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Résumé

Les délétions chromosomiques chevauchantes sont un outil exploratoire exceptionnel

afin d’annoter fonctionnellement le génome de la souris, puisqu’elles permettent de sonder

autant les régions codantes que non-codantes. Toutefois jusqu’à maintenant, la création de

délétions chromosomales. cartographiables précisément, était laborieuse ce qui limitait leur

application à grande échelle. Les travaux présentés dans cette thèse proposent une nouvelle

alternative pour créer des délétions chromosomiques à l’échelle du génome entier, dans un

délai raisonnable, et applicable tant aux cellules primaires qu’aux lignées cellulaires. Ce

système repose sur deux rétrovirus complémentaires insérant des séquences toxP dans le

génome, qui servent de substrats pour la recombinaison site spécifique catalysée par l’enzyme

Cre. La première section de cette thèse (chapitre 2) décrit cette stratégie et le développement

de vecteurs rétroviraux compétents pour produire des délétions chromosomales haploïdes

dans les cellules souches embryonnaires murines. Ces cellules pluripotentes mutantes

ont révélé trois régions haploinsuffisantes requises pour leur différentiation in vitro et leur

contribution in vivo aux souris chimères. Ces expériences validaient les fondements de

l’approche. La deuxième section de cette thèse (chapitre 3) rapporte l’exploitation à grande

échelle de cette nouvelle méthodologie. Une librairie de plus de 1200 clones de cellules

souches embryonnaires, contenant potentiellement des délétions chevauchantes localisées

dans le génome entier, a été générée. Ces cellules ont été exploitées lors d’essais fonctionnels.

Les résultats préliminaires révèlent plusieurs régions haploinsuffisantes qui seront validées

prochainement. Les constructions rétrovirales, ainsi que les lignées de cellules souches

mutantes et leurs annotations fonctionnelles, seront accessibles à la communauté scientifique

au courant de l’année.

Mots-clés délétions chromosomiques, rétrovirus, Cre-loxF, cellules souches embryonnaires,

génomique fonctionnelle
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Abstract

Engineered nested chromosomal deletions are a valuable tool to explore the mouse

genome functionalities, because they allow the examination of both protein-coding and

non protein-coding regions. Up to now however, the generation of precisely localizable

chromosomal deletions was laborious, precluding large-scale applications. The work

presented in this thesis brings on a new alternative method to create genome-wide chromosomal

deletions within a reasonable timeftame and applicable to both primary cells and to celi unes.

This system relies on the creation oftwo compatible retroviruses delivering ÏoxF sequences in

the genome, the substrates required to perform Cre-induced site-specific recombination. The

first section of this thesis (chapter 2) describes the strategy and the development of optimal

retroviral vectors that were created to produce haploid chromosomal deletions in mouse

embryonic stem cefls. These engineered pluripotent cells revealed three haploinsufficient

regions required for their proper in vitro differentiation and in vivo contribution to chimeric

mice. These experiments validated the principles of this approach. The second section

(chapter 3) provides the first large-scale exploitation ofthis new methodology. This involved

the creation of a library of more than 1200 embryonic stem ceil clones containing potential

nested chromosomal deletions, localized throughout the mouse genome. The embryonic

stem cell clones were used to perform fiinctional screens and preliminaiy results uncovered

numerous haploinsufficient regions that will be validated shortly. The retroviral constnicts,

the engineered embryonic stem ceil lines and their related functional annotations will be

accessible to the scientific community within the coming year.

Keywords: chromosomal deletions, retrovirnses, Cre-ÏoxP, embryonic stem cells, functional

genomics
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Chapter 1 INTRODUCTION AND LITERATURE

OVERVIEW

Chapter 1 is divided in three sections: the presentation of research objectives (Part

I), introduction to embryonic stem celis (Part II), and introduction to retroviruses (Part III).

Part II contains two manuscripts related to embryonic stem celi biology: one concerning

seif-renewal and pluripotency (published News & Views, Appendix I) and one reviewing

selected genetic characteristics (review in preparation). Author contributions to manuscripts

are described in the respective sections.
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PART I: PRESENTATION 0F RESEARCH OBJECTIVES

When I joined the laboratory, the field of genomics was effervescent. International

collaborations were underway for the sequencing and the assembly of diverse genomes

including human, mouse, and other model organisms. The field of functional genomics was

also rapidly developing. Indeed, a combination of approaches was implemented aiming to

Iink biological functions to sequence information. We decided to venture in this effort by

elaborating a methodology that would be complementary to others that were being developed

at that time. Over the years, the genomic knowledge evolved and new functional approaches

were designed. Stiil, the methodology described in this thesis subsisted to this active period

of time and positioned itself favorably among other expertise.

1.1 The genomic content

The initial analysis of the hurnan genome sequence revealed striking observations.

More than 50 % ofthe human genome consists of repeat sequences, often referred as “junk”

DNA, which include: transposable elements, processed pseudogenes (retroposed copies of

cellular genes), simple sequence repeats, segmental duplications, and blocks of tandemly

repeated sequences’. In fact, coding exons and transcript untransÏated regions constitute only

1.2 % and 0.7% ofthe human genome, respectively2. Both for human and mouse, an average

of 20 000-25 000 protein-coding genes are predicted (exciuding non protein-coding RNA)2,

a number regularly updated with the completion of genome sequencing combined with new

computational and experimental data. Ninety-nine percent ofmouse genes have homologues

in the human genome; 96% of which are found in syntenic regions3. Ninety percent of

mouse and human genomes present conserved synteny along with 40% of alignement3.

Several conserved sequences consist of ancestral repeats3. However, comparisons between

the genetic material oforganisms such as mouse, human and dog suggested that 2.5-5% ofthe

mammalian genome has been under evolutionary selection, thus possibly sustaining biological

functions35. These evolutionary conserved elements are though to represent protein-coding

genes, untranslated region of protein-coding genes, regulatory elements, non protein-coding

RNA, and chromosomal structural elements3. fifty percent of the highly conserved non

coding elements cluster in -200 gene-poor regions5. Most of the few genes found in these

regions establish or maintain cellular identity (transcription factors involved in differentiation

and development, axon guidance receptors)5. Many of these non-coding elements could

regulate gene expression by diverse mechanisms, including long-range epigenetic silencing

or higher order genome organization5’6. Biological functions and interconnections between
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most ofthese elements stiil need to be assessed. Obviously, many conserved elements will be

acting cooperatively through physical interactions to sustain biological functions. However,

it is also expected that some will cooperate functionally toward physiological functions,

without physical interactions. This concept, well established in yeast, is referred as synthetic

genetic interactions7.

Mammalian genome sequencing and comparative sequence analyses highlight the

variable distribution of certain genomic features such as genes, transposable elements,

GC content, recombination rate, etc1’3’5. For example, the most repeat-poor region in the

human genome is the HOX gene cluster&. Additional conserved repeat-poor regions were

identified in mouse and human3. These repeat-poor regions are potential sites of elevated

gene regulation3. Another example of non random distribution is the high ftequency of

segmental duplications, derived from trans-chromosomal recombination in pericentromeric

and subtelomeric regions’. Recombination rates seem higher in distal regions’. According to

the genome comparison of different species, synteny block breaks seem to correlate with OC

content and might be hot spots ofrecombination, an hypothesis waiting to be addressed5.

f inally, an emerging concept is that some regulatory elements demonstrate

conservation, flot primarily at the level of DNA sequence, but at the level of epigenetic marks

such as histone modifications6, which can be missed by sequence comparison analysis6.

Taking together, these observations suggest that the functional genomics remains largely

unexplored.

1.2 Selection of an experimental model

The mouse is an advantageous model to gain insights into human biology and disease.

The mouse was already used in our laboratory to study normal hematopoiesis and leukemia.

At that time, we wanted to perform a functional screen in vitro, paving the way for an analysis

in vivo, to identi1’ hematopoietic stem ceil regulators.

Mouse embryonic stem cells (ESCs) became our selected model for several reasons.

ESCs can be maintained in vitro for extended period oftime, usually without compromising

their euploid karyotype. Also, procedures were already established to differentiate them in vitro

in multiple celi types, particularly into mesoderm derivatives such as hematopoietic lineages.

In addition, they could be used in vivo to produce mouse chimeras when re-introduced into

embryos or be employed to generate teratocarcinomas when injected subcutaneously into
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syngeneic mice. Finally, their genome was accessible and modifiable, as illustrated by a

growing number ofmutagenesis strategies applied to these ceils. Therefore, ESCs combined

both the in vitro and in vivo differentiation potential in addition to the mutagenesis suitability,

resulting in an ideal lineage for functional genomics. In fact, they were already prized for

such approaches, as described in the upcoming section.

1.3 Functional genomic approaches applied to ESCs

We needed to select a functional genomic strategy that we would apply to ESCs.

Some technologies were already optimized at that time, most of them improved over the

years and new ones appeared. Different advantages and disadvantages could be recognized

for these methodologies. As a preamble, both past and present contexts will be presented to

underscore the relevance ofthe selected approach (next section).

1.3.1 Gene targeting

Gene targeting is a methodology that relies on homologous recombination to introduce

a modification in a selected region. Typically, a vector containing a selection marker gene

flanked by two homology arms is used to abolish the function of a gene, usually by removing

the first coding exon. Removal of the selection marker gene is recornmended using Cre

loxF or Flp-frt technologies to prevent unspecific effects8. Cre or Flp are site-specific

recombinases that catalyze the recombination between two loxP orfrt sequences, respectively.

Because various mutations can cause embryonic lethality, precluding analysis later during

development and adulthood, conditional gene targeting approaches were designed, again

relying on Cre-loxP or Flp-frt technologies. For this purpose, gene inactivation is regulated

in a spatio-temporal manner according to the tissue-specific expression or induction of the

recombinases.

Gene targeting approaches were well established at the time this project was initiated

but remained time consuming. It was laborious to get information about selected loci, to

obtain fragments of DNA corresponding to the targeted regions (e.g., physical maps and

BAC contigs were largely unavailable), and to create targeting vectors. Today the picture

is completely different: the mouse genome sequence is freely available, mapped libraries

of BACs and already-made targeting vectors9 are obtainable, new engineering approaches

allow easier plasmid and/or BAC modifications’°, etc. Even with these improvements, gene

targeting is stili laborious mostly because of the work involving the identification of the
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proper E$C clones that bear the desired modification(s). However, among the advantages

of the methodology are the knowri and precise location of alterations and the accessibility

to almost any region, transcribed or not. So far, ‘4000 genes have been targeted in the

mouse, with or without a conditional approach11. This number is expected to increase shortly

with the targeting of 18 500 additional genes by an international effort (IKMC: International

Knockout Mouse Consortium12) conducted by KOMP (KnockOut Mouse Project), EUCOMM

(European Conditional Mouse Mutagenesis Program), and NorCOMM (North American

Conditional Mouse Mutagenesis Project)11.

1.3.2 Gene trap screens

Gene trap screens are currently the companion of gene targeting with the aim of

inactivating every gene in the mouse genome’2. Different trapping vectors have been

generated over the years, based either on plasmids or retroviruses. The principle behind

the trapping strategy is to catch a complementary genomic feature which is missing for the

expression of a selection gene found in the trap vector: promoter, polyadenylation signal

(J)A), etc. Depending on the type of vector used, different trapping biases are observed.

for example, promoter traps rely on actively transcribed regions while pA traps do flot,

some retroviral vectors show preferential integration site (discussed later in section III)

sometimes resulting in hypomorphic rather than nul! alleles. Some trap vectors are quite

sophisticated, allowing conditional knockdown of gene expressio&3. The International Gene

Trap Consortium (IGTC) manages at least 45 000 ESC unes, with integration covering 40%

of known mouse genes14. The Texas Institute for Genomic Medicine (TIGM) is currently

generating a gene trap library of? 350 000 C57BL/6 E$C clones, expected to cover 1 3 000

genes to completion this year12. This methodology is popular because of its simplicity.

Integration sites are mapped by different methods such as plasmid rescue or inverse-PCR

(discussed later in section III).

1.3.3 shRNA screens

shRNA-based screens, employing small hairpin RNAs to suppress gene expression,

were emerging at the time this project was initiated and are now commonly used in ESCs.

Elegant vectors are based on lentiviruses coding both for a shRNA and the corresponding

inducible target gene’5. Even if non specific off-target effects and/or partial rather than

complete suppression of the gene of interest are frequent, the methodology is relatively

efficacious. With the availability of lentivirus-based shRNA libraries16 or microarrays of
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concentrated lentiviruses spotted on glass slides17, this methodology should be increasingly

used in ESCs. for the moment, RNA interference approaches target protein-coding and

non protein-coding transcripts, but cannot target untranscribed regions. However, it is now

suspected that microRNAs participate in undefined ways to processes such as methylation

and heterochromatization’8 and maybe one day, these functions will be exploited in ESCs.

1.3.4 Other insertional mutagenesis screens

Gene targeting, gene trap, and shRNA screens can be viewed as insertional

mutagenesis because they rely on vectors integrating in the genome. Additional insertional

mutagenesis tools are used in mouse models such as replication-competent retroviruses or

retrotransposons, mainly to find proto-oncogenes or tumor suppressor genes19. Although

these methodologies could be adapted to ESCs, there are other alternatives that appear more

advantageous. for example, replication-incompetent retroviral gene trap vector equipped

with a reporter gene can be both mutagenic and be exploited to detect the expression profile of

the trapped gene. In the case ofDNA transposons, such as Sleeping Beauty, they act through a

eut and paste (excision and integration) mechanism induced by a transposase. Unfortunately,

the integrants are subjected to remobilization, leaving behind hardly detectable mutagenic

footprints. In addition, these transposons have a tendency to jump in their neighborhood

rather than randomly in the genome19.

1.3.5 Chemical screens

Chemical screens can be classified in two broad categories: one relying on chemicals

as mutagens and the other on compound libraries that alter the function of ESC without

necessarily affecting their genome.

Chemical mutagens such as N-ethyl-N-nitrosourea (ENU) or ethylmethanesulphonate

(EMS) were used in ESC to create single base substitutions or alterations in mRNA splicing,

transcription, or stability20’21. The frameshifi mutagen ICR191 was also used to induce the

addition of guanine stretches 21 According to the loss-of-function experiments evaluated

for the selectable hemizygote locus hypoxanthine phosphoribosyl transferase gene (Hprtl),

mutation frequency is in the range of 1 per 1000 to 1 per 1200 cells depending on the

conditions tested20’21, implying multiple mutations in each genome. Because of this amount

of subtle mutations that do flot contain a landmark for identification, it is necessary to create

chimeric mice and proceed through breeding to first dilute the mutation load and then to isolate



7

candidate gene(s) by positional cloning (germ-line transmission is achievable). Different

phenotypes have been observed in mice and important genes identified using this system 21

24• Several genome-wide ENU-or EMS-based screens for dominant and recessive mutations

are currently ongoing. Major efforts include those conducted by the British, German,

Australian, American, Canadian, and Japanese groups25. Transient expression of Bloom in

ESC can stimulate homologous recombination between sister chromatids or homologous

chromosomes, allowing the recovery ofbi-allelic mutations26. This strategy was used in ESC

to study a precise pathway (glycosylphosphatidylinositol-anchor biosynthesis) and defects

were complemented by candidate genes (cDNA transfection)26. For clones flot successftilly

complemented with known genes, other methods must be used to identify the mutated gene

(if it is a gene) or a companion in the same pathway (for example: cDNA library). However,

if a combination of determinants is necessary to rescue the phenotypic anomaly, it is difficuit

to achieve at the genome-wide level. Focusing on particular chromosomal regions can be

an advantageous strategy to use with chemical mutagenesis. Chemical mutagenesis used in

combination with heterozygote chromosomal deletions (see beneath for the methodologies

to create deletions) or heterozygote chromosome balancers (chromosome containing an

inversion suppressing chromosomal recombination for this region, a dominant visible marker,

and a recessive gene inducing lethality in a homozygous state25), simplifies the breeding

scheme. The mutations caused by chemicals are limited in size and in type according to the

mutagen used (for example, single-base substitution involving AI base pairs predominate

for ENU20). Importantly, ENU-induced mutations are not bias for any region ofthe genome.

Moreover, ENU-mutagenized collection of ESC clones can be screened for mutations in

selected genes, allowing the recovery of allelic series27. These ESCs can be reintroduced in

developing embryos to create mouse chimeras and these specific mutations can be transmitted

in the germ-line 27 This procedure allows the in vivo functional evaluation of precise protein

domains27.

Screening using small molecule libraries is an emerging application in the ESC field,

which is expected to be employed more extensively in the near future. For example, a

library was used to identify compounds able to maintain E$C self-renewal/pluripotency

without the use of serum, LIF, or feeders28. The approach was powerful because the team

used a pluripotency reporter gene (Oct4-GFP) in ESCs and plated them in 384-well plates28.

They characterized one ofthese compounds (SC 1: pluripotin), which allows the maintenance

of ESC in a minimal media without compromising their ability to differentiate in vitro and

in vivo in chimeric mice28. Contribution of E$Cs to the gonads of these chimeric mice was

proven28, although the proper functionality of the gametes was not assessed by germ-line
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transmission. Importantly, by immobilizing the compound to an affinity matrix and using

mass spectrometry, this group identified two cellular targets of their small molecule (Erkl

and RasGAP)28. They further showed that the combined inhibition of both proteins was

necessary to maintain self-renewal/pluripotency in the conditions used28.

1.3.6 Mutagenesis with oligonucleotides

The use of single-stranded DNA oligonucleotides to permanently modif’ 1-4 targeted

nucleotides in ESC is a recently developed application. Oligonucleotides can be obtained

faster than gene targeting vectors not already made. However, both methodologies require the

same amount of work to isolate ESC clones and assess the proper targeting. The ftequency

of oligonucleotide-based targeting is estimated to be 0.25-1.5 per 106 ceils, as tested on a

limited number ofloci29. Problematically, this methodology is suppressed by DNA mismatch

repair mechanisms, thus requiring the transient suppression of proteins such as Msh229. As

a consequence of repressing transiently mismatch repair mechanisms, increased frequency

of spontaneous mutations is observed on reporter genes29. The distribution of these

bystander mutations is unknown, but expected to be lost during mouse breeding since the

targeted alteration can be germ-line transmitted29. However, this pitfall should be taken into

consideration when designing in vitro screens. Because the mutation is targeted, as opposed

to chemical screens, in vitro screens could probably be achieved with the use of independent

targeted clones.

1.3.7 Gain-of-function screens

Gain-of-function screens have been applied successfully to ESC. A strategy using

episomal transduced cDNA libraiy (derived from E$C) identified Nanog, an homeodomain

protein allowing the self-renewal of ESC without leukemia inhibitory factor (LIF)30.

Microarray analyses can also be combined to this type ofscreen31. In a way, gain-of-function

screens are attractive because of their simplicity and their rapidity. However, to apply the

methodology to a genome-wide level, libraries are disadvantageous. For example in home-
made cDNA libraries, very long cDNAs are under-represented, more abundant transcripts
are over-represented, some cDNAs are incomplete, etc. b circumvent these drawbacks, one

could think about using a BAC library. However, some genes are 50 big that they are not

covered by a single BAC, such as dystrophin (2,2 megabase pairs, 79 exons) (http://genome.

ucsc.edu/., Mouse Build 36, 2006)32. fortunately, vast libraries can be purchased, arrayed

in multi-well format (example BACs libraries) or spotted in a book (example: Riken cDNA
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library) allowing fora better aftempt at normalization of each products. Aside from unwanted

effects caused by the ectopiclover- expression (toxicity, non physiological expression levels,

abnorma cellular localization, etc.), many studies proved that valuable candidate factors can

be isolated with this strategy.

1.3.8 Irradiation-based screens

Deletions can be produced in ESCs engineered to express the herpes simplex tyrnidine

kinase (tk) gene, by physical irradiation and negative selection (drug FIAU)33. Although

anchor sites (tk) introduced in various genomic regions can be identified by plasmid rescue

experiments, the mapping of each deletion is difficuit since it requires PCR analysis of

numerous simple sequence length polymorphism markers33. The possibility of unidentified

genetic lesions also complicates the interpretation of resuits generated with this approach.

1.3.9 Cre-toxP technology based screens

The Cre-toxP technology has been applied by several groups to create large deletions,

but this system is also appropriate to create transiocations, inversions, and duplications. To

produce a deletion in ESC, two regions on the same chromosome are successively targeted by

homologous recombination using distinct vectors, each canying a lox? site34. $ubsequently,

the transient expression of Cre leads to the excision of DNA bePveen the integrated ÏoxF

sequences. To isolate ESC recombinants, two nonfunctional halves ofa selection marker gene

are inserted in complementary targeting vectors. ESCs are selected in media containing the

proper drug(s). Although different combination of marker genes have been developed over

the years35, the functional reconstitution ofHprt] is more widespread, presumably because it

was the first reported system34. Hprt]-deficient E$Cs need to be ernployed in this case.

A variation of the Hprtl reconstitution method was also elaborated, where the

first loxP site was anchored by homologous recombination and the second, delivered by a

retroviral vector, avoiding one step of gene targeting36. Another strategy to omit one round of

homologous recombination consists in targeting one loxP site, followed by the co-introduction

of a ÏoxP-containing plasmid together with the cre, and finally by selecting recombination

events by negative selection toward the tk gene incorporated inside the vectors37.
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1.4 The proposed approach

Several reasons drove the design ofa screen based on chromosomal deletions: several
contiguous determinants could be interrogated at the same time, both protein-coding and non
protein-coding regions could be screened, potential synthetic interactions could be observed,
the alleles were permanently deleted and flot only silenced, and the primary work could
5e done in vitro. Irradiation methodology was not a possibility because the mapping of
deletions was not precise and like chemical screens, subject to bystander mutations. A Cre
lox? strategy was favored but the laborious step ofhomologous recombination was repelling.

We wanted to screen many regions on a genome-wide scale within a reasonable timeframe.

In order to overcome these impediments and to bring on an additional tool for functional
genomics, two complementary retroviruses were created, each containing a loxP site and
capable of rapidly generating deletions in mammalian celis following the addition of Cre.
Table I recapitulates the advantages and disadvantages of the methodologies presented in
the previous section in addition to the retroviral-based method which I developed in our
laboratory. The remaining sections of the introduction will focus on embryonic stem ceils
and on retrovirology.
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Table I • Advantages and disadvantages of ESC functional genomic approaches

Methodologies Advantages Disadvantages

Gene targeting Precise location, precise modification. Labor intensive, time consuming
no bias although better frequencies for
some regions

Gene trap Simple, rapid, localization easy Integration bias depending on vectors

RNA interference Simple, rapid Possible non specific off-target effects,
variable degree of suppression

Chemical (mutagens) No localization bias reported, Multiple mutations, very subtle
hypomorphic, hypermorphic, mutations, laborious identification

loss-of-function alleles possible (allelic
series)

Chemical (compounds) Simple, rapid Limited by the library of compounds,
dependent on the concentration of
compounds, the target(s) might be

difficult to identi1’

Oligonucleotides Precise location, simple Possible bystander mutations,
characterization of ESC time
consuming

Overexpression — — — Simple, rapid Depends on libraries coverage, might
be prone to unspecific effect (toxicity,

non physiological expression levels,

etc.)

Irradiation (deleons) Simple. rapid, can involved large Localization of endpoints difficuit,

chromosomal segments possible bystander genetic alterations

Cre-loxP (both loxP Various rearrangements possible A least one round of laborious and

targeted or one targeted + (deletions, inversions, translocation, time-consuming gene targeting, some

one introduced by retroviral etc.), precise location, can involved bias might be observed with

gene transfer) large chromosomal segments retroviruses

Our approach: Cre-loxP Various rearrangements possible Some bias might be observed with

(both loxF introduced by (deletions, inversions, translocation, retroviruses

retroviral gene transfer) etc.), precise location, can involved
large chromosomal segments, avoid
one round of gene targeting
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PART II: INTRODUCTION TO EMBRYONIC STEM CELLS

The in vitro derivation from blastocysts ofthe first mouse embryonic stem celi (ESC)

unes was reported in 1981 38,39 These lineages were holding great promises in developmental

biology because of their ability to differentiate into complex tissues in vivo, to form

embryoid bodies (EBs) in suspension culture, and to produce teratocarcinomas when injected

subcutaneously in syngeneic mice38’39. As opposed to teratocarcinoma ceils, ESCs have a

normal karyotype and contribute more successfully to the germ-line of chirneric mice38’40.

The focus of this section is to review the origin and some of the cardinal features of mouse

E$Cs: seif-renewal and pluripotency, differentiation, and particular genetic properties.

1.5 The origin ofESC

The protocols currently used to derive E$C unes are similar to those established more

than 20 years ago41. Blastocyst stage embryos or isolated muer cell masses (Figure 1-1) are

plated on mouse embryonic fibroblast (MEFs) in tissue culture media41. Following several

days of culture, the masses are dissociated and replated again on MEFs to generate various

differentiated and undifferentiated lineages4t. Colonies with undifferentiated morphology

are individuaily isolated and are expanded to generate ESC lines41. Most E$C lines are 4OXY

because in XX ESCs both X chromosomes are active, an unstable state (in fact one of the

X is frequently loss) that correlates with global reduction of DNA methylation which is flot

favorable for the maintenance ofthese cells41’42.

An ongoing debate is the tissue of origin of ESC, the existence of an in vivo

counterpart, ami the possibility of being an artifact lineage generated from an adaptation

to culture environement43. Cells from both the iimer cell mass and from the primitive

ectoderm (Figure 1-1), a tissue derived from the inner cdl mass, can give rise to ESC unes43.

However, since flot ail the ceils contained in these tissues can generate ESC lines, ESCs
could possibly emerge subsequently from another celi type, such as early germ cells43. ESCs
are flot equivalent to inner ceil mass cells because they contribute weakly to extraembryonic
endoderm lineages (derivative ofthe primitive endoderm) in vivo (Figure 1-1). A founder
population of ceils emerges from the primitive ectoderm (epiblast) soon before gastrulation,

and passes through the primitive streak to give rise to many structures of the extraembryonic

mesoderm and to germ cells, a process involving dominant local and inductive signals, which

might be reproducible in vitro43. ESCs might be related to this founder population43. In

fact, mouse primordial germ celis can generate ESC-like colonies that can be maintained
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for extended period of time in culture and can contribute to chimeras and germ-line

transmission41. b complicate the story further, under particular ceil culture conditions,

ESCs can be differentiated into primitive ectoderm-like ceils, which can be differentiated in

vitro, but are unabie to contribute to chimeric mice44. As expected, ESC and ail the potential

parental lineages share several marker genes (Oct4, Nanog, Dppa3, etc.)43, but none ofthem

demonstrate in vivo the permanently high proliferation index of ESC observed in culture.

Therefore, this sustained proliferation rate might be the resuit of celi culture conditions or

ofthe isolation oftransient ceils with this intrinsic property or more possibiy, the artificial

combination ofboth. Fortunately, when ESCs leave the in vitro environment to retum in vivo

following re-introduction in the mouse embryo, they respond normally to developmental

instructions and therefore, do not correspond to transformed ceils. However, if they are not

re-introduced in the proper environment, they create teratomas (or teratocarcinomas) instead

of contributing adequately to tissues in place.

Figure 1-1 Early mouse deve]opment during the stage ofpreimplantation.

Adapted ftom Raiston, A. & Rossant, J., 2OO5.
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1.6 Seif-renewal and pluripotency of ESCs

$elf-renewal and pluripotency are key characteristics that define ESCs and are typically

discussed together. Seif-renewal is a mechanism that allows the generation of daughter

cell(s) with the same characteristics as the parental ce!!. ESCs are thought to generate two
identical daughter ceils per division, a process referred to as symmetrical seif-renewai, as
well as to preserve immortality41. This state strictly relies on well-defined culture conditions.
Pluripotency refers to the in vivo differentiation potential of clonai ESC to contribute to
ail lineages derived from the three primary germ layers (ectoderm, mesoderm, endoderm,

including the gametes) as well as the extraembryonic mesoderm46. Because ESCs contribute

weakly to extraembryonic endoderm and trophoblast lineages, they are considered pluripotent

rather than totipotent such as the fertilized egg or the blastomeres. Specific culture conditions

allow the preservation ofthe pluripotency. Ironical!y, to characterize this property, ESCs need

to lose it, concomitantly with their identity, through in vivo and/or in vitro differentiation.

The evaluation of ESC pluripotency in vivo is the most robust assay to observe both the
contribution ofESC to all expected lineages and the proper functionalities ofthese progenies.

However, this experimentation is expensive. Other assays, although flot as complete, give
reasonable insights into the pluripotency ofESCs. The generation ofteratomas or the in vitro
differentiation in selected media allows the observation of representative !ineages from the
three primary germ layers. More details about in vivo and in vitro differentiation ofESC will
be presented in the next section.

What are the factors regulating ESC identity (self-renewal and pluripotency)? A
manuscript (News & Views) was written by Mélanie Bilodeau and Guy Sauvageau in 2006,
presenting a general overview of the field and two approaches used by independent groups
to find regulators of seif-renewal and pluripotency (Appendix I). An update of this area of
research will follow.

1.6.1 Update for mechanisms underlying ESC seif-renewal and

pluripotency

It is important to high!ight that both celi extrinsic and intrinsic mechanisms governing

ESC self-renewal and pluripotency impiy not oniy positive regulation, but also repression of
differentiation and maybe apoptosis. $ometimes, a single factor can act both as a positive
and a negative regulator. Cell signaling cascades initiated extrinsically are necessarily linked

to ceil intrinsic parts. In addition, epigenetic characteristics such as DNA methyiation and
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histone modifications seem involved in E$C self-renewaÏ and pluripotency regulation and

their roles should be more extensively defined in the coming years.

BMP4 is a celi extrinsic factor acting as a ligand to a ceil intrinsic signaling cascade

[BMP receptor-Smad(s)-Id(s)] that suppresses neural determination47. Similarly, LIF is a

ceil extrinsic ligand of a celi intrinsic signaling cascade [LIFR-gpl3O-Stat3-target genes]

suspected to inhibit non-neuronal differentiation rather than promoting stem celi survival47.

Oct4, Sox2, and Nanog are tbree core transcription factors that positively regulate ESC

specific genes, but also bind non-expressed tissue-specific transcription factors48. Oct4

and Nanog are specific to pluripotent celis, but Sox2 is not49. Critical levels of Oct4 are

required to maintain ESC in an undifferentiated state: repression of Oct4 conveys to loss

of pluripotency and formation of trophectoderm, while the overexpression of Oct4 induces

differentiation in primitive endoderm and mesoderm50. Nanog positively maintains ESC self

renewal in the absence of L1F3° and is thought to suppress differentiation. Nanog is down

regulated during differentiation30, inhibits neuroectodermal differentiation when ectopically

expressed30, and Nanog-deficient ESCs produce endoderm (possibly primitive)47. Oct4 and

Cdx2 transcription factors reciprocally inhibit each other functions for the determination of

pluripotent ceils (Oct4 functions expressed, Cdx2 functions repressed) and trophectoderm

(Cdx2 function expressed, Oct4 function repressed)51. Nanog, Gata4, and Gata6 might be

regulating a balance between the pluripotent state and differentiation in primitive endoderm.

The loss ofNanog or the ectopic expression of Gata4 or Gata6 induces ESC to differentiate

into primitive endoderm49. In addition, Esrrb, Tbx3, leu, and Dppa4 also control a set

of target genes by activation and repression48. Oct4, Sox2, Nanog, Esrrb, Tbx3, Tcll, and

Dppa4 also possibly share some target genes48.

The epigenetic level of regulation is expected to be complex and is just starting to

be elucidated. In the case ofDNA methylation for example, although neither Oct4 or Nanog

genes present annotated CpG islands, their respective promoter present cytosine methylation,

correlating with their expression (low level of methylation correlating with expression)6.

Methylation is thought to induce repression by preventing the binding of some proteins to

DNA (such as transcription factors) and/or by binding methyl-CpG binding proteins that

interact with histone deacetylases6.

ESCs present bivalent domains containing the dual repressive (lysine 27 of

histone H3 [H3K27] tri-methylation) and activating (lysine 4 of histone H3 [H3K4] tri

methylation) histone marks49. These bivalent domains correspond to highly conserved non
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coding elements49. Several of them are co-occupied by Oct4-Sox2-Nanog and are found

in proximity of some (but flot ail) developmentally important genes silenced in E$C, but

activated during differentiation49. During differentiation, the bivalent domains presenting

activating and repressive histone marks are resolved: expressed genes are associated with

H3K4 tri-methylation, tumed off genes are associated with H3K27 tri-methylation, whlle

the weakly induced genes keep both signatures49. It is hypothesized that bivalent domains

may silence developmental genes in E$Cs, but also keep them poised for activation during

differentiation52.

Silencing could be mediated in part by Polycomp group gene (PcG) complexes.

Two of the four known PcG complexes are important in ESC, mainly PRCY and PRC248.

Methylation of H3K27 is induced by the PRC2 complex, which includes eed (embryonic

ectoderm development), Suzl2 (suppressor of zeste 12), and Ezh2 (Histone methyltransferase

enhancer of zeste homologue 2)48. H3K27 methylation is a binding site for the PRC 1

complex involving RinglA, Ring]B, and 3mi148. The precise roles of PcG complexes and

associated histone modifications in ESC are not completely understood, but likely interfere

with nucleosome dynamics and transcription initiation48. Eed- and Ring]3- deficient ESCs

present derepressed transcriptional regulators of development48. The recruitment of PRC2

complex to targeted loci may be mediated in part by Oct4, Sox2, and Nanog48.

