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Sursi1ARY

In ail biological systems, a balance between ceil growth and death is required for

normal development as weli as for adaptation to a changing environment. Skeletai

muscle is considered a mechanosensitive ceil type since mechanical forces such as

stretch, tension, and loading have been shown to play a criticai role in regulating the

dynamic processes of protein synthesis, degradation, ceilular proliferation and

apoptosi s. Despite intensive investigation, the intracellular mechanisms by which

muscle disuse is perceived and converted to biochemical responses ieading to muscle

remodeling and atrophy have yet to be completely understood. Whereas it was

appreciated a long time ago that muscle atrophy comes about via an increase in protein

degradation concomitant with suppression oC protein synthesis, only recently have

specific signaling pathways and celiular processes been identified. The identification of

a growing number of apoptosis-associated factors and events in disused muscle is

providing increasing evidence that apoptotic cell-death plays a role in muscle fiber

atrophy dcte to a variety of causes.

This thesis is composed of three research studies developed with the objective of

contributing to the present understanding of the intracellular processes regulating di suse

muscle atrophy. The first study explores the intracellular signaling potential in disused

muscle in response to a mechanical stimulus. The results of this study show that c—jun

NH2—terminai kinase (JNK) phosphorylation response to mechanicai stimulation is

decreased foilowing hindlimb suspension indicating that atrophic muscle tiuy iose the

abiiity to transduce mechanical signais to the mitogen-activated protein (MAP) kinase

pathways. However, we also show that basal JNK activity is increased in disused

muscle. Since the contribution of cellular apoptosis bas been proposed as a possible

mechanism regulating the loss of myofibers as a result of reduced mechanical loading,

increased JNK-mediated regulation of celluÏar apoptosis may expiain the increased

basal phosphorylation levels measured in muscle following hindlimb suspension. The

second study investigates the effect of loss of neural input to muscle fibers on changes

in the sensitivity and modulation of the mitochondrial penieability transition pore

(PTP), a structure responsible for initiating the release ofpro-apoptotic factors from the

mitochondrial intermembrane space and thought to be implicated in a fom of
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programmed ceil death, or apoptosis. We show that muscle atrophy caused by

denervation (for 21 days) is associated with heightened sensitivity of the PTP to

opening in response to progressive Ca2 loading. These flndings are substantiated by

studies with cyclosporin A (CsA), a pharmacological agent which inhibits PTP opening

by binding to cyclophulin D (CypD). We report that the inhibitory effects of CsA are

significantly more potent in mitochondria from denervated muscle. The major finding

that the susceptibility to PTP opening is dramaticafly favored following denervation

provides evidence Cor a previousÏy unreported mechanism that could at least partly

accocmt for the activation of the mitochondrial death pathway in denervation disorders

in animal models and humans. The third study is a characterization ofthe properties and

function of the mitochondrial PTP in different skeletal muscles characterized by

different fiber types. Considering the well-established metabolic differences between

oxidative and glycolytic muscle fiber phenotypes, there exist surprisingÏy few studies

which have investigated intrinsic mitochondrial properties in relation to fiber type. We

demonstrate that basic PTP function and sensitivities are different depending on the

type of muscle fiber from which mitochondria are isolated. Our flndings support the

emerging view that mitochondria display distinct properties that differ qualitatively

according to muscle fiber type.
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S0rsINJAIRE (FRANÇAIS)

Dans tous les systèmes biologiques, l’équilibre entre la croissance et la mort cellulaire

est nécessaire au développement normal ainsi qu’aux adaptations face aux changements

environnementaux. Les fibres du muscle squelettique sont considérées comme des

cellules mécanosensitives puisque les forces mécaniques comme l’étirement, la tension

et la charge jouent un rôle important dans la régulation des processus dynamiques

comme la synthèse et la dégradation de protéines ainsi que la prolifération cellulaire et

l’apoptose. Malgré l’existence de plusieurs études sur le sujet, les mécanismes

intracellulaires pal- lesquelles l’inactivité musculaire est convertie en réponse

biochimique entraînant le remodelage et l’atrophie musculaire ne sont pas encore bien

compris. Bien qct’il est accepté depuis longtemps que l’atrophie musculaire résulte

d’une concomitance entre l’augmentation de la dégradation et la suppression de la

synthèse protéique, ce n’est que récemment que des voies de signalisation et des

processus cellulaires spécifiques ont été identifiés. L’identification de plus en plus de

facteurs et d’événements associés à l’apoptose prenant place dans l’inactivité

musculaire suggèrent que la mort cellulaire par apoptose joue un rôle dans l’atrophie

des fibres musculaires induite par différentes causes.

La présente thèse comprend trois projets de recherche qui ont pour objectif de

contribuer à l’avancement de la compréhension actuelle des processus intracellulaires

régulant l’atrophie musculaire. La première étude explore le potentiel de la signalisation

intracellulaire dans l’inactivité musculaire en réponse à un stimulus mécanique. Les

résultats de cette étude montrent que la phosphorylation de c—jun NH2—terminal kinase

(JNK) en réponse à un stimulus mécamque est réduite lors de la suspension de l’arrière

train, indiquant que le muscle atrophié peLit perdre l’habilité à traduire un signal

mécanique à la voie des mitogen-activated protein (MAP) kinases. Nous démontrons

également que l’activité basal de JNK est augmentée dans l’inactivité musculaire.

Puisqu’il a été proposé que l’apoptose soit un mécanisme possible dans la régulation de

la perte de myofibres résultant d’une diminution de charge mécanique, il est possible

que l’augmentation de la régulation de l’apoptose par JNK explique la phosphorylation
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de base plus élevée mesurée dans le muscle suivant une période de suspension de

l’arrière-train. La deuxième étude examine l’effet de la perte d’innervation des fibres

musculaires sur les changements dans la sensibilité et dans la modulation du pore de

perméabilité transitionnelle (PTP), une strttcture responsable pour l’initiation de la

relâche de facteurs pro-apoptotiques résidants normalement dans l’espace

intermembranaire mitochondrial et impliqué dans la mort cellulaire programmé, oit

apoptose. Nous démontrons que l’atrophie musculaire induite par dénervation (21 jours)

est associée à une sensibilité accrue de l’ouverture du PTP en réponse à un chargement

progressif de Ca2. Ces résultats sont appuyés par des expériences effectuées avec la

cyclosporine A (CsA), un agent pharmacologique qui inhibe l’ouverture du PTP en se

liant à la cyclophilin D (CypD). Nous rapportons que l’effet inhibiteur de la CsA est

significativement plits élevé dans les mitochondries provenant de muscles dénervés. La

découverte importante que la susceptibilité de l’ouverture du PTP est considérablement

augmentée siti vant la dénervation suggère l’existence d’ un mécanisme non identifié

jusqu’à présent et qui pourrait, dii moins en partie, être responsable de l’activation de la

voie mitochondriale de mort cellulaire dans les désordres neurologiques observés dans

le modèle animal et humain. La troisième étude porte sur la caractérisation des

propriétés et des fonctions du PTP mitochondrial dans différents muscles squelettiques

se distinguant par leurs types de fibres. Considérant les différences métaboliques déjà

bien établies entre les phénotypes des fibres musculaires oxydatives et glycolytique, il

existe étonnamment peu d’études qui ont investigué les propriétés intrinsèques

mitochondriales en relation avec le type de fibre. La troisième étude présentée dans

cette thèse examine certaines propriétés fonctionnelles du PTP dans des mitochondries

isolées de muscles provenant des pattes postérieures de rat, qui sont caractérisés par

différents types de fibres. Nous démontrons qtte les fonctions de bases et la sensibilité

du PTP sont différentes selon le type de fibres musculaires d’où proviennent les

mitochondries. Nos résultats supportent l’idée grandissante que les mitochondries ont

des propriétés distinctes, qui diffèrent qualitativement selon le type de fibre musculaire.
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Chapter 1: Introduction

I



f INTRODUCTION

I.] Presentcition oftÏie experiniental stiiclies

The purpose of the work presented in this thesis was to broaden our understanding

of the cellular processes involved in mediating the adaptations of skeletal muscle to

disuse. Thus, this thesis investigates two major axes of research relating to the disuse

atrophy of skeletal muscle.

The flrst area of investigation extends on the research interests ofDr. Phil Gardiner

and pertains to the effects ofreduced weight-bearing on the sensitivity of mechanically

responsive intracellular signaling pathways in muscle . Mechanical forces play an

important role in the regulation of muscle size (Vandenburgh, 1987). Since there

appears to exist a relationship between muscle unloading and atrophy, the flrst study

presented in this thesis investigates the sensitivity of tiiechanical ly-responsive

intracellular signaling pathways in order to establish the extent to which a given

mechan ical stimulus can influence the trophic response of muscle following atrophy.

We focused on c-jun NH2-tei-minal kinase (JNK), a member of the mitogen-activated

protein (MA?) kinase family that is activated by phosphorylation in skeÏetal muscle in

response to a number of cellular stresses including changes in loading conditions. JNK

activation was also repoiled to activate programmed cell death (i.e. apoptosis) (Davis,

2000; Papadakis et al., 2006), a process that is activated in the disused muscle

(Kandarian et ctl., 2006) and may account for the loss of entire myofibers and/or of

some nuclei within remaining myofibers. The resuits of this study showed that basal

JNK activation state (i.e. phosphorylation) is increased in response to muscle ati-ophy,

which may reflect activation of cellular apoptosis. On the other hand, we reported that

the capacity to activate JNK by phosphorylation in response to an acute mechanical

challenge is reduced following hindlimb unloading. These results lcd us to propose that

atrophic muscle may lose the ability to transduce mechanical signaIs to the MA? kinase

pathways.

The second axis of research of this thesis extends on the general interests of Dr.
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Yan Burelle pertaining to the role of mitochondrial plasticity in heart and skeletal

muscle under physiological and pathological conditions. A particular focus of this

second research area relates to the investigation of the mitochondrial permeability

transition pore (PTP), a structure identified as a key player in signaling necrosis and

apoptosis in several tissues and ceil types (Zoratti & Szabo, 1995; Hengartner, 2000).

Despite a large number of experimental studies providing evidence implicating the PTP

as a trigger for ceil death, little is known regarding the regulation and behavior of the

PTP in skeletal muscle and whether or flot it is affected in the process of severe mLtscle

atrophy.

In the second study presented in this thesis we determined whether the sensitivity

or occurrence of PTP opening is altered in response to muscle denervation, a model of

severe muscle disuse that mimics several denervation disorders observed in humans

(Tews, 2002). The resuits from this study showed that a Ioss of innervation for 21 days

Ied to a dramatic increase in the vulnerabiÏity of isolated mitochondria to opening of the

PTP. This phenomenon was at least partly caused by a significant increase in the

endogenous Ca2 content of both myoflbers and mitochondria in response to

denervation. In addition, we made the novel observation that cyclophilin D (CypD), a

matrix protein that was recently shown to act as a regulator by sensitizing the PTP to

Ca2-induced opening (Baines et al., 2005; Basso et ctl., 2005; Nakagawa et cd., 2005;

Schinzel et cii., 2005) was upregulated compared to several other mitochondrial proteins

including other putative PTP component, namely the adenine nucleotide translocator

(ANT) protein and the voltage-dependent anion channel (VDAC), and enzymes of the

respiratory chain (i.e. cytochrome oxidase). To our knowÏedge, this study provides the

first evidence that changes in the expression of CypD could play a role in a non-genetic

model of disease and suggests that opening of the PTP could be involved in the

activation ofapoptosis generally observed in response to disuse atrophy.

Another question that remains unanswered with regards to the PTP is whether its

regulation varies across muscle fiber types. This question is pailicularly relevant as the

appearance and progression ofseveral neuromuscular disorders is very heterogeneous in

muscles with various phenotypes (Tews, 2002), which may in part reflect a different



4

vulnerability of mitochondria to PTP opening and activation of mitochondrial death

pathways across fiber types. In the third study presented in this thesis, we isolated

mitochondria from muscles displaying different fiber type compositions and determined

their sensitivity to PTP opening in vitro and examined a selected number of

physiological regulators of pore opening at the mitochondrial level incÏuding

endogenous Ca2 levels, production of reactive oxygen species (ROS) and content of

putative PTP components including CypD. The resuits from this study indicated that

mitochondria fiom the slow-twitch soleus composed predominantly of type I fibers,

displayed a significantly greater vulnerability to PTP opening compared to

mitochondria isolated from the plantaris and white gastrocnemius muscles, composed

primarily of type II fibers. ROS production, which is a weII-known PTP inducer, was

lower in mitochondria from soÏeus compared to the other muscles implying that factors

other than ROS were involved. One of these factors appeared to be the greater

endogenous Ca2 content within mitochondria from the soleus as compared to plantaris

and white gastrocnemius. However, this could not entirely account for the differences in

vulnerability to pore opening among muscles. We observed that the expression ofANT

and VDAC, two putative PTP components, vas significantly greater in mitochondria

from soleus compared to mitochondria frotii the other muscles, which may increase the

likelihood that these proteins undergo conformational changes under conditions that

favor PTP opening. On the other hand, pharmacological and molecular evidence

indicated that CypD expression was similar across muscle types suggesting that this

pmtein was not involved, This leU us to speculate that the existence of a fiber type

specificity in the regulation oC PTP opening could at least partly account for the

heterogeneous progression of neuromuscular disorders across muscles.

1.2 Introchiction to tue re ‘ici i’ of Ïiterctture

The review of literature is divided into four main sections. The objective of the

first section is to provide the reader with an overview of skeletal muscle fiber types and

some of the particular aspects that are pertinent to the understanding of disuse atrophy.

In particular, the literature available on the differences in mitochondrial profile that

exist between muscles with different metabolic and contractile phenotypes wiII be

reviewed.
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The second section ofthe review will focus on muscle disuse. First, an overview of

the experimental models from which much of our understanding with regards to how

muscles react to disuse was obtained will be presented and some of the classic changes

that occur with disuse will be reviewed. As one of the important mechanisms

responsible for the ioss of muscle mass involves an mci-case in protein degradation and

a reduction in protein synthesis, some of the recent advances in the identification of

signaling pathways that could mediate these effects, including the Akt/PkB, nuclear

factor-kB (NFkB) and MAP kinase pathways and highlight the t-ole for these pathways

in apoptotic signaling will then be presented.

In the third section, an overview of the apoptotic machinery, inciuding the intrinsic

pathway of ccli death, where mitochondria are believed to play a pivotai role, is

presented. Given the nature of the experimental work presented in this thesis, the

consequences of PTP opening as weB as the structure of this pore and its regulation are

covered in more detail. finally, the fourth section of the review vil1 focus particularly

on ccii death in models of muscle disuse and on the evidence supporting a role for

mitochondria in this process.

2 SKELETAL MUSCLE FIBER TYPES

2. 1 Contractile proteins

Skeietal muscle tissue is composed ofheterogeneous muscle fibers with different

contractile and metabolic profiles. This fiber diversity confers, to a certain extent, the

propetly of adaptability to skeletal muscles. Mammalian skeletal muscle is a

multinucieated, highly specialized tissue made up of fibers with a diverse range of

properties (Schiaffino & Reggiani, 1996; Bottinelli & Reggiani, 2000). The general

properties of a given muscle typically resuit from the distinct properties of the

represented fiber types combined with their proportions. The classification of muscle

fibers into slow and fast ‘types’ is based primarily on the kind of myosin heavy chain

(MHC) isoform predominantly expressed (Schiaffino & Reggiani, 1996). Myosin is

considered the main structural and reguiatory protein in skeletai muscle and plays a

prominent i-ole in dictating skeletal muscle functional and contractile properties. in the
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limb muscles of the rat, the MHC protein exists as four main isoforms: the slow type I

and the fast types lia, lix, and lIb. Table I summarizes the proportions of MHC

isofoms in selected muscles ofhumans and rats. Interestingly, protein expression ofthe

11h MHC isoforni is lacking in humans (Pereira Sant’Ana et aI., 1997).

Table 1-1: Comparison ofMNC isoforms in selected muscles of the rat and human

Rat Human

Muscle I lia lix llb I lia lix

Soleits 89 1 1 0 0 67 27 6

MedialGastrocnemius 7 10 25 58 58 27 15

VastusLateralis 0 0 2 98 39 43 18

Values are in percent (%). Table adapted from Talmadge, 2000.

In addition to the foctr major MHC isoforms already mentioned, other isoforms

have been identi lied including embryonic, neonatal, extraocular, and laryngeal-specific

isofbrms (Pette et cii., 2000), but their expression levels in 11mb muscles are negligible

and therefore, will not be further discussed. Siiice the contractile properties of a muscle

liber are in large part determined by the MHC composition (Bottinelli & Reggiani,

2000; Reiser et al., 1985; Schiaffino & Reggiani, 1996; Fitts et al., 1998; Widrick et cil.,

1999), the nomenclature for the four major liber types identified in Iimb muscles

suitably follows the type ofMHC isofomi present (i.e. liber types are designated as type

I, liA, I1X, or IIB) (Rivero et ctÏ., 1998). Presently, there is some debate as to whether or

not discrete’ fiber types even exist as it is becoming increasingly evident that liber

types might actually exist on a continuum of contractile velocities and metabolic

properties rather than representing discrete entities (Talmadge et aï., 1993; Pette et aï.,

2000).

2.2 Proteins invoÏved in excitcttion-contraction coupÏing and Ca hanclÏiiïg

Although slow and fast-twitch skeletal muscles are used to perform distinct

functions, ah vertebrate skeletal muscles have the same basic structure and use the same

basic contractile system (Rome & Lindstedt, 1998). It is the specific modifications of

the proteins involved in the contractile system that allow the muscles to perform these
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diverse tasks. Both qualitative and quantitative modifications of several muscle proteins

seem to underlie the physiological differences between slow and fast twitch libers. For

instance, slow-twitch libers, compared with fast-twitch libers, contain siower MHC

isoforms, which have a reduced maximal velocity of shortening (Reiser et al., 1985), a

decreased content of sarcoplasmic reticulum (SR) (Appeit et cil., 1989), with a siower

isoform ofthe Ca2 pump (SERCA2 in slow-twitch vs. SERCAI in fast-twitch) (Lytton

et cii., 1992), and a lower concentration of the cytoplasmic Ca2 buffering protein

parvalbumin (Heizmann et cii., 1982). Calsequestrin, a Ca2 binding protein located in

the lumen of the SR, also bas a unique isoform expression pattet-n in slow-twitch and

fast-twitch muscles of rabbit and rat (Damiani & Margreth, 1994). Finally, the

ryanodine receptors are also considered a part of this molecular excitation-contraction

associated machinery that varies across liber types and molecular evidence indicates

that distinct isoforms of ryanodine proteins are expressed in tuna slow- and fast-twitch

skeletal muscle (Franck et ciL, 1998). During transitions in muscle liber type, these

proteins are co-regulated with the expression ofspecilic MHC isoforms.

2.3 The nivonucÏear domain

A special feature of skeletal muscle libers compared to most other ceils is that

they are multinucleated and successive muscle liber segments are controlled by

individual nuclei. Mammalian skeletal muscle libers have been shown to maintain a

relatively limite, liber type-specilic relationship between myofiber size and myonuclear

number (Hikida et cii., 1 997). In fact, the relationship between myonuclear number, ceil

size, succinate dehydrogenase activity (a marker of mitochondrial density), and MHC

type bas previously been examined in single liber segments mechanically dissected

from soleus and plantaris muscles of rats (Tseng et cti., 1994). The resuits from this

study show that cytoplasmic volume per myonucleus is higher in fast and slow plantaris

libers (112 vs. 34 x microns3) than fast and slow soleus libers (40 vs. 30 x i03

microns3), respectively. The authors report that slow libers always had srnall

cytoplasmic volumes per myonucleus, regardless of liber diameter, succinate

dehydrogenase activity, or muscle oforigin. Slow soletis libers had signilicantly greater

numbers of myonuclei/mm than did either fast soleus or fast plantaris libers (116 vs. 55

and 44, respectively). These data suggest that the size of the myonuclear domain is
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more limited in slow than fast fibers, and in the fibers with a high, compared to a low,

oxidative metabolic capacity (Tseng et aÏ., 1994).

Interestingly, the myonuclear domain maintains a degree of plasticity by adapting

to changes in muscle fiber size, and likely phenotype. The atrophic response due to

unloading on the number of myonuclei, and size of the myonuclear domain in fibers of

rat hindlimb muscles bas been studied. It would appear that as a muscle undergoes a

disuse-induced phenotypic transition from slow-to-fast or from fast-to-faster, existing

myonuclei are eliminated to support not only the reduction in fiber size, but also the

inherent change in phenotype. Although intuitively sound, this rationale implies that it

is fiber phenotype and size that dictate myonuclear number. The question bas been

raised whether the loss of myonuclei in response to muscle disuse is the early event

which causes muscle atrophy and slow-to-fast directional transitions in fiber type. Most

studies have shown that the loss of muscle mass becomes significant between 3 and 7

days following the onset ofdisuse (Allen et al., 1997; Krawiec et ctÏ., 2005) even though

protein syntbesis is suppressed as promptly as 6 hours after muscle disuse (Watson et

al., ] 984; Thomason et cil., 1989). However, a very recent study shows that in response

to unloading of the rat hindtimb muscle, loss of myonuclei is already increased at a time

when no measurable loss of muscle mass or cross sectional area has occulTed,

suggesting that myonuclear loss is an early, and possibly the causative event in the

process of muscle atrophy (Dupont-Versteegden et cii., 2006). The significance of this

observation needs further investigation since it is still unclear whether loss ofmyonuclei

initiates, or occurs as a consequence ofthe Ioss of muscle mass during atrophy.

