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RESUME EN FRANÇAIS ET MOTS CLES FRANÇAIS

Les gènes homéotiques EizgraiÏed-1 (En-1) et EngraiÏed-2 (En-2) sont d’importants
régulateurs du développement du système nerveux central chez la souris. Leur
implication dans le développement de la glande mammaire et leur contribution à la
transformation de ce tissu demeurent inconnu. Le travail présenté dans cette thèse
explore une approche de gène candidat afin de répondre aux questions suivantes: (i) Est-
ce que ces gènes sont impliqués dans le développement du tissu mammaire? (ii) Est-ce
que ces gènes participent à la transformation néoplasique du sein chez l’humain? Mes
résultats démontrent que bien que l’expression d’EngraiÏed-2 n’est pas détectable dans
le tissu mammaire murin au cours du développement fétal et chez la souris adulte, le
gène paralogue En-1 lui est fortement exprimé dans l’épithélium mammaire de souris
pré-pubaires. Mes travaux démontrent aussi que les souris chez qui le gène En-] est
inactivé par recombinaison homologue présente une glande mammaire anormale
caractérisée par une rareté d’arborisation des canaux mammaires. Des expériences de
transplantations de glandes mammaires isolées de souris En-] mutantes confirment que
ces observations sont probablement le résultat d’un défaut intrinsèque à l’arbre
mammaire mutant. Ces études démontrent donc pour la première fois l’expression
spatio-temporel d’Engrailed-] dans la glande mammaire de souris et suggèrent un rôle
important pour ce gène dans le développement mammaire. Mes travaux ont aussi
démontrés que EN2 (mais pas EN]) est exprimé de façon ectopiquc dans environ 8% des
cancer mammaires humains et chez près de la moitié des lignées cellulaires malignes. La
sur-expression d’EN2 induit la transformation mammaire chez deux lignées non-
transformées in vitro et la genèse d’adénocarcinomes in vivo. Des études d’interférence à
l’ARN (RNAi) ont démontré qu’EN2 est requis pour la prolifération de cellules
transformées humaines. De plus, des analyses par micro-puces effectuées chez 2 lignées
cellulaires chez qui les niveaux d’EN2 furent expérimentalement modifiés ont permis
d’identifions des gènes cibles potentiels de cette protéine. Ces résultats suggèrent
qu’EN2 est impliqué dans la transformation du tissu mammaire humain et d’ENl
contribue au développement de ce tissu.

Mots clés: Engraited, homéodomaine, glande mammaire, cancer du sein, oncogène,
morphogénèse ductale, transplantation, puberté, RNAi, micro-puce
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RESUME EN ANGLAIS ET MOTS CLES ANGLAIS

The homeobox genes Engrailed-] (En-1) and Engrailed-2 (En-2) occupy a prominent
position in the developmental regulatory hierarchy and have been studied extensively in
embryonic development, yet have received little attention with respect to mammary
gland organogenesis and cancer. The studies presented in this thesis are the resuit of a
candidate gene approach where the expression and potential role of these homeodomain
containing proteins were investigated in the developing mammary gland and in breast
tumors. While En-2 was neyer detected at any developmental timepoint in normal mouse
or human breast tissue, we have defined the developmentally regulated expression of
En-] in the mammary epithelium of the prepubertal and early pubertal mouse manimary
gland. Moreover, using En-] mutant mice, we provide evidence that loss of En-1
function in the female rnammary gland resuits in severely impaired ductal growth.
Pubertal En-] nuli mammary glands revealed a primitive ductal rudiment devoid of
terminal end buds (TEBs), reminiscent of a prepubertal mammary gland, while a fully
developed ductal system was seen in En-1 heterozygous and wildtype sibÏings. En-1 nuil
mammary epithelium transplanted into surgically cleared fat pads of syngeneic hosts
displayed limited ductal outgrowth and a decrease in side branching. These studies
demonstrate a unique spatio-temporal pattern of En-1 expression in mammary tissue and
suggest a potential role for En-1 in the initial growth and morphogenesis of the epithelial
ductal system during the onset of puberty. We also show that EN2 (but flot EN]) is
ectopically expressed in a subgroup of human breast turnors and in a large proportion of
breast cancer cdl unes and that its ectopic expression readily transforms mammary
epithelial cells in vitro and promotes adenocarcinoma formation in vii’o. RNA
interference studies show that EN2 expression is required for the maintenance of the
transformed phenotype of human breast tumor ceils. Moreover, microarray analysis of
both gain-of-function and loss-of-function of EN2 in two breast cancer ceil lines
provided initial insight into putative EN2 responsive targets. These studies reveal that En
genes have not only acquired a role in the postnatal development of the mouse
mammary gland, but in addition, they have evolved to contribute to brcast
tumorigenesis.

Mots clés: Engraited, homeobox, mammary gland, breast cancer, oncogene, ductal
morphogenesis, transplantation, puberty, RNAi, microarray
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CHAPITRE 1

INTRODUCTION

Investigating a Potential Role for EngraiÏed Genes in Mammary Gland

Development and Tumorigenesis
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The present Ph.D. thesis, consisting of five chapters, describes the expression, ftmction

and initial mechanistic insights of action ofEngraiÏed-] (En-1) and Engi-ailed-2 (En-2)

in normal mammary gland development and mammaiy tumorigenesis.

Chapter I is a titerature review which shah both encompass the most relevant studies

from other groups to gain a further appreciation of this field and help identify the

underlying motivation behind the research contained herein and is subdivided into six

sections. The first section briefly describes Homeobox genes in development, leading to

the second section, which specifically describes the EngraiÏed homeobox gene family.

The third section outlines the different stages of mouse mammary gland development

and imparts how the mouse is an invaluable model with which to investigate genes

involved in mammary gland development. The fourth section highhights the role of

excmplary homeobox genes in the developing mammary gland whule the flfth section

summarizes the role of certain homeobox genes in cancer, with an emphasis in their

potential involvement in breast cancer. The sixth section introduces the area of human

hreast cancer in general. The Introduction was written by Nicole Martin under the

supervision ofDr. Guy Sauvageau.
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1.1 Homeobox genes in embryonic development

1.1.1 Homeobox genes are key developmental regulators

Homeobox genes comprise a large family of transcriptional regulatory proteins that are

involved in a wide range of essentiai biological processes from embryonic development

to terminal differentiation. They are defined by the presence of a 180-hp DNA sequence

motif designated the homeobox. The homeobox was initialiy characterized as a sequence

motif that was shared among Drosophita Homeotic genes (the HOM-C complex). The

homeobox is now known to be evolutionarily conserved among many genes with over

1,000 homeobox genes having been identifled in severai species, ranging from hydra to

humans as weii as fungi and plants . A vast extent of what is presentiy known about

homeobox genes and their corresponding functions is the culmination of decades of

research that started witli dissecting Drosophita development and genetics. The HOM-C

genes in Drosophila were originaliy identified as part of a hierarchy of genes that

control embryonic development and play key roles in the determination and maintenance

of cell fate and ccli identity. Mutations in these DrosophiÏa HOM-C or homeotic genes

resuit in the conversion of one hody part or segment to the likeness or identity of

another, and led to die coinïng of the terni ‘homeotic transformation’. Other classes of

genes in this hierarchy, such as the gap, pair-ruied and segment polarity genes, which in

turn play essential roles in the determination and maintenance of ceil fate and pattern

formation in the developing Drosophila embryo, also contain members that are

homeobox genes.

In mammals, homeobox genes reign over the specification of the overail body plan and

are known to play crucial roles in a variety of developmental processes encompassing

central nervous system and skeletal development, limb and digit specification, and

organogenesis. The HOM-C genes are in many respects still considered to be the

prototype homeobox genes and while they represent only a subset of ail known or

predicted homeobox genes, their counterparts in mammais, the HOX genes, are arnong

the most extensively studied family among vertebrate homeobox genes. Over

evolutionary time, the number of homeobox genes lias increased and their functions
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have been reengineered to meet the demands of increasingly diverse developmental

processes. b date, it is estimated that the human genome contains at least 200 known or

predicted homeobox genes, of which only 39 are members of the HOX family 2 1i

mammals, mutations in homeobox genes can cause dramatic developmental defects

including Ioss of specific structures as well as classical homeotic transformations. Some

homeobox genes appear to have ce!! autonomous functions in differentiation and ce!!

cycle contro! while others appear to have non-celi autonomous fonctions such as pattem

formation and mediation ofreciprocal tissue interactions .

1.1.2 The homeodomain encodes a helix-turn-helix DNA-binding domain

The high!y consewed 180-bp homeobox DNA sequence encodes the homeodomain, a

60 amino acid long DNA-binding domain that folds into three c-helices and a flexible

N-termina! arm. Helices 2 and 3 form a he!ix-turn-helix motif that is the hallmark ofa!!

homeodomain-containing proteins. The third a helix, also known as the recognition

helix, contacts specific bases in the major groove while the N-termina! extension

contacts specific bases in the minor groove. The original 2.8 À reso!ution structure ofthe

engrailed homeodomain-DNA complex was the first crystal structure to reveal how thïs

motif recognized DNA . A!though there is considerable variation in the primary

sequence of the homeobox, the consensus amino acids, which are invariant among ail

horneodomains, maintain the overal! fo!d and DNA-docking arrangement in the three

dimensiona! structure of the homeodomain (fig. 1.1).

Evolutionaiy re!ationships and family c!assifications of homeobox genes are based on

the leve! of simi!arity among their respective homeodomains and subsequent!y, by

comparative analyses of amino acid sequences both amino-terminal and carboxy!

terminal to the homeodomain, which vaiy considerably ftom protein to protein. These

families vary in size from the relatively !arge ones, such as the HOX family, that

comprises 39 members, to the small families, such as the Engrailed fami!y, which only

has two members. The a.a. sequence diversity among homeodomain proteins is believed
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to contribute to their distinct functional properties, by generating distinct DNA-binding

specificities, promoting unique protein-protein interactions, and other mechanisrns.

Fig. 1.1 The highly conserved tlwee-dimensionai helix-tum-helix structure encoded by

the homeodomain is the hallmark of ail homeodomain-containing proteins. The Ieft

image depicts the DrosophiÏa engraiied homeodomain-DNA compiex where the 3 Œ

helices and the extended N-terminal arm of the engrailed homeodomain are shown in

blue. The right image shows the complementary 2.2 Â resolution structure of the

Drosophita engrailed horneodomain bound to its optimal DNA site. DNA is depicted in

blue and the protein backbone is depicted in red with Œ-helices represented by cylinders.

Residue 5 is the first amino acid that could be reiiably modeied from the crystai structure

while the other numbers indicate helix termini. Adapted from Fraenkel E., Rould M.A.,

Chambers K.A. and Pabo C.O. (199$) JMoÏ Bio!. 284:351-361.

1.1.3 Homeoproteins are transcriptional regulators

In accordance with their role as transcnptional regulators, homeobox genes encode

transcription factors, which are predominantly localized in the nucleus where they have

been shown to function as activators, repressors or both. These homeoproteins are

thought to instruct the ceil as to which genetic program they should further implement,
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depending on which step these ceils have reached in the course of their development, or

in response to developmental cues. Although it is widely accepted that the binding

promiscuity of homeoproteins in vitro vs. their highly selective functions in vii’o, reflects

their requirernent for cofactors, relatively few examples exist in which bona fide target

genes have been identified and are regulated by specific homeobox genes in vivo. It is

now thought that the functional specificities of homeoproteins are dictated by several

tiers of regulation, including post-transcriptional controls, nuclear-cytoplasmic transport

and protein-protein interactions. For example, PBX andlor MEIS members bind DNA

cooperatively with HOX family members in vitro, which represents one mechanism that

confers specificity 5.6•

Although individual homeobox genes display unique expression patterns and specific

biological functions, homeobox gene families can be distinguished by certain general

features of their expression pattems and functional properties, as well as by their

sequence similarities. For example, HOX gene expression is generally restricted to

undifferentiated andlor proliferative celis during embryogenesis in patterns that reftect

their biological functions and that specify positional information . Other homeobox

genes have spatial and temporal expression patterns that are consistent with roles in

regulating epithelial-mesenchymal interactions that are required for tissue patterning

during embryogenesis . By contrast, the tissue-specific expression patterns of other

classes of homeobox genes in differentiated adult tissues are consistent with their

functions as positive effectors of differentiation and homeostasis .

1.2 Engrailed homeobox gene family

1.2.1 Engraited genes represent one of the smaller families of homeobox genes

The Engrailed genes are widely regarded as devclopmental genes. They are involved in

pattern formation, neurogenesis, and neuronal differentiation 10,1 ],12 In Drosophila, the

gene engrailed (en), which belongs to the segment polarity class of genes, was first

discovered as a spontaneously occurring mutation, which led to a homeotic

transformation 13 Anterior transformations and ceil death occurs in the posterior
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compartment of each segment in en mutants, and most mutants die as larvae with

severely affected segmentation patterns 14 DrosophiÏa en is involved in regulating a

number of key patteming processes, including segmentation of the epidermis and

neurogenesis, and is an integral member of the highly complex cascade of

developmentaÏ cues, which resuits in a fully developed fruit fty 13

The high degree of conservation among the Engraited gene family led to the rapid

cloning of homologs from several species . The ancestral Drosophila en gene bas

undergone gene duplication to generate two Engrailed orthologs in vertebrates.

However, genome duplication led to four EngraiÏed orthoiogs in Zebrafish, based on

their homology to the mouse En-1 and En-2 genes 16

1.2.2 Moiecular structure and properties of Engrailed proteins

Although individual members of homeoprotein families often share littie sequence

similarity outside of the homeobox, particular protein families such as Engrailed have

additional conserved domains, which contribute to their distinct functional properties.

Comparison of Engrailed homologs identified across several species revealed that ail En

proteins have short stretches of conserved regions outside of the homeodomain 17 There

are five distinct subregions within Engrailed proteins, designated EH 1—5 for Engrailed

homology regions, where 1 through 5 refers to their N- to C-terminal positions 18 (Fig.

1.2). The EH4 domain is the largest and most conserved region and encompasses the

homeodornain. The other domains are involved in proteïn-protein interactions. The EH1

and EH5 domains play a roie in active repression of transcription where the repressor

function of Eh in vivo is dependent upon its association with Groucho 19•

EH3 was defined as a region containing basic amino acids and whose primary sequence

was the least conserved across species, although it is well conserved within cadi

vertebrate class. In contrast, EH2 is 100% conserved across ail species, with tic

exception of tic ftatworm where 17 of tic 19 amino acids are identical. Together, the

EH2 and EH3 domains mediate interactions with PBX proteins . EH2 and EH3 are

similar to the hexapeptide motif and the adjacent linker region in HOX proteins,
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respectively, which are also 5’ of the horneodomain and are responsible for mediating

cooperative DNA binding interactions with PBX homeoproteins 20 This interaction has

a significant impact on the affinity of the Engrailed proteins to DNA, can redirect them

to different targets, and can determine whether they act as activators or repressors of

transcription

There is n conserved phosphorylation site N-terminal to E1-12, which is post

translationally modified by serine/threonine kinase 2 in insects and vertebrates 24 The

phosphorylation of this site may also modulate the secretion of Engrailed protein in

mammalian ceits 25 Despite being a transcription factor, which are predominantly

localized in the nucleus, a small proportion of intracellular Engrailed protein (less then

5%) is actually found associated with membrane vesicles 26 becornes secreted, and is

intemalized by cells 24,27 This occurs despite the protein lacking a classical secretion

signal and depends on a short region in the horneodomain that is essential for nuclear

export and extracellular release ofthe protein, in addition to the phosphorylation site 28

EHI P EH2 EH3 EH4 EH5

N-I I L
Groucho Pbx Homeodomain Repression

binding domain binding domain domain

fig. 1.2 Molecular structure ofthe Engrailed protein farnily. The five highly conserved

subregions designated EH1-EH5 for Engrailed homology regions l-5 are numerically

based on their N- to C- terminal positions, and are designated as colored boxes within

the full-length grey protein. The fourth and largest region, EH4, represents the

horneodomain and is depicted as a red box. The letter P in the pink circle designates the

conserved phosphorylation site N-terminal to EH2, which is putatively involved in

modulating the secretion ofEngrailed proteins in mammalian celis.
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However, outside these regions of homoiogy, En proteins share littie identity across the

phyla. At the protein level, the sequence differences between homologs and paralogs are

significant. Whereas the homeobox domain is highly conserved, often reaching 90%

amongst two different phyla, the sequence hornology drops below 30% for the

remaining portion of the protein. This is evident where mouse En-1 shares greater amino

acid (a.a.) sequence identity with the human homolog ENY than with the mouse En-2

paralog. Overali, mouse En-Ï and human EN1 share 95% identity with each other while

mouse En-1 and En-2 proteins share approxirnately 55% a.a. identity with each other

and approx 35% a.a. identity with Drosophila en. Sirnilarly, human and mouse en-2

share 90% amino acid sequence identity with each other. The En-1 class is distinguished

by the proline and alanine rich regions N-terminal to EH2 in ail En-1 proteins whule ail

En-2 proteins contain a unique serine ricli region. The 2 vertebrate En protein classes

can be further distinguished by fine conserved amino acïds C-terminal to EH5 that are

specific for either the En-1 or En-2 class.

1.2.3 En-1 and En-2 in mouse development

In the mouse, En-] expression is first detected at the one-somite stage around 8.5 days

post coitum (dpc) in ceils of the anterior neural folds. En-2 expression, which occurs in a

similar region, is first detected at the five-somite stage, but does not fully overlap with

En-1 expression until approximately $ somites have formed 29 En-2 continues to be

expressed, along with En-], within the neural plate during condensation of the first

somites and in overlapping domains in the mid-hindbrain region during embryonic

development j. At 9.5 dpc, En-1 expression is also detected in a rostral-to-caudal

pattern in two ventrolateral stripes along the hindbrain and spinal cord, in the

dermomyatome of the somites, as well as in the ventral ectoderm of the limb buds, and

additional En-] expression is later detected in the compact ceils of the somite-derived

sclerotome 30 Indicative of their domains of expression during embryonic development,

En-1 and En-2 are required for midbrain and cerebellum development and En-1 also

plays a crucial role in dorsal/ventral patteming of the limbs and skeleton.
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In the adult mouse, both En-1 and En-2 are coordinately expressed in groups of motor

nuclei in the pons region and substantia nigra that are involved in motor control. In

addition, En-2 is uniquely expressed in the granule and molecular layers of the

cerebellar ceils while En-] is uniquely expressed in the postnatal limbs 31• Their

continuing expression in the nervous system into adulthood is thought to reflect an

additional function in maintaining the integrity of the central nervous system The

emergence of two En paralogs during evolution suggests that each gene likely serves a

unique role by regulating the expression of distinct target genes in specific celi types.

This notion is substantiated by the finding that unique phenotypes are associated with

the disruption of individual En genes in mice.

Mice homozygous for En-] mutations die within a day of birth and have multiple

abnormalities. The En-1 ‘itiM (hd, homeobox deletion) mutants have a striking absence of

the mid-hindbrain tissue that is apparent from 9.5 dpc onwards that results in the loss of

the third and fourth cranial nerves and most of the cerebellum and colliculi 31 In

addition, En-1 mutants have abnormally shaped forelimbs and exhibit skeletal defects in

the 13th rib and sternum. Mutant forelimb paws are grossly deformed showing

occasional ectopic ventral digits, truncations, and fusion of the digits, splaying outwards

of the digits, supernumerary digits and a delay in ossification of the digits. The newborn

mutants exhibited truncated sternums and a delay in ossification, as well as

misalignment of the ribs and abnormal sternum ossification patterns. At birth, these

mutants were readily distinguishable due to their forelimb abnormalities and by 12 hours

after birth, it was obvious that these mutants were flot feeding as evidenced by the lack

of rnilk in their stomachs 31• The mutants could move theirjaws and limbs so the Jack of

feeding was attributed to a probable Jack of appropriate innervation from the CNS for

feeding due to the deletion of brain tissue.

Phenotypic studies initially focused on newborns because En-] mutants die shortly

after birth but subsequent analysis of viable mice homozygous for two other En-]

mutant alleles, En-1 dki/Uki (Drosophila en knock-in) and En-1 2ki/2k1 (En-2 knock-in), and

of rare En-1 ““ mice surviving to three weeks of age, showed the functional
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importance of En-1 in specifying postnatal ventral limb structures. Around 3-4 weeks of

age, the above mutant limbs develop dorsally restricted hyperpigmentation and nail-like

differentiation on the ventral epidermis, ectopic ventral hairs, and occasional ectopic

ventral digits that emanate from the base of the proximal mutant paw pad 32• The Eu-1

mutant brain defect provides evidence that patterning of the nervous system in mammais

involves a phase of regionally controlled proliferation of cell precursors Mice lacking

En-] function have a loss of midbrain and cerebellar structures that derive from the En

]-expressing brain region, suggesting that En-1 is required for the specification,

survival, and differentiation of these neural precursors 31 In contrast, loss of En-1

function in the ventral ectoderm of the developing limb does flot lead to loss of En-]

expressing ectodermal ceils, but instead results in an alteration of ventral ectoderm and

mesoderm cell fate and limb patterning 32•

Mice homozygous for En-2 mutations are viable but exhibit a distinct cerebellar

phenotype where the mutant cerebellum exhibits a one-third reduction of the normal size

and displays a specific alteration in the folding pattern lie En-2 mutant phenotype is

milder than the En-1 mutant phenotype and is restricted to the brain. During postnatal

development of the cerebellum, En-2 is required for the production of some of the

cerebellar cdl precursors and for patterning and fusing of the fissures It is thought

that the milder mid-hindbrain phenotype seen in En-2 mutants is due to the fact that En-

1 and En-2 share partially redundant functions in the brain where En-] is expressed

earlier than En-2 in the celis that will eventually express En-2.

1.2.4 Conservation of protein function among the Engrailed family

Despite the large sequence differences within the Engrailed family outside of the five

conserved regions, the biochemical conservation of these genes is striking. Substituting

mouse En-2 coding sequences in place of mouse En-1 coding sequences by gene

targeting led to viable and fertile animais with a complete rescue of the brain defects,

skeletal abnormalities and the embryonic limb patteming of the otherwise lethal En-1

null mutant 17 En-1 replaced with En-2 revealed that the two En proteins in the mouse

have retained common biochemical functions throughout evolution since mouse En-2
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can substitute for En-1, both in the neural tube where it is normally expressed as well as

in regions such as the limbs, that normally express oniy E,?-] 17 The complete rescue of

the newbom En-] mutant phenotype suggested that the two paralogs were redundant and

almost functionally equivalent. The main functional differences revealed by the nul!

mutants for the two paralogs were thought to anse from the divergence in temporal and

spatial expression rather than through divergence in biochemical function

Accordingly, the more severe deletion ofmid-hindbrain structures in En-1 nul! mutants,

in comparison to En-2 null mutants, was thought to be due to the lack of En ftinction in

the anterior neural folds between the one- and eight-somite stages, before En-2 is

expressed.

However, when surviving En-1 2ki/2k aduit mutants were analyzed, it became evident that

although En-2 can rescue the embryonic limb defects of En-] hd/hd mutants, it cannot

rescue the postnatal patterning defects of En-] hd%icl mutant limbs. En-] 2kt/2ki mice

developed the hyperpigmentation and ventral nail-like structures of En-] 1’M mutants 3-

4 weeks after birth 36 This is a direct demonstration in mammals that the regulation of

essential steps during embryogenesis has been conserved by the two paralogs, but the

fact that En-2 cannot rescue the postnatal limb abnormalities shows that En-1 bas

acquired some novel functions during evolution above those that are seemingly

redundant with En-2.

The same replacement experiment was repeated by replacing the mouse En-] coding

sequences with DrosophiÏa en coding sequences and clearly demonstrated the functional

homology across phyla, when the ortholog from an invertebrate was able to substitute

for a mammalian gene throughout the development of a highly ordered structure, the

brain 36 The resulting mice were viable and fertile, further demonstrating the

biochemical conservation over hundreds of millions of years of evolution. Mice

expressing DrosophiÏa en in place of En-] results in a near complete rescue of the lethal

En-] mutant brain defect and most skeletal abnormalities, reveating a common

underlying molecular mechanism to their diverse developmental activities. in contrast,

surviving adult En-1 dk,/dki mice demonstrated that expression of DrosophiÏa en cannot
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ftmctionally replace En-1 in the dorsal/ventrai patteming of the iimbs during cither

embryonic or postnatal development 36•

Although neither En-2 nor en are capable of rescuing the postnatal iimb abnormalities

that develop in rare En-1 1dM mutants that survive, these studies demonstrate that the

biochemical activity utilized in mouse to mediate brain development has been retained

by Engraiied proteins across the phyla, and indicate that during evolution vertebrate En

proteins have acquired two unique functions during embiyonic and postnatal iimb

developrnent and that only En-1 can carry out the latter 36

Ail En proteins share 5 conserved domains (EH1-EH5), and coding sequences in the

non-conserved regions of Drosophila en could have evolved a functionai domain

required for vertebrate limb development, which became further speciaiized in En-1

afier the second En gene (En-2) was formed by duplication 18 The ftmctional differences

between the 3 En proteins may refiect the inabiiity of en and En-2 to interact with the

full repertoire of En-1 accessory proteins, possibiy resuiting in aitered DNA binding

affinities for selective targets.

