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Résumé

Des émulsions furtives ont été préparées à l’aide d’excipients approuvés pour

une application pharmaceutique et ont été évaluées in vivo pour leur capacité à cibler

des tissus néoplasiques. Les émulsions étaient composées d’une phase interne de

triglycéride et émulsifiées avec un tensioactif synthétique (polysorbate 80) et un co

émulsifiant lipidique. Afin de produire des émulsions furtives, de la sphingomyéline

d’oeuf (ESM) a été choisie comme co-émulsifiant et différents dérivés de 1,2-

distéaryl-sn-glycero-3 -phosphatidyléthanolamine-poly(éthylène glycol) (DSPE-PEG)

ont été greffés à l’interface de l’émulsion. Les dérivés sélectionnés de DSPE-PEG

étaient la DSPE-PEG 2000, la DSPE-PEG 5000, et la DSPE-N-{pentaérythritol

polyoxyéthylène glutaryl] (DSPE-4armPEG), (MM 2000). Les effets de l’ESM et de

la DSPE-PEG (la concentration et la structure) sur la prolongation du temps de

circulation et sur l’accroissement de l’accumulation dans les tissus néoplasiques ont

été évalués sur des souris inoculées du mélanome B16 et de l’adénocarcinome du

côlon C26 en sous-cutané.

Dans cette étude, nous rapportons que des émulsions furtives ont été obtenues

en enrobant la surface des gouttelettes avec de la DSPE-PEG 2000 ou 5000.

L’accroissement du temps de circulation n’a pu être atteint ni avec la DSPE-4-

armPEG malgré le segment de PEG de masse molaire de 2000 ni avec l’ESM. Le

temps de circulation accru des émulsions enrobées de PEG 2000 ou 5000 s’est traduit

par une accumulation plus élevée dans les tumeurs C26, mais pas dans les tumeurs

B16. Ces émulsions pouvaient améliorer la sélectivité d’agents anticancéreux
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lipophiles pour certains tissus néoplasiques et aussi augmenter leur index

thérapeutique.

Mots-clés : Émulsions furtives, poly(éthylène glycol), biodistribution,

pharmacocinétique, vecteurs de médicaments
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Abstract

Long-circulating emulsions were prepared using pharmaceutically acceptable

excipients and evaluated in vivo for their ability to target neoplastic tissues. The

emulsions were composed of a triglyceride internai phase and emulsified with a

synthetic surfactant (polysorbate $0) and a lipid emulsifier. Attempts made to produce

long-circulating emulsions included adding egg sphingomyetin (ESM) as a

coemulsifier and graffing various 1 ,2-distearoyl-sn-glycero-3-

phosphatidylethanolamine-poly(ethylene glycol) (D$PE-PEG) derivatives into the

emulsion interface. The DSPE-PEG derivatives selected were D$PE-PEG 2000,

DSPE-PEG 5000 and DSPE-N-[pentaerythritol polyoxyethylene) glutaryl] (D$PE-4-

armPEG), (MW 2000). The effect of ESM and DSPE-PEG concentration and

structure in prolonging circulation time and enhancing accumulation into neoplastic

tissues was assessed in mice bearing subcutaneously implanted B 16 melanoma or

C26 colon adenocarcinoma.

In this study, we report that long-circulating emulsions were obtained by

coating the droplet surface with single chain DSPE-PEG 2000 or 5000. Circulation

Ïongevity could flot be achieved with DSPE-4-armPEG despite the 2000 MW PEG

segment nor with ESM. Enhanced circulation time of emulsions grafted with PEG

2000 or 5000 translated into higher accumulation into C26 tumors but flot into B16.

These emulsions can potentially enhance the specificity of lipophilic anticancer drugs

towards neoplastic tissues and enhance the therapeutic index.

Keywords: Long-circulating emulsions, poly(ethylene glycol), biodistribution,

pharmacokinetics, drug carriers
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CHAPTER 1: COLLOIDAL DRUG CARRIERS
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1. Introduction

Conventional, low-molecular weight therapeutics ofien have the ability to

traverse across various biological membranes and compartments, showing littie or no

selectivity for diseased tissues over healthy ones [1]. This poor specfficity for the

target site ofien leads to undesirable side-effects and low proportions of the

administered dose reaching the intended site of action in the body. As a resuit, higher

doses ofien need to be administered to achieve therapeutic concentrations at the target

site. To circumvent this non-specific drug delivery, substantial efforts have been

made to alter the pharmacokinetic and tissue distribution of drugs by incorporating or

attaching them to colloïdal systems such as liposomes, micelles, macromolecular

prodrugs, polymeric nanoparticles, and emulsions. By including or linking them to

colloidal carriers the distribution of the therapeutic agent no longer depends on the

physicochemical properties of the drug molecule but instead is contingent on the

features ofthe carrier.

One way in which colloids achieve selectivity is a resuit of their large size

which restricts extravasation to locations in the body with permeable vasculature (see

figure 1). Solid tumors and sites of infection or inflammation ofien have porous

blood capillaries, which allow for the passage of nano-sized colloidal drug carrier

across the endothelium and into the extravascular space (passive targeting). Given

that the majority of the vascular endothelium is continuous with tight junctions

between neighboring endothelial ceils, active compounds associated with colloïdal

carriers are prevented from reaching the extravascular space of most tissues in the

body reducing many ofthe adverse side effects caused by drugs in the free form [2].
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In addition to the selectivity imparted by size, targeting moieties that are specific for

determinants found primarily or in high amounts on the membrane of target celis can

be attached to the surface ofthe carrier to enhance specificity (active targeting).

Another application of colloids is in the controlled release of therapeutics,

whereby they act as reservoirs that release the encapsulated drug into the blood

stream slowly. Such sustained release systems can maintain therapeutic drug levels in

the blood, reducing the frequency of administration. Furthermore, colloidal drug

delivery systems can also overcome efflux pumps such as P-glycoprotein (Pgp) by

changing the pathway in which drugs enter the ceil. Intracellular intemalization of

colloids by endocytosis Iocates the drug in an endosome/lysosome, which reduces

interactions with Pgp compared to drugs in the free form that traverse across the ceil

membrane by diffusion [3]. Other advantages of colloidal drug delivery systems

include protection of the encapsulated drug from premature degradation and enhanced

intracellular delivery of certain therapeutic compounds. For instance, free or un

encapsulated genetic material requires a carrier to enter the ceil because of the

unfavorable electrostatic interactions between DNA and ceil membranes.

Depending on their size and the physicochemical properties of the surface,

colloids can be rapidly taken up by the ceils of the mononuclear phagocyte system

(MPS) and quickly removed from the systemic circulation. Such systems are ideal for

macrophage targeting. On the other hand, colloids can exhibit long-circulating

properties in blood and target sites in the body other than MPS tissues.

Indeed, colloidal drug delivery systems offer many benefits over drugs in the

free form. These systems, however, vary in terms of physicochemical properties and
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thus have different advantages and drawbacks. An overview of the most common

colloidal drug delivery systems is briefly presented in the following sections.

2. Liposomes

Among the various colloidal drug delivery systems investigated, liposomes

are the most widely studied. They can be formed from either synthetic lipids or lipids

originating from biological membranes. Liposomes typically range in size from 50 —

10,000 nm and are classified as either small unilamellar vesicles (SUVs), large

unilamellar vesicles (LUVs) or multilamellar vesicles (MLV5). LUVs have diameters

usually between 100 to 500 nm and are bigger than SUVs [4]. They are composed of

an aqueous muer core surrounded by a single lipid bilayer. In contrast, MLVs contain

several concentric lipid bilayers and vary in size from 100 to 10,000 nm [4]. These

unique structures permit the encapsulation of either hydrophilic or hydrophobic

compounds. The behavior of these systems in the host depends largeÏy on size,

bilayer rigidity and surface charge [5, 6].

Based on composition and therapeutic application, liposomes are generally

categorized into 4 major types which are conventional, ‘stealth’ or long-circulating,

immunoliposomes (targeted), and cationic liposomes [7]. Conventional liposomes are

usually quickly removed from the systemic circulation by the MP$ and thus are more

appropriate for macrophage targeting, local depot or antigen delivery (vaccination)

[7]. Conversely, ‘stealth’ or long-circulating liposomes evade detection by the MPS

and tend to extravasate into tissues with enhanced vascular permeability (i.e. solids

tumors and sites of infection or inflammation) [8-10]. The most widely used method

to produce liposomes with enhanced blood residence times is to coat the surface of
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the carrier with poly(ethylene glycol) (PEG). This polymer provides long-circulating

properties by reducing interactions with plasma proteins and ceil surfaces because of

its highly hydrated and flexible polymer chains [1 1, 12].

The specificity of encapsulated drugs towards the intended location can be

enhanced by attaching ligands such as antibodies, antibody fragments, peptides,

carbohydrates, vitamins or hormones onto the surface of the carrier that are specific

for certain sites on the membrane oftarget celis [13]. If the encapsulated drug is to be

delivered to non-MPS tissues, PEG can be grafied onto the surface of the liposome

along with the targeting ligands to reduce uptake by macrophages [14]. Apart from

being carriers for conventional drugs, cationic liposome complexes are being

developed to protect genetic material (e.g. DNA and RNA) from degradation in the

blood stream and enhance transfection into the celI [15].

As a resuit of the large effort in developing liposomes as drug delivery

vehicles, several liposome formulations are presently on the market, such as

Doxil®/CaelyxTM, Myocet®, DepoCyt®, and AmBisome®, just to name a few [16].

Liposomal products currently on the market offer treatment for a wide range of

illnesses including cancer, Kaposi’s sarcoma, ftmgal infections, and meningitis.

Despite the many advantages of liposomal drug delivery systems there are

several drawbacks, which include poor efficiency to load hydrophobic moÏecules as a

result ofthe limited solubility in the lipid bilayer and poor stability during storage due

to hydrolysis and/or oxidation of the lipids in the bilayer. Formulation stability can be

improved by preparing the liposomes with saturated lipids and displacing the air with

an inert gas such as argon.
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3. Micelles

Micelles are core-sheÏl structures formed from amphiphilic molecules such as

low-molecular weight surfactants or block copolymers. These amphiphilic molecules

self-assemble in aqueous solvents at concentrations above the critical micelle

concentration (CMC). The hydrophobic core provides a cargo space for poorly-water

soluble compounds, while the hydrophilic corona permits solubilization in aqueous

media [17]. As a resuit of their structure, micelles can considerably enhance the

solubility of hydrophobic molecules in water and possibly protect the sequestered

dmg from chemical and/or enzymatic degradation in the host.

Micelles can be classified as either Iow-molecular weight surfactant micelles

or polymeric micelles depending on the molecular weight of the amphiphile. Low

molecular weight surfactant micelles typically have high CMC values and Iow core

viscosity, resulting in poor stability upon dilution in solution and in the blood stream

after intravenous (i.v.) administration [1$]. In addition, many low-molecular weight

surfactants cause adverse side reactions. for instance, Cremophor® EL has been

associated with severe hypersensitivity reactions in many patients [19J. These side

effects were also observed with polysorbate 80, but to a much lesser extent [20].

Compared to surfactant micelles, polymeric micelles have several advantages,

such as reduced toxicity, higher drug loading capacity and greater stability upon

dilution due to the lower CMC values, for example, poly(N-vinylpyrrolidone)-b

poly(D,L-lactide) (PVP-b-PDLLA) with 27 and 37% DLLA have CMCs of 10 and 6

mg/L, respectively [21]. These values are considerably lower than those of common
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fow molecular weight surfactants such as Cremophor® EL and polysorbate $0 with

CMCs of 90 and 100 mg/L, respectively [22].

PEG is commonly used as the hydrophilic segment of the block copolymer to

prolong systemic circulation time and target sites other than the celis ofthe MP$ [23].

Attaching targeting ligands to the hydrophilic block of polymeric micelles can

potentially improve drug delivery, although research on these systems is flot well

advanced yet [18]. Presently, a novel injectable polymeric micelle formulation of

paclitaxel (Genexol®, PEG-b-PDLLA) is being evaluated in Phase II clinical trials in

patients with advanced breast and non-small celi lung cancers [24]. This formulation

was reported to have lower toxicity and enhanced efficacy in mice compared to the

commercial low-molecular weight micelle formulation ofpaclitaxel (Taxol®) [25].

Micelles can also improve the delivery of genetic material by electrostatic

complexation of polyanionic DNA with a cationic segment of a block copolymer,

linked to a non-ionic, hydrophilic block. Neutralization of the oppositely-charged

polyions produces a water-insoluble segment, which forms the core of the micelle in

aqueous solvents [26]. The hydrophilic corona solubilizes the complex in aqueous

media and enhances stability in biological fluids. $uch systems are referred to as

polyion complex micelles.

The main drawbacks of micelles as drug delivery systems include rapid drug

leakage from the micelle and dissociation if diluted below the CMC. As a resuit, the

kinetics of micelle dissociation and drug diffusion are important parameters to

control.
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4. Macromolecular prodrugs

Macromolecular prodrugs (also referred to as drug-polymer conjugates) are

delivery systems in which therapeutic agents are covalently linked to a polymer. The

polymer can be either naturally-occurring (e.g. starch amylase, pullulans, chitosan) or

synthetic (e.g. PEG, poly-amino acids, hydroxypropylmethacrylamide (HPMA),

polyvinylalcohol (PVA), polyvinylpyrrolidone (PVP)) [27]. These drug-polymer

conjugates are water soluble and generally have high molecular weights (> 40 kDa) to

overcome renal excretion and achieve extended plasma haif-lives. These polymeric

drugs can attain half-lives in the order of hours as opposed to a few minutes for drugs

in the free form [28]. Due to their relatively large size, drug-polymer conjugates

cannot diffuse through the celi membrane and thus are usually taken up by

endocytosis.

for this system to be efficacious the drug must be released from the polymer

at the target site, however, there are exceptions whereby the prodrug is active without

cleavage. In general, release of the drug from the polymer can be either pH-triggered

or enzymatic [27]. Prodrugs with pH-sensitive bonds can be cleaved in acidic

conditions such as the extracellular space of solid tumors and/or the endosomal or

lysosomal compartments after internalization by the celi [27]. In the case of enzyme

dependent release, the linker attaching the drug to the polymer is usually a peptide

spacer such as Gly-Phe-Leu-Gly, which is susceptible to cleavage by intracellular

enzymes [29]. Ideally, the macromolecular prodrug should remain stable in the blood

circulation until it reaches the target site. Similar to other colloidal drug carriers,

targeting moieties can be attached to macromolecular prodrugs to improve selectivity
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for the target site [30]. Examples of macromolecular prodrugs presently on the market

include PEG-interferon alpha, conjugate of neocarzinostatin and poly(styrene

comaleic acid) (SMANCS), and PEG-L-asparaginase [27].

Macromolecular prodrugs have two major disadvantages. first, for drugs that

are inactive as a conjugate, cleavage from the macromolecule must occur sufficiently

fast at the target site in order to achieve greater efficacy than the free drug. Second,

non-biodegradable polymers larger than 40 kDa cannot be eliminated by renal

filtration and thus will remain in the patient.

5. Polymeric nanoparticles

Polymeric nanoparticles consist of a dense polymer matrix, which can

physically entrap hydrophobic compounds. These particulates range in diameter from

10 — 1,000 nm and can be prepared from either natural or synthetic polymers [2$].

Nanopartic1es are interesting dmg delivery systems due to the dense polymer core,

which can considerably sustain or control the release of physically entrapped

molecules [31]. The release rate of the drug molecules from the nanoparticle is

controlled by the diffusion of the drug through the polymer matrix and the erosion of

the nanoparticle [32]. As a resuit of the polymeric matrix, nanoparticles are usually

more stable than liposomes and micelles in the presence of biological fluids. In

general, without proper surface modification nanoparticles are quickly removed from

the systemic circulation by the MP$. Incorporating PEG at the surface greatly

enhances the residence time of the nanoparticles in the blood stream.

The preparation of nanoparticles ofien requires organic solvents, which

presents a disadvantage for the use of this type of carrier in the clinic. Another
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potential problem is the biodegradability and toxicity of the degradation products.

Consequently, the polymer must be carefully selected.

6. Emulsions

Emulsions are heterogeneous mixtures of two immiscible liquids (i.e. ou and

water), whereby the one phase is dispersed as fine droplets in the other. The addition

of an emulsifier or surfactant provides kinetic stability to the preparation by reducing

the interfacial tension and increasing droplet-droplet repulsion through electrostatic

and/or steric repulsive forces [33]. Similar to other drug delivery vectors, emulsions

can protect the encapsulated drug against hydrolysis and enzymatic degradation in the

blood compartment, lower the toxicity of cytotoxic compounds, and can also provide

a certain level of selectivity towards target tissues, increasing the therapeutic index of

many drugs [34]. The application of emulsions as intravenous drug delivery systems

wiII be discussed in more detail in Chapter 2.