2.4 Mitochondrictl profiles

Beside substantial differences in contractile proteins, components involved in

excitation-contraction coupling, and size of myonuclear domains, muscle fibers also

dispÏay dramatic differences in their metabolic profile. Given that in the present thesis a

main focus is on mitochondria, this section examines differences in the mitochondrial

profile that occurs across muscle fiber types including quantitative differences in

mitochondrial volume density as well as qualitative differences that may exist in terms

of ultra—structure, function, and regulation of respiration.
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2.4. 1 MitochoncÏrictÏ voïmne densitv

The most important difference in mitochondrial profile that can lie observed

across fiber types is the volume of muscle ceils occupied by mitochondria, which lias

been termed mitochondrial volume density. Morphometric analysis of electron

micrographs obtained from muscles with different fiber type compositions indicate that

mitochondrial volume density is approximately 6 ¾ in soleus, a muscle composed

predominantly of type I oxidative libers (Schwerzmann et cii., 1989). In type lia fibers,

which have a high capacity for oxidative phosphorylation as well as for glycolysis,

mitochondrial volume density is similar and in rat specifically, may even reach higher

values than type I libers (this is not the case in humans where type 1 lIa (Gardiner,

2001)). 0f note however, mitochondria in lia fibers appear smaller and more numerous

compared to type I libers in which mitochondria are less numerous but larger (Shah &

Sahgal, 1991). Finally, type Ilb fibers have the lowest mitochondrial density at 2-3 % of

liber volume (Schwerzmann et ai., 1 989), which reflects their high dependence on

glycolysis for ATP productiori.

2.4.2 Intrinsic properties ofmitochoncÏria

Although it is clear that skeletal muscle exhibits considerable variation in

mitochondrial volume density among liber types, it is less clear whether the

mitochondria also present specific functional characteristics and/or distinct regulatory

properties that allow fine adjustments of mitochondrial performance to the conditions

and needs encountered in various libers. The few studies available on this topic have

used mainly mitochondria (or less frequently saponin-permeabilized libers) isolated

from fast and slow muscles from rabbits (Jackman & Willis, 1996; Howlett & Willis,

1998; Gueguen et cii., 2005a; Gueguen et aï., 20051), cats (Schwerzmann et aÏ., 1989),

pigs (Gueguen et ai., 2005e), and rats (Pande & Blanchaer, 1971; Yajid et aï., 199$;

Capel et ai., 2004; Mogensen & Sahlin, 2005 Anderson & Neufer, 2006), which

express predominantly type 11h and 1 libers, respectively. Fish white and red muscles

have also been used because they offer the unique advantage of having muscle

compartments with very homogeneous liber types (Leary et ai., 2003). As discussed



10

below, properties that have been compared include mitochondrial enzyme content,

respiratory capacities, coupling efficiency between oxidation and phosphorylation,

proton conductance of the inner membrane (the so—called proton leak), membrane

fluidity, and production ofROS.

2.4.2.1 En:’inoÏogv ctnc/ respiraton’ capacitv

The measurement of maximal respiratory capacity in the presence of various

respiratory substrates has been measured in several studies. The group of Weibel in

Switzerland (Schwerzmann et cii., 1989) reported that maximal ADP-stimulated

respiration vas similar in mitochondria isolated from the cat soleus and gracilis muscles

when energized with a combination of substrates feeding the respiratory chain at the

level of complex I (pyruvate-malate, glutamate-malate), complex II (succinate), as well

as complex IV (reduced cytochrome c after rupture of the outer membrane) (Figure I -

lA). Similarly, Yajid et al. (Yajid et ciL, 1998) observed no significant difference in

maximal state 3 respiration of mitochondria isolated from several rat muscles (soleus,

extensor digitorum lougus (EDL), tibialis anterior (TA), gastrocnemi us) nei ther in the

presence of glutamate-malate nor succinate (Figure l-lB). This lack of difference also

appeared in mitochondria isolated from red and white muscles in fish (Figure 1-1 C),

which displayed nearly identical rates of state 3 respiration in the presence ofpyruvate

malate (Figure 1—1 D). Finally, in mitochondria from rabbit muscle, state 3 respiration in

the presence of pyrctvate-malate xvas repoiÏed to be significantly (25 %) higher in

mitochondria from the soleus compared to the fast gracilis muscle (Jackman & Willis,

1996), while no difference vas observed with the respiratory substrate 2-oxoglutarate.

In general, the available data suggest that the respiratory capacity per milligram of

mitochondria! protein is fairly constant act-oss fiber types and that upregulation of

mitochondrial volume density is probably the main mechanism by which the oxidative

potential ofa fiber can be increased.

This relative similarity in respiratory capacity in mitochondria across fiber types

is in general agreement with the available data regarding enzyme content. Indeed, Leary

et al. (Leary et cii., 2003) reported that the activity ofthe respiratory chain complexes (I,

11, 1+111 and IV) as well as that ofthe ATP synthase (complex V) and citrate synthase
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Figure 1-1:

E fish red muscle
fish white muscle

Respiratory properties measured in mitochondria isolated from skeletal muscles with oxidative and
glycolytic phenotypes in rabbit (panels A and D), rat (panel B), and fish (panel C). Respiratory
rates are expressed per mg of mitochondrial protein and were determined in the presence of various
substrates: substrates for complex I (pyruvate (Pyr) + malate (Mal), glutamate (Glut) + Mal, 2-
oxoglutarate (2-0G)); complex II (succinate); and exogenous cytochrome c (Cyt C) (following
rupture of the outer membrane). Abbreviations for panel B: Sol: soleus; EDL: extensor digitorum
longus; TA: tibialis anterior; Gastroc: gastrocnemius.
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vas similar overafl in mitochondria isolated from the white and red muscles ofrainbow

trout (Figure 1-2A). However, the activity of aconitase and 2-oxoglutarate

dehydrogenase, two other enzymes of the TCA cycle, was significantly lower in

mitochondria from white compared to red muscle, which lcd this group to suggest that

subtie differences in the stoichiometry of TCA cycle enzymes cou Id occur across fiber

types (Figure l-2A). Schwerzrnann et al. (Schwerzmann et aÏ., 1989) also reported that

the activity of complex IV of the respiratory chain was similar in mitochondria isolated

from cat soleus and gracilis. Similarly, Philippi and SiÏlau (Philippi & Sillau, 1994)

reported that the content ofcytochromes c+cj and ct+a3, which provide an indication of

the content of cytochrome c as well as complexes III and 1V, was similar in

mitochondt-ia isolated from the white gastrocnemius and soleus muscles in rats. 0f note,

this study analyzed the subsarcolemmal (SSM) and intemiyofibrillar (IMF)

mitochondria separately and found no difference between the two populations of

mitochondria neither within nor between muscles (Philippi & SiIlau, 1994) (Figure 1—

23 and C).

In stark contrast with these studies, Jackman and Willis (Jackman & WilÏis,

1996) reported that in rabbit muscle, the activities of several complexes of the

respiratory chain were 1.6 to 2.0 fold greater in mitochondria from the soleus compared

to the gracilis (Figure I -3A). Although the differences were more modest, they also

observed higher activities for citrate synthase and malate dehydrogenase. On the other

hand, isocitrate dehydrogenase activity was two-fold higher in the gracilis compared to

soletis (Figure 1—33). These data are somewhat surprising given that in this study,

maximal state 3 respiration was unchanged (in the presence of 2-oxoglutarate) or only

25 % higher (in the presence of pyruvate + malate) in the mitochondria from the soleus

compared to the gracilis (figure 1 -4). Except for this apparent discrepancy, the data

available in the literature would sciggest that mitochondria from different liber types do

not substantially differ with respect to the maximal capacity ofthe respiratory chain.

However, under some conditions, differences do appear between mitochondria

of slow and fast mctscles. This is the case when mitochondria are energized with lipid
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Activity or content of enzymes of the respiratory chain, TCA cycle and f3 -oxidation pathway in
mitochondria isolated from fisli and rat muscles. Abbreviations in panel A are : HOAD:
hydroxyacyl-CoA dehydrogenase; OGDH: 2-oxoglutarate dehydrogenase, CS: citrate synthase, I
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Activity or content of enzymes of the respiratory chain, TCA cycle and -oxidation pathway in
mitochondria isolated from rabbit muscles. Data ai-e from Jackrnan and Willis (1996). In panel A,
numbers on the x-axis refer to the respïratory chain complexes. In panel 3, abbreviations are the
following: CS: citrate synthase; MDH: malate dehydrogenase; IDH: isocitrate dehydrogenase.
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A Mogensen and Sahlin (2005) B Jackman and WiIIis (1996)

Figure 1-4:
Respiratory properties measured in mitochondria isolated from skeletal muscles with oxidative
and glycolytic phenotypes in rat (panel A) and rabbit (panel B). Respiratory rates are expressed
per mg of mitochondrial protein and were determined in the presence of lipid substrates
païmitoyl camitine + malate (PC+M) or glycerol-3-phosphate (G3P).
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substrates or with glycerol-3-phosphate, a glycolytic intemiediate involved in the

shuttling ofcytosolic reduced equivalent to mitochondria. Indeed, both in rat and rabbit,

mitochondria from slow oxidative muscles (soleus) display a higher state 3 respiration

in the presence ofpalmitoylcarnitine compared to mitochondria from glycolytic muscles

(EDL or gracilis) (Figure I -5A and R). These data are consistent with the fact that the

activities of enzymes of the -oxidation pathway such as hydroxyacyl-CoA

dehydrogenase are 1 .6 to Ï .9-fold higher in mitochondria from oxidative vs glycolytic

muscles (Figure I -4A and B). This difference also appears consistent with the fact that

oxidative muscles derive a significant portion of their energy from the oxidation of

circulating fatty acids and express much higher levels of proteins involved in

sarcoiemmal fatty acid transport (FAT/CD36, FATP, FABP1) and fatty acid

intracellular binding (fABP) (Bonen et ci!., 2002).

Conversely, because in type IIb fibers the high glycolytic rates achieved during

short burst contractions are likely to resuit in the accumulation of cytosolic reducing

equivalent and glycolytic intermediates, mitochondria in these fibers may have an

increased capacity to shuttle cytosolic reducing equivalent into mitochondria for

oxidation. The only available evidence to support this possibility cornes from the study

by Jackman and WiIlis (Jackman & WiIlis, 1996) which showed that compared to

mitochondria from the soleus, mitochondria from the rabbit gracilis muscle had a ten—

fold higher state 3 respiration when glycerol-3-phosphate was the respiratory substrate

(Figure 4B). They showed that this was probably due to the fact that mitochondria from

the gracilis muscle expressed more glycerol-3-phosphate dehydrogenase and were thus

able to produce mitochondrial FADH2 at a much higher rate. Therefore, at least in the

rabbit, glycolytic muscles may depend more on the Œ-glycerolphosphate shuttie

compared to other muscles in which the malate-aspartate shuttle may predominate

(Jackman & Willis, 1996).

Finally, it should be mentioned that although several mitochondrial properties

appear similar in mitochondria across muscle fibers at steady state, oxidative capacity

and the stoichiometric relationships among the various mitochondrial proteins can
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change acutely in response to signais that alter mitochondrial biogenesis. For example,

mitochondrial enzymes increase signiflcantly during myogenesis (Moyes et aÏ., 1997)

and during electrical stimulation of skeletal muscle (Henriksson et cii., 1986;

Henriksson et aI., 1989; Reichmann et ai., 1991), btit individual respiratory chain

complexes and TCA cycle enzymes do not change in parallel. This phenomenon is

probably related to the extreme complexity of the mitochondrial biogenesis program,

which involves several stimuli and transcription factors, the coordination of

transcription of genes located in two separate genomes (nuclear and mitochondriai),

importation of pre-proteins into mitochondria, and assembly of multi-complex enzymes

and holoenzymes (Hood, 2001; Moyes & Hood, 2003). It is thus possible that at least

transi torily, mitochondria undergo changes in their normai composition.

2.4.2.2 Coupling efficiencv, proton concÏuctctnce cinci mcm brune properties

Very few studies have investigated whether variations across fiber types exist

with respect to the coupiing efficiency of oxidative phosphorylation. This parameter,

known as the P10 ratio, is conventionally measured by adding a quantity of ADP to

isolated mitochondria and measuring the amount of oxygen constimed to phosphorylate

ADP into ATP. It is well estabiished that the P10 ratio decreases as respiration is

progressively decreased from maximal ADP-stimulated respiration to submaximal

respiration i-ates (Guaiger et cii., 2000). The reasons for which mitochondrial efflciency

is progressively lowered as respiration approaches resting values are complex.

However, one ofthe main factors appears to be that the proton Ieak, i.e. the passive re

entry of protons into the mitochondrial matrix, accounts for an increasing fraction of

respiration as it approaches resting values (Brand et aÏ., 1994), thereby increasing 02

consumption that is not devoted to ATP synthesis.

[n one ofthe earliest studies comparing P/0 ratios in mitochondria isolated from

different skeietal muscle fibers in the rat, Pande & Blanchaer (1 971) wcre unable to find

diTerences when using pyruvate or palmitoyl-camitine as suhstrate. 0f note, in this

study P/0 values were only measured at maximal respiration rates in the presence of

saturating amounts of ADP, which does not allow one to exciude the existence of

differences when mitochondria are respiring at submaximal rates (as is usually the case
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in vivo). However, Mogensen and Sahlin (Mogensen & Sahiin, 2005) recently

compared the P/O ratios over the entire range of respiratory capacity in mitochondria

isolated from the rat soleus and the fast EDL. These authors reported no significant

difference in the P/O ratios between mitochondria from the two muscles, both in the

presence of pyruvate or palmitoylcamitine (figure i-5). Direct measurement of proton

leak also revealed an absence of significant difference in mitochondria isolated from red

and white fish muscle (Leary et aï., 1998). However, these authors noted that when

proton leak vas expressed per unit of complex IV instead of per mg of total

mitochondrial proteins, the leak appeared greater in mitochondria from white compared

to the heart or red muscle. The attthors argued that ctnder certain circumstances,

normalization against a marker of the respiratory chain capacity cotild be more

appropriate than total protein to express mitochondrial parameters. Leary et aï. (Leary et

ciL, 2003) also determined the fluidity of mitochondrial membranes since local Iipid

environment can affect structure and function of mitochondrial proteins. These authors

observed that the membrane fluidity of mitochondria in red muscles was significantly

greater than in white muscles. This phenomenon could be due to many factors including

variations in phospholipid profiles (i.e. chain length, saturation, or cardiolipin content).

However no information is available regarding the phospholipid profile in mitochondria

across fiber types and it also remains unclear how this could affect the in vivo activity of

membrane-bound proteins. Taken as a whole, these data suggest that although some

membrane properties and the proton leak may slightly differ, the coupling efficiency of

mitochondria appears to be relatively constant across fiber types.

2.4.2.3 Sensitivitv of oxidcitive pïiosphor lcttion to ADP cmct creatine

One of the most striking and systematically repotted differences between

mitochondria from oxidative and glycolytic muscles relates to the mechanisms by

which changes in the concentration of cellular adenylates regtilate the rate of oxidative

phosphorylation. The maj ority of the experimental evidence in favor of such di fferences

has been obtained using saponin permeabilized fibres, which allows for the

investigation of mitochondrial function within a relatively preserved cyto-architectural

environment. Several stctdies have shown that the apparent K11 of mitochondrial

respiration for ADP is several-fold higher in slow oxidative muscles predominantly
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composed of type I fibers (200-300 iM for the heart and soleus) compared to muscles

expressing mainly type II fibres (10-30 iiM in EDL and white gastrocnemius) (Kay et

eT, 1997; Saks et aï., 1998; Braun et uT, 2001; Saks et cd., 2001; Seppet et al., 2001)

(Figure i-6). This apparently low sensitivity of oxidative fibers to ADP was shown to

be at least pailly due to the fact that the porin pore VDAC, which is responsible for the

transport of ADP across the outer membrane, has a low conductance for ADP in slow

compared to fast muscles (Saks et ctl., 1998). Indeed, if the mitochondrial outer

membrane is disrupted by a carefuiiy controlied osmotic shock, the K1, foi- ADP

becomes similar in both types ofmitochondria (20-30 j.tM) (Saks et aï., 1993).

Another important difference is that in mitochondria from oxidative muscles, the

phosphocreatine shuttie appears to play a predominant role in the control of respiration

compared to that observed in mitochondria from glycolytic muscles (Kay et aÏ., 1997;

Saks et ctÏ., 199$; Braun et cd., 2001; Saks et ctï., 2001; Seppet et al., 2001). Indeed,

mitochondria from oxidative muscles express high levels of the mitochondriai isoforni

of creatine kinase (MiCK). MiCK is located in the intermembrane space where it

associates wjth VDAC in the outer mitochondrial membrane and the ATP/ADP

exchanger (i.e. ANT) of the inner membrane (Brdiczka et cd., 199$). In contrast to

ADP, the condtictance of VDAC for creatine coming from the cytosol is reiativeiy high

in ail muscles. Therefore in oxidative fibers, the presence of creatine allows MiCK to

preferentially use the ATP exiting the ANT exchanger to directly regenerate ADP in the

mitochondria thus acting as a powerfui stimulator of oxidative phosphorylation (Figure

1-7; scheme ofthe CK shuttie).

Finally, recent evidence also suggests that subtle differences in the regulation of

respiration by the ATP/ADP ratio exist between mitochondria isolated from oxidative

and glycolytic muscles, independent ofthe phosphocreatine shuttie. Indeed, Gueguen et

al. (Gueguen et aï., 2005e) showed that in mitochondria from glycolytic muscle,

respiration was more sensitive to inhibition by ATP compared to mitochondria from

oxidative muscle. Given that the ANT exchanger is known to exert a significant amount

ofcontrol over respiration (Groen et cd., 1982), the authors posttilated that the content
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Figure 1-7:
Schematic representation of the phosphocreatine shuttie network in muscle celis. In
mitochondria, die specific isofomi ofcreatine kinase (MiCK) form an octamer that is structurally
and functionally coupled to porin pores (P) in the outer membrane and the ATP/ADP exchanger
(AT) of the inner membrane. Cytosolic creatine generated by CK isozymes located at sites of
ATP consumption enter mitochondria through porin pores and stimulates MiCK. MiCK through a
preferential access to mitochondrial ATP vill generate ADP at the vicinity of AT exchangers
resulting in a powerful stimulation of respiration. This system is predominant in oxidative
muscles such as the heart and soleus. On the other hand, it is virtually absent in mitochondria
from fast muscle. Instead, in these muscles mitochodondrial respiration is directly regulated by
changes in cytosolic ADP. Diagram originally pubhshed by WalÏirnann et al. (1992).
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or the regulation ofANT could be different in both types ofmitochondria.

In general, the literature available on the regulation of respiration indicates that

in glycolytic muscles, respiration is predominantly regulated by changes in cytosolic

[ADP] and ATP/ADP ratio, while in oxidative muscles, respiration is predominantly

regulated by the phosphocreatine circctit which couples sites of ATP consumption to

sites ofATP production.

2.4.2.4 Procluction ofrectctive ox’ ‘gen species (R OS,)

It is well established that the mitochondrial respiratory chain is one of the main

source of ROS in ceils. ROS production arises mainly from the Ieak of electrons at

complex I and III of the respiratory chain, which then react with 02 to produce the

superoxide anion (Brand et al., 2004; Muller et al., 2004; Andreyev et al., 2005).

Electron leaks at these sites are favored by conditions such as high membrane potential,

high levels of reduction of respiratory chain complexes, or physical damage to the

respiratory chain (Nicholls, 2004; Brand, 2005). Not surprisingÏy, mitochondria have an

elaborate antioxidant system composed of enzymatic and non-enzymatic mechanisms.

The main enzymatic system involves the mitochondrial isoform of superoxide

dismtitase (MnSOD) which converts the highly toxic superoxide anion into the

somewhat less reactive F1202 (Fridovich, 1995). Other enzymatic systems discovered

more recently involve specific mitochondrial isofomis of thioredoxin (TRX-2) and

peroxyredoxin (Prx-3) which work in concert to scavenge H202 (Tanaka et ctÏ., 2002;

Yamawaki & Berk, 2005; Matsushima et cii., 2006). finally, the main non-enzymatic

system is the mitochondrial reduced gluthatione pool and the enzymes associated

glutathione metabolism (glutathione peroxidase and reductase) which are also involved

in H202 scavenging.