1.2.5 Engrailed k a target of the Wnt pathway

Several upstream regulators that activate, repress or maintain engraiÏed expression in the

developing Drosoph lia embryo have been identified, and similarly, several direct and

indirect targets of engrailed regulation have been identified in Drosoph lia but very few

mammalian regulators or targets ofEngraiÏed-1 andlor Engraiied-2 have been identified.

It has been shown, however, that the maintenance of En-1 expression during cmbiyonic

developrnent by the Wnt signaling pathway has been conserved from files to mice

Genetic analysis of Drosophita development indicates that wingless (Wnt-1 homolog)

signaling in the epidermis is required for the maintenance of engrailed expression in

adjacent celis In Wnt-] mouse embryos, initial En-] and En-2 expression is normal,
79but subsequent expression of both are lost - . In addition, compound En-1 x En-2

mutants have a similar phenotype to that of Wnt-F’ mutants where the midbrain and

anterior hindbrain fail to develop The functional link between En-1 and Wnt-1 was
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best shown when En-] expression, under the control of the Wnt-] enhancer, was

sufficient to rescue the early rnidbrain and anterior hindbrain phenotypes in Wnt-T’

embryos s”. Wnt-] encodes a secreted growth factor that initiates a signaling cascade,

which resuits in transcriptional activation mediated byfi-catenin[Tcf complexes 40•

1.3 Mouse Mammary Gland Development

The mammary gland forms as an appendage of the skin and lias its evolutionary origin in

skin glands 41 All mammary glands reside just underneath the skin but the number and

location vary among different classes of mammals. For example, only one pair of

mammary glands develops in the thoracic region in humans whereas mice possess five

ventral pairs of mammary glands (Fig. 1.4). The mammary gland consists of two main

components. The epithelial component or parenchyma refers to the epithelial system

composed of ducts and milk-producing alveolar ceils within the gland. This extensive

ductal system is embedded in the surrounding stromal component, which refers to tlie

fatty connective tissue of the mammary gland that supports the epithelial component.

Adipocytes account for the majority of celis in the stromal compartment, but fibroblasts,

celis of the hernatopoiefic system, blood vessels and neurons also reside in the fat pad 41•

The epitliclial celis form the branclied system of ducts that cliannel into a main primary

duct, whicli opens up to the body surface through the nipple. A large proportion of

epithelial ceils within the mammary gland are luminal secretory celis, which undergo

functional differentiation during pregnancy to produce milk, which is then secreted into

the inner lumen of the ducts. Basal myoepithelial cells surround the ductal system and

these contractile ceils facilitate the detivery of milk from the milk secreting cells to the

nipple during lactation.

Unlike most mammalian organs, which develop primarily embryonically, the mammary

gland is established during fetal development but the majority of expansion and

development occurs postnatally 42• The structural and functional development of the

gland involves the influence of hormones and growth factors like estrogen, progesterone

and prolactin and development of the gland itself can be divided into roughly six distinct

stages; embryonic, postnatal, puberty, pregnancy, lactation and involution (Fig. 1.5).



16

Fig. 1.4 Location of the five pairs of visible ventral nipples and corresponding

rnammary glands just under the skin in the female mouse. The nipples are shown in red

and the mammary fat pad is shown in pink (the rnammary epithelial tree within the fatty

stroma is not depicted here). The adipose stroma of the gland provides a frame of

support as well as a substrate within which the rnammary epithelial tree can grow and

function. The first 3 mammary glands are in the thoracic region while the 4t11 and 5th

mammary glands are in the abdominal region. The 4th (inguinal) mammary gland is the

most accessible and thus, is the gland of choice in most experirnental manipulations. The
4th mammary gland also contains a central lymph node (shown in purpÏe), which serves

as a convenient reference point. Adapted from DeOme K.B. et al. (1959) J. Nati. Cancer

Inst. 78:515-525.
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fig. 1.5 Distinct stages within mamrnary gLand development. The linear portion of the

diagram represents the protiferative expansion and morphogenesis that takes place in the

embryonic and virgin female. The circular portion ofthe diagram represents the cycle of

proliferative expansion and morphogenesis, functional differentiation and eventual

remodeling accornpanied with each pregnancy. Adapted from Lewis M.T. (2000) Breast

CancerRes. 2:158-169.

1.3.1 Formation and differentiation of the embryonic mammary gland

The mammary epithelium is an ectodenrial derivative and therefore, the first distinction

that must be made is the differentiation ofthe presumptive inammaiy epithelium from

tissue that can also differentiate to form skin, hair follicles or other ectodermally derived

structures. The future mammary anlage begins to differentiate from the ectodenn at day

10 of gestation (E 10) with the establishment of the mammary streaks, two lines of
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epidermalÏy denved thickened epithelium that extend from the anterior to the posterior

Iimb bud, symmetrically displaced off the ventral midiine of the embryo. These streaks

represent the first morphological evidence of mammary pattem formation and

differentiation before sexual differentiation of the gonads. The mammary anlage is first

visible as small placodes which define the nipple region around El 1.5 and then appears

as five pairs of small epithelial buds on the ventral side of the embryo on E12 that

enlarge to form bulb-like structures by F14. During embryonic developrnent the

mammary epithelium is associated with two types of mesenchyme; the mammary

mesenchyme that is directly attached to the epidermal bud and the future mammary fat

pad that is located below the epithelial bud in the deeper mesenchyme and consists of

preadipocytes (fig. 1.6). The mammary mesenchyme consists of several layers of

concentrically organized fibroblasts, which surround the epithelial bud and are more

densely packed than the dermal cells while the mammary fat pad appears at E14 as

undifferentiated mesenchyme and is required for future mammary epithelial

morphogenesis.

The ccli identity of mammary epithelium is clearly estabiished as early as E 12.5 as

shown by the capability of these epithelial buds at this stage to generate a ductal tree

when transplanted into a cleared fat pad of a syngeneic host. Marnmary rudiments are

formed in both sexes but the sexual phenotype of the rnammary gland is determined

between E13 and F14. During this period the gland displays responsiveness to steroid

hormones and is influenced by signais from the surrounding mesenchyme. In male

embryos testosterone acts on the dense mesenchyme surrounding the epithelial

mammary rudiment, which results in the subsequent detachment of the gland from the

epidermis. In females the rnammary buds continue to grow and reciprocal interactions

between the mammaiy bud and the mammary mesenchyme take place, which are crucial

for elongation of the mammary bud. As the mammary bud elongates to form a primary

sprout, it reaches and invades the second mesenchyme, the future mammary fat pad by

E 16. The primary sprotit then undergoes a srnall amount of branching morphogenesis,

which leads to the mdimentary ductal epithelial tree of the neonatal female.
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Fig. 1.6 The inguinal (#4) mouse mammary gland depicted at different developmental

stages. The adipose strorna of the mammary fat pad is shown in pink while the

marnrnary epithelial system is depicted in red. The central lymph node, which serves as

a convenient reference point to evaluate ductal outgrowth in the #4 mammary gland. is

shown in purpie. The embryonic rnarnmary epithelial bud is sulTounded by rnammary

Iymph node

primary duct

nipple

Embryonic d14 Birth

si
Early Puberty Mature Virgin

alveolar
structure

Pregnancy day 9 Lactation day 4
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mesenchyme (yellow) while the future mammary fat pad lies below (pink). In the

newborn mouse, the few rndimentary ducts emanate from a central primary duct that is

connected to the nipple. At this stage, the mdimentary ductal system is proximal to the

nipple and occupies littie space in the mammary fat pad. Rapid and invasive ductal

elongation and branching commence with puberty and terminal end buds (TEBs) start to

become visible. The ductal pattern of the mammary epithelial tree is created by the

bifurcation and penetration of these TEBs through the underlying stromal fat pad. The

growing ductal system reaches the central lymph node around 4 ½ weeks, and continues

growïng until the ducts have reached the peripheral limits of the mammary fat pad

around 6-8 weeks of age. Additional branching occurs in the postpubescent immature

virgin and at 10-12 weeks the mammary gland reaches sexual maturity and ductal

elongation ceases and TEBs regress to leave a branched system of ducts. Proliferation of

mammary secretory epithelium during pregnancy leads to the formation of

lobuloalveolar structures, which resemble grape-like clusters. At parturition the

mammary fat pad is completely filled with secretory alveolar structures and milk

proteins are secreted in large arnounts by the secretory epithelial celis.

1.3.2 Relatively growth quiescent prepubescent mammary gland development

At birth, the mammary epithelial tree consists of 15-20 rudimentary branches emanating

from a central primary duct, which is connected to the nipple (Fig 1.6). The rudimentary

system of small ducts present in the newborn female occupies only a small portion of the

mammary fat pad in the vicinity of the nipple. During the first three weeks of postnatal

life, before the onset of gonadal hormone secretion, the marnmary ducts are in fact

slowly elongating and branching into the underlying fatty stroma at a rate that is in pace

with the overall growth of the entire animal.

1.3.3 Proliferation and morphogenesis in pubescent mammary gland development

Functional development of the mammary gland proceeds in distinct stages that mostly

coincide with the hormonal influences of puberty and pregnancy. Around 3-4 weeks of

age, ovarian hormones stimulate accelerated and invasive ductal extension and
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branching whereby the growth rate of the epithelial ductal system now exceeds the

overail growth rate of the animal. Estrogen, atong with other hormones, plays a critical

role in the expansion and morphogenesis of the growing ductal system.

The onset of puberty also coincides with the appearance of large club-shaped TEBs,

highly proliferative and active structures found at the tips of the growing ductal

branches. It is during the early pubertal developmental stage (3-7 weeks of age) when

the TEBs are most prominent (Fig 1 .6). These TEBs are influenced by systemic steroid

hormones and aid the ducts in linear growth as well as the regulation of branching

pafferns. The ductal pattem of the mammary epithelial trec is created by the bifurcation

and penetrating extension of these TEBs through the underlying stromal fat pad. The

TEB is a specialized structure, comprising a solid mass of epithelial celis, which is

composed oftwo distinct relatively undifferentiated ccli types. Actively proliferating cap

celis make up the outerrnost layer of the end bud and interact with the sunounding

stroma though a thin basal lamina as the subtending duct is formed while body ceils

(about 6-10 layers thick), f111 the interior ofthe end bud. As the ducts elongate and the

TEBs move forward, it is thought that the inner body ceils are the precursors of luminal

epithelial celis and give risc to the inner luminal epitheliat ceil layer of the subtending

duct and the outer cap cells are the precursors ofmyoepithelial ceils and give rise to the

outer rnyoepithelial cell layer of the newly formed portion of the duct. Myoepithelial

ceils are contractile ceils that form a sleeve around the primary ducts and become

discontinuous around secondary and tertiaiy ducts and the TEBs themselves. Luminal

epithelial ceils are generally used to refer to the non-myoepithelial component of the

mammary epithelium system and these ceils line the lumen, the space within the centre

ofthe mammary ducts.

Dichotomous branching of the growing ductal system occurs at the site of TEBs as they

penetrate the underlying fat pad while monopodial branching of ducts occurs by budding

from the body ofthe existing ducts. Ductal morphogenesis and iimer lumen formation is

accomplished by a highly regulated process of both cdl proliferation and death in the

1FB. It has been demonstrated that apoptosis is an important mechanism in ductal
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morphogenesis dunng puberty and occurs in the middle of the mass of body celis and

adjacent developing luminal cells to generate the ductal lumen While a variety of ce!!

types have been identified and their developmental capacities have begun to be explored,

very little is known about how these cet! lineages and fates are established at this

pubertal stage.

The growing ductal system reaches the central lymph node around 4 ,4 weeks, and

continues growing until the ducts have reached the peripheral limits of the mamrnaiy fat

pad around 6-8 weeks of age, at which time few TEBs rernain. Additional branching

occurs in the postpubescent immature virgin and at 10-12 weeks the mammaiy gland

reaches sexual maturity and ductal elongation ceases and TEBs regress to leave a

branched system of differentiated ducts. The fully differentiated mature mammary ducts

can now serve as channels for milk transport during lactation and consist of a

discontinuous outer lining of myoepithelial cells lined by a single layer of luminal

epithelial ceils. The gland becornes essentially quiescent in the mature virgin except for

bnef periods during the ovulation cycle and the ducts will remain relatively quiescent as

long as the mature female remains a virgin.

1.3.4 Alveo]ar growth and secretory differeutiation during pregnancy

Another phase of rapid proliferation takes place during pregnancy where 50% of the

overali growth of the gland takes place from pregnancy day 12 until parturition.

Hormonal changes during pregnancy initiate this cyctical phase of development which

leads to a dramatic transition from a predominantly ductal morphology to a

predominantly lobuloalveolar gland morphology. During pregnancy, the gland cornes

under the influences of estrogen, progesterone and other placental hormones. New ductal

outgrowth occurs from the lateral walls of the ducts and side buds increase in nurnber. In

addition, lobuloalveolar progenitor ceils located in the ducts, mostly at the terminal ends

of the ducts, proliferate and undergo alveolar development to form alveotar buds which

differentiate to fom grape cluster-like structures containing lobuloalveolar units (Fig

1.6). Ibis vast expansion of the mammary epithelium fils in rnost of the fatty stroma

between the ducts. The alveoli are composed of a web like network of myoepithelial
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ceils on their outer surface surrounding columnar epithelial cells facing the lumen, the

space in the centre of the alveoli where milk is initially secreted.

These morphological changes that the alveolar epithelium undergoes are accompanied

by the development of secretory epithelial ceils within the alveoli that acquire the ability

to produce milk proteins by midpregnancy. The capability to produce milk proteins

represents the first stage in the transition to lactogenesis but the secretion of these milk

proteins is inhibited during pregnancy. At parturition, secretory function is no longer

inhibited and milk proteins are secreted in large amounts by the secretory epithelial

cells, which represents the second and final stage in the transition to lactogenesis.

Lobuloalveolar development and proliferation occur during pregnancy and resuit in the

complete fihling of the fat pad by parturition while functional differentiation of the

secretory epithelium coincides with parturition and lactation. Cell division occurs in

both the alveolar and ductal celi populations throughout pregnancy and continues into

the mid stage of lactation. Pregnancy terms vary slightly between 1$-21 days in different

mouse strains.

1.3.5 Large quantities of milk production and secretion accompany lactation

Lactation involves the production and secretion of milk by the secretory epithelial celis.

Mammary epithelial proliferation continues into early lactation where it is estimated that

20% of total mammary growth occurs during the first 14 days of lactation. By the time

tlie mother is feeding lier pups, lier mamrnary glands are packed full of secretory

epithelium witli little fat, the complete opposite of the situation in the virgin or non

pregnant animal. The initiation of lactation is thouglit to be induced by the decrease in

estrogen and progesterone and several hormones such as prolactin, insulin and

glucocorticoids are involved in the maintenance of lactation. While the inner luminal

celis of the alveoli produce the milk, the outer contractile myoepithelial cells form a

basket-like network around the secretory alveoli and these cells are responsible for

squeezing the rnilk out of the alveolï and down the ducts and out of the nipple in

responsc to the hormone oxytocin.
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1.3.6 Apoptosis, regression and remodeling accompany involution after weaning

When lactation ceases after weaning, the mammary gland undergoes involution where

the entire mammary alveolar compartment is remodeled. This remodeling elicits a

dramatic change in the morphology of the mammary gland, restoring it to its pubescent

state. The process of involution commences with the suspension of milk production,

followed by the collapse of the mammary alveolar structures and removal of the

secretory epithelial celis through programmed ceil death and phagocytosis. The alveolar

structures collapse likely as a result of degradation of the extracellular matrix (ECM)

and apoptosis of secretory epithelial cells and surrounding myoepithelial cells. The

basement membrane and most of the epithelial cells are replaced with adipose tissue so

that the mammary gland changes from the epithelial rich lactational state to the epithelial

sparse non-parous state. After regressing to this state following weaning of the offspring

the fat pad contains only well spaced ductal structures within the adipose matrix. With

each subsequent pregnancy, a new cycle of lobulo-alveolar development occurs and can

be repeated several times during the life of an animal.

1.3.7 Mammary gland transplantation

An essential feature of the mouse mammary gland is the regenerative capacity of its

epithelium. Any portion of the epithelial tree can be transplanted into the mammary fat

pad of a syngeneic female, whose endogenous epithelial tree has been removed, and

reproduce a complete and functional mammary gland In a 3 week old female mouse,

the epithelial ductal system occupies little space in the mammary fat pad and is confined

to the most proximal portion of fat pad connected to, and in the vicinity of, the nipple

(Fig. 1.6). This area containing the prepubertal epithelial ductal system can easily be

surgically removed to generate a ‘cleared’ mammary fat pad into which cells or tissue

fragments from another female can be transplanted where it can develop under the

influences of a wildtype hormonal environment. In addition, endogenous epithelium can

be left intact, providing identical mammary fat pad conditions to enable in situ

comparisons between wildtype and transplanted epithelium.
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The deletion of a gene in the mouse genome can sometimes lead to the disruption of the

normal development and functïon of more than one organ. The absence of some genes

can influence ovarian function, which would obscure assigning direct or indirect effects

on marnmary gland development. Moreover, some homozygous deletions are flot viable

and postnatal mammary gland development cannot be studied directly. The above issues

can be overcome by transpianting mammary epithelial celis from such mutants into a

wildtype syngeneic host.

The ability to transplant portions of the mammaiy epithelium into the cleared fat pad of

a syngeneic host allows one to examine both the morphogenic and tumorigenic

capabilities of that particular marmnary epithelium. Ccli populations rcmoved from the

mammary gland and mainmary epithelial ceils grown in vitro can also be transplanted.

The 4 (inguinal) mammary gland is the most accessible and is the gland of choice in

most experimental manipulations (Fig. 1.4).

The ability to delete genes from the mouse genome, in conjunction with tissue

transplants to evaluate their physiologie role, has lcd to the identification of severai

genes invoived in mammary gland development. Experimental manipulation of

mammary tissue from wiÏdtype and knockout mice has shed light on distinct signaling

networks activated by systernic hormones that induce or are involved in mammopoiesis

whiie some of these signais act through reciprocal interactions between the mammary

epithelium and the adipose stroma. The mammary transplantation method has been

employed for decades to examine fundamental questions in mammary morphogenesis,

senescence and tumorigenesis. Such experiments examine the role of genes in the

context of a normal tissue environment with an endogenous hormonal milieu and can

determine the potential role of oncogenes in preneoplastic and neoplastic

transformations and the demonstration of oncogenic potential of unknown genes.

Daniel and colleagues used serial transpiantion studies to investigate the pattern of

senescence in mammary cells and demonstrated that the proliferation potential of normal

mammary celis declined with serial transplantation and was lost after 5-6 serial
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transplants ‘. The number of pnor ce!! divisions rather than chronological age of the

transplant donor was the rnost important determinant for the onset of senescence or lack

of division potential in the mammary gland. Moreover, they aiso demonstrated that

mouse mammary preneopiasias did flot senesce and were essentially immortal

populations.

1.3.8 Adult mammary epithetial stem ceits

The observation that marnmary epithelial fragments or celis from adult mammary glands

can generate a fuiiy differentiated mammary tree capable of lactating when transpianted

into the cieared fat pad of a prepubertal mouse led to the speculation that the mammary

epithelium must contain multipotential stem cells. Mammary epitheliai stem celis

(MSCs) have been the focus of much recent interest because they are also likeiy the cells

of origin of breast tumors. Some have suggested that the notion of breast stem ceils as a

resident ccli population in the aduit breast is an oversimp!ified view and that perhaps a

selective ce!! population has MSClike ability, possibly as a resuit ofits interactions with

its rnicroenvironment or stem ccli niche. No definitive identification has been made of

an adult MSC yet experimental evidence supports the notion that such an elusive stem

celi exists and would give risc to the distinct mammary epithelial cdl lineages within the

mammary gland and models of how these lineages might develop have been proposed

(Fig. 1 .7). Currently, at least four distinct mammary ccli populations are thought to exist.

One is the muitipotent MSC that is capable of self-renewal and recapitulating the entire

mammary ductal system, and these MSCs would gives risc to committed epithelial

precursor ce!ls (EPC5). The progeny of these EPCs give risc to two pre-committed

epithelial progenitors that become restricted to a ductal or alveolar fate j. The ductal

precursor celis (DPs) form myoepithelial ceils and iuminal celis, the two ccli types that

cxist in ductal structures. During pregnancy, the alveoli are thought to be generated from

alveolar precursors (APs), which give risc to myoepithelial celis and luminal ceils.

The pre-committed epithelial progenitors and the stem cclls that are capable of giving

risc to both ccli types, are thouglit to exist throughout the entire mammary epithelial tree

but may be enriched in TEBs 46• During the rapid expansion of the ductal system during
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puberty where the body ceils and cap ceils proliferate and differentiate to generate new

sections of the growing duct behind the active TEBs invading the underlying fat pad,

stem ceil-like activity is thought to reside in the TEBs. Since some of the cap ceils can

be seen to migrate into the body celi mass, the cap cells are the proposed stem ceils and

symmetric ce!! divisions of the cap ceils within the TEBs as they move through the fat

pad are thought to deposit MSCs in the growing ducts. In the mature virgin mammary

gland, the location of putative MSCs is thought to be suprabasal, at the base of the

luminal epithelial cell layer, adjacent to the myoepithelium and not contacting the lumen

or the basement membrane This proposed stem cell niche would contain

undifferentiated MSCs that do not express markers of either myoepithelial or luminal

epithelial ceils. Divisions of this MSC would generate progenitor cells that, at least in its

early stages, would be very difficuit to distinguish from its parental MSC until it

acquires both myoepithelial and luminal lineage rnarkers before becoming committed to

either the luminal or myoepithelial lineage In the proposed model, the ductal system

contains multipotent stem cells and committed ductal and luminal precursor ceils nestled

throughout the remodeled ductal system after involution (Fig. 1.7).

MSCs are conceivably the only celi population that would possess the replicative

potential that would be needed to maintain the routine tissue renewal, the massive

expansion in epithelial tissue that accompanies pregnancy and the cyclical process of

subsequent pregnancies in the mamrnary gland. Sucli candidate stem cells would be the

type that are quiescent until responding to physiological cues. In non-parous animals, a

less expansive but similar process occurs as the estrus cycle progresses, as evidenced by

the slight expansion and regression of the alveolar buds in response to the cyclic

hormonal influences. Conversely, MSCs in the postnatal mouse mammary gland may

also be involved in the replacement of luminal epithelial celis that are shed from the

inner lining of the ducts into the lumen during routine celI turnover. Evidence to support

this occurrence during lactation is provided by the fact that epithelial cells can be

recovered from milk. Cells that are shed into the lumen of the alveolar and ductal

systems must need to be continually replaced in order for the marnrnary epithelial tree to

maintain its structure and integrity. Candidate stem celis that would participate in this
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process would need to be continually active. Thus, there are two distinct potential roles

for MSCs in the aduit mammary epithelium but whether this infers that there might 5e

two or more distinct MSC populations, perhaps in a stem ccli hierarchy, or that one

MSC population lias the capacity to perform several functions depending on the

environmental cues it is given, remains to be elucidated.

The analysis of stem cell function can be complicated by the presence of progenitor celis

that have no seif-renewal capacity, unlike the parental MSC, but that undergo a

population expansion to increase the number of fully differentiated ceils that are

ultimately produced by the original MSC division event. Retroviral tagging and

transplantation experiments have provided an estimate of the number of potential stem

ceils in the mouse mammary epithelium that could generate epithelial structures when

transplanted into a cÏeared fat pad at approximately 1 in 2,500 cclls Since the number

of mammary epithelial ceils in a mature virgin mouse mammary gland lias been

estimated at 2—2.5x 106, each gland would contain roughly 1,000 stem celis

Freshly isolated mammary and breast epithelial ceils can 5e cultured in defined medium

conditions where the cells form nonadherent aggregates called mammospheres °. These

mammospheres can 5e disaggregated and the resulting ceils that are recovered can be

divided and cultivated in separate conditions to identify those that are capable of

forming secondary mammospheres and those that attach to the culture dish and

differentiate 50 Employïng lineage specffic markers, these studies have shown that

sphere forming ceils share several characteristics attributed to MSCs that can be assayed

in vitro, including a high proliferative potential and multipotentiality. These in vitro

stem celi assays are indirect and retroactive in that the existence and the properties of a

stem ceil population are inferred solely by the analysis of their mature celI progeny and

the only definitive way to reveal the existence of MSCs is by in vivo transplantation.

Analagous to the relationship between long-term culture initiating celis (LTC-IC) and

hematopoietic stem cells (HSC), mammospheres are not necessarily MSCs and may 5e

progenitor ceils which are stiil muftipotential in their differentiative capacity but have a
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significantly reduced seif-renewal ability, or they may even represent artifacts of ceil

culture.
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Fig. 1.7 The proposed and elusive rnarnrnaiy epithelial stem cell (MSC) would give rise

to distinct epithelial ce!! !ineages in the mammary gland. The mamrnaiy g!and is a

derivative of the ectodenn, which also gives rise to the skin and other appendages as

well as the neuroectodcrm. It is thought that the multipotent MSCs would give rise to

epithelial precursor cells (EPCs), the progeny of which dcvelop into either ductal or

alveolar structures. Ductal precursors (DP) give rise to basal myoepithelial cells and

luminal celis as the ducts arc generated postnatally, particularly during puberty. The

initiation of pregnancy coincides with alveolar precursor (AP) ce!ls giving rise to basal

myoepithelial and luminal epithelial cells. Afler lactation, the alveolar cells are subject

to programmed cell death during the process of involution. A simple ducta! system

containing multipotent (ye!Low) and committed ductal (green) and lumina! (orange)

precursor cells persists that will develop into a fully functiona! epithelium in subsequcnt

pregnancies. Figure reprinted from Hennighausen, L. and Robinson, G.W. (2005) Nat.

