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Résumé

La connaissance de la structure poreuse des matériaux hétérogènes est d’une

importance fondamentale puisque leurs propriétés physiques en dépendent largement. En

effet, les caractéristiques géométriques et structurales des matériaux poreux influencent leur

performance, plus particulièrement les propriétés de diffusivité et de perméabilité des

matériaux polymériques.

Ce mémoire de maîtrise s’inscrit dans un effort collectif visant à étudier, au-delà de

la porosité, les propriétés morphologiques des matériaux poreux. L’outil principal de notre

étude était la fonction d’autocorrélation (FAC), largement répandue dans l’analyse du

signal. Nous avons revisité cette méthode et proposé une manière originale de l’employer

dans un contexte géométrique (spatial au lieu de temporel) afin d’extraire de l’information

morphologique des structures étudiées. Nous avons illustré sur des exemples, comment la

méthode développée peut être utilisée comme complément à la porosité.

La première étape de cette étude était d’appliquer la fonction d’autocorrélation aux

images biphasées. Nous avons alors prouvé empiriquement que la pente en moyenne

quadratique (LMS) de cette fonction d’autocorrélation est égale à la porosité de ces

textures. Dans la troisième étape, cette information de porosité du signal de la fonction

d’autocorrélation est soustraite afin de ne maintenir que l’information géométrique

complémentaire. Cette action de soustraction a aussi un intérêt purement technique

puisqu’elle permet d’épurer le signal et ainsi de mieux le préparer à la quatrième étape,

c’est à dire à l’application de la transformée de Fourier. Le signal résultant de cette dernière

opération a été alors analysé pour en extraire d’autres informations structurales. Ainsi, deux

paramètres indépendants ont été trouvés et définis par les composants de “pente” et

d’oscillation” du spectre de la fonction d’autocorrélation. Dans le cas des images rayées et

des images avec les modèles périodiques, la fréquence principale de la transformée de

Fourier en termes de l’amplitude a été liée à la fréquence et à l’ampleur des pores. Cette

technique, qui est développée pour l’étude des textures poreuses, s’annonce prometteuse et

mérite d’être développée davantage dans des situations plus générales. À notre

connaissance, cette étude constitue la première du genre où la fonction d’autocorrélation est

111



utilisée de la sorte dans l’étude des structures géométriques. Sa généralisation à des

structures plus générales est en cours de développement par d’autres membres de mon

laboratoire.
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Abstract

Distinguishing porous microstructures in a quantitative manner is important for

reliable predictions of their properties. Jndeed, the geometric and structural properties of

porous materials influence their performance, especially the diffusivity and permeability of

polymeric materials. The purpose of this M.Sc. thesis is to characterize, beyond porosity,

the morphological properties of porous structures. The main tool is the autocorrelation

function (ACF), a widely-used signal analysis. We revisited this method and proposed an

original way for its analysis in order to reveal the morphology of porous media by

developing parameters that quantify texture. In fact, we showed how our developed method

can contribute to a better description of texture and set apart surfaces of materials that are

indistinguishable by other parameters such as porosity. As a first step, we applied the

autocorrelafion function to 2-phase images. The second step consisted of establishing an

experimental proof that the Ieast mean square siope of this autocorrelation function was

directly related to the porosity of these textures. In the third step, this porosity information

from the autocorrelation function signal was removed to keep only complementary

geometric information of the image. This subtraction purified the signal and prepared it for

the fourth step, i.e. discrete Fourier transform (DFT) application to the remaining part. The

resultïng signal was then analyzed to extract other structural information. Thus, 2 important

independent parameters were found, studied, and defined through the “siope” and

“oscillation” components of the autocorrelation function. In the case of striped images, i.e.

images with periodic patterns, the main frequency of the DFT in terms of amplitude was

related to pore frequency and extent. This technique, designed for the study of porous

textures, is promising and caïls for further development. To the best of our knowledge, it is

the first time that the autocorrelation function bas been applied this way. Its generalization

to more porous media is under development by other members of our laboratory.
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Heterogeneous media

Most multi-phase media have a random microstructure with inclusions of different

sizes and shapes forming an enormous variety of local microstructural configurations.

The composition of an heterogeneous material varies from region to region, where the

distance between regions may range from microns upwards. However, it has been shown

that the effective macroscopic properties of heterogeneous materials are not related in a

simple way to the properties of the constitutive phases and their related proportions,

which suggest complex interactions between phases.

Porous polymers, as an important subclass of heterogeneous materials, have been

used in a variety of applications, including chromatographic media (Zeng et al., 2004),

controlled release of drugs (Risbud et al., 2000) and wound dressing (Pachence, 1996;

Shibata et al., 1997). Although the presence of pores is a major defect in metals (Huang

and Lu, 2002) that can compromise their mechanical properties due to cracking and

fatigue, porosity also has an important influence on the diffusivity and permeability of

porous media. To characterize a porous structure, porosity is considered as a principal

index reflecting its spatial occupancy. However, it is obvious that porosity alone is far

from enough to reflect the irregular morphology of microporous structures. The

properties of porous media are highly dependent on the morphology of pore space as well

as of its complementary part. To go one step further in the characterization process,

complementary parameters have to be extracted.

The purpose of this chapter is to report on the problems and limitations associated

with the characterization techniques of porous media. We will also justify the need to

develop more advanced methods to more fully characterize porous structures.

Characterization of porous media

Porous media are generally characterized by a number of geometric parameters.

The most common are porosity, surface area, and pore size distribution (Hilfer &

Manwart, 2001; Hilfer, 2002). In an effort to explicitly study these structures, a number
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of important analytical and empirical techniques have been developed. Each of these

techniques has its own set of strengths and weaknesses.

To be efficient, geometric parameters for the characterization of porous media

should satisfy some important requirements (Carman, 1956; Hilfer, 1996), that is, the

parameters should be weJl-defined, directly predictive in an experiment, flot require too

much data, and be readily usable.

We should also mention the fractal approach (Krohn & Thompson, 1986; Yu &

Li, 2001), which is intended to quantify structures of high complexity. Fractal dimension,

which can be viewed as a measure of structure irregularity, gives a first characterization

of sucli microstructures. Several methods have been proposed to measure the dimension

of a fractal, or, more generally, of an irregular set. However, one major limitation of

fractal dimension is that it can degenerate, meaning that several sets can share the same

fractal dimension, while exhibiting different textures. The notion of lacunarity, which is

related to the distribution of mass and voids in a set (Allain & Cloitre, 1991), has been

proposed as a promising way to differentiate textures beyond fractal dimension.

However, in many cases, this index is not sufficient to add complementary information

since it can also degenerate in rather simple cases (Nekka & Li, 2003b). In the following,

the above-mentioned characterization methods are presented, as are some experimental

techniques.

Porosity

The study of porous media mainly involves porosity, which refers to the

occupancy of the set, measured on samples liaving regular geometric shapes (Nekka et

al., 2005). The porosity of a structure is defined as the ratio of the volume of pores to the

volume of the material. Hence, a 2-component sample with pore space JP (component 1)

and matrix space S (component 2) has a porosity of:

,hV(3P)
‘VS)
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where V3 (P) is the volume fraction of pore space, while V3 (S) is the volume of the

total sample. It should be mentioned that this definition of porosity is related to total

porosity. The latter differs from open porosity or effective porosity, which is the ratio of

accessible pore volume (i.e. of pores connected to the surface of the sample) to total

volume. Several methods, such as mercury porosimetry and small-angle neutronlx-ray

scattering, experimentally measure the porosity of a poious medium. Sorne of them will

be discussed in the next section.