The mechanisms allowing ESCs to remain undifferentiated and to survive in cell culture

conditions are not well defined. Is it the same factors that keep them seif-renewing in an

undifferentiated state that prevent their apoptosis? In standard culture conditions (presence

of LIF and BMP), few ESC undergo apoptosis53. Are these culture conditions compatible

with ESC apoptotic death? The answer is not obvious, because removal of LIF and/or BMP

changes the fate ofESC. Altematively, ESCs might have a cell intrinsic machinery preventing

their death by apoptosis.

At first sight, deficiency in the gene Zfx uncouples ESC seif-renewal properties

(apparently lost) from their pluripotential properties (apparently maintained), while in fact,

several celis are lost by apoptosis53. Zfx, located on the X chromosome, encodes a zinc finger

protein containing a DNA-binding and a transactivation domains53. ESCs (XY) deficient in

Zfx present abnormal morphology and are defective in proliferation because they die from

apoptosis, an effect highlighted in serum-free condition in presence of LIF and BMP453.

Strangely, Zfx-deficient male embryos (germ-line deletion) develop normally until E9.5

before dying ofuncharacterized extraembryonic tissue anomalies53. When Zfx-deficient ESCs
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are induced to differentiate in embiyoid bodies, in teratomas, or in chimeric mice, they do so

roughly normally (except that they fail to contribute to thymus and bone manow of chimeric

mice)53. Zfx overexpression in E$C correlates with massive ceil death in presence of LIF,

with abnormal EBs formation (absence of LIF), and with failure to contribute to chimeric

mice53. At the molecular level, Zfx deficiency in ESC leads to the up-regulation of stress

induced genes53. Also, Zfx binds to the promoters ofTbx3 and Tc1153. Overexpression or

deficiency ofZfic increases or reduces the expression ofthese genes, respectively53. Because

at least two suspected equilibriums regulate the pluripotency and the extraembiyonic tissue

differentiation (Oct4-Cdx2 in the case ofthe trophoectoderm and Nanog-Gata4-Gata6 for the

primitive endoderm), the morphology of Zfx-null ESC colonies is altered and Zfx-deficient

mice die from extraembryonic defects, it would be interesting to investigate whether dying

ceils are in fact differentiated and hardly maintained in ESC-defined culture conditions.

1.7 Differentiation of ESC

1.7.1 Contribution ofESCs to mice

Micro-injection of E$Cs in the blastocoel cavity of mouse blastocyst-stage embryo,

followed by transfer to pseudopregnant female, was the first methodology developed to

generate chimeric mice with ESCs54 and is stiil currently used today (Figure 1-2). When

ESC are injected into blastocysts, they efflciently colonize the tissues that form the fetus

and the extraembryonic mesoderm46. Moreover, these ceils contribute very inefflciently to

extraembryonic endoderm and trophoectoderm formation46. Initial studies showed that groups

of 10-15 ESCs or a single ESC could contribute to chimeric mice, although the percentage

of chimerism was systematically lower for the latter46. Today, it is thought that possibly 1

or 2 or occasionally 3 ESC(s) contribute to the chimeric mice55. Interestingly, single ESC

selected according to their large Q15tm) or small (10tm) size demonstrate no difference

in their contribution potential46.

ESC micro-injection requires expensive equipments, is time-consuming, and

necessitates a serious training56. Consequently, the aggregation method was elaborated as

an alternative (Figure 1-2). For this technique, ESC clumps are cultivated overnight in

proximity of morula-stage embryos (undergoing or just completed compaction, with the

zona pellucida removed) in littie depressions56. The following day, aggregated embryos

are transfened to pseudopregnant foster mothers56. Competent chimeras for germ-line

transmission of ESC-derived gametes are generated efflciently with both the micro-injection



1$

and the aggregation methods56. In the aggregation method, random-bred (like CD1) morulas

are used advantageously, since the outbred female mice generate more embryos following

superovulation compare to inbred strains56. However, the use of inbred blastocysts (like

C57BL/6) is more efficient for micro-injection 56•

Figure 1-2 Ceneration of chimeric mice a

using micro-injection or aggregation

(a) LIF and BMP signaling maintain ESCs O
undifferentiated. (b) When reintroduced

into mouse blastocyst or aggregated with a
+LIF

morula, ESCs contribute to every tissue of -

Undifferentiated ESCsthe chimeras.

b

A variation of the aggregation technique is to use tetraploid morula stage embryos.

Electrofusion is performed on blastomeres of a two-cell stage embryo (diploid), creating the

tetraploid ceil that is further maintained until the morula stage57. Altematively, ESC can be

injected in the blastocoel cavity ofa tetraploid blastocyst58. Using this set-up, ESCs contribute

to the fetus and extraembryonic mesoderm, while the tetraploid celis are generally restricted

to the trophectoderm and the extraembryonic endoderm57. During early embryogenesis,

the exact moment where tetraploid celis are out-competed by ESC-derived progenies is not

known. Although not labeled autonomously, tetraploid ceils have been noticed in ail the

analyzed chimeric embiyos during the gastrulation stage (E6.5-7.5), presenting variable

contribution (3-80%) to embryonic derivatives of the three primitive genn layers59. When

labeled autonomously, tetraploid celis were shown to contribute sporadically to 1% ofcells

in a chimeric fetus (E 10), and sometimes to cluster in the hindgut endothelium, the aortic

musculature, and the branchial arch vasculature59. Importantly, F1 hybrid ESC unes are

crucial for tetraploid complementation assays because ESC derived from inbred embryo

engender neonates that die shortly afler birth with respiratory distress58. The molecular

* *

Injection into blastocyst

Aggregation with morula

Fetal chimera Aduit chimera
14.5 dpc
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basis underlying the correlation between the limited genetic heterogeneity and the respiratory

defect is unknown, but can be bypassed by Iaser-assisted injection of E$Cs in 8-celi stage
diploid morulas (method described beneath)58’60. However, tetraploid complementation assay

is achievable with ESC unes derived from two related mouse substrains, such as the Ri ESC

une (derived from a cross between two 129 mouse substrains)61. Newbom animais derived
from this methodology are also referred to as F0 mice because they are derived (almost)

completely from the E$Cs, including their gametes, thus bypassing a step of mouse breeding

necessary for traditional chimeras to obtain germ-line transmission.

An exciting method recently developed to create F0 mice consists in laser-assisted

injection of ESCs in 8-ceil stage morula60. Similar to tetraploid complementation, almost

entirely ESC-derived chimeras are obtained, even with lower contamination from the host

celis (0.1% instead of 2%)60. Total germ-line transmission (100%) is observed rnost

of the time because of gender conversion60. The most important point is that either inbred

or hybrid ESCs and either inbred or outbred host embryos can be used without presenting

f0 mice with obvious abnormalities60. It is fascinating that inbred E$Cs, laser-injected

in 8-ce!! stage morula, can generate F0 mice free of respiratory distress while injection in

tetraploid blastocyst frequently fails to generate normal mice62. Impressive images show the

contribution ofinjected ESCs to the totality ofthe inner ce!! mass with this technique, while

injection in the blastocyst resuits in a mixture of ESC and host derived ce!!s60. However

with both techniques, ESCs fail to contribute notably to the extraembryonic endoderm60,

reinforcing the idea that ESCs might be more related to primitive ectoderm than the inner

ceil mass.

1.7.2 In vitro differentiation of ESCs

1.7.2.1 In vitro differentiation methods

In vitro, three methods are usually used to induce ESC differentiation in absence of

LIF. The first one is to grow ESC in !iquid or semi-solid differentiation media to generate

three-dimensional aggregates called embryoid bodies (EBs) (Figure 1-3). 11e EBs
differentiation allows complex developmental programs to occur, mediated by numerous

ceil-ceil interactions44. This complexity can 5e problematic when trying to understand the
differentiation into particular lineages, which relies on the proper deve!opment of other

lineages.
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figure 1-3 The removal of LIF allows the differentiation of ESCs in EBs in vitro.

Scale bar: 500 microns.

EBs
(-LIE)

To add to the fact that each serum lot provides an undefined blend of extracellular
factors, the culture media likely becomes rapidly conditioned because the seeding density
makes a significant difference in the differentiation profile ofESCs (Figure 1-4). Depending
on culture conditions, EBs can present fascinating shapes that can be misinterpreted as
phenotypic anomalies. For examples, if debris are present in the culture media, EBs have the
tendency to wrap around it or, when plated at high density, to fuse into deformed aggregates
(Figure 1-4).

n
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Figure 1-4 Effect of seeding density and culture conditions on EBs differentiation.

(a) The EB differentiation profile is affected by the seeding density. At high density, EBs

fuse in bizarre aggregates. Scale bar: 500 microns. (b) EBs’ fascinating shapes when large

debris are found in the culture media.

a iX YOX TOOX

In addition, ESCs can be differentiated over a stromal celi layer such as 0P9 celIs63

(Figure 1-5). 0P9 celis were derived from the calvaria of a newbom mouse deficient in

the M-CSF gene63. Coculture of ESCs with these strornal ceils allow mesodermal and

lymphohernatopoietic differentiation without the addition ofgrowth factors (but in the presence

ofserum)63. This might be a simpler way to obtain particular ceil types because differentiation

occurs in a monolayer interacting with the stromal ceils. This type of differentiation is also

influenced by the seeding density. for particular purposes such as expression studies, stromal

ceils need to be separated from ESC-derived progenies. Finally, ESC can be differentiated

straight in monolayer or on extracellular matrix, with particular media.

Day 2

Day 4

b

-

À

.
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Figure 1-5 ESC differentiation in
.mesodermal and hematopoietic

j

hneages on 0P9 stromal layer -

Scale bar: 250 microns.

teb —

1.7.2.2 Additional considerations regarding ESC in vitro differentiation

Although ESC differentiation is a remarkable tool, there are severai pitfal!s. ESC

in vitro differentiation is highly modutated by ce!! culture conditions. Surprisingly, in vitro

differentiation allows ESCs to participate in particular !ineages such as the extraembryonic

endoderm64 while they are inefficient to do so in vivo. Additionally, when ESCs are geneticaily

modified (for exampie: suppression of Oct4), they form trophoectoderm (tested in presence

of LIF), a phenomenon ca!!ed dedifferentiation50. In addition, because of their property to

fuse at low frequency with other ceils, ESC can be the unsuspected cause of another process

ca!ied transdifferentiation (change iii ceil fate)65. Fina!ly, although the in vitro differentiation

ofESC can be tempora!iy representative ofearly embryogenesis as discussed be!ow, it occurs

without an organization such as axis formation.

for ail these reasons, three characteristics were estabiished to conc!ude that an ESC

in vitro differentiation model in a particuiar !ineage is relevant44. First, the system must

be efficient and reproducible44. Second, the system should recapituiate the deve!opmental

program observed in vivo44. And fina!ly, the differentiated ce!ls should be functional in culture

and when transplanted in animal mode!s44.

1.7.2.3 Successfully derived lineages

Primary germ layer induction during ESC differentiation shares pathways that are

found in embryogenesis: bone morphogenic protein (BMP) and other transforming growth

factor-13 (Nodal/Activin) signa!ings , Wnt signa!ing, and fibroblast growth factor (Fgf)

signaling66.

In vitro differentiation produces representative iineages from the mesoderm

(hematopoietic, vascular, cardiac, skeletal muscle, osteogenic, chrondrogenic, adipogenic), the
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endoderm (visceral endoderm, pancreatic islets, hepatocytes, thyrocytes, lung, and intestinal

ceils), the ectoderm (neuronal, inner ear progenitors, melanocytes, and keratinocytes) and

germ ceils (oocyte and male germ cells)44’67’68. However, flot ah lineages are efflciently

derived, possibly because of the himited knowledge of culture regiment (growth factors,

gradients, ceil-ceil interactions, etc.) necessary to imitate in vivo conditions. Differentiation

can be single or multi-step, short-term or for an extended period oftime, with various physical

supports (hiquid or semi-solid environment, particular coating, etc.), with or without serum,

with or without growth factors, with or without co-cultivation, etc. One must be cautious

about ail these details when comparing various studies. Fortunately and surprisingly, many

pubhished systems seem to reasonably fulfih! the three criterias mentioned previously. One of

them is hematopoietic differentiation and will be discussed in more detail.

1.7.2.4 Comparison of ESC in vitro versus in vivo hematopoietic differentiation

During embryogenesis, hematopoiesis is initiated in the yolk sac around E6.5, as

observed by the appearance of blood islands, which are clusters of primitive erytbrocytes

sunounded by endothehial cells44. Primitive erythrocytes are large and nucleated cells,

expressing the embryonic form of hemoglobin and are produced specifically in the yolk sac

for a narrow period of time44. This stage is defined as primitive hematopoiesis44. All the

other blood lineages (myeloid, lymphoid, and smaller definitive erythrocytes expressing the

fetal-adult forms of hemoglobin) are referred to as definitive hematopoiesis44. The yolk sac

contributes to definitive hematopoiesis by producing macrophages, definitive eiythrocytes,

and mast cells44, but fails to form lymphocytes or hematopoietic stem cells (HSC5) according

to assays of long-term reconstitution in irradiated aduit mice. The first site able to produce

myeloid ceils, lymphoid cells, definitive erythrocytes, and HSCs is the intraembryonic para

aortic splanchnopleuro (P-Sp) region, the presumptive territory of the aorta, gonads, and

mesonephros (AGM) region44. The yolk sac could possibly produce HSCs that cannot be

detected by reconstitution of adult recipients because of homing inaptitude and/or the lack of

a maturation step, that might be reproduced in vitro with AGM stromal cells cocultivation or

in vivo by injecting the cells in liver of newborn mice69.

As assessed by gene expression pattem, expression of ce!! surface markers,

determination of clonal progenitor cells, and gene targeting studies of selected factors

thought to act in vivo, the hematopoiesis found in differentiating EBs correlates temporalhy

with yolk sac hematopoieis44. The primitive erythroid lineage is transient and the first to

appear, followed by macrophages, definitive eiythroid cells, and mast celis, in the same
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order as in the yolk sac44. In EBs, up to 5% of celis can represent clonable hematopoietic

progenitors44. Lymphoid ceils can be observed following extended ce!! culture period44.

Both primitive and definitive hematopoiesis can be generated from differentiating EBs,

however, primitive hematopoiesis is more abundant69. Many studies suggest that HSCs

could be generated during ESC differentiation, but usually they present unsatisfying lympho

myeloid long-term engrafiment in aduit recipients, raising the concem again that the assay

might flot 5e appropriate for detecting the potential embryonic HSCs69. Possibly, the culture

conditions cannot perfectly mimic embryogenesis69. When ESC are engineered to express

Hoxb4 during differentiation, multilineage engraftments in primary and secondary recipients

can be achieved, suggesting the involvement of E$C-derived HSCs69. However, since the

lymphoid compartment is flot as efflciently reconstituted as the myeloid compartment, these

ESC-derived HSCs might not 5e completely similar to those derived from fetal !iver or bone

marrow44.

The hemangioblast, a clonable progenitor, first isolated during E$C differentiation

is able to give rise to hematopoietic, endothelial, and vascular smooth muscle cells44.

Although this progenitor was recently isolated from the posterior primitive streak of the

mouse embryo44, it was flot found in the yolk sac, suggesting its transient existence and rapid

commitment to differentiation before reaching the presumptive territory of blood islands69.

Ihe hemangioblasts (blast colony forming ceils) are detected in EBs prior to the apparition

of hematopoie sis.

Although the hematopoiesis in early developing EBs (day 1-8) seems to reasonably

follow a clean profile, correlating with the yolk sac hematopoiesis, the correspondence in

vitro-in vivo is not as obvious following an extended ceil culture period.

1.7.3 Generation of teratomas and teratocarcinomas

When ESCs are injected subcutaneously into syngeneic mice, they create teratomas

containing a disorganized mixture of differentiated cells derived from the three primary germ

layers47. As opposed to these benign tumors, teratocarcinomas contain both differentiated and

undifferentiated celis, allowing the transplantation of tumor celis into secondary recipients

(malignant tumors)47. This E$C paradox, Seing oncogenic in a particular environment but

totally suited for normal development when introduced in the mouse embryo, is fascinating

and is drawing attention to the role of the environment and/or epigenetics in tumorigenesis.

Lessons from early embryogenesis will probably improve our understanding oftumorigenesis.
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Once more, celi extrinsic and ce!! intrinsic, positive and negative regulators, must be acting

together on a perilous balance. Some factors must promote the proliferation, the characteristics,

and the survival oftumor ceils while others constraint these properties.

ERas is an example of a teratoma promoting factor. ERas is a Ras-like gene (small

G protein constitutively active, because it is predominantly bound to GTP) expressed in

undifferentiated ESC but flot in differentiated ESC (treated with retinoic acid) or aduit somatic

cells70. ERas-null ESCs express the pluripotent marker gene (Oct4), are morphologically

normal, proliferate slowly (particuïarly without MEFs) without defects in celi cycle properties,

present reduced tumorigenicity by teratoma formation, but are germ-line transmitted in mouse

without causing anomalies or infertility (note that ERas is located on the X chromosome and

the ESC used are XY male)70. It was also shown that ERas interacts with phosphatidylinositol

3-OH kinase (PI3K) and mediates its effect through Akt (Akt phosphorylation is diminished

in ERas-deficient celis and the ectopic expression of Akt rescues the proliferation and the

teratoma formation defects)70. This was the first report suggesting that ESC tumorigenic

properties could be uncoupled from their recognized self-renewal/pluripotency. However,

mechanistically, the story is incomplete. First, the diminution ofERras KO ESCs’ proliferation

is flot explained by the ce!! cycle profi!e, or by differentiation (morpho!ogy normal and

expression of Oct4), suggesting a possible invo!vement of apoptosis. Cell death particu!arly

needs to be addressed because ERas cDNA can on!y partially rescue the pro!iferation and

teratoma formation defects, while the use ofthe Akt cDNA gives better yie!d.

So far, most genes reported to be implicated in teratomas (teratocarcinomas)

formation also seem to regu!ate normal bio!ogical functions that are revealed during in vitro

or in vivo differentiation. for example, Pten (tumor suppressor)-deficient ESCs generate

teratocarcinomas faster and of larger size7t. These are predominantly made ofundifferentiated

and neurona! celis, as opposed to wild type and Pten ESC-derived teratocarcinomas that

contain more differentiated cell types71. EBs generated from Ften ESC are disorganized,

the formation of the three primary germ layers is abnorma!, and the natura! process of

cavitation, involving apoptosis, is flot observed71. Pten ESCs proliferate normal!y and

show no difference in ceil cyc!e properties, but they fai! to contribute to chimeric mice71.

Pten ESC do contribute to chimeric mice and to the generation of heterozygote mice, but

these anima!s present hyperp!asy/displasy in some tissues (prostate, skin, colon)71. Moreover,

they also develop tumors71. The intercross of Pten mice demonstrates that Ften - embryos

die in utero prior to E7.571.
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Alpha 5 (CL5) integrin is another proteinthat constrains teratocarcinoma growth. Integrins

are heterodimeric (CL and f3 subunits) transmembrane glycoproteins acting as receptors binding

to the extracellular matrix (fibronectin, laminin, collagen, etc.)72. They link the extracellular

matrix to the cytoskeleton and signal transduction pathways72. u5 and f31 integrin subunits

dimerize to form a receptor that bind fibronectin73. fetuses deficient in u integrin die around

E 10-il, presenting defects in the posterior trunk andin the intraembryonic and extraembryonic

vasculature72. CL5 integrin E$Cs form teratocarcinomas that are 8-times smaller than wild

type or u5 integrin ESCs73. In comparison to controls, u5 integrin’ teratocarcinomas present

a smaller undifferentiated compartment, which demonstrates a reduced proliferation and an

increased apoptosis, and fewer ESC-derived vessels (<5%)73. In fact, although these tumors

present derivatives from the three primary germ layers, the poor vasculature is mainly host

derived and of a smaller size than controls73. The extracellular matrix is also disorganized

in these teratocarcinomas. u5 integrin E$Cs were also induced to differentiate in attached

EBs73. u5 integrin EBs present delays in growth, attachment and vasculature organization,

but fibronectin deposition seems normal73. In summary, the analysis of embiyogenesis,

teratocarcinoma formation, and EB differentiation from u5 integrin-deficient cells converges

to a defect in vasculature network that might be mediated by anomalies in the remodeling of

the extracellular matrix or in perivascular ceils, etc73.

In conclusion, ERas, Pten, and u5 integrin are just a few examples among a growing

group of regulators that highlight the complex networks sustaining normal biological states,

but also pathological conditions and tumorigenesis.

1.7.4 General mechanisms underlying ESC differentiation

Again, both celi extrinsic and intrinsic mechanisms govern differentiation processes

but also repress the seif-renewal /pÏuripotency state. 0f course, broad families of regulators

are controlling in vitro and in vivo differentiation. This circuitry differs from lineage to

lineage. Emerging regulators are microRNAs (miRNAs) and factors that control epigenetic

modifications.

Dgcr8, a RNA-binding protein, acts withthe RNase III enzyme Drosha in the processing
of long primary miRNAs74. This protein is required for miRNA, but flot for ribosomal RNA
processing74. Dgcr8-deficient E$Cs present abnormal differentiation characterized by an

abnormal EB morphology and the expression of some differentiation marker genes, but with

a failure to downregulate pluripotency marker genes74. These cells are stiil able to produce
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ESC colonies74. Dicer is the protein implicated in the processing of long double-stranded

RNA or miRNAprecursor into mature effector RNAmolecules’8. Dicer-deficient ESCs form

abnormal EBs, presenting liffle differentiation and a partial suppression ofpluripotency marker

gene (Oct4)’8. These ceils also fail to induce teratocarcinoma or to contribute to chimeric

mice18. Together, these studies suggest that miRNAs play a role in silencing regulators of

the undifferentiated state, but the mechanisms are not yet clearly understood. The miRNA

silencing effects could be mediated by transcriptional gene silencing, by post-transcriptional

gene silencing, by blocking translation, or by changes in the status of methylation and

heterochromatin formation’ 8•

Evidences support arole forNuRD, anucleosome remodeling and histone deacetylation

complex, during ESC differentiation. Mbd3, a methyl-CpG binding domain protein, is a

component of the NuRD complex75. Mbd3’ ESCs, engineered by gene targeting, present

an abrogation of NuRD complex formation and a slower proliferation rate, but the proper

expression of pluripotency marker genes such as Oct4, Nanog, and $ox275. However, their

differentiation in EBs is aberrant75. Mbd3’ EBs express pluripotency-associated genes (Oct4,

Nanog, Rexi), fail to activate some differentiation marker genes (for example: Brachyury

or Gata-6 are flot activated but fgf5 is activated), express trophoectoderm marker genes,

and finally, have no increase in apoptosis75. In fact, alkaline phosphatase positive E$C-like

colonies (marker of undifferentiated state) can be derived from long-term, LIF-deprived,

Mbd3’ EBs’ culture75. Mbd3 ESCs fail to contribute properly to chimeric mice following

aggregation with morulas and show an abnormal distribution in embryos (E7. 5)75. The presence

of chimerism correlates with different anomalies in embryos75. Otherwise, mutant ceils are

constrained to extraembryonic tissues when embryos are normal (10w chimerism)75.

In summary, microRNAs, nucleosome remodeling and histone deacetylation complexes

such as NuRD are necessary for silencing the pluripotent state as well as to progress through

differentiation. The assessment of potential interactions between these factors wiIl be of

major importance.
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1.8.2 Introduction

This review will visit selected genetic properties of mouse embryonic stem celis

(ESCs), highlighting the differences observed when ESC are maintained in an undifferentiated

or differentiated state. The focus will be on ceil cycle regulation, telomeres, and chromosome

maintenance.

1.8.3 Ceil cycle regulation differs between ESCs and differentiated celis

Ceil cycle is typically subdivided in four phases: G1, S, G,, and M. DNA synthesis

occurs in $ phase. Cellular components and genetic material are partitioned between two

daughter celis in M phase76. G1 and G2 (gaps) phases prepare ceils to $ and M phases,

respectively76. The restriction point (R) subdivides early and late G1 phase. Early G1 is a

mitogen-dependent phase as opposed to the late G1 phase. Celi growth (increased in celi size

and proteins level) and division are coordinated76. Proper celi cycle progression is regulated

by different checkpoints. Celis can be non-dividing in G0 quiescent stage, poised to celi

cycle re-entry upon extracellular signaling, provided they are not terminally differentiated or

senescent76.

At the molecular level, celi cycle is regulated by cyclin-dependent kinases (CDKs) that

form heterodimeric complexes with cyclins76. In early G1 phase, Cdk4 and Cdk6 associate

with D-type cyclins (Dl, D2, and D3)76 (Figure 1-6). In late G1 phase, Cdk2 associates with

E-type cyclins (El and E2)76 (Figure 1-6). These complexes phosphorylate retinoblastoma

family proteins (Rb, p107, and p130), releasing E2F transcription factors76 (Figure 1-6).

Consequently, E2F responsive genes allow G1/S transition76. In S phase, Cdk2 associates

with A-type cyclins (Al and A2)76 (Figure 1-6). CDKs are regulated by two classes of

CDK kinase inhibitors76. The INK4 family (p 16, pi 5, pi 8, and p19) inhibits Cdk4 and Cdk6

activity76. The KIP family (p21, p27, and p57) inhibits Cdk276.
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Figure 1-6 G1/S transition and G1 DNA damage checkpoint in somatic cetis.
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1.8.3.1 G1IS transition

In a media supplemented with ieukemia inhibitory factor (LIF) and a source of
Bone Morphogenic Proteins (BMP5), ESCs are mainiy rnaintained in an undifferentiated
state. They seif-renew very rapidly (e.g. replication time < 10 hours) presenting a short G1
phase Q—1.5 hour) and a large proportion ofthe population is in the S phase ofthe ccli cycle
(e.g.> 60 %, ‘-10 % of celis in G1)77-79. The S phase is the longest stage of their cdl cycle
(approximately 7 hours8°).

In undifferentiated celis, the G1-associated D-type cyciins (cyclins Dl, D2, D3) are
flot or weakly expressed79. Cdk4 is present but with iow kinase activity and therefore, no
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sensitivity to pl6h14a inhibition is observed79’81. Ceil cycle is possibiy regulated by the G1
phase-associated cydlin D3/Cdk6 (refractory to p64a inhibition)82, cyclin E/Cdk2, and S
phase-associated cyclin A/Cdk283. The formai attestation has yet to corne.

ESCs share rnany properties with celis from the inner ceil mass of the blastocyst,

although they cannot be considered as equivalent. In this regard, it is surprising that many of
the cyciins and CDKs seern dispensabie for proliferation in early embryogenesis. Embryonic

deveiopment can proceed until E14.5 before Cdk4 Cdk6- - double knockout (DKO) fetuses
die due to hematological defects84. Cdk2 Cdk4 - DKO fetuses succumb to heart defects
around E 1585. Cdk2 Cdk6 DKO mice are viable, aithough steriie84. Triple knockout (TKO)
Cyclin Dl- - D2 D3 - mice deveiop reiatively normaiiy until E13.5, but die prior to E17.5
from severe anernia and cardiac defects86. DKO Cyclin ET E2 ESCs proliferate normaiiy87.
DKO Cyclin E1 - E2 - fetuses present cardiac and megakaryocyte defects, nevertheless

some animais reach birth using tetrapioid compiementation to rescue the piacental defect87.
ESCs derived from these various compound mutant embryos (in addition to DKO Cyclin
ET E2- - ESCs) should represent a good resource to investigate the fiinctional redundancy
between CDKs and Cyciins and their susceptibility to CDK inhibitors throughout ceii cycle
progression.

CDKs’ activities are likely invoived because the ectopic expression ofp27K1Pl induces
celi cycle arrest in G179 However, the possibility of exit in G0 stage or apoptosis was flot
formaliy exciuded79. Whatever the reievant cyclin-CDK combination(s) implicated in this
regulation, its major roie is flot to phosphoryiate one of the classical pocket protein because
TKOp]O7pl3O,pRb ESCs proliferate normaiiy88.

In addition, ESCs might lack a G1 checkpoint upon DNA damage (Figure 1-6) for
two reasons. One, p53-mediated response is partialiy ineffective because this protein faiis
to efflcientiy transiocate to the nucleus and to induce p21 expression89. furthermore, Chk2 is
sequestered to centrosomes and faiis to phosphoryiate Cdc25A, preventing its degradation90.
ESCs do flot respond to DNAdamage by arresting in They rather trigger p53 -independent
apoptosis89, arrest in G2 phase90’92, or differentiate by the p53-mediated suppression ofNanog
(a regulator of E$C seif-renewai and piuripotency), possibiy creating progenies more prone
to DNA damage response92. In brief, the most striking feature of G1 phase reguiation in
undifferentiated ESCs is the lack of controls known to operate in somatic ceiis.

Nucleostemin (NS) has been identified in mammals as a nucieolar protein which
seems to reguiate G1/S progression in embryonic ceiis93. NS embryos die around E4.093.
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Blastocysts present failure to enter in $ phase93. However they do not show signs of celi
death or terminal differentiation and their ceil nuclei are normal93. The mechanism behind
this effect is unknown, but is p53-independent93. Derivation ofN$E$Cs is unsuccessful93.
Nucleostemin is found in the nucleoli and possibly regulates rRNA processing and ribosome
assembly. Since celi growth in G1 phase depends on mRNA and protein synthesis, altering

these processes might arrest or delay progression in this phase Presumably, E$Cs need
to spend a minimum of time in G1 to reach the necessary size to perform symmetric celi
division.

Dgcr8 is a RNA-binding protein that assist Drosha in the processing ofmicroRNAs74.

Dgcr8-deficient ESCs present an extended doubling time and an accumulation in G1 (22% of
the celis rather than 14% in the controls), without obvious sign ofdifferentiation or apoptosis74.

Dgcr8 is necessary for the processing of most long primary miRNAs (if not ail), but flot for
ribosomal RNA processing74. More studies will be needed to rule out the possibility of celis
resting in a G0 stage, a stage flot yet described in ESC. Interestingly, these ESCs also show

an EB differentiation defect74.

Once E$Cs are induced to differentiate upon LIF (leukemia inhibitory factor) removal,

the length of the G1 phase increases79. D-type cyclins are up-regulated and associate with
Cdk4 in complexes presenting kinase activiy79. More cyclin EICdk2 complexes with kinase
activity are detected in the initial phase of in vitro differentiation79. Ceils become sensitive to
p164a and p27KIPI inhibition79. p27KIPI expression increases and is detected in complexes with
Cdk479. p53 protein level is reduced, but its transcriptional activity is increased, inducing

the expression ofp2] while repressing Nanog92. This improved activity of p53 is mediated

in part by the phosphoiylation of Ser 315, a potential CDKs substrate92. Differentiated ceils
posses a DNA damage checkpoint induced by p53, leading to celi cycle anest (mostly in
G1)89 or to apoptosis. Compound p]O7 ,pl3O -, Rfr - ESCs present a limited differentiation
capacity inside teratocarcinomas while the size of the proliferating compartment in these
tumors is increased by 1 5-fold compared to control cells94. The induction of differentiation
switches the regulation from a pocket-proteins-independent to a pocket-proteins-dependent
mode, but it remains unclear whether this effect is mediated through ceil cycle controls or
through differentiation functions independent ofthe cell cycle, or both.
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1.8.3.2 S phase

So far, there are no differences reported between ESC and differentiated ceils in the S
phase. During differentiation, the proportion ofcells found in S phase is reduced95, likely as
a consequence of an increase in G179, changing the ratio of celis in ail the other phases.

Three checkpoints are known to delay the progression of celis through the S phase in
response to genotoxic stresses96. They share some components, in addition to the property of
being independent ofp53: replication, S-M, and intra-S-phase checkpoints96. The replication
checkpoint is activated when the replication fork is stalled because of stress such as depletion

ofdeoxyribonucleotides, inhibition of DNApolymerase by chemical or physical constraint96.

The exact pathway regulating the S-M checkpoint is flot known in mammals, but studies
in yeast suggest that it is mediated by the same sensors of the replication checkpoint96. The
intra-S-phase checkpoint is activated upon double-stranded break induced outside of the
active replicons96 (for example: caused by irradiation). Readers interested in the pathways

involved are referred to a recently published review96.

Presumably undifferentiated ESCs do have an intra-S-phase DNA damage checkpoint.

Wild-type and p53 ESCs treated with ultraviolet irradiation accumulate in S phase and
present a temporally delayed progression through the phase97. RAD5O is part of a complex

(NBS1-MRE11-RAD5O) thought to detect double-stranded breaks96. Rad5O knockdown is
lethal for ESCs and early embryos (around E6.5)98. E6.5 Rad50’ embryos present a decreased
proliferation (assess by BrdUrd incorporation) and no change in apoptotic status98. Chkl,

a checkpoint kinase thought to be involved in intra-S-phase checkpoint, is required for the
proliferation of inner celi mass celis and the generation ofESCs96’99. As early as E3.5, ChkT
“ blastocysts present celis with abnormal nucleus and increased apoptosis99.

