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Résumé

L’intégrase du VIH-1 (IN) est l’enzyme rétrovirale responsable de l’intégration

d’une copie d’ADN viral à double brin dans le chromosome hôte. Ceci constitue une

étape essentielle au cycle de vie viral. Il n’existe actuellement aucune structure de l’IN

du Vifi- 1 de pleine longueur ni aucune structure d’une IN en complexe avec un ADN

substrat. En l’absence de ces informations, des études de modélisation moléculaire et

des études de mutagenèse, telles celles présentées ici, pourraient constituer une

stratégie propice à l’obtention de nouvelles informations structure-fonction sur cette

importante cible pharmacologique. Une banque de balayage par insertion avait été

préalablement produite dans le gène de l’intégrase du VLH-1. La banque a été

produite en utilisant un système de transposase Tn5. Nous avons obtenu une série de

vecteurs contenant chacun une insertion de 57 paires de bases disposées aléatoirement

dans le gène et donnant lieu à une insertion de 19 acides aminés au cours de

l’expression protéique, peu importe le cadre de lecture. Au total, 55 mutants d’insertion

uniques ont été analysés: 2 insertions dans le domaine N-terminal, 29 insertions dans le

noyau catalytique et 24 insertions dans le domaine C-terminal. Les effets de

l’insertion sur l’activité enzymatique ont été déterminés in vitro. Nous avons identifié

trois régions qui ont fonctionnellement toléré diverses insertions. Celles-ci

correspondent à la jonction entre le domaine N-terminal et le noyau catalytique, à la

jonction entre le noyau catalytique et le domaine C-terminal et au domaine C-terminal

de l’iN. Ces résultats corrèlent avec des études de délétion délimitant les limites des

domaines et des sous-domaines de diverses iNs.

Mots-clés : VIH- 1, intégrase, transposon 1n5
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Summary

HIV-1 integrase (IN) is the retroviral protein responsible for the insertion of a

double-stranded DNA copy into host chromosome, which is an essential step during the

viral life cycle. As of today, there is presently no structure available for any IN

complexed with a DNA substrate, and no full-length experimental structure of HW- 1 IN

is available. In the absence of this information, molecular modeling studies and

mutational studies, such as the ones presented here, might be a good strategy to explore

a possible solution for obtaining structure-function information on this

pharmacologically important enzyme. A linker-scanning library was previously

generated within the HW- 1 integrase gene. The library was generated using a Tn5

transposition system and resulted in a series of vectors each containing a single 57 base

pair insertion at random locations. Insertions resulted in 19-amino acid in-frame

insertions. A total of 55 unique insertion mutants were analyzed: 2 insertions within the

N-terminal domain, 29 insertions within the catalytic core and 24 insertions within the

C-terminal domain. The effects of the insertions on enzymatic activity were determined

in vitro. Three regions were identified that functionally tolerated various

linker-insertions. These correspond to the N-terminal domainlcatalytic core junction, the

junction between the IN catalytic core and the C-terminal domain and the C-terminal

domain of IN. These resuits correlate with deletional studies mapping the domain and

sub-domain boundaries ofvarious IN.

Keywords: HW- 1, integrase, Tn5 transposon
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Chapter I

Introduction

Acquired immunodeficiency syndrome (ADS) is caused by the human

immunodeficiency virus (HIV). HW is a retrovirus belonging to the lentivirus family

that was unknown until the early 1980’s, but since that time has been spread around the

world and has infected millions of persons[l]. The mature HW retrovirus core has two

short strands of RNA 9200 nucleotide bases long--along with the enzymes reverse

transcriptase, protease, ribonuclease, and integrase (IN). The core of the retrovirus is

encased in an outer lipid envelope containing an antigen, gp120, which plays a role in

the binding ofthe virus to the target celis with CD4 receptors[2]. The gene content ofthe

HW genome, similar to other retroviruses, has three major genes--gag, pol, and env[3].

Afier entering the body, HIV retrovirus enters the target celi via the CD4 receptor. The

HIV particle uncoats from the envelope to release its RNA into the cellular cytoplasm.

Its RNA genome is transcribed into proviral DNA by reverse transcriptase bound to the

HW RNA, which is one of the enzyme products of the p01 gene. HW proviral DNA is

then inserted into host cell genomic DNA by the iN enzyme. Once the HIV proviral

DNA is within the infected cell’s genome, it becomes part of the host genome. The host

cell can replicate the HIV provirus. The infected ceil can undergo lysis with release of

new HIV virions, which in tum can infect additional cells. Current antiviral drugs are

either inhibitors of HW reverse transcriptase (RT) or protease (PR) but no drugs against

IN are available yet. HIV IN is a good target for drug discovery, since IN is essential for

retroviral replication and production of new virus; moreover, it has no obvious

1
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functional analogue in the host (Fig.1.1).

In this thesis, the HW-1 IN gene was subjected to random insertion mutagenesis.

Jndividual constructs, selected from the library, were assayed for the effects on iN

functions in vitro. The effect of individual insertion on enzymatic activity were analyzed

in the context of HW-1 monomer, dimer and tetramer model withlwithout DNA to gain

insight into the organization of the HW- 1 integrase complex with DNA. One aim of this

mutational analysis was to identify sites within the IN protein that may tolerate small

insertional tags whose function may alter the target-site selection of the viral integrases.

Another aim is to compare available tetramer models with our experimental data to see

how they agree with ours and existing biochemical data. Moreover, the domain

boundaries defined in this study might be useful in expressing minimized iN constructs

for crystallization studies.

1.1 111V-1 Integrase

Integrase catalyzes the integration of a double-stranded DNA copy of the retroviral

RNA genome into the genome of a host[4]. This DNA integration reaction requires

specific sequences at the 3’ and 5’ termini of the viral DNA (referred to as U3 and

U5, respectively, in reference to their unique character) and can be done using

purified IN alone in vitro [5]. The integration reaction is carried out in two steps:

3’-end processing, which is a hydrolytic cleavage, occurs two bases from the 3’ end of

the U3 and U5 termini, just 3’ of a conserved CA dinucleotide, and strand transfer:

the 3’-end processing reaction exposes the free 3’-hydroxyl, which is then used to

perform a nucleophilic attack on the target DNA. The sites ofnucleophilic attack on

the two strands of the target DNA are separated by 5 bp. The 5’ ends of the viral

DNA are left unjoined in the resulting integration intermediate. The removal of the

2
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two unpaired nucleotides at each 5’ end of the viral DNA, gap fihling, and ligation

are likely to be carried out by host enzymes[6, 7]. An in vitro reconstructed system

using purified IN enzyme and model DNA substrates that consist of short

oligodeoxynucleotide duplexes has been employed to explore the details of the

biochemistry of IN and its catalytic mechanism (fig. 1.2). This short

oligodeoxynucleotide duplex substrate mimics the U5 or U3 ends of the viral DNA [6,

8]. Blunt-ended viral substrates can be properly processed at their 3’ ends in vitro,

and the processed substrates can subsequently be used as a strand transfer substrate

and inserted into a target DNA. In addition, HIV IN also can carry out the

disintegration reaction, in which a substrate that mimics one end of the viral DNAjoined

to the target DNA is cleaved into its viral and target DNA parts [5, 6]. The disintegration

reacfion is the reverse of the strand transfer reaction. There is no evidence that

disintegration is biologically relevant in vivo but it is a useful assay to test the

ability of IN to catalyze polynucleotidyl transfer reactions (fig. 1.2).

The homooligomeric HIV-1 IN protein is 288 amino acids in length. Structural

studies, amino acid sequence alignments, limited proteolysis, site-directed mutagenesis

studies and complementation experiments [9-13] have revealed the presence of three

distinct domains per monomer: the N-terminal domain, the catalytic core domain, and

the C-terminal domain. Each domain can independently fold within each monomer. The

first two domains are structurally highly conserved among retroviral and retrotransposon

INs. The N-terminal domain (1-50) binds zinc, the core domain (50-212) contains the

catalytic triad motif (D, D, 35E), and the C-terminal domain (213-288), binds DNA

non-specifically (Fig.3). Insolubility of full-length HW-1 IN has limited structural

analyses to individual domains or two contiguous domains.

3
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fIGURE 1.1. Overview of the retroviral life cycle. Attachment of the viral envelope

surface protein to specific receptors on the surface of a host cell resuits in fusion and

release of the viral core into the host cell cytoplasm. Reverse transcription then

generates a double stranded DNA copy of the RNA genome. The viral DNA undergoes

3’-processing in the cytoplasm and subsequently travels into the nucleus, where strand

transfer results in the integration of the viral DNA into the host genome to form the

provirus. Transcription generates messenger RNAs as well as viron RNAs. mRNAs are

translated in the cytoplasm. Virus proteins and progeny RNA assemble and bud off at the

plasma membrane and subsequently mature into infectious particles.
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FIGURE 1.2. Schematic representation of the 32P-labelled substrates and products of in

vitro analysis of the enzymatic activities catalyzed by the retroviral IN for a single U5

end. Step 1: 3’-processing; step 2: strand transfer; and step 3: disintegration, which is the

reverse of the strand-transfer reaction.
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FIGURE 1.3. A schematic model ofHIV-1 IN. It shows the tbree independently folding

domains: the N-terminal domain, the catalytic core and the C-terminal domain. The

conserved and catalytically active residues are indicated and the corresponding residue

numbers are shown above each residue. Adapted from FIGURE 10.1 of Asante-Appiah

and Skalka, 1999 [14].

The structures of individual domain structures have been determined by X-ray

diffraction [15-23] or by solution NMR [24-28]. Structures of two contiguous domains,

both the N-terminal domain plus the core domain [13] and the core domain plus the

C-terminal domain [12, 29, 30] have also been resolved. Both individual domain and

two-domain structures are also available for several other retroviral lNs, which are

structurally very similar to HW- 1 lNs. However, there is presently no structure available

for any IN complexed with DNA substrate. In the absence ofthis information, molecular

modeling studies and mutational studies, such as the one presented here, constitute an

alternative method to obtain structure-function information on this pharmacologically

important enze.

6
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1.1.1 Structure of the catalytic core domain

The catalytic core domain of HW IN is well conserved among retrovirai

INs,shares significant structural simiiarity with the transposase proteins and contains the

characteristic D, D (35) E motif found in polynucleotidyl transferases [26, 28, 31]. These

invariant residues, Asp-64, Asp-116, and Glu-152, are key residues of the active site.

Mutagenesis studies show that substitution of any of the three catalytic residues

abolishes ail three reactions [10, 11, 32, 33]. The core domain alone can carry out the

disintegration reaction [10, 11, 34-36]. However, truncated IN proteins lacking either the

N-terminai domain or the C-terminal domain cannot catalyze 3’ processing and strand

transfer t33, 34, 36-39]. Anumber of structures ofthe catalytic core domain ofHIV-1 IN

exist [12, 13, 15-18, 21, 40]. The overail topology of ail these structures is similar to the

structure in (fig. 1.4). It is roughiy spherical in shape and two core domains associate in

the crystal to form a two-foid axis-reiated dimer. The dimer interface is quite large with

approximately 1300 À2 per monomer excluded from solvent. The interface is quite

hydrophobic and the primary contacts between subunits in both structures involve

a-helices 1 and 5. As the corresponding helices are not involved in protein—protein

contacts in the Tn5 transposase-DNA compiex, which has been recentiy resolved [41],

and as the DNA plays an important roie in Tn5 transposase dimerization, one might

argue against the bioiogicai relevance of this interface. However, functionai IN has been

suggested to be active as a tetramer [14, 42] or even an octamer [43]. This crystaiiized

IN dimer and its interface may act as a whoie to bind the same virai end and function as

the single Tn5 transposase monomer does.