Specific internai surface area

Porous materials have a large surface area, and the behaviour of fluids through

pores is dominated by surface forces. This concept introduces another important

geometric characteristic of porous media, which gives a quantitative measure of the

surface area to volume (S/V) ratio. Experimental surface area methods are generalïy

based on analysis of adsorption isotherms of nitrogen or some other gas. One of the

important techniques, the Brunauer-Emmett-Teller (BET) method (Thomas et al., 1999),

will be discussed, along with other experimental methods, in the next section.

The correiation function (CF)

Based on the quantification of relationships in a given sample over a range of

length scales (Berryman, 1987), the CF offers another geometric mcthod for the

characterization process. Its advantage lies in the fact that, in combination with other

characterization methods, such as porosity and surface area, it has the potential of a

quantitative texturai technique (Hilfer, 1996) for heterogeneous and disordered materials.

Correlations can be established over a wide variety of functions, such as the radial

distribution of spheres (Markov & Willis, 199$) and localized change in density. This

function has the advantage of being easy to manipulate, and provides deep insight into

4



texture. The method we propose is based on the autocorrelation function (ACF), a special

version of the CF. We will discuss the ACF in more detail in the Methodology section.

Pore size distribution

Pore size distribution on structures is very useful information. However, its

definition can be problematic, since it necessitates the selection of pore shape definition.

Mercury porosimetry is an important procedure to determine pore size distribution. The

technique may be ftaught with small approximations introduced to make the models

tractable. Jndeed, pores are usually assumed to be either slit-shaped or cylindrical,

leading to a single variable size parameter (wall spacing or cylinder radius).

Capillary tubes

Continuous pore spaces between the matrix act like capillary tubes. The capillary

tube model (Hilfer, 1996) is a simple geometric approacli to the specific geometric

characterization of porous media. The idea is based on the consideration of porous spaces

in an assumed cubic porous structure as bundies of straight or parallel cylindrical tubes

that do flot intersect each other (Figure 1.1).

Figure 1.1: Pore geometry presented by a bundie of parallel tubes’
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Therefore, porosity in a cubic porous model with side length L and volume L

consists of N non-intersecting capillary tubes of length a which have circular cross

sections dcfined by:

çS)=Iaj

Experimental techniques for porosity and surface area

Several experimental techniques for the characterization of porous materials are

briefly described below to get an idea of their associated forces and!or limits.

• Chemical gas adsorption: used for the determination of surface area (BET

method), micropore volume and pore size distribution;

• Mercury porosimetry: serves to estimate bulk or apparent density and

macropore volume;

• SmaI]-angle x-ray scattering (SAXS): characterizes porous materials in

terms of surface area, total pore volume and pore size distribution;

• Nuclear magnetic resonance (NMR) spectroscopy: measures the S/V ratio.

The choice of the optimization method depends, however, upon the problem

under study and requires execution efficiency. Each of these techniques measures the

surface area of material pores by different physical principles. Unfortunately, each

technique can give a different surface area value.

• Chemical gas adsorption

This widely-used technique is by far the oldest way of measuring surface area,

pore size distribution and total pore volume, including pores with diameters smaller than

100 nm. The physical principle of the technique is detailed in a book by Loweli &

Shields (1991). The concept is based on the tendency of ail solid surfaces to attract
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surrounding gas molecules. Generally, nitrogen vapour is the sorptive gas (Pinnau et al.,

1992). The sorptive gas siowly goes through the specimen, and the amount of adsorbed

nitrogen, measured as a function of appiied vapour pressure, is finally reported as the

adsorption isotherm. The BET method is the most wideiy-used. It is based on the

assumption that the heat of adsorption is constant throughout the formation of a single

layer (monolayer) of nitrogen moiecules on the surface. An important characteristic of the

technique is that the specimen must be penetrated to remove ail adsorbed gas molecuies,

and the subsequent measurement must be performed in a vacuum (Thomas et al., 1999),

which limits its utiiity for amorphous materials. Its application to determine surface

fractal dimension is presented iater.

Salonen et ai. (2000) compared the BET method to SAXS as a means of

measuring the porosity and surface area of porous silicon. They found that when sample

porosity was greater than 50%, the resuits obtained by both methods were similar.

However, the BET method seems to give unrealistically large values for specific surface

area when porosity is less than 50%.

Mercury porosimetry

This method, proposed by Washburn in 1921, provides reliable information about

pore size/volume distribution, particle size distribution, bulk density and specific surface

for most porous solids, regardless of their nature and shape. It is based on the physical

principle that a non-reactive, non-wetting liquid wili flot penetrate pores until sufficient

pressure is applied to force its entry. Pore-size distribution is given by the so-called

Washburn equation (Washburn, 1921):

46cos8

d

where 6 is the surface tension of mercury, & is the contact angle of mercury on the

material being intruded under the required pressure P to force mercury into the pore, and
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d is the diameter of a series of assumed aligned cylinders. Despite the widespread use of

this method, it suffers from the main drawback that pores in a real porous medium are

almost neyer circular cylinders (Xu et al., 2004).

Mercury porosimetry provides measurements of pore radii in the range of about

several million down to 1$ Angstroms. The size-limited property of meso- and

macropores is another drawback of this method (Thomas et al., 1999). Moreover, it is

generally not effective for aerogels. Indeed, the high compressive forces encountered in

forcing mercury into aerogel pores and vacuum degassing to remove moisture cause these

structures to collapse.

In addition to the above technique, Lee and Shim (1997) adopted the Hagen

Poiseuille law to measure the effective pore size of some types of polyamide membranes

at various pH:

= nicr4AP

877r

where J is the filtration rate, n stands for the number of pores per cm2, A refers to the

surface area of the polymeric sample (cm2), r is the pore radius, P is the applied pressure,

17 is the viscosity of the flow, and ‘l is the thickness of the membrane.

The drawback of this method is that it is only valid for laminar flow, and is based

on the assumption that flow occurs when an incompressible, uniform viscous liquid (the

so-called Newtonian fluid) passes through a cylindrical tube with a constant circular

cross-section.

Small-angle x-ray scattering (SAXS)

SAXS is based on the tendency of porous materials and nano-particles in an

homogeneous matrix to scatter x-ray beams and the observation of a coherent scattering

pattern that arises from electron density within a given sample. The angular scattering

pattern is analyzed by the inverse relationship between particle sizes and scattering angle

to distinguish characteristic shape and size features within the sample.
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SAXS provides cutting edge capabilities for probing large length scale structures,

such as polymers, biological macromolecules, meso- and nanoporous materials, and

molecular seif-assemblies (Wu, 2003). SAXS and neutron scattering can be applied to

study both mono-disperse and poly-disperse systems to determine size distributions,

volume fractions and total surface area. The main advantage of this method is that

samples can be studied in a saturated state, thus avoiding possible problems associated

with removing moisture. However, it has its own problems, mainly during data analysis.

