposing mappings

Substitution mappings are proposed using a model that assumes independence between

sites. here denoted Q* We set the amino acid relative exchangeabilit to those of the

underlying site-interdependent model, and the amino acid frequencies to the empirical

values observed in the alignment. Under this modeL we used the method proposed by

Nielsen (2002) for drawing site-specific mappings. as part of three MH operators:

BRANcHHIsT0RY: This first type of move randomly selects a hranch j and a set of

positions. denoted collectivelv as BftHs• For each site selected. a new substitution

mapping is drawn using NieÏsens method. given the states at the ends of the
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C branch1. The move is then accepted with a probabiiity given in (3.12). The

corresponding Hastings ratio is:

q(qY.)
—

p(sjj.jj
(313)

—

P(Sij, sij, r. Qj

• N0DESTATE: This second move randomly selects an internai node j and a set

of sites. denoted coiiectivelv as NDST• The move then re-samples the amino acid

states of seiected sites at node j, again using the Nielsen approach. Having re

sampled the states. the move aiso re-samples a substitution mapping for each of

the selected positions along the three branches connected to j. and acceptance of

this overail update is again based on (3.12). The corresponding Hastings ratio is

the same as above. but muitipiied over the three branches in question.

• TREEHIsTQRY: This last move randomly selects a set of sites, derioted as TRHIs.

and re-samples ail integral node states and hranch-wise mappings. As always. the

move is accepted with prohabihty (3.12). and the Hastings ratio is the product of

(3.13) over the tree.

In this chapter, however. we have onlv tested the 3RANcHHIsT0RY and NODESTATE

operators. updating a single site at a time as proposed in Rohinson et al. (2003).

3.2.7.2 Proposing parameter updates

We apphed multiplicative update operators referred to as BRANcHLENGTH: a randomly

selected branch j. as well as the times of each substitution event aiong that branch.

is multiplied by r = T—’12. The Hastings ratio is A Dirichlet operator,

referred to here as the STATI0NARY mechanism. can be apphed to 7T. Finaiiv. ADDITIvE

We make use of Nie1sens suggestion of sampling conditional on there being at least one event in
cases where the states at the ends of the brandi differ.
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operators can be applied to B, which we eau STRucTuRE. For these last two operators.

an additional level of complication arises: evaluating the MII ratio involves the ratio

0f (3.9) for two different parameter values, and thus the ratio of two non-analvtical

normahzing “constants’ is needed.

Robinson et al. (2003) provide an approximation strategy re-irnplemented in this

work. The strategy rests on sampling a set of K sequences, deuoted as (S’’)l<h<I2.

from the stationary distribution of sequences given a third set of parameter values

9. These sequences eau be sampled using the Gibhs sampling method described in

Rohinson et al. (2003)’. For sufficiently large values of K, the importance sampling

argument of Robinson et al. (2003) can be applied to this model to yield

ç-K _2(_3*)E
(h) 7r0

p(s0 I 9’.
e_2’_so

h=1 e s IL
(3 14)

P(So O. M) 7t) ZK e2’_ E5(h) (n /)•

The approximations quality depends on two factors: the value of K (high values im

prove the approximation) and the distance of 8 to both O and O’ (a 9* at the midpoint

hetween 9 and 9’ gives the hest approximation). Robinson et aÏ. (2003) opt to partition

their parameter space into a predefined grid. They then use the grid point 9* this is

uearest to the midpoint of 9 and 9’.

Our protocol is slightlv different. creating new 8*s dynamicallv. always at the mid

point of O and 9’. A new 9* is created whenever the distance (x) between the midpoint

of 9 and 8’, and the nearest 9* is beyoud a predefined threshold (Xmai). In practice. a

limit is set on the number of 9* stored in memorv. Whenever this limit is reached, and a

new O is to be created. one simply writes over the 9* taud the respective K sequences)

that is the furthest away from the midpoint of O and O’. As such. one eventually lias

‘We also tried a slightlv different Gibbs scheme. which perforrned weIl: rather than updating
the states at sites at randorn. we sirnplv perform a full sweep across the sequence. The number of
sweeps is then tuned empirically, for instance. by plotting the autocorrelation function of the sequence
pseudo-energy.
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a “hyper-cloud” of ûs following the O and O’ as the MCMC run progresses. We de

termined empirically the acceptable setting for Xrnar and K, fixing max 0.01 and

K = 1000. However, a larger Xmax and a lower K can be used to obtain faster rough

estimates. Also note that restraining the interval of the uniform distribution used as

the prior over 3 serves to increase the speed of convergence: an overly wide interval

could lead to initial values that are very far from those at stationaritv. which would

require invoking the approximation procedure for p(sç O’. M)/p(so O, M) many times

before convergence.

3.2.7.3 General settings arid implementation checks

As usual, we explored the cail frequency of operators empirically. and the final setting

used here to define a cycle are given in table 3.11. ‘vVe ran the chain for 100.000 cycles.

Table 3.1. MCMC settings used here.

Operator Cali frequency Tuning 6 Tuning

BRANcHHJST0RY 50 NA 1
N0DESTATE 50 NA 1
STATI0NARY 1 5000 5
STRucTuRE 1 0.1 NA
BRANcHLENGTH 5 1.0 NA
BRANcHLENGTH 5 0.5 NA

discarded the first 10,000 cycles as burn-in, and sub-sampled every 50 cycles from the

remaining sample. The MCMC runs require 10-15 days of CPU time on a Xeou 2.4

GHz desktop computer.

When the parameter 3 0, our model simplifies to the site independent JTT+f

model (or PoissoN+F. depending on the exchangeahility parameters chosen). We

In subsequent work. we have found it much more efficient to propose substitution mappings to
several sites at once (say 50). and to use the TREEHI5T0RY move as well.
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Figure 3.1. Stabilization of/3 (when combined with JTT+f) in three different MCMC
runs for the MyolO-153 dataset. Only the first 2000 cycles (with points every 50) are
shown -

tested our implementation with /3 0. and cornpared the resuits with those obtained

using the standard pruning-based sampling method. and found both to converge to

essentially identical parameters and branch lengths at stationarity (not shown). We

also verified that when /3 = O and Q Q*, ail substitution mapping moves are accepted

(since in the case. the MH ratio cancels out).

3.3 Resuits and discussion

3.3.1 Exchangeability parameters in relation to structural fit

ness considerat ions

We first applied our model to the MyolO-153 data set. We perforrned several mdc

pendent runs. starting from different initial parameter values. to explore convergence

of the MCMC. focusing on /3, figure 3.1 shows its evolution over three different chains

starting from different. values. These runs consistentlv stabilize around the sarne values.

Additionally. /3 converges to positive values across ah data sets (table 3.2). possi
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Table 3.2. Posterior mean taud 95% credibility intervals) of .

Q specification Ppi 10-158 Mo 10-153 MYOE4-1 53

PolssoN+F 0.4207 (0.3300. 0.4994) 0.7005 (0.5876. 0.8164) 0.6901 (0.6141. 0.7913)
JTT+F 0.3613 (0.2759. 0.435$) 0.6273 (0.5042. 0.7386) 0.5717 (0.4804. 0.6555)

bly indicating that selection prefers sequences that maintain a. good structural fitness.

Tliese results corroborate with those of Rohinson et al. (2003).

Interestinglv. we note that consistentlv stahilizes at higher values when combin

ing the potential to the Poissox+f model than when combining with the JT1+F

model. For example. for the MyolO-153 data set. the mean posterior values (and 95%

credibilitv intervals) obtained are B = 0.7005 (0.5876. 0.8164) auJ B = 0.6273 (0.5042.

0.7386) when ilsing PolssoN+f auJ JTT+F respectively. Being empirically derived,

the JTT matrix lias a considerable amount of prior hiochemical information regarding

the amino acid substitution process. Accordiugly. these results seem to indicate that.

despite being formallv site independent. the JTT matrhx implicitl captures. to some

extent. the average effects of dependencies between sites. measured by the potential.

Hence, the potential’s weighting 6) need not he as high when iising the JTT matrix

in comparison to that when using the naive PoIssoN model.

3.3.2 Amino acid stationary probabilities and brandi lengths

The substitution process. as specifled in (3.4). can he viewed as a composition of two

lavered elernents: 1) a process proposing substitutions. according to Q. and 2) a process

selecting substitutions, by accepting or refllsing according to e8(s’). Consequently.

the amino acid stationarv probabilities are those of the substitution process in the

absence of the et3t
—EV,)

Jbctor. The potential itself wilÏ have an influence on amino



64

0.2
lnfcn-ed stationaines (13>0)

lnduccd frequencies (13>0)

0.16 lnferred stationaines (13=0

Induccd ftcqucncies (13=0

Empirical frcqucncics —. — — —

0.12
I I

—: 11 I

e:!,

008

004
1’

• :1:’:’:’:
• •:.I’:.I’:t •:‘ •:. •... ‘:‘ ‘:. —.. ‘:‘ ‘:i

‘;I; ; ; ;I ‘; ;

A CD E F GH I KLMNP QR S TVWY

Figure 3.2. Mean values inferred for the ir parameters. as well as the illduced amino
acid frequencies. and the empirical arnirio acid frequencies.

acid frequencies. tlierebv creating an irtterplav between /3 and ir. A hetter measure of

the true (or actilal) prevalence of ea.ci of the 20 amino acids is obtained by lookillg at the

indnced amino frequencies in a set of sequences sampled from the stationary probabilitv

(see eqn. 3.9) implied hv O. To monitor the induced frequencies. we found it convenient

to simply look at the relative frequencies of amiio acids in the sequences sarnpled given

as this pararneter vector is alwavs in the viciiitv of the O to O’ proposai. Wlien

/3 is fixed (/3 = 0), sequences are directlv sampled according to ir. and the stationary

prohabilities and induced frequencies are necessarily equivalent (fig. 3.2). Whei 8 is a

free parameter (/3 > 0). the rr values inferred often differ widely with those when /3 = 0.

However. we found that the induced frequencies. with /3 > O have oui rnild differences

with those when /3 0 (or with the empirical frequencies observed in the aligrirnent;

fig. 3.2).

Likewise. brandi lengths correspond to the expected number of substitutions per

site proposed upstream of the selection step described above, and therefore do not

reflect the true brandi lengths iiduced liv the model (i.e., the number of substitutions

havmg actuaiïv occurred once the statistical potential lias been taken into account).
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As expected. we found t.hat these two measures of brandi lengths do not correspond

when /3 > 0, with the induced number of substitutions eousistently lower. Using the

MyolO-153 data set as an example, we found that the tree length inferred with /3> 0

was 1.0874 (0.8926, 1.3045), whereas the induced number of substitutions per site was

0.7779 (0.7255, 0.8434), a value only slightly higher to that with /3 0, at 0.767$

(0.7190. 0.8235).

3.3.3 Sensitivity to tree topology

Using the Mo-153 data. set, we ran a MCIVIC under each of the three possible tree

topologies. We found that pararneter estimates under each topology were essentially

identical (not shown). However. we did find that each tree was clearly distinguishable

utilizing the I\’ICMC methodologv: figure 3.3 shows the augmented likelihood factor
2P—3

L = fl p(s, j s. O. M) in a window of the MCMC. The correct tree, grouping
j=1

the two whales together and the two turtles together. is indeed favored.

It should be noted that these are not true likelihood-based comparisons, which

would require computing the factor p(so O, 1i), as well as the integral over all possi

600

400

300

200
0 5000 10000 15000 20000

Cycles



66

ble substitution mappings. A treatment of the tree topologv as a free parameter may

be technically complex. The main complication arises from the fact that a rearrange

ment of the tree means that the current substitution mapping may not be compatible

with the newly proposed topology. This raises the difficuit problem of devising up

date mechanisms that simultaneousl change the topology and the substitution history.

while having a good acceptance rate—a task that would certainlv be computationally

very demanding.

3.4 Conclusions

The basic model proposed here can be viewed as having two layers: one laer of un

derlying parameters that assume site-independence. specifled by Q. and a second layer

accounting for site interdependence. weighted using parameter S. We have found tue

value of to he lower when using a more reasonahie matrhx Q (i.e.. JTT+f) than

when using a less reasonable one (i.e.. PoIssoN), giving some indication that both

lavers interact in some wav.

Further contrasting is needed. for instance, we have oulv cornbined the potential

with JTT+F and PolssoN+F, whereas several other combinations are obviously pos

sible (e.g.. combining the potential with a GTR matrix, or with +F settings). Also. it

would be interesting to investigate the impact of different existing statistical potentials

(e.g., Miyazawa and Jernigan. 1985). In ail cases, these endeavors are focused on the

first step of the Bavesian frarnework. We now need quantitative measurements of the

statistical merits of these diffèrent choices, which we treat in the next chapter.



Chapter 4

Assessing site interdependent

phylogenetic models

4.1 Introduction

The numerical means of applying general site-interdependent models introduces a wide

spectrum of possible model configurations: the MCMC procedures allow for a broader

ciass of modeis than previouslv proposed rnethods of incorporating interdependence

(e.g.. Felsenstein aiid Churchill. 1996; Jensen and Pedersen. 2000; Pedersen and Jensen.

2001: Arndt et al.. 2002: Siepel and Haussier. 2004). because the substitution process is

effectively defined in the space of sequences. In other words. invoking sorne sequence fit

ness criterion could—iu theory—accommodate a total interdependence across ail sites.

An ideal perspective would include full kuowledge of the posited fitness laidscape of

the sequences under study, forming the hasis of ail evoïutionary inferences. In practice.

however. it follows that some proxies for sequence fitness may be better suited than

others, alld that their application may produce different results depending mi the spec

ifications of the formaily site-independent componellts of the model. This raises the

question of choosing the most relevant combination for a particular dataset.
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As previouslv discussed. in the Bavesian paradigm. model evaluations constitute the

third step of the development cycle. and the basic strategies cornmonly used to engage

this step can be categorized along two broad axes. Tire first is used to compare the

fit of alternative models. and. as previouslv mentioned. is often achieved by computing

tire Bayes factor (Jeffreys, 1935; Kass and Raftery. 1995). TIre second. known as

posterior pTedictive checking (Rubin, 1984; Gelman et al., 1996). is used as an absolute

test. characterizing discrepancies between features of true data and data simuÏated

under tire model of interest. Botir strategies have become widely used for tire study of

pirylogenetic models (Sullivan and Joyce. 2005).

In tire present cirapter. we explore these model evaluation strategies witirhr tire

site-interdependent framework, in order to conduct our first pirenomenological bencir

marking of statistical potentials in tins new evolutionary context. From a technical

standpoint. posterior predictive checks require notiring more tian posterior sampling

and simulation of data replicates under tire site-interdependent model. Tic calculation

of the relative fit of different models. iowever. requires more elaborate methods. since

tire models do not allow for a closed form computation of tire likelihood. Indeed, in tire

previous study by Robinson et al. (2003), as well as our own first explorations of the

last cirapter, the importance of explicit site-interdependent structural considerations

was assessed based on tIre plausibulitv of associated parameter estimates. Such model

assessments remain qualitative; tiey do not allow for selection between alternative fit

ness proxies, or even for a quantified comparison against site-independent models.

Here. we propose tire use of a numerical technique for tire evaluation of Bayes factors.

vielding quantitative model comparisons under tire fully site-interdependent franrework

originally proposed by Robinson et al. (2003). Summarized in cirapter 1, tire method

is conri;ronly known under tire names of thermodynarnic integration. path sampling. or

Ogata s rnethod. Tire tecirnique iras been used extensively in statistical pirysics for
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evaluating (the ratio of) partition functions (for instructive reviews. see Neal. 1993:

Geiman. 1998) and more recently for tire study of phylogenetic models (Lartillot and

Phulippe. 2004, 2006). We derive an adaptation of tire method, which, in combination

with previoush- proposed techniques (Lartillot and Philippe. 2006). eau provide an

overail ranking of models, with or without site-interdepeirdent criteria.

We have implemented these model assessrnent strategies and applied them on real

protein datasets. comparing the relevance of two sets of statistical potentials (Miyazawa

and Jernigan, 1985 Bastolla et al., 2001), combined with several different and well

known types of models of amino acid sequence evolution. By contrasting different

model configurations. we have evaluated the relative contribution of each conrponent

to the overail model fit.

4.2 Material and methods

4.2.1 Data

We used tlrree data sets: fBP.O-363. PPK1O-158, and I\’1yo60-153. As in tire previous

chapter, tire contact map is derived from a reference structure. determined by X-ray

crystailography for one of tire sequences included in tire dataset (PDB accession numbers

lAND. 1HKA and 1MBD for FBp2O-363. PPKJO-158 and Myo6O-153 respectuveiy).

4.2.2 Statistical potentials

We tried the statistical potentiais of Bastolla et al. (2001) and of Miyazawa and Jernigan

(1985). Both are based on a contact map of tire forrn given in (3.1). Recail that Bastolia

et al. (2001) define a contact as two arnino acids with any heavy atours (atoms other

than hydrogen) withill 4.5 A, whereas Miyazawa and Jeriligan (1985) consider side-chain

centers witlrin 6.5 A. Aiso note that Bastolia et al. (2001) ignore contacts between amino
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acids within 2 positions along the sequence. whule Miyazawa and Jernigan (1985) ignore

contacts between immediate neighbors in the sequence. As in the previous chapter, we

impose the same protein structure over the tree bv applying the same contact map to

ail sequences considered throughout the inference.

4.2.3 Evolutionary models

We huild on the previollslv mentioned evolutionary models. combining the potentials

with site-independent amino acid formulations. In the sirnplest case. both equilibrium

frequencies and exchangeahility parameters are fixed to llniform values (referred to as

PoIssoN). We also ftxed equilibrium frequencies and exchangeability parameters to the

empiricallv derived values of Jones et. al. (1992b) (written as JTT). Other alternatives

might. consider equilibrium frequencies as free parameters (designated as +f), or hoth

equilibrium frequencies and exchangeability parameters as free (indicated as GTR). We

also use the +F settings (Yang. 1993. 1994), based on the parameter expansion sampling

methods described in chapter 2. To ail of these different configurations. we applv either

the potential of Bastolla et. al. (2001) (indicated as +BAS) or the potential of Mivazawa

and Jernigan (1985) (indicat.ed as +MJ).

4.2.4 Priors

We used the following priors:

• ) Exporientiat. with a mean determined by a hyperparameter t’, itself endowed

with an exponential prior of mean 1;

• r Gamma. with a shape’ hyperparameter o. in turn endowed with an expo

nential prior of mean 1 (for notational sirnplicitv in this chapter. we include r in

the generic 9);
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• p Dirichtet(l. 1. . 1):

• n ‘ DTchÏet(1. 1,. . . 1);

• /3 (jTnjforrn[_t3 8mai]. where. unless stated otherwise. /3max

4.2.5 Computing Bayes factors

In the present application, the thermodvnamic integration method rests in defining a

continuons path connecting a standard site-independent model with the model including

the sequence fitness proxy, i.e. the set of statistical potentials. To do so. we make use

of the fact that when /3 = O, the site-interdependent model collapses to the usual site

indepeiident model. From the partition function formalism (Appendix B). we filld that

for a particular value of /3. the derivative of the logarithrn of the marginal likelihood

with respect to 3 gives:

3lnp(D /3)
—

(3lnP(D. I 6.0))
(41)36 — 3/3

where .) represents an expectation with respect to the posterior distribution over 9

and (we momentarily omit the dependence on M from the notation. considering it

as implicit). Based on a sample (0(.
)I<h<I:. obtained via the Metropolis-Hastings

algorithm. expectations over the posterior prohability distribution can be estimated for

any value of /3 using the standard Monte Carlo relation:

(3lnP(D. !30)) i- 3lnp(D.(h1) 6,e(h))
3/3 K-’ 3/3

Our quasi-static procedure then consists of sampling along a path linking the standard

site-independent model, /3 0, to some arbitrary point /3 = x, by slowly incrementing

/3 hy a small value after a set of MCMC cycles. The J1th draw of our sample.

(9(h)
‘)1<h<K, is associated with /3h l1ere /3 = O. 8A = x and V/i. O h < K.
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t3h-1-1 —
B. Integrating over the interval [O. x] cari then lie estimated:

1p(D/3)
— [xalnp(DI/3)d

43p(DI/3o)
— L /3
= fxalnp(DI46)

(4.4)

1 ialnp(D,(°)
— K2

+K_1 8lnp(D.)

h=1

1 6lnp(D (K)
t3K.

6(K))

+ (4)

Equation (4.5) provides an estirnate of the logarithrn of the Bayes factor for the model

including statistical potentials. with /3 = x. over the site-independent model, /3 = O.

The value of x is arbitrary. However, with this procedure. we can monitor the Bayes

factor anywhere we choose along the dimension of /3. Also note that. using the sarne

sample. lnp(D /3K’) — lnp(D I /3o) cari be computed for any value K’ (O < K’ < K).

In other words, the curve of the 10g marginal likelihood along /3 cari be estimated (fig.

4.1). In practice. since the high-likelihood region is restricted to a very small proportion

of the admissible values of /3, the integration procedure can he constrained to a small

and specific interval; one cari consider that outside this specific interval the marginal

likelihood given /3 is O. Thus, exponentiating and integrating this curve yields the

overall Bayes factor between the model with statistical potentials (M1) against the

model assuming independence (M0), with the Monte Carlo estimate derived as

— f p(D /3)p(i3)d3
— p(D /3o)

(4.6)

f p(D /3)
= J p(D I

5)P(/3)d/3 (4.7)

- p(DI/3h)
48

— p(Dj/3o)Xi5 (.)
Ii=1



73

where J is the interva.l size of the uniform prior on 3. and hence 5/3/I is the density of

the prior contained between each successive j3 step of the quasi-static procedure.

The analogy with thermodynamics here is that the inverse of cari be thought of as

a ‘site-interdependence temperatur&’. with 3 0 effectivelv “melting” out ail structural

information. Alternatively. when 3 > O the models cari be said to 5e “anneaied” into

site-interdependence. from this perspective, plain I\/ICMC runs are in fact sampling

the appropriate temperature for the particular sequence fitness proxy1.

\Ve aiso use this anaiogy in referring to our tuning of tire thermodynamic integra

tion, which we explore by applying the procedure in differeut directions. Specifically,

anneating integrations work bv first equilibrating a MCMC with 3 = 0. followed by

a slow and progressive increase to t3 = x. If tire value of 3 is increased too quickly,

the MCIvIC mn will not have sufficient time to equilibrate. alwavs dragging hehind

configurations from preceding cycles with each increment of 3. Conversely. meÏting

integrations work hy equilibrating a MCMC at 3 = s and slowing decreasing to 3 = 0.

Performing a bi-directional check. i.e. both annealing and melting integrations, forms

the basis of our empirical exploration of the IVICMC settings needed for refining the

estimation procedure (fig. 4.1).

Obviously, obtaining precise integrations is computationallv more challenging when

applying tire statistical potentials to models with greater degrees of freedom. for exam

ple, using I\4Yo6O-153, figure 4.la shows that the annealing and melting integrations,

applied under JTT+BAS. are very similar for fast runs (63 = 0.005 and K = 100)

requiring about 2 hours of CPIJ time on a Xeon 2.4 GHz desktop computer. Slower

runs (&6 = 0.0001 and K = 5. 000), requiring about 2 days of Cpu are essentially

indistinguishable (fig. 4.lb). When applving the integration under JTT+F+BAS. how

ever. a clear discrepancv is observed hetween fast (approx. 30 hours. 63 = 0.001 and

This is also the reason we use the sarne notation for this pararneter as we do for the model
switch thermodynamic integration morphing parameter. under site-independent models as described
in chapter 2.
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Figure 4.1. Bi-directional integrations along i3 for JTT+BAS (a and b) and
JTT+F+BAS (b and d) performed with fast’ ta and c) and slow’ (b and d) set
tings using the Mo6O-153 dataset. The trace plots illustrate the empirical tuning of
the thermodvnamic MCMC sampling, which is more chaflenging for the model with
greater degrees of freedom (bottom).
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C K = 1. 000) annealing and melting runs (fig. 4.lc). Nevertheless. by tuning the eau

frequencv of the various I\’Ionte Carlo operators. the step size of the quasi-static scheme.

and the number of cycles hetween eaci increment. the integration settings eau be ad

justed (6/3 = 0.0005 and K = 20, 000) to obtain precise Bayes factors estirnates within

about 15 days (fig. 4.ld).

Our integration scheme along 3 allows us to compute the Bayes factor between

a site-interdependent model and its site-independent counterpart. We also need to

compute Bayes factors hetween site-independent modeis. which we do using the model

switch integration method described in Lartillot and Phulippe (2006), and summarized

in chapter 2. For example. in assessing the model GTR+BAS. we first perform the

integration along /3, giving the log Bayes factor of GTR+BAS against GTR. Then.

applving the rnodel-switch method. we compute the iog Bayes factor between GTR and

PoIssoN. With both estimates at hand. we calculate the log Bayes factor of GTR+BAS

against PoIssoN. simply using the additive quality of logarithms:

p(D I GTR+BAS) p(D j GTR+BAS) p(D I GTR)
in

p(D PoIssoN)
in

(D I GTR)
+ ln

POISSON)
(4.9)

In this way. it is possible to observe the overali ranking of models for a given dataset.

by having all Bayes factors against the simplest PoIssoN model. Note that error of the

integration procedures is cumulative in equation 4.9: for succinct comparisons of models.

we report the mean of the highest and lowest values obtained using bi-directional checks

(table 4.1). For the simpler models, the error eau he reduced to Iess than one naturai

iog unit. whereas the more challenging models can lead to an error ±4.

The following protocol summarizes:

• For a particular model setting. run a quasi-static thermodynamic integration.

estimating the log marginal iikelihood curve along /3 (applying the Monte Carlo

estimate given hy eqn. 4.5);
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• Exponentiate and integrate the resulting curve to estimate the overail Baves factor

between the site-interdependent model and the underïying site-independent model

(applying the IVionte Carlo estimate given by eqn. 4.8);

• Given the marginal likeliliood comparisons between site-independent models. es

timated using the model-switch scheme described in Lartillot and Philippe (2006)

(as well as in chapter 2). compute ail Bayes factor with respect to PoissoN (ap

piving relations analogous to eqn. 4.9).

4.2.6 Posterior predictive re-sampling

The sampling techniques used here are particularly well suited to performing posterior

predictive checks. as described in Nielsen (2002). A posterior predictive scheme is based

on a simulation procedure, which consists of drawing a sequence from the stationary

prohability written in (3.9) under a given 6 e, and simulating a substitution mapping

on the branches of the tree to generate a replication of the data—in other words. these

rnappings are unconstrained to any states at. the leaves of the tree (Nielsen. 2002).

The simulation procedure is repeated on each successive parameter values of the initial

MCMC sampling performed on the true data.

Given a statistic of interest, posterior predictive checks then consist in comparing

the value of the statistic ohserved on the data, with the distribution obtained on the

replicates: a discrepancv indicates that the model does not adequately account for the

phenomena summarized by the statistic. Here. our statistics are not exactly cornputed

on the data. but on mappings sampled from their posterior distribution. We refer to

the substitution histories obtained from simulations as predictive mappings, in contrast

with what we cali the “obserued” mappings. which are compatible with the truc observed

data. Note. of course, that these latter mappings are not actually observed, but rather

constitute the data augmentation step of the MCMC methods.
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To explore whether a model eau explain the level of rate heterogeneity of a given

dataset, we compared the variance in number of substitutions across sites. calculated

based on the nimber of sllbstitutions counted at each site in predictive and observed

mappings. This particular statistic was ised by Nielsen (2002) as an example demon

strating the utffity of a. mapping-based framework.

Also, in order to observe how wefl a model captures amino acid exchange propen

sities, we counted each of the 190 possible types of exchange in mappings to generate

what we refer to as the residue exchange distribution. We then cOmpllted the Euclidean

distance between predictive and ohserved exchange distributions for each sample point

from the posterior distribution.

4.3 Resuits and discussion

4.3.1 Bayes factors

We applied the thermodvnamic integration procedures to ah datasets. and for ah model

combinations described in this chapter. The resulting Bayes factors. computed against

the simplest model (POISSON), are reported in table 4.1.