7
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FIGURE 1.4. Stmcture ofthe catalytic core domain ofHIV-1 integrase. Corresponding

13-strands and a-helices are labeled in panel A, Side chains of consewed acidic residues of

the active site are shown in a bail and stick representation in panel B. Coordinates ftom a

HW-1 IN core domain (accession codes 111G in the Brookhaven Protein Data Bank) was

used to generate this Figure; middle panels were created using published coordinates.

Each monomer consists of a five-stranded 13-sheet together with six Œ-helices.

The three catalytic residues of the core domain are Ïocated in close proximity in the

structure and define the position of the active site (Fig. 1.4). However, the two

catalytic sites are on opposite sides of the spherical,crystal dimer and are separated

by approximateiy 30À. On the other hand, the integration sites on target DNA are

generally separated by 5 bp, which is equivalent to roughly 15 Â in B-form DNA.

Thus, the distance observed in the dimer structure is not compatible with catalysis

of the integration event. Either this crystal dimer structure is not biologically relevant

or else higher order multimers are formed in vivo based on the dimer structure, such that

two active sites could be positioned doser in a higher order muitimer [15].
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1.1.2 Structure of the N-Terminal Domain

The crystal structure of the N-terminal domain reveals a dimeric structure.

Conserved residues His 12, Ris 16, Cys 40 and Cys 43, located in a three-helix bundie,

ensure tetrahedral coordination of Zn2. At the monomer level, the structure of the

N-terminal domain determined by X-ray diffraction as part of the N-terminal domain

plus core structure is very similar to the previously determined NMR structure of the

isolated N-terminal domain. However, the dimer interface is entirely different (Fig. 1.5)

[13]. Whereas it is dominated by interactions between the third helix in the NMR

structure, the dimeric interface in the 1—2I2 crystal structure (N-terminal domain plus

core) comprises the N-termini of the first and third -he1ix. The surface of the dimer

interface in the two-domain structure is smaller and more hydrophobic than in the dimer

ofthe isolated domain in solution.

The biological relevance of Zn2 and the N-terminal HHCC domain in HW IN

has been well documented. Indeed, utilizing a combination of techniques including UV

visible absorption, circular dichroism, and fluorescence spectroscopies, it has been

demonstrated that metal ions (Zn2, Co2, or Cd2) are bound with equimolar

stoichiometry by the isolated N-terminal domain t44]. A mutation in the HHCC motif

abolishes zinc-binding capacity of HIV-1 iN. The isolated N-terminal domain is

disordered in the absence of zinc [45]. The N-terminal domain is necessary for

3’-processing and strand transfer activity in HIV-1: deletion of this domain or mutation

of any of the four conserved HHCC residues abolishes 3’-processing and strand transfer

activity ofHW-1 iN [10].

However, in a study of RSV IN, 3’-processing and strand transfer products are

detectable in reactions after deletion of the HHCC domain, but is much less efficient

9
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than with the wild type in the presence of Mn2 but flot Mg2. Most strikingly, when a

mutant of RSV IN lacking the N-terminal HHCC domain is fused to various short

peptides, efficient strand transfer activity can be restored to the level of wild type RSV

IN [46]. Similarly, deletion of this domain in Visna virus [47] IN has no effect on

3’-processing. Substitution of Hisl2 and Hisl6 in RSV IN does not significantly impair

3’-processing or strand transfer [48]. When the N-terminal domain of IN expressed

independently, it does flot bind DNA [9, 48], but it has been suggested that it interacts

with DNA in the context of the intact protein t48-51]. Furthermore, several studies

showed that Zn2 promotes multimerization, which should thus occur through the HHCC

motif and enhances the catalytic activity of HIV-l IN [45, 52], however, mutants lacking

this domain can stiil form tetramers [53, 54]. Based on the above observations; the exact

role of the N-terminal domain in these reactions is not clear. However, the high

conservation of this motif and resuits from genetic experiments suggest that this domain

is functionally important. Further biochemical studies are needed to conclude on its in

vivo importance.

10
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A B C

FIGURE 1.5. Ribbon drawings of N-terminal domain structures. Side chains of

conserved HHCC residues of the Zn2-che1ating HHCC motif are shown in a bail and

stick representation. The Zn2 cation is shown as CKP. The N-terminus and C-terminus

are indicated. (A) and (B) Coordinates from PDB file 1 WJA determined by NMR; (A)

shows the monomer and (B) the dimer. (C) The dimer interface is shown for the

N-terminal domain from PBD file 1K6Y determined by X-ray diffraction. Note that the

dimerization interface in this crystal structure is completely different from the solution

structure in (B).
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1.1.3 Structure of the C-Terminal Domain

The amino acid sequences of the C-terminal domain, which are approximately 80—100

amino acids long, are flot conserved among INs from different retroviruses. Mutation

and deletion analyses with both avian sarcoma virus (ASV) and HW-1 INs indicate that

the C-terminal domain contains nonspecific DNA binding activity [9, 48, 55-57]. With

the exception of Feline Immunodeficiency Virus (fIV) N [23] in which deletion of the

C-terminus (residues 236-28 1) resulted in a mutant that retained efficient 3’-end

processing and disintegration activities but weak 3’-end joining activity, ail lNs with a

deleted C-terminal domain lose 3’ processing and strand transfer activities [11, 34, 36,

39, 46, 58-60]. This inability presumably resuits from loss of capacity to correctly

position and orient the viral LTR ends at the active site. However, when the viral DNA

ends have been correctly prepositioned, such as with a synthetic disintegration substrate

during in vitro assays, catalysis can occur with mutant Ns that have been truncated at

the N-terminus or the C-terminus or both [36, 54]

Two studies using NMR [24, 61] on solutions of HW-1 IN C-terminal domain

showed homo-dimeric structures with each subunit composed of a five-stranded 3

-barrel that is topoiogically very similar to structures of SH3 domains, which occur

in many signal transduction proteins [11, 46, 60, 62, 63]. These two solution structures

agree well with each other (Fig. 1.6). The structure of the C-terminal domain monomer

resolved by X-ray diffraction is also similar to the structures resolved by NMR. The two

C-terminal subunits in the dimeric structure are related to each other by a 90° rotation

relative to their two-fold axis.

Structures also exist for the N-terminal domain plus the core domain [13] and for

12
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the core domain plus the C-terminal domain [12, 29, 30]. The core domains in those two

domain structures are almost identical to the structure of the isolated core domain and

the two-fold symmetrical dimer interface is also similar. Superimposition of the catalytic

core of these two-domain structures resuits in a proposed structure of the full-length IN

dimer, which might be biologically relevant [13] and will be fùrther discussed in this

thesis. Residues 271—28$ in the C-terminal domain are either not clearly resolved or

deleted. The hinge region connecting the core and the C-terminal domain is different

among HIV-1, Simian immunodeficiency virus (SIV) and Rous sarcoma virus (RSV) IN,

which probably reflects flexibility in this region. Moloney murine leukemia virus

(M-MULV) IN contains a sequence insertion ofunknown function in this region [64].

The interactions at the dimer interface are predominantly hydrophobic and

localize to 3-strands 2, 3, and 4 , with the two triple-stranded antiparallel 3-sheets, one

from each subunit, oriented antiparallel to each other. One surface of the dimer is a

saddle-shaped groove with dimensions ofapproximately 24 x 23 x 12 À in cross section,

which could accommodate a duplex DNA molecule [24]. This groove contains basic

residues favorably positioned to contact DNA. Lys264, which has been shown from

mutational data to be involved in DNA binding, protrudes from this surface. The

diversity and hydrophobic character of the protein—protein interactions forming dimer of

the C-terminal domains from HW-1, RSV [30], and SP/ [29] suggest that they are weak

and nonspecific [12].
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A B

FIGURE 1.6. Ribbon drawings of C-terminal domain structures shown in monomeric

form. Coordinates from PDB file 1MV determined by NMR was used to generate (A).

Coordinates from PDB file 1EX4 determined by X-ray diffraction was used to generate

(B).

1.1.4 Integrase-DNA interaction

There are currently no IN structures available with substrate DNA docked in the

active site. However, available IN structures and biochemical data provide considerable

information about IN-DNA interaction. This section provides a review of the

information available to date, which will be used as a basis for interpretation of the

results presented in this thesis.

In the preintegration complex, IN must make specific interactions with viral DNA

sequences, and afler transporting the preintegration complex into the nucleus, IN must

also interact with the target DNA for the integration reaction to occur. It is clear that IN

can distinguish between viral DNA ends and other oligonucleotides [65-6$] since IN

protein requires both the subterminal and the distal position of its viral DNA recognition

14



15

sequence for efficient cleavage to occur; however ultraviolet (UV) cross-linking

studies [55, 69], filter binding assays [37, 70], Southwestern blots [56, 59], and

electrophoretic mobility shift assays [51] show that IN binds to substrate DNAs

with affinities similar to those of nonsubstrate DNAs in vitro. In other words,

although the 3’ processing and strand transfer activities of retroviral IN are

sequence-dependent on both the distal and proximal sequences [67, 71-75], the

binding of iN to DNA seems nonspecific. [55, 76, 77]. Experiments suggest that

specificity in catalysis is achieved by nucleotides both distal and proximal to the

conserved CA [74, 75] and metal cofactor t77-80]. for example, experiments

showed that a stable complex of IN and viral DNA is formed in the presence of Mn2

and the IN-viral DNA complex is resistant to challenge by an excess of competitor DNA

[78]. A comparative study shows that each iN from M-MUL’vÇ human T-cell leukemia

virus (HTLV)-l, HTLV-2 and HIV-1 required specific terminal LTR sequences for

optimal catalysis of 3’-processing reactions, while strand transfer and disintegration

reactions do not. Furthermore, in the 3’-processing reaction, sequence specificity for

each IN was traced to the three nucleotides proximal to the conserved CA [81] in the

presence of metal Mn2. Another study, by in vitro selection and specific

photocrosslinking in the presence of Mg2, identified that distal positions in the LTR

termini interact with the C-terminal domain of IN, providing evidence for the role of that

domain in stabilization of viral DNA binding, while the terminal LTR interaction is

mapped to the disordered loop of the iN core domain, specifically residues Q148 and

Y143 t82]. Integrases need to fray viral LTR double-stranded DNA ends for

3’-processing to proceed since adding nucleotides to the 3’-end of the LTR sequence

severely reduces 3’ processing while increased cleavage by IN was detected when the
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nucleotides 3’ to the CA-3’ dinucleotide were present as single-stranded DNA [66].

Further evidence cornes from a nucleotide analog substitution study, in which

substitutions increasing the hydrogen bonding between the ‘plus’ and the ‘minus’ strand

decreases 3’ processing activity, while those which reduce or disrupt base pairing in the

conserved CA dinucleotide increase activity [76, 79, 83-87]. This requirernent for

base-pair disruption may account for the inability of iN to use intemal sites on DNA

molecules as viral att (attachment) sites. Binding of IN to U5 LTR DNA is tighter,

exhibiting a prolonged half-life in the presence of Mn2 cations compared to Mg2. The

preference observed for Mn2 in standard in vitro integration assays can be attributed

entirely to the augmentation in the DNAbinding affinity ofthe IN [77].