1.8.3.3 G2/M transition

The length ofthe G7/M transition in undifferentiated ESCs is roughly one hour80. The
decatenation checkpoint in G2 phase, induced when chromosomes are entangÏed, retards the
entry ofcells in mitosis, preventing aneuploidy in daughter ce11s100. Suspected regulators of
this pathway are: ATR, Polo-like kinase 1, BRCA1, and Wemer’s syndrome helicase100. This
checkpoint is less efficient in mouse ESCs than in primary embryonic fibroblasts (MEFs)100.
However when ESCs are induced to differentiate. the decatenation checkpoint efficiency
improves to a level similar to the one observed in MEfs100. The molecular basis of this

observation is unknown.
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1.8.3.4 The M phase

The anaphase-prornoting complex (APC) is a major regulator of M phase progression.

APC, a multisubunit ubiquitin ligase complex, contains at least 13 subunits and three adaptor
proteins including Cdc2O’°1. Apc2 and Apc 11 are the two catalytic subunits102. APC complex
ubiquitinates $ecurin, an inhibitor of Separase which inactivates cohesin complexes (by

cleaving a subunit)’°2. Cohesin complexes insure sister chromatid cohesion, possibly by
forming rings around DNA102’103. This cascade allows progression through anaphase. In

addition, APC allows the exit from mitosis by targeting the mitotic cyclins for degradatio&°2.

The ftinctions of APC complexes-adapters are regulated in different celi cycle phases by
Cyclin A!Cdk2, Mad2 and others101. APC is important in early embryogenesis since no
Apc2 embryos are found at E6.5, whereas heterozygous embryos reach birth at expected

ftequencies’°2.

The spindie assembly checkpoint inhibits the transition in anaphase, mediated by
APC, and arrests cells in mitosis until the chromosome kinetochores are properly attached
to spindie microtubules104. Many proteins are implicated in this checkpoint105. When
kinetochores are not attached to spindle microtubules, Mad2, Mad3, Bub3, and Cdc2O form
a complex inhibiting Cdc20104.

So far no report suggests differences in ESC mitosis versus differentiated ceÏls,
in agreement with observations seen during early embryogenesis. Mad2-/- embryos die

around E6.5-7.5 with extensive apoptosis with another proportion suspected to do so prior to
implantation’°6. These embryos present abnormal segregation of one or few chromosomes106.

Mad2-/- blastocysts maintained in vitro are insensitive to nocodazole treatment (microtubules
inhibitor)106. They can be maintained up to E6.5, after which their inner celi mass
degenerates’°6. The E4f protein is an additional candidate to regulate M phase in ernbryonic
cells. As opposed to controls, E3.5 E4F’ blastocysts fail to hatch from the zona pellucida
and to form an inner celi mass outhgrowth107. Blastocyst E4F ceils are blocked in the
prometaphase stage and present an activated spindie checkpoint107.

1.8.3.5 Is ESC cycle regulation an artifact of ccli culture conditions?

Different factors influence the properties of ESC in culture: the amount of LIF
extrinsically introduced, the serum constituents which vary from batch to batch, the presence

of a feeder layer (MEFs), the type of matrix used when cells are cultivated without a feeder
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layer, the ceil density, the karyotype of the celis (e.g., proliferation of trisomy $ celis), etc.
Some of these factors likely modify the cycling properties of ESCs and this possibility
should be taken into consideration when comparing different studies on the subject. ESCs

can reasonably be used as a mode! to beller understand many ceil cycle properties that are
both shared with the highly proliferative embryonic celis (embryogenesis -E3.5-E6.5), but
strangely also with teratocarcinoma celis.

In an undifferentiated state, no evidence suggests that E$Cs present a celi cycle
restriction point dependent on extemal mitogenic stimuli. Serum deprivation does flot arrest
ESCs, only a small alteration in cell phase distribution is observed with a greater proportion of
cells in G0-G1 to the detriment ofthe S phase (G2-M phases are unchanged)108. Consequently,

when starved ceils are re-exposed to serum, they show no sign of synchronization’°8. These
observations suggest that serum components are dispensable for inducing or sustaining ESCs

cycling properties, at least for a short period (38s1o8). In fibroblasts, mitogen signaling

allows the progression through the restriction point by down-regulating p27l1PhIO9. ESCs
express only weak levels of CDK inhibitors (pl6ink4a, p27KIPI and p21CiPl)79s2. Perhaps that
ESCs expanding in very tight colonies go through G1 rapidly because they produce their

own mitogenic signal (on a teclmical point of view, ESCs seem to proliferate faster when
the cet! density is higher). Therefore, undifferentiated ESCs might produce a factor acting
in an autocrine-paracrine or in a celi-ceil interaction manner. Altematively, E$Cs don’t need
mitogenic signal and are permanently in a cycling mode.

The mechanism that seems to slow down both the E$C and the embryonic celi cycles
goes hand in hand with the commitment to differentiate, which is induced in part by changes

in external stimuli. In the case of ESCs, differentiation is induced by the removal of LIF or
BMPs from the serum. Can an ESC disptay a long cet! cycle time as seen in somatic stem
ceils or in more differentiated ceils? The potential link between the cell cycle time and the
(pluri)potency is intriguing but, has flot been unequivocally addressed.

Finally, ESC cycle properties present similarities with celis found in early embryos
and from that perspective, they are not artifacts. However, the permanent cyc!ing of ESCs in
culture is an artifact, because the similar condition of embryonic cells during embryogenesis
is temporaly, afier what, the proliferation is highly regulated and limited during the adult life.
Thereafier, the closest entities behaving like E$Cs in term ofnon-exhaustible proliferation...
are tumor celis.
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In conclusion, undifferentiated ESCs present a ccli cycle regulation distinct from
differentiated celis (Figure 1-7). Some steps stiil need clarification (Figlire 1-7).

Figure 1-7 Ccli cycle regulation of undifferentiated and differentiated ESCs.

ESC cycle is more rapid than that determined in differentiated ceils, mainly because of a
shorter G1 phase which is distinct between the two celi types; differences in CDKs, cyciins,
and other regulators such as p16. ESCs are frequently recognized as lacking the G1 DNA
damage checkpoint or lacking the entire G1 phase, however, they may possess a minimal
regulation ofthis phase, possibly at least at the level of ccli size. It is flot clear if extracellular
stimuli are required before reaching the restriction point (R), where ccli cycle progression
becomes independent of extemal stimuli, nor if they can be in a G0 quiescent state given
the culture conditions used. In the G2 phase, the decatenation checkpoint is less efficient
(LOW) in ESCs compare to somatic celis (HIGH). So far, no differences have been proposed
concerning the regulation ofthe S and M phases in ESC versus differentiated ceils.
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Decatenation
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1.8.4 Telomere maintenance dîffers between ESCs and their differentiated
progenies

The ends of chromosomes are protected by teiorneres, a stretch of short G-rich
repeat sequences terminated by a single-stranded overhang forming a T ioop95’°. Telomere
size varies from species to species and displays significant differences between subspecies,
such as in the mouse95”°. Telomeric repeats are bound by factors including TRF1 and
TRF2, in addition to nulceosome arrays presenting histone modifications characteristic of
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heterochromatin”°. Telomeric DNA is progressively loss because ofincomplete replication,

degradation, oxidative stress, and other mechanisms95. Cellular proliferation is inhibited by

a replicative senescence checkpoint when telomeres become too short95l11. Telomerase, a

complex formed by a reverse transcriptase (Tert), a RNA component (Terc), and other proteins,

adds telomeric repeats to maintain telomeres”°. In general, telomerase is expressed in germ

and stem ceils, in ceils that undergo rapid expansion such as lymphocytes and keratinocytes,

frequently in tumor ceils, but rarely in somatic cells”°’11’. Telomerase expression in ceils

remains incompletely understood but, is in part regulated by diverse genetics and epigenetics

mechanisms”.

Undifferentiated ESCs possess telomerase activity”2. Terc-deficient ESCs proliferate

for up to 300 divisions similarly to control”2. These ceils then demonstrate impaired

proliferation from 300-450 divisions before they stop dividing (around 450 divisions)”2.

Correlating with the increasing number of divisions, telomere size decreases in Terc -

E$Cs”2. Moreover, metaphase spreads demonstrate an increased number of aneuploidies

and end-end chromosome fusions in Terc ESCs, likely causing the proliferation arrest”2.

In two independent Terc - ESC unes, rare subpopulations of celis resolve the proliferation

arrest, without re-expressing telomerase, while the controls did flot change in proliferation

status for two years”3. One of these ESC une continued to present diminution of telomere

sizes while the second une presented a stabilization, characterized by the addition of a

fragment containing both telomeric and non telomeric sequences on most chromosomes
(85%)113. Notably, following more than 650 divisions, both Terc - lineages contained celis

with abnormal karyotype, with 62-100% of chromosomes fuse&’3. This study shows that
E$Cs can proliferate extensively with massive cytogenetic anomalies, either in maintaining

their telomeres in a telomerase-independent fashion or by another unclear mechanism.

Upon ESC differentiation, telomerase activity is reduced”. The kinetics oftelomerase
expression during differentiation presents differences according to celi culture conditions
and has not been evaluated convincingly”. A study correlates rnTert expression, using
RT-PCR and a rnTert-GfP reporter randomly integrated in the genome, with telomerase

activity assessed by a TRAP-ELISA assay during embryoid bodies (EB5) differentiation”.

It would have been informative during this changing process, to correlate the expression of
telomerase with a marker of undifferentiated E$C (for example Oct4) to get a better idea of
the characteristics of cells presenting telomerase activities in this heterogeneous population.
Nevertheless, at day 4 of differentiation, ceils dissociated from EBs could be classified in

three subpopulations according to the GFP expression (mTert promoter) agreeing with the
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TRAP-ELISA assay high, intermediate, and undetectable telomerase activitym.

Mechanisms that allow telomere maintenance are different between ESC and

differentiated celis. For example, RteÏ (Regulator of telomere length) is a gene encoding

a helicase-like protein, identified as a candidate for the control of telomere sizes between
subspecies of mice (distal part of chromosome 2qJ95. Mouse embryos deficient in Rtel die
around E 10-1 1.5 from defects in tissues presenting rapid proliferation: nervous system, heart,
vasculature, and extraembryonic tissues95. In ESC, Rtel is found in the nucleus, but does flot
colocalize with telomeres95. Rtel’ E$Cs hardly recover from thawing, their telomeres are
smaller than control E$Cs (68% smaller), but they proliferate normally and have a normal
karyotype95. However, upon differentiation, the picture is completely different. Rtel’ EBs
are significatively Iess numerous and smaller than controls95. They have Iess ceils in S phase
(4% rather than 34% for EBs day3), have an increased celi death index, and have numerous
chromosome anomalies (end-end fusions, chromatid gap, cluster of joined chromosomes,
etc.)95. RteI regulates both the integrity of genornic and telomeric DNA in differentiated celis
by an uncertain mechanism that might involve the resolution of secondary G-rich chromatin
structure95. The phenotype of Rtel’ embryos is flot dependent on a functional p53 gene95.

Interestingly in undifferentiated E$C, Rf] promoter, a highly expressed regulator of
telomere length, is co-occupied by pluripotency associated transcription factors Oct4, Sox2,
and Nanog49.

1.8.5 Genetic and chromosome anomalies in ESCs: comparison with

somatic celis.

It was reported, from the limited analyses of two loci (Aprt and Hprtl), that the
frequency of spontaneous mutations in ESCs is significantly lower than in somatic cells’14.
Moreover, the type of mutations seen in undifferentiated ESCs differs from somatic cells”4.
Looking at ceils heterozygous for the Aprt locus (and hemizygous for the Hprt] locus because
located on the X chromosome), a team noticed that the loss of heterozygosity (8O% of
spontaneous mutation) in MEFs is caused by mitotic recombination while in ESCs it is mostly
due to chromosome loss and reduplication (non-disjunction, 57% ofthese events)114. Since
these results concemed only one autosomal locus (Aprt), located on mouse chromosome 8,
caution should be taken before generalizing because chromosome $ trisomy is commonfy
found in E$C”5. Morever, this anomaly gives a proliferative advantage to the ESC carriers

that rapidly take over the culture to the detriment of euploid cell&15.
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Nonetheless, this phenomenon has been suspected and used before by many researchers.

Fifteen years ago, ESCs targeted by a vector containing a Pgk-neomycin resistance gene

and maintained in increasing concentration of geneticin (G41 8) were discovered to present

homozygous alterations, while preserving an euploid karyotype’16. Initially tested on 4 loci,

the occurrence was estimated to happen at a rate of 1.3x10-5 per celi per generation”6. Since

then, this time-saving approach has been used numerous times, for different loci. From the

analysis of 6 loci targeted in such a way, distributed on four mouse chromosomes (2, 5, 10,

17), it was noticed that the regions involved in the loss of heterozygosity were extensive

and flot oniy localized around anchor sites’17. In fact, with the use of a limited number of

polymorphic DNA markers, gene conversion was discarded as the cause to the benefit of

mitotic recombination or chromosome loss combined with duplication117. No matter which

of the two last hypothesis is right (maybe both are right), it resuits in large chromosomal

regions ofuniparentai disomy”7.

Trisomies of chromosome $ and 11, the loss of chromosome Y (2% of ESC clones),

and other genetic anomalies have been detected in mouse ESC unes62’115. Accordingly, we

detected by cytogenetic and array-based comparative genomic hybridization (aCGH) analyses,

chromosome 1, 12, and 14 trisomies in addition to previously reported anomalies, either in Ri

ESC6’ clones containing a single proviral integration (primary clones, experimentsA-C), or an

engineered chromosomal deietion (tertiary clones) (Table II). These independent experiments

revealed inconsistency between genetic anomaly frequencies (Table II). Most of the primary

clones generated in experiment C demonstrated complex karyotypic anomalies, aithough

they were submitted to less genetic manipulations and in vitro passages than tertiaiy clones

(Table II). Half of the primary clones generated in experiment B were trisomic (Table II).

These analyses highlighted the preponderance of specific trisomies among others cytogenetic
anomalies, possibiy due to events that occurred during in vitro culture. For this, we designed

a real-time quantitative PCR (Q-PCR) strategy to rapidly screen for four different trisomies

(chromosome 1, 8, 11, and 14), according to our own experience and to the work of others

(Table II). These assays were conducted with genomic DNA extracted from 282 primary

clones (Table II, experiments D-F). Trisomies were suspected for 10-22% of these primary

clones, depending on the experiment (Tab]e II, experiments D-F). Chromosome 1, 8, 11, or
14 potential trisomies were identified in each ofthese experiments (Table II, experiments D

F). Occasionally, some trisomies were slightly more represented (e.g. trisomy chromosome

14, or 8 and 11 in experiment D or E, respectively) (Table II).
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Table II • Frequency of genetic anomalies detected in mouse ESC clones.

Number 0f clones with or without anomalies (percentage of clone analyzed)

No. 0f No. of
clones clones free Single Single Single Single Single Combina
analy- 0f Trisomy Trisomy Trisomy Trisomy Trisomy tion of Other
zed anomalies 1 8 11 12 14 Trisomies anomaliesd

Cytogenetic or aCGH analysis

Primary
9 7 (78%) 1(11%) 0 0 0 0 0 1(11%)

clones (A)

Tertiary
14 10(72%) 1(7%) 1(7%) 0 0 0 0 2(14%)

clones

ones(B)
8 3 (38%) 0 1(12%) le (12%) 1(12%) i (12%) 0 1(12%)

clones (C)
ii 1(9%) 0 1(9%) 0 0 Q 2g (18%) 7(64%)

QPCRc

ones(D)
96 (<90%) 1(1%) 3 (3%) 1(1%) 5 (5%) 0

clones
(E) 91 (<78%) 2(2%) 10(11%) 7(8%) 3(3%) 0

clone: (F)
95 (<80%) 3 (3%) 5 (5%) 3 (3%) 4 (4%) 5 (5%)

aprima clones contain one integration of a rephication-incompetent retrovirus (retrovirus Ai) and were

generated in independant experiements (A-F). bTertiary clones contain a chromosomal deletion induced by a
retroviral-based Cre-IoxP system. The anomalies observed were not present in parental clones from wich they
were derived (primary clones) and were not suspected to be induœd by the rearrangements, however, they

could be preserved as a compensatory event. dihe Q-PCR apporach was employed to pinpoint potential

trisomies of chromosomes 1 8,1114 but without assessement for other anomalies. dOther anomalies include
single or multiple losses of chromosome, gain or os: of genomic segments, but exclude only the loss of

chromosome Y. eAlSo loss of chromosome 10 and presence 0f a marker chromosome. 1Also presence of a

marker chromosome. 9One clone with trisomies of chromosome 8 and 14 and another clone with trisomies of
chromosome 1, 8,19 combined with additionnai anomalies. No., number; aCGH, array-based comparative
genomic hybridization; Q-PCR, real-time quantitative polymerase chain reaction.

Actually, it is flot clearhowthese mutations or aneuploidies are generated in ESCs. Some

of them are probably overrepresented or underrepresented, because they are advantageous

(for example, lead to increased proliferation1’5) or detrimental to the ESCs, respectively. The
reduced efficiency of the decatenation checkpoint for entangled chromosomes, observed in
ESCs, is one hypothetical cause100. Possibly the culture conditions also play a role (serum
batch, culture in presence or absence of MEFs, regular maintenance depending on the
experimenter, etc.).

An interesting observation was made concerning human ESCs (hESCs). hESCs
maintained by manual passaging, a technique using a pasteur pipette to break the colonies

in clumps of 10-100 cells, can preserve a stable karyotype for more than 100 passages200.
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However, if they are dissociated with a non enzymatic (ce!! dissociation buffer) or an
enzymatic (collagenase followed by trypsin) method, they acquire genetic anomalies in 25
passages or !ess (two hESC unes tested)200. These anomalies usually correspond to trisomies
of chromosome 12 and 17, but also of 14, and sometimes an additional chromosome X is
observed200. It would be of interest to look for the presence and the synteny of known or
candidate regulators of seif-renewal located on mouse and human chromosomes associated
with ESC trisomies.

1.8.6 Concluding remarks

With the increasing interest regarding the therapeutic potential and the biological
properties of pluripotent stem celis (ESCs, germ ceils, etc.) and somatic stem celis
(hematopoietic, neuronal, etc.), long-lasting dogmas should be reconsidered about ceil cycle
checkpoints and the incidence of chromosomal instability in these ceils. from our perspective

and experience on these points, a lot of information found in the literature or intuitively
taught concems somatic ceils and excludes ESCs.

1.2.7 Methods

Table II summarizes unpublished and published information related to genetic
anomalies detected in mouse ESC clones. Primaiy and tertiary ESC clones were generated as
described inthe manuscriptpresented in Chapter 2118. Cytogenetic (spectral karyotypingSKY)
and aCGH analyses will be detailed in Chapter 2; and Q-PCR assays in Chapter 3.
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PART III: INTRODUCTION TO RETROVIRUSES

Retroviral gene transfer is a commonly used methodology to deliver DNA to target

celis. This approach, apparently predictable and simple, hides in fact the amazing and complex

biology of retroviruses. Because of this paradox, structural characteristics and the natural

life cycle of typical retroviruses wiII be reviewed in this section. Then retroviral vectors

as well as packaging and transduceable ceils will be discussed. Considerations regarding

the use of retroviruses and packaging celi lines will be highlighted and further discussed in

Appendix II. Finally, retroviral integration will be introduced because it is central to the

work presented in this thesis.

1.8.9 Structural characteristics

Retroviruses are provided with an extemal envelope and a dipÏoid genome consisting

of RNA. In a sophisticated process, this genome is reverse-transcribed in double—stranded

DNA and ultimately integrated into a host ceil genome. The viral RNA contains at least four

coding domains: gag,poÏ, env, and pro”9 (Figure 1-8). Gag encodes matrix proteins, capsid

proteins, and nucleoproteins”9. Fol encodes enzymes: the reverse transcriptase and the

integrase”9. Env and Pro are responsible for the viral envelope proteins and the protease,

respectively”9. Simple retrovintses possess a genome organized as described above, whereas

complex retroviruses have additional coding domains”9.

The size ofa replication-competent retrovirus genome is in the range of 7-12 kilobase

pairs”9. By partially or totally removing the viral sequence from the replication domains

mentioned previously (e.g. gag, poï, env and pro), space is created to accept other coding

sequences that can be transduced by the virus, given that the lost fiinctions are provided in

trans by an external replication-competent retrovirus (e.g. helper virus) or integrated inside a
packaging cell une (in the form of a provirus or integrated plasmids). The first tactic is used

naturally by oncogenic viruses while the second has been developed by researchers to create

a new gene transfer tool.
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Figure 1-8 General structure of a simple replication-competent retrovirus.

In the integrated provirus, transcription is directed by the enhancer/promoter in the U3 region of

the 5’LTR (long terminal repeats). Gag,pro,poÏ, and env encode essential proteins necessary

for virion assembly and maturation (e.g. packaging functions). Env proteins are translated

from a spliced transcript. Gag proteins and Gag-pro-pol precursor polyproteins (produced

by ftameshift or translational read-through) are translated from full length transcripts. fuli

length transcripts also serve as viral genornic RNA and are encapsidated because of their

encapsidation sequence (i). CAP, RNA 7-methylguanosine cap; PBS, transfer RNA-binding

site; PPT, polypurine tract; SD, spiice donor site; SA, splice acceptor site; F5, frameshifi site;

pA, polyadenylation signal. Adapted from Coffin JIVI., et al., 1997119.

5’LTR 3’LTR
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1.8.10 Retroviral life cycle

Glycoproteins at the surface ofretrovirus mediate the attachment to receptors located

on the plasma membrane, which precede the viral entry (nucleoproteins core) by membrane

fusion either at the cell surface or in internalized endosome&20. This interaction is specific

and determines the retrovirus tropism. Once in the cytoplasm, viral core uncoating occurs

by a uncertain mechanism and the reverse transcriptase allows the transcription of the single
stranded, positive-sense, viral genomic RNA in double-stranded DNA119’121. Ihe components

of the reverse transcriptase complex vary according to the virus studied, but in the case
of Moloney murine leukemia virus (Mo-MLV) includes the viral genome, the reverse
transcriptase, the integrase, and the capsid proteinst21. The reverse transcription process
involves sequences located at the extremity of the viral RNA: the transfer RNA-binding

site (PBS), the polypurine tract (PPT), and the LTRs (long terminal repeats containing
three regions: U3-R-U5)119 (Figure 1-8). Once the double-stranded DNA is formed, the
protein complex is refened to as the preintegration complex (PIC)121. In ifie case of Mo
MLV, it includes the viral DNA, the viral capsid proteins, the viral integrase, and possibly
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additional cellular proteins121. PICs need to reach the nucleus probably by using the cellular

cytoskeleton for displacement’21. PICs are large complexes, larger than the nuclear pores,
exciuding that they enter the nucleus by a passive mechanism unless they enter afier the

nuclear membrane breakdowns at mitosis121. The viral DNA gets integrated permanently

into the host genome. The integration process will be described in an upcoming section

(1.8.15). An integrated retrovirus is referred as a provirus. This entity is transcribed by
host RNA polymerase II and replicated as part of the cellular genome120. Transcription is
regulated by the cellular machinery interacting with the promoter in the LTR’19. Both spliced
and unspliced mRNA taud full length viral genomic RNA) are formed (Figure 1-8) and
exported from the nucleu&20. Translation of viral proteins occurs in the cytoplasm and is
mediated by cellular ribosomes119. Viral proteins and full length RNA assemble together at
the ce!! periphery, virions are released by budding ofthe p!asma membrane, and subjected to
maturation induced by viral and cellular proteases119. At least for Human inmiunodeficiency
virus (HIV-1), different host-derived proteins are encapsidated in the virions120. Some might
be trapped in a random manner, but others seem specifica!!y recruiteW20. These are suspected

to play a role during the viral life cycl&20.

1.8.11 Properties of retroviral vectors

1.8.11.1 Structure of a basic retroviral vector

Some elements, refened as cis-acting vira! elements, are necessary to conduct the
retrovirus !ife cycle and must be preserved in the vector design. In the LTRs, they include:

the vira! promoter and the poiyadenylation signal (U3 and R regions, respectiveiy) for
generation of the fuil-iength viral transcript, direct repeated regions (R) for transfer during
DNA synthesis, and partiaily inverted repeats (attachment sites corresponding to U3 and U5
terminal sequences) for the integration’19”22 (Figure 1-9a). Outside ofthe LTRs, the PB$ and
PPT sites are required for DNA synthesis while the packaging (w) and dimerization signais
are necessary for encapsidation of RNA into virions (Figure 1-9a)9”22. Since the vira!
genome consists of RNA, it is primordial to avoid introducing a po!yadenyiation signal (pA)
in forward orientation.

To express multip!e proteins, different strategies have been used: alternative sp!icing,
interna! promoters combined to viral promoter in the LTR, internai ribosoma! entry sites
(IRES: allows cap-independent translation120) or fusion proteins”9.
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Figure 1-9 Structures of retrovïral vector plasmids, proviruses, and transcripts.

(a) The vector can carry a transgene, driven optionally by an internai promoter (Pro). In the
packaging celis, transcription is directed by the enhancer/promoter in the U3 region of the
5’LTR (U3-5’LTR, pink) and by the internai promoter. In the cytopiasm ofthe target ceils,
during reverse transcription, the U5-5’LTR (green) becomes the template for the U5-3’LTR
and the U3-3’LTR (blue) is the one for U3-5’LTR. Consequentiy, the provirus in target
ceils contains two identicai U5 (green) and U3 (blue) regions. LTR, long terminal repeats;
PBS, transfer RNA-binding site; N’. packaging signai; PPT, polypurine tract; CAP, RNA 7-
methylguanosine cap; pA, polyadenylation signal. (b) For SIN vector, the enhancer/promoter
is mutated in the U3-3’LTR (A gray) while preserving it in the U3-5’LTR (pink). foliowing
reverse transcription, the rnutated U3 is found in both LIRs, aboiishing transcription.
Transgene is expressed from an internai prornoter.

a Replication-ïncompetent retrovital vector

5LTR 3LYR

Transcripts in

_____________ ______

packaging ceils and

tt

‘I
pA and cAp—IPro-transgeneI-iU3IRI— pA

b SIN replication-incompetent retroviral vector

IU3IRIU5I P’S ‘‘ Protransgene_EEL i IRIU5I

Transcripts in

_____________ ______

packaging cel]s and CAP_ProtransgeneJfftJ IRP

Transcript in
target celis IRI-M

following integration, under specific circumstance, the inactivation of the virai
promoter can be desirabie (e.g. to reduce effects from the viral enhancers/promoters,
transcription from the 3’ LTR, etc.). This can be achieved by creating a seif-inactivating (SIN)
vector which relies on the process of reverse transcription (Figure 1-9b). During the flrst
round ofviral replication, both U3 regions are derived from the sequence found in the 3’ LTR
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and both U5 regions from the 5’ LTR, respectively”9. A popular approach to produce a self

inactivating vector is to delete the enhancer/promoter in the U3 region of the 3’ LTR (in the

plasmid). In the original plasmid construct, a functional enhancer/promoter in the U3 region

ofthe 5’ LTR is preserved in order to direct the viral transcription in the packaging celis. This

is necessary for virions assembly and release in the culture media. However in the target

ceils, during the process of reverse transcription, the mutated enhancer/promoter present in

the 3’ LTR serves as a template for the one in the 5’ LTR and as a resuit, viral transcription

is abolished (or decreased) in both LTRs of the provirus. In this situation, expression of

transgene(s) is achieved by the used of intemal promoters. Other considerations regarding

the design of viral constructs will be discussed in Appendix II.

1.8.11.2 Embryonic stem celi viral vectors

Retroviral expression occurs in limited or broad variety of ceil types, depending on

positive and negative interactions between cellular proteins and the viral enhancer/promoter

region (U3 region) or the 5’ untranslated leader sequence123 (Figure 1-8). Epigenetic

modifiers are also involved in the regulation of viral expression124”25. ESCs are refractory

to the expression of Mo-MLV and associated vectors, therefore, an alternative retrovirus

was generated: Murine embryonic stem cell virus (MESV)’23. MESV combines changes in

two elements that prevent Mo-MLV expression in ESCs’23”26. The first change was to use

the LTR of PCMV (PCC4-cell-passaged myeloproliferative sarcoma virus) which presents

seven point mutations in its enhancer region compare to Mo-MLV, fiirther refined to a single

essential point mutation required for expression in E$Cs’26. Secondly, the 5’ untranslated

region (UTR) leader sequence was exchanged for the one of an other virus (del-5$7rev virus)

to delete an inhibitory region present in Mo-MLV’23. $oon afier, the ME$V served as a

template to create the Murine stem cdl virus (MSCV) featuring an extended packaging

signal, all replication genes replaced by a neomycin gene driven by an intemal promoter

(Pgk-1) downstream of a multiple cloning site to subclone genes of interest’27.

1.8.12 Properties ofthe packaging ccli une

1.8.12.1 Principles ofa packaging ccli une

The role of the packaging ceil line is to assist the production of virions by providing

the cornplementary replicative functions that were deleted from the viral genome. for many

applications, the engineered retroviruses are replication-defective and precautions are taken in
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the packaging ceil une to preserve this state and to prevent the transmission ofthe replicative

fiinctions. To reduce the risk ofgenerating replication-competent retroviruses. which is though

to occur by homologous recombination, the packaging functions are integrated separately in

the genome of the packaging celis (e.g. gag-pol and env separated on two plasmids) and

depleted as much as possible of other retrovirus-related sequences (e.g. packaging signal,

LTR, etc.)2$29. Although the principles are simple, flot ail celi line can become an efficient

packaging ceil une. Some ceil une produces factors that interfere with the viral ceil cycle’22.

Some proteins like APOBEC members, evolutionary conserved in vertebrates’30, are

possibly among these factors. Human APOBEC3G is a cytosine-deaminase protein that is

incorporated inside HIV- 1 virions, causing detrimental hypermutations during the process

of reverse transcription’30. HIV- 1 virions deficient in Vif (virion infectivity factor) do flot

propagate in APOBEC3G expressing cells because one role of Vif is to target APOBEC3G

for proteasome degradation (thus reducing its incorporation inside virions)’30. Additional

mechanisms governing the viral restriction by APOBEC family members are suspected since

inhibition is observed with retroviruses, other viruses and retrotransposons ‘3’

1.8.12.2 Tropism and pseudotyping

The host range (tropism) of a retrovirus depends on the envelop proteins (encoded by

env) which recognize specific receptors at the plasma membrane surface oftarget cells. Using

diverse packaging cell lines, it is possible to substitute the env coding domain corresponding

to the vector viral type by the env corresponding to another retrovirus, a practice called

pseudotyping. This strategy allows to change the tropism and/or to increase the stability

of the envelop proteins (e.g., V$V-G pseudotyping), property that can be advantageous for

experimentations.

1.8.13 Transduceable celis

Even if murine retroviruses can enter in target cells, they require ceil division in

order to access the nucleus, thus restricting the range oftransduceable cells’19. Lentiviruses

(for example HIV-1) can infect both dividing and non-dividing celis because the PIC can
activeiy go through the nuclear pore by a poorly understood process’2’. Other retroviruses

present an intermediate ability to cross the nuclear membrane’32. No matter the strategy

used by retroviruses to reach the nucleus, it is thought that both viral and cellular proteins are

necessary for the process121. In some case like HIV-1, it seems to involve additional non

protein elements like the central PPT (viral DNA sequence) and a cellular tRNA121.
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Additionally, various mechanisms restrict the viral ccli cycle, which are probably

different according to the target ccli invofved. For example, the cellular TRIM5Œ protein

inhibits virus replication by acting at the level of uncoating’20. In fact, hundreds of ceilular

genes are suspected to be modulators of retroviral infection120 in addition to host-encoded

miRNAs’33.

1.8.14 Helper viruses, satellite viruses, and satellite RNA

Packaging ccii lines are living factories for designated retroviruses, but at low
frequency, they aiso produce other undesirable entities. These products can be formed by

multiple ways: recombination or read-through transcript at the cellular level; and at the

viral level, recombination during the reverse transcription process involving foreign virai or

cellular RNA co-encapsidated with the viral genomic RNA, etc.134-’37.

One of these undesired products is a helper virus. The helper virus is replication

competent and allows the encapsidation ofreplication-defective retroviruses by providing the

expression ofthe missing replication functions. This type of virus is rarely detected from up

to-date packaging ccli unes because the packaging functions are spiit and retrovirai sequences

are avoided as much as possible. Nevertheless, different testing methods exist for heiper

viruses. These are based on the mobilization and scoring ofa repiication-defective retrovirus

(e.g. expressing a selectabie marker gene, a fluorescent gene, or the bacterial f3-galactosidase

gene, etc.). Detection of heiper viruses is routinely performed in many laboratories.

Satellite virus and satellite RNA are replication-defective-like retroviruses, with the
distinction that the former encodes the env proteins while the latter does not. As they can be

propagated in combination with a heiper virus, they can also be propagated by a packaging

ccli une. Testing for such viral products is not obvious; particularly for satellite RNAs

since they do flot contain PCR-detectable replication functions. They stay imperceptible

unless specific testing is designed for each of them. Unfortunateiy, each of them is a long

undeflned list. There are situations where an abnormal phenotype observed in target celis is
suspected to be caused oniy partially by the retrovirus of interest or totaliy by something cisc.
The following, non exclusive, doubtftil situations are exampies: the abnormal phenotype is
observed at low frequency or the provirus of interest is flot present or constantiy rearranged
or flot expressed. Again, a mobilization experiment can be performed in the target ceils,
hoping that they wiil behave as suitable packaging ccli unes when transduced with packaging

functions. The goal is to verify if “the abnormal phenotype” is transmissible to other target
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celis. If this is the case, the intact provirus of interest must be found. Otherwise, concerns

must be raised. Human packaging ceils were generated to replace their murine counterparts,

hoping that they contain fewer endogenous retroviral genomes and express fewer viral-like

RNAs, preventing or reducing the generation ofunwanted viral products’29 (before genomes’

sequencing). However, from our work and the one of others, human packaging ceil unes are

also able to transmit retroviral-like particles (see Appendix II).