The goal of the present work was to develop long-circulating emulsions and

characterize their accumulation into solid tumors. The performance of the emulsions

was assessed in vivo in mice bearing either B16 melanoma or C26 colon

adenocarcinoma. The experimental section and resuits of this study are provided in

Chapter 3 in the form of a scientific article. A summary of these findings as well as

additional data on formulation optimization and stability are presented and discussed

in Chapter 4. Finally, the concluding remarks and perspectives are given in Chapter 5.
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1. Introduction

Emulsions can be defined as heterogeneous mixtures of two immiscible

liquids, in which one phase is dispersed as fine droplets in the other. Small ou

droplets dispersed in a continuous water phase is termed an ‘oil-in-water’ (olw)

emulsion. The opposite ofthis system is a ‘water-in-oil’ (w/o) emulsion, whereby the

water phase is dispersed in an oily extemal medium. Among these types, only 01w

emulsions can be used for intravenous administration [1]. Emulsions are

thermodynamically unstable systems that will eventually destabilize into two separate

phases. A third component, the surfactant or emulsifier, is added to stabilize the

preparation by reducing the interfacial tension and increasing droplet-droplet

repulsion through electrostatic andlor steric repulsive forces [2]. The addition of an

emu1siing agent however, only provides kinetic stability. Even though emulsions

are unstable systems, surface active agents may provide stability for several years,

making the system useful for practical application [2].

Lipid emulsions have traditionally been used for parenteral nutrition to deliver

essential fatty acids to patients unable to acquire them in food. Due to the successfiil

induction of Iipid emulsions in parenteral nutrition, there has been increasing interest

in developing emulsions as carriers for lipophilic drugs. Many intravenous lipid

emulsion formulations are commercially available (Table 1) and a number of others

are in clinical phase or in preclinical development (Table 2). Lipid emulsions are

promising carriers for drug delivery due to their biocompatibility, reasonable stability,

ability to solubilize high quantities of hydrophobie compounds and relative ease of

manufacture at an industrial seale [3, 4]. In addition, emulsions can protect the
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encapsulated drug against hydrolysis and enzymatic degradation in the blood

compartment, reduce drug loss in infusion sets, lower the toxicity of cytotoxic

compounds, and reduce the incidence of irritation and pain upon injection [1, 4]. They

can also provide a certain level of selectivity towards target tissues, increasing the

therapeutic index of many drugs [5]. However, afier intravenous injection, lipid

emulsions can acquire apolipoproteins and be metabolized as natural fats or be

recognized as foreign bodies and taken up by the ceils of the mononuclear phagocyte

system (MPS; also known as the reticuloendothelial system (RES)) [6]. Evading the

MPS or natural fat metabolism is necessary when the encapsulated drug is to be

delivered to non-MPS organs or liver parenchymal ceils, respectively. 11e in vivo fate

of lipid emulsions can be controlled to a certain extent by altering the

physicochemical properties of the carrier such as, droplet size, composition and

surface properties. This chapter will discuss the main factors to consider when

developing emulsions for intravenous injection.

2. Emulsion stability

Emulsions are thermodynamically unstable systems and will inevitably break

apart into separate ou and water phases. Emulsion instability is caused by the increase

in surface free energy tAG) as small droplets are formed as a resuit of the enhanced

surface area (AA). Adding a surfactant to the mixture reduces the interfacial tension

(y0) at the oil-water interface facilitating globule rupture during emulsification and

stabilizes the preparation (Eqn 1).

(1)
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It is important to state that surfactants only provide the emulsions with kinetic

stability, which delays the destabilization process. Nevertheless, surface active agents

can provide stability for several years, which is long enough for the system to be

useful for practical purposes [2]. Emulsions that are thermodynamically stable are

known as microemulsions. They are clear or transiucent systems and do flot require

much energy input during emulsification. In contrast, emulsions are cloudy and

require a greater amount of energy for emulsification [7]. The theory behind the

formation of microemulsions is beyond the scope of this chapter.

2.1. Destabijization processes

Emulsion destabilization can be characterized by three separate processes:

flocculation, coalescence and Ostwald ripening. Coalescence and Ostwald ripening

are irreversible processes which Iead to an increase in droplet size, requiring a large

energy input to re-disperse the droplets. flocculation, on the other hand, is reversible

and occurs when droplets aggregate to form a clump of many individual droplets. The

aggregated droplets move together as a cluster but each droplet stiil retains its

separate identity. The interactions holding the droplets together are weak and can be

broken by mild agitation. Even though floccules can be easily re-dispersed, they may

eventually fuse together to form single, larger globules. The fusion of droplets is

irreversible and is termed coalescence. Ostwald ripening, which also increases droplet

size, occurs in polydisperse formulations wherein the smaller droplets are more

soluble in the continuous phase than the larger ones. In this process, the oil from the

smaller droplets dissolves in the aqueous phase and diffuses towards the larger

droplets. This transfer of ou causes the big droplets to grow, while the smaller ones
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decrease in size. As the small droplets continue to shrink, the Ostwald ripening effect

is enhanced. The progressive increase in droplet size over time will eventually lead to

complete phase separation. Adding too much surfactant may promote Ostwald

ripening as the excess surfactant will form micelles which enhance the solubility of

the ou in the aqueous phase. Ostwald ripening can be reduced by increasing the

viscosity of the continuous phase, decreasing polydispersity, or adding a third

component which has a lower solubility in the continuous phase than the oil [8, 9].

Depending on the density differences between the dispersed and continuous

phases, individual droplets or floccules can cream or sediment. If the dispersed phase

is lower in density than the continuous phase, the droplets or floccules will rise to the

surface producing a highly concentrated layer of dispersed phase, which is known as

a cream. In the case where the dispersed phase is higher in density than the

continuous phase, a sediment will form at the bottom of the formulation. for o/w

emulsions, creaming usually occurs since the oil phase is typically less dense than the

aqueous phase. The rate of creaming or sedimentation can be linked to the size of the

droplet by Stokes’ equation (Eqn 2). According to this equation the limiting velocity

ofa falling sphere (u) is:

(2)
9v

where a is the radius of the droplet, Ap is the density difference between the dispersed

and continuous phases, y js the viscosity of the continuous phase and g is the

acceleration due to gravity. Stokes’ equation implies that droplets will rise or settie

faster if the droplet size or the density difference between the dispersed and

continuous phases is large, while an increase in continuous phase viscosity will slow
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down the separation process. As a resuit, creaming or sedimentation can be delayed

by reducing dropiet size, decreasing the density differences between the two phases

and increasing the viscosity of the continuous phase. Not much emphasis, however, is

being placed on density adjustments to produce stable emulsions since there are a

limited number of oils approved for intravenous administration and these oils have

similar densities.

$ubmicron emuisions have coiloidal properties and as a resuit are less

susceptible than coarse emuisions to the gravitational forces in Stokes’ equation [10].

Nanosized droplets are subjected to random Brownian motion and consequentiy are

less inclined to cream or sediment. Brownian motion, however, does flot provide

complete protection against instability since droplets may aggregate or coalesce upon

random collisions. Stability against these collisions depends on the attractive and

repulsive forces acting on the droplets. Typicaily, emulsions are stabiiized by either

electrostatic or steric repulsive forces (or a combination ofthe two).

2.2. Electrostatic stabilization

The balance between attractive Van der Waais forces and electrostatic

repuisive forces is described in the theory of coiloidal stabiiity, termed DLVO afier

its developers Derjaguin, Landau, Vervey, and Overbeek. If the net force is attractive,

the droplets wiil either flocculate or coalesce. In contrast, if the net force is repulsive,

the particles wiil repel each other and the system is stable. The attractive interaction

between particles arises from Van der Waals forces and is experienced by ail

particies. Van der Waals forces dominate at short separation distances and the

strength of this attractive force can be determined from the magnitude of the Hamaker
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constant (A). Emulsions can overcome the attractive Van der Waals forces through

electrostatic repulsion with charged emulsifying agents. Electrostatic repulsion is

provided by the electric double-layer surrounding the droplet. The electric double-

layer is characterized by an adsorbed layer of fixed counterions and a diffuse layer of

ions that move freely with the fluid. Two approaching particles will experience a

repulsive force as the electric double-layers overlap. The total potential of interaction

between two droplets is the sum of the attractive van der Waals forces and the

electrostatic repulsive forces (Eqn 3);

V=V+J’Ç, (3)

where VT is the total interaction potential, VA represents the attractive van der Waals

forces and VR signifies the electrostatic repulsive forces. The potential energy of

interaction between two droplets as a function of separation distance is illustrated in

Figure 2. The repulsive barrier generated by the electric double-layer corresponds to

the maximum in the curve. The height of the energy barrier determines the stability of

the emulsion and depends on the ionization of the surfactants.

for the system to be stable, the energy barrier must be high enough sucli that

the droplets do flot have enough kinetic energy to surpass it and reach the primary

minimum. At the primary minimum (maximum attractive potential) droplet

coalescence readily occurs. flocculation takes place at the secondary minimum and

contrary to coalescence, is reversible by providing a small amount of kinetic energy

to overcome the weak attractive forces holding the droplets together. flocculated

droplets are prevented from coatescing as a resuit of this repulsive energy barrier. If

the flocculated droplets have enough energy to surpass the energy barrier they will
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easily reach the primary minimum and coalesce. The strength of the electrostatic

forces can be quantified by measuring the zeta potential, which is the potential at the

plane of hydrodynamic shear. Generally, emulsions are stabilized by electrostatic

repulsive forces if the zeta potential is greater than ± 30 mV [2, 8, 1 1]. An emulsion

stabilized by electric double-layer repulsion can be destabilized if the concentration

of electrolytes is increased above a critical value. Adding electrolytes to an emulsion

decreases the electric double-layer repulsion potential, while the van der Waals

attractive potential remains unchanged. As electrolyte concentration increases, the

repulsive forces stabilizing the colloid become weaker until the net force is attractive

and stability is lost.

2.3. Steric stabilization

Emulsions can also be stabilized by steric repulsion by grafiing long-chain

polymers at the emulsion interface. Steric repulsion is a non-DLVO interaction that

occurs due to the unfavorable overlap of the polymer chains as two particles approach

each other [8, 12]. Steric stabilization occurs at short inter-droplet separation

distances and can provide a strong barrier against coalescence [8]. Optimal steric

repulsion can be achieved at high polymer surface density as desorption and chain

rearrangement is minimized [8].

3. Elimination mechanisms for lïpid emulsions

Afier intravenous injection, lipid emulsions may be metabolized in a manner

similar to chylomicrons or might be recognized as foreign bodies and removed by the

ceils of the MPS. The mechanism of elimination from the body depends on the
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physicochemical properties of the emulsion. Both mechanisms of elimination can

occur for a given lipid emulsion, however, one process may be favored over another.

This section describes the two primary pathways of lipid emulsion elimination from

the body.

3.1. Lipid emulsions metabolized as endogenous chylomicrons

Depending on the composition and surface properties, lipid emulsions may be

recognized as chylomicrons and be elirninated via the fat metabolism pathway.

Chylomicrons are endogenous emulsions produced by the enterocytes of the small

intestine afier dietary lipids are ingested. They are rich in triglycerides and possess

apolipoproteins A-I, A-IV and 3-48 prior to entering the blood circulation (Figure 3)

[13]. Chylomicrons are secreted into the lymph and enter the systemic circulation

through the thoracic duct. After entering the blood, chylomicrons obtain Apo C-II and

Apo E from the high-density lipoproteins (HDLs) and release Apo A-IV. In the

capillaries of adipose tissues and muscle, lipoprotein lipase (LPL) located on

endothelial ceils adsorb onto the mature chylomicron and hydrolyze the triglycerides

to fatty acids [14]. The fatty acids are then absorbed mainly by adipose tissues and

muscle. During lipolysis, a substantial amount of phospholipid, Apo A and Apo C are

transferred to the HDLs and the size of the chylomicron is reduced considerably. The

remuant chylomicrons composed of mainly Apo B-48, Apo E and cholesterol are

quickly removed from the blood by the liver. The uptake of remuant chylomicrons by

the liver occurs via two Apo E-specific recognition sites on parenchymal ceils, which

are the low-density lipoprotein receptor (LDLr) and the remuant receptor [15-17].
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Injectable lipid emulsions differ from chylomicrons in that they do flot have

apolipoproteins on the surface prior to entering the blood stream, although they may

acquire them afier systemic injection. Emulsions rich in triglycerides are known to

acquire apolipoproteins (Apo C-I, C-II, C-III, E and possibly Apo A-IV), mainly from

HDLs, soon afier injection into the systemic circulation and are metabolized in a

pathway comparable to that described for chylomicrons [15, 18, 19]. Among the

apolipoproteins acquired Apo C-II and Apo E are essential for LPL activation and

uptake of remnant emulsions by the liver, respectively [19].

Elimination of the lipid emulsion via the pathway of natural fat metabolism

may be desirable when the liver parenchymal ceÏÏs are the target site. On the other

hand, if the target site is flot the liver then apolipoprotein adsorption onto the

emulsion should be avoided. The metabolism of lipid emulsions as natural fats is

strongly dependent on the type of emulsifier [20, 21], the presence of cholesterol [22]

and the chain length ofthe triglyceride ou [23].

3.2. Elimination by the mononuclear phagocyte system

If the body recognizes the lipid emulsions as foreign, they will be captured by

the ceils ofthe MPS, mainly the Kupffer celis ofthe liver and the macrophages ofthe

spleen, and removed from the systemic circulation. The MPS takes up the emulsions

via endocytosis and localizes them in the lysosomal compartment where they are

degraded by enzymes [24]. The extent of emulsion clearance from the systemic

circulation is enhanced by the adsorption cf opsonins (proteins) onto the colloid

surface. The bound proteins then interact with the receptors on monocytes and

macrophages, facilitating endocytosis. Carriers that become bound te opsonins will be
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rapidly cleared from the blood and prevented from reaching the target site(s) [24].

Immunoglobins and complement components such as Clq and C3 fragments (C3b,

iC3b) are well known opsonins.

A major challenge in drug delivery using colloidal nano-carriers is to avoid

clearance by the celis of the MPS when the target sites are non-MPS tissues.

Overloading or saturating the MPS with large injections volumes has been shown to

enhance the circulation time of lipid emulsions [25]. However, temporary impairment

of the MP$ may pose a health hazard to the patient [26J. Altematively, the clearance

rate of carriers from the blood can be altered by modifying the physicochemical

properties of the emulsion, such as droplet size [27, 28] and surface characteristics

[29]. This will be discussed in detail in section 4.

4. Biodistribution of lipid emulsions

The biodistribution of an emulsion after systemic injection is dependent

primarily on the droplet size, composition and surface properties. A certain specificity

towards the target site can be achieved by controlling the physicochemical properties

of the emulsion. The principle factors that influence the biodistribution of emulsions

has already been very thoroughly reviewed in a book chapter by Nishikawa [6]. This

section provides a brief overview of these factors and has been updated with some

recent work.

4.1. Effect of lipid emulsion size

It is well known that droplet size greatly influences the uptake of the

emulsions by the MP$ [27, 28]. In general, larger particles are more susceptible to
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uptake by the MPS and are cleared more quickly from the systemic circulation. The

influence of droplet size on the in vivo biodistribution of lipid emulsions was

explored by Takino et al. [27]. The authors compared the biodistribution of large (250

nm) and small (100 nm) lipid emulsions composed of egg phosphatidylchoÏine (egg

PC):soybean ou = 1:1. [‘4C]Cholesteryl oleate ([14C]CO), a highly lipophilic

compound (log P = 18.3) that does flot undergo lipolysis by LPL and remains

associated with the emulsion, was incorporated into each emulsion to track the

ehmination of the whole droplet [30]. The large egg PC emulsion was rapidly

eliminated from the blood with 60% of the injected emulsion recovered in the liver

within 10 min. The small egg PC emulsion, however, remained in the blood for

longer and accumulated less in the liver. Similarly, Lundberg et al. [28] reported that

droplet size influenced emulsion clearance rate from plasma. They observed that the

smallest emulsion (50 nm) survived the longest in plasma, whereas the larger

emulsions (100 and 175 nm) were cleared more rapidly (figure 4). The influence of

emulsion-like lipid nanocapsule size (20, 50 and 100 nm) on the extent of

complement activation and macrophage uptake was evaluated by Vonarbourg et al.

[31]. Similar to emulsions, Iipid nanocapsules are core-sheil structures with an oily

internal phase that is stabilized by a monolayer of emulsifiers. They differ from lipid

emulsions in the physicochemical properties of the hydrophilic/hydrophobic

interface. In lipid nanocapsules, the emulsifiers form a semi-rigid sheil, while the

interface is more fluid in emulsions. The authors observed that larger lipid

nanocapsules were stronger activators of the complement and were taken up more by

macrophages than the smaller ones.
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The size of the lipid emulsion was also shown to influence lipolysis. Kurihara

et al. [32] found that the rate of lipolysis was much faster for the small sized

emulsions (‘- 100 nm) in vitro compared to the larger ones (225-416 nm). However,

afier intravenous injection of these formulations in rats, they observed that the small

sized emulsions remained in plasma longer than the larger ones, which is consistent

with the studies of Takino [27] and Lundberg [2$]. Consequently, even though small

emulsions were better substrates for LPL, large emulsions were cleared from the

blood faster, which suggests a greater uptake by the MPS.