Variation of surface area values obtained from different instruments has been reported

(Thomas et al., 1999). One possibility is the calibration of scattering intensity, which may

give variations of up to 10% in surface area values. Also, the method is more valuable

for mono-disperse systems than for poly-disperse systems, since size distribution is

estimated on the assumption that ail particles have the same shape.

Nuclear magnetic resonance (NMR) spectroscopy

Non-invasive and non-destructive NMR spectroscopy, generally used to study

molecular structures, provides important insights into the organization of porous

materials (Freude & Karger, 2002). Based on liquid-infused diffusion measurement, the

NMR method quantifies the SN ratio. In porous material studies, the act of pumping

water into solid pore waiis is of great importance. The NMR relaxation time of water

depends on pore size, is inversely proportional to the SN ratio, and is thus directly

related to pore radius (Rijniers et al., 2004).

A unique technique, called xenon inter-phase exchange NMR (Butier et al.,

2002), lias recently been developed to measure the SN ratio of porous polymer samples.

The advantage of this new method is the rapidïty of gas diffusion and the long spin

polarization lifetime.
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Fractal characteristics of porous media

The purpose of this section is to investigate fractal-based techniques to quantify

porous images. Fractal geometry was popularized by Mandeibrot (1982) as a

generalization of Euclidean geometry. Using concepts of fractal geometry, more complex

structures with seif-similar properties can be assessed. Porous structures and blood

networks (Avnir et al., 1985; Gouyet, 1992) are typical real fractal systems, since they

have a similar appearance over a range of scales. Fractal methods have already proved to

be efficient in quantifying complex information based on existing similarities. The major

use of fractal analysis is to measure this complexity through fractal dimension and other

related indexes (Nekka et al., 2005).

Several studies based on wave-scattering or adsorption techniques (Avnir et al.,

1985; Krohn & Thompson, 1986; Yu & Li, 2001) have shown that pore microstructures

display self-similar features in terms of pore sizes and pore interface.

An interesting relationship (Hunt, 2003) between porosity Ø and fractal

dimension D is expressed through:

Ø(ro)3D

,;fl

where D is the (volume) fractal dimension of the pore space, and r0 / r, is the ratio of the

smallest to the largest pore radius in the sample. The negative sign implies that with

increased pore size in the sample, the pore population decreases. In the typical case of

vanishing porosity or a large r0 / i ratio, the limit of D towards 3 corresponds to a filled

cubic object without any pore inside. In general, r0 / r,, is <11X2 for a porous medium

with fractal properties; otherwise, the porous medium bas a non-fractal structure, and

fractal theory and techniques are not applicable (Yu & Cheng, 2002). Diverse available

approaches estimate fractal dimension, depending on differences in objectives and types

of data under study. Some of the basic techniques are presented below. Before going

through some of them, I will discuss typical fractals, including fat fractals, known to be

realistic synthetic models of porous media.
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Thin fractals: the typical example of the triadic Cantor set

Thin fractals are sets of zero-Lebesgue measure (length in 1-D). A typical

example is the Cantor set. Let us recail the general construction of this set. At the zeroth

level, construction begins with the unit interval. The first level is obtained from the zeroth

level by deleting ail points that lie in the middle third, that is, ail points between 1/3 and

2/3. The second level is obtained by deleting the middle third of each remaining inteiwal

of the first level, that is, ail points between 1/9 to 2/9 and 7/9 to 8/9. The process

continues ad iifinituin. The first 3 iterations are depicted in Figure 1.2 below.

_________

n=l

n=2

II 1 i• •i nz3

Figure 1.2: Initial unit interval and the first 3 iterations of construction of the triadic Cantor set

At the nth ievei, the set consists of N=2 segments, each of which has length

Ï=1/3, so that the total length (measure) of the Cantor set is (2/3). This resuit is

characteristic of a fractal set: as n—*oo, the number of details (segments here) grows

exponentially to infinity while total mass goes to zero, also exponentialiy fast. The

topological dimension of the Cantor set is DTO since its total length is zero. Hence, the

notion of dimension is not very useful as it does not distinguish between this compiex

Cantor set and a simple point. The sirnplest dimension that generalizes the topological

one is called the capacity dimension:

D=lim
logN,

‘—‘° log(1 / t,) in 3
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Fat fractals: synthetic porous media

fat fractals have been proposed as realistic models of microporous media. The

empty holes of fat fractals have size-dependent power distribution similar to porous

materials (Umberger & Farmer, 1985; Bulgakov & Konotop, 1992). Compared to thin

fractals, the main peculiarity of fat fractals is a finite, non-zero Lebesgue measure oftheir

support, which is the point behind narning them as fat fractals, to distinguish them from

thin fractals.

Construction of fat fractals

Two kinds of fat fractals can be constructed: regular and rnixed fat fractals.

1. Regular fat fractals

Regular fat fractals can be obtained by iterating a simple rule. Let us recall how a

1D regular fat fractal is generated. For the sake of simplicity, we usually deploy the unit

interval as initiator. A regular fat fractal can be obtained through the following simple

iterative ruÏe: from one step to the next, we just drop the open rniddïe intervaïs of length

l from each of the remaining intervals. If the length of the interval at step n-1 is L1,

then this removed length is L11 divided by a. After n iterations, the obtained set is

composed of 2 intervals of lengths L1 and n subsets which are composed of Nfl(k)=2’1

empty holes oflengths ‘k. k=1,2,..., n, respectively. Fora ID regular fat fractal, ais the

only parameter involved in its definition. The first 4 iterations of a regular fat fractal are

depicted in Figure 1.3.

n1
n2

— — — — — — — — nz3

— —— _. — — — —— —— n=4

Figure 1.3: A regular fat fractal with a=2
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It is clear that the empty holes of a regular I D fat fractal are syrnmetrically

distributed in 1 D. To describe a porous medium having asymmetric features, we have to

use mixed fat fractals.

2. Mixed fat fractals

Intuitively. a mixed fat fractal is the redistribution of parts of the regular one,

obtained by rearranging its voids and occupied intervals alternatively. By changing the

distribution ofthe empty parts ofthe regular fat fractal in a random way while respecting

the number of segments, their size and, finally, segment-hole-segment order, a mixed fat

fractal will be created.

tnjïgd — — —— — . —— —

mxed . . .. . . ..

mixe.

rguIr . . . —— — —— ——

Figure 1.4: A mixed fat fractal obtained from the regular one represented at the bottom ofthe image,

(‘=4

It is noteworthy that the random distribution of holes offers a huge number of

possibilities to construct a mixed fat fractal from the same regular one. More precisely,

the possible number of mixed fractals NF(n) afler n iterations can be expressed by (Li et

al.. 2004; Nekka et al., 2005):

(21? —1)’
NP(n)= (2)!x1) With NP(Ï) = Ï

for example, when n 4, the possible number of mixed fat fractals would be about

NP(4,)= 20,432,412,000. We must also mention that fat fractals have been processed by

more sophisticated tools (Nekka et al., 2005) combining the ACf and the regularization

dimension, a method proposed to estimate curve variation. Indeed, the spectral analysis

1-.,
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that we use in this thesis is flot appropriate when complexity increases, as is the case with

fat fractals.