Only three studies have determined whether mitochondrial ROS production

varies across muscle fiber types. Recently, Anderson et al. (Anderson & Neufer, 2006)

measured rates of H202 production by mitochondria in situ in saponin pemieabilized

fiber bundies from muscles with distinctive fibers types including the soleus (type I),

the red gastuocnemicts (type lIA) and the white gastrocnemiLls (type IIB). If H202
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production was soiely a function of mitochondrial content, then tiber bundies from

soletis and red gastrocnemius muscles would be expected to generate the highest levels

ofH2O2 production. Surprisingly, these authors observed that mitochondrial free radical

leak (II2O2 produced/02 consumed) was two- to three-fold higher in white

gastrocnemius (type 113) than in red gastrocnemius (type lIA) or soleus (type I) muscle

libers during basal respiration supported by complex I or complex II substrates (Figure

l—8) despite the fact that the number of mitochondria in white gastrocnemius was 50 %

less. When normalized for mitochondrial content, total H202 scavenging capacity was

lower in red gastrocnemius and white gastrocnemius libers, whereas glutathione

peroxidase activity, which is largely responsible for H20? removal in mitochondria, was

similar in ail three muscle types indicating that factors other than the activity of this

enzyme were responsible for the lower scavenging capacity in white gastrocnemius.

The fact that mitochondrial H202 production observed among the three types of muscle

libers did not mirror diffetences in respiratory capacity or mitochondrial content

suggest that mitochondria possess distinct features that affect their ROS production

and/or removal. It would appear that type Il muscle fibers, particularly type 113, possess

unique properties that potentiate mitochondrial H202 production and/or release

(Anderson & Neufer, 2006). Similarly, the results of another study measuring

mitochondrial ROS production in various muscles of the rat show that in soleus muscle,

glutamate/malate (complex I) supported mitochondrial H202 release vas lower than in

tibialis anterior muscle (Capel et cii., 2004), consistent with the observations reported by

Anderson et al. (Anderson & Neufer, 2006). Leary et al. (Leary et cd., 2003) made a

similar observation in fish when mitochondria isolated from red and white muscles were

compared. 0f note, in this study, Leary et al. repoiled that the activity ofthe TCA cycle

enzyme aconitase was significantly lower in mitochondria from white muscle. This

phenomenou could be at least paiÏly due to the greater amounts of ROS produced in

these mitochondria as it is weIl known that aconitase is very sensitive to inactivation in

the presence ofoxidative stress (Benderdour et cii., 2004).

As a general conclusion to this section, it appears that despite the fact that

mitochondria from different liber types may not differ substantially in terms of maximal

respiratory capacity, they do have distinct properties at least in terms ofregulation of
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Panel A shows the production of reactive oxygen species (expressed as a % of °2 consumed) from
complex I and III of the respiratory chain is significantly higher in saponin permeabilized liber
bundies from the white gastrocnemius (WG) compared to more oxidative muscles such as the
soleus (Sol) or the red portion of the gastrocnemius (RG). This phenomenon is observed both in
the presence of substrates feeding complex I (pyrctvate + malate (Pyr/Mal)) and Il (succinate) of
the respiratory chain. Panel B shows total ROS scavenging capacity in liber bundles from the three
muscles expressed per mg of dry liber weight or per unit of citrate synthase (CS) to take into
account differences in mitochondrial content. Data from Andersen and Neufer (2006).
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respiration and production of ROS. It is entirely possible that other differences exist as

weÏI, however, further studies ai-e needed to explore this possibility. 0f note, there is

apparently no study availabie regarding possible variations across fiber types in the

mitochondriaÏ ptoperties that pertain to their t-ole in the initiation of ccli death. For

example, the question of whether differences exist in the mitochondrial content of

several proteins involved in the regulation of apoptosis remains to be established. In

addition, there are currently very few studies available on the mitochondrial PTP in

skeletal muscle (Fontaine et ctL, 199$a; Irwin et al., 2003) and none have investigated

whether its regiLlation varies across fiber types. Cleariy, these questions need to be

addressed especially in the context of understanding the response of muscle fibers to

dis use.

3 SKELETAL MUSCLE ADAPTATIONS TO DISUSE

In this section of the literature review, the response of muscle fibers to distise will

be discussed. First, an overview of the experimental models from which much of our

understanding of how muscles react to disuse vas obtained will be presented, followed

by an overview of some of the classic changes that occur in muscle in t-esponse to

disctse. The molecular etiology of muscle disuse will then be discctssed. As one of the

important mechanisms responsible for the loss of muscle mass involves an increase in

protein degradation and a reduction in protein synthesis, this section will present some

of the recent advances in the identification of factors that couid mediate these effects,

including stimuli such as mechanical stretch and signaling pathways such as the

Akt/PkB, nucleat--factor-kB (NFkB) and MAP kinase pathways. The t-ole that these

pathways play in apoptotic signaling will also be highlighted.

3. 1 MocÏeÏs ofclisztse ancÏ overview ofintisele response to disuse

Since it is difficult to investigate the mechanisms responsible for disLise muscle

ati-ophy in humans, most investigations have used laboratory animais (namely mice,

rats, rabbits, cats, and guinea pigs) to understand the underlying causes and ceilular

pt-ocesses implicated in muscle remodeling following disuse. These models vary in their

degree of invasiveness and extent of muscle inactivation ranging from essentially
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complete muscle inactivity (nerve blockade, denervation, and spinal cord isolation) to

decreased weight bearing and mechanical activity (hindlimb suspension, limb casting,

spaceflight). Although comparisons of available muscle disuse atrophy data are

confounded by differences in species, type of muscles studied, duration of disuse, and

the use of different immobilization techniques, sorne of the important effects on muscle

morphology, function and expression of proteins that dictate the contractile phenotype

are summarized below.

3.1.1 Moipiiologiccii and/imctionaÏ chcmges cissociated wit]i inusctiÏar inactivitï

It bas been repeatedly shown that immobilization ofthe hindlimb ofthe rat resuits

in preferential atrophy of slow twitch fibers compared to fast twitcb fibers (Booth &

Kelso, 1973; Fitts et cii., 1986; Thomason & Booth, 1990; Qishi, 1993; Talmadge et ciL,

1996a; BaÏdwin & Haddad, 2001). Although the underlying cause for this fiber type

disparity is unclear, one hypothesis used to explain this widely observed phenomenon is

that wasting may be greater in those muscles that are used more regularly. This is based

on the rationale that in frequentÏy used muscles, the disuse stimulus is petceived to a

greater magnitude, as there is a larger difference between the normaI’ usage pattems

and disuse (Musacchia et cii., 1988; Hudson & Franklin, 2002). Sitice fast twitch fibers

are typically recruited only intemiittently or during high force—requiring movements, the

relative size ofthe disuse stimulus is proportionately smaller than that observed by slow

twitch fibers. Thus, tbe elicited atropbic response would be comparably larger in slow,

relative to fast twitch fibers.

Although muscle atropby is one of the most predictable consequences of disuse,

this adaptation is also associated with significant alterations in the functional properties

of muscle, which again can vary according to the type of muscle. The debilitating

effects of disuse on muscle strengtb and susceptibility to fatigue have been documented

(Feu et ut., 1985; McDonald et cii., 1992; falempin et cii., 1997). lndeed, in a study by

\Vitzmann et al. (Vitzmann et ai., 1983), soleus and EDL muscles were stimulated to

contract in situ following hindlimb immobilization for a 6 week period. These

investigators observed significant fatigue, as measured by a loss of muscle contractile

tension over a stimulation period lasting 30 minutes. Compared to control muscles,
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atrophied muscles exhibited a greater reliance on anaerobic energy production, as

suggested by a greater rate of glycogen disappearance. Thus, disused muscles show

increased fatigability and this may be partÏy attributable changes in the muscle’s

substrate utilization (Baldwin et cd., 1993; Grichko et ai., 2000). In response to disuse,

the decrease in muscle strength or twitch force appears to be commensurate with the

degi-ee of muscle atrophy, with the effect being generally more significant in soleus

muscle. A reduction in force production (twitch and tetanic tensions), and decreases in

the time to peak tension during the twitch have been reported in soleus muscle in

response to unloading by hjndÏimb suspension for two weeks (falempin et ctt., 1997).

Similarly, \Vitzmann et al. (Witzmann et cd., 1982) cast immobilized the hindlimbs of

rats for a period of l-42 days and noted significant reductions in the time to peak

tension development and 4 relaxation times in soleus muscle whereas in EDL muscle,

both speed-related contractile parameters became prolonged by immobi lization. This

effect occulTed early in the disuse period and vas suggested to be related to alterations

in function of the SR. Similar studies by Templeton et al. (Templeton et uT, 1984)

confirm these findings in soleus muscle reporting a decrease of 25% in the time to peak

tension development and Y2 relaxation tirnes following suspension for 2 weeks. The

preci se mechani sms for these changes in functi onal parameters remain unc lear however.

It seems reasonable to suggest that a combination ofdecreased muscle strength, shifts in

fiber phenotype, and aÏtered metabolic capacities may ail contribute.

3.1.2 Chctnges in plvteins tÏiat cÏictatephenotpe in response to muscle inctctivity

MHC gene regulation is a highly adaptable process that is modulated by a variety

of factors through finely orchestrated cellular processes. Changes in the mechanical

load, contractile activity, and the electrical activity typically experienced by a muscle

can resuit in modifications in the MHC composition of its fibers. In studies using the

model of hindlimb unloading in rodents, a shift in MHC isofomi from slow—to-fast

accompanied by a transition from lipid towards carbohydrate metaboiism is commonly

reported and appears more pronounced in tonically-contracting postural muscles (Fitts

et ai., 1986; Oishi, 1993; Talmadge et aï., 1996a; Baldwin & Haddad, 2001). Although

the effects of unloading in fast muscles are not as pronounced, the changes can

nevertheless be described as a transition in profile from fast-to-faster (Adams et ai.,
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2000; Stevens et cii., 2000). This phenomenon is consistent with the notion that atrophy

in fast muscles, that are not frequently recruited, is less than in tonic postural muscles as

previously mentioned (section 3.1.1). Similar transitions in MHC profile have also been

reported following neuromuscular transmission blockade (Cormery et cii., 2000) and it

is likely to occur in other animal models of disuse such as tenotomy, joint

immobilization and prolonged bed rest.

In humans, muscle disuse due to 11mb immobilization has been shown to induce a

shift in muscle fiber type. It was found that leg immobilization for 3 weeks caused a 9%

decrease in type I muscle libers, no change in type lIA fibers, and an increase of 7% in

type I1X fibers. These shifts in liber type were associated with a 28% decrease in type I

MHC and an increase of 200% in type lix MHC (Hortobagyi et ai., 2000). However, it

appears that the effects of disuse in humans are less apparent than in rodents, a

phenomenon that may be linked to the much higher metabolic rates of rodents

compared to humans. Indeed, Hudson et al. (Hudson & Franklin, 2002) observed that in

general, the extent of muscle disuse atrophy observed among species is highly

correlated with mass-specific metabolic rate, although a mechanistic explanation for

this observation has not been proposed.

Recent findings show that under specific conditions, individual muscle libers

may simultaneously express several MHC isoforms (di Maso et cii., 2000). Under steady

state conditions, the prominence of ‘hybrid’ libers containing multiple isofoniis of

MHC protein is typically low but the prevalence of such libers is known to increase

significantly in muscles undergoing a change in liber type (Talmadge et al., 1999) sLlch

as occur during disuse (Talmadge et al., 1996b; Caiozzo et ctl., 1998; Cormery et aï.,

2000). For instance, using specific antibodies to identify MNC isoforms in solects and

EDL muscle libers, Michel et al. (Michel et aï., 1996) reported that after two weeks of

pharmacological nerve blockade, libers ifom predominantly fast or slow muscles

display an increase in the proportion of libers containing multiple MHC isoforms.

Similarly, in our laboratory, previous studies performed by Coniiery et al. (Cormery et

cii., 2000) using immunohistochemical techniques have shown that the proportion of

libers displaying pure MHC isoforms in the rat soleus and gastrocnemius muscle after



30

two and four weeks of TTX paralysis is decreased. After four weeks of paralysis, only

14% of libers in the soleus contained pure type I MHC with the remaining libers atso

containing developmental (76%), lIa (26%), or lix (18%) MHC isoforms.

Curiously, the fast MHC isoform that increases the most in the unloaded rat

soleus is the lix isoform (Talmadge et cil., I 996a). This is surpi-ising considering that the

soleus muscle normally expresses type I and lia isoforms. It lias been proposed that the

new expression of primarily the type lix MHC isofomi is occurring at the expense of

type I, with littie or no increase in the lia isoform, suggesting that previously slow type

I libers might ‘bypass’ flic expression of type lia MHC and express type lix MHC

directly (Talmadge et ctÏ., 1996a; Caiozzo et cii., 1998). The authors note that these

observations shed some doubt on the established idea that muscle fibers are obligated to

follow a prescribed directional transition oftheir MHC isoform from I lia lix

11h (Andersen et cii., 1999). However, prior to making broad assumptions ofthis nature,

it is important to consider the possibility that the authors’ observation of littie or no

increase in lia MHC isoform does not obligatorily impiy a bypass of the latter isoform

in the transition from type I to lix. That the proportion of type lia remained unchanged

in this study does not necessarily mean that these are the sanie lia as previously

identilied. Thus, it seems that the sequential ‘nearest—tieighbour’ transitional scheme

proposed in 1992 by Pette and Vrbova (Pette & Vrbova, 1992) for tratisforming libers

remains a well-establ ished hypothesis.

3.1.3 The cctse ofmtiscie cienen’ation

3.1.3.1 Mitscle mass anclfiinctionctÏ properties

It is well known that neural activity is an important factor that determines muscle

phenotype (Pette & Vrbova, 1992; Fluck & Hoppeler, 2003). Thus, when neural control

is removed, as occurs in variocis muscle denervation disorders in hurnans and

experimental models of muscle denervation in iaboratory animais, muscle atrophy and

changes in fiber phenotype occur in both slow and fast muscles. The changes observed

in these situations are not otiiy catLsed by Iack of contractile activity but also by the

absence of nerve-derived trophic factors that are normaily delivered to the muscle via
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the neuromuscular junction and appear essential for the maintenance of normal muscle

morphology and function. These factors are not removed in other models of disuse

where the integrity ofthe motoneurons is preserved.

Loss of muscle innervation in rodents resuits in a loss of muscle mass that can be

detected after three days and is rapid in the ensuing two months. At the end of this

petiod, only 20 to 40 % of the original muscle mass remains and a significant portion

becomes occupied by connective tissue. The magnitude of mtiscle atrophy observed

following denervation is similar to that observed in models of muscle disuse in which

the motoneuron is not damaged which suggests that most, if not ail, of the loss in

muscle mass is caused by a lack of contractile activity. On the other hand, it is not

totally clear whether the atrophy varies across fiber types as conflicting resuits have

been reported in the literature. Indeed, early studies by Stonnington and Engel

(Stonnington & Engel, 1973) indicated similar levels of atrophy in red and white fibers.

In contrast, a more recent study lias shown that in the rat EDL, atrophy is only observed

in the fast fibers whereas slow fibers seem relatively unaffected (Borisov et aÏ., 2001).

As expected, denervation causes changes in muscle functional properties. There is

a profound reduction in single twitch and tetanic tension. However, in contrast to what

is observed in other models ofdisuse (see section 3.1.1), twitches become significantly

slower both in slow and fast muscles. The mechanisms responsible for this phenomenon

are not entirely clear but appear to be related to a prolongation of the muscle fiber

action potential (Macintosh et cil., 2005).

3. 1.3.2 Changes in protein expression clictctting metabolic ctncl contractile phenotipe

Several changes in the expression of proteins of the contractile and E-C coupling

apparatus occur following the loss of neural imput. It appears that the expression of

MHC I and IIb are decreased at the expense of an increase in the expi-ession of type lia

and lix (Huey & Bodine, 199$; Jakubiec-Puka et ctl., 1999). In the 1fB fibers ofthe rat

EDL mLlscle, several changes in E-C coupling proteins have also been reported

including a decrease in the expression of SERCA 1 protein isofonn, parvalbumin, and

calsequestrin (Germinario et aÏ., 2002). These changes, which are suggestive of a fast
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to-slow phenotype transition, have also been confirmed at the transcriptional level in

mouse EDL muscle 7 days after denervation. Results from microalTay analysis indeed

revealed a significantly reduced expression ofgenes for SERCA1 and parvalbumin, and

a downregulation of the gene coding for Myh4, the gene that codes for the IIb MHC

protein isoform (RaffaeÏlo et aÏ., 2006). In this study, in vitro experiments were also

perfomied on single fibers and showed that these changes in expression were associated

with a significant reduction in twitch time parameters, confirming the transition towards

a slow phenotype. It therefore appears that the increase in action potential duration as

well as alterations in Ca2 handiing (RaffaelÏo et aÏ., 2006), rather than modifications of

MHC profile, are the main factors responsible for the alterations in contraction velocity.

3. 1 3.3 Otïier changes with in muscle fibers

At this point, it is important to remark that muscle denervation is associated with

changes in fiber morphology and subcellular architecture that are either absent or

attenuated in other models ofdisctse and that are Ïikely attributable to the lack oftrophic

influence from motoneurons.

Beside simple atrophy, a fraction of the fibers within denervated muscles will

display signs of further degeneration after several months. This includes centralization

of myonuclei within muscle fibers, nuclear swel ling and fragmentation, disorganization

of sarcomeres, formation of cytosol ic vacuoles, thickening fol lowed by disintegration of

the sarcolemma, and invasion by monocytes (MacIntosh et ctt., 2005). These

phenomena constitute clear evidence that apoptotic and necrotic ceil death occurs in this

situation and may lead to degeneration of segments within some fibers or to the

complete loss offibers.

3.2 !vfoÏecular etiologr ofdisttse muscle atrophv

One of the most important mechanisms responsible for the Ioss of muscle mass in

response to disuse involves a dramatic reduction in protein content. This is achieved by

a dowti regulation of protein synthesis and by a simuÏtaneous acceleration in the

degradation of a number of proteins. Although elucidation of the signal transduction
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pathways mediating these effects remains incomplete in part due to their complexity, it

appears clear that atrophy is not the resuit ofa simple reversai ofhypertrophic signaling

pathways and that distinct mecbanisms are involved (Jagoe et al., 2002; Kaddad et aï.,

2003; Stevenson et aï., 2003; Lecker et al., 2004). This section will focus on some of

the identified factors that could impinge upon protein synthesis and degradation in the

disused state including stimuli such as mechanical stretch and signaling pathways such

as the Akt/PkB, NFkB, and MAP kinase pathways. The t-ole that these pathways play in

apoptotic signaling wilI also be highlighted.

3.2.] Tue Akt/PkB pctthwav

Akt is a serine-threonine kinase, also calied protein kinase B (PkB) that is

activated by P13 kinase and bas been shown to have growth-promoting effects in

skeletal muscle (Rommel et cil., 2001). Bodine and co-workers demonstrated the

importance of the P13 kinase/Akt pathway foi- inducing muscle hypertrophy by

regulating factoi-s essential to the protein synthesis process (BoUme et aï., 200 lb). Once

phosphorylated, Akt can promote muscle growth by influencing protein synthesis

through subsequent phosphorylation of mTOR, p7Os6k, and the translation initiation

ractor 4E-BP-l pathway.

Recent evidence suggests that chronically deactivated Akt plays an important

physiological i-ole in the progression of muscle atrophy by decreasing rates of protein

synthesis (Stitt et ctï., 2004; Song et cil., 2005). For example, it bas been shown that

suspension-induced atrophy of hindlimb muscles in the rat is associated with decreased

protein expression and phosphorylation of Akt, decreased activation of p7Os6k, and

increased binding of 4E-BPI to the transcriptional elongation factor eIF4E, suggesting

that the pathology of disuse nuiscle atrophy may involve a signaling defect in the

mTOR/ p7Os6k/ 4E-BPI pathway (Bodine et cil., 2001b; Hornberger et ctï., 2001).

Consistent with this une of evidence, it was shown that a knockout strain of mice

devoid of Akt experience significant muscle atrophy (Peng et al., 2003) whei-eas

overexpi-ession of activated Akt partially inhibited atrophy in denervated muscle

(BoUme et cil., 2001b). However, it presently remains unclear whether this latter

observation reflects the activation of a muscle growth pathvay or inhibition of a
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potential muscle atrophy pathway.

Interestingiy, Akt has also been described as a protein with anti-apoptotic

function. Although the mechanism by which signaling through the Akt pathway

prevents celi death remains unclear, it vas shown that Akt can directiy phosphorylate

and inactivate caspase-9 (Cardone et cii., 1998). It has also been shown that activation of

Akt is sufficient to inhibit the release of cytochrome c from mitochondria and inhibits

apoptosis and cytochrome e release induced by several proapoptotic Bel-2 family

members (Kennedy et cii., 1999). Taken together, these resuits show that Akt promotes

ccli survival by intervening in the apoptosis cascade prior to cytochrome c release and

caspase activation (Kennedy et cii., 1999).

Recently, Bodine and coworkers reported that activation of the Akt pathway

suppresses the activation of the E3 ligating enzyme atrogin-l and MuRF-1 through

activation of the forkhead box O (FOXO) family of transcription factors (Stitt et al.,

2004). FOXO is a class of transcription factors that shuttie between the nucieus and the

cytoplasm and are implicated in the regulation of genes involved in the atrophy process.