Droplet size also determines the ability of the emulsion to escape the systemic

circulation through the blood capillaries and reach the extravascular space. Capillary

walls are composed of a single layer of endothelial celis surrounded by a basement

membrane. They are classified into three types, continuous (intact), fenestrated or

discontinuous (sinusoidal), based on their wall structure [33]. Both fenestrated and

discontinuous capillaries have pores in the endothelium, while continuous ones have

tightjunctions between adjacent endothelial ceils [34]. Continuous capillaries have an

intact subendothelial basement membrane and can be found in most regions of the

body such as the skin, connective tissue, skeletal and cardiac muscle, alveolar

capillaries of the lung, and the brain [33]. In fenestrated capillaries, the pores

(fenestrae) are approximately 40-80 nm in diameter and they can be either open

(unobstructed) or covered by a thin diaphragm [33]. These capillaries have a

continuous subendothelial basement membrane and are situated in the intestinal

mucusa, pancreas, glomerulus, peritubular capillaries, endocrine glands, the choroid

plexus ofthe brain and the ciliary body ofthe eye [33]. Discontinuous capillaries, on
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the other hand, have large gaps between endothelial ceils and are located in the liver,

spleen and bone marrow [33]. The basal membrane is either absent, which is the case

for the liver or discontinuous (spleen and bone marrow) [34J. The largest pore size in

the capillary endothelium is believed to be approximately 100 nm [35]. Nanoscopic

drug carriers are generally too large to diffuse across the capillaries of continuous

endothelium. Their best opportunity to escape the systemic circulation is through the

gaps between the endothelial ceils of discontinuous capillaries. Consequently,

colloidal drug carriers tend to accumulate in the liver, spleen and bone marrow.

Control over carrier size can impart some selectivity for the extravascular

space of tumoral sites, reducing anticancer drug toxicity towards healthy tissues. This

selectivity can be achieved by taking advantage ofthe difference in capiflary structure

between tumors and normal tissues. Tumor vasculature is often characterized as

porous or “leaky” allowing enhanced permeation of colloidal particles across the

endothelium and into the extravascular space. In addition, tumors have poor

lymphatic drainage allowing colloids to be retained in the tissue for longer periods of

time [36]. This increased permeation and retention of colloids is called the enhanced

permeation and retention (EPR) effect [37]. The optimum size range for colloidal

particle accumulation in tumors is generally accepted to be approximately 5 0-200 nm

[38]. Particles in this size range can be convected from the blood vessel into the

extravascular space through the porous vasculature of the tumor. Depending on the

porosity of the tumor capillaries, particles above 200 nm may not pass through the

pores and will be eliminated more quickly by the MPS. On the other hand, particles
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less than 50 nm will easily extravasate through the discontinuous endothelium of the

liver, spleen and bone marrow.

As a rule of thumb, for successffil accumulation of dmg in the tumor by the

EPR effect, the concentration of colloidal carriers in the plasma must remain high for

more than 6 hours [39]. The progressive extravasation of the carrier into the tumor

tissue over several hours wiii resuit in increasing concentrations of anticancer drug in

the vicinity of the cancer ceils. Kurihara et al. [40] demonstrated that lipid emulsions

under 230 nm in diameter could deliver more RS-1541, a highly lipophilic antitumor

agent (13-0-palmitoyl-rhizoxin), to the tumor site (M5076 sarcoma ceils) than larger

dropiets (Figure 5). The low concentrations of RS-1541 detected in the tumor for the

larger emuisions is most likeiy due to the impermeability of the leaky tumor

capiilaries to large particles and their faster removal rates from blood. It was also

observed that emulsions greater than 220 nm reduced the toxicity of R$-1541 as

shown by the higher maximum tolerated dose (MTD) with increasing size (Table 3).

Ail emulsions regardless of size (70 — 380 nm) suppressed tumor growth and

improved survival at the MTD. The medium sized emulsions (220 nm), however,

displayed the highest antitumor activity at the MTD due to the permeability of the

tumor vasculature for the emulsions and reduced toxicity, permifting the injection of a

higher dose. Hence, lipid emulsions can augment the delivery of cytotoxic

compounds to tumoral sites and reduce systemic toxicity by suitable selection of the

droplet size.
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4.2. Effect of lipid emulsion composition and emulsifiers

Composition ofthe oitphase

The composition of the internai phase has aiso been shown to alter the

biodistribution of lipid emulsions. Lutz et al. [41] observed that lipid emuisions

composed of medium-chain triglycerides (MCTs) were cleared from plasma more

quickly than those prepared with long-chain triglycerides (LCT5). This is probably

due to the faster hydrolysis of MCTs by LPL and hepatic lipases compared to LCTs

as a resuit of the greater solubility and mobility of shorter chain triglycerides at the

oil/water emulsion interface [42].

Adding free cholesterol bas also been shown to alter the metabolism of

triglyceride emuisions. Maranhao et al. [22] observed that emulsions with low free

cholesterol content (< 4, % w/w) were metabolized in a maimer similar to

chylomicrons, as shown by the faster removal rate of triglycerides from the blood

than CO due to LPL mediated hydrolysis of the ou and greater uptake of CO than

triglycerides by the liver. In contrast, emulsions with high free cholesterol (>16, %

w/w) displayed similar triglyceride and CO removal rates from blood and equal

uptake by the liver. The group also observed that emulsions containing high ftee

cholesterol bound less Apo A-I, Apo A-IV and Apo C and more Apo E in vitro. Apo

C-II us essential for LPL binding and activation and hinders liver uptake, while Apo E

facilitates emulsion uptake by the liver. Hence, the presence of free cholesterol may

modify the metabolism of the droplets by altering the binding of apolipoproteins onto

the surface.
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Pizosphatidytchotine composition

The biodistribution of emulsions can also be altered by the pliospholipid

emulsifier. Lenzo et al. [43] demonstrated that the nature of the PC affected the

metabolism of the emulsion in rats. Five lipid emulsions with different phospholipid

emulsifiers were prepared. The phospholipids selected were egg PC, 1,2-dioleoyl-sn-

glycero-3 -phosphatidylcholine (DOPC), 1 ,2-dimyristoyl-sn-glycero-3 -

phosphatidylcholine (DMPC), 1 ,2-dipalmitoyl-sn-glycero-3 -phosphatidylcholine

(DPPC) and 1 -palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC). The

average composition of each emulsion was similar and size was maintained at

approximately 150 nm. The emulsions were radiolabeled with [‘4C]triolein (TO) and

[3H]CO or dipalmitoylphosphatidyl{N-methyl-3HJcholine to monitor the hydrolysis of

the triglyceride ou by LPL, the clearance of the entire colloid particle and the transfer

ofphospholipids to the HDLs, respectively.

The carriers emulsified with egg PC or POPC were metabolized in a manner

similar to chylomicrons as shown by the rapid removal rate of [‘4C]TO from plasma,

consistent with hydrolysis by LPL and the efficient uptake of [3H]CO (remuant

emulsions) by the liver. DPPC-based emulsions remained in plasma the longest and

the triglycerides associated with this emulsion disappeared very slowly, suggesting

that the emulsion was less susceptible to hydrolysis by LPL. Moreover, the

phospholipid radiolabel did flot transfer to HDLs. A possible explanation for the

above observations is the difference in chain unsaturation between the five

phospholipid emulsifiers. The authors hypothesized that rapid hydrolysis of the
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triglyceride ou by LPL and efficient transfer of phospholipids to HDLs requires a

chain unsaturation at the glycerol 2-position.

4.3. Effect of surface charge

Lipid emulsions obtain their surface charge through the use of neutral, anionic or

cationic emulsifiers. Most emulsions used in drug delivery are either neutral or

negatively charged since cationic carriers are more prone to aggregate in the presence

of plasma proteins. This susceptibility for aggregation in the bloodstream is a resuit of

the electrostatic interactions with negatively charged plasma proteins. It is generally

accepted that surface charge has an effect on the rate of particle uptake by the MPS,

although the connection is far from straightforward. Other surface properties, such as

the nature of the emulsifier may take precedence over the effects generated by surface

charge. Davis et al. [44] found no clear correlation between zeta potential and the rate

of emulsion uptake by mouse peritoneal macrophages, although emulsions with the

weakest charge, prepared with the non-ionic surfactant poloxamer 338, had the

slowest rate of uptake. Stossel et al. [45] found that emulsions with higher surface

charge (positive or negative) were phagocytosed at a faster rate compared to neutral

or weakly charged surfaces. Oku et al. [46] observed that uptake by the liver and

spleen was greater for positively charged liposomes than neutral or anionic ones. The

higher accumulation of cationic liposomes in the MPS organs may be due to both

particle aggregation in the presence of serum and protein adsorption onto the colloid,

which was observed to a lesser extent in neutral or anionic liposomes. Devine et al.

[47] found that liposomes bearing a net positive or negative charge activated the

complement in a dose-dependent manner, while no complement activation was
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obseiwed for neutral liposomes. Interestingly, long-circulating cationic lipid

emulsions have been reported in the literature by careful selection of the emulsifier

[48].

Over the past several years, there has been increasing interest in developing

cationic lipid-DNA complexes for the improved delivery of genetic material [49, 50].

An advantage of using cationic carriers is the enhanced cellular uptake via

endocytosis over neutral or negatively charged carriers [51]. This is due to the

favorable electrostatic interactions of cationic particles with the negatively charged

moieties on biological membranes. However, due to the tendency of cationic particles

to aggregate in the presence of serum, the positive charge will need to be shielded,

which will invariably reduce transfection efficiency in the absence of targeting

ligands.

4.4. Long-circulating lipid emulsions

Afier intravenous administration, colloidal drug carriers are rapidly taken up

by circulating monocytes and macrophages in the liver, spleen and bone marrow.

Avoiding the MPS is crucial when the emulsions are to be delivered to non-MP$

ceils. ProÏonged circulation of the drug carrier is also necessary to achieve passive

targeting of tumoral tissues via the EPR effect. Modifying the colloidal surface such

that the carriers are invisible or “stealth” to opsonins and macrophages is an approach

investigated to increase the circulation time of submicrometer emulsions in blood.

$phingomyetin

The presence of sphingomyelin (SM) at the oil/water interface lias been

shown to reduce the uptake of the emulsions by the MPS. Takino et al. [27]
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demonstrated that adding SM to an egg PC and soybean ou formulation increased the

circulation time of the submicrometer ernulsions in blood and decreased liver and

spleen uptake. The emulsions were composed of egg PC:soybean ou = 1:1 and egg

PC:$M:soybean ou = 0.7:0.3:1 with [14C]CO incorporated as a radiolabeled tracer.

The AUC of the SM emulsion was 1.6 times larger than the one emulsified with egg

PC only. Similarly, Redgrave et al. [21] observed that increasing the amount of SM

enhanced the circulation time of the carrier in plasma (figure 6) and reduced uptake

by the liver (figure 7). Even though SM and PC share a common phosphorylcholine

polar head group, there are structural discrepancies between the two molecules that

reflect their different physical properties in colloidal systems. SM has a high content

of saturated acyl chains relative to naturally occurring PCs and has a stronger

hydrogen bonding capacity, which may alter monolayer rigidity and interactions with

blood components [52].

Poty(ethytene glycol)-tipids

A very widely used and effective method to avoid clearance by the MPS is to

incorporate poly(ethylene glycol) (PEG) (also known as poly(ethylene oxide) (PEO))

at the colloid surface using a lipid derivative. PEG, a hydrophilic and flexible

polymer, creates a zone of steric hindrance around the carrier which decreases the rate

and extent of opsonin binding [53]. PEG is widely accepted for intravenous

administration because it is a biocompatible, non-toxic and non-immunogenic

polymer. Moreover, PEG-lipid derivatives are amphiphilic and as a result can be used

as a coemulsifier as well. Liu et al. [29] observed the influence of PEG molecular

weight on the biodistribution of lipid emulsions composed of castor oil and egg PC.
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The PEG-lipid derivatives investigated were dioleoyl N-(monomethoxy PEG

succinyl)phosphatidylethanolamine (PEG-DOPE) (MW 1000, 2000, and 5000) and

poly(ethylene oxide) 20 sorbitan monooleate (polysorbate $0). Emulsion droplet size

was maintained at approximately 200 nm so that the circulation behavior was only

dependent on the surface properties of the emulsions. It was observed that emulsion

circulation time in blood depended on the length of the PEG chain. PEG2000-DOPE

and PEG5000-DOPE kept the emulsions in the blood the longest. Approximately 60-

70% of the injected dose remained in the blood after 30 min. PEG1000-DOPE and

polysorbate $0 emulsions demonstrated comparable behavior in vivo with 47% of the

injected dose remaining in the blood afier 30 minutes. The high emulsion

concentration observed in the blood for PEG2000-DOPE and PEG5000-DOPE translated

into lower accumulation in the liver. Consequently, coating an emulsion surface with

PEG of sufficient chain length can confer long circulating properties to

submicrometer emulsions.

Hoarau et al. [3$] evaluated two different processes to incorporate 1,2-

distearoyl-sn-glycero-3 -phosphatidylethanolamine-N-monomethoxy-[PEG] (PEG

D$PE) into lipid nanocapsules. The conventional method was the first investigated

and involved the addition of PEG-DSPE with the other surfactants during the

emulsification ofthe oil. The second method evaluated was post-insertion, wherein an

aqueous micelle solution of PEG-D$PE was added to the preformed lipid

nanocapsules and then incubated for 90 min at 60°C. The authors observed that the

post-insertion method enhanced the amount of PEG-DSPE that could be incorporated

into the nanocapsule compared to the conventional process. for the conventional
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method, the amount of PEG2000-DSPE and PEG5000-DSPE could flot exceed 3.4 and

1.5 mol% of the total surfactants, respectively as physical instability would occur. In

contrast, PEG-DSPE could be incorporated into the lipid nanocapsules at higher

quantities (6-10 mol%) using the post-insertion method, regardless of the PEG chain

length. Consequently, the PEGylated lipid nanocapsules prepared by the post

insertion technique circulated longer in blood due to the greater PEG density at the

surface (figure 8). for example, the AUC increased 5-fold as the proportion of

PEG2000-D$PE increased from 1.7 to 10 mol%.

Other methods to enhance circulation time

Surfactants containing PEO chains such as, PEO-b-poly(propylene oxide)-b

PEO (PEO-b-PPO-b-PEO, poloxamers) and PEO-hydrogenated castor ou

(cremophors) have also been investigated to enhance the hydrophilicity of emulsion

surfaces to reduce opsonin binding and uptake by the MPS. Lee et al. [54]

demonstrated that emulsions coated with poloxamer 338 reduced the amount of

ibuprofen octyl ester delivered to the MPS organs. Ueda et al. [55] investigated the

influence of ethylene oxide number in PEO-hydrogenated castor oil surfactants on

menatetrenone clearance rate from plasma and distribution to MPS organs. They

observed that a minimum of 20 ethylene oxide units (MW = $80) is required to

prolong menatetrenone circulation time in plasma. The prolonged circulation of

emulsions containing greater than 20 ethylene oxide units translated into a lower

accumulation of menatetrenone in the liver. Menatetrenone incorporated into

emulsions with 10 ethylene oxide units were rapidly removed from plasma and were

taken up to a greater extent by the liver.
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4.5. Active targeting of selected celis

Dmg delivery systems utilizing ligands that specifically recognize

determinants on the surface of target ceils has been extensively investigated in

liposomes [56-5$] and macromolecular prodrugs [59]. However, few studies have

been done with emulsions. Incorporating ligands onto the emulsion interface is a

promising method to enhance specificity towards the target site(s). for this method to

be successful, Iipid emulsions must have the appropriate ligand(s) anchored onto the

surface, be able to reach the target ceils, bind to the receptors and either enter the ceil

or empty the contents in the vicinity ofthe ceil.

Lipid emutsions associated with apottoprotein E

Apo E has an affinity for both the remnant and LDLr receptors on hepatocytes

and is an important mediator in the uptake of emulsions and lipoproteins by the liver.

Incorporating Apo E on lipid emulsions provides an opportunity to target hepatocytes.

Rensen et al. [60] investigated the possibility ofusing lipid emulsions associated with

Apo E as drug carriers for a mode! antiviral prodrug, iododeoxyuridine-oleoyl (IDU

012), to selectively target hepatocytes for improved therapy of hepatitis B viral

infection. The emulsions were prepared using natural Iipids (egg PC,

lysophosphatidytcholine, cholesterol, TO and CO) and had a mean size of

approximately $0 nm to mimic natural chylomicrons. The lipid emulsions were

radiolabeled with [‘4C]CO and [3H]IDU-017 to track the in vivo distribution of the

whole droplet and prodrug, respectively. Afier intravenous injection, lipid emulsions

pre-loaded with Apo E were removed faster from serum and were taken up more by

the liver than the control emulsions (lipid emulsions flot pre-loaded with Apo E)
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(Figure 9). The uptake of the carrier by the liver reached approximately 70% of the

injected dose for the Apo E pre-loaded emulsion compared to only 30% for the

control. The prodrug exhibited similar removal rates from serum and uptake by the

liver as the carrier. The authors also showed that the carrier and prodrug were mainly

taken up by parenchymal celis with littie accumulation in the endothelial or Kupffer

cells. Introducing lactoferrin, a glycoprotein that blocks Apo E mediated uptake of

lipoproteins by parenchymal cells, prior to injecting the lipid emulsions resulted in a

considerable reduction in emulsion uptake by the liver.