4.3.1.1 Overali fit of site-independent models

The rnost. favored site-independent model is JTT+F for FBP2O-363 and PPK1O-158. and

JTT+F+f for IVIyo6O-153. This is somewhat expected. The POISSON-based models

are obviously unrealistic, since the exchangeability between amino acids is clearly not

uniform, hence giving support to JTT-based models. Also. allowing for rate heterogene

ity is known to nearly aiways improve the model fit (Yang. 1996: Buckley et al.. 2001:

Posada and Buckley. 2004). as is the case here. The equilibrium frequencies of JTT

appear to he suitable for the two smaller datasets. in as much as the diniensiona.lity
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Table 4.1. Natural logarithm of the Bayes factor for ail modeis studied in this chapter,
with POISSON used as a reference (the best site-independent models for each dataset
are emphasized in italics. whereas the best overail models are emphasized in bold).

Model FBP2O-363 PPK1O-158 MYo60-153

POISSON O O O
P0ISSON+BAS 10 16 24
PolssoN+MJ 6 7 1$

PolssoN±F 103 34 70
PolssoN+F+BAS 158 78 142
Po;ssoN+F+MJ 144 65 129

PoIssoN+f 135 53 138
PolssoN+f+BAS 138 69 162
PolssoN±f±IvIJ 137 58 156

PolssoN±F±F 238 89 207
Poissox±F+F±BAS 296 139 280
PoIssoN±F+F+MJ 285 122 267

JTT 380 144 368
JTT+BAS 391 155 382
JTT±À’IJ 386 150 379

JTT-f-F 365 137 389
JTT+f+BAS 397 159 427
JTT+F+MJ 389 145 417

JTT+F 529 195 499
JTT+F+BAS 540 206 512
JTT+F±MJ 535 200 508

JTT±F+f 513 186 513
JTT+F+F+BAS 546 216 551
JTT+F+T+MJ 539 203 537

GTR 310 102 347
GTR+BAS 346 139 391
GTR+IvIJ 338 121 383

GTR+f 434 147 466
GTR+f+BAS 471 185 512
GTR+f+MJ 462 168 501
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penalty renders a specific adjustment of these parameters unreliable. for Myo6O-153.

however. such a dataset-specific adjustment of equhlibrillm frequencies seems worth

whule. The GTR matrix is alwavs rejected over the JT1-based models. most likely

since the data sets considered are much too small to reliahlv infer the 189 additional

free pararneters introduced by this model. Note. however. that the GTR-based models

are stili far better than POISSON-based models.

4.3.1.2 Overail fit of site-interdependent models

Models including statistical potentials are always favored over their site-independent

counterparts, under ail configurations explored here. This heing the case for ail three

proteins studied suggests that such an improvement in fit is general. Nevertheless. the

improved fit observed when inclilding statistical potentials is rnild. when compared to

the overall fit of rich site-independent models. Specifically. the use of an empirical

amino acid replacernent matrix and a gamma distributed rates modei both outperform

the sole use of statisticai potentials.

4.3.1.3 Interplay between model configurations

Interestingly. the relative improvement brought about by the potentials is very much a

function of the site-independent components of tlie models. In particular. the ameÏio

ration in model fit when applying statisticai potentials. as well as the equilibrium value

of under plain MCMC sampling (table 4.2), is noticeabiy iower when the n-vector

is flxed. which is the case irrespective of the other site-independent settings. luis is

perhaps best understood hv observing the stationary prohahilitv distribution written

in (3.9). Whule the stationarv distribution is given hy n under the standard notation

of continuous-tirne Markov chains. under the site-interdependent models studied here

it is given bv a combination of n and the exponentiated pseudo-energy factor. This
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Table 4.2. Equilibrium values of 3. Mean posterior values (with 95% credihility inter-
vals) under ail model combinations descrihed in the text.

iViodel FBP2O-363 PPK1O-158 IVivo 60-153

PolssoN+BA$ 0.107 (0.0521, 0.162) 0.249 (0.176. 0.321) 0.268 (0.203, 0.330)
PolssoN+MJ 0.0074 (0.0001, 0.0150)) 0.0279 (0.0163, 0.0395) 0.0423 (0.0307. 0.0539)

PoIssoN+F+BAS 0.402 (0.335, 0.474) 0.462 (0.378. 0.549) 0.637 (0.543, 0.725)
PolssoN+f+MJ 0.0658 (0.525, 0.0787) 0.0724 (0.0553. 0.0905) 0.1086 (0.0890, 0.1295)

PolssoN+F+BAS 0.0989 (0.0509, 0.158) 0.268 (0.197, 0.350) 0.239 (0.169, 0.332)
PolssoN+F+MJ 0.0058 (0.0001.0139) 0.0296 (0.0164, 0.0423) 0.0397 (0.0202, 0.0501)

PolssoN+P+P+BAS 0.439 (0.373. 0.511) 0.564 (0.463, 0.665) 0.717 (0.601. 0.825)
PolssoN+F+F+MJ 0.0811 (0.0611, 0.0953) 0.0983 (0.0786, 0.1198) 0.1406 (0.1147, 0.1663)

JTT+BAS 0.176 (0.126, 0.224) 0.264 (0.193, 0.332) 0.240 (0.167, 0.318)
JTT+IVIJ 0.0231 (0.0144. 0.0316) 0.0368 (0.0234. 0.0499) 0.0423 (0.0273, 0.0560)

JTT+F+BAS 0.305 (0.232. 0.369) 0.378 (0.228. 0.464) 0.501 (0.409. 0.598)
JTT+F+MJ 0.0449 (0.0335, 0.0577) 0.0722 (0.0562, 0.0894) 0.0816 (0.0630, 0.1014)

JTT+F+BAS 0.177 (0.130. 0.231) 0.277 (0.206. 0.346) 0.244 (0.170. 0.321)
JTT+f+MJ 0.0234 (0.0149, 0.0320) 0.0391 (0.0254. 0.0531) 0.0424 (0.0276, 0.0561)

JTT+F+P+BAS 0.333 (0.264. 0.413) 0.478 (0.368. 0.582) 0.575 (0.465, 0.685)
JTT+F+F+IvIJ 0.0541 (0.0407. 0.0688) 0.0724 (0.0519. 0.0943) 0.0975 (0.0715, 0.1197)

GTR+BAS 0.433 (0.351. 0.508) 0.511 (0.412, 0.608) 0.625 (0.505. 0.745)
GTR+MJ 0.0680 (0.0504. 0.0854) 0.0777 (0.0574. 0.0999) 0.1148 (0.0901, 0.1402)

GTR+F+BAS 0.440 (0.362, 0.513) 0.546 (0.442. 0.649) 0.679 (0.563, 0.792)
GTR+P+IVIJ 0.0791 (0.0607, 0.0910) 0.0929 (0.719. 0.1171) 0.1228 (0.0961, 0.1590)
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forces a re-interpretation of the usual meaning given to u: rather than representing

the amino acid equilibrium frequencies. these parameters should be viewed as “chemi

cal potentials” associated to each residue. and whose effect is combined to that of the

statistical potentials in the final amino acid equilibrium frequencies. as discussed in the

previous chapter. from this perspective—related to random energy approximations

(Shakhnovich and Gutin. 1993; Sun et al., 1995; Seno et al., 1998)—fixing the values of

u. to uniform values (in the case of POISSON) or to the JTT values. effectively prevents

the model from compensating for the coupling to the exponentiated pseudo-energy fac

tor, and thus leads to a low support for the site-interdependent models. Indeed, while

the +f settings were rejected in favor of JTT for FBP2O-363 and PPKJO-158 under site

independence, when invoking the statistical potentials. this increased parameterization

seems favored.

Also of interest. we find that the relative improvement brought about by the po

tentials is more important when using POISSON-based models than when using a JTT

based models. This is consistent with the fact that the JTT matrix inherently accounts

for protein structure features, by assigning greater exchange propensities between amino

acids sharing various physico-chemical properties. In other words, explicitly account

ing for site-interdependencies due to tertiary structure requirements is more important

when using the naive POIssON-based model than when using the more informed JTT

hased model.

When invoking the GTR configuration. the potentials give a greater improvement in

fit than when applying the JTT settings. Nevertheless. site-interdependent GTR-based

models are stiil poorer for these small datasets than the JTT-based models.

The use of a +F model seems to give an essentially additive improvement in model

fit. with little. or no interaction with other model configurations. Since the statistical

potentials could impact directly on site-specific rates, tl;is resuit is unexpected; the lack
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of interaction in itself may be indicative that the potentials do not, in fact, acknowledge

significant rate heterogeneity.

4.3.1.4 Comparison of statistical potentiaLs

We find that for these applications the potentials of Bastolla et al. (2001) and Miyazawa

and Jernigan (1985) receive similar support, with +BAS models mildly favored over

+MJ. The comparable ment of these potentials is somewhat expected; both work with

a similar contact-hased protein structure representation. The fact that +IVIJ models

receive lower support than +BA$ models may be a consequence of the over-simplified

quasi-chemicat approximation used in the derivation of tlie potentials of Miyazawa and

Jernigan (1985), or to differences in the contact definition itself.

4.3.1.5 Sensitivity to the prior on t

It is common practice. when assessing a new class of models, to evaluate the influence

of the prior on the resulting model fit (Kass and Raftery, 1995). Here, we focus on the

distinguishing feature of our model: the prior on 3. Note that the trace plots shown

in figure 4.1 display, up to an additive constant, the marginal likelihood of the model

with successively flxed to each value along the integration procedure. Treating as

a free parameter requires that we define a proper prior prohability distribution. over

which these curves are averaged (eqn. 4.8). Since little is known regarding the usage

of statistical potentials in this context, we follow the practice of assigning a bounded

uniform prior, and testing empinically that the posterior distribution of 3 is well within

these bounds (Robinson et al., 2003).

It should be noted that the two sets of potentials studied here are not scaled equiv

alently. which leads to different temperature factors at equilibnium—the potentials of

Bastoïla et aL (2001) lead to higher values of 3 (table 4.2). This means that ap
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Figure 4.2. Influence of the interval size (I) of the uniform prior distribution for /3 on
the calculated Bayes factor. Here, the models being cornpared are JTT+F+F+BA$
against JTT+F+f, applied te Mo6O-153. Two thresholds are marked on the graph.
The first (leftmost) indicates the point beyond which JTT+F+F+MJ (with prior on
/3 [-5. 5j) is favored over JTT+F+f+BAS. The second indicates the point beyond
which JTT+f+F is favored over JTT+F+F+BAS.

piving the same urilforrn prior on 3 under +BAS and +MJ models amounts to giv

ing favor te the potentials of Bastolla et al. (2001): looselv speaking. the differences

in scaling make the space of admissible values for /3”appear” larger to ±MJ mod

els. To illustrate this problem. we performed a simple exploration of the influence of

the size of the interval (I) cf the uniform prior on /3. Using the same sample, tlie

Monte Carlo approximation given by (4.8) can be re-computed for different interval

sizes. For example, figure 4.2 shows the log Bayes factor comparing JTT+f+F+BAS

and JTT±f+f as a function of the interval size I. As I increases. the densitv of

the prior contained in each increment of the quasi-static procedllre decreases. lead

ing to a lower support for JTT+f+F+BAS. When I reaches an order of magnitude

around 106, the JTT+F+F+MJ model, with prior on /3 [-5. 5]. becomes favored

over JTT+F+F+BA$. Moreover. when I reaches an order of magnitude 1027. the

JTT+F+F becornes favored over the site-interdependent model. This illustrates a fun-
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damental theoretical consequence of the Bayesian paradigm: model rankings can change

by redefining the space of admissible parameter values (the prior). In the present case.

this means that no matter how strong the signal for site-interdependence. their exists

an interval size I for the uniform prior on i3 sllch that the site-independent model is

favored. an example directly related to the so-called Jeffreys-Lindtey para dox (Lindley.

1957; Bartlett. 1957; Lindley. 1980).

In practice. the resulting difference in dimensionality penalty does not appear prob

lematic in the present case: the potentials do not differ drastically in scaling. and the

maximum marginal likelihood along was always greater for the potentials of Bas

tolla et al. (2001) than for those of Miyazawa and Jernigan (1985). For example. for

MyoGO-153 under the modeÏ JTT+F+F+BAS. the maximal point along the marginal

likelihood curve gives a log Bayes factor of 553. whereas under JTT+F+F±MJ tue

maximal point gives 540.

For this particular comparison. one simple alternative would be to re-normalize

the potentials to an equivalent. scaling. Yet. this solution would stili not be applicable

when comparing sequence fitness proxies based a fundamentallv different rationales.

In the longer run. non-uniform priors could he used. particularlv as more datasets

are analyzed: Lempers (1971), for example. suggested setting aside some datasets for

constructing proper priors to be used in subsequent analyses. Along these lines. we

are dllrrently devising other forms of statistical potentials. with each having the same

overall temperature scaling (Kleinman et al.. 2006).

4.3.1.6 Permutations checks

Overall, the pairwise contact pot.entials studied here appear inadequate: given the choice

between the sole use of statistical potentials and the standard site-independent models.

one would opt for the latter. Yet. a signal for site-interdependence is clearly detected.
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Perhaps the simplest check that eau be done when constructing a model accounting

for a particular signal. is the evaluation of the model’s performance when deliberately

removing that signal from the data. Foliowing Telford et al. (2005), we explore this

through simple permutation tests. whereby we swap the positions of a percentage of

random pairs of columns in the aiignment. Such permutations have the effect of blurring

the structural signai. Indeed. the tests can be viewed as a randomization of the contacts

in the contact map. We defined four levels of randomization. swapping the position of

25, 50, 75, and 100% of colllmns. For each randomization, we computed the Bayes

factor in favor of the site-interdependent model. Given the computational burden. we

performed onlv three replicates for each randomization level.

We performed these permutation checks using the My060-153 dataset, comparing

the iog Bayes factor of PolssoN+F+F+BAS against PolssoN+F+F (this is the case

givillg the greatest improvement in model fit when applying the sequence fitness proxy).

As expected. the support for site-interdependent considerations is a decreasing function

of the percentage of randomization. essentially dropping to zero for a fully pernnited

colurnn ordering (fig. 4.3). Also note that each replicate randomization gives slightlv

different resuits; evidently. the interdependencies hetween different positions of a protein

are not ail equivalent.

This test piainiy iliustrates the distinguishing feature of the models in simphstic

terms: site-interdependent modeis give meaning to the order of amino acid coiumns in

the aiignment.

4.3.2 Posterior predictive re-sampling

Two of the most fundamental patterns of amino acid sequence evoiution are 1) the

heterogeneity of substitution rates across sites and 2) the heterogeneitv of amino acid

exchange propensities. Both of these heterogeneities couid be effects induced b struc



86

0 80

70

60

50
o

40

30

20

10

O
0 25 50 75 100

Percentage ofrandomly swapped coiumn positions

Figure 4.3. Permutation checks randomizing the order of coiumns in the aiignrnent.
The log Bayes factor is estimated between PolssoN+F+F+BA$ and PoIssoN+F+f.
for three repiicates at each randomization level. A une joining the mean values at each
randomization level is drawn as a visual aid.

tural constraints. and. hence. couid he accounted for—at least in part—b the sequence

fitness proxy. However. accommodating rate-across sites variations (+F) and ilsing an

empirical amino acid repiacement matrix (JTT) also accounts for these heterogeneities.

As such. the best model ohtained for ail three datasets (JTT+F+f+BA$) seemingiy

corresponds to a redundant configuration. b further explore this point. we have applied

simple posterior predictive checks, as described in the material and methods.

4.3.2.1 Rate heterogeneity

Under a model assuming uniform rates across sites, and if there is rate variation in the

dataset considered. the observed rate variance is likely to depart significantlv from the

predictwe rate variance; b the definition of the model. the predictive rate variance will

tend to be very low. This is indeed the case, as can be seen from figure 4.4a. The

extreme discrepancv between observed and predictive rate variance is in itself enough

to reject. the uniforrn rates model (Nielsen. 2002). Comparing figures 4.4a and 4.4e

shows that using the potentials of Bastolla et al. (2001) essentiallv leaves the observed
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posterior distribution. under the JTT+F (a), JTT+F±F (b). JTT±F+BAS (c) and
JTT+F+f+BAS (d) models (using IVIo 60-153).
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rate variance unchanged. and the predictive rate variance is only slightly higher than

the simple model assuming uniform rates—the mean predictive rate variance increases

from 2.95 in 4.4a to 3.40 in 4.4e.

In contrast. (fig. 4.4b). under the ±f modeL the ohserved rate variance is even

greater than under the uniform rates model. As eau be appreciated graphically. aud

according to the calculated Bayes factors, an explicit treatmeut of rate variation (+F)

gives a better correspondence hetween model and data. with the predictive distribution

centered on the ohserved (fig. 4.4b and 4.4d).

Thus, on one hand, the +F model accommodates rate heterogeneity across sites

very well, but does not explain it. i.e.. it is phenomenologicaL On the other hand. the

+BAS model. which was hoped to explain this heterogeneitv on mechanistic grounds.

essentiali fails at doing so.

Note that predictive distributions tend to have a greater spread than observed distri

butions. This is a resuit of predictive distributions comprising two levels of uncertainty:

the fundameutal uncertainty associated with the iiiferred parameter values of the model

(the posterior distribution)—au uncertainty which tends to be greater for higlier dimeil

siorial models—and the uncertaillty associated to the data replication (the simulation

procedure). Indeed, this effect is displayed in the more pronounced spread iII rate

variance under the more complex +BAS model (comparing 4.4b and 4.4d).

4.3.2.2 Amino acid exchange propensities

Figure 4.5 is a comparison of the Euclidean distance between predictive and observed

exchange distributions, as explained in the material and methods. In principle. a model

yielding a lower distance betwee;i ohserved aid predictive amino acid exehange distri

butions would be favored.

In figure 4.5a. the distance between predictive and observed distributions under the

Q
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Figure 4.5. Posterior density plot of the Euclidean distance betweeu predictive and
observed substitution type distributions (see material and methods). In a). the mod
els used are PoIssoN+F and PolssoN+f+BAS. In b). the models are JTT+f and
JTT+F+BAS.

PolssoN+F is hïgh, and is only slightly reduced when applying the potentials of Bas-

toila et al. (2001)—the mean distance goes from 63.92 under PolssoN+F to 62.51 under

Poissox+F+BAS. In the case of JTT (fig. 4.Sb). the distance hetween predictive and

observed distributions is much lower. This is indicative that a rnuch better adequation

is obtained between the types of substitutions of mappings conditioned on the data,

with those predicted under the model when using the empirical amino acid exchange

propensities of JTT, even when applying the potentials of Bastolla et al. (2001).
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C Conclusions

The resuits of the different model assessment strategies converge to the same funda.men

tal conclusion: whule an improved model fit is observed when applying the statistical

potentials. the improvement does not jllstify ahandoning the successfui techniques pre

viously developed for modeling complexities such as across-site rate heterogeneity. or

variations in amino acid exchange propensities. In other words, the model fails to attain

the simple phenomenological benchmarks of interest. It would indeed have been sur

prising to see such a simple 0/1 contact map. with potentials devised for other purposes.

supplanting ail strategies developed under the assumption of independence. Also note

that the mild improvemellt in model fit brought about by the use of statistical poten

tials cornes at a high computational cost. Iudeed. the total CPU time for the present

studv is estimated at about 1000 davs on a Xeon 2.4 GHz computer.

Two directions for fllrther researcli are thus pressing. The first is the design of richer

potentials. specifically adapted to the evolutionary framework at hand. The second is

the development of faster computational methods. We explore the first direction in

chapter 5. and return to the second direction in chapter 6.

C
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Chapter 5

Devising statistical potentials for

phylogenetic analysis

5.1 Introduction

The direct use of statistical potentials as doue in the model proposed by Robinson

et al. (2003). as well as those studied in the last two chapters. should be considered

as a prelirninary step to exploring a novel class of models. As previouslv rnentioned.

currentlv available statistical potentials may not be ideal for the evolutionary context

that interests us. since they have generally heen optirnized in the context of proteill

fold recognition, i.e., for maxirnizing the rat.e of correct structure prediction. given the

sequence. In an evolutionary perspective. and assuming that the proteins structure is

well conserved over the time span in consideration, we would like to make a reciprocal

prediction: what are the sets of possible sequences relating an alignment of observed

sequences. that are compatible with a giveI structure? We might simplify the question

bv removing the phylogenetic component, and asking: what are the sequences that

stably fold into a pre-specifled conformation? This is more generallv known as the

inverse Joïding problem. or protein design (Drexier, 1981; Pabo, 1983; Ponder and
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Richards. 1987).

Several approaches have heen proposed for protein design, consisting in maximizing

the z-score between the energv of the native sequence on the target conformation and

its energy on a set of decoy sequences (Chiu and Goldstein, 1998), or. alternatively. in

applying a mean-square criterion on the values taken by the pseudo-energy score on

each structure-sequence pair of a database ($eno et al.. 1998). However, these methods

have thus far only heen tested in cubic lattice protein models. In addition. they lack

a firrn theoretical basis. In particular, it would be int.erestillg to guarantee optimal

predictive power of any given form of potential. and to have a robust methodology for

exploring the merits of different functional forms.

In this chapter1. we set out a general protein-design framework, deriving a new set of

statistical potentials from a database of sequences of known three dimensional structure.

In effect. the framework focuses on the stationary distribution of a site-interdependent

Markov process, but treating the coefficients of the potential as free parameters. which

we adjust to their ML estirnates from a large set of sequence-structure pairs. Reformu

lated in this way. the method maximizes the predictive power of the potential. now ii_1

the structure-seeks-sequence direction. By construction. it yields the optimal pararneter

values that can be obtained for a given form of potential. In addition. different func

tional forms can he devised, and compared based on the likelihood ohtained on a test

data set. distinct from the learning data set. in a procedure known as cross-vatidation

(Stone. 1974). The overali ML frarnework could also be extended to a full Bayesian

approach. but the ML approach relieves certain computational difficulties, and thus

provides a practical first avenue to investigate the modeling framework. We explore the

saine functional form as Miyazawa and Jernigan (1985). which we also supplement with

a solvent-accessihility potential. of a form chosen via cross-validation. finally. we re

‘We mention here again that this chapter reproduces resuits from Klienman et al. (2006), the third
paper mentioned in the preface. The material has been considerably shortened for the purpose of this
dissertation.
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illject these potentials into the phylogenetic context to compare them to the poteritials

used in tue last two chapters.

5.2 Material and methods

5.2.1 Data

We used proteins culled from the entire PDB according to structure quality (resolutions

better or equal to 2.0 A) and with less than 25% mutual sequence identity (Wang and

Dunbrack. 2003). Two subsets of approximately equal size were obtained hy partitioning

proteins randomly: DS1, 449 proteins, 100,077 sites. and DS2. 465 proteins, 99.894 sites.

5.2.2 Structure representation

We used the contact representation of Miyazawa and Jernigan (1985). as in the preced

ing chapter. The accessible surface of a residue is defined as the atomic accessible area

when a probe of the radius of a water molecule is rolled around the Van der Waal’s sur

face of the protein (Lee and Richards. 1971). We used the program NAccESs (Hubhard

and Thornton, 1993) to make this calculation. When treating PDB files with multi

ple chains, solvent accessibility was calculated taking into account ah molecules in the

structure. The accessibilitv classes (percentage relative to the accessibihity in Ala-X-Ala

fullv extended tripeptide) were defined so as to generate I1 equal-sized subsets of sites.

5.2.3 Model

Let us consider a sequence s of length N, and of conformation c. Bv Bayes’

theorem, we write the probabilitv of a sequence conditional on the conformation. (and
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O the model M) as

(scM)—
p(cs.M)p(sM)

51p
—

p(c s, M)p(s M)’

where the sum in the denominator is over ail possible sequences of length N. Given

a statistical potential E(s. c), the conformational probabilitv can 5e expressed as a

Boltzman distribution:

p(c s M) = (5.2)

e_88’kT. (53)

where.

Z = e_8T (5.4)

is a normalizing constant. summing over all possible conformations, and

F(s) = —lnZ. (5.5)

Here, k and T represent the Boltzman constant and absolute temperature respectively.

Without loss of generalitv, it is possible to rescale the potential so that kT = 1. wl;ich

we will do in the following.

By defining the inverse potenkiaÏ

G(s. c) = E(s. e) — F(s). (5.6)

and assurning a uniform prior p(s M). the conditional probability of a sequence reads

as

p(s I c.M) = _G(.s.c), (5.7)
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where

Y = (5.8)

is the normaliziiig factor, summing over ail possible sequences of length N. We used a

statistical potential n;ade of two terms:

E(s. c) ii’6s, + , (5.9)
1<i<i’<N 1<i<N

where is the 0/1 contact map according to the definition of Miyazawa and Jerni

gan (1985). 6 = (Cab)1<a.b<20 is the set of energv coefficients associated with pair

wise amino acid contacts (E iS entirely specified from 209 pararneters), and where

E (E)1<a<2O.1<w<W is the set of energy coefficients associated with observing each

amino acid in each of the W possible solvent accessibilitv classes.

Deriving the inverse potential requires t.he calculation of F(s), which is already

entirely specifled, from a sum over ail conformations. However, this computation is

difficult in practice. As an alternative. we can give it a simple phenomenological form.

inspired from the random energy moUd (Sliakhnovich and Gutin, 1993; Seno et al.,

1998; Sun et al.. 1995):

F(s) = — Z. (5.10)
1<i<N

where Z (ZŒ)1<Q<20 is a set of free parameters analogous to the chemical potential of

each a.mino acid. Note that in cha.pters 3 and 4, chemical potentials were given the +f

form. so as to relate more closelv to the substitution models studied.

Altogether. our parameter vector is made of three components ( {c. E. Z}). and
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the inverse potential reads as

G(s. c) = + + (5.11)
1i<i’<N J<i<N 1<i<N

Note that the probabilitv (5.7) is invariant under the foilowing transformation:

=Za+Ji (5.12)

eab = eah + J2 (5.13)

=
‘ + J3. (5.14)

where J1. J2 a.nd J3 are arbitrary real constants. Therefore. to ensure identiflability of

our model, we enforce the following constraints:

Z0 = 0. (5.15)

Zeab = 0. (5.16)

= 0.1 w <w (5.17)

Finally. we assume that ail sequence-structure pairs in our database are independent.

and muitipiy the probahihty in (5.7) over ail sequence-structure pairs. based on the saine

values of the potential. In the following. however, we retain the single sequence-structure

pair notation for simplicity.

5.2.4 Optimizing the potentials by gradient descent

In the present context. the Bayesian approach of conditioning 9 on the data is hkeiy to

be computationaflv demanding. due to the intractable normalizing constant Y. Rather.

we shah adjust our parameters so as t.o maximize the (log) probabihitv in (5.7). which. in

the ML perspective. is view as the likeiihood function. We wihi work with the negative
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log of (5.7), defining: [= — lnp(s I e. M). turning the prohiem into a minimization of

L

The derivative of with respect to the parameters of the potential reads as

JC 3G(s.c) 6lnY
+ . (o.18)

As in the previous chapter, one eau applying the partition function forrnalism (Appendix

B) to Y to express the second term as

6lnY 0G -

60 (.19)

where K.) stands for an expectation with respect to (5.7). As before. this expectation

cari 5e approxirnated from a sample of sequences (s(h))y<h<K, drawn according to (5.7).

This sample can 5e obtained using the sanie Gibhs sampling procedure used in previous

chapters.

The derivatives with respect to e can be expressed as:

aL
=

— Khiab)], (a.20)
UEah

r1iere n is the number of contacts hetween arnino acids a and b observed in the data

base. and where (Tlab) i5 approxirnated from the Monte Carlo average. in a sample of

sequences. of the number of contacts between a and b, with the sequences drawn under

the current values of the energetic coefficients. Formula (5.20) thus leads to an intuitive

characterization of the maximum likelihood estimate : it is the value of e sucli that

the average number of each type of contact predicted by the potential matches the

number observed in tire database. Following a similar derivation. we have tire relation
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O for solvent accessibility coefficients as

- {Ï
-

. (5.21)

where t is the number of amino acids of type o in solvent accessibilitv class w. finally.

for the chemical potentials. we have

=
-

[m
-

(m)J. (5.22)

where ma is the number of amino acids of type a.