The core dornain contains the active site and is the only part of the IN protein

capable of independent nucleotidyl transfer. This dornain interacts with viral LTR ends

[43, 67, 71, 72, 76, 79, 82, 88-90]. for example, cross-linking data have demonstrated

that conserved Lys156 and Lys159 residues are involved in binding ofthe adenosine

ofthe conserved CA [71]. Furthermore, three active site residues ofthe DD35E motif in

the core must contact both the viral LTR end and the target DNA for the integration

reaction to occur. Cross-linking experiments also suggest that the adjacent conserved

cytosine and the 5’ dinucleotide on the noncleaved strand also make contact with

regions of the core domain, in and around the flexible ioop [$2, $8]. These data

support a clear role in viral DNA end binding by the core domain. However, IN is

known to function as a multimer (see section 1.1.5), and it remains to be determined

which specific DNA contacts are in cis or trans with respect to the active site.

The N-terminal domain is in close proxirnity to target DNA 5’ to the site of

integration as shown by crosslinking data [88]. By constmcting chimeras between HW-1
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and Visna virus iNs, it is suggested that the N-terminus of IN does flot contribute to viral

DNA specificity and is flot involved in determining substrate specificity for

3’-processing and strand transfer activities. Thus, this function must reside in the central

region or C-terminus of IN [47]. Furthermore, the first 26 residues of RSV and HIV-1

IN, which include the first two histidines in the HHCC motif, are flot required for DNA

binding [9, 76].

Experiments showed that the C-terminal domain of IN interacts with bases distal

to the terminal bases of the LTRs [71, 82, 88]; this interaction may play an important

role in stabilization of viral DNA binding t82]. This may help to explain several

results in which mutations in the C-terminal domain affect the 3’-processing

activity [57, 91], which does not require the binding of target DNA. Structurally, it

is suggested that a strip of positively charged amino acids from both monomers

extending from each active site of the dimer to the C-terminal domain of the other

monomer may act as dimeric platform for binding each viral DNA end. This strip

potentially may stabilize the viral att site DNA for 3’-processing and strand transfer. This

putative DNA binding site involves residues from both monomers: the core from

monomer A with the C-terminal domain from monomer B in the dimer implying that a

viral end cleaved in the active site of one monomer is stabilized by residues from the

C-terminus of the other monomer This is consistent with in vitro complementation

experiments [11, 39]. Previously, the C-terminal domain has been presumed to be

involved in target DNA binding and this IN-target DNA interaction has been

presumed to be nonspecific [57, 91], which is suggested by target sites ofintegration

known to exhibit very little sequence specificity [92, 93]. Mutation of conserved

lysine-264 has a dramatic effect on the nonspecific DNA binding activity of the
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isolated C-terminal fragment, as judged by ultraviolet (LTV) cross-linking, and by

3’-processing by full-length N containing a K264E mutation [24, 57]. Structural

modeling based on NMR C-terminal structure, discussed in section 1.1.3, illustrates

that the dimensions of the saddle-shaped groove consisting of amino acids 220-270 in

the dimer are appropriate for DNA binding. In this model, amino acids 220-270 in the

dimer can readiÏy bind to the major groove of DNA, where the side-chains of Ser230,

Pro261, Lys25$, and Lys264 interact with the sugar-phosphate backbone, and the side

chain of Arg231 interacts with the bases [91]. Some work has suggested a role for

Arg-262 and Leu-234 in DNA binding [91]. Mutagenic analysis shows that Ser-230

and Arg-263 are involved in enzymatic activity and DNA binding [91]. Although the

C-terminal domain has been implicated in binding of target DNA, certain work from

chimeric N proteins shows that the core domain plays a more important role in target

binding than the N- or C-terminal domains [47, 58]. Activity assays show that these

chimeras exhibit the target site preference of the core domain, but flot ftanking

domains. Some cross-linking experiments have crosslinked target DNA to portions

of both the core and C-terminal domains, as well as a region of the N-terminal

domain [94]. The exact function of the C-terminal domain is stiil not quite clear,

but available experimental data suggest the idea of a complex network of DNA

binding rather than a model in which individual domains are unilaterally

responsible for binding to viral or target DNA [42]. Transposases and retroviral INs

share a structurally related catalytic domain. They are members of the larger superfamily

ofpolynucleotidyl transferases. Homology modeling based Tn5-DNA complex structure

is likely to give us insights about N-DNA interactions.
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1.1.5 Multimeric organization ofHIV-1 IN

Many evidences show that IN functions as a multirner. However, there is

conflicting evidence with respect to the number of units composing the active

multimer and with respect to the actual dimerization interfaces. Clearly,

identification of the multirnerization interfaces must take into account the surfaces

involved in DNA binding, and vice-versa. In the absence of structural data of

multimers with bound DNA, our study set out to explore these potential binding

surfaces using biochernical rnethods. The following section describes the

information available to date, which will be used as a complement for interpretation of

the resuits presented in this thesis.

Biochemical studies have revealed that multimerization determinants reside in

the core domain, as well as in the N-terminal and C-terminal regions of HIV- 1 IN [95].

Deletion mutants ofHIV-1 IN that lack either the N-terminal or C-terminal domain

have no 3’-processing or strand transfer activity [34]. However, if an N-terminally

truncated IN is mixed with a C-terminally truncated IN, 3’-processing and strand

transfer activities can be restored [34] [11]. Further evidences for multirnerization

corne from mutagenesis and deletion studies which show that full-length N can

multirnerize to form both dirners and tetramers in solution [45, 52, 96, 971.

Furthermore, the N-terminal domain of IN can function in trans but flot cis to the core

domain [32, 9$], while the C-terminal dornain can function in cis [34] or trans [11, 34,

43, $9].The above results also suggest that the core domain contributes the active site

enzymatic activity in partnership with an N-terminal domain from a different monomer

of iN.

The difficulty of deterrnining the multimeric organization of HIV-1 IN
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cornes frorn the fact that purified recombinant INs can exist in a dynarnic

equilibrium including monorners, dirners, tetrarners, and even higher order

oligomers [50, 96, 99-101], and any species can be an active form of IN except the

monorner [96]. The stoichiometry of retroviral IN complex is flot known in vitro.

Several structural studies show that a tetramer (dimer-of-dimers) or an octamer of IN

wouldbe necessary to carry out concerted ifitegration ofboth LTRs on target DNA [13,

30, 43]. for example, the overail structure of an IN tetrarner formed by crystal lattice

contacts frorn the N-terminal and core two-dornain structure ti 3]is structurally similar to

a related bacterial transposase Tn5 dirner cornplex with its DNA substrate, which can be

considered as evidence supporting the 51V tetrarneric model. Furthermore, this tetrarner

model exhibits positively charged channels suitable for DNA binding [13]. A recent

study that used iN complexes present in nuclear extracts from human cells suggested

that the minimal cellular IN cornplex is a homotetramer, implying that at least an

octamer of iN is required to carry out concerted integration of both LTR ends into target

DNA [102]. Within this tetramer, it will be only one ofthe two active sites in each dimer

that would be actually involved in the chemical reactions.

1.2 Purpose and Scope of the Study

1.2.1 Research objectives

The integration process is an obligate part of the retroviral life cycle. Retroviral iN

is both essential and sufficient to catalyze this integration reaction. The overail aim of

this study is to gain a finer understanding of the biochernistry of the integration reaction.

The specific research objectives ofthis dissertation include:

The expression, purification and characterization of the previously obtained

insertional mutants ofHIV-1 IN.
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• To gain insights into the role ofpreviously predicted unstructured loops.

• To map functionally tolerant region of insertions ofHIV-1 IN.

• To gain insights into IN-DNA interaction.

• To compare available tetramer models with our experimental data to see how

they agree with our new data and with existing biochemical data.

• b define domain boundaries, which might be useful to express minimized IN

constructs for crystallization studies.

1.2.2 Significance of the study

The development of effective inhibitors of HP! replication targeted to HP!

reverse transcriptase and HIV protease has demonstrated the potential effectiveness of

antiviral therapy for the treatment of ATDS, which benefits from the foundation of basic

knowledge in understanding the mechanism of retroviral reverse transcription and the

structure of the protease. Drugs targeted to HP! IN would be a valuable complement to

reverse transcriptase and protease inhibitors. However, the lack of detailed structural

information about IN/substrate interactions has so far hindered the search for strong and

selective IN inhibitors. Although the structures of ail three domains of IN have been

individually determined, their spatial arrangement in the active complex with DNA

substrate is unknown. The studies I present herein using a linker-scanning approach will

provide a better insight into the functioning of this enzyme. Resuits from this study will

therefore provide valuable information for those concemed with the design of effective

inhibitors of the retroviral IN.
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Chapter H

Compreliensive Linker-scanning Analysis of

tlie 111V-1 Integrase Protein

2.1 Context of the work relative to resuits obtained previously

The work described in Chapter 2 was begun prior to registering as a M.Sc. student

in the Bio-informatics program at Université de Montréal. Specifically, Sections 2.2.2:

Mutagenesis: In vitro transposon-based linker insertion into pLNSD+Iis; 2.2.3: Selection

of clones with insertions within the HW-11N coding region; and 2.2.4: Generating the

IN frame 19-codon insertion, were performed by myseif while I was a research associate

in the laboratory of Prof. C. Jonsson, currently at the Southern Research Institute,

Department of Biochemistry and Molecular Biology, Birmingham AL. As this work is

not yet published, it is described herein in full, with the approval of Prof Jonsson.

Sections 2.2.5: Expression and purification of mutant and wild-type IN; 2.2.6: Substrate

preparation; and 2.2.7: In vitro integration and disintegration assays, were initiated prior

to registering as a M.Sc. student and were completed during the course of this degree.

Section 2.2.8: Structural model of HIV-1 IN monomer were initiated and completed

during the course of this degree.

The work presented in Chapter 2 has been submitted as part of a collaborative

manuscript entitled: Comprehensive Linker-Scanning Analysis of the MuLV RNase H,

MuLV and HIV-1 Integrase Proteins, Author: Jennifer Puglia1, Tan Wang2, Christine
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Smith-Snyder’, Marie Cote’, Michael Scier’, Joelle Pelletier4, Sinu John3, Colleen B.

Jonsson2 and Monica J. Roth’

‘Department of Biochemistry, Robert Wood Johnson Medical School, University of

Medicine and Dentistry ofNew Jersey 675 Hoes Lane Piscataway, NI 08854.

2 Department of Biochemistry and Molecular Biology, Southem Research Institute,

2000 9th Ave S, Birmingham, AL 35205.

3Graduate Program in Biochemistry and Molecular Genetics, University of Alabama at

Birmingham, Birmingham, AL 35294.

4Département de Chimie, Faculté des Arts et Sciences, et Département de Biochimie,

Faculté de Médecine, Université de Montréal, C.P. 6128, Succursale Centre-Ville,

Montréal, Québec H3C 317, Canada

2.2 Introduction

Various methods have been developed for the comprehensive analysis of a gene

by construction of a saturating or near-saturating library of mutants t103-105]. These

studies have defined domain boundaries, provided functional maps, and insights into

previously predicted unstructured loops [106] [103-105, 107-109]. In this study, the

method ofinsertional functional mapping is applied to the HW-1 IN (iN) protein.

The integration of retroviral particles is a complex process. Preintegrative

complexes (PICs) lias been purified and characterized from infected cells [110-122].

Despite extensive study, the assembly of this complex is flot well understood. These

efforts have been assisted by structural studies ofrelated retroviral iN subdomains [12,

13, 16, 19, 26, 29, 30, 123, 124]. However, to date, neither a structure of a complete
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retroviral IN protein nor one of a subdomain in complex with DNA has been obtained.