Rev. Mot CeliBiot 6:7l5-725.
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1.4 Role of Homeobox genes in the mammary gland

1.4.1 Homeobox genes have evolved to have roles in mammary gland development

Vertebrate homeobox genes are well known for their roles during embryonic

development, and new functions are continually being identified in embryogenesis, but

less attention lias been devoted to investigating tlieir potential roles in the aduit

vertebrate. The notion that such important regulatory proteins may exert additional

functions in aduit life has been supported by reports where mice lacking the function(s)

of one or several homeobox genes affected adult development processes such as the

solidity of hairs, tlie size of the prostate and the liematopoietic system 51 These reports

are slowly growing in number and suggest that complex processes in the aduit mammal

have evolved to employ genes wliose ancestral functions are unrelated.

For example, HoxalO, Hoxa]] and Hoxd]] are involved in the urogenital system of

adult mammals during pregnancy and in addition, their expression varies in response to

tlie estrous cycle and pregnancy 52• Based on their important functions during the

development of other organs, liomeobox genes are prime candidates for being involved

during the postnatal development of the mamrnary gland. lirimunohistochernical studies

and screens based on polymerase chain reaction (PCR) analysis first detected liomeobox

gene expression in several mammary epithelial celi unes and in the normal developing

mammary gland Several Hox members appear to exhibit developmentally regulated

expression patterns during postnatal development and their expression is found in either

the mammary epithelium or in the periductal stroma or both. During embryogenesis,

Hoxb9 and Hoxd9 are expressed in the condensed mammary mesenchyme surrounding

the marnrnary epithelial bud, suggesting roles in mesenchymal-epithelial interactions

during the formation of the rudimentary mammary gland M• Hoxd9 is expressed

throughout postnatal development in the mamrnary gland and is expressed at high levels

in the ductal epithelium and periductal fibrobÏasts in the virgin. Hoxd]O is expressed in

both the mammary epithelium and stroma during lobular differentiation before lactation

and targeted dismption of Hoxd]O leads to lactation failure in liomozygous mutants
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Mammary glands of female compound mutants lacking the function of Hoxa9, Hoxb9

and Hoxd9 do flot undergo the proper dcvelopment and differentiation during pregnancy

and after pregnancy, leading to a strong deficit in the ability to produce milk ‘.

Consistent with roles in regulating cellular proliferation in the adult mammary gland, the

extensive branching process in the compound mutants during pregnancy was

significantly reduced, leading to hypoplasia of the normally proliferative and expansive

pregnant mammary gland. Since these females have an abnonual lactational capacity,

they are subsequently unable to properly feed their young.

Homeobox genes Msx-] and Msx-2 are expresscd in reciprocal tissue compartments in

the postnatal mammary gland; Msx-] is expressed in the mammary epithelium while

Msx-2 is expressed in the periductal stroma. Interestingly, Msx-2 was also found to be

responsive to estrogen and may have a potential role in mediating hormone responses

Analysis ofMsx flmction in the postnatal mammary gland lias been hindered by the fact

that both homozygous mutations in Msx-1 and Msx-2 are embryonically lethal.

Given the large number of liomeobox genes in the genome and the small number whose

potential involvement in mammary gland development has been studied, much remains

to be answered with respect to homeobox gene expression and ftmction in mammary

tissue.

1.5 Role ofllomeobox genes in cancer

It is widely accepted that many of the molecular pathways that underlie carcinogenesis

represent aberrations of the normal processes that control embryogenic development.

There are many examples in which the aberrant expression of homeobox genes that

normally regulate growth and development have been implicated in carcinogenesis,

making them an ideal candidate gene family to study the relationship between

embryogenesis and oncogenesis. Despite numerous reports of deregulatcd expression of

homeobox genes in cancer, few studies have established direct causal links or functional

roles above a mere correlative expression profile, or whether their altered expression

promotes carcinogenesis. It was originally thought that homeobox genes were
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transcnptional activators that prornote oncogenesis through their aberrant upregulati on

in carcinoma ceils. Although deregulated homcobox gene expression was originally

associated with oncogenic activities, it is now apparent that homeobox genes might be

lost 56 as well as gained in cancer, and their corresponding activities might be tumor

suppressing as well as tumor promoting. Most cases of deregulated homeobox gene

expression in cancer conform to a simple rute: those homeobox genes that are normally

cxpressed during development in undifferentiated ceils are upregulated in cancer,

whereas those that are normally expressed in adulthood and/or in differentiated tissues

are downregulated in cancer

1.5.1 Homeobox genes are implicated in cancer

In addition to docurnenting homeobox gene expression in the normal mammary gland,

HOX gene expression was also detected in several primary breast tumor samples

There are many cases in which HOX genes are re-expressed in tumors and carcinoma

ccli unes that are derived from tissues in which HOX genes are normally expressed

dunng development. There are a few examples however, where the cancerous tissue that

ectopically expresses a homeobox gene is not a derivative of a tissue where that

particular homeobox gene is normally expressed during development. for example,

PAX5 is expressed in medulloblastoma, but it is flot normally expressed in the

cerebellum from which this tumor is derived ‘. The other case lies in homeobox genes

that are downregulated in tumorigenic celis that are derived from tissues in which that

particular homeobox gene is norrnally expressed during the differentiation ofthese celis.

The loss of expression ofNKX3.] in prostate cancer fits into this category . Homeobox

genes that are expressed in carcinoma are typically those whose normal expression

pattem is restricted to undifferentiated or protiferative celis. In contrast, homeobox

genes that are downregulated or lost in carcinoma are normally expressed in ftully

differentiated tissues.

1.5.2 Nlisexpression of homeobox genes in carcinoma
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In support of a causal role in carcinogenesis, gain of function of certain homeobox genes

lias been shown to promote the transformation of ceils in culture. Expression of HOX

genes in nontransformed fibroblast cell lines leads to an increase in proliferation, other

liallmarks of oncogenic transformation in celi culture and tumor growth when ceils are

injected into nude mice . For some horneoproteins, it is thought that the wi!dtype,

rather than a mutant forrn of the protein, produces these oncogenic activities. This

implies that the oncogenic activity of some homeoproteins is flot due to new or

alternative properties, but is a resuit of their normal functions being carried out in the

wrong cellular context. For example, MSX genes have been shown to inhibit

differentiation during deve!opment and purportedly upregulate cyctin D]. Cyclin Dl is

involved in regulating the G1-S transition so it lias been proposed that MSX genes block

terminal differentiation during embryogenesis by preventing ceils from exiting the ce!!

cyc!e 60 The oncogenic properties of MSX genes in cancer cel!s rnight reflect an

erroneous extension of their normal embryonic functïons, !eading to inappropriate

upregulation of cyclin Dl, thereby effecting cdl cycle regulation and promoting or

maintaining an undifferentiated state in breast ce!!s. Overexpression of cyclin D] is a

common occurrence in mammary carcinogenesis, suggesting a possib!e link between

MSX genes and cyc!in Dl in breast cancer. A!though MSX genes might be deregulated in

several types of epithelial cancer, their causal effects for inducing carcinogenesis miglit

be restricted to tumor types where their normal downstream target genes, such as cyctin

D], have a significant impact.

HSIX] is the human homologue of the Drosophila Six gene that was originally isolated

on the basis of its enriched expression during S phase. Whule flot significantly affecting

pro!iferation, ectopic expression of HSIX] in ce!! cultures abrogates the DNA-damage

induced G2 cell-cycle checkpoint. 0f particular interest, HSJXJ is upregu!ated in

primary and metastatic breast cancer, as well as in other tumor types, raising the

possibility that its activities in ce!! culture reftect a relevant role in tumorigenesis in vivo
61 These findings, !inking HSIX1 to the regulation of the G2 cieckpoint, raise the

possibi!ity that deregulation of homeobox genes in cancer miglit have adverse effects on
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the maintenance of genomic stability by allowing ceils to proceed inappropriately past

the DNA-damage-induced checkpoint.

1.5.3 Loss of homeobox gene expression in carcinoma

There are clearly examples that support the notion where mere ‘gains’ of expression of

certain homeobox genes in cancer ceils are oncogenic and that the functionai outcome

for oncogenesis might vary depending on the ccli type in which the particular homeobox

gene is expressed. However, there are a few examples where the loss of function of a

homeobox gene has been implicated in tumorigenesis. Most notably, methylation ofthe

H0X45 promoter, leading to loss ofHOXA5 protein expression was correiated with loss

ofp53 expression and the subsequent development of breast carcinoma, suggesting that

epigenetic silencing ofHOX45 facilitates breat tumorigenesis 56

The homeobox gene CDX2 is an example ofhomeobox expression in fuily differentiated

tissue where its expression is involved in maintaining the differentiated state within that

tissue. Expression of Cdx2 first occurs in the developing gut and continues into the adult

gut while its expression is lost in colorectal tumors and colon carcinoma ccli unes 62 Re

expression of Cdx 2 inhibits ccli growth and tumorigenicity in estabiished colorectal ccli

unes while it promotes differentiation of non-tumorigenic epithelial ccli unes 63

Moreover, mice heterozygous for a mutant aliele of Cdx2 frequently develop

adenomatous intestinal polyps 64 Additional genetic events must be required for

tumorigenesis since these pre-malignant lesions do flot typically progress to the

deveiopment of overt colon carcinomas. Similar to ciinicai colon cancer samples, where

expression of CDX2 is ftequently lost without a corresponding deleterious mutation, the

wiidtype Cdr2 allele remains intact in the precursor poiyps from Cdx2 heterozygous

mutant mice despite the loss of Cdx2 protein expression 64 Thus, epigenetic inactivation

of CDX2, leading to a loss of CDX2 expression, couid represent an event that

predisposes to, but is flot sufficient for, the deveiopment of overt colorectal cancer.

Analogous to CDX2, the homeobox gene NKX3.] is expressed during the formation of

the prostate and is requircd for the terminai differentiation of prostate epitheiium in the
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aduit whule its loss of function predisposes to cancer in a tissue-specific manner 65

Overexpression of NIcc3.1 in prostate carcinoma ceils in culture and in nude mice

inhibits proliferation and tumorigenicity 66 There is increased proliferative activity in

the prostate epithelium of homozygous and heterozygous Nkx3.] mutant mice which

subsequently develop prostatic intraepithelial neoplasia (PIN), pre-cancerous lesions of

the prostate epithelium that are presumed precursors of prostate cancer 67 The loss of

NKX3I function predisposes to, but is not sufficient for, prostate carcinoma 6$ Similar

to CDX2, the loss of NKX3.] expression, due to epigenetic inactivation of one or more

ofthe NKX3.1 alleles, is involved in human PIN as well as prostate carcinoma 6$

1.5.4 Homeobox genes promote tumorigenesis

Homeobox genes are global regulators of growth and differentiation, with specific

members of different classes of homeobox gene families acting at precise developmcntal

stages and in particular tissue types. In normal tissues, the combination of these

activities provides the ultimate balance between proliferation and differentiation.

Growing evidence supports the broad generalization that the gain and Ioss of homeobox

genes promotes tumorigenesis as a consequence of their inappropriate effects on growth

and differentiation, perhaps through an extension of their normal function. Homeobox

genes that are negative regulators of differentiation exhibit oncogenic activities when

misexpressed while those homeobox genes that are positive regulators of differentiation

promote transformation following their loss of function.

The deregutation of homeobox genes appears to promote rather than be sufficient for

tumorigenesis, and this deregulation occurs in specific tissues rather than displaying a

broad specificity in many tumor types. With the exception oftranslocations that involve

homeobox genes in leukemia ‘, deregulation of homeobox genes in solid tumors might

not involve mutations or altered functions. With the above charactenstics, homeobox

genes may be generally defined as positive or negative tumor modulators, rather than as

classical oncogenes or tumor suppressors. For many documented cases of perturbations

in homeobox expression, a precise or causal relationship between the individual

homeobox gene and the tissue-specific cancer phenotype to which it contributes has flot
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been established. The notion that tissue specificity might reflect the differential activities

of normal downstream target genes, as described for cycÏin D] as a downstream target of

M$X genes, is starting to emerge. future studies that will help define the sclcctive

functional outcomes of particular homeobox genes and their associated tumor types will

no doubt aid in understanding different cancer phenotypes.

1.6 Breast Cancer

Breast cancer is one ofthe most frequent human malignancies in the Western world. The

American Cancer Society estimates that close to 212,930 American women will be

diagnosed with breast cancer and that 40,870 women will die from breast cancer this

year aJonc (www.cancer.org). Breast cancer is the leading cause of death among women

bertveen 40 and 55 years of age and is the second overail cause of death among women

from cancer, exceeded only by lung cancer. Fortunately, the mortality rate from breast

cancer is slowly decreasing with an increased emphasis on early detection and more

effective trcatments. The pathogenesis of this disease is thought to involve multiple

genetic and epigenetic events. In spite of recent advanccs in the assessment of breast

cancer risk, through the identification of crucial susceptibility genes (BRCA]/2, PTEN,

P53), these account for less than 5% of all breast cancer cases and may not be associated

with the more commonly ocdurring sporadic breast cancers 69 Sporadic nonhereditary

breast cancer is recognized as the most common form of this malignancy.

Like most other cancers, it is thought that breast cancer originates in one cdl which

acquires numerous events and becomes malignant. Later additional events lead to the

development of different clones and with different characteristics. few genes have bcen

found to be mutated in breast tumors but several chromosome arms with yet identified

genes have been found to be involved. These aberrations include DNA amplifications

and deletions. Genetic abnormalities in breast cancer include amplification of

oncogenes, mutation of tumor suppressor genes and loss of heterozygosity (LOH) at

chromosomes 1, 3p, 6q, 7q, 8p, 9p, lOq, 11, 13q, 16q, 17, 18q, 22q and X 70• Some of

these genetic abnormalities exist in premalignant breast tissue and may have a causative
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role in breast tumor pathogenesis. Unike colon cancer, the sequential steps ofmolecular

lesions during breast cancer progression are poorly understood.

Oniy a few critical oncogenes have been identified in sporadic breast cancer and the

discovery of bona fide primary genetic lesions underlying sporadic breast cancer

deveiopment remains a major challenge. This is due, at least in part, to the marked

cytogenetic compfexity seen in advanced breast cancer, preciuding investigators from

readiiy identifying primary causative genetic events in breast ccli transformation 71 The

c-MYC gene is amplifled and/or overexpressed in a high proportion of human breast

cancer, although the frequency of these aiterations varies greatly 72• Erb32 is aiso

amplified and subsequently overexpressed in 20-30% of human breast cancers, and

overexpression of ErbB2 is correlated with a poor ciinical prognosis of both node

positive and node-negative tumors n• The CycÏil? D] gene is amplified in 15-20% of

human breast cancers ‘. As the oncogenes iocated at amplified chromosornal regions are

rareiy amp}ified in benign breast disease 1, they may represent later events in the

multistep progression associated with the development ofbreast cancer.

One couid argue that the only known and weÏl validated human breast cancer oncogene

is ErbB2 since it is the only gene that has been shown to strongiy correiate with human

breast cancer progression in studies of primary ciinicai samples, to be transforming in

human mammary epitheÏial celis in vitro, to cause mammary tumor development in

transgenic mice 76 and most importantiy, for which a targeted therapeutic has been

deveioped that has ciear efficacy in the ciinic ‘. Thus, ErbB2 is the strongest candidate

for a bona fide human breast cancer oncogene and is based both on correlative data and

convincing mechanistic data.

Evidence is accumulating that suggests the breast and ovarian cancer susceptibllity

genes BRCAJ and BRCA2 seem to be involved in sporadic cancer as well. Recent

evidence suggests that BRCA] methylation contributes to a small subset of sporadic

breast cancer and the resulting molecular and clinical phenotype is similar to that of

hereditary BRCAJ-associated breast cancers. A modei lias now been proposed where
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BRCAJ promoter methylation may serve as a ‘first hit’ in a fraction of sporadic breast

carcinogenesis, mucli like an inherited germ une mutation, which promotes tumor

progression . The BRCA2-interacting protein EMSY, miglit now also provide the iink

between the BRCA2 pathway and sporadic cancer. EMSY and BRCA2 have overlapping

functions and EMSY was found to be arnplified in 512$ (18%) brcast cancer ceil unes

and in 70/551 (13%) poor-prognosis node-negative breast cancer cases ‘. EMSY was

shown to inhibit the transcriptionai activation function of BRCA2, so it is conceivably

possible that BRCA2 deletion and EMSY amplification have sirnilar effects .

Breast cancer research in the past lias focused on identifying mutations in breast tumors

and then determining their role in manimary carcinogenesis. These efforts have clearly

shown that breast cancer is a genetic disease where changes in the genome can lead to

putative causative events in the development and progression of mammary

carcinogenesis. Recent studies like those above with BRCA1 and BRCA2 in sporadic

cases also clearly indicate that the phenotype of most breast cancers, if not ail cancers, is

probably due to an amalgamation of some mutated genes and some genes that are

functionally modified by epigenetic changes such as hypermethylation of DNA and

hypoacetylation of histones 80 Inactivation or silencing of the E-cadherin gene is

associated with increased tumor invasiveness and is often found in late stage carcinomas
81 Hypermethylation of the E-cadÏzerin promoter is the principal mechanism of its loss

in many types of cancer, and its occurence is thought to reflcct the stage of tumor

progression $1

The abundance of important genes identifted as being epigenetically inodified in cancer

lias led to the expansion of Knudson’s ‘two-hit’ hypothesis for loss of turnor suppressor

gene function in tumor development to include epigenetic mechanisms as bona fide

‘hits’. Whether a mutation or epigenetic event occurs first is unknown. It is known that

the development of sporadic breast cancer is driven by phenotypic changes due to both

genetic and epigenetic events. One type of event may suffice in initiating the disease but

however initiated, the heterogeneity of sporadic breast cancer suggests that the etiology

of each turnor may be specific to the individual.
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Epigenetic dysreguiation can also Iead to aberrant expression or overexpression. For

example, the lysosomal protease cathepsin D is a predictor of poor outcome in breast

cancer patients and the genes 5’ reguiatoiy region displays differences in chromatin

structure in hormone-dependent vs. hormone-independent breast cancer ccli lunes 82

Differences in cathepsin D expression in breast cancer may conceivabiy invoive changes

in chromatin architecture, which couid render its expression constitutive. The gene for

the intermediate filament protein vimentin is transcriptionally ectopically activated

during tumor progression and also dispiays differences in chromatin architecture in

vimentin-positive vs. vimentin-negative breast cancer ceils 83

1.6.1 Breast Cancer Stem Ceils

Stem ceils have a large replicative potential and a long life span, which makes them

excellent candidates for the ceils of origin of breast tumors. Not oniy will MSCs persist

in the body for long enough to accumulate the many mutations that are required to

change a normal ccli into one with neoplastic potential, they also have the proliferative

capacity to easily generate a tumor mass. It is generally accepted that most tumors are

clonai in origin and represent the progeny of a single cdl but it was unclear which cells

in the tumor had the capacity to maintain and regenerate tumor growth. Two theories

were proposed to explain why only certain celis within a tumor could initiate tumor

growth. The stochastic model predicted that the tumor is relatively homogeneous and the

genetic alterations that underlie tumorigenesis were operative and shared among ail celis

within the tumor and although each cdl is potentially tumor-initiating, the necessaiy

ently into the ccli cycle is govemed by low probability stochastic events 84 The

hierarchy moUd predicts functional heterogeneity among the cells that make up the

tumor and that there are distinct and rare tumor initiating cells within the tumor.

A major step towards identifying these latter breast cancer-initiating ceils was provided

by elegant studies that support the theoiy that breast cancer is functionally

heterogeneous and that only a rare breast cancer-initiating cdl type is capable of

establishing human breast cancer after being transplanted. These studies showed that a
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minor breast tumor stem ceil like subpopulation was found to have a 10-50-fold increase

in the ability to form tumors in xenografts compared with the bulk of breast tumor celis
. This subpopulation represents 2% of the unfractionated breast cancer ceils derived

from human breast tumor samples and Jacks differentiated breast epithelial ceil lineage

markers (Lineage-) and was isolated using specffic ceil surface markers; CD44 and

CD24 adliesion molecules and the epithella! specific antigen ESA. The expression of

these markers is lieterogeneous in breast cancer tissue but the breast cancer-initiating

tumor celis were found to reside in a distinct Lin ESA CD44 CD24%0v population

whicli can be isolated by ceil fractionation

Evidence supporting the existence of a breast tumor stem ce!! population lias further

fueled the search for the putative but elusive aduit mammary epithelial stem ccli in the

normal breast. Identifying the existence of these tumor-initiating cel!s within breast

tumors also lias enormous implications for liow we approacli tumor therapy as most

traditiona! cancer treatrnents target rapidly proliferating ceils. Ahliougli this miglit

eliminate the non-wmor-initiating cancer celis that make up tlie bulk of a tumor and

therefore !ead to remission, the re!atively quiescent tumor-initiating stem celis miglit be

resistant to traditiona! cliemotherapy, allowing the disease to relapse if they are not

eliminated.

Whetlier breast tumor stem cells originate from normal adult MSCs or represent a transit

or progenitor ce!! population in the normal breast that lias gained stem ccli like

properties througli the possible induction of ccli type de-differentiation remains to be

answered. If normal MSCs are the primary target in the process of tumorigenesis, the

resu!ting tumors could be poor!y dïfferentiated and highly aggressive whi!e tumors

arising from transit or progenitor cel!s may be relatively well differentiated and

noninvasive. Mucli of the proliferative capacity of normal stem ceils cou!d very well

reside in a progenitor ceil population however, since these daugliter cells could

conceivably maïntain replicative potential and long life by means of a slow rate of

division.
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1.6.2 Breast cancer stem ceils as therapeutic targets

The advantage of targeting breast cancer stem ceils is that tumors could be treated on the

basis of a characteristic property shared by ail breast tumor stem ceils, one that is absent

from normal mammary stem celis. Instead of dissecting each and every genetic defect

and customizing a treatment for each individual and turnor type, this type of treatment

could enable the elirnination of the ceils of origin of the tumor, and make promising

therapeutic targets since these celis are those that likely remain after most regimens and

lead to eventual relapses in some patients.

If breast tumor stem celis are derived from progenitor or differentiated ceils instead of

normal aduit MSCs, they are likely to stiil have phenotypic characteristics of normal

MSCs. Reversion of progenitor or differentiated celis to a more stem ceil like state is

thought to be one possible scenario leading to the neoplastic process 86• In this scenario,

the phenotypic characteristics of normal MSCs miglit still be effectively employed to

target breast tumor celis 86 Future and ongoing studies are aimed at identifying distinct

molecules that are involved in the regulation of MSCs and patterns of gene-expression

sets that are limited to and define MSCs, as well as genes that are potentialiy common to

ail stem celis.

1.7 Objectives

The objective of the researcli summarized in the present PhD thesis was to identify a

gene involved in mamrnary tumorigenesis and to investigate whether this gene was also

involved in normal mammary gland development. The work presented herein represents

a candidate gene approach, which focused on the Engrailed family of homeobox genes

because of the following motivations:

(i) EngraiÏed-] (En-]) and EngraiÏed-2 (En-2) genes are downstream targets of Wnt-]

signaling during mouse embryogenesis that have important roles in development.

Ectopic expression of Wnt-] under the control of the mouse mamrnary tumor vims

(MMIV) promoter leads to extensive mammary hyperplasia and the subsequent
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generation of the majority of MMTV-induced adenocarcinomas ‘. Although expression

of WNT] itself lias flot been reported in normal or neoplastic human breast tissue, other

WNT family members are expressed in a proportion of both normal human breast tissue

and breast cancer samples 88• Wnt-1 encodes a secreted growth factor that initiates a

signaling cascade, which resuits in transcriptional activation mediated by fl-cateninlTcf

complexes 40• J3-cateninllcf-rnediated transcription bas been implicated in several

human cancers, with some targets relevant to breast carcinogenesis identified such as c

MYC and cycÏin D] 89• Also at the time this doctoral reseach was initiated, the

observation that Wnt-1 is a mouse mammary oncogene and that the downstream

mediator fl-catenin is often stabilized in certain human malignancies fueled the ongoing

search for additional targets of this pathway, such as the EngraiÏed genes, that might

also be implicated in human breast cancer;

(ii) The mammary gland is established during embryogenesis but the majority of

mammary gland growth and development occur in the adult female. En genes are

homeodomain-containing transcriptional regulators that have been studied extensively in

embryonic development, but they are also part of a growing number of transcription

factors which have evolved to carry out additional fonctions in the aduit mammal. At the

time this thesis was initiated, reports were beginning to provide evidence that En-] had

indeed acquired a further role in postnatal limb development and thus it is a possibility

that these genes have evolved to carry out additional postnatal roles, such as in postnatal

mammary gland development;

(iii) Studies were being published at the time that reported, similar to several Hox

proteins, that Pbx is a co-operative DNA-binding partner of En-2 . In addition, several

homeodomain proteins have been irnplicated as causative oncogenes in cancer and

studies in the lab were showing that Pbx was enhancing the transforming ability of Hox

genes when overexpressed in vitro.