The above relations allow us to approximate the gradient of L, which we may foflow

using standard gradient descent: the n1 iteration updates & according to

= — (5.23)

where 68 is a pre-defined step vector. The gradient steps are repeated until the gradient

vanishes. In practice. the values of 68 are tuned empiricaiv, allowing for three degrees

of freedom for . E and Z.

5.2.5 Evaluating the log-likelihood using thermodynamic in

tegration

We would like to evaluate the fit of different models based on the log-likelihood. but due

to the intractable normalizing factor Y. we need to invoke more elahorate nurnerical

techniques. We do this using a similar thermodynamic integration method to that

described hy La.rtillot and Philippe (2006), and surnmarized in the second chapter.

First. for O < B < 1, we define:

G(s,c) = ( jj’ssj + + Z5. (5.24)
1<i<i’<N 1<i<N 1<i<N
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The associated probability distribution is

p8(s c. M) = (5.25)

with

Y, = (5.26)

What we are looking for is 1n. As for it. factors out. and can be computed

directly

in’ Nin (Ze). (5.27)

We can thils equivalentlv evaluate the differe;ice in Y1 — in Y. given by:

in — ln
= f 8Yd. (5.28)

The therrnodvnarnic approximation is obtained h’ starting a Gibbs sampling of se

quences with .8 0. Following a series of cycles. the value of B is incremented hy a

smail value 6, until 1. Based on the sample of sequences over the entire run.

written as (s(h))o<h<K, the approximation reads as

1nY —lnY0
[1ac(o) + aG()) + 81]

. (5.29)

In the present conditions. K = 1. 000 is sufficient to obtain an estin;ate of in Y — in Y0

with an error iess than one natural iog unit.
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Figure 5.1. Stahilization of pairwise energetic coefficients over a gradient descent op
timization.

5.3 Resuits and discussion

5.3.1 Optimization of the statistical potential

We first performed an optimization of the pure contact potential (c + ) on each of

two data sets. The evolution of a few contact energy coefficients over the course of the

gradient optimization are displaved in figure 5.1. The coefficients converge within a few

hundred iterations of the gradient descent optimization. We started several optirniza

tions from different initial values and found convergence to essentially identical values

(not shown). indicating that the method does not become trapped in local minima.

The values also appear to he biologically reasonable. attributing negative energies to

known favorable pairwise interactions (e.g.. isoleucine-valine). and positive values to

known unfavorahie pairwise interactions (e.g.. glutamate-alanine).

We also compared the values ohtained on the two differeut data sets. figure 5.2

displays the contact energv coefficients obtained from one data set against those from

a the second data set. Tue correlation is high (0.96). providing a first indication tliat

the data sets are large enough for the learning procedure to reach stability.
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Figure 5.2. XY-plot of pairwise contact energy parameters obtained from the 2 data
sets.

5.3.2 Refining functional forms

We next explored different functional forms of statistical potentials. beginning with a

pure solvent-accessibility potential. This form is based on classifying amino acid sites

into one of several solveut accessibility classes. Here. several choices are possible for

the number of classes, but the log-likelihood scores obtained under the different choices

cannot be directly compared. since the models do not have the sarne dimensionalit.

We thus applied a 2-fold cross-validation procedure. consisting of learning the potential

on DS1. and evaluating the log-likelihood using these ML parameter values on D$2

taud vice-versa). Note that since this is a blind test, evaluating the fit of the potential

based on data neyer “seen’ by the model. differences in dimel1sionality are intrinsically

accounted for in the assessment. Also note that the cross validation score reported is

actually the log-likelihood obtained from the fiat potential (hased solely on the chernical

potential component) minus that under the potential of interest, and multiplied by —1

to make to score positive (the higher the score. the better the model). for the pure

solvent potential. figure 5.3 displavs the cross-validation score as a function of the

number of classes. Wlien W increases, the fit of the model improves. until a point is

reached (T’V 16) where the penalization for model dimensionality starts to dominate
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classes. with a potential also hased on pairwise contacts.

the score.

We applied the same approach utilizing the contact potential as well. displaved in

figure 5.4. The model fit displays a similar trend as with the pure solvent potential,

reaching an optimal setting at W = 14.

We compared the fit of the different forms of potentials. taking the average of the

2-fold CV score: for the pure solvent potential (bllt alwavs including the chemical

potential component) we obtained a score of 14,394: the pure contact potent.ial performs

hetter. with a score of 17.798: and the combined contact and solvent potential performs
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w

0 2 4 6 8 10 12 14 16 18 20

w
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C best, with a score of 21,05$. We also tried using the contact potential of Miyazawa

and Jernigan (1985), in which case we include a scaling factor; the i3 parameter in

front of the contact component is optimized by ML. along with the chemical potentials.

The resulting potential was the poorest of ail, with a score of 11.236. The fact that ouï

potential has a significantly better predictive power than that of Miyazawa and Jernigan

(1985) is trivially expected. by construction of the ML potential, and the much larger

data set. used to derive it. VThat is more surprising is that the Miyazawa and Jernigan

(1985) potential is less fit than a site-independent solvent accessibility profile. A possible

expianation wouid be that their potential is based on the quasi-chemical approximation.

which is now known to be somewhat drastic (Godzik et ai., 1995; Thomas and Diii, 1996;

Skolnick et al.. 1997), as it neglects correlations between observed pairing frequencies

due to chain connectivitv aiid multiple contacts. Alternativel. this poor fit couid mean

that potentials optimized for folding are reaiiy not suited for protein design purposes.

Testing other pairwise contact potentiais, in particular those that do flot rely on the

quasi-chemicai approximation (e.g., Maiorov and Crippen. 1992; Tohi and Elber. 2000:

Bastolla. et al.. 2001; Tiana et al., 2004), would be a way to address this issue.

5.3.3 Phylogenetic comparisons

Finaily, we computed Bayes factors. as done in the last chapter, but utilizing tire newiy

derived potentiai. As previousiv discussed. when using potentiais such as those of

Miyazawa and Jernigan (1985) in tire phylogenetic context, tire +f configuration plays

tire role of a chemical potential. As such, to set up an equivalent dimensionahty, we

dispensed with the chemicai component of tire potentiai. and used the +F configuration

in this case as weli. Using tire Mo6O-153 data set. recail that tire log Bayes factor in

favor of Poissox+F over Poissox ohtained in chapter 4 was 70 naturai log units. As

a first contrast. we comhined our pure contact potential with the P0ISs0N+F config
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uration and obtained a log Baves factor of 158 (alwavs using the fiat POISSON model

as a reference). This is already hetter than the MJ potential in the same combina

tion, which resulted in a log Bayes factor of 129. Thus, using the exact same protein

structure representation and parametric form, the method developed in this chapter

produced an amelioration of 29 natural 10g units. Using the richer form of potentiah

based on hoth contact and solvent accessibility components. with the same underlying

PoIssoN+F configuration. yields a Bayes factor of 208 natural log units. This is en

couraging: using a more refined description of protein structure Ieads to a better model

fit. Note. however. that rnuch work remains. as the overafl fit is stifl mucli poorer than

even the simple rigid JTT matrix. which yields a 10g Bayes factor of 368. We may he a

long way to attaining our basic phenomenological benchmarks with this type of model.

and much more work is needed in this direction.

5.4 Conclusions

The central idea of the present chapter is to reformulate the problem of devising statis

tical potentials for protein design as a statistical inference problem. This formulation.

based on the ML principle, led us naturally to a gradient descent method, with the

only additional aspect Seing that the gradient to follow is itself estimated by Monte

Carlo averaging. The main advantage of this ML framework is that it guarantees an

optimal predictive power of the resulting potential. In addition. h is verv general. and

cari in principle 5e applied to any form of statistical potential. In particular. it is not

restricted to coarse grained descriptions of proteins. and it could also Se applieci at the

atomic level.

In general, the present methodologv could be used to investigate many other forms

of potentials. As the last suS-section suggests. it would be interesting to extend the

overall framework into a pipeline of comparisons within the phvlogenetic context as
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well. The main hurdie for this last objective is computational. and further algorithmic

developments are needed to reduce CPU time. We explore avenues to address this issue

in the next chapter.
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Chapter 6

Exploring computational strategies

6.1 Introduction

The IvICIvIC methods used in chapters 3 and 4 may be viewed as brute-force approaches

to approximating posterior distributions and marginal likelihoods. By this we mean

that whenever some density is unavailable by analytical means. we pose a new MH

kerneL and revise sampling modules with new update operators. alwavs sampling over

the full posterior distribution, or a full path in the space of posterior distributions

linking two models. Such brute-force sampling is computationally costly. Alternatives

to brute-force sampling. however. are commonly applied in the statistical literature.

with first approximations often based on assumptions of normalitv about a dominant.

posterior mode (Gelman et al.. 2004; Rohert and Casella. 2004). These techniques

have been adapted to cases of non-analvtical models, for instance using MCMC-based

optimization schemes (see Rohert auJ Casella. 2004. chapter 5). and whule they may

fail when the posterior is not normallv distrihuted. or if modes of significant density

are rnissed or ignored. thev mav stiil serve as guides for constructing distributions (e.g..

as posterior mode finders). and can provide rougli estimates of Bayes factors (Gelman

et al., 2004).
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In this chapter. we further explore the use of different MCMC-based approaches for

statistical computation in a phvlogenetic context, with the objective of enabling more

tractable applications of evolutionary models that are too complex to be manipulated

using conventional methods. Utilizing previously presented MH operators, we first

illustrate IVICMC-based optimization algorithms, which can he used to estimate ML

parameter values. even under non-analytical models. The methods are directly related

to those developed in the previous chapter. In a second step. I\’ICI\’IC approaches are

applied in conjunction with normal developrnents around the optimal point in order

to approximate the posterior distribution. We further combine these different MCMC

schemes and normal approximations into a Bayes factor estirnator, based 011 a variant

of the Laplace method (Raftery. 1996). The approaches are applied under a fixed tree

topology. using three different types of models of amino acid sequence evolution. and the

resulting approximations are compared with those obtained under previously available

brute-force MCMC methodologies.

6.2 Material and methods

6.2.1 Models

In this chapter, we use the PoIssoN and WAG models, with the +F extension in each

case. Borrowing the ilomenclature of Parisi and Echave (2001). we also use a structurally

constrained (SC) model. based on the optimal potential derived in chapter 5. Recali

that the potential is formulated in terms of a pseudo-energy score of a sequence given

a conformation c. written liere as G(s. c). and having the following form:

G(s. c) = + E + (6.1)
1<i<i’<N 1<i<N 1<i<N
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As discussed in chapter 5, the first term in (6.1) is the contact component, the second

term is the solvent accessibility component, and the last term accounts for compositional

effects. Note that here. because we use the chernical component of the potentiaL we

do not need to (but could) invoke the +F configurations. We thus focus on a model

entirely based on the potential. As before, the continuous-time Markov chain under this

model is specified as a sequence-wide process, with the infinitesimal generator heing a

20” 90N matrix R with off entries

O if $ and s’ differ at more than one position.
R8’ = (6.2)

e5[G(s,c)_G(s’c)1 if s and s’ differ only at one site,

where 3 is a parameter weighting the impact of G(s. c) on the rate of substitution. and

where diagonal entries are given from the negative sum of off-diagonal entries. Note

that here, because the potentials used have been pre-optimized so as to maximize the

stationary probability of the Markov process (on the meta-data set) but with a scaling

that implies 3 1/2. we mav fix the 3 parameter as such. and we refer to the model

simpÏy as SC. In others cases, it ma.y be worthwhile to treat 3 as a free parameter

(SC+3). in order to give some fiexibility to the model, or if the scaling of the potential

is unclear. In addition. it may be pertinent to combine SC and SC+3 models with a

direct account of rate heterogeneity (+f). as was suggested from chapter 4.

6.2.2 Priors

Unless specified otherwise. we use the following default priors:

• Exponentiat. with a mean deterniined by a hvperparameter fixed at 0.1:

• c ‘-‘-i E ponetiat. with mean 1:

• 3 Uniform[—3max, I3max], There !3max = 5.
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6.2.3 Alignment, tree, and protein structure

For illustrative purposes. we apply the techniques to the MY02O-153 data set. The

contact map and solvent accessibility profile are derived from PDB accession number

1MBD.

6.2.4 Normal approximation methods

6.2.4.1 Posterior distributions

An alternative to brute-force sampling is to assume that the posterior is normally

distributed. and attempt to estimate its mean and variance. For simplicity. we focus

on estimating the mean and variance of the posterior of a partidular component of the

parameter vector. and assume. for now. that the rest of the parameter vector is known

(i.e.. O is 110W univariate). We begin by estirnating tlie mean. and will assume that

the prior on O is uniformly distrihuted over some interval. Under these conditions, the

mean of the posterior distribution corresponds to the maximum likehhood parameter

estimate.

First. under analytical models, it is possible to apply the simulated annealing tech

nique proposed by Kirkpatrick et al. (1983). Drawing on an analogy with therrnody

namics, the method consists in heating the MCMC sampler. by introducing a parameter

. mediating the temperature (1/r) of the chain. Setting uniform a prior. the MH kernel

becomes

t p(D I O’. M) T q(O’ O)
— mzn l, p(D O. M) q(&. O’) J (6.3)

As T — oc, the chain freezes. since an update leading to a lower Ïikelihood has a

progressivelv lower probahilitv of acceptance. The algorithm is thus hoped to converge

to the ML point.
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An important aspect of simulated annealing is the cooting schedule, which is typically

explored empirically (Nollrani and Andresen, 199$). We explored two types of simple

cooling schedules here. The first, which we refer to as proportional cooting. updates the

value of r at iteration n according to

(6.4)

where 6 > 1 serves to tune the cooling scheme. In another cooling schedule. referred to

as tzneaT cooting. r is updated according to

ra-1 + 6. (6.5)

now with 6> 0, again serving to adjust the cooling rate.

The simulated annealing optimization may be useful in a variety of situations, bllt

may nevertheless be unsuitable when the likelihood is llnavailable in closed form. For

such situations. however. we mav relv on latent state methodologies. Note that when

working with a non-analvtical model. for instance relving on a DA scheme. the gradient

of the log-likelihood is given by

0lnp(D 6.M) — 161np(D.c5 0.M)
66

60 — 30

where (.) stands for an expectation over the distribution of latent states. In practice.

the gradient can he approximated b

161np(D.b 0.M)\ 1 6lnp(D.) I 0M)
67

k=1

where ()1<h<K is a set of sampled augmentations, drawn using the first element of

the DA module (derivatives are given in Appendix A). This gradient approximation

can then be embedded within classical optimization methods. for example. following
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the gradient according to an iterative updating. with cycle n given by

= ± (6.8)

where

= ah(D.) O. iii)
(6.9)

h=1

with SO being a pre-defined step parameter. The iterative cycling between augmentation

steps and gradient steps can 5e repeated until tue gradient vanishes, thus declaring the

maximum likelihood estimate . We refer to this algorithm as Monte Carto gradient

(MCG) optimization.

It is often also possible to apply the expectation maxirnization (Elvi) algorithm

(Dempster et al.. 1977) in conjunction with data augmentation schemes (Wei alld Tan

ner. 1990). using (6.7) as the expectation (E-step) estimate. followed 5v a maximization

(M-step):

= argmaxlnp(D.q &‘.M)) (6.10)
o

= argrnaxlnp(D,) O’.M) (6.11)

This inner maximization step is often analytical. but can otherwise be accomplished

using gradient or Newton-like methods (see Appendix D). We refer to this algorithm

as Monte Carto EM (MCEI\I) optimization.

Once the mean of the posterior (here, equivalent to the maximum likelihood esti

mate) has been found, we mav estimate the variance at this point as

—1&Jnp(D I t9.M)
ar(O) ao2 (6.12)
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The second derivative of the log-likelihood may he expressed as

821np(D 0.M) — 02lnp(D, 0,M)
802 — K

+
([6lnP(D:( 0.M)]2)

- [8llP(D1 M))]2
(6.13)

and the IVionte Carlo evaluation is given by

02 lnp(D 0. M) 1 0 lnp(D. 0. M)
802

—
602

+
1 Olnp(D. (h) 0 M)

2

80

-

0lnp(D. 0. M)]2
(6.14)

Analogous schemes for estimating the mean and variance under PX and PX-DA con

texts can be devised. and eau be extended for joint applications over many parameters

(see Appendices C and D).

6.2.4.2 Bayes factors

The Laplace method for estimating the marginal likelihood is given as (see, e.g., Tierney

and Kadane. 1986):

p(D I M) (2n)Yjj1/2p( I M)p(D I . M). (6.15)

where y is dimension of the model. is the parameter vector maximizing the posterior

probabffity. and fi is minus the inverse Hessian matrix (of second derivatives) evalu

ated at 0. An important variant on (6.15). suggested hv Raftery (1996). consists of

substituting 0 with 0 and fi with fi (the inverse of fi is otherwise referred to as the
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O Fisher injonation matrix). This variant slightlv simplifies the mathematical develop

ments, a.nd has the advantage of potential applicabilitv with any maximum likelihood

implementation. As such, based on the maximum likelihood parameter vectors of two

models (O di). we will use tire following Laplace approximation to tire Bayes factor:

1 1 p(D I 1.M1) (é 1M1)1nBo—(yi—yo)1n(2ri)+—1nj j+in +ln .(6.16)
2 2 Ho] p(D I 90.M0) p(Oo 1M0)

The second term in (6.16) cari be calculated from the developments in Appendix A.

If tire modeis are not analyticaL tire third term is calculated using a thermodynamic

mtegration method, which, for a given tree configuration computes tire log-likelihood

difference under two different models. These calculations are restricted versions of

tire more general thermodvnamic integrations methods for evaluating differences of log

marginal likelihoods between pairs of modeis.

6.3 Resuits and discussion

6.3.1 MCMC-based optimization: an analytical example

Before applying tire metirods developed above to non-analytical models, we first explore

tire properties of IVICIVIC-based optimizations under a simpler case. where comparisons

cari 5e made with otirer implementations. In particular. we apply different approaches

to maximizing tire likehhood witir respect to brancir lengths for a given topology under

tire WAG model.

first. under this model. tire sirnulated anneahng method cari he applied. figure

6.la slrows tire evolution of tire overali tree length during tire first 100 iterations of

a sinrulated annealing run. based on a proportional coohng schedule, witir tire initial

r = 1 increased to T > 10.000 according to (6.4). witir = 1.1. As can be seen. the

drain heglirs with a somewirat erratic hehavior, oscillathrg around, yet progressively
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gravitating towards. the tree length obtained using the PAML package (Yang, 1997).

Ultimately. however, after 100 iterations, the chain slightly misses the mark.

We found the linear cooling scheme easier to adjust than proportional cooling. and

less likely to become trapped in sub-optimal configurations as the chain approaches

the freezing point. In figure 6.lh. we started from T = 1. and updated according to

(6.5), with 100. The chain converges to essentially identicai branch le;igth values

as returned by PAML in about 35 iterations. Tuning 500 (fig. 6.lc), the maximum

likelihood brandi lengths were obtained in about 18 iterations.

‘\iVe next explored the MCG algorithrn. as a first latent state optirnization scheme.

Nielsen (2002) lias proposed a straightforward DA method. which, under models like

WAG. allows for a direct sampling of substitution mappings. We used Nielsens method

to draw a sample of mappings for estimating the log4ikelihood gradient. as written in

(6.7). in a MCG optimization of brandi lengths. The needed derivatives are given in

the Appendix A. As illustrated in figure 6.ld, e and f. a significant amount of trial-and

error tuning of the gradient optimization method eau he important for reducing Cpu

time. In tus case. expectations were estimated based on a. sample of 100 mappings. and

only the step parameters (6.Xj) were adjusted. As crude explorations, we set tic same

value for each branch length step parameter throughout tic run. with 0.00000 1

in 6.ld. S) = 0.00001 in 6.le. and finally = 0.00005 in 61f.

We also tried the MCEM algorithm in tic present example. We once again relied

on Nielsen’s metiod, drawing samples of substitution mappings for estimating expecta

tions. followed by the maximiza.tions step given in (6.11). In this case. tie precision of

the algorithm depends solelv on tie sample size used to estimate tie expectation. silice

tic maximization step is analytical (sec Appendix D). Using a sample of 10 mappings.

significant fluctuations of tic overali tree length are observed from one IVICEM iteration

to the next (fig. 61g). fluctuations are reduced using 100 mappings (fig. 6h). and
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become negligible (±0.001 natural log-likelihood units) using 1000 mappings (fig. 6.li).

This corroboration across methods, as well as with the PAML package, is a useful

check. and helps in getting a sense of the general behavior of the MCMC methods. In

this particular case. we give preference to the MCEM algorithm. if oniy for the fact. the

tuning is exclusively based on sample size for the E-step. In fact. the sample size can be

increased “onflne”. for instance. bv a factor of 10 everv 10 iterations, or according to any

other scheme. It should be noted, however, that the Monte Carlo error only decreases

with the square root of the sample size. and that the MCEM is ilot necessarily the best

choice for ail contexts in terms of computational requirements. as we illustrate in an

example below.

6.3.2 MCMC-based optimization: non-analytical examples

In the preceding subsection, we applied Monte Carlo technïques for parameter opti

mization to a case where such methods are umlecessary. 111 this section, we explore

non-analvtical models for which standard optimization techniques are not directly pos

sible.

Our first non-analvtical example consists of optimizing the shape parameter a for

the +F model. stili using the WAG matrix. and. for now, with fixed branch lengths (as

obtained under WAG). Figure 6.2 shows the progression of a as a function of the MCEIVI

iterations. with two different initial values. Once again. the MCEM algorithm converges

quicklv—within about 20 iterations—and the fluctuations of the estimate progressively

decreases as the sample size used in each iteration increases from 10 (fig. 6.2a) to 100 (fig.

6.25), to 1000 (fig. 6.2c). The final value reached is = 0.73. Aithougli this estimate is

not directly comparable with the discrete gamma models. we ran PAIVIL using different

numbers of categories. In general. the estimates are quite sirnilar: using 4 categories.

PAIVIL returns d = 0.72. $ categories gives & = 0.69. 16 categories gives & = 0.6$. and
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C flnally, using 32 categories, the estimate is & = 0.70. These mild fluctuations illustrate

how tue number of categories used alters the gamma approximation. and while the

discrete approximation may be suitable for many practical applications, PX methods

for continuous distributions could have several advantages (Mateiu and Rannala. 2006),

particularly when discretization procedures are in doubt (e.g.. Yang et al.. 2000a: Susko

et al.. 2003; I\’Iayrose et al., 2005), or when site-specific random variables are multivariate

(e.g., Lartillot and Philippe, 2004: Kosakovsky Pond and Muse, 2005).

Our next non-analytical example concerns the SC+/3 model, where we wish to op

timize /3. stili based on a flxed set of branch lengths. We first ran an MCEM opti

mization using a sample of 100 mappings. and 100 sequences (for the approximation

given in (C.13)). Figure 6.3a shows the flrst 20 iterations of the IVICEM. which displays

a jagged behavior in attempting to adjust the value of /3 so as to cancel ont two key

components of the derivative of the log-likelihood function (see eqn. C.9). In contrast.

the MCG optimization under the same sample size conditions is much more efficient,

converging with 5 iterations (fig. 6.3b).

In both of these examples, it is interesting to note that while we have adjusted pa

rameters 50 as to maximize the log-likelihood, we have not computed the log-likelihood

itself. This decoupling between log-likelihood optimization and log-likelihood calcula

tion is a key feature of latent state methodologies, and is analogous to the property

aUowing us to sample from the posterior without having a closed form likelihood.

6.3.3 Normal approximations of posterior distributions

The use of normal approximations in Bayesian analysis ofren serves as a first step to

constructing posterior distributions under new statistical models (Gelman et al., 2004).

We consider +F and $C-type models here, and focus on their distinguishing parameters

(a and /3 respectivelv).
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First. under the WAG+f model. we marginaiized over brandi iengths using a PX

sanipling module. whule optimizing with respect to û (here given a uniform prior) ilsing

the MCEIVI aigorithrn. Doing so simplifies the example. in that it remains univariate.

whule allowing us to focus on the full posterior of û. The fluai IVICEM iterations were

based on a sample of 100 sets of brandi lengths and rate vectors. as was the variance

estimate (referring to eqn. 6.12). We used these estimates as the mean and variance for

tracing a normal prohability densit function. and compared tus trace to the density

histogram obtained using the PX module sampling branch lengths and û (fig. 6.4).

The two different density plots are reasonahly similar. although the histogram appears

skewed to the riglit. particularly when û > 1. Indeed. in this range. the shape of

tlie gamma distribution does not undergo dramatic changes with smafl variations in û.

which leads to a fiattened ont likeiihood surface. Tus illustrates an important point:

the full posterior may differ from a normal distribiltion. and such approximations are

only meant to give a general sense of location and diffuseness for a parameter of interest.

Our second example concerns tic SC+ model. where alternatives to constructing

posterior distribiltions are of particular interest. Under these models. the MH kernel
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C includes the ratio p(s0 O’, M)/p(so O. M), which requires the evaluation of the ratio

of normalizing constants given by

Y = e_20(8, (6.17)

The normalizing constant in (6.17), however. is not tractable, and the IVIH kernel itself

must therefore be approximated. Previous works investigating SC-type models have

relied on an importance sampling approximation proposed by Robinson et aÏ. (2003).

Adapted to the present context. the approximation reads as

Y e_2G(8c)
— S f618

Y1
— Zs e28’G(sc)

V’ e_2(_)Gt5c)
Lh=1

. (6.19)
Z=1 e_2(’_8)Gc)

where (st1)1<,<K is a set of sequences sampled using a Gibbs sampling approach dis

cussed in chapter 3. and where j3* is chosen to be as close as possible to the middle of

/3 and /3’. We used our variation given in chapter 3 for choosing /3 during the MCMC.

and ran a full sampling over brandi lengths and /3. In another run, we marginalized

over branch lengths using a DA module. wiile optimizing /3 using tie IVICG algoritim.

We relied a sample of 100 sets of branci lengtis (and mappings) and 100 sequences

(sec Appendix C, eqn. C.13 and C.30) for tic final iterations of tic MCG metiod.

and for tic subsequent variance estimate. As siown in figure 6.5a, tic normal proh

ability density function based on tic mean and variance estimates matches well witi

tic density histogram obtained using tic full MCMC, altiough tic normal approxi

mation comparatively underestimates tic variance to a small degree. Given that tic

full MCIVIC sampling of /3 is based on tic approximation in (6.18), whici could breach

tic conditions of Markov ciain convergence theorems. we performed a tiird run, using

tic tiermodynamic integration metiod described in ciapter 4. Tus last metiod ias
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Figure 6.5. Posterior dellsity plot of 3. In panel a) a histogram was generated using
a full MH samphrig. Paiel b) shows a de;sity trace generated using thermodvnamic
integration. as presented in chapter 4. In both panels. the normal approximation is
shown (dashed lime).
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the advantage of arbitrary acduracy, at the cost of CPU time. and the slight rugged

ness of the posterior density trace (fig. 6.5b) gives a qualitative sense of the Monte

Carlo fluctuations over the course of the integration. Here again, though. the posterior

density of 43 obtained using the thermodynamic method matches well with the normal

approximation. providing a reasonable corroboration across ail methods. On the other

hand, the normal approximation requires only a fraction of the CPU time of either of

the two other methods. This may prove useful when the main interest is the posterior

distribution of 43 or analogous parameters (Robinson et al.. 2003), particularly when

approximating posteriors over several different data subsets (Yu and Thorne, 2006).

6.3.4 Normal approximation of Bayes factors

finally. we applied the Laplace normal approximation approach to estimate Bayes fac-

tors across ail models mentioned herein, as well as the thermodynamic integration

methods. As mentioned previously. the thermodynamic method can be tuned to any

desired accuracy, and we use the results under this approach as our reference values.