Sugar-coated emulsions to target hepatocytes

Incorporating Apo E onto the lipid emulsion is a complex process which may

cause reproducibility and stability issues [61]. Another method to enhance selectivity

for hepatocytes is to incorporate sugars such as galactose on the surface of the lipid

emulsion to target the carbohydrate receptors on hepatocytes. Ishida et al. [61]

investigated the biodistribution of galactosylated (Gal) and non-galactosylated

emulsions afier intravenous injection in mice. The results demonstrated that the Gal

emulsion was more quickly removed from the blood compared to the bare-emulsion,

whereby the AUC values for the Gal-emulsion and bare-emulsions were 1.9 and 3.7

(% of dose x bJmL), respectively. In addition, the uptake of the Gal-emulsion by the

liver was 3.2-times greater than the bare-emulsion. Moreover, Gal-emulsions were

taken up 7.4-times more by parenchymal cells than non-parenchymal compared to

only 4.3-times for the bare-emulsions. These findings suggest that introducing

galactose on the surface of lipid emulsions is a promising method for delivering drugs

to hepatocytes.
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Antibody/peptide conjugation onto long circutating t,pid emutsions

Cancer celis ofien over-express certain antigens or receptors, which provides

another possible method to enhance the selectivity of anticancer drugs towards tumor

tissues [58]. Antibodies, antibody fragments, or synthetic peptides can be

incorporated onto the carrier surface to specifically recognize the antigenlreceptors on

cancer celis and offers a possible solution to the non-specific and slow uptake of

colloidal carriers by cancer ceils. Linking antibodies to liposomes has been widely

studied, however, much more progress is required for its successful application [58].

In theory, the techniques applied to liposomes can be carried over to lipid emulsions.

Ideally, the tumor targeting ability of antibodies can be coupled with the long

circulating properties of PEGylated lipids. To avoid the interference between the PEG

chain of PEGylated lipid emulsions and the antibodies incorporated into the emulsion

surface, antibodies linked to PEG chains have been developed in recent years.

Lundberg et al. [62] successfully conjugated an anti-B-cell lymphoma monoclonal

antibody (LL2) onto a lipid emulsion by coupling LL2 to PEG-D$PE. The

immunoreactivity of the LL2 conjugated emulsion was tested by determining their

binding affinity to WN, the anti-idiotype antibody to LL2. The results showed that

increasing the density of LL2 at the surface enhanced the binding of the emulsion to

WN up to 40 antibodies per droplet.

4.6. Drug leakage from emulsions

Drug retention within the droplet afier intravenous administration is another

important factor to consider when designing lipid emulsion flot only for dissolution

purposes but as carriers for lipophilic drugs. Controlling the biodistribution of the
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entire droplet will flot enhance the therapeutic effect if the drug is released from the

carrier before it reaches the target site. Takino et al. [27] suggested that the drug must

have adequate lipophilicity (log P greater than 9) to remain sufficiently incorporated

in the emulsion in the blood circulation. The influence of lipophilicity on drug

leakage was observed by Kurihara et al. [63]. The group evaluated the

pharmacokinetics of two lipophilic anticancer agents, rhizoxin and RS-1541,

incorporated into lipid emulsions afier intravenous injection in rats. The

lipophilicities of rhizoxin and RS- 1541 were very different with log P values of 1.9

and 13.8, respectively. Afler intravenous injection, rhizoxin was removed much more

quickly from plasma than RS-1541 and distributed more to the liver, lung and

intestine. The different pharmacokinetic profiles can be attributed to the lower

retention of rhizoxin within the lipid emulsion afier injection. Similarly, $akaeda et

al. [64, 65] found that sudan II with a log P of 5.4 was rapidly released from the lipid

emulsion in plasma. Consequently, the lipid emulsion did not alter the

pharmacokinetics of sudan II. The lipophilicity of a drug can be increased by

chemically modifying the drug. A drawback of this approach, however, is that

chemical modifications may reduce efficiency or completely inactivate the drug.

5. Preparation of emulsions for intravenous administration

To be used for intravenous administration, emulsions must be biocompatible,

biodegradable, non-toxic, sterile, isotonic, physically and cliemically stable, and non

immunogenic [1]. Moreover, droplet size must be small enough to avoid forming

pulmonary emboli. To achieve these requirements, the excipients, additives and

manufacturing conditions must be carefully selected. In addition, a complete
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physicochemicai characterization of the emuisions is necessary, foliowed by a long

term stabiiity testing schedule on ail promising formulation candidates. The following

section describes the basic factors that need to be considered when developing

emulsions for intravenous injection.

5.1. Excipient and formulation considerations

Internatphase (oits)

To compiy with the essential requirement of biocompatibility, research on

injectable emulsions lias been primarily focused on the use of vegetable oils

(triglycerides) as the ou phase [66]. Triglyceride oils can be characterized as long,

medium or short chain depending on the number of carbon atoms per hydrocarbon

chain. LCTs contain 14, 16, 18, 20 or 22 carbons in a fatty acid chain, which may or

may flot have unsaturations [24]. MCTs are derived from coconut ou and contain

saturated fatty acids with chains of 6, 8, 10 or 12 carbons [1, 24, 67]. Lastly, short

chain triglycerides (SCTs), such as triacetin and tributyrin have chain lengths of only

2 and 4 carbons, respectiveiy. LCTs and MCTs should be considered in the initiai

stages of formulation as many of these oils are approved for injection and are found

in a number of FDA (food and Drug Administration) approved products [67] (Table

4). The choice of ou is usually dependent on the solubility and stability of the drug.

MCTs have 100-fold greater water solubility than LCTs and consequently are

typically better solubilizers for dmgs since most hydrophobic drugs have some

polarity [24, 67]. Kan et al. [6$] reported that triglycerides with short fatty acid chains

were better solubilizers for paclitaxel, a lipophulic anticancer drug. They reported that

paclitaxel solubility increased as the number of carbons per hydrocarbon chain
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decreased. for example, tributyrin (C4) and tricaproin (C6) provided greater

paclitaxel solubility than tricaprylin (C$) and other plants oils with a mixture of 6-22

carbons per hydrocarbon chain. Triacetin (C2) gave the highest paclitaxel solubility at

a value of 75 mg/mL. Triacetin, however, is flot approved for injection and might be

difficult to emulsify due to its relatively high water solubility.

Vitamin E (DL-a-tocopherol) has been investigated as an alternative

biocompatible oil to triglycerides to solubilize highly lipophilic drngs [69-71].

Constantinides et al. [70-72] have formulated a submicrometer emulsion of paclitaxel

with high drng loading (8-10 mg/mL) using vitamin E as the internaI phase and d-a

tocopheryl polyethylene glycol 1000 succinate (TPGS) and poloxamer 407 as the

emulsifiers (TOCOSOL®-paclitaxel). This formulation is less toxic and has greater

antitumor activity in mice bearing Bi 6-melanoma tumors than the commercial

formulation for paclitaxel (Taxol®). At the MTD for Taxol® (20 mg/kg),

TOCO$OL®paclitaxel showed greater tumor regression than Taxol® on a q3dx5

dosing schedule. Moreover, tumor growth was suppressed further at higher doses of

this formulation (40 mg/kg and 60 mg/kg). TOCOSOL®-paclitaxel is currently in

Phase III clinical trials [72]. In addition to being a solubilizer for poorly soluble

drngs, vitamin E may also provide some therapeutic value. Bartels et al. [73]

examined the influence of vitamin E, administered intravenously in an emulsion

before surgery, on ischemia and reperfusion (TIR) injury in a double-blinded study on

68 patients. T/R injury is usually an outcome of liver surgery, which causes oxidative

stress and cdl damage. The results of the study indicated that administering vitamin E

prior to surgery may reduce the impact of I/R injury in liver surgery. The antioxidant
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activity of vitamin E has also been shown to protect against doxorubicin-induced

cardiotoxicity in animal studies [74, 75]. Moreover, vitamin E was found to enhance

the anticancer activity of doxorubicin on human prostatic carcinoma ceils in vitro

[76].

Another possible internai phase for intravenous emulsions is

perfluorocarbons. Emulsions containing perfluorochemicals have been investigated as

contrast agents for diagnostic tissue imaging or as carriers for the transport of oxygen

offering an alternative to blood transfusions [77, 78]. Perfluorochemicals are

chemically inert, synthetic molecules containing carbon and fluorine atoms, and are

capable of dissolving considerable amounts of oxygen [7$]. They are hydrophobic

and as a result require emulsification for dispersion in aqueous media. $everal types

of perfluorochemicals have been investigated such as, perfluorooctyl bromide

(C8f17Br), perfluorodecyl bromide (C10F21Br) and perfluorodichlorooctane

(C8f16C12). Imavist® (formally known as Imagent®) and Oxygent® are

perfluorocarbon emulsions presently undergoing clinical trials as an ultrasound

contrast agent and artificial blood substitute, respectively.

Emutsfiers

The purpose of surfactants is to emulsify the oil phase and to provide physical

stability against flocculation and coalescence during storage, which may be for

extended periods of time. Surfactants provide physical stability by reducing the oll

water interfacial tension and promoting droplet-droplet repulsion. Injectable

emulsions are frequently emulsified with natural lecithins obtained from either egg

yolk or soybeans. These lipids are biocompatible, biodegradable and have relatively
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good emulsifying properties [79]. Lecithins differentiate in the nature of the

headgroup and in the length and degree of saturation of the acyl chains. The

headgroup can be either phosphatidic acid (PA), ethanolamine (PE), serine (PS) or PC

and determines the surface charge of the emulsion. At pH 7, PE and PC headgroups

are uncharged, while PA and P5 are anionic. Surface charge can promote long-term

emulsion stability by electrostatic repulsion and can influence its biodistribution in

vivo.

The length and degree of saturation of the acyl chains greatly influences the

gel-liquid phase transition temperature (Te) and the surface properties of lipid bilayers

(liposomes) and monolayers (emulsions). The T refers to the temperature at which

the lipids shifi from a highly ordered gel state to a less ordered fluid. Saturated lipids

generally have phase transitions above room temperature (e.g. T of 1 ,2-distearoyl-sn-

glycero-3-phosphatidylcholine (DSPC; C18:O) is 58°C) [12, 79]. Introducing

unsaturations or reducing the Iength of the acyl chains decreases the T substantially

(e.g. T ofDOPC (C18:1) is -22°C and T ofDMPC (C14:O) is 23°C) [12, 79]. Most

natural phosphatides have chain Iengths of 16 to 18 carbons, however, chains with as

little as 4 carbons also exist. Nu et al. [79] observed that both PC acyl chain length

and degree of chain unsaturation influenced the ability of the lipid to emulsify

tricaprylin (glyceryl trioctanoate). PCs having shorter and saturated acyl hydrocarbon

chains were more effective emulsifiers as they produced emulsions with smaller mean

globule size with less change in appearance and droplet size over time.

Lipid emulsions are often co-emulsified with a biocompatible synthetic

surfactant to enhance emulsffication properties. An example of an oil requiring co
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emulsification is vitamin E. Previous studies have shown that stable tocopherol

emulsions cannot be prepared with lecithin as the sole emulsifier [72]. A possible

explanation for this observation is the greater polarity of tocopherol compared to

vegetable oils due to the presence of a hydroxyl group on the aromatic ring. The

enhanced polarity of tocopherol may solubilize more lecithin in the emulsion core

resulting in less emulsifier at the interface to stabilize the system. Consequently, a

more hydrophilic co-emulsifier is required to emulsif’ tocopherol. The synthetic

surfactants approved for intravenous injection are few and include polysorbates,

cremophors and poloxamers.

To aid in the initial selection of emulsifiers, the hydrophile-lipophile balance

(HLB) method is widely used. HLB is a system which classifies surfactants on an

f
arbitrary scale based on the relative proportions of the hydrophilic and hydrophobic

parts on the moiecule. Each surfactant is given anumber usuaiiy between O and 20. If

the HLB value is high, the surfactant has a relatively large number of hydrophilic

groups and is more soluble in water. In contrast, surfactants with low HLB are more

hydrophobie and will consequently be more easily dispersed in organic phases. In

general, stable w/o emulsions are formed from surfactants with low HLB, whereas

those with high HLB are typically used to make stable 07w emulsions. HLB values

for several synthetic emulsifiers that are approved for intravenous injection are listed

in Table 5. The HLB method also classifies the oil, but in terms of HLB “required”

(HLBrequired). The HLBrequired specifies the HLB of the emulsifier that will produce the

most stable emulsion. Oils are usually given two HLBrequjred values, one to produce a

stable 07w emulsion and the other for a stable w/o emulsion. This method allows the
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formulator to match the HLB of the emulsifiers with the HLBrequireu of the ou to

produce a stable emulsion. The HLBrequired values to produce a stable 01w emulsion

for cottonseed oil, safflower ou and soybean oil are 7.85, 7.72 and 7.66, respectively

(Crodamol catalogue).

The HLB concept is advantageous in the initial screening stage of emulsion

development as it reduces the number of emulsifiers to consider for a given type of

ou. Although, the formulator should be aware that the HLB method has serious

limitations, which arise from the fact that only the molecular structure of the

individual surfactant is considered and the emulsion as a whole us ignored [8J. for

instance, the HLB method does flot take into account pertinent factors such as the

conformation of the surfactant, the salinity of the aqueous phase or temperature [$0].

Consequently, even if HLB and HLBrequired are correctly matched the emulsion

produced may flot be stable.

Aqueous phase

The isotonicity of an injectable emulsion is important in order to avoid disturbing

the state of ceils in contact with the formulation. The final osmolarity should be

between 200 and 300 mOsm kg’ and can be achieved by adding isotonizing agents

such as glycerol, sorbitol and xylitol to the aqueous phase. Glycerol is more

commonly used and can be found in most parenteral emulsions including Intralipid®,

Lipofundin N®, Liposyn® and Soyacal®. Tonic agents such sodium chloride cari also

adjust osmolarity, however, they should be avoided as the ions can destabilize

emulsions (see earlier). The pH ofthe final emulsion may need to be adjusted and this

can be done by adding small amounts of HC1 or NaOH. The desired pH is usually
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between 7 and 8 in order to maintain physiological compatibility and minimize

hydrolysis of the ou and phospholipids [$1].

Antioxidants are ofien added to the emulsion to eliminate or reduce oxidation

of the drug, ou and emulsifier [8, 67]. Common antioxidants used for injectable

formulations include Œ-tocopherol, deferoxamine mesylate and ascorbic acid [$1].

The formulation may also require the use of preservatives to resist against microbial

growth. Microorganisms may change the physicochemical properties of the emulsion,

such as color, odor, pH and physical stability, and may present a health hazard [8].

Common preservatives used in injectable preparations include phenol, cresol and

methyl, ethyl or propyl esters ofpara-hydroxybenzoic acid [82].

5.2. Emulsion preparation

(Z The most common process to manufacture emulsions is to incorporate the

drug during the emulsification of the oil [66]. Another method to incorporate the

active ingredient is to add a sterilized solution of the drug dissolved in a solvent to a

pre-formed and sterilized emulsion. This method is not often done due to stability

issues that may be encountered such as drug precipitation in the aqueous phase and

emulsion cracking [1, 4]. The first step in emulsion preparation is usually to dissolve

the water-soluble components (isotonizing agent and preservatives) in the aqueous

phase and the lipophilic compounds (drug and perhaps the antioxidant) in the ou

phase. The emulsifier can be dispersed in either phase. Both phases are typically

heated and agitated to facilitate the dispersion ofthe various components [67]. The ou

phase is then added to the aqueous phase. As the oil is added, the mixture is agitated

with the aid of a medium-shear mixer and is usually heated. The rate of addition
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should be optimized because adding the ou phase two quickly can lead to incomplete

dispersion of the ou in the aqueous phase [67]. The temperature and duration of

heating in the premix stage depends largely on the thermosensitivity of the drug, ou

and emulsifier(s). This premix stage produces a coarse emulsion and can have a

substantial impact on the final product [66]. A premix that is uniform with a droplet

size under 20 jim, generally produces a final emulsion that is more unimodal and

physically stable [66]. Following the premix stage, droplet size must be decreased to

less than 5 tm in diameter and preferably below 1 jim, to avoid blocking the

capillaries of the lungs. To produce emulsions with small droplet size

microfluidization or high-pressure homogenization are usually used.

Microfluidization is a process whereby a liquid mixture is forced by high pressure

through an interaction chamber, which spiits the stream in two and then recombines

them at ultrahigh velocities [$3]. The product can then be recycled to reduce droplet

size further. The combination of high shear, turbulence and cavitation generated by

this apparatus can produce submicron emulsions with a narrow size distribution [84].

In high-pressure homogenization, fluid is forced at high pressure by means of a

plunger pump through a very nanow channel. Depending on the type ofhomogenizer

the fluid may then collide head-on with another high velocity stream or hit a hard

impact ring. Droplet size is reduced by cavitation, high-shear forces and high-speed

collisions with other droplets [85]. Pressure, temperature and number of passes are

parameters that can be controlled and influence the efficiency of droplet size

reduction.
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Afier the desired droplet size is achieved, the formulation is filtered to remove

large droplets or debris and sterilized. Sterilization can be achieved by autoclaving or

by filtration through a 0.22 jim cartridge filter. The heat generated by autoclaving can

cause the ou and lecithin to hydrolyze liberating free fatty acids, which will reduce

the pH ofthe formulation. The conditions for sterilization by autoclaving will need to

be selected careftilly to minimize the degradation of heat sensitive products. filter

sterilization on the other hand greatly reduces the heat burden on the emulsion [67].