In fact, Nekka and Li (Nekka & Li, 2004) proposed to use of the regularization

dimension to quantify variations exhibited by the autocorrelation function of these

structures. Comparison of the obtained resuits shows that, when the regularization

dimension is directly applied to the structures, a differentiation based on this dimension is

less convincing compared to when it is applied to their autocorrelation function. In fact,

the regularization dimension of the autocorrelation function has been shown to be a strictly

increasing function of the size of the initial hole of the fat fractal. This difference can be

explained by the fact that autocorrelation function has a smoothing “action” since it

attenuates the irregularities of a signal (spatial signal representing the set in this case) and

produces more uniform ones: sparse parts intersecting with themselves wilÏ stili be sparse

and when intersecting with denser parts, will again produce sparse parts ( Nekka & Li,

2004). Also, the autocorrelation accumulates similarities that are dispersed ail along the

set. Once the autocorrelation function is applied, the similarity amount is globally

decreasing as the translation value t increases.

Lacunarity

The concept of lacunarity was coined by Mandelbrot to refer to gap distribution in

a fractal. Over the years, lacunarity has been taken into account as a distinguishing factor

between sets of the same fractal dimension (Smith et aÏ., 1996). As formulated, lacunarity

is a scale-dependent measure of spatial heterogeneity of a complex texture. It gives a

value of “gappiness” of a geometric structure. Low lacunarity indicates the homogeneity

of the set because ail gap sizes are similar, while high lacunarity implies that the set is

heterogeneous and consists of a wide range of gap sizes.

Methods for calculating lacunarity were first developed in general terms by

Mandeibrot (1982). A theoretically and computationally simple way of calculating

lacunarity is the “gliding box” algorithm (Allain & Cloitre, 1991). With this method,

which derives from the box-counting technique, the square box of given length a is first

placed at one corner of a set, for example, a binary image with Ï and 0, which are defined

14



as occupied and unoccupied regions, respectively. Therefore, the images must be

thresholded prior to analysis. Then, the number of occupied pixels or box mass, having

the value of (1), is determined. The box is thoroughly going through the image at 1 pixel

(celi) at a time, and S, the number of occupied sites, is determined for each of these

overlapping boxes.

Lacunarity (L1,) for box size a is obtained by the ratio of variance of the number

of occupied sites to the square of the mean number of occupied sites plus 1:

Lia = 1+var(S)1E2($)

where E(S) is the mean and var(S) is the variance of the box mass values for box size a.

Spatial heterogeneity can be quantified by means of a lacunarity curve, a log-log plot of

lacunarity against box size a, at different scales. Furthermore, lacunarity is obviously a

function of 3 variables, size of the gliding box, fraction of the map occupied by the object

of interest, and the geometry of the rnap, as measured by a gliding box approach.

Lacunarity is not related to fractal dimension D, but strongly interacts with the size

distribution of holes on the texture and with its deviation from translational invariance.

One of the main criticisms of this method is the shifting from one box size to the next

sîze, which creates huge jumps and consequently-scattered data. Therefore, despite its

popularity, the inethod still suffers from being degenerate in rather simple cases where 2

deterministic regular shapes of the same fractal dimension cannot be resolved (Nekka &

Li., 2003b). More advanced methods have been developed recently. The Hausdorff

measure function spectrum is one of them (Nekka et al., 2005).

The Hausdorff measure function spectrum (HMFS)

Since structures can have different degrees of complexity, various strategies have

to be adopted to find suitable tools for the extraction of information with the least

degeneracy dimension (Nekka et al., 2005). First, for the porous media studied in this

thesis, we have developed an appropriate method based on the ACF that we exploited to

15



extract complementary parameters beyond porosity, using spectral analysis. For the

fractal-like structures mentioned above, with intermediate complexity and integer

dimension, the combination of autocorrelation with the regularization dimension led to a

more robust classification (Li et al., 2004; Nekka et al., 2005). Thin fractals have non

integer dimensions and high complexity. For this kind of complexity, I will briefly

explain how, in their work, Nekka and Li (2004) have proposed a new method called the

HMFS as an original means to give complementary characteristic parameters beyond

fractal dimension.

First, let us recail the motivation for developing the HMFS method. Considering

fractal dimension as a first-degree complexity, the HMFS has been designed to

distinguish 2 different structures having the same fractal dimension and to estimate their

degree of homogeneity as well. Typical non-trivial examples are sets having zero

Lebesgue measures, as is the case for Cantor sets, or, more generally, thin fractals. The

HMFS involves integration according to Hausdorff measure Hs instead of the Lebesgue

measure used in the ACF. In fact, the HMFS is defined as follows (Li et al., 2004; Nekka

et al., 2005):

JSH(t)
=

x F

The HMFS is based on the combination of 2 concepts: the autocorrelation

function and the Hausdorff measure. The former indicates the similarity of the sample’s

distribution, while the latter is dedicated to complexity quantification. This explains why

the method gives a more complete description of the geometric structure of sets and

distinguishes between sets having the same fractal dimension (Li et al., 2004; Nekka

et.al., 2005).

In the following pages, we will also recail the Fourier transform (FT), since we

use it as a practical tool to complement the method we developed.

16



The Fourier transform (FT)

Fourier theory, introduced by Jean Baptise Fourier (176$-1830), is widely

employed in many fields, such as engineering, physics, applied mathematics, and

chemistry. The FI is an appropriate tool to handie problems associated with signal

processing and analysis. In fact, the FT breaks down a signal into its constituent parts by

identifying different sinusoidal frequencies and their related amplitudes.

It is common to write the FI X (J) formula of continuous signal x (t), and its

inverse, as foÏlows:

X(f) = Sx(t)2tdt

x(t) = JX(f).ei2df

The VI’ of the periodic signal can be presented by the folIowing pair:

X(0) = ±Sx(t).e2tdt

x(t) =

where frequency f of the periodic sample is:

fo=

17



The discrete Fourier transform (UFT)

Continuous (analogue) signais have to be sampled when deployed in

computerized methods. This is donc by appiying a sampling frequency that is called the

Nyquist frequency. The amount of this frequency lias to be at least twice the maximum

ftequency in the continuous signai. The sampling process is performed by recording

(sampling) the value of the continuous signal at regular points to get a sequence of

numbers.

Now, if we assume that signal x(t) is sampled N tirnes per period of T seconds, the

DVT and its inverse, for a periodic or a complex valued series, are written (Partt, 2002)

as:

N -j2(k 1 I
X(k)=x(n)•e 1kNI

ii1 I
where N is the total number of samples, and k is the spectral domain index. The DFT

equation shows that for a N sample sequence, such as a 16-bit sample, 16 output samples

are produced in the frequency domain. However, because of the Twiddle factor, we only

need the first haif of the sampies. In Figure 1.5, we iliustrate some typicai harmonic

signals and their corresponding DFTs to gain a better understanding of the relationship

between these signais and their DFT spectrum (Bourke, 1993). It is obvious that for the

constant signal shown at the top right of Figure 1.5, there could be no frequency impulse

as depicted in its related DFT spectrum shown on the top left. For the signal representing

the first harmonie at the middle left of Figure 1.5, we got one frequency impulse at the

frequency of the sine wave. The DFT signal was shifted to 2 for the second harmonic.