Upon phosphorylation, FOXO becomes sequestered in the cytoplasm and is thus

inactive. However, dephosphorylation of FOXO has been shown to cause its

transiocation to the nucleus where it activates cellular apoptotic processes (Sandri et ciL,

2004). Thus, reduced levels of activated Akt would be expected to lead to decreased

phosphorylation of the FOXO which would increase its nuclear translocation where it

may promote apoptotic activity.

Taken together these data suggest that the reduced expression and activity of

Akt observed in disused muscles could have a double effect. The flrst effect would be to

suppress growth while the second effeet wouid be the activation ofapoptosis. In light of

these observations, strategies that stimulate Akt signaling might prove effective in

preventing muscle atrophy.

3.2.2 The NfkBpatÏiwav

NFkB is a nuclear transcription factor complex expressed in several tissues
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including skeletal muscle and is formed by the association of its molecular members

into a heterodirner formation. The five nuclear transcription factors belonging to the

NFkB family include p60, p52, p50, c-ReI, and Rel-B, and ail family members are

present in skeletai muscle tissue (Hunter et aÏ., 2002). In its inactive form, NfkB is

sequestered in the cytopÏasm, bound by members ofthe 1kB famiÏy of inhibitor proteins.

The various stimuli that activate NFkB cause phosphorylation of 1kB, which is foiiowed

by its ubiquitination and subsequent degradation. This resuits in the heterodimer

association ofNFkB subunits and the subsequent transiocation ofthe activated complex

to the nucleus where it activates the transcription ofvarious genes.

Among the activators of NFkB, elevations in intracellular Ca2 (Hughes et cil.,

1998) and increased cellular levels oCROS (Schreck et cd., 1991; Li et cd., 1998) have

been identifled, both of which occur in atrophic muscle. Activated NFkB bas been

shown to regulate a large number of cellular processes including apoptosis,

inflammation, and cellular differentiation (Baldwin, 1 996), and bas been implicated in

muscle atrophy attributable to muscle disuse (Hunter et cd., 2002). Furtbermore,

sustained activation ofNFkB in muscle bas been sbown to lead to increased expression

of MuRF-1, a sarcomere-associated protein that is a component of the ubiquitin—

proteasome system of protein degradation and bas been shown to be up-regulated by

conditions that provoke atrophy (Bodine et cii., 200 la; Glass, 2003).

In a recent study by Hunter and coworkers (Hunter et ctÏ., 2004), it was reported

tbat 7 days ofmechanical unloading increases NFkB activity in the soletis muscle oftbe

mouse. Interestingly, the results of gene expression analyses suggest that the proposed

beterodimer formation that is operative during disuse atropby is different from the

beterodimer formation reported during cachexia—induced muscle atrophy (Hunter et cd.,

2002). This indicates that differetices exist in the molecular signaling for these two

types of atrophy and suggests that tbe NFkB pathway activated by muscle unloading is

distinct.

3.2.3 Role of inechanical stretch ctncÏ the MAP kincise pctth wai’

The importance of mechanical loading for the maintenance of skeletal muscle
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mass was first presented by Allan Goldberg. In 1975, Goldberg made the seminal

observation that when mechanical loading on a skeletaÏ muscle is increased by

tenotomy of a synergistic muscle, its weight may increase by 30-50% within a 6-day

period (Goldberg et al., 1 975). On the basis of these, and numerous other studies in

which the amount of loading bas been manipulated in an attempt to understand the

effects of tension on skeietal muscle, it bas become widely accepted that chronically

unloading a muscle resuits in a decrease in mass (Goldberg et aÏ., 1975; Goldspink,

1977; Vandenburgh, 1987).

More recently, knowledge at the celiular and molecular levels as to how

mechanicai forces regulate muscle size and function bas depended largeiy on in vitro

models using modem tissue engineering techniques (Vandenburgh, 1987; Vandenburgh

et al., 1991). In a ccli culture model using avian myotubes, Vandenburgh

(Vandenburgh, 1 987) demonstrated that mechanical stretch applied intermittently

produced a large increase in protein synthesis resulting in myotube growth. Consistent

with the important role of mechanicai tension and force in the regulation of muscle

mass, several studies have demonstrated the importance of passive muscle stretch to

prevent muscle fiber atrophy, and the loss of sarcomeres in immobilized muscle (Yang

et ai., 1997; Fowles et al., 2000; Gomes et al., 2006) and passive stretch is now

recognized as a powerful stimulant of muscle growth and protein synthesis (Loughna et

cii., 1986; Goldspink, 1999; Goldspink et cil., 2002). For example, it was shown that as

littie as one session of passive stretching per week applied to soleus muscle of rats

immobiÏized in the shortened position was sufficient to provide significant protection

against muscle fber atrophy (Gomes et aÏ., 2004). Similarlv, passive muscle stretch,

achieved by brief sessions of daily muscle lengthening in the absence of contractile

activity, was shown to maintain the structural integrity of muscle libers by significantly

reducing the formation of central core-like lesions in the soleus muscle of hindlimb—

suspended rats (Baewer et aÏ., 2004). While it is iiot entirely understood how

mechanical stretch counteracts the formation of central core-like lesions and protein

breakdown, results by Homberger and coworkers (Homberger & Esser, 2004)

demonstrate that intenittent passive stretch can activate mTOR—dependent signaling

events, but through an Akt—independent mecbanism. On the other hand, Siu and Aiway
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(Siu & Aiway, 2005a) suggest that stretch provides its atrophy-preventing effects on

muscle through modulation of apoptotic celi death processes. Speciflcally, these authors

show that following stretch of the anterior tatissimus dorsi muscle in an avian model,

the incidence of DNA fi-agmentation, and pro-apoptotic factors (discussed later in more

detail) ate reduced, whereas activation of inhibitors of apoptosis proteins (IAP) and the

content of chaperone heat shock proteins are elevated. The authors propose that

apoptotic components are responsive to stretch and the presence of mechanical stretch

may prevent muscle atrophy by pi-omoting anti-apoptotic processes (Siu & Aiway,

2005a). Therefore, while the importance of mechanicai forces and stretch for the

promotion of muscle growth through protein synthetic pathways is weil-recognized, an

apparent new role for mechanical stimuli in the protection against atrophy by promoting

anti-apoptotic processes is becoming unvei lcd.

Proteins of the MAP kinases constitute a family of intraceilular signaling

proteins associated with membrane-linked cytoskeletal proteins involved in the

transduction ofmechanical forces from the celi-surface to the ccii nucleus (Davis, 2000;

Sakamoto & Goodyear, 2002). These kinases are activated by a variety of signais,

including mechanical forces (Boppart et cii., 2001; Martineau & Gardiner, 2001; Kumar

et aï., 2003; Wang et cii., 2005). JNK is an identified member of the MAP kinase

family. In skeietal muscle, JNK is highly expressed and muscle contraction associated

with exercise lias been shown to robtistly increase JNK activity in both rats and humans

(Aronson et ai., 1997; Aronson et cii., 1998; Boppart et ai., 1999; Boppart et aÏ., 2000;

Boppart et aï., 2001; Widegren et cii., 2001). Furthermore, the involvement of JNK in

the transduction of mechanical forces from the ccli surface to the nucleus in skeletal

muscle has been demonstrated (Martineau & Gardiner, 2001; Csukty et al., 2002;

Homberger et cii., 2005). Considering the importance of mechanicai stimuli in the

regulation of muscle size and function, it is feasible to suppose that a period of

unloading, or absence of mechanical loading, might cause modifications in the muscle’s

capacity for transmission and/or detection of mechanical signais. lndeed, recent studies

have reported an increase in the basal JNK MAP kinase phosphorylation status in

muscle immediateÏy following a period of immobilization (Chiids et aï., 2003; Hiider et

ciL, 2003), aithough the significance ofthis observation is not entirely clear.
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The first study presented in this thesis vas designed to investigate the sensitivity

oC a mechanically-responsive signaling pathway in atrophic muscle following an acute

mechanical challenge. Speci fically, we examined the phosphorylation of the

mechanically sensitive JNK MAP kinase signaling protein in atrophied rat soleus

muscle in response to a mechanical challenge in sitti. The resuits of this study are

presented in the second chapter ofthis thesis.

4 CELL DEATH AND ITS ROLE IN MUSCLE DISUSE

As already mentioned, there is an increasing body of experimental evidence

supporting the notion that in addition to large—scale changes in protein synthesis and

degradation, apoptosis (and in a lesser manner necrosis) contributes to muscle

remodeling in response to disuse. Over the recent years, it has become universally

recognized that mitochondria play a critical role in ccli death in several tissues and ccli

types (Kroemer et ctÏ., 199$; Desagher & Martinou, 2000; Hengartner, 2000; Bernardi et

cii., 2001; Lemasters et cti., 2002; Mattson & Kroemer, 2003; Mohamad et al., 2005; Siu

& Aiway, 2005b). However, despite this knowledge, limited infotination is available 011

the potential role that these organelles might play in cdl death signaling in disused

muscles. This section of the thesis provides a general description of the main pathway

involved in apoptotic signaling with a particular emphasis on the role played by

mitochondria and PTP opening.

4.] Generai distinctions bettieen cipoptosis anti necrosis

The terrn apoptosis, which refers to programmed ccli death, was introduced in

1965 foÏlowing the observation that ccli death that occurs during normal development is

not oC accidentai nature but foÏlows a sequence of controlled steps leading to cellular

self destruction (Lockshin & Williams. 1965). Apoptosis can be distinguished from

necrosis in several ways. in apoptotic ceils, lysosomes are generalÏy intact, as indicated

by staining for acid phosphatase and shrinkage of the cytoplasm, and the condensation

of chromatin and the appearance of funowed plasma membrane are typically observed.
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Ceils dying from apoptosis finally convert into small, fragmented, spherical bodies that

undergo phagocytosis by macrophages. Therefore, apoptosis does not typically induce

death of neighboring celis and takes place in the absence of inflammation. By contrast,

ceil death by necrosis is relatively uncontrolled and is characterized by cellular swelling

and lysis of the ceil membrane causing the release of intracellular contents followed by

inflammation, and damage to the surrounding ceils.

4.2 O ‘ervie’ i’ ofctjoptotic processes anci known pctth t avs

Within the Iast decade, considerable progress has been made towards the

identification of stimuli that trigger apoptosis atid the understanding of the molecular

pathways involved. It is a common belief that in most celis, two main apoptosis

signaling pathways, the extrinsic and the intrinsic pathways, exist (Sprick & Walczak,

2004). Both pathways differ with respect to the initiating stimuli and molecular signais

involved as discussed below. However, they both lead to common mechanisms of

cellular dismantiement.

4.2.1 The caspasefiunilv

The central apoptotic mechanism involves the activation of caspases, a fami{y of

cysteine proteases that cleave substrates after aspartic acid residues (Li et aÏ., 1997;

Desagher & Martinou, 2000; Mayer & Oberbauer, 2003; Crow et ai., 2004; Danial &

Korsmeyer, 2004). Caspases, which are synthesized primarily as inactive zymogens

(pro-caspases), are divided into two categories: 1) upstream or activating caspases; 2)

effector caspases. Upstream caspases, which include caspases 2, 8, 9, 10 and 12 are

activated by dimerization upon specific stimulation and ai-e responsible for the

proteolytic cleavage and activation of the downstream effector caspases including

caspases 3, 6 and 7. These caspases achieve the dismantiement of ceils by proteolytic

cleavage of a number of cellular proteins and by activation of nuclear DNA

fragmentation, the latter phenomenon being readily detectable by terminal

deoxyribonucleotidyl transferase-mediated dUTP-biotin nick-end labeling (TUNEL)

and measurement ofhistone complexed DNA fragments.
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4.2.2 Extrinsicpcithwav

Extrinsic death signaling is initiated by the binding of death ligands to their

cognate death receptor at the ceil surface (Baker & Reddy, 199$; Crow et al., 2004).

The ligand may be an integral membrane protein on the surface ofa second ceil (Le. Fas

[CD95/Apo-1] ligand), or a soluble extraceÏÏular protein (Le. Tumor necrosis factor-a:

TNF-Œ). Ligand binding induces the formation of a multiprotein complex called the

death-inducing signaling complex (DISC). Activation of DISC leads to the recruitment

ofprocaspase-8 and its activation by dimerization. Once activated, caspase-8 can cleave

and activate procaspase-3 and Bid, a pro-apoptotic member of the Bd-2 family of

proteins. As discussed later, cleavage of Bid into truncated Bid (tBid) targets the

mitochondria and therefore links the intrinsic and the extrinsic pathways of apoptosis

(Crow et al., 2004).

4.2.3 Intrinsic pathu av

It is now widely accepted that the mitochondrial release of factors contained

within their inteniiembrane and matrix space initiates apoptotic events (Green & Reed,

199$; Kroemer et al., W98; Bemardi, 1999a; Desagher & Martinou, 2000; Mayer &

Oberbauer, 2003; Newmeyer & ferguson-MiIler, 2003). Thus, the balTier to apoptosis

induction via the intrinsic pathway is related to the integrity of the mitochondrial

membrane such that when the integrity of the mitochondrial membrane is breached,

pro-apoptotic factors, which are usually confined to the inter membrane space, are

released into the cytosol. These pro-apoptotic factors include the mobile electron catTier

cytochrome c, a flavoprotein called apoptosis inducing factor (AIF), endonuclease G

(EndoG), the second mitochondria-derived activator of caspases-di rect inhibitor of

apoptosis binding protem with low Pi (Smac/Diablo), and the serine protease Omi/HtrA

(Desagher & Martinoti, 2000; Hengartner, 2000). These proteins act through different

mechanisms and at different sites to mediate the sequential process of celltdar

dismantïement, a process that is highly regulated.

4.2.3. 1 Cctspctse-clependent mechctnisms

The first protein shown to be reÏeased from mitochondria upon apoptotic stimuli
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is cytochrome e, an essential component of the respiratory chain (Hengartner, 2000).

Upon release into the cytoplasm, cytochrome c binds to the protease activating factor-1

(Apaf-1) and recrtiits and activates procaspase-9 to form a complex called the

apoptosome (Desagher & Martinou, 2000). Activated caspase-9, can then cleave pro

caspase-3 and in so doing, initiates the proteolytic cascade leading to celi death. It is

important to note that this process requires ATP and thus the maintenance of minimal

cellular capacities for energy production. Therefore, celis that have stiffered extensive

damage wiII probably initiate the apoptotic cascade but will ultimately become necrotic.

The catalytic function of cytochrome c in the formation of the apoptosome is

regulated by members of the inhibitor of apoptosis proteins (IAP), which includes

XÏAP. XIAP normally acts as an inhibitor that prevents accidental formation of

apoptosome complexes. However, some mitochondrial pro-apoptotic proteins have the

ability to alter the activity of IAP family members. This is the case for Smac/Diablo

which acts to promote apoptosis by neutralizing or negatively regulating proteins ofthe

IAP family (Du et al., 2000). Omi/HtrA2 also exert similar effects on XIAP but in

addition is able to amplify caspase activity directly by virtue of its protease activity

(Cain, 2003)

4.2.3.2 Cctspctse—indepencÏent mechctn isms

Other key proteins released from mitochondria are AIF and EndoG. AIF and

EndoG also pi-ovoke ceil death, but in a caspase-independent manner (Susin et cil.,

2000). AIF and EndoG become active ceil killers since upon release into the cytosol,

they transiocate to the nucleus where they are involved in nuclear destruction throtigh

DNA fragmentation and chromatin condensation (Daugas et ciL, 2000). Exactly how

AIF and EndoG exert their destructive nuclear functions remains elusive. However,

they could exert their effects by facilitating the cleavage and inactivation of Poly(ADP

ribose)polymerase-1 (PARP-1), a nuclear enzyme activated by DNA breaks which

serves a role in DNA repair through the formation ofpolymers (poly(ADP)ribosylation)

at sites ofDNA damage.

Paradoxically, there is some evidence that AIF may exert a protective function
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in some celi types. Apparetuly, the resuits of studies using both in vitro celi models and

in vivo AIF-deficient mouse models have established that AIF is required for the conect

assernbly or function ofcomplex I ofthe respiratory chain (Vahsen et ctÏ., 2004; Urbano

et cd., 2005). Interestingly, AIF deficiency compromises oxidative phosphorylation by

inhibiting respiratory chain complex i in vitro and in vivo, revealing a ‘life’ function for

AIF (Vabsen et cii., 2004). However, the mechanistic connections between the redox

activity ofAIF, oxidative phosphorylation and ceil survival remain unclear.

4.2.4 Mechcinisnis of release of ni itocÏioncÏrial pro-ctpoptotic proteins

As we have seen, the loss of mitochondrial membrane integrity and the

consequent release of apoptogenic factors into the cytosol is evidently an event of

primary importance to the progression of ceil death. But how are such proteins released

and how do they pass through the mitochondrial membranes? Although the precise

meehanism by whieh apoptogenic proteins are released from the mitochondrial

intermembrane space is stiil debated, two prevailing models exist: (1) the formation of

autonomocis channels by members of the Bel—2 subfamily; (2) the opening of the non—

selective permeability transition pore (PTP). The next section reviews the current state

of knowledge regarding the role of each of these proposed processes in mediating the

release o f apoptogenie proteins from the mitochondrial intermembrane space.

4.2.4.1 flic rote oftÏie Bel-2 familv ofproteins

The Bel-2 proteins have multifunctional capabilities that enable them to serve as

potent regulators of cellular apoptosis by either promoting or preventing

penneabilization of the outer mitochondrial membrane (Reed, 1997; Wang, 2001). As

such, the Bel-2 family of proteins plays a pivotai i-ole in deterniining whether a celi wili

live or die (Gross et cii., 1999). AIl Bel-2 family members possess at least one of four

motifs known as Bel-2 homology (BH) domains (BH1—BH4). Most anti-apoptotie

members, including Bel—2 and Be1-c, contain ail foui- domains, whereas the pro—

apoptotic members such as Bax and Bak iack the BH4 domain. Other pro-apoptotic

members, the so-ealled 3H3 domain-onïy proteins, inelude Bid, Bim, and Bad and, as

their name iinplies, eontain only the BH3 domain (Gross et cil., 1999).
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In normal, healthy ceils, Bax is localized mostly in the cytoplasm. But in

response to stressfuÏ stimuli, Bax undergoes conformational changes and redistributes to

the outer mitochondrial membrane (Martinou & Green, 2001). Following mitochondrial

transiocation, it is believed that Bax exerts its pro-apoptotic action by facilitating the

release of cytochi-ome e from the mitochondrial intermembrane space into the cytosol

by either foniiing a pore, through oligomerization, in the outer mitochondrial

membrane, or by promoting the opening of other channels (Shimizu et ctÏ., 1999). In this

regard, Bax xvas shown to directly induce opening of the mitochondrial PTP (Narita et

aï., 199$; Pastorino et cd., 1999; Brenner et ci!., 2000), which suggests that Bax can

cause membrane permeation at least by two mechanisms.

As for Bak, these proteins are present in the mitochondrial membrane even in

healthy celis, btit undergo a conformational change during apoptosis causing the

formation of aggregates that increase the permeabilization of the outer mitochondrial

membrane resulting in the mitochondrial release of apoptogenic factors (Danial &

Korsmeyer, 2004).

Bad is regulated by its phosphorylation, and sequestration by its cytosolic

anchoring protein 14-3-3. For instance, deprivation from growth factors bas been shown

to resuit in the inactivation of Akt wbich induces the dephosphorylation and activation

of Bad (Datta et ci!., 1997). Bad activation causes its translocation to the mitochodnria

where it was shown to facilitate the activation ofBak (Cheng et al., 2003).

As for Bid, this protein remains inactive in the cytosol until cteaved to tBid in

response to death stimuli. tBid then translocates to the mitochondrial membrane where

it is believed to exert its pro-apoptotic function by facilitating the mitochondrial release

of cytochrome c (Luo et aï., I 99$). As previously mentioned, caspase-$ has the

capability to cleave Bid, which allows cross talk between the death receptor-mediated

(extrinsic) and the rnitochondrial-mediated (intrinsic) pathways of apoptosis. The

importance of this crosstalk between the ceil surface and the mitochondria is

demonstrated by sttidies perfomed in Bid-knockout mice. The hepatocytes from Bid

deficient mice are resistant to TNF-induced apoptosis. although cells of these mice
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retain their susceptibility to apoptosis following expostire to other known apoptosis

inducing agents that do tiot act via the death receptor pathway (Yin et ctÏ., 1999). Bid

can also be cleaved by calpain, a Ca2 sensitive protease. The importance ofthis process

in mediating ischemic damage in the heart bas recently been demonstrated (Chen et al.,

2001).

The activities of the pro-apoptotic proteins such as Bax, Bak, Bad, and Bid cati

be neutralized by the anti-apoptotic members of the family such as Bd-2 and Bcl-L. To

this effect, it is well estabÏished that the balance of interaction between pro- and anti

apoptotic members ofthe Bel-2 family (Le. Bax:Bcl-2 ratio) can constitute an important

element in the detemiination of whether a celi is destined to survive or die. In fact, the

ratio of anti- to pro-apoptotic molecules lias been described as a rheostat that sets the

threshold of cellular susceptibility to apoptosis via the intrinsic pathway (Danial &

Korsmeyer, 2004).