Our crude strategy here consisted in running triplicates of each type of calculation. pro

gressively tuning the MCMC samplers such that. when rounding to the nearest natural

log unit. identical results are obtained for ail three runs. We then compared accuracy

and CPU time of the two methods.

for the Laplace method, we first maximized the log-likelihood with respect to branch

lengths and. as applicable. and 43. For ail but SC-type models we used the MCEIVI

algorithm for the overall optimization. For $C+43-type models. however. we used a

combined MCEIvI-MCG algorithm, which, at each iteration. performs an M-step on

branch lengths (and c. if applicable) and a gradient step on 43. In ail cases, the final

expectation estimates for optimization and for the Laplace approximation were based

on samples of 10.000 substitution mappings and rate vectors. For a particular configu
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Table 6.1. Natural logarithm of the Bayes factor for models considered, with POISSON
used as a reference.

Model Thermodynamic Laplace

POISSON O O
POISSON+F 81(11) 81(2)

WAG 294 (14) 294 (2)
WAG+f 373 (26) 372 (5)

SC 162 (65) 162 (4)
$C+F 253 (131) 253 (6)

SC+ 167 (129) 167 (5)
SC+/3 + F 268 (197) 269 (8)

Note.—Numbers in parenthesis indicate approximate CPU time in hours.

ration, computing log-likelihood differences between an analytical and a non-analytical

model was done using a constrained thermodynamic method.

The resulting Bayes factors are remarkahly accurate, when compared to full ther

modynamic estimates. with at most one 10g unit difference (table 6.1). Importantly.

however, the Laplace approximation required much less CPU time. The reasons for

sllch a reduced computational time are a combination of several factors. First. as op

posed to a full MCMC sampling over ah admissible parameter settings. optimizations

are directed toward a single optimal point. If convergence to this point is fast. far

fewer likelihood function evaluations will he needed than would a full-blown sampling

from the posterior. Also. the algorithms can be used with very small samples (of say

10) to obtain crude pararneter estimates to be used as the starting point of a more

refined IVICEM or MCG runs, and so on. Indeed, in our analyses. we always preceded

the final iterations of MCEM or MCG with such crude estimations. which could be
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obtained within minutes. Next. the MCEM and MCG algorithms. and the constrained

thermodynamic method considerably reduce the overali sampling. as marginalization

via MCMC is focused on latent states. Lastly, the Laplace approximation for Bayes

factors makes the assumption of normality around the optimal point, and makes use of

an estimate of the curvature of the likelihood surface; loosely speaking, the full thermo

dynamic method mllst effectively obtain this information using brute-force sampling.

The model rankings obtained using Bayes factors give favor to the WAG+f model.

Note. however. that the pure SC model outperforms the PolssoN+F, although it is in

turn outperformed by the pure WAG model. This ranking is reasonably encouraging for

$C-type models, and additional work is needed to determine if more sophisticated sta

tistical potentials can achieve, or surpass. the performance of the hest site-independent

models.

6.4 Conclusions

Complementing MCMC methods and normal approximations considerably reduces the

needed computational resources for conducting Bayesian calculations. Also, we stress

here that while common Bayesian discourses ofren descrihe MCMC niethodologies as

alternatives giving non-analytical modeling ftexibility (e.g.. Paap. 2002; Brooks. 2003;

Beaumont and Rannala, 2004), such features are not exclusive to Bayesian coutexts.

As we have shown here. IVICIVIC techniques can also be used to instantiate the ML

principle, such that they may be viewed generaL and independent of any particular

probabilistic paradigm.

However, as evolutionary models increase in sophistication. and as the needed sam

pling schemes become more elaborate. or based on additional levels of approximation.

the difficulties commonly associated with I\4CMC devices (e.g.. assessment of conver

gence and mixing behavior) are likely to be exacerhated. and the methods should be
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approached with caution. Also. the choice among possible MCMC rnethods can be

bewildering (see, e.g.. Gelman et aL. 2004: Robert and Casella. 2004), and it ma.y be

difficuit. to know beforehand which overail scheme gives sufficiently accurate estimates

in reasonable compromise with computational effort. As as we illustrated for optimiza

tions of 3. sampling and algorithmic cioices wilI likely need to be explored empirically

for each new context.

The approaches employed here could also be adapted and reconflgured in several

ways. For instance. here. for estimating Bayes factors, we used thermodynamic MCMC

to integrate over latent states and the Laplace method to integrate over parameter space.

However. if greater accuracy were needed, or if assumptions of normality no longer

hold. we could also extend the thermodynamic method over anv sub-set of parameters

and apply the Laplace method over the remaining parameter(s). In addition. other

approaches to the Laplace method have been proposed. several of which do not require

computing derivatives. Referring to equation (6.15). 9 and fi could be approximated

based on the output of a. plain MCMC mn. using the compoueut-wise posterior mean

or median and the posterior variance-covariance matrix; other choices are also given in

Lewis and Raftery (1997).

These sorts of approaches could enable a larger scale empirical project, in order to

compare a broader set of models. and in particular, models based on the gamut of forms

of statistical potentials.



Chapter 7

Comparing codon models of

substitution

7.1 Introduction

In chapter 3 we initiated the first and second steps of the Bayesian framework: setting

up a full prohahilitv model. and conditioning on truc data. The third step of assessing

model fit was addressed in chapter 4. Our phenomenological henchmarking approach

of measuring the fit of site-interdependent models hased on the simple forms of sta

tistical potentials bas suggested that the modeling approach poorly anticipates basic

properties of the substitution process. while inducing heavv computat.ional demands.

Nonetheless, the models do show some promise they aiways lead to some improvement

in fit. To address the prohiems raised in chapter 4. we have proposed a framework for

ameiorating tic form of statistical potentials in cha.pter 5. and we have investigated

possible computational alternatives in chapter 6.

As previously stated in chapter 3. however. in performing this exercise at tic amino

acid level only. we have relinquished tic more attractive codon level interpretation of

molecular evoÏution. Indeed. evolutionary models at tic amino acid level should not
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be viewed as refiecting basic biological irnowiedge. Rather, we have proposed they

should be viewed as phenomenological benchmarks. Loosely speaking. in this partie

ular modeling context, we would like to see basic evolutionary properties such as rate

heterogeneity, and plausible amino acid exchangeabilities. emerge as a Tesutt 0f onT

exp ticit structural modeting. These are but the first evolutionarv structural modeling

attempts. and as progress is made in this direction it will be of interest to return to the

codon-based mechanistic modeling, as proposed by Robinson et al. (2003), in order to

construct a more realistic description of moledular evoliltion, which better formalizes

basic biological understanding.

Vve presented one form of site-independent codon model in chapter 2, based on the

formulation of Goidman and Yang (1994) (GY). However. another formillation was pro

posed bv IViuse and Gaut (1994) (MG). and both formulations have since been extended

and modified in numerous ways. Many of these codon substitution models have not

been assessed in the Bayesian framework we adopt in this work, and, more importantly.

several do not appear to be based on a logical mechanistic modeling construction. These

issues raise rnanv questions. forestalling the development of structural models based on

statistical potentials in the codon context. We expand these questions below.

Recali that the traditional nucleotide-level of interpretation sllrmises the data as

arising from a continuous-time Markov process running along the branches of the phy

logeny. with a state space consisting of the four different nlldleotides. In its general

form (e.g.. Lanave et al., 1984). the model is specified from sîx relative exchangeability

parameters. for each possible pair of nucleotides. and follr stationarv probabilities. or

nucleotide propensities. and is often referred to as the generaÏ time reversibte (GTR)

model. Taking this model as a starting point in the case of protein-coding sequences.

a first step to mechanistically acknowledging the codhig nature of the data is to sup

pose a strong purifving selection against stop codons, and to re-formulate the process



129

in a state space consisting of nucleotide triplets, but now omitting triplet states corre

sponding to stop codons. In effect, such a model is equivalent to the same GTR-type

of model applied at the nucleotide level. but with the constraint that the nucleotide

sequence must encode some full length amino acid sequence toue third the length of the

nucleotide sequence). This is the rational of the MG-style of codon substitution model.

From this point. a further model construction step in the MG-style is to distinguish

between synonvmous and nonsynonymous events, for instance utilizing the parameteri

zation presented in the original work. or the more compact representation of fixing the

svnonyrnous rate factor at one, and treating the nonsynonymous rate factor as a free

parameter.

In contrast with the IVIG-style of model formulation, which the authors first de

scribed as having entries of the IVlarkov generator proportional to “the equilibrium

frequency of the target nucteotide” (Muse and Gaut, 1994. p. 717), the GY models have

entries of the Markov generator proportional to the stationarv prohabiïity of the target

codon. The contrast between the two formulations can be made very suhtle. Indeed. a

GY-stvle model can be specified from the same six nucleotide relative exchangeability

and four nucleotide propensity parameters used in the MG-style model above: codon

stationary probabilities are approximated as proportional to the product of the three

propensity parameter values associated with the nucleotides at the tliree codon posi

tions. However, such a model entails peculiar properties. For instance, in a mutational

cont.ext proue to events leading to A or T. a substitution from codon CGC to CTC

would have a. lower instantaneous rate than a substitution from codon ATA to AGA:

the rate of an event. involving the second codon position depends on the nucleotide

states at the first and third positions, which, in this case. leads to the higher rate for

the substitution going against the mutational bias. From the mechanistic model con

struction described ahove. however. there are no obvions reasons for linking a change



130

at the second position to the states at the first and third positions. unless this is me

diated hy selective effects at the codon level (e.g.. stop codons). Accordinglv. for this

same instance. the MG model displavs the reverse situation. with the CGC to CTC

substitution having a higher instantaneous rate than the ATA to AGA substitution in

a manner consistent with the mutational bias.

Another widely used modeling idea. adopted in both MG and GY formulations. has

been to assign a separate set of nucleotide propensity pararneters to each of the three

codon positions. The distinction with the previously mentioned models is commonly

referred to as F1x4 versus F3x4, reflecting the use of a single versus three vectors

of dimension 4. From the mechanistic standpoint, however. the f3 x 4 configuration

stands oniy as a phenornenological account of how the coding structure of the data

induces a periodic pattern at each codon position. There is no natural interpretation

to modeling features induced by the coding nature of the sequences via an expanded

parameterization at. the nucleotide level. Differences ohserved at. eacli of the three

codon positions are most likelv the resuit of factors hearing on amino acid or codon

preferences. or other high-order features. and should logically be modeled as such.

A further option available in the GY-style is based on a full 61-dimensional (assum

ing the universal genetic code) vector of codon stationar probabilities (indicated as

F61, e.g.. Huelsenbeck and Dyer, 2004; Huelsenbeck et al.. 2006: Yang. 2006). The GY

F61 approach has been suggested as important in giving ‘more freedom for the model to

explain the data by modifying substitution rates using codon frequencies’ (Huelsenbeck

and Dver. 2004. p. 670). This may be the case. but the GY-f61 model again has no

natural mechanistic interpretation: nucleotide propensities have no direct parameteri

zation in this formulation. but are only implicitlv modeled. in manner confounded with

otlier effects inducing uneven codon stationarv probahilities.

The impacts of the MG versus GY formulations, and the fi x 4. F3 x 4 and f61 (in
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the GY context) configurations. on overali model fit have not vet been explored within

a single encompassirig probabilistic ftamework. Most works promoting the GY-F61

formulations (e.g., Huelsenbeck and Dyer. 2004) are based on qualitative inspections

of parameter values, but without any quantitative model comparison measurements.

Perhaps even more surprisingly. the majority of codon-based model explorations have

focused on distinctions other than those of the GY versus MG approach. and the few

notable exceptions to this trend (Kosakovskv Pond. 2005: Kosakovsk Pond and Frost.

2005: Ren et al.. 2005: Aris-Brosou and Bielawski. 2006) have onlv considered the F3x4

configurations. In such contexts. Kosakovsky Pond and I\’Iuse (2005) have concluded

that the GY versus MG distinction “[...1 leads to sn;all (but typically negligible) dif

ferences [...J” (p. 2375). Also based on results from the F3x4 versions of the GY and

IVIG formulations. Aris-Brosou and Bielawski (2006) have suggested that the optimal

choice may ofren vary with tue data considered, and have called for “[...] more effort

devot.ed to understanding and carefullv modeling the relationship between mutation

process acting on protein coding genes and the precise para.meterization of equilibrium

frequencies in codon substitution models.’ (p. 63)

In this chapter, we construct a Bayesian ranking of codon substitution models.

based on the evaluation of Bayes factors (Jeffreys. 1935: Kass and Raftery, 1995). To

this analysis. we incorporate new models in the MG-style. which allow for a flexible

account of either global amino acid preferences or global codon preferences. and which

suhscribe more closelv to the mechanistic standpoint of separating mutational and se

lective features of the overali evolutionarv process. We also include in our analvsis ah

of the above-mentioned GY and MG-style models. comparing the Fi x4. F3x4 and

F61 (in the GY context) configurations. and contrasting each case with a modeling of

nonsynonymous rate heterogeneity using the Dirichiet process apparatus (Huelsenbeck

et al.. 2006). Using three real data sets. our findings indicate that alternative configu
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rations of the GY and MG-style models can lead to considerable differences in overall

model fit. to an extent sometimes greater than the contrast between homogeneous and

heterogeneous (across sites) nonsynonymous rates.

7.2 Material and methods

7.2.1 Data

We used the GLoBIN17-14. LYsIN25-13, and Hiv22-99 data sets, and in ail three

cases used the same topologies as those used in the works cited for each data set (sec

chapter 2).

7.2.2 Models

In the next subsections. we describe the model components in detail. constructing the

entries of rate matrix Q following modeling approaches inspired from Muse and Gant

(1994) and Goldman and Yang (1994). The models are not identical to those presented

in these original works. but correspond to flexible generalizations. while allowing us to

focus on the distinguishing features of interest.

7.2.2.1 MG-style models

We begin with the mechanistic modeling standpoint proposed by Muse and Gant (1994).

with a Markov generator given hy

if A.

QabÇ0b. f 3 (7.1)

O. otherwise.
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where

Â: u and b are svnonyrnous. and differ only at codon position c

B: u and b are nonsynonymous, and differ only at codon position c;

and where

• Q = (Qlm)1<t.rn<4 is a set of (symmetrical) nucleotide relative exchangeahility pa

rameters. with the (arhitrarv) constraint Z1 <1<m<4 Qtm = 1:

•
= (m)i<m<, with Sm = 1. represents a set of global nucleotide equilib

rium propensities:

• and w is the coefficient bearing on nonsynonymous rates, for now treated as a

global parameter.

When w 1. this model corresponds to the well-known GTR model invoked for nu

cleotide level interpretations. but with the purifving constraint against ail stop codons.

Here. however. w is alwavs treated as a free pararneter. and the model is referred to as

MG-Fi x4.

Following in the MG-style, one way of modeling factors bearing on codon preferences

is given as

2

Qabb l\) . 1

Qah () 2
if B. (7.2)

O. otherwise.

where w = (wb)1<b<6. with Wb = 1. represents a set of 61 codoil preference param

eters. and where the exponent ensures reversibility (see Appendix E). Entries corre

sponding to substitutions from an unpreferred codon to a preferred codon ( > 1) will

thus he higher than entries corresponding to substitutions from a preferred to an unpre

ferred codon ( < 1), and in this way. an explicit account of global codon preference
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(CP) is included, while maintaining an account of backgroiind nucleotide propensities.

We refer to this model as MG-f1x4-CP.

Note that tire codon preferences captured by ‘p cari be tire resut of several factors,

including. for instance, global amino acid preferences. One way of assessing whether

the CP model is capturing effects beyond those of global amino acid preferences is to

compare it with a simplified version of the CP formulation, which accounts only for

sucli features as given bv

Qab,bc. jf A.

WQ
(r) 2

if B (7.3)

O. otherwise.

where = (Wk)i<k<20 is a 20-dirnensional vector associated with amino acid preferences

(AAP). and where f(a) returns an index corresponding the amino acid eucoded hy

codon a. As in tire case of the CP model. entries corresponding to substitutions from

an unpreferred amino acid to a preferred amino acid > 1) wiil thus be higlier

than entries corresponding to substitutions from a preferred to an unpreferred amino

acid < 1). We refer to this model as MG-F1x4-AAP model.
Wf@)

finally, despite departing from tire mechanistic modeling perspective. we also in

vestigate the f3x4 configurations for tire models defined in (7.1), (7.2). and (7.3), by

substituting appropriately with codon position specific nucleotide propensity parame

ters. written as ()i<m<4, where Vc. 1 <c < 3. 1. Tire MG-F3x4

model is thus given b

(c)
if A,

Qai WQacbc
. if B, (74)

O. otherwise,
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the MC-f3x4-CP model by

f (‘), if Â.

if (7.5)

O. otherwise.

and the MG-F3x4-AAP model by

(c)
if A.

(c f B (7.6)

O. otherwise.

7.2.2.2 GY-style models

The models in the style proposed by Goidman and Yang (1994) have Markov generators

specified as

Qacbciïb. if A.

WQ7. if B. (77)

0, otherwise.

where ir (iTb)1<b<6y. with = 1. represents a. 61 dimensiorial vector of codon

stationary probabilities (distinct from w).

Several options for ir are available. First. it can be hased on a set of global nucleotide

propensity parameters accordillg to

ira a1a2a3 (7.8)

We refer to this model as GY-flx4. Another similar choice is to base ir 011 codon-
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position-specific nucleotide equilibrium frequencies:

7Ta 0 (7.9)

in which case we refer to the model as GY-f3x4. Note that. the GY-F1x4 and MG

F1x4 models. as well as the GY-F3x4 and IVIG-F3x4. are respectivelv constructed

from the exact sanie parameters; they also have the same stationary distributions. and

hence differ only in terms of their transient specifications (further details on this point

are given in Ren et al.. 2005. as well as in the Appendix E). finally. we consider the

case where n is directly free. conditioning tue full 61-dimensional vector to the data.

which we refer to as GY-F61.

The hmiting distributions of ail models are given iII full in Appeiidix E, along with

further details specific to our implementation.

7.2.3 Priors

Our prior on branch lengths is Exponentiat. with a mean determined hy a hyperpa

rarneter y. itself endowed with an Exponential prior of mean 1. Adopting the approaci

presented by Huelsenbeck et al. (2006). our most general prior on nonsynonymous rate

factors of the models is the DiTichtet process (DP)—as an infinite mixture across

sites—with hyperparameter a. modulating the assumed “grailliness” of selection coeffi

cients: a is endowed with an Exponentiel prior of mean 1. The Dirichiet process prior

also utilizes a base measure. defining the prohabiïitv distribution of each component: as

in Huelsenbeck et al. (2006), we use p(w) = 1/(1 + w)2. the probability density of the

ratio of two identicallv distributed draws from an Exponential. This same base prior is

used when dispensing with the DP framework. with the model based on a single global

w factor. All other parameters have flat Dirichiet priors on their respective sta.te space.
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7.2.4 Model comparisons

We used the model-switch thermodynamic integration fran;ework descrihed in Lartillot

and Phulippe (2006). and summarized in chapter 2. to evaluate Bayes factors across

ail codon substitution models descrihed ahove. Recali that the overali precision of the

method depends on a number of factors. such as the step size of the model morphing

parameter (&B). and whether the number of cycles between steps is sufficient to allow

the chain to re-equilibrate to the intended posterior distribution (see eqn. 2.17), for

instance; but also on the inherent distance between the two models being compared.

\\ïith a large set of candidate models. a reasonable traversai across the space of ail

models must he designed for efficient computation. In the foilowing sub-sections, we

describe a set of rnodel-switch thermodvnamic integrations linking together ail models

under studv.

7.2.4.1 GY-MG-switch

The first model-switch scheme hnks together the GY-F1 x4 and the MG-Fi x4 models.

This particular thermodynamic integration represents the ideal case, where all param

eters are involved in both models: pararneters are always sampled from the posterior

distribution of one model or the other (or the partialiy morphed posteriors along the

path). The GY-IVIG-switch is also applied to link GY-f3x4 and IVIG-F3x4 models.

7.2.4.2 F1x4-F3x4-switch

The F1x4-F3x4-switch is onlv used in the GY context. although it couid he used in

the I\’IG context as well: here. onlv one of the two contexts need be calcuiated to link

ail models together. For this model-switch. the single nucleotide frequencv vector of

the GY-F1 x4 model is also used as the first codon position nucleotide vector under the

GY-F3 x 4 model. As such. at one end of the path. this set of nucleotide frequencies
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corresponds to the single-nucleotide-vector-approximation of codon frequencies under

the GY-F1 x4 model. whereas at the other end, it corresponds to the first position vector

of the three-vector-approximation of codon frequencies under the GY-F3 x 4 modeL As

for the other two nucleotide vectors associated with the the GY-F3x4 model. they are

effectively sampled from the prior at one end of the path. and tue posterior at the other

end of the path. Ail other parameters are relevant to both models.

7.2.4.3 F1x4-F61-switch

This model-switch is only pertinent to the GY context. connecting the GY-F1 x4 model

and the GY-F61 model. At one end of the path. the vector of nucleotide frequencies

used to approximate codon frequencies is sampled from the posterior under the GY

Fi x4 model. whule sampling from the prior of a (distinct) full 61-dimeiisional codon

frequency vector. At the other end of the path. the vector of nucleotide frequencies used

to approximate codon frequencies is sarnpled from the prior. whereas the 61-dirnensional

codon frequency vector is sampled from the posterior. Ail other parameters are relevant

to both models.

7.2.4.4 CP-switch and AAP-switch

The CP-switch is only pertinent in the MG context. linking the MG-F1x4 and MG

Fi x4-CP models. One end of the path samples the codon preference pararneters from

the prior, whereas the other samples these parameters from the posterior. Ail other

pararneters are relevant to both models. The CP-switch is also used to link the the

IVIG-F3 x 4 and IVIG-F3 x 4-CP models. The AAP-switch is analogous to the CP-switch.

but involving tue amino acid preference pararneters instead.
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7.2.4.5 DP-switch

This last model-switch hnks together a model with a sirigle w factor and a model based

011 the Dirichiet process prior modeling heterogeneous w factors across sites. At one end

of the path. the sampler draws from the posterior of a model with a single w factor. and

from the prior taud hyper-prior) of the Dirichiet process. At the other end of the path.

sampling is under tire full posterior of the Dirichlet process. and the prior of the global

w factor. As before. ail other pararneters are relevant to both models. Tire DP-switch

scheme is applied separately to each underlying GY and IVIG-style model.

7.2.4.6 Overali model ranking

From the set of model-switch methods described above. we cari evaluate ah models by

computing Bayes factors with respect to a common reference. We use GY-F1 x 4 as the

reference model here. which implies that as many as four different sets of model-switch

sciremes may be involved in reporting a particular Bayes factor. For instance. taking

tire example from the main text, tire (log) Bayes factor between MG-F3 x 4-CP-DP and

GY-F1 x4 is assembled from four separate calculations:

p(D MG-F3x4-CP-DP)
—

p(D I MG-F3x4-CP-DP)
+

p(D I GY-F1x4)
—

p(D MG-F3x4-CP)

1
p(D I MG-F3x4-CP)

p(D I MG-F3x4)
+

p(D MG-F3x4)
lir

(D GY-F3x4)
+

p(D GY-F3x4)
lri(D GY-F1x4)

(7.10)

where tire first term is computed using tire DP-switch. tire second using tire CP

switch, tire third using tlre GY-MG-switch, and tlre fourtir using tire F1x4-F3x4-

switch. Tins approach cari he viewed as a way of parallelizing tire conrputation of

inp(D MG-f3x4-CP-DP) — lnp(D GY-F1x4), as opposed to performing a single
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long integration directly between the two models. Note. however, that the iog Bayes

factor for each intermediate model is computed along the way when building the entire

set of Bayes factors against GY-F1 x4, this model space traversai will resuit in much

less overall CPU usage than would performing integrations from each model directly to

GY-F1 x4. The procedure aiso implies a level of error. which we explore ernpirically by

running each calculation in duplicate. using the quasi-static bi-directional method de

tailed in Lartillot and Philippe (2006) and discussed below. Each pair of rnodel-switch

integrations produces two values. reported as an interval. and giving a sense of the

precision of the Monte Carlo settings.

7.3 Resuits and discussion

7.3.1 Empirical explorations of thermodynamic integrations

We perforrned several pilot runs to tune each type of model-switch thermodynarnic in

tegration. Incorporating the hi-directional approach described in Lartillot and Phuippe

(2006), each modei-switch scherne was explored hy running integrations in duplicates.

one with the morphing parameter going from O to 1. and another with going from

1 to 0. We report both values obtained from the bi-directional approach as an interval

throughout. Figures 7.1 and 7.2 display examples of this tuning process in two cases.

Each panel in these figures plots the values lnp(D O, M1) — lnp(D O. Mo) collected

during bi-directional quasi-static runs. Graphically, the log Bayes factor corresponds to

the area between the curve and the abscissa (negative below the abscissa. and positive

above it), and is estirnated using the relation given in (2.21).

Using the GLoBIN17-1 data set. figure 7.1 corresponds to a case that we qualify

as cornputationally easy: the GY-MG-switch. linking GY-F1 x4 and MG-Fi x4. These

two models have the exact same pararneters, and only differ in how pararneters are
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Figure 7.1. Log-likelihood differences recorded during GY-MG-switch thermodyllarnic
illtegrations linking GY-F1 x4 and MG-Fi x4. Two integrations are plotted in each
panel. one with B going from O to 1 (+). and another wit.h B going from 1 to O (x).
The collection of K + 1 values is used to approxirnate the 10g Baves factor according to
(2.21). Panel a) displays “fast’ mus. with K = 100. panel b) displavs “medium” mus.
K = 1. 000. and panel e) displavs slow’ runs. with K = 10. 000.
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assembled to specifv the final model. At. one end of tue path (i3 0). the plot displays

the difference in log-likelihood between MG-F1x4 aid GY-F1x4, when the param

eters from the posterior under GY-F1x4 are “imposed upon” the IVIG-f1x4 model.

Reciprocallv, at the other end of the path (t3 1), the plot displays the difference

in iog-likelihood when the parameters of the posterior under MG-Fi x4 are “imposed

upon” GY-Fi x4 model. Based on the K + 1 draws along the path. the approximation

given in (2.21) for K = 100 (fig. 7.ia). K = 1.000 (fig. 7.ib). and K = 10.000 (fig.

7.ic). is [2.9 5.4]. [3.7 4.1] and [3.8 3.9] respectively. These two models are quite

close to each other. in terms of overail fit. but the model-switch integration procedure

nonetheless allows for a very precise estimation in this case. because the models can be

connected through a very short overali path. In this case. the final runs (K = 10. 000)

each required about 6 days of CPU time on an Intel P4 3.2 GHz computer node.

Stiil using the GLoBIN17-1 data set, figure 7.2 corresponds to a case that we

qualify as computationallv challenging: the Fi x4-F61-switch. linking GY-f 1x4 and

GY-f61. In contrast with the GY-MG-switch. in which ail parameters were involved

in both models. this thermodvnamic integration has a set of parameters in each model

that are irrelevant to the other. When 3 0. the plots display the difference in log

likelihood between GY-F61 and GY-F1x4 when the 61-dimensional vector of codon

frequencies attributed to GY-F61 is sampled from the prior, and other pararneters are

those “imposed hï” the posterior under GY-F1 x 4. Sllch a sampler wiil induce very

poor log-likelihood values under GY-f61. and indeed the plots display negative values

at this end of the path. At the other end of the path ( 1). the plots displav the

difference in log-likelihood hetween GY-F61 and GY-f 1x4 when the 61-dimensional

vector of codon frequencies is sampled from the posterior under GY-F61. the single

nucleotide-vector-approximation of codon frequencies is sampled from the prior under

GY-F1 x4. but with other parameters being those “imposed” by the posterior under GY
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Figure 7.2. Log-likelihood differences recorded during Fi x 4-F6 i-switch thermody
namic integrations linking GY-f1x4 and GY-F61. iwo integrations are plotted in
each pallel. oe with going from O to 1 (+). and aiiother with /3 going from 1 to O
(x). The collection of K + 1 vailles is used to approxirnate the 10g Baves factor accord
ing to (2.21). Panel a) dispiavs “fast” mus. with K 100. panel b) displays “medium”
funs. K = 1. 000. and panel c) displavs “slow” mus. with K = 10. 000.
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F61. Thus. this other end of the path will induce verv poor log-likelihood values under

GY-F1x4. and indeed the log-Ukelihood difference displayed in the plots become highÏy

positive. As can be appreciated graphically. the tail-ends of the integrand represent the

main source of error in this model switch. The interval obtained from bi-directional

quasi-static runs with K 100 (fig. 7.2a) is extremely broad. at [84.9 ; 175.6]. Also

note that in this case the sampler does not appear to include a sllfficient number of

cycles hetween steps to decorrelate successive draws. Several tllning options could be

explored, but here. we simply increase the overali sample size (or equivalentlv. decrease

the step size 63). With K 1,000 (fig. 7.2b) the interval obtained is [113.4 126.2],

and finallv. the longest rns (K = 10, 000. fig. 7.2c). each requiring about 20 days of

CPU time. produce the tightest interval. at [115.6 117.6].