Not all emulsions can be sterilized by filtration, as a mean droplet size Iess than 200

nm is an essential requirement. Large droplets may clog the 0.22 tm cartridge filter

and prevent sterile filtration [86]. The main manufacturing steps involved in the

production of intravenous emulsions are outlined in f igure 10.

5.3. Emulsion characterization

Injectable emulsions are ofien characterized for mean droplet diameter, size

distribution, surface charge and phase inversion temperature. The aforementioned

properties are useful in predicting emulsion stability, biocompatibility and in vivo

biodistribution. Control over droplet size and size distribution can impart some

specificity towards target tissues and are also important predictors of biocompatibility

as droplets greater than 5 tm can potentially form pulmonary emboli. The maximum

allowable droplet size for intravenous administration, however, is unclear. Emulsions

containing few droplets above than 5 im might not necessarily cause any adverse

reaction since capillary blockage may be reversible by droplet degradation and large

droplets may pass through small capillaries by deforming [$7]. Burnham et al. [8$]

found that fat droplets greater than 7.5 .tm in diameter could deform and pass through
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pulmonary vasculature without difficulty. There are a number of techniques available

to measure mean droplet size and size distribution of emulsions. Dynamic light

scattering (also known as photon correlation spectroscopy or quasielastic light

scaftering), atomic force microscopy, static light scattering (or intensity light

scattering) and electron microscopy are frequently used to determine the size and size

distribution for droplets below 1 im [3$, $9]. However, apart from atomic force

microscopy and electron microscopy, the upper limit of detection on these

instruments prevents the evaluation of the droplet size distribution above 5 pm. for

detection of droplets greater than 5 im, light obscuration, electrical-sensing zone

(Coulter Counter) and optical microscopy are appropriate methods [90-92].

Surface charge measurements are also useful indicators of emulsion

biocompatibility. Surfaces with a net positive charge are more likely to aggregate in

the blood stream in the presence of plasma proteins than negatively-charged or

neutral droplets. Charged surfaces can also impart physical stability to the emulsion

by prevented/reducing coalescence upon random collisions through electrostatic

repulsion (see earlier). The surface charge of an emulsion droplet can be obtained

through zeta potential measurements using laser Doppler anemometry [93]. Lastly,

phase inversion temperature, the temperature at which the emulsion changes from olw

to w/o or vice versa, can be a useful predictor of emulsion stability during

temperature altering processes such as heating, emulsification and sterilization [94].

5.4. Stability measurement

The stability of an emulsion formulation is vital for its use in clinical

applications. The formulation must display physical, chemical and microbial stability
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for at least one year, if flot more. The difficulty in emulsion formulation is that the

system must be stable in aqueous solution, as opposed to polymeric micelles [95] or

nanoparticles [96] which can be easiiy stored as a lyophuiized powder whereby they

have less opportunity to destabilize. Creaming and a visible layer of oil are classic

signs of a physically unstable emulsion, while formulation discoloration is a typical

indication of chemical instabiiity. A long-term stability testing schedule should be

performed on ail promising formulation candidates, whereby each emulsion is stored

at various temperatures ranging from 4 to 40 °C. The emulsions should be monitored

for changes in size, pH, drug content, zeta potential, viscosity, electrical conductivity

and chemical composition [$1].

Physicat stabitity

The long-term stability of an emulsion is difficult to estimate and only time

can actually teil you whether the formulation is stable. Waiting for extended periods

of time to find out whether a number of formulation efforts are stable is very

impractical and there are methods available to accelerate stability testing. Most

accelerated tests induce physical instability by increasing the number of collisions

between globules. Accelerated tests based on sample heating, however, are not

reliable as they do not reflect the environment of samples kept under storage

conditions. Heating the sample not only enhances collisions but also diminishes the

protective action of adsorbed surfactants, increases the solubility of ail components,

promotes the degradation of heat sensitive products, alters the electric double-layer

and reduces surfactant adsorption at the emulsion interface, which can cause a

potentially stable emulsion to destabilize, leading to erroneous resuits [2, 81].
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Steam sterilization is considered an acceptable temperature raising accelerated

test as it approximates the environment that an emulsion would experience during

autoclaving. Excessive shaking and freezing and thawing cycles are other commonly

used accelerated stability testing processes as these techniques predict the conditions

that a formulation will be subjected to during transportation and storage [$1]. Another

good method to estimate emulsion stability is to make size measurements frequently

several weeks after the formulations are prepared. Emulsions that increase in size

over time during the first few weeks in storage will invariably destabilize [2]. If there

is no change in size, the formulator can have some hope that the emulsions will be

physically stable long term [2].

Chemicat stabitity

Injectable emulsions can undergo chemical changes by oxidation and

hydrolysis of the oil and/or emulsifier [67]. Chemical instability can be detected by

formulation discoloration and by changes in pH due to the increase in free fatty-acids.

Chemical instability can be reduced by storing the emulsions reftigerated, protected

from light and in sealed containers with a layer of an inert gas, typically argon. These

precautionary methods will reduce hydrolysis of the ou and emulsifier(s) [67].

Degradation of the encapsulated drug can also occur during storage. Consequently,

the integrity ofthe encapsulated drug over time must also be determined [67].

Some groups have investigated storing lipid emulsions as a lyophilized

powder to overcome some of the stabilized issues encountered when stored in

solution [97, 98]. freeze-drying emulsions, however, is difficult as the droplets may

crack during the lyophilization process and is rarely done. Bensouda et al. [99]
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evaluated the influence of a number of cryoprotective agents (glucose, mannitol,

sorbitol, maltose, lactose, glycin and dextran) on the success of the freeze-drying

process. Glucose, maltose, sorbitol and lactose provided protection against changes in

particle size, while mannitol, dextran and glycin offered no protective action.

6. Lipïd emulsions for the delivery of nucleic acid-based
drugs

Gene therapy is the science in which nonfunctional genes are substituted,

altered or supplemented for the treatment of genetic or acquired diseases. The

difficulty in the successful application of gene therapy is the complexity of delivering

functional genetic material such as plasmid DNA, antisense oligonucleotides (ODN)

or small interfering RNA into the cell. This is a result of their rapid degradation in

plasma and their inability to cross cell membranes due to their hydrophilic and

polyanionic .nature, and relatively large size. Viral vectors have been extensively

investigated for gene delivery [100]. However, concems over host inflammatory and

immune responses have created a demand for non-viral vectors [101-103]. As such,

cationic liposomes are commonly investigated because they enhance transfection of

DNA into the cell [104, 105]. Nonetheless, a major shortcoming ofthis technology is

the formation of large aggregates with time and the reduced transfection of the

liposome/DNA complex in the presence of serum [106].

Cationic lipid emulsions have been considered as alternative non-viral gene

delivery vectors to liposomes. Complexation occurs through electrostatic interactions

between the nucleic acids and the cationic lipid emulsifiers. The lipid emulsionlDNA

complex can be prevented from forming large aggregates in the presence of serum by
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co-emulsification with an appropriate non-ionic surfactant [107]. Yi et al. [10$]

prepared a cationic lipid emulsionlDNA complex that retained greater than 60%

transfection efficiency in the presence of 90% v/v serum. This formulation was

composed of soybean ou, 1 ,2,-dioleoyl-sn-glycero-3-trimethylammonium propane

(DOTAP) as the cationic surfactant and co-emulsified with 1 ,2-dioleoyl-sn-glycero-3-

phosphoethanolamine (DOPE) and 1 -palmitoyl-2-oleoyl-sn-glycero-3-

phosphoethanolamine-N-[PEG 2000] (PEG2000POPE). The relatively high

transfection efftciency of the lipid emulsionlplasmid DNA complex can be attributed

to its ability to resist aggregation in the presence of serum, which may be due to steric

stabilization by the PEO chains of PEG2000POPE. Indeed, Kim et aI. [109] observed

that adding a co-emulsifier containing a PEO chain such as polysorbate $0 or the Brij

series (PEO 4, 7, 10 or 23 lauryl ether) produced DNA-complexed emulsions that

could resist changes in size in the presence of serum. In contrast, surfactants without a

PEO group such as sorbitan monooleate (Span $0), mannide oleate (Montanide $0)

and oleyl alcohol aggregated in the presence of serum and during DNA complexation.

The authors also observed that the presence of PEO in both polysorbate $0 and Brij

interfered with the electrostatic interactions between DNA and the emulsion interface.

DNA and cationic lipid interactions were reduced when the polysorbate 80 content or

PEO chain length in the Brij series increased. Despite the progress, much stili needs

to be done for the successful application of cationic emulsions to deliver genetic

material in vivo. Indeed, cationic lipid emulsions will most Iikely face the same

problems as other non-viral gene delivery systems.
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7. Conclusions

Lipid emulsions are promising carriers for highly lipophilic drugs due to their

biocompatibility, reasonable sheif-life, aptness for large scale manufacture and ability

to solubilize large quantities of drug in their oily core. Lipid emulsions can also alter

the biodistribution of incorporated drugs and enhance specificity towards target

tissues by passive and active methods. Evading the MPS or natural fat metabolism is

necessary when the encapsulated drug is to be delivered to non-MPS organs or liver

parenchymal ceils, respectively. Long-circulating lipid emulsions can be obtained by

reducing droplet size and by grafiing long-chain hydrophilic polymers, such as PEO,

to the emulsion interface. Moreover, active targeting using ligands that recognize

specific determinants on celis can enhance specificity and uptake by target ceils. It

should be kept in mmd that control over droplet biodistribution aJonc will not

enhance the therapeutic effect as the drug may leak out of the carrier before reaching

the target site. In general, drugs with higher lipophilicities (log P > 9) are retained

better within the emulsion afier intravenous administration. In addition to being

carriers for lipophilic dnigs, lipid ernulsions have also been adapted to deliver genetic

material and are an alternative non-viral vector to liposomes.

Several therapeutic lipid emulsions are commercially available for clinical use

and other formulations are presently undergoing clinical trials. The use of intravenous

lipid emulsions in the clinic will expand as new and less toxic formulations are

discovered.
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Tables

Table 1: Several commercially available emulsions for intravenous injection
Product Drug Manufacturer Indications
Diazemuls Diazepam Pfizer and Pharmacia Anti-convulsive,

sedative, muscle
relaxant

Diazepam®Lipuro Diazepam B. Braun General anesthesia
Diprivan®* Propofol AstraZeneca General anesthesia
Etomidate®Lipuro Etomidate B. Braun General anesthesia
Limethason® * Dexamethasone pamitate Mitsubishi Rheumatoid arthritis

Pharmaceutical
Liple® (Lipo-PGE1) Prostaglandin E1 (PGE1) Mitsubishi Vasodilator, platelet

Pharmaceutical inhibitor
PropofolLipuro® Propofol B. Braun General anesthesia
Lipo-NSAID® - Flurbiprofen axetil Kaken Pharmaceuticals Pain reliever
Ropion®*

Vitalipid
*

Vitamins A, D2, E, K1 fresenius Kabi Parenteral nutrition
*Based on the formulation oflntralipid® (10 or 20% soybean ou; 1.2% egg lecithin; 2.5% glycerol)

Table 2: Some intravenously injectable emulsions in development and in clinical
trials

Drug Product Name Indications ClÏnÏcal* Ref.
Aclacinomycin A Cancer chemotherapy - [110]
Amphotericin B Treatment offungal - [97, 98]

infections
Beta-elemene SDP-1 11 Cancer chemotherapy - [1111
Cyclosporine A - Immunosuppressant - [112]
Docetaxel SDP-014 Cancer chemotherapy - [111]
Perfluorooctyl Imavist® Ultrasound contrast agent Phase III [113]
bromide
Paclitaxel TOCOSOLIS- Cancer chemotherapy Phase III [72]

$184
Paclitaxel SDP-013 Cancer chemotherapy - [1111
Perfluorooctyl Oxygent® Artificial blood substitute Phase III [7$]
bromide
Propofol Ampofol® General anesthesia Phase III [114]

Sedation
Propofol IDD-D propofol General anesthesia Phase III [1151

Sedation
Alpha-tocopherol SDP-1 12 Cancer chemotherapy - [1111
succinate
Vincristine Cancer chemotherapy - [116]
Status as ofMarch 2006
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Table 3: Antitumor activity of RS- 1541 emulsion formulations against M5076
sarcoma at the MTD

Mean Dose Tumor Tumor Growth I.L.S.’ Cure
Diameter (MTD)2 DÏameterb (%) Delayc (day) (%) (on day 120)
(nm) (mg/kg)
Surfactant 6.0 213 17 62 0/6
solution
70 4.5 166 24 66 0/6
100 4.5 113 29 69 0/6
220 15.0 13 >61 >224 4/6
380 40.0 18 56 >195 3/6

a RS-1541 was given in each formulation to M5076 bearing BDFI mice via a single i.v. injection at
MTDs on day 13 aller inoculation (6 mice were used for each group).
b Tumor diameter on day 44 divided by that on treatment day.
C Days required for the tumors to reach again the diameter on treatment day following a therapy.
d Increase in life span: ratio (%) of median survival days in a freatment group of mice to that in the
control group (37 days).
Adapted with permission from Springer Science and Business Media Ref. [401 Copyright 1996

Table 4: List of oils used in commercial emulsions for parenteral nutrition
Oils Commercial Product name Manufacturer
LCTs

Cottonseed oit Lipofundin® B. Braun
Safflower oil Liposyn® Abbott Laboratories
Soybean ou Intralipid® Kabi-Pharmacia

Soyacal® Alpha Therapeutics
Travamulsion® Travenol Laboratories
Liposyn 1II® Abbott Laboratories
Lipofiindin S® B. Braun
Trivé 1000® Egic

Safflower oil:Soybean ou Liposyn II® Abbott Laboratories

LCTs + MCTs

Soybean oil:MCTs, (1:1) Lipofundin® MCT/LCT B. Braun
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Table 5: Several non-phospholipid surfactants approved for intravenous
administration in at least one country or under clinical investigation
Chemïcal Name Common Names Properties MW Ref. HLB Ref.

Poly(ethylene oxide) 35 Cremophor EL Non-ionic 2515 [117] 13.5 [1181
castor ou
Poly(ethylene oxide) 40 Cremophor RU 40 Non-ionic NIA - 14-16 [1191
castor ou
Poly(ethylene oxide) 60 Cremophor RU 60 Non-ionic N/A - 15-17 [1191
castor ou
Poly(ethylene oxide) 20 Polysorbate 20 Non-ionic 1225 [120] 16.9 [120]
sorbitan monolaurate
Poly(ethylene oxide) 20 Polysorbate 40 Non-ionic 1282 [120] 15.6 [120]
sorbitan monopalmitate
PoIy(ethylene oxide) 20 Polysorbate 80 Non-ionic 1310 [121] 15.0 [120]
sorbitan monooleate
pEO80bppO27bpEO80a Poloxamer 188 Non-ionic 8400 [1221 29 [118]
pEo101-b-PP056-b-PE0101 a,b Poloxamer 407 Non-ionic 12600 [123] 22 [124]
d-a-tocopheryl polyethylene TPGS Non-ionic 1513 [121] 13 [72]
glycol 1000 succinateb

Poly(ethylene oxide)-15- Solutol US-15 Non-ionic 958 - 14-16 -

hydroxystearate
Deoxycholic acid - Anionic 392 - 24 [72]
Glycocholic acid - Anionic 465 - N/A -

Poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide)
b In Phase III clinical trials
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Dietary fat
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Liver parenchymal ceNs

figure 3 Absorption and metabolism of dietary fat. Dietary fats are metabolized and
incorporated into chylomicrons in the small intestine. Then, chylomicrons enter the
blood circulation via the thoracic duct. During circulation, the triglycerides of
chylomicrons are rapidly hydrolyzed via lipoprotein lipase (LPL) on endothelial
surfaces, then chylomicron remnants are produced. finally, chylomicron remnants are
cleared by the liver by the LDL or remnant receptors. TG, triglyceride; Chol,
cholesterol; AI, apolipoprotein AI; AIV, apolipoprotein AIV; B4$, apolipoprotein
B4$; CII, apolipoprotein CII; E, apolipoprtoein E. Reprinted with permission from
Elsevier Ref. [13] Copyright 2000.
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Figure 4: Effect of particle size on the clearance of cholesteryl oleate (CO) label
from plasma as a function of time afier intravenous administration into mice. The
emulsions were composed of triolein (TO): 1 ,2-dipalmitoyl-sn-glycero-3-
phosphatidylcholine (DPPC):polysorbate $0: polyethylene glycol modified 1,2-
dipalmitoyl-sn-glycero-3 -phosphatidylethanolamine (PEG2000-DPPE) (2:1:0.4:0.1,
w/w) . The droplet sizes ofthe emulsions injected were 50 (o), 100 (o) and 175 nm
(A). Adapted with permission from Elsevier Ref [2$] Copyright 1996.
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Figure 6 : Radioactivity in plasma of triolein (TO) and cholesteryl oleate (CO) labels
afier injection of emulsions stabilized by mixtures of sphingomyelin (SM) with egg
phosphatidylcholine (egg PC). TO-CO-cholesterol emulsions stabilized with mixtures
of SM and egg PC were injected intravenously in conscious rats. Plotted are the data
for labeled TO (A) and CO (B) incorporated in the emulsions remaining in the plasma
at 3, 5, 8, 12 and 20 min after injection. Resuits are means ± S.E. of at least four
experiments for each observation. SM 100% (.), SM/egg PC 50/50 (À), SM/egg PC
25/75 (A), egg PC 100% (o). Adapted with permission from Elsevier Ref. [21]
Copyright 1992.
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figure 7: Radioactivity in the liver and spleen of triolein (10) and cholesteryl oleate
(CO) labels after injection of emulsions stabilized by mixtures of sphingomyelin
(SM) with egg phosphatidylcholine (egg PC). TO-CO-cholesterol emulsions
stabilized with mixtures of SM and egg PC were injected intravenously in conscious
rats. Organ uptakes of radioactive TO and CO labels in the emulsions were measured
20 min after injection. Results are means + S.E. of at least four experiments for each
observation. By analysis of variance the differences between groups were statistically
significant with P <0.01 for liver TO, P < 0.00 1 for liver CO, P < 0.01 for spleen TO
and P < 0.025 for the spleen CO. Adapted with permission from Elsevier Ref. [21]
Copyright 1992.
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Figure 8: Blood concentration-time profile of stealth liposomes and different lipid
nanocapsule formulations prepared by the conventional (A) or post-insertion method
(B). Mean ± SD (n =3 to 5). A: PEGylated liposomes (.), plain lipid nanocapsules
(o), PEGylated lipid nanocapsules with 1.7 mol% 1 ,2-distearoyl-sn-glycero-3-
phosphatidylethanolamine-N-monomethoxy-[polyethylene glycol] (PEG2000-DSPE)
(u), PEGylated lipid nanocapsules with 1.4 mol% PEG5000-DSPE (Â), and
PEGylated lipid nanocapsules with 3.4 mol% PEG2000-DSPE (+). 3.- PEGylated lipid
nanocapsules with 6 mol% PEG2000-DSPE (.), PEGylated lipid nanocapsules with 6
mol% PEG5000-DSPE (o), and PEGylated lipid nanocapsules with 10 mol% PEG2000-
DSPE (Â). Formulations were injected intravenously at a dose of 2 mg lipids/rat.
Adapted with permission from Springer Science and Business Media Ref. [38]
Copyright 2004.
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Figure 9: Liver uptake and serum decay of the control and human recombinant (rec)
apo E-enriched emulsion-iododeoxyuridine-oleoyl ([3H]IDU-012) in rats, in the
absence or presence of lactoferrin. Control and rec-apo E-enriched emulsions,
double-labelled with [1-’4C]cholesteryl oleate ([‘4C]CO) and [3H]IDU-012 were
injected into fasted anaesthetized rats. A, B, C: At the indicated times, the liver
uptake and serum decay of [‘4C]CO (A) and [3H]IDU-012 (B) were determined. The
liver uptake and serum decay of rec-apo E-enriched emulsions were also determined
after preinjection of lactoferrin (C). D. At 30 min afier injection of emulsion-rec-apo
E-IDU-012, the liver was perfused. Total liver (L) association was determined and
parenchymal (PC), endothelial (EC), and Kupffer (KC) celis were subsequently
isolated. Values are means + s.d. of three experiments. Adapted with permission
from Macmillan Publishers Ltd. Ref. [60] Copyright 1995.
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PremÉx Stage
(Production of a Coarse Emulsion)

High Energy Emulsification
(Droplet Sïze Reduction)

pH Adjustment
(Usually Between 7 and 8)

1
Filtration

(Removal cf Large Droplets and Debris)

Packagîng

Autoclavïng
(Heat Sterilization)

figure 10: The main manufacturing steps involved in the production of intravenous
emulsions.
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1. Abstract

Purpose. The purpose of this study was to develop long-circulating emulsions and

evaluate their ability to target neoplastic tissues. Methods. Nano-sized emulsions (100

— 120 nm) composed of tricaprylin (TC)/polysorbate 80 (PS-80)/hydrogenated

soybean phosphatidylcholine (HSPC) and TC/PS-80/egg sphingomyelin (ESM)

(5:3:1, w/w) were prepared by probe sonication. They were incubated with various

poly(ethylene glycol)-distearoylphosphatidylethanolamine derivatives (DSPE-PEG)

including DSPE-PEG 2000, DSPE-PEG 5000 and D$PE-N-[(pentaerythritol

polyoxyethylene) glutaryl] (DSPE-4-armPEG) (PEG MW 2000). The effect of ESM,

D$PE-PEG 2000 concentration and various D$PE-PEG derivatives in prolonging

circulation time and enhancing accumulation into neoplastic tissues was assessed in

vivo in mice bearing subcutaneously implanted B 16 melanoma or C26 colon

adenocarcinoma. Resutts. No significant differences were detected between TC/PS

80/HSPC and TC/PS-$0/ESM emulsions in vivo. Only emulsions coated with either

PEG 2000 or 5000 had prolonged circulation time in blood and were able to

accumulate significantly into solid tumors. Emulsions grafied with DSPE-4-armPEG

were removed quickly from blood despite the 2000 MW PEG segment. The ability of

the long-circulating emulsions to extravasate at the tumor site depended on the tumor

model, whereby the C26 tumors were more permeable to the emulsions than B16.

Conclusion. Incorporating single-chain PEG 2000 or PEG 5000 at the interface

significantly prolonged the residence time of emulsions in blood and enhanced their

ability to target solid tumors. Such nano-sized emulsions could potentially improve

the delivery of incorporated anticancer drugs to neoplastic tissues.
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2. Introduction

One of the major difficulties in cancer therapy is to achieve good specificity

of antineoplastic agents for their target site(s). As a resuit of their toxicity towards

healthy tissues, many anticancer drugs are ofien administered at doses that are

subtherapeutic. Over the past three decades, a great deal of research has been devoted

to altering the pharmacokinetics and biodistribution profiles of these drugs by

encapsulating them in colloidal drug carriers such as liposomes [1], nanoparticles [2]

and polymeric micelles [3]. These nanoscopic systems can enhance drug

accumulation at the tumor site and reduce distribution to healthy tissues, provided

that the encapsulated cargo remains associated with the carrier afier intravenous (i.v.)

injection [4, 5]. One method in which drug carriers achieve this selectivity is by the

enhanced permeation and retention (EPR) effect, which exploits the difference in

capillary structure between healthy and cancerous tissues [6]. Tumor vasculature is

generally porous or “leaky” allowing enhanced permeation of colloidal particles

across the endothelium and into the extravascular space. Moreover, tumors have poor

lymphatic drainage allowing colloids to be retained in the tissue for prolonged periods

of time [7, 8]. For successful accumulation into the tumor by the EPR effect, the

concentration of drug carrier in the blood must remain high for more than 6 hours [7].

However, afler intravenous administration, colloidal drug carriers are usually

recognized as foreign bodies and are rapidly taken up by circulating monocytes and

macrophages in the liver, spleen and bone mai-mw. The ability of colloidal particles

to evade the mononuclear phagocyte system (MPS) and exhibit long residence times
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in blood depends largely on carrier size and the physicochemical properties of the

surface.

Modifying the colloid surface with a hydrophilic and flexible polymer such as

poly(ethylene glycol) (PEG) is widely used to prolong circulation time [9-il]. The

!ongevity of PEGylated colloids is attributed to the highly hydrated and flexible PEG

chains, which reduces interactions with plasma proteins and ce!! surfaces [12, 13].

Incorporating sphingomyelin ($M) at the interface is another approach that has been

shown to enhance the systemic circulation time of emu!sions and liposomes [14, 15].

For examp!e, Takino et al. [15] reported that adding SM to an egg

phosphatidylcholine (PC) emulsion prolonged circulation time and decreased uptake

by the MP$ organs. Similarly, Redgrave et al. [14] demonstrated that increasing the

proportion of $M to PC further enhanced circulation time and resulted in a

corresponding decrease in liver uptake. Moreover, liposomes composed of

SM/cholesterol (Chol) (5 5/45, molar ratio) were shown to prolong the half-life of

encapsu!ated vincristine, ciprofloxacin and vinorelbine [16-19]. In fact, this SM/Chol

formulation with encapsulated vincristine was evaluated in Phase III clinical trials

[20]. SM confers circulation longevity to emulsions and liposomes by enhancing

membrane rigidity, resulting in lower membrane permeability and greater stability in

vivo [21-24]. This membrane rigidifying effect of SM is a result of its high content of

saturated acyl chains relative to naturally occurring PCs and its ability to form

intermolecular hydrogen bonds [21, 25].

Among the various drug delivery systems for cancer therapy, emulsions are

promising carriers due to their biocompatibility, reasonable stabi!ity, ability to
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solubilize large quantities of lipophilic compounds and relative ease of manufacture

at an industrial scale [26, 27]. Despite the vast amount of literature available on

emulsions as carriers for anticancer drugs, flot much work has been devoted to

characterizing the accumulation of the droplet itself into solid tumors. The purpose of

this study was to develop long-circulating emulsions using pharmaceutically

acceptable excipients and evaluate their ability to target neoplastic tissues. The

influence of egg SM (ESM) and distearoylphosphatidylethanolamine (DSPE)-PEG

concentration and structure in prolonging circulation time and enhancing

accumulation into solid tumors was assessed in mice bearing subcutaneously

implanted B 16 melanoma or C26 colon adenocarcinoma.

3. Materials and methods

3.1. Materials

Hydrogenated soybean phosphatidylcholine (HSPC, >99% PC), egg

sphingomyelin (ESM) and 1 ,2-distearoyl-sn-glycero-3-phosphatodylethanolamine-N

monomethoxy-[PEG 2000] (DSPE-PEG 2000) were purchased from Northern Lipids

Inc. (Vancouver, BC, Canada). Tricaprylin (TC) and poly(ethylene oxide) 20 sorbitan

monooleate (jolysorbate 80, PS-$0) were obtained from Sigma-Aldrich (Oakville,

ON, Canada). DSPE-PEG 5000 was bought from Avanti Polar Lipids Inc. (Alabaster,

AL) and DSPE-N-[(pentaerythritol polyoxyethylene) glutaryl] (DSPE-4-armPEG)

(PEG MW 2000) was from the NOF Corporation (Tokyo, Japan). [3H]-Cholesteryl

3 . . .hexadecyl ether ([H]-CHE, 51.0 Ci/mmol), Hionic-fluor , Soluene 350 and

Solvable® were obtained from Perkin Elmer (Woodbridge, ON, Canada). Sodium

chloride (0.9% w/v) injection USP was purchased from B. Braun Medical Inc. (Irvine,
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CA). Ail products mentioned above were used without fiirther purification.

Chloroform and hexane (purification grade), purchased from Sigma-Aldrich Canada

Ltd. (Oakville, ON, Canada), were further purified by filtration through drying

columns on a PureSolv system (Innovative Teclmology Inc. system, Boston, MA) and

distilled prior to use. Ethanol was obtained from Commercial Alcohols Inc.

(Brampton, ON, Canada) and distilled. Water was deionized with a MilliQ®

purification system (Millipore, Bedford, MA).

3.2. Compression isotherms

Surface pressure - molecular area (it-A) isotherms of HSPC, ESM, PS-$0,

H$PC/PS-$0 and ESM/PS-80 were measured with a Langmuir-Blodgett trough (300

x 200 x 5 mm) from Nima Technology (Coventry, England). Surface pressure was

determined by means of a Wilhelrny plate attached to a microbalance. The subphase

was a phosphate buffered saline (PBS, pH 7.4) composed of 75 mM sodium chloride,

53 mM sodium phosphate dibasic, and 13 mM sodium phosphate monobasic, filtered

through a O.22-irn membrane. The temperature of the subphase was maintained at

25°C with a thenuostated, circulating water bath. Solutions of HSPC and E$M were

prepared at a concentration of 1 mg/mL in chloroform and hexane:ethanol (95:5, v/v),

respectively. f ifiy microliters of solution were deposited dropwise at the air/water

interface using a microsyringe. For PS-80, dissolved in chloroform (0.25 mglmL), 20

j.iL of solution were spread on the subphase. In the case of the mixed monolayer

isotherms (0.25 mg/mL total amphiphiles), 20 jiL of HSPC/P$-$0 (1:3, w/w)

dissolved in chloroforrn and ESM/PS-80 (1:3, w/w) prepared in hexane;ethanol (95:5,

v/v) were deposited. The films were compressed at a constant barrier speed of 8
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cm2fmin afier initial delay periods of 30 min and 1 h for lipids spread in chloroform

and hexane:ethanol, respectively. To reduce contamination from the atmosphere, the

entire apparatus was located in a closed Plexiglas cabinet.

from the it-A isotherms, monolayer compressibility at a given surface

pressure (n) was calculated using equation (1):

C = (-1/A)(dA/dn) (1)

where C5 is the modulus of compressibility and A represents the molecular area at a

particular surface pressure.

3.3. Preparation and characterization of emulsions

The emulsions were prepared by probe sonication using a Sonic Dismembrator

(model 550, fisher Scientific, Pittsburgh, PA). Prior to sonication, TC, PS-80 and

either ESM or HSPC were mixed together under magnetic stirring above the phase

transition temperature of ESM and HSPC (ca. 55°C) for 10 min. The dispersing phase

(0.9% NaC1 in water) was then added to the premix and the formulation was

heatedlmixed at 55°C for an additional 20 min. The volume was adjusted with 0.9%

NaC1 in water until the lipid phase represented 9% (w/v) of the emulsion. Afier the

premix step, the formulation was sonicated at medium intensity (80 W) for 40 s on

pulse mode (pulse every 2 s for 0.2 s). The composition of ou and emulsifier was

TC/PS-80/HSPC or ESM (5:3:1, w/w). PEGylated emulsions were prepared by

incubating an aqueous micelle solution of DSPE-PEG with a preformed ESM

emulsion for 1.5 h at 60°C. The amount of DSPE-PEG added to the emulsions

corresponded to either 10 or 15 mol% of the total surface components (exciuding
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TC). [3H]-CHE, a non-exchangeable lipid derivative, was incorporated into each

emulsion during emulsification to track the distribution of the entire droplet in vivo.

The mean hydrodynamic diameter and size distribution of the emulsions were

determined by dynamic light scattering with a Malvem Autosizer (Malvem

Instruments Ltd, Malvern, UK) at 25°C and a fixed angle of 900. Measurements were

performed in triplicate afier dilution ofthe emulsion in water.

3.4. Biodistribution studies

The in vivo experiments were performed on either C57BL16 mice (female, 18-

21 g) bearing 316-Fi O melanoma or Balb/C mice (female, 18-21 g) with C26 colon

adenocarcinoma. Animal care and handiing were approved by the Animal Welfare

and Ethics Committee of the University of Montreal in accordance with the Canadian

Council on Animal Care guidelines. The hair on the back and hind legs of the mice

were removed by shaving. The B 16 and C26 ceils were harvested by trypsinization,

resuspended in growth medium and injected subcutaneously in three separate

locations on the back of each mouse. for the 316 celis, approximately 1x1 ceils in

50 iL of growth medium were delivered per implantation site, while 2x106 of C26

celis in 50 tL were injected. The formulations were administered when the tumor

volume reached approximately 20 mm3. The volume (V) of each tumor was

calculated from equation (2):

V = 1/2(4it/3)(L/2)(W/2)H (2)

where L is the length, W is the width and H is the height.

The emulsions were prepared as described above and diluted with NaC1

(0.9%) for injection. The tumor-bearing mice were anesthetized with isofluorane and
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administered 5.4 mg of Iipids/mouse (exciuding DSPE-PEG) in a 100-jiL injection

volume via the subclavian vein. Each mouse received approximately 0.7 iCi [3H]-

CHE.

The mice (n=4-5 per group) were sacrificed at 2, 6 and 12 h post injection. At

each time point, the blood, tumor and organs of interest (liver, spleen, heart, lungs,

kidneys, and a piece of muscle) were extracted and assayed for [3HJ-CHE content.

Blood was sampled by cardiac puncture and placed into pre-weighed scintillation

vials. Excess blood was removed from the organs by passing a continuous flow of

0.9% saline through the systemic circulation via the heart. The tumors and organs of

interest were then harvested, wiped and weighed. The blood was digested in a

mixture of isopropanol/$oluene® (1:1 to 1:3 v/v) or isopropanol/$olvable® (1:1 to 1:3

v/v) at 60°C until complete solubilization. The samples were allowed to cool down to

room temperature and were then discoloured with hydrogen peroxide (F1202, 30% v/v)

in aliquots of 100 tL. The organs and tumor were dissolved in Soluene® or Solvable®

tissue solubilizers at 60°C until total digestion. Hionic-Fluor scintillation cocktail (10

mL) was added to the solubilized tissues and the samples were stored overnight at

4°C in the dark prior to counting. The amount of [3H]-CHE radioactivity in blood,

organs and tumor was assayed using a Beckman liquid scintillation counter (model

LS 6500, Beckman, fullerton, CA). The quenching of radioactivity due to the

digested tissues was corrected with a quench curve. The percent injected dose (ID) of

emulsions in blood was determined by assuming that the total mass of blood

represents 7.2% ofthe mouse body weight [28]. formulations were compared at each



87

time point with a one-way analysis of variance followed by fisher’s post-hoc test.

The level of significance was ap value <0.05.

