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Résumé

Le séquençage de génomes en tant que tel ne révèle aucune information: il génère

des données brutes. C’est plutôt l’analyse des séquences in sitico qui découvre la fonction

des gènes. Or, en général, la fonction de seulement 50% des gènes codant de protéines peut

être déchiffré avec les méthodes courantes d’annotation à grande échelle, - toutes étant

basées sur la similarité des séquences. Cet état de fait accentue le besoin urgent de

nouvelles méthodes d’annotation qui exploitent, au lieu d’un seul attribut (la similarité des

séquences), de multiples caractéristiques des séquences biologiques. Ainsi, l’objectif

principal de ma thèse est d’améliorer l’annotation fonctionnelle en exploitant d’abord les

méthodes bio-informatiques de pointe existantes et ensuite, en développant une nouvelle

méthode prédictive. Le but de cette nouvelle méthode est de détecter les signatures et les

patrons cachés dans les données biologiques intégrées et d’utiliser ces nouvelles

connaissances pour déchiffrer à grande échelle les séquences génomiques.

La recherche de patrons dans des grands volumes de données intégrées (‘data

mining’) permet de déduire des modèles prédictifs robustes. Ceci se fait en trois étapes.

Dans un premier temps, un ensemble de séquences protéiques est décrit en utilisant

différents attributs calculés directement à partir de la séquence (par exemple, propriétés

physico-chimiques, structure secondaire prédite, etc.). Dans un second temps, un

algorithme de recherche de données décèle des patrons dans les données décrites et apprend

des règles à partir des patrons observés. Comme dernière étape, les règles apprises seront
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vérifiées avec des données connues et les règles donnant la meilleure performance seront

utilisées pour prédire la fonction des protéines inconnues.

Un objectif important de ce projet est l’étude des différentes représentations des

séquences permettant une recherche efficace de données. Démonstration de faisabilité, un

ensemble de données mitochondriales de bonne qualité a été traité exhaustivement. Ensuite,

nous avons développé une nouvelle façon de valider des prédictions in silico à large

échelle. Ceci permet la formulation d’hypothèses de travail prometteuses pour fins de

vérifications expérimentales. finalement, la fonction prédite d’une protéine particulière a

été scrutée en profondeur en utilisant des méthodes bio-informatiques de pointe ainsi que

diverses connaissances enzymatiques, physiologiques et génétiques décrites dans la

littérature, qui attestent de la bonne performance de l’approche d’annotation fonctionnelle

que nous avons développé.

Mots-clés: Annotation de génomes; prédiction de la fonction protéique; exploration de

donneés; apprentissage machine; classification; arbre de décision; validation par

connaissance expert.
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Abstract

The blueprint of a living organism is specified in its genome whose coding

segments are called genes. Whole-genome sequencing projects have produced an enormous

amount of genomic data, and function prediction—the process of assigning function to

these genes or their inferred protein sequences in silico—is crucial for making sense of this

data. Large-scale function prediction using sequence-similarity-based methods such as

BLAST can only assign function to 50% of a typical genome while profile based methods

such as PSI-BLAST and HMMER are more sensitive but stili leave a substantial portion of

the sequences with unassigned function. Therefore, we sought to deveiop a large-scale

method for annotating the ‘left-over’ proteins that cannot be assigned function by current

methods.

Our sequence-similarity-free method involves data mining i.e., searching for strong

patterns and reiationships in the data and inducing generaiized rules. Protein sequences

were represented by their physicochemical properties, and amino acid composition. A

decision tree machine learning algorithm was used for inducing fuies and predicting the

function of the function-unknown sequences. As a proof of concept, we applied this method

for predicting the function of the mitochondrion encoded function-unknown proteins across

eukaryotes.

The prediction accuracy of our method, when tested on the function-known data,

exceeds 80%. Using this method, we assigned function to more than 1,000 function

V



unknown mitochondrial proteins. By our new validation procedure that assesses the

predictions using domain-specific knowledge, about haif of them received positive support,

making these proteins candidates for targeted experimental validation, for one of the

predictions that received positive support, we employed sensitive in silico methods together

with the most recent domain-knowledge from the literature corroborating our prediction

beyond doubt.

Keywords: Genome annotation; protein function prediction; data mining; machine

learning; classification; decision trees; domain-specific validation.
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Overview of the thesis

The central theme of this thesis is how to predict protein function without recurring

to sequence similarity. The thesis is organized as follows.

In the Introduction, we define the problem of function prediction, critically review

the existing state-of-the-art methods and their limitations, and state the objectives of this

work as well as our approach.

Chapter 1 is a published journal article on predicting the function of mitochondrial

proteins from the protist $eculamonas ecaudoriensis using the state-of-the-art methods.

Chapter 2 is a submitted manuscript, in which we describe the methodology of our

newly developed large-scale function prediction system, and a validation procedure, which

assigns different levels of support.

Chapter 3 is a submitted manuscript that reports the verification of one of our

function predictions with positive support, using various sensitive in silico methods and

diverse biological evidence.

finally, we close with a general Conclusion and future research directions.
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INTRODUCTION

Life originated on Earth at least 4 billion years ago (Zimmer, 2005). Since then

evolution by natural selection has produced millions of different living organisms with

enormous diversity as to morphology, habitat, life-style, metabolism, and modes of

reproduction. However, ail these species have evolved from a universal common ancestor,

and share many characteristics of their genetic information and housekeeping systems.

The information required for the development, functioning and reproduction of a

species is encoded in its genome. Hence, scientists have started sequencing whole genomes

to better understand the bioiogy of species. The first complete genome to be sequenced was

that of Haemophiïus influenzae (Fleischmann et aÏ., 1995) and since then, the

advancements of high-throughput sequencing technologies lead to an explosion of

published genomic data. As of now, complete bacteriai and nuclear genome sequences are

availabie for --700 species and >2,000 are underway (Liolios et aÏ., 2006). In addition,

there are >1,300 complete organellar (from mitochondria and chloroplasts), and >1,400

viral genomes. further, expressed sequence tags (EST) sequencing projects are contributing

enormous amount of data on their part. With this astronomical quantity of genomic data,

the way biology research is done has been transformed fundamentally.

Gene function prediction

In the genomics era, one of the greatest challenges facing biologists is to make

sense of this sea of data. The primaiy step is finding the function of genes before we can



answer questions about deveiopment, metabolism, and evolution of an organism. A gene

is defined as “a locatable region of genomic sequence, corresponding to a unit of

inheritance, which is associated with regulatory regions, transcribed regions andlor other

functional sequence regions” (Pearson, 2006). In this study, we are focussed only on the

protein coding genes. Function annotation—the process of assigning function to genes or

their products—is a central problem in life sciences.

Although function annotation is an active research area, a large proportion of

published sequences is stili unassigned. For exampie, the best studied model organisms

Escherichia cou and Caenorhabditis elegans have, respectively, 50% and 88% of genes

with no or ambiguous and uninformative annotation (Hawkins and Kihara, 2007). With

millions of sequences already availabie and the tremendous rate at which new data are

being added, it is obvious that there is a great need for large-scale function prediction

(Figure 1).

Protein function

The function of a protein can be described at different levels or dimensions such as

molecular, cellular, physiological, and organismal. Further, various features or aspects of

the protein can describe protein function such as the sub-celiuiar localization, secondary

structure, and post-transiational modifications.

Traditionally, protein function has been annotated by describing ail available

information with free text such as in SWI$$-PROT (Boeckmann et al., 2003), making it
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machine-unreadable. The resulting inconsistency and incoherence is a notorious problem

in genome analysis (Dobson et al., 2004).

• Experimentally annotated sequences
• Distantly related homologues

• Closely celated homo’ogues
• No known homologue

Figure 1. Annotation status of ail published protein sequences (2 miiiion) (Modified

from: Ofran, 2005).
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To automate function prediction, many attempts have been made to standardize

the description of protein function. Generaliy, protein function is classified in a hierarchical

fashion starting with generic function and progressing toward more specific function.

Species-specific hierarchical categorization of protein function using controlled vocabulary

was established for E. cou (Riley, 1993) and Saccharomyces cerevisiae (Mewes et al.,

1997); the latter was then extended to an organism-independent classification system called

functional Catalogue (FunCat) (Ruepp et al., 2004). Enzyme Commission (E.C.) is a four

level numerical hierarchy to classify enzymes based on the biochemical reactions they

catalyze (Enzyme_Commission, 1999). The E.C. system is commonly used, but obviously

it is unsuited for non-enzyme proteins.

Recently, biologists have elaborated ontologies to describe protein function

systematically and consistently. An ontology is a formai description of concepts and

relationships between concepts in a given domain employing a controlled vocabulary. The

need for and applications of ontology-based function classification have been discussed in

detail by others (e.g., Karp, 2000). The most widely used is Gene Ontology (Ashbumer et

al., 2000a), which describes protein function in terms of ‘cellular component’ (e.g.,

nucieus), ‘biological process’ (e.g., signal transduction) and ‘molecular function’ (e.g.,

adenylate cyclase). The comparison of different functional annotation schemas is presented

in Rison et al. (2000), and Soldatova and King (2005) critically assess the effectiveness of

the current bio-ontologies.
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Function prediction using experimental methods

Traditionally, protein function has been determined for individual proteins, one at a

time, by biochemical and molecular biology experiments (Whisstock and Lesk, 2003). This

approach is stiil considered the gold standard.

Recent functional genomics and proteomics methods infer structure and function of

genes or their products by applying high-throughput experimental methods, usually

combined with extensive statistical or computational analyses of the resuits (Hieter and

Boguski, 1997). The simultaneous study of numerous genes or gene products provides a

window on how they function together at the molecular, cellular or even at the systems

level.

DNA microarrays (or Gene or Genome Chips) allow gene expression profihing, i.e.,

monitoring the expression levels of thousands of genes simultaneously (Schena et aL,

1995). Comparison of gene expression pattems in different celi types and tissues, or under

normal, diseased and stress conditions, determines groups of genes having similar profiles,

which are considered functionally related or as part of the same cellular process. For

example, by using this technique, hundreds of previously unknown genes were identified to

be associated with cancer (Walker et al., 1999).

Similar to the large-scale study of genes, proteomics examines hundreds of proteins

simultaneously. frequently used proteomics methods are mass spectrometry (Andersen and

Mann, 2000), two-dimensional gel electrophoresis (Encarnacién et al., 2005; O’Farrell,
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1975), yeast two-hybrid screening for studying protein-protein interactions (Fields and

Song, 1989; Giot et al., 2003; Uetz et al., 2000), and protein microarrays (Jones et al.,

2006). Marcotte (1999b) used data generated from high-throughput methods along with

predicted information from computational methods and to assign function to 1,600

previously function-unknown ORFs in S. cerevisiae.

Finally, reverse genetics methods such as mutagenesis or gene disruption (knock

out) are also effectively used at a large scale for inferring function. When the expression of

the gene of interest is abolished, the resulting phenotype can hint at the functional role of

the gene. Such deletion studies were carried out at a large-scale for S. cerevisiae as part of

the EUROFAN (European Functional Analysis Network) (Dujon, 1998; $chomburg et aï.,

2004).

One of the problems is the inconsistency in function predictions made by different

methods (Bader and Hogue, 2002; von Mering et al., 2002). This is because gene

expression and protein-protein interactions are affected by a multitude of factors that

cannot be easily controlled and the displayed phenotype of a gene disruption depends on

the conditions tested. The best way to make accurate high-throughput function inference is

by combining evidences from different methods.

Function prediction using in sitico methods

It is apparent that experimental characterization of protein function cannot scale up

to the rate at which the genomic data is being produced. According to a recent estimate, out
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of approximately two million inferred protein sequences available in public databases,

only <15% has experimentaliy characterized function (Ofran et al., 2005). This situation

has set the stage for developing computationai methods for function annotation. The basic

underlying assumptions in using in silico methods for function assignment are that:

1. sequence determines structure and structure ultimately determines function; hence

ail the information necessary to infer the function of a protein is present in its

sequence. Therefore, it should be possible to predict some aspects of protein

function directly from the sequence.

2. homologous proteins (i.e., proteins derived from a common ancestor) have similar

function and share many common features.

If, based on these assumptions, a function-unknown protein is similar (in sequence,

secondary structure, or physicochemical properties, etc.) to a function-known protein, then

it should also have similar if flot the same function. Thus, the function of the known protein

can be transferred to the function-unknown homolog. This is the basic concept behind in

silico function prediction methods.

Biological databases

An important prerequisite for carrying out in silico analyses effectiveiy is that, ail

the available information about the function-known sequences is stored in databases. The

most important publicly accessible databases that organize information about DNA or

protein sequences are GenBank of NCBI—mostly a data repository (Bilofsky and Burks,

1988), and SWISS-PROT—a curated protein sequence database (Boeckmann et aÏ., 2003).
7



Function prediction usÏng sequence-similarity based methods

Sequence-sequence comparison

Protein function prediction by sequence-sequence comparison involves comparing

the function-unknown sequence with ail function-known sequences. If some kind of

resemblance is found with statistical significance, the function of the function-known

sequence can then be transferred to the function-unknown sequence.

$equence-similarity basedfunction transfer

Among the many features that are common between two homologous proteins,

sequence similarity is the strongest one and hence the most exploited for function

annotation. Using sequence similarity to assign function is referred to as sequence

similarity based function transfer. (Note: Though the term ‘homology-based’ function

transfer is also used in the literature, it is incorrect because programs like BLAST detects

only sequence simiiarity. Similarity does not imply homology; homoiogy detection, sensu

strictu, requires phylogenetic analysis).

The most commonly used tools to compare two protein sequences are BLA$T

(Altschul et al., 1 990a) and FASTA (Pearson, 1990), which compare the function-unknown

sequences against sequence databases and report statisticaily significant hits.
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The advantages of sequence-similarity-based function transfer are that it is fast

allowing large-scale automated function annotation, and that it assigns the molecular

function rather than the broad functional class or any other aspect of protein function.

Limitations ofsequence similarity-basedfunction annotation

While similarity-based function annotation methods are easy to employ, require

relatively little resources and scale very well to the sea of genomic data, there are also

many limitations:

1. function can be assigned only if a similar annotated sequence is found in the

database, which is not always the case. For example in a recent study, only 35% of

ail proteins from 105 entire proteomes could be annotated with a <5% error rate

(Carter et al., 2003).

2. it is flot obvious to quantify the level of similarity required between the known and

the unknown to transfer function confidently. It has been suggested that at least 40%

global sequence similarity is required (Devos and Valencia, 2000; Todd et al., 2001;

Wilson et al., 2000). However, in a study by Rost (2002) one third of the enzymes

having more than 70% sequence similarity did not even share the first E.C. number,

meaning these enzymes have entirely different functions.

3. similarity-based firnction annotation can be challenging for proteins with multiple

domains, which is quite common in eukaryotes. If only one domain is matching to a
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function-known protein, then function transfer will be incorrect (Galperin and

Koonin, 1998; $mith and Zhang, 1997).

4. there are many cases where two proteins have statistically significant sequence

similarity but have completely different functions (Smith and Zhang, 1997). In fact,

divergent evolution of paralogs is one of Nature’s main strategies to ‘invent’ new

function (Whisstock and Lesk, 2003). for example, sequence similarity is very high

among the various nucleotidyl cyclases as well as among the different protein

kinases, but only few residues determine their functional specificity (Hannenhalli

and Russeli, 2000).