Bel-2 and Bdl-L exert their anti-apoptotic function, at least in part, by blocking

the oligomerization of Bax and Bak, thereby disrupting tÏieir ability to form pore-like

structures whi eh compromise the barri er function of the outer ni itochondrial membrane

(Newmeyer & Ferguson-MitIer, 2003). In fact, tue evidence from a study perfomied in

artificial membranes composed of mitochondrial lipids demonstrates that the channel

fomiing ability of Bax is directly inhibited in the presence of Bdl-\[ (Kuwana et aï.,

2002). Bel-2 and Bdl-[ do not seem to interrupt, however, the translocation ofBax, Bid

or Bad proteins to the mitochondria (Wei et aL, 2001). There lias also been some

suggestion that Bel-2 and Bdl-L may exeil their anti-apoptotic effects by binding to

Apaf-1 thereby inhibiting its association with caspase-9 to form the apoptosome

(Haraguchi et al., 2000).

Another way Bel-2 and Bcl- proteins block the mitochondrial release of pro

apoptotic faetors is by inhibiting the opening of the PTP. In faet, Kroemer’s group bas

proposed that PTP opening is the fundamental mechanism for the release of pro

apoptotic proteins ofthe inteniiembrane space (Susin et cii., 1996). Although the effects

of Bel-2 family members on the probability of PTP opening still await a meehanistie
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explanation, both pro- and anti-apoptotic proteins of the Bd-2 family interact with

components of the PTP, and they do so in a manner that is consistent with their effects

on apoptosis (Bax, stimulatory; Bd-2, inhibitory). A detaiied description of the PTP is

presented in the next section.

4.2.5 Tue permectbiÏit’ transition pore

4.2.5. 1 The phenomenon ofperinectbiÏity trctnsition

The mitochondrial pemieabi lity transition was initially described in isolated

mitochondria as a sudden increase of the inner membrane permeability to solutes in the

presence of a high Ca2 concentration (Haworth & Hunter, 1979). Although initially

thought to be due to unspecific membrane damage, it is now widely accepted that this

phenomenon is actually caused by the opening of the PTP, a non-specific high

conductance channel of the inner membrane (see (Zoratti & Szabo, 1995) for an

extensive review). Prolonged and widespread opening of the PTP leads to the

equilibration of ions and solutes of < 1500 Da between the matrix and the

intemiembrane space resulting in the collapse of the proton motive force, uncoupling of

oxidation from phosphorylation, and massive ATP hydrolysis caused by the reversai of

F0f i ATPsynthase (Di Lisa & Bemardi, 1998; Bemardi, 1999b; Bemardi et at., 1999;

Crompton, 1 999; Suleiman et cii., 2001). At least in vitro, the increased pemieability to

solutes also resuÏts in swelling of the mitochondrial matrix. Becattse the inner

membrane bas a large surface and presents several folds, it can accommodate important

changes in matrix volume. However, because the outer membrane lias a much smallet

surface, swelling eventually resuits in its rupture, causing the release of mitochondrial

pro-apoptotic factors.

Depending on cell type, mitochondria suppiy almost 95% of the ATP used by

celis. Because of the dramatic effects of PTP opening, one would therefore expect that

over evolutionary time such a process would have been eliminated by naturat selection.

While there is no consensus regarding the precise physiological role of PTP, a number

of hypotheses have been proposed. Among these are that PTP provides a way of

clearing the matrix of unwanted or damaged moiecules (Gunter & Pfeiffer, 1990), or
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that PTP opening is a way of getting rid of damaged mitochondria (Lemasters et aï.,

2002) or to reduce the number of mitochondria during physiological fiber type

transition (Moyes & Hood, 2003). Opening of the PTP in vivo or in situ in intact celis

bas been demonstrated in several organs (beau, brain, skeletal muscle, liver) in response

to stress such as acute graft rejection, ischemia-reperfusion, oxidative stress, glutamate

excytotoxicity, and Ca2 overÏoad.

4.2.5.2 RegttÏcttion of the penneabiÏity transition pore

The open-closed transitions of the PTP are highly regulated by numerous

physiological factors, but matrix Ca2 bas been identified as the single most important

factor for pore opening (Hunter & Haworth, 1979). Physiological factors such as

increased inorgani e phosphate (Pi), oxidati on of pyri dine nucleotides, matrix

aikalinization (pH >7.6), increased matrix volume or swelling, and decreased membrane

potential promote PTP opening (Connern & Halestrap, 1994, 1996; Halestrap et aï.,

1997). Molecules such as Mg2 and other divalent cations are considered to compete

directly with Ca2 and thus strongly inhibit the open pore conforniation (Hunter &

Haworth, 1979; Bemardi et cii., 1992).

Table 1-2: Modulators ofthe mitochondrial peimeability transition pore

LEvEL 0F OPEN PROBABILITY REFERENcE

REGULATION Increase Decrease

Voltage Depolarization Hyperpolarization (Bemardi et aï., 1992)

Matrix pH Aikalinization Acidification (Szabo et al., 1992)

Surface potential More negative More positive (Broekemeier & Pceifier, 1995)

Cyclophilin D
- CsA (Crompton et aL. 198$)

Pyridine nucleotides Oxidation Reduction (Duchen et ci?., 1993)

Quinones
- Decytubiquinone (Fontaine et al., 1998b)

Matrix Me 2+ site Ca2 Mn2, Mg2 (Hunter & Haworth, 1979)

Extenial Me 2+ site - Ca2, Mg2 (Hunter & Haworth, 1979)

The PTP can also be modulated by a variety ofdrugs ctassiHed as inhibitors or

activators depending on whether they desensitize or sensitize, pore opening in response
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to a given concentration ofcellular Ca2 (Zoratti & Szabo, 1995). In this regard, a major

advancement in the study of the PTP was achieved in 198$ when Crompton and

cofleagues (Crompton et aï., 199$) discovered that cyclosporine A (CsA), a potent

immunosuppressant used to decrease organ rejection after transplant surgery, could

speciflcally inhibit pore opening at micromolar concentrations. The inhibition of PTP

by CsA in isolated mitochondria was the trigger for studies designed to identify the

molecular target of CsA. The 1 8 kDa protein cyclophilin D (CypD), found exclusively

in mitochondria was later identified as the molecular target of CsA (Connern &

Halestrap, 1992).

However, it is important to note that CsA is not a true pore inhibitor since

inhibition can be overcome by large increases in matrix Ca2 (Bernardi et ai., 1993).

This suggests that CypD Iikely acts as a key regulator of PTP function, rather than a

structural protein component of the complex. Indeed, some studies have shown that

CypD may actuaÏÏy transiocate from the matrix to the muer mitochondrial membrane

where it can interact with the PTP tinder conditions of Ca2 overload (Connem &

Halestrap, 1 994), supporting a regulatory i-ole for CypD in PTP function.

4.2.5.3 Molecuïctr identitv ofthe FTP

Despite its rel ativel y detaiÏed functi onal characterization, the molecular identity

ofthe PTP is not clearly established and remains a subject of intense debate (Bemardi,

1999b; forte & Beniardi, 2005; Zoratti et al., 2005). However, it appea;-s relatively

clear that it is composed of seveial specific mitochondrial proteins, which under

pathological conditions undergo conformational changes that transform them into non—

speci fie, hi gh conductance channels.

The ANT-VDAC Inpothesis

The most popular and well documented hypothesis is that the PTP includes

(although not necessarily exclusively) three basic units, the ANT (Halestrap &

Davidson, 1990; Halestrap et al., 1997; Woodfield et aï., 199$) the porin pore VDAC

(Beutner et ctï., 1998; Brdiczka et ctï., 199$; Crompton et at., 1998; Ruck et cil., 1998)
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and the matrix enzyme CypD (Halestrap & Davidson, 1990; Andreeva et aI., 1995).

These proteins forni a complex at the contact sites between the inner and outer

mitochondrial membranes together with other kinases including mitochondrial creatine

kinase and hexokinase (Beittner et ctÏ., 199$; Ruck et al., 1998).

Recent controversy bas, however been raised following a publication by

Kokoszka et al. (Kokoszka et al., 2004) demonstrating the existence ofa functional PTP

in liver mitochondria lacking the two isoforrns of ANT derived from a genetically

modi fled, double-mutant ANT-knockout mouse mode! Mitochondria iso lated from

ANT-deficient livers were able to undergo Ca2-dependent pemieability transition

suggesting that in the absence of ANT, othet pmteins cati substitute to form the PTP.

However, the PTP fi-om these ANT-deficient mitochondria required significantly higher

levels of Ca2, on the order of three-fold, for activation compared to control

mitochondria. Moreover, the absence ofANT resulted in the loss ofPTP regulation by

the ANT ligand atractyloside. Considered together, these data suggest that ANT might

contro! PTP function by sensitizing PTP opening in response to Ca2. Thus, whule the

resu]ts of Kokoszka (Kokoszka et al., 2004) would seem to unequivocalÏy demonstrate

that the ANT is not obtigatory for PTP formation, this conclusion lias not been

universally accepted among experts in the area (Halestrap, 2004). Althougli not

published yet, there is emerging evidence suggesting that genetic ablation of VDAC is

also unable to fully prevent PTP opening (C.P. Baines, unpublished observations).

Role ofcvcÏophilin D

Recent!y, two articles have appeared in Nature, in which the gene for CypD was

inactivated in mice (Baines et aÏ., 2005; Nakagawa et al., 2005). An examination of

mitochondria lacking CypD revealed that PTP can assume the open conformation in the

absence of CypD, confirming its role as a regulator but not necessari!y a core

component of the protein complex. lndeed, both Baiiies et al. (2005) and Nakagawa et

aI. (2005) found that mice !acking CypD, as assessed by Western blot and PCR

analysis, deveÏoped noniially, without any detectable phenotypic abnornialities, but the

mitochondria of these mice were resistant to Ca2-induced opening of the PTP. In
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addition to the ability of these CypD-null mitochondria to accumulate higher levels of

Ca prior to PTP opening, the presence of CsA vas totally ineffective at providing

inhibition thus proving that CypD is the moecu1ar target of CsA. However, the PTP

response to other known modulators that do flot depend on CypD such as depolarization

and pH was not different between CypD-nulI and wild-type mice. Simiïarly, although

loss of CypD expression protected against Ca and oxidative stress-induced

mitochondrial-mediated ceil death, it offered no protection against non-PTP-mediated

celi death such as that mediated by TNF (Baines et al., 2005).

Since CypD appears to be an activator of the PTP, it might be expected that

overexpression of this protein would lead to increased sensitivity to factors promoting

celi death. Indeed, heart mitochondria overexpressing CypD displayed changes in

mitochondrial architecture, swelling, an overafl increased TUNEL staining, increased

cytochrome c release, increased caspase-9 activation and a reduction in cardiac function

over time (Baines et cii., 2005). Each of these phenomena is consistent with activation

of the PTP-mediated celi death pathway. Thus, considered together, these studies

confirm that PTP opening can stili occur in mitochondria devoid of CypD when the

concentrations ofCa2 are greatly increased.

outer membrane

Iritermembrane
space

innet membrane

Figure Ï-9:

The proposed molecular strticture of the mitochondrial perrneability transition pore (PTP). In the open

configuration. adenine nucleotide transiocator tANT), voltage-dependent anion chanel (VDAC) and

cyclophilin D (CypD) form a pore-like structure ai the contact site between the injier and outer

membranes allowing the release of proteins norrnally confined to the intermembrane space. figure

adapted from Desagher & Martinou (2000).
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5 EvIDENcE FOR TFIE ROLE 0F APOPTOSIS IN MUSCLE DISUSE ATROPHY

The last part of this review foctises particularly on ceil death in models of muscle

disuse and on evidence that suppoiÏs a role foi- mitochondria in this process.

5J Regulcition ofmvonuclear cloinctin size

In most ce!! types, apoptosis of the nucleus implies the death of the ceil.

However, since skeÏetal muscle is a multinucleated celI type, apoptosis of a nucleus

may not necessari!y equate to apoptosis ofthe whole muscle fiber. Indeed, when muscle

fibers atrophy, the size of the nuclear domain remains the same or changes s!ightly in

function ofthe phenotypic remodeling ofthe libers. Allen et al. (Allen et aÏ., 1999) put

forth the hypothesis that apoptotic-like mechanisms may be responsible for the

elimination of myonuclei from a muscle liber in an attempt to maintain the relative size

of the myonuc!ear domain during situations of reductive remodeling. These same

authors also demonstrated that the nLlmber of nuclei showing doub!e-stranded DNA

fragmentation seen by TUNEL histochemical staining, an indicator of apoptosis, was

signiflcantly increased after 14 days of hindlimb unloading and the number of libers

containing morphological Jy abnormal nuclei was also significantly greater in suspended

compared with control rats (Allen et aÏ., 1997). Furthennore, the authors teport that

treatment with growth hormone and insulin-like growth factor I and resistance exercise

attenuated the increase in TUNEL-positive nuclei by approximately 26%, and

significantly decreased the number of libers with abnormal nuclei. At the time of

publication, the authors interpreted this data to suggest that “programmed nuclear

death” contributes to the elimination of myonuclei from atrophying libers and that

insulin—like growth factor I administration plus muscle loading ameliorates the

apoptosis associated with hindlimb unloading.

0f interest, is whether mitochondria play a i-ole in this apoptotic process. Indeed,

recent studies by Siu et al. (Siu et aL, 2005) investigated the hypothesis that apoptosis is

associated with hind!imb suspension-induced muscle ]oss. In the suspended animais,

muscles had a 73% greater Bax mRNA content compared with the control muscle. The
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Bax protein content increased by 43 % after suspension and the Bel-2 protein content in

the muscle after suspension was 55 % higher than in the control muscle. The authors

speculate that the elevation of Bel-2 may be an adaptive or compensatory change that is

invoked in response to suspension in an attempt to reduce the apoptotie loss of

myonuclei and, consequently, muscle mass. As for mitochondria-mediated apoptosis

factors, ELISA analysis on the mitoehondria-free cytosolic fraction indieated that the

protein content ofcytosolic cytochrome e in the stispended muscle was elevated by 41%

compared with control muscle. Given that cytochrome e mainly resides in the

mitochondria under normal conditions, this finding indicates that cytochrome e vas

relocated or released into the cytosol in response to suspension. The authors were

unable to find any difference in the mRNA content of Apaf-J between the suspended

and control muscles. Furthermore, the release/accumulation of mitochondrial

Smac/Diablo was estimated by using immunoblot analyses on the mitochondria-free

cytosolic fraction, but no change with suspension was reported (Siu et cii., 2005).

Although these data suggest the involvement of the mitochondrial death pathway in the

muscle atrophy process induced by hindlimb suspension, they provide no indication that

this process is directly responsible for the elimination of nuclei that occurs in disused

muscle.

5.2 Loss ofnitt’scÏefibets in vctrious mocleis ofclisuse

5.2.1 Ageing

Sarcopenia is the tern used to define the progressive loss of muscle mass and

strength associated with the ageing process. Although the cause of the loss of muscle

mass with age Iikely involves multiple factors, sarcopenia resuits in a decrease in the

number of muscle fibers and atrophy of the remaining 1bers. Although the mechanisms

through which ageing skeletal muscles atrophy are largely unidentified, proposed

mechanisms have included the activation of proteolytic pathways, loss of innervation,

hormonal adaptations, and processes associated with mitochondrial dysfunction and

mitochondrial-medi ated apoptosis t Dirks & Leeuwenburgh, 2002).

Determining whether mitochondrial dysfunction is the cause or consequence of



52

ageing bas been difficutt to clarify. A large body of evidence bas led to a theory now

recognized as the mitoelionciriat tÏieoiy of cigeing (Harman, 1972). According to this

theory, mitochondri al damage and resp iratory chain dysfunction leading to enhanced

ROS production (oxidative damage) are linked in a downward spiral that cutminate in

progressive mitochondrial dysfunction leading to impaired ceil function and ultimately,

compromised cet! viability. Indeed, a decline in mitochondrial oxidative function and an

increase in the incidence of mitochondrial DNA damage have been shown to occur in

various tissues with age and there is support that ROS play an important role in these

processes (Waltace et ctt., 1995; Cadenas & Davies, 2000). Ironically, the very feature

that makes mitochondria unique among the various cell organelles — having their own

DNA - gives rise to a major problem. Whereas nuclear DNA is protected by histone

proteins and various repair enzymes, whieh minimizes damage to nuclear DNA from

free radicaÏs/oxidants, mitochondrial DNA bas no bistone protection or enzyme repair

systems to offer protection against free radicals (Richter, 1995). As such, mitochondrial

DNA is much more subject to fiee radical damage. The accumulation of mitochondrial

DNA mutations with age cati interfere with the synthesis of proteins and euzymatic

pathways involved in the transfer of electrons along the respiratory chain and ATP

production (Watlace et cii., 1995; Papa & Skulachev, 1997).

An expanding body of evidence now shows that apoptosis may play a role in

regtilating the process of muscle loss with ageing (Pollack et aÏ., 2002; Alway et aï.,

2003; Dirks & Leeuwenburgh, 2004; Dirks et cii., 2005; Leeuwenburgh et aÏ., 2005).

Indeed, studies suggest that the rate of apoptosis in skeÏetal muscle increases with age,

and the specific apoptotic pathways which are responsible for the loss of muscle fibers

that occurs in sarcopenic muscle are becoming clearer (Dirks & Leeuwenburgh, 2002;

Aiway et ctÏ., 2003; Dirks et cii., 2005). for instance, the protein levels ofthe caspase-3

enzyme, in both its activated and inactivated fonns, was reported to be significantly

increased in ageing skeleta! muscle and the cellular levels of the proapoptotic protein

AIF lias been shown to increase by approximately 50% in aged compared to young

muscle (Dirks & Leeuwenburgh, 2004). These resuits suggest an increased apoptotic

potential in aged muscle. Furthermore, Aiway et al. (Alway et ciL, 2003) bave shown

that Bax levels increase and Bel-2 levels decrease with age in the plantaris muscle of
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rats, providing a mechanism to explain the elevated apoptotic potential in aged muscle.

In fact, there is even some evidence to suggest that activation of the mitochondrial PTP

is enhanced with ageing (Mather & Rottenberg, 2000). This evidence cornes from a

study showing that rnitochondria isolated from brain and liver of 20 month-old mice
2+show increased susceptibihty to PTP activation by Ca overload suggestrng that

ageing-induced enhanced activation of the PTP may be a general phenomenon that

contributes to the increased susceptibility of several tissues to celi damage that is

associated with ageing (Mather & Rottenberg, 2000). Although more research is

required to determine the precise role of apoptosis in the loss of muscle fibers and the

loss of fiber cross sectional area with ageing, the available evidence tends to suggest

that apoptotic mechanisms invoïving the mitochondria are indeed implicated.

5.2.2 Denervcttïon

Muscle denervation is an exemplary cause for progressive loss of muscle fiber

mass and size. In fact, there bas been some speculation as to whether denervated muscle

fibers solely become increasingly atrophie or whether they degenerate completely. It

bas been suggested that a lack of innervation, or defective innervation may incite

muscle fibers to activate an intrinsic suicide program, the implication being that muscle

fibers that are not properly/adequately innervated may be programmed to die (Tews et

cil., l997a; Tews et cil., 1997b; Tews, 2002). The activation ofrnitochondria-associated

apoptosis bas been shown in skeletal muscle during denervation (Siu & AÏway, 2005b).

Specifically, rat skeletal muscle denervated for 14 days demonstrated augmentation of

apoptotic DNA fragmentation, incteases in the Bax:Bcl-2 ratio, mitochondrial release of

cytochmme e into the cytoplasm, increases in Srnac/Diablo and AIF, increases in the

protein content and activity of caspase-3 and caspase-9, and decreases in XIAP (an

inhibitor ofapoptosis) (Siu & Altvay, 2005b).

In fact, these findings are corroborated by the resuits of another recent study by

these sanie authors using a mouse model deficient for the Bax gene (Siu & Aiway,

2006). Compared to denervated muscles from wild-type mice, denervated muscles taken

from the mice that were deficient for the Bax gene had significantly decreased levels of

DNA fragmentation, decreased caspase-3 and caspase9 activities, and suppressed
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mitochondrial cytochrome e release (Siu & Alway, 2006). These resuits indicate that in

response to the removal of nerve sLtpply in skeletal muscle deficient for the Bax gene,

the extent of muscle loss is attenuated and is accompanied by the suppression of pro

apoptotic signaling, provide further evidence that apoptotic signaling bas a significant

role in denervated muscle and may be involved in mediating muscle wasting.

Further evidence supporting the notion that events associated with apoptosis are

upregulated in denervated muscle has been provided by experiments where rat facial

muscle was denervated and subsequently reinnervated (Tetvs et cil., 1997b). The resuits

of this study show that apoptotic degradation of denervated muscle fibers appears to be

mediated by intrinsic, mitochondria—associated mechanisms that involve proteins of the

Bd-2 family, increased levels of caspase-9, TUNEL-positive DNA fragmentation, and

features of apoptotic nuclear degradation that could be observed at the ultrastructural

level (Tcws & Goebel, 1996; Tews et ciL, 2005). These findings provide additional

strong evidence supporting the speculation that apoptotic mechanisms are active and

contribute to muscle fiber loss with denervation.