The linker-insertion genetic footprint provides a means to identify non-essential

regions within proteins capable of withstanding insertions. Ibis method relies on

retroviral-mediated insertion of a specific DNA sequence at various, random locations

within target DNA. The insertion of a large DNA fragment is followed by excision of

part of - but flot ail — the inserted sequence, leaving a shorter (57 base pairs), specific

DNA sequence within the target gene. Upon expression, the inserted fragment is

translated within the target protein, resulting in disruption of the native sequence.

Disruption of function indicates that the area of insertion does not tolerate structural

disruption, for any of a variety of reasons: the disrupted area may be directly required

for function, may be required for oligomerization or may be essential to the folding of

the target protein.

In this study, the HIV-1 IN gene was subjected to Tn5-based random insertion

mutagenesis. Individual constructs, selected from the library, were assayed for the

effects on in vitro iN enzymatic activity assays. The observed activities of the resulting

iN mutants provide insights into the possible roles of the various parts of the HW- 1 iN

protein. Using this approach, three regions that are functionally tolerant of insertions

were identified within iN. These regions correlate with domain and protein junctions.

2.3 Experimental Procedures

2.3.1 Materia]s

Oligonuleotide PCR primers and oligonuleotide substrates were synthesized by

Integrated DNA Technologies (Coralville, Iowa). Restriction enzymes, Taq polymerase,

14 DNA ligase and kinase were purchased from New England Biolabs (Beverly, Mass.).

The EZ: TN In Frame Linker Insertion Kit was purchased from EPICENTRE (Madison,
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WI). Ail chemicals were purchased from Sigma.

Bacteriai Strain and Plasmid: Plasmid pINSDHis containing HIV-1 IN was

obtained from the ADS Research and Reference Reagent Program. It was used to

construct HW- lIN mutants and was propagated in Escherichia cou strain DH5Œ. E cou

strain BL21 (DE3) was used to express wild type HW-l IN and its mutants.

2.3.2 Mutagenesis: In vitro transposon-based linker insertion into pINSDHis

The EZ: IN In Frame Linker Insertion Kit was used to insert a nucleotide linker

at random into the target piasmid pINSDHis, as described in FIGURE 2.1. The reaction

mixture contained 1 jil EZ::IN lOx reaction buffer, 0.4 ig pINSD±Iis piasmid DNA,

1tl (0.1pmol/il) EZ::TN<Not/KAN-3>Transposon, liii EZ::TN Transposase in a final

volume of 10tl. The reaction mixture was incubated for 2 hours at 37 oc and the

reaction was stopped by adding 1 111 EZ::TN 10x Stop Solution. 1 tl — 10 al of the

insertion reaction mixture was used to transform MAX Efficiency E. cou DH5Œ

Competent Ceils from Invitrogen (Carlsbad, CA) and piated and selected on

kanamycin-containing plates by ovemight growth at 37°C. Each individual colony was

picked and transferred into 96 well culture blocks from Qiagen (Valencia, CA) with imi

LB containing 50tg!mi kanamycin in each well. Afler ovemight growth at 37 oc with

shaking, 50% glycerol was added to each well to bring the final concentration of

glycerol to 10% and the blocks were stored at —80 °C.

2.3.3 Selection of clones with insertions within the 111V-lIN coding region

The <Not IIKAN-3>Transposon shouid be randomly inserted into the target

DNA plasmid pINSD±Iis. A PCR strategy was employed to determine whether the

transposon insertion sites were within the HW-1 IN coding region and their distribution.
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The pinsdBsreen primer (5’-CGG GCT TTG TTA GCA GCC GG -3’) and pinsdFscreen

primer (5’-GGT GCC GCG CGG CAG CC -3’) were used to amplify the iN and

encoding sequence from 301 to 320 and 335 to 351 of the pETl5b plasmid, which is

parent plasmid of p1NSD. The PCR reactions contain 1xPCR buffer of ExpandTM long

Template PCR system from Boebringer Mamiheim (Gmbh, Germany), 2.25mM MgSO4,

0.2mIVI dNTP, 2 iM primers, 2 units Taq polymerase and traces of the glycerol stocks

stored at-80 OC .The reactions were carried out in 96 well PCR plates from Robbins

Scientific Corporation (Suuyval, CA). PCR conditions were as follow: 94 °C for 4

minutes, followed by 35 cycles of: denaturing at 94 oc for 30 seconds, annealing at 69

°C for 30 seconds followed by an extension step at 72 oc for 2minutes and 15 seconds.

This cycle was followed by a final extension period at 72 oc for 4 minutes, which was

followed by a hold at 4 °C. Afler PER, the samples were loaded onto a 1.5 % agarose

gel and examined to determine which of the clones are positive for linker insertion

within the IN gene.

2.3.4 Generatïng the IN frame 19-codon insertion

The clones with a transposon insertion site within the IN coding region were

individually digested with NotI according to manufacturer’s recommendations.

Purification of the linearized DNA from the 1100 bp kanamycin—containing fragment

was carried out by agarose gel electrophoresis. Religation of the linearized DNA by T4

DNA Ligase regenerated a single Not I restriction site and created the 57 nucleotide (19

codon) insertion into any of the three reading frames (Fig. 2.1). The religated DNA was

transformed into E. cou DH5Œ cells and selection was done on Kanamycin-containing

plates. DNA sequencing of transposon insertion clones was performed with the ABI
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® TM ®PRISM BigDye Pnmer v3.0 Cycle Sequencing Ready Reaction Kit with AmphTaq

DNA Polymerase, FS. (Foster City, CA) to determine the site of the 19-codon insertion.

The integrated sequence analysis software VectorNTl from InforMax Inc. (Frederick,

MD) was used to analyze the sequence data.

2.3.5 Expression and purification of mutant and wild-type IN

Wild-type HIV- 1 IN and insertion mutants were expressed in E. cou BL2 1

(DE3) celis in 50 ml ofmedium and purified as hexahistidine-tagged fusion proteins

under denaturing conditions as described previously [83]. 50 ml cultures purification

yielded approximately 2 mg of 90—95% homogenous protein (Fig. 2.3). The protein

fraction refolded at a concentration of 5 mg/ml exhibited greatest enzymatic activity.

HPI-1 iN precipitated upon addition of Buffer C (0.2 M NaC1). The precipitated

protein was re-suspended in Buffer D (0.5 M NaC1) to a final concentration of 1

mg!ml.

2.3.6 Substrate preparation for in vitro activity assays

Oligonucleotides were purified on 20% denaturing polyacrylamide gels,

32P-labeled at the 5’ end with 14 polynucleotide kinase, and hybridized to

complementary strands as previously described (Jonsson et al., 1993). Unincorporated

radioactivity was removed from labeled integration and disintegration substrates with

G-25 or G-50 Quick Spin columns (Boehringer, Manriheim, iN).

2.3.7 In vitro integration and disintegration assays

Strand transfer and disintegration reactions were performed as described

previously [83]. Reaction products were separated on 20% polyacrylamide denaturing

gel and subjected to autoradiography or Phosphorimager screens (Molecular Dynamics).

Products were quantified with ImageQuant software (Molecular Dynamics).
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2.3.8 Structural model of 111V-1 IN monomer. The structural mode! of the HW- 1 IN

monomer was constructed from a combination of two X-ray crystal structures,

represented by PDB files lk6y and lex4. The “A” molecule of lk6y was superimposed

onto the “A” molecule of 1e4 using the program O. The lky structure is comprised of

residues 1-46, 56-139, and 149-210; and lex4 is comprised of residues 56-141 and

145-270. Thus, the superpositioning consisted of overlaying the CŒ atoms of ail

common core residues (RMSD-0.83 angstroms). Where the mode! contained disordered

regions (residues 47-55 and 142-144, inclusively), poiyalanine segments containing the

correct number of amino acids were created and moved into the appropriate linking

positions in the mode!. The Ala residues were then changed to the proper residues, and

the regions were subjected to ieast squares minimization.

2.4 RESULTS

fig. 2.1 outiines the series of steps undertaken to generate the linker-insertion

iibrary within the HW-1 IN construct pINSDHis. Briefly, the Tn5 mutagenesis system

resuits in the random insertion of the transposon encoding the kanamycin resistance

gene throughout the plasmid. To make the screening process high throughput, each

individual coiony was picked and transferred into 96 weiis culture blocks. km total, 1056

colonies were picked into 96 well culture blocks to screen mutants with a transposon

inserted into the N coding region by PCR. Any insertion within the IN will be amplified

to a 2.1 kb product while an insertion within the vector sequence will amplified to a

0.9kb product. Each clone with a transposon inserted into the IN coding region was

digested with NotI and religated to create the 57 nucleotide (19 codon) insertion. The

amino acid sequence of the HW- 1 IN encoded by the target DNA pINSD is conserved

28



29

on both sides of the 19-codon insertion. These constructs with 19 amino acid insertions

were transformed into E. cou and selected using the ampicillin-resistance gene

(t3-lactamase) that is present on the original cloning vector. Selected insertion mutant

proteins were expressed and purified. Strands transfer activity and disintegration activity

were performed on these purified insertion mutants to evaluate the effect of insertions in

different sites. The resuits obtained in each step ofthe procedure are described below.

2.4.1 Selection of clones with insertions within the HIV-1IN coding region by

PCR

To determine the transposon insertion sites, PCR was used to screen the clones

that have a transposon inserted into the HW-1 iN coding region. As shown in Fig. 2.2,

insertion within IN coding region resulted in a 2100 bp PCR product; otherwise a 910 bp

PCR product was obtained. 0f 1056 colonies (11 x 96 well plates) screened, 111 of them

were positive for having one insertion within the IN gene. The 57-base pair insertion

generated by the Tn5 In-Frame Linker Insertion scanning system resulted in insertions

into all three reading frames of the original clone. Nine of the 57 nucleotides are the

result of a 9 bp sequence duplication immediately ftanking the transposon insertion site.

The amino acid sequence of the protein encoded by the target DNA is conserved on both

sides of the 19 codon insertion. Sequencing from the library (Table 1) showed that

insertions were distributed throughout the whole IN encoding region. The insertion sites,

however, were not randomly distributed, with clustering of insertions within the

C-terminal domain. This could indicate a preference for specific structure within the

plasmid DNA by the transposase enzyme since a large number of duplicate isolates were

identified within the population examined. The composition of 19-amino acids inserted

are determined by the target site selected and two 9 bp target site sequence duplication
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during the transposition as well as the sequences encoding the NotI restriction site and

two 1 9-bp inverted repeat mosaic end sequences, which are recognized by Tn5

transposase. Depending on the reading-frame, the insertions will encode

XCLLYTSCGRKMCTRD(S/R)XX, LSLVHILRPQDVYKRQXXX or

XVSCTHLAAARCVQETXXX.
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HIV-1 IN

pINSD
+

NotI NotI

4
Kant

EZ: TN transposon

4 Transposase

Transform and selection ofE.coh for Kan® (2x1 Q3 colonies)

PCR to identify the individuel clones with insertions
are within IN encoding region.

li

Digest with NotI, religateto generate 19 codon
insertion, transformE.coh.

4
Expression mutated protein, assay for disintegration

and strand trans fer activity

FIGURE 2.1. Generation of the HIV-1 insertional library. The three steps required to

generate the insertional library within the construct are outlined. The region of IN gene

encoding the Integrase (IN) protein subjected to TN5 insertional mutagenesis and

transposon Tn5 DNA, which contained the kanamycin resistance gene between its short

19 basepair Mosaic End (ME) Tn5 transposase recognition sequences, are shown.