Most of these products are possibly inoffensive, while others could behave as

oncogenic viruses. In addition, they ail share ffie property of integrating in the host genome,

risking insertional mutagenesis at low frequency. These possibilities should be evaluated

while analyzing resuits implicating the use of retroviral vectors-packaging ceil lines and

their potential application for gene therapy. Nevertheless, even with these low probabilities,

retroviruses are an invaluable tool for many research areas.

1.8.15 Retroviral integration

1.8.15.1 Preferentiat sites of retroviral integration

It is thought that viral DNA needs to be anchored to cellular chromatin prior to

the integration and that this interaction probably occurs with the help of cellular proteins

that differ according to the virus type120”21. Suspected cellular mediators are: the lens

epithelium-derived growth factor (LEDGF), emerin (nuclear envelope protein), the banier

to-autointegration factor (BAF), the lamina-associated polypeptide 2Œ (LAP2Œ), and other

unknowns120’121. In addition, possible chromatin features modulate the accessibility ofthe

PIC to host genomic DNA’38. For example, centromeric heterochromatin seems a region

disfavored for integration138.

Integration site preferences vary according to the retrovirus and the target ceils

studied and do not seem to be very sequence-specific, although some conserved palindromic
sequences can sometimes be observed’39. From genome-wide annotation of retroviral

integration sites in human cells, it was observed that preferential integration (flot exclusive)

was in active transcription units for HIV-1 and near transcription start sites and CpG islands

for MLV138. Avian sarcoma-leukosis virus (ASLV) shows random integration138. From

retroviral integration site surveys, using viral chimeric molecules where the HIV- 1 coding
domains of integrase and gag were replaced by MLV related sequences, it appears that the

integrase plays a dominant role for the preferential integratio&39. The gag-encoded proteins



51

might also participate in this bias by an unclear mechanism139.

1.8.15.2 Molecular mechanism of retroviral integration

Concerning the integration at the molecular level, the viral integrase cleaves and

binds attachment (aU) sites in the extremities of LTRs’22. In addition, the enzyme removes

two nucleotides at the 3’ ends of viral DNA prior to ligating them 4-5 bases away from 5’

cut-ends of host genome, creating two small gaps because of unpairing’19”38. Cellular DMA

repair machinery fus the gaps while creating target sequence repeats on each side of the

provirus (4 or 5 bp for MLV or HIV-1, respectively)122’139.

1.8.15.3 Determination of retroviral integration sites

Various methodologies allow the determination of retroviral integration sites. In

the case of recombinant retroviruses, some approaches use plasmid rescue. For example,

a bacterial origin of replication combined to a selection marker gene like ampicillin can be

introduced in the vector backbone33. Extracted genomic DMA is linearized by an enzyme that

cuts once in the vector but many times in the genome33. Following circularization, ifie plasmid

can be recovered in bacteria, containing both a part ofthe vector and host fianking genomic

sequence33. Sequencing and mapping allow the determination ofretroviral integration sites.

Another method is based on the complementation of a truncated kanamycin resistance gene

present in a plasmid, by adding a part of a neomycin gene incorporated into genomic DMA

by a vector, again isolating a piece of flanldng DMA140. For the determination of wild-type

or recombinant retroviruses integration sites, many PCR techniques are available’41. One of

them is the inverse-PCR (I-PCR) and since it is the methodology used in our experiments, a

description can be found in the following figure (Figure 1-10).
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Figure 1-10 I-PCR allows the determination of retroviral integration sites.

ta) The genomic DNA (blue) containing a provirus is digested with an enzyme that either

cut outside ofthe provirus or once in the provinis. (b) The cleaved DNA is circularized in
conditions that improve intramolecular ligation (low DNA concentration, large volume of
ligation)’41. (c) A set of PCR primers is designed to recognize known vector sequences and

are directed outward in order to amplify flanking DNA. (d) A second round of PCR, with

nested primers improves the specificity ofthe product recovered. (e) The PCR product can

be sent directly for sequencing following purification or subcloned first in a plasmid.
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AIM 0F THE THESIS

The primary objective ofthis thesis is to identify stem celi fate regulators using a Cre

loxP recombination system delivered by retroviral gene transfer in mouse E$Cs.

The first part of the introduction described the context and the reasons that drove the
design ofa screen based on chromosomal deletions, with the novelty ofrelying on compatible

retroviruses to introduce the lox? sites in the genome (see Table I fora summary). The second

part ofthe introduction presented the advantages ofmouse ESCs for both in vitro and in vivo

studies, highlighting the relevance ofthis experimental model for functional genomics. The

last part of the introduction reviewed the principles behind retroviral gene transfer.

Appendix II and Chapter 2 describe the retroviral system optimization and the validation

of chromosomal engineering in ESCs, respectively. Chapter 3 presents the generation of a

library of ESC clones containing deletion and its exploitation in genome-wide ftmctional

screens. Chapter 4 exposes perspectives and potential applications ofthe methodology.



Chapter 2 APPLICATION 0F A NEW RETROVIRAL

$Y$TEM TO CREATE CHROMO$OMAL

DELETIONS IN ESCs

Chapter 2 is a published article describing the optimization of a new retroviral-based

system to create chromosomal deletions in mouse ESCs. As opposed to other Cre-loxP

strategies previously employed to create deletions in E$Cs, the proposed methodology has

the notable advantage ofnot requiring homologous recombination to deliver lox? sites. The

technique was studied on eleven genomic loci and several nested deletions were obtained.

Three regions altering the capacity of E$C to differentiate in vitro were discovered. In

vitro observations correlated with in vivo analyses performed by generating chimeric mice

with engineered ESC clones. The work presented in Chapter 2 created the building blocks

of Chapter 3 (generation of a libraiy of E$C clones containing deletion and preliminary

functional screening). The novel system described in this chapter is in fact a tool that could

be used in other interesting ceil lines, such as tumorigenic cell lines. Potential applications

of this methodology will be exposed in Chapter 4. Mélanie Bilodeau did most of the work

regarding Chapter 2, helped by collaborators as mentioned in the following sections: Author

contributions and Acknowledgments.
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2.1 Author contributions

Mélanie Bilodeau performed ail the experiments and the analyses described herein,

except for I-PCR and two Southem blots (Supplementary Figure 2-4g,h) (Simon Girard),

SKY and fISH analyses (Josée Hébert). aCGH experiments and chimeras production were

conducted by the services mentioned below (see Supplementary Methods section). Mélanie

Bilodeau wrote the manuscript, prepared ail the figures, and performed the experiments under

Guy Sauvageau guidance.

2.2 Abstract

Chromosomal deletions, as a genetic tool for functional genomics, remains

underexploited in vertebrate stem celis mostiy because currently available methods are too

labor intensive. To address this, we have developed and validated a set of complementary

retroviruses that creates a wide range of nested chromosomal deletions. When applied to

mouse embryonic stem ceils (ESCs), this retrovirus-based method generated deletions ranging

from 6 kb to 23 Mb (average 2.9 Mb), with an efficiency of 64% for drug -selected clones.

Importantly, several engineered E$C clones, mostly those with large deletions, showed major

alteration in ceil fate. In comparison to other methods that have also exploited retroviruses

for chromosomal engineering, this modified strategy is more efficient and versatile because

it bypasses the need for homologous recombination and thus can be exploited for rapid and

extensive functional screens in embryonic and adult stem ceils.

2.3 Introduction

Capitalizing on the reliability of Cre/ÏoxF-based recombination, a group previously

reported the generation of nested chromosomal deletions in mouse ESCs by sequentially

delivering two loxP sequences into the genome, followed by Cre-mediated excision of

the chromosomal region between the ÏoxP sites. In this approach, the first lox? sequence

was introduced into a particular locus of choice by homologous recombination using a

targeting vector which included a non-functional “split” Hprtl cassette36. The second

loxF and compÏementary Hprt] sequences were delivered using retroviral gene transfer36.

Cre-mediated recombinants were selected in RAT medium following reconstitution of

the functional Hprtl mini-gene36. While this method significantly improved our ability to

generate high-resolution sets of nested deletions around a targeted locus, its extension to
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several other loci remained labor-intensive and precluded large-scale fiinctional screens in

ESCs. Moreover, by its nature, this rnethod was limited to celis permissive to homologous

recombination thus exciuding most mammalian celis. Here we sought to overcome these

limitations and elected to develop a strategy that would strictly rely on the use ofreplication

defective retroviruses while exploiting the Cre-loxP recombination system and reconstitution

ofa functional neomycin (neo) cassette for selection of recombination events. The first loxF

sequence is delivered using a vector that we refer to as the anchor virus, and the second by a

saturating virus (Figure 2-la,b).

2.4 Resuits

2.4.1 Selection of anchor and saturation proviruses

From a series of 10 different retroviral constructs consisting of 5 anchor (no. Ai-AS:

Supplementary Figure 2-3) and 5 saturation viruses (no. $1 -S5: Supplementary Figure

2-3), we selected viruses Ai and Si based on the criteria listed in Supplementary Figure

2-3. As depicted in Figure 2-la, chromosomal deletions are expected to have occurred in

geneticin resistant (G4 1 8R) clones that have lost both puromycin (puro) and hygromycin

(hygro) resistance genes. for a more detailed description ofthe approach and ofthe vectors

tested, readers are referred to the thesis’ Appendix II.

Using retroviral preparations adjusted to provide gene transfer to mouse Ri ESCs <

1%, we first confirmed that most clones infected with virus Al and selected on puromycin

(thereafier called primary clones) had a single integrated provirus (data not shown). Eleven

randomiy selected puromycin resistant (puroR) clones were expanded and infected, in 1 to 4

independent experiments (A to D) per each clone, with low titer Si virus to generate series

of hygromycin-resistant (hygroR) populations with a complexity of 20,000 independent

secondary clones (Supplementary Table V). Following Cre electroporation, we observed

G418’ recombinants (thereafier called tertiary clones) for each of the li primary clones

analyzed with an average frequency of 2.5 + 2.2 x 1 0 (details in Supplementary Table V).

Expected Cre-induced rearrangements between the integrated Al and $1 proviruses were

verifled by Southern blot analyses for several tertiary clones derived from each of the ii

families (see representative in Figure 2-ic and Supplementary Figure 2-4). No spontaneous

G4 1$ resistance was ever observed in the absence of Cre expression. Confirmation of a

productive rearrangement leading to the expression of the neomycin gene was obtained for

a series of tertiary clones where a single messenger RNA of -l .0 kb was detected (Figure
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2-ld). Fragments corresponding to the recombination junctions (Pgk-ÏoxP-neo) were also
PCR-amplffied from representative G4 1 8’ tertiary clones and sequenced, confirming the
expected breakpoint (n= 5 clones selected in 4 families, flot shown).

Figure 2-1 Cre-induced chromosomal rearrangements in mouse fSCs.

(a) Representation of the recombination between Al and Si proviruses. Foilowing Cre
transfection, the coupling of the Pgk-ATG in Si to the neomycin (ATGless neo) gene in
Ai aliows the selection of recombinants. Deletions are identffied by the concomitant losses
of puromycin (puro) and hygromycin (hygro) resistance genes. Symbols are detaiied in
Supplementary Figure 2-3. (b) Cartoon of nested deletions sharing the same endpoint
(virus Ai). (c) Southem blot analysis ofDNA isolated from selected clones documents the
integrity of provirus Al (3.4 kb) and $1 (2.9 kb) and their successful recombination (Al-$1,
3.0 kb). Clonai diversity is shown in the 2 bottom panels. 1°, 2° and 3°: primary, secondary
and tertiary clones, respectively. S, sensitive; R, resistant. Unmodffied blots are presented in
Supplementary Figure 2-4. (d) Neomycin resistance gene expression in presence (lanes 3-
15 and 17) or absence (lanes 2 and 16) ofCre treatment. Note: the 1-kb transcript is indicated
by an asterisk in a. (e) CGllAnalyzer’42 representation (middle) linked to the chromosomal
localizations of confirmed deletions (Ensembl Karyoview’43, lefi) for selected clones in
family 9. Red lines represent nested deletions for the indicated clones. Spectral kaiyotyping
for selected clones (right). Scale bars: 10 tm. Â, Ai anchor site; Si proviral integration
site of selected deletions confirmed by I-PCR (À) or aCGH (). (f) Size distribution of
confirmed deletions in indicated families. Dots and strokes represent independent deletion
and average deletion size per family, respectively.
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2.4.2 Evaluation of chromosoma] deletions

Among the different chromosomal rearrangements obtained, deletions were screened

by testing for the concomitant loss of puromycin (puros) and hygromycin (hygros) (see

Supplementary Tabie V for frequencies of puros and hygroS clones) which occurred in 9

of the 11 families. Inverse-PCR (I-PCR), array-based comparative genomic hybridization

(aCGH), and spectral karyotyping ($KY) were employed to confirm deletions in several

tertiary clones from $ of these 9 different families and to assess the genomic integrity of the

altered ESCs Figure 24e, Table III and Supplementary Figure 2-5). The size distribution

ofdeleted DNA fragments varied according to the family studied (Figure 2-1f and Table III),

ranging between 6 kb to 23 Mb, with an average of 2.9 ± 5.2 Mb. Interestingly, as noticed

with tertiary clones derived from family 9, deletion sizes did flot follow a normal distribution

since they either ranged in the scale ofkilobase pairs (6 to 317 kb, n$ independent deletions)

or megabase pairs (4.2 to 5.0 Mb, n=3 independent deletions) (Figure 2-1f and Table III).

On average, I-PCR-confirmed deletions included 21 ± 46 genes, 15 * 2$ CpG islands, 1689

± 3283 spliced expressed sequence tags (ESTs) and O + 1 microRNA (Table III and data not

shown). The frequency of clones with deletion that were free of other rearrangement was

0.71 (Table III) thus indicating that the frequency ofvaluable deletions in a pool ofG41$’

colonies was 0.15 (O.26_frequency of puros clones x 0.9_frequency of puroS hygroS clones

x 0.9ftequency of deletions confirmed out of the puroS hygros clones with independent

rearrangements x 0.7 1_frequency of deletions without other reanangement, confirmed by

aCGH/SKY). This frequency ofdeletions is probably an underestimation since we excluded

from the analysis a subgroup of clones that showed ambiguous sensitivity to puromycin or

hygrornycin (puro hygro). DMA analyses suggested that these puro hygro cells
represented at best a minor fraction of our G4 1 8R colonies since, most of the time, we could

not detect a signal to these genes in the selected clones (Supplementary Figure 2-4).

It was thus possible to engineer large chromosomal deletions for most ofthe regions

tested in our study. Two anchor sites inprimary clones no. 12 and no.15, respectively located on
chromosome X and 11, were not permissive for deletion. This might suggest the proximity of
a haplolethal determinant for ESCs or the presence ofphysical constraints, such as chromatin
structure, preventing recombination between loxP sites oriented for deletions.
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Table III • Characteristics of independent deletions confirmed by I-PCR and

aCGH

Tertiaiy Size of No. of No. of No. of
clone Data Chromo- Start End deletions Refseq spliced CpG aCGH Genomic

i& source some coordinate coordinate (kb) genes ESTs islands confirmation anomalyb

l-03 t-PCR 14 22165099 23710534 1545 17 1080 14 (+) (-)
1-13 I-PCR 14 22165099 44937742 22773 206 14400 126 (+) (-)
4-2 l-PCR 2 167486681 168900222 1414 19 1819 30 nU. nU.

6-36 I-PCR 17 26955839 27622141 666 13 1272 14 (+) (+)d

7-30 1-PCR 16 35918443 36011960 94 3 155 1 () (-)
9-31 l-PCR 1$ 57155985 57162362 6 0 0 0 nU. n.d.

9-107 l-PCR 1$ 57155985 57166502 10 0 0 0 n.d. n.d.

9-71 I-PCR 18 57155985 57174937 19 0 0 0 n.d. n.d.

9-17 I-PCR 1$ 57155985 57174941 19 0 0 0 n.d. ()d

9-68 I-PCR 1$ 57155985 57175174 19 0 0 0 nU. n.d.

9-29 I-PCR 18 57155985 57177486 22 0 0 0 n.d. n.d.

9-35 I-PCR 1$ 57155985 57179077 23 0 0 0 (+) (-)
9-90 I-PCR 1$ 57155985 57473132 317 2 114 4 (+)e

(+)I

9-104 I-PCR 18 57155985 61338307 4182 20 3289 18 n.d. (+)
9-37 1-PCR 18 57155985 61468765 4313 21 3419 20 (+) ()d

9-18 l-PCR 1$ 57155985 62204954 5049 32 4726 27 (+) t-)
10-18 l-PCR 16 59749084 65165857 5417 12 481 10 (+) t-)
10-21 l-PCR 16 57307345 65165857 7858 51 1371 22 t) (
13-34 aCGH 4 78266064 82222600 3956 14 792 10 t+) f-)
14-16 l-PCR 2 156503387 157071542 568 9 869 8 t+) (-)

t—)
average 2914 21 1689 15 frequency:

0.71

SD 5244 46 3283 28

Mapping and deletion analyses were donc using the UCSC Genome Browser thttp://genome.ucsc.edu/, NCBI mouse Build 33).
‘Tertiary clones are labeled according to their family number tsame integration of virus Al), followed by a specific id number. 1f
more than one clone presented a redundant rearrangement within the same group infected with virus SI, only one is reported for
clarity. bAnonaly that tvas not present in the primary clone from which the tertiary clone tvas derived, as determined by aCGH or
SKY. (-), no anomaly; (+), additional anomaly. eThe deletion is not observed, in agreement with the resolution ofaCGH. dNormal
except for ihe loss of chromosome Y. Amplification of chromosome 1. Amplification of chromosome8. Many chromosomes
were lost according to SKY. hAmplification on chromosome 14. lU, identification; kb, kilobase pairs; no., number; aCGH, array
based comparative genomic hybridization; SK’sÇ spectral karyotyping; 1-PCR, inverse-PCR; n.d., not determined.

2.4.3 Interchromosomal recombination events

Interchromosomal events are expected to give single loss ofpuromycin or hygromycin,

or conservation of both resistance genes, but flot their concomitant losses’44. In the course of

the aCGH and SKY analyses, we unexpectedly observed 2 inter-chromosomal rearrangements

from a group of 22 puros hygros clones (believed to represent deletions), one of which is a

confirmed transiocation (clone 14-27: t(2;16)) (Supplementary Figure 2-6). A possibility

that could account for this phenomenon is the loss of a chromosome (for example the loss
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of the recombined chromosome bearing the puromycin and hygromycin resistance genes

originating from recombination in G1 or in G2 with Z-segregatio&45), accompanied by the

duplication ofthe homologous chromosome114 (Supplementary Figure 2-6).

from a subgroup of 190 tertiary clones selected for further analyses, eight showed

sensitivity to either puromycin or hygromycin and represented seven independent

rearrangements as assessed by clonai analysis of proviral integration. 0f these seven

clones, two contained productive (that is, confirmed by I-PCR analysis) transchromosomal

rearrangements (that is., 2-03 and 14-32, Supplementary Figure 2-6). Interestingly, the

frequency of single loss ofpuromycin varied according to the family, showing highest values

for family 4 and 14 where the anchor virus was located close to the telomeric ends of the

chromosome 2 (Supplementary Table V).

Together, these resuits suggest that recombination events in trans occur at higher

ftequency for particular loci, but also at Iow ftequency in the puros hygros clones, further

highlighting the importance of complementary analyses (e.g., SKY) for these types of

studies.

2.4.4 In vitro and in vivo differentiation of recombined clones

To gain insights into the potential of our approach to generate clones that can be

utilized in a functional screen in vitro, 43 tertiary clones from 9 families were selected to

cover a wide range cf deletion sizes (from 6 kb to 23 Mb) and differentiated into embryonic

bodies (EBs) for identification of phenotypic anomalies (Supplementary Table VI and

selected examples in Figure 2-2a,b). One third (3/9) ofthe families studied contained clones

which showed major differentiation anomalies, representing 11% (5/43) of our sample size

(Supplementary Table VI). Clones in families’ no. 1 and no. 9 are particularly interesting

since they cover a wide range of deletions (Supplemeutary Table VI) and only clones with

larger deletions show phenotypic anomalies. for example, clone 1-03 included a 1.5 Mb

deletion and differentiated normally while clone 1-13, with a 23 Mb deletion, failed to

differentiate in vitro. The coi-relation between deletion size and phenotype is more striking

for family 9 where all $ clones having less than a 31$ kb deletion show normal in vitro

differentiation while 3 cfthe 3 clones with greater than 4.1 Mb deletions failed to differentiate.

Reinforced by the observation that most of these clones lacked additional DNArearrangement

as assessed by aCGH and SKY analyses (Table III), these resuits argue against other genetic

events being responsible for these phenotypes. Additional evidence to support this argument
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includes the interesting observation that most of the clones with differentiation anomalies

(e.g., 9-104) show EB formation at low frequency. In this clone 9-104, we conducted fISH
analysis using a BAC probe corresponding to the deleted region of chromosome 1$. This

analysis revealed that 94% and 6% of undifferentiated 9-104 celis showed one versus two
signais, respectively. However, among the rare differentiated ceils derived from this clone,

60% dispiayed 2 signaIs (see Figure 2-2e for example). Clonai analysis of DNA extracted

from these rare differentiated cells confirmed their origin from clone 9-104 (see Southem blot

in Figure 2-2c), ruling out possible contaminants as an explanation for this complementation.

This low frequency of revertants is consistent with the chromosomal instability observed in
E$Cs115 and confirmed by the extensive aCGH and SKY analyses reported herein. Most

importantly, this observation documents the low ftequency of spontaneous revertant thus
strengthening the argument that differentiation is dependent on the presence of the deleted

fragment.

Consistent with the in vitro results, the ESCs from tertiary clone 9-35 (23 kb deletion,

normal phenotype in vitro) contributed to the generation of chimeric 14.5 dpc fetuses and to

viable newborn mice with an overall proportion of 75% and 30%, respectively (3/4 at E 14.5

and 3/10 at birth and adulthood; Table IV). Sixty-seven pups, derived from crosses between
two chimeric males (—75% and 40% coat color chimerism) and C57BL/6 females, were
genotyped for the transmission ofthe engineered allele. Germ-line transmission of these ESCs
was documented by coat color analysis in 3 pups although the perpetuation of the deleted

chromosome was flot documented in any of the 67 pups. 0f interest, embryos injected with
ESCs from clone 9-1 $ (limited potential to differentiate in vitro, Figure 2-2a) showed a high
mortality rate at 14.5 dpc (46% viable, Table IV) with undetectable ES-derived contribution

(DNA analysis and coat color) evaluated in six 14.5 dpc fetuses and in 31 adults (Table IV,

Figure 2-2d-e and data flot shown). Thus, within the limit of these anaiyses, there is a good
correlation between the EB formation cornpetency in vitro and contribution to chimerism in
vivo for our deleted E$C clones. These results also document that a subgroup ofESCs which
have undergone our procedures remain competent for the creation of chimeras thus paving
the way to use this strategy for in vivo studies.
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Figure 2-2 In vitro and in vivo differentiation of ESC clones with deletions.

(a) Day 7-8 embryoid body (EB) formation (mean ± s.e.m.) of parental Ri E$Cs, primary

clone no.9 and selected tertiary clones. n=i-4 experiments as indicated. *Low ftequency of

EB formation is observed with 10- YOOX higher seeding density. (b) Examples ofday 7-8 EBs
generated for selected clones. Scale bar: 250 jim. (c) Fluorescence in situ hybridization (fI$H)

using BAC RP23-109P21 as a probe. Note the relative signal distribution in undifferentiated

(lefi panels) and in differentiated (right panels) celis. Green signais were enhanced using
Adobe Photoshop CS imaging tool to repticate visualization on LCD monitor. Scale bar: 10
Jtm. Recombination and clonai analyses (KpnI and BglII restriction enzymes, respectively)

ofDNA extracted from indicated ESCs (ES) and EBs. (d) Pictures of 14.5 dpc fetuses. Scale
bar: 2 mm. (e) Southern blot analysis (BgÏII restriction digests; neomycin (neo) probe) or
PCR studies ofgenomic DNA extracted from the indicated ceils. These inciuded ESC clones
9,9-35, 9-18, Ri control and 14.5 dpc chimeric fetal iivers (upper panel), heads (lower panel)

or hematopoietic colonies derived from fetal liver ceils (numbers shown between upper and

iower panels). Note the absence of contribution for clone 9-i $ to the chimeric fetuses. For
“e” and “e”, unmodified biot are presented in Supplementary Figure 2-7.
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Table IV • Chimera analysis

Reimplantation Fetus 14.5 dpc Mice

No.
No. No. fetus Proportion Proportion neonates Proportion

embryos observed/ normal ofchimeric observed/ ofchimeric
ESC clone implanted expected (%) fetu&’ expected mice”

no.9 173 19/32 89 10/18 56/141 7/52
no.9-35 36 7/8 100 3/4 11/28 3/10
no.9-1$ 67 15/16 46 0/6 31/51 0/31

aAccording to Southem blot or PCR analysis ofDNA or eye pigmentation analysis. bAccordjllg to
coat color analysis. No., number; dpc, days postcoitum; %, percentage.

2.4.5 Discussion and Conclusions

In this study. we have developed a system, entirely based on retroviruses, to engineer
chromosomal deletions in the genome of mammalian ceils. Since this technology relies on
a pair of complementary retroviruses to deliver loxP sites, it bypasses the laborious step of
homologous recombination, considerably accelerating the creation of large deletions that

can easily be mapped through I-PCR. Ten different viruses were tested before an effective
pair was identified. We have validated the functionality of this system through the analysis
of 11 different families including several independent clones and provided evidence for
an efficiency of deletions nearing 64% for clones that are selected based on sensitivity to
puromycin and hygrornycin. We also show that the average deletion in these clones is —2.9

Mb in size thus suggesting that a complexity of 1 O primary clones could cover a haploid
genome in the mouse, providing that our anchor virus shows no preference for integration.
A better estimate of the number of prirnary clones necessary to cover the mouse genome will
be available when a larger collection of deletions is mapped around several anchor sites,
allowing to take into consideration the preferential retroviral integration sites, the presence
ofhaploinsufficient regions detrimental to ESCs, and finally the physical constraints such as
chromatin organization that might affect the efflciency of Cre-loxF recombination.

The rnethod described in our paper complements other fiinctional genomics strategies
applicable in mainmalian cells9’14’20’35”46”47. Although certain limitations of the proposed
method rernain to be determined (integration of retrovirus in gene-poor regions in ESCs,
epigenetic changes in long-term cultured ESCs, ability to produce homozygous deletions

using high G418 concentrations17), our procedure should easily be amenable to high
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throughput screens. We suspect that our complementary viruses and deletion strategy will be

particularly useful for functional screens that involve cells which show poor frequencies in

homologous recombination (e.g., human E$Cs) and to identify fragments of DNA involved

in tumor progression.

2.5 Methods

Retroviral constructs. We generated the Al retroviral construct Qlasmid no.1647)

by inserting both a loxP-ATG-less-neo’ PCR cassette from pPNT’48 and a SV4O early mRNA

polyadenylation signal (pA) fragment from pDsRed2-N1 (Clontech) into pRETRO-SUPER149

linearized by XhoI-EcoRI (blunt) as indicated (Supplementary Figure 2-3). For Si virus

(plasmid no. 1643), a Pgk-kozac-ATG-LoxP fragment was placed in reverse orientation to a

Hygro cassette in HpaI-linearized MSCV vector in which the neoR gene was removed.

Inverse PCR, sequencing and mapping. 0.5 ug of genomic DNA was linearized

with 20 U ofa restriction enzyme, in a total volume of 20 u!. Either EcoRi or Stul (Invitrogen)

was used for the primary clones and BstEII (Invitrogen) or the double digest BglII-BamHI

(Invitrogen) for the tertiaiy clones. Afler ethanol precipitation in presence of 0.5 ul of linear

polyacrylamid carrier150, DNA was resuspended in 24 ul of HPCL grade water (J.T. Baker).

4u1 of this linear DNA was put aside to be used as the PCR negative control and 20 ul was

circularized using the T4 DNA ligase (Invitrogen, 4 U in a total volume of 45 ul, incubated

overnight at 16°C). The ligated product was precipitated with ethanol (and carrier) and

resuspended again in 24u1 ofHPCL grade water. The first PCR round was carried out using 4u1

ofligated DNA, iX PC2 reaction buffer (AbPeptides), 0.25 mM ofeach dNTPs (Invitrogen),

2 mM MgC12, 20 pmo! of forward and reverse primers (BioCorp), SU of KlenTaq LA-16

DNA polymerase15’ (Mix 15:1 of Klentaq 1 from AbPeptides and Pftt from Stratagene), in a

total volume of 50 ul. PCR was performed in a Perkin Elmer Termocycler using the following

parameters: 2 min at 94°C for one cycle, 20 sec at 94°C_30 sec at 63°C_15 min at 68°C for

10 cycles, 20 sec at 94°C_30 sec at 63°C_15 min at 68°C with a 20 sec auto-extension for 20

cycles and finally, an extension of 30 min at 68°C. The PCR product was diluted 1:10 000

to 1:50 000 and used in a second PCR round with nested primers. The same settings were

employed but with the annealing temperature at 65°C. For both primary and tertiary clones, the

PCR primers for the first PCR round were (longNEO-F2) 5’-tggccgcttttctggattcatcgactgtgg-

3’ and (long-NEO-R) 5’ -aagcggccggagaacctgcgtgcaatc-3’. The second round of PCR was

done with primers (longPgk-R) 5’-ggcgcctaccggtggatgtggaatgtgtg-3’ and (long-NEO-R) for

primary clones, and with (longPack-R) 5’ -ggcggatggaggaagaggaggcggagg-3’ and (longPgk
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R) for tertiary clones, respectively. PCR products were separated on 0.2% agarose gel and

purified with the QIAEX II Gel Extraction Kit (Qiagen). Fragments were subcloned in

pBluescript (Stratagene, T3 and T7 sequencing primers) or sequenced directly using one

of the nested primers. $amples were processed using a dideoxy chain termination method

and the 373 OXL DNA Analyzer system (ABI), at the Genome Quebec Innovation Center

(McGill University, Montreal, CA). Mapping and deletion analyses were done using the

UC$C Genome Browser (http://genome.ucsc.edu!, NCBI mouse Build 33)152153. Ensembl

Genome Browser was used for schematic representations of deletions (http://www.ensembl.

org/index.html, v.32-Jul 2005)143.

Additional methods. Description ofpCX-Cre plasmid, celi culture, viral production

and transfection, RNA and DNA analyses, aCGH, spectral karyotyping and FISH, chimeras

production, equipment and settings is available in Supplementary Metliods.

Accession codes. Gene Expression Omnibus (GEO): GSE6706.
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Generation of retroviral vectors. (a) Anchor and saturation viruses carry a loxP site ()
together with the selector genes as indicated. (b) Table showing the tests conducted to select
the best viruses for our recombination system. Only virus Ai, Si, and S2 were suitable for
our system. See Appendix II for more details about characterization.

2.7 $upplementary Figures

Figure 2-3 Generation of retroviral vectors.

Anchor viruses Symbols

Al

A3

A5Pgkpurone03LTR

Saturation viruses

SlygroO1N6d3LTR

S2 Tygro3LTR

S3TGhygro3LTR

S4 Pgk-ATGygro-IRES-tk3LTR

S5Pgk-ATGPgkhygro3LTR

I: translation initiation codon mutated
Hygro: hygromycin resistance gene
IRES: internai nbosomal entry site
LTR: long terminal repeat
Neo: neomycin resistance gene
pA: polyadenylation signal
Pgk: murine phosphoglycerate kinase

promoter
Puro: puromycin resistance gene
SIN: long terminai repeat bearing s deletion

in the U3 region
Tk: herpes simplex tymidine kinase gene

Table of the tests conducted in ES cells for the selection 0f retroviruses
Frequency of Undesired

Packaging rearranged Selected G4l8R Selected
Viruses ceil unes proviruses yeslno freguency yeslno

Anchors
Al GP+E-86 0.1 yes— <0.0001—’ yes
A2 GP+E-86 02 yes— 0.01—’ no
A3 GP+E-86 1.0 no
A4 293GPG 0.7 no
A5 GP+E-86 0.1 yes—. 1.0—. no

Saturation
51 GP+E-86 <0.1 yes
S2 GP+E-86 <0.1 yes
S3 GP+E-86 n.d.’ no
S4 293GPG 0.9 no
S5 293GPG 0.9 no

Frequency 0f provirus rearrangement evaluated by Southern blot analysis cf genomic
DNA extracted from infected ES celi clones and-or from a polyclonal population. Virus
S3 did not fected ES cells properly. Frequency evaluated by G418 (geneticin)
selection of ES cell clones and-or cf a polyclonal population infected by an anchor
virus N d nnt datermined

a

b
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figure 2-4 Cre-induced recombination between integrated proviruses.