The results presented in the second study presented in the present thesis, provide

supporting evidence that PTP opening could be one of the mechanisms by which

mitochondria acti vate cdl death pathways.

6 PREsENTATI0N 0F THE MANUSCRIPTS

The objective of the work presented in this thesis is to provide a contribution to

the current understanding of the cellular processes regul ating disuse muscle atrophy.

This thesis consists of three original research articles that contribute novel information

to: 1) the understanding of intracellular signaling potential in disused muscle in

response to a mechanical stimulus; 2) the effect of loss of neural input to muscle fibers

on changes in the sensitivity and modulation of PTP opening; 3) a characterization of

the properties and ftmction of the mitochondrial PTP in different skeletal muscles

characterized by different fiber types.
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6.1 Suinman ofstudv I:

“SENsITIvITY 0F RAT SOLEUS MUSCLE TO A MECHANICAL STIMULUS IS DECREÀSED

FOLLOWING HINDLIMB UNWEIGHTING”

As discussed, mechanical forces play an important role in the regulation of

muscle size and phenotype. Since there exists a relationship between muscle unloading

and atrophy, the aim of this study was to iiivestigate the sensitivity of mechanically

responsive intracellular signaling pathways in order to establish the extent to which a

given mechanical stimulus cati influence the trophic response of muscle following

atrophy. The results of this study show that basal JNK activation state changes in

response to muscle atrophy. The JNK pathway lias been shown to regulate apoptotic

signaling events in various ceil types. Since the contribution of cellular apoptosis lias

been proposed as a possible mechanism regulating the loss of myofibers which occurs

as a result of reduced mechanical loading, increased .INK-mediated regulation of

cellular apoptosis may explain the increased basal phosphorylation levels measured in

muscle following hindlimb suspension. Following a mechanical challenge, we report

that JNK phosphorylation response is significantly reduced in mtiscle atrophied by

unloading. We propose that this decreased JNK phosphorylation response to mechanical

stimulation indicates that atrophic muscle may lose the abiiity to transduce mechanical

signais to the MA? kinase pathways.

6.2 Suniincirv ofstudv II:

‘MUSCLE DENERVATION INCREASES THE EXPRESSION 0F MITOCHONDRIAL CYCLOPHILIN

D AND PROMOTES OPENING 0F THE PERMEABILITY TRANSITION PORE”

Given recent evidence implicating a role for mitochondrial PTP opening in cdl

death, and since there are cunently very few data available on the PTP in skeletal

muscle, this study investigated PTP sensitivity in skeletal muscle atrophied by a loss of

neural input. The model ofdenervation was used because ofthe severity ofthe atrophic
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response associated with loss ofneural input to the muscle.

In this study, we show for the first time that muscle atrophy caused by

denervation was associated with heightened sensitivity of the PTP to opening in

response to progressive Ca2 loading. This response is partÏy due to a progressive

muscle and mitochondrial Ca2 overload. Ca2 retention capacity xvas found to be

dramatically reduced in muscle following denervation but surprisingly, this could be

significantly improved in the presence of inhibitors of PTP opening, namely CsA. This

resuit prompted us to measure protein expression ofCypD, a matrix peptidyl-prolyl-cis

isomerase believed to be an integral moleccilar component of the PTP complex and the

protein target of CsA. We found CypD expression to be significantly increased in

mitochondria of muscle atrophied by denervation leading to over-representation of this

pmtein relative to ANT and VDAC, other structctral components of the PTP. Our

explanation linking changes in CypD expression to PTP dysregutation is as follows: by

virtue of its peptidyl-prolyl-cis-isomerase activity, CypD is believed to act as a protein

foldase that presumably interacts with chaperone proteins to limit mitochondrial protein

misfolding that is known to occur following various perturbations. However, in the

presence of elevated Ca2, CypD assumes a secondary i-ole by promoting the formation

of non-specific channels, possibly the PTP. In summary, we report that CypD

expression is increased in muscle atrophied by denervation as an initial defense or

protective mechanism against protein misfolding. However, as mitochondria become

progressively overloaded with Ca2, this would evolve into a maladaptive response by

promoting PTP formation and opening.

6.3 Stmiman’ ofsttidv III:

“MITOCH0NDRIA FROM SOLEUS MUSCLE EXHIBIT INCREASED SENSITIVITY TO

INDUCED OPENING 0F THE PERMEABILITY TRANSITION PORE: EVIDENCE FOR PHENOTYPE

SPECIFIC PORE REGULATION”

The mitochondria under examination in the former study were isolated fiom

mixed groups of plantar hindlimb muscles including soleus, plantaris, and whole
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gastrocnemi us. Since the contractile, bi ochernical, and morphological characteri stics of

these muscle groups are largely different (i.e. soleus is composed mainly ofslow-twitch

type T fibers with a large volume ofmitochondria having a high oxidative enzyme level,

whereas gastrocnemius is largely dominated by fast-twitch type II fibers with relatively

less mitochondria), it is possible that these muscle groups, as well as their isolated

mitochondria, might have dissimilar responses to the denervation stimulus. To date, the

characterization of PTP properties has been based primarily on studies in mitochondria

isolated from cardiac or hepatic tissue, dtie in part to the rich mitochondrial content and

the relative case of mitochondrial isolation from these tissues compared to skeletal

muscle tissue. Consequently, relatively littie information is available regarding PTP

function in mitochondria isolated from skeletal muscle tissue. In light of the transitions

in fiber phenotype known to accompany muscle disuse atrophy, a characterization of

basic parameters of PTP function in different muscle fbers is necessary. In this third

study, we demonstrate that indeed, basic PTP function and sensitivities are different

depending on the type of muscle fiber from which mitochondria are isolated.
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ABSTRACT

Mechanical loading is thought to be an important stimulus regulating muscle mass. However, the

responsiveness of a muscle atrophied by a period of mechanical unloading to a subsequently imposed

mechanical challenge is not weÏÏ understood. This study examined the phosphorylation of the

mechanicaÏly sensitive p54 c-jun NH2-terminal kinase (JNK) signaling protein in atrophied rat soleus

muscle in response to a mechanical challenge in—situ (isometric contractions; 100 Hz, 150 ms, once

every 1 s for 5 mm). Rats underwent either 7 or 14 days of hindlimb suspension (HLS) following

which phosphorylation of JNK was measured biochemically. Immunoficiorescence analysis revealed

that phosphorylated JNK xvas localized in myonuclei. Baseline JNK phosphorylation measured in non

stimulated soleus muscles of 7 and 14-day HLS groups tvas 3.0 and 2.8 fold, respectively, the baseline

phosphorylation measured in muscle of wei ght—bearing control animais (CTL). Fol lowing a mechanical

challenge, JNK phosphorylation in stimulated CTL and 7-day HLS groups was significantly increased

by 3.2 atid I .8-fold the non stimulated baseline levels, respectively. In stimulated muscle of 14-day

HLS, JNK phosphorylation levels did not significantly differ from the baseline levels suggesting that

the abitity to elicit a mechanically-induced phosphorylation of the JNK signaling protein gradually

decreases with unweighting and is attenuated after 14-day HLS. Changes in the responsiveness of

mechanically sensitive intracellular signaling pathways in atrophic muscle may contribute to the

functionai impainnent experienced by muscle in the absence ofweight bearing for prolonged periods.
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INTRODUCTION

The regulation of skeletal muscle mass is particularly sensitive to mechanical loading such that

overload causes fiber hypertrophy whereas Linloading causes fiber atrophy (Fitts et al. 2000; Goldberg

et al. 1975; Goldspink et al. 1986; Roy et al. 1985; Vandenburgh 1987). In addition to the control of

flber size, mechanical forces contribute to the regulation of numerous other cellular processes in

skeletal muscle libers, including the control of muscle phenotype (Thomason et al. 1987), metabolism

(lhlemann et al. 1999), morphology and architecture (lhlemann et aI. 1999; Vandenburgh et aI. 1991;

Vandenburgh and Karlisch 1989). Detailed reviews on disuse atrophy have shown that an absence of

mechanical loading results in a rapid and substantial atrophy, paiÏicularly of the slow-twitch soleus

muscle, which acquires properties typical of fast-twitch muscles (Booth and Raldwin 1996; Fitts et al.

2000; Thomason and Booth 1 990). Thus, myocytes ai-e capable of detecting and responding to the

presence and/or absence of mechanical stimuli by activating signal transduction pathways, resulting in

changes in gene expression. Despite the growing understanding of the ceÏÏulai- processes tegulating

muscle adaptations to unweighting, the activation of mechanical ly—responsive signal-transduction

pathways to an acute stimulus in muscle subjected to a period of unloading is not well deflned.

The mitogen-activated protein kinases (MAPKs) constitcLte a family of intracellular signaling proteins

associated with membrane—linked cytoskeletal proteins involved in the transduction of mechanical

forces from the celi-surface to the cdl nucleus (Labrador et al. 2003). The mechanical responsiveness

ofthe MAPKs in skeletal muscle (Goodyear et aÏ. 1996; Hayashi et al. 1999; Martineau and Gardiner

2001; Ryder et al. 2000; Wretman et al. 2000) and in various other cdl types (Komuro et al. 1991;

Sadoshima and Izctmo 1993; Schmidt et al. 1998; Seko et al. 1999; Zou et al. 1998) is well

documented. Considering the importance of mechanical loading in the maintenance and control of
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skeletal muscle homeostasis, it is presumed that a period of unweighting wiÏl cause modifications in the

muscie’s capacity for transmission and/or detection of mechanicai signais. Indeed, recent studies have

repoiÏed increased basal p54 c-j tin M-12-terminai (JNK) MAPK phosphorylation status in muscle

immediately foilowing a period ofimmobilization (Childs et al. 2003; Hilder et al. 2003; MoiTis et ai.

2004). However, information regarding ]NK signaling in atrophied muscle foliowing acute contractile

activity, a mechanical stimulus known to favor the restoration of muscle mass, is lacking. Accordingly,

in the present study we sought to investigate the sensitivity of this mechanicaliy-responsive signaling

pathway in atrophic muscle following an acute mechanical challenge. For this purpose, the activation

(i.e. phosphorylation) of JNK was assessed in rat soleus muscles atrophied by I-ILS for either 7 or 14

days in both the non-stimulated basal condition and following a 5-min isometric mechanical challenge

applied in situ. Although the influence of an acute mechanical challenge on the JNK phosphorylation

response in atrophic muscle is unknown, muscle contraction performed immediately after

immobilization bas been shown to rapidïy instigate profound changes in gene expression associated

with muscle hypertrophy and remodeling (Joues et al. 2004). Therefore, we proposed that the

responsiveness of unloaded muscle to an acute mechanical stimulus wouid be increased as part of a

compensatory effort to reestablish the muscle’s pre-atrophy state.
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MATERIALS AND METHODS

Hindlimb Suspension Protocol

female Sprague-Dawley rats (Charles River, Saint-Constant, Quebec), weighing 197+5 g, were housed

in an environmentaity controlled room maintained at 23 °C and kept on a 12:1 2-h light-dark cycle. The

rats were provided water and food ad libitum. Animais were randomly assigned to one ofthree groups;

weight-bearing control (CTL); n 10, 7-day HLS; n = 10, or 14-day FILS; n = 10. Animais beionging

to a HLS group were suspended in a head-tilt position at an angle of approximately 30 degrees from the

horizontal plane via a non-invasive apparatus affixed to the proximal end ofthe tau (Morey-Hoiton and

Giobtis 2002). Briefly, the animai’s tau was washed, dried and wrapped in breathable adhesive tape

with a paper clip attached to the end. The paper clip acted as a hook by which the animai could be

secured onto an eievated swivel system build into the top of the cage. The hindlimbs were prevented

crom touching any supportive surfaces of the cage while the forelimbs maintained full contact with the

cage floor allowing free movetient and access to food and water. Daily inspection of the animais’ tail

was performed, verifying for discoloration or lesions. Body mass was evaÏuated every 4$ h as an

indication of toierance to the suspension condition. Any animai demonstrating signs of distress or

intolerance was immediately excluded from the experimental protocol. Ail procedures were approved

by the animal ethics committee of the Université de Montréal and were in accordance with the

guidelines ofthe Canadian Council ofAnimal Care.

In-situ Nerve-Muscle Preparation

The in situ mechanical stimulation experiments were performed as described elsewhere (Martineau and

Gardiner 2001). Briefly, animais were anesthetized by intraperitoneai injection of ketamine and

xylazine (61.5, 7.7 mg/kg, respectively). An incision vas made in the distai posterior segment of the
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left hindlimb and the soleus muscle and its tendon were exposed. Following isolation of the muscle

fi-om the other extensors, the calcaneous was clipped, leaving a bone chip attached to the tendon and a

silk ligature was tied securely around the bone-tendon interface. The animal was placed in the proue

position within a stereotaxic frame with the left knee secureÏy pinned in a sÏightly flexed position and

the left foot clamped. The silk thread was attached to the lever am of a muscle servomotor (305-LR;

Aurora Scientific). Care was taken to ensure no tension was placed upon the isolated muscle during the

preparation. The skin of the hindlimb was pulled to form a bath filled with heated mineral ou. Body

and mctscle bath temperatures were maintained at 36-37 oc for the duration ofthe experiment.

Mechaiiical Stimulation Protocol

The optimal muscle length (L)) for producing maxinnim twitch force was determined by twitch

stimulation achieved by indirect stimulation through a bipolar electrode placed under the sciatic nerve.

Single square puIses (5 V, 0.05 ms) were delivered once every 3 s while the length ofthe muscle was

slowly increased from a relatively slack length at I mm intervals. Electrical stimulation in the form of

supramaximal single square pulses (0.05 ms in duration) was delivered to the sciatic nerve at a

frequency of 100 Hz once every second for a duration of 150 ms, for 5 min. Baseline values were

deteniiined following determination of L0, by ceasing electrical stimulation and holding the muscle at

this length for 5 min without any further stimulation. for the isometric contractile protocol, L0 was

determined and maintained constant as the muscle vas indirectly stimulated to contract for 5 min.

Immediately-following the 5-min experimcntal period, the isolated muscle vas excised and rapidly

frozen in liquid nitrogen. The animal was euthanised by anesthetic overdose.
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Biochemical Tissue Aiialysis

Tissue processing, electrophoretic separation of proteins, and measurements of phosphorylated p54

JNK and total JNK2 contents by immunoblotting using phospho-specific antibodies against phospho

p54 JNK and an anti-JNK2 antibody (Sauta Cruz Biotechnology) were performed as previously

described in detail (MartineaLi and Gardiner 2001). Briefly, frozen muscles were weighed and

powdered in liquid nitrogen. Approximately 100 mg of powder was solubilized in 10 volumes of ice

coÏd modified RIPA buffer containing protease and phosphatase inhibitors. Muscle lysates containing

180 g ofprotein were prepared for SDS-PAGE by dilutions witb reducing sampte buffer followed by

a 10-min immersion in near-boiling water. Samples were resoÏved on 9% gels and simultaneously

transferred to a PVDF membrane (Millipore). Equal sampÏe loading was confimied by Ponceau S stain.

The membrane vas blocked and incubated ovemight at 4 °C with primary antibody solution followed

by a 90—min incubation at room temperature in secondary antibody solution (Jackson Immunoresearch).

Revelation was performed by enhanced chemiluminescence (Amersham) with film exposure times

ranging from 5 to 45 min. Films were scanned and bands quantified by NIH Image software. Data were

analysed using one-way ANOVA fotlowed by Fisher’s post-hoc test. Significance vas assumed at 0.05.

Immun oh istoch emistiy

Frozen soleus muscles in liquid nitrogen were cut (30 ilm) at -20 oc using a cryostat. Forty-eight suces

were analyzed from 3 soleus muscles (16 from one control soleus, 32 from two stimulated solei).

Tissues were fixed with acetone for 3 miii, pernieated by incubating in TBS containing 0.1% triton X-

100 for 10 miii, then washed 3 x 5 min in TBS. Blocking vas perfomied by pre-incitbating in TBS

containing 1 0% donkey serum for I h at room temperature, then slides were incubated with primary

antibody for p54 JNK (anti-Active JNK pAb, Promega) raised in rabbit (diluted 1:200 in TBS + 0.2%
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triton X-100 + 0.1% Na azide) for 24 h in a humidified chamber at room temperature. After 3 x 10-min

washes with TBS, the fluorescent secondary antibody (fluorescein-FITC conjugated donkey anti rabbit

TgG, Jackson Immuno Research) raised in donkey (diluted in 1:200 in TBS) was placed on the section

and incubated in a humidified chamber for 2 h at room temperature. After a final wash 3 x 10 min in

TBS, coversiides were mounted on with antifade medium and sealed.

Localization ofphosphorylated p54 JNK was performed using a Nikon E600 microscope mounted with

a Nikon Y-fL fluorescent device, using an epifluorescent Xf22 cube. Pictures were digitalized with a

monochrome Cool Snap Pro camera and Image Pro Plus 4. 1 Software (Media Cybemetics, mc). Nuclei

of the sanie suces were double stained with Mayer’ s Hematoxylin Solution 0.1% (Sigma) during 1 mm,

then washed in TBS.
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RESULTS

Body and muscle weights

Significant reductions in the soletis wet weight occuned as a result ofHLS for 7 and 14 days (Table 1).

Consistent witb the literatctre (Jiang et al. 1993 Roy et al. 1991), the greatest decrease in muscle mass

occciiied during the first 7 days cf HLS. Compared to CTL, after 7 days HLS, the soleus wet weight

decreased by 27% relative to CTL whereas the soleus muscÏe-to-body weight ratio decreased by 23%

relative to CTL. After 14 days HLS, the soleus vet weight decreased by 33% relative to CTL and the

muscÏe-to-body weight ratio decreased by 31% relative to CTL (Table J).

Contractile studies

Compared to muscle twitch force in rats from the CTL group, soleus twitch foi-ce was decreased to

75% and 64% in the 7 and 14-day J-ILS groups, respectively (Table 1). Tetanic foi-ce xvas influenced

more by HLS than twitch force; by 7 and 14-days HLS, tetanic force was 62% and 39%, respectively,

of the CIL value. Consequently, while normalized twitch force (i.e., twitch force divided by muscle

wet weight) was not significantly influenced by HLS, nomialized tetanic force decreased signiflcantly

by 14 days to 58% of CIL values (Table 1).

p54 JNK phosphorylation

Amount of total p54 .TNK protein, independent of phosphorylation state, was not different among

groups (Fig. 1). Basal JNK phosphorylation levels were clearly increased relative to CIL in 7 and 14-

day HLS groups by 3.0 and 2.8-fold, respectively (Fig. 2). In response to mechanical stimulation, the

JNK phosphorylation response in the 14-day HLS grotlp did not significantly differ from its baseline

value whereas in the CTL and 7-day HLS groups, significant increases in JNK phosphorylation of 3.2-

fold and Ï .8-fold baseline, respectively, were observed (Fig. 3). In ordet to illustrate the effect of
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tetanic force production on the JNK phosphorylation response, we also normalized JNK

phosphorylation as a function ofthe tetanic tension capability ofthe muscle (Fig. 4).

Phospliorylated p54 JNK Iocalization

Double staining of nuclei with Mayer’s Hematoxylin solution indicates that phosphorylated JNK signal

is Ioca!ized in the cefl nuclei (Fig. 5 a and b). Double omission of primary and secondary antibodies

gave no fluorescent signal in control and stimulated muscles. Single omission of primary antibodies in

both control and activated muscles (fig. 6 a and b) gave a very weak signal and few non-specific

fixations of the secondary FITC antibodies. The dilution of 1:200 of primary antibodies showed a

bright signal located in the nuclei of each ccl!. Four or more nuclei can be easily identified per ce!!.

These images (Fig. 6 e and d) were observed in both control and stimulated muscle slices.
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DISCUSSION

The main finding of this study is that JNK signaling is altered in soleus muscle atrophied by HLS and

that this signaling changes dramatically during the initial 2 weeks of muscle weight loss. The finding of

increased basal JNK phosphorylation levels measured in non-stimulated soleus muscle of HLS groups

is in accoi-dance with the findings of other recent reports (Childs et al. 2003; Hilder et al. 2003; Mon-is

et aÏ. 2004). In this study, we show that phosphorylation of JNK is restricted to myonuclei. The

changes in basal JNK phosphorylation following HLS are paiÏicularly interesting given the increase in

myonuclei pet- mg of muscle which is known to occur after this condition (Allen et al. 1997). After two

weeks of E-ILS, soleus cytoplasmic volume per myonucleus changes from 13,000 to 7,000 cubic

micrometers, which signifies almost a doubling of myonuclear number pei unit weight of muscle. This

could signify that, while the increased basal phosphorylation of JNK after HLS might reflect the

increased concentration of myonuclei (ie., basal phosphorylation per nucleus remains unchanged), the

mechanical stimulation response of JNK would be even less per myonucleus than the significantly

attenuated response seen when expressed per mg of wet muscle weight.