The researcli presented in this PhD thesis describes efforts towards investigating whether

En-1 or En-2 were expressed in normal breast tissue, irnmoiïalized rnammary epithelial
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cef I unes and primary breast tumors and whether they might be involved in regulating

critical aspects of mammary gland development and/or mammary tumorigenesis.

Chapter 2 summarizes the identification of a putative role for En-1 in postnatal mouse

mammary gland devclopment while Chapter 3 documents studies that suggest EN2 is a

candidate oncogene in human breast cancer. Chapter 4 summarizes the identification of

putative EN2 transcriptional targets by microarray analysis. Chapter 5 concludes with a

discussion of the relevance of the findings presented in this thesis and addresses

potential future studies that could provide further insight into the roles of En-1 and EN2

in the regulation of normal mammary gland development and breast cancer,

respectively.
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Chapter 2 describes a study which documents the unique spatio-temporal pattem of En-]

expression in the mammary epithelium of the prepubertal and early pubertal mouse

mammary gland and suggests a potential roTe for En-] in the initial growth and

morphogenesis ofthe epithelial ductal system during the onset ofpuberty. Nicole Martin

generated ail the resuits presented in this chapter and wrote the paper under the

supervision of Dr. Guy Sauvageau.
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Abstract

We have defined the developmentally regulated expression profile ofEngraiÏed-] (En-1)

and the putative ceit types which express this gene in the mammaiy epithelium of the

prepubertal and early pubertal mouse mammary gland. Using En-] mutant mice, we

provide evidence that loss of En-1 function in the female mammary gland results in

severely impaired ductal growth. Pubertal En-] nuil mammaiy glands revealed a

primitive ductal rudiment devoid of terminal end buds, reminiscent of a prepubertal

mammary gland, while a fully developed ductal system was seen in En-l heterozygous

and wildtype siblings. Moreover, En-] nul! mammary epithelium transplanted into

surgically cleared fat pads of wildtype syngeneic hosts displayed Iirnited ductal

outgrowth with reduced side branching. Together, these studies demonstrate a unique

spatio-temporal pattem of En-1 expression in mammary tissue and suggest a potential

contribution for this gene in the initial growth and morphogenesis ofthe epithelial ductal

system during the onset ofpuberty.
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Introduction

Although the marnmary gland ïs established during fetal development, most of its

expansion and development occurs postnatally At birth, the mammary epithelial tree

emanates from a central primary duct, which is connected to the nipple. Functional

development of the postnatal mammary gland proceeds in distinct stages. At roughly 3-4

weeks of age, ovarian hormones stimulate the accelerated and invasive ductal extension

and branching of the rnamrnary tree. The onset of puberty also coincides with the

appearance of large club-shaped terminal end buds (TEB5), highly proliferatïve

structures found at the tips of the growing ducts. It is the bifurcation of these TEBs

through the stromal fat pad that creates the branched pattern of the ductal system found

within the mature mammary gland. The TEB is a specialized structure composed of two

distinct and relatively undifferentiated ccli types. Cap celis make up the outermost layer

of the TEB and interact with the surrounding stroma as the subtending duct is formed

while body celis (about 6-10 layers), fiil the interior of the TEB. Cap cells are the

precursors of myoepithelial cells, which form an outer sleeve around the primary ducts

and become discontinuous around secondary and tertiary ducts. The inner body celis

give rise to luminal epithelial ceils. A single layer of luminai epithelial cells wiil line the

newly forming ducts, where the ducts will eventuaily serve as channels for milk

transport during lactation. Temporally, the ductai system reaches the central iymph node

around 4 ½ weeks and continues growing until the ducts have reached the limits of the

manunary fat pad around 8 weeks of age. At this point the mammary gland reaches

maturity, ductal elongation ceases and TEBs regress to leave a branched system of

differentiated ducts. Lobulo-alveolar development and proliferation occur during

pregnancy, and functional differentiation of the secretory epithelium coincides with

parturition and lactation. After weaning, the entire mamrnary alveolar compartment is

remodeled to eventually resemble that of a mature virgin gland. With cadi subsequent

pregnancy, a new cycle of lobulo-alveolar development occurs.

An essential feature of the mouse mammary gland is tic regenerative capacity of its

epithelium. Portions of tic epithelial tree can be transplanted into the mammary fat pad

of a syngeneic female whose endogenous mamrnary epithelium has been removed, and
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reproduce a complete and functional mammary gland 2 The ability to delete genes from

the mouse genome, in conjunction with tissue transplants to evaluate their physiologie

role, has lcd to the identification of several genes involved in mammary gland

development. One famiiy of genes that has been proposed to be capable of regulating

such developmental decisions in the growth and differentiation of this tissue is the

homeobox family.

We have recently shown that the homeobox gene EngraiÏed-2 (EN2) is flot expressed in

the normal mouse or human mammary tissue, but is aberrantiy expressed in a subset of

human breast cancer and induces mammary tumors in mice . In addition, RNA

interference studies showed the importance of EN2 expression in maintaining the

transformed phenotype of a human breast cancer ccli une . Aithough both En-2, and its

paralog En-1, readily transform mammary epithelial cdl lines, En-1 was not detected in

any of the primaiy breast tumors analyzed (n=$2). Both Eu-] and En-2 are required for

midbrain and cerebelium deveiopment and in addition, En-] plays a cmcial role in

dorsal/ventrai patterning ofthe limbs and skeleton .

The fact that EN2 has been shown to promote mammary tumorigenesis, combined with

evidence indicating that En-1 bas evoived to perform ftirther critical fimctions in

postnatal iimb devclopmcnt in addition to its essential rolc in embryonic devciopment,

promptcd us to investigate whether En-] has acquircd an additionai role in mammary

gland dcvciopmcnt. The roic of En-1 in ncural and iimb devclopment lias bccn studied

extensiveiy, yet the determination of a potentiai role in postnatal mammary gland

development has been hampered by the fact that En-1 null mutants die shortiy afier birth

with a large mid-hindbrain deiction and skcletal defccts of the limbs, 13th rib and

sternum . In the present study we employed En-T’’ (Lki, tacZ knock-in) transgenic

mice in which the bacteriai reporter gene ÏacZ is under the control of the En-1 promoter

and endogenous regulatory ciements, to demonstrate ccli type specific and

dcvelopmcntaliy rcguiated expression of En-1 in mammary epithelial celis during the

onset of puberty, corresponding to a phase of overt proliferation and morphogenesis in

the mouse mammary gland. The targeting of ÏacZ into the first exon of En-] produces a
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nuil allele in En-1, and rare surviving mutant En]’ femates revealed a primitive

ductal rudiment devoid of TEBs while a fully developed ductal tree was seen in the

heterozygous and wildtype siblings. Moreover, mammary epithelium from

females was transplanted into the cleared fat pads of syngeneic 3 week old recipients

wherc the resulting transplants displayed impaired ductal outgrowth and branching

morphogenesis. These observations suggest that En-1 may be involved in the initial

growth and expansion of the epithelial ductal system during mammary gland

development.

Resuits

Temporal expression of En-1 in the mouse mammary gland

An initial investigation of En-1 protein expression in the mouse mammary gland

revealed that while En-1 was not detectable in the mammary tissue derived from a

lactating mother, it was readily detected in the mammary tissue ofboth ofher 17-day old

suckiing female pups (lane 6-7 in Fig. 2.la). This observation was confirmed using RT

PCR analysis, which also detected very low levels of En-1 expression in the mammary

tissue of a 35-day old female, but not in any of the later pubertal tirnepoints, or at any

developmental stage during pregnancy, lactation or involution (data flot shown).

Mamrnary tissue isolated from additional prenatal and postnatal developmental stages

showed that En-1 was first detected in the mammary tissue of a 1 5-day old prepubertal

female and expression levels steadily increase until puberty commences around day 24-

28, and become undetectable again at day 35 during puberty (Fig. 2.lb, e). En-l protein

xvas flot detected in embiyonic mammary tissue, mammary tissue containing the entire

mammaiy epithelium from a 17-day old suckling male pup or in mammary tissue

isolated during pregnancy or involution (Fig. 2.lb, e). Moreover, En-l was flot

detectable in the fatty stroma isolated from a 24-day old early pubertal female gland in

which thc epithelial tissue was surgically removed, while the highest levels of En-1

protein were observed in the tissue portion which contained the mammary epithelial trec

(Fig. 2.lb, c: lane 7 and 4, for epithelial-enriched and -depleted tissue, respectively). 0f
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interest, this highly regulated expression of En-] in the prepubertal and early pubertal

rnammary gland coincides with the rapid expansion of the epithelial ductal system and

the appearance ofTEBs.
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fig. 2.1 En-1 protein is detected in the prepubertal and early pubertal female marnmary

gland. Western blot analysis of En-1 protein expression in rnammary tissue derived

from: (a) a nursing mother at lactation day 17 (Lactation d17), and two of the suckiing

17-day old female pups (Virgin d17) and, (b-c) female inguinal marnmary glands at the

following developrnental timepoints; ernbiyonic day 19 (Ed19), 10 to 35-day old

prepubertal and pubertal immature virgin glands (Day 10 to Day 35), 5 days of

pregnancy (Pregnancy Day 5), and 4 days after weaning (Involution). In addition,

protein was extracted from the entire mamrnary gland isolated from a 17-day old
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prepubertal virgin male (Day 17 Male). The portion of the fat pad beyond the lymph

node whcre the epithelial tree has flot yet penetrated was surgically removed and was

included to represent epithclial-free mammary fatty tissue (Day 24 Stroma). HC 11 and

C57MG mammary epithelial celis engineered to express En-1, the MCF-7 human breast

tumor derived ccli une that expresses endogenous EN2 and aduit mouse cerebellum

which expresses En-2 were included as specificity controls while the Pregnant and

Involution samples were included as negative controls. a Enhb-]; antisemm that

recognizes both En-1 and En-2, aFTF]D; protein-tyrosine phosphatase ID antibody, a

TubuÏin; recognizes 55 kDa bcta Tubulin.

En-1 is expressed in ceils lining the mammary epithelial tree during pnberty

To localize the spatial expression pattem of En-1 in thc early pubertal mammary gland,

the targeted mouse une, En-1, in which En-1 was fiinctionally replaced with the

bacterial ÏacZ reporter gene, was employed (Fig. 2.2a, b) . Although the targeting event

that brought the integrated ÏacZ sequence under the control of the En-1 locus also

introduced a nuil mutation in En-1, En1L heterozygous mice are viable phenocopies

of wiÏdtype littermates and females display nonnal mammary gland development, are

fertile and are able to nurse their young (data flot shown).

Immunohistochemical staining for fi-gal was performed on sections derived from entire
• • Lki/+inguinal mammary glands isolatcd from female En-1 transgemc mice, where ÏacZ

expressing ceils produce a red-brownish reaction product. Importantly, no lacZ

expression was detected in mammary glands derived from wildtype agc-matched
+/+pubertal En-1 females (Fig. 2.2c).

At 2$ d, where high levels of En-1 expression were observed by western analysis,

positive staining for fi-gal was most obvious in putative myoepithelial and/or periductal

fibroblast cells lining the extending ducts within mammary glands derived from En-1’’

females (sec black arrows in Fig. 2.2d-f’). LacZ expression was also dctected in the cells

presumably surrounding the tip of thc highly proliferative TEB structures (sec red
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arrows in Fig. 2.2e,f) and possibly in nearby solitary stromal celis (see * in Fig. 2.2e).

En-1 expression appears to be restricted to the outermost layer of the TEB, where cap

celis reside. At this early pubertal stage, where the growing epithelial tree is approaching

the central lymph node, fi-gal expression was neyer identified in the lymph node or in

luminal epithelial celis (Fig. 2.2d-f and data not shown). 0f interest, fi-gal expression

was no longer detectable in mammary tissue denved from 35-day old En-1’’ pubertal

females (data not shown). In accordance with the temporal expression pattem presented

in Fig. 2.1, ÏacZ expressing celis were neyer detected at timepoints earlier than day 15,

later than day 35 or in subsequent developmental timepoints (data not shown),

confirming the developmentally regulatcd expression of En-1 in the prepubertal and

early pubertal mouse mammary gland.

En-1 deficient mammary glands exhibit impaired ductal growth and TEB

formation

To overcome the neonatal lethality in En-1 nuli mutants, the En-l’” allele, which resuits

in the complete disruption of En-1 function, was backcrossed into the C57B1/6J

background where rare En-1’” nul! mutants have been reported to survive up to 3

weeks afier birth 6 The resulting Enl’” heterozygous mice were indistinguishable
+1+ . . Lki/Lkifrom wildtype En-1 C57B116J mice while En-1 null mutants were

morphologically distinguishable at birth by their abnormal forelimb phenotype . In

addition, although En-l” nul! mutants were roughly the same size and weight as their

siblings at birth, by 2-3 weeks of age they were noticeably smaller than their wildtype

and heterozygous littermates (data not shown).

To determine the possible contribution of En-1 fiinction to pubertal mammary gland

development, entire inguinal mammary glands were surgically removed from rare

surviving En-l’’’ nul! mutant females, wholemounted and compared to mammaiy

glands from wildtype or En-1’’ age-matched female littermates. Newbom and 21-day

old En_]L’ female mammary glands resemble En_lUt and En-1m female littermates

(data flot shown). At 28 days of age, TEBs are readily visible and the growing mammary
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tree is approaching the lyrnph node in the early pubertal wildtype gland while no TEBs

are visible and the gland does not appear to have grown as far into the underlying fat pad

in the 2$-day old En]’’’ nul! mutant littermate mammary gLand (f ig. 2.3a, b). The

TEBs are even more prominent and the ducts have now reached the central lymph node

in a 32-day old En]kt mammary gland while the mammary glands from two En-] nuli

mutant littermates are still devoid of TERs, the ducts have yet to even approach the

Iymph node and the ductal tree still resembles a prepubertal epithelial tree (fig. 2.3c-e).

fig. 2.2 En-] is expressed in duct-lining cells ofthe mouse marnmary gland.
Lki/+(a-b) E 8.5 and E12.5 dpc En-] ernbryos stained in toto with X-Gal. Strong ÏacZ

derived activity is detected in the rnidbrain-hindbrain junction region (E8.5) and in the

mid-hindbrain region, posterior hindbrain, spinal cord and somite-derived tissue (E12.5

embiyo). (c-f) Immunohistochernical staining for fi-gal expression on paraffin sections

where “positive” cells are identified by the presence of a brownish reaction product in

the presence of NovaRED substrate and sections are counterstained with hematoxylin
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which stains nuclei blue. (e) Mammary glands from a representative 2$-day old wildtype

female shows absence of/3-gal expression. (c-f) Mammary glands from 28-day old En
1Lki/+ pcibertal fernales show positive staining in epithelial cells surrounding the growing

ducts (black arrows), the outer layer of TEBs (red arrows) and possibly in isolated

stromal cells (see * in e). Images were captured at either IOx (d), 20x (c,e) or 40x (f).
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Fig. 2.3 Impaired ductal development in En-1 nul! mutant mammary glands.

(a) Wildtype En-1’ 28-day old mammary gland; mouse weight: 13.3 g. TEBs are

readi!y visible and the growing mammary tree is approaching the !ymph node at this

stage of early puberty (l.6x). (b) Mutant En-lu’ 28-day o!d littermate mammary

gland; mouse weight: 5.2 g. TEBs are flot visible and the gland resembles a prepubertal

gland (2x). (c) Control En-l’ 32-day old mammary gland; mouse weight: 15.3 g. The
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TEBs are visible and the ducts have reached the lymph node (Ï.6x). (d-e) Two mutant

EnlLk/ 32-day old littermate mammary glands; mouse weight: 6.1 and 5.3 g,

respectively. TEBs are not visible (2x). (f-g) Control En-l’” 42-day old mammary

gland (left and right gland); mouse weiglit: 18.8 g. Some TEBs are stili visible and the

mammary tree lias grown past the lympli node (O.8x). (li) Magnification of (g) showing

the TEBs at the peripliery of the growing ductal tree (2x). (i) Mutant En-I’”’ 42-day

old littermate mammary gland; mouse weiglit: 12.3 g. Ilie mammary tree resembles a

prepubertal tree and the TEBs are at best atrophic (O.8x). (j) Magnification of (j) (2x).

(k) Contralateral mammary gland from the same En-l’’’ mutant described in (j)

(1.6x). (1) Magnification of (k) (3.2x).

0f all tlie mice analyzed in this study, one female En-]” homozygous mutant

survived until 42 days of age and exhibited the most striking difference in mammary

gland development due to En-] disruption. Whule the extensive ductal tree lias grown

past the lympli node and will soon completely f111 the fat pad in the lieterozygous En
jLki/+ female sibling (Fig. 2.3f-h), the En-]’”’ homozygous null female revealed a

primitive ductal system devoid of TEBs (Fig. 2.3i-l), reminiscent of the rudimentary

mammary tree that is present upon birtli. Consistent witli the temporal expression pattern

of En-], where En-] is not expressed until day 15, these resuits suggest that while En-1

is dispensable for the specification of the rudimentary tree pfesent at birth, it may be

required for the formation of TEB structures and the extension of the epithelial ductal

system in preparation for sexual maturity. In addition, non-cell autonomous effects

andlor a possible delay in sexual maturity, may contribute to, or exacerbate, this

phenotype.

Reduced ductal morphogenesis in En-1 nuli mammary epithelial transplants

To gain insiglit into whether the observed mammary gland phenotype in the En-] nuil

mice was due to a ceil-autonomous function of En-1 in mammary epithelium, control

En-] En-l’ and mutant En-]’’’ mammary epithelium were transplanted into

wildtype syngeneic C57B1/6J mammary fat pads following the removal of endogenous

epitlielium. In tliese studies, each 3 week old female recipient received an
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mammary tissue transplant in one inguinal fat pad and a control En-]’ or En-J

transplant in the contralateral inguinal fat pad. Wholemount analysis of En-1m and En
1LkU+ mammary epithelial transplants harvested at $ weeks (Fig 2.4 a,c,d) and 12 weeks

(fig. 2.4b) post transplantation show that the ducts were able to repopulate the host fat

pad to full capacity and any remaining TEBs are located at the periphery of the fat pad

before they regress, reminiscent of the epithelial tree secn in a normal postpubertal

virgin mammary gland. In accordance with the fact that En]Lk1/+ heterozygous mice

have no mammary phenotype, En-]’ mammary epithelial transplants undergo

comparable ductal growth and morphogenesis as compared to the wildtype epithelium

transplant (fig. 2.4c-d). However, ductal growth and morphogenesis is severely affected

in the En-] nuli mammary epithelial transplants as compared to wildtype or En-]’”

littermate transplants (Fig. 2.4e-j).

In contrast to the En-]’” mutant mammary glands that resemble the primitive

mammary tree present at birth, some of the En-] deficient mammary epithelium

transplants, from 3 different homozygous En-l’”’ micc, were able to grow and

displayed impaired ductal outgrowth and branching morphogenesis to varying degrees

when implanted into a wildtype fat pad microenvironment, from severe (f ig. 2.4e-g) to

moderate (fig. 2.4h-j). Two ofthe resulting En_]ki/Lki transplants recapitulate the growth

quiescent primitive nidimentary system seen in the En-] null mammary glands (Fig.

2.4e, g). Although one En-] null transplant appears to now be capable of forming TEB

structures, the proliferative capacity of these structures is impaired since they fail to

even penetrate the host fat pad beyond that of the mammary trec seen in a normal early

prepubertal gland (Fig. 2.4f). Interestingly, some of the En-1 deficient mammary

epithelium transplants were able to expand into much of the fat pad but they show a

reduction in branching and no visible TEBs when compared to wildtype or

heterozygous reconstituted glands (e.g., compare fig. 2.4i to d). In contrast to the well

developed ductal network in the control En-1’ and En-l’” transplants, the ductal

branching that emanated from the En-] null transplants did not extend to the periphery

ofthe fat pad and failed to establish the same level ofoccupancy ofthe fat pad.
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Fig. 2.4 Abnorrnal ductal devcloprnent of transplanted En-J nuli mamrnary epithelium.

(a,c-j) Wholemount analysis of mamrnary epithelial transplants of the indicated

genotypes harvested at 8 or 12 (b) weeks post transplantation.
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In contrast to the paralog En-2, which is not cxpressed at any developrnental tirnepoint
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in the normal mammary gland, this study demonstrates the unique spatio-temporal

pattem of En-1 expression during mammary gland development in the young female

mouse. En-] expression is highly regulated and is limited to the prepubertal gland and

during the onset ofpuberty. Immunohistochemical analysis of En-1” mammary tissue

suggests that En-] is expressed in epithelial ceils lining the expanding ductal system and

in the proliferative cap celis of TEBs. Based upon wholemount analysis, mammary

gland development was equivalent at birth in En_lL and wildtype

littermates, suggesting that prenatal mammary development is normal in En-]

homozygous nuil mice. Rare mutant females that survived to different

pubertal stages revealed a primitive ductal rudiment with a dramatic reduction in TEBs

while a fully developed ductal tree was seen in the wildtype siblings. Interestingly, a

significant proportion of the En-] null mammary epithelium transplants were able to

expand into the wildtype fatty stroma but displayed limited ductal growth and reduced

side branching to different degrees in the normal microenvironment and hormonal

milieu ofthe wildtype host fat pad.

The phenotype observed in the En-1 homozygous null female gland is not entirely

reflective of a mammary epithelial autonomous defect since it was not consistently

recapitulated by transplantation into wildtype hosts. At least within the scope of this

limited analysis, the transplantation experiments show that the En-1 homozygous null

mammary epithelium undergoes ductal extension, albeit somewhat reduced, if given the

correct developmental eues from the wildtype stromal microenvironment. Given that the

rare En-] homozygous nuli mice that survive faiÏ to thrive, it is thus conceivable that the

hormonal milieu of these mice is far from optimal. Moreover, and not tested here, it is

possible that En-1 may respond to hormonal changes that occur at the onset ofpuberty.

The second possible non celI-autonomous defect in these mice could result from a

defective microenvironment. Indeed, we detected rare fi-gal positive non-epithelial cells

in the vicinity of the expanding pubertal mammary epithelial tree (sec * in fig. 2.2e).

However, western blot analyses identified En-1 protein expression only in portions of

mammary tissue that included mammary epithelial fragments, and not in the adjacent fat
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pad, suggesting that the stromal compartment does flot contribute to the observed

phenotype. Reciprocal experiments (i.e., transpianting wildtype celis into cleared fat

pads from En-1 mutant mice) could help clarify this possibility but, due to viability

issues, their feasibility is compromised in homozygous En-] nul! mice. Thus, the

significance of this observation (i.e., possible expression of En-] in rare non-epithelial

cells) remains unclear and may be best appreciated using experimental strategies that

will complement those exploited in our study. For example, conducting recombinant

epitheliumlstroma capsular kidney cultures as described by Wiesen et al. (1999) may be

very informative .

Although there is an obvious non-cell autonomous contribution to the observed

mammary gland phenotype, it is also likely that the consistent reduction in ductal

density in the subgroup of glands reconstituted with cells lacldng a functional En-] gene

also involves ceil-autonomous effects. Iii agreement with the predominant expression of

En-1 in cells lining the epithelial ducts, the reduction in ductal tree density observed in

the reconstituted glands more likely reflects the possibility that En-] expression in the

mammary epithelium is required for epithelial-mesenchymal interactions that condition

the stroma such that it allows or stimulates the mammary epithelium to grow. The

limited number of biological samples (n=3) precluded us from performing a meaningful

quantitative morphometric analysis of total mammary epithelial structures to stromal

area as performed by Wiesen et al. (1999) . Further studies, where the possible variable

of an overali delay in development is removed, would be most valuable. Based on the

present study alone, it remains difficuit to quantify the contribution of ceil-autonomous

versus non-celi autonomous effects.

It is possible that the modifying genes in the C57B1/6J strain that temper the normally

lethal brain phenotype also temper the capacity of mammary epithelium to grow upon

transplantation. This might explain why C57B1/6J En-] nuil mamniary epithelium is

able to form TEBs and grow when transplanted into a C57B1/6J recipient, a less severe

mammary gland phenotype than what is observed in the En-] nuli mammary gland. It is

also possible that compensatory ectopic expression of En-2 in En-]’’’ C57B1/6J mice
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may partially rescuc the mammary gland phenotype in these mutant mice, analogous to

the finding that En-2 expression is likely responsible for the less severe cerebellar brain

phenotype when the En-1 Lki knock-in gene is introduced into the C57B1/6J strain 6

Although we have determined that En-2 expression is neyer detected in mammary tissue

from both CD-1 and C57B1/6J strains (Fig. 2.1 and data not shown), En-2 expression

was neyer tested in the actual rare En_lLd mutants that arose.

Given that the loss of En-1 function in the mouse mammary gland leads to reduced

growth in the otherwise rapidly proliferating pubertal ductal system, it is interesting to

note that ectopic expression of EN2 in human breast tissue is associated with breast

cancer . Since the consequence of the loss of En-1 function in the mammary gland is

consistent with a role for En-] in regulating proliferation, combined with the fact that

ectopic expression of En-] in mammary epithelial celis promotes proliferation, it is

tempting to speculate it plays a similar role in normal mammary tissue and that the

aberrant expression of EN2 in mammary tissue leads to the inappropriate activation of

En-1 targets that promote celi proliferation . It will therefore be important to identif’y if

there are common key target genes that arc both regulated by En-1 in the normal

expansion of the mammary gland and activated by cctopic EN2 expression in human

breast cancer.