However, when computing log Bayes factors for the more complex models. involv

ing several distinct model-switch schemes. the interval of the overali log Bayes factor

against GY-F1x4 is constructed conservatively (to produce the hroadest possible in

terval), and in some cases an entirelv unambiguolls model rallking is not possible.

For instance. with the GL0BIN17-1.44 data. the log Baves factor of MG-F3x4-CP-DP

against GY-F1x4, and the log Bayes factor of MG-F1x4-CP-DP against GY-F1x4,

overlap with each other (table 7.1), which thus prevents us from clearly distinguishing

the two models. Similarly. for the LYsIN25-13 data set. four models are ambiguously

top rankiiig. as are three for the Hiv22-99 data set (sec bold emphasis in table 7.1). In

the present context. obtaining the required level of precision for distinguishing between

log-marginal-likelihoods that differ bv a few units is relativel uninteresting, and not

worth the compiatationaÏ investment that would be needed whell utilizing the present

methods. Our objective here is rather to map out the main effects of different formii

lations in terms of overali model fit.
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7.3.2 Bayes factors

The series of log Bayes factors reported in table 7.1 reveals considerable differences in

model fit. indicating the importance of performing a careful examination of alternative

parametric choices. We note that the MG-Fi x 4-CP-DP model is among the top rauking

models for ail three data sets. Tliis resuit is somewhat expected. First. nonsynonymous

rate heterogeneity lias now heen observed across numerous data sets (Yang. 2006), and

it thus seerns reasonable to anticipate an improved model fit under the Dirichlet process

(DP) framework proposed by Huelsenbeck et al. (2006). The other specifications of this

top model are also reassuring. in the sense that adhering closely to the mechanistic

perspective of teasing apart mutational features and selective constraints produces. at

worst. a model of roughlv eqilivalent fit to models lacking such a natural interpretation.

In addition. ail three data sets suggest uneven codon preferences (CP). although such

preferences appear to go well heyond amino acid preferences (AAP) only in the case of

the GLoBIN17-1.

We next note that under tlie simpler settings of MG-style models, sllppressing AAP

or CP parameters. the F3x4 configllration is generally preferred over the Fi x4 configu

ration for ail three data sets. The periodic pattern of codon-position-specific nucleotide

propensities is a feature expected from the structure of the genetic code. Suci an in

terpretation. however, is not accurately represented by expanding the nucleotide level

parameterization. Indeed, with the richer models, including the CP parameters in

particular, the F3 x 4 configurations are only mildly preferred over the Fi x 4 configura

tion. and when invoking the Dirichlet process. modeling heterogeneous nonsynonvmous

rates. the nurnerical error no longer allows for a clear distinction hetween these two

configurations (expect for the Hw22-99 data set. whici gives preference to the Fi x 4

configuration).

The GY-style of models based on the fi x 4 and F3 x 4 configurations are generallv
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Table 7.1. Natllral logarithm of the Bayes factor for models considered, with GY-F1 x4
used as a reference.

IViodel GL0BIN1 7-1J LYsIN25-13 Hiv22-99

GY-F1x4 - -

GY-F3x4 [69.4 70.3] [-4.7 -4.2] [11.7 12.0]
GY-F61 [115.6 117.6] [28.9 31.4] [24.9 26.2]

MG-F1x4 [3.8 ; 3.9] [3.0 : 3.2] [11.7 11.8]
IVIG-F3x4 [45.8 47.0] [3.6 4.4] [17.9 ; 18.3]

IVIG-F1x4-AAP [42.0 43.8] [46.3 47.7] [24.5 ; 25.4]
MG-F3x4-AAP [83.3 ; 85.4] [50.9 t 53.1] [20.6 22.2]

MG-F1x4-CP [125.9 127.7] [65.9 68.4] [26.4 ; 28.0]
MG-F3x4-CP [128.1 t 130.7] [69.6 73.3] [22.3 ; 23.9]

GY-F1x4-DP [102.3 t 104.2] [183.7 t 185.9] [54.7 55.1]
GY-F3x4-DP [166.7 169.5] [176.6 ; 179.8] [65.5 ; 66.8]
GY-F61-DP [218.5 222.0] [213.8 t 219.1] [76.8 ; 78.3]

MG-F1x4-DP [106.0 t 108.1] [187.1 t 190.0] [69.0 t 70.3]
IVIG-F3x4-DP [148.6 t 152.3] [186.7 t 189.8] [74.3 t 76.0]

MG-F1x4-AAP-DP [166.0; 170.2] [240.0 ; 245.4] [77.4 ; 79.3]
MG-F3x4-AAP-DP [206.8 ; 211.5] [240.0 ; 245.9] [74.5 t 76.5]

MG-f1x4-CP-DP [240.3 ; 244.9] [240.6 ; 246.9] [78.0 ; 80.0]
IVIG-F3x4-CP-DP [237.0 ; 242.7] [240.7 ; 248.1] [74.6 ; 76.7]

Note.—Values given are the upper and lower estimates obtained from bi-directional thermodynamic
integrations. Top models are emphasized in bold.
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disfavored over their MG-style counterparts (except for the GLomN17-1 data set.

which gives favor to GY-F3x4 over MG-F3x4). Surprisingly, for the LysIx25-134

data set. the simpler GY-F1x4 model is slightly preferred over the GY-F3x4 model.

However, for ail three data sets. the GY model based on F61 configurations outperforms

the other GY-style models, as well as the simpler MG-style models. In the case of the

GL0BINJ 7-1 data set. the contrast of the f61 configuration is even greater than that

observed between homogeneous and heterogeneous models of nonsynonrnous rates: for

instance. the log Bayes factor of GY-F61 against GY-F1x4 is [115.8 : 117.4] whereas

for GY-F1x4-DP against GY-F1x4 is [102.3 104.2]. These results for GY-F61 model

are also indicative of uneven codon preferences. However, as previously mentioned.

the codon preferences accounted for in this GY formulation are confounded with other

features. including the background of nucleotide propensities, maldng the model less

attractive on interpretive grounds. Accordingly. when contrasted with the richer MG

formulations account.ing for codon (or amino acid) preferences. the GY-F61 model is

less attractive on quantitative grounds (except for H1v22-99. in which case it matches

the top MG-style models).

7.3.3 Posterior distributions

Here. we dispiay posterior distributions (obtained using plain MCMC sampling) for

parameters of the MG-F1x4-CP-DP modeL Our main focus is on the distinguishing

features of the model. namelv. the combination of background nucleotide propensities

with global codon preference parameters. To illustrate certain features. we also contrast

the distributions with those obtained under the MG-F3 x 4-CP-DP modeÏ. as weh as

under the simpler models suppressing CP parameters.

The results of table 7.1 suggest that disparities in nucleotide propensities at the first.

second. and third positions could be reduced to codon (or amino acid) preferences. To
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investigate this point. we first inspect the posterior distributions of nucleotide propen

sity parameters under various model configurations. Figure 7.3 displays the 959’c cred

ibility intervals of the global nucleotide propensity parameters for each data set. The

full limes correspond to the interval obtained under IvIG-F1 x 4-DP. wliereas the dashed

limes are obtained under MG-fix4-CP-DP. The distributions are far more diffuse un

der the CP version. although their general locations appear similar. Inversely, one cari

interpret that without the CP parameters, the posterior nucleotide propensity distribu

tions are misleadingly overconfident. Figure 7.4 explores this same behavior under the

F3x4 configurations. First note that without the CP parameters (full hues), the three

positions show striking differences in overail distributions. and that the magnitude of

the credibility intervals are muci greater tha.n under the Fi x 4 configuration. When the

CP parameters are introduced (dashed unes). several credibility intervals considerablv

shift and increase in magnitude. Also note that under the CP settings. the distributions

of each position tend to overlap. To show this more vividly. we reconstituted the resuits

displaved in figures 7.3 and 7.4 into a single figure for the GLoB1N17-1.4 data (fig. 7.5).

figure 7.Sa displavs the global nucleotide propensity parameter values ohtained under

the the MG-Fi x 4-DP model (full une) as well as each of the three nucleotide propen

sit parameter values under the MG-F3x4-DP (in progressively fluer dashed unes for

position i 2. and 3). In this case. the disparity between the different distributions is

high. When including the CP parameters (fig. 7.Sb), however. the disparitv is rnuch

lower. suggesting the redundancv of the f3 x 4 configuration in combination with the

CP parameters. We note that some values ai-e stiil markedly divergent (e.g., 3rd position

A and 2’ position T). indicating that other model violations may be at play. In other

words. codon and/or amino acid preferences seern to explain (albeit not entirely) the

observed disparities of nucleotide equilibrium frequencies at the three codon positions.

We next inspect the posterior distributions of codon preference parameters. Figure
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7.6 displays the 95% credibitilitv intervals of codon preference parameters under the

F1x4 (full une) and F3x4 (dashed hue) configurations. The parameters appear to

be only moderately sensitive to the F1x4/f3x4 choice. although a few notable shifts

and increases in magnitude of credibility interval are observed. This suggests that the

although the F3x4 configuration is impertinent with the CP parameters. it is not too

costly in terms over-parameterization, which corroborates with the resuits from table

7.1. The overail CP distributions suggest pronounced overali codon preferences for

the GLomN17-1. but. milder prefereilces for LYsiN25-13 and H1v22-99. This also

corrohorates well with our computed Baves factors. which indicate that for LYsIN25-13

and Hiv22-99, the improvement brought about hy the C? parameters is less important

than for the GLoBIN17-1 data. Observing the distributions for the GLoBIN17-1

data set in detail. we find that. that the parameter values appear to capture long ohserved

tendencies of codon preferences on similar data. sucli as the elevated use of CTG for

encoding leucine. GTG for vahne. or GGC for glycine: indeed. these were some of the

first observations stimulating researcli into the causes of codon preferences (e.g.. Fitch.

1980: Modiano et al.. 1981: Kimura. 1983).

7.3.4 Detection of positive selection

Finally, we contrasted the conclusions of the GY-F61-DR MG-Fi x 4-DP and MG

F1x4-CP-DP models with regards to the amino acid positions inferred to have un

dergone positive selectioll. Under the DP settings. the posterior probahilitv of a site

being under positive selection can he comput.ed from the proportion of draws from a

sample (obtained via plain MCMC sampling) found to be in a class w > 1. as de

scribed in Huelsenbeck et al. (2006). We first. note that for the GLoBIN17-14. focusing

on posterior probabilities at 0.9. 0.95. and 0.99 cutoif levels. the MG-F1x4-DP and

MG-F1x4-CP-DP models infer sites under positive selection at each level. whereas the
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GY-F61-DP model infers no sites at either level (table 7.2). The list of sites under pos

itive sehection under the three models considered also differs for the other two data. sets

(table 7.2). Comparing the MG-flx4-DP and MG-flx4-CP-DP models specificall.

figure 7.7 displays the values p(w > 1) across ah sites. Overail. the spike patterns have

the same general aspect, althougli the CP parameters appear to attenuate the p( > 1)

values. There are a nuinber of exceptions. however. and it will be important to conduct

a broader empirical study of the impacts of thiese and other parametric choices on the

detection of positive selection.



Table 7.2. Amino acid sites under positive selection.

Data Model Sites

GY-F61-DP -

GL0BINJ7-144 MG-F1x4-DP 7. 48, 50, 54. 67, 85. 123.

MG-F1x4-CP-DP 7, 11, 50, 67, 85, 123

2, 3, 4, 6. 7, 9, 10, 11, 12, 14, 32, 33, 36, 3Z
GY-F61-DP 41, 44, 64. 67, 68, 70, 74, 83. 86, 87. 100.

106, 107, 113, 115. 116, 120. 123, 126. 132

4. 6. 7. 9. 10. 11. 12. 14. 32. 33. 36. 40. 41. 44.
LYSIN25-134 MG-F1x4-DP .45., 64, 67. 68, 70, 74, 75. 82, 83. 86, 87. 100,

106. 107. 113. 115, 119. 120. 126. 127, 132

4, 6, 7. 9, 10, 12, 14. 32. 33. 36, 37. 41. 44,
MG-F1x4-CP-DP 64, 67. 68, 70, 74, 75. 83, 86. 87, 100, 106.

113, 115, 119. 120, 123, 126. 127, 132

GY-F61-DP 54, 37. 63

Hiv22-99 MG-F1x4-DP 10. 12, 32, 33. 37, 41. 46. 47, 50. 54. 63. 82

MG-F1x4-CP-DP 10, 32. 33. 37, 50. 54. 63

Note.—Numbers in ztalic font are at the 0.9 level, in plain font at the 0.95 level and in bold font at
0.99 level.
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7.4 Conclusions

The distinction between GY and MG-style models lias generalÏy been considered as Tel

atively subtle, and most researchers have chosen to explore modeling extensions from

one of the two perspectives (e.g.. Nielsen and Yang. 1998; Yang et al.. 2000a: Sain

udiin et al.. 2005: Huelsenbeck et al.. 2006: Wong et al., 2006: Kosakovsky Pond and

Muse. 2005; $chaldt and Lange, 2002). In light of ah of these recent developments.

the study in this chapter effectively takes a step back. to re-assess the core motivations

underlying codon-based models: the formulation of a hiologicahly meaningful and read

ilv interpretable parameterization. We have argued that. the MG-style models. with

the extensions studied here. suhscribe most closely to these motivations. from the

Bayesiau standpoint. sorting the importance of different model formulations becomes

an empirical issue. explored here by evaluating Bayes factors. Results confirm that a

careful modeling in the MG-style. so as to acknowledge amino acid or codon prefer

ences. tends to surpass. or at least match. the optimal GY-stvïe model. furthermore.

the top GY and MG-style models reach different conclusions with regards to amino

acid sites under positive selection. with the top-performing GY-stvle model compara

tively over-estimating selective factors hearing on nonsynonvmous substitution rates.

We recommend future modeling investigations to consider incorporating any extensions

in the MG context specifically, and to monitor how these alternative choices compare.

in terms of model fit, but also in terms of logical interpretation (Thorne. 2007).



Chapter 8

Evaluating structural models of

codon substitution

8.1 Introduction

Havillg now studied codon substitution models assunhing independence. we are in a po

sition to re-introduce the statistical potential into a. set of different model formulations.

Recali that the practical complications of the model presented bv Robinson et al. (2003)

led these authors to propose a set of MCMC techniques based on two different forrns

of auxiliary variable methods: 1) a data-augmentation system. providing a numerical

means of integrating over detailed substitution mappillgs: and 2) an importance sam

pling argument, providing an approximation of the ratio of two intractable normalizing

constants. Together, these approaches provided the first proof-of-concept that sucli

models could be implemented.

In this chapter. we revise both forms of MCMC schemes for the studv of site

interdependent models in the codon context. and suggest the use of flexible sampling

approaches that can be more readily expanded to accommodate richer statistical po

tentials. as weÏÏ as higher dimensional parameterizations bearing on the stationary dis-
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tribution of the site-interdependent. Markov process. Specifically. we first describe a

method foi- producillg data-augmentations uiider a proposai density desigiied to be as

close as possible to the target site-interdependent density. The procedure is based on

a definition of site-specific codon substitution matrices, and utilizes a ‘uriiformization

technique previously used hy Fearnhead and Sherlock (2006) to explore the occurrence

of rare DNA motifs. Next. we adapt recent techniques derived for approximating p05-

terior distributions involving intractable normalizing factors in the likehhood function

(IViurray et al.. 2006). Our focus is on embedding these different techniques within ther

modyna.mic integration methods. as descrihed in chapter 4, to evaluate Bayes factors

for different codon model versions, and to present preliminary analyses in this context.

We also present preliminary posterior predictive checks, displaying how different models

render features of nonsynonymous rate heterogeneity, and amino acid exchanges. Ai

together, the methods proposed here amount to setting up another phenomenological

benchmarking. now at the codon level of interpretation.

8.2 Material and methods

8.2.1 Data

We used the GLoBIN17-14 data set. with PDB code 4HHB chain B used as a reference

structure.

8.2.2 Evolutionary models

We again borrow the nomenclature of Parisi and Echave (2001). and refer to the models

as structuralty constrained (SC). utilizing the combined contact and solvent accessibility

potential developed in chapter 5. Recali the form of the potential. with the pseudo
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energy score of as sequence s given bv:

G(s) = + + (8.1)
y<i<i!<Ar 1<i<N i<z<N

The first term in (8.1) is a contact potential. the second is a solvent accessibilitv p0-

tential. and the last term accounts for compositional effects. inspired from the random

energy approximation ($hakhnovich and Gutin. 1993: Sun et al., 1995; Seno et al..

1998).

Let G(a) represent the pseudo-energy associated with observing amino acid a at

site i. but without consideration of the contact component: with the present form of

potentiaL G (a) = E + Z. In the most general case studied in this chapter. we begin

by constructing site-specific codon substitution matrices of the forrn

Qabb () , if Â,

() 2
e((Gj(). if (8.2)

O. otherwise.

Note that as written ahove. the model would implv 14 different Q matrices, for the

14 solvent accessibility classes as derived in chapter 5. However. when invoking the

Dirichiet process prior on w, it is more practical to assemble site-specific matrices as

above. hllt with the w factor coming from the current “pool” of w factors. according to

the configuration of the Dirichiet process.

Now let G.(s) he the contact energy of sequence s. i.e.. G(s) = Z1<i<j’<N

Then, we construct the overali sequence process by specifying off-diagonal entries of the
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Markov generator as

if s and s’ differ by one codon at position i.
= (8.3)

0. otherwise.

and with diagonal entries given by the negative sum of off-diagonal entries. We can see

t.hat from this construction. nonsynonymous rates wiii 5e proportional to

i.e.. the measure based on the overali statistical potential. Here. cari 5e treated

as a free parameter, with a uniform prior on [—5, 5]. which we again indicate as +.

However, we mav also fix 1/2. given that tire potential was originally derived with

this scaling. Fixing = O recovers tire MG-Fi x4-CP-DP model studied in tire previous

chapter—we use the same prior structure on ail otirer parameters as we did in the iast

cirapter.

An attractive aspect of tire model is that it acknowiedges tirat tire evoiutionarv

process producing the different protein-coding nucleotide sequences involves severai

distinct features. specificallv bearing on mutational tendencies at tire nucleotide level.

on global codon preferences, on nonsynonyrnous heterogeneitv. as well as constraints

operating at tire level of tire overail arnino acid sequence; and we cari explore tire

relative importance of these features by measuring tire fit of speciais cases, which cari

be recovered hy suppressing (or prefixing) certain pararneters.

8.2.3 Data augmentation

Aithougir we stiil utilize tire BRANcHHIsT0RY. NODESTATE. and TREEHIsT0RY oper

ators in our data augmentation-based sampler, we use a different scireme for generating

proposai mappings in tins chapter. The rnappings are proposed fronr tire site-specific

Q nratrices. wlriclr include ail aspects of tire nrodei. but not tire contact component

of tire potential. Tire nrappings are then accepted or rejected. according to tire full
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site-interdependent I\4H rule. The idea here is that as the potentials used becorne more

sophisticated, it will become increasingly important to generate mappings from a model

that is as “close” as possible to the target modei, in order to have high acceptance rates

and good mixing kinetics.

Thus far, we have relied on the metliod proposed bv Nielsen (2002) to generate

mappings under site-independent models. Recail that the aigorithm proceeds in two

basic steps: 1) sample internai node states from their joint distribution. conditional

on the data and the parameters of the Markov process; and 2) sample the series of

substitution events aiong each brandi, conditionai on parameters of the Markov process.

and the states at. both ends suci as determined in step 1). The second step of the

algoritim is an accept/reject approach: starting from the state at tie ancestral node.

run tie Markov process—sampiing the timing and nature of events to the end of tie

branci—and accept tue resulting substitution mapping if tie last event is consistent

witli tie state of the descendant node; if not. reject the mappiug and start over. untii

a consistent mapping is drawu. “The simulation scieme is efficient assuming that tie

rates of change between ail nucieotides [states] is large [...].“ (Nielsen. 2002. p. 732) aud

a provision is made to enforce the sampling of at least one event in cases wiere the

ancestral and descendant states differ. However, the site-specific codon substitution

modeis of interest here have instantaneous rates of change of O between states differing

hy 2 or 3 nucleotides. This lias the effect of inducing stricter constraints on tie possible

coierent. mappings. and under some conditions. Nielsen’s second step stalls. entering a

prolonged whiÏe-loop in attempting to sampie an acceptable mapping.

Instead, in such problematic cases, we use a procedure is based on a ‘uniformization

technique. Tie uniformization procedure (see. e.g., Jensen. 1953; Gross and Miller.

1984: Mateiu and Rannaia. 2006: Lartiilot. 2006: Fearnhead and Sheriock. 2006) trans

forms tie process deflned by Q (we siall omit the site index i in tue developments tiat
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follow) into a process allowing for virtuaÏ events. or seÏJ-substitutions (from o to a). Let

P = [Pab] be the matrix of this process. obtained from

P=Q+I. (8.4)

where i > max{—Qaa} is the unijormization Tate. and I is the identity matrix. Note

here that the sum of each row in R eciuals 1: this is also called a stochastic matrix.

Under the uniformized process. the waiting time until an event no longer depends on

the current state, and the probability of having n events (including self-substitutions)

over a branch length ) (we drop the j index below) is given by a Poisson distribution:

I = e° . (8.5)

Also, taking powers of the matrix P yields the probabilitv of starting in state a and

ending at state b after n events:

p(b n.a) = (8.6)

We will suppose that we now want to draw a mapping along a branch, and that the

states at the ends of the branch (a and b. for the beginning and ending states respec

tively) have already been sarnpled (using NieÏsen’s first step). The overail method can

be summarized as a three stage progressive demarginalization: 1) sample the number

of events (always including virtual events) marginahzed over their nature and timing;

2) sample the nature of events in order. marginalized over their exact timing: and 3)

sample the timing of events.

We flrst begin bv drawing the number of events front the distribution p(n a. b. ).
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which can be calculated from (8.5) and (8.6) according to Bayes theorem:

p(b I n.a)p(n I À)
p(n I b,

= p(b a. À)
(8.7)

Note that the denominator in (8.7) can be developed as follows:

p(b I a.À) = p(b n.a)p(n I À) (8.8)

= P
À)

(8.9)

(8.10)
n! ah

= [e Ie1J]
b

(8.11)

= [e’)]h (8.12)

= [e]b. (8.13)

This developrnent highlights the fact that Q and P are different representation of the

same underlying process. and hence both representations may he exploited in the overali

sampling scheme. In particular. the forrn in (8.13) eau be caiculated employing a matrix

diagonalization routine for matrix exponentiation, and thus used to draw the numher

of events: flrst sample g = p(b a. À) x U. where U is a random number on the unit

interval: and next, starting from n = 0. cumulate p(b n. a)p(n I À) over successive

values of n. ui;til surpassing g: the fluai n is thus the number of events sarnpled.

Having sampled the number of events n. we now wish to sample the specific series

of events leading from a to b. The state after the flrst event (sy) is sampled from

s1 p(s1 = s a. s = b) o PalE1. (8.14)

Then. having sarnpled the state afrer flrst event. the state afrer tlie second eveut (82)
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is sarnpled from

(8.15)

and so on. until the n events have been sampled. Note that the second factor on the

right hand side of (8.14) and (8.15) ensures that the state sampled will not “trap’ the

mapping into a state 8k which could not lead to s. = b in n — k events. For instance, if

= 3. s = in. and ni differs with b by two nucleotides. then 0. and thus this

partidula.r state rn could not have been sarnpled in (8.1.5).

f inally. we can draw n values uniformi distributed on [0, À], and sort the values

to obtain the timing of events. Virtual events cari then be removed so as to obtain

a substitution history directly sampled from the posterior distribution under the site

specific model. which constitutes the proposed mapping for that site.

Note that the uniformization techiilque for samphng mappings is computationallv

demanding. Calculation of the successive powers of stochastic matrices is the rate

limiting step of the overali operation. Aiways setting i. = max{—Qaa} as the uni

formization rate. we sometimes observed cases with up to 100 virtual events. without

anv bona-fide events, which nonetheless implies as many powers of the stochastic ma

trix. As such. we have set our sampler to onlv use the uniformization technique when

the states at both ends of a hranch differ by 2 or 3 nucleotides, and to use Nielsen’s

method when the states are identicaL or differ hy onlv one nucleotide’.

Altogether. this scheme enables us to propose mappings for any number of sites. from

a proposai densitv that oniv differs with the target density hy the contact. component

of potential.

‘We have neyer observed Nielsens rnethod to stail in sucli conditions.
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8.2.4 Updating model parameters

Tire same types of update operators as used previously cari 5e applied in tire present

context to approximate tire posterior distribution. based n tire site-interdependent MH

rule. However. as in previous cirapters. for parameters bearing on tire stationarv dis

tribution of tire substitution process. tire ratio of two intractable normalizing factors

appears in tire MH ratio. requiring a more elaborate approach. Tire importance sam

pling metirod proposed by Robinson et al. (2003) for approximating tins ratio WOuid

involve an extensive design and tuning phase in tire irigir-dimensional context of inter-

est irere. Instead. we used tire single varzabÏe exch ange metirod recenti proposed by

IViurray et al. (2006). as we describe below.

Tire stationarv distribution of full site-interdependent codon model given above

rea.ds as

p(so 6. M) = e_28Gt8 fi (,so fi sw) (8.16)

where Z is tire nornralizing factor:

Z = fi (8.17)

witir tire surir Seing over ail 61N possible sequences. 0f course. tins sum is not tractable.

Wiren proposing new values for any of tire parameters implicated in tire stationary

distribution, tire ratio of two of tirese terrns appears. for simplicity, let f(so, 6) 5e tire

unnormalized densitv:

f(so. 6) = e28°° fi (‘sffl fi . (8.18)



166

O Expanding the MH fuie for the present contex, we have

— min1i
p(D, so.6’,M)p(6’ M)f(so.6’)q(6’.6)Zg

819—

‘ p(D, s0. 6. M)p(6 M)f(so, 6)q(&. 6’)Z01

where we have written the comphcating factors at the end of the ratio for empliasis.

Applying the single variable exchange method given in Murray et al. (2006) to the

present problem, we draw an auxitiary seq’uence ç from the distribution induced by 6’

using the Gibbs sampling method used in previous chapters. Then. the IVIFI kernel is

expanded to

— min 11 p(D, » I so• M)p(6’ M)f(so. 6’),f(ç. 6)q(&’. 8)Z8Z0
(8 20)

p(D, s0. 6, M)p(0 I M)f(so, 6)f(ç. &‘)q(&. 8’)Z01Z9

Tiere ail intractable factors at the end of the ratio cancel.

The validity of this IvIH kernel rests on having truly sampled ç from the stationary

probability induced b 6’. As aiways. we explored empirically the properties of our

Gibbs sampler, and devised our implementation to follow a simple procedure: upon

starting t.he overail MCMC. the sequence ç is initialized by performing a random draw

from the 61 possible codons at each site; when calling an operator 011 a parameters bear

ing on the stationary distribution of the substitution process. 5 Gibbs sweeps across

the positions of ç are performed; subsequent calls on parameters bearing on the sta

tionary distribution start from the current ç, and again perform 5 Gibbs sweeps across

the sequence. In this manner. we avoid performing a long hum-in of this muer (Gibbs)

I\/ICMC when calling parameter updates in the main (MH) IVICMC, since at cadi cycle.