The DFF equation involves N2 arithmetic operations (additions and

multiplications) which can be too large. In fact, the number of computations is

manageable for small samples, whereas the calculation can scale up to unmanageable

proportions as the number of samples increases (Braceweli, 1965).
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The fast Fourier transform (FFT)

The FF1’ was proposed by Cooley and Tukey in 1965. The idea behind the FF1’ is

to decompose the DFT operation into a number of other DFTs with shorter lengths and to

achieve much faster computation for the large values of sample N. Therefore, the FFT

offers another method of achieving the same resuits with less calculation. The FFT breaks

up the original N point sample into 2 (N/2) sequences, and, consequently, the FFT

algorithm reduces the number of operations to approximately N.log2N.

Q

2nd Harmonic

O 1

Figure 1.5: Illustration of harmonic signais and their related DFT components
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However, it is more convenient to estimate the FT with the DFT rather than the

fFT algorithm readily implemented in available software. The reason for this choice is

that we are more concerned here with accuracy rather than with processing speed. Jndeed,

the range of frequency values for the textures we analyze in this work was flot large

enough to necessitate a rapid process. However, the frequency values were close enough,

making il necessary to employ the DFT variant to obtain good accuracy and to

differentiate between textures.

Porosity and the autocorrelation function (ACF)

In this project, the autocorrelation function and the Fourier transform of images

exhibiting periodic patterns are investigated to provide a quantitative geometric

characterization of porous structures. In fact, we revisit the autocorrelation function and

propose an original way to reveal the morphology of porous media beyond porosity. We

use typical thread-like structures to show how our newly-developed analytical approach

allows the extraction of pore frequency and extent, which are parameters complementary

to porosity.
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Objectives

The objectives of the current work are to:

• Reveal the morphology of porous media by means of the decomposition of bi-phase

images under the action of 2 types of methods, the autocorrelation function and the

discrete Fourier transform.

• Develop additional parameters to quantify details of heterogeneous textures beyond

porosity.

In this thesis, we address the fundarnental problem of quantifying texture and the

continuous need to develop a more precise tool, by devoting the entire first chapter,

Introduction, to the challenge in various approaches and material characterization

techniques, focusing particularly on polymeric porous media. The second chapter consists

of 2 parts. The first part explains basic theory behind the MetÏ;odology, the

autocorrelation function and the FI methods. Ernphasis is placed on the way these

methods are applied for analysis. In the second part, Applications, the applied, modified

analyses and resuits are followed by a full discussion. Whenever possible, practical

algorithms are described and illustrated in detail.

In fact, we validate this approach with examples and its applicability is

demonstrated by various cases such as:

Case 1: Same porosity and different DFT values

Case 2: Same DFF but different porosities

We also apply this analysis to porous polymeric images to underpin the idea that

the obtained parameters stay independent of the chosen threshoÏd during binary image

processing. Finally, in the third chapter, Conclusion, we summarize the results of the

present work and cite some perspectives.
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CHAPTER 2: METHODOLOGYAND

APPLICATIONS
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Methodology

In the present work, two ldnds of porous images, polymeric porous media and

synthetic thread-Ïike textures, are taken to illustrate the method and the different steps

involved. They are also immediate applications of the strategy developed.

Correlation and autocorrelation functions

The correlation process is a powerful tool to measure the similarity between 2

signais as a function of shift amount t between them. It has been traditionaÏly used to

characterize the properties of irregular functions (Champeney, 1973). We must recali the

mathematical formulation of the correlation function (CF) between 2 signals,fand g:

y(t)=f*g= f(x)g(t+x)dx Eq.1

b clarify this concept graphically, Figure 2.1.b illustrates a signal g shifted with

respect to another signal f in Figure 2.1.a. The result of multiplication of each element of

the 2 signaIs at shift point t is shown in Figure 2.1.d. Thus, integration based on Eq. 1

over ail t values to find the area under the product gives the value of the CF (Figure

2.1.e).

The following figure depicts the autocorrelation process between signais f and g.
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f

figure 2.1: Illustration ofthe correlation function of2 signais

The process of the CF, as illustrated in Figure 2.2, highlights 3 main properties

which are exploited in our analysis. First, the iargest value of positive correlation in this

diagram is obtained when 2 signais are thoroughly similar in shape or phase. As one

signal is shifted with respect to the other, the signais go out of phase. so the correlation

gets smaller and the peak shows negative parts. The breadth of the significant value of the

CF peak reveals how long the signais rernain simiiar, in other words, it expresses the

width ofthe same phase in the texture.

siqnal g
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positive correlation

b re a dth

Figure 2.2: illustration of correlation properties

Shift point t

The autocorrelation function is a particular case of the correlation process since

correlation of the signal with itself is investigated. In other terms, when f(x) and g(x) are

the same, the term autocorrelation function is used rather than the correlation function.

The involved translation operation provides a sieving action which seems to be the best

way to accumulate and reveal the most significant geometric structure of the set,

expressed through its similarities (Li et al., 2004). Indeed, this seif-crossing process

sums ail point-point similarities (by product) of the signal at distance t.

The mathematïcal definition of the autocoirelation function is thus:

y(t) = f * f = ff(t + x)f(x)dx Eq.2

CF

negative correlation
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Image characterization using (lie autocorrelation function

Correlation bas been used successfully in time series to quantify similarities

between 2 functions. It bas been applied to mass spectra of polymers such as the

silsesquioxane-siloxane copolymer (Wallace & Guttman, 2002). However, the reader will

see how we revïsit it in this work for a spatial signal to propose an original way of

gaining insight into structures.

Porosity and the autocorrelation function: a new approacli

Porosity is a dominant pore structure measure of porous media. Porosity refers to

occupancy of the set, measured on samples having regular geometric shapes. Hence,

porosity indicates how dense porous media is when considered in the space where it lives

(Nekka & Li, 2004). We show here how we can recover porosity from the autocorrelation

function. This connection is flot meant in a deterministic sense (for 1 sample), but rather

in a statistical way.

Porosity and the autocorrelation function: the algorithm

In this work, we take a new analytical approach to revisit the autocorrelation

function to extract 2 independent components, which we relate to porosity as well as to

pore frequency and extent. In a first step, we will practically prove how to extract image

porosity by the least mean square (LMS) siope of the autocorrelation function. In a

second step, we will subtract the LMS siope from the autocorrelation function to keep the

information hidden in the oscillating part, thus exciuding porosity. Finally, we apply the

FT on this remaining oscillating curve to obtain the main frequency components.

26



Let us summarize the 3 steps of the rnethod:

1) Calculation of the autocorrelation function, starting from the matrix of the

input image.

2) Estimation of the siope of the autocorrelation function by the LMS and

subtraction of this LMS siope from the autocorrelation function curve.

3) Calculation of the FT of the remaining part of the.

We will go into more detail with these steps.

1) Calculation of the autocorrelation function starting from the matrix of the

input image

Since we are only concerned with geometric structures, we rewrite the particular

case of the autocorrelation function, where f in Eq. 2 above is reduced to the indicator

function
,‘,.

(x) of the structure. We denote this particular case of the autocorrclatïon

function for the indicator function by I, that is:

l(t)= J %f(X)%f(X+ t)dx

where F refers to the image, i.e. image information represented by (black) pixels, and%F

is the indicator function of F:

(x) —1 si X f

lXF(X)51 F

The algorithm has been irnplemented with MatÏab® software. Two important

facts have to be mentioned when applying the above definition:

- The application field is spatial rather than temporal.