4. Resuits and discussion

4.1. Compression isotherms

The compressibility and molecular conformations of two high phase transition

lipids, HSPC and E$M, were characterized at the air/water interface using the

Langmuir balance technique. Isotherms of pure HSPC and ESM monolayers in PBS

buffer (pH 7.4, 25°C) are presented in Figure 1 lA. for clarity, only one isotherm for

each compound was selected from a series of reproducible profiles. The E$M

monolayer displayed a two-dimensional phase transition from liquid-expanded (chain

disordered) to liquid-condensed (chain ordered). This transition region can be seen

more clearly in Figure 11 B by the change in siope of the n-A isotherm, expressed as

the modulus of compressibility (see equation 1). The two-dimensional phase

transition is consistent with previous reports, however, the sharpness of the transition

region has been shown to vary depending on several factors including subphase

temperature, chain length and heterogeneity in acyl chain composition [29, 30].

Naturally occurring SMs such as bovine brain SM and ESM tend to broaden the

transition region compared to pure 18:0 $M and 16:0 SM, which are the main lipids

in bovine brain $M and ESM, respectively [29]. The broader transition is most likely

due to the heterogeneity in acyl chain composition, which would affect the

alignment/ordering of the chains. The H$PC film, on the other hand, did not undergo

an order-disorder transition like ESM. Instead, HSPC shifted from gas directly into a

highly ordered liquid-condensed phase and then to a collapsed regime (Figure 1 lA).
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HSPC formed a less compressible film at the air/water interface as indicated in Figure

113 by the lower the modulus of compressibility compared to ESM at ail surface

pressures. Another important difference between the molecules is that ESM could

form a more densely packed film at higher surface pressures. Indeed, above about 25

mN/m, the area occupied per moiecule was smaller for ESM than H$PC (Figure

liA).

The differences between HSPC and ESM moiecuies at the air/water interface

can be rationaiized by their structural discrepancies. Both ESM and H$PC share a

common zwitterionic phosphoryicholine headgroup, however, they differ in the

degree of chain unsaturation and in their abiiity to form hydrogen bonds. H$PC, like

other PCs, contains two acyl chains that are esterified to a glycerol backbone. These

acyl chains are approximately the same length, however, unlike most naturaiiy

occurring PCs, HSPC contains no unsaturations (major component is 16:0, 18:0). For

ESM, a saturated acyl chain is linked to a sphingosine tbrough an amide bond. The

greater compressibility of ESM may be due to the unsaturation present between

carbons 4 and 5 of the sphingosine, which could produce a more disordered and fluid

monolayer than HSPC. The HSPC moiecules are more ordered in the hydrophobic

region due to the long and completely saturated acyl chains and thus are iess

compressible in the liquid phase. These resuits are consistent with the findings of

Smaby et al. [29], whereby ESM was more compressible than a saturated PC with

long acyl chains, such as distearoyi-sn-glycero-3-phosphatidylcholine (DSPC) (18:0,

18:0), at ail surface pressures. In addition, E$M was more compressible than 1-

palmitoyl-2-stearoyl-sn-glycero-3-phosphatidylcholine (PSPC) (16:0, 18:0) and 1,2-
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dipalmitoyl-sn-glycero-3 -phosphatidylcholine (DPPC) (16:0, 16:0) at surface

pressures above 5 and 10 mN/m, respectively [29]. Below these surface pressures,

PSPC and DPPC, were in a chain-disordered regime and were slightly more

compressible than ESM [29].

In addition to the differences in chain unsaturation, E$M has a much greater

hydrogen bonding capacity than HSPC due to the amide and hydroxyl groups, which

are flot present in phospholipids. The intra- and intermolecular hydrogen bonding

within and between ESM molecuies may facilitate a more condensed organization of

the head group region reducing the degree of hydration in the polar region and

allowing for denser packing of the molecules upon compression compared to H$PC.

These resuits are consistent with the findings of other group which report a lower

degree of head group hydration in SM containing monolayers and bilayers compared

withPCs [31-33].

The influence of PS-$0, a major component in the emulsion, on the phase

behavior of HSPC and ESM is illustrated in figure 12A. for ah isotherms, the

coilapse pressure was flot achieved. Consequently, the monolayers were compressed

until the minimum area of the trough was reached. In the presence of P$-80, HSPC

and ESM dispiayed gaseous and iiquid-phase behavior over the range of molecular

areas investigated. These mixed monolayers were more fluid and compressible than

pure HSPC and ESM films. The larger, more hydrated head group of PS-80

(poiy(ethyiene oxide) 20 sorbitan) wouid take up more space than phosphorylcholine

at the air/water interface, preventing close intermolecular contact. Ail three

monolayers exhibited similar compressibility (figure 12B), however, E$M/P$-$0
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formed a more denseiy packed film as indicated by the smaller surface areas occupied

by this mixture. A hypothesis proposed to explain this phenomenon is that ESM may

reduce head group hydration by intra- and intermolecular hydrogen bonding within

ESM molecules and between neighboring ESM molecules or with PS-80. As a resuit,

the reduction in hydration of the head group region could permit denser packing of

the molecules. In the context of injectable emulsions for drug delivery, incorporating

ESM into a formulation emulsified with PS-80 may potentially enhance circulation

time by the tighter molecular packing at the emulsion interface. Owing to the

interesting properties of ESMJPS-80 monolayers, we then investigated in vivo

whether E$M could enhance the circulation longevity of an emulsion coemulsified

with PS-$0.

4.2. Biodistribution studies

Oii-in-water emuisions with mean diameters ranging from 100 to 120 nm

were prepared by probe sonication (Table 6). The internai phase consisted of TC and

was emulsified with a combination of PS-$0 and either HSPC or E$M. The weight

ratio ofoil and emuisifier was kept constant at 5:3:1 (TC/PS-80/HSPC or ESM). TC

was chosen as the internal phase because medium chain triglycerides (MCTs) are

generaiiy better solubilizers for drugs than long chain triglycerides (LCTs) and thus

these emulsions could potentially be used to encapsulate drngs [34-36]. PS-$0 was

the main emulsifier since it is well tolerated for i.v. application and the high density

of short PEG segments at the emulsion interface may extend systemic circulation [37-

39]. Only emulsions prepared with ESM were incubated with various D$PE-PEG

derivatives. The final concentration of D$PE-PEG in the formulation represented 10
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to 15 mol% of the total surface components (exciuding TC). The presence of D$PE

PEG did flot considerably alter the mean size ofthe emulsion (Table 6).

The influence of ESM and DSPE-PEG 2000 in prolonging the circulation time

of emulsions was first assessed in C57BL/6 mice inoculated with B16 melanoma. b

track the distribution of the droplets in vivo, the emulsions were labeled with [3H]-

CHE. This marker has been commonly used for biodistribution studies since it is

highly lipophilic and non-exchangeable [40-42]. In this first experiment, three

different formulations were administered: TC/PS-$0/HSPC, TC/PS-$O/ESM and

TC/PS-80/E$M!(10 mol%)D$PE-PEG 2000. As shown in figure 13A, the non

PEGylated HSPC and ESM emulsions were quickly removed from the systemic

circulation with less than 10 % of the ID remaining in blood after 2 h. Emulsions

containing ESM circulated slightly longer in blood than HSPC, however, statistical

significance could not be demonstrated (p> 0.05). The slightly higher residence time

for the ESM emulsion may be attributed to a tighter monolayer at the interface, which

could potentiaÏly enhance the stabiÏity of the emulsion in blood. This tighter

monolayer, however, was insufficient to provide significant enhancement in

circulation longevity. As anticipated, figure 1 3A shows that PEGylation of the

TC/PS-80/ESM emulsion with 10 mol% PEG 2000 significantly prolonged

circulation time (p < 0.05). Two hours afier administration, approximately 35% ID

was still present in blood. Surprisingly, despite the long-circulating properties of the

PEGylated emulsion, all formulations showed similar accumulation into B16

melanoma tissues (Figure 1 3B). Afler 12 h, uptake into the tumor was between 1.2

and 2.2% ID/g of tissue. The comparable accumulation into the tumor for short and
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long-circulating emulsions may be a resuit of 10w pore cut-off size in the tumor

vasculature, restricting droplet extravasation across the vessel wall. Depending on the

celi une, tumors can have varied pore cutoff sizes, ranging from 200 nm to 1.2 tm

[431. Despite the limited distribution into B16 melanoma, ail emulsions accumulated

more in the tumor than in the muscle (Figure 13B and C). Our resuits for vector

distribution into the tumor are siightiy lower compared to long-circulating liposomes

( 100 nm in diameter) whereby accumulation into B 16 melanoma (inoculated

intramuscularly or in the hind footpad) was between 4.5 to 13.2% ID/g 24 h afler

injection [44]. The lower uptake of our PEGylated emulsions into B16 melanoma

may be due to differences in the site of tumor inoculation, the size of the tumor at the

time of injection and the time point at which the tumor was harvested. It was found

that tumor uptake increased 1 .7-fold, when liposome diameter was reduced from 13$

to 97 nm without any significant change in blood residence time, demonstrating the

importance of size on colloid extravasation into B 16 melanoma [44].

The effect of DSPE-PEG 2000 content (10 and 15 mol%) and different DSPE

PEG derivatives in prolonging circulation time was then explored in Balb/C mice

inoculated with C26 colon adenocarcinoma. In this study, five different formulations

were injected: TC/PS-$0/ESM, TC/PS-$0/E$M/(lOmol%)DSPE-PEG 2000, TC/PS

$0/ESM/(15 moi%)DSPE-PEG 2000, TC/PS-$0/ESMI(10 mol%)DSPE-PEG 5000,

and TC/PS-$0/ESM/(10 mol%)DSPE-4-armPEG. Elimination profiles of the

emulsions from blood are shown in Figure 14A. Comparable to the study in mice

bearing B 16 tumors, the non-PEGylated ESM emulsion was quickly removed from

blood with less than 20% of the ID remaining in the circulation 2 h post injection.
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Also similar to the mice inoculated with B 16 melanoma, the emulsions containing 10

mol% PEG 2000 prolonged circulation time with about 40% of the ID stiil present in

the blood afier 2 h. Increasing the concentration of PEG 2000 to 15 mol% or

enhancing the length of the PEG chain to 5000 g/mol did flot further prolong blood

residence time. it is possible that at 10 mol% PEG 2000, the colloid reached its

optimum protection with PEG and any additional increase in concentration and chain

length would not enhance circulation time further. Previous studies by our group have

shown that at low PEG concentrations (less than 4 mol%), small increases in PEG

concentration or increasing chain length from 2000 to 5000 g/mol enhanced the

circulation time of lipid nanocapsules [40]. However, at 6 mol% and above, almost no

difference was observed with increasing PEG 2000 concentration [40, 45] or PEG

chain length (2000 to 5000 g/mol) [40]. Similarly, Liu et al. [37] observed that

increasing the concentration of PEG 2000 at the interface prolonged circulation time

until a plateau in blood concentration was reached afier approximately 5 mol%.

Although the amount of DSPE-PEG anchored to the droplet surface was not

quantified in our study, the lack of detection of micelles in the region of 3-10 nm by

dynamic light scattering suggests that most of the D$PE-PEG was indeed bound to

the droplets (data not shown).

Even though graffing density was high (10 mol%), droplets coated with

DSPE-4-armPEG did not circulate as long as the other single chain D$PE-PEG

derivatives (Figure 14A). The PEG chain lengths ofeach arm were probably too short

to provide sufficient protection against opsonization. Indeed, the number of repeating

ethylene oxide units was only 11 per arm for 4-armPEG (equivalent to about 500
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g/mol per arm) compared to 45 and 113 for PEG 2000 and PEG 5000, respectively.

Previous groups have shown that the circulation time of the carrier is strongly

dependent on PEG chain length [46, 47]. For example, Allen et al. [47] observed that

liposomes grafied with PEG 1900 and PEG 5000 prolonged the blood residence time

of the carrier, while liposomes coated with shorter chain PEG-lipid derivatives (i.e.

PEG 750 and PEG 120) were removed more quickly from the systemic circulation.

Enhanced circulation time of PEGylated emulsions in blood translated into

higher accumulation into C26 tumors (Figure 143). The distribution of emulsions

grafted with PEG 2000 or PEG 5000 into the tumor was between 7.4 and 10.6% ID/g

afier 12 h, while only 2.6 and 3.9% ID/g was detected in the tumor for plain and 4-

armPEG coated emulsions, respectively. Even though plain and 4-armPEG coated

emulsions extravasated less into C26 tumors, all emulsions displayed selectivity for

the tumor over the muscle. Indeed, no more than 1.1% ID/g was distributed to the

muscle (Figure 14B and C). Our results are in general agreement with those obtained

with stealth liposomes, whereby their accumulation into subcutaneously implanted

C26 colon adenocarcinoma after 1 and 16 h post i.v. injection was approximately 7

and 18% ID/g, respectively [4$]. These liposomes (- 90 nm in diameter) reached a

maximum accumulation of about 20% ID/g at the 24 h time point [4$].

Regardless of the similar circulation times of emulsions with 10 mol% PEG

2000, accumulation was greater in C26 tumors compared to B16 at all time points.

The greatest difference was detected at 12 h post injection, whereby the emulsion

exhibited a 5-fold greater accumulation into C26 tumors than B16 (Figure 13B and

figure 143). This observation may be explained by lower vascular permeability of
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the 316 tumor compared to C26. In addition to leaky vasculature, other factors such

as differences in blood vessel density, blow flow rate, and interstitial pressure in

different tumor types can affect particulate accumulation [8]. Our finding is contrary

to the results of Ishida et al. [49] who reported that 316 and C26 tumors showed

similar permeability to liposomes with mean diameters ranging from 60 to 400 nm.

The discrepancy between the two studies may be attributed to differences in vascular

permeability and tumor volume at the time of injection.

The uptake of the emulsions by different organs afier 2, 6 and 12 h post i.v.

injection is presented in figure 15. As expected, the emulsions distributed mainly to

the MPS organs, with the majority of the formulation accumulating in the liver. for

ail emulsions, accumulation into the lungs, heart and kidneys was low. The enhanced

blood levels ofemulsions with PEG 2000 (10 and 15 mol%) and PEG 5000 translated

into lower uptake by the liver. In contrast, the plain and 4-armPEG-coated emulsions

which were cleared from blood faster accumulated more in the liver.

Several studies have reported the ability of emulsions to enhance the

accumulation of anticancer agents into solid tumors compared to the free drug [5, 50,

51]. While other reports have shown a greater reduction in tumor volume over time

when drugs are encapsulated into long-circulating emulsions versus free drug [52-55].

However, despite the vast amount of literature on emulsions as drug carriers in cancer

therapy flot much work has been devoted to characterizing the accumulation of the

droplet itself into solid tumors. In this study, we clearly demonstrated that nanosized

PEGylated emulsions prepared with commonly used pharmaceutical excipients can

passively target neoplastic tissues. The degree of emulsion accumulation into the
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tumor was dependent on the PEG coating and tumor type, whereby C26 colon

adenocarcinoma was more permeable to the emulsions than B 16 melanoma. These

emulsions can potentially enhance the selectivity of lipophilic anticancer drugs

towards tumor tissues and increase their therapeutic index.
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PEG Mean PU! Tumor
content Diameter
(01%)b (nm)

TC/P$-80/HSPC - 113 0.27 B16-F10
TC/PS-80/ESM - 103 0.32 B16-f 10
TC/P$-$0/ESWD$PE-PEG 2000 10 107 0.25 B16-F10
TC/PS-80/ESM - 110 0.29 C26
TC/P$-80/E$WDSPE-PEG 2000 10 114 0.26 C26
TC/PS-80/ESMIDSPE-PEG 2000 15 103 0.23 C26
TC/PS-80/ESWDSPE-PEG 5000 10 121 0.21 C26
TC/PS-80/ESM!DSPE-4-armPEG 10 110 0.24 C26
The weight ratio of lipids except for DSPE-PEG was kept constant (TC/PS-$O/X = 5:3:1, w/w, where

X is either HSPC or ESM).
b Expressed as mol% of total surface components (exciuding TC).

Table 6: Properties of the lipid emulsions administered to mice bearing either B16-
f10 melanoma or C26 colon adenocarcinoma
Formulationa
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Figure 11: Surface pressure versus molecular area (A) and surface pressure versus
modulus of compressibility (B) plots of HSPC and ESM at the air/water interface.
Subphase conditions: PBS pH 7.4, 25°C.
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colon adenocarcinoma (B) and muscle (C) afier i.v. injection in Balb/C mice. Each
mouse was administered 5.4 mg of lipids (excluding DSPE-PEG) in a 100-jiL
injection volume. Mean + SD (n = 4-5 mice/group). TC/PS-$0/ESM ( ) and TC/PS
80/ESM/(10 mol%)DSPE-PEG 2000 (.), TC/PS-$0/ESM/(15 mol%)DSPE-PEG
2000 (), TC/P$-$0/ESM/(10 mol%) DSPE-PEG 5000 (n), TC/PS-80/ESM/(10
mol%)DSPE-4-armPEG (z). Statistically significant differences between plain and
PEGylated emulsions are indicated. p < 0.05.
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CHAPTER 4: DISCUSSION
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1. Formulation optimization

for emulsions to accumulate into neoplastic tissues by the EPR effect, the

droplets must be smaller than the pores of the tumor blood capillaries [1] and must

possess sufficiently long residence times in blood to extravasate progressively at the

tumor site over time [2]. The ability ofemulsions to evade the MPS and circulate long

afier intravenous (i.v.) injection depends largely on the hydrodynamic diameter ofthe

dispersed droplets and the physicochemical properties ofthe surface [3-5].