ç was previously updated conditional on a parameter vector that was “not too far” in

parameter space. 0f course, the assumption that the ç sequence is drawn from tue

intended distribution forms part of tic I\’Ionte Carlo approximations.
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Figure 8.1. Quasi-static thermodviramic integration along ,6 for the IVIG-F1 x4-$C
model.

8.2.5 Thermodynamic integrations

Tire same thermodynamic integration methods described in chapter 4 cari be appiied

here. to contrast a model inciuding the statistical potentiai with its non-structural

counterpart. Recail that the procedure from chapter 4 first produces a. trace of tire

marginal log-iikeiihood along tire B parameter (dispiaved in fig. 8.1 ilSing tire MG

Fi x4 as the underiving model). and in tire case of SC±.8 settings. this is foilowed by

an exponentiation and averaging of tire curve over tire prior distribution (see eqn. 4.8).

When using the more rigid SC settings. tire value at the = 1/2 point along tire curve

sirown in figure 8.1 is tire iog Bayes factor in favor of tire structural model.

Again as in chapter 4. these metirods, in conjunction with tire model-switcir thermo

dvnamic methods proposed in tire iast chapter. allow for an overail ranking of modeis

based on Baves factors.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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8.3 Resuits and discussion

8.3.1 Bayes factors

We ran the thermodvnamic rnethod combining the statistical potentïal with a select set

of underiving models. These underiving models were chosen based on the resuits from

chapter 7. showing that the MG-Fi x 4-CP-DP was the preferred model; other modeÏs

considered suppress either the codon preference parameters or the Dirichiet process On

w factors (iII which case a single global w factor is used), or suppress hoth of these

model settings. The 10g Bayes factors computed are displaved in table 8.1.

Table 8.1. Natural logarithm of the Bayes factor for models considered. with MG-Fi x4
used as a reference.

Model Non-structural SC SC+13

MG-fixt 0 [48.5; 49.2] [49.2; 49.6]
MG-F1x4-CP 1122.1: 123.81 [184.8: 186.3] [180.3: 183.7]
IVIG-F1x4-DP [102.2: 104.2] [185.7: 188.4] [180.9: 183.8]
MG-F1x4-CP-DP [236.5: 241.0] [316.4: 321.5] [313.0: 317.7]

Note.—Values given are the upper and lower estimates from bi-directional thermodynamic integrations.

In all cases. the use of the statistical potential provides an increased model fit. We

ilote that for the resuits to date. considering /3 as a free parameter bas a ver mild

effect; indeed. the posterior distributions of /3. when it is considered as free. do not

depart too drasticallv from /3 = 1/2 (fig. 8.2).

Interestingly, we observe a synergistic interplay between the CP. DP and SC con

figurations. For instance. had the improvement in model fit by combining CP and SC

settings been additive. we would have ohtained a log Bayes factor of 172 in favor of

the MG-Fi x4-CP-SC over the reference model. Instead we find a log Bayes factor of

[184.8: 188.3]. The svnergv hetween DP and SC settings appears even grea.ter than that
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between CP and SC. The combined CP-DP-SC configurations also display a synergistic

effect on model fit, although it appears roughly equivalent in magnitude to the synergy

between DP and SC alone. Note that since w factors do not appear in the stationary

distribution of the Markov process. the interaction of the DP and $C settings suggests

that the potential has an effect on the transient properties of the substitution process.

We are currentiy implementing graphical displavs of posterior distributions based

On “heat maps. which should allow a visual display of the shifts induced by the SC

(±!3) framework (forthcoming!). We note. however. that the use of the statistica.l p0-

tential. without CP or DP settings, produces a model of much poorer fit than the

site-independent formulations including these components. 0f course. the CP param

eters can capture features that the potential cannot. Focusing on the DP settings as

a phenomenological account of nonsynonyrnous rate heterogeneity, the Bayes factors

indicate that the potential in itseif fails to attain this henchmark. However, we note

that the use of a statistical potential is likely to he focused on negative selection. and

is unlikely to acknowledge much. if any. positive selection. In colltrast. with the D?

settings. positive selection is flexibly accounted for, and thus more apt to accommodate

a high variance in nonsynonymous rates across sites. In this sense. the D? model does

not constitute an entirely fair benchmark. We explore this in greater detail in the next

subsection.

8.3.2 Posterior predictive checking

We re-visit the types of posterior predictive checks performed in chapter 4, but now for

the codon substitution modeis. First, using the MG-Flx 4-C? model, we computed the

variance in number of nonsvnonymous substitutions across the codon sites of the align

ment, for both pTedictive mappings (simulations of the Markov process over tue tree. ail

the way to the tips of the leaf nodes without any constraints) and “observed” mappings
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Figure 8.3. Posterior (full une) and posterior predictive (dashed une) variance in the
number of nonsynonymous substitutions across the codon positions of the alignment.
Panel a) corresponds to the MG-Fi x4-CP modeL whereas panel b) also includes the
DP settings to this inodel as well. Panel c) corresponds to the MG-Fix4-CP-SC+3.
and panel d) includes the DP settings as well.

(instantiations of the Markov process that are compatible with the trne observed align

ment). These statistics were computed conditional on parameters from 2.000 draws

evenly inter-spaced across our MCMC sample from the posterior. As expected. the

variance for the predictive mappings tends to be low, by definition of the homogeneons

model. whereas the variance for observed mappings. owing to the constraints induced hy

the data, tends to he higher (fig. 8.3a). Also as expected. when invoking the Dirichlet

process modeling nonsvnonymous rate heterogeneity across sites (MG-Fi x 4-CP-DP).

the observed mappings have a much higher variance. and the predictive mappings follow

a well-matdhing distribution (fig. 8.3b).

As previously mentioned, the statistical potential used here could. in principle. in

duce nonsynonvmons rate heterogeneitv across sites—albeit likelv focused on negative
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selection. However. as displaved in figure 8.3e for the MG-fi x 4-CP-SC+. nonsvnonv

mous rate heterogeneity is verv low in practice. leading a broad discrepancy between

distributions. The combined model (MG-fi x4-CP-DP-SC+Ø) aiso produces reason

ablv weii-matching observed and predictive distributions (fig. 8.3d). and according to

our calculated Bayes factors, the best overail model fit as well.

We next performed a preliminary analysis computing the relative frequency of the

different amino acid replacements implied by the observed and predictive mappings.

figure 8.4 displays the mean distribution over the sample. scaled such that the total

area of ail circles is equivalent across the different panels. The first striking feature of

this figure is that several amino acid pairs neyer exchange with one another. This is of

course the effect of considering ail substitutions as arising from point mutations. and as

originally pointed ont by Zuckerkandl and Pauling (1965). single base differences very

ofren lead either to a synonymous codon. or to an amino acid of similar physico-chernical

properties.

Among the remaining amino acid pairs that can undergo replacement. we first ex

amined the distribution for observed mappings under the MG-fix4-CP-DP (fig. 8.4a)

and find, as expected, that the mappings suggest uneven exchangeabilities. The corre

sponding predictive mappings (fig. 8.4b) lead to slightly more even exchangeabilities.

but nonetheless already dispÏay a surprisingly reasonable skewness in inducing higher

values for well-known arnino acid pairs (e.g., A-V, A-T. A-S. D-E. I-V). This may be

explained by the Zuckerkandl-Pauling effect discussed above. Using the MG-Fi x 4-CP-

DP-SC±3 model. the ohserved distribution (fig. 84e) is very similar as observed in

figure 8.4a. and the predictive distribution tends to illduce slightlv higher values for

amiuo acid pairs well-known to being readily exchangeable (fig. 8.4d) than the predic

tive mappings under the non-structural counterpart (fig. 8.4b). although this is very

mildiy discernible. This may be one wav in which the statistical potential brings an



Figure 8.4. IVIean arnino acid exchange distributions. Panel a) corresponds to that
obtained from the ohserved mappings under the MG-Fi x 4-CP-DP model. whereas
panel b) corresponds to that obtained from the predictive mappings. under the sarne
model. Panel c) is obtained from the observed mappings under the MG-F1x4-CP-DP-
SC+t model. and panel d) is obtained from the predictive mappings.
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improvement. but more work is needed to clarify this question.

8.4 Conclusions

The set of techniques presented in this chapter completes the site-interdependent method

ologicai context in the case of tire codon-hased level of interpretation. providing a

means for quantitative comparisons of several possible phylogenetic model configura

tions. Whuie the methods are computationally manageahie when coupling the potential

to a homogeneous model (with tirermodvnamic integrations requiring about one week

on Xeon 2.4 GHz desktop computer). they become very demanding when invoking the

Dirichiet process model (with thermodynamic runs requiring up to four months). The

Dirichiet process framework was designed for the context where the data (in this case

codon columus) are ail considered independent. As presented in chapter 2. the MCMC

operators for updating tire configuration of the Dirichiet process are appiied one codon

site at a time. and under the assumption of independence, the likelihood cari be cal

culated for that site only within tire operators: for tire site-interdependent models. ail

likelihood caiculations are sequence-wide. and thus very costlv. It may be possible to

design update mechanisms for the Dirichiet process tl;at simultaneously update sev

eral sites. thereby “making tire most” of each cail to tire site-interdependent iikelihood

caiculation.

Use of the Diricifiet. process approach on nonsynonymous rate factors across sites

in combination with tire use of tire statistical potentiai could he said to constitute a

plrenonrenoiogicai supplement. capturing tirose features which are bevond tire durrent

capabilities of potentials. However. tins bas tire less attractive property of confounding

modeling approaches. In any case. we stress here again that judging tire relevance of

a new class of modeis slrouid be expiored by contrasting such new approacires with

existing nrodei fornrs. In tire present case. sucir a contrasting reveals tire importance
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combining different modeling strategies into a single frarnework. with parameterization

at. the nucleotide. codon. and protein level ail meriting further explorations. We propose

concrete future research perspectives that. could be explored in the last part of this

dissertation.



Part III

Perspect ives



Chapter 9

Further calculations

9.1 Introduction

The studv of site-interdependent models is at an early stage. I\’Iost of the work to date

lias been geared to developing the basic computational techniques needed to instantiate

the Bavesian cycle of mode developmeut in sucli contexts. More work is uow needed

to stlldy the properties of the new models, 011 mucli more data. Choi et al. (2007)

recently presented a large scale analysis focusing so1ey on the limiting distribution of

the I\4arkov process; by considering data sets consisting of single sequence-strllcture

pairs, the phylogenetic factor of the likeliliood function is eliminated. which implies

that the data-augmentation-based MCJ\’IC device is no longer needed. They find that

the modeling approach nearly aiways improves the model fit. In our own analyses of

real data. which include phvlogenetic factors. we have also found the approach to show

promise in ternIs of model fit. but from the resuits of these initial studies. it remains

unclear exactly which aspects of the data are better explained by the model. Future

cycles of the Bayesian framework xviii hopefullv clarifr these issues.

In this chapter we suggest a few more calcuÏator methods to inciude in this iterative

model development process. We focus on the question of the contact map representa
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tion. and outiine a crude vet relativelv fast. means of assessing the complete set of

nearest neighboT contact maps. \iVe next describe thermodvnamic schemes to evaluate

different forms of potentials in a computationallv sensible manner. f inally, we propose

simple approaches to explore if the use of potentials plavs a more important role in

ameliorating the stationary probability of the site-interdependent Markov process or

the transient attributes of the process.

9.2 Contrasting nearest-neighbor contact maps

In our present framework, it would he interesting to compute the marginal likelihood

of alternative contact maps. In the short-term. this could highlight the sensitivity of

the model to mildlv diffèrent contact maps. and in the long-term one might envisage

approaching the protein folding problem with a phylogenetic component. We have

already done crude explorations along these unes in chapter 4. where we deliherately

made the contact map worse than the true native one. and. as expected. found support

for the native contact map. However. we would like a more sensible exploration, by

evaluating, for instance, the sensitivity of each contact map entrv (O or 1). In this

subsection, we descrihe a crude procedure and an importance sampling argument that

could be used to approximate the Bayes factor of the nearest neighbor contact maps

(with respect to the native contact map). although it could perhaps be applied to more

diverging contact maps. We present the developments under the site-interdependent

model allowing for gamma distributed rates across sites: codon-hased developments are

a special case of the developments that follow.
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First. recail that the marginal likelihood can be decomposed as

p(D M) = f p(D I O. M)p(6 I M)dO (9.1)

fff(D. I O,r.M)p(r)p(O I M)ddrdO. (9.2)

Or

Our objective is to compare the marginal likelihood obtained under two different

contact maps A and A’, which differ only by one entry (changed to 1 if the native contact

map entry of interest is O, or changed to O if the native contact map is 1). However, to

be able to do a relatively quick exploration, we could ease-up on the outermost integral

of equation 9.2. Speciflcally, we will make two approximating assumptions: 1) let us

suppose that the values of all parameters involved in the stationary probability, which

we refer to as 0stat are known (the reasons for this will become apparent shortiy),

and 2) these values are the same under both A and A’ (the importance sampling

approximation). Under these two conditions, we write the ratio of contact map log

marginal-likelihoods as:

in = (Ïnp(so I &3j,, A’) — lnp(so Ostat, A))

+ fff(D. A’.so, O. T)pa(T)p(&)ddTd6

er

— lnfff p(D, I A.soO.r)Pa(r)P(O)ddrclO) (9.3)

Or

where the integration over e is now limited to integrating over parameters not involved

in the stationary distribution. and where we have dropped the dependence on M from

the notation. This approximation can be developed separately for the terms at the

root (in the first set of parenthesis) and the terms over the tree (in the second set of

parenthesis).
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First. for the terms at the root we get:

1p(So j 0stat A’)
= lnp(so I A’) — lnp(so I 9stat A) (9.4)

P(0 I 6stat,A)

= — 1nZ.) — (—2t3G50 — friZ) (9.5)

(2G0
—

2G801) — in (9.6)

= (2t3G01 — 2t3G301’) — (2/3G51 — 2i3G3¼f) (9.7)

where Z is the normalizing factor under A, and where (.) represents ail expectation

with respect to the stationary prohability under A. This expectation can 5e estirnated

based on a sample of sequences (s’)l<h<K obtained using the Gibbs sampling procedure

we have been emploving:

(2G8i — 2G31)
— 2G(h)I! (9.8)

We will refer to (9.8) as the root importance sampting approximation.

Similarlv. for the terms over the tree. we get:

fffp(D. q5 j A’. &. r)p(r)p(9)ddidrdO

1 ero
‘ fffp(D, A. s. 6. T)pa(T)p(6)ddrd6

O r

(int. j A’. 6. rt1) — inp(D. I A, so’O. rth))) (9.9)

where (6th)• (0)• r(h))l<hl<R. is a sample of pa.rameters with no bearing on the stationar

distribution of the Markov process. as wefl as rnappings and rates. ohtained using the

Metropolis-Hastings algorithm. We will refer to (9.9) as the tree importance sampting

approximation.

From the developrnents expiained above, the difference in log-marginal-iikeiihood

between two nearest neighbor contact maps is computed in two parts. appiving the root

importance sampling approximation and the tree importance sampling approximation
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separately, and based on two distinct MCMC sampiing schemes. The following protocol

summarizes:

• Run a MCMC sampling over parameters not involved in the stationary distribu

tion. and with those that are pre-fixed to sensible values: oe crude approach is

to first. run a full JVICMC sampling over ail parameters. as in previous chapters.

and theil mn a second I\/ICI\’IC fixing ail parameters involved in the stationary

probabiiity to their mean posterior values from the first run.

• Run a Gihbs samplillg IVICMC to obtain a sample of sequences from tire stationarv

probahflïtv. induced from tire relevant pre-fixed parameter values.

• Make a modificatioll to tire contact rnap. and. based of tire two samples ahove.

apply tire root and tree importailce sampiing approximations to compare tire

contact map log-rnarginal-Hkelihoods.

• Repeat for each contact rnap of interest. aiwa s based on tire sarne samples.

Tins last point. usiing the same sampie for eaclr contact map of interest. is what should

make these preliminarv explorations reasonably fast. Note. in particular, that had the

parameters involved in tire stationary distribution also been integrated over. a new

sample of sequences would be lleeded for tire root importance sampliirg approximation

for each parameter vector sampled. Tins would ulldollbtedlv slow down tire procedure.

altlrough it is not entirel unfea.sible either.

Fi;raHv. it slrould also be lloted that tire iirrportance sanrpliirg argumeirts suggested

irere are best wlren our second approximating assumption (the assurned equivalent pa

rameter values under both and A!) is reasoirable. This assuirrption is likely to become

nrarkedlv erroneous if tire two contact nraps conrpared are significantlv differeirt. whicir

is tire reason for constraiuing our prelinniuarv analyses on nearest ueighbor contact

nraps.
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9.3 Contrasting different structural representations

In chapter 5, we performed a simple contrast via Bayes factors of the potentials of

Miyazawa auJ Jernigan (1985) to our own potential of the same form, and found our

potential to have a better fit. Furthermore. we found the combined potentiaL including

contact map and soivent accessihilitv components. to outperform ail of these. Several

other forms of potentials are of interest. Even among those already derived, we have not

yet evaluated the pure solvent accessibility potential in the phvlogenetic context. Note

that this last potential does not lead to site-interdependence. so that the thermodynamic

methods can be based on a sum (of log terms) across sites. without additional MCMC

sampling for intractable normalizing factors. and therefore computed rnuch more quicklv

than under the full sequence-wide framework. In theory. such models could even be

manipulated using the traditional pruning-based likelihood calculations. although this

is unadvised. because data-augmentation-based schemes yield muci faster samplers (not

Showil. but sec Lartillot. 2006).

Different forms of site-independent potentials could be evaluated in this way, and

when re-introducing the contact map component. the resulting potential can of course

be evaluated directly, based on the methods expounded in this work. However. a slightlv

different approach might be more efficient when working with the SC-type models with

/3 = 1/2. Taking the contact auJ solvent accessibility potential as an example. the

approach first defines

G(s) = /3dep ( + /3indep ( + (9.10)
1<i<i’<N 1<i<N

In a first step. we set /3 = 0. and perform a site-independent data-augmentation

hased thermod namic integration from /3indp O to 8iflcfep 1/2. This provides

the log Bayes factor in favor of the model including the site-independent components
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of the potential over the underh-ing non-structural model. Then. in a second step.

we set J3jndep = 1/2. and perform a site-interdependent therrnodvnarnic integration

from f3dep = O to dep 1/2. This provides the log Bayes in favor of the model

including the contact component over the model without it. The overali 10g Bayes

factor, in favor of the overali potential. is then simply the sum of hoth log Bayes

factors. The advantage of separating the calculation into two steps is that the first step

is very efficient. whereas the costly site-interdependent thermodynamic integration is

differed to a path in the space of posterior distributions that is as short as possible.

Tue computational advantages need be assessed in practice. and our implementation is

already equipped to do so.

Also note that and i3dep could be treated as free parameters1. In this case.

a similar two-stage procedure could be applied. First run a site-independent data

augmentation-based thermodynamic integration along the dimension of /3indep (With

dep = O), tracing log-marginal-likeïihood curve as a function of 8indep• Then exponen

tiate and average this curve over the prior. as in chapter 4. This provides the log Bayes

factor in favor of the model inchiding the site-independent components of the potential.

but now with /31, treated as a free parameter of the model. Then. in a second thermo

dynamic run, apply plain MH operators on and trace the log-marginal-likehhood

curve as a function of /3. Exponentiating and averaging this curve provides the log

Bayes factor in favor of the model including the contact component over the model

without it. but now with Bdep being a free parameter. The sum of both these log Bayes

factors again provides the overali log Bayes factor in favor of the full structural model.

With both !3indep and i3 treated as free parameters.

‘The parameter i3j4 could also be further subdivided into two parameters: one in front of the
solvent component. and one in front of the chernical component.
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9.4 Evaluating transient versus stationarity contri

butions to model fit

The use of statistical potentials within evolutionary models induces differences in hoth

transient and stationarv probabilities under the Markov process. This can be plainly

seen from equation (C.9), in Appendix C. where the derivative of the augmented log

likelihood with respect to 3 involves both the stationary prohability and the transient

probabilitv, in two distinct terms. It would he interesting to evaluate if the amelioration

in model fit is mainly a resuit of a greater stationary probahility. or a greater transient

probabilitv. However. in spite of the overail log Baves factor being invariant to the

position of the root node. the relative contribution of each term is not.

A very simple exploration of this question would start by analyzing pairs of se

quences, and repeating calculations twice. taking each sequence in turn as the root.

The resuits of calculations under both rootings should provide a first indication of sta

tionary versus transient ameiorations. Tus should probablv he explored for different

levels of evolutionary divergence. and the natural extension of such an analvsis would

he applied to multiple sequence alignments. Our current implementation is hased on

rooting the tree at a leaf node (an observed sequence). As such. we could first try

repeating calculations with a different leaf node rooting in each instance (perhaps a

random subset. of sa 10 leaf nodes. could suffice for these first explorations). The

relative contribution of each term could tien be averaged over these instances. Char

acterizing these properties in practice, under different model configurations. and for

different data sets. should help clarify strengths and weaknesses of different choices in

terms of stationary and transient amelioration.

These sorts of evaluations need flot be restricted to the structural models studied in

the present dissertation. We stress that. the distinction hetween stationar and transient
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probabifities should not be overlooked in the developrnent of phylogenetic models. and

that models focused solelv On parameterizations of transient aspects (e.g., Kosiol et al..

2007). may be ill-suited under certain data set conditions, due to their inability to

anticipate sequence saturation (Lartillot et al.. 2007).

9.5 Conclusions

We have focused here on calculations of interest that require littie, or no further de

velopments within our implementation. Several other calculations are a.lso of interest.

including many other possible statistics for posterior predictive analysis (e.g., Dimmic

et al., 2005; Lartillot et al., 2007), and assessments of other structural features. We

hope to set up a pipeline of analysis. applied to numerous data sets, incorporating

these calculations.

Also note that the different evaluations outlined in this chapter can be intersected:

one might speculate that uncovering better site-independent components for structural

models—utilizing t.he site-independent thermodynamic int.egrations discuss above—

could “take charge” of certain structural features. in a sense “freeing” the contact com

ponent to focus on actual correlations—which might be reflected in our assessments of

nearest neighbor contact maps. The impact of stationary and transient probabilities

could also he investigated within assessment of nearest neighbor contact maps. by fo

cusing either on the root or tree importance sampling approximation. perhaps averaged

over root placements.

Eventual studies could also expand the research pipeline to include several other

types of models. as we discuss in the next chapter.



Chapter 10

Model variations and extensions

10.1 Introduction

Several of the models studied in the present work remain reiatively rudirnentarv. For

instance. the codon models proposed in chapter f are ail based on global amino acid

or codon preferences. However, other modehng strategies have aiready shown. at least

for amino acids. that such preferences are markediy heterogeneous across sites (e.g..

Lartiiiot auJ Philippe. 2004. 2006). As far as the structural models are concerned.

several crude simplifications are reiied upon, such as the simple. static contact map

representation. It would have been quite surprising. in fact, to find such a representation

constituting an adequate description of amino acid interactions. and computationallv

simple means of enriching the basic contact map approach are of pressing interest. It

wouid also be interesting to give greater fiexibiiity to the coefficients of some or ail

components of the statistical potential directiy within the phyiogenetic context.

In this chapter. we describe these modeiing themes in greater detail. as exampies

of some of the possible extensions. Our focus is on the codon-based modeis. auJ we

present specific models addressing issues mentioned above.
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10.2 Dirichiet process modeling

A hroad range of model extensions are evident from the AAP and CP approaches

proposed in chapter f: given that these richer MG-style models lead to an improved

overali fit. models based on mixtures of AAP or CP parameters could also be of ment.

50 as to capture site-specific preferences rather that global effects. To this end. the

Dinichiet process prior, applied to model nonsynonvmous rate heterogeneity across sites

(Huelsenheck et aI.. 2006), could also he applied to the AAP parameters. or to the CP

parameters. Indeecl, the necessary MCMC operators for manipulating such models,

as well as models incorporating lieterogeneities along the tree. have ah beell descnibed

previously (Lartillot and Phffippe. 2004 Blanquart and Lartihlot. 2006).

As an initial specific example. let us specifv a model incorporating two independent

Dirichlet processes: one acting oll overali onsvnonvrnous rate heterogeneitv across

sites. and another acting on amino acid preferences across sites’. First. let us suppose

that the current configuration of the Dirichlet process on w consists of H classes, and let

y = (gj)y<7<N be the allocation vector for omega classes. with g giving the index of the

w factor affiliat.ed to site i. Next. let
, tk),<k<20 be the amino acid preference

parameters currentlv affiliated to site i. where z (z)1<KAT is the allocation vector on

amino acid vectors. Then, site-specific codon substitution matrices are given hy:

Qab if A.

Wyabb (::::) f (10.1)

0, otherwise.

Note that omitting the w factor (i.e.. fixing w = 1 across ail sites) would constitute

a negative-selection model; a site could have a ver low effective nonsvnonymous rate

1The extension of the AAP model described here could also be applied to the CP model. to account
for heterogeneous codon preference across positions.
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by being affihiated to an amino acid preference class having rnost of its mass on a sin

gle amino acid. but a high effective nonsynonymous rate. sa higher than the overail

synonymous rate. would not be possible. In other words. such a model selects against

certain amino acids. 5v attributing littie mass to these. With the two Dirichiet pro

cesses. on both amino acid preference parameters and nonsvnonvmous rate factors.

therefore. a re-interpretation of the traditional meaning giveil to . as the ratio of the

nonsynonymous to synonymous rates. will need to be forrnulated; negative selection

does not strictly correspond to w < 1 in this case. since. as described above. the model

eau accommodate negative selection via amino acid preference parameters. Indeed. we

foresee possible identiflability prohiems hetween w factors and amino acid preference

parameters.

These models in thernselves are of much interest, providing a more flexible approach

than using pre-determined amino acid preferences (e.g.. Sainudiin et al.. 2005: Wong

et al.. 2006), and a less drastic alternative to using a distinct set of amino acid parame

t.ers at each site (Halpern and Bruno. 1998). However. our motivation here is to combine

such a model with a contact. potential. The contact potential can be incorporated hy

applying the same re-formulation of the Markov process given in equation (8.3). We

speculate that with well-deflned site-specific amino acid preferences. the contact poten

tial could more clearly recognize pairwise correlations. since for a given pairwise contact.

the possible amino acid state interactions become much more restricted.

The model proposed here poses significant computational challenges. in particular

with regards to Dirichiet process update operators under site-interdependence. further

technical investigations are needed to address these difficulties in practice. Also. the

model should he viewed as a phenomenological supplement. as part of an exploratory

stage of development. particularlv given the interpretative difficiilties that if poses.
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10.3 Multiple protein structures, and interdepen

dence across genes

As previouslv mentioned. the single, fixed contact rnap structure representation utilized

in this work is very crude. Whule it may be pertinent to design a class of model where

a contact map. or some other representation. is allowed to change over the tree. we first

consider a few simple ideas. which attempt to acknowledge tha.t a protein has some

level of structural flexibffity in the course of its own haif-life.

Let us first build upon the basic contact potential. with the form

G(s) Ajj’e, + . (10.2)
li<i’iV 1<i<N

The contact rnap A is derived from a single reference structure. One may also consider

that rnany proteins. in performing their biological function, exist in two or more struc

tural states. Structural states may be difficult to characterize in a clear-cut manner,

but some cases offer natural discretizations. such as the well-studied oxy- and deoxv

myoglohin structures. In this specific instance we could define a pseudo-energy score

rit1i the form

G(s) = + A’ , + (103)
1<i<i’<I\’ 1<i<i’<N 1<j<N

where AoxY and A0XY are the contact maps derived from the resolved structures of

oxy- and deoxy-myoglobin respectivelv. The idea here is that an amino acid sequence

should fit well with ail structural states of the protein.