The JNK pathway has been shown to regulate apoptotic signaling events in various cdl types (Aoki et

al. 2002; Davis 2000). The contribution oC the cellular process of apoptosis in situations of cellular

remodeling bas been discussed as a possible explanation for the loss of myofibers which eventually

occurs as a result of reduced mechanical loading (Allen et al. 1997). Thus, increased JNK-mediated

regulation of cellttlar apoptotic events may paiÏially explain the increased JNK phosphorylation

observed in atrophie muscles of HLS groups at rest. On the other hand, atrophying muscles may corne

under increased mechanical stress in spite of lack of weight-bearing, this resulting in increased JNK

phosphorylation at “rest”.
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The JNK signaling protein is highly expressed in skeletal muscle whereby muscle contraction and

passive stress are known to induce a robust phosphorylation that is both rapid and transient in nature

(Boppart et al. 2000; Carlson et al. 2001; Martineau and Gardiner 2001). However, in the present stLldy,

it appears that JNK phosphorylation in response to mechanical stimulation by isometric contraction

gradually becomes considerably reduced in soleus muscle of rats of the HLS groups. To our

knowledge, this is the first study to measure the phosphorylation of a mechanically responsive

signaling molecule in sketetal muscle atrophied by HLS, in response to an acute mechanical challenge

in the form ofevoked contractile activity. These findings suggest that whiÏe basal JNK phosphorylation

levels are increased in atrophied soleus muscle, phosphorylation of this mechanically sensitive

signal j 11g molecule fol low ing isometric contractile acti vity gradually attenuates as the duration of

muscle unloading progresses to 14 days.

One possible interpretation for the absence of a significant stimulation-induced JNK phosphorylation

response in atrophied tiluscles of HLS animais is that mechanical sensitivity rnight already be

approaching maximal levels at baseline in these groups. To address this possibility, we performed a

mechanical stimulation protocol previously shown to maxi mally activate JNK phosphorylation in

skeletal muscle (Martineau and Gardiner 2001). This stimulation protocol, consisting of eccentric

contractile activity for 5 mm, produced a JNK phosphorylation response that vas $-fold baseline (11= 6,

data not shown) in HLS groups, compared to the 3.2 and 1.8—fold increase that occurred with isometric

contractions foi- CTL and 7-day HLS, respectively (Figure 3), negating the possibility that maximal

JNK activation may have been attained at baseline levels in the HLS groups.
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To verify whether the decreased ]NK phosphorylation in stimulated soleus of HLS groups was a

reflection ofthe muscle’s force generating capacity, we also normalized phosphorylated JNK resuïts to

die tetanic force capacity of the muscle. If die JNK phosphorylation response were uniquely a

reflection of the force produced by the muscle, we would expect to observe the greatest values in the

CIL group since the capacity for tetanic force production in this group was significanfly greater

relative to 7 and 14-day HLS. However, the significantly increased JNK phosphorylation observed in

7-day HLS suggests that unloaded muscle might be more sensitive in response to a given mechanical

stimulus at early time periods following the onset of unweighting. Consistent with the reports from

previous studies, the toss of soleus mass resutting from unloading is greatest during the first 7 days of

unweighting (Jiang et al. 1993; Roy et al. 1991) and stabilizes with continued unloading. It is also

suggested that much of the slow-to—fast transitions in myosin heavy chain occurs within the flrst week

of unweighting (Staron et ai. 1998). Therefore, there may exist important differences in the signaling

responses to a mechanical stimulus in atrophying versus atrophied soleus muscle.

CONCLUSION

In conclusion, the results of this study suggest that while there is a marked increase in basal levels of

JNK phosphorylation in HLS grotlps, the phosphorylation response of this protein to a mechanical

stimulus is gradually attenuated in soleus muscles as the duration of HLS progresses. This decrease in

JNK phosphorylation response to mechanical stimulation with increasing duration of HLS indicates

that atrophic soleus may lose die ability to transduce mechanical signais to die MAPK pathways. Thus,

in light of the muscle’s declining responsiveness to mechanical stimuli with continued unweighting,

countermeasures designed to preserve muscle mass in situations of mechanical unloading such as bed

rest, immobi I ization, or space flight, should be implemented promptly following initiation of
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mechanical unloading. Further investigations on the effects of mechanical stimuli on the

phosphorylation response of the JNK substrate c—jun might provide further insight into the changes in

iN K signaÏing resulting from mechanical interventions.
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Table 1- Effect ofHLS on soleus muscle mass, isometric twitch force, and tetanic force

CTL 7-day HLS 14-day HLS

Muscle mass (g) 0.132 ± 0.004 0.097 ± 0.003 * 0.089 ± 0.003 *

MLtscle mass/ body 0.65 ± 0.018 0.50 ± 0.013 * 0.45 ± 0.010*, 1

mass ratio (mg/g)

Twitch force (N) 0.303 ± 0.015 0.229 ± 0.01$ * 0.195 ± 0.021 *

Norma]ized twitch 2.35 ± 0.11 2.43 ± 0.17 2.12 ± 0.19

force (N/g)

Tetanic force (N) 1.34 ± 0.073 0.832 ± 0.033 * 0.520 ± 0.060 *,

Nomialized tetanic 10.32 ± 0.49 8.89 ± 0.73 5.97 ± 0.60 *,

force (N/g)

Values are expressed as means + SE where n = 10 for each group. Significantly different (p 0.05)

from * CTL group; I 7-day HLS group. Significance determined by Fisher post-hoc.
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FIGURE LEGENDS

Figure 1: Total muscle p54 JNK content in soleus muscle, ilTespective of phosphorylation state,

expressed in arbitrai-y densitometry units (a.d.u.). Data expressed as means ± SE where n = 6 for the

CTL group and n 4 for the 7-day and 14-day HLS groups. The same amount of muscle protein was

added to each gel.

Figure 2: Baseline p54 JNK phosphorylation per mg wet muscle weight measured in non-stimulated

soleus muscles. Data presented as fold-CTL JNK phosphorylation level and expressed as means + SE

where n = 6 for CTL group and n = 4 for the 7-day and 14-day HLS groups. * denotes a significant

difference (p 0.05) from CTL condition. Significance determined by Fisher post-hoc.

Figure 3: p54 JNK phosphorylation measured at basal levels in non-stimulated soleus muscles (solid

bai-s) and in response to 5 min of isometric contractions (100 Hz, 150 ms/s, repeated once per second;

hatched bars). Data ai-e presented in arbitrary densitometry units (a.d.u.) and expressed as means ± SE

where n = 6 for CTL baseline group and n = 4 for the 7-day and 14-day HLS baseline groups. For the

isometrically stimulated groups, n = 4 fhr the CTL group and n = 6 for the 7-day and 14-day HLS

groups. * denotes a significant difference (p 0.05) in the phosphorylation response of isometrically

stimu]ated muscle from its respective baseline condition. Significance determined by Fisher post-hoc.

Figure 4: p54 JNK phosphorylation measured in soleus muscles in response to 5 min of isometric

contractions (100 Hz, 150 ms/s, repeated once per second). Data presented per unit tetanic force

capacity of the muscle and expressed as means ± SE where n 4 for the CTL group and n = 6 for the



81

7-day and 14-day HLS groups. * denotes a significant difference (p 005) from CTL group.

S igni ficance determined by Fisher post-hoc.

Figure 5: Soletis muscle section after 5 min of sciatic stimulation (a). Dilution at 1:200 for primary

antibody showed a bright signal located in the nuclei. Suce is 30 jim thick, stained with primary anti-

Active JNK and secondary fluorescein-FITC conjugated anti IgG antibody. Picture ofthe same suce in

bright light condition (b), shows nuclei stained in black by Mayer’s Hematoxylin.

Figure 6: Single omission of primary antibody in control soleus muscles (a) and after 5 min of sciatic

stimulation (b). Dilution at 1:200 of primary antibody showed a bright signal Iocated in the nuclei, in

control (c) and after muscle activation (d). Suces are 30 um thick, stained with primary anti—Active

JNK and secondary fluorescein-FITC conjugated anti IgG antibody.
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ABSTRACT

Loss of neural input to skeletal muscle fibres induces atrophy and degeneration with evidence of

mitochondria-mediated celi death. However, the effect of denervation on the permeability transition

pore (PTP), a mitochondrial protein complex implicated in celi death, is uncertain. In the present study,

the impact of 21 days of denervation on the sensitivity of the PTP to Ca2-induced opening was studied

in isolated muscle mitochondria. Muscle denervation increased the sensitivity to Ca2tinduced opening

ofthe PTP, as indicated by a significant decrease in calcium retention capacity (CRC: 111 ± 12 vs. 475

± 33 nmol/mg protein for denervated and sham, respectively). This phenomenon was partly attributable

to in vivo mitochondrial and whole muscle Ca2 overload. Cyclosporin A, which inhibits PTP opening

by binding to cyclophilin D (CypD), was significantly more potent in mitochondria from denervated

muscle and restored CRC to the level observed in mitochondria from sham-operated muscles. In

contrast, the CypD independent inhibitor trifluoperazine was equally effective at inhibiting PTP

opening in sham and denervated animais and did not correct the difference in CRC between groups.

This phenomenon xvas associated with a significant increase in the content of the PTP regulating

protein CypD relative to several mitochondrial marker proteins. Together, these results indicate that

Ca2 overload in vivo and an altered expression of CypD could predispose mitochondria to

permeability transition in denervated muscles.
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INTRODUCTION

Several progressive neuromuscular diseases are associated with severe atrophy and ioss of muscle

fibres resulting in muscle wasting as the main clinical presentation. There is growing evidence that

activation of ceil death through apoptosis, and in a lesser manner necrosis, is involved in the loss of

muscle fibres (Lu et ai., 1997; Borisov & Canson, 2000; Tews, 2002; Siu & Aiway, 2005). In addition,

apoptosis aiso occurs in locaiized segments ofthe remaining myofibres and may play a role in atrophie

remodelling (Ailen et al., 1997; Ailen et al., 1999; Leeuwenburgh et al., 2005). These phenornena have

been described in denervation disorders (Tews & GoebeÏ, 1997b; Yoshimura & Rani, 1999; Borisov &

Canson, 2000; Siu & Alway, 2005), muscular dystrophy (Sandri et al., 1995; Sandri et aI., 2001),

inactivity (Leeuwenburgh et al., 2005; Siu et al., 2005a) and ageing-induced sarcopenia

(Leeuwenburgh et al., 2005; Siu et al., 2005a; Siu et al., 2005b).

Although the meehanisms responsible for the activation of ccli death pathways in tiiuscie are not weii

defined, there is evidence that at least in denervation atrophy, mitochondria may play a role. Indeed,

several studies have reported an increase in the bax/bcl-2 ratio in various denervation disorders (Tews

& Goebel, 1996, 1997b; 1997a,Tews, 2002; Siu & Aiway, 2005), which was suggested to induce

permeation pathways through mitochondrial membranes. In addition, recent studies have shown that

two weeks of denervation in rat muscle leads to the release of several mitochondnial pro-apoptotic

proteins (e.g. cytochrome e, AIF, smac/Diablo) and to the activation of downstream events including

the activation ofcaspase 9 and 3 and DNA fragmentation (Siu & Alway, 2005).

One of the well-described mechanisms of membrane permeation in mitochondria involves the opening

of the permeability transition pore (PTP) (sec (Zoratti & Szabo, 1995) for extensive review). The PTP
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is a high conductance, non-specific pore presumably formed by a supramolecular complex spanning the

double membrane system of the mitochondria mainly at contact sites. Although it is increasingly

recognized that the molecular composition of the PTP is probably variable (He & Lemasters, 2002;

Kim et al., 2003; Zoratti et al., 2005), the prevailing hypothesis is that the adenylate transiocator

tANT), the porin pore (VDAC) and the regulatory matrix protein cyclophilin-D (CypD) are the major

pmteins fonning the comptex (Crompton, 1999; Halestrap et aÏ., 2000). Opening ofthe PTP resuits in

matrix swelling, loss of membrane potential (e’), uncoupling of oxidative phosphorylation, and ATP

hydrolysis and was also shown to cause the release of several mitochondrial pro-apoptotic proteins

including cytochrome c, A1F, Smac/Diablo, endonuclease G and Omi/HtrA2 (Di Lisa & Bemardi,

J 99$; Bernardi, 1999; Bernardi et al., 1999; Crompton, 1999; Suleiman et aI., 2001). Although the

regulation of PTP gating varies depending on the tissue sttidied, accumulation of Ca2 in the matrix is

the obligatory and most important trigger for its opening (Zoratti & Szabo, 1995; Bernardi, 1999).

Several factors, including the type of substrate used, membrane potential, redox state of pyridine

nucleotides, reactive oxygen species, [adenylates] and [proton] can however act as co-regtilators by

affecting the sensitivity ofthe pot-e to Ca2 (Zoratti & Szabo, 1995; Bemardi, 1999).

There are culTently very few data available on the PTP in skeletal muscle. Opening of the PTP was

shown to mediate the myotoxic effect of the anaesthetic bupivacaine, which could be prevented by

inhibiting the pore with cyclosporin-A (CsA) (lrwin et al., 2002). More recently, mitochondrial

dysfunction caused by an increased vulnerability to PTP opening was observed in mice harbouring a

knockout of the collagen VI gene, which is involved in Bethiem myopathy and Ullrich congenital

muscular dystrophy (Irwin et al., 2003). However, whether the vulnerability of mitochondria to PTP

opening is altered in denervated nniscle remains largely unknown. In the present study, surgical
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denervation was used to determine whether Ioss of neural input and/or its functional sequellae alters the

sensitivity of isolated mitochondria to PTP opening and if this could be associated with changes in

some Cactors favouring permeabi lity transi ti on.
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METU ODS

Muscle Deneivation Proceduie

Female Sprague-Dawley rats (Charles River, Saint-Constant, Quebec), weighing 225-250 g at the

beginning ofthe experiment, were housed in an environmentally controiled room (23 °C, 12: 12-h light

dark cycle) and provided water and food ad libitum. Animais were randomiy assigned to one of two

groups; muscle denervation or sham-operated control where n = 24 animais per group. Following

anesthesia (ketamine / xyiazine : 61.5 / 7.7 rng/kg, i.p.) muscle denervation was performed bilaterally

by extracting a 10 mm segment of the sciatic nerve through an incision in the mid-posteroiateral area of

the thigh. The incision was closed with siik sutures and the animaIs were administered buprenorphine

(0.05 mg/kg, i.p.) as post-operative anaïgesia. The incision site was washed with antibacteriai solution

to prevent infection. Daiiy inspection of the animaIs’ hindiimbs was performed, verifying for absence

of the toe-spread reflex. Body mass was evaiuated every 4$ h as an indication of tolerance to the

denervation procedure. Any animai demonstrating signs of distress or automutilation of the distai ends

of the feet and/or tocs was immediateiy exciuded from the experimental protocol. Ail procedures were

approved by the animal ethics committee of the Université de Montréal and were in accordance with

the guidelines ofthe Canadian Council of Animai Care.

Materials

AIl chemicals were purchased from Sigma (St-Louis, MO, USA), with the exception ofCyciosporin A

(Tocris, Eilisville, MO, USA), and CaGreen-5N (Molecuiar Probes, Eugene, OR, USA).
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Mitochondrial Isolation Procedure

Isolation of mitochondria was performed as previousiy described (Fontaine et ai., 1998) with minor

modifications. Twenty one days following surgical denervation, animais were anesthetized (ketamine /

xyiazine : 61.5 / 7.7 mg/kg, i.p.) and the piantar group of muscles (soleus, plantaris, gastrocnernius)

was dissected from the sulTounding connective tissue, rapidly removed, trimmed clean of visible

connective tissue, weighed, and placed in 10 mi ofice-cold mitochondrial isolation buffer (in mM : 150

sucrose, 75 KC1, 50 Tris Base, I KH2PO4, 5 MgCI2, I EGTA, 0.2% BSA, pH 7.4). Animais were

subsequently ecithanized by lethai overdose of ketamine/xylazine. Ail steps were performed at 4°C.

Muscles were minced with scissors, incubated for I min with Nagarse protease (0.2 mg/ml) and

homogenized using a motor-driven Teflon pestle homogenizer. The homogenate volume was

completed to 40 ml with cold isolation buffer and centrifuged at 700 g for 10 min. The supematant was

decanted and centrifuged at 10 000 g for I O min. The peflet was resuspended in 40 ml of suspension

buffer (in mM 250 sucrose, 10 Tris-Base, 0.1 EGTA, pH 7.4) and centrifuged at 8 000 g for 10 min.

The final mitochondrial pellet was resuspended in 0.5 ml of suspension buffer and protein

concentrations were detemiined by bicinchoninic acid method.

Respirometry and enzyme activity

Mitochondrial oxygen consumption was measured polarographically at 25 °C, using Clark-type

electrodes (Oxygraph, Kansatech Instruments, Kings Lynn, England). Experiments were started with

the addition of 0.3 mg mitochondria in Imi of respiration buffer (in mM:125 KC1, 10 Pi-Tris, 0.05

EGTA, 10 MOPS, 2.5 MgCI2) supplemented with glutamate-malate (5: 1 mM). The medium was then

supplemented with 0.25 mM ADP to measure maximal rate ofoxidative phosphorylation (VADp).
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For the measurement of the activity of the respiratory chain complex 1V cytochrome oxidase (COX),

aliquots of the mitochondrial suspension were treated with 0.1 % Triton X-100 for 60 min on ice.

Following centrifugation for 5 min at 10 000 g, COX activity in the supematant was determined

spectrophotometrically as previously described (Burelle & Hochachka, 2002) and reported in mUimg

p rot.

Ca2 challenge

Mitochondria (0.15 mg.rnl-1) were incubated at 25 oc in 1.5 ml of buffer (in mM: 250 sucrose, 10

MOPS, 0.05 EGTA, 10 Pi-Tris, pH 7.3) containing glutamate-malate (5:2.5 mM) or succinate-rotenone

(5 mM - I tM). Ail substrates were free acids buffered to pH 7.3 with Tris. Changes in extra

mitochondrial calcictm concentration were monitored fluorimetrically (Hitachi, F4500 or Ocean Optics

SD2000 spectrofluorometer) using Calcium-green 5N (I tM, excitation-emission: 505-535 nm) as

described by Ichas et al. (Ichas, I 997). Residual calcium concentration xvas adjusted to the same level

at the beginning of every experiment by adding a small amount of EGTA. Unless stated otherwise,

Ca2 pulses (83 nmol/mg prot.) were then added at 2 min inteiwals until a Ca2-induced mitochondrial

Ca2 release was observed. We have previously showed that this Ca2 release is invariably

accompanied by Ioss of i’ and high amplitude swelling of the mitochondrial matrix (Marcil et al.,

2005). Calcium retention capacity (CRC) was taken as the total amount of Ca2 accumulated by

7+ . .

mitochondna pnor to the ca- pulse triggering Ca release. This value represents a reliable index of

the threshold [Ca2] required to open the PTP in the whole mitochondrial population studied.
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f ndogenous Ca2 content

Muscles were sampled from one hindlimb and freeze-clamped in liquid N2 for detemiination of whole

muscle Ca content. Muscles fiom the contralateral limb were used for the isolation ofmitochondria as

described above except that ail bctffers were free of EGTA in order to avoid chelating Ca2. Ground

muscle samples and isolated mitochondrial pellets were diiuted in 0.6 N HC1 (1/10 w/v), homogenized

with a polytron (2x10 sec at a setting of 3) and sonicated (2x10 sec at 40% of maximal power output).

following 30 min of incubation in boiling water, sampies were centrifuged 5 min at 10 000 g and the

supematant was recovered. Ca2 content in the supernatant was determined spectrophotometricai iy

(VERSAmax, Moiecular Devices) using an O-Cresolphthaiein Compiexone assay according the

manufacturer’s instructions (TECO Diagnostics, Anaheim, CA). Resuits were expressed in nmoies

Ca2/mg prot.

Immunoblot Analysis

The protein expression of CypD, ANT and VDAC was determined in the isoiated mitochondriai

fraction. Samples were prepai-ed for SDS-PAGE by dilutions with reducing sample buffer foilowed by

a I 0-min immersion in near-boiling water. Twenty micrograms of protein were ioaded in each lane and

resoived on 12% poiyacrylamide mini-gels at room temperature. The gels were transfelTed to a PVDF

membrane (Millipore). Equal sampie loading was confirmed by Ponceau S stain (Sigma-Aldrich). The

membrane was fixed for 10 min with 0.05% giutaraldehyde in phosphate-buffered saline with 0.1 %

Tween 20 (PBS-T) then blocked in 5 % non fat milk (CypD, VDAC) or 5% BSA (ANT) in PBS-T at

room temperature for 90 miii, and incubated overnight at 4 oc with the following primary antibodies

dilcited in PBS-T with 5 % BSA: anti-CypD (1:2000 dilution, Affinity Bioreagents), anti-VDAC

(1:2000 dilution, Alexis Biochemicaïs) and anti-ANT (1:2000 dilution, Caibiochem). Membranes were
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then incubated for 90 min at room temperature in secondary antibody solution (1: 50000 dilution,

Jackson Immunoresearch). Bands were visualized by enhanced chemiluminescence with film exposure

times ranging from 5 to 45 min. Films were scanned and bauds quantified by ImagePro software.