Restriction sites Not I flanked by the ME also are shown.
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2JOObp
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N coding region. A 2100-bp band indicates the presence of one single insertion within

the IN coding region. A 91 O-bp product indicates the presence of an insertion within the

vector pINSD but outside of the IN coding region.

2.4.2 Insertion Sites of HIV-l Individual mutants

The final insertion library for HW-1 N was characterized by analyzing individual

isolates. Isolates of the final library were subjected to sequencing analysis. 0f the 111

insertions, 2 were within the N-terminal domain, 35 were within the catalytic core and

74 within the C-terminal domain. Afler eliminating the duplicate clones, where

insertions are in the same position with same insertion sequence, 55 clones have unique

insertion positions and correct sequence (summarized in Fig. 2.6. and Table 1). Each

mutant N isolate was transformed into E. cou BL21 (DE3) and each mutant integrase

was purified and further characterized by in vitro enzymatic analysis of individual

clones.

FIGURE 2.2. PCR products in the clones with insertion and without insertion within the
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2.4.3 Expression and purification of the wild type and mutant IN

Fifty-five insertional mutant proteins were expressed, purified and assessed for

strand transfer and disintegration activity (Table 1 and Fig. 2.6). Mutants with a

variety of activity levels were identified in each domain, the N-terminal, core and

C-terminal.

E. cou BL21 (DE3) ceils were used to express wild type IN or the insertion mutant

INs by inducing with WTG. Following the induction period, total protein was extracted

under denaturing conditions. Solubilized protein can be isolated by nickel affinity

chromatography. This one-step affinity purification yielded approximately 2-3 mg of

90—95% homogenous protein from 50 ml of cells, and is well suited for manipulating

multiple purifications in parallel. As can be observed following migration ofthe samples

on 4-12% SDS polyacrylamide gel electrophoresis (PAGE) (Fig. 2.3), HW-1 IN

insertion mutants with the extra 19 amino acids migrated a littie slower than wild type

IN. Column fractions containing the most enriched INs were pooled and diluted to

ascertain the optimal concentration for refolding as measured by the activity of the

HW- 1 IN enzyme. The protein fraction refolded at a concentration of 5 mg/ml exhibited

greatest enzymatic activity. HW-l iN precipitated upon addition of Buffer C (0.2 M

NaC1). The precipitated protein was resuspended in Buffer D (0.5 M NaC1) to a final

concentration of 1 mg!ml.
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Table 1: Summary ofHIV-1 IN insertions

27L

S127L

‘355 C

D55C

P58G

D64_C

173_L

183I

E 96_T

T115D

D116N

T1 25_V

1&12 8A

13iW

113 5K

FJ144P

S147Q

0149V

Vi 65_R

0167 Q
1U69E

E 170_H

K173T

T174A

Ml 7 SA

A196G

1200_V

72010

LSLVHI LRPQDVYKRQDFN

PVSCTHLAAARCVQETDFN

LSLVHI LRPQDVYKRQQVD

CLLYTSCGRKMCTRDRQVD

VSCTHLAAARCVQETDCSP

SVSCTHLAAARCVQETELD

LSLVHILRPQDVYKRQKVI

TVSCTHLAAARCVQETGGY

LSLVHILRPQDVYKRQGQE

CLLYTSCGRKMCTRDRVHT

TVSCTHLAAARCVQETDTD

AVSCTHLAAARCVQETGTT

CLLYTSCGRKMCTRDRVKA

LSLVHILRPQDVYKRQACW

CLLYTSCGRKMCTRDRGI

LSLVHI LRPQDVYKRQPYN

CLLYTSCGRKMCTRDS PQS

AVSCTHLAAARCVQETGQG

LSLVHI LRPQDVYKRQGQV

CLLYTS CGRKMCTRDRVRD

CLLYTSCGRKMCTP]3RDQA

PVS CTHLAAARCVQETEAE

LSLVHI LRPQDVYKRQHLK

CLLYTSCGRKMCTRDSLKT

LSLVHI LRPQDVYKRQVQM

CLLYTS CGRKMCTRDRYSA

CLLYTS CGRKMCTRDRERI

AVSCTHLAAARCVQETGIV

A2 05_T

02071

E2 121

R2 2 BD

S230R

A239K

K240L

W243_K

G245_E

G247A

A2 48_V

V2501

V2501

1251 Q
025 3N

S2 550

V259_V

1268_R

R2 69_D

G272K

K2 73Q

0279 C

V281A

R2840

Q2 85_D

E287D

0288

VSCTHLAAARCVQETDI lA

LSLVHILRPQDVYKRQATD

SVS CTHLAAARCVQETAKE

AVSCTHLMARCVQETDYR

S CLLYTSCGRKNCTRDRDS

TVSCTHLAAARCVQETGPA

PVS CTHLAAARCVQETAAK

NCLLYTSCGRKMCTRDSLW

CLLYTSCGRKMCTRDSWG

LSLVHI LRPQDVYKRQGEG

CLLYTSCGRKMCTRDSEGA

CLLYTSCGRC.ICTRDRAW

LSLVHILRPQDVYKRQAVV

PVS CTHLAAARCVQETWI

LSLVHI LRPQDVYKRQI QD

CLLYTSCGRKMCTRDRDNS

CLLYTSCGRKMCTRIDSIKV

SCLLYTSCGRKMCT1flRI I

AVSCTHLAAARCVQETVIR

CLLYTSCGRKMCTRDRDYG

PVSCTHLAAARCVQETDGK

LSLVHI LRPQDVYKRQGDD

CLLYTSCGRKMCTRDSDCV

PVS CTHLAAARCVQETASR

AVS CTHLAAARCVQETGRQ

AVS CTHLAAARCVQETEDE

CLLYTSCGRKMCTRDRDED

Positions are based on the protein sequence of wild-type HW-1 N. An arrow

marks the insertion between the two amino acids indicated. Ail isolates are

independent insertions. 2Sequence of the 19 amino acid insertion. 3Disintegration

assay 4Strand-transfer assay 5Activity is based on WT IN activity. Symbols: 0%;

± O to 5%; if 6 to 35%; tif 36 to 75%, ff 76 to 100%

Insertion Inserted amino acid Insertion Inserted amino acid
)osition1 sequence2 DS35 ST4’5 position1 sequence2 DS3’5 ST4’5
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FIGURE 2.3. Purification of wild type HW-1 iN and insertion mutant INs as observed

by 4—12% SDS-PAGE. M indicates the molecular weight markers. Lanes l-7, various

insertion mutant INs. Lane 8, wiid type IN.

2.4.4 In vitro Analysis of Individual HW- 1 IN Mutants

HW-l wild type iN and its mutants were assayed for strand transfer and

disintegration activities with LTR-specific substrates. Strand transfer activities were

detected by the use of a precleaved duplex DNA substrate. Disintegration activities were

tested by a Y-shaped substrate that resembies an integration intermediate.

Oligonucleotides used in the synthesis of the substrates in these experiments are listed in

Fig.2.4B.

N-terminal domain mutants. The HW-1 N-terminal domain is made of a

three-heiix bundie structure. Two of the insertions at N27L retained full disintegration

activity however their integration activity was barely detectable. Notably, these two

mutants were inserted into same position, but with different amino acids sequences.

Insertions D55C and P58G fali into the hinge region between HHCC domain and core

domain. In the two-domain crystal structure, which was crystaliized in a tetrameric form,

this connecting region (residues 47—55) is disordered in ail four monomers [125]. These

two insertions have retained high disintegration activity and have moderate to full
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integration activity. The D55/C56/S57 sequence is proposed to be involved in close

proximity with the HIV LTR positions 1-4, based on a structural tetramer model [126].

Core Mutants. In the core domain, insertions D64_C, 173_L, Y83_L, E96_T,

T125_V A12$A and W13 1W had completely diminished or very Iow

disintegration and integration activity. These insertions are located within elements

of secondary structure of the highly compact core consisting of a five-strand sheet

together with six helices. These insertions most likely will disrupt the secondary

structure. Insertions T115D and D116_N also completely diminished both

disintegration and integration activity. Two of the insertions are located in the loop

between $4 and cr2, and hence, would flot be expected to disrupt the packing of the

core domain. Because D116 is part of the catalytic triad, these two insertions most

likely disrupt the conformation of the catalytic triad. A group of insertions - 1135_K,

N144P, S 147_Q and G149 V — had different levels of disintegration activity, from

trace or weak to moderate disintegration activity, and are ail located near the loop

between $5 and a4. This agrees with a mutagenesis study on the Gly residues at 140

and 149 impaired catalysis of HIV-1 IN. Another group of insertions (V165_R,

D167Q, A169 E and E170 H, K173 T and T174A), which retained weak or trace

or no disintegration activity, are located in the loop between a 4 and a 5. These two

loop regions correspond to an extended loop (residues 137-156) and a flanking

region (residues 161-173), which are protected from proteolysis upon metal binding

[127]. Insertions A196G 1200V, V201 D, A205 T, D2071 and E212 are

distributed within o6. The activities of these insertion mutants range from low

disintegration activity to low to moderate integration activity as one moves toward

the C-terminai end of the lieux. 0f considerable interest, insertion E212L,
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maintained nearly full disintegration and integration activity.

C-Terminal domain. The C-terminal domain bas been suggested to be

involved in target DNA binding as mutations in this domain can abolish nonspecific

DNA binding [128, 129]. Insertion R228 D is located at the end ofj3l strand in the

C-terminal domain, and S230_R is located in the hairpin connecting t31 and f32.

Neither of these two mutants had strand transfer activity and both had greatly

decreased disintegration activity. Since the C-terminal 1N can tolerate large deletions

and can stiil have considerable level disintegration activity [33, 130], this implies

that the effect of these two mutants may flot simply be in disruption of folding of the

C-terminal domain.
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A B

32p 5
E

CAGT 3’ HIV-1 (U5)

__________________

GTCA

A 5’ A 5’ ACTGCTAGAGATTtCCACAT

processing 6 5’ ATGTGGAAAATCTCTAGGGCTGCAGGTCGAC

C 5’ CAGCAACGCAAGCHGF
CA 3’

3•

__________________

GTCA D 5’ GTCGACCTGCAGCCCAAGCTTGCGHGCTG

A E 5’ AHGGAAAATCTCTAGCAGT

Disinteraon Strand transfer
F 5’ AHGGAAAATCTCTAGCA

c c “>1-c
32p 5’ 1—CAGT 3

___________________

GTCA

D

FIGURE 2.4.(A) Schematic representation of the enzymatic activities catalyzed by the

retroviral fl’1 in vitro: 3’-processing; strand transfer; disintegration. Strand transfer

substrates are prepared by hybridizing the 32P-labeled F strand with the A strand. The

substrate is identical to the 3’-processing substrate, except for the absence of two

terminal nucleotides proximal to the CA dinucleotide. Strand transfer activity generates

products both larger and smaller than the substrate, since integration occurs at random

sites along the phosphate backbone of the target substrate DNA. The disintegration

substrate represents a hypothetical strand transfer intermediate. The substrate is prepared

by hybridizing the 32P-labeled C strand with the A, B, and strands. Disintegration

reaction resuits injoining ofthe 3’-OH end ofthe C strand to the B strand, resulting in

formation of the 30-nucleotide product. (B) Nucleotide sequences of HW-1 LIR

substrates used in the assays.
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c. 1 2345678910 D. 1 2 34567891011

Disintegration
Products

30 nt

I nteg ration
products

Substrate Substrate
l9nt l6nt

FIGURE 2.5 (A) Integration activities ofthe mutant iNs. (B) Disintegration activities of

the mutant INs. Enzymatic activities of the mutant INs were assayed as described

under Experimental Procedures using HW-1 U5 LTR-derived substrates (Fig. 2.4 3).