Along similar lines. it might be interesting to explore whether h is possible to account

for the fact that an amino acid sequence must adhere to the conformational constraints

of a particular stand-alone structure as well as the conformational constraints imposed
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by interactions with other proteins. Data sets have already heen constructed with this

in minci, in the context of the protein-docking problem (e.g., Mintseris et al.. 2005).

IViore specificaily. let s represent the joint sequence sta.te of proteins A and B (with

their respective lengths written as ATA and T\TB and with the joint length as

focusing on the contact components, the potential is given by

G(s) = +
y<i<iI<J\TAB 1<i<il<NA

± + (10.4)
1<i<i’<N5 1<i<NAB

where is the contact map of the complex composed of protein A and B, and A

and B are the contact maps of each individual subunit. Perhaps a weighting scheme

should he applied t.o each of the subunits and the resulting complex.

Note that such a model can lead to interdependencies across sites of two different

genes. Que might even imagine studying a multi-gene data set. modeling networks of

interaction across multiple gene sites. within the phylogenetic context.

10.4 Coefficients of the potential as free parameters

We have stressed that relying too heavily on a statistical potential leads to a model of

poor fit. It reniains unclear as to whether this is due to the basic form of the structural

representation and potentials investigated here. or if it is a result of the fact that the

potentiaÏs themselves were not derived in a true evolutionary framework. One way of

addressing this question would 5e to construct a large data set, and treat the coefficients

of the potential as free parameters. Such a data set might consist of a single multi-gene

alignment. with each gene encoding for a protein of known structure. Alternativelv, we

could use several single gene data sets. each with their own tree structure, but with the

coefficients of the potential acting as global parameters. over the entire meta-data set.
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Once again. the computational challenge 0f such a model is significant. The sin

gle variable exchange algorithm employed in chapter 8, or other approaches discussed

in Murrav et al. (2006). however. could provide useful avenues in this direction. If.

under a data set (or meta-data. set) of sufficient size. leading to well-focused posterior

distributions, the model stili does not induce any significant rate heterogeneity, or any

other expected evolutionary feature, one could reasonably speciilate that the form of

the potential simply cannot produce such features. and that other forms of structural

representations—or other sequence fitness proxies in general—should be considered.

10.5 Conclusions

Numerous modeling extensions can he envisaged based oi the ideas already discussed

in the present dissertation. These models. wlien passed throiigh the pipeline of anal

ysis discussed in the previous chapter. should better inform further instances of the

Bayesian model development cycle. In particular, we are very interested in engaging this

development cycle with richer structural descriptions than the simple contact/solvent

a.ccessihilit.v versions used and discussed in this work. in order to quantifv the relative

importance of different structural features, and how these relate to each other in the

overali evoutionary process.



Afterword

Ail models are based on a blending of both phenornenological and mechanistic ap

proaches. This makes the concepts somewhat difficuit to grasp. Perhaps models them

selves should flot be viewed as being either phenornenoÏogicat or mechanistic, and that

these terms should be restricted to the process of modet devetoprnent: phenomenological

modeling consists of drawing up a preliminary sketch of the most. blatant. features sug

gested from the data, whereas mechanistic modeling aims to provide a generalization

or a synthesis of such a preliminary sketch, by attempting to describe the underly

ing causes that would iead to the observed features. Note that a description of the

underlying causes may itself be hased on a phenomenological interpretation.

We have seen examples of this modeling process in the present work. Working

with non-structural models. we encountered an example in chapter 7 of a phenomeno

logical modeling approach (the I\’IG-F3 x 4 formulation. designed to accomodate the

periodic pattern of nucleotide propensities at the three positions a codon) reappraised

mechanistically (into the IVIG-F1 x4-CP model. which considers the periodic pattern

of nucleotides as arising from the coding nature of the data). Nonetheless. the CP

parameters themselves constitute a phenomenological account. The structural model

ing approaches studied here also suhscribe directly to this modeling process; we have

attempted to use an explicit protein structure description and statistical potential to

mediate nonsynonvmous rates of substitution. but the potential is itself based on phe

nomenologcial interpretations, and goes one step further in fixing parameter values
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according to empirical observations. In loose terms. ail models have a phenomeno

logical lining, that could potentially 5e revised mechanistically. for instance. rather

than simply attributing a free set of nucleotide exchangeability parameters. we COllld

focus on encoding structural aspects of nitrogenous bases. or perhaps a modeling of

deamination tendencies. Nucleotide propensity parameters could perhaps 5e replaced

with a modeling of bio-energetic costs of de novo nitrogenous base svnthesis. Codon

preference parameters could 5e elahorated. into a modeling of tRNA ahundance and/or

translational accuracy. The stahility of mRNA could also be considered. possiblv using

similar formulations to those used herein.

Many other developments can be envisioned. Each of these developments would

undoubtedh- rest on further phenomenological strategies. However. as in the case of

the structural models studied here. such efforts are geared to “pushing dowri” the plie

nomenotogicat hue of interpretation. It would seern naive at this point to strive for

some sort of ultimate mechanistic floor (as in the traditional aspirations of phvsics),

particularly given the relatively rudimentary forms of current models; even the rich

est phenomenological modeling approaches studied in this dissertation are quite crude.

completeÏy ignoring the possibility of recombination. insertions or deletions. or any

other high-order events. In other words. much more preliminary sketching is needed in

order to stimulate further mechanistic strategies: the pursuit of both phenomenological

and mechanistic modeling approaches. in combination with quantitative and qualitative

probabilistic assessments aimed at determining if mechanistic approaches compare with

phenomenological schemes, constitutes what we have called phenomenological bench

marking.

As computational biology enters its pubescent phase as a discipline. we can think

of at Ïeast three main advantages to pursuing phenomenological benchmarking. The

first is that it provides a concrete framework for attentpting to formalize our current
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state of understanding. This is well illustrated with the last of the codon-based models

studied here. which. to the best of our kuowiedge. are the first to parameterically

recognize the possibility of evolutionary influences coming from each level of the central

dogma of moledular biology. The fact that no previous evolutionary model has ever

explicitlv recognized this basic biological understanding highlights the infancy of the

fleld. The second advantage is that when mechanistic approaches appear weak. thev

can at least be combined with a phenomenological supplement, as a pragmatic short

term alternative. The third and most important advantage is that it generally leads to

models that incorporate seeminglv disparate data within an encompassing prohabilistic

framework; in sharp contrast with our reductionist heritage, it offers the means of

integrating different biological sub-disciplines into a hroad evolutionary framework. The

present work highlights this advantage: from the methods we have expounded. and

the future calculations and modehng extensions suggested. a vast research landscape

emerges. in which the distinctions between structural and evolutionary biology become

artificia.l. With the growing banks of data coming from the mimerons domains of the

life-sciences. sound prohabilistic approaches that offer means of merging sub-disciplines

will be essential to building a strong scientific structure. and to deepening our basic

understanding of evolutionary biologv.
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Appendix A: Data sets

Mo 60-153

This is a set 60 amhio acid sequences of mammalian rnyoglobin: Orcinus orca (P02 173),

Deiphinus deiphis (P02172). GÏobicephaia raclas (P02174). Phocoenoides daïti (P02176).

Inia geoffrensis (P02181), Batacaoptera acutorostrata (P02179). Bataenoptera physatus

(P02 180), Megaptera novaeangtiae (P02 178), Esch’cichtius robustus (P02177). Physeter

catodon (P02185), Kogia simus (P02184). Mesoptodon carthubbsi (P02183). Ziphins

cavirostris (P02 182), Hatichoerus grypus (CAA23743. 1). Phoca sibirico. (P30562). Bos

taurus (BAAOO311 . 1), Cervus etaphus (P02191). Ovis aries (P02190), Etephas rnar

imns (P02186), Loxodonta africana (P02187), Lepitemur mnstelin’us (P02169). Equns

burchelti (P02188), Oryctotagns cnnicntns (P02170). Ototemur crassicaudatus (P02168).

Nycticebns concang (P02167), Perodicticus potto (P02166), Metes racles (P02157). Ly

caon pictus (P02159), Otocyon megatotis (P02158), Vulpes chama (P02160), Zatophns

catifornianus (P02161), Rattus norvegicus (AAF05848. 1), Mus muscul’us (CAA27994. 1).

Spatax ehrenbergi(P04248). Ochotorta princeps (P02171). Sus scrofa (XM14433_AAA31073. 1).

Tupaia gtis (P02165). Orycteropus afer (P02164). Erinaceus europaeus (P02156). Cte??

odactyins gundi (P20856). Proechimys guairae (P04249). Lagostomns maximus (P04250).

Homo sapiens (CAA25 109. 1). Pan trogtodytes (P02 145). Pongo pygmaeus (P02 148).

Hytobates syndactytns (P02146). Goritia goriila (P02147). Presbytis entetius (P02149),

Macaca fascicutaris (P02150). Catlithrix jacchns (P02152). Aotus tTivirgatus (P02151),
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Lagothrix tagotricha (P02154). Saimiri sciureus (P02155), Cebus apetta (P02 153), Rouset

tus aegyptiacus (P02163). Didetphis virginian,a (P02193), Macropus Tufus (P02194). Or

nithorhynchus anatinus (P02196). Tachygtossus acuteatus (P02195), Lutra tuta (P11343).

Mo2O-153

This is a set 20 amino acid sequeiices of tetrapod myoglobim Bataenoptera physyatus

(P02180). Physeter catodon (P02185), Ziphus cavirostris (P02182). Bos taurus (BAAO0311. 1),

Halichoerus grypus (CAA23743. 1). Zatophus californianus (P02161), Proechimys guairae

(P04249). Ctenodactytus gundi (P20856). Mas muscutus (CAA27994. 1). Ochotona prin

ceps (P02171). Pongo pygmaeus (P02148). Elephas maxirnus (P02186), Macropus rufus

(P02194). Tachygtossus aculeatus (P02195), Varanus varius (P02203), Gattus gattus

(P416292). Aptenodytes fosteri (P02199), Alligator mississippiensis (P02200), Caretta

caretta (P56208), Graptemys geographica (P02201).

Mo1O-153

This is a set 10 amino acid sequences of mammalian myoglobin: Physester catodon

(P02185), Orcinus orca (P02173). Bos taurus (BAAOO311 . 1), Rattus norvegicus (AAF05848. 1),

Mus muscutus (CAA27994. 1). Nannospatax ehrenbegi (P04248). Homo sapiens (CAA25 109).

Goritta goritta (P02147), Ornithorhynchus anatinus (P02196). Tachyglossus acuteatus

(P02195).

Mo%-153

This is a set 4 amillo acid sequences of rnvoglobiri: Physester catodon (P02185). Orcinus

orca (P02173), Chetonia mydas caranigra (P56208). Graptemys geographica (P02201).
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fBP2O-363

This is a set of 20 amino acid sequences of vertebrate fructose bisphosphate aldolase:

Cariis famitiaris (P536914). Oryctotagus cunicutus (P00883), Mus muscutus (P05064),

Rattus norvegicus (AAA40714), Xenopus tropicatis (NP001005643), Xenopus tropicatis

(NP989131). Xenopus Ïaevis (3AA19524) .Xenopus Ïaevis (AAH84132), Danio rerio (AAH65847).

Danio reio (AAH44379), Lethenteron aponicum (P53446). Sparus aurata (P53447),

Tetraodon nigroviTidis (CAG06274). Gattus gattus (AAA48587), Mus muscutus (Q91Y97),

Rattus norvegicus (AAH8 1697). Oryctotagus cunicutus (P79226), Pongo pygmaeus (CA129598),

Homo sapiens (P04075). Macaca fascicutaris (3AB84033).

PPKJO-158

This is a set 10 amino acid sequences of bacterial 6-hvdroxyrnethl-7-8-dihydroxvpterin

pvrophosphokinase: Escherichia coti (3A3967 19), Shigetia ftexneri (AAP 15678). Satmonetta

typhimurium (AAI19 147). SaimonelÏa enterica (AA067923). Photorhabdus tumiriescens

(CAE13 168). Yersznia pestis (AAS60560). Erwinia carotovora (CAG762 18), Vibrio vutnifi

cus (BAC95526). Vibrio choterae (AAF93760), Photo bacterium profundum (CAG2 1480760).



Appendix B: Partition function

formalism

Here, we apply the principles of cumulant development of the log of a partition function

to derive the first and second moment identities. which are needed for the Monte Carlo

approximations used in this dissertation.

Suppose some unnormalized densitv f(&), formulated according to some high-dimensional

parameterization & e. The normalized probabffitv density is given by

p(9) = (3.1)

where

Z=ff(&)d& (B.2)

is the normalizing factor. which ensures that the total probability eciuals 1.

The derivative of the logarithm of (B.2). with respect to a particular parameter &j
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of the pararneter vector, is developed as follows:

OlnZ 13Z

____

— (B.3)ao

= -.-ff(&)do (3.4)

‘ I (3.5)
Z e
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where K.) stands for an expectation with respect to (3.1). We refer to (3.8) as the

first moment identity. following a sirnilar derivation. tue second derivative of the log

of (3.2). is expressed as:
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=—K )K ) + K ) + K ) (3.13)
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= L o, o& )] + K ) (B.14)

We refer to (B.14) as the second moment identity. Note that the terms within [.] of

equation (3.14) correspond to the variance-covariance matrix.



Appendix C: Derivatives of the

augmented log-likelihood

Here, we outiine first and second derivatives needed for the thermodynamic integration

along /3. as well as for the I\/Ionte Carlo optimizations and Laplace approximations of

chapter 6. We present the developments under the site-interdependent models (allowing

for gamma-distributed rates) with tire understanding that the equations can be easily

factored out under models assuming independence.

for a data set D. composed of an aligurnent of P amino acid sequences. and given

a tree topologv and parameters 0. the demarginalized likeiihood function is given as:

2P—3

p(D. 9. r) = P(So 9) fl p(sj. j sj. 9. T). (C.1)
i=1

where the dependence on M has been dropped out from the notation. Each factor in

(C.1) is detailed here.

for a. specific brandi j. the angrnented transition probabitity is given as

p(s. cj 9. r)
= (n R8Jk l5j?TJ,k e_(t_t_1)1t33k_1))

x e(jt3 )T()• (c.2)

where.
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• s represents the sequence at node j (a node has the same index as the brandi

leading to it), arid is the sequence at the node ancestral to j;

• dj represents the substitution mapping along branch j;

• ) is the length of branch j;

• z stands for the total number of substitution events along branci j:

• tjk represents the timing of substitution event k on hranch j;

• 8jk—1 and 8jk represent the amino acid sequence states before and after substitu

tion event k—the states before the first and afrer the last substitution leading to

node j are equivalent to the states at the ends of the branch, written symbolically

as $j0 = sj alld 8Zj =

• Ujk is the site of substitution k along branch j:

N

• = R83,_,’r represents the rate away from state 8jk1. with the
i=1 s:

biner sum being over the 19 sequence states tha.t differ with Sjkl at position .

The stationary distribution of the IVlarkov process. appearing in (Cl), is given by:

p(so I = e_250, (C.3)

where S represents the sequence at the foot node (labeled as node O). and Y is the

associated normalizing constant

Y = e2°, (C.4)

summing is over ail 20N sequences.
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Let y be the dimension of . and let t and w index the entries in O (i.e. 1 < e. w, y).

The first derivative of the actual log-likelihood function is written as

3lnp(D I O)
—

(flP( O.T)Pa(T))
(C )8O

— 60
‘.0

and the second derivative as

621np(D O) — 16lnp(D. &.r)p(r) 8lnp(D. O.r)pa(r)
t390O — ao’, ao.

— 13lnp(D I )p( 1alnp(D. O,r)p(r)
I

80

+
,621np(D. &.T)Pa(T)\

C 6I.

Each of the expectations in (C.5) and (C.6) can be estimated based on samples drawn

using the ftrst two elements of the PX-DA module. The last. term in (C.6) requires that

we compute the second derivatives. The first derivative is a vector. written as

D lnp( D,dit9 .r)p (r)
001

D1nptD.d.r)ptr)
6lnp(D. O.r)p(r) 002

(C.?)
80

D lnp(I,b10.r)p,(r)

001)

The second derivative therefore yields a matrix. where. for each eutry in (C.?). the

derivative is taken once again with respect to each pararneter:

62 1np(D.(0.r)p,,(r) 82 lnp(D,d’)O.r)p,,(r) 8 in p(D.d,I0.r)p (r)
80 602801

2
02 tIip(D6(Or)p(r) 82 1np(D,QJ0.r)p(r) 82 1np(DI0.r)p,(r)O lnp(D, I . r)p(r)

— 601802 Dol (C 8)862

82 1np(D.(9.r)p,,(r) 82lnp(D,(0.r)p,,tr) ... 82inptD.J9.r)p,,(r)
80180,, 80280,, 80

Observing the structure of (C.?) and (C.8). we compute the necessarv derivative com

binations in the following subsections.
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Computing

The first derivative of the augmented log-likelihood with respect to involves two types

of terms:

Olnp(D. ø . T) — alnp(s0 O)
+

2F-3
6lnp(s. j sj. O. r)

C 9
— 6t3 i3

The first term in (C.9) is given by

Olnp(so O) — 823G(so.c) — 8ÏnY
(C 10)

0t3 — 8.13 8/3

= -2 [G(so, c) - (G)] (C.11)

where (.) stands for an expectation with respect to (C.3). This expectation can be

estirnated based on a sample of sequences (s(hl))1<h<K. drawn from (C.3) using the

Gibbs sampling procedure described in Robinson et al. (2003):

(G) = G(s.c)p(s I O) (C.12)

ZG(s.c). (C.13)

The second term in (C.9) is given as:

Olnp(s. @j J sj. 8. r)
— ( 8m Rsklskrk — (tjk — tjk_1) T (Sjk_1)

8/3 68 68

6 — t) T (s)
(C.14)

which can be calculated from

81IIRSS’
= G(s.c) — G(s’.c) (C.15)
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and

= [G(s. e) — G(s’. e)] R38. (C.16)

Computing -

For computing derivatives with respect to hranch lengths, it is more practical to re

parametrize (C.2) using the following change of variables:

p(sjuj = p(Sj.j sj,O,M). (C.17)

with ri = (ujk)k<3 defined aS

jk
rijk = -x-—. (C.18)

A]

In equation (C.1Z). the factor cari be developed as

at,1 at72 8tj7

8u31 8u31 a’,i J

atl 8t12 8tj o
= 8ui2 8u2 8Uj2

(C 19)
an

c9t1 at)2 n nau• 8u - 8u -
“ ° “JJ-3 J—j J—j

sucli that an alternative to the augmented transition prohahility can be written as

p(sj. uj 6 r) = (u RsJk_lsJkTuke_À3(uJk_u3k_1)T(53k_1))

x
(i_uj )T(s) (C.20)
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In logarithmic forni. the derivative is thus given hy

3inp(Sj,ZLj — 81n.) 8j(Ujk —nk_1)T(Sk_1)

— a\j

(C.21)

which cari be evaluated based on

6111ÀZ3
‘ =....L (C22)

and

ujk—i)
= Vjk — Ujk_1. (C.23)

Computing

Computing the derivative with respect c oniy involves the prior on rates:

N N

= [_] flr_1e_T.

The derivative is thus given by

8inpa(r)
= N [1n() + 1 — (a)] + 1nr — r. (C.25)

where in P(ù) is known as the digamma function. for which estirnating

routines are availabie (Galassi et al.. 2003).
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Computing

Computing this second derivative requires two terms. first. we have the following:

6’
[G(s. c) — G(s’. c)] (C.26)

= [G(s. c) — G(s’. c)]2 (C.27)

The next term involves the stationary probability:

821np(so O) — 82inY
C 28682 — 882

= -2 t(G2) - (G)2]. (C.29)

where the expectations cari again be estimated using the Gibbs sampling rnethod of

Robinson et al. (2003). giving

(G2) [G(s. c)]2 (C.30)
h =1

and

(G)2 [ G(s. c)]

2

(C.31)

Computing 82

This only requires terms alreadv derived. as given in (C.16).
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Computing

Referring to (C.22), this second derivative requires the following term:

_____

— (C 39)

J

Computing 2

For gamma distributed rates, we get:

82 Inpa(r)
= N [ - ‘H] (C.34)

where ‘I” = in F() can again be approximated using standard routines (Galassi

et al., 2003).



Appendix D: Maximization step for

the EM algorithm

In this appendix. we give details of the IVI-step for the MCEIVI algorithm used in chapter

6.

The M-step in the case of branch lengths is an example of the ideal case, where we

have an analytical solution. Specifically, at iteration n of the MCEM algorithm, each

branch length is updated as

(D.l)

where

(1
— + — Ujk_1)T(Sjk_1). (D.2)

Writing (zj)1<h<K for the number of substitutions along brandi j of draw h. and

for t.he re-pararneterized configuration of cadi mapping. the needed expec

tations are estirnated as

K
1(h)

- K-
h=1
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(h)

(Ai)

1np(D

7 lnp(D &m. r(h). M)p(r(h))

and

(D.4)

The M-step for optimizing a and , however, is not direct. since solving for these

pararneters is not possible. Nonetheless. this inner maximization cari he readily done

using a gradient scheme similar to that described in the main text; using tire same

sample. gradient steps are performed repeatediy until tire maximum is reached, following

wiiich a new sample is drawn for tire next MCEM cycle. and so on. In the case of

a. we also tried maximization using a Newton-Raphson-like method: the IVI-step is

accomplished through an iterative updating, wit.h cycle m given hv

— (am_l) (D.5)

where

(D.6)

o
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Appendix E: Codon model

specifications

In our implementation the entries of Q are based on two sets of specifications: a 61

dirnensionaï vector of stationary probabitities. ir. and a set of transient specificatzon p

according to

Qab p7rb, a b (E.1)

Qaa = — Qai (E.2)
ba

In this appendix. we write out in full the stationarv probabilities under the codon

models, as well as the full transient specifications. and give an example of the detailed

balance check.

Stationary probabilities

First, expanding (7.8) for the stationary distribution under GY-F1 x4, we have

Pay a2Pa3
61 E.3

Zb=1 Yb1 Pb2 b3
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$imilarlv. with GY-F3 x 4. we have

(1) (2) (3)
a1

= 61 (1) (2) (3)Zb=1 b1 Yb2 b3

The stationary probability under GY-F61 is already entirelv specified and the models

IVIG-F1x4 and MG-f3x4 have the sarne stationary distributions as (E.3) and (E.4)

respectively.

Under the MG-F1x4-CP model. the stationary probability is given by

lai Pa2 a3Ia
= 61 . (E.5)

Z=1 b1b2Pb3Wb

and under the IVIG-F1x4-AAP model b

6 .6
Zb=1 lb1 b2b3f(b)

The stationary distributions under the MG-F3 x 4-CP and MG-f3 x 4-AAP models fol

Iow directly as

(1) (2) (3)
‘°i a2

= 61 (1) (2) (3)Zh=1 b1 b2 b3 b

and

(1) (2) (3)
a3 f(a)

na = —61 (1) (2) (3)
Lh1 b1 b0 b3 f(b)

respectivelv.

Under the SC-type models utilizing 0111v the site-independent components of the

statistical potentiaL the stationarv probabilitv is a site-specific vector written as n
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and under a Fi x4-tvpe models is given by

—2G, (a)
r(i) = aiPa2Sa3C

(E 9a 61 —2/3Gb’
b=l b1pb2(pbe

Transient specifications

In the case of GY-tvpe models. the transient specification is sirnplv (2.10) without fT,

the factor. In the case of the MG-Fi x4 modeL we have

Q,.b,. Z. if A.
‘Ph,., ‘Ph,.,,

flab
— WQ,.,.,,. Z. if B (E.i0)

‘Ph,., ‘Ph,,

0. otherwise.

where c’ and c” are the two constant codon positions, and Z is the normalizing factor

of the stationary distribution (in this case Z y,). Note that this latter

Z factor is not needed whell scaling Q. Once again, substituting b,. with and the

appropriate Z. vields the transient specification for MG-F3 x 4.

For the MG-fi x 4-CP model. the transient specification is given hy

z •f A
‘Ph,., ‘Ph,.,,

. 1

= WQ Z. if B. (E.ii)
‘Ph,,, Ph,,

0. otherwise.

aud the specification of MG-Fi x4-AAP by:

Z. if A.
‘Ph,., ‘Ph,, f(b)

Pah wQ,,.h,, Z. if B. (E.12)
‘Ph,., ‘Ph,.,, ../Wf(,.)Wf(b)

0. otherwise.
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As a.lways. substituting with and the appropriate Z, yields the tra.nsient. spec

ifications for the F3x4 versions of (Eu) and (E.i2).

For SC-type models, for instance under the MG-Fi x4 model, the transient specifi

cation is given as

_________________

A
,,

h

- -G (5. if B (E.i3)
Scs , ,, e z z - -

O. otherwise.

We have now fully specified n and p used in equation (E.i). We can see that upon

substituting stationary and transient specifications appropriately into (E.i), the models

defined in the main body of the text are obtained. For instance, for a nonsynonymous

substitution under the MG-Fix4-CP model, we have

— WOab ,—b1yb2cpb3v’b
flah’h — Z X E.i4

bj Pb,, Z

— WOab(PbWb

—

______________

E 16

-

t.

/ N r
= (E.i7)

corresponding to the entry obtained from (7.2).

Checking the detailed balance

The models studied here ail satisfy the equalitv nQ = O. and are time-reversible. satis

fying the equaiity Qabna = Qba7Vb. These developments are lengthy. and su we display

only one example. for the detailed balance check under MG-Fi x 4-CP in the case where

Q
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a and b differ a one nucleotide position and implying a nonsynonymous substitution:

Qab7a = Qa7j (E.18)

S°b1 b2 b3 Jb WQbcac a1 Ç°Û2 a3 Wa
aya2a3’u = bib2S0b3ib (E.19)

___________________

WQbcalPa2CPa3’uj”a
,—,—--—— Pai(Pa,Sa3Wa r— 2b,-t2yb3’’b E._0

/ V Wa Wb Pa t Pu t, V PbW0

Lib = WQha2a3’3u
(E.21)

,, a ,a ,,
WQab —

(E 2’))
- ,‘bWu

J6Qab (E.23)

Qab = Lb,-a, (E.24)

where the array is svmmetricaL, satisfying the equalitv.

Finally. we mention here that we foÏlow the practice proposed bv Huelsenbeck et al.

(2006), and (under non-structural models only) scale Q matrices such that branch length

represent the expected number of synonymous substitutions per codon site, aithougli

we have also tried the model comparisons without any scaling of Q (such that. branch

lengths have no rneaningful units) and obtained essentially identical results (flot shown).

Q
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Appendix F: Implementation

The following is meant to give some entry points for using the version of the PhyloBayes

package in which the developments of the present thesis were implemented. Through

examples. we describe how to mn several MCIVIC-based caldulations. as well a perform

ing posterior predictive model checking. Que should keep in mmd that the program

is stiil very much an experimental tool, and that developments and modifications are

continuously being made (almost daily).

Running the PhyloBayes package

Overview

PhyloBayes was developed by Nicolas Lartillot (Nico) to provide a flexible set of tools

for implementing and comparing varions models of amino acid replacement (Lartillot

and Phulippe. 2004). Tue package descmibed here is an offshoot from Nicos version from

around December 2003. The program has been modifled and adapted in numerous ways.

to handie site-interdependent models based on statistical potentials. to perform several

types of thermodynamic integration, as well as maximum likelihood estimation. and

Laplace approximations of marginal likelihoods. In addition. modifications have been

made in order to handle nucleotide models, as well as dozens of codon models. also

with specialized thermodynamic integrations. How the program threads through theseo
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various options is eontrolled by a initialization file (contract to ‘initfile’). Examples will

follow, but first, we describe the typical work setup.

Requirements and work setup

PhvloBayes was developed in the C++ programming language. on Linux systems. To

compile the program, you will need tire freely available GNU g++ compiler (usually

installed hy default on most work stations). Also. you will need to instail the GNU

scientific library. which can be downloaded from http://www.gnu.org/software/gsl/.