5. function is flot aiways determined by the gene itself, but may depend on the context

such as tissue, sub-cellular localization, developmental stages and life-style. for

instance in birds, crystallins in the eye lens and lactate dehydrogenase and enolase

enzymes in other tissues are identical in sequence but exert completely unrelated

functions (Wistow and Piatigorsky, 1927). Another example is the heat shock

protein DegP that functions as a chaperone at Iow temperatures and as a proteinase

at high temperatures ($piess et al., 1999). In these cases, in silico annotation is

bound to fail.

Annotation errors using similarity-based function transfer are abound in the

literature (Ichikawa et al., 1997; Keller et al., 2002) and hence this approach warrants

critical assessment of the resuits.
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Intermediate $equence $earch (18$)

If two homologous sequences are too derived to be identified by simple pairwise

alignment, these two sequences can be related by using an intermediate or a third sequence

that is homologous to both of the initial two sequences (Park et al., 1997). This method is

called Intermediate Sequence Search (15$) (John and Sali, 2004; Salamov et al., 1999).

Using a single intermediate to relate two remote homologs performs better than simple

pairwise alignment methods such as BLAST in identifying the remote homologs (Park et

al., 1998); and using multiple intermediates is even more effective than using a single

intermediate ($alamov et al., 1999).

The inherent risk of ISS methods is that they can relate two non-homologous

proteins, especially if these proteins carry multiple domains.

Sequence-pattern basedfunction transfer

Two proteins with the same ftinction generally have a common sequence pattem

(motif) or a group of motifs (fingerprint) since the functional sites consist of several

residues. Many protein annotation methods make use of such motifs, usually represented as

regular expressions (Attwood, 2000). These motifs are compiled and stored in public

databases (for example, PROSITE) against which the function-unknown sequences can be

searched (Attwood, 2002; Henikoff et al., 2000; Hulo et al., 2006).
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Yet, inferring function using sequence-pattern based methods requires caution

since there are many conserved sequence patterns wiffiout any functional significance such

as the signais for post-translational modifications (Whisstock and Lesk, 2003).

Profile-sequence comparison

Using motifs for identifying distant protein homologues has been employed with

limited success. A better representation of shared characteristics between related sequences

is achieved by profiles, i.e. position-specific scoring matrices generated from a multiple

alignment of sequences with same function. function-unknown sequences can then be

searched against these profiles. Profile - sequence comparison methods are more sensitive

in identifying distant homologues compared to simple sequence-sequence comparison

methods (Aravind and Koonin, 1999). PSI-BLA$T is a commonly used tool for profile

sequence comparison (Altschul et al., 1997). We employed profile-sequence comparison

extensively in one study that aimed at identifying the composition of enzyme complexes in

primitive eukaryotes (see Chapter 1). Profile Hidden Markov Models (Profile HMM5) are

even more effective (Eddy, 199$) because they contain, in addition to the amino acid

frequency for each position, position-specific probabilistic scores for insertions and

deletions along the alignment. Among the most widely employed profile HMM-sequence

comparison tools, SAM (Hughey and Krogh, 1996) outperforms in most cases HMMER

(Eddy, 199$) and PSI-BLASI, but SAM is significantly slower (Madera and Gough,

2002). Profile HMMs, as well as profile-profile comparison discussed below, served us for

a detailed scrutiny ofthe in silico predicted function of the MURF1 protein (see Chapter 3).
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Profile-profile comparison

Instead of searching a single sequence against a database of profiles, recently

developed methods build a profile from a set of related unknown sequences and this profile

is then searched against the profiles built from function-known proteins. Profile-profile

comparison methods are up to 30% more sensitive than profile-sequence comparison

methods in identifying distantly related homologues (Panchenko, 2003). Readily available

mols include prof_sim (Yona and Levitt, 2002), COMPASS (Sadreyev and Grishin, 2003)

and HHSearch (Soding, 2005); the latter was shown to outperform earlier developed

methods (sequence-sequence, profile-sequence and profile-profile) ($oding, 2005). While

these profile-profile comparison tools are promising, they require a profile generated from

a multiple alignment of related unknown sequences. Yet, many unknown sequences are

‘orphans’ and hence this method cannot be applied to them.

Function prediction using sequence-similarity-free methods

As mentioned above, similarity-based function annotation methods leave us with

about 50% unassigned proteins for a newly sequenced genome even for well-studied

organisms.

Obviously, this low success rate generated much interest in developing methods that

capture other similarities than sequence similarity between the unknown and the known

protein sequences. Such methods are collectively called similarity-free or ab initio methods

and they are by no means a substitute for similarity-based methods but rather
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complementary to the latter. Since similarity-free methods typically use multiple features,

they are less prone to incorrect assignments for multi-domain proteins.

Comparative genomics based methods

Gene function can be inferred by comparing two or more genomes of related

species or different strains of the same species, and this approach is called comparative

genomics (Wei et al., 2002). Comparative studies can be conducted at various levels such

as genome structure, gene order, and co-evolution of the genes, coding regions, and non

coding regions. The extensive experimental data available for model organisms shed light

on related organisms by comparing their genomes.

Phylogenetic profiles

Proteins involved in the same metabolic pathway or a structural complex are likely

to evolve in a concerted fashion. for example, the eight proteins involved in glycolysis,

have a similar pattem of presence/absence across genomes (phylogenetic profile). So, if

two given proteins share similar phylogenetic profiles, they are most likely functionally

linked. Using this method, phylogenetic profiles of 4,000 proteins in E. cou were

compared with those from 16 other genomes and an estimated half of these proteins can be

assigned a general function (Pellegrini et al., 1999).
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Domainfusions

Two different but interacting proteins in one species may be fused into a single

protein chain in other species. Based on this observation, several thousands of protein

protein interactions were predicted in E. cou and S. cerevisiae (Marcotte et al., 1 999a).

Gene neighbours & gene order

If gene order and gene neighbours are conserved across genomes, it is likely that

these genes are functionally linked. This applies to prokaryotes most of whose genes are

organized in operons. Function annotation methods that exploit this situation search for

pairs of topologically close bi-directional best hits in different genomes (Overbeek et al.,

1999).

Limitations ofcomparative genomics methods

There are several limitations to protein function assignment by comparative

genomics:

1. these methods are based on the occurrence of particular observations (e.g., domain

fusion or prokaryotic operons), which are flot common to all organismal groups.

2. the chance for false positives is high because the observation (e.g., a given gene

order across different genomes) can be due to mere chance without any functional

significance.
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3. most of these methods cannot predict the specific molecular function but only a

broad function such as being involved in a certain pathway or interacting with some

other protein.

4. although sequence similarity is flot required for assigning function to the unknown,

it is needed for identifying the presence of homologs in other genomes; hence, these

methods are not completely similarity-ftee.

Simïlarity-free function prediction from sequences by feature extraction

As explained above, sequence-similarity based and comparative genomics methods

fail to predict the function for a certain portion of proteins. Therefore, methods are needed

that recognize homologues by other features such as secondary structure, and

physicochemical properties, i.e., features that can be extracted directly from the sequence.

Prediction of protein function using extracted features has been modelled as a data

mining/machine-learning problem. Data mining is the search for implicit global pattems

and subtie relationships in an integrated data and the construction of predictive models

based on them. Machine learning algorithms such as decision trees can be used for

inducing the rules that map the data to classes and for predicting the class of the unknown

data based on these rules. The advantage of decision tree algorithms such as C4.5 (Quinlan,

1993a) is that the mies are human-readable, providing insights into the underlying biology.

for protein function prediction, protein sequence data are represented as extracted features

that are mapped to a functional class (figure 2).
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One of the earliest applications of feature extraction for predicting protein

function was a study to discriminate whether a given protein is an enzyme or flot (des

Jardins et al., 1997). Since then, numerous machine-learning based methods have been

developed that use extracted features for predicting various aspects of protein function, in

particular subcellular localization.

The first machine learning application to predict molecular protein function using

extracted sequence features was carried out for S. cerevisiae, E. cou and A. thaliana (Clare

et al., 2006a; Clare and King, 2003; King et al., 2001a). A latter retrospective study

showed that some of the predictions made earlier were validated by experimental studies,

thus testifying to the power of this approach (King et al., 2004a). Stili, this approach

predicts only broad functional categories rather than fine-grained function. Second, the

predictor is not entirely sequence similarity free as it depends on similarity for calculating

some of the features such as phylogenetic attributes. Finally, it is species-specific, i.e., the

method can predict the function of ORFs only from the same species used for training.

Though the species-specificity is due to the lack of protein function schemas that

encompass different organisms, it was not clear whether feature-extraction based machine

learning algorithms could generalize function across taxa since their orthologues evolve at

a different pace. However, a recent work has shown that the algorithms do learn and

perform well across the species (Al-Shahib et al., 2007).
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How to solve the problem?

The above cited studies show the great potential of machine learning methods using

extracted sequence features for function annotation, and this approach has become an

active research area.

Our contribution to the field was to overcome the limitations described above, by

developing a similarity-free method to predict the ‘fine-grained’ molecular function—the

most specific function in the Gene Ontology hierarchy—across taxon boundaries (see

Chapter 2).

Evaluating function predictions

for in silico function prediction, and this applies particularly to similarity-free

methods, one ofthe major challenges is to demonstrate that the predictions are correct.

Experimental validation

Obviously, the ultimate way of validating a predicted function is by biochemical or

molecular biology experiments. One example is the study by King and co-workers

mentioned above (2004a), and there are many other instances where single predictions

were confirmed by experirnental studies. One case was exceptional where experiment

based function assignments were shown to be wrong and alternative functions were

proposed with strong support using in siÏico methods (Iyer et al., 2001).
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Validating predicted function experimentally is flot feasible at a large scale, thus

calling for in silico approaches. Computational validation is of great value for building

promising working hypothesis, directing the design of targeted experiments for ultimate

validation (see Chapter 3). In addition, in silico validation will facilitate to compare the

performances of the various function prediction tools and thus advance the field of

automated function prediction in general (Godzik et al., 2007).

Validating machine learning based predictions

Currently, the performance of machine learning based function prediction programs

is evaluated by their performance on the training (known) data. But there is no guarantee

that programs that performed well on the training data will do so on the test data or even

unknown data. This is especially true if the training data and the test data are dissimilar.

The good prediction performance of the classifier on the training data can be due to

overfitting or class imbalance in the training data. Hence, validation methods that are

independent from the training data are needed.

Since 1994, the protein structure prediction community in collaboration with

structural biologists conducts a bi-annual competition called CASP (Critical Assessment of

techniques for protein Structure Prediction). The objective is to assess the performance of

prediction programs by comparing the predicted structure of proteins with their

unpublished experimentally solved structures. This has resulted in a great progress in

computational structure prediction and serves as a gold standard for evaluating new

approaches.
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A similar initiative is emerging in molecular function prediction with an annual

competition called AFP (Automated Function Prediction) (Rodrigues et al., 2007).

However gold standards for function prediction programs need yet to be established.

Predictions have also been evaluated by comparing the resuits from different

methods for the same unknown protein (Brenner, 1999) and then relying on the consensus

(which stiil may be wrong). Our approach to the problem was to develop an evaluation

procedure that takes advantage of the domain knowledge about the data (see Chapter 2).

For a proof of principle, we chose molecular function prediction of hypothetical

mitochondrial proteins to assign external support values to each prediction.

As an extension to this work, we demonstrated the merits of this validation

C procedure in one instance, MURF1 ofkinetoplastids (see Chapter 3).
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Objectives

The specific objectives ofthe thesis are

to explore the strengths and limitations of protein function prediction methods that

are based on sequence similarity

to develop a sequence similarity-free method for fine-grained prediction of

molecular protein function

to design an in silico procedure that evaluates predicted molecular functions as a

means to generate working hypotheses for experimentation

to verify biologically relevant predictions by using a combination of state-of-the-art

in silico methods together with in-depth literature searches.
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Subunits of complex III were identified by 2D-gel electrophoresis and ESI-MS/MS

protein sequencing. Peptide identification was not straight forward, because the nuclear

genome sequences of $eculornonas ecuadoriensis is not known. Therefore, we used

sensitive sequence similarity methods to find homologues in other species. My contribution

to this work was to conduct ail the function prediction analyses and evaluation using state

of-the-art sequence similarity-based methods and writing up the methodology and resuits

section for these analyses.



Structure of the bc1 Complex from Secutamonas ecuadoriensis, a Jakobid
C Flagellate with an Ancestral Mitochondrial Genome
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In eubacteria, the respiratory bc1 complex (complex III) consists of three or four different subunits, whereas that of
mitochondria, which have descended from an Œ-proteobacterial endosymbiont, contains about seven additional subunits.
To understand better how mitochondrial protein complexes evolved from their simpler bacterial predecessors, we
purified complex ifi of Secularnonas ecuadoriensis, a member of the jakobid protists, which possess the most bacteria
like mitochondrial genomes known. The S. ecuadoriensis complex III has an apparent molecular mass of 460 kDa and
exhibits antimycin-sensitive quinol:cytochrome c oxidoreductase activity. It is composed of at least eight subunits
between 6 and 46 kDa in size, including two large “cote” subunits and the three “respiratory” subunits. The molecular
mass ofthe S. ecuadoriensis bc1 complex is slightly lower than that reported for other eukaryotes, but about 2X as large
as complex III in bacteria. This indicates that the departure from the small bacteria-like complex III took place at an early
stage in mitochondrial evolution, prior to the divergence ofjakobids. We posit that the recruitment of additional subunits
in mitochondrial respiratory complexes is a consequence of the migration of originally Œ-proteobacterial genes to the
nucleus.

Introduction

The bc1 complex (also termed complex III or
ubiquinol:cytochrome c reductase) and the structurally
and functionally similar b6f complex, are integral compo
nents of respiratory and photosynthetic electron transfer
chains across ail domains of life. The bc1 complex of both
mitochondria and bacteria is a dimeric enzyme and is
present in aerobic as welI as anaerobic energy-transducing
respiratory chains. It catalyzes reduction of cytochrome c
by oxidation of ubiquinol, with concomitant generation of
a proton gradient that is utilized by the F0F1 ATP synthase
to generate ATP. Electron transport is carried out by three
redox center-bearing subunits: cytochromes b and e1, and
the “Rieske” iron-sulfur protein (Trumpower 1990b;
Crofts and Berry 1998). In most bacteria, the bc1 complex
consists solely of these three so-called respiratory subunits
and, in some cases, one additional low-molecular-mass
subunit, which is noncatalytic (Gennis et al. 1993;
Darrouzet et al. 1999; Montoya et al. 1999).

The evolutionaiy origin of mitochondria has been
traced back to the Œ-subdivision of Proteobacteria (John
and Whatley 1975; Yang et al. 1985; reviewed by Gray,
Burger, and Laiig 2001). Testifying to this ancestiy are,
among other features, three subunits of the mitochondrial
bc1 complex that are clearly homologs of the Œ-pro
teobactenal respiratory subunits (for a review, see Schutz
et al. 2000). However, complex ifi from very different
eukaryotes, i.e., potato, yeast, and bovine, contains
seven additional subunits: two relatively large subunits
designated “core” proteins, and five small polypeptides.
The core proteins as well as the small subunits do

1Present address: Institut fUr Pflanzenphysiotogie, Martin-Luther
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not cany redox centers and are not directly involved in
electron transfer (Brandt et ai. 1994; Braun and Schmitz
1995b; Xia et al. 1997; Iwata et al. 1998; Zhang et
al. 1998, 2000). In bovine, and probabiy other animais as
weii, the presequence of the “Rieske” iron-sulfur protein
is retained in the bc1 compiex after proteolytic cleavage
of the precursor protein, constituting an lith subunit. To
date, the bc1 compiex of oniy three protists lias been
studied in detail, Euglena gracilis, Crithidia faseicula
tum, and Leishntania tarentolae, which ail beiong to the
Euglenozoa lineage. The subunit composition of the bc1
complexes from these organisms is much the same as in
fungai, plant, and animai species (Mukai et ai. 1989;
Priest and Hajduk 1992; Horvtlth et ai. 2000).