Cre-induced recombination between integrated proviruses. Southern blot analyses of
DNA extracted from different ESC clones, infected sequentially with viruses Ai and Si,
and electroporated with Cre vectors, from families 1, 2, 4, 6, 7, 9, 10, 12, 13, 14 and 15.
Clones sharing the same anchored (Ai) provirus (i.e., families) are grouped. Legend and
abbreviations as for Figure 2-1. pAl and pSi, plasmid corresponding to virus Al and SI
respectively.
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Figure 2-5 Display showing confirmed chromosomal deletions in ESCs.

Display showing the chromosomal deletions confirmed in ESCs. (a-g) CGflAnalyzer
representations (right panel) linked to the chromosomal localization of confirmed deletions
(Ensembi Karyoview, left panel, http://www.ensembl.org/index.html, v.32-Jul 2005) for
the indicated families. Red unes represent nested deletions. À, anchor site; A, proviral
integration site of a deletion confirmed by inverse PCR; Z’, proviral integration site of a
deletion suggested by aCGH. Numbers above CGHAnalyzer representations correspond to
the parental E$Cs (Ri), primary (1°) clones and tertiary (3°) clones.
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Figure 2-6 Evaluation of interchromosomal recombination events.

Evaluation of interchromosomal recombination events. (a) Table compiling rearrangements
expected to have occurred in trans. (b) Clone 14-3 2 contains an unbalanced transiocation
t(2; 16), as shown by aCGH and spectral karyotyping (SKY). (c) Schematic representation
of transchromosomal rearrangements occurring when retroviruses are located on non
homologous chromosomes, in G1 or G, ccli cycle stage (see next page).

a

Confirmed or suspected recombination events in trans
Sensitivity Virus AI integration Virus SI Integration

Virus Virus Conhrmed
Chromo- Start End onentation Chromo- Start End orientation or

Teftary clone ID Puro Hygro some coordinate coordinate (strand +1-) some coordinate coordinate (strand +1-) Suspected

2-03 S R 5 63019373 63,019748 (+) 19 6,920,757 6,921,025 C-) n.d. C
4-03 S R 2 167,486,315 167,486,681 (+) n.d. n.d. n.d. n.d. SKY S
4-09 S R 2 167,486,315 167,486,681 (+) n.d. n.d. n.d. nd. n.d. S
g-36 R S 18 57,155,297 57,155,985 (+) n.d. n.d. n.d. n.d. n.d. S
940 R S 18 57,155,297 57,155,985 (+) nU. nU. nU. n.d. n.d. S
9-62 S S 18 57,155,297 57,155,985 (+) 18 77,983,26077,983,459 t-) SKY and aCGH S

14-01 and 14-39 S R 2 156,503,302 156,503,387 )+) n.d. nU, nU, nU, aCGHb
14-27 S S 2 156,503,302 156.503,387 (+) 16 16,998,336 16,998,873 )+( nU. C
14-32 5 R 2 1565o3,307156503,387 (+1 16 16,998,336 16,998,899 (+) SKY and aCGH C

CIones showing rearrangement redundancy are on the same lane. 5aCGH only for 14-39. ID, identification; Puro, pummycrn; Hygm, hygromycin;
S,sensitive; R, resistant; n.d., flot determined.

b Example: tertiary 14-32
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Figure 2-7 Full—length gels and blots.

Full-length gels and blots. ta) full-Iength blot from Figure 2-2c. Recombination and clonai
analyses (KpnI and BglII restriction digests, respectively) of DNA extracted from indicated
ESCs and EBs. RI, parental ESC line (negative control). (b) Full-length gels and blots from
Figure 2-2e. Southem blot analyses ofDNA extracted from undifferentiated ESCs (clones
9, 9-35, 9-18 and Ri control), livers (f.L.) or heads ofchimeric fetuses at 14.5 dpc. BglII
restriction digests combined to a neomycin (neo) probe were used to visualize the contribution
ofthe clones 9 and 9-35 to chimeric fetuses whereas no contribution was observed for 9-18,
both in the livers and in the heads.
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2.8 Supplementary Tables

Table V • Summary of the Cre-mediated recombination around 11 randomly chosen

1 14 22164853 22165099 (+) N

2 5 63019373 6301974$ (+) N

4 2 167486315 167486681 (+) N

6 17 27622141 27622184 (-) N

7 16 36011960 36012543 (-) N

9A 1$ 57155297 57155985 (+) Nb

9B

9C

9D

10A 16 65165857 65166035 () Ae

10 A

105

12 X 40497593 40497726 (+) n.d.

13 4 83558072 83558421 (-) AU

14 2 156503302 156503387 () N

15 11 68627686 68627918 (-) n.d.

loci

Virus Al integration

Virus

Introduction ofthe virus Si

orien
Chro- tation
mo- Start End (strand

Clone id some coordinate coordinate +1-) aCGH

Infec
tion effi- Estimated no. Frequency of Nom-ber
ciency Estimated ofcolonies G41$’1 ofclones fre

(%) diversity’ after cre colonies5 ana-lyzed quency

3 8.OE+03 2.2E+05 8.5E-04

4 I.6E+04 4.2E+05 1.4E-04

5 I.1E+04 3.OE+05 1.7E-04

2 7.OE+03 2.5E+05 61E-04

5 1.2E+04 2.9E+05 1.7E-04

5 1.8E+04 3.4E+05 5.9E-05

5 1.6E+04 2.7E+05 2.0E-04

4 1.5E+04 2.9E+05 1.8E-04

5 1.6E+04 2.9E+05 2.5E-04

6 2.6E+04 l.SE+05 3.3E-05

6 2.6E+04 4.2E+05 8.3E-05

6 2.6E+04 1.2E+05 1.5E-04

3 I.IE+04 3.IE+05 1.8E-04

10 3.8E+04 4.SE+05 2.7E-04

3 1.3E+04 3.6E+05 2.4E-04

7 3.8E+04 3.3E+05 21E-05

42 0.48

48 0.54

31 0.42

47 0.36

31 0.23

5 0.60

10 0.50

18 0.17

45 0.22

5 0.00

34 0.18

18 0.05

32 0.03

48 0.23

48 0.29

7 0.00

Sum 469

Avera-
5 1.8E+04 3.IE+05 2.5E-04

ge 0.26

SD 2 I.OE+04 8.7E+04 2.2E-04 0.18
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Hygro
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Analysis of Puro R clones (74% of
clones)

I HygroR I Hygro5

Part 11

Number of
clones

analyzed by
S.B. (no. of

Clone md. rearran
id gements)

5(2)

2 5(3)

4 6(6)

6 5(1)

7 5(1)

9AC 6(4)

9B 11(4)

9C 6(3)

9D 11(2)

Type of
rearrangement_ no. of
clones confirmed and
(md. rearrangements)

deletion3 (2)

Hygro?

Type of
rearrangements_ no.
of clones confirmed
and (md.
rearrangements)

translocationl (1)

uncertain2 (2)

Fre
quency

1.0

0.8

0.7

1.0

1.0

1.0

F re
quency

O

0.2

0.3

O

O

O

Number of
clones

analyzed (no.
ofind.

reanangeme
nts)

o
O

O

O

O

2”

n.d.

deletionl (1)

deletioni (1)

deletion3 (1)

deletion4 (4)

deletion2 (2)
uncertaini (1)

1.0 deletion3 (3)

1.0 deletion_2 (2)

Fre-quency

n.d.

nU.

n.d.

n.d.

n.d,

fre-quency

nU.

nU.

nU.

n.d.

n.d.

os”

O

O

0.07

O

O 18” 1.0”

0 15 (8) 0.93

5 (4)

O O

0 13(10)

10A O

IOA 4(1) 1.0 deletion2(1)

10 B 1(1) 1.0 deletionl (1)

12 0 nU. n.d.

13 6(4-5) 1.0 deletionl (1)

14 5 (4) 0.4
deletionl (1)
translocationi (1)

n.d15 0 n.d

1.0 0

nU. n.d.

1.0 0

1.0 06 (3)nU. nU.

o

06
translocationl (I)
uncertain_2 (1)

n.dnU,

o n.d. n.d.

O n.d. nU.

4(2-3) 1.0 0

Sum 76 71

Avera

ge° 0.9 0.1 0.97 0.01

SD 0.2 0.2 0.05 0.03

‘pOG23 t cre plasmid employed rather than pCX-cre; these populations were excluded in average analyses. “Also tested by SKY:
8 mitoses 40,XY and 4 mitoses 39,X,-Y out of 15 anaiyzed. ‘Trisomy chromosome (chr) 1. dAmplification and deletion on chr 4,
position 52-76 Mb and an amplification of 7Mb at tIse telomeric end of chromosome X. Normal except the loss ofa BAC on

chr 2, position 1M Mb. ‘Sec tise Supplementary Methods section for the calculation. 5No. of G4l 8’ colonies obtained / no. of
colonies afiercre electroporation. “Determined by functional testing. ld, identification; A-D, labels of populations mndependently
infected with tise virus 51; SE., Southern Blot analysis, no., number; md.. independent; G418 R geneticin resistant; PuroS0P,

puronlycin sensitive or resistant; Hygro5 orR hygromycîn sensitive or resistant; %, percentage; N, normal; A, abnormal: n.d., not
determined; SD, standard deviation; Mb, megabase pairs.
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Table VI • In vitro differentiation of primary and tertiary clones carrying deletions.

Deletion size Phenotypic analysis andone I
(kb) (no. of experiments)

Primary 1 0 N (n1)

1-03. 1-08, 1-24. 1-36 1 545 N (n=I-2 for each)

1-13 22773 A(n3)

Primaiy 2 0 N (n’1)

2-10, 2-22, 2-48 n.d. N (n1 for each)

2-41 n.d. N (n’l)

Primaiy 4 0 N (n2)

4-02 1414 N(n=1)

4-2$ nd. N (nl)

Primaiy 6 0 N (n1)

6-02, 6-10, 6-23, 6-28, 6-36 666 Nh (nl for each)

Primary 7 0 N (n1)

7-19, 7-27, 7-36, 7-30, 7-37 94 N (n=1 for each)

Primary 9 0 N (n5)

9-31 6 N(n’l)

9-107 10 N(n1)

9-17,9-71 19 N(n=1)

9-68 19 N(n=1)

9-29 22 N (n1)

9-35 23 N(n=1)

9-90 317 N(n=1)

9-104 4 182 A(n=3)

9-37 4313 A(n’4)

9-18 5 049 A (n=5)

Primai)’ 10 0 N’ (n’2)

10-1$ 5417 N(n=1)

10-21, 10-23, 10-31, 10-35 7858 Nu (n=’l for each)

Primary 13 0 N (n3)

13-11 nU. N (n’2)

13-1$ n.d. N (nl)

13-42 nU. N (n=3)

13-34 3 956 N (n2)

13-24 n.d. A (n4)

Prirnary 14 0 N (n1)

14-16 568 N(n’l)

‘Clones showing a redundant rearrangement are grouped together. hTwo clones were normal and
three did not present a sufficient number of embryoid bodies (EBs) for phenotypic analysis. ‘BBs
were smaller in size than normal. UEBS had outgrowths. lU, identification; kb, kilobase pairs; no.,
number; N, normal differentiation; A, abnormal differentiation,
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2.9 Supplementary Methods

Construction of pCX-Cre plasmid. The coding sequence ofCre (XhoI-MÏuI blunted

fragment from pBS 185, Invitrogen) was subcloned in the EcoRI site (blunted) of pCX

EYfP’54 (a gifi from A. Nagy, Samuel Lunenfeld Research Institute, Toronto, CA), replacing

EYFP.

Ccli culture. Male Ri E$Cs6’ (provided by A. Nagy, Samuel Lunenfeld Research

Institute, Toronto, CA) were grown on inadiated DR-4 mouse embryonic fibroblasts (MEFs

made from DR-4 mouse strain’55) or on gelatin coated dishes, in a media (DMEM high

glucose with L-glutamine and pyruvate (Invitrogen), 15% fetal caif serum (Invitrogen), 1.5

x 1 0’ M a-monothioglycerol (Sigma) and 1x1 0- M non-essential amino acids (Invitrogen))

supplemented with 1000 U m1’ of ESGRO (Chemicon) or leukemia inhibitory factor tUF,

conditioned media from transfected COS celis). Serum replacement (Invitrogen) was used

for extended growth period on gelatin. The number of ESCs replating was estimated by

counting the colonies included in 0.09 cm2 areas (n=3 minimum). ESCs were differentiated

into embryoid bodies as described’56, afier one passage or more on gelatinized dishes. Briefly,

single celI suspensions (between 5x103 - 5x105 ceils) were plated on bacterial-grade 35 mm

dishes without LIF (IMDM (Sigma), 15% fetal calf serum (HyClone), 5% serum-ftee and

protein-free media for hybridoma culture (Invitrogen), 2 x i0- M L-glutamine (Invitrogen),

50 ug/ml ascorbic acid (Sigma) and 3xlOE4 M a-monothioglycerol).

Viral producer ccii unes and infection of target ceils. Retroviruses Al, A2, A3,

A5, Si, S2 and S3 were generated with the GP+E-86 ecotropic packaging cell une’28 and
maintained as described’57, except for the linearized constructs (DraI) that were directly

transfected into the producers using lipofectamine. Hygromycin (Roche, 200 ug ml-1) or
puromycin (Sigma, 1.8 ug m1’) selection was started on day 2 and maintained throughout

the expansion in HXM media’28. One passage prior to the infection, selection was stopped
and celis were maintained in the presence of 10% newborn calf serum (NCS, Invitrogen) in
DMEM (Invitrogen). Twenty-four hours before infection, producers’ media were changed
for complete ESC medium. Twenty-four hours infections were carried out using 4ug ml-’
of polybren (Sigma). Fresh media was added the next day and selection started 4$h afler
infection (1.5 ug ml1 puromycin and 150 ug m1’ hygromycin for ESCs). Numbers ofESC
colonies surviving selection were estimated and compared to the one inferred for the replating,
in order to calculate the percentage of infection. Viral titers were kept low to ensure low

infection rate and to minimize chances of multiple integrations. For ESCs infected with 51,
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the total number of colonies surviving hygromycin selection corresponded to the estimated

integration diversity since the cells were flot spiit. A4, S4, and S5 were VSV-G pseudotyped

retroviruses produced by the amphotropic packaging celi une 293 GPG’29, as previously

described1

Cre-induced recombination in ESCs. 10 ESCs were transfected with a cre

plasmid. Ceils were resuspended in $00 ul of ESC media and electroporated with 25 ug of

supercoiled pCX-cre or pOG23 using 225 V and 950 uF or 230V and 500 uF parameters,

respectively. Afier a 20 minutes incubation at room temperature, celis were distributed on

3 dishes (100 mm) covered with irradiated MEFs. For every set of electroporation, at least

one population similarly received the supercoiled pCX-EYFP’53 (225 V, 950 uF), acting for

both as an electroporation control and a negative control for G4 1$ selection. 2 x 106 celis of

the population no.9A, no.YOA, and no.YOB (?: 9 x104 colonies for each) were also used as a

negative control for selection. Forty-eight hours after electroporation, the replating efficiency

was estimated and G4 1$ selection started at 300 ug m1’. At that time. electroporation

controls showed? 50% ofYfP positivity under the UV microscope. 7-9 days later, colonies

were counted (to determine the frequency of G41 $‘ colonies), isolated in 96-well plates,

and expanded in 24-well dishes before freezing. G41 $ selection was maintained throughout

the expansion. fractions of these clones were put aside on gelatin coated plates and tested

functionally for the losses of puromycin and hygromycin, or used to extract DNA or RNA.

DNA and RNA analysis. Genomic DMA was isolated using DNAzo1 and total cellular

RNA with Trizol, according to the manufacturer instructions (Invitrogen). Southem Blot and

RNA analyses were performed as described previously’58.

aCGH. aCGH was performed at the Microarray and Genomics Facility of the

Roswell Park Cancer Institute (Buffalo, NY). Because the Ri ESCs have a XY genotype,

the hybridizations were mainly carried with XX genomic DMA since the sex-mismatches

provided internai controls. Occasionally. XY control genomic DMA was employed (samples:

Ri, i-03, 9-1$, 9-37, 9-90, 14-16). Deletions or amplifications were detected when adjacent

BACs in the array presented a Log2 ratio -0.5 or ? 0.5, respectively. For viewing

and comparison analyses of aCGH data from multiple clones, we used a modified version

of the CGHAnalyzer’42. This version was adapted to support mouse data and the use of

local instances of publicly available database (kindly modified by Jean-Philippe Laverdure,

BioneQ-Réseau québécois de bio-informatique, Université de Montréal, CA). aCGH data

were submitted to the GEO database (www.ncbi.nlm.nfh.Qov/geo/)’59.
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Spectral karyotyping and F1511. Spectral karyotyping and FISH analyses were

conducted by The Quebec Leukemia Ceil Bank under the supervision of J.H. (http://www.

bclq.gouv.qc.ca/, Maisonneuve-Rosemont Hospital, Montreal, CA).

Chimeras’ production. Mouse chirneras were generated by the transgenic facility

ofIRIC. ES celis (129/Sv x 129/Sv-CP f 1)61 corresponding to primary clone no.9, tertiary

clones 9-35 (no in vitro phenotype) and 9-1$ (with in vitro phenotype), were injected into

C573L/6 blastocysts. ESCs from primary clone no.9 were also aggregated with CD1

morulas. Chimeric mice derived from primary clone no.9 (2 females with —75% of coat color

chimerism) and 9-35 (2 chimeric males with 75% and ‘—40% of coat color chimerism) were

bred with C57BL/6 mice to assess germ-line transmission ofthe engineered alleles (tested by

PCR specific to the junction of virus Al and the anchoring locus, or by PCR specific to the

neornycin gene). F ifty-eight and sixty-seven pups were genotyped from each set of crosses,

respectively.

Equipment and settings. We scanned blots and gels using a Duoscan T1200

AGFA scanner and the AGFA FotoLook 3.60.00 software (200 or 300 d.p.i.). We adjusted
brightness and contrast and assembled the panels in Adobe Photoshop CS version 8.0 (Adobe
Systems Incorporated). We reduced the images in Adobe Illustrator CS (Adobe Systems

Incorporated).

For spectral karyotyping (SKY), we used a microscope (Axioplan 2 Imaging, Zeiss)
equipped with a 63X / 1.40 immersion objective (Plan-Apochromat, Zeiss) and filters (Sky

filter #1, DAPI and Cube filter, Zeiss). Images were acquired with a multi format CCD camera

(C4$80-80, Hamamatsu) and capture software (version 2.3, Spectral Imaging). Analyses

were done with complementary software (Sky View version 1.61, Spectral Imaging).

For embryoid bodies (EBs) visualization (Figure 2-2b), we used an inverted
microscope (Axiovert 25, Zeiss) equipped with a 5X / 0.12 (A-plan, Zeiss) and 2.5X / 0.075
(Plan-Neofluar, Zeiss) objectives, for Ri and primary clone no.9 samples, respectively. We
set the camera to 4X magnification (G5, Canon). These pictures were 8-bit depth (RGB).
For tertiary 9-3 5, we acquired the image with a microscope (DMJRB, Leica) equipped with
a 1OX / 0.30 objective (HC PL Fluotar, Leica), under darkfiled illumination. The camera
(Retiga EXi, Qlmaging) was equipped with a color module and link to an acquisition software
(Northem Elite version 6, EMPIX Imaging Inc.). This image was 16-bit depth (RGB).
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for fI$H (Figure 2-2c), we employed a microscope (Axioskop 2 plus, Zeiss) with a

100X I 1.30 immersion objective (Iris Plan-Neofluar, Zeiss) and different wavelength filters

(DAPI, fITC, TRITC, Cy3, Zeiss). Images were taken with a camera (CCD-CE-4912-5010,

Applied Imaging), captured and analyzed with the same software (Cytovision version 3.6,
Applied Imaging).

for fetus images (Figure 2-2d), we used a stereornicroscope (MZFLIll, Leica) coupled

to a 0.63X lens (Planapo, Leica) with iX magnification. The camera (Micropublisher 3.5,

Qlmaging) was linked to the acquisition software (Northern Elite version 6, EMPIX Imaging

Inc.). These images were 8-bit depth (RGB).

Calibration of each microscope was performed using a ruler or a micrometer

microscope siide.



Chapter 3 CREATION 0F A LIBRARY 0F

ENGINEERED ESC CLONES $UITED FOR

FUNCTIONAL ASSAYS

Chapter 3 is an article in preparation (early phase), describing a team effort to generate
a library of ESC clones containing deletions located broadly across the mouse genome. The
strategy used to create these deletions was detailed in Chapter 2. Hopefttlly, this resource
will be available for the scientific comnninity in the coming rnonths, following further
characterization. These ESC clones were used to conduct preliminary screens (proliferation,
differentiation) revealing interesting haploinsufficient regions. Mélanie Bilodeau participated
to the project supervision, including the rnethodology elaboration, the team training, and
technical preparation. In addition, Mélanie Bilodeau largely contributed to generating the
resuits and their interpretation. Contribution of each author will be rnentioned in the Author
contributions’ section.
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3.1 Author contributions

Experirnents were designed by Mélanie BiÏodeau, Nancy Ringuette, and Guy
Sauvageau with the help of others. Valeria Azcoitia, Jana Krosl, Simon Girard, Mélanie
Bilodeau, and Nancy Ringuette generated tertiary ESC clones. Tara MacRae, Mélanie
fréchette, and Nadine Mayotte supported E$C culture. Mélanie Bilodeau, Nadine Mayotte,
Jalila Chagraoui, Tara MacRae, Valeria Azcoitia, Simon Girard, and Guy Sauvageau
performed fiinctionai screens. Jean Duchaine and Pierre Chagnon were in charge ofrobotic
celi culture and Q-PCR, respectively. Simon Girard determined retrovirai integration sites
by inverse-PCR. Tara MacRae extracted DNA and performed Southern blot analyses. Jean
Philippe Laverdure generated the database. The manuscript was written by Mélanie Biiodeau
under Guy Sauvageau supervision. Mélanie Biiodeau, heiped by Valeria Azcoitia and Jean
Philippe Laverdure, generated the tables and figures containing the team work, under Guy
Sauvageau supervision.

3.2 Abstract

Using a previously described retrovirai-based Cre-ÏoxF system that efficiently creates
haploid genomic deletions in mammalian ceils, we now report the generation of a collection
ofESC clones containing nested chromosomaÏ deÏetions predicted to cover between 10-15%
of the mouse genome. Except for the Y chromosome, proviral integrations were broadly
distributed on ah chromosomes indicating that our ability to functionaiiy explore the ESC
genome has not reached saturation. We screen this celÏ iibrary containing over 1200 clones for
phenotypes pertaining to celi survival, proliferation, and ability to differentiate into selected
lineages such as hematopoiesis. We have identified the presence of several haploinsufficient
regions for ail the properties anaIyzed. Together, this collection ofESC clones with annotated
phenotypes and chromosornai deletions (ongoing) is available in a centralized repositoiy and
compiled in a database accessible to the scientific community. Both these biological and
bioinformatics resources will serve the scientific community for annotating coding and non
coding regions ofthe mouse genome.
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3.3 Introduction

We have previously developed a retroviral-based Cre-lox? system that can be exploited

to efficiently create haploid chromosomal deletions in mouse embryonic stem ceils (ESCs)’18.

Most of the limited number of engineered ESC clones that were generated within this initial

effort were competent in various differentiation assays and for the generation of chimeric

mice118. We have also identified a significant subgroup ofE$C clones whose differentiation

was dominantly affected by the deleted chromosomal fragments thus indicating that several

loci (or their combined deletion) are haploinsufficient. This observation is consistent with

that of two genome-wide chemical screens performed with mutagenized mouse male gonads

which showed an estimated frequency of dominant mutation at around 2%22,23. Based on

recent estimation that approximately 600 mouse protein-coding genes (2.5%) could be

imprinte&6° and that E$Cs and their corresponding differentiated progeny demonstrate

imprinting marks42’161’162, it is tempting to speculate that several haploid deletions generated

in these celis are ftinctional correspondent of hemizygous nuil alleles. Notably, Prader-Willi

and Angelman syndromes are both associated with chromosomal deletions and imprinted

gene dysregulation’63’164.

Details about the potential ofour approach and its applicability to large scale functional

screens are provided in Chapter 1 (see section 1.3-1.4 and Table I) and Chapter 2. In briefand

towards this goal, our approach shows the following advantages/characteristics: i) Anchoring

of ÏoxF sites is achieved by retroviral gene transfer rather than by gene targeting. Thus,

the creation of a large library of ESC clones with chromosomal deletions can be achieved

within 3-4 months including an initial in vitro functional screen; ii) the nested deletions

cover on average 3-Mb and frequently include several contiguous genes thus offering the

simultaneous interrogation of both protein-coding and non protein-coding elements (i.e.,

synthetic interactions); iii) the allele(s) are permanently deleted and not only silenced, and

the mapping ofdeletions is precise.

This chapter documents our recent efforts to generate a library ofnested chromosomal

ietions in mouse Cs (a project named DELES). Moreover, these ESC clones were

used to perform a preliminary functional screen, highlighting several candidate regions for
haploinsufficiency. DELES is an annotated resource of ESC clones, genetic material, and

biological information, which will soon become available to the scientific community.
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3.4 Resuits

3.4.1 Generation of a chromosomal deletion library in ESC clones

An overview of the methodology employed to generate deletion-containing ESC

clones is provided in Figure 3-la,b. The first lox? site was introduced in ESCs by retroviral

gene transfer followed by puromycin selection (retrovirus Ai, Figure 3-la,b). Two hundred

eighty-eight primary ESC clones (3 x 96-well plates) were thus generated and stored for

further studies. A proportion of retroviral integration sites (n=i02) was mapped using

inverse-PCR (Figure 3-2). Retroviral integrations were localized on each chromosome,

except chromosome Y (Figure 3-2). Aside from a limited sample size and pending statistical

analyses, retroviral integration site distribution appeared fairly broad with the exception of a

few specific chromosomal regions (e.g., see chromosomes 4 and 7) (Figure 3-2).

Bioinformatic analysis performed on predicted 3-Mb deletion per each primary clone,

revealed the heterogeneity of different genomic features around these 102 anchor sites, such

as the number of annotated CpG islands, genes, microRNAs, mRNAs, and higffly conserved

elements (Table in Appendix III). Some of these speculative regions are gene-poor (e.g.

l0 annotated genes) or highly gene-rich (e.g. 100 annotated genes) (Table in Appendix

III).

As expected from our previous work (Chapter 2), most of these primary clones

contained a single Ai proviral integrant (data not shown). Prior to the second infection

(retrovirus Si) (Figure 3-lb), we excluded primary ESC clones with chromosome i, 8, ii,

and i4 trisomies which were frequently observed in our culture conditions. For this, we used

real-time quantitative PCR (Q-PCR) assays for several genes located on these chromosomes

(see Table IX in Methods section). Normalization was done with Q-PCR assays for genes

Ïocated on chromosome 3, since this chromosome is not frequently involved in mouse ESC

trisomy”5’118 (see Table IX in Methods section). From these analyses, i9% ofprimary clones

(52 out of 282 analyzed) were rejected (Chapter i, Table II, primary clones D-E-F).

Five million cells from 187 independent primary clones were infected with the Si

saturation virus, then selected with hygromycin, generating the secondary populations used for

Cre-electroporation (Figure 3-la,b and Table VII). Following geneticin (G4i 8) selection,

4929 tertiary clones related to i56 anchor sites were isolated (Figure 3-la,b and Table

VII). Thirty-one secondary populations did not form G4i 8R tertiary clones. Aside from these
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populations, an average of 32 ± 15 (span: 1 to 44) geneticin-resistant (G41$’) tertiary clones

were generated per secondary populations (Table VII). According to the work described
in Chapter 2, the loss of puromycin was highly predictive for chromosomal deletions in
tertiary clones”8. We thus conducted a puromycin sib-selection in our populations oftertiary

clones to identify those which likely harbor chromosomal deletions at the expense of other
rearrangements (e.g. inversions, duplications, etc.) (Figure 3-lb). With this approach, an
average of 11± 10 (span: O to 42 clones) puromycin-sensitive (puros) tertiary clones were
collected per family in 96-well plates (n=1670) (Table VII). The average proportion of
G41$’ tertiary clones that lost puromycin expression was 31 ± 24%, a number comparable
to what we described previously”8 (26 ± 18%, Chapter 2, Table V). 0f interest, we could
flot isolate puroS tertiary clones in 21 ofthe 156 families (Table VII). Further investigations

will be required to validate these interesting observations, since the anchor virus might have
integrated in the vicinity of ESC haplolethal loci, arnong other possibilities.



Figure 3-1 Schematic representation of tertiary clone generation.

(a) LoxP sites, sticcessively introduced by compatible retroviruses (Al anchor and Si
saturation viruses), are substrates for Cre-mediated recombination. Recombined clones are
selected with geneticin (neomycin gene functional reconstitution) and the concomitant Iosses
of puromycin and hygromycin genes pinpoint potential nested deletions. A family of clones
contains the related parental primary (10) clone, the secondary (2°) polyclonal population,
and tertiary (3°) clones. (b) Overview oftertiary clone library generation. Note that DNA/
RNA are extracted and celis frozen at various time-points (not shown), trisomic primary
clones are discarded (chromosomes 1, 8, 11, and 14 trisomies suspected by Q-PCR), and a
rapid puromycin selection is used to identifS’ potential deletion-containing clones.

a Selection
Al Anchoring. 4

(1° clone) puromycin

Al SI
.

Saturation• 1 1 (2° clones) hygromycin• 41

Cre

Al-SI
• I
• Recombination
• (3° clones) geneticin (G418)

b Discard trisomic
clones (Q-PCR)

* *
* * * * * * III==I

il

_

Expansion of
= I==Ipuromycin

sensitive fjHygromycin G418
clonesselection selection Sib-selection

‘s
=

4 5 6 7 8
* * * * *Infection with Isolation Infection with Cre Isolation

Al virus of clones Si virus of clones

89

Puromycin ClonaI
selection expansion

II
0 1 2 3

-i Functional
assays

lime course (weeks)



90

Figure 3-2 Primary clone retroviral integration sites Iocated by I-PCR.

Note that 102 primary clone retroviral integration sites are currently mapped. The orientation

of potential deletions is indicated (red and blue) for anchor sites related to chromosomal

rearrangements found in G4 1 8’ pufos tertiaiy clones that were used in functional assays

(n”62, from a total of 104). Other mapped anchor sites (gray) are flot related to clones

for which preliminary functional assays were conducted (see Table in Appendix III for

details).

Chr 1 Chr 2 Chr 3 Chr 4 Chr S Chr 6 Chr 7 Chr 8 Chr 9 Chr 10 Chr 11
V V V ‘-- V V V V V V

—50145 —5212—5240 i-50661 —50178
—5080 ‘—50184
—5094 —50068 S197 --5198

—5226 50764 ‘—5277
—50354 ,. —50624

—52044
— 5091rSOSOI r5057

—5286 ‘— 8227
‘—50618 —52335 —5211

‘—52488—52051
-- 50775 ,—5024

— 5020? —5269 (5237? 5004
—52734 50294 ‘-5051 —5021
—52788

— t5244tsioo —5261
—5012 ‘-5082?

‘—51945
019?