Materials and Methods

Transgenic mice

The generation ofEn-]’’ (Lki, lacZ knock-in) transgenic mice, where the bacterial gene

ÏacZ which codes forfl-galactosidase (fi-gal), was inserted into the En-1 locus, has been

reported previously . The insertion of the bacterial ÏacZ coding sequences into the first

exon of En-1 brought the resulting expression of fi-galactosidase 7-gal) under the

regulation of the En-1 promoter and endogenous regulatory elements. In En-]’ mice

heterozygous for the targeted allele, the profile offl-gal activity during embryogenesis

was shown to accurately recapitulate that of the corresponding En-1 transcripts, as

determined by double-labeling using X-gal to detect lacZ expression and an antibody to
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detect En-1 protein and thus serves as a faithful reporter of En-1 expression . The first

111 amino acids of En-] are deieted by the above insertion of ÏacZ, and the resuiting En

J Lki allele resuits in the complete disruption of En-1 function as the homozygous En
1Lki/Lki mutants are morphologically identical to nuli mutants (hd, deletion of

the homeodomain, also resulting in the complete disruption of En-1 function) and En-1

protein expression is flot detected with anti-En antibodies . The CDY En-1’” ce

were backcrossed into and maintained on a C57B1/6J background where rare En-1’

mutants survive 3-4 weeks after birth 6 En-l’’ heterozygous mice were

indistinguishable from wildtype En-1 mice while En-l’’’ nuil mutants were

morphologically distinguishable by their forelimb phenotype ‘. En-1’” and En-l’’’

mice were genotyped by Southern biot analysis of EcoRI-digested tau DNA using a

2400-bp Xho i-Sst 1 fragment from the bacterial lacZ cDNA andlor PCR anaiysis.

Primers used for genotyping the En-1 wildtype aliele were 5’-GAA AAA AGA AAG

GCG AGC GTC-3’ and 5’-AGC CTA AAA GTC AGC GCG AC-3’, which produced a

209 bp product. Primers used for genotypÏng the En-1’’ ailele were 5’-AAT CCC GAA

TCT CTA TCG TGC-3’ and 5’-CAC TCG GGT GAT TAC GAT CG-3’, which

produced a 240 bp fragment. Ail animais were maintained and bred in ventiiated

microisolator cages, provided with steriiized food and acidified water in the specific

pathogen-free (SPF) animai facilities of the Clinicai Research Institute of Montreai

(RCM) and of 1IRIC.

Celi unes

The HCY 1 mammary epithelial celi une is a cionai derivative of the COMMA-iD ceii

le, derived from mammary tissue of a mid-pregnant BALB/c female o The C57MG

ceil une was derived from the glands of a 23 week oid retired C57BL/6 breeder “ The

MCf7 mammary epitheliai ceii une was derived from a human breast adenocarcinoma.

C57MG, HC1 1 and MCF7 unes were grown in RPMI 1640 medium supplemented with

10% fetal caif serum, 10 ng/mi of epidermai growth factor and 10 Jg/m1 of insuiin. The

generation of HC1 1 and C57MG mammary epitheliai celis engineered to express En-]

have been described previousiy .
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Western Blot Analysis

Total protein was extracted from frozen #4 (inguinal) mouse mammary glands, adult

mouse cerebellum and celi lines and 40 jig of each resulting sample was separated by

SDS-PAGE as described previously 12 En proteins wcre detected with aEnhb-] antisera

(which detects both 41 kDa mouse En-1 and human EN1, and both 55 kDa mouse En-2

and human EN2 proteïns) as described 13 As a control for loading, membranes were

stnpped and hybridized with cither aFTFJD (protein-tyrosine phosphatase 1D; P54420;

BD PharMingen, Mississauga, Canada) or aTubulin (mouse monoclonal to beta Tubulin;

ab7287; Abcam, Cambridge, MA).

fi-galactosidase staining of embryos and immunohistochemical detection of tacZ

expression

Embryos were removed from En-1’’ females, fixed in 4% paraformaldehyde (PFA)

ovemight on a rotisserie at 4°C, and stained in toto forfi-galactosidase (fi-gal) activity as

described For fi-gal detection within the mouse mammary gland, entire inguinal

mammary glands were removed from En]ki/+ females at the indicated ages and fixed in

chilled 2% PFA, 0.2% glutaraldehyde, 0.02% Nonidet P-40 in PBS for 2 hours and

subsequently thoroughly rinsed in 4 changes of chilled PBS before being dehydrated,

paraffin-embedded and sectioned at 5 im. Immunohistochemical detection of ÏacZ

expression was performed on the resulting dewaxed and rchydrated sections using the

Vectastain Elite ABC Kit (PK-6101; Vector Laboratories, Burlingame, CA). Tissue

sections were incubated with a rabbit anti-E.coli-fl-galactosidase polyclonal antibody for

1 hour in a moisture chamber at RI (1:500 dilution; ab616; Abcam Inc., Cambridge,

MA). After PBS washes, sections wcrc incubated with biotinylated goat anti-rabbit IgG

before incubation with ABC (avidin-biotinylated-enzyme-complex) conjugated horse

radish peroxidase (PK-6101; Vector Laboratories, Burlingame, CA). Peroxidase was

visualized by incubating sections with NovaRED substrate (SK-4800; Vector

Laboratories, Burlingame, CA) and slides were counterstained with hematoxylin.
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Wholemounts and mammary gland transplantation

For wholemount analysis, entire inguinal mammary glands were surgically removed at

the indicated timepoints and spread flat on glass siides. After fixation in Camoy’s

fixative for 2 hours, the glands were defatted in ethanol and acetone washes and then

rehydrated and stained in Carmine Alum Stain ovemight. The glands were then

dehydrated, cleared with xylene and mounted with Permount. For En-1 nuil mammary

gland transplantation smdies, rare surviving En-1’’ mutant female C57B1/6J mice

were identified shortly afier birth by their limb phenotype and were left to thrive with

their female En-1 ‘ and/or En_]L littermates until 3 weeks of age. At 3 weeks of age,

the entire prepubertal mammary epithelial tree within the inguinal mammary gland (the

portion of the mammary gland comprising the main duct, rudimentary ductal system and

the surrounding fatty stroma from the nipple until the middle of the lymph node) was

removed from En_]L1 mutant females, En-1m andlor En-]’’ female littermates and

wildtype 3 week old syngeneic En-]’ C57B1/6J female mice. Using scissors, a small

incision was made in the remaining epithelial-free fat pad portion of the age-matcbed

En-1’ C57B1/6J recipient gland. Using dissection tweezers, the excised fat pad portion

from the En-l’’’ female was placed into this incision within the cleared fat pad ofthe

syngeneic host, just above the lymph node. The surgical procedures for clearing the

endogenous mammary epithelium from the inguinal fat pads of 3 week-old female mice

and implanting tissue fragments into cleared mammary fat pads have been described 2

Each recipient female carried an En-l’’ mutant mammary tissue transplant in one fat

pad and a control En-1’” or En-1m transplant in the contralateral fat pad. Wholemount

preparations of the excised portion of the host mammary gland were generated and

examined to ensure that only those En-1’ transplant recipients where the entire

mammary epithelial tree was removed were included in the study. Tissue was resewed

from each sacrificed animal to confirm the genotype of mutant En-l’’’ transplants,
+1+ Lki/+ . . +1+female En-1 or En-1 littermate transplants and recipient En-1 C57B116J

females. The female hosts were sacrificed 8-12 weeks post-transplantation and the

chimeric mammary gland transplants were surgically removed and examined by

wholemount analysis.
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Chapter 3 is a co-authored article which documents the ectopic expression of EN2 in

human breast-tumor derived ceil unes and primary human breast cancer samples. Most

impoilantly, this work was the first to investigate a possible role of EN2 in mammary

tumorigenesis and describes in vitro and in vivo studies which suggest that EN2 indeed

behaves as an oncogene in mammary tissue.

Dr. Marc Saba-El-Leil, a Research Associate in the laboratory of Dr. Sylvain Meloche at

the time, contributed to this work by performing the transfections of synthetic siRNA

using a transfection procedure developned in the laboratory of Dr. Meloche. Dr.

Svetlana Sadekova, who heads the Breast Cancer Functional Genomics Group within the

Oncology Group at McGill University, contributed to this work by provding the 11

frozen primary normal human reduction mammoplasty breast tissue samples presented

in Figure 3.2, the frozen primary human infiltrafing ductal carcinoma, inftammatory type

sample represented by T4 in Figure 3.3 and the additional 59 primary human breast

tumor samples tested (data flot shown). The paper was written by Nicole Martin under

the supervision of Dr. Guy Sauvageau.
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Abstract

OnIy a few critical oncogenes have been identified in the more commonly occurring

cases of sporadic brcast cancer. We provide evidence that EN2 is ectopically expressed

in a subset of human breast cancer and may have a causal roic in mammaiy

tumorigenesis. Non-tumorigenic mammary celi unes engineered to ectopically express

En-2 have a marked reduction in their cycling time, lose celi contact inhibition, become

sensitive to 17-AAG trcatment, fail to differentiate when exposed to lactogenic

hormones and induce mammaiy tumors when transplanted into cleared mammary glands

of syngeneic hosts. RNA interference studies suggest that EN2 expression is required for

the maintenance of the transformed phenotype of a human breast tumor ccli une.
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Introduction

Breast cancer is one ofthe most frequent human malignancies in the Western world. The

pathogenesis of this disease is thought to invoive multiple genetic and epigenetic events.

In spite of recent advances in the assessment of breast cancer risk, through the

identification of crucial susceptibility genes (BRCAJ/2, FTEN, F53), these account for

less than 5% of ail breast cancer cases and may not be associated with the more

commonly occurring sporadic breast cancers . The discovery of bona fide primary

genetic lesions underiying sporadic breast cancer development remains a major

challenge. This is due, at ieast in part, to the marked cytogenetic complexity seen in

advanced breast cancer, precluding investigators from readily identifying primary

causative genetic events in breast ceil transformation 2

A number of oncogenes and tumor suppressors have been associated with breast cancer.

The c-MYC gene is amplified and/or overexpressed in a high proportion of liuman breast

cancer, although the frequency of these alterations varies greatly . Erb32 is also

amplified and subsequently overexpressed in 20-30% of human breast cancers, and

overexpression of Erb32 is correlated with a poor clinical prognosis of both node

positive and node-negative tumors ‘. The CycÏin Dl gene is amplified in 15-20% of

human breast cancers . As the oncogenes located at amplified chromosomal regions are

rarely amplified in benign breast disease 6 they may represent later events in the

multistep progression associated with the development of breast cancer.

In rodents, it lias been possible to identify severai breast cancer-initiating oncogenes by

tlie characterization of proviral integration sites of the mouse mammary tumor virus

(MMTV). One such locus is Wnt-1 which, when overexpressed, leads to mammary

hyperplasia and subsequent generation of adenocarcinomas . Although expression of

WNT-1 itself has flot been reported in normal or neoplastic human breast tissue, other

WNT genes have been detected in subsets of human breast cancers . Wnt-l encodes a

secreted growth factor tliat initiates a signaling cascade which resuits in transcriptional

activation mediated by /J-cateninlTcf complexes . 16-cateninlTcf-mediated transcription

has also been implicated in human cancer, witli some targets relevant to breast
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carcinogenesis identified such as c-MYC and cvcÏin DI 10.11 The observation that Wnt-1

is a mouse rnammary oncogene and that the downstream mediator B-catenin is often

stabilized in certain human malignancies fuels the ongoing search for additional targets

of this pathway, such as the Engrailed genes, that might also be implicated in breast

cancer.

The mouse En-l and En-2 genes encode horneobox-containing transcription factors that

are the murine homologs of the Drosophila segment polarity gene engraileL En-1 is

first expressed in the presumptive miWhindbrain around 8.0 dpc and continues to be

expressed, together with En-2, in overlapping pattems dunng midbrain development 12

En-2 expression is restricted to the central nervous system and branchiolar arches during

embryogenesis and En-2 nuli mutants are viable but harbor reductions in cerebellar size
13,14

En and other homeobox-containing genes clearly occupy a prominent position in the

developmental regulatory hierarchy, yet they have received little attention with respect

to mammary gland organogenesis and cancer. In the present study we show that EN2

(but not EN]) is ectopically expressed in a subset of human breast cancer and in a large

proportion of breast cancer cdl lines and that its ectopic expression readily transforms

mamrnary epithelial cells in vitro and promotes adenocarcinoma formation in vivo. We

also provide evidence ofits critical fiinction in a breast cancer cell line.

Resuits

Engrai!ed genes are rarely activated in Wnt-1-induced rnammary tumors

As Engrailed-1 (En-1) and Engrailed-2 (En-2) are firnctional targets of Wnt-1 in mouse

embryogenesis and several different groups of homeodomain proteins have been

implicated as causative oncogenes in cancer 15 we initially sought to determine whether

En-] or En-2 were impÏicated in Wnt-1-induced mouse mammary hyperpiasia observed

in MMTV-Wnt-1 transgenics 16 Neither En-] nor En-2 were detected by western blot or

RT-PCR analyses in hyperplastic mammary glands derived from nulliparous
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hemizygous MMTV-Wnt-1 transgenic females (n=4; Fig. 3.la, lane 2,3,5,7). In addition,

only one of three tumors arisïng from the MMTV-Wnt- 1 transgenics expressed En-]

(flot shown), whilc no expression of En-2 was detected in these primary tumors (fig.

3.la). Thus, while En-1 and En-2 are downstream and responsive to Wnt-1 signaling in

embryogenesis, it seems unhikely that they contributed to tumor formation.
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Fig. 3.1 Expression of En-1 and En-2 in the mouse marnmary gland. ta) Semi

quantitative RT-PCR analysis of globally amplified cDNA derived from hyperpiastic

mammary glands (MG) and tumors of MMTV-Wnt-1 transgenic mice. (b) RT-PCR

analysis was used to investigate En-2 expression at several different developmental

stages in the mouse mammary gland. HC11 mammary epithelial ceils engineered to

express En-] or En-2, E 12.5 dpc embryonic bodies without heads (Ed12.5 Body), where
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En-1 is exclusively expressed, and aduit mouse cerebellum, where En-2 is exclusively

expressed, were included as specificity controls.

C

5 6
L

4’
.1’4/

4

r

fig. 3.2 EN2 is not detectable in epithelial structures within normal human breast tissue.

(a) EN2 expression in total amplffied cDNA obtained from consecutive 2.5 fold dilutions

of MCF7 ceils (which express EN2) with HC1 1 Neo celis (EN2 negative). (b) RT-PCR

analysis of 11 normal human breast tissue samples. Keratin 18 was used to show the

epithelial content in each sample. (e) H&E sections from the corresponding 11 samples

in (b) were taken both above and below the section used to isolate RNA (20x).
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Although En-] shows a specific temporal expression pattem in the normal adult mouse

mammary gland (NM and GS, manuscript in preparation), En-2 expression was not

detectable in the normal mouse gland (fig. 3.1 b). With a detection sensitivity nearing

0.01% of the celis (F ig. 3.2a), EN2 was also flot detected in normal human mammary

tissues derived from reduction mammoplasty (n= li; Fig. 3 .2b and e). As detailed below

however, the presence of EN2 protein in the human breast cancer ceil line MCF7 (fig.

3.3a) lcd us to investigate its expression in pnmary human breast tumors.

EN2 is ectopically expressed in human breast cancer samples

Using semi-quantitative RT-PCR analysis, we found that EN2 expression was flot

limited to MCf7 celis since a large proportion (7/12 or 58%) of cstablished breast

carcinoma cdl lines expressed this gene (f ig. 3.3b). 0f the EN2-positive cdl lines, four

were derived from adenocarcinomas (MDA-MB-435S, BT-20, MDA-MB-436 and

MCF 7), one from ductal carcinoma (BT-474), and two were designated as fibrocystic

breast tissue (MCF 1OA and MCF-12A). The latter two unes, although originally

derived from hyperplastic breast tissue and flot carcinomas, have evolved from the initial

immortalized normai cdl line as they now form colonies in soft agar, a characteristic

frequently associated with transformed cells (data not shown). Western blot analyses

confirmed the presence ofEN2 and the absence ofENi in ail ofthese cdl unes (data not

shown).

To determine whether EN2 was also expressed in primary human breast tumors, semi

quantitative RT-PCR analysis was performed on RNA derived from frozen breast

biopsies. Two of the 23 primary tumors initially analyzed expressed EN2 at levels

comparable to that observed in MCF7 cells (Fig. 3.3c). Importantly, the normal tissue

adjacent to these two tumors did flot express EN2 (Normal 3 and 4; Fig. 3.3e, lane 1 and

16, respectively). These observations were confirmed by immunohistochemistry which

revealed strong EN2 nuclear staining in the neoplastic epithelial ceÏls within the tumors

only and flot in the normal adjacent tissue (Fig. 3.3d, compare T3 and T4 to N3 and N4,

respectiveiy). Histologically, these 2 tumors were defined as adenocarcinoma (T3) and
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infiltrating ductal carcinorna, inflamrnatory type (T4). Our analysis of human breast

tumors and normal adjacent samples was expanded to better define an estimated

frequency of EN2 expression in breast cancer. WhiÏe EN2 was flot detected in any of the

normal samples analyzed (n=19 total), 4/59 of the additional tumors expressed EN2 (flot

shown). AlI four additional EN2 positive tumors were infiltrating ductal carcinomas.

Thus, EN2 is ectopically expressed in a subset of human breast cancer representing

approximately 7% in the population tested.
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fig. 3.3 EN2 is ectopically expressed in human breast carcinomas. (a) Western blot

analysis shows the presence ofEN2 in the human breast cancer cell line MCF7. aEnhb
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ectopic EN2 expression in two tumors (Tumor 3 and 4), whule EIV2 expression is flot

detected in the normal adjacent tissue to each tumor (Normal 3 and 4). Quantitative

phosphoimager analysis of the EN2 / Actin ratio in Tumor 3 (T3), Tumor 4 (T4), MCf7

(M), and endogenous levels in the aduit mouse cerebellum (Cer) in the figure are shown.

(d) Immunohistochemistry using aEnhb-1 antisera on sections denved from Tumor 3

(20x); in the normal adjacent tissue to Tumor 3 (20x); in the Tumor 4 section (40x); and

in the normal adjacent tissue to Tumor 4 (40x); En-2 expression in the adult mouse

cerebellum has been documented and was used as a positive control (40x).

Ectopic expression of En-2 readily transforms mammary epithelial celi unes

To investigate the possible oncogenic role of En-2 in normal breast epithelial ceils, we

first engineered, by retroviral gene transfer, its ectopic expression in two immortalized,

non-transformed, anchorage-dependent mammary epithelial celi unes, HC1 1 and

C57MG. HC1 1 cells were chosen as they have retained both the ability to differentiate in

vitro upon stimulation with lactogenic hormones and to generate epithelial outgrowths

when transplanted back into the cleared (gland-free) fat pads of syngeneic hosts, as

observed with primary mammary epithelial ceils Additionally, both HC11 and

C57MG cells have been shown to acquire anchorage independent growth when

transduced with oncogenes involved in breast cancer (c-erbB-2 in HC1 1:18; Wnt-1 in

C57MG:19). The resulting levels of En-2 expression in HCY1 selected polyclonal

populations transduced with En-2-containing retrovirus were comparable to levels of

EN2 seen in MCF7 and endogenous levels seen in the cerebellum (Fig. 3.4).

HC1 1 and C57MG cells ectopically expressing En-2 proliferated significantly faster

when compared to parental untransduced cells or Neo-transduced ceils (Fig. 3.5a and b).

Furthermore, ectopic En-2 expression conferred anchorage independent growth to both

ceil lines (Fig. 3.5c). En-2--dependent loss of cell contact inhibition was also observed in

HC1 1 cells (Fig. 3.5d). Ail of the above effects produced by En-2 expression, were

reproduced, albeit to a lesser extent, with the paralogous gene En-1 (Fig. 3.5).
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2 (4.2 kb), FBXJb (4.3 kb) and Neo (2.7 kb) viruses where Neo- and Furo-specific

cDNA probes detect the En-]/En-2 and Neo, and FBX]b proviruses, respectiveiy. En

]/En-2 and FBX1b transcripts are detected in total RNA from the same celi populations.

Autoradiographs were exposed 14 hr at -70°C. Western blot analysis using ciEnhb-1

antisernm confirms that both En-1 (55 kDa) and En-2 (41 kDa) are present at the protein

level in cells transduced with either En-1 or En-2-containing retrovims. (c) Western blot

analysis and the corresponding En / PTPID ratio of En-1 (Hi) and En-2 (H2) protein

leveis achieved by retroviral gene transfer in comparison to that documented in MCf7

(M) and endogenous levels seen in the adult mouse cerebellum (Cer).

Similar to Hox proteins, Engrailed proteins can bind target DNA as a heterodimer with

Pbxlb, another homeodomain-containing protein 20 21 Studies in our lab have shown

that Hox-induced proliferation of fibroblasts is dependent on its interaction with Pbx 22

Consistent with the ability of Pbx to enhance the DNA-binding affinity of En, the co

overexpression of FBX1b enhanced ail of the En-1 and En-2-induced effects, beyond

those determined for ceils transduced with En-] or En-2 alone (Fig. 3.5). These results,

like those seen with several Hox genes in fibroblasts, suggest a genetic collaboration

between En and Fbxlb in enhancing cdl proliferation.

Ectopic En-2 expression inhibits differentiation of mammary epithelial ceils and

renders them sensitive to 17-AAG treatment

Also restricted to HC1 1 ceils was a noticeable morphological change upon En-2

expression (and also with En-1, data not shown). 15±4% of the En-2-transduced

heterogeneous population showed larger nuclei and reduced cytoplasm compared to the

parental cells (data not shown). This morphological change is not due to the induction of

a differentiation program as RT-PCR analysis shows that neither WAF (whey acidic

protein) nor /3-casein, differentiation markers that are rapidly induced upon hormone

stimulation, are detectable in HC1 1 En-2 celis (data not shown). Moreover, HCY 1 cells

engineered to express En-2 failed to acquire a cuboidal appearance when exposed to the

lactogenic hormone cocktail (DIP; dexamethasone, insulin and prolactin, Fig. 3.5e, top
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panel) but rather maintain an elongated phenotype (fig. 3.5e, lower panel). Consistent

with this observation, control HC1 1 celis synthesize /3-casein transcripts in response to

DIP stimulation, while /3-casein remains undetectable in NC 11 cells expressing En-2

(Fig. 3.5f). Ectopic expression of En-2 thus inhibits the DIP-induced differentiation

program of HC 11 ceils in vitro.
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(a, b) Proliferation curves for HCÏ Ï and C57MG ceils transduced with En-] and En-2

+1- FBX]b. (c) Colony formation of the transduced cells after 21 days in soft agar. (d)

HCÏ Ï En-] and En-2 +1- PBX]b transduced ceils show loss of celi contact inhibition. Ail

experiments were performed immediately after selection in G41$ and/or puromycin.

Results in panels a-d represent the mean value ± s.e. of three separate experiments

repeated in triplicate each time, with two independently infected and selected polyclonal

populations. (e) HCÏ 1 parental cells stimulated with the lactogenic hormones

dexamethasone (D), insulin (I) and prolactin (P) for 4 days show the characteristic large

round cells undergoing differentiation which arise from a typical cuboïdal epithelial-like

morphology. HCÏ 1 ceils expressing En-2 maintain a more elongated fibroblastic-like

morphology after the same treatment. Magnifications of both cell populations in culture

were lOOx. (f) RT-PCR analysis of total RNA from HCÏ Ï parental cells and HCÏ Ï cells

transduced with En-2 following 3, 6 and 9 days of treatment with DIP.

We also examined the effect of 17-AAG, an inhibitor of Hsp9O which selectively kilis

cancerous celis, on the growth of these mammary epitheiiai cell unes 23 Proliferation of

both non-transformed HC1 1 and C57MG cell lines was not significantly affected by 17-

AAG treatment yet the proliferative advantage conferred by En-2 expression in these

two celi unes is abrogated by Ï7-AAG exposure (Fig. 3.6a and b). Interestingly, in the

case of En-2-expressing C57MG cells, exposure to Ï7-AAG did not only reveil the

proliferative advantage conferred by En-2, but further inhibited proliferation of these

cells to leveis that are now below those measured in the untransduced parental ceils (Fig.

3.6b). Since Hsp9O found in tumor cells has a much higher affinity for 17-AAG than the

Hsp9O found in normal cells, this supports the observation that En-2 behaves as an

oncogene in vitro and readily transforms these mammary epithelial celis.

Transplanted En-2-transduced HC11 ceils generate adenocarcinomas that

metastasize

HC1 1 mammary celis introduced into surgically cleared fat pads of female hosts, under

endogenous hormonal influences and within the natural microenvironment, will generate
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mammary epithelial outgrowths 17 Using this technique in an initial cohort, we observed

that the majority (14/16) of mammary glands reconstituted with either En-2 or En-2 +

PBX]b transduced HC1 I celis developed palpable adenocarcinomas at 14 weeks while

those receiving control HC 11 cells (either Neo-transduced or parental celis) produced

reconstituted glands but remained tumor-free (Fig. 3.7a).
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Fig. 3.6 The proliferative advantage that accompanies ectopic En-2 expression in

mammary epithelial celis is lost afier exposure to 17-AAG. (A,B) Selective in vitro

antiproliferative activity of 17-AAG in En-2-transduced HC11 and C57MG mouse

mammary cdl lines. Proliferation cuwes were generated from total cdl counts taken 3

and 6 days following the addition of either DM50 or 5 .tm 1 7-AAG.