Usually, we make a directory called ‘phylobayes’. which contains two sub-directories

called ‘data’ and ‘sources’. Tire ‘sources’ directory contains a makefile that will compile

the programs (actuallv. there are several make files). placing them in the ‘data direc

tory. Then. we make a.dditional sub-directories within data’. each of which contains

an alignrnent file, and any other files that may be needed. For instance, suppose you

have a dataset called myo2O. Ail files pertaining to this dataset would be found in

/phv1o5aves/data/mvo20. From here. tire programs are called one repertoire up. For

example.

$ . . /newcliain <initfile> <chainname>

will initialize a particular calculation. whereas

$ . . /phylobayes <chainnaine>

will launch the sampler. Other programs (monitor, diagnostics. readthermo....) read

and process the sample in various ways. and are called similarly.

0f course. you mav prefer to arrange things otherwise. but we will assume this

set-up in the following descriptions.
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‘Classical’ Bayesian MCMC sampling under amino acid models

Although Nico has already explained the usage of Ph ioBayes for phylogenetic Bayesiari

MCIvIC sampling in other texts. given the manv versions now going around. it might

be best to outiine this again. Here is an example initifie:

DataFile myo2o.nex

Rateprior Ganimalnv
LengthPrior Exponential

ModefastCompute No

MoveType AllBranchLength 5 0.1 1
Movelype AllBranchLength 5 0.5 1
Movelype OneBranchLengtli 5 1 1
MoveType One3ranchLength 5 1.5 1
MoveType MeanBranchLengthMove 1 0.5 1
Movelype Gamma 1 1 1
MoveType Gamma 1 0.1 1
Movelype Rate 1 0.5 1
Movelype Rate 1 1 1
Movelype Rate 1 1.5 1

End

SaveEvery 50
StopAfter —1

InitStat e

Tree (PONPY:0,(((MOUSE:0.1214,OCHPR:0.0138):0.0234,(PROGU...

Nmode 1
ModeStationaries WAG
ModeRR WAG

Rates Uniform

//

This will perform a sampling from the posterior distribution. integrating over branch

lengths and site-specific substitution rates. llnder exponential and gamma laws respec
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tively, a.nd using the WAG amino acid replacernent matrix. The first hue specifies the

narne of the file containing the alignment (myo2o nex). For now, this file must be in

nexus format. The next two unes specify the prior laws to by applied for rates and

brandi lengths. Next is indicated ModeFastCompute No. Tus will bypass a recoding

scheme used to accelerate likelihood calculations [explained in Lartillot and Philippe

(2004)]. but which is only applicable under a POISSON-hased (sïte-illdependent) model.

The next series of unes specifles the set Metropolis-Hastings (MH) update operators

to be applied per cycle. with their respective tunings. The three colurnns of numbers

to the rigit correspond to the cail frequencv per cycle, the IVIH tuning. and. if the

operator performs some type of multidimensional update. the order of the sub-space to

be considered (usually put to 1 if the update is not multidimensional). More speciflcally.

the first two operators listed. AllBranchLength, are applied 5 times each, but with 2

distinct tuning parameters (0.1 and 0.5). Here. the higher the tuning. the bolder the

update attempt. The move One3ranchLength works similarlv. The llext. operator.

MeanBranchLengtliMove. applies a IVIH update to the hyperparameter governing the

prior law on brandi lengths. Two MH operators are applied to the shap& parameter

a’ for the prior law on rates’. finally. three update operators are applied to the site

specific rates themselves. Note that, in tus case, a cail to the Rate operator in fact

loops over ail sites. performing a distinct MH update to each rate.

The SaveEvery line specifies how many cycles are performed between each draw

saved. whereas StopAfter defines the total nuniber of points you want the chain to

draw: vhen set to -1, the chain will run iudefinitelv.

The kevword InitState indicates that the following lines will define the starting

configuration of the chain. The tree topology is indicated here. and is always kept flxed

for now. The next une. specifying Nmode. pertains to the CAT model. and should be

‘In PhyloBayes. n is referred to as gamma’: the narne alph& is used for another type of model
(CAT). In general. you should not expect names in the program to necessarily correspond to the narnes
or symbols given in articles or other texts.
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set to 1 for the classical single matrix models. The equilibrium frequencies and amino

acid exchangeability parameters are specified in the next two unes; given the list of

operators. these are kept fixed in this case. Finally. the site-specific rates will start out

ail being uniform (equal to 1).

From this initfile. it would be easy to expand or colltract the model in various ways.

For instance, we could add the following update operators to sample ullder a GTR+F

model:

MoveType ModeStationary 10 1000 5
Movelype ModeRelativeRate 20 1000 10

This would include ten update attempts to amino acid equilibrillm frequencies (ModeStationary),

each update applied to 5 out of 20 (picked at random) stationary probabiilties. and

twentv update attempts to arnino acid exchangeability parameters (ModeRelativeRate),

each randomlv picking 10 out of the set of 190. Note that both of these operators are

Dirichiet type moves [see Larget and Simon (1999)]. Their MH tuning parameters work

differentlv: in this case. the smaller the tuning the bolder the update at.tempt.

Alternativelv. we could contract the model to a uniform rates across sites model. hy

simply rernoving update operators Rate, as well as Gamma. Other possible configurations

could include setting ModeStationaries Uniform and ModeRR Poisson; in the case of

the latter, you could set ModeFastCompute Yes to take advantage of Nico’s recoding

svstem. which can suhstantiallv increase compiltatiollal performance. Overali. bv play

ing with these different update operators and InitState settings. we now have the

means of sampling under several common amino acid replacement models (POISSON.

POIS50N+F, PolssoN+f. PoISsoN+F+F. WAG, WAG+F. etc.).

For sampling under nucleotide data. the initfile would look much the same. Only

now. ModeRR should be initialized to Poisson, with calis to at least ModeStationary

(F81), but preferably with cafls to ModeRelativeRate as well (GTR).
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‘Classical’ Bayesian MCMC sampling under codon models

When using codon models. the alignment should be checked carefully, to start at a

clear codon break, and to be of length that is some militiple of three. Also, only nexus

formats are available. which must contai the entrv datatype=codon. The following

initfile will run an MCMC to sampe under the GY model specified in chapter 2. with

the Dirichiet process on nonsynonymous rate factors. Albeit here, we are using a must

more efficient data-augmentation-based sampling approach.

DataFile bglobin.nex

Normalise Yes
Syn0nly Yes
Uniformization Yes
OmegaPrior DirichletProcess
OmegaBasePrior PairRat ioofExpOneRVs
AiphaPrior Exponential
LengthPrior Exponential

ModefastCompute No
RefFastCompute No

MoveType AllBranchLength 50 1.0 1
MoveType All3ranchLength 50 0.5 1
MoveType MeanBranchLengthMove 50 0.5 1
MoveType MeanBranchLengthMove 50 0.1 1
MoveType MeanBranchLengthMove 50 1.0 1
MoveType CodonStat 50 1000 10
MoveType CodonStat 50 5000 10
MoveType Kappa 25 0.1 1
MoveType Kappa 25 0.5 1
MoveType Omega 10 1.0 1
MoveType Omega 10 0.5 1
MoveType Omega 15 0.25 1
MoveType Alpha 50 0.5 1
MoveType Alpha 50 1.0 1
MoveType Alpha 50 1.5 1
MoveType SwitchOmega 10 1 5
Movelype Resa.mpleMapping 1 1 1

End
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CodonStatModellype GY_F61
CodonRRModelType HKY

withMappings Yes

SaveEvery 10
StopAfter —1

InitStat e

Tree (xenlaev:0. 51040247,xentrop:0.78663390,...

//

As hefore. the top une specifies the data set. Tue following two hues xviii scale

ail matrices as descrihed in Huelsenbeck et ai. (2006). We also indicate the use of

the uniformization technique for drawing substitution mappings. The prior structure

described in chapter 2 is specifled in the next unes. and the sampling is reasonably self

evident. Note the operator ResampleMapping, which draws a new mapping after the

round of updates. To revert to pruning-based sampling. simpiv remove the operator.

as weii as withMappings Yes. To generalize the model slightly. as in chapter 7, replace

operators Kappa with

MoveType NucleotideReiRate 25 1000 4
MoveType NucleotideReiRate 25 500 4

and set CodonRRModelType GTR. The model can also lie contracted by setting OmegaPrior Flat.

replacing the Omega operators with Globalomega. and removing operators Alpha and

Swit chOmega.

Site-interdependent Bayesian MCMC sampling for amino acid

models

Samphng under site-interdependent amino acid modeis involves severai differences and

additions to the initfiie. Here is an exai pie:
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DataFile myo2o.nex

RatePrior Ga.mmalnv
LengthFrior Exponential

ModeFastCompute No
RefFastCompute No

MoveType AllBranchLength 1 1
MoveType All3ranchLength 1 2
MoveType MeanBranchlengthMove 1 0.5
MoveType MeanBranchLengthMove 1 1
MoveType NodeSiteStateOverlreeMove 5 1 10
MoveType NodeSiteStateMove 5 1 50
MoveType PathSiteMove 5 1 100

md

withDependence Yes
contactMap 1MBD.mj .cm
solventAccess 1MBD.mj .av
potential homeMadeMJstyleWithAV
chemicalPotentials Yes

MValue 500
gibbslterBtwSeqs 5
thetaStarThreshold 0.01

SaveEvery 10
StopAfter —1

mitSt at e
Tree (PONPY:0,(((MOUSE:0.1214,OCHPR:0.0138):0.0234,(PROGU...

Nmode 1
ModeStationaries Empirical
ModeRR Poisson

RefStationaries Uniform
RefRR Poisson

Rates Uniform

pfactor 0.5
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1/

First, note that the tuuings of AllBranchLength have changed; under the conditions

of the modeL this operator name actually calis a different update operator. workffig on

the basis of the data augmentation (mapping) scherne. The last three MH operators

are each called five times. proposing updates to substitution mappings of a sub-set of

positions: NodeSiteStateOverlreeMove proposes a mapping for teil (randomly picked)

sites over the entire tree; NodeSiteStateMove proposes a mapping for fifty sites over

three branches coirnected to a (randomiv picked) internai node: PathSiteMove proposes

a mappmg to one hundred positions over a single hranch.

The next unes engage the site-interdependent calculations (withDependence Yes).

give the protein structure files (1MBD .mj . *), and define the potential used homeMadeMJstyleWithAV

with chemical potentials, from chapter 5.

Statio;iary prohabilities under the model involve an additional MCIVIC sampler

(sometimes buried withill the main chain). which draws amino acid sequences using

the familiar Gibbs method. The immher of secyuences drawn is set using MValue,

whereas the number of sequence-sweepillg Gibhs cycles between draws is set using

gibbslterBtwSeqs. A cut off for an importance samplillg procedure is set using

thetaStarThre shold.

it is important to note the settings for ModeStationaries. ModeRR. RefStationaries,

and RefRR. The Mode settillgs correspond to the model proposing substitution mappillgs.

whereas Ref settings have a bearing on the target model. Here. we are sampling under

the pure potential. and so we set Ref to a cornpletely fiaI configuratioll.

Also note that pFactor. or . is set to 0.5 to have the proper scaling of the energy

function. However. we can give this some fiexibility as weli. bv including the operator

MoveType pfactorTypeB 1 0.1 1
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Other models can also 5e cornhined. for instance

NoveType Gamma 1 1 1
MoveType Gamma 1 0.1 1
MoveType Rate 20 1 10

will sample under a ±f modeL Here again. the Rate operator a.ctuallv cails a diffèrent

operator than would 5e called under site independence; in this case, it is better to

perform update attempts for several rates at once (typically 10 to 50).

Site-interdependent Bayesian MCMC sampling for codon mod

els

The following initfile will sample from the MG-f1x4-DP-SC model:

DataFile bglobin.nex

Normalise No
Synonly No
OmegaPrior DirichletProcess
OmegaBas ePri or PairRat 00f ExponeRVs
LengthPrior Exponential
AiphaPrior Exponential

ModeFastCompute No
RefFastCompute No

MoveType AllBranchLength 100 1.0 1
MoveType All3ranchLength 100 0.5 1
MoveType NeanBrancliLengthMove 50 0.5 1
NoveType MeanBranchLengthMove 50 0.1 1
MoveType Mean3ranchLengthMove 50 1 1
MoveType Nucleotide$tat 10 1000 2
Novelype NucleotideStat 20 2000 2
MoveType NucleotideReiRate 10 1000 4
MoveType NucleotideReiRate 10 500 4
MoveType Omega 5 1.0 1
MoveType Omega 5 0.5 1
MoveType Omega 5 0.25 1
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MoveType Alpha 50 0.5
MoveType Alpha 50 1.0
Movelype Alpha 50 1.5
MoveType Switchomega 1 1 5
MoveType NodeSiteStateOverTreeMove 10 1 10
MoveType NodeSiteStateMove 50 1 30
MoveType ?athSiteMove 50 1 50

End

CodonStatModelType MG_F1X4
CodonRRModelType GTR

withStructure Yes
withDependence Yes
potential homeMadeMJstyleWithAV
chemicalPotentials Yes
solventAccess 4HHBB. av
contactMap 4HHBB. cm . temp

gibbslterBtwSeqs 5

SaveEvery 1
StopAfter —1

mitSt at e

Tree (xenlaev:0.51040247,xentrop:0.78663390...

//

The model can be contracted as before.

Maximum likelihood parameter estimation

We focus here on IVionte Carlo EM optirnizatiori, heginning with the WAG+f model.

DataFile myo20.nex

RatePrior Gammalnv
LengthPrior Exponential

ModeFastCompute No
RefFastCompute No



240

Movelype Rate 10 1 1

End

MLmode

EMmode

decorrelate 1
reburn 1
gradEstimateBasedon 100

branchLengthMLtuning 1
ganimaMLtuning 1

$aveEvery 1
StopAfter —1

mitSt at e
Tree (PONPY:0, (((MOUSE:0.164107,OCHPR:0.0224974) :0.0236, (PRUGU.

Nmode 1
ModeStationaries WAG
ModeRR WAG

RefStationaries WAG
RefRR WAG

Rates Uniform

//

MLmode engages the chain through optimization cycles. The default optimization is

a gradient. scheme. but the EM scheme is engaged with the keyword EMmode. AÏthough

they are set. to 1 here. decorrelate and reburn give sorne flexibilitv when making draws

for ea.ch Elvi cycle. Here, brancliLengthMLtuning and gammaMLtuning act as switehes

indicating that the associated components are to he optimized: in the case of gradient

optimization. these are actually the step pararneters (which must be tuned. hence the

name). Note that while the algorithm relies on a sample of substitution mappings. under

site-independence these eau he drawn directly from their posterior distribution: no MH
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updates over mappings are needed (but you can perform mapping-based sampling if

yollWant...).

EM optimization under site interdependence is very similar.

DataFile myo2o.nex

RatePrior Ga.mmalnv

LengthPrior Exponential

ModeFastCompute No
RefFastCompute No

MoveType NodeSiteStateflverTreeMove 10 1 10
MoveType NodeSiteStateMove 25 1 50
Movelype PathSiteMove 25 1 100

End

withDependence Yes
contactMap 1MBD.mj .cm
solventAccess 1MBD.mj .av
potential homeMadeMJstyleWithAV
chemicalPotentials Yes

MValue 500

thetaStarlhreshold 0.01
gibbslter3twSeqs 5

Mimode

EMmode

decorrelate 1
reburn 1

gradEstimateBasedOn 100

branchLengthMLtuning 1

SaveEvery 1
StopAfter —1

InitStat e

Tree (PONPY:0, (((MOUSE:0.2277,OCHPR:0.0283) :0.0336, (PROGU...

Nmode 1
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ModeStationaries Empirical
ModeRR Poisson

RefStationaries Uniform
RefRR Poisson

Rates Uniform

pfactor 0.5

//

This initfile will optimize branch lengths under the structural model. To optimize

pfactor (i3), add pFactorMLtuning 0.0005 as weU. Note that here. each cycle per

forms a gradient step to pfactor. and an EIVI step to branch lengths; this combination

for optimizing pfactor was found to work hest under these models. You can also com

bine an optirnization of the shape pararneter under gamma distributed rates. by simply

settmg ga.mmaMLtuning 1 and including cails to Rate operators.

In fact. bv playing witli these settings. von can inlagine rnany was of marginalizing

over sorne parameters. while optimizing over others...

Thermodynamic integration for amino acid models

There are a few different reasons for using thermodynamic integration with the pro

grams. from the WAG+F optimization. for example. we adjusted the parameters so as

to maximize the log-likelihood. but we have not yet computed the log-likelihood itself.

Tue following initifie will initialize a chain to make this calculation.

DataFile myo20.nex

RatePrior Gammalnv
LengthPrior Exponential

ModefastCompute No

RefFastCompute No
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QuasiStatic 0 1 0.001 10
MSMode RAS

MoveType Rate 10 1 1

End

SaveEvery 10

StopAfter —1

InitStat e
Tree (PONFY:0,(((MOUSE:0.1265,OCHPR:0.019$):0.Q17,(PROGU...

Nmode 1
ModeStationaries WAG
ModeRR WAG

RefStationaries WAG
RefRR WAG

Rates Uniform

Gamma 0.73

//

The first key une here is QuasiStatic. This will mn the MCMC sampler across a

path linking two models. The 0 1 that follow indicate the starting and ending values of

the temperature or “morphing” parameter; in this case. at the heginning of the mmi, the

sampling is with respect to the WAG model with uniform rates. and gradually switches

(bv steps of 0.001) to the gamma distmihuted rates model. The last value of this line

defines a hurnin: here. the sampling is equilihrated drawing ten poilits. before engaging

the model switch. Also note that you cai mn the sampler from 1 to O (steps of -0.001)

as well. to get a sense of the precision of the estimate. When the run is doue. read the

mesuit calling

$ . . /readtbermo <chainname>
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This will give you the difference in log4ikelihood between uniform and gamma dis

tributed rates, under this partidular tree and with the given set of branch lengths.

Note that including updates to Gamma, as well as brandi lengths operators. you WOllld

be computing the difference in log marginal likelihood under the two models (the log

Bayes factor).

The MSMode used here is RAS (for Rates Across Sites). Other settings can be used for

analogous calculations across substitution matrices (MSMode SUB), or a straight-across

path from a particular matrix with uniforrn rates to another matrix with gamma rates

(MSMode SUBRAS).

Site-interdependent thermodynamic integration works simi1ar1y

DataFile myo2o.nex

RatePrior Gammalnv
LengthPrior Exponent lai

ModeFastCompute No

RefFastCompute No

QuasiStatic 0 0.5 0.001 10
MSMode pFactorModelSwitch

MoveType NodeSiteStateOverTreeMove 5 1 10

MoveType NodeSiteStateMove 15 1 50

MoveType PathSiteMove 25 1 100

End

withDependence Yes

contactMap 1MBD.mj .cm

soiventAccess 1MBD.mj .av

potentiai homeMadeMJstyleWithAV

cliemicalPotentials Yes

MVaiue 500

thetaStarlhreshold 0.01

gibbslterBtwSeqs 5
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SaveEvery 5
StopAfter —1

InitStat e

Tree (PONPY:O,(((MOUSE:O.2277,OCHPR:O.0283):O.0336,(pROGU...

Nmode 1

ModeStationaries Empirical
ModeRR Poisson

RefStationaries Uniform
RefRR Poisson

Rates Uniform

//

This will give you the log-likelihood difference between the flat model (Poisson.

Uniform) and the structural model. Here, the path linking the models is defined with

the pFactor parameter itself. hence the name pfactorModelSwitch for the MSMode. If

you want to marginalize over other elements (e.g. to compute Bayes factors) simpÏy

include the update operators in question. For marginalizing over pFactor. run the

integration across the range of interest. Calling readthermo here again will give you

the resuits once the chain is clone.

Thermodynamic integration for codon models

The following initifle will run the GY-IVIG-switch, described in chapter Z:

DataFile bglobin.nex

Normalise Yes
SynOnly Yes
OmegaPrior Flat
LengthPrior Exponential

ModeFastCompute No
RefFastCompute No
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QuasiStatic 0 1 0.0005 100
MSMode SUE

CodonThermo MG_GYSwitch

Movelype AllBranchLength 25 0.1 1
Movelype AllBranchLength 30 0.15 1
Movelype AllBranchLength 35 0.05 1
Movelype MeanBranchLengthMove 10 0.5 1
MoveType MeanBranchLengthMove 10 0.1 1
MoveType MeanBranchLengthMove 10 1 1
MoveType NucleotideStat 10 1000 2
MoveType NucleotideStat 10 2000 2
MoveType NucleotideStat 10 3000 2
MoveType NucleotideRelRate 5 1000 4
MoveType NucleotideReiRate 5 500 4
MoveType Globalomega 5 0.05 1
MoveType GlobalOmega 5 0.1 1

End

CodonStatModelType MG_FX4
CodonRRModelType GTR

SaveEvery 5
StopAfter —1

mitSt at e
Tree (xenlaev:0.51040247,xentrop:0.78663390...

//

Numerous other thermodyllamic schemes are implernented. following sirnilar speci

fications. and each requiring calis to readthermo once the runs are completed.

Under the structural models. a thermodvnamic run eau be specified by:

DataFile bglobin.nex

Normalise No
Synflnly No
OmegaPrior Flat
LengthPrior Exponential
AiphaPrior Exponential
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ModeFastCompute No
RefFastCompute No

QuasiStatic 0 1 0.0001 100
MSMode pFactorJointSwitch

MoveType AllBranchLength 100 1.0 1
MoveType AllBranchLength 100 0.5 1
MoveType Mean3ranchLengthMove 50 0.5 1
MoveType MeanBranchLengthMove 50 0.1 1
Movelype MeanBranchLengthMove 50 1 1
MoveType NucleotideStat 10 1000 2
MoveType NucleotideStat 20 2000 2
MoveType NucleotideReiRate 10 1000 4
Movelype NucleotideReiRate 10 500 4
MoveType GlobalOmega 5 0.05 1
MoveType GlobalOmega 5 0.1 1
MoveType NodeSiteState0verTreeMove 10 1 10
MoveType NodeSiteStateMove 50 1 30
MoveType PathSiteMove 50 1 50

End

CodonStatModelType MG_F 1X4
CodonRRModelType GTR

withStructure Yes
withDependence Yes
potential homeMadeMJstyleWithAV
chemicalPotentials Yes
solventAccess 4HHBB.av
contactMap 4HHBB. cm. temp

MValue 100
gibbslterBtwSeqs 5

SaveEvery 5
StopAfter —1

InitState

Tree (xenlaev:0.51040247, xentrop:0. 78663390

Several other schemes are available here as well. with relativelv few modification to

this iriitflle.
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Laplace approximation

Before ruirning a Laplace approximation of the marginal likelihood. you should have

performed a ML run and, if the model is flot analytical, a therrnodvnamic nul to com

pute the log-likelihood. Setting the InitState to the ML point. and including the log

likelihood value in the initfile, a Laplace approximation run can be performed engage

the calculation using the kevword LaplaceMode, and indicate which components were

optimized. The following is an example initfile for computing the marginal Yikelihood

under the structural model. witli pFactor treated as a free parameter.

DataFile myo2o.nex

RatePrior Gainmalnv
LengthPrior Exponential

ModeFastCompute No
RefFastCompute No

MoveType NodeSiteState0verTreeMove 5 1 10
MoveType NodeSiteStateMove 25 1 50
MoveType PathSiteMove 25 1 100

End

withoependence Yes
contactMap 1MBD . mj . cm
solventAccess 1MBD.mj .av
potential homeMadeMJstyleWithAV
chemicalPotentials Yes

MValue 100
thetaStarThreshold 0.01
gibbslterBtwSeqs 5

LaplaceMode
logLikelihood —2289.4
decorrelate 1
reburn 1
gradEstimateBasedOn 1000
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pFactorMLtuning 1
branchLengthNLtuning 1

SaveEvery 1
StopAfter —1

InitSt at e

Tree (PONPY:0,(((MOUSE:0.1724,QCHPR:0.0238):0.0313,(PROGU.

Nmode 1
ModeStationaries Empirical
ModeRR Poisson

RefStationaries Uniform
RefRR Poisson

Rates Uniform

pFactor 0.64

//

The Laplace estimate is written in the file <chainname> . laplace. Other extensions

for other models follow as before.

Monitoring and diagnostics

Regardless of the type of MCIVIC performed. it will be important to assess the general

hehavior of the sampler. Try the following cail

$ . . /monitor -v <chainname>

The —v option will give you additional information about the time spent in each op

erator. as well as the update success rates. The monitor program will produce ma.ny

files containing t.he values of the hvpothesis vector and associated statistics. for each

sample point. Some gmiplot scripts are also made, to view multidimensional elernents
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more quickly (for instance <chainnaine> . gnuplot_length). Load these into gnuplot.

e.g.

gnuplot> load “<chainname> gnuplot_length”

and zoom over each value (in this case hranch lengths) by hitting the carnage return.

Also, sorne simple statistics about the chain can be computed using

$ . /diagnostics <chainname>

Options are available to burn over a first set of points, and/or sub-sample from the

chain; just make the eau without arguments to sec how to do this. This program

will give a snapshot to the screen of the mean. variance, min. max. and autocorre

lation of the components of the model. A bit more details are written into a file

(<chainame> . diagnostics).

Posterior predictive resampling

In the previous section, we outlined how to run the MCMC-based statistical computa

tions. While important. many of the calculations would typically be doue only later in

the model building cycle. Basic checks that the moUd is reproducing features of the

data are perhaps more fundamental, and more informative. In a Bayesian context. this

is known as posterior predictive checking.

for our purposes. postenior predictive cliecking works as follows. Suppose that ‘iou

have run a Bayesian sampler under an evolutionarv moUd of interest. for each draw

from the posterior. simulate evolution over the tree based on the parameter values.

producing a data replicate. Compute some statistic on each rephcate. therebv gener

ating the post.erior distnibutioll of the statistic. Compare with the truc data. Under

our specifie applications, statistics may also he computed on the mappings. in which
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case we compare the statistics from the unconstrained (predictive) mappings to the

data-constrained (“observed”) mappings.

Simulation

Simulation is simple. first, a chain sampling from the posterior of interest should have

been made. Then, make the following eau

$ . . /postpredictive <chainname>

Use the —progress (or —p) option to count out on screen how rnanv points have been

treated. Options to hum over a first set of points, and/or to sub-sample. are also

available here.

IVlany statistics could be explored under the posterior predictive scheme. Two ex

amples are given below.

Rate variance

Among the files generated hv the postpredictive program are <chainname> . observedRateVar

as well as <chainname>.predictiveRateVar. As the names suggest, these statistics

refiect the observed and predictive rate heterogeneity (e.g.. Nielsen, 2002).

In the ‘sources directory. you will find a sub-directory called ‘utilities’. The makefile

found in this directory will compile some small programs. placing them in the ‘data’

directory. with the other programs. Among these. vou can use the makehisto and

normhisto to produce posterior density plots of the rate variance. which you can then

use to produce figures.

Exchange distributions—bubble plots

The program postpredictive also produces files with an extension finishing with

ExchangeDist. The files contain 190 values corresponding to the posterior mean pro-
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portion of times an amino acid exchange occurred hetween a given pair.

You could compute some sort of distance between predictive and observed exchange

distributions. corresponding directly to a discrepancy statistic. It may be more infor

mative. however. to display exchange distributions graphically. If youve compiled the

utility programs, try the following cali

$ /bubbleplot <cliainname> .meanPredictiveExchangeDist <plotname>

This wffl read the .meanPredictiveExchangeDist file. and use gnuplot to produce

a-la-Goldman bubble plots (fig. 8.4). The figure is produced as an EPS file. but the

gnuplot script is also left behind for tweaking (<plotname> . gnuplot).

The area of each circle corresponds to the (normalized) values in the exchange

distribution file (i.e. the total area of ah circles equals 1).

Caveats

The programs have not yet heen made user-friendlv. and continue to be modified. re

vamped. and expanded. Likewise. the above descriptions are likely to he quickly out

dated. and will require much revision before a true program release can be considered.

Indeed. rnuch more is available than has been described here. including many unpub

lished models. I\/Iuch work remains.