For a long time, the functions of the seven additionai
subunits of mitochondrial complex ifi were unknown.
Oniy the core subunits of the plant mitochondriai bc1
complex were found to possess processing peptidase ac
tivity (Braun et al. 1992; Eriksson, Sjoling, and Giaser
1996; Bmmme et al. 1998). In contrast, the core subunits
of animais and yeast are proteolytically inactive, and the
mitochondrial processing peptidase (MPP) of these
organisms is a soluble enzyme localized in the mitochon
driai matrix. The core proteins of the bc1 complex and
MPP exhibit sequence similarity and share typical features
with metalloendoproteinases of the pitrilysin family,
indicating a common phylogenetic origin (Braun and
Schmitz 1995a). Gene deletions and complementation
experiments suggest that the core subunits of yeast are
involved in the assembly of the bc1 complex (Tzagoloff,
Wu, and Crivellone 1986; Oudshoom et al. 1987). 11e
function and origin of the five small subunits of the bc1
complex remain unknown.

To understand better how the mitochondrial bc1
complex evolved from its much simpler Œ-proteobacterial
predecessor, and how it diversified in the various eu
karyotic lineages, we characterized the bc1 complex from
Seculanwnas ecuadoriensis. This protist belongs to the
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jakobids, a group of unicellular, heterotrophic flagellates
that comprise the better-known species Reclinomonas
americana (Flavin and Nerad 1993; Lang et al. 1997).
Jakobids are assumed to have a veiy basal position in
molecular phylogenies and include five aerobic genera:
Seculamonas, Reclinomonas, Histiona, Jakoba, and Mala
wimonas. The four first genera share more morphological
and ultrastructural features with one another than with
Malawimonas and are therefore referred to as “core”
jakobids (Edgcomb et al. 2001; O’Kelly, unpublished
data). Up to now, six mitochondrial genomes of jakobids
were completely sequenced, among these five core
jakobids (R. americana NZ, R. americana 284, S.
ecuadoriensis, Jakoba tihera, and J. hahamensis) and the
non-core jakobid, Malrnvinionas jakobiformis (Lang et al.
1997, http://megasun.bch.umontreal.ca/ogmp/projects/
sumprog. html). Core jakobid mitochondrial genomes
display an astonishing nctmber of bacterial features more
closely resembling the genome of the ancestral
Œ-proteobacterial symbiont than any other mtDNA investi
gated today (Gray 1998; Gray et al. 1998; Lang, Gray, and
Burger 1999). Some of the 18 or so extra genes present in
most jakobid mitochondrial genomes have apparently been
Iost during evolution in alI other eukaryotic lineages and
functionally replaced by genes of other origin (e.g.,
Œ2P,F31c3 RNA polymerase, which has been replaced by
a T3[f7-type enzyme; Cerrnakian et al. 1996, 1997). Most
of the extra genes, however, are believed to have migrated
to the nucleus in more derived eukaryotes. Among these are
mostly genes coding for ribosomal proteins, but respiratory
chain components migrate as well. One well-documented
example is succinate-ubiquinone oxidoreductase (respira-
tory complex II), whose subunits 2, 3, and 4 (Sdh2 to Sdh4)
are mitochondrially encoded in core jakobids (and also
some plants and some protists like Citondrus crispus,
Porphyra purpttrea, Rhoclomonas sauna). Nucleus
encoded genes specifying Sdh2 have been identified in
a number of fungi and animaIs. Phylogenetic analysis of
bacterial, mitochondrial, and nuclear DNA-encoded Sdh2
sequence strongly suggest that the nuclear sdh2 genes
originated by transfer from a mitochondrial genome in
which it was originally resident (Burger et al. 1996).

As former studies on the mitochondrial respiratory
chain, and the bc1 complex in particular, have been
conducted exclusively with derived eukaryotic taxa,
jakobids are the organisms of choice to address the above
evolutionary questions. Instead of R. antericana, whose
mtDNA sequence has been published previously (Lang
et al. 1997), we have chosen the sister taxon S. ecuadorien
sis for the protein-chemical experirnents described here.
The latter species is better amenable to biochemical studies
that require a substantial amount of cell material, while
it displays the same ancestral features and an almost
identical mitochondrial gene set as R. antericana (Burger
and Lang, unpublished data).

Materials and Methods
Celi Culture

Seculantonas ectiadoriensis ATCC 50688 was grown
in 2.5-liter culture fiasks with gentle shaking at 24°C in

WCL medium (http:fimegasun.bch.umontreal.cafPeople/
lang/FMGP/FMGP.html). The protists were fed with live
Enterobacter aerogenes (ATCC 13048). A 600 ml culture
yielded about 0.5 g of S. ecuacloriensis ceils after 8 days.

Isolation of Membranes from S. ecuadoriensis

The following steps were carried out at 4°C, unless
specified otherwise. For isolation of membranes, cells
were pelleted by centrifugation, suspended in 0.2 M Na-
phosphate buffer, pH 7.2, and disrupted by sonication.
Cellular debris was removed by centrifugation at 12,000Xg
for 8 min. Membranes were then separated from the
supematant by centrifugation through sucrose step gra
dients (60%, 32%, 15% sucrose in 1 mM EDTA, 1 mM
PMSF, and 10 mM MOPSIKOH, pH 7.2) at 92,000Xg
and 2°C for I h. The membrane fraction from the 15%!
32% interphase was collected and diluted with 1 mM
EDTA, 1 mM PMSF, and 10 mM MOPS/KOH, pH 7.2.
Membranes were pelleted by centrifugation at 100,000Xg
for 90 min. The enrichment of mitochondrial membranes
was monitored by cytochrome c oxidase activity
measurements according to Hodges and Leonard (1974).

Isolation of Mitochondria from Sotanunt tuberosunt

Mitochondria from potato tubers were isolated as
described by Braun and Schmitz (1995c). The organelles
were suspended in 0.4 M mannitol, 0.1% BSA, 1 mM
EGTA, 0.2 mM PMSF, and 10 mM KH2PO4, pH 7.2, at
a concentration of 10 mg of mitochondrial protein per
inilliliter.

Cytochrome c Affinity Chromatography

In preparation for afflnity chromatography, 1.5 g
membranes from S. ecuadoriensis were suspended in 2 ml
ice-cold water and solubitized by slow addition of 10%
Triton X 100, to a final concentration of 3.3%. To remove
membrane fragments and lipids, the suspension was cen
trifuged for 10 min at 60,000Xg. A detailed protocol for
the subsequent cytochrome c afflnity chromatography is
given in Linke and Weiss (1986). Proteins bound to the
cytochrome c column were eluted using a Tris-acetate
gradient (20—200 mM Tris-acetate [pH 7.01/0.04% Triton,
5% sucrose, 0.2 mM phenylmethylsulfonyl fluoride).
fractions containing subunits of the hc1 complex were
identifled by immunoblotting, pooled, and subsequently
concentrated by ultrafiltration through filters with an ex
clusion limit of 300 kDa. Finally, the concentrate was
analyzed by two-dimensional Blue-Native gel electropho
resis as described in the following section.

Separation of Mitochondrial Protein Complexes by
Blue-Native and Tricine-SDS-PAGE

To determine the apparent molecular mass of
mitochondrial protein complexes from S. ectiadoriensis,
Blue-Native polyacrylamide gel electrophoresis (BN
PAGE) was carried out (Schiigger, Cramer, and von Jagow
1994). Protein complexes of potato mitochondria were
toaded onto the B lue-Native gels as a size standard. The BN
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gels consisted of a separation gel (4.95% [o 12.6%
acrylamide) and a stacking gel (4% acrylamide). Sample
preparation and electrophoresis was carried out as described
by Jiinsch et al. (1996). To separate the subunits of the
protein complexes resolved by BN-PAGE, entire stripes of
the BN gel were transferred horizontaily on Tricine-SDS
PAGE gels. A protocol for this second-dimension Tricine
SDS gel is given in Schiigger, Cramer, and von Jagow
(1994). Tricine-SDS gels were either stained with Coo
massie blue or silver nitrate or blotted onto filter membranes
for immunological identification of proteins.

Identification of Proteins by Amino Acid Sequencing
and Immunostaining

For internai sequence analysis, protein spots were cut
from Tricine-SDS gels and digested with trypsin as
outlined by Kmft et al. (2001). The resulting peptides
were analyzed by Electrospray Ionization Tandem Mass
Spectrometry (ESI-MS/MS). For immunostaining, Tricine
SDS gels were blotted onto nitrocellulose membranes.
Blots were incubated with antibodies directed agaÏnst the
core II protein from N. crassa (dilution 1:1000). Visu
alization of immunopositive bands was performed using
the Vectastain ABC-Kit (Vector Laboratories, Buriingame,
CA) according to the manufacturer’s instructions.

Quinol:ferricytochrome e Activity Measurement

The quinol:ferricytochrome e activity assay was
essentially carried out as described by Linke and Weiss
(1986). Cytochrome e reduction was monitored at 24°C in
a dual-wavelength photometer at 550 nm and 580 nm,
using the extinction coefficient 20 mMt cm1. The test
solution contained 50 mM LiMOPS, pH 6.8, 100 mM
K2S04, 40 aM cytochrome e from horse heart (Sigma,
type ifi), 40 tM KCN, and 100 tM decylquinone (kindly
provided by Dr. U. Schulte, Dûsseldorf University,
Germany). Antimycin, an inhibitor of bc1 activity, was
added to a final concentration of 2 tiM. The turnover num
ber is determined by extrapolating the rates of enzymatic
reaction corrected for nonenzymatic rates to the infinite
quinol concentration.

Sequence Similarity Searches

The peptide sequences deterniined in this study were
searched against the following sequence repositories: the
local jakobid database of the Organelle Genome Mega
sequencing Unit (OGMP), the nonredundant database
(nrdb) of the National Centre for Biotechnology In
formation (NCBI); MITOP of the Munich Information
Center for Protein Sequences (MIPS), a database for
mitochondria-related genes, proteins, and diseases
(Scharfe et al. 2000); dbEST, the division of GenBank
that contains sequence data and other information on
“single pass” cDNA sequences and Expressed Seqttence
Tags (ESTs) from a number of organisms (Boguski, Lowe,
and Tolstoshev 1993); the motif databases Pfam (Bateman
et al. 2002) and Prosite (Falquet et al. 2002); as well as the
collection of HMM protein families (Eddy 1998, 2001).
Downloaded and formatted for local searches were

MITOP, dbEST, the Pfam families of Rieske (Fe-S)
proteins, 14.5 kDa and 9.5 kDa subunits of complex III
(UCR_1 4.5kD, UCR_9.5kD), and mitochondrial process
ing peptidases.

As search tools, we used FASTA, BLAST, PSI
BLAST and “Search for short sequences,” available on
the NCBI Blast homepage (Altschul et al. 1990, 1997). A
very leitient e-value (1000) was used to account for the
short length of the input peptide sequences (<30 residues).
The word size of 2 and PAM 30 matrix were used as
advised by the BLAST “Search for short sequences.” The
search against the HMM protein families was performed
using HMMER (online version) (Eddy 2001). We also
employed the online version of Mascot, which is a power
ful search engine which uses mass spectrometiy data
to identify proteins from primary sequence databases
(Perkins et aI. 1999).

Results
Purification of the hc1 Complex of S. ecuadoriensis

The bc1 complex of S. ecuadoriensis was purified
ttsing cytochrome e affinity chromatography as published
for N. crassa and plants (Linke and Weiss, 1986; Braun
and Schmitz, 1992). According to the original protocols,
the starting material for affinity chromatography should
be isolated mitochondria. Owing to the slow growth of
jakobid cultures, however, the preparation of pure
mitochondria from quite limiting amounts of S. ecuadori
ensis cells proved difficult. Therefore fractions of
enriched mitochondrial membranes were generated from
S. ecuadoriensis as described in the Experimental
cedures section. The fractions were fivefold to eightfoid
enriched in mitochondrial membrane proteins as moni
tored by cytochrome e oxidase measurements. The main
purification step for the S. ecitadoriensis be1 complex,
cytochrome c afflnity chromatography, takes advantage
of the specific interaction of the cytochrome e1 subunit of
the be1 complex and cytochrome e, the natural binding
partner during respiratory eiectron transport. Proteins
bound to the cytochrome e column were eluted by a sait
gradient of 20—200 mM Tris-acetate, and the fractions
obtained were analyzed by Tricine-SDS-PAGE and by
immunoblotting. A 46 kDa band of fractions 19—23 eluted
by 90—100 mM Tris-acetate strongly cross reacted with
an antisercim directed against the core II protein from
N. crassa (fig. 1). These peak fractions were pooled and
concentrated by ultrafiltration using filters with an
exclusion limit of 300 kDa. Finally the concentrate was
analyzed by two-dimensional BN-PAGE[fricine-SDS
PAGE. One protein complex was visible on the one
dimensional gels that could be resolved into seven protein
bands of 46 kDa, 33 kDa, 29 kDa, 2$ kDa, 14.5 kDa,
10 kDa, and 6 kDa upon separation on a second gel
dimension (fig. 2).

That the isolated complex is indeed complex III of the
respiratory chain was confirmed by two experiments. First,
the native complex exhibits quinol:cytochrome e oxido
reductase activity (turnover number: 9.5 s-1), which is
antimycin-sensitive. It should be noted that the electron
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Fto. 1.—Purification of the ht1 complex from Seculamonus
ecuudoriensis by cytochrome e affinity chromatography. Fractions cluted
from the affinity column wete separated by SDS-PAGE, blotted, and
probed with an antibody directed against the core II protein from N.
crassa. The numbers of the fractions are indicated above the gel, and the
molecular masses of standard proteins are shown to the left of the gel (in
kDa). A graphical illustration of the Tris-acetate gradient (20—200 mM)
used for elution of proteins bound to the cytochrome e column s given
below the gel.

transfer activity is relatively low compared to preparations
from other eukaryotes (Linke and Weiss 1986; Trumpower
1990a; Braun and Schmitz 1992), which might be due to
the use of heterologous cytochrome c (from horse heart) as
electron acceptor. Second, in an immunoblotting experi
ment, the 46 kDa spot on the 2D gels was shown to cross
react with the antiserum directed against the core II sttbunit
of the bct complex from N. crassa (fig. 2, inset).