- The discrete version has to be implemented rather than the continuous one

since we are dealing with image pixels.
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Matlab® software automatically transforms the input sample films into a binary

image over a given threshold. First, the grey level image is converted into a matrix (with

the Matlab comniand imread). The image ïs then binarized with a threshold value which

is an integer number between O and 255. Matrix elernents below this threshold are set to O

(black), and those which are larger are set to 255 (white). Thus, the binarized image is

darker when the threshold value is large, and inversely.

Let A be the image matrix. Then, the following algorithm is applied:

Let A = (a1) a n 1m matrix.

Let C(i) be the ith component of the autocorrelation vector that has to be calculated. We

have:

bJk
C(z)=

where the matrix B = (b,) is obtained by multiplying, term by term, 2 matrices,

truncated from A, one is formed by columns i to m of A, and the other is formed by

columns 1 to m-i+1 of A. Hence, vector C contains m components.

The method (translation) is used in the horizontal direction of the image on a

collection of parallel 1-D samples. The similarities to be detected have thus to be present

in the translation direction. The mean of the autocorrelation function of these samples is

then estimated to represent the whole image.

2) Estimation of the siope of the autocorrelation function by the LMS and

subtraction of this LMS siope from the autocorrelation function curve

Let us illustrate this second step by a practical example. First, we will practically

prove how to extract image porosity with the LMS siope of the autocorrelation function.

Then, we will subtract this LMS slope from the autocorrelation function to keep the

information hidden in the oscillating part, thus exciuding porosity. To explain our

procedure, we deploy a set of porous images of decreasing porosities, representing

polymeric porous structures taken ftom Kai et al. (2003). These blending films of porous

scaffolds are obtained by scanning electron micrography (SEM). The decreasing

porosities are dependent on the concentration of the 2 polymers used, poly
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(hydroxybutyrate-co-hydroxyhexanoate) (PHBHHx) and poly-hydroxybutyrate (PHB)

(Figure 2.3). Figure 2.4 reports the equivalence (matching) between the LMS siope of the

autocorrelation function of Figure 2.3 (a-f) and the porosity values calculated by the

porosity formula.

d)

Figure 2.3. Scanning electron micrograph of surface morphologies of PHBHHxIPHB blending films

with various ratios of PHBHHxJPHB: (a) PHB; (b) PHB$O/PHBHHx2O; (e) PHB6OIPHBHHx4O; (d)

PHB4OJPHBHHx6O; (e) PHB2OJPHBIIHx$O; and (f) PHBHHx.

a) b) c)

e) f)
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3) Calculation of the FT of the remaining part of the autocorrelation function

Now. we need to analyze the remaining oscillating curves of which porosity

information has been cleared, to extract cornpementary parameters for periodic pattems.

b do this, we take the case of 2 different thread-like pattems shown in Figure 2.5, both

having the same porosity value of 0.4633. When the porosity value is dropped, we apply

the FT to the oscillating curve. The resuit is shown in Figure 2.6. For the thread-like

textures that we synthesized, it is more convenient to estimate the Ff with the DFT as

mentioned above. The DFT is more accurate than the FFT when the analyzed frequencies

are Iow. Indeed, the FFT is of great use for huge frequencies, and its main advantage

corresponds to the fast speed of the process. while the DFT is siower to calculate but

provides better precision (i.e. with better resolution) for close frequencies.

In our study, the frequencies were close enough, making it necessary to employ

the DFT variant to obtain good accuracy to textures. The resuits on frequency f as well as

fl•r

DS

02

Q.’

Q., u 2 u .

Figure 2.4: Matching between estimated porosity and the LMS siope of the autocorrelation function
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on 11f give 2 parameters independent from porosÏty, representing the number of strips as

well as their size, respectively.

Figure 2.5 ta and b) shows 2 bi-phase structures containing 2 and 9 black strips.

We have constructed these binary synthetic porous structures of periodic black and white

strips that we called thread-like textures, with values of either O (void phase) or 1 (matrix

phase). These thread-like textures, which present regular and ordered microstructures, are

of equal size of [140 x 1401 pixels, and stored as bmp type files. Hence, black zones

represent the unoccupied area of the image and are associated with pores in the image. In

contrast, the white zones show occupied areas. As seen in Table 1, both images have the

same amount of porosity, equal to 0.4633. For each image, the autocorrelation function

and its DFT are given in Figures 2.6 and 2.7, respectively.

a)

b)

Figure 2.5: Bi-phase porous media of thread-Iike textures with the same porosity but

different main frequencies
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Figure 2.6: Autocorrelation spectrum of(a) Figure 2.5.a, and (b) Figure 2.5.b
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Figure 2.7: The DFT spectrum of(a) Figure 2.6.a, anti (b) Figure 2.6.b

Porosity f J/f

Figure 2.5.a 0.4633 1.83 0.55

Figure 2.5.b 0.4633 8.99 0.11

Table J: Porosity anti DFT frequency of Figure 2.5

In general, the fT plot reveals a certain number of frequencies from high to very

low amplitudes. Here, only one frequency appears with large amplitude. This frequency

corresponds to an element of the image presenting simHarities through the structure.

Thus, analysis with autocorrelation, on this kind of periodic images, emphasizes the
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repeated feature embedded in the image, narnely, the elements of the thread, maldng it

possible to also determine the frequency with which these elements are present in the

image.

We thus obtain from the autocorrelation function analysis the following 2

parameters:

1. Porosity

2. Thread number per unit length.

The main characteristic of these 2 parameters is their independency.

To the best of our knowledge, it is the first time that this kind of processing has

been performed on the autocorrelation function representing a geometric structure.

Applications

Resuits and Discussion

Now that the method lias been explained and illustrated in the above examples,

we will go into some further details. We again use the films of porous PHBHHxIPHB

scaffoÏds presented in Figure 2.3. We recail that these electron micrographs of size equal

of [140 x 140] pixels, have decreasing porosity as the PHB concentration declines until a

free pore surface is obtained with the pure PHBHHx scaffold. We estimated porosity at a

fixed threshold value (here at 127 as a mean value of the whole threshold) and compared

it with the siope of the autocorrelation function. Figure 2.8 illustrates the obtained binary

image from Figure 2.3 a. as an example

Figure 2.8: An example of binarization with threshold 127 of Figure 2.3.a
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a) The autocorrelation function spectrum of Figure 2.3.a
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b) The autocorrelation function spectrum of Figure 2.3.b
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c) The autocorrelation function spectrum of Figure 2.3c
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d) The autocorrelation function spectrum of Figure 2.3.d
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e) The autocorrelation function spectrum of Figure 2.3.e
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f) The autocorrelation function spectrum of Figure 2.3.f
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Figure 2.9: Illustrating the details of the applied autocorrelation function on each image of Figure 2.3

The different components of the autocorrelation function spectrum in f igure 2.9

are illustrated in different colors. Blue represents the autocorrelation function; red

corresponds to the linear part of the spectrum; black is the siope of the spectrum obtained

by the LMS; and, finally, green shows the spectrum afler dropping the linear part. The

porosity of these textures along with the calculated slopes of the autocorrelation function

is listed in Table 2.