52588
—50741 ,—5265t

—5040 —50024 —10561 ‘-50414
- —5045 —5030

—52564 —5196
50264 —52804 —50688

—52394—52425
— —5086—50054

—50278
—5064

-

—5287
— 5270t

Chr 12 Chr 13 Chr 14 Chr 15 Chr 16 Chr 17 Chr 18 Chr 19 Chr X Chr Y
V V ‘---‘ V V V V

5266
V

— 5047
—52594 “—5229—50258 r52718

—02551 ‘—5s -

—5199
5012 t5120 ——soolt

- —50888 —50655

—50034

—5092 —52604 —52821
—5288

t5058 ‘-50344 ——52181
,—52388 —5254
“-52538

t5O4l —5252 —00098 —52134 - 5055
—52765

Orientation of
potential
deletions 4 —50594



91

Table VII • Summary of G41$R and G418R puros tertïary clone

generation. (Part 1 of 4)
Number Proportion
ofG4lBR Number of puros

Anchored Potential clones 0f G418R tertiary
Family chromo- Insertion deletion (up to puros clones
Id some position orientationb 44) clones (%)

5001 chrl7 33507974 oentromeric 44 18 41
5002 chr3 121802436 telomeric 44 7 16
5003 chrl4 53526031 telomeric 44 20 45
5005 chr3 144547055 telomeric 16 2 13
5006 chr5 22919519 telomeric 44 4 9
5007 44 42 95
5008 44 10 23
5009 chrl4 100119811 telomeric 44 16 36
5010 44 25 57
5011 44 2 5
5012 chrl9 34101425 centromeric 11 2 18
5013 44 11 25
5014 chr8 4347514 centromeric 24 7 29
5016 44 19 43
5017 chr9 7720889 telomeric 12 6 50
5018 chr7 11840399 telomeric 36 12 33
5020 chr2 76438696 centromeric 36 2 6
5022 5 0 0
5023 44 10 23
5025 chrl5 12662598 telomeric 33 13 39
5026 chr3 135937211 telomeric 44 21 48
5027 chr6 148168602 telomeric 44 8 18
5028 23 0 0
5029 chr8 82534844 telomeric 38 15 39
5030 44 23 52

5032 26 19 73
5034 chrl5 79839426 telomeric 44 19 43
5035 chr8 35118318 telomeric 44 26 59
5036 4 0 0
5039 39 2 5
5041 cht7 118086289 telomeric 44 2 5
5044 44 3 7
5045 chrlo 66400102 centromeric 44 28 64
5046 chr9 120614650 centromeric 44 0 0
5047 chrl7 3113312 centromeric 5 0 0
5048 44 22 50
5049 chril 101712127 centromeric 44 14 32
5050 chr4 53885955 centmmeric 44 10 23

Achored chromosome and insertion position located by I-PCR. bpotential deletion orientation is
assigned as centromeric or telomeric relatively to the Al retroviral integration site. °The percentage
of puros clones is the ratio between the number of G41 8R puros clones and the number cf G41 8R

tertiary clones. ld, identification.
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Part 2 of 4
Number Proportion
ofG4lBR Number 0f puros

Anchored Potential clones 0f G4IBR tertiary
Family chromo- Insertion deletion (up to puros clones
Id some position orientationb 44) clones (%)

5053 44 3 7

5056 chr5 121520891 centromeric 44 18 41

5059 chrX 165315983 telomeric 22 6 27

5060 13 0 0

5061 chr4 56984276 telomeric 44 30 68

5062 chrll 35263024 telomeric 44 12 27

5063 44 0 0

5064 chri 153951498 telomeric 44 28 64

5065 chrl8 40434159 centromeric 44 37 84

5066 chr7 11732942 telomeric 36 10 28

5067 44 9 20

5068 chr7 132432736 telomeric 44 19 43

5070 44 12 27

5071 chr7 5862669 centromeric 44 16 36

5072 44 10 23

5074 chr7 112839356 centromeric 44 17 39

5076 chr7 18344700 telomeric 44 18 41

5077 chr9 72920936 centromeric 44 13 30

5078 25 9 36

5079 44 5 11

5080 chri 15775440 telomeric 8 0 0

5081 44 25 57

5082 chr6 100348725 centromeric 44 17 39

5083 chrl6 16440516 centromeric 44 28 64

5084 44 15 34

5085 38 13 34

5086 chr6 143107733 centromeric 11 0 0

5087 44 31 70

5088 chrl6 42675681 telomeric 44 19 43

5108 chr3 95991528 telomeric 11 3 27

5122 17 4 24

5123 7 3 43

5125 4 2 50

5126 4 0 0

5127 28 13 46

5128 44 3 7

5130 14 7 50

5133 42 9 21

5134 13 7 54

5138 28 5 18

5139 8 2 25
5140 44 13 30

Achored chromosome and insertion position ocated by l-PCR. bpotential deletion orientation is
assigned as oentromeric or telomeric relatively to theAl retroviral integration site. CThe percentage
of puros clones is the ratio between the number of G41 8R puros clones and the number of G41 8R

tertiary clones. ld, identification.
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Part 3 of 4
Number Proportion
of G418R Number of puros

Anchored Potential clones of G418R tertiary
Family chromo- Insertion deletion (up to puro5 clones
Id some position orientationb 44) clones (%)

5142 29 1 3

5143 44 29 66

5144 22 19 86

5145 44 25 57

5146 44 35 80

5147 14 4 29

5151 7 0 0

5154 44 23 52

5157 44 27 61

5160 44 0 0

5161 44 2 5

5166 29 11 38

5168 44 16 36

5171 44 1 2

5172 18 6 33

5177 8 3 38
5178 36 9 25

5179 8 1 13

5183 3 0 0

5185 18 1 6
5187 3 2 67

5188 4 3 75
5189 8 0 0

5194 chr7 99820439 centromeric 44 1 2
5201 22 9 41

5202 44 7 16

5203 10 0 0
5204 chr4 41017224 telomeric 34 13 38
5205 chr6 71222644 telomeric 44 20 45
5206 15 1 7
5209 1 0 0

5213 chrl5 98819220 telomeric 44 9 20
5214 44 32 73

5215 2 0 0
5216 5 1 20
5217 41 11 27
5218 chrl8 77979316 centromeric 44 16 36
5219 22 0 0
5221 44 28 64
5224 28 6 21

Achored chromosome and insertion position located by I-PCR. bpotential deletion orientation is
assigned as centromeric or telomeric relatively to theAl retrovirai integration site. cThe percentage
of puros clones is the ratio between the number of G41 8R puros clones and the number of G41 8R

tertiary clones. ld, identification.
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Part 4 of 4
Number Proportion
ofG4l8R 0f puros

Anchored Potential clones Number of tertiary
Family chromo- Insertion deletion (up to G418R puro5 clones
Id some positions orientationb 44) clones (%)

5225 44 31 70

5226 chr2 30983557 telomeric 5 0 0

5227 chril 51463840 centromeric 44 8 18

5233 chrl0 60208590 centromeric 26 3 12

5236 44 5 11

5237 chr8 81699072 centromeric 26 7 27

5238 chrl2 87690206 telomeric 44 36 82

5239 cht5 136320687 telomeric 44 3 7

5241 44 35 80

5242 chri 138279729 centromeric 27 7 26

5244 chr7 97304552 centromeric 44 7 16

5245 44 7 16

5246 17 7 41

5247 28 0 0

5248 chril 66867224 telomeric 44 4 9

5249 44 19 43

5250 12 2 17

5253 chrl2 88088474 tetomeric 44 16 36

5255 chrl4 19005222 centromeric 20 1 5

5256 chr4 125968987 telomeric 44 13 30

5257 30 11 37

5258 chrll 106585156 telomeric 14 4 29

5259 chrl4 6848872 telomeric 28 10 36

5260 chrl5 66901645 telomeric 22 3 14

5261 chr6 95681528 telomeric 22 0 0

5263 44 13 30

5265 chril 118178073 centromeric 44 19 43

5270 chri 181550084 centromeric 24 2 8

5271 chrl6 16435791 telomeric 29 15 52

5272 7 3 43

5273 chr2 84628411 telomeric 3 2 67

5276 chrl2 101234055 centromeric 19 6 32

5278 chr2 91161466 telomeric 44 36 82

5280 chr4 133587987 telomeric 44 23 52

5282 chrl8 69906764 centromeric 18 2 11

5285 8 7 88
G418R G418 puro5 % puros

Sum 4929 1670

Average 32 11 31

SD 15 10 24

Achored chromosome and insertion position located by I-PCR. bPotential deletion orientation s
assigned as centromeric or telomeric relatively to theAl retroviral integration site. CThe percentage
of puro5 clones is the ratio between the number of G41 8R puros clones and the number of G41 8R

tertiary clones. Id. identification.
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3.4.2 Presentation of a functional screen performed with puroS tertiary

clones

A significant portion ofthe generated puros tertialy E$C clones (n=1307), containing

chromosomal rearrangements anchored to 104 independent loci, was used to conduct

preliminary functional screens. Analyses provided in Chapter 2 (11 independent families)

revealed a 3-Mb average deletion size per puroS tertiary clone. We extrapolate that

approximately 3-Mb x 104 families or 3 x 108 bp might be deleted in the genome of our

E$C collection, representing between 10-15% ofthe mouse genome. $o far, 62 ofthese 104

anchor retroviral integration sites have been mapped by inverse-PCR (Figure 3-2).

Experimental approaches employed to perform functional screens are visually

detailed in Figure 3-3a,b. Puros tertiaiy ESC clones presenting similar proliferation rate

were transferred in new 96-well plates, in order to get a more homogenous cell density

for functional studies (Figure 3-3a). Five plate sets were generated (A, B, B*, C, and D)

(Figure 3-3a) based on the timing of harvest (Aearliest collection, D, latest). Following

celi expansion, each of these normalized plates was used to seed cells for functional assays

(Figure 3-3b).

Detection of undifferentiated E$Cs, maintained on a feeder layer in complete E$C

media (+LIF), was achieved using alkaline phosphatase staining (Figure 3-3b and Figure

3-4a). Since ESCs differentiate when colonies fuse (over-plating), three seeding densities

were prepared per tertiary clone (Figure 3-3b). Each puros tertiary clone was scored in this

assay and ranked from 1 (lowest percentage ofundifferentiated cells) to 5 (highest percentage

ofundifferentiated cells) (Figure 3-4a).

Another portion of tertiary clone cells from normalized plates was counted by flow

cytometry, to determine the proportion of proliferating cells, and seeded for differentiation

assays (Figure 3-3b). In order to insure the viability of cells plated for differentiation

assays (culture media without LIF), a portion of puros tertiary clone ceils was seeded in

ESC media (in presence of LIF) and colonies were stained the following day (Figure 3-3b).

Cell counts correlated with estimated E$C density performed by colony staining (Figure

3-4b). The fraction of alive cycling E$C was determined by flow cytometry using Ki67

intranuclear staining (nuclear cell proliferation-associated antigen, expressed in G1-$-G7-M

and flot expressed in G0 ceils) (Figure 3-4e). For differentiation assays, puros tertiaiy clone

ceils were seeded in 9 serial dilutions in order to perform phenotypic analyses on a range of
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day I

day 2

day 3

day 4

day 5

Normalized plates
with puros clones

(17 plates)

relevant densities (Figure 3-3b). Embryoid boUles (EBs) phenotypic analyses (see Chapter

2 for details) were performed at day 4 of differentiation (Figure 3-3d). Differentiated ceil

phenotypic analyses and hemoglobin histochemical staining were performed at day 8 of

differentiation (Figure 3-4e).

Figure 3-3 Schematic representation of functional assay approaches.

(a) Seventeen 96-well plates with puros tertiary clones were thawed. Normalized 96-well

plates were generated by pooling clones demonstrating similar proliferation rates (5 plate

sets: A, 8, 3*, C, and D). The last column ($ wells) of each normalized plate was kept for

control ceils included in the different assays. (b) Each normal ized plate was expanded to get

enough biological material for celi counts and functional assay seedings, as indicated. for

clarity, frozen celis’ plates and those for DNA extraction are flot shown.

a Plate sets

A: 5 plates faster

R: 3 plates

B*: 3 plates I

C: 2 plates I

t
D: 4 plates Siower

b
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(MEFs + LEF)

FACS tubes

________

(cell counts and Ki67 staining)

41F 1 seeding density for
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differentiation
(gelatin - LIF)
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Figure 3-4 Presentation of ceil counts and performed functional screens.

(a) Detection of undifferentiated ceils by aikaline phosphatase staining (purpie). %+,

percentage of stained colonies in the 96-well. $cale bar: 250 microns. Sc., score. (b) Celi

counts performed by fiow cytometry conelate with estimated ESC density (colony staining

with methylene blue, lefi side). (c) Representative FACS profiles of an ESC clone stained

with Ki67 (proliferation-associated antigen) antibody. (d) Representative EBs scored for

density (number of EBs) and phenotypic anomalies at day 4 of differentiation. Scale bar:

250 microns. (e) Representative differentiated cells scored for density (low, medium, and

large area), phenotypic anomalies, and hematopoietic differentiation (hemato; hemoglobin

detection by black benzidine staining) at day 8. Scale bar: 500 microns. \Ç yes; N, no.
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3.4.3 Global analyses of functional screens

The majority of puros tertiary clones demonstrated between $0-100% of Ki67-

expressing ceils (gated on live celis) (Figure 3-5a). However, some puroS tertiary clones

presented <80% of Ki67-expressing ceils, and accordingly were grouped in the normalized

plates containing the slowly proliferating clones (plate set D) (Figure 3-5a). According

to global comparison between Ki67 expression and alkaline phosphatase detection, some

pos clones presented <80% of cell positive for Ki67 expression, although they seem to

contain a high proportion of undifferentiated ceils (high alkaline phosphatase scores: 4-5)

(Figure 3-5b). Inversely, several puros clones that seemed more differentiated (low alkaline

phosphatase scores: 1-2) presented a high proliferative index (>80% ofKi67-expressing cells)

(Figure 3-5b). The percentage ofKi67-expressing cells was also compared to the percentage

of viability (Figure 3-5c). Several puro5 tertiary clones clustered in the following fashion:

clones presenting 50-60%, or 60-80%, or >80% viable ceils correlated with a proliferative

index of 80% or 90%, or >95%, respectively (Figure 3-5c). Interestingly, the group

presenting the highest viability (80-100%), also demonstrated a greater proportion of clones

with <80% Ki67-positive cells. Together these interesting results raise the issue that a high

ESC density, or an uneven distribution ofESC colonies in wells, could potentially negatively

affect both the alkaline phosphatase detection and the proliferation since the cells could be

differentiating and perhaps presenting a longer cell cycle (Chapter 1, Figure 1-7). further

cell-based proliferation analyses are needed to distinguish undifferentiated from differentiated

ceils (for example by using a marker such as Oct4, expressed by undifferentiated cells) on a

single population (not two independent assays conducted in different conditions) to clarify

this issue. Cell cycle profiling and specific apoptosis detection performed by flow cytometry

will allow a better understanding ofthese preliminary observations. finally, detailed analyses

based on individual family of clones (e.g. tertiary clones related to the same anchor site)

might highlight preponderant phenotypic observations in particular family (e.g. proliferation

defects for example), hardly detectable by global analyses.
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in this study (Figure 3-6b). The

general phenotypic score given to puros tertiary clones was one of the following: normal,

survival (defect), proliferation (defect), differentiation (defect Iabeled as “no differentiation”

although some differentiated celis were scored but presented phenotypic anomalies such

as disaggregation), differentiation and proliferation (combination of both), hematopoietic

differentiation defect, and finally other differentiation anomalies (such as morphological

defect) (Figure 3-6b). Importantly, when the assignment was difficuit (for examples: low

amount of analyzed celis, contradictory resuits, technical problems observed, etc.), the

mention “uncertain” was given to the score (Figure 3-6b).
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Figure 3-6 DELES database functionalities.

(a) Database subsection “Plates” describes each ESC clone characteristics and details on the

preserved biotogical material (celis, DNA, and RNA). (b) Database subsection “Scoring”

aligns fiinctional screen data for every puroS tertiary clone analyzed, grouped in their

respective family. A phenotypic score was given to each tertiary clone and statistics are

presented for puros tertiary clones in each family.
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One ofthe database functionality is to combine the resuits of ail fttnctional assays with

clonai analysis of provirus $1 integrations for each family of puroS tertiary clone analyzed.

According to this preliminaiy classification, each family of puroS clones can be manually

evaluated for the presence or absence of phenotypic anomalies. four examples are provided

below where two families demonstrate puros clones associated with relatively normal

phenotypes (Figure 3-7 and Figure 3-8) and two families demonstrate a proportion of puros

clones associated with abnormal phenotypes (Figure 3-9 and Figure 3-10). for each ofthese

examples, ESC tertiary clones within a farnily that share the same integration of virus Si are

further analyzed in “subgroups” since they are believed to contain the same chromosomal

rearrangement. Clones which caimot be categorized in a given subgroup are listed together

for the moment (see clones missing Southern information in Figure 3-8). The validation of

this clustering by aCGH or inverse-PCR is pending and thus, the reanangements (deletion or

other rearrangement) and the sizes of potentially deleted fragments are flot known yet. In the

four figures presented below, the scoring is as described in Figure 3-4. In addition, resuits

presented in the column labeled “density” refer to ceil counts performed by flow cytometry.

Finally, note that these resuits remain prelirninary since they have only been tested once and

will ment confirmation using complementaiy experiments.



Figure 3-7 PuroS tertiary clones from family no. 5077 present normal phenotypes.
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Ail the puroS terfiary clones in this family presented normal phenotypes. Thus, the

chromosomal region that might be sparmed by these unconfirmed deletions does not correlate

with haploinsufficiency, according to the performed ftnctional assays.
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Figure 3-8 PuroS tertiary clones from family no5278 present normal phenotypes.
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Again most of the puroS clones in this family have a normal phenotype. The clustering

according to Southern blot analyses suggest that the clone 5278.2 1 with the phenotypic score

“normal uncertain” might be in fact “normal”. This example shows the additional information

provided by subgrouping of clones.
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Figure 3-9 Certain pnroS tertiary clones from family no.5032 present abnormal

phenotypes.

Clustering of puroS clones perfonned by Southem blot analyses highlight and strengthen

the phenotypic anomalies observed in sub-family C (Diif. Prolif.= combined differentiation

and proliferation defects). See the low Ki67 percentages (the differentiation data are flot

represented). More clones presenting these anomalies are not classffied in sub-families

yet (gray). At least one puroS clone (sub-family B) presented normal phenotype during the

assays.
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Figure 3-10 Certain puroS tertiary clones from family no.5276 present ahnormal

phenotypes.

This family contains both puroS tertiary clones that showed normal phenotypes (sub-families

A and D), or abnormal phenotypes (sub-families B, C, and E). The abnormal phenotypes are

related to proliferation (percentage Ki67 below 80%) and differentiation defects. This family

is an interesting candidate for fiirther validation and characterization.
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3.5 Discussion ami conclusions

In the short term, priority will be to confirm the chromosomal deletions and to map

them in order to identify their genornic characteristics, particularly in families grouping puros

clones that demonstrated phenotypic anomalies in the ftmctional assays. Then, interesting

families could be validated and characterized, either based on tertiary clone phenotypic

observations and/or the presence of interesting genomic features found in deleted segments

(for examples: presence of specific genes or microRNAs, gene-poor region, etc.). As an

example, the family no.5276 presented above contains puros tertiary clones that showed

proliferation!differentiation defects during the assays (Figure 3-10); using bioinformatic

analysis, known genornic features found in the vicinity of rearrangement anchor site can be

evaluated (Table VIII).

In conclusion, an annotated library of E$C clones containing potential deletions,

anchored broadly across the mouse genome, was generated. Resuits from preliminary

functional assays revealed that numerous haploinsufficient regions might have been

pinpointed. Moreover, following the mapping of deletion end points, this library of ESC

will be available to the scientific community and probabÏy exploited in complementary

functional assays, both in vitro and in vivo. Together this information Ïoad will contribute to

the functional annotation of the mouse genome sequence.
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3.6 Methods

Note that several methods were previously described in Chapter 2.

Al and Si retroviruses, and pCX-Cre constructs; inverse-PCR, sequdncing, and

mapping; were described previously11 8

Ccli culture. Ri E$Cs6’ were maintained as described previously118. Penicillin (100 U m1

‘)-Streptomycin (100 ug m11, Invitrogen) or occasionally Fongizole (100 U m11 Penicillin,

100 ug m1’ Streptomycin, and 0.25 ug m11 Amphotericin B, Sigma) were added to the

culture media. For culture in 96-well plate, ESCs were either dissociated manually or with a

Biomek FX robot (Beckman Coulter) placed in a sterile hood. ESCs in 96-well format were

either frozen in 96-well polypropylene plate (Costar, Fisher Scientific) covered with a rubber

mat (fisher Scientific), or individually aliquoted in ciyotubes labeled with a 2D bar code

(CryoBankTM, NUNC). ESC differentiation in attached embryoid bodies was performed

in gelatinized 96-well plates ($arsted), with a LIf-depleted media described previously’18.

The cellular equivalent of haif a 96-well (ESC5 grown on gelatin), was use to seed the first

differentiation dilution. Then, $ serial dilutions (1:4) were performed in order to obtain

proper densities for each clone. Scoring was done manually using an inverted microscope.

Viral producer ccii lines and infection of target cells were conducted as described

previously’18. Around 288 primary clones were generated, DNA/RNA were extracted, and

Q-PCR assays were performed on genomic DNA to detect specific trisomies (see below).

Primary clones with anomalies were rejected and others were expanded and frozen. Five

million primary clone ceils were infected with the virus Si (supernatant containing $1

viruses diluted 1:12). Following hygromycin selection, these secondary populations were

also frozen.

Cre-induced recombination in ESCs. Ten million ceils from each secondary populations

were electroporated with 25 ug of supercoiled pCX-Cre and were maintained as described

previously”8. Up to 44 neomycin resistant tertiary clones were isolated per electroporated

secondary population. Part of these clones was frozen (plates labeled TEROxxx) and RNA

extracted. Puromycin sib-selection was carried out to identify puromycin sensitive tertiary

clones. Those were isolated, pooled in new 96-well plates (labeled CPCOxxx), expanded

and frozen, and DNA was extracted. Normalized 96-well plates (labeled MPLOxxx) were

generated with puromycin sensitive clones presenting similar proliferation (plate-sets A, B,
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B, C, and D generated on succeeding days). These clones were expanded and ftozen, used

for functional assays, and DNA was extracted.

Flow cytometry analyses. The cellular equivalent ofone 96-well was uscd for flow cytometry

(E$Cs grown on gelatin). Cell counts using TruCOTINT reference beads (BD Biosciences)

were performed with halfofthese celis and Ki67 intranuclear staining (PE-conjugated mouse

anti-human Ki67 monoclonal antibody; dilution 1:100, BD Biosciences) was done with the

other halL The percentage of celi alive was gated according to forward and orthogonal light

scatters.

Colony staining. The cellular equivalent to 1 5% of a 96-well was seeded on gelatinized

plate in ESC media (+LIF) and maintained for one day before staining. ESC colonies were

directly stained in 96-well plates with lOOul of methylene blue solution (0.3% methylene

blue in methanol, Sigma), at room temperature for 10 minutes. Then, plates were washed in

water and dried. Scoring was done manually using an inverted microscope or by automated

microscopy.

Alkaline phosphatase detection. For alkaline phosphatase detection, ESCs grown on

gelatinized 96-well plate (+LIf) were seeded on MEFs in ESC media (+LIF)118. Three seeding

densities were used: 2%, 4%, and 8% of cells from the donor plate (2%, 6%, and 18% only

for normalized plate set A). Following three days of culture, aikaline phosphatase detection

was performed according to the rnanufacturer’s instructions (Chemicon). $coring was done

manually using an inverted microscope.

Hemogtobin histochemical staining. A 3% benzidine stock solution was made by diluting

4, 4’-Diaminobiphenyl (Sigma) in a 90% glacial acetic acid-10% water solution. Prior to

use, the benzidine stock solution (1 part) was mixed with hydrogen peroxide concentrate

(1 part, Sigma) and water (5 parts). EBs-day 8 hemoglobin staining was directly done in

96-well plates, by adding 1 5ul of benzidine solution per well to the 1 SOul EB differentiation

media (dilution 1:10).

DNA and RNA analyses. Genomic DNA was isolated using DNAzo1 and total cellular

RNA with Trizol, according to the manufacturer’s instructions (Invitrogen). Southern blot

analyses were perforrned as previously described118, using EcoRJ or double Bglll/BarnHI

restriction digests for primary or tertiary ESC clones, respectively.
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Chromosome 1, 8, 11, and 14 trisomy detections. for Q-PCR analyses, genomic DNAwas

extracted with DNeasy 96 Blood & Tissue Kit (Qiagen). Gene copy number was determined

using primer and probe sets from Universal ProbeLibrary (Exiqon TaqMan probes, Roche

Diagnostics) (Table IX, assays in bold). PCR reactions for 3$4-well plate formats were

performed using 2 .il of DNA sample (50 ng), 5 .il oftheTaqMan PCR Master Mix (Applied

Biosystems, CA), 2 tM of each primer and 1 jtM of the Universal TaqMan probe in a

total volume of 10 tl. The ABI PRISM® 7900HT Sequence Detection System (Applied

Biosystems) was used to detect the amplification level and was programmed to an initial step

of 10 minutes at 95°C, followed by 40 cycles of 15 seconds at 95°C and 1 minute at 60°C.

Ail reactions were run in triplicate and the average values were used for quantification. A

standard curve was generated for each assay (absolute quantification). Normalization was

done according to chromosome 3 assay (1R160). A ratio of 1.5 (test versus chromosome 3

control) was indicative of a potential trisomy

Table IX• Q-PCR assays employed to detect chromosome 1, 8, 11, and 14 trisomies.

Universal
Chromosomal

Gene Accession number Assay Id Primer A Primer B ProbeLibrary
band — — —

probe number

1 qB Actrlb NM_1 46107 tRi 57 aigcagccaagagtcagagc tgaaagagagtggggcaaac 21

I qD Hcs6 NM_O 19479 tRI 5$ ggcatattctgcggtca tgggatggcaaccaaact 6$

lqH3 Cd214 AK137505 fR159 catggctcaaagctcacaac aggatgaggccactgctaac 7$

3qAl Ef5 NM_007892 fR160 cctccagtgaccacattcagt tgaactggagcctgctgtaa 55

3qE I Shox2 NMO 13665 IR 161 ggactaaaattcggctttgt gccacactcctttgtccagt 60

3qG 1 iI bcu1 NM00737$ IR 162 acaccaggagtccacagtga ggtgagccagtgaattttgg 25

8qAl.1 Lump] AK004637 1R163 ggculctggctgggtaca ggaaagtggcsgctcac$ 99

$qA4 Mxi] L04274 1R163 gtggtaglggagcccatga ccagcgatcatcacagaug 31

8qD3 HsfI A3029349 1R165 agcaacgcctcctacttgg caggcttttlcagagggatg 55

I iqAl Runzp3 NM01951 I 1R166 ggctcggttccctagtttct tcaggactagaaatgggtca$$ 53

I lqB 1.3 Hspu1 D$5904 [R 167 gatggccaaggagacaaec gccatcagaaggcacagc 66

I lqD Hoxb1 NM_0 10459 1R168 ctctcggaccgcctacact ggtagcgattgtagtgaaactcc 62

I 4qA I Pxk NM_14545 8 1R169 cattaaccacagataaagggttgtc aatgttggccctccctctac 102

I 4qC3 R,/] 7 NM_00 1033043 IR 170 tcccgttttaccaccgtatc ttcacttgcacgcaaac 82

I 4qE4 Sox2I NM_1 77753 IR 171 tgaaagatgcctctcaccaa ctgaaaaacaugccaaaacag 52

Id. indentification.

Biological material tracldng and database construction. Frozen ceils, DNA, RNA,

and maintenance plates were identified with bar codes and a specific labeling. A database

running on a MySQL server was set-up in order to maintain a centralized repository ofthe

biological sarnple’s storage locations, as well as to accumulate various types ofresults. A JSP

web front-end running on a Tomcat application server was also developed to enable a user

ftiendly access to the majority ofthe data contained in the database. Numerous visualization,

data-mining, and sample management tools are still under development to provide a flexible

interface to quel-y the annotations and to manage access to the biological samples.
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Chapter 4 DISCUSSION AND PERSPECTIVES

Since focused conclusions and discussions were provided through other parts

of this thesis, Chapter 4 will consist in a more global discussion. Topics covered will be

haploinsufficiency, pending optimizations with an emphasis on complementation, and finally

potential applications ofthe system. Analyses, figures, and tables were generated by Mélanie

Bilodeau under Guy Sauvageau supervision. Imprinted gene analysis was performed in

collaboration with Jean-Philippe Laverdure.
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4.1 Haploinsufficiency and imprinting

Several haploinsufficient elernents or regions are probably associated with mutations

in genes or in regulatory elements, altering expression levels. The exact proportion of

haploinsufficient determinants is flot known. According to two independent genome-wide

ENU screens in mouse, the dominant mutation frequency was estimated around 2% according

to the defects monitored: immunological anomalies, abnormal size or behavior, congenital

malformations, etc22’23. In a way, this number could be an overestimation since each mouse

could contain multiple ENU-induced mutations. However, the calculation was adjusted

according to the frequency of mutations inherited dominantly, seemingly as a monogenic

phenotype, foilowing breeding of a proportion of founder Fi s with wild-type mice22. Also,

since this type of screen does flot allow the recovery of haplolethal mutation, the ftequency

ofhaploinsufflciency could be underestimated.

Deletions engineered with the described methodology are physically haploid. In some

instances, because of imprinting, sorne mutated alletes could be functionally nui!. Patemal

or matemal allele expression of imprinted genes is regulated by differentially methylated

domains (DMDs)’6’. Methylated imprints are initiated during gametogenesis, observable at

the two-cell stage, and are though to be resistant to global demethylation during embryonic

cleavage (preimplantation period between fertilization and blastocyst stage)’6”64. Already

at the blastocyst stage, several imprinted genes show monoallelic expression’64. ESCs and

their corresponding EBs (or differentiated cells) demonstrate genornic imprinting according

to methylation and expression analyses42”6”62. Several irnprinted genes regulate fetai growth

and deveiopment, sometimes in a tissue specific manner (for example: some genes are

only imprinted in pJacenta)64. Bioinformatic analyses of ail mouse protein-coding genes

estimate that 2.5% Q-6OO) ofthem could be imprinted’60. Interestingly, the prediction model

highlights correlation of imprinted genes with regions containing specific non protein-coding

Notably, some human diseases such as Prader-Willi and Angelman syndromes

are both associated with chromosornal deletions and imprinted gene dysregulation’63”64.

From the work presented in Chapter 2, a bioinformatic analysis was performed to

search for known and predicted imprinted genes’6° located inside the deleted fragments or 5

megabase pairs away from the iargest deletion mapped in each family. The neighborhood of

anchor sites without associated deletion was also screened (5 Mb according to the orientation

ofpotential deletion). Currentiy, this limited sample size does not allow to conelate potential

imprinted genes in regions related to abnormal phenotypes, nor a bias against recovering
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deletions in known imprinted regions.

4.2 Pending optimïzations

Some aspects ofthe presented project need fiirther optimization, as discussed in this

section. Among them, complementation is clearly a priority.

4.2.1 Complementation approaches

Although ESC clones seemingly possess euploid karyotypes according to SKY or

aCGH analysis, they couid also have mutations or epigenetic alterations undetectabie with

these assays. The formai proof that a deleted segment is causing an abnormai phenotype can

only be obtained by a complementation study identifying the determinant(s) of interest.

4.2.1.1 Identification of a minimal interval correlating with an abnormal phenotype.

According to an ideal scenario, a single determinant will cause a phenotypic anomaly

(Figure 4-la). In this case, nested deletions anchored to a specific site are very powerful

to provïde localization dues. The determinant will lie between the following endpoints: the

largest deietion associated with normal phenotype and the smaiiest one associated with an

abnormal phenotype (Figure 4-la). However, oflentimes this scenario wiii iikeiy be too

simplistic because of a genetic synergy between two or several determinants iocated on the

same chromosomal region. If two or more determinants genetically interact, they could be

found anywhere between the anchor site and the end point ofthe smallest deletion associated

with the abnormal phenotype (Figure 4-lb). The ratio between these two situations is

unknown for the moment.
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Figure 4-1 Determinatïon of a candidate region associated with an abnormal

phenotype.

Diagram representing deletion size and associated phenotype. Depending if a single ta) or a

combination of interacting (b) determinants are responsible for the abnormal phenotype, the

minimal localization need to be considered differently.

a Single determinant b Genetic interaction between two determinants
(y) (y and z)

Phenotype:
y yz z Y

Abnormal
y yz z y

Abnormal
Normal

Localization: yz

4.2.1.2 Characterization of deleted segments

Since deletions are precisely iocalized with I-PCR and aCGH, several bioinformatic

tools are available to characterize deieted segments. Public databases such as UCSC (hftp://

genome.ucsc.eduf)32”52’153 and Ensembi (http://www.ensernbl.org/index.htrni)143 Genome

Browsers enclose information regarding genes, transcripts, microRNAs, CpG islands, BACs

mapping, etc. SOURCE (http://source.stanford.edu)165 is a database containing details such

as aliases, Gene Ontology annotations, expression, and other information. Mouse tissue

expression data are available at GNF SymAtias (http://symatias.gnf.org/SymAtias/)’66.

Expression data reiated to ESC differentiation can be found in Stembase (http:Hwww.

stembase.cal)167’168. Mouse Genome Informatics database (MGI, http://www.informatics.jax.

g/)’69 presents descriptions ofmutant alleles and phenotypes, and many other options. NCBI

Mouse Genome Resources database (http ://www.ncbi.nlm.nih. gov/enome/uide/mouse/)’7°

ailows comparative genome annotation (synteny), in addition to various features. Program

such as Pathway Studio (http ://www.ariadnegenomics .com/products/pathway-studio/)17’

can draw potential interactions between proteins according to literature survey. Ail these

databases contain severai more usefui features and provide iinks to each other.

4.2.1.3 Re-introduction of deleted UNA

In Chapter 2, the differentiation assay was conducted with three seeding densities

(2 log coverage). Every single clone (n=5) clearly presenting differentiation anomaiy

(dissagregation of EBs) dernonstrated a few EBs differentiating normally when seeded
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at high density. Southern blot analyses of these ESC clones and their corresponding rare

EBs (Supplementary Figure 2-7; 9-104, 9-1$, 1-13, 13-24) conflrm that they were not

contaminated by other clones. FISH analyses showed that rare EB ceils from clone 9-104

reacquired at least a part of the deleted segment (Figure 2-2c), while keeping a normal

karyotype for the mitotic ceils detected by SKY (Figure 4-2). Interestingly, these cells could

be further analyzed by aCGH and/or Q-PCR to characterize this reacquisition of genetic

material correlating with the restored capacity to differentiate. These observations reveal

two additional facts. First, differentiation defects are reversible, thus possibly amenable to

complernentation. Second, revertants will lead to complernentation background and selected

strategies need to be more efficient than the frequency of false-positive events. In other

words, transduction of DNA must be veiy efficient and be achieved with vectors containing

a selection marker gene.

Figure 4-2 SKY analysis of rare EB ceils derived from tertiary clone 9-104.

ESC clone 9-104 contains an engineered deletion on chromosome 1$. Rare EB mitotic

celis (EBs day 8) present a haploid deletion on chromosome 18, but an otherwise normal

karyotype (12/13 40, XY del (1$q)). a and a’ represent homologous chromosomes.

a a

II L I I 11I 4i

I Ii
I

1dt H su

Currently, cDNA and BAC genomic DNA transduction with selectable vectors are

the approaches envisioned to reintroduce deleted material. Both approaches have advantages

and pitfalls, while complernenting each other.