Analysis of Protein Complexes from S. ecuadoriensis
by BN PAGE[fricine-SDS-PAGE and Deterntination
of the Molecular Mass of the bct Complex

To obtain further information on size and subunit
composition of the bc complex from S. ecuadoriensis,
protein complexes from fractions enriched in mitochon
drial membranes were analyzed directly by Bitte-Native
and Tricine-SDS-PAGE. BN-PAGE is a very reliable
method for molecular mass detenTiination of protein
complexes (Schiigger et al. 1994). Apparent molecular
masses were estimated by co-electrophoresis of protein
complexes from S. ecitadoriensis and mitochondrial
protein complexes from potato, which served as size
reference (fig. 3A). The membrane fraction of
S. ecuadoriensis contains five protein complexes in the
size range of 100 to 700 kDa and additional minor hands.
Analysis of the separated protein complexes on a second
gel dimension by Tricine-SDS-PAGE (fig. 3B) allowed to
identify the protein complexes from potato on the basis of
subunit compositions (Jiinsch et al. 1996). One of the
separated protein complexes of S. ecttadoriensis comprises
an identical subunil composition like the hc1 complex
purified by affinity chromatography (fig. 2). Direct com

Bluc-Native PAGE
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Fin. 2.—Characterization of the purified ht1 complex from
S. ecuadorien,ris by BN-PAGE[Tricine-SDS-PAGE. Sizes of standard
proteins are given on the right; protein spots of the bci complex are
markcd with arrows. The spot at 46 kDa cross reacts with an antiserum
dirccted against the cure II protein from N. classa (Inset: Western blot).

parison of the protein complexes of potato mitochondria
and S. ectiadoriensis mitochondrial fractions on Blue
Native gels revealed an apparent molecular mass of 460
kDa for the bc1 complex from S. ecuadoriensis (fig. 3A). A
further protein cotnplex of S. ecuadoriensis mns at 550
kDa on Blue-Native gels and can be separated into 10
subunits upon analysis on a second gel dimension. The
subunit composition of this 550 kDa complex resembles
the one reported for mitochondrial ATP synthase com
plexes from other organisms (Jiinsch et al., 1996; Boyer,
1997). The identity of the dominant protein compiex at
about 150 kDa could not be determined on the basis of
subunit composition.

Identification ofindividual Subunits ofProtein Complexes
Separated by BN-PAGE[Tricine-SDS-PAGE

To confirm the identity of the protein complexes and
to obtain data on individual subunits, selected protein
spots were subjected to peptide sequencing by Electro
spray Ionization[fandem Mass Spectrometry (ESI-MS/MS).
We determined 1 to 3 peptide sequences of 7 different
proteins (table 1), which form part of three different
protein complexes and which are indicated and numbered
on the gel in figtire 3B. The sequence of peptide 1 of the
46 kDa protein fomiing part of the bc1 complex exhibits
significant simiiarity to a conserved stretch of the J3 MPP/
core I subunit of the bct complex from other eukaryotes.
Notabiy, this peptide covers one of the few regions that
distinguish c and 13 MPP paralogs (fig. 4). Peptide 2 of
the same protein spot exhibits some weak similarities to
the core II proteins from N. crassa. As shown above, this
protein spot also cross reacts with an antiserum directed
against the core Il protein from N. crassa (fig. 1). These
data strongly suggest that the bct complex from
S. ecttadoriensis comprises two core proteins with
identical apparent molecular masses of 46 kDa.

Peptides I and 3 of the 29 kDa protein of the S.
ecuacloriensis bct complex exhibit low sequence identity
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Fia. 3.—Determination of the molecular mass of the bu1 complex from S, eunadoriensis by Blue-Native gel electrophoresis (BN-PAGE). A, One
dimensional resolution of protein complexes from potato (P) and S. ecuadoriensis (S) by BN-PAGE. The molecular masses of the mitochondrial protein
complexes from potato are taken from Jiinsch et al. (1996) (the hand at 480 kDa coffesponds to tise potato bui complex). The bu1 complex from
S. ecuadorje,isis runs ut about 460 kDa. B, Two-dimensional resolution of protein complexes from S. eutsacloriensisand mitochondrial protein
complexes from potato by BN-PAGEtfricine-SDS-PAGE. Sizes of standard proteins are given on the dght. Protcin complexes from potato were
identtfied by their charactenstic subunit composition (Jiinsch et al. 1996): proteits complexes from S. euuadoriensis were identilied by scquence analysis
of individual subuntts by mass spcctrometry (analyzed subunits are indicated by an’ows and numbered according 10 table I). 1. NADH dehydrogenase:
F5F1, F0F1 ÀTP synthas bu1, bu1 complex; F1, F1 part of the F15F ATP synthase; FD, formate dehydrogenase; 9uestion marks indicate protein
complexes that could flot unambiguously be identified.

to cytochrome e1 (table I). However, the stretches of
similarity represent unconserved regions of the protein and
contain numerous insertions/deietions across the taxa, and
therefore they did flot withstand more rigorous statisticai
tests.

Also, neither peptides of the 14.5 kDa subunit nor
those of the 10 kDa subunit of the S. eetiaclorieiisis hc1
complex displayed significant sequence similariiy to
known proteins. Sequence conservation of the smait
subunits of the mitochondriai hc1 compiex is notoriousiy

low (Braun and Schmitz 1995b). Much longer peptide
sequences wouid be required than those determined in this
study to identify phyiogenetically distant, and, even more
so, weakiy conserved homoiogs.

The 48 and 30 kDa proteins of the f0F1 ATP synthase
compiex were unambiguously identified as the f3 and the y
sttbunits of this protein compiex. Both peptide sequences
obtained for 48 kDa protein exhibit high sequence identity
to an internai sequence stretch of f3 subunits of the f0f
ATP synthase complex from other organisms, and the two

Table 1
Peptide Sequences of Subunits of Protein Complexes from Sectilamonas ecuadoriensis

Sequences
Apparent Producing
Molecular Significant

No. Massb Peptide Sequence” Alignmentse Source’ Subunitt

I 46 kDa J—J KTALLMDLDGSTPVA KTSLLLALDGFFPVA B. entersonii (gil 145777) cote 1, bu, complex
1-2 KFAPAPASPVSFEPAK 3
l-3 KGEFSPALLQVPATVETSLK

2 29 kDa 2-l LFKENGGLAVMQQFVK ?
2—2 SEFQF ?
2-3 HNLDVLNDLVDLN ‘3

3 14.5 kDa 3-l ALQAASASLGATLPK ?
3-2 ASAVDEDKSNN

4 lOkDa 4—l LASNFAPNK
5 48 kDa 5—1 PSAVGYQVTLSEEMGILQ PSAVGYQPTLNELQY B. aphicliuola (gi8977804) 13 subunit, F,,F, ATPase

5—2 TIAMDATEGLV TJAMDATEGLV R .sphaeroicles (gi4633072) 13 subunit, F5F, ATPase
6 30 kDa 6—1 KIFSALLENATSEQGAR KIFSALLENATSEQGAR S. euuacloriensis (OGMP) y subunit, F5F1 ATPase

6—2 ELIEIISCASAVSSK ELIEIISCASAVSSK S. euuacloriensis (OGMP) y subunit, F5F1 ATPase
7 26 kDa 7—l RTTQLALPVLVLLFMGPGK ?

The numbers correspond to the protein numbers as indicated in figure 3B.
h Apparent molecutar masses as detemsined by Tflcine-SDS-PAOE (fig. 3B).

Tise first nuinhers correspond te tise protein numbers as indicated in figure lB. The second numbers indicate different peptides of these proteins.
Peptide sequences as detemiined by Eiectrospray tonization[fandem Mass Spectrometry (ESI-MS/MS). Ansino acids are given in the one-letter code.
Scquences producing significant alignments as identified by using BLAST ut NCBI or FASTA at the local jakohid database of 16e OGMP.
Source of sequences producing significant aligemems.
tdentity as determined by sequence sinstlarity search. Qsestion nsarks indicate that there is no significant identity 10 pubhshed sequences.
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peptide sequences of the 30 kDa protein correspond
exactly to amino acid stretches of the mitochondrial
encoded y subunit of the F1 part of S. ectiadoriensis.

The identity of the dominant protein complex at
150 kDa could flot be resolved on the basis of the pep
tide sequence of a 26 kDa subunit.

Discussion

This article reports the identification of two protein
complexes of the respiratory chain from the jakobid
flageilate S. ecuadoriensis, the F0F1 ATP synthase and the
bc1 complex. The experiments described here focus on the
purification and characterization of the hc1 complex. To
our knowledge this is the first report on a biochemical
preparation of an enzyme from jakobid fiageilates. The
S. ectiadoriensis hc1 compiex was purified on the basis of
its affinity to the natural binding partner during respiratory

electron transport, cytochrome e. The purified bc1 complex
retains both quinol:cytochrome e oxidoreductase activity
and antimycin sensivity.

The molecular mass of the bc1 complex from
S. ecuadoriensis lies at 460 kDa as determined by BN
PAGE. Under denaturing electrophoresis conditions the
compiex was resoived into seven protein hands with
apparent molecular masses of 46 kDa, 33 kDa, 29 kDa,
28 kDa, 14.5 kDa, 10 kDa, and 6 kDa (fig. 2). Three unes
of evidence strongly suggest that the iargest protein spot
encompasses two proteins, the core I and core II subunits.
First, the 46 kDa spot cross reacts with an antiserum
directed against the core II protein ofthe bc1 complex from
N. crassa, while a peptide derived from this spot also
exhibits significant sequence identity to the core I/13-MPP
subunit from different eukaryotes. Second, the core
subunits of ail mitochondrial bc1 complexes characterized
to date ciosely comigrate in gel eiectrophoresis in the size
range of 45 to 55 kDa. Third, the apparent molecular mass
of the S. ecuadoriensis hc1 compiex (460 kDa) can oniy be
explained by assuming a dimeric holoenzyme that includes
two core subunits per monomer as further discussed beiow.

In ail bacteria and mitochondria characterized up to
now, quinoi:cytochrome e oxidoreductase activity is based
on electron transfer reactions between the prosthetic
groups of cytochrome h, cytochrome e1, and the iron
sttlfur protein. Given that the purified hc1 compiex of
S. ecuadoriensis displays electron transport activity, it
must inciude these three subunits. The molecular masses
of the respiratory subunits are quite conserved in potato,
bovine, and yeast, with 42—44 kDa for cytochrome h,
27—28 kDa for cytochrome ej, and 20—23 kDa for the iron
suifur protein (Braun and Schmitz, 1995b). A considerable
degree of conservation across three different eukaryotic
phyla aHowed us to assign the foilowing three protein
species of the purified bc1 complex of S. ectiadoriensis to
respiratory subunits. First, the 33 kDa protein of
S. ecuadoriensis is most iikeiy cytochrome b. This is
consistent with the fact that cytochrome b, because of its
highiy hydrophobic properties, typicaliy displays a migra
tion behavior that makes its moiecular mass appear —25%
smailer than it really is (Mendei-Hartvig and Nelson 1983:
Berry, Huang, and Derose 1991; Priest and Hajduk 1992;
Braun and Schmitz 1995h). Second, the 29 kDa protein of
S. ecuadoriensis is probably cytochrome e1 and is thus
oniy slightiy larger than the proteins of its weil
characterized counterparts. Finauly, the 28 kDa subunit
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fia. 4.—Identification of the core I/[3 MPP subunit of S. ecuadoriensis by sequence comparison with core I and 3 MPP proteins 0f other
organisms. Residues identical in at Ieast six organisms are underlayed in black; other residues conserved in at least 4 organisms are underlayed in gray.
Positions of the sequence stretches and accession numbers of the proteins are given on the right.
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Fia. 5.—Identities of the subunits of the bc1 from S. ecuadoriensis.
A scheme of the gel is given on the right, and the sizes of standard
prolcins are given in the middle. Cyt, cytochrome; FeS, iron-sulfur
protein; question marks indicate subunits of unknown identity.
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of S. ecuadoriensis represents, very iikely, the iron-suifur
protein. Aithough the S. ecttadorieiîsis protein is approx
imateiy 30% larger than its homologs of the model
organisms, such a size deviation is flot without precedent.
A comparatively large iron-suifur subunit was aiso
reported for the hc1 complex from L. tarentolae (Horvth
et al. 2000). Figure 5 summarizes the demonstrated and
inferred subunit assignments of the bc1 compiex from S.
ecuadoriensis.

As already mentioned, bacterial and mitochondriai
bc1 complexes alike are dirners. Assuming the presence of
two core proteins, the moiecular masses of the eight
separated subunits of the S. ecuadoriensis bc1 complex
sums up to 423 kDa for the dimeric compiex, a value that
is somewhat smaller than the experirnentally determined
moiecular mass of the complex (460 kDa). The difference
of 27 kDa couid be due to the presence of one or two
further low molecular mass subunits that may flot have
been detected in our experiments. These smail proteins are
difficult to spot because they migrate closeiy together and
are pooriy stainabie.

While the bacteriai hc1 compiex comprises three or
four subunits at most, with a molecular mass of the dimeric
compiex of P—220 kDa (Yu et al. 1999), the mitochondrial
counterpart is at Ieast twice as large. At present, complex
III has been characterized from highly diverse eukaryotes,
including plants, fungi, animais, and eugienoid and
kinetoplastid protists (Mukai et al. 1989; Priest and
Hajduk 1992; Brandt et al. 1994; Gutiérrez-Cirlos et ai.
1994; Braun and Schrnitz 1995b; Xia et al. 1997; Iwata

C et al. 1998; Zhang et al. 1998; Hoéth et al. 2000). Ail
these mitocliondriai bc1 complexes have an apparent
moiecular mass of 470-495 kDa and consist of three
respiratory subunits, two large core proteins and, at least
in higher eukaryotes (but probably in ail eukaryotic taxa
investigated up to now), five smaH subunits. As we show
here, the bc1 complex from the jakobid protistan
S. ecuadoriensis lias oniy a shghtly smaiier molecular
mass (460 kDa) than that from fungi, mammals, and plants
(470—495 kDa) and includes at least eight different
subunits. Because jakobids are beheved to be a primitive
eukaiyotic hneage, this finding was unexpected.

The view that jakobids are minimally derived
eukaryotes is based on their ultrastnictural similarities
with the retortamonads, an amitochondriate group consid
ered to have diverged close to the eukaryotic origin
(O’Kelly 1993). 5. ecuadoriensis is a typical member of
jakobids and of the core jakobids in particular, as first
estabhshed by analysis of the basai body ultrastmcture and
other ceilular characters (O’KeHy 1993). Furthermore,
phylogenetic analyses using mitochondrion-encoded
protein genes clearly affihiate S. ecuadoriensis with
R. ainericana (flot shown). In global eukaryotic trees,
however, available multiple mitochondrial protein data fail
to place the jakobids relative to the other eukaiyotic
lineages with confidence, which is most likely a resuit
of the iow sampling of jakobid taxa (Lang, Gray, and
Burger 1999). Simiiarly uncertain topologies are obtained
with single nuclear genes (ci- and 3-tubulin) (Edgcomb
et ai. 2001). Nevertheless, and irrespective of their
exact phylogenetic position relative to the other eukar

yotes, mitochondnai genomes of core jakobids, such as
R. americana and S. ecttadoriensis, display an astonishing
number of bacteriai features, more closely resembling the
genome of the ancestral ci-proteobacteriai symbiont than
any other mtDNA investigated today (Gray 1998; Gray
et al. 1998; Lang, Gray, and Burger 1999).

Our initial hypothesis posited that jakobid mitochon
driai complexes are evolutionaiy intermediates between
those of ci-proteobacteria and mitochondria from higher
eukaryotes. Although the finding of much the same
compiex III structure in S. ecuadoriensis and plants or
fcingi does flot corroborate this view, the particular com
piex investigated may not be a suitabie choice for detect
ing a more bacteria-like structure. Indeed, considering the
number of mitochondrion-encoded subunits, compiex III
of the jakobids is as much derived as that of ail other
eukaiyotes studied. Among the three genes coding for
respiratory subunits of ci-proteobacterial origin, oniy the
apoprotein b gene still resides in mtDNA, whereas the
other two, i.e., the cytochrome c1 and iron-sulfur protein,
are nucleus-encoded.