Siope Porosity a
Figure2.3.a -0.5647 0.5514 -1.02

Figure2.3.b -0.4437 0.4229 -1.04

Figure2.3.c -0.4014 0.3779 -1.06

Figure 2.3.d -0.2107 0.1866 -1.13

figure 2.3.e -0.1656 0.1304 -1.27

Figure2.3.f 0 0.0004 1.00

Table 2: Slope and porosity of Figure 2.3

-7
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These resuits show that no significant differences exist between the slopes of the

autocorrelation function and calcuÏated porosity. In fact, it is reasonable to consider that

these 2 parameters (siope and porosity) are related in a linear manner with a

constant a close to 1:

siope a porosity

At this stage, we have to mention that a rigorous proof of this relationship has

been given by Nekka and Li on some typical examples of porous media such as single

component and double component media with point-to-point independence as well as

single component of porous media with correlation between points in terms of their

distances (Nekka & Li 2005).

Oscillations of the autocorrelation function spectrum

To study the remaining oscillations of the curve spectrum, several cases of

synthetic as well as real porous images will be employed. 0f course, it will be of no

interest if porosity was the only parameter extracted from the autoconelation ftinction.

The idea is to find an independent parameter from porosity to additionally characterize

porous media. Since we proved that the linear part of the autocorrelation function is really

image porosity, there was no need to keep this infomiation within the signal. Hence, we

withdraw the linear part from the autocorrelation function spectrum so that only the

oscillations are kept. To this oscillation curve, the DfT has then been applied to extract

the information included. We want to emphasize that, without eliminating the linear part

of the autocorrelation function (the LM$ slope), information about significant frequency

will be tangled up in redundant data, because of the inclusion of FT of this linear part.

To begin, let us highlight the need for this additional and independent

information, by analyzing the case of images having the same porosity but different

structural organizations. The structure shown in Figure 2.5 is such an example.

Case 1: Same porosity and different DFT values
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Recail that Figure 2.5 represents bi-phase structures containing 2 and 9 black

strips. As already mentioned, black and white areas are defined as unoccupied and

occupied regions, respectively. Both images, as shown in Table 1, have the same amount

of porosity, «5 = 0.463 3. for each image, the autocorrelation function and its DfT have

been given in figures 2.6 and 2.7, respectively.

from the DFT spectrum in figure 2.7, we retain the main peak. This peak refers

to main frequencyf(in terms of its amplitude). which identifies the predominant periodic

function exhibited by the autoconelation function signal. The main ftequency is

representative of the number of black strips. The results closely correlate with the detaiÏs

included in the images. Indeed, the results indicate a frequency ofj2 for Figure 2.5.a.

which corresponds to the 2 strips included in this figure, while a frequency of/9 for

f igure 2.5.b corresponds to its 9 strips.

The inverse of main frequency 1/f shown in Table 2, generally called the period,

can be defined as the extent of features in the sample. To obtain the accurate value of the

inverse of frequency ]/f various resolutions have been used in application of the DFT.

Indeed, the 1/fof a value of 0.55 for Figure 2.5.a denotes that the extent of the strips in

these images is larger than the one in Figure 2.7.b with the value of 1/f = 0.11. To

illustrate the meaning of these parameters in terms of texture description, we fitted each

synthetic texture in figure 2.5 with its related autocorrelation function and DFT plots as

depicted in figure 2.10. Let us re-emphasize that the DfT is applied to the green curve of

the autocorrelation function spectrum.
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b).

ACF

spectrum

DFT

spectrum

Figure 2.10: Illustration ofthe meaning ofthe parameters

Case 2: Same DFT but different porosïties, or why the DFT rather than the FFT?

In this example, we take 2 images having the same FT but different porosities.

Figure 2.11 presents 2 porous textures: (a) is a synthetic image containing 3 black-and

white strips, while image (b) is a real texture containing 3 strips. Applying the

autocorrelation function to these images gave the spectra shown in figure 2.12.

Both images display the same main frequency, f = 3 in this case, but have

different porosities. A resolution of 100 has been used and the obtained 11f shows the

various sizes ofthe strips for these 2 images, that is. 0.29 and 0.33 for Figures 2.11.a and

2.11 .b, respectively. This motivates use of the DFT rather than the FF1 since, in this

situation,fvalues are very close. Indeed, in this case, non-integer values offrequency are
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required to set structures apart, which is rendered possiNe by the DFT. Details are given

below.

Figure 2.11: Bi-phase porous media showing the same DFT impulse but different porosities

a) b)
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Figure 2.12: The autocorrelation function spectrum of(a) Figure 2.11.a, and (b) Figure 2.I1.b
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Figure 2.13: The DFTspectrum of (a) figure 2.12.a, and (b) Figure 2.12.b, using resolution 100

Porosity f l/f

Figure2.11.a 0.3141 2.94 0.34

Figure2.11.b 0.7010 3.03 0.33

Table 3: Porosil and DFT frequency of images in figure 2.11, using resoltition 100

Figure 2.13 gives the frequency pattern of the oscillation curves (in green)

corresponding to Figure 2.11. We observe the dominance of I main peak in the DFT

spectrum for both (a) and (b). As seen in Table 3, use of resolution 100 led to the same

frequency value, around f=3 for both images. The thread width for Figure 2.11 .a is

f-,



]/f=0.34, and it is ]/f=0.33 for Figure 2.11.5. These values are very close, making it

difficuit to distinguisli the images on the basis of 1/f values. However, a close look at the

DFT spectrum in Figure 2.13.5 reveals the existence of a second peak with a frequency of

f2 = 1.42. This frequency implies that Figure 2.11 .b contains another texture of mean size

0.70, while Figure 2.11 .a is well-represented by only 1 texture.

Another example of polymeric structures

This is the case of a typical polymeric porous structure. Figure 2.14 illustrates a

porous film with a square size [140x140] obtained by scanning laser microscope. Pores

with various sizes and shapes are present in the SEM film (Sarazin & Favis, 2003) of

50/50 poly-(L-lactide) (PLLA)/polystyrene (PS) blends with polystyreneb-poly-L-lactide

(PS-b-PLLA) copolymer concentration of 8%. based on the weight ofthe polystyrene.

Figure 2.14: 50/50 PLLAIPS blends with PS-b-PLLA copolymer concentration of 8%, based on

weight of the polystyrene
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The aim here is to investigate the impact of the threshold in analyzing grey level

images. using our rnethod. We want to verify if the main peak in the DFT signal is stable

and independent of the threshold value, and eventually to find out if there is a threshold

value which is more suited to reveal the most pertinent features of an image.

To accompiish this, we consider 2 approaches. In the first approach, we conduct

the analysis with different individual thresholds. The second is done by applying the

whoie threshold spectrum and then taking the mean characteristic values. This is

explained in detail in the foliowing pages.

• First approacli

In this approach. we consider different threshold values to estimate frequency and

porosity. The results with threshold values of 100, 127. 150. and 200 are shown in Table

4. The derived autoconelation fiinctions of binary images. for each chosen threshold.

along with their corresponding DfT spectra appear in Figures 2.15 and 2.16, respectively.

The DfT graphs ofthe oscillation signais in figure 2.15 manifest several peaks referring

to different complex pattems embedded in the image.