To test for tumor progression in this in vivo tumor model a second cohort of mice were

generated and sacnficed at 21 weeks post transplantation. Once again, the control groups

remained tumor-free. The En-2 and En-2 + PBX]b groups developed large

adenocarcinomas (32/34) with extensive fibrosis and neo-vascularisation (Fig. 3.7a and

b). Macroscopic metastases were observed in multiple sites with regional nodes and
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Ïungs being preferentiaÏly targeted by the ceils initiating metastatic growth (n=6/32 mice

or 19%). Metastases were also detected in the spleen and the mesenteric lymph nodes in

certain cases (hollow diarnonds around black diarnonds indicate mice with metastases in

Fig. 3.7b).
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Fig. 3.7 Mammary glands reconstituted with either En-2 or En-2 + PBXJb transduced

HCY1 celis develop adenocarcinomas. ta) Carmine Red-stained whole mounts and

subsequent sections of the reconstituted inguinal mammaiy glands. (a) Mamrnary gland

reconstituted with Neo transduced HCI 1 celis after 21 weeks (5x). (b, c) Subsequent

sections derived from the whole mount (lOx, 20x). (cl) Mammary gland reconstituted
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with En-2 transduced HCÏ 1 celis showing one of the smaller palpable tumors afier 14

weeks (5x). (e) H&E-stained histologicai section of a representative small palpable

lesion in an HC1 1 En-2 recipient after 14 weeks. The lesion resembles carcinoma in situ

and is composed ofhyperplastic epithelium within a thick, coilagenous fibrosis (lOx). (J)
Magnification of an occluded duct seen throughout many of the recipients of En-2-

transduced HC1 1 cells (40x). (g) Mammary gland reconstituted with En-2 + FBXJb ceils

shows one of the larger tumors arising in the proximal region of the inguinal gland afier

14 weeks (5x). (h, i) H&E-stained sections of representative lesions in recipients

receiving HCY1 cells transduced with En-2 + FBX]b after 21 weeks. The tumors are

large, poorly differentiated, predominantiy soiid nests with extensive fibrosis and

surrounding angiogenesis (20x). (b) Approximate tumor volumes in the recipients afier

21 weeks (volume width2 x length x 0.52). Ail the control groups (HC 11 untransduced

parental celis, Neo or FBX]b-transduced HCÏ 1 celis) were tumor-free. (e) Clonai

dnalysis by Southem hybridization of DNA isolated from the resulting tumors and

different regions of the reconstituted mammary gland shows the contribution of En-2-

provirally-marked cells to three ofthe HC11 En-2 recipients; 2.1, 2.2 and 2.3. The DNA

is digested with BglII, which cuts only once within the provirus, and hybridization with

a Neo probe allows the identification of different integration events and distinct clones.

Exposure time was 3d at —70°C. LN, iymph node, L; lung, S: spleen, M: mesenteric

iymph node, LT; left tumor, RT; right tumor, RP; right proximal, RD; right distal, LD;

Ïeft distal; LT.4 lefi tumor in the #4 inguinal gland, LT.5; left tumor in the adjacent #5

mammaiy gland.

The clonai composition of the tumors and of adjacent portions of the reconstituted

glands was investigated using Southem blot analysis. Proviral integration analysis

showed that during the progression to tumorigenesis, typically 1-2 distinctive clones

contributed to the population of the celis comprising the tumor. Such clones are

distinguished by different autoradiographic signais visible at distinct sizes in different

tumors (e.g., see 2 different signals in lane 7, Fig. 3.7c). From the five different tumors

shown here, at ieast five distinct clones were identified (see clones “a” to “e” in Fig.

3.7e) indicating that there were no prominent clones in the initiating population.
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Interestingly, clone “a”, confirmed to be the same clone wïth a second digest (not

shown), was found in 2 different hosts (2.1 and 2.3 in Fig. 3.7c). The presence ofthis

clone in two different recipients could reflect a selective event which occurred in vitro

prior to transplantation. Our inability to detect this clone in the polyclonal population

from which it is derived (lane 1 Fig. 3.7e) suggests that a different selective process

occurs in vivo versus in vitro and that additional genetic events were required for the

development of overt mammary carcinomas in this model.

Interestingly, clones that contributed to tumor formation were different from the clones

that contnbuted to non-hyperplastic mammary outgrowths in the more distal region of

the same mammary gland (Fig. 3.7c, see 2.2 LT versus 2.2 LD). Glands transplanted

with control Neo’-transduced HC1 1 cells also tended to display clonai reconstitution

(data flot shown). Together, these results suggest that reconstitution of typical epithelial

breast structures by HCI 1 cells depends either on the selection of a subset of “stem”

ceils in this population (heterogeneity), or altematively, that these ceils require

adaptation to grow in vivo.

The clonal composition of metastases was generally identical to that of the dominant

clone present in the tumor (data not shown). Importantly, metastases mostly occuned in

mice that harbored large (>4 cm3) tumors (sec Fig. 3.7b). This suggests that fiirther

genetic events were needed for the tumor celis to acquire the ability to metastasize and

validates En-2 as a candidate oncogene that fosters conditions required for tumor

progression in vivo.

siRNA-mediated suppression of EN2 inhibits proliferation of human breast cancer

ceils

We next sought to determine the effect of knocking down EN2 expression in one of the

human breast cancer-derived ceil lines using an RNA interference (RNAi) approach.

The small interfering RNAs (siRNAs) appear to mimic intermediates in the RNAi
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Western blot analysis ofthe resulting transfected celis shows that siEN2 leads to specific
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content analysis and Annexin V staining performed 3 days post transfection. Cer;

cerebellum, Tf CTRL; mock transfection control with 23mer ds DNA, siCTRL;

scrambled control siRNA.

pathway and can silence genes in somatic ceils without activating non-specïfic

suppression by double-stranded RNA-dependent protein kinase 24 MDA-MB-435S

ceils, which express higli levels of EN2 (Fig. 3.3b), were chosen as it was possible to

achieve more than 90% transfection efficiency in these ceils. Transient transfection of

the synthetic siRNA directed against EN2, resulted in a reproducible and complete

ablation of the protein within 48 hours which lasted for up to 12 days (Fig. 3.8a and data

not shown). Microarray analysis comparing parental MDA-MB-435S celis and siEN2-

transfected-MDA-MB-435S showed that siRNA exposure did not activate interferon

genes such as MHC class I, oligoadenylate synthetase or enolase and that off target

effects are unlikely since there was very little difference in the global transcriptome in

response to siRNA treatment (data not shown).

siEN2-transfected-MDA-MB-435S ceils uniquely exhibited a more flattened and

retractile morphology while ceils transfected with a control scrambled siRNA displayed

littie observable change in their transformed morphology (Fig. 3.8b). Jmportantly, the

suppression of EN2 in these cells also resulted in a reproducible and significant decrease

in their proliferation rate when compared to controls (those transfected with the

scramble siRNA or mock transfected cells, Fig. 3.8c). In line with these results, celi

cycle analysis revealed a 2-fold reduction in the proportion of siEN2 transfected cells in

S phase when compared to controls (30% vs 16% respectively, P<0.01, Fig. 3.8d). This

reduction in proliferation is flot accompanied by an increase in apoptosis, as revealed by

Annexin V staining and the lack of an increasing sub-G1 population (right panel; Fig.

3.$d). Persistent expression of EN2 is thus required even in this well-established breast

cancer cell une.

Discussion

We have shown that EN2 is expressed in the majority of human breast tumor-derived
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ccli lunes and that it is ectopically expressed in 7.3% of primary breast cancers. We

have also shown that ectopic expression of En-2, at levels similar to those observed in

primary tumors, readily transforms HC 11 and C57MG celis and inhibits a differentiation

program in HC1 Ï celis that is normally induced by lactogenic hormones. En-2 thus

enhances proliferatïon and inhibits differentiation of mammary epithelial celis.

furthermore, our in vivo studies and clonai analysis of mammary adenocarcinomas

ocdurring with En-2-transduced HC 11 ceils generated a unique model of breast cancer

progression from selection of long-term repopulating cells to tumor development and to

metastasis. RNA interference-mediated down-regulation of EN2 in a human breast

tumor-derived ccli une ieads to a dramatic reduction in ccli proliferation and loss of

transformed morphological characteristics.

To our knowledge, EN2 is the first candidate oncogene identificd in breast cancer which

is not normally cxpresscd in breast epithelium. Southem blot analysis of genomic DNA

isolated from the seven different EN2-positive human breast cancer ccli unes studied

herein failed to reveal any anomaly, suggesting that neithcr rcarrangemdnt nor

amplification are responsible for ectopic EN2 expression. Although the basis for

overexpression of MYC, CycÏin D] and ErbB2 is ofien amplification of the gene,

overexpression is also obscrvcd in the absence of amplification 25 Epigenetic

modification of the EN2 locus remains a real possibility. Vcry littie is known about

upstrcam rcgulators of En, in addition to Wnt, and our studies suggest that the activation

of one Wnt mcmber, Wnt- 1, is flot involvcd since En-2 expression is not found in mouse

mammary tumors induced by Wnt- 1 and this oncogenc is not cxpressed in human breast

carcinomas. It will therefore be challenging to identify the exact mechanism(s)

underlying the ectopic expression ofEN2, but standard epigenetic tests will likely revcal

that the locus is rendercd transcriptionally active. It will be interesting to discriminate

whether EN2 is activated in preneoplastic breast lcsions as both MCF 1 OA and MCf

12A express EN2 and are derived from womcn with cpithelial hyperplasia of the breast.

This is in contrast with other oncogenes (e.g., ErbB2) which are rarely detected within

early lesions or benign brcast disease 26 and may indicate that ectopic EN2 expression

occurs carly in brcast cancer.
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The reasons for the high incidence of EN2 expression in breast cancer ceil unes (as

opposed to primary tumors) are not clear. Perhaps a selection process (proliferation,

independence of stroma, etc.) favors the emergence of cancer ccli unes which express

this gene. As the notion of breast cancer stem ceils is emerging 27 it will become

interesting to investigate whether EN2 determines the proliferative activity of these

tumor stem ceils, as we recently showed for Bmi-] in leukemic stem celis 2$

0f interest, EN2 was also detected in SAGE libraries derived from human brain

glioblastoma, colon and ovarian carcinoma (Library numbers NCI CGAP Bm23, NCI

CGAP Co16 and CL ES2-1, respectively, http://www.ncbi.nim.nih.gov/UniGene). It wiIi

be essential to anaiyze whether EN2 is also ectopicaily expressed in other epithelial

tumors as the observations described herein may be generaiized to other carcinomas.

Importantiy, it wili be critical to determine an even more accurate frequency of EN2

ectopic expression in breast cancers using a iarger number of specimens and to assess

whether its expression coi-relates predominantly to infiltrating ductal carcinomas.

Similar to the current rationale that herceptin and 1 7-AAG, in combination, will increase

the taxol response even further in HER-2 overexpressing breast and prostate cancers, the

combination of 1 7-AAG and siRNA against EN2 may constitute a strong assault against

EN2-positive breast tumors. Although siRNA directed against EN2 offers great

specificity in cancerous iesions detected early, as we have shown that EN2 is ectopically

expressed in breast cancer, the addition of 17-AAG may also affect those tumors that

have evolved to evade the toxic effects of single molecuiarly targeted agents. This

approach could have great clinical benefit as if it does not kiil the cancer ceils, it might

leave them sufficiently debilitated and more sensitive to chemotherapy and radiotherapy
23

Materials and Methods

Transgenic mice
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The generation of MMTV-Wnt-l transgenic mice has been reported previously 36 and

were purchased from The Jackson Laboratory (FVB/N hybrid background, stock #

002934). MMTV-Wnt-1 mice were genotyped by Southem blot analysis of Bam HI

digested tau DNA using a 904-bp Kpn l-Sph 1 fragment of SV4O poly(A) DNA. BALB/c

mice were acquired from Harlan Labs (Indianapolis, IN). Ail animais were maintained

and bred in ventilated microisolator cages, provided with sterilized food and acidified

water in the specific pathogen-free (SPF) animal facility of the Clinical Research

Institute ofMontreal (IRCM).

Ceil unes

The HC1 1 rnammary epithelial ccli une is a clonal derivative of the COMMA-iD celi

une, dcrived from marnmary tissue ofa mid-pregnant BALB/c fernale 29.30 The C57MG

ccli une was derived from glands of a 23-week-old retired C57BL/6 breeder MCF7,

MDA-MB-231, SK-BR-3, MDA-MB-46$, MDA-MB-435S, MDA-MB-436, and BT-20

human epithelial cell lines were derived from breast adenocarcinomas. T-47D and BT

474 human epithelial cdl lines were isolated from ductal carcinomas. MCF 1OA and

MCF-12A human epithelial celi unes were derived from fibrocystic breast tissue and

both lines have been reported to form colonies in soft agar. The HBL 100 human

epithelial cell une was originally derived from breast milk, yet aiso forms colonies in

soft agar. CS7MG, HC 11, T-47D, HBL 100, and MCF7 lines wcre grown in RPMI 1640

medium supplementcd with 10% fetal caif serum, 10 ng/ml of epidermal growth factor

and 10 ig/ml ofinsulin. MDA-MB-435S, MDA-MB-436 and MDA-MB-46$ lines were

grown in Lebowitz-L 15 medium supplcmented with 10% fetal caif serum. MCF 1 OA

and MCF-12A unes were grown in f12 HAM:DMEM (1:1) medium supplemented with

5% fetai calf serum. The BI-20 une was grown in cLMEM medium supplemented with

10% fetal calfsemm.

Generation of recombinant retrovïruses and infection of mammary ceil unes

Thc entire coding regions of thc mouse En-I (nucleotides 274-157$; Accession no.

112703, #552) and En-2 (nucleotides 1-13 15; Accession no. L12705, #547; the mouse
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En-2 protein shares 90% amino acid sequence identity with the human EN2 protein)

cDNAs were introduced into the Hpa I and Hpa 1-Bgl 11 sites, respectively, downstream

of the retroviral promoter contained within the 5’ long terminal repeat (LTR), of the

MSCVneoEB retroviral vector which confers G4 18 resistance under the control of the

phosphoglycerate kinase (PGK) promoter. The MSCV-human PBX1b-PGK-PAC

retroviral vector (which confers puromycin resistance) was described previously 22

High-titer helper-free recombinant retroviruses were produced from BOSC-23 viral

packaging ceils and tested as previously reported 22 HC1 1 and C57MG ceil unes were

infected by exposure to filtered (0.2 tm, low-protein binding filter, Millipore, Bradford,

MA) viral supematant in the presence of 6 tg/ml polybrene (Sigma). Transduced ceils

were selected and maintained in 220 and 260 tg/ml of G418 for HC11 and C57MG

lines, respectively, or 2.5 jig/ml puromycin, or both drugs concurrently, as appropriate

for selection of virus encoded selectable markers.

Southern, Northern and Western Blot Analysis

To assess proviral integration, Southem hybridization analyses were performed as

previously described 32 10 tg of genomic DNA was digested with Kpn 1 or Nhe 1 which

cleaves in both flanking LTRs to release the provims. Membranes were hybridized with

Neo- or Furo- specific probes labeled with 32P-dCTP by random primer extension as

described Following autoradiography, blots were stripped and hybridized using a

probe specific to HoxA9 (1.1 kb Hind III fragment) to assess loading. For Northem blot

analysis, 10 jig total RNA isolated with TRizol (GIBCO) was separated on a 1%

formaldehyde-agarose gel as described ‘ and hybridized with a 1 86-bp Bgl II En-1

cDNA (#552) probe, a 254-bp Bgl II-Sst I En-2 cDNA (#530) probe and a 1.6-kb Bgl II

Eco RI PBX]b cDNA (#448) probe. After autoradiography, the blots were stripped and

rehybridized with an oligonucleotide complementary to 1 8S rRNA for western blot

analysis, total and nuclear extracts were prepared as reported previously 100 ig total

and 40 jig nuclear aliquots of protein were separated by SDS-PAGE as described 36 En

proteins were detected with ŒEnhb-1 antisera (which detects both 41 kDa mouse En-1

and human EN1, and 55 kDa mouse En-2 and human EN2 proteins) as described

PBX1b proteins were detected with an anti-PBX1 polyclonal antibody (P-20; cat# sc
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889; Santa Cruz Biotechnology mc, Santa Cruz, Calif.). As a control for loading, ail

membranes were stripped and hybridized with ŒPTP 1 D (protein-tyrosine phosphatase

1D; P54420; BD PharMingen, Mississauga, Canada).

cUNA generation, amplification and analysis

Total RNA was isolated from aduit mouse cerebellum, mouse mammary glands, cdl

unes, frozen human primary breast tumors, adjacent normal breast samples and frozen

human reduction mammoplasty tissue using TRIzol. Reverse transcription and

amplification of 0.1 jig of the resulting total RNA were performed as described

previously 38• Single-copy probes corresponded to a 436-bp fragment of the mouse fi
casein cDNA (nt 4871-5307; Accession no. M26940 X13484, #1051) and Actin, isolated

as described in The amplification ofActin was used as a control for both quality and

quantity of templates in each sample. To demonstrate that the amplification was solely

from cDNA and flot from DNA contamination, a control which contained RNA but no

reverse-transcriptase (No RT) was included in cadi experiment.

Immunohistochemistry

Frozen sections were cut at 5 jim and were subsequently fixed briefly in

paraformaldehyde. Immunohistochemistry was performed using a three-step

streptavadin-biotin peroxidase method and antigen retrieval was carried out by

microwave heating in citrate buffer. Primary antibody rabbit anti-mouse polyclonal

aEnhb-1 was used at a final dilution of 1/500. Biotinylated goat anti-rabbit IgG

secondary antibody (Vector Laboratories, Burlingame, CA) was used at a final dilution

of 1/150, and revealcd using Streptavidin-Horseradish Peroxidase (NEL 750, NEN) at

1/1000. Siides were counter-stained with Methyl Green.

Soft agar colony formation, contact inhibition and proliferation assays

For proliferation assays, the selected HCÏ 1 and C57MG polycional transduced ceil

populations were trypsinized and replated at 3x105 and 5000 cells per 10 cm2 dish in
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RPMI 1640 with 5% FBS, for 3 and 6 days of growth respectively, and subsequently

starved, serum stimulated and counted as previously described 22 For colony assays, the

celis were grown for 3 days in the absence of antibiotic selection and then 2x104 celis

were plated in RPMI 1640 medium supplemented with 10% fetal calf serum, 10 ng/ml

of epidermal growth factor and 10 ig/m1 of insulin containing 0.3% Agar Noble into 35

Petri dishes containing a layer of solidified 0.6% agar. Colonies were scored 21

days afler being plated using a surface area that corresponded to 1/8 of the 35mn12 dish

using an inverted microscope. For the contact inhibition assay, selected HC1 1 polyclonal

transduced celi populations were trypsinized and replated at near confluence in 10 cm2

dishes in RPMI 1640 with 10% FBS. Total ceil counts were taken 7 days later when

dense foci were readily visible in the cultures that no longer displayed contact inhibition

and continued to grow.

Lactogenic hormone stimulation of fiCh mammary epithelial celis

HC1 1 cells and HC1 1 cells expressing En-2 were grown to confluency in 10 cm2 dishes

and maintained for 3 days in normal media. Confluent cultures were washed and

incubated for 18 hr in serum-free media (RPMI 1640 containing 1 mg/mJ fetuin and 10

tg/m1 transferrin) followed by 3, 6 and 9 days of treatment with induction medium

(RPMT 1640 containing 1OE6 M dexamethasone, 5 ig/ml insulin, and 5 Ig/m1 ovine

prolactin /luteotropic hormone; Sigma) as described 40 Parallel unstimulated controls

were subjected to the same regimen but were kept in RPMI 1640 with 5% FCS after

serum-free staiwation. The morphological changes in HC1 1 cells expressing En-], En-

1+ PBXJb, En-2 and En-2 + FBX]b were scored on cytospin preparations containing

150,000 cells (n=4 siides for each population).

Transplantation of HC1 Transduced Celis into Syngeneic Hosts

Selected polyclonal populations of HCY 1 celis transduced with En-2, En-2 + FBX]b,

PBXJb, Neo and untransduced HC1 1 cells were collected from 10 cm2 dishes and

resuspended in normal growtli medium at a final concentration of 5 x i0 cells/10 t1.

Using a beveled syringe, the celis were injected into the cleared fat pads of female
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BALB/c syngeneic hosts, just above the lymph noUe, in a volume of 10 t1. The surgical

procedures for clearing the endogenous mammary epithelium from the #4 (inguinal) fat

pads of 3-week-old female mice have been described In each case, whole-mount

preparations of the excised host mammary epithelium were generated to verify complete

removal. Two cohorts of mice were sacrificed at 14 and 21 weeks post transplantation,

respectively, and the glands were surgically removed. Whole-mount preparations and

subsequent sections were produced from the reconstituted glands in the first cohoiï. In

the second cohort, the majority of the resulting tumors, different portions of the

reconstituted glands, and potential sites of metastases were either fixed in paraffin and

subsequently sectioned, or used for DNA extraction.

Whole Mounts and Tumor Histology

Inguinal mammary glands were resected and flatten fixed in Camoy’s fixative, defatted

in ethanol and acetone, rehydrated and stained in Carmine Red. The manmiary whole

mounts were reprocessed for paraffin embedding and 5 tm sections were prepared.

Tumors and potential sites of metastases (brain, lung, femur, spleen, lymph nodes, and

the #5 mammary gland) were fixed O/N in 4% PFA, embedded in paraffin, sectioned at

5 jim and stained by H&E.

RNA Interference Studies

The 21-nt human EN2 target sequence used to design the synthetic siRNA was 5’-AAC

TTC TIC ATC GAC AAC ATC-3’. The selected sequence was subjected to a BLAST

search against the human genome sequence to ensure that only EN2 would be targeted.

The 21-nt sequence constituting the control scrambled siRNA (siCTRL) was 5’- AA

GCG CGC ITT GTA GGA TTC G -3’. Synthetic siRNA oligonucleotides were

purchased from Dharmacon (Lafayette, CO). MDA-MB-435S ceils were regularly

passaged to ensure exponential growth and were passaged the day before transfection.

Subconfluent MDA-MB-435S celis were transfected witli 150 nM siRNA / 6 cm2 disli

and fresh media was provided 36 h after (details of the transfection procedure are
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available upon request to S.M.). Whole-cell extracts were prepared 3, 5, 7, 9 and 12 days

after transfection, separated on a 10% SDS-PAGE and immunoblofted to reveal EN2

protein. The same membrane was immunoblotted with antibody against ,6-Tubulin as a

control for loading. Celis were harvested for flow cytometry and plated for proliferation

assays 3 days afier transfection in at least three independent experiments.

Ccli Cycle Analysis and Annexin V Staining

MDA-MB-435S ceils were trypsinized three days post-transfection, washed twice with

PBS, and incubated for 30 min on ice in hypotonic DNA staining solution (0.1% Sodium

citrate, 0.3% NP-40, 0.02 mg/mL RNase A, 50 ug/mL Propidium Iodide). Stained nuclei

(10 000/sample) were analysed by flow cytometry. Parallel 6 cm2 dish were trypsinized,

washed twice with PBS, and incubated 15 min on ice in Aimexin V binding buffer (10

mM Hepes pH 7.4, 150 mM NaC1, 5 mM KC1, 1 mlvi MgC12, 1.8 mM CaC12, 2.5 1g/ml

Annexin V-FlIC; 556419 BD PharMingen, 50 jtg/ml Propidium Iodide). Stained cells

(10 000/sample) were analyzed by flow cytometiy to detect phosphatidyl serine

exposure and damaged ccli membranes.
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Chapter 4 summarizes the experimental data obtained thus far in identifying putative

EN2 transcriptional targets in human breast cancer ceil unes by microarray analysis. Dr.

Richard Le Blanc, a Clinician Scientist affihiated with the laboratory at the time,

conducted the statistical analysïs of the microarray data and generated Figure 4.2, Table

4.3 and the Materials and Methods section entitled ‘Expression Profiling Data Analysis’.
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Introduction

Evidence has accumulated that supports the notion that homeobox genes, when

dysregulated, are involved in tumorigenesis, yet the precise mechanism(s) involved are

largely unknown. The molecular mechanism(s) through which EN2 mediates breast

tumorigenesis have flot been elucidated and would require the identification of

downstream target genes. Although Drosophila en has been implicated in the regulation

of several pathways, few target genes have been shown to be under its direct regulatoiy

control. Methodologies used for the isolation of target genes and for the analysis of

putative targets wiIl be beneficial in establishing the genetic pathways controlled by EN2

within breast tissue.

Transient transfection of the synthetic siRNA directed against EN2 resulted in a

reproducible and complete reduction of EN2 protein levels in the human breast cancer

derived celi line MDA-MB-435S . The specificity of siEN2 was confirmed using a

control-scrambled siRNA that failed to suppress EN2 expression. Not only was this

approach more successful than anticipated, but the complete knockdown mediated by

siEN2 was maintained for up to 12 days post transfection. MDA-MB-435S ceils

transfected with siEN2 quickly vary to exhibit a more cuboidal flattened morphology,

reminiscent of non-transformed ceils, while the control ceils displayed littie or no

observable change in their transformed morphology. The suppression of EN2 in MDA

MB-435S celis also resulted in a reproducible and significant decrease in proliferation

rates when compared to controls. Importantly, this reduction in proliferation was not

accompanied by an increase in apoptosis. With the overt phenotypical changes seen

upon suppressing EN2 protein levels in MDA-MB-435S ceils, it is likely that there are

key expression profile changes that take place.