Transfection or retroviral transduction of cDNAs can be used to express known

determinants. Annotated cDNAs libraries are commercially available, sometimes provided in

expression vectors. Manipulation ofthese plasmids is simple. In addition, these libraries can

be used globally to identify other determinants in the pathway(s) involved. However, potential
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foies of non-expressed determinants are flot addressed. There are additional limitations

regarding in vitro differentiation for exampie. cDNA expression is frequentiy driven from a

ubiquitous promoter, flot necessarily reflecting the endogenous level, and without temporal

or celi type specificity. To circumvent some of these limitations, transfection should be

adjusted to cover a range of expression level and ideally driven from an inducible promoter.

Different cDNA isoforms might also need to be tested.

BACs are advantageous to cover large regions (100-250 kb). In addition, they contain

important regulatory elements including endogenous promoters directing the expression of

alternative spliced transcripts. However, BAC modifications are flot achievabie with basic

subcloning protocols and their transfection in celis is more chailenging due to their large

sizes. Nevertheless, different protocols exist to modify BAC for different purposes172. One

important modification includes the addition ofa selectable marker gene173. Moreover, a single

or a few BACs can integrate in the genome foiiowing optimized transfection174, an important

detail since phenotypic anomalies could be caused by abnormal gene dosage. BACs contain

non-expressed sequences. However, their functionalities might not be observed following

random integration. If fact, some ESC clone wiii probabiy be complemented only if the

missing fragment is placed back in the original location. fortunateiy, both BACs and tertiary

clones are provided with a loxP site. The functional reconstitution of a Fgk-ATG-loxF found

in tertiary clone with a ÏoxF-ATG-Ïess-puromycin gene present in a BAC vector could be Cre

mediated specifically in the original iocus. A loxP-ATG-less-purornycin cassette compatible

with the Pgk-ATG-loxF is available in the laboratory. However, this procedure will require a

higher degree of optimization than a simple transfection.

In summary, sequences related to gene-poor regions wiil be reintroduced with BACs.

Sequences related to gene rich regions can be reintroduced using either cDNAs or BACs.

BACs are favorable because they are similar to the endogenous organization and regulation.

However, the simplicity of cDNA approaches is valuable.

4.2.1.4 Mapped regions correlating with differentiation anomalies

fully or partially mapped regions associated with differentiation anomalies were

presented in Chapter 2. Initial studies revealed three genomic regions associated with ESC

differentiation anomalies. Deletions on chromosome 4 pertaining to clones in family no. 13

are partiaily mapped. One clone (13-24) presents an aberrant differentiation phenotype and

is expected to contain a deletion larger than 3.9 megabase pairs (larger than the only deletion
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mapped, associated with relatively normal differentiation) (Table III and Supplementary

Table VI). Deletions related to family no. 1 were rnapped on chromosome 14 (Table III

and Supplementary Table VI). However, the clones with a smaller genomic deletion (1.5

megabase pairs, n=4 clones) differentiated normally while the one with the largest deletion

(22.7 megabase pairs) did not (Table III and Supplementary Table VI). Consequently, the

minimal interval is very broad. finally, family no.9 related deletions, located on chromosome

18, were characterized to a greater extent. As presented previously, 3 independent clones with

deletions (4.1-5.0 Mb) correlated with differentiation anomalies while the smallest deletions

(6-317 kb, n=8 independent clones) did flot (Supplementary Table VI). According to this,

the confidence that an important determinant(s) resides inside the deleted interval rather than

outside (bystander genetic or epigenetic alterations) is improved. family no.9 will be used

to illustrate a complementation approach.

4.2.1.5 Characterization of deletions related to family no.9

In family no.9, if loss of a single determinant is causing the abnormal differentiation

phenotype, the minimal interval in which this determinant is located is between deletion

endpoints in clones 9-90 (largest deletion with a normal differentiation phenotype) and 9-

104 (smallest deletion with an abnormal differentiation phenotype) (Figure 4-3). However,

since clone 9-90 presents a chromosome 8 trisomy (Table III), a compensation for the

deletion on chromosome 1$ caimot be excluded. Therefore, a more conservative interval

would be between the deletion endpoints in clones 9-35 and 9-104 (Figure 4-3). If two or

more determinants are causing the phenotypic anomaly, they would be located anywhere

between the anchor site and the endpoint ofthe smallest deletion associated with the abnormal

phenotype. In this case, it would correspond to the size of the deletion found in clone 9-104

(Figure 4-3).

Figure 4-3 Minimal intervals represented for family no.9.

Representation adapted from NCBI Mouse Genome Resources (http://www.ncbi.nlrn.nih.

gov/genorne/guide/mouse/)’70. Mapping of deletions (orange lines) on mouse chromosome

18 aligned with the corresponding human syntenic chromosome 5 for tertiary clones 9-3 5, 9-

90, 9-104, and 9-18. Pink dashed lines represent minimal intervals if a single determinant is

involved (see text for details). However, if two or more determinants are involved, they can be

found anywhere in the region covered by the clone 9-104 deletion. N, normal differentiation;

A, abnormal differentiation; Chr, chromosome.
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The abnormal phenotype monitored within this family occurs during differentiation.

Clones with large deletions (9-104, 9-3 7, 9-18) initiate a visually normal differentiation up

to day 3. Following day 3-4, EBs disaggregate rapidly. When re-introduced in blastocyst,

the clone containing the largest deletion (9-1$) failed to contribute to the tissues examined

in chimeric fetuses (E14.5) and in aduit mice (Figure 2-2e, Table IV). E$C clones 9-104

and 9-37 also presented an in vitro differentiation defect but were not chosen for chimera

generation. An unstable karyotype was initially detected for clone 9-104 and the Y

chromosome was loss in 9-37 (Table III). Since the deletion in clone 9-1$ is larger than the

two others, this additional deleted portion could also contribute both to the in vivo and the

in vitro phenotypic anomalies. Nevertheless, both in vitro and in vivo data suggest an early

differentiation defect.

Assuming that the deleted determinant(s) causing the early differentiation defect is

found in the minimal region corresponding to the deletion in clone 9-104 (4.1 megabase

pairs), various analyses can be performed to characterize potential candidates.

Previously described mouse mutant alleles and their corresponding phenotypes found

in this minimal region are shown in Figure 4-4. Interestingly, Tcof] is haploinsufficient;

heterozygous embryos die of severe craniofacial defects (detected from E8)175. Table X

presents known RefSeq genes found in the minimal interval and their associated functions.

Twelve of them are expressed in blastocyst stage and early embryogenesis (E6.5-$.5)

according to microarray analyses reported in GNF SymAtias (http://symatlas.gnf.org/

$ymAtlas/)’66 (Table X). Interestingly, RIKEN cDNA 4$33446K1 5 (recently annotated as a

RefSeq gene, corresponding to mRNAAKO1952$) potentially encodes a mouse homologue

of human CSS3 (chondroitin sulfate synthase 3). Gene Ontology annotations for CSS3 are

N-acetylgalactosaminyl-proteoglycan 3 -b-glucuronosyltransferase activity, glucuronyl

N-acetylgalactosaminylproteoglycan 4-beta-N-acetylgalactosaminyltransferase, and

transmembrane localization in Golgi apparatus (http://source.stanford.edu) 165• Importantly,

this predicted protein seems involved in a process similar to the expressed Ndst], also found

in the deleted interval (Table X). Both are found in the Golgi apparatus membrane. These

two determinants, Ndstl and the AKO 19528 predicted protein, could functionally interact to

sustain a biological process. Synpo (Synaptopodin, AK034012) is expressed in the blastocyst

stage and during early embryogenesis (E6.5-8.5) (http://symatlas.gnf.org/SymAtlasf)’66, and

is associated with mouse phenotypes (neuronal, behavior), but flot annotated as a RefSeq gene

(Figure 4-4). No microRNAs are detected in this region (http://genome.ucsc.edu!). Only

March3 is predicted to be imprinted’60, but this gene is not expressed in early embryogenesis
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according to GNF SymAtias (Table X). Note that Stembase (http://wwwstembase.ca!)167’168

might provide pertinent gene expression profihing in differentiating EBs (registration to

Stembase in process).

Figure 4-4 Mouse mutant alleles and mapped phenotypes for family no. 9 minimal

interval.

Representation of RefSeq genes and corresponding mouse mutant alleles and phenotypes

(Jackson Laboratoiy/Mouse Genome Informatics)169 aimotated in the UCSC Genome

Browser (http://genome.ucsc.edu/)32, conesponding to the minimal interval correlating with

an abnormal differentiation phenotype for clones of family no.9 (region deleted in clone 9-

104).
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Table X • Function and expression of RelSeq genes found in family no.9 minimal

interval.

Part 1 of3
Name (symbol) Gene Ontology Annotations Functions

lamins are components of the nuclear lamina, a
. . .

. fibrous layer on the nucleoplasmic side of the innerLamin Bi intermediate filamentilamin filamentlnucleu
. . nuclear membrane, which s thought to provide a(Lmnbi) sistructural molecule activity

framework for the nuclear envelope and may also
interact with chromatin.

Membrane- integral to membraneiprotein
associated ring ubiquitinationlubiquitin ligase
finger (C3HC4) 3 complexlubiquitin-protein ligase
(March3) activitylzinc ion binding

Multiple EGF
like-domains 10
(Megfi O)

plays important roles in both rhabdomere
development and in photoreceptor celI survival.

Proline-rich coiled- might function as a calcium- sequestering
coil 1 (Prrci) «sponge» to regulate the amount 0f free

cytoplasmic calcium. t binds 0.3 mole of ca(2+)
per mole of protein.

amino acid transportiamino acid
polyamine transporter activitybasolateral
plasma membranelcarrier activitylcation:

Solute carrier family chloride symporter activitylchloride electrically suent transporter system. mediates
12, member 2 transportlintegral to membraneintegral to sodium and chloride reabsorption. plays a vital role
(Slci2a2) plasma membranelion transportlmembr in the regulation of ionic balance and cell volume.

anepotassium ion transportsodium ion
transportisymporter activityltransportitrans
porter activity

. . . . . fibrillins are structural components of 10-12 nmcalcium ion bindingembryonic limb . . .. . . . extracellular calcium-binding microfibrils, whichFibrillin 2 morphogenesislextracellular matrix (sensu .

occur either in association with elastin or in elastin(Fbn2) Metazoa)Iextracellular regionjextracellular . . . .. . . . free bundles. fibrillin-2- containing microfibrils
spacellimb morphogenesisimicrofibril

regulate the early process of elastic fiber assembly.

Name, symbol, Gene Ontology annotations and functions were determined using SOURCE database (http://source.
stanford.edu)’65 for RefSeq genes mapped in the UCSC Genome Browser ((hftp://genome.ucsc.edu/)’53. Expression of
these RefSeq genes in mouse balstocysts and embryos E6.5-8.5 was found in GNF SymAtlas (http://symatlas.gnf.org/
SymAtlas/). Blue, expressed; no color, flot expressed; green, not determined.
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Part2 of3
Name (symbol) Gene Ontology Annotations Functions

acyl-coa synthetase probably involved in bile acid
metabolism. proposed to activate c27 precurors 0f
bile acids to their coa thioesters denvatives before
side chain cleavage via peroxisomal beta-oxidation
occurs. in vitro, activates 3-alpha,7- alpha,12-Solute camer

.
. alpha-tnhydroxy-5-beta-cholestanate (thca), theamly LI iatty aclu

c27 precursor of cholic acid deriving from the detransporter) member
novo synthesis from cholesterol. does flot utilize6 (Slc27a6)

. .c24 bile acids as substrates. in vitro, also activates
long- and branched-chain fafty acids and may
have additional roles in fafty acid metabolism (by
similarity). may be involved in translocation of long
chain fatty acids (lfca) across membranes.

Isochonsmatase
domain containing 1 catalytic activitylmetabolism
(Isoci)

. . cleaves aggrecan, a cartilage proteoglycan,A disintegrin-like and
extracellular matrixiextracellular matnx and may be involved in its turnover. hasmetallopeptidase
(sensu Metazoa)Ihydrolase activitylmetall angiogenic inhibitor activity (by similarity). active(reproy n tYPe) oendopeptidase activitylmetallopeptidase metalloprotease, which may be associatedrom osponin
activitypeptidase activitylproteolysis and with various inflammatory processes as well as

‘

peptidolysislzinc ion binding development of cancer cachexia. may play aam
critical role in follicular rupture (by similarity).

RIKEN cDNA
A730017C20 gene integral to membrane
(A73001 7C2ORik)

RIKEN cDNA
4833446K15 gene integral to membrane
(4833446K 1 5Rik)

Predicted gene,
EG240327
(EG240327)

Similar to CDNA
sequence BC023105
(L0C225594)

GDP bindinglGTP bindingGTPase
Interferon inducible activitylGTPase activitylcellular component
GTPase 1 unknownlcytokine and chemokine
fligpl) mediated signating pathwaylprotein self

binding

CDNA sequence
BC023105
(BC0231 05)

Name, symbol, Gene Ontology annotations and functions were determined using SOURCE database (http:l/source.
stanford.edu)165 for RefSeq genes mapped in the UCSC Genome Browser ((http://genome.ucsc.edu/)153. Expression of
these RefSeq genes in mouse balstocysts and embryos E6.5-8.5 was found in GNF SymAtlas (http://symatlas.gnf.org/
SymAtlas/)1. Blue, expressed; no color, not expressed; green, not determined.



Part 3 of 3
Name(symbol) Gene Ontology Annotations Functions

RIKEN cDNA
201 0002N04 gene integral to membrane
(201 0002NO4Rik)

Dynactin 4 cytoplasmic dynein complexlcytoskeletonlp
(Dctn4) totem binding

. . . . invotved in pre-mrna splicing. facilitates theRNA binding RNA bindingmRNA processingnuctear
cooperative formation of u2/u6 helix ii inmotif protein 22 mRNA splccing, via spliceosomelnuclelc association with stem ii in the spiiceosome. binds(Rbm22) acid binding
to ma.

Myozenmn 3 (Myoz3) Z disciprotein binding

essential bifunctional enzyme that catalyzes
. both the n- deacetylation and the n-su lfation ofGolgi apparatusl[heparan sulfate]-

glucosamine (glcnac) of the glycosammnoglycanglucosamineN-sulfotransferase
in heparan sulfate. modifies the glcnac-glca

N-deacetylase/N-
activitycysteIne-type endopeptidase

dissachande repeating sugar backbone to makeactivityintegraI to membraneorganogensulfotransferase . . . . . n-sulfated heparosan, a prerequisite substrate for
(heparan es,slpolysaccharide biosynthesisiprotein later modifications in heparin biosynthesis. plays
glucosaminyl) 1 amino acid deacetylationiprotein a role in determmning the extent and pattern 0f

(Ndstl)
arnino acid sulfationiprotein amino

sulfation of heparan sulfate. compared to other
acidsulfationlproteolysis and

ndst enzymes, its presence is absolutety required.peptidolysisrespiratory gaseous exchangel
participates in biosynthesis 0f heparan sulfate thatsulfotransferase activityltransferase activity
can ultimately serve as I- selectin Iigands, thereby
playing a role in inflammatory response.

. . . . plays a critical role in mhc class ii antigenRNA bindingicytosolic ribosome (sensu . ..

. . processing by stabilizing peptide-free class ii
.

. Eukaryota)Icytosolic small nbosomal
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Name, symbol, Gene Ontology annotations and functions were determined using SOURCE database fhttp://source.
stanford.edu) for RefSeq genes mapped in the UCSC Genome Browser ((http:I/genome.ucsc.edu!)’53. Expression of
these RefSeq genes in mouse batstocysts and embryos E6.5-8.5 was found in GNF SymAtias (http://symatlas.gnf.org!
SymAtlasI)1. Blue, expressed; no color, flot expressed; green, flot determined.
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From these analyses, BACs and/or cDNAs conesponding to the expressed transcripts

were purchased (Figure 4-5). Additional BACs covering intergenic regions were ordered

(Figure 4-5). On a technical point of view, the first phase of complementation will be

done in vitro with clones 9-104, 9-37, and 9-18. Clone 9-104 seems an obvious choice

for complementation because it contains the srnallcst deletion associatcd with an abnormal

phenotype. However, clone 9-37 and 9-18 karyotypes are more stable. Initially, expressed

genes will be individually reintroduced either with BACs or cDNAs, and the combination

ND$T]/AKO 19528 will be tried. In the case where no single determinant (or the NDST]/

AK019528 combination) can resctie the abnorrnal phenotype, combinations of expressed

gene will be attempted. Subsequently, genes with undeterrnined expression or classified

as non-expressing (according to the criteria used) will be reintroduced individually or in

combination with expressed determinants. Or else, introduction of BACs in the original

locus (cis-complementation) wilI be optimized to assess the role of non-transcribed regions.

Some regions are expected to be harder to complement than others, particularly if they

are large and are containing nurnerous deleted determinants that could genetically interact

or if they require cis-complernentation, etc. Identification of minimal regions from the work

presented in Chapter 3 will likely provide diverse complementation complexity levels.

Currently, plasmids containing BAC or cDNA are being engineered to carry a selection

marker gene (puromycin, absent from clones containing deletions). Other complementation

approaches were previously atternpted for the family 9. Co-transfection of linearized BACs

along with a selection marker gene Fgk-puromycin) at a 3:1 ratio (fentornoles ratio) achieved

BAC transfer in roughly half of the transfected ESC clonai populations (PCR detection of

BAC plasmid). In some instances, isolated ESC subclones transfected with a BAC seemed

rescued from the differentiation defect. However, fISH experiments revealed that their

nucleus did not contain the selected BAC. Consequently, no convincing complernentation

during in vitiv differentiation could be observed at a frequency higher than the frequency of

natural revertants. Thus it was concluded that complementation approaches needed to be

more efficient than the frequency of natural revertants and should be calTied out by keeping

ceils in a polyclonal population following transfection and selection. Microcell-mediated

chromosome transfer’76 was also considered to transfer an anchored parental chromosome

in celis containing a related deletion (tertiary clone cells), but discarded since the revertants

ftequency would be higher than the chromosome transfer frequency.
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cDNAs (red) corresponding to expressed determinants and BACs (RP23-, red) were purchased

to cover the deleted region. Human cDNAs were purchased for $LCJ2A2 and NDST1. High

conservation score is observed for protein-coding elements and some segments outside of

genes (possibly regulatory elements and other genomic features). X_tropicalis; Xenopus

tropicalis. Adapted from UCSC Genome Browser (http://genome.ucsc.edu/)32.
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4.2.2 Toward a recessive screen

Although some haploid deletions correlate with phenotypic anomalies during ESC

differentiation (Chapter 2: 11% of our sample size), a large proportion does flot demonstrate

any effect. Exploitation of tertiary clones could be maximized by obtaining homozygous

deletions. In the system presented in this thesis, the functional reconstitution of a neomycin

gene (amplified from the pPNT template’48, based in part on the neomycin gene derived ftom

the bacterial transposon Tn5 found in pMCI Ne&77) was chosen because it was previously

employed to generate homozygous mutant ES Cs from heterozygous targeted cells grown under

high G4 18 concentration. Since this phenomenon involves extensive Ïoss ofheterozygosity1 17,

this approach is attractive to potentially generate homozygous deletions in vitro. Likewise,

the reconstituted Pgk-ATG-loxF-neo might be amenable to this strategy, but we have not

attempted this experiment yet. Nevertheless, 6 candidate regions were selected from the work

presented in Chapter 2 to attempt this loss of heterozygosity (Table XI). Small deletions

will likely be less detrimental to ESCs, considering that the proportion of homozygous ceil

lethal genes is currently unknown. Therefore, three deletions spanning less than a megabase

pairs were selected (ESC clones 9-35, 7-30, and 14-16, Table XI). Various chromosomal

locations were chosen because the mechanism behind the loss of heterozygosity is flot well

known (Table XI). Finally, deletion-containing ESC clones with a normal karyotype were

preferred (Table XI). Although issues such as imprinting might complicate characterization,

proving that this approach can work in our system is veiy appealing.

Table XI • Candidate haploid deletions that could be tested for loss of heterozygosity.

Clone Chromosome Deletion Number of Karyotype
identification size (kb) genes

9-35 1$ 23 0 N
7-30 16 94 3 N
14-16 2 568 9 N
4-02 2 1400 19 N.D.
1-03 14 1500 17 N
9-18 18 5000 32 N

Kb, kilobase pairs; N, normal; N.D., not determined.
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4.2.3 Detection of ESC-derived progenies in situ

Ideally, ESCs used in the generation of chimeric mice should contain a rnarker that

would allow the tracking of ESC-derived progenies. This marker should have the following

characteristics: neutral for the celis, ubiquitously expressed, celi autonomous, and detectable

in situ at the single cell level57. In combination with a fine tracking system, possibilities to

generate chimeric or F0 mice (see Chapter 1) are complementary and allow the observation

of various biological process. A few examples are mentioned below. For more, readers are

invited to consuit a recently published review (Tam, P.P. & Rossant, J., 2003). For example,

chimeric mice could highlight the celi intrinsic properties of mutant E$Cs giving rise to

particular phenotypes in specific lineages and/or their exclusion from specific tissues57. Celi

extrinsic properties could be suspected when abnormal phenotypes are observed in celis that

are flot E$C-derived57. Tetraploid complementation assay with normal embryo generates F0

mutant mice that sometimes could flot be obtained following normal breeding, because of

extraembryonic defects (trophoblast lineage or extraembryonic endoderm)57.

Chromosomal deletions were generated in non-labeled wild-type Ri ESCs61 (for

example, EGfP marker can be ubiquitously expressed in ESC&78). However following

recombination, tertiary clones express neomycin which can be used as a marker. Accordingly,

several anti-neomycin antibodies are commercially available. Neomycin detection by indirect

immunofluorescence is possible on mouse paraffin sections’79. for the purpose of in vivo

experiments, it will be beneficial to test this detection in vitro and in vivo, to see if neomycin

expression is detectable and ubiquitous, or if it is suppressed during E$C differentiation.

However, even if it is flot expressed, E$C-derived progeflies contain this neomycin tag in

their genomic DNA. Very sensitive in situ hybridization of low copy virus was achieved in

paraffin sections using biotin-labeled cDNA probes, streptavin-Nanogold, and silver acetate

autometallography (localized and precise black staining)’80. Finally, engineered ESCs

could be injected in diploid RO$A26 mouse blastocysts (C57BL/6J background) expressing

f3-galactosidase ubiquitously’81, in order to distinguish them (unlabeled) from host cells

(labeled). ROSA26 mouse strain is also available in 129$v background’81, if Ri ESCs (1 29/

x i29/Sv-CP)6’ are used for teratocarcinoma formation.
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4.3 Potential applications of the system

Delivering loxF sites with two cornplementary retroviruses could allow the genetic

manipulation of celis that are flot suited for gene targeting. Although Cre was transiently

transfected by electroporation in ESCs, other delivery systems are available for sensitive

ceils. Retroviral gene transfer, using a Cre-encoded seif-deleting retrovirus182”83, is an

alternative, as well as the Cre protein fused to a membrane transiocation sequence184 (celi

permeable). Several applications, different than those presented in this thesis, can be

envisioned, either using E$Cs or other cell unes. Basically, two components need to be

assembled: a celi une permissive to retroviral infection and drug selection (Chapter 1, part

III), and a screening methodology (Table XII). MSCV-based gene transfer is achievable for

both mouse and human cells, provided that virions are encapsidated in appropriate packaging

ceil unes (tropism). Finally, although this methodology is suited for screening, it can simply

be used to modify genomic regions in particular ceils to create experimental models. Like

it was mentioned in the previous section, if celis are reintroduced in vivo, they need to be

distinguished from host celis.
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Table XII • Potential applications of retroviral-based Cre-toxP recombination.

Ceil lines Screening methodologies or experimental models

Teratomas-teratocarcinomas formation with engineered

E$Cs injected subcutaneously in syngenic mice (observe
Mouse ESCs

charactenstics, aggresslveness, etc.). Look for genomic regions

enhancing or suppressing tumor growth.
Chimeric mice formation with engineered ESCs or somatic

Mouse ESCs or stem celis. Find genomic segments regulating differentiation

somatic stem ceils and/or enhancing tumor formation (example: loss of tumor

suppressor).
. Re-introduction of engineered cancer ceils in animal models

Cancer ceil limes
• (for example: breast cancer celI limes). Find genomic segments

metastatic
regulating aggressweness, metastatic properties, etc.
In vitro model (also in vivo in case of mouse ESC5) of human

diseases associated with chromosomal anomalies163: deletions
Human and mouse

(example: Prader-Willi syndrome), transiocations (some
ESCs

leukemias), or other aberrations. These models can also be used in

screens (example: chemical compounds) or complementation.
Observation of recombination frequencies (for example:

intermolecular versus intramolecular) for different anchored
Mouse ESCs .

regions (middle of chromosome, more telomeric or centromeric

regions, etc.).

4.4 Thesis conclusion

This thesis described the elaboration of a new functional genomic tool based on Cre

loxP recombination. Nested chromosomal deletions in mouse ESCs were obtained for various

loci. This material will benefit the scientific community interested in stem cells, developmental

biology, and tumorigenesis. functional annotation of genes, non-protein coding transcripts,

and non-expressed elements will be feasible with this methodology. Genetic interactions

between contiguous elements acting cooperatively to sustain biological frmnctions will be

uncovered. The versatility of this system is a major advantage. Potential applications in

other cell lines abound because the approach relies on retroviral gene transfer.
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Abstract

Understanding how seif-renewal and pluripotency - two key characteristics of stem

ceils - are controlled may allow generation of stem ceil unes from somatic tissues, avoiding

the ethically contentious need to derive them from embryos. A step in this direction was

recently taken by two teams, who exploited recombinant retroviruses in gain and loss of

function experiments to characterize candidate transcription factors with the potential to

regulate “stemness”.

News & Views

For years, many predicted that understanding the properties of murine (mESC) and

human (hE$C) embryonic stem ceils could lead to the design of ceil replacement therapies44.

Using a list of candidate factors, Takahashi and Yamanaka’85 show that a specific combination

ofonly four factors allows the generation ofpluripotent stem ceils from mouse aduit fibroblast

cultures, avoiding the controversial need ofderiving them from an embryo. On the other hand,

Ivanova et al.15 chose a RNA interference strategy to identify known and novel transcriptional

regulators from two distinct pathways that control mESC seif-renewal

Both celi extrinsic and intrinsic factors regulate mESC seif-renewal (maintenance of

celi characteristics through division) and pluripotency (ability to form ail lineages from ail

tissues). In ternis of ceil extrinsic factors, mESC maintenance in vitro requires the presence

of the leukemia inhibitory factor (LIF) and bone morphogenic protein (BMP) that signal

through Stat3 and $rnad proteins, respectively186. Evidence indicates that Wnt signaling is also

invoÏved186. The ceil intrinsic machinery includes the transcription factors Oct1, Nanog and

8ox249. The pluripotency state could also be regulated by epigenetic mechanisms involving

members of the Polycomb group proteins49.

Up to now, oniy two relatively inefficient methods have allowed somatic celis

reprogramming into a pluripotent state: nuclear transfer and cell fusion. Interestingiy,

reprogramming efficiency is influenced by the developmental/epigenetic stage of the donor

celÏ’87 and might be enhanced by ectopic expression ofNanog188. Importantly, the exact blend

offactors necessaiy to reprogram a celi remained unknown until recently1 85• Indeed, Takahashi

and Yamanaka selected 24 candidate genes either with documented roles in ES se1f-renewa

and pluripotency, or specifically expressed in these cells. These factors were expressed alone

or in combination using retroviral gene transfer in mouse embiyonic fibroblasts (MEFs) or
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aduit tail-tip fibroblasts (TTfs). Interestingly, celis used in these experiments were derived

from a transgenic mouse bearing a J3geo gene integrated into the fbxl5 locus, which is

mostly active in mE$Cs. The newly generated pluripotent clones engineered to express the

subgroup of transcription factors were then selected with G4 1$ for Jigeo expression. By

testing increasingly narrow combinations of candidates, the authors identified a minimal set

ofgenes necessary to obtain G41 $‘ pluripotent stem celis derived from MEFs (iPS-MEF) and

Tifs (iPS-TTF) cultures. Only four factors tumed out to be essential: Oct4, Sox2, c-Myc and

K1f4185. iPS clones isolated resembÏed mESCs both in terms ofmorphological criteria and

transcriptiona! signatures, as evaluated by RT-PCR and microarray analyses, as well as by

their capacity to differentiate into the three germ layers both in vitro during embryonic body

(EB) differentiation and in vivo by teratoma formation. Interestingly, the se!ected stem ceil

unes (iPSs) strictly needed LIF and feeders to remain undifferentiated, suggesting that the

four transduced factors were not sufficient to confer ce!! autonomous properties. Although

Nanog was not required for their generation, it rnight overcome the need for LIf and BMP

(provided by the serum) and accentuate the E$-!ike properties of the reported iP$s. When

introduced in mouse blastocyst, iPS-TTf could contribute to derivatives of the three germ

layers up to day E13.5; however, no chimeric mice where born.

It seerns that somehow the formation of iPS is constrained. Using the data provided,

we estimated the efficiency ofreprogramming to be between 1 per 2,500 to ‘-1 per 30,000

infected embryonic and adult fibroblasts, respectively. Because ofthe great scientific impact

ofthese findings and the low frequency ofthe observed phenomenon, two critical issues arise:

Which ce!! type(s) was reprograrnmed? Was the reported combination of factors sufficient

for reprogramming? Although the authors reasonab!y argued that the !ow frequency of iPS

derivation is due to se!ective pressure for the rare ceils that express appropriate levels of

the factors, it will be necessary to experimentally demonstrate this in subsequent studies.

As recently reported by Jeanisch and colleagues’89, definitive proof of mature celi nuc!ear

reprogramming will emerge when simi!ar studies are performed with differentiated celis that

are genetically rnarked.

The issue of whether these factors are sufficient for reprogramming remains open,

especially considering the important range in ftequency of iPS generation and the inability

of these ce!ls to behave as normal mESCs. The interesting possibi!ity that insertional

mutagenesis has contributed must be considered because 20 integrations are reported per

c!one. The identification of common insertion sites in the various clones cou!d thus reveal

nove! reprogramming factors. Since the diversity ofthe retroviral particles used in this study
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was apparently generated by transfection of plasmid pools, the possibility that unexpected

recombinant viruses have been generated remains. Other caveats not related to retrovirai

infection have already been discussed by Rodolfa and Eggan and wili flot be repeated here190.

Nevertheiess, even if some points need to be clarified concerning the iPS and the genes

involved, the reported somatic celi reprogramming with just a handfui of factors is of major

interest and represents a breakthrough in the stem ceil field.

Ivanova et al.15 used a complementaiy approach to identify mESC seif-renewal genes.

They report a list of around 65 candidate transcription factors from a selection of 901 genes

down-regulated during retinoic acid-induced mESC differentiation and generated shRNA

based lentiviral vectors for these genes. The efficiency ofmRNAknock-down ofthis approach

compares favorably to most other methods reported to date191. In order to evaluate the effect

on seif-renewal capacity, they designed a competitive in vitro assay between transduced and

untransduced ceils which resuited in a final list of 10 candidate genes. Two of these genes

were eliminated because they induce ceil loss. The others were tested with an elegant rescue

experiment using a lentivirai vector containing both the shRNA and its corresponding cDNA

expressed under the control of an inducibie promoter. Oniy one candidate failed in the rescue

experiment. The functions of ail the other candidates were characterized by knocking down

their expression in ESCs or forcing their expression during differentiation. Analyses were

then performed by RT-PCR for expression markers corresponding to the three germ layers

and the trophoectoderm, or by the contribution of these modified ESCs to chimeric mice.

The effect of knockdown experiments was also evaluated by microarray analysis. These

results showed for the first time that two separate pathways seem to regulate seif-renewal,

one including Nanog, Oct4 and Sox2 and the other Esrrb, Tbx3, Tel] and Dppa4. A hundred

sixty candidates for positive regulators of differentiation were selected from the microarray

data and overexpressed in ESCs; eighteen induced differentiation. The direct transcriptional

iink between these genes and the seven candidate seif-renewal factors will need to be

demonstrated. Nonetheless, these results represent an enormous endeavor in understanding

the transcriptional complexity underiying mESC self-renewal.

Together, these studies confirm the invoivement of Oet4 and $ox2 in the maintenance

ofESC identity and further underscore their ability to induce nuciear reprogramming (Figure

O-1). Based on this, it should be of interest to test the reprogramming potential of the other

factors identified by Ivanova et al.15 and aiso the target genes shared by Oct4 and Sox2’92.

Moreover, these results wiil become even more significant when epistatic and synthetic

interactions are uncovered, as might be achieved through high-throughput ESC experiments.
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Thus, it can now be concluded that a small set of transcription factors are key components

regulating ESC fate decisions. Understanding their post-translational modification in self
renewing ceils will become necessary. Non-coding microRNAs are also expected to be

implicated in the regulatory network’93. In addition, accumulating evidence indicate that up
to -2% ofthe genome involves non-coding regions kept under active evolutionaiy selection,

with more than 5000 sequences ofover 100 bp that are absolutely conserved between human

and mouse194. Interestingly, some ofthese conserved elements, referred as “bivalent domains”,

may silence developmental genes in E$Cs but also keep them poised for activation52. It can

be envisioned that chromosome engineering technology will become part ofthe growing list
of complementary approaches to decipher the ffinction of these conserved regions that likely
control “stemness”35.