Enzymatic activity is shown for integration (Panel A, lanes 1-10); and disintegration

(Panel B, lanes 1—11) Assays were done in 15 d reaction volumes with a final substrate

concentration of 0.07 pmol/ml. Reaction with substrate in the absence of protein is

represented in lane 1. In A and 3, reactions were incubated at 37 oc for 60 min and

terminated with proteinase K treatment for 30 min at 37°C.

-I
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al a2 a3
HI V-1 IN FLO GlO KAQEEIEKTHSNWRÀNASD FNLP PWAIŒIVAS C DKC Q LKQEAI

T ?fu T82 T83 a1 100
HI V-1 IN HQQVD C Z P QIWQLD C71!L E QKVILVAWWÀ ZQflEAEVI PAETQQ TAYF

ioial 84ff a2 a3fl T? T T!’415o
HI V-1 IN L LKLAQRWPVK1VffDNQ SNFTSflVKAA CWWAQIKQE FOI PYNP Q Z Q 0V

151 a4 TT a5 fa6 T200
HI V-1 IN lE ZNI’IICE LflCI I QQVPD Q AEHLKTAVQMAVFIIU’WKRKGQI QQYZÀQERI

HI V-1 INLIA!QTIS QKQ ITRI QNFLS 51T PVWTCQPLI

25fl134faB5 T? fftss
HIV-IIN IQONSO IKVVPPPRAKIIPDYQKQMAQDD CVAZRQDED

Q Disintegntion activity 0%
O-5%

• 6-35%

D Strandtnnsferactivity 36-75%
>76%

FIGURE 2.6. Positions of each insertion (indicated by arrow) and their activity (using

different color scheme) relative to disintegration (circle) and strand transfer activity

(square) are shown for the amino acid sequence of 11W-l N protein. Numbering from

the N-terminus of HIV-1 N. Known structural elements of HW-1 N, determined by

crystallography of recombinant HW-1 N [125, 131], are also shown (bold horizontal

unes) above the respective homologous segments. Their PDB accession numbers are

1K6Y and lex4, respectively. ‘HHCC’ and ‘DDE’ motifs are highlighted in red.
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FIGURE 2.7. A three-dimensional structural model of the HW-1 monomer. The

location of the insertional mutations and their subsequent effects on disintegration and

strand transfer activity are shown using the color scheme corresponding to Fig.2.6. The

large spheres denote disintegration activity and the widened colored linear portions

denote strand transfer activity.
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Insertions afier amino acids 239 (mutants A239 K, K240 L, W243_K, and G245E

in f32; V250 I, 1251 Q in f33, D253_N and S255_D in ioop between 3 and f34,

V259V in f35) ail lost strand transfer activity while exhibiting full or slightly

decreased disintegration activity. This agrees with the observation that the

C-terminal deletion of 25 or 45 amino acids resuits in complete loss of integration

and 3’-processing activities [33] and also agrees with the observation that the

C-terminal deletion mutants (1-24$, 55-248, 1-206) exhibit higher or same level

activities in disintegration [130]. Mutant G247_A was an exception as it retained

full integration activity and disintegration activity. lnterestingly, the insertions in t32

and t33, which are right before and after 247 had no integration activity and were

decreased in disintegration activity. Insertions afler 126$ and before Q2$4 had

similar levels of activity in disintegration and retain moderate activity compared to

wild type N. This agrees with the observation that deietion of 15 amino acids from

end of the C-terminal domain retain similar or slightly reduced 3 ‘-processing

activities and decreased integration activities in the presence of Mn2 (but not

Mg2 )[33]. Insertions after R284 retain full activity both in the disintegration and

integration reactions. This again agrees with the observation that C-terminai deletion

of 5 amino acids exhibited wild type levels of 3’-processing activity and partial

activity ofintegration in the presence ofMn2 (but flot Mg2[33].

In summary, three regions retained full integration activity in this in vitro

study of HIV-1 IN. These correspond to the linge region connecting the N-terminal

and the core domains, within the helix connecting the core and C-terminal

domains, and the extreme C-terminus of the N.

2.5. DISCUSSION
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The retroviral genome has evolved to encode multifunctional proteins expressed

within polyproteins. These compact viral particles must assemble, infect, replicate

and integrate the viral genome using limited enzymatic functions. In this study, we

have used a transposon based mutational system (Tn5) to create a functional map of

the HIV-1 iN protein. Analysis of 57 insertional mutations in HW-1 IN indicates the

presence of limited, non-essential regions tolerant of amino-acid insertions. These

localize to protein and domain boundaries between the N-terminus and the core of iN,

at the C-terminus of iN and between the core and C-terminus of IN. Although

these results are non-saturating, the data indicate functional conservation even within

disordered regions within crystallographic structures.

The effects of insertion mutants in these studies are in general agreement with

previous biochemical studies. For example, the N-terminal 39 amino acid deletion

mutant completely abolished 3’-processing and integration activity [33]. We

observed that insertions at N27_L almost abolished integration activity. The loss of

integration activity agrees with the previous observations that showed that a

monoclonal antibody which bound to amino acids 27-29, destabilizes the helix

bundie and decreases both 3’-processing and transfer activities of HTV-1 IN in vitro

[132]. N27 is located at one end of helix bundie in the loop connecting the second

and third helices ofthe HW-1 iN N-terminus. The third a-helix contains amino acids

C (40), C (43) which interact through Zn with H (12), H (16) in the loop connecting

first a-helix. The substitution of Asn for Ris-12 rendered HW-1 defective at the

replication step in vivo. In contrast,zinc binding, 3’-processing and strand transfer

activities were reduced only a few fold from those of wild-type IN in vitro t133].

The mechanism by which the insertions, antibody and amino acids substitutions may
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ali act is through destabiÏization of the helix bundie.

The effects of insertions (1135K, N144 P, S147 Q and G149 V ) within the

surface loop (residues 141-14$) agrees with a previous observation that substitution

of Gly residues at 140 and 149 with more constrained Ala residues impaired catalysis

of HIV-1 IN, suggesting that the degree of conformational flexibility at these

positions is correlated with catalytic activity [17]. These two loops are believed to

undergo significant movement in order to aid in the coordination of a metal ion by

the catalytic triad [134, 135]. It is likeÏy that the insertions in these two loops prevent

the conformation change of these loops upon the metal binding. lnterestingly,

residues 16$-171 are also reported to interact with the host factor LEDGF [136].

E212L, which retains both activities at a good level, is within the region

connecting the C-terminus and core, and consists of an extended alpha-lieux with a

bend, or kink, at the center. This resuit suggests that considerable flexibility in the

linkage between the catalytic core and C-terminal domain can be functionally

tolerated since the net result of the 19 amino acid insertion would be to lengthen the

distance between the two domains and/or increase the discontinuity of the extended

aipha-helix. This agrees with the observation in the solved two domain structure of

the catalytic core and C-terminal of HW- 1, SIV- 1 and RSV IN, in which the

arrangement of the C-terminal domain relative to catalytic core differs among these

structures [30, 131, 137]. Similarly, disintegration requires only the core domain

(residues 50-126 [39]). Results from these studies are in agreement, with our

resuits that showed disintegration was diminished with insertions between D64_C

and S230R.

Insertions R22$ D and S230R, within the C-terminal domain, are interesting in that
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their losses of the disintegration activity are more than resuit from the entire deletion of

C-terminal domain of IN. In a tetramer model of IN, these two sites flank the target DNA

and are also very close to both viral DNA ends [138]. This suggests that these two

insertions may prevent or distort target DNA and/or viral DNA access. Insertions afler

amino acid 239 generally agree with the previous C-terminus deletion studies in both

disintegration and integration activities. Interestingly, the insertion G247_A retains

both full disintegration and integration activities, whose placement seemingly does not

present any structural interference on a tetramer model of HW-1 IN [126], but may

interfere with some amino acids in LEDGF when bound to HW-1 and placed in a

molecular mode! of the HW-l tetramer plus LEDGf (Monica Roth, personal

communication). It would be interesting to test the effect of this insertion mutant in vivo.

full activities in both disintegration and integration reaction of insertions afier amino

acid 284 suggests that the extreme C-terminus of the iN protein is non-essential, which

has been reported previously [1281 [33]. Although it is possible that the linkers are

substituting for natural amino acids at that position, we did not observe instances where

two in-frame insertions at the same position resulted in differentia! effects toward HW-1

IN function. This might have been predicted, as the insertions frequently encode Cys,

which could alter the protein folding. In this study, insertions at the same coding

sequence were identified that behaved identically, indicating there was not a positive

selection for a Cys residue to, for example, stabilize the region. The two insertions at

D55C encode LSLVHILRPQDVYKRQQVD and CLLYTSCGRKMCTRDRQVD and

at V250 I CLLYTSCGRKMCTRDRAVV and LSLVHILRPQDVYKRQAVV.

One aim of this mutational analysis was to identify sites within the IN protein

that may tolerate small insertional tags whose function may alter the target-site selection
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of the viral INs. Protein domains and tags have been inserted both into the N-terminus

[139-141] and C-terminus [140-145] of retroviral IN constructs. The identification

of the regions between the N-terminus, the core and C-terminus of IN as functional in

the presence of a variety of linker-insertions strongly suggests that this region could

serve as a third potential insertion site for short tags within the IN protein. The ability of

this site to function in alternative protein-protein or protein-DNA interactions depends

on its accessibility within the synaptic complex. Further biochemical and structural

studies are required to address this question.
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Chapter III

Comparison of Two Available Tetramer Models

3.1 Introduction

Although no fiul-Ïength experimental structure of HW-1 IN is available, structures

of each individual domain and two consecutive domains of HW-1 integrase are

available, as discussed in Chapter 2. However, these resuits by themselves are

fragmentary and much less direct experimental evidence exists for overali quaternary

structure of iN in vivo. Clearly, knowledge of the quatemary structure is required in

order to better understand how integrase recognizes and binds it cognate DNA targets

and also to target drug design to the appropriate solvent-exposed surfaces.

To date, there exists sufficient evidence indicating that functional N acts as a

multimer, most likely as a tetramer. Previously, two tetramer models were proposed

based on biochemical experiments and detailed structural information [13, 138]. The

question we address in this chapter is: how do these models agree with, or differ from

each other? How well do these models comply with the available experimental data? To

this end, the coordinates of the models, henceforth referred to as Model A [13] and

Model B [138] were obtained from the originating authors or downloading from the

Protein Data Bank. They were compared with each other as well as with the reported

biochemical resuits.

3.2 General description of Models A and B

The active form of HW- 1 IN is likely to be a tetramer, as suggested by previous
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biochemical and structural studies (described in Section 1.1.5). The final form of both

Mode! A and Model B is tetrameric. Model A: composed by the superimposition of the

crystal structures of the dimer of HIV-1 1N52288 (PDB code 1EX4) and the dimer of

HW-1 N’212 (PDB code 1K6Y), modelled with viral DNA in canonical form, without

metal and target DNA. Model B: composed by assembly of the NMR monomer structure

of HIV-1 IN’7 (PDB code 1WJA), and the monomer X-ray crystallographical structure

of HW-1 1N56209 (PDB code iBIS), HIV-1 1N21927° (PDB code 1IHV), modeled with

viral DNA and target DNA in canonical form, without metal.

N

FIGURE. 3.1. Comparison of the integrase monomer structure of model A (panel A)

and model B (panel B). Three domains of the integrase monomer are shown in different

colors: N-terminal domain is in red, core domain is in green, and C-terminal domain is in

blue.