Threshold 110 127 150 200 250

f1 1.04 1.04 1.00 3.116 -

Slope -0.7966 -0.71 16 -0.4278 -0.0437 0

0.7278 0.6256 0.3050 0.0086 0

Table 4: Porosity, siope and frequency in different thresholds of Figure 2.14

The reÏated frequency of each peak is presented in Table 5. It can be seen that as

the threshold increases, porosity. and hence the siope values of the autocorrelation

ffinction spectrum, decreases. With the change of threshold. no significant modulation of

frequency of main peak f. peak number 1. is observed (except for threshold = 200).
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As is obvious in DfT spectra, the position of main peak f1 in thresholds 110, 127

and 150 does not change very much and has values of f11.03. f1.04 and f11.00,

respectively, indicating that there is a predorninant feature represented by this frequencv.

which is less sensitive to the thresholding process. A shifi to the ftequency value of

f=3.1 1 is observed when the threshold is equal to 200. This can be expected since the

image can change dramatically with high threshold values. Hence, there is a range in

which we can have a kind of stability ofthe estimated characteristic values ofthe image.
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figure 2.15: The autocorrelation function spectrum of Figure 2.14 in various thresholds
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fi f2 F3 f4 f5

Threshold 110 1.04 2.22 3.25 4.26 5.40

Threshold 127 1.04 2.19 3.30 4.23 5.40

Threshold 150 1.00 2.22 3.26 4.21 5.46

Table 5: The related value offrequency for the tïrst 5 peaks in the DFT spectrum of Figure 2.16

Second approach

We used whole threshold values. that is, from O to 255, and then took the mean

value of its autocorrelation firnction spectrum. Figure 2.18 refers to the DFT spectrum

which is applied to the obtained autoconelation function spectrum shown in Figure 2.17.

The idea behind this approach is to allow identification of a preferential frequency related

to the whole range ofthresholds.

f1 11f1 f2 11f2 f3 1ff3 f4 11f4 f 11f5

Figure2.18 1.03 0.97 2.22 0.45 3.27 0.31 4.24 0.24 5.40 0.19

Table 6: Varions frequencies ofthe DFT spectrum corresponding to Figure 2.18

The DFT spectrum in Figure2. 1$ illustrates several predominant peaks in terms of

amplitude, and the measured values of frequency of the first 5 peaks are shown in Table

6. The first peak with f11 .03 refers to the main peak in terms of amplitude. Indeed, we

found out that considering the position of the other peaks as well yields a good match

with the resulting DFT spectrum ofthresholds 110 and 127.
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To summarize, the steps ofthe developed method can be described as follows:

Main steps oftlte method

• Use binary images (real or synthesized)

• Apply the autocorrelation function (ACf) to these images to obtain a spectrum

• Decompose the spectrum into components: “slope and osdillation curve

• Calculate the porosity of structures using the porosity formula

• Estimate the siope of the autocorrelation ftinction spectrum of the image using

the least mean squares (LMS)

• Establish the equivalence between the siope of the autoconelation function

spectrum and the calculated porosity

Withdraw the siope from the autocorrelation function spectrum to

complementary information

• Evaluate the remaining oscillation part ofthe spectrum with the DfT

• Extract frequencies from the DFT spectrum obtained

• Relate frequency to the number of strips in the image

• Relate the inverse of frequency to the width of the strips
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CHAPTER 3: CONCLUSION
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Synthetic polymer design has been revolutionized recently by new achievements

in high-resoiution characterization tools, such as broad-mass-range spectrometry. These

new measurement technologies make it possible to gain access to finer details of

structures, so that more sophisticated data analysis is needed (Nekka & Li, 2004). As a

matter of fact, the experimental signais obtained are generaily very compiex, requiring

the development of more advanced mathematical tools for their analysis. For exampie.

the high-resolution mass spectra of synthetic polymers can contain a large number of

peaks, irnplying that these spectra cannot be considered in the traditional continuum way

(Nekka & Li, 2004). This calis for more appropriate and powerful analytical methods.

The autocorrelation function has been proposed to handie complex time series (Wallace

& Guttman. 2002). Its Fourier transform, known as the structure factor, is used in

polymer characterization by light scattering experiments to indicate which wave vector

components are present in the autocorrelation function (Teraoka, 2002).

Hence, the requirement to characterize the structure of porous solids arises in a

number of fields, such as catalyst recovery filters (Ejaz et al., 2001), polymeric drug

delivery systems (Brown et al., 1986; Ouriemchi & Vergnaud. 2000; Kim et al., 2004).

and bone diseases (Ripamonti, 1996; Ambrosio et al., 2001), to name a few.

Despite recent progress in accurate characterization equipment for the

measurement of these parameters, there is stiil no robust method that can distinguish

porous structures exhibiting the same porosity or other geometric pararneters, such as

fractal dimension and lacunarity (Nekka & Li. 2003a).

This study is part of an ongoing effort to investigate polymeric porous materials

to provide means that reveal the structural information of bi-phase thread-like textures.

We have favored an approach based on the widely-used autocorrelation function. The

latter, which is a particular case of the correlation function, has been applied mainly in

signal analysis and spectrometry for several types of mass spectra.

We showed in this work that the autocorrelation function can be investigated

differently in the context of spatial signais (in parallel to the classical time series context)
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and more deeply to be related to the usual image parameters. such as porosity. We have

corne up with 2 independent parameters, defined through the “siope” and “oscillation”

parts of the autocorrelation function. The siope has been proved experimentally to give a

close estimation of porosity. A theoretical proof of the correspondence between porosity

and the LM$ siope of the autocorrelation function has been provided by Nekka et al.

(2005) for typical cases ofporous media.

It is worthwhile reiterating that when dealing with more complex textures, the

autocorrelation function is more irregular, making it difficuit to use the fT. In such cases.

as illustrated by fat fractals, a different approach has to be applied Nekka et al., 2005).

In even more complex cases, porosity degenerates in an additional sense: it can

also be zero or infinite, as is the case for (thin) fractal sets. for these sets of zero

Lebesgue measure, we have to completely reformulate the autocorrelation ftmction to

rnake it applicable to this case, which has been done recently by Nekka et al. (2004).

Hence, one cannot hope for an almighty solution for ah textures (one fits ah!). For

different texture complexities, different strategies have to be adopted.

The method developed was motivated by the study of texture (micro-texture).

employing more advanced rnathematical methods. The autocorrelation function has been

used traditionally to measure the similarity of sample distribution (Griffith, 1987:

Glenny, 1992; Nekka & Li, 2004). In the present work, we develop a new analytical

approach of the autoconelation function to extract 2 independent components, which we

relate to porosity as well as to pore frequency and extent. Indeed, in a first step, we have

experimentally shown, on real images, how a relationship does exist between porosity

and the least mean squares shope of the autocorrelation function. In a second step, we

have subtracted this least mean squares slope from the autocorrelation function to keep

the information hidden in the oscillating part, thus excluding porosity. On the remaining

curve, a Fourier transforrn has been apphied to obtain the main frequency components of

the image that reflect the number of periodic patterns as well as width.

We have shown in this work that classical mathematical methods can be revisited

in new ways to probe fine texture. The optimization procedure presented here is in is

infancy. Its potential has to be explored further to make it applicable in more general

cases. The originality of our work lies in the new analytical approach of the
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autocorrelation function. To the best of our best knowledge, it is the first time that the

autocorrelation function bas been used in this way within a geometric context.
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