We reasoned that comparing the original MDA-MB-435S cancer ceil une, which

expresses high levels of EN2, and the siEN2-transfected ceils where EN2 has been

completely knocked-down, serves as an invaluable source to identify key targets that are

either up- or downregulated in response to EN2 suppression. The recent sequencing of

the human genome provides a foundation for studying global pattems in gene



110

expression. The simultaneous measurement of the relative abundance of thousands of

mRNAs allows characterization of the cellular transcriptome under various experimental

conditions. Oligonucleotide arrays have been used extensively for mRNA expression

analysis and the exemplar of this technology is the Affymetrix Gene Chip.

Results

Employing s1RNA to e]ucidate potential downstream targets of EN2

Comparing the gene expression profile of the original MDA-MB-435S cancer ceil une,

which expresses high levels of EN2, with the transcriptome of the same MDA-MB-435S

celi une, transfected with siEN2 to knock-down EN2 protein levels, should serve as an

invaluable source to identify key targets that are either up- or downregulated in response

to EN2 suppression. To further enhance this experimental design, the reciprocal

approach of ectopically expressing EN2 in T-47D celis, another human breast

adenocarcinoma ceil une, was carried out. This should allow one to better discern

transcriptional programs that are truly relevant to breast cancer rather than those that are

unique to one specific celi une or the consequence of one specific manipulation (i.e.

transfection of siRNA vs retroviral transduction). RT-PCR analysis of the resulting RNA

confirms that the expected experimental system was indeed attained whereby EN2 is

completely suppressed in MDA-MB-435S celis and EN2 is ectopically expressed in T

47D ceils (Fig 4.1). Moreover, the level of ectopic EN2 expression achieved in T-47D

ceils was comparable to that documented in parental MDA-MB-435S celis, so we could

presumably rule out dosage responsive targets found only at non-physiological elevated

levels.

Although the Affymetrix HG-U133A array contains approx 22 000 probesets, only a

small proportion of transcripts showed a significant change in expression after

normalization. The majority of these transcripts were upregulated, suggesting that

although EN2 is capable of acting both as a transcriptional activator and repressor,

inducing gene expression seems to be more prevalent in breast cancer celis (Table 4.1).

Many genes that were significantly differentially expressed in one ce!! une were flot
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significantly differentiaily expressed in the second ceil une or did flot even respect the

same trend of either upregulation or downregulation in response to EN2 (Table 4.1).

Employing two breast cancer celi lines not only affords an increased chance of finding

bona fide targets that are common to both cdl lines while excluding targets that are

specific to one ccli une, but also points out how expression studies which use one ccli

une or tissue system will give risc to many context-specific targets.
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Fig. 4.1 RT-PCR analysis ofthe same total RNA which was used in the microarray

analysis. EN2 is succcssfiully ectopically cxprcssed in the T-47D human breast

adeonocarcinoma ccli une 3 days post infection (T-47D EN2 lanc) and complctcly

supprcsscd in the MDA-MB-435S human breast adenocarcinoma ccli line 3 days post

transfection (435S siEN2 lane). NT, non transfectcd; GFP, infected with Enhanccd

Grccn fluorescent Protein; siCTRL, transfcctcd with control scrambled siRNA; No RT,

no reverse transcriptase.

Importantly, siRNA exposure did not activate interferon genes such as MHC class I,

oligoadenylate synthetase or enolase in MDA-MB-435S cells and thc cctopic expression

of EN2 in T-47D cells did flot activate altemate cell-specific transcriptional programs.

The first 50 common ranked differentially expresscd gcncs that were identified are listed

with their corresponding ID idcntifiers (fig 4.2). A large proportion of the genes found

to be commonly upregulated (or induced fiirther) in the presence of EN2 in both ccli

lines have chaperone and/or heat shock activity (Table 4.2). Gene Ontology (GO)

Mining Tool provided by the NetAffyx Analysis Center predicted that 1.01 genes wouÏd
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Fig. 4.2 Heat map cluster diagram of the first 50 top-ranked differentially expressed

filtered putative EN2 transcriptional targets whose expression cotTelates positively with

the presence of EN2. Each column represents a single microarray experiment, and each

row represents a single gene, where the corresponding ID identifier is listed beside each

row. The color of each square in this image represents the measured expression ratio of

each gene in question. The color saturation is also directly proportional to the magnitude

of the measured gene expression ratio where bright red squares represent the highest

RJG ratio, bright green squares represent the lowest RIG ratio of gene expression in the

experimental samples and black squares represent a ratio of approximately 1.
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be associated with heat shock protein activity and 4.25 genes with chaperone activity

among the first 477 probesets which were significant at thc nominal 0.001 level ofthe

univariate two-sample t-test (Table 4.3) 2,3 The actual numbers exceeded these

predictions as 7 genes with heat shock protein activity and 22 genes with chaperone

activity were observed in this subset, representing an observedlexpected ratio of 6.92

and 5.17, respectively, over the predicted values (Table 4.3). These ratios are likely

underestimated as P5, the top-ranked upregulated gene in our analysis (with 3 probesets

amongst the first 13 top-ranking probesets), has only recently been ascribed chaperone

activity . Genes such as Hsp9Oa, Hsp9O/3 Cainexin, DnaJ (Hsp4O), NucÏeophosmin,

hP5, Hsp7O and Tumor rejection antigen (‘gp96) ail have chaperone activity or associate

with chaperone proteins. 0f particular interest was the dramatic induction of Hsp9O, a

molecular chaperone which has been implicated in the survival of cancer celis .
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fig. 4.3 RT-PCR analysis of the five most differentially expressed transcriptional

targets identified by microarray analysis. The above induction trends for Hsp9Oa,

Hsp9O/i Caïnexin and DnaJ A] and the repression trend for HOXC6 reflect the

induction and repression found in the microarray data.
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To validate some of tlie targets acquired by our microarray analysis, RT-PCR analysis

was performed on the remaining RNA that was prepared for microarray hybndization.

Five of the most differentially expressed transcriptional targets identifled by microarray

analysis were confirmed (Fig 4.3). The same induction trend was seen for Hsp9Oa,

Hsp9O/ Caïnexin and DnaJ A] while documentation of the same repression trend as

that seen in the microarray data was found for HOXC6 (Fig 4.3). RT-PCR results also

verified that these five genes are regulated by EN2 expression in both T-47D and MDA

MB-435S human breast cancer celi unes.

The upregulation of genes with chaperone an&or heat shock activity in response to EN2

expression is flot a non-specific effect as the observed upregulation is only seen in the

presence of EN2 and is not induced by the stress of either siRNA or retroviral

manipulation alone in the control ceils. The exact mechanism by which EN2 expression

leads to a further induction of these genes and whether they are direct targets remains to

be determined, but this initial observation is potentially interesting and fitting as

molecular chaperones have been implicated in the survival of cancer cells and one

chaperone in particular, Hsp9Ou, has recently been shown to function in tumor invasion
6,7,8 Ongoing clinical trials unexpectedly found that 1 7-AAG, an inhibitor of Hsp9O,

selectively kiils cancerous ceils . This selectivity occurs because Hsp9O found in tumor

ceils lias a much higher affinity for 17-AAG and higher ATPase activity, required for its

chaperone function, than the Hsp9O found in normal celis 10 17-AAG also inhibits the

proliferation of human cancer cells and has shown antitumor activity in several

xenograft models, including breast

We previously examined the effect of 1 7-AAG on the growth of mammary epithelial

cell lines engineered to ectopically express EN2. The proliferation of both non

transformed HC11 and C57MG ccli lines was not significantly affected by 17-AAG

treatment yet the proliferation advantage conferred by EN2 expression in these two cdl

unes is abrogated by 1 7-AAG exposure Interestingly, in the case of EN2-expressing

C57MG celis, exposure to 17-AAG did not only revert the proliferative advantage

conferred by the oncogene, but fiirther inhibited proliferation of these ceils to levels tliat
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are now beIow those measured in the untransduced parental celis . Since Hsp9O found

in tumor celis bas a much higher affinity for 17-AAG than the Hsp9O found in normal

celis, this supports the observation that EN2 behaves as an oncogene in vitro and readily

transforms these mammary epithelial ceils. In addition, the proliferation ofboth T-47D

and MDA-MB-435S celis expressing EN2 was significantiy further reduced in

comparison to the decrease in proliferation seen in both ccli unes when EIV2 is not

expressed (data flot shown). This observation likeiy reflects the increased chaperone

protein expression, inciuding 1-Isp9O, in the two ceil unes wherc EN2 is expressed, which

renders the ceils more sensitive to 1 7-AAG.

Discussion

Expression profihing employing two breast tumor ccli unes where EN2 was up and down

regulated highuighted a large group of chaperone and heat shock proteins, including

Hsp9O, whose expression arc coordinately upreguiated by EN2. The large number of

differentially expressed genes that were found to be specific to each ccli une also

highuights the caveat of studies employing only one ccli lune or tissue in microanay

analysis. The exact molecular mechanism(s) by which EN2 fosters tumorigenicity stiil

nccd to be elucidated, but this is the very first glimpse into potential mammalian targets

that may convey the transcriptional signal from EN2 and identification of putative genes

rcgulated by EN2 was a pivotai next step to providing some insight into how EN2 may

contribute to the pathogenesis ofbreast cancer.

Expression profihing technologies offered by microarrays facilitated the identification of

transcriptionally responsive genes to EN2 and the experimental design added a icvel of

confidence that we would be more likely to identify truc targets. Two physiologically

relevant breast cancer ccli unes were employed so wc could discem targets that were

ccli une specific. This was key as there were numerous differentiaiiy expressed genes

that were unique to each cdl une. Additionaliy, the leveis of ectopic EN2 expression

were comparable to that documented in MDA-MB-435S cells, so we could mie out

dosage responsive targets found only at non-physiological elevated levels.
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Interestingly, several molecular chaperone family members were induced in response to

EN2 expression and these proteins fittingly play a key role in promoting survival and in

maintaining the malignant phenotype in tumor ceils. Heat shock proteins and their co

chaperones have recently been shown to regulate both apoptosis and celi death. Hsp7O,

found to be highly expressed in response to EN2, prevents apoptosome formation,

diminishes Apaf-l-independent apoptosis and inhibits caspase-dependent events that

occur later in apoptosis 12 Both Hsp9O and Hsp7O bind and stabilize the survival protein

Akt 11,13 The induction of Hsp4O/DnaJ, another key regulator of apoptosome formation
12 also coincided with EN2 epression in our microarray study. Although molecular

chaperone proteins are consistently expressed at higher levels in tumor ceils, they are not

aiways found to be further induced in transcription profiles of other microarray studies

using oncogenes (http://c1arke1abs.georgetown.edu/BreastStudies), suggesting that they

are functional EN2 targets and flot a mere consequence of the transformed phenotype in

our study.

One chaperone in particular, Hsp9O, is found at elevated levels in cancer ceils where it

regulates the function and stability of key proteins that protect cancer celis from the

stress of chemotherapy, hypoxia and their own inherent genetic instability . The up

regulation of such protective proteins would be most advantageous for cancer ceils to

thrive and suggests that EN2 may promote mammary hyperplasia and tumorigenesis by

providing both a proliferative and survival advantage. Mammary epithelial cells that

express EN2 are quite sensitive to 1 7-AAG and the cessation of proliferation, following

exposure to 17-AAG in vitro, is accompanied by ce!! death. This observation implies

that EN2 is truly an oncogenc that transforms these celis, in part through the

upregulation of Hsp9O, rendering them more sensitive to 17-AAG.

In addition, molecular chaperones have recently been shown to be required for GR and

PR nuclear mobility and the Hsp9O inhibitor, Geldanamycin, inhibits their rapid nuclear

trafficking and function 14 Hsp9O has been shown to stabilize ‘client proteins’ such as

HER2, AKT, stcroid receptors, mutated p53 and p210BcrAbl which are ofien exp!oited

by cancer ceils for growth anWor survival advantages . It would be fitting if EN2 is
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another oncogenic Hsp9O client protein and/or Hsp9O enhances its localization and

activity, as we have clearly shown that EN2 provides a proliferative advantage to ceils.

The downregulation of HOXC6 is worthy of note but exactly how this could be an

oncogenic mechanism for EN2 is flot clear. HOXC6 is oflen overexpressed in human

leukemia yet Hoxc6 transcripts were found to decrease during pregnancy when the

mammaiy gland is highly proliferative and HOXC6 is expressed at low levels in human

precancerous tissue and not expressed in breast cancer tissue 15 Another study reports

that Hoxc6 expression in mammary epithelial celis appears to promote adult mammary

gland expansion while Hoxc6 expression in the mammary stroma appears to promote

regression and involution of the gland 16 If aberrant EN2 expression represses the latter

activity of HOXC6, EN2 may supersede the normal growth program and restraints of the

mammary gland and allow for immense expansion.

Unlike a screen involving primary breast tissue, the cancer celI unes that the targets were

identified in are immediately accessible for further genetic studies. This provides a faster

path from gene identification to functional validation and the precise role of a target and

its relative contributions to EN2-regulated tumorigenesis can be explored initially in

these celis. The exact molecular mechanism(s) by which EN2 fosters tumorigenicity still

need to be elucidated, but this is the very first glimpse into potential mammalian targets

that may convey the transcriptional signal from EN2 in human breast cancer. To our

knowledge, not only have there been no reports of EN2 targets that are relevant to

cancer, but there has not been a single EN2 target identified in any human adult tissue. A

recent study using chromatin immunoprecipitation with DrosophiÏa engrailed however,

pulled out direct targets such as Wnt2, frizzÏed 2, arrnadiÏÏo (beta-catenin), EGfR,

EGFR ligand, Gsc (goosecoid), and 17 Similar to other homeodomain-containing

proteins, the remarkable conservation of the homeodomain makes it difficult to

understand how transcriptional specificity can be attained. A probable explanation for

homeoprotein specificity is their association with co-factors. Clearly, homeoproteins

have been shown to associate with numerous proteins, including members ofthe same or

divergent homeoprotein family and non-homeodomain proteins. Several En-2 co-factors
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have recently been identified and belong to several classes oftranscriptional regulators;
181920Groucho, Fbx, Meis, foxa2

Materïals and Methods

Celi unes

The MDA-MB-435S human mammary epithelial cell line was derived from a ductal

adenocarcinoma and was grown in RPMI 1640 medium supplemented with 10% fetal

calf semm (FCS), 10 ng/ml of epidermal growth factor (EGf) and 10 tg/m1 of insulin.

The T-47D human mammary epithelial cdl une was isolated from a ductal

adencarcinoma and was grown in Lebowitz-L15 medium supplemented with 10% FCS.

The techniques used to engincer T-47D ceils to ectopically express EN2 and EGFP, the

techniques employed to suppress EN2 protein levels in MDA-MB-435S celis, and the

steps involved in RT-PCR analysis have been described previously

RNA Isolation and Oligonucleotide Array Hybridization

Total RNA was isolated from MDA-MB-435S cells 3 days post transfection with either

siEN2 or siCTRL and from T-47D celis 3 days post infection with concentrated and

filtered VSV supematant possessing EN2- or GFF-containing retroviruses, when the

ceils were >95% GfF-positive, with the RNeasy mini kit (Qiagen). Triplicates of RNA

for each experimental sample were provided for hybridization. Total RNA quality was

assessed by running 1 00 ng of total RNA on the Agilent Bioanalyzer. Target labeling

was performed as specified by the Affymetrix protocol EukGe Ws2v4 with 10 jig of

total RNA. After IVT, 15 ng of the resulting cRNA was used for the fragmentation

reaction and 10 tg of the ftagmented reaction was hybridized onto the HG-U133A

expression microarray (Affymetnx). The quality of the cRNA amplification was also

assessed by running 1 .i1 of the cRNA reaction on the Agilient Bioanalyzer. Staining,

washing and scanning were carried out in accordance with Affymetrix protocol EukGe

Ws2v4.
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Expression Proflllng Data Analysis (written by Dr. Le Blanc)

B ackground-corrected batch-normalized Jog2-valued probeset summaries were obtained

from probe raw signais using the RMA subroutine 21 We used the RMA version

impiemented in R and freeiy available from the Bioconductor website at

www.bioconductor.org/. Gene expression level variance across sampies in a given

experiment is a function of the experimental design. Since the present design involves

two different biologicai systems which necessarily would impart a higher level of gene

variance whenever ail samples would be considered at once for gene variance

estimatation, we chose to normalize unlogged gene expression leveis in a two-step

procedure in order to better account for the higher degree of gene variance inherent to

the experimentai design and better uncover parallel patterns of up- or downreguiation

across the bioiogicai systems. First, in vectorial notation, we refer to a given gene

expression profile across ail samples of either 435S or T47D biological system as 43g

or T47Dg respectively. These expression profiles were centered and normalized such that

the scalar product Bg1.Bg, between any two genes in either biological system B = 4355

or T47D directly yields their Pearson correiation in that system. Next, a normaiized gene

expression profile g across ail samples of the experimentai set-up was defined in terms

of the outer product g=(4355g ® T47Dg )/ When defined this way, the scalar product

between any two genes

g1.g2=(43SSg1.4355g2 + T47Dg1.T47Dg2)/2

simply amounts to the Pearson correiation as averaged over the two independent

biological systems. Two genes with sirnultaneously strong positive or negative

correlations across both biological systems will therefore retain a high correlation in the

combined system.

Biological sampies were spiit into two ciasses (EN2+ or EN2-) as defined by the

presence or absence of BN2. After gene normalization and fiitering, differentialiy

expressed genes were identified by first computing their two-sample Welch t-statistics.
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Bt = gEN2+— gEN2

ItB ‘ ÏB ‘2
‘ S÷J j’

‘d 11EN2+ 11EN2—

where BE2 denotes the gene class average in the bïological system B and ‘3SEN2+ the

corresponding gene class standard deviation. When gene expression profiles are

normalized as above and when there is an equal number n of samples in each class of

each biological system B, it is relatively straightforward to prove that

B — (n)(B
\ EN2+

where

f(fl)(B)2(l)
B

J(1_B G2÷)

and B
= -f n gEN2+• For the combined system, one finds

t

A gene with high Bt_score, that is, B
—* ±1 across both biological systems

simuitaneously will therefore retain a high t-score in the combined system. Note that

BJ
—> ±1 if and only if the normalized gene expression profile across ail samples

approaches the idealized downlup expression pattem

whenever samples are ordered according to the layout (EN2- samples, EN2+ samples).

Statistical significance was assessed by computing t-score associated p-values, adjusted

for multiple comparisons. These adjusted p-values were estimated by permutation
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following Westfall and Young’s step-down maxT adjusted p-value procedure 22 using

the mt.maxT subroutine from the mulftest R package availabie at the Bioconductor

repository web site 23 A subset of analyses, namely observed vs expected frequencies of

Gene Ontology (GO) classes, were performed using BRB-Array tools v3.1 developed by

Dr. Richard S imon and Amy Peng Lam (http ://linus .nci.nih. gov/BRB-ArrayTools.htrnl).

In order to obtain clusters of a manageable size, a filter was applied in order to select

genes with pre-determined changes in the presence or absence of the oncogene EN2. We

elected to filter genes for which the unlogged RMA values increased or decreased by at

least 2=32 units on average in presence of the oncogene EN2 when compared to a

baseline where EN2 is either not expressed or its mRNA is interfered with to dismpt

protein translation. Note that this filter does not specify a pre-determined multiplicative

fold-change threshold. Rather, it reflects the fact that currently favored background noise

models for Affimetrix oligonucleotide microarrays assume an additive contribution of

noise (N) to signal (S), and that N will mostly affect signais in the low intensity range,

that is, signals for which log2 S 5-7. 1417 out ofthe 22215 probesets passed the filter.

The list ofall 1417 probesets that passed the filter along with their expression values and

adjusted p-values are available as Supplemental Data in the Sauvageau lab server.

Hierarchical clustering of the first 50 ranked differentially expressed filtered genes was

performed using Cluster 3.0 (http://bonsai.irns.u-tokyo.ac.ip/--mdehoon!software/cluster)

and the resulting clusters were visualized using Mappie Tree 24

(http://sourceforge.net/projects/mapletree).
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Table 4.1 Siibset ofgenes that were significantly (P <0.05) up-regulated ? 2 fold or down

regulated 0.5 fold in response to EN2 expression in either MDA-MB-435S or T-47D ceit unes

with the corresponding fold change observed in the other ceil une indicated. Bold font indicates

transcripts which were induced at comparable levels in both celi lines.

Fold change
in MDA-MB-435S Gene description

FoId change
in T-47D

0.90 heatshock 7ûkDapratein 6 (HSP7OB’) 33.45
2.02 prostate differciitiatiotifactor 7.19
2.02 protein kinase HIl 3.97
2.02 tumor necrosisfacror, alpha-inducedprotein 3 3.84
1.10 DNA-daniage-indtcible transcript 3 3.81
1.30 crvsiallin, alpha B 3.79
0.90 BCL2-associated athanogene 3 3.65
1.10 heatshock lOSkD 3.48
3.39 cvclin BI 0.84
1.10 8100 calcium binding protein P 3.33
3.26 baculovirallAP repeat-containing 5 survivin,.) 0.9]
0.90 heat shock 70kDaprotein lA 3.22
3.20 basic leucine zipper ana’ W2 do,nains 2 1.11
1.20 glvcoprotein (trans,ne,nbrane mnb 2.94
1.10 fe,-ritin, light polypeptide 2.92
0.90 homocysteine—inducible, ubiquitin—like domain menber 1 2.86
1.00 ESTs, Highly similar ta fRIL HUMAN ferritin light chain 2.79
2.66 protein disulfide isoinerase-relatedprotein I .44
1.00 kvnurenine 3—monooxvgenase (kvnurenine 3—hydron’Iase) 2.51
1.20 solute ca,7-ierfamilv 3, member 2 2.48
0.90 solute carrier jinnily 7 member 11 2.48
2.42 hvaluronan-mediated motili’ receptor (RHA MM.) 0.83
0.90 H4 histanefa,nily, ,nemberH 2.41
2.40 protein regulator ofcvtokinesis I 0.96
2.33 tunwr rejection antigeiz (gp96) 1 2.04
1.00 Rczg D protein 2.35
2.34 inunediate early response 3 I .03
1 .00 putative transmembrane protein 2.29
2.27 topoisomerase (DNA) II alpha 1 7OkDa 0.86
2.26 RAB6 interacting, kinesin-like (rabkinesin6 0.84
2.22 V-A TPase C2 subunit 1.46
2.21 staufen, RNA binding protein (Drosophila,) 1.17
2.20 heatshock 7OkDaprotein S (7SkDa,) 1.99
2.19 sorting nexin 4 III
2.15 hypothetical protein fUI 0540 0.77
2.14 Bcl-2-associated transcription factor 1.39
1.10 lnpothetical protein fU20059 2.13
1.40 dual specificity phosphatase 1 2.12
2.11 epithelial cdl transforming sequence 2 ancogene 0.81
1.40 DnaJ (Hsp4O,) homolog, subfinailv B, member] 2.10
1.20 ornithine clecarboxvlase 1 2.09
2.08 cukaotic translation initiatianfactor 3, stibunit 6 48kDa 1.01
2.06 Drosophila discs large-1 tumor stipressor-like 0.79
0.90 3-hvdroxy-3-inethvlghaan’l-Coenryine A synihase 2 2.06
1.00 heat shockprotein (‘hspllofamiiv,) 2.05
1.00 SF13 domain binding glutamic acid-rich protein 2.05
1.00 activating transcriptionfactor 3 2.04
2.01 palmitoyl-protein thioesterase 1 (‘ceroid-hpofiiscinosis 1.33
1.00 Inenmgiolna expressedantigen 5 (hvahironidase) 2.01
0.49 ADP-rihosvlationfactor 3 0.74
0.48 HI ltisionejami/v, member 2 I .60



0.47 immunoglobulin supe,fitnily, member 3
0.47 ubiqiunol-cylochrome c redzictase bindingprolein
0.45 hypotheticalprotein fUi 1848
0.43 secretory carrier membrane protein I
0.43 hypothetical protein FUJi 1193
0.43 protein tyrosine phosphatase type IVA, member 2
0.42 $TARTdomain containing 7
0.40 actin relatedprotein 2/3 complex, subunit 2, 34kDa
0.40 fasciculation and elongalion protein zeta 2 (zvgiu II)
0.40 huntingtin interaclingprotein 2
0.39 hvpothetical geIe supported In’ AF038182; 3C009203
0.37 conservedgene amplified in osteosarco,na
0.70 serine (or cvsteine,) proteinase inhihiior
0.33 inethylene tetrahvdrofolate dehydrogenase
0.32 APG]2 autoptiagv 12-like (‘S. cerevisiae)
0.27 PAl-1 ,nRNA-binding prolein
0.27 senun-inducibte kinase

FoId change
in MDA-MB-435S Gene description FoId change

in T-47D

1.1$

123

1.12
1.3]
1.01
1.26
0.90
109
0.87
1.16
1.08
1.62
0.94
0.34
1.15
1.07
1.05
1.22
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Table 4.2 Subset of regulated transcripts common to both ce!! unes with significant induction or

repression in response to EN2 expression with adjusted P values less than 0.05.