Our strategy to achieve long residence times in blood and accumulation into solid

tumors was to develop an emulsion with a unimodal size distribution centered on 100

nm that was co-emulsified with egg sphingomyelin (ESM). This lipid emulsifier was

selected since several previous studies have shown that ESM prolonged the systemic

circulation time of emulsions and liposomes [6-8]. The desired droplet size was

realized by varying emulsifying parameters such as formulation composition

(surfactant type, oil/surfactant ratio) and the energy input for droplet size reduction

(sonication duration and intensity). This section describes the development of a nano

sized emulsion formulation that would later be coated with various 1 ,2-distearoyl-sn-

glycero-3 -phosphatidylethanolamine-poly(ethylene glycol) derivatives (DSPE-PEG)

including DSPE-PEG 2000, DSPE-PEG 5000, and DSPE-4-armPEG, and evaluated

in vivo for their ability to prolong circulation time and accumulate into solid tumors.

1.1. Emulsion composition

Formulation optimization began by screening through various synthetic

surfactants to identify the ones which were most suitable to emulsify tricaprylin tIC)

with E$M. This initial screening study was performed at various sonication intensities
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and durations, while the amount of ESM and TC was kept constant. The influence of

synthetic surfactant type was evaluated in a system composed of TC/E$M/X (5:1:3,

w/w), where X was either poloxamer 18$, span 40, sodium deoxycholate, sodium

cholate, sodium glycocholate or polysorbate 80 (PS-80). The emulsions were

prepared and characterized following the protocol described in Appendix I. From this

study, PS-80 had the best emulsifying properties since these emulsions had superior

physical stability under certain sonication conditions. Consequently, PS-80 was used

in future optimization studies.

Following these experiments, the oil/surfactant ratio and PS-80/ESM ratio were

varied while maintaining constant sonication conditions (duration: 25 s, intensity:

medium (72-84 W)). Refer to Appendix II for the procedure used to prepare the

emulsions. The influence of emulsion composition on droplet diameter and PDI is

presented in Figure 16. As expected, smaller droplets were produced at lower

oil/surfactant ratio due to increased lowering of the interfacial ftee energy with higher

emulsifier content (figure 1 6A) [9]. On the other hand, at low oil/surfactant ratio PDI

values were larger, which is probably due to the formulation of small micelles as a

resuit of the relatively large quantity of surfactant (figure 1 6B). As oil/surfactant

ratio increased, PDI values diminished while droplet diameter became larger. The

formulation that provided the best compromise between mean diameter and PDI was

with an oil/surfactant ratio and PS-$0/E$M ratio of 1.25 and 3, respectively. With this

formulation (TC/PS-80/ESM = 5:3:1, w/w), droplet size and PDI was 145 nm and

0.29, respectively (Figure 16A and B).
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1.2. Sonication parameters

Sonication is a process which reduces globule size by inducing cavitations

through the mechanical vibrations generated by the sonicator probe. The collapse of

these vapor bubbles produces high energy shockwaves throughout the liquid mixture

which breaks up the droplets [10]. The influence of sonication parameters, such as

intensity and duration on droplet diameter and PDI was investigated, while the

proportion of TC/PS-80/ESM (5:3:1, w/w) was maintained constant. Refer to

Appendix II for the procedure used to prepare the emulsions. As anticipated, Figure

17 shows that increasing sonication time and intensity reduced emulsion droplet size

and PDI. This can be explained by the stronger mechanical vibrations induced by

increasing the power input, producing more powerful shock waves that could break

up the initial globules into smaller droplets [10].

$onication at medium (72-84 W) or medium-high (92-102 W) intensity

produced emulsions with comparable mean diameters. At these power inputs, droplet

size leveled-off at approximately 100 nm (figure 1 7A). PDI, on the other hand, could

be decreased further by sonicating at rnedium-high intensity for longer durations (60

and 120 s) (figure 1 7B). Eventually these emulsions may be interesting carriers for

hydrophobie anticancer drugs. To avoid possibly overheating the formulation with

high sonication intensity and duration, which could potentially degrade heat sensitive

drugs, the parameters chosen for the in vivo studies were 40 s at medium intensity.

These conditions were sufficient to produce an emulsion with a diameter of about 100

nm and acceptable polydispersity (<0.3).
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2. Emulsion stability

Several promising formulations were stored at ambient conditions and

checked for physical stability over time. The emulsions were examined visuaily for

signs of phase separation such as creaming, sedimentation, and ou droplets. In

addition, droplet diameter was monitored over time by dynamic light scattering. The

stabiiity of several non-PEGylated emulsions is presented in Table 7. for ail

emulsions, size increased over time while PDI decreased. Several hypotheses are

proposed to explain the change in emulsion size over time. One hypothesis is that the

emulsions are physically unstable and are showing signs of destabilization. The

increase in droplet size may be an indication of coalescence (fusion of separate

droplets) due to insufficient electrostatic or steric forces to overcome the attractive

Van der Waals forces as two globules approach each other [11]. Electrostatic

stabiiization was minimal since the emulsions were prepared with non-ionic

emulsifiers. Alternatively, the polydispersity in dropiet size may have promoted

Ostwald ripening [12]. This destabilization process occurs when the smail droplets

transfer oil to the larger ones causing the big ones to grow while the small ones

sbrink. Another possibility is that the increase in size may be partially due to

microbial growth since the emulsions were flot sterilized prior to storage and no

preservatives were added to the formulation.

Visualiy the emulsions did not show any indications of physical instability

over two months. Signs of phase separation were observed afier 3 months and

obvious phase separation was observed afier 4 months.
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Table 7: Stability of several non-PEGylated emulsions over time

Day O I Month 2 Months
TC ESM PS-80 Sonication

(mg) (mg) (mg) time (s) Diameter
PDI

Diameter
PDI

Diameter
PDI

(nm) (nm) (nm)

100 20 60 25 139.1 0.37 191.4 0.11 220.9 0.08

100 20 60 35 128.6 0.28 172.1 0.10 212.0 0.06

145 20 60 25 177.9 0.26 263.3 0.25 216.8 0.07
145 20 60 35 165.4 0.26 206.9 0.19 215.8 0.11
145 60 60 25 173.1 0.29 238.6 0.19 246.5 0.17
145 60 60 35 147.8 0.26 200.3 0.14 225.1 0.14

The formulations were sonicated at medium intensity (72-$4 W)
Subphase: 0.9% (w/v) NaC1 in water

Emulsions composed of TC/PS-$O/ESM (5:3:1, w/w) were then incubated

with DSPE-PEG 2000 at various concentrations (0, 6, 10 and 15 mol%). The physical

stability of the emulsions was evaluated by monitoring changes in droplet size over

time (Table 8). $urprisingly, emulsions coated with PEG 2000 increased in size over

time similar to the non-PEGylated formulations (Table 7 and Table 8). It was

expected that the polymer chains grafled to the surface of the emulsion droplets

would provide physical stability through steric hindrance at high grafiing densities. A

possible explanation for this observation is that the appropriate combination of

surfactants to provide an efficient film at the interface was flot found. For instance,

the considerable difference in alkyl chain length between the surfactants (P$-$0 and

ESM) and those of the TC core may be an issue. In addition or altematively, the

increase in droplet size may be a result of microbial growth which could destabilize a

formulation prematurely.
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Table 8: $tability ofthe PEGylated emulsions over time

DSPE-PEG Day O Day $

2000 content Diameter Diameter
(mol%) (nm)

PDI
(nm)

PDI

0 144.8 0.34 155.2 0.17
6 141.6 0.32 169.1 0.18
10 149.5 0.33 164.0 0.23
15 144.1 0.32 179.2 0.22

The weight ratio of Iipids except DSPE-PEG 2000 was
5:3:1)
Sonication conditions: 40 s, medium intensity (72-84 W)
Subphase: Millipore water

Day 16 Day 2$

Diameter
PDI

Diameter
PDI

(nm) (nm)

164.7 0.11 178.0 0.10
162.4 0.15 194.7 0.11
183.9 0.15 178.6 0.15
188.2 0.15 199.2 0.15

kept constant (TC/PS-$0/ESM =

3. Compression isotherms

following the initial optimization study, ESM monolayers were characterized

at the air/water interface in PBS buffer (pH 7.4) and compared to a high phase

transition phospholipid (hydrogenated soybean phosphatidylcholine, HSPC) using the

Langmuir balance technique (refer to figure 1 lA and B in Chapter 3). These lipids

were characterized alone and in the presence of PS-80 for monolayer compressibility,

molecular conformation and fluidity. for the pure lipids, two important differences

were identified between the molecules. f irst, ESM formed a more compressible film

than HSPC as indicated by the more gradual increase in surface pressure as molecular

area decreased. The disparity in monolayer compressibility between the two

molecules may be attributed to differences in chain unsaturation. The acyl chains of

HSPC are completely saturated, while a double bond is present in ESM between

carbons 4 and 5 of the sphingosine backbone. The unsaturation in E$M might

produce a more fluid and disordered monolayer than HSPC. The second difference

observed between the molecules is that ESM could form a more densely packed film

above about 25 mN/m (see figure 1 lA in Chapter 3). The ability of E$M to form a
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tighter monolayer can be explained by its greater hydrogen bonding capacity

compared to phosphatidylcholines (PCs) due to the presence of an amide and

hydroxyl group in the molecular structure. The intra- and intermolecular hydrogen

bonding within and between ESM molecules may decrease head group hydration,

which could permit the molecules to pack more tightly. Previous studies have

reported that ESM head groups are less hydrated in monolayers and bilayers

compared to PCs, such as DPPC and egg PC [13, 14].

The fluidity and compressibility of both HSPC and E$M monolayers

increased considerably when mixed with PS-$O (see figure 12A and B in Chapter 3).

Over the range of molecular areas investigated, both HSPC/PS-80 (1:3, w/w) and

ESMJP$-80 (1:3, w/w) displayed almost identical compressibilities. However,

compared to pure PS-$O and HSPC/P$-8O, ESMIPS-8O formed a more densely

packed film at the air/water interface (the mixture occupied the smallest area). A

possible explanation for this observation is a reduction in hydration of the polar head

group due to the formation of intra- and intermolecular hydrogen bonds with ESM

and maybe also with PS-8O. The lower head group hydration could permit denser

packing of the molecules. The tighter molecular packing of ESM/PS-80 monolayers

may potentially enhance monolayer stability in plasma and prolong the systemic

circulation time of an emulsion.

4. Biodistribution studies

Based on the resuits of the monolayer experiments, we compared ESM versus

HSPC emulsions in vivo. The emulsions were prepared with the same proportions of

oil and surfactant (TC/PS-8O/HSPC or ESM = 5:3:1, w/w) and sonicated at the same



117

conditions (medium intensity, 40 s). Ibis basic formulation was chosen for the

biodistribution experiments based on the optimization studies, whereby emulsions of

100 nm with acceptable PDI values (<0.3) were obtained under these conditions.

$ubstituting HSPC for E$M did flot considerably alter the size of the emulsion (refer

to Table 6 in Chapter 3). These emulsions were administered intravenously via the

subclavian vein to mice inoculated with B16 melanoma. Afier i.v. injection no

significant difference was observed between ESM and HSPC emulsions (p> 0.05)

(Figure 13A, Chapter 3). Although a statistical significance could flot be

demonstrated, the % ID at the 2 h tirne point was slightly higher for the emulsion

containing ESM, which may be attributed to a tighter monolayer at the interface.

Following these experiments, the influence of PEG concentration, chain

length, and structure in prolonging systemic circulation time was investigated. This

was done by coating emulsions composed of TC/PS-$0/ESM (5:3:1, w/w) with

various DSPE-PEG derivatives including DSPE-PEG 2000, DSPE-PEG 5000 and

DSPE-N-[pentaerythritol polyoxyethylene) glutarylJ (DSPE-4-armPEG) (PEG MW

2000). Droplet diameter was maintained constant between 100 — 120 nm such that

blood residence time was dependent only on the physicochemical properties of the

carrier (refer to Table 6 in Chapter 3). As expected, inserting DSPE-PEG 2000 or

PEG 5000 into the emulsion interface at high grafting densities (10 or 15 mol%)

significantly prolonged circulation time (p < 0.05) (Figure 14A, Chapter 3). Despite

the 2000 MW PEG segment and high graffing density (10 mol%), emulsions coated

with DSPE-4-armPEG did flot exhibit higher residence times in blood compared to

plain, non-PEGylated emulsions. The inability of DSPE-4armPEG to extent
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circulation time is probably due to the lower molecular weight PEG segment per arm

(500 g/mol) compared to single-chain PEG 2000 and PEG 5000. Previous groups

have shown that the circulation time of the carrier was lower when coated with

shorter PEG chains (i.e. PEG 750 and PEG 120) compared to PEG 1900, 2000 and

5000 [15, 16].

Enhanced circulation time of emulsions grafted with PEG 2000 or 5000

translated into higher accumulation into C26 tumors but flot into B16 (figure 13B and

figure 143, Chapter 3). The lower uptake of emulsions by B16 melanoma may be

due to several factors including lower vascular permeability and differences in blood

vesse! density, blow flow rate, and interstitial pressure in different tumor types [17].

The uptake of the emulsions by the organs at different time points is presented

in figure 15 in Chapter 3. The emulsions were taken up mainly by the liver followed

by the spleen. As anticipated, the emulsions which had higher blood residence times

accumulated less in the liver.
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CHAPTER 5: CONCLUSION
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Oil-in-water submicrometer emulsions are promising vehicles for the delivery

of highly lipophilic anticancer drugs to neoplastic tissues. The main advantages of

emulsions over other colloidal dmg delivery systems include the potential to

solubilize high quantities of lipophulic compounds, relative ease of manufacture at an

industrial scale, and reasonable stability under storage conditions. In this study, we

clearly demonstrated that nanosized PEGylated emulsions prepared with commonly

used pharmaceutical excipients can passively target solid tumors. The efficacy of

emulsion uptake into the tumor was dependent on the physicochemical properties of

the surface and the tumor model. These emulsions can potentially enhance the

selectivity of lipophilic anticancer drugs towards tumor tissues, resulting in reduced

systemic toxicities and increased therapeutic index, provided that the encapsulated

cargo remains associated with the vector afier i.v. injection. These resuits will

undoubtedly improve the understanding of ernulsion accumulation into solid tumors.

Future work will involve enhancing the physical stability of the emulsions in

storage. Ideally, the formulation should be physically and chemically stable for at

least one year. Moreover, the ability of the emulsions to incorporate hydrophobie

anticancer drugs ought to be investigated, followed by an assessment of drug

retention in vitro and in vivo. In general, molecules with high lipophilicities (log P>

9) are retained better within the emulsion in the presence of biological fluids [1, 2].

Thus, in order to achieve high dnig levels at the tumor site it is recommended to load

these emulsions with highly lipophilic compounds (log P> 9).
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The ongoing advancement in delivery systems for anticancer drugs will

eventually lead to safer and more tolerated therapies. Hopefully, this study wilI

enhance interest in developing emulsions as carriers for antineoplastic agents.
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APPENDIX I

The emulsions were prepared by first mixing ail components (ou, lipid

surfactant, and synthetic surfactant) under gentie agitation (stirring bar) above the

phase transition temperature of ESM for 5-10 min. The dispersing phase (0.9% w/v

NaC1 in water) was then added to the premix and the formulation was heated/mixed at

55°C for an additional 20 to 60 min. Afler the addition of extemal phase the dispersed

phase represented 9% (w/v) of the emulsion. The formulations were then sonicated in

batches of 1 mL in a 1.5 mL eppendorf at various intensities and durations on pulse

mode (pulse every 2 s for 0.2 s). After sonication, a sample of formulation was taken

and measured for mean hydrodynamic diameter by dynamic light scattering using a

Malvern Autosizer (Malvem Instruments Ltd, Maïvem, UK) at 25°C and a fixed

angle of 90°. Each formulation was then extruded several times (- 11 times) through a

100 - 200 nm filter using a 1 mL hand-held extruder. Following extrusion a second

size measurement was made for each formulation. The emulsions were stored at

ambient conditions and monitored visually for signs of phase separation such as

creaming, sedimentation and ou droplets.
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APPENifiX II

The emulsions were prepared by first mixing ail components (TC, P$-80, and

E$M) under gentie agitation (stirring bar) above the phase transition temperature of

ESM for 5-10 min. The dispersing phase (0.9% w/v NaC1 in water, citrate buffer at

pH 5 or Millipore water) was then added to the premix and the formulation was

heated!mixed at 55°C for an additional 20 to 45 min. After the addition of extemal

phase the dispersed phase represented between 6 to 14% (w/v) of the emulsion. The

formulations were removed from the heat and vortexed for 2 min. The emulsions

were then sonicated in batches of 1 mL in a 1.5 mL eppendorf at medium intensity for

25 to 40 s on pulse mode (pulse every 2 s for 0.2 s). Size measurements were made by

dynamic light scattering using a Malvem Autosizer (Malvem Instruments Ltd,

Malvem, UK) at 25°C and a fixed angle of 90°.
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