It is conceivable that the number of originally
ci-proteobacterial genes that have migrated to the nucieus
is correlated with the number of secondarily acquired
subunits in a respiratory compiex. In fact, the migration of
mitochondriai genes to the nucleus may actually be the
underiying cause for the recntitment of additional subunits
the crucial role of which may invoive mediation of protein
complex assembly from components that are now
synthesized in different cellular compartments and syn
chronization of the expression of genes now located in
different genomes.

If this hypothesis is correct, one shouid expect a more
primitive structure in those mitochondriai membrane
complexes that have retained a larger number of
mitochondrion-encoded subunits in jakobids than in other
eukaryotes. The mitochondrial NADH dehydrogenase
(comptex I of the respiratory chain) and the ATP synthase
are two such cases. Additional subunits of these protein
complexes are encoded by mitochondriai genes in
R. americana (as weH as S. ecuadoriensis, unpubiished
data) if compared to the mitochondriai genomes of other
eukaiyotes (Lang et ai. 1997). Like the situation in
complex III, ail mitochondrial ATP synthases character
ized in eukaryotes other than jakobids have approximately
five more subunits over and above the eight that are
typically present in the bacterial enzyme (Boyer 1997). To
test the hypothesis that subunit recruitment is the
consequence of gene migration from the mitochondrial
genome to the nuclear genome, investigation of the
complex composition of S. ecuadoriensis ATP synthase
is under way.
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Chapter 2: ARTICLE

Sequence similarity-based methods leave a large portion of genes with unannotated

function. In the case of mitochondrion-encoded genes whose sequences are ail strored in

the organelle genome database GOBASE, 9% are of unknown function. As a part of

GOBASE’s data curation efforts, we deveioped a similarity-free method caiied MOPS.

I have designed, developed and implemented the Mitochondrial ORF function Prediction

System (MOPS) and I wrote the manuscript.



Functïon prediction of hypothetical proteins without sequence

similarity to proteins of known function

Sivakumar Kannan*, Amy M. Hauth and Gertraud Burger

Canadian Institute for Advanced Research

Robert Cedergren Research Center for Bioinformatics and Genomics

Département de Biochimie, Université de Montréal

2900 Boulevard Edouard-Montpetit

Montréal, Québec H3T 1J4, Canada

*Corresponding author



Abstract

Background

function prediction by sequence-similarity based methods identifies only --5O% of

the proteins deduced from newly sequenced genomes. Therefore, we set out to develop an

approach to annotate the ‘lefiover proteins’ i.e., those which cannot be assigned function

using sequence similarity. Our goal is to perform pan-taxonomie prediction specifying fine

grained molecular function (rather than a broad functional category).

Resuits

Our sequence-similarity free approach to function annotation involves

representation of proteins by a host of calculated attributes such as physicochemical

properties and amino acid composition. We employed a decision tree algorithm and

addressed both data redundancy and class imbalance in an innovative manner. To

demonstrate the merits of this approach, we developed MOPS (Mitochondrial ORF

function Prediction System) whose accuracy exceeds 82% when tested with

mitochondrion-encoded proteins of known function. In addition, we developed a validation

scheme that assesses predictions using domain-specific knowledge. Based on our results,

we critically discuss current performance measures and validation methods employed for

protein function prediction.
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Background

Large-scale genome and EST (Expressed Sequence Tag) sequencing projects are

producing data at an ever-increasing rate. Assigning function to the high volume of inferred

proteins makes in silico methods indispensable. Most function annotation methods use

sequence similarity by first finding a similar protein of known function and then

extrapolating the known function to the inferred protein. Generally, annotation tools

employ BLAST (Altschul et al., 1990b), but applications using machine learning

algorithms are available as well (e.g., Vinayagam et al., 2004). However, sequence

similarity approaches have limits; they typically annotate less than 50% of the infened

proteins deduced from a newly sequenced genome.

To increase the number of proteins annotated, recent research explores sequence

similarity free (‘similarity-free’) function prediction, as a complement to similarity-based

methods such as BLAST. Rather than directly using amino-acid sequence, similarity-free

function prediction methods use protein features (e.g., physicochemical properties and

protein secondary structure) calculated from it and employ machine leaming algorithms.

This approach has been used successfully in predicting protein structure, functional sites

and subcellular location, etc. (Dobson et al., 2004; Szilagyi et al., 2005). King and co

workers were the first to employ this approach for assigning the molecular function to

hypothetical proteins from M tuberculosis, E. cou and S. cerevisiae (King et al., 2000;

King et al., 200 lb); subsequent experirnental validation (King et al., 2004b) testifies to the

power of similarity-free prediction of molecular protein function. Stili, this work has
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limitations. First, the predictor identifies only a broad functional category (e.g.,

transportlbinding proteins) instead of a specific function (e.g., SecY-type transporter

protein). Second, the predictor stili depends to a certain extent on sequence similarity, since

PSI-BLAST serves for calculating phylogenetic attributes. Third, the predictor is species

specific, meaning that proteins only from the species used for training can be annotated.

Our research seeks to build an efficient automated system to annotate inferred

proteins that lack recognizable sequence similarity (referred to in the following as

hypothetical proteins). In this study we focus on the molecular function of a protein as

defined by Gene Ontology (Ashburner et al., 2000b). The approach we present here

addresses shortcomings discussed above: (j) it predicts a fine-grained molecular fiinction

(i.e., most specific in the Gene Ontology hierarchy) rather than a broad functional category,

and (ii) the predictor is applicable to any taxon, flot just the species included in the training

set. Data are represented by a host of multiple similarity-free protein features. The predictor

is trained using a decision tree algorithm (Quinlan, 1993b), which has the distinct

advantage of producing rules that can be interpreted by humans, and thus provides a

window on the underlying biology.

To test the effectiveness of this similarity-free annotation system, we built a

classifier that predicts the molecular function of mitochondrion-encoded hypothetical

proteins. Mitochondrial genomes (mtDNA) harbor up to —70 protein-coding genes that

specify components involved in respiration, ATP synthesis, protein synthesis, transcription,

protein import and maturation (Table 1). In contrast to nuclear genomes, gene families are
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absent from mtDNA (for a review, see Gray et al., 2004). As of now, around 2,000

hypothetical protein-coding genes of unknown function (ORF5) have been reported in

mitochondria. further, mtDNA-encoded ORFs are assumed to originate from ‘regular’

mitochondrial genes that are too derived to be recognized using sequence similarity.

Predicting the likely function of mitochondrion-encoded ORFs is an important part of the

expert data curation task of GOBASE — the publicly accessible, taxonomically-broad

organelle genome database that organizes, integrates and validates ail available data on

mitochondria and chloroplasts (O’Brien et al., 2006b).

Our new approach has been implemented as an automated system for the annotation

of mitochondrion-encoded hypothetical proteins, named MOPS (Mitochondrial ORF

function Prediction System). The performance of MOPS is assessed in two ways: by

standard machine-leaming specific measures and by a new procedure based on expert

knowledge. This new validation procedure is honed for function prediction of

mitochondrion-encoded hypothetical proteins, but the principle is generally applicable to

other biological problems invoiving in silico predictions.

Resuits

Protein sequence representation

Open reading ftames annotated as hypotheticai proteins lack significant sequence

similarity with known proteins (See Methods section ‘Dataset’). To determine function,

proteins must be represented by attributes other than sequence similarity.
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A major challenge in machine learning-based function annotation is the selection

of effective attributes that is, knowledge representation of proteins. First, we investigated

the predictive power of attributes used in earlier studies (King et al., 2001b; Lu et al.,

2004), notably physicochemical properties (molecular weight, isoelectrical point, etc.,) and

atomic and residue composition of proteins alone and in combination (Table 2, top). Then,

we explored pairs of amino acids (dipeptides; Table 2, boftom) in an attempt to capture

local amino acid correlations, e.g., regularly spaced hydrophilic and hydrophobic amino

acids, three or four residues apart in amphipathic helices. Dipeptides, in particular

ungapped ones, have been shown previously to be effective attributes for machine-leaming

based inference of cellular location and broad functional classes (King et al., 200 lb; Park

and Kanehisa, 2003). (Note that dipeptides do not contain enough context information to be

exploited by similarity-based methods.) When testing various attribute combinations, we

found that inclusion of gapped dipeptides did not improve and, in some cases, decreased

prediction performance. The best prediction performance was obtained by the combination

of physiochemical properties, atomic and residual composition and ungapped dipeptides

(Table 3). Hence in all further studies, protein sequences were represented in this optimal

way.

Sequence similarity in dataset

Classifiers built with the above mentioned attributes displayed an unexpectedly high

overali precision and specificity (>90%) when trained with the basic dataset of proteins

(Table 4, top). This could indicate that sequence similarity might permeate to some extent
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physicochemical and compositionai attributes, despite the abstraction from ail contextuai

information. Since our aim is to eliminate reliance on sequence similarity, a predictor

should be trained and evaluated using sequences that exhibit only moderate similarity to

one another. Therefore, we formed new datasets clustered at sequence identity thresholds

down to 50%. Remarkably, classifiers trained with each of these datasets maintained high

prediction specificity. Yet, precision and sensitivity dropped significantly, due to an

increase of false negatives (Table 4). As we show in the next section, the underlying reason

for the growing number of faise negatives lies in the deciining number of instances.

Class size, class imbalance, undersampling and performance

In the basic data set, the number of instances per functionai class (i.e., the ciass size)

of mitochondrion-encoded proteins ranges from one to 3,476 instances (see $upplementary

information, Table Si). Such an imbalance is well known to reduce the performance of

machine learning algorithms. In order to visualize in how far the predictor performance

depends on the class size, we plotted the number of instances versus precision for each

class. f igure 1 shows that class sizes of >30 instances on average yield satisfying

prediction.

Undersampling is a widely employed method to address class imbalance and

generally involves removing randomly-selected instances from the mai ority classes

(Drummond and Holte, 2003). In fact, forming classes of equal size (fully balanced) has

been shown to yield the best prediction performance compared to using data with class

imbalance (Al-Shahib et al., 2005). Our primary undersampling method reduced class size
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based on sequence identity. We explored several ways of clustering the basic dataset of

known proteins (denoted DS- 1000 because of the 1 000-fold difference in class size) to

form new datasets having less class imbalance. First, ail classes were clustered at the same

sequence identity thresholds (see Methods section ‘Sequence clustering’). This substantially

reduced the size of classes containing many instances, but it also reduced class size for

those having few instances. Second, class-specific thresholds were chosen to decrease the

number of instances in a class as much as possible while retaining at least 30 instances, a

threshold based on the analysis presented in Figure 1. The resultant dataset (denoted DS

100) had 1 00-fold overall class imbalance. F inally, to reduce the imbalance further, a

dataset was clustered first on a class-by-class basis and then instances in classes larger than

40 were removed randomly. This created a dataset having only a 10-fold imbalance

(denoted DS-10; See Supplementary information Figure Si for the class size distribution of

various datasets).

Using the datasets DS-1000, DS-100 and DS-10, we trained three classifiers

(denoted C-1000, C-100 and C-10, respectively) and evaluated them by ten-fold cross

validation. The overall prediction performance indicates that C-1000 is the best of the

three, while C-10 performs least well (Table 5). Closer inspection revealed that different

classifiers have predictive strength at different class sizes. For large classes (>30 instances),

C-1000 performed substantially better than the other predictors (Table 5). In contrast, for

small classes (<=30 instances), classifiers trained on the more balanced datasets performed

better than that based on the highly imbalanced DS-1000 (note that training and test sets for

ail three classifiers are identical for small classes). Finally, we compared the confidence
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factors assigned to individual function predictions for known proteins. $ince there was no

clear correlation between the confidence factor and conectness (data flot shown), this

measure was not considered further in the context of this study.

Function prediction of hypothetical proteins

for predicting the function of the 1,336 hypothetical proteins, we constructed three

classifiers (MOPS-1000, -100 and -10) based on the full datasets of known proteins DS

1000, DS-100 and DS-10. The reason for three classifiers is that, as we showed above,

classifiers trained with the different datasets displayed complementary performance in the

prediction of small and large functional classes for known proteins. A full list of ORF

function predictions is available in the supplementary information (See Supplementary

information Table S5).

We compared the prediction performance of MOPS with BLAST, even though this

comparison is not fair because as mentioned earlier, our method is complementary to

sequence-similarity-based methods rather than an alternative. We stated in the Methods

section that a small portion of the hypothetical proteins (361) has significant BLAST hits

when searched against the known proteins. About 100 MOPS predictions concur with

assignments made by BLAST. BLAST and MOPS disagree on 260 protein annotations,

most of which are annotated as “endonucleases” by BLAST. Yet this disagreement is flot

surprising, since “endonuclease” is an ill-defined and divergent class having at least eight

families in the Pfam database (fmn et al., 2006b). In the next section, we show that —700
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MOPS predictions receive positive support testifying to the merits of MOPS compared to

BLAST.

Discussion

We developed an effective automated method for molecular fiinction prediction of

‘lefi-over’ proteins i.e., those that do not display significant sequence similarity to known

proteins. This new method employs a host of physicochemical and compositional protein

properties, addresses class imbalance and overcomes several limitations seen in other

predictors. First, our method is able to predict fine-grained functional classes (e.g.,

‘succinate dehydrogenase subunit 2’), rather than broad functional categories (e.g.,

‘component involved in mitochondrial electron transport’). Second, our method is

taxonomically independent in that, unlike other methods (e.g., King et aï., 2001b), it does

not rely on data from the same species for training. The following is a critical discussion

regarding the high performance of our predictors (for known proteins) and the relevance of

constructing meaningful and effective test and training sets. We also point to potential

pitfalls in the interpretation of machine-leaming-based function classification of proteins.

Finally, we provide a new approach for validating individual function predictions of

hypothetical proteins.

Reasons for high predictor performance

The C-1000 classifier (trained with the dataset DS-1000 having a 1000-fold class

imbalance) exhibited an exceptionally high performance (see Table 4). A reason therefore
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might be that the sequences within large classes are quite similar, introducing overfitting.

Indeed, afier clustering the sequences at a threshold of 75%, false negatives increased and

the overail precision decreased to 82% — a performance level comparable to that of other

methods (e.g.,Clare et al., 2006b).

When dissecting performance of classifiers by class size, we observed that for

proteins from large classes, function is best predicted by C-1000 (see Table 5). In contrast,

for proteins from small classes, function is best predicted by classifiers trained with a

dataset having reduced class imbalance. This observation can 5e exploited for function

prediction of unassigned proteins, by selecting a classifier based on the distribution of

proteins within the dataset under investigation.

The conundrum of leave-one-taxon-out

The leave-one-out cross-validation in machine leaming involves the removal of

randomly chosen instances, one at a time, from the training set and using them for testing

the predictor. for multi-taxon datasets as in the present case, one taxon can be left out, that

is, ah instances from a given species. This approach was used previously for evaluating

sub-cellular localization predictions (e.g., Lu et aÏ., 2004), but has not been expÏoited so far

for protein function prediction. In fact, the leave-one-taxon-out method simuhates the

ultimate task of a classifier—to predict the function of hypothetical proteins derived from a

newly sequenced genome.
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Obviously, when the selected organism to be left out has numerous closely related

relatives in the dataset, classifier performance will be very good. b assess to which extent

this test is meaningful, we studied the effect of leave-one-taxon-out based on the

‘population density’ of clades (groups of organisms related by descent). Clade

circumscriptions were obtained from published phylogenies (for a recent review, see

Keeling et aÏ., 2005) and organisms were selected from large, medium and small clades.