Figure O-1 Candidate transcription factors that determine stem ccl] identity

Oct4 and Sox2 (blue) contribute to reprogramming fibroblasts into a pluripotent state
(green)’85. Interestingly, these genes are also required for maintenance of mE$C celi self
renewal (red)’5.
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Differentiated ccli

Takahashi K., et ai.
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APPENDIX II: TOWARD TUE DESIGN OFA SUCESSFUL

RETROVIRAL SYSTEM

Appendix II describes the construction and validation of complementary retroviruses,

carriers of loxF sites, designed specificaÏly to create Cre-induced deletions in mammalian

celis. This chapter is an article in preparation (Rapid communication) relating technical

problems encountered in generating these viruses. These observations highlight the

complexity of retroviral biology and the high degree of vigilance that these commonly used

entities deserve. Supplementary Figure O-5 presents conclusive retrovirus testing and

successful Cre-induced recombination in NIH 3T3 ceils. These resuits paved the way to the

work reported in the Chapter 2. figures presented in this chapter do not overlap with those

found in Chapter 2. However, a testing summary was presented in a supplementary figure

of Chapter 2 manuscript (Figure 2-3). Melanie Bilodeau performed 100% the experiments,

generated all the figures, and analyses under the supervision of Guy Sauvageau.
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Abstract

The design of specific retroviral vectors and packaging ceils to generate recombinant

virions which are suitable for functional genomic studies remains difficuit to achieve even

with today’s technology. Rearranged proviruses were observed in embryonic stem celis,

related to different retroviral constructs. Independently, a retroviral-like particle conferred a

drug resistance gene to target ceils, although this gene was absent from the designated viral

construct. Finally, an inducible drug resistance cassette was leaky when placed downstream

of promoter(s), resulting in undesired resistant cells. Together, these observations raise

concerns about low incidence events following retroviral gene transfer and gene therapy

mediated by retroviral vectors.

Introduction

Compatible retroviral vectors were designed and were optimized to create deletions

in embryonic stem ceils (ESCs) using Cre-loxF recombination system118. Construct

representations and a brief testing summary were published in the supplementary

information of a manuscript’18. These loxF-containing retroviral vectors were classified in

two complementary sets: anchor and saturation viruses118. Properties common to anchor

viruses were the presence ofa loxF site, a puromycin gene to select for stable integration, and

a promoter-less neomycin gene devoid of its first translation initiation codon (ATG) (Figure

O-2). Saturation viruses shared the following characteristics: a loxP site, a hygromycin gene

to select integration, and a promoter coupled to an ATG to complement the inactive neomycin

gene found in anchor viruses (Figure O-2).

Challenging problems were encountered for several retroviral vectors and a specific

packaging cell line. These difficulties included rearrangements of proviruses, transmission

ofa presumed retroviral-like particle, and unexpected gene expression. The entire analysis of

these problems is presented to review and to illustrate some potential drawbacks ofretroviral

based system design.



xxvi

Figure O-2 Retroviral constructs were designed to mediate Cre-loxP recombination.

Both the anchor and the saturation viruses deliver a loxP site in the genome of mammalian

ceils. The former is selected with puromycin and the latter with hygromycin. A promoter

ATG cassette is delivered by the saturation virus while an inactive neomycin gene (Off) is

introduced by the anchor virus, and the bipartite neomycin selection gene is reconstituted

(ON) following Cre-induced recombination between loxP sites.

Introduction of a first IoxP site (anchor) 4’

Introduction of a second IoxP site (saturation) 4’

________
__________
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Resuits

Rearranged proviruses

Constructs leading to rearranged proviruses can be classified in to one predominant

or to several rearrangements. For the first class, two constructs ($4 and $5) showed a similar

rearrangement in almost ail proviruses, according to $outhern blot sensitivity (Figure O-3a).

Both $4 and $5 virions were Vesicular Stomatitis Virus G (V$V-G) pseudotyped in 293GPG

packaging ceils129. $outhern blot analyses using NheI enzymatic digestion and hygromycin

detection revealed that $4 provirus size in genomic DNA extracted from E$C polyclonal

populations (lane 2 and 3, in absence or presence ofthe virus Cre, respectively) was smaller

than expected (plasmid DNA, lane 4) (Figure O-3a, top panel). Using the same enzymatic

digestion and hybridization conditions, $5 proviruses in genomic DNA of GP+E$6 or E$C

target celis (lanes 7 and 8, respectively) were also of reduced size in comparison to plasrnid

DNA (pS5, lane 15, Figure O-3a). However, GP+E-$6 celis directly transfected with the

virus S5 plasmid and selected with hygromycin presented a dominant band of expected size

in addition to a smaller fragment as observed in target celi genomic DNA (Figure O-3a,

lanes 6-8). Suspecting that rearrangements (smaller bands) were caused by the two Pgk-]

direct repeat sequences introduced in $4 and $5 constructs, the potential deletion was further

defined. $outhern blot analyses with HindIII enzymatic digestion combined to hygromycin

detection were expected to show a 1.9 kb band as observed for control plasrnid $5 (Figure

O-3a, lane 16) or a polyclonality smear if one of the HindlII site was loss. In fact, one of

the HindIII site was loss in $5 proviruses integrated in ESCs genomic DNA (Figure O-3a,

lane 9). The XhoJ restriction site was preserved, according to a 1.9 kb band detected with

.X7ioI-HindIII double restriction digest (lane 10), a product similar to either HindIII-HindIII

or XhoI-HindIII double restriction digests of plasmid $5 (lanes 16-17) (Figure O-3a). This

deletion probably occurred during reverse transcription, prior to integration in target celis,

as suggested by others195’196. The minor rearrangement observed in GP+E-86 packaging

celis transfected with 55 plasrnid reveals either that the deletion might also occur directly in

genomic DNA, or a minor proportion ofthe packaging celis can be infected with viruses that

they produced. The first hypothesis is more likely since packaging celis are presumed to be

resistant to the virions they themselves produce because viral envelop proteins block their

surface receptors’ 19•

For the second category (multiple rearrangements), both the saturation $3 and the

anchor A3 viruses relied on the viral 5’LTR promoter to direct hygromycin or puromycin
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expression, although other elements were found in between (Figure O-3b,c). Polyclonal

GP+E$6 populations, stably transduced with conesponding plasmid DNA, were recovered

following respective selection. Genomic DNA analysis by Southern blot presented fragments

of appropriate sizes and polyclonality smears, as expected (Figure O-3b, lane 1,3-4 and c,

lane 2-3, 20-2 1 and 38). However, E$Cs infections were ineffective and viral titers were low

in both cases (data flot shown). Nevertheless, some totally altered A3 proviruses permitted

the recovery of puromycin resistant (puroR) ESC clones, although at low frequency (Figure

O-3c, lanes 5-19 and 23-37). These rearranged proviruses could have originated from multiple

causes: alteration during plasmid DNA random integration, rearrangement with packaging

celi endogenous elements, or rearrangement during reverse transcription or at the genomic

level in target celÏs, etc. The large anchor virus A4 also dernonstrated a high rearrangement

frequency (Figure 0-3d). Clonal analysis by $outhern blot with genomic DNA extracted from

92 E$C clones infected at low multiplicity of infection, presented frequent fragments smaller

than the 4.1 kb minimal expected size (Figure O-3d, 3g111 restriction digests and puromycin

detection, top panels). Detection with a neomycin probe revealed suspected rearrangements

since several ESC clones were lacking a signal (Figure O-3d, second panels). from these

limited observations, occurrence ofrearranged proviruses in these E$C clones was estimated

around 70%18. A couple of problems rnight explain the poor stability of this construct.

First, it contains heîpes simptex tymidine kinase (tk) gene that can cause rearrangements

in proviruses’97’198. This cause was probably minor in this experiment because the same tk

gene found in the $4 construct (Figure O-3a) did not perpetrate this type of rearrangement.

Most probabÏy, the cause was a small repetitive sequence (1 90 bp) introduced between the

puromycin coding sequence and the IRE$ (including NheI site) that corresponded in part to

sequences in the vicinity and in the 3 ‘LTR (but flot the polyadenylation signal). Nonetheless,

many altered puroR proviruses could be recovered in target ceils. further Southern BÏot

analyses revealed that although some genomic DNA extracted from ESC clones presented

an intact NheI fragment detected with a puromycin probe (clones 33-34,3 8,40 conesponding

to lanes 5,6,10,12, panel 3), none ofthem contained the neomycin gene detected either with

BglII (panel 2), NheI (panel 4), or EcoRJ (panel 6) restriction digests (Figure O-3d). In fact,

further analysis of genomic DNA from 1 of 10 clones demonstrated an intact EcoPJ fragment

revealed with puromycin detection (Figure O-3d, clones 31-40, panel 5). However, none of

these genomic DNA showed an intact NheI fragment detected with a neomycin probe (panel

4).

Reanangernent in proviruses can also be caused by splice donors and acceptors

found in plasmid constructs119. We did not address this possibility experimentalÏy. Together,
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these resuits illustrate that inappropriate sequence organization in retroviral constructs can

be associated with provirus rearrangements. The generation of replication-incompetent

retrovirus and target celi infection create a range of observable proviral variants under

selective conditions.

Transmission of undesired retroviral-like particle

As a selection control for an experiment, ESCs successively infected with S4 and C’re

retroviruses were treated with G41$ (geneticin) (Figure O-3a). Total sensitivity was expected

since neither of these retroviral constructs contained the neomycin selection gene (Figure

O-3a, bottom panel, lanes 4-5). Surprisingly, O.4% ofthe ESC colonies were G418 resistant

(G41 $R) when infected both with S4 and Cre viruses, but totally sensitive when infected only

with the S4 retrovirus. Southem blot analyses with NheI restriction digests and neomycin

hybridization, performed with genomic DNA extracted form this G41 $R ESC population,

revealed two additional neomycin bands that were flot observed in 293 GPG or residual feeder

cell (MEFs) genomic DNA (lanes 1-3) (Figure O-3a, bottom panel). Presumably one or two

dominant retroviral-like product(s) conesponded to the two specific neomycin fragments

observed in the genomic DNA of G418R polyclonal ESC population (Figure O-3a, bottom

panel), and were also found in the genomic DNA oftwo other independent ESC populations

infected with the same virus Cre182 (data not shown). Most likely this retroviral-like particle(s)

was present at low frequency in the virus Cre packaging ceils, but oniy revealed following

G4 1$ selection of target celis. This phenomenon was not an isolated event. Neornycin

resistance (frequency: lOO-fold lower) was observed with an unrelated Cre viral construct

tested on the same ESC populations (data not shown). These VSV-G pseudotyped virions

were produced by the amphotropic packaging cell une 293 GPG’29. Aberrant G4Ï8R viruses

rnight have been formed by recombination in 293GPG celis containing the neomycin gene

co-integrated with the packaging functions’29”35’137. The retroviral-like particle(s) observed

by Southern blot analysis might coiiesponded to replication-competent retrovirus (helper),

to satellite virus (replication-incompetent, encoding env), or to satellite RNA (replication

incompetent, not encoding env). In any case, neomycin resistance was transferred, resulting

in a totally unacceptable background.
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Figure O-3 Rearranged proviruses and transmission of a retroviral-like particle.

(a-d) Southem blot analyses ofgenomic DNA extracted ftom 293 GPG or GP+E-8 6 packaging

ceils transfected or flot with circular (cir.) or linear (lin.) plasmid DNA (p), and E$C clones!

polyclonal populations or GP+E-86 infected with the indicated viruses. Piasmids are larger

(3kb more) than the depicted proviruses (v.S4, v.S5, v.A5, v.$3, v.A3 and v.A4) because of

their backbones. As a general fuie, provirus rearrangement analysis was done with a single

or a combination of enzymes to give a fragment of expected size (for example, NheI or KpnI

that eut in both MSCV LTRs) following detection with an intemal probe as indicated (hygro,

neo, puro). for clonal analysis, usually the selected enzyme eut once in the provirus and

elsewhere in genomie DNA, or cleaves outside of the provirus, and the probe is internai to

the provirus.
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Undesired neomycin expression

A5 anchor construct was particularly promising since proviruses in ESC clones

demonstrated low rearrangement frequency according to Southern blot anaÏysis of genomic

DNA (Figure O-4a). Most of the time, an intact 3.5 kb KpnI fragment was detected with

a neomycin probe (Figure O-4a, top panel). However, ceils containing A5 provirus were

G418R (data flot shown), which was incompatible with the proposed system (neomycin

expression only upon Cre-induced recombination). To minimize the neomycin gene ieakiness,

a construct based on a seif-inactivating (SIN) MSCV backbone’49 was generated to reduce or

abolish expression from the viral 5’LTR (Figure O-4b,c). This virus significantÏy reduced the

ftequency ofundesired neomycin resistance (j—100 foÏd reduction’18). However, some G418’

ESCs persisted in a population of infected ceils, as assessed functionally and by northern blot

analysis of total RNA (Figure O-4b, lane 5). Neomycin expression seemed directed both

from the 5’LTR and from the internai Pgk-] promoters in producers (as expected because of

the intact 5’LTR in the plasmid) and in target ceÏÏs (not expected because following reverse

transcription, the 5’LTR is mutated) (Figure O-4b, lanes 4-5). Recombination event(s) could

explain the unexpected expression presumably directed form the 5’ $IN LTR. Neomycin

resistance correlated with a subtie genornic rearrangement (lane 6), but most isolated ESC

clones (lanes 7-10 and 12) or unselected polyclonal ESC population (lane 5) presented

an intact provirus according to Southern Blot analysis of genomic DNA (Figure O-4c).

Together these results showed that ATG-less-neomycin gene expression was flot abolished

when the cassette was piaced downstream ofpromoters. In addition, discrete and infrequent

rearrangements, observed under selective conditions, restored expression from the rnutated

5’SIN LTR, an observation noticed before119.
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Figure O-4 Retroviruses associated with unexpected neomycin resistance.

ta) Rearrangement (KpnI enzymatic digestion) and clonai analyses (Bgfll euzymatic digestion)

of genomic DNA extracted from packaging ceils (GP+E-86) transfected with A5 linear (lin.)

piasmid (pA5) or from ESC clones infected with A5 virus (v.A5). Southem blot analyses

were performed with a neomycin probe, most of the time reveaiing an intact and unique

provirus in ESC clones. (b) Northem blot analysis reveaiing neomycin transcripts using RNA

extracted from of G418’ MEFs (hybridization control, lane 1), v.A2 producer cells (lane 4),

and ESCs infected with v.A2 (iane 5). (c) Southern blot analysis performed with genomic

DNA extracted from v.A2 virai producers (lanes 3-4 and 14-15) or ESC infected with v.A2

(ianes 5-6 and 17-18), before and afier G4 1$ seiection. Six ESC clones infected with v.A2

are also shown. Virus integrity is revealed with KpnI restriction digests (3.1 kb bands), and

clonai analysis with XbaI restriction digests. Note that G41$R polyclonal ESC population

presents slightly rearranged proviruses (lanes 6 and 18). Cartoons represent either proviruses

or plasmid (without the backbone).
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Discussion ami Conclusions

Together these resuits underlined some difficulties faced when designing retroviral

vectors in association with packaging ceil unes. Tbree suitable retroviruses were generated

for the proposed system (Al and Si described previously118, and 52) by resolving these

problems (Supplementary Figure O-5). First, GP+E-86 ecotropic packaging ceil une (free

of neomycin, puromycin, and hygromycin genes)’28 was used to avoid undesired resistance

transmitted by retroviral-like particles. To minimize proviral rearrangement, repetitive

sequences and heîpes simplex tyrnidine kinase gene were avoided, and simple viral constructs

were generated. In order to abrogate undesired neomycin expression, a self-inactivating

MSCV backbone was used and the neomycin cassette was inserted in reverse orientation

compared to the 5’LTR promoter and to the Pgk-puromycin cassette.

Creating proper retroviral constructs that can be used in functional genomic studies (i.e,

low rearrangement frequency, robust inducible drug resistance cassette, etc.) is a controllable

process. Packaging celis and the retroviral life cycle are flot as manageable. Transmissible

but ahered retroviral-like entities can be produced by multiple ways: recombination or

read-through transcripts or spliced transcripts initiated in packaging cells, recombination

during reverse transcription involving foreign viral or cellular RNA co-encapsidated with

the designated viral genomic RNA, and other possibilities’ Several of these events

probably happen at low frequency. Unfortunately, some certainly stay invisible because of

their lack ofdetectable/selectable characteristics. Results reported in this manuscript suggest

careful interpretations of low incidence observations following retroviral gene transfer and

raise concems about gene therapy mediated by retroviral vectors.

Methods

Retroviral constructs.

Virus S5. Fgk-] promoter fragment from pMSCVpuro was ligated with an adapter

kozac-ATG (oligonucleotides 5’-agcttaccatgg -3’ and 5’-aattccatggta-3’) and was placed

in pBluescript (Stratagene) upstrearn of a loxP sequence (plasmid no.1535). (LoxP from

plasmid Pgk-ÏoxP-Pgk-neo’99 offered by Bruno Saint-Jore. ll\ISERM U321, Paris, France).

Pgk-kozac-ATG-loxP fragment was subcloned into the HpaI site of pMSCVhyg (plasmid

no.1537 corresponding to virus S5).
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Virus $4. An IRES fragment from pMSCV-IRES-YfP (Clontech) was ligated to

the herpes simplex tyrnidine kinase gene (tk) (PCR fragment produced with oligonucleotides

5’ -gagaattctcagttagcctcccccatctc-3’ and 5’ -ggaagatctaccatggcttcgtaccc-3’) in pBluescript

(Stratagene) (plasmid no.1539). IRES-tk fragment was subcloned in the Sali site ofplasrnid

no.1537 (plasmid no.1538 corresponding to virus $4).

Virus A4. A loxP-ATG-less-neo fragment was PCR amplified from pPNT148

(primers: 5’ -gagaattcataacttcgtatagcatacattatacgaagttattaggatcggccattgaa-3’ and 5’-

gagaggatcctcagaagaactcgtc-3’) and inserted downstream of IRE$-tk in plasmid no.1539

(plasmid no.1540) or in pBluescript (Stratagene) (plasmid no.1541). A Pgk-puro fragment

(EcoRV restriction digest) was released from pMSCVpuro and subctoned upstream IRES

tk-LoxP-ATG-tess-neo in plasrnid no. 1540 (plasmid no. 1542). Pgk-puro-IRES-tk-LoxP

ATG-less-neo fragment was then subcloned into pMSCVneo linearized with BgIII-BamHI

(plasmid no. 1543 corresponding to virus A4).

Virus A5. LoxF-ATG-Ïess-neo fragment from plasmid no. 1541 was subcloned in

a modified pM$CVneo depleted of the neomycin gene (plasmid no.1598). A Pgk-puro

fragment (XhoI-CÏaI) was extracted from pMSCVpuro and introduced upstream of LoxP

ATG-less-neo in plasmid no. 1598 (plasmid no. 1599 corresponding to virus AS).

Virus $2. One of the two Pgk (the one located upstream of the ÏoxP) was removed

from plasmid no.1537 (virus $5) creating plasmid no.Ï 638 coiresponding to the virus $2.

Virus S3. Hygromycin gene was PCR-amplified Qrimers: gctctagaatgaaaaagcctgaactc

and tatctagactattcctttgccctcg) from pM$CVhyg. The hygromycin PCR product was subcÏoned

downstream of Fgk-kozac-ATG-LoxP in plasmid no. 1535 (plasmid no. 1639). The Pgk of

plasmid no. 1639 was removed (plasmid no. 1640). The kozac-ATG-loxF-hygro fragment

from plasmid 110.1640 was ligated in a modified pM$CVneo depleted of the neomycin gene

(plasmid no.1641 corresponding to virus $3).

Virus A2. Pgk-puro fragment 7ioI-CÏaI) obtained from pMSCVpuro was subcloned

upstream of LoxP-ATG-less-neo in plasmid no. 1541 (plasmid no. 1600). The Pgk-pnro-LoxF

ATG-less-neo fragment from plasmid 110.1600 was subcloned into pRETRO-$UPER149

linearized with BglII-C1aT (plasmid no. 1644 corresponding to virus A2).
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Virus A3. The $V40 early rnRNA polyadenylation signal (pA) from pDsRed2-N1

(Clontech), included in a 1 kb HpaI-StuI fragment. was subcloned downstream of LoxF

ATG-less-neo in plasmid no. 1541 (plasmid no. 1645). LoxP-ATG-less-neo-pA fragment from

plasmid no. 1645 was subcloned in reverse orientation in pMSCVpuro linearized with EcoRI

HindIII (plasmid no. 1648 conesponding to virus A3).

Construction of viruses Si and Ai; ESC culture; viral producer celi lunes,

transduction oftarget ceils & DNA ami RNA ana]yses. Performed as described previously

(Chapter 2 article)118. Viruses A4, $4, and $5 were produced by 293GPG packaging cells

while Ai, A2, A3, A5, $1, $2, and $3 were generated in GP+E-86’18.
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Supplementary Figure

Figure O-5 Successful retroviruses and efficient Cre-!oxP recombination.

(a) Cre-mediated recombination between appropriate viruses displayed at the moiecular level.

Si-Al or S2-A 1, recombination products between indicated proviruses (y.). (b) Southern blot

analysis performed with genomic DNA extracted either from GP+E-86 packaging celi unes

(G) or ESCs, and probed with a hygromycin probe. KpnI restriction digests, assessing proviral

integrity, show 2.9 kb and 3.3 kb bands corresponding to Si and S2 viruses, respectively.

BglTI restriction digests revealed the polyclonality of integration sites in packaging celi unes.

(e) Southern blot analysis using a neomycin probe, to view the Al virus integrity (KpnI

restriction digests; 3.4 kb band) and poiycionality of integration sites in the packaging celi une

genomic DNA (XbaI restriction digest). (d) Southem biot analysis using a neomycin probe,

performed with 14 ESC clones. KpnI and EcoPJ restriction digests evaluated integrity and

single integration ofAl proviruses, respectively. (e) Southern blot analysis of genomic DNA

showing vectors’ cornpiementary whenNlH 3T3 ceils are successiveiy infected with indicated

viruses, and exposed to transient Cre expression. Upper panel shows 3.4 kb or 3.0 kb signais

with KpnI restriction digests, corresponding to unarranged Ai provirus or recombination

between v.Al and v.S1 or v.$2, respectively. Bottom panel (NcoI restriction digests): 0.6

kb signais represent rearrangement between y. Si and v.Al (iane 6) or v.S2 and v.Ai (lane

9), and poiyclonaiity smears (not detectabie) correspond to unrecombined Ai viruses (lane

2-5 and 7-8). Aithough both virus combinations gave the expected recombination products,

qualitativeiy, the v.Al-v.S1 pair was slightly more efficient than the v.Ai-v.S2 pair for giving

rise to G41$R NIH 3T3 ceils. Consequently, this combination (v.Ai-v.Sl) was further used

for engineering E$Cs.
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Supplementary Methods

Cel] culture. Ri ESC culture was described previously (Chapter 2 article)”8. NIH

3T3 celis were maintained under standard conditions.

Viral producer ceil unes and transduction of target celis. Viral producer celi unes

and ESC viral transduction were described previously (Chapter 2 article)118. For NIH 3T3

ceils viral transduction, producers media were changed 24h before infection (10% NCS in

DMEM). 2 dishes (100 mm) ofNIH 3T3 (10% confluence) were infected during 24h with

v.A1 using 1:20 and 1:200 dilutions of viral supernatant in presence of 6 ug ml1 polybren

(Sigma). Fresh media was added the next day and puromycin selection (Sigma, 1.2 ug rn1’)

started 48h after infection. Five dishes (100 mm) ofeach populations (50% confluence) were

infected during 24h with v.S1 or v.S2 in presence of 6 ug ml-’ polybren (Sigma) (dilution of

viral supematant; 1:2). The next day, celis were split, halfwere frozen, and the rest plated in

4 dishes (100 mm).

Cre-toxP recombinatïon in NIH 3T3 cells. 48 h afier the begiiming of the second

infection, 3 dishes (100 mm, >90% confluence) were transfected with circular pCX-EYFP’54

(1 dish) or pCX-cre”8 (2 dishes) using Lipofectamine (Invitrogen). The next day, ceils were

spÏit and G418 selection (Invitrogen. lmg rnl’) was started after 4$h. As expected, every

cells transfected with pCX-EYFF were sensitive to G41 8.
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APPENDIX III: Table

Table presentïng the genomic features of speculative 3 Mb

deletions ancliored to virus Al retroviral integration sites

determined by I-PCR (parti of 4)

Number Number
Primary 3Mb 3Mb Number of Number of highly
clone Anchor deletion deletion of CpG Refseq Number 0f of conserved

Id Chr Start Stop islands genes microRNAs mRNAs regions

5001 chrl7 30507974 33507974 43 62 0 545 196
5002 chr3 121802436 124802436 16 17 1 179 239
5003 chrl4 53526031 56526031 56 91 2 735 438
5004 chrl0 79449174 82449174 151 102 0 1735 351
5005 chr3 144547055 147547055 19 31 0 238 289
5006 chr5 22919519 25919519 41 33 1 445 368
5009 chrl4 100119811 103119811 9 10 0 269 249
5012 chrl9 31101425 34101425 9 14 0 223 116
5014 chr8 1347514 4347514 27 35 0 352 137
5017 chr9 7720889 10720889 10 9 0 118 165
5018 chr7 11840399 14840399 14 25 0 166 128
5020 chr2 73438698 76438698 32 29 1 244 559
5021 chril 80905934 83905934 26 51 0 420 279
5024 chrl0 76447973 79447973 67 81 0 878 184
5025 chrl5 12662598 15662598 4 3 0 55 190
5026 chr3 135937211 138937211 10 21 0 255 187
5027 chr6 148168602 151168602 10 11 0 159 94
5029 cht8 82534844 85534844 9 11 0 115 255
5034 chrl5 79839426 82839426 57 63 1 868 360
5035 chr8 35118318 38118318 19 18 0 224 158
5038 chril 120670373 123670373 16 26 0 250 77
5040 chr2 120048741 123048741 40 52 0 537 484
5041 chr7 118086289 121086289 23 44 0 427 258
5042 chr3 103259159 106259159 25 39 0 376 348
5043 chrl2 100586873 103588873 21 24 0 350 297

In blue, Al retroviral integration sites related to families with G41 8R puros tertiary clones. In red, Al retroviral integration
sites r&sed to fames w’th G41 8R tertiarJ cones, but o G41 puro5 tertiary clones. In black, Al retroviral integration
sites that are flot related to families with G418R tertiary clones. Id, identification; Chr chromosome; Mb, megabase
pairs. Data extracted from UCSC Genome Browser (hffp:/!genome. ucsc.edu/)52’.
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Part2of4

Number Number
Primary 3Mb 3Mb Number of Number of highly
clone Anchor deletion deletion of CpG Refseq Number 0f of conserved

lu Chr Start Stop islands genes microRNAs mRNAs regions

5045 chrl0 63400102 66400102 0 2 0 44 87
5046 chr9 117614650 120614650 36 39 1 391 270
5047 chrl7 113312 3113312 2 1 0 31 20
5049 chrll 98712127 101712127 66 116 0 1078 578
5050 chr4 50885955 53885955 8 14 0 99 188
5051 chrl0 79792992 82792992 117 82 0 1561 300
5055 chrX 95506072 98506072 24 34 1 311 343
5056 chr5 118520891 121520891 29 30 0 313 265
5057 chrll 50215746 53215746 33 45 0 434 279
5058 chrl2 78144677 81144677 18 17 0 215 295
5059 chrX 165315983 168315983 6 2 0 31 6
5061 chr4 56984276 59984276 22 29 1 284 271
5062 chrll 35263024 38263024 10 6 2 83 606
5064 chri 153951498 156951498 18 24 0 279 230
5065 chrl8 37434159 40434159 46 61 0 441 234
5066 chr7 11732942 14732942 18 30 0 211 133
5068 chr7 132432736 135432736 16 23 0 268 214
5071 chr7 2862669 5862669 45 82 0 543 157
5074 chr7 109839356 112839356 18 20 0 289 349
5075 chr7 95913682 98913682 25 26 1 274 342
5076 chr7 18344700 21344700 47 41 0 374 125
5077 chr9 69920936 72920936 26 29 0 377 432
5080 chri 15775440 18775440 13 18 0 136 216
5082 cht6 97348725 100348725 9 8 0 134 537
5083 chrl6 13440516 16440516 23 31 1 298 324

In blue, Al retroviral integration sites related to familles with G41 8R puros tertiary clones. I red Al retroviral integration
sites related to families with G41 8R tertiary clones, but no G41 8R puros tertiary clones. In black, Al retroviral integration
sites that are not related to families with G4l 8R tertiary clones. ld, identification; Chr, chromosome; Mb, megabase
pairs. Data extracted from UCSC Genome Browser (http://genome.ucsc.edu/)32152153.
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Part3of4

Number Number
Primary 3Mb 3Mb Number of Number of highly
clone Anchor deletion deletion of CpG Refseq Numberof 0f conserved

Id Chr Start Stop islands genes microRNAs mRNAs regions

5086 chr6 140107733 143107733 11 29 0 181 246
5088 chrl6 42675681 45675681 16 31 0 310 398
5091 chr8 41807504 44807504 9 21 0 186 178
5092 chrl4 65726128 68726128 23 30 0 296 320
5094 chri 20804732 23804732 12 16 2 128 171
5108 chr3 95991528 98991528 53 66 0 541 316
5120 chrl3 31689643 34689643 13 25 0 183 153
5194 chr7 96820439 99820439 36 41 1 418 316
5196 chr6 125421248 128421248 23 29 0 314 203
5197 chr7 11956736 14956736 3 18 0 63 120
5198 chr9 24525625 27525625 11 12 0 162 182
5199 chrl7 26764953 29764953 73 58 0 733 384
5204 chr4 41017224 44017224 55 79 1 855 425
5205 chr6 71222644 74222644 22 38 0 472 261
5211 chril 59329278 62329278 52 60 0 633 390
5212 chril 1396196 4396196 27 36 0 462 205
5213 chtl5 98819220 101819220 64 83 0 749 427
5218 chrl8 74979316 77979316 28 19 0 258 306
5226 chr2 30983557 33983557 65 55 1 591 492
5227 chrll 48463840 51463840 41 74 2 563 273
5229 chrl7 512972 3512972 4 3 0 71 61
5233 chrl0 57208590 60208590 26 33 0 512 286
5237 chr8 78699072 81699072 10 9 0 123 278
5238 chrl2 87690206 90690206 16 20 0 263 339
5239 chr5 136320687 139320687 53 81 5 654 294

In blue, Al retroviral integration sites related to families with G41 8R puros tertiary clones. In red, Al retroviral integration
sites related to families with G41 8’ tertiary clones, but no G41 8R puros tertiary clones. In black, Al retroviral integration
sites that are flot related to families with G418R tertiary clones. Id, identification; Chr, chromosome; Mb, megabase
pairs. Data extracted from UCSC Genome Browser (hftp:llgenome.ucsc.edu/)32.152.
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Part4of4

Number Number
Primary 3Mb 3Mb Number of Number of highly
clone Anchor deletion deletion 0f CpG Refseq Number of of conserved

Id Chr Start Stop islands genes microRNAs mRNAs regions

5240 chr3 3906705 6906705 2 2 0 32 374
5242 chrl 135279729 138279729 44 51 0 522 321
5244 chr7 94304552 97304552 7 7 1 80 209
5248 chril 66867224 69867224 68 95 1 857 699
5252 chrl3 98168963 101168963 24 21 0 261 258
5253 chrl2 88088474 91088474 9 13 0 188 328
5254 chrl7 83783958 86783958 30 16 0 171 383
5255 chrl4 16005222 19005222 13 12 0 143 140
5256 chr4 125968987 128968987 45 41 0 443 374
5258 chril 106585156 109585156 27 29 0 365 310
5259 chcl4 6848872 9648872 5 10 0 97 213
5260 chrl5 66901645 69901645 4 3 2 43 85
5261 cht6 95681528 98681528 7 11 0 124 346
5265 chrll 115178073 118178073 83 76 0 967 424
5266 chrl9 4163981 7163981 122 128 2 1486 523
5269 chr5 75329547 78329547 20 23 0 227 229
5270 chrl 178550084 181550084 18 17 1 239 287
5271 chrl6 16435791 19435791 59 70 3 987 357
5273 chr2 84628411 87628411 10 135 0 145 82
5276 chrl2 98234055 101234055 20 18 0 269 292
5277 chr9 23748642 26748642 10 13 0 128 137
5278 chr2 91161466 94161466 41 38 2 437 398
5280 chr4 133587987 136587987 60 54 1 637 330
5282 chrl8 66906764 69906764 21 23 0 283 396
5286 chr4 55492994 58492994 17 21 1 229 221
5287 chr2 174697742 177697742 0 5 0 274 17
5288 chrl5 72717127 75717127 32 42 2 272 157

In blue, Al retroviral integratian sites related to families with G41 8R puros tertiary clones. In red, Al retroviral integration
sites related ta families with G41 8R tertiary clones, but no G41 8R puros tertiary clones In black, Al retroviral integratîon
sites that are flot related to familles with G418R tertiary clones. Id, identification; Chr, chromosome; Mb, megabase
pairs. Data extracted from UCSC Genome Srowser (http:llgenome.ucsc.edu!)52.
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