Statistical analysis

Data were analyzed using ANOVA followed by Fischer’s Post hoc tests. Where appropriate (i.e. in

Ca2 challenge experiments), the Bonferonni correction was applied to the P value obtained to correct

for multiple comparisons. A colTected P value < 0.05 was considered significant.
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RESULTS

Morphometric parameters and mitochondrial proteïn isolation yield

Denervation for 21 days caused an atrophy of the hindlimb muscles as evidenced by a significant

reduction in absolute muscle mass and muscle mass to body mass ratio (Table I). The amount of

protein recovered in the mitochondrial fraction per gram of muscle was not signiflcantly different

between the two experimental groups. However, because of muscle atrophy, the total amount ofprotein

recovered was significantly lower in denervated compared to sham-operated animais.

Respiratory parameters

Figure I shows the resuits of respit-ometry experiments aimed to determine oxidative capacity. In

mitochondria from denervated muscles, basal ADP restricted (V0) and maximal rate ofADP-stimulated

(VADO) respiration were significantly decreased relative to sham when expressed per mg of protein.

This reduction of respiratory activity was similar in magnitude to that of the respiratory chain marker

enzyme COX, which was 1.8 fold lower in denervated compared to sham-operated animals.

Consequently, when respiration rates were normalized per unit of COX, V0 and VADp were similar in

th e two experimental groups.

Vulnerability to Ca2tinduced PTP opening

Figure 2 shows representative Ca2 uptake traces in mitochondria from sham and denervated muscles

submitted to progressive Ca2 loading. When energized with the complex II substrate succinate,

mitochondria from sham muscle were able to accumulate 475 ± 33 nmol Ca2/mg prot before Ca2 was

released as a result of PTP opening. In contrast, under the same conditions 4.3 fold less Ca2 was

required to trigger pore opening in mitochondria from denervated muscle (111 ± 12 nmol Ca2/mg
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prot) and the Ca2 uptake kinetics were substantiaiiy siower compared to sham (time to 50% uptake: 48

± 13 vs 14 ± I sec, P<0.05).

In energized mitochondria, the regulation of PTP opening is known to vary according to the type of

substrate oxidized, with substrates feeding compiex I acting as sensitizers compared to substrates for

compiex II (Fontaine et al., 199$; Bemardi, 1999; Leverve & Fontaine, 2001; Marcil et ai., 2005).

Therefore, experiments were aiso performed in the presence of the complex I donors glutamate-malate

(Figure 2). In une with previous resuits, CRC in the presence of glutamate-malate vas significantly

iower than in the presence of the compiex II substrate succinate in the two experimental groups.

However, CRC was stiil reduced in denervated compared to sham-operated animais.

In order to determine whether changes in CRC could be due to changes in Ca2 present in the

mitochondriai matrix at baseline, endogenous Ca levels were determined in the mitochondna and

whoie muscle. Figure 3 indicates that mitochondria from denervated muscles had a greater Ca2

content compared to sham, which was accompanied by a substantial muscle Ca2 overioad.

As indicated by the iower (- 2 foid) content of both inner (COX, ANT) and ociter membrane (VDAC)

markers (Figure I and 5), denervation appeared to reduce the number of mitochondria present in the

mitochondrial fraction. Therefore, CRC was also determined with a fixed amount of COX (Figure 4).

Under these conditions, the difference in CRC observed between the two experimentai groups was

significantÏy Ïess (2.4 foid) than the resuits obtained with a flxed amount of protein (4.3 foid). In

addition, if endogenous Ca2 present in mitochondria at baseline was taken into account, the difference

in CRC between sham and denervated muscles decreased further to 1 .5 fold, but remained significant.
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Figure 4 also shows the resuits of experiments performed in the presence of inhibitors of the PTP.

Incubation in the presence of I jiM CsA, which inhibits pore opening by binding to the putative

regulatory protein CypD (Davidson & Halestrap, 1990; Baines et al., 2005; Basso et al., 2005;

Nakagawa et al., 2005; Schinzel et al., 2005), resulted in a 1.6 ± 0.1 fold increase in CRC in

mitochondria from sham muscles. In contrast, in the denervated group the same treatment had a

significantly more potent effect and increased CRC by 2.4 + 0.2 fold. As a consequence, CsA was able

to abolish the difference in CRC observed between the two experimental groups. In order to determine

if this phenomenon was unique to CsA, experiments were also perfonned in the presence of

trifluoperazine, which inhibits PTP opening through a CypD-independent mechanism (Bernardi et aï.,

1993). Incubation with trifluoperazine increased CRC in both experimental groups but did not correct

for the difference in CRC observed between sham and denervated at baseline in the absence of

inhibitors.

Immunoblot analysis ofthe mitochondrial fraction

Since the increased potency to phanriacological PTP inhibition in the denervated group appeared to be

specific to CsA the mitochondrial content of CypD, the putative receptor for CsA (Davidson &

Halestrap, 1990; Baines et al., 2005; Basso et al., 2005; Nakagawa et al., 2005; Schinzel et al., 2005)

was determined (Figure 5). No significant difference in the absolute content of CypD was observed

between groups. However similar to what was observed with COX activity (Figure 1) the content of

VDAC and ANT, two abundant mitochondrial proteins was significantly lower in the mitochondrial

fraction of denervated compared to sham-operated muscles. Therefore, following denervation, CypD

appeared to be over expressed by 2-3 fold relative to each protein marker evaluated (Figure 5).
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DISCUSSION

Recent studies have shown that mitochondria, through their capacity to signal celi death, may be

involved in the atrophic remodelling of muscles following denervation (Tews & Goebel, 1996, 1997a,

I 997b; Tews, 2002; Siu & Aiway, 2005) but the mechanisms remain largely undefined. In the present

study we show that mitochondria isolated from denervated muscles display some respiratory

dysfunction and a greater susceptibility to opening of the PTP, one of the mechanisms involved in

mitochondria—mediated celi death. This phenomenon is due in part to the existence in vivo of a muscle

and mitochondrial Ca2 overload, which favours permeability transition. In addition, we provide

evidence that mitochondria from denervated muscle have an increased CypD content relative to several

marker proteins and display a selective increase in the sensitivity to CsA, suggesting that CypD further

facilitates pore opening in the denervated state.

E ffect of denervation on respiratory capacïty

Similar to what has been previousÏy reported (Joffe et aï., 1981a), we observed that mitochondria

isoÏated from denervated muscle display a reduction in Vo and VDp per mg of protein, which would

indicate that denervation caused a significant reduction in oxidative capacity. However, the amplitude

ofthis reduction should be interpreted with caution. Indeed, while milligram protein is generally a good

denominator to express respiratory parameters because the majority of mitochondrial proteins consist

of respiratory chain enzymes, in some cases its use can introduce distortions in the resuits (Leary et al.,

2003). For instance, in the present study denervation caused minimal changes in the protein

concentration of the mitochondrial fraction (Table I), whereas COX and other mitochondrial marker

proteins were significantly reduced. Because the relationship between total protein and specific

mitochondrial markers was altered by denervation, respiration was also expressed per unit of COX
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(Leary et al., 2003). When expressed this way, the effect of denervation on oxidative capacity was

much less pronounced, which suggests that the negative impact of denervation on the metabolic

potential ofmitochondria could be less important than previously thought (Joffe et al., 1981a).

E ffect of denervation on the susceptibility to Ca2tinduced PTP opening

Previocis studies in rats denervated for 21 days have reported that respiratory uncoupling occurred

prematurely in mitochondria when incubated in the presence of Ca2, although the mechanisms were

not investigated (Joffe et al., 1981c, 1981b). The resciits obtained in the present study clearly establish a

role for the PTP in Ca2-induced dysfunction. Indeed, CRC was substantially lower in deneiwated

compared to sham-operated muscles when expressed per mg of protein or per unit of COX and the

CRC displayed sensitivity to classic PTP inhibitors, particularly CsA.

Ca2-induced pemeability transition is known to be modulated by a variety of physiological effectors,

including the flow of electrons through complex I, which increases the sensitivity of the PTP to Ca2-

induced opening (Fontaine et aï., 1998; Bemardi, 1999; Leverve & Fontaine, 2001; Mai-cil et aI., 2005).

However, in the present study, bypassing complex I using succinate did not abolish the difference in

CRC between experimental groups, suggesting that the greater sensitivity of mitochondria to pore

opening in denervated muscle was not related to a mechanism involving electron flow through complex

I.

In accordance with a previous study (Joffe et al., 1981c), we observed a significant elevation in the

endogenous level of Ca2 in mitochondria from denervated muscles. This phenomenon has been

repoi-ted in certain myopathies (Joffe et al., 1981c; Marchand et aI., 2001) and is probably due to a
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progressive increase in intramuscular Ca2 levels ((Joffe et al., 1981c) and figure 3) which appears to

occur as a resuit of an increase in the ieakiness of the sarcolemma and the abnormai morphoiogy and

functioning of the sarcoplasmic reticulum (Joffe et al., 1981c; Takekura et al., 2003). Since the

accunndation of Ca2 in the matrix is the main trigger for PTP opening (Zoratti & Szabo, 1995) this

increase in endogenous Ca2 clearly contributed to the increased mitochondrial vulnerability to pore

opening in the denervated group. However, the fact that CRC stifl rernained 1.5 fold lower in the

denervated group after taking endogenous Ca2 into account indicated that other factors further

predi sposed mitochondri a to permeabi Ï ity transition.

In this regard CypD, a matrix peptidyl-prolyl cis-trans isomerase, was recently shown to play an

important role in sensitizing the pore to Ca2 (Baines et al., 2005; Basso et al., 2005; Nakagawa et aL,

2005; Schinzel et al., 2005). indeed, in mitochondria from Ppif’mice, which are devoid of CypD, the

amount of Ca2 required to trigger PTP opening is increased several fold (Basso et al., 2005; Nakagawa

et aI., 2005; Schinzei et al., 2005). In addition, the inhibitory effect ofCsA is completeÏy aboiished in

these mice, which indicates that CypD expression is the key factor that confers sensitivity to CsA

(Basso et al., 2005; Nakagawa et al., 2005; Schinzel et al., 2005). Consistent with these data, Baines et

al. (Baines et aI., 2005) aiso reported that in mice over-expressing CypD in a cardiac-restricted

manner, PTP opening occmTed more readily and that CsA could prevent this effect. Our observations

that CsA was selectiveÏy more potent in mitochondria from denervated muscle and was abie to restore

CRC to the level observed in sham-operated muscle therefore suggest a role for CypD in increasing the

vulnerabiÏity to PTP opening folÏowing denervation. The fact that CypD was over expressed by 2-3

fold relative to ail mitochondrial protein markers measured following denervation is consistent with
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this idea. To our knowledge, this is the flrst study to suggest a link between changes in CypD

expression and PTP dysregulation in a non-transgenic model ofdisease.

CONCLUSION

In conclusion, the resuits reported in the present study indicate that conditions that substantially

increase the vulnerability ofmitochondria to undergo permeability transition are observed 21 days after

denervation. This includes a significant increase in mitochondrial and whole muscle Ca2 content and

an increase in the expression of CypD, which further predispose the Ca2 overloaded mitochondria to

permeability transition. This observation is of significance as the occurrence of PTP opening in some

mitochondria in vivo may partly account for the activation of mitochondria—mediated ccli death that is

known to occur in the process of denervation atrophy (Tews & Goebel, 1996, 1997a, 1997b; Tews,

2002; Siu & Aiway, 2005).
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Table 1: Morphometric data and mitochondrial yield in muscle from sham and denervated

animais

Sham Denervated

Body weight (g) 262.3 ± 4.3 262.0 ± 3.7

Hindlimb muscle weight (mg) 1679 + 27 649 + 15

Muscle mass to body mass ratio (mg/g) 6.42 + 0.009 2.49 + 0.05 a

Mitochondrial isolation yield (mg prot./g) 3.926 ± 0.286 3.207 ± 0.38$

Mitochondrial protein yieid (mg) 6.610 + 0.449 3.332 + 0.322

a Significantly different from sham, P<0.05
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FIGURE LEGENDS

Figure 1: Respiratory function in mitochondria from sham and denervated animais. Panel A

shows basal ADP-restricted (V0), and maximal rate of oxidative phosphorylation following

addition of I mM ADP (VAt)p) expressed per mg of protein. Panel B shows the activity of the

terminal respiratory chain enzyme COX in the mitochondrial fraction of sham-operated and

denervated animais. Panel C shows Vo and VADp expressed per ctnit of COX present in the

mitochondrial fi-action of both experimental groups. For respirometry experiments mitochondria

were energized with glutamate-malate (5, 2.5 mM). Data are presented as means + SE, for n = 6

and n = 5 in the denervated and sham groups, respectively. a : Significantly different from sham

(P <0.05).

Figure 2: Response to Ca2 challenge in mitochondria from sham and denervated animais. The

figure shows typical Calcium-green 5 N tracing of muscle mitochondi-ia (0.15 mg/n±) energized

with succinate—rotenone (5 mM, I jiM) and glutamate—malate (5, 2.5 mM) in sham operated

(panel A and C) and denervated animais (panel B and D). Tracings show progressive Ca2+

accumulation followed by release of accumulated Ca2 secondary to PTP opening. Each spike

indicates the addition of a calcium pulse of 83 nmol/mg. Panel E shows the average Ca2+

retention capacity of mitochondria in the various experimental conditions. Means ± SE are

presented for n 8 and 9 in the sham and denervated groups respectively. a : Significantly

different from sham (P < 0.05), b: Significantly different from succinate + rotenone within the

same experimental group (P < 0.05).
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Figure 3: Effect of denervation on endogenous mitochondriai and whole muscle Ca2 content in

sham and denervated animaIs. The figure presents endogenous Ca2 content measured in the

whole muscle homogenate and the mitochondriai fraction of sham and denervated animais. Data

are presented as means + SE, for n = 8 and n = 9 in the denervated and sham groups, respectively.

a: Significantly different from sham (P <0.05).

Figure 4: Total Ca2 retention capacity and effect of PTP inhibitors in mitochondria from sham

and denervated animais. The figure shows total Ca2 retention capacity in absence and presence

ofthe PTP inhibitors cyclosporin-A (1 tM) and trifluoperazine (10 1iM). Values are expressed as

the sum ofendogenous Ca2 (black bars) and ofCa2 added during the in vitro challenge and are

expressed per unit ofthe marker enzyme cytochrome oxidase (COX). Means + SE are presented

for n = 8 and 9 in the sham and denervated groups respectively. a t Significantly different from

sham (P < 0.05), b: Significantly different from baseline (P <0.05).

Figure 5: Cyclophilin D, VDAC and ANT content of mitochondiial fraction from sham and

denervated animais. Representative immunoblots of cyclophilin D (CypD: 21 kDa), voltage

dependent anion channel (VDAC: 31 kDa) and adenine nucleotide transiocase (ANT: 31 kDa) in

muscle mitochondriai fraction isolated from sham and denervated animals. Bach une represents a

single mitochondriai preparation in each group. Densitometric analysis for each protein

represents the mean + SE of 4 preparations in each experimental group. Histograms A and B

show CypD content expressed relative to that of VDAC and ANT respectively. Histogram C

shows CypD content relative to the activity of COX measured in the same samples. a

Significantly different from sham (P <0.05).
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ABSTRACT

In the present study, mitochondria were isolated from rat soleus (SOL), plantaris (PLN) and

white gastrocnemius (WG), three muscles characterized by different fiber type composition, and

the regulation of pore opening was investigated in vitro. Mitochondria isolated from these three

muscles did not differ significantly with respect to their content of the marker enzymes (CS and

COX) and their respiratory capacity. On the other hand, significantly less Ca2 was required to

trigger PTP opening in mitochondria from SOL compared to PLN and WG when energized with

complex 11 (Ca2 retention capacity (CRC): 343 ± 16 vs. 585 ± 62 and 513 ± 79 nmol/mg prot,

respectively) or complex I (CRC: <$3 vs 120 ± 60 and 120 ± 60 nmol/mg prot, respectively)

substrates. This phenomenon was partly caused by a 2-fold increase in endogenous Ca2 levels in

mitochondria ifom SOL compared to PLN and WG, but was not due to an increased production

ofreactive oxygen species (ROS) since ROS production was lower in SOL compared to PLN and

WG. Incubation in presence of cyclosporin A increased CRC by a similar magnitude irrespective

of muscle type consistent with the absence of difference in the content of cyclophilin D, its

molecular target and putative pore component. However, the levels of ANT and VDAC, two

proteins involved in pore formation, were significantly higher in SOL compared to PLN and WG.

The present study provides the first evidence that the regulation of permeability transition varies

according to the phenotype of muscle fibers, which may contribute to explain the heterogeneous

progression of neuromuscular disorders across muscles.

Keywords: mitochondria, permeability transition pore, skeletal muscle, fiber phenotype
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INTRODUCTION

Besides their weIl-estabhshed importance for ATP production, it is now well known that

mitochondria play a crucial role in cellular dysfunction and death by their capacity to trigger

necrosis and apoptosis (Hengartner, 2000; Kim et cii., 2003; Mayer & Oberbauer, 2003; Green &

Kroemer, 2004). A key event in these phenomena is the appearance of permeation pathways

across mitochondrial membranes through various mechanisms, one of the best described being

the opening of the permeability transition pore (PTP). The PTP is a high conductance, non

specific channel formed by a supramolecular complex spalming the double membrane system of

mitochondria (Zoratti & Szabo, 1995; Crompton, 1999; Zoratti et cii., 2005). Although it is

increasingly recognized that the PTP is probably not composed of a unique set of proteins, the

adenylate transiocator (ANT) and the porin pore (VDAC), which are among the most highly

expressed mitochondrial proteins, are known for their ability to form the PTP (Crompton et aï.,

1999; Halestrap et ai., 2002) together with the matrix regulatory protein cyclophilin D (CypD)

(Baines et aÏ., 2005; Basso et aÏ., 2005; Nakagawa et aÏ., 2005; Schinzel et cii., 2005). Opening of

the PTP resctlts in the loss of membrane potential, matrix swelling, uncotipling of oxidative

phosphorylation, ATP hydrolysis and the release of several pro-apoptotic factors including

cytochrome c, AIF, Smac/Diablo, endonuclease G and Omi/HtrA2 (Di Lisa & Bernardi, 199$;

Bernardi, 1999; Crompton, 1 999; Suleiman et ai., 2001). The accumulation of Ca2 in the matrix

is the obligatory and most iniportant trigger for PTP opening (Zoratti & Szabo, 1995; Bemardi,

1 999). However, other factors, including the type of substrate used, membrane potential, redox

state, matrix pH and adenylate content as well as ROS production, act as modulators by

affecting the sensitivity of the pore to Ca2-indctced opening (Zoratti & Szabo, 1995; Bernardi,

1999).



124

Recent studies have shown that an increased vulnerabihty to opening of the PTP occurs in

skeletal muscle under various pathological conditions i ncluding denervati on atrophy (Csukl y et

al., 2006), myopathies related to collagen VI deficiencies (Irwin et al., 2003) as weII as

bipuvacaine-induced myotoxicity (lrwin et cii., 2002). However, despite this knowledge very few

data are available on the regulation ofthe PTP in skeletal muscle (Fontaine et cii., 1998) and the

question of whether the vulnerability of mitochondria to pore opening varies across liber type

remains unanswered. This question is particularly relevant as the appearance and progression of

several neuromuscular disorders is very beterogeneous in muscles with various phenotypes

(Tews, 2002), which may in part reftect a different vulnerability of mitochondria to PTP opening

and activation of mitochondrial death pathways across liber types. In the present study we

isolated mitochondria from three muscles displaying divergent liber type composition ranging

From predominantly slow-twitch type I to predominantly fast-twitch type 11h libers and

detemined their vulnerability to PTP opening under various conditions. We also detennined

whether these changes were associated with muscle type-specific alterations in selected PTP

effectors and putative regulatory and structural pore components.
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METHODS

Mitochondiial Isolation Procedure

Female Sprague-Dawley rats (Charles River, Saint-Constant, Quebec), weighing 225-250 g were

housed in an environmentally controlled room (23 °C, 12: 12-h light-dark cycle) and provided

water and food ad libitum. Isolation of mitochondria was perfomied as previously described

(Madsen et al., 1996) with minor modifications. Animais were anesthetized (ketamine /

xylazine : 61.5 / 7.7 mg/kg, i.p.) and the plantar group of muscles was dissected from the

surrounding connective tissue, rapidly removed, trimmed clean of visible connective tissue,

weighed, and placed in 10 ml of ice-cold mitochondrial isolation buffer (in mM : 150 sucrose, 75

KCI, 50 Tris Base, 1 KH2PO4, 5 MgCh, 1 EGTA, 0.2% BSA, pH 7.4). AnimaIs were

subsequently euthanized by cervical dislocation. All procedures were approved by the animal

ethics committee ofthe Université de Montréal and were in accordance with the guidelines ofthe

Canadian Council of Animai Care.

Ail steps were performed at 4°C. The soleus (SOL), plantaris (PLN) and white portion of the

gastrocnemius (WG) were minced separateÏy with scissors, incubated for 1 min with Nagarse

pmtease (0.2 mg/ml) and homogenized using a motor-driven Teflon pestle. The homogenate

volume was completed to 40 ml with cold isolation buffer and centrifuged at 700