Note that ‘population densily’ here relates to the number oforganisms in a clade for which

mitochondrion-encoded protein data are available and flot to the total number of recognized

species in a clade (see Supplementary information Tables S2, S3 for the taxonomic

distribution of instances in the dataset).

The leave-one-taxon-out procedure was conducted for several clades of roughly

comparable evolutionary diversity, with numbers of member species ranging from 2,03 0

(Drosophila) to 2 (Jakobid flagellates). for a given clade, we removed a single species

from DS-1000 and used the residual set for training; then proteins from the removed

species were used for testing the classifier. figure 2 shows that, for the leave-one-taxon-out

test, the performance of the predictor varies from as high as 90% for clades with large

population density, to below 50% in the poorly sampled jakobids. Therefore, leave-out

cross validation should be conducted flot only with a densely populated clade as ofien seen

in the literature (e.g., Lu et al., 2004), but also with poorly and moderately populated

clades, in order to avoid over-estimation of predictor performance.
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Evaluating function predictions of hypothetical proteins

We chose to assign molecular function to hypothetical proteins using the three

classifiers MOPS-1000, MOP$-lOO and MOPS-1O, because, as we showed above, they

have different predictive strength depending on the class size. Yet, evaluating correctness

of such predictions is intrinsically impossible. While typical publications on machine

learning-based function prediction leave us with untested hypotheses, we have taken a step

ahead. We developed domain-specific criteria for assessing individual function predictions,

as described in more detail below.

Assessing in siico function prediction using domain-specific knowledge

To identify which ORF function assignments are likely to be correct or incorrect, a

taxonomically comprehensive review of mitochondrion-encoded proteins across eukaryotes

(see GOBASE, ‘Gene distribution’

http://gobase.bcm.umontreal.calsearches/compilations.php) yielded helpful insights: (i) in

contrast to nuclear genomes, mitochondrial genomes do flot contain gene families; and (ii)

mtDNAs of closely related species ofien encode the same set of proteins (Gray et al.,

2004).

A combination of three domain-specific criteria assisted in evaluating the

correctness of a predicted function, which we describe in the order employed in our

‘biological’ evaluation scheme (Figure 3). The ‘uniqueness criterion’ limits a mitochondrial

genome to contain only a single gene for each function. For example, a prediction is likely
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incorrect (‘negative support’) if for a given genome the predicted function of an ORF

confticts with a gene known to reside in this mtDNA and that has this function. for

remaining predictions, the ‘completeness criterion’ evaluates whether a complete

mitochondriai genome sequence for this species is available or flot. The strongest evidence

for a correct prediction satisfies both the uniqueness and compieteness mies (‘strong

positive support’). f inally, for ORFs from incompletely sequenced mtDNAs, the ‘soiidarity

criterion’ corroborates a prediction if the predicted function is present in a closeiy reiated

species (‘weak positive support’). Predictions that remain after application of these three

criteria caimot be evaluated regarding their correctness (‘no support’).

The effectiveness of domain-specific criteria is demonstrated by their good

performance on known proteins: 99.9% of the correct predictions given by C-1000, C-100

and C-10 received positive support. Evaluating ail function predictions given by C-1000

using these three criteria, 96% of the predictions received ‘positive support’ (strong plus

weak, see above) with 94% of these being correct and 2% incorrect. Among the

predictions obtained with C-100 and c-10, 65% and 56% ofthose with positive support are

correct. A detailed breakdown ofthe evaiuation is available in Tabie 6.

“Validating” function predictions of hypothetical proteins

0f the 1,336 ORFs, 672 have function predictions with positive support (569 strong

positive and 103 weak positive) from at ieast one of the three MOPS ciassifiers.

Considering each classifier independently, 31-34% of the ORFs have functions with

positive support, 14-16% with no support and 50-55% with negative support (Table 7).
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Note that only 126 predictions with strong positive support are cross-confirrned by two or

more classifiers. But since each classifier has complementaty predictive power depending

on class size, we expect that function predictions from the individual classifiers will differ.

At first glance, the number of most likely incorrect predictions (negative support)

appears considerable. One reason could be class imbalance, a known problem in machine

learning where unknown instances are assigned more ofien to classes overrepresented in

the training set than to underrepresented ones (Weiss and Provost, 2001). Another reason

may reflect the expectation that some of the mitochondrial ORFs are not expressed

(‘spurious’), being a relie ofgene migration to the nucleus (van den Boogaart et al., 1982)

or a product of recent segmental genome duplication and reshuffling, for example as

documented in plant mitochondria (Hanson, 1991). If these spurious ORfs stili carry

remnants of (one or several) functional genes, then this will necessarily lead to functional

misidentification, especially when using highly sensitive approaches.

Our analysis defines a core of 126 highly trusted ORF function predictions,

assigned consistently by at least two MOPS classifiers and positively supported by the

biological evaluation schema (figure 3). In addition, for over half ofthe ORfs, the function

predicted by one of the classifiers received positive support. These assignments provide

powerful working hypotheses, on which the function of an ORf may be confirmed. for

instance, computational confirmation could be achieved through multiple sequence

alignment of an ORF with proteins known to have the same molecular function, but with

varying intermediate degrees of derivation. Such a meticulous exercise was conducted for
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ORF15O of an alga (Chesnick et al., 2000) and Van of fiingi (Bullerwell et al., 2000),

based on dues inferred from gene order and other biological considerations. However,

these bioinformatics analyses require extensive expert intervention, as they have flot been

automated.

The ultimate way of validating the prediction of protein function is by biochemical

and molecular biology methods, yet, current techniques do not lend themselves to high

throughput processing. Therefore, in silico predictions are of great value for wet-lab

experimentalists, especially if individual predictions are validated by biological criteria as

shown above.

Outlook

The annotation system presented here could be enhanced in several aspects. for

example, additional protein attributes should be explored, such as gapped dipeptides for

localized regions of the proteins that have the propensity to form helices. In this manner,

amphipathic helices could be captured and exploited for function prediction.

A second aspect wonth improvement is the clustering technique. CD-HIT clusters

the sequences based on sequence identity using short-word filters (deca-, penta-peptides

etc.,) thereby avoiding time-consuming full pair-wise alignment. A more sensitive

approach for comparing two proteins (for clustering) would employ amino acid substitution

matrices and would attempt to align the proteins fully, e.g., by using MUSCLE (Edgar,

2004b).
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Another issue is that a few functional classes, especiaily intron maturase and

endonuclease, are flot weii defined as to their molecular function, likeiy introducing noise

in the training process. A thorough classification based on multiple sequence alignments

and phylogenetic analysis will be required to better circumscribe these classes.

f inaliy, we showed that taxonomic information is useful for classifier evaluation,

but it could be exploited for moiecular function prediction as well. We also contemplate to

extend our approach to chioroplast-encoded and uitimately bacterial proteins.

Methods

Dataset

The dataset spans ail publicly availabie mitochondrion-encoded protein sequences

as avaiiable in the curated database GOBASE

(http :Umegasun.bch.umontreaLcalgobase/gobase.html). These proteins are conceptuai

translations mostly ftom genomic sequences, with a smail portion ftom EST sequences.

From GOBASE release 12.0, we retrieved 52,360 complete (non-partial) mitochondrion

encoded protein sequences of known function that do flot contain the amino acid ‘x’

(unknown amino acid, which would disable the calcuiation of sequence composition). A

total of 1,754 ORFs (product name ‘hypothetical protein’) were retrieved from the

GOBASE release 15.0. (At the time of retrieval, the function of all these ORfs were

unknown. But recently when these ORFs were searched against the set of function known

proteins using BLAST, 26% of them found hits with a BLAST score greater than 65. The
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threshold based on our experience; note that the BLAST e-value depends on the database

size and therefore is flot meaningful for comparison with searches against other databases

such as NCBI’s non-redundant (nr) database). The 74 functional categories or ‘classes’

(e.g., cytochrome c oxidase 1) are listed in Table 1; ‘unknown’ is flot used as a class.

Sequence clustering

Identical or similar sequences in the dataset can introduce bias both in the training

of a predictor and in performance evaluation. To minimize this bias, known proteins are

placed in clusters using CD-HIT (Li et al., 2001) based on sequence identity greater than or

equal to a fixed-percentage cutoff tbreshold. A new dataset is constructed by retaining a

single representative from each cluster, namely the longest sequence. for instance,

clustering at 99% yielded the ‘basic’ dataset of known proteins comprising 18,871

sequences. for the various experiments described in Results, clustering was performed at

thresholds from 99% down to 50%. The 1,754 ORFs are also clustered at 99%, which

resulted in 1,336 ORFs. In the clustered dataset, 27 % of ORfs have BLAST hits with

scores greater than 65.

Protein representation I attributes

We experimented with different types of attributes (see Table 2). Physicochemical

properties and atomic and residue composition of proteins were calculated by using the

ProtParam web server (http://www.ca.expasy.org/tools/protparam.html).

51



Given 20 different amino acids, there are theoretically 400 different dipeptides.

By siiding a window, two positions wide, along the entire protein sequence, ail occurring

dipeptides are counted. Dipeptide ratio is calculated as number of occurrences of a

dipeptide XY / totai number of dipeptides in the protein sequence. Ungapped dipeptides are

two consecutive amino acids; one-gapped dipeptides are two amino acids in a distance of

one residue, etc. Ungapped and gapped dipeptide ratios were calcuiated directiy by using

in-house Peri scripts. In order to compare the performance of classifiers constructed with

various combinations of protein features, we clustered ah the function-known

mitochondriai-encoded protein sequences at 99% and 50% sequence identity and used them

for training the classifier. The classifier performance was evaiuated by ten-fold cross

validation (see next section).

Classifier algorithm and performance evaluation

Building the Classifier

for machine-learning based classification, we chose a decision-tree aigorithm for

two reasons: (i) it infers which attributes are informative for each ciass (King et al., 2004b),

and (ii) it accommodates both attributes with continuous and with categorical values. We

used the aigorithm C4.5 (Quinian, 1 993b) implemented in the Weka data mining software

(Witten and Frank, 2005). Sequences of known molecuiar function from GOBASE were

ciustered using CD-HIT at sequence identity threshoids 99%, 75% and 50% denoted DS

99, DS-75 and DS-50, respectively. Using these data sets as training data, we built three

classifiers denoted C-1000, C-100 and C-10 were built, respectively.
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Classifier performance evaÏuation

Classifier performance was evaluated by training and testing with proteins of known

function. The standard procedure is ten-foid cross validation, which involves subdivision of

the data into ten randomly chosen, equally-sized subsets, each of which is used as a test set

while the remaining nine serve to build the classifier. This procedure was performed ten

times with the overali performance reported as the average across ail 100 classifiers. We

also employed the ‘ieave-one-out’ cross validation by removing individual instances ftom

the training set and using them for testing only. In both cases, performance was determined

by measuring precision (PR), specificity (SP), sensitivity (SE) and accuracy (AC) for each

class, j: PRi = TPi / (IPi + fPi), SPi = TNi / (TNi + fPi), $Ei TPi / (TPi + fNi) and ACi

= IPi / (TPi + FPi + TNi + FNi) where TP is the number of true positives, FP is false

positives, TN is true negatives, and FN is false negatives. Here, we report performance over

ail classes, n, as a weighted average of the number of instances in each class, Ki. For

instance, the weighted average for precision is PR = Zi1 ...n PRi / Ki. Finally, C4.5

assigns a confidence factor to each unknown prediction, based on the rules describing a

given class a prediction satisfies.
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Figure 1. The effect of the number of instances per functional class (horizontal axis in

logaritbmic scale) on the prediction performance for the class (vertical axis). The sequences

are clustered at 99% sequence identity threshold.
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Figure 2. Leave-one-taxon-out validation. Ail sequences from a particuiar taxon are

removed from the training set and used as test set. The species removed are (the name of

the ciade and the number of species contained in it are shown in parentheses): DrosophiÏa

melanogaster (Diptera; 2030), Caenorhabditis eÏegans (Rhabditida; 97), Porphyra

purpurea (Bangiaies; 54), Tetrahymena pyrformis (Hymenostomatida; 2), Malawimonas

jakobiformis (Maiawimonadidae; 2), Cafeteria roenbergensis (Bicosoecida; 1).
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Figure 3. Evaluation of MOPS function predictions based on domain-specific knowledge.

Uniqueness criterion: the predicted function is flot reported for the genome of the same

species. Completeness criterion: a complete genome is available for the species. Solidarity

criterion: a gene with the predicted function is present in the genome of the neighboring

species.
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Tables

Table 1. List of functional classes for mitochondrial proteins

Functional classes

ABC transporter subunits: ATP-binding, channel, C

Apocytochrome b

ATP synthase F0 subunits: 8, a- c

ATP synthase Fi subunits: alpha, gamma

Cytochrome c oxidase subunits: 1-3

DNA adenine methyltransferase

DNA polymerase

Elongation Factor Tu

Endonuclease

Intron maturase

Large subunit ribosomal proteins: LI, L2, L5, L6, Lb, Lii, L14, L16, LI$-L20, L27, L31, L32,

L34, L36
mutS-like protein

NADH dehydrogenase subunits: i-4, 4L, 5-I 1

Protein involved in haem biosynthesis, haem lyase

Reverse transcriptase

RNA polymerase subunits: alpha, beta, beta’

RNA polymerase (T31T7 type)

Sec-independent protein transiocase components: TatA, TatC

SecY-type transporter protein

Sigma-like factor

Small subunit ribosomal proteins: SI-S4, S7, S8, S10-S14, S16, S19

Succinate dehydrogenase subunits: 2-4
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Table 2. features used to represent protein sequences

No.of
Attributes Description

Attributes

Physicochemical

Sequence Length No. ofamino acids I

Molecular Weight Computed molecular weight I

Theoretical pi Theoretical isoelectric point (pI) 1

Aliphatic Index Computed aliphatic index 1

Hydropathy Index Grand average of hydropathy index 1

(GRAVY)

Composition

Atomic Composition Composition ofelements: C, H, o, s 5

Residue Composition Individual amino acid content 20

Dipeptide Ratios

Ungapped dipeptide ratio Residue pair at positions N, N+1 400

1-gapped dipeptide ratio Residue pair at positions N, N+2 400

2-gapped dipeptide ratio Residue pair at positions N, N+3 400

3-gapped dipeptide ratio Residue pair at positions N, N+4 400
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Table 3. Effect’ of gapped and ungapped dipeptide attributes on classifier performance

Basic + Basic +
Basic + Basic + Basic +

three- four-
Basic b Ungapped one-gapped two-gapped

gapped gapped
dipeptides dipeptides dipeptides

dipeptides dipeptides

99%C

Precision 0.941 0.944 0.938 0.940 0.938 0.942

Speciflcity 0.997 0.997 0.996 0.997 0.996 0.997

Sensitivity 0.942 0.945 0.939 0.943 0.940 0.944

50%c

Precision 0.627 0.634 0.619 0.607 0.612 0.630

Specificity 0.986 0.986 0.986 0.985 0.985 0.985

Sensitivity 0.632 0.638 0.623 0.610 0.625 0.639

a
Evaluated by I 0-fold cross validation.

b
Combination of physiochemicat features, atomic and residual composition.

C
Set ofknown proteins ctustered at different sequence identity thresholds.
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Table 4. Classifier performancea on known data clustered at different sequence identity

tbresholds”

Clustering Instances
Precision Specificity Sensitivity

Threshold in Datasetc

99% J 8,871 (3,476/1) 0.944 0.997 0.945

75% 4,743 (580 I 1) 0.8 19 0.993 0.823

50% 1,932 (222 / 1) 0.634 0.986 0.638

Evaluated by 10-fold cross validation. Aftributes used: physicochemical properties, residue and

atomic composition, ungapped dipeptides.
b More complete table is provided in the supplementary information (Table S4).

Maximum and minimum class size in the dataset is given in parentheses.
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Table 5. Effect of class imbalance on classifier performance

Ail classes Class size> 30 Class sizea < 30

c-1000

Precision 0.944 0.95$ 0.419

Specificity 0.997 0.997 0.999

Sensitivity 0.945 0.960 0.3 89

c-100

Precision 0.651 0.705 0.485

Speciflcity 0.9$9 0.987 0.996

Sensitivity 0.659 0.710 0.496

c-10

Precision 0.567 0.662 0.553

Speciflcity 0.991 0.991 0.991

Sensitivity 0.566 0.673 0.550

Number of instances per class in the training set is identical for ail the three classiflers
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Table 6. Domain-knowledge-based evaluation of MOPS predictions on the function

known proteins (treated as unknown)

C-1000 C-100 C-10
Support

Correct Incorrect Correct Incorrect Correct Incorrect

Strong positive 4,127 133 78$ 132 401 119

Weak positive 13,693 123 724 41 325 3$

No 3 120 0 106 0 83

Negative 0 672 0 535 0 33$

Total 17,823 1,048 1,512 $14 726 57$
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Table 7. Domain-knowledge-based evaluation ofMOPS predictions on ORFs

MOPS-1000 MOPS-100 MOPS-1O
Support

Predictions Predictions Predictions

Strong Positive 342 344 391

Weak Positive 70 65 67

No 193 183 209

Negative 731 744 669

Total 1,336 1,336 1,336

A total of 672 unique proteins were predicted with positive support.

66



Supplementary Information

Figures

Figure Si. Number of instances per class (vertical axis) in datasets with different degrees

of class imbalance. Only 13 of the 74 functional classes are shown (horizontal axis).
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Tables

Table Si. Number of instances per protein functional class in the DS-1000 dataset

(sequences clustered at 99% sequence identity)

Protein functional class No. of instances

ABC transporter ATP-binding subunit 3

ABC transporter channel subunit 12

ABC transporter subunit C 12

Apocytochrome b 3,476

ATP synthase f0 subunit 8 1,3 88

ATP synthase f0 subunit a 1,135

ATP synthase f0 subunit b 26

ATP synthase f0 subunit c 88

ATP synthase fi subunit alpha 34

ATP synthase fi subunit gamma 3

Cytochrome e oxidase subunit 1 1,002

Cytochrome c oxidase subunit 2 1,3 82

Cytochrome c oxidase subunit 3 712

DNA adenine methyltransferase 1

DNA polymerase 23

Elongation factor Tu 2

Endonuctease 34

Haem lyase 26

Intron maturase 92

mutS-like protein 4

NADH dehydrogenase subunit 1 1,265

NADH dehydrogenase subunit 2 3,123

NADH dehydrogenase subunit 3 920

NADH dehydrogenase subunit 4 842



Protein functional class No. of instances

NADH dehydrogenase subunit 4L 789

NADH dehydrogenase subunit 5 843

NADH dehydrogenase subunit 6 848

NADH dehydrogenase subunit 7 34

NADH dehydrogenase subunit 8 7

NADH dehydrogenase subunit 9 36

NADH dehydrogenase subunit 10 7

NADH dehydrogenase subunit 11 14

Protein involved in haern biosynthesis 3

Reverse transcriptase II

Ribosomal protein LI 2

Ribosomat protein L2 2$

Ribosomal protein L5 32

Ribosomal protein L6 22

Ribosomal protein LI0 2

Ribosomal protein LI 1 6

Ribosomal protein L14 26

Ribosomal protein L16 39

Ribosomal protein L1$ 2

Ribosomal protein L19 2

Ribosomal protein L20 5

Ribosomal protein L27 2

Ribosomal protein L3 1 5

Ribosomat protein L32 1

Ribosomat protein L34 2

Ribosomal protein L36 1

Ribosomal protein Si 11
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Protein functional class No. of instances

Ribosomal protein S2 28

Ribosomal protein S3 64

Ribosomat protein S4 32

Ribosomal protein S7 25

Ribosomat protein S8 20

Ribosomal protein S10 21

Ribosomat protein Si! 24

Ribosomal protein S12 51

Ribosomal protein S13 64

Ribosomal protein S14 39

Ribosomal protein S!6 1

Ribosomal protein S19 31

RNA polyrnerase subunit alpha 1

RNA polymerase subunit beta’ 2

RNA potymerase subunit beta 2

RNA polymerase (T3/T7 type) 15

Sec-independent protein transiocase component TatA 1

Sec-independent protein transiocase component TatC 23

SecY-type transporter protein 2

Sigma-like factor 1

Succinate dehydrogenase subunit 2 7

Succinate dehydrogenase subunit 3 12

Succinate dehydrogenase subunit 4 13
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Table S2. Taxonomic distribution of training data at different sequence identity

clustering thresholds

Clustering

threshold

99%

95%

90%

85%

80%

75%

70%

65%

60%

55%

50%

VI

54

51

48

46

42

36

31

25

23

22

22

VII VIII IX

1 170 151

1 169 149

1 169 149

1 167 147

1 164 146

1 156 143

1 150 135

1 140 128

1 128 124

1 117 111

0 110 102

I

II

III

IV

V

VI

VII

VIII

Ix

Animais

Unikonts without animais

Plantae

Chromaiveoiates

Atveo tates

Euglenozoa

Rhizaria

Excavates

Other

Number of Sequences

Total 1* II III IV V

18,871 16,378 706 1,004 307 100

12,997 10,827 643 780 292 85

9,561 7,606 595 643 273 77

7,156 5,396 518 563 251 67

5,822 4,176 470 514 246 63

4,743 3,223 424 472 232 56

3,846 2461 380 425 209 54

3,260 1,970 345 399 199 53

2,700 1,524 313 358 181 48

2,283 1,219 279 328 161 45

1,932 973 235 302 144 44

* Taxonomic group names listed below
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Table S3. Taxonomic distribution in the largest functional class (apocytochrome b; DS

1000)

Taxonomie Group No. of Instances

Animais 3,3 03

Unikonts without Animais 101

Plantae 36

Chromaiveolates 9

Aiveolates 14

Rhizaria O

Euglenozoa 5

Excavates 3

Other 5

72



Table S4. Classifier performancea using training data clustered with different sequence

identity thresholds

Ctustering No. of instances in
b

Precision Specificity Sensitivity
threshold dataset

99% 18,871 (3,476/1) 0.944 0.997 0.945

95% 12,997 (2,134 / 1) 0.923 0.996 0.925

90% 9,561 (1,541 / 1) 0.898 0.995 0.899

85% 7,156 (1,064/1) 0.872 0.994 0.874

80% 5,822 (778 / 1) 0.850 0.994 0.855

75% 4,743 (580/1) 0.819 0.993 0.823

70% 3,846 (439 / 1) 0.787 0.991 0.792

65% 3,260 (375 / 1) 0.755 0.990 0.759

60% 2,700 (304 / 1) 0.7 10 0.989 0.7 19

55% 2,283 (259 / 1) 0.666 0.986 0.672

50% 1,932 (222 / 1) 0.634 0.986 0.638

a Evaluated by 10-fold cross validation. Attributes used: physico-chemical properties, residue and

atomic composition, ungapped dipeptides.
b Maximum and minimum size ofthe class in the dataset is given in parentheses.
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Chapter 3: ARTICLE

The best way to validate in silico function prediction is by experimentation. However,

provided that when several homologues of the unknown are available, computational

validation may be possible. Kinetoplastid MURF 1, predicted by MOPS as NAD2, has

seven members and therefore in silico validation has been attempted by using the most

sensitive methods such as Profile HMM-Profile HMM comparison.

I have carried out the sequence analyses, detailed literature survey of life sciences literature

and wrote the manuscript.
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Abstract

In a previous study, we conducted a large-scale similarity-free function prediction

of mitochondrion-encoded hypothetical proteins, by which the hypothetical gene murfi

(maxicircie unidentified reading frame 1) was assigned as nad2, encoding subunit 2 of

NADH dehydrogenase (Complex I of the respiratory chain). This hypothetical gene occurs

in the mitochondrial genome of kinetoplastids, a group of uniceilular eukaryotes including

the causative agents of African sleeping sickness and leishmaniasis. In the present study,

we test this assignrnent by using bioinformatics methods that are highly sensitive in

identif,iing remote homologs and confront the prediction with availabie biological

knowledge.

Comparison of MURF1 profile Hidden Markov Model (HMM) against function

known profile HMMs in Pfam, Panther and TIGR shows that MURF1 is a Compiex I

protein, but without specifying the exact subunit. Therefore, we constructed profile HMMs

for each individual subunit, using ail available sequences clustered at various identity

thresholds. HMM-HMM comparison of these of individual NADH subunits against

MURF1 ciearly identifies this hypothetical protein as NAD2. Further, we collected the

relevant experimentai information about kinetoplastids, which provides additional evidence

for the in silico assignment of MURF1 being a highly divergent member ofNAD2.
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Introduction

The single-celled flageilated eukaryotes of the group kinetoplastids include

notorious human pathogens such as Trypanosoma and Leishmania. Mitochondrial (mt)

genomes of numerous trypanosomatids have been sequenced, with compiete and nearly

compiete mtDNA sequences availabie for five species: Leishmania tarentolae (GenBank

Accession No: NC000$94), Trypanosoma brucel (M94286), T cruzi (DQ343645),

Crithidia oncopelti (X56015), Leptomonas seymouri (DQ239758), and major portions of

mtDNA for two other members of the group: Leishmania major (AHO 15294), Leptomonas

collosoma (AH015822). for a review, see (feagin, 2000).

The unassigned open reading frame (ORF) murfi in T brucei mtDNA has been

known for 25 years (Eperon et aÏ., 1983), but until today, there is no protein of known

function that shares significant sequence similarity with this ORF. In a recent study, we

conducted a comprehensive function prediction of ail hypothetical mitochondrion-encoded

proteins using the machine-learning-based classifier MOP$ (S.Kannan, AM.Hauth,

G.Burger, under review). This classifier does flot rely on sequence similarity but rather on

a host of other features including physico-chemical properties of proteins, and hence should

be able to detect remote homologs. MOPS predicted MURF1 of the kinetoplastid

Phytomonas serpens as subunit 2 (NAD2) of the NADH dehydrogenase Complex

(NADHdh), but only with moderate support. We chose to scrutinize this function

assignment in detail, motivated by several reasons: the long-standing controversy

77



surrounding MURF 1, the large available body of related biologicai knowledge, and the

significance of this organismal group for human health.

Resuits

As mentioned in the Introduction, the hypothetical protein MURF1 was predicted

by the automated similarity-ftee classifier MOPS to be a divergent NADHdh subunit 2

(NAD2). To test this prediction, we conducted the foliowing analyses.

Sequence - Sequence Comparison

BLAST searches of Phytomonas MURF 1 sequence against NRDB or UniProt did

flot resuit in any informative hits, but identified all the MURF1 homoiogs from other

kinetoplastids such as T brucei, L. tarentolae, etc. In contrast, FASTA searches against

UniProt returned, afier MURF1 homologs, NADHdh subunit 5 from the kinetoplastid

Crithidia as top informative hit with an e-value of 6.5e°9, followed by NAD2 from the red

alga Chondrus crispus with an e-value of 8.8e°7. A iist of ail hits and their corresponding

e-values is compiled in Table 1.

Profile - Sequence Comparison

For the identification of distantly related sequences, methods that exploit profiles

(i.e., position-specific descriptions of the consensus of a multiple sequence alignment) are

more sensitive than those based on pairwise aiignment such as BLAST and FASTA. Here,
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we used P$I-BLAST to generate a MURF1 profile and searched it against NRDB, but no

other proteins beyond kinetopiastids MURF 1 were found.

Profile HMM - Profile HMM Comparison

In contrast to simple sequence profiles, Profile Hidden Markov Modeis (HMMs)

contain extra information about insertions/deietions and gap scores. Profile HMM — Profile

HMM comparison is more sensitive than the profile — sequence comparison in identifying

distant homologs. HHsearch (the first implementation of this approach), was shown to

outperform profile — sequence comparison methods such as P$I-BLAST and HMMER,

profile - profile comparison tools such as PROF_$1M and COMPA$$ and the other HMM

- HMM comparison tool PRC (Soding, 2005).

We built a profile HMM for MURF1 from the multiple alignment of seven

kinetoplastids MURF1 sequences. Using HHsearch, we searched this profile HMM against

the profile HMMs available in Pfam, PANTHER, COG and TIGR. In most cases, the top

hit was the “NADH-Ubiquinone/plastoquinone (Complex I)”, which is a muiti-subunit

protein complex. Oniy the search against the COG database retumed a specific subunit as

top hit, i.e., NAD2. HHsearch resuits are summarized in Table 2.

To narrow down the exact function of MURF 1, we generated profile HMMs for ail

12 subunits of NADHdh. We clustered the protein sequences of ail ftinction-known

proteins of NADHdh subunits at different sequence identity tbreshoids ranging ftom 40%

to 75%, constructed a multiple sequence alignment for each of the subunits at each
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threshold, and generated profile HMMs. In order to choose the best profile HMM for

each NADHdh subunit, we evaluated these profile HMMs by searching them against a

database of ail function-known proteins encoded by mitochondria. The best profile HMMs

are those that are able to identify ail instances of their corresponding subunits with

minimum error. Finaily, we searched the MURF1 profile HMM against the 12 optimal

profiles ofNADHdh subunits. The top hit is NAD2 with an e-value of 1e15. The e-value of

the second best hit is 3 orders of magnitude worse (Table 3).

Discussion

Whiie sequence — sequence comparison and profile HMM — profile HMM

comparison point to MURF 1 being a subunit of NADHdh, profile — profile comparison

against the profile HMMs of individuai subunits of NADHdh is abie to cleariy assign

MURF1 to NAD2. In the foliowing, we wiii confront this in siilco prediction with the

availabie biological knowledge. If the MURF1 protein of trypanosomes is indeed NAD2,

then the foiiowing criteria must appiy:

1. There should be no previously annotated nad2 gene in either mitochondrial or

nuclear genomes of kinetoplastids. A nad2 gene has flot been reported in any

mitochondriai genome of kinetoplastids. Recentiy, the sequence of the nuclear

genome became available for the P. serpens (Pappas et al., 2005). Neither genome

nor EST data (2,190 ESTs) indicate the presence of this gene.
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2. There should be numerous precedents for nad2 being encoded by mtDNA.

The nad2 gene is mtDNA-encoded by the large majority of eukaryotes (see

GOBASE, ‘Gene Distribution’

http://gobase .bcm. umontreal .calsearches/compilations.php). The rare species that

tack this mitochondrial gene also Jack other NADH subunits (Apicomplexa, yeast).

3. The mttrfl gene should be transcribed. Evidence for murfi being expressed

rather than being a spurious ORF is provided by several observations. First, the

deduced amino acid sequence is conserved across trypanosomes, despite

considerable divergence at the nucleotide level. Second, transcription of this gene

has been demonstrated in P. serpens (Maslov et al., 1999).