A
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FIGURE. 3.2. Model A of HIV-1 integrase tetramer complexed with viral DNA. The

integrase domains are colored as in Fig. 3.1. The viral LTRs are colored as dark orange

DNA strands. The host DNA is flot present in the model. Two views of the same

complex are presented. (A) Front view. (B) Back view.

A E
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A

FIGURE. 3.3. Model B of HIV-1 integrase tetramer complexed with DNA. The

integrase domains are colored as in Fig. 3.1. The viral LIRs are colored as dark orange

DNA strands. The host DNA is in purpie. Two views ofthe same complex are presented.

(A) Front view. (B) Back view. Adapted from Figure 4 of A.A.Podtelezhnikov,

et.al.[146].

3.3 Detailed comparison of tetramer Models A and B

Model A takes advantage of two resolved multiple-domain structures ofHIV-1 integrase,

namely the catalytic core with C-terminal domain structure, and the N-terminal domain

and catalytic core structure. This model is based on superposition of the conserved

catalytic core of the two two-domain structures, which resuits in a structurally plausible

full-length integrase dimer. In the case of model B, complete integrase structure

modeling is based on the structures ofthree separate domains.

Structural comparison of different integrases indicates considerable flexibility in

the linkage between the N-terminal domain, the C-terminal domain and the catalytic core

[12, 30]. We may think this flexibility makes definitive modeling of the complete
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integrase structure from three separate domains difficuit and that two models constructed

independently would be substantially different. However, the constmcted modeis resuit

in similar tetramer structures, both of which have similar key interactions between iN

residues and the viral DNA observed experimentally. The main difference is that, overali,

the N-terminal domain and the C-terminal domain in Model A do flot pack against the

core domain as tightly as in Model B. This is particularly noticeabie for the C-terminal

domain in Model A, which has no interaction with the core domain at ail, while it is not

the case in Model B.

3.3.1 Juxtaposition of the core domain and the C-terminal domaîn

The spatial arrangement of the C-terminal domain relative to the core domain in Model

A is based on the resolved crystal structure of the core domain + C-terminal domain. On

the other hand, Mode! B takes advantage of measurements using time-resolved

fluorescence anisotropy (TFA) [146] to estimate the separation between the centers of

mass of the domains. However, TFA does flot imply anything about the relative

orientation of the integrase domains. Furthermore it is only the range of the rotational

correlation times that was determined in the TFA experiments and one can question the

validity of modelling the integrase quatemary structure at higher resolution based on

results ofTFA. However, we can’t exclude the close interaction between the C-terminal

and core domains, since the C-terminal domain can contact the core domain, as in the

case ofRSV integrase [30]

3.3.2 Role of DNA in construction of Models A and B

Mode! A was constructed using the two-domain structures that were resolved in

absence of viral or target DNA. Model A may thus only reflect the conformation and

spatial arrangement ofthe domains in absence of viral and target DNA; as there is
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evidence that binding of DNA can trigger conformational changes[89]. Model B

was careftilly examined against the data from cross-linking and footprinting experiments

in the presence of viral/target DNA[146], increasing the likelihood of producing a

reasonable model of the conformation and the arrangement in the presence of viral/target

DNA. But again, it is a complex network of DNA binding rather individual domains

that are unilaterally responsible for binding ofHIV-l IN to viral or target DNA; as

a resuh, crosslinking data offer difficuities to interpret for modeling.

Model B was constructed with application of some structural constraints. However,

some of the constraints may be arbitrary. For example, when building the tetramer from

two dimers, the authors proposed that the interface between the dimers should have

extensive contacts between them. While this hypothesis is plausible, there is no clear

evidence for this; in addition, in the absence of clear knowledge about the DNA binding

sites, it is difficuit to conclude on the protein-protein interfaces. Furthermore, the

C-terminal or / and N-terminal domains were placed to be involved in this interface as

mucli as possible, which is not very useful and practicable for higher resolution

modeling [146]. It should be noted that, despite the different considerations used for

building the two models, the N-terminal domain and the C-terminal domain are close to

each other in three dimensions in both models.

Neither Model A nor Model B is composed of ail 28$ residues of the full-length

enzyme, nor are there any metal ions. The distance between the two active sites in the

dimers constituting Models A and B are 40 Â and 33 À, respectively. This distance is

much greater than the five base pair spacing of the insertion sites of the two viral DNA

ends into the target DNA, which is in the range of 15 Â to 20 Â (depending on the

conformation of the bound DNA). This observation is consistent with the proposal of a
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tetrameric (or higher order) structure for IN, to allow the required proximity of active

site elements via multimerization. Both models place the viral DNA along a contiguous

strip of positiveÏy charged residues starting from catalytic site of one monomer and

extending to the C-terminal domain of another monomer, which comply with the “trans

to the active site” activity that lias been observed [12, 43, 89]. The strips include

residues K159, K186, R187, K188, and extends out to K211, K215, and K219 ofthe a6

helix. For example, both models place K159 close to the same adenosine nucleotide in

viral DNA. However, there is a minor but important difference: in model A, the side

chain of E152 approaches the backbone of the conserved adenosine nucleotide at the

3’-end directly adjacent to the cleaved site in the viral DNA (the 3’-CA motif). This is

consistent with the previous experimental conclusion that E152 plays a role in the

specific recognition of that specific AIT base pair from studies undertaken to identify

amino acids that determine substrate specificity [84]. On the other hand, E152 is far

away from conserved adenosine nucleotide at the 3’-end viral DNA in Model B. Residue

E246 in the C-terminal domain binds near position five of the lower strand in the viral

DNA in Model B, which is confirmed experimentally [89], while there is a 20 À distance

between the viral DNA and F246 in Model A. These points illustrate that neither Model

A nor Model B takes into account ail the previous experimental data.

3.3.3 Biological relevance of the models

After the models were constructed, the next question is: how biologically

relevant are these dimer-of-dimers models? Model B can potentially explain the effects

of the F185K substitution in HW-1 integrase, which makes integrase more soluble and

this effect rnight prevent correct formation of the integrase tetramer [64] and disrupt

integration in vivo and in vitro [97, 138]. Model B places this residue in the interface of
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two integrase dimers. Additional support for Model B cornes from structural simiiarity

of this model with the homologous Tn5 transposase—DNA complex recentiy resolved by

X-ray crystallography [147]. Model A is aiso reminiscent of the structure of Tn5

transposase dimer in complex with its DNA substrate. Both models are similar to the

Tn5 structure.

The major concem about the functional relevance of tetrameric Model A is that

its construction is based on the spatial arrangement of four monomers of the

C-terminally truncated HIV-i 1-212 as observed in its crystallographic structure.

However, gel filtration shows that this same HW-1 N1212 fragment is exclusively

dimeric at physiological sait concentrations, casting doubt on the physiologicai

relevance ofthe dimer-dimer interface observed in the crystal structure ofHW-1 1212

However, tetramers may exist with the full-length integrase protein since the C-terminal

two-domain protein (1N50288) forms both dimers and tetramers in solution [97], pointing

to a crucial role for the C-terminal domain in tetramerization.

3.4 Integrating the data from the insertion al mutations into the mode]s

Most mutants we made were inactive for both disintegration and strand-transfer

activities (refer to Chapter 2, particulariy Table 1). It is impossible to teli whether the

inactivity of our mutants is due to structural disruption or whether the bulky insertions

prevent specific interactions such as 1N-DNA, monomer-monomer, or dimer-dimer

interaction, without further characterization of IN mutants. Our resuits and existing

experimental data indicate important functional conservation even within disordered

regions of the crystallographic structures: for example, substitution of G1y140 and 149,

which is in the loop between 35 and a4 with more constrained Ala residues, impaired
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catalysis of HIV- I IN [1 7j. For this reason, we will focus on the active mutants and only

the active mutants were analyzed against Model A and Model B.

Two insertions obtained at N27L, which is located at one end ofthe helix-bundie in

the loop connecting the second and third a—helices of the HW- 1 IN N-terminus, almost

abolished integration activity. These two insertions produce steric hindrance in the

tetramer of model A and B. Specifically, these insertions disrupt N-terminal domain

dimerization in Model B and interfere protein-protein interaction between N-terminal

and C-terminal domain in Mode! A (Fig. 3.4 and Fig. 3.5). Our resuits provide indirect

evidence that integration activity requires higher order complex formation while

disintegration requires only a dimeric or even a monomer state since insertions N27_L

retain full disintegration activity. We postulate that they also might interfere with an

essential conformational change induced upon zinc binding. Previous studies showed

that in the presence of Zn2, the HW- 1 IN multimerizes from a dimer to a tetramer,

which miglit be essential for the integrase activity in vitro [45].

Insertions (D55_C and P5 8_G) in the hinge between the N-terminal domain and the

core domain are active in both disintegration and integration activities. Placing

insertions in this region thus causes no interference with DNA binding or intramolecular

and intermolecular interactions in model B, but not model A, in which the insertions will

prevent the docking oftarget DNA (Fig. 3.6 A and B).
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FIGURE. 3.4 Insertions N27L, E212 L and G247 A in the context of model A of

HIV- 1 integrase tetramer complexed with viral DNA. The integrase domains are colored

as in fig. 3.1. Amino acids neighboring the insertions are shown as space-fihling

residues. The viral LTRs are in orange. The host DNA is flot present in model A. The

imagine was generated with MSIVIEWLAB.
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N2

FIGURE 3.5 Insertions N27L, E212 L and G247_A in the context of model B of

HIV-1 integrase tetramer complexed with viral DNA and host DNA. The integrase

domains are coÏored as in Fig 3.1. Amino acids neighboring the insertions are shown as

space-fihled residues. The viral LTRs are in orange. The imagine was generated with

MSWIEWLAB.

57



58

FIGURE. 3.6. Insertions D55_C and P5 8_G in the context of model A (Panel A) and

model B (Panel B). The integrase domains are colored as in Fig. 3.1. Amino acids

neighboring the insertions are shown by orange space-fihled residues. The viral LTRs are

shown as orange DNA strands (panel A) or yellow DNA strands (panel B). The host

DNA is not present in the mode! A. The imagine was generated with MSIVIEWLAB.

A
55C and P58G

D55C and P58G

B
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The insertional mutant E212_L maintained nearly full disintegration and integration

activities. E212 L is within the region connecting the core domain and the C-terminal

domain, which consists of an extended aipha-helix (a6) with a bend, or kink, at the

center. Inserting the amino acids at position 212 in both model A and model B does flot

interfere with DNA binding or its intramolecular and intermolecular interactions. The

presence of a kink in one of the two a6 helices (thus, the dimer is asymmetric) which is

near a knoWn proteolytic site, as well as this new data showing tolerance to insertions,

suggests that the two a6 helices are flexible during the integration process.

G247_A mutant retained full integration and disintegration activity. The context of

G247 differs in Model A and B. Insertions of 19 amino acids in Model B would predict

disruption of the interaction between the two C-terminal domains with the two core

domains, whereas within the tetramer of Model A, this position is modeled away from

the dimer interface of two C-terminal domains as well as the site of DNA binding. Our

resuits are consistent with this tetramer model.

Since both models have only 270 amine acids, the insertions afier D270 can net be

positioned into the tetramer models, but by virtual extension of D270, we can predict

that the insertions afler D270 would flot disrupt the interaction between both

intermolecular, intramolecular of ll\T, and viral and host DNA, which is consistent with

experimental results in both MuLV iN (M. Roth and coworkers) and HW-1 iN (this

study).