207668 xat
208639x at
202655at
200599sat
221 923_s_at
20069! sat
212510at
200666 s at
221577_x _at
202934at
21 6640sat
202636at
21 6450xat
202] 3Oat
2023 82sat
209694at
21 8088 sat
21 $574sat
201 952at
214328 sat
200825 sat
204255 sat
209295at
20 1925 sat
20916]at
202302 sat
204266sat
209238at
208852 sat
200598 sat
200068sat
2!8145at
210275 sat
200732sat
208813at
22169 Ixat
21 8358at
21250] _at
20324] _at
21 1969at
203534at
212724at
200790at
209180at
203! 59at
20858]xat
2] 084 9s at
21 1936at
209681 _at
21 2434at
202106at
22184]sat
2035] Isat

P5
P5
ARMET
TRi!]
NPMI
HSPA 9B
KIAA 0089
DNA]BI
PLAB
HK2
P5
NEDf
IRAI
RIOK3
GNPJ
PTS
RRA GC
LMCDJ
ALCAM
HSPCA
HYOUI
VDR
INfR
DAF
PRPF4
fLJ1IO2I
CHK
STX3A
CANX
IRA]
CANX
C20orJ97
ZNf2]6
PTP4A]
GOT]
NPMJ
MGC11256
CEBPB
UVRA G
HSPCA
LSMI
ARHE
ODCJ
RABGGTB
GLS
MT]X
VPS4]
HSPA5
SLCI9A2
GRPEL]
GOLGA3
KLF4
BET3

0.0022
0.0043
0.0065
0.0087
00087
0.0087
0.0087
0.0087
0.0087
0.0087
0.0087
0.0087
0.0087
0.0108
0.0108
0.0152
0.0173
0.0173
0.0173
0.0173
0.0173
0.0173
0.0238
0.0238
0.0238
0.0238
0.0238
0.0238
0.0238
0.0260
0.0260
0.0260
0.0260
0.0260
0.0281
0.0281
0.0281
0.0281
0.0325
0.0325
0.036$
0.036$
0.036$
0.036$
0.036$
0.0390
0.0390
0.0390
0.0411
0.0411
0.0411
0.0411
0.0433

Affy ID Gene Gene Description (Genes upregu]ated in response to EN2) P value

protein disufide isomerase-relatedprotein
protein disti(flUe isotnerase-relatedprotein
arginine-rich, mutated in earlv stage tiimors
tumor rejection antigen (gp96) J
nticleophosmin (nucleolar phosphoprotein B23, ,nmtatrin,)
heat .çhock 7OkDa prolein 9B (mortatin-2)
KJAA 0089 protein
DnaJ (J-Isp4O) homolog, sub/inaiit’ B, member 1
prostate differentiationfactor
hexokinase 2
protein disu(flde isomerase-relatedprotein
.incfingerprotein 103 homolog (mouse)
Imnor rejection anhigen tgp96,) I
sudD suppressor o! bimD6 homolog (A. nidulans
glucosamine-6-phosphate isoiflerase
6-pyrtivoyltetrahydropterin synthase
Rag C protein
LIMand cysteine-rich domains]
actiuated leukocyte ce!! adhesion molecule
heat shock 9OkDa protein 1, alpha
hvpoxia upregzilated I
vitainin D (1,25- dihydrosyvitamin D3) receptor
lumor necrosisfr’ctor receptor superfamllv, inember 10h
decay acceleratingfactorfor complement
PRP4 pre-mRNA processingfactor 4 ho,nolog (veast)
hypotheticaiprotein FJJ1102] simitar ta splicingfactor
choline kinase
st’ntaxin 3A
cainexin
tumor rejection antigel? (gp96) 1
calnexin
chromosome 20 open readingfra,ne 97
zincfingerprotein 216
protein tyrosine phosphatase type IVA, member 1 /PRL-1
glutamic-oxaloacetic transaminase 1,)
nucleophosmin ‘nttcleolar phosphoprotein B23, manatrinj
hvpotheticalprotein MGCI 1256
CCAA T/enhancer binding protein (c/EBP,), beta
UV radiation resistance associated gene
heat shock 90kDaprotein 1, alpha
Lsm] protein
ras homolog genefami/v. member E
ornithine decarbosylase]
Rab geranvlgeranvltransferase, beta subunit
glutaninase
inetallothionein iX
vacuolarprotein sorting 4] (yeast)
heat shock 7OkDa protein 5 (ghicose-regtilatedprotein, 78kDa)
sainte carrierfa,niiv 19 (ihiamine transportetj, member 2
GipE-like protein cochaperone
golgi autoantigen, golgin subfa,nily a, 3
Kntppel-likefactor 4 (gut)
similar ta yeast BET3 (S. cerevisiae



20869 lat
209366xat
209154at
200809xat
217776at

TfRC
CYB5
TIP-]
RPLI2
RDHI 1

0.0476
0.0281
0.0238
0.0173
0.0173

Observed in Expected in
. . Observed/GO id GO classification selectcd selected

Expected
subset subset

0003773 [heat shock protein activity 7 1.01 [6.92

[0003754 [chaperone activity 22 [4.25 [5.17

0016860 jintramoiecuiar oxidoreductase activity s i.i -

0015078 [hydrogen ion transporter activity - [3.38 [2.96

0015077 [monovalent inorganic cation transporter activity io [3 75 [267

j0003925jsmall monomeric GTPase activity Iii [4.34 2.53

[0004197 [ysteine-type endopeptidase activity [.oi [2.42

[0003924 [FPase activity 13 [5.52 2.36

0016616
oxidoreductase activity\, acting on the CH-OH group ofdonors\,

6 2.67 2.25NAD or NADP as ace eptor

0050800
[j ydrolase activity\, acting on acid anhydrides\, acting on GTP\, 1496 2.22involved in cellular and subcellu]ar movement

[0008248 [pre-mRNA splicing factor activity - 6 [2.71 12.21
[0003714 [1nscription corepressor activity 7 [3.19 [ï
[0016614 [oxidoreductase activity\, acting on Cl-l-OH group ofdonors 6 2.76 [2.18

[0008324 [cation transporter activity 13 [6.23 [2.09

[0005525 GTP binding 12 [5.84 [2.06

[0019001 [guanyl nucleotide binding - 12 5.93 [2.02

125

Affy ID Gene Gene Description (upregulated in response In EN2 cool) p value

21021 1 HS?CA heat shock 90kDa protein 1. alpha 0.0455
21 8233 sat C6orJ49 over-expressed breast tumorprotein 0.0476
208638 al ATP6VIC2 V-ATPase C? subunit 0.0476
208726 sat E1f2S2 eukarvotic translation initiation factor 2 0.0476
21921 2at HSP70-4 ortholag ofmazise heat shockprotein, 70 kDa 0.0476
201453 xat RHEB Ras honwlog enriched in brain 2 0.0498

Affy ID Gene Gene Description (Genes downregulated in response to EN2) P value

transfen-in receptar ‘p9O, C’D 71)
cytachrorne h-5
Tax interaction protein I
ribosomal protein L12
androgen-regulated short-chain Uehydrogenase/reductase]

Table 4.3 Gene Ontology (GO) Mining Tool provided predictions that 1.01 genes would be

associated with heat shock protein activity and 4.25 genes with chaperone activity arnong the

first 477 probesets which were significant at the nominaI 0.001 level ofthe univariate two

sample t-test.
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CHAPITRE 5

Conclusions, Perspectives and Future Directions
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Chapter 5 is a discussion of the relevance of the findings presented in this thesis and

adresses potential future studies that could be performed to further understand the roles

of En-I and EN2 in the regulation of normal mammary gland development and breast

cancer, respectively.
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En-1 in mouse mammary gland development

Our findings provide some initial insight as to which developmental stage coïncides with

En-1 expression and where En-1 expressing celis appear to reside with respect to the

actively growing ductal tree. We have shown that there are some clear candidate ccli

populations which might express En-], while ruling out others such as the inner most

body cells of the TEB and the luminal epithelial celis of the ducts. Our

immunohistochemical studies document En-1 expression in putative cap cells,

myoepithelial cells, periductal fibroblasts and in a few stromal cells. As one can

appreciate from Fig. 5.1 however, we cannot conclude with confidence, from our intial

immunohistochemistry data, whether En-1 is expressed in the myoepithelial cells, the

thickened basal lamina, or both. In addition, it is possible that the En-1 expression that

we perceive as arising solely from the cap ceil layer of the TEB, may aiso arise from

some of the body celis in the TEB and/or the thin basal lamina surrounding the TEB

(Fig. 5.1).

Given the small window of En-] expression and the putative cell types it is exclusively

found in, one possibility is that En-1 expressing cap celis are those progenitors that give

rise to myoepithelial celis in the newïy forming ducts. Since primary progenitor cells

represent one daughter ccli of a stem ccli division and divide repeatedly before

becoming committed to a given lineage, one possibility is that En-1 may be expressed in

the secondary progenitors arising from the primary progenitors that have made the

decision to continue along the myoepithelial lineage in the rapidly growing pubertal

ductal system. There are no reports of proteins upstream of En-], or known targets of

En-1 signaling, that are invoived in the specification of the myoepithelial lineage from

cap cells within the growing ductal system, but similarly, there are few upstream

regulators and even fewer direct targets of En-1 signaiing that have been identified in

mammalian cells. Interestingly, studies have suggested that Wnt-signaling is involved in

myogenic specification In addition, chromatin immunoprecipitation (ChIP) studies

have shown that potential target genes of DrosophiÏa engrailed are involved in muscle

development pathways 2 To investigate thïs possibility, the specific cdl type(s) that

express En-] must first be clearly defined.
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Fig. 5.1 Longitudinal section of a TEB from a 5-week old virgin Balb/c mouse. The

TEB within the pubertal mouse mammary gland contains two ce!! types: body & cap

cel!s. The cap celis at the tip of the growing TEB are highly proliferative and

differentiate into the myoepithe!ial celis, which surround the mature duct. The body celis

are the most prominent celis in the TEB and differentiate into the ductal epithelial ceils.

Tissue section image reprinted from http://mammary.nih.gov/atlas/structures.

To achieve a clearer picture, it will be necessary to perform precise co-localization

experiments at different developmental stages and also in available models with

impaired ductal developrnent during puberty. Immunohistochemistry employing several

markers, in addition to fi-gal, ail with unique detection agents, will allow for co

localization of En-l protein with definitive marker expression. Attempts have been made

to correlate celI type specific cytokeratins and ceil surface markers with in vitro

differentiative capacity, to identify particular ceil lineages and to further determine

which cells have stem cell-like properties based on patterns of marker expression.

Isolated primary mammary cells expressing En-] can be divided into either luminal or

myoepithelial/hasal populations and the in vitro differentiative capacity of these cells in

tissue culture can then be tested in an attempt to define multipotential cells such as cap

thickened basal lamina around
the neck with numerous fibroblasts
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ceils. Epithelial-specific antigen (ESA), mucin 1 (MUC1) and cytokeratin $ (K$) are

surface markers of luminal epithelial celis while CD1O, u6-integrin and K14 are surface

markers that are specific to myoepithelial celis. Keratin 6 (K6) is normally expressed in

the body ceils of TEBs during ductal morphogenesis but not in MECs from mammary

ducts . These and other markers can be utilized to characterize the celi fraction that

expresses En-1 to determine if they are indeed myoepithelial, stromal, fibroblast,

adipocyte and/or cap celi in origin.

Transplant experiments were performed to determine if the mammary gland phenotype

documented in En-T’ females is intrinsic to mammary epithelial ceils or due to systemic

defects in the En-T’ mutant mice. The resulting transplants were able to grow to varying

extents, some of them were able to form TEBs and/or were able to, albeit more sparsely,

fill the marnmary fat pad. Several possibilities may account for these observations,

including a systemic hormonal deficiency in the En-T’ mutant mice, the loss of En-1

affecting a particular organ which influences the mammary gland, andlor the mutants

suffer from a mere delayed puberty.

The fact that En-1 expression coincides with the onset of puberty also raises the

possibility that En-1 may be produced in response to estrogen to carry out the hormonal

stimulation of the mammary epithelium. No defects were apparent in whole mounts

derived from En-T’ mutant mice before 3 weeks of age, demonstrating that En-1 is

dispensible for the development of the ductal tree preceeding puberty. However, when

analyzed at 3 ½ weeks of age, mutant glands displayed delayed ductal outgrowth and

TEB formation. Another possibility is that En-1 may regulate hormone production.

Initial expression of En-1 commences at day 15, which slightly precedes the onset of

puberty, and the retarded growth seen in the En-1 nuil mutant mouse mammary gland

may be a resuit of the lack, or reduced production, of hormones that normally initiate

this growth phase. This will also need to be addressed. The link between hormonal

signais and En-] expression may come from immunohistochemistry experiments that

colocalize En-1 and estrogen R expression in mammary epithelial ceils. If this is the

case, it wili be interesting to see if En-1 expression can be induced by estrogen in
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ovariectomized animais and whether En-] is reduced in EW’ epithelium. Although this

miglit establish whether estrogen activates En-] expression, it would remain to be

established whether this occurs as a direct or indirect mechanism. In this respect, it will

be important to determine whether the En-] promoter contains binding sites for estrogen

that mediate estrogen-induced transcriptional activation.

Jnterestingly, studies in normal mammary tissue have shown that progesterone induces

Wnt-4 expression in the mouse mammary gland and that Wnt signaling is the likely

mediator of the progesterone signal during pregnancy, a very proliferative stage in

postnatal mammary gland development . It is presently thought that Wnt signais also

have an important role in the maintenance of stem ceil compartments . The reported

expression of other Wnt members in unique temporal and spatial patterns during the

normal development of the mouse mammary gland provides several candidate upstream

regulators of En-] expression in non-cancerous breast tissue 6 Although we showed that

En-] expression was not consistently activated by etopic Wnt-] expression in the mouse

mammary gland, future studies will need to address whether En-] is downstream to any

of the rernaining Wnt family members that are expressed in the normal pubertal

mammary gland.

It is also possible that compensatory ectopic expression of En-2 in the C57B1/6J

mammary gland may partially rescue the mammary gland phenotype in En-l’”

mutant mice, analogous to the finding that En-2 expression is likely responsible for the

less severe cerebellar brain phenotype when the En-] Lki gene is introduced into the

C57B1/6J strain “. Although we have looked at En-2 expression in mammary tissue from

both CD-1 and C57B1/6J strains, En-2 expression was neyer tested in the actual rare En
jLki/Lk hornozygous mutants that arose. This is something that should be tested to either

further suggest or rule out this possibility.

Our studies show that En-] is expressed in the mammary epithelium. Although we

observed En-] expression in what appeared to be periductal fibroblasts and some

outlying solitary stromal ceils, these results are less convincing and preliminary and will
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need to be extended. In addition, we have not verified whether stromal celis expressing

En-J ai-e only found in the vicinity of the growing ductal tree or whether they are also

found in the distal portion of tlie fat pad wliere the ductal tree lias not yet penetrated.

Altliough this epithelial-free portion of the early pubertal female fat pad did not express

detectable levels of En-1 protein by western blot analysis, this technique may flot be

sensitive enough to detect a small number of solitary stromal ceils expressing En-]. If

we consider that the preliminary western analysis resuits are indeed reflective of a few

En-J expressing stromal cells residing adjacent to the mammary epithelium only, this

would support tlie scenario wliere nearby En-] expression in the mammary epithelium

could be involved in the crosstalk between the stroma and the epithelial compartments.

Homeodomains and homeoproteins can be internalized by live ceils, and a small

proportion of Engrailed lias been found to associate with membrane regions implicated

in signal transduction and secretion and suggest tliat Engrailed miglit act as a secreted

polypeptidic messenger . These studies suggest the possibility that En-1, a IF, can be

converted to a secreted signal, tliat could control tlie fate of adjacent cells in a paracrine

fashion. Perliaps a portion of En-1 protein produced in the rnanimary epitlielium is

secreted and affects the nearby strornal ceils and fosters a microenvironment that

regulates tlie ductal expansion during puberty.

Paracrine interactions between individual mammary epitlielial ceils andlor tlie adjacent

stroma can by investigated by tlie introduction of a tag that can be visualized in one of

the epithelial cell components in a marnmary epithelial transplant so it is possible to

distinguish the origin of individual ceils in mixed epithelial transplants, wliere

transplants contain a mixture of epithelial celis from different origins. If En-J expressing

celis express a tag, these mammary epitlielial celis can be mixed with En-] nuli

epithelial celis. If Eu-J is flot required in the stromal compartment and tlie stroma does

not contribute to tlie regeneration of manurlary epithelial structures, this is indicative of

a pararine mechanism, confined to marnmary epithelial cells, of En-1 action. The

reciprocal experirnent, where En-1 nuli ceils express a tag, could also be generated.
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Although the evidence suggests that En-1 may be involved in ductal growth and

morphogenesis during pregnancy, littie is known about direct or indirect downstrearn

mediators. Not only should future studies identify and investigate some of these En-1

targets that are specific to normal marnmary gland development, but it will be interesting

to identify what targets are connnon to ectopic EN2 expression during breast

tumorigenesis.

EN2 in breast tumorigenesis

Epigenetic activation, where an alteration in gene activity influences the breast tissue

phenotype without affecting the genotype, is one plausible explanation for the ectopic

expression of EN2. Changes in prornoter methylation may be involved. Another

possibility is that a suppressor of EN2 (ex. Groucho), which norrnally serves to maintain

repression of EN2 in certain tissues, may be inactivated and cause the misexpression of

EN2 in breast tissue. Another possible mechanism of ectopic EN2 expression would be

the resuit of an increase in fl-catenin. fl-catenin forms a complex with the transcription

factor TCf, converting TCF from a transcriptional repressor to an activator of

downstream targets and could thercby stimulate the expression of Eu-2 without any

changes being evident at the genetic level such as realTangement. TCF lias already been

shown to activate c-Myc in breast tumorigenesis and EN2 may be activated in addition.

Like other homeobox genes, the ectopic expression of wildtype EN2, rather than a

mutated or altered form, may be involved in the onset of breast carcinogenesis.

Although many studies have reported the deregulated expression of homeobox genes in

cancer, relatively few have established direct functional roles for particular homeobox

genes in oncogenesis. It is conceivable that in sorne of these reported cases, the

deregulated expression of horneobox genes might be consequential, rather than

functionally relevant, for carcinogenesis. The ectopic expression of EN2 was flot merely

found to correlate with the progression of breast cancer and with celi lines derived from

breast tumors. Its transforming properties in vitro, the ability to induce adenocarcinomas

in vivo and the growth suppressive effect when its expression is knocked down by RNA

interference in a breast tumor derived ceil line ail support a bona fide role for EN2 in
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promoting transformation and carcinogenesis. Whether the ectopic expression of EN2 is

an initial andlor causal event in the progression of breast cancer, a downstream and low

penetrance event resulting from the initiation of carcinogenesis and/or a resuit of the

genetic instabiiity that occurs, or whether it is pivotai in a later stage sucli as metastasis,

remains to be elucidated. Similar to other homeobox genes, although EN2 lias clear

oncogenic properties, its precise function in carcinogenesis in specific tumor types lias

flot been identified. EN2 may be more fittingly described as a tumour modulator rather

than an oncogene at this stage.

A comprehensive anaiysis of the expression pattern of EN2 in several types of breast

cancer classifications, as weii as in other solid tumors sucli as brain cancer is warranted.

Ectopic expression of EN2 in brain carcinoma would fit the notion of other liomeobox

genes that are re-expressed in the tissue where they play a pivotai role during embryonic

development. EST data lias indeed shown tliat EN2 expression has been documented in

meduiloblastoma .

Our initial studies looked at 23 primary human breast tumor samples. 0f tlie two EN2-

positive tumors, one was an adenocarcinorna whuie tlie second was an infiltrating ductal

carcinoma, inflammatory type. 0f the seven EN2-positive human ccli unes, four were

derived from adenocarcinomas, one was derived from a ductal carcinoma, and two were

designated as liyperpiastic fibrocystic breast tissue. Furtlier studies documented EN2

expression in 4/59 additional tumor sampies, au four EN2-positive tumors being

ciassified as infiitrating ductai carcinomas. Thus, EN2 was shown to be ectopically

expressed in a subset of liuman breast cancer representing approximately 7% in the

population tested. A more precise frequency of ectopic EN2 expression in a much larger

sampie pool of breast tumors and any possible correiation with a specific subset(s) of

tumor phenotypes wili need to be screened. Employing a technique of larger scaie that is

mucli faster than the RT-PCR/Southern hybridization approach used in tliese studies wilJ

aliow one to screen far more samples in a shorter turne. Any positive samples can be

further analyzed by immunohistochemistry to confirm that the relevant celis within the

iesion show nuclear EN2 staining. To this end, tlie specificity of tlie antibody that



137

recognizes botli mouse En-1/human ENI and mouse En-2/human EN2 lias been sliown

extensively in the literature.

Infiltrating ductal carcinoma (IDC), also known as invasive ductal carcinoma, is the

most common type of breast cancer, accounting for 80% of breast cancer diagnoses.

IDC begins in the milk ducts of the breast and penetrates the wall of the duct, invading

the fatty tissue of the breast and eventually other regions of the body. Inflammatory

breast cancer, on the other hand, is quite rare, accounting for only 1% of breast cancer

cases. It is associated with the appearance of inflamed breasts with dimples andlor thick

ridges caused by cancer celis blocking lymph vessels or channels in the skin over the

breast, is extremely aggressive and is associated with poor prognosis. It will be

important to explore whether EN2 expression is found in more of these latter samples,

potentially providing an early detection marker of this aggressive form of breast cancer,

or whether its ectopic expression represents an occurrence that is common to most forms

ofthe disease.

Researchers involved with the Breast Cancer Functional Genomics Group at McGill

have been using Laser Capture Microdissection (LCM) to dissect tumor cells from

amidst the beterogeneous tumor section. They have agressively been building this tissue

bank and the samples contained within would be invaluable to truly ascertain which celis

express EN2 afier its expression is linked to a specific subset ofbreast cancer.

Isolating MSC and progenitor celi-specific promoters and using them to direct

expression of EN2 will enable answering the question of whether EN2 activity is

required in stem celis or progenitor cells for EN2-positive breast tumor formation. It will

lie interesting to sec if EN2-induced tumors contain celis that have myoepithelial, as well

as luminal, differentiation, indicating that they might originate in a pluripotent stem or

transit cell. Disrupting EN2 and EN2 target genes of interest within tumor models using

RNA interference will allow the potential cffects of anti-EN2 therapy to be tested in

various mammaiy tumor moUds.
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Perspectives

There are many examples in which the aberrant expression of homeobox genes that

normaliy regulate growth and deveiopment have been implicated in carcinogenesis. For

some homeoproteins, it is thought that the wildtype, rather than a mutant form of the

protein, produces these oncogenic activities. This implies that the oncogenic activity of

some homeoproteins is not due to new or alternative properties, but is a resuit of their

normal functions being carrïed out in the wrong celiular context. The finding that En-1 is

expressed during the expansion that takes place in pubertal deveiopment in the normal

mouser mammary gland, combined with the observation that wiidtype EN2 is

ectopically expressed in human breast cancer fits into this latter category. Interestingly,

both En-1 and En-2 behave like oncogenes when expressed in mamrnary epithelial celis

and both inhibit differentiation, yet expression of En-2 consistently elicited higher

measurements in ht vitro transformation assays compared to En-1. Non-transformed

mammary epithelial ceils that have been engineered to ectopicaily express wiïdtype En-

2, form mammary adenocarcinomas when injected into the cleared fat pads of syngeneic

hosts, further supporting the above notion, where the wildtype protein expressed in the

wrong ceilular context can have oncogenic activity. A key distinguishing feature is that

while only En-1 is expressed in the normal mammary gland, its paralog EN2 is found to

be ectopically expressed in breast carcinogenesis, rather than the re-expression of En-].

However, the two paraiogs share many conserved functions during deveiopment, with

En-2 being able to rescue ail but one of the En-] nuii phenotypes, and En-2 actually

appears to exhibit more oncogenic activity in cuiture and in tumor growth compared to

En-1.

Importantly, the above findings raise the intriguing possibility that the oncogenic

properties of EN2 in breast tissue might reflect an erroneous extension of the normai

postnatal functions of En-1 in the mamnlary giand, where EN2 aberrantiy mimics the

proliferative effects of En-1, the natural inductive signal in mammary epithelium and

perhaps leads to the maintenance of an undifferentiated state in breast celis. These

observations prompt questions about the basis of En signaling specificity. It wiIl be
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instructive to determine which downstream targets are affected by En-1 and EN2 as the

two paralogs may have distinct targets in addition to several common targets.

Altematively, the two paralogs could activate different signaling pathways or the same

signaling pathways to different extents through differential interactions with co-factors,

thereby eliciting unique cellular responses. A genetic understanding of En-1 and EN2

signaling and how they regulate mammary epithelial growth and morphogenesis wilÏ

improve our ability to manipulate these processes and thus allow us to define strategies

for the prevention and treatment ofbreast cancer.

Conclusion

In summary, the research described in this thesis documents the expression ofEngraiÏed

(En) genes in the mouse mammary gland and breast cancer tissue and provides evidence

that suggests they play a role in both regulating mammary gland development and

mammary epithelial ceil proliferation in breast carcinogenesis. Hence, these studies

reveal that En genes have flot only acquired a role in the postnatal development of the

mouse mammary gland, but in addition, they have evolved to contribute to breast

tumorigenesis. These above findings have broad implications in the fields of

developmental biology and cancer.
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