4. Rotenone-sensitive NADH dehydrogenase Complex I should be present in

kinetoplastids. The presence of Complex I has been biochemically confirmed in

Trypanosoma and Phytomonas (Fang et al., 2001; Gonz1ez-Halphen and Maslov,

2004).

On ail accounts enumerated above, the biological knowledge reinforces the in silico

prediction. Thus, MURF1 is identified beyond doubt as a higffly derived homolog of

NAD2. For illustration purpose, Figure. 1 depicts the multiple protein sequence alignment

of the most conserved block of known NAD2 proteins and kinetoplastid MURF1

sequences.
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Outlook

Notably, a functional NADHdh is crucial to the survival of trypanosomes. Under

aerobic conditions (procyclic, insect stage), NADHdh is required as a component of the

respiratory chain, to catalyze electron transport toward complex IV. The thus generated

proton gradient is utilized for ATP synthesis. Under anaerobic conditions (bloodstream

form), a functional NADHdh is equally essential. In the blood stream of mammals,

NADHdh provides electrons for the alternative oxidase, a pathway required for maintaining

the balance of NADH/NAD+ in the ceil. This confirms that trypanosomes depend on a

functional NADHdh. In fact, Atovaquone, an anti-leishmanial drug, inhibits the NADHdh

activity in P. serpens and this inhibition was suggested to underlie the anti-leishmanial

activity of that drug (Gonzâlez-Halphen and Maslov, 2004). In this context, the

identification of MURF 1 as a divergent NAD2 could offer new avenues to the prevention

or treatment oftrypanosomatid-caused diseases.

Methods

Dataset

Ah function-lmown protein sequences used in this study were retrieved from the

organelle genome database GOBASE release 12.0 (OBrien et aï., 2006a). The homologs

for MURF 1 were retrieved from Entrez (Osteli, 2002), and their accession numbers are

given in Table Si.
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Sequence - sequence comparison

A BLAST (blastp) (Altschul et aL, 1990c) search was conducted for the MURF1

protein sequence against NCBI’s NRDB (non-redundant protein database) (October, 2006;

4,565,699 sequences), with default parameters. In addition, a FASTA (Pearson, 1990)

search was conducted for the MURF 1 protein sequence against UniProt (release 10.4) with

default parameters, at the EBI website (http://www.ebi.ac.uk/fasta33).

Profile - sequence comparison

This comparison was conducted in two different ways. first, PSI-BLAST (Altschul

et al., 1997) was employed to search MURF 1 remotely against NCBI ‘s NRDB, with four

iterations. Second, we per performed profile HMM - sequence comparison using profiles

from Pfam version 21.0 (Finn et aï., 2006a), executed at the Pfam website

(http ://www. sanger.ac .uk!Software/Pfam).

Profile HMM - profile HMM comparison

For Profile HMM - profile HMM comparison, we used HHsearch of the HHpred

package (Soding, 2005), which takes the MURF1 sequence as input and searches against

NRDB using PSI-BLAST. The MURF1 homologs obtained from the PSI-BLAST search

are then used to generate a profile HMM. As a next step, this MURF 1 profile HMM is

searched against ail profile HMMs of function-known proteins available from the public

databases Pfam, PANTHER, SMART, COG, PDB and SCOP. In addition, we generated

our own profile HMMs for each ofthe 12 NADHdh subunits (1-11 and 4L) from ah known
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sequences of these protein classes. These sequences were clustered at different identity

thresholds using CD-HIT (Li and Godzik, 2006), followed by multiple sequence alignment

performed with MUSCLE (Edgar, 2004a). The multiple alignment served as input for

generating profiles using hmmbuild of HMMER version 2.3.2, 2003 package (Eddy, 199$).

The efficiency of the profile HMMs was assessed by searching the profile HMMs against

the known NADH dehydrogenase subunits and calculating how many known sequences

can by identified by these profile HMMs. finally, the MURF1 profile HMM was searched

against all these profiles using HHsearch.
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Figures

10 20
Phycomonas_serpens/339-362 LACL I LCIGS I P IfFGFFL TFGL
Leishmania_tarentolae/341-364 JAC.IFLC I GS I PI VFGFFL VFCL
Trypanosoma.sp./1-18 Cl GA:f.P1VFGFFL VFCL
Blasrocrirhidiaculic,s/1—18 CI GAI P I VFGFF I VFCL
Trypanosomabrucei/343-366 1ACL F LC I GAI PI VFÇF FI VFCL
Dictyosteliumdiscoideum/380-403 LII Vil Y1ACI_PPFiNF I S II Li
Naeglenagruberij3ss—408 IVLFFFGVAGLPPFPSFLA CYLL
Pedinomonasminor/334-357 L L.G I 1M! II GLP I I SCFFG LI F
Scenedesmus.obliquus/45O-473 WRV FMTS LAC L P PVYG F L G AG I L
Tetrahymen&pyriformis/66-89 L I F5 L L $ MAC I P P LiC FTG FIA I,
Palytornell&parva/284-307 SA I S VA5 I AGI.. P P F L CF I G AQ I L.
Pararnecium_aure!ia/85-1O$ Vil FF LNLAG I P PLLGFF L Fil F
Chlarnydomonas.eugametos/370-393 L 5 1 I A I S LAG L P P LAG F f G AW I F
Chlamydomonas_reinhardtii/285-308 F A L CAV S L A G L P P F A CF F C AW I F
chlorogonium_elongatum/333-356 ET I VAV$ LAGLP PLAGFFÇ AWI F
Emiliania.huxleyi/371-394 FSFLLCALAGI PPLLGFFS CMVI
Ochromonasdanica/389-412 1 CF I FF5 I CCI PPFVGF l;S Mli T
Cafeteriaroenbergensis/696-719 fVi IVFSMSCI PPLAGFF t FDI L
Chrysodidymussynuroideus/388-411 Lii LFFSFCGI PPF IGFFS Vil I
Rhodomonassalina/388-411 Fui FFSMGGI PPFAGFFS FF1 E.
Pseudendocloniu,n_akinerum/445-468 LTCTLFS LGGI PLLACFS Yi I I.
Monosiga_brevicoflis/406-429 LTLSLFS IAGI PPLAGF 15 Y.YIL
Cyanidioschyzon.merolae/394-417 I C I I CF S I S G I P P I AG F F;T .LIV F
Larnrnarî&digirata/38S—411 VA LM I F5 LAC I P P FCG F F A L N I F
Porphyr&purpurea/390-413 LVGI LFSMAGIPPFPGFFA AFVL
Chondruscrispus/389-412 CTLFLFSMACI PPLGGFf.A LFVL’
Phycophthor&infesrans/389-412 I I I NI FSLAGI PPiAGFF5 CF I F
Saprolegnia_ferax/388-411 1 VL.NVFSM$ G I P P LAGF ES CF CF.
Acanthamoeb&castellanii/419-442 IF I iLFS IAGI PPLiCF’rS FFLF
Thtaustochytrium.aureurn/385-408 F C I I L F5 I AC I P P LAC F.yjs I FV F
Protothec&wickerharnii/403-426 F51 TLFSMACI PPLAGFS AY IF
Jakobajibera/405-428 LAV iL F SMAG I P P LAGF F5 LV F.
Reclinornonas_arnericana/390-413 LA I V L F SMAG J P P LAC F FS LYV F
Malawirnonas.jakobiformis/386-409 F TML Cf S MAC I P P LAC F F N L Y I F
Nephroselmisolivacea/388-411 MSMI L FSMAC !P P t,.A.ÇFF.A I F

Figure 1. Multiple sequence alignment of kinetoplastid MURF1 sequences (first five

sequences in the alignment above) with NAD2 sequences from other eukaryotes.
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TABLES

Table 1. List of FASTA hits for F. serpens MURF1 searched against UniProt

UniProt ID Species Name Protein Name e-value Similarity

Q9XKY5O Phytomonas serpens MURF1 5.3e’48 100.0%

Q33559 Leishrnanïa tarentoÏae MURFI 2.7e’°9 90.9%

Q8HE$5 Trypanosoïnasp. MURFÏ 3.le17 87.6%

Q33547 Blastocrithidia culicis MURF1 1.2e16 86.5%

Q33 552 Crithidiafascicutata MURFI 6e’6 82.4%

Q33556 Herpetomonas muscarum MURF1 5.1e’3 85.0%

Q34937 Leishmania. tarentolae MURF2 2e°9 60.4%

Q34096 Crithidiafasciculata MURF2 3.2e°9 56.3%

Q34 192 Crithidia oncopelti NAD5 3.8e°9 54.5%

P48903 Chondrtts crispus NAD2 5.4e°7 57.9%

Silicibacter poineroyi Putative membrane
Q5LRX2 1.2e°6 52.0%

protein

Q6E773 Saprolegniaferax NAD2 1.5&06 53.8%

Q6SKY5 SpeÏeonectes tutumensis NAD5 2.3e°6 55.2%

Q5AG49 Candida atbicans Hypothetical protein 3.3e°6 67.7%

Q5AGI5 Candida albicans Hypothetical protein 7.1&06 67.9%

Q$SKS6 Ancytostoma duodenale NAD4 7.4e°6 57.3%

Q85TH7 Melipona bicolor NAD4 7.7&06 58.1%

Q33575 Trypanosoma brucei NAD4 8.7e°6 57.3%

P24499 Trypanosoma brucei brucei ATP6 1.1e°5 55.4%

Q7ONW4 Strongytoides stercoratis NAD4 J .2&° 56.7%

Q33570 Ttypanosoma crztzi ATP6 I .5e°5 56.9%

Q5CV1 7 C,yptosporidiztrn parvum Hypothetical protein 1 .5e°5 61.5%

Buchnera aphidicola NADH dehydrogenase I
Q057W5 1.9e°5 54.9%

chain L

Q$IBJ6 Plasmodium falciparum Hypothetical protein 2.9e°5 58.4%
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Table 2. Best informative hits for the MURF1 profile HMM when searched against

profile HMMs from various databases

Best informative hit e-value Identity Probability

Pfam NADH-Ubiquinone/plastoquinone
1.6e-08 21% 96.80

(Complex I), various subunits

PANTHER NADH dehydrogenase 4.3e-09 16% 99.20

COG NADH:Ubiquinone oxidoreductase
3.8e-03 19% 39.65

subunit 2

TIGR NDH I N Proton-transiocating
—— 91 19% 75.95

NADH-Quinone oxidoreductase
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Table 3. Best informative hits for the MURF1 profile HMM when searched against the

profile HMMs of ail NADH dehydrogenase subunits. The hits are ranked based on e-values

Profile HMMs* e-value Identity Probability

NAD2 0.45 1.0e’5 26% 96.6

NAD4O.4 7.$e’2 21% 76.0

NAD6O.4 2.4e°9 24% 91.8

NAD5O.4 7.9e°9 21% 87.8

NADIO.5 4e°8 18% $7.0

NAD3O.4 5.7e°6 30% 62.1

NAD4LO.4 1.6e°4 25% 34.2

NAD4LO.4 l.6e°4 25% 34.2

*The number following the subunit name is the sequence identity threshold used for ctustering the

sequences from which we generate the profile HMM. For example, NAD2_0.45 profile HMM is

generated by clustering ail known NAD2 sequences at 45% sequence identity threshoid using CD-

HIT.
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Supplementary Information

Table Si. List of kinetoplastid MURF1 sequences with GenBank Accession Numbers

Species Name GenBank Accession

Phytomonas serpens AAD2$358

Leishmania tarentotae NP050068

Trypanosoma brucei E22 $45

Trypanosoma sp. AAN$6606

Btastocrithidia cuticis AAA73417

Crithidiafascicutata AAA7342 1

Herpetomonas muscarum AAA7341 5
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CONCLUSION

Function prediction remains a central challenge in genomics research, with the gap

between the numbers of function-known and unknown sequences widening progressively.

Our newly developed function annotation approach complements the existing state-of-the

art methods in closing that gap, since it overcomes species boundaries (pan-taxonomic) and

provides expert knowledge-based in silico validation of the predicted functions. Further,

this work led us to identify the function of a previously unknown protein involved in

infectious disease.

Original contributions to Knowledge

This thesis makes the following original contributions to our current knowledge:

1. function assignment for the Complex III subunits of a primitive eukaryote

Seculomonas ecuadoriensis using state-of-the-art sequence similarity-based

methods.

2. Development ofa similarity-free function annotation method MOP$ and annotation

of all the mitochondrion-encoded proteins of unknown function.

3. DeveÏopment of a prediction evaluation procedure that is independent of the

machine learning classifier and training data by using domain-specific knowledge.

More than half of the predicted functions received positive support.



4. Identification of the function of a controversial Kinetoplastid gene MURFÏ as

NADHdh Subunit 2, providing multiple unes of support from in silico analyses and

from life sciences literature.

The experience we gained during this study allows us to formulate several

recommendations for future work in this area:

• Validation of classifier predictions should be done with methods that are

independent of the training data and the classifier. The assumption that the good

performance of the classifier on the known data implies good performance on the

unknown data is not aiways true.

• In order to avoid over-estimation of predictor performance, leave-one-taxon-out

cross validation should be conducted not only with a densely populated clade but

also with poorly and moderately populated clades.

• Class imbalance in the training data should be addressed in a biological meaningful

way. Large classes should be undersampled by clustering sequences at different

sequence identity thresholds rather than by random removal; oversampling of small

classes, which is usually done by duplication, is biologically not sensible.

• Sensitive methods such as Profile HMM — Profile HMM comparison has lot of

potential in identifying the distant homologues. However, it requires several

homologues of unknown sequences for generating the multiple sequence alignment

and Profile HMM.
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Mitochondrial genomes are an ideal data set for machine learning based function

annotation due to their reasonable number of well-defined protein flinctional

classes.

Future Developments

My work opens several new areas of research for machine leaming based molecular

protein function prediction. For example, there are many other factors besides amino acid

sequence that are essential for protein function. One of these factors is post-translational

modifications (e.g. phosphorylation or glycosylation), yet none of the current methods take

modifications into account. It would be worthwhile to explore whether the inclusion of

features such as these will enhance function prediction accuracy.

In addition, the role of proteins in physiological and cellular processes rely on

temporal and spatial regulation of gene expression, with regulatory signals located not in

the coding regions but in the untranslated portions of a gene. The integration of regulatory

and structural information in protein function prediction appears to be a promising yet

challenging direction for future research.

In this study, we used physicochemical properties and amino acid frequencies to

represent the protein sequences. But it would be interesting to test more attributes. For

example, 4-gapped dipeptides should capture amphipathic helices, which are present in

many mitochondrial proteins. However, the ratio of 4-gapped dipeptides should be

calculated only for the corresponding domains rather than for the full-length sequences, in

order flot to dilute the signal. Further promising attributes to include are predicted
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secondary structure such as the number of alpha helices, beta sheets and cous, which are

believed to be conserved between distant homologues where the shared sequence similarity

is very low. finally, information about gene neighbors can also be exploited as features,

especially since mitochondrial DNAs of many taxa have maintained vestiges of the

eubacterial operon structure.

Another avenue for future studies would be to analyse the rules generated by the

decision tree classifiers to see whether biological knowledge can be extracted. If the tree is

too complex with numerous leaf nodes, feature selection and aggressive pruning can be

used to reduce the tree size and hence potentially allow inference of biological insights.

finally, another area worth exploring is the use of other machine learning methods

such as Support Vector Machines (SVM), which are less sensitive to class imbalance but

have at least two drawbacks: they are computationally expensive and extraction of

biological knowledge is flot straightforward.
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