Conclusion: Model A and model B are both tetramer models, model A may be

preferred in the spatial arrangement of the N-terminal and C-terminal demain relative te

the core domain since this model is based on superposition of the conserved catalytic

core of the two two-domain structures, which results in a structurally plausible
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full-length integrase dimer. The model B is preferred in the placement of viral and target

DNA since their positioning are based on solid biochemical data and target DNA is

absent in model A. Our insertion G247_A would favor the arrangement of C-terminal

domains in model A. From a general point of view, both models we compared might flot

be the only possible solutions to the tetrameric arrangement of HIV-1 IN. Other

inter-domain arrangements forming full-length monomers and inter-monomer

arrangements forming dimers and tetramers or octamers are also possible. Nonetheless,

our data provides important insights complementing other previously reported work on

the assembly of functional HW-1 IN.

60



61

Chapter IV

Discussion

Retroviruses are characterized as simple or complex based on the organization of

their genomes, although this is flot a taxonomie classification. All retroviruses contain

the three major coding domains, gag, pol and env, in their genome. While the simple

retroviruses (MuLV for example) carry only this elementary information, complex

retroviruses (HP!- 1, for example) carry additional regulatory proteins that are derived

from multiply spliced messages. IN proteins from different retroviral species vary in size

and amino acid homology [148] [48] [149]. Two regions of strong similarity are shared

between retroviral IN proteins, a proposed zinc finger motif or HHCC region in the

amino terminus, and a central core region containing the D, D (35)E motif. The

C-terminal portion of retroviral INs is the least conserved and has been functionally

characterized to be the site of nonspecific DNA binding. The M-MuLV iN is

approximately 14 kDa larger than HIV-1 and avian sarcoma-leukosis virus iNs. This

larger size of M-MuLV IN is accounted for by differences in its N- and C-termini.

Approximately 50 amino acids precede the HHCC domain of the M-MuLV IN, and the

C-terminus contains a unique 36-amino-acid insertion [148].

Several systems have been developed for “genetic footprinting” of a gene based

upon the generation of a library of random inserts and screening those pools for

selectable phenotypes. The systems are based on bacterial transposons including Tn5,

Tn7, and Mu, or viruses [104, 109, 150-153]. These systems have the potential to

screen the entire population of insertions before and after a selection process through
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positional mapping ofthe inserts by PCR.

Recent studies have demonstrated methods of comprehensive analysis of a gene by

constructing an entire set of mutants of the gene [105, 107]. In the process of developing

a complete functional map of the M-MuLV genome, a library of M-MuLV proviral

vector insertion mutants was generated using a linker scanning system by the research

group of Monica Roth at the Robert Wood Johnson Medical School, University of

Medicine and Dentistry of New Jersey. Afler mutagenesis, each proviral vector within

the iibrary contained a single 15 base pair insertion at a random location within the

target fragment. This mutagenized fragment, the 3’ terminai two-thirds of the pol gene,

included the last half of the reverse transcriptase (RT) reading frame the IN reading

frame. Ail insertions were identical and code for a unique Frne I restriction enzyme

site that was used for mapping studies of individual clones selected from the library, in a

manner similar to the work presented in Chapter 2 of this thesis. The effects of the

insertions were examined in vivo (Jennifer Puglia, Tan Wang, Christine Smith-Snyder,

Marie Cote, Michael Scher, Joelle Pelletier, Sinu John, Colleen B. Jonsson and Monica

J. Roth, manuscript in preparation) and are reported below in order to compare the

effects of the M-MuLV insertion mutants with the effects we observed for the HIV- 1

insertion mutants.

Regions in the MuLV pol gene were identified which functionally toierate

various linker-insertions. These correspond to the RT/1N proteolytic junction the

junction between the IN catalytic core domain and the C-terminal domain and the

C-terminus of IN (Monica Roth, personal communication).

Comparison of two related IN proteins between the in vitro HW-1 IN study

presented in Chapter 2 and the data obtained in the group of Monica Roth for the in vivo
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MuLV IN study reveals a general agreement with respect to the function of the

C-terminus of the IN and the viability of insertions within the a6 helix (Fig. 4.1. and Fig.

4.2): the hinge region between the core and C-terminal domain and extreme C-terminal

amino acids can tolerate the insertions in both MuLV IN and HW- 1 IN.
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Figure 4.1. Positions of each insertion (indicated by arrows) and their activity

(using the indicated color scheme) relative to disintegration (circle) and strand transfer

activity (square) are shown in the alignment ofHW-1 (HIV) and MuLV (Mo-M-MULV)

IN proteins. The information for in vitro effects of HIV- 1 iN insertions are given ahove

its sequence. The information for MuLV IN insertions is given below its sequence:

upward-arrows indicate the sites of insertion resulting in viable viruses in the in vivo

MuLV iN assay. The amino acid sequence alignment ofMuLV and HW-1 IN was based

on Jolmson [154]. Dots indicate sequence aïignment gap/insertion. Numbering from the

N-terminus of MuLV IN includes alignment gaps. The GenBank accession number for

MuLV iN sequence is NC 001501. Known structural elements of HW-1 IN, determined

by crystallography of recombinant HW-1 IN [12, 13] are also shown (bold horizontal

lines) above the respective homologous segments. Their PDB accession numbers are

1K6Y and lex4, respectively. ‘HHCC’ and ‘DDE’ motifs are highlighted by red color.

The 14 amino acid region in MuLV IN (DPDMTRVTNSPSLQ), which is highlighted in

red, was found to be tolerant of 5 amino acid insertions in vivo. This region corresponds

to the HIV-1 iN sequence IATDIQFKELQKQI [14$].
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Figure 4.2. MuLV viable domain mapped onto the HW-1 Core-C-terminus structure

(1EX4). The 14 amino acid region in MuLV IN (DPDMTRVTNSPSLQ) was found to be

tolerant of 5 amino acid insertions in vivo. This region corresponds to the HW-1 IN

sequence IATDIQFKELQKQI [148], which is highlighted in red (A204-1217 of the A

molecule in 1 EX4 is taken from the two domain structure of HW- 1 Core+C-terminus

[12]). The HW-1 core domain is colored bÏue; the C-terminus is yellow. The figure was

generated in MOLSCRTPT V 2.0 [155].
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Due to the uneven distribution of the insertions within the two systems, some

questions remain open. The N-terminal 14 amino acids of the MuLV IN tolerated

insertions; however no insertions were identified within the extreme N-terminus of the

HW- 1 IN. It should be noted that the N-terminus of MuLV IN encodes 45 amino acids

flot conserved in either HW or ASV related INs [156]. The region tolerant of insertions

at the N-terminus of MuLV IN maps within this non-conserved region. As a resuit, the

data obtained for the N-terminus of MuLV IN does flot provide information with respect

to the predicted impact of insertions in the N-terminus of HW- 1 IN.

These studies, in vitro ofHW-1 IN and in vivo ofMuLV IN, do not allow the direct

comparison of the effects of linker-insertions in vitro and in vivo within the same virus.

These types of studies are of interest, as insertions tolerated in in vitro systems may be

interfering with host-interacting proteins in vivo, where additional interacting partners

may be required for full function. It is of interest that although functional

complementation of MuLV IN was achieved in vitro using constructs that stably

expressed the N-terminal zinc binding domain (IN1-105) with the core-C-terminus

two-domain fragment (IN 106-404) [157], no viable linker-insertion was identified in

vivo at the junction of the HHCC domain and the core domain (Jennifer Puglia, Tan

Wang, Christine Smith-Snyder, Marie Cote, Michael Scher, Joelle Pelletier, Sinu John,

Colleen B. Jonsson and Monica J. Roth, manuscript in preparation). However, in the

case ofthe in vitro HW-1 IN mutational study, three insertions at two positions (D55_C

and P5 8G) were identified at the transition between the HHCC and core domain, which

retain full activity in both disintegration and strand transfer activity of HW- 1 IN.
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The boundary defining the insertion-tolerant region between the core domain and

the C-terminal domain is flot well defined in these two studies since a more saturated

library within this region would be required. Nonetheless, the 19 amino-acid insertions

obtained within HW-1 IN in this study and the 5 amino-acid insertions obtained within

MuLV IN ( Jennifer Puglia, Tan Wang, Christine Smith-Snyder, Marie Cote, Michael

Scher, Joelle Pelletier, Sinu Joim, Colleen B. Jonsson and Monica J. Roth, manuscript in

preparation) provide some insights into these boundaries. In MuLV IN, the region

encoding DPDMTRVTNSPSLQ corresponds to the HW-1 IN sequence

IATDIQFKELQKQI (Fig. 4.1 and Fig. 4.2). A deletion study of MuLV IN identified a

stable expressed C-terminal domain, the N-terminus of which mapped directly within

this region (Monica Roth and coworkers, personal communication), supporting this

region as a domain boundary. This suggests that the region should be tolerant of

insertions. Indeed, the insertion E212 L in HW-1, which retains both disintegration and

strand transfer activity, maps within the 12 amino acid region homologous to MuLV IN

(JATDIQFKELQKQI, where the EL are underlined), in the middle of the long Œ6 helix,

which connects the core and C-terminal domains [1311. Insertions C-terminal to the

observed bend tolerated insertions of both 5 and 19 amino acids, in vitro and in vivo in

the HIV- 1 and MuLV IN, respectively. The 19 amino acid insertion D207_I maps within

the region homologous to MuLV IN (IATDIQFKELQKQI, DI insertion site underlined),

yet is not active for disintegration or strand-transfer activity. Thus differences in the

boundaries between HIV-1 and MuLV IN were identified. This may reflect the

differences in the size of the insertions, where 5 amino acids are tolerated and 19 amino

acids are flot, or structural differences in the assembly of iN multimers. It is flot known
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whether the insertions into this region present a favorable condition for the virus. In a

related insertional study of the Cre recombinase, insertions into the M-N linker increased

DNA binding cooperativity [158]. In that system, it was proposed that extending the

length of the linker would lead to a smaller bend angle and thus stabilize partner Cre

subunits binding to the loxP. In a similar manner, extending the distance between the

core and C-terminus may assist in the assembly of the synaptic complex consisting of

the two viral termini plus the target DNA.

The ability of retroviral particles to stably integrate into the host genome is a

great benefit for gene delivery, but the potential for insertional mutagenesis cannot be

overlooked [140, 141, 159, 160. Schemes to target integration into alternative

positions within the host chromosome ftequently involve generation of fusion proteins

with novel targeting domains {Bushrnan, 1995 #96, 161, 162]. The linker-insertion

genetic footprint provides a means to identify non-essential regions within proteins

capable of withstanding insertions.

Two models have been compared with the interaction of viral DNA with a multimer

of IN. The question that we would like to answer will be: is our experimental data

preferred by one model than other? Can the two models agree with our experimental

data? The two models both predict that our N-terminal insertion would affect the

activities of HW-1 IN, which agrees with our experimental data. Our C-terminal

insertion G247 A would favor the arrangement of C-terminal domains in model A.

Through both models, we would also predict that some of the loop regions within the

Core might be more amenable to mutation given the solvent accessibility shown in the

monomer and dimer structures, such as the loops between the N-terminal a3 and the Core
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f31’, the Core 5’ and a4’ and between the Core a5’ and c. While we did not expect

integration activity per se, we expected disintegration since this activity may not require

a higher order complex. However, in our studies, insertions located at the Core loops ail

lost integration activity and had no or barely detectable disintegration activity. This set of

mutants in core demonstrates the compactness of IN and underscores the complexity of

intramolecular and intermolecular interactions that IN must maintain during the

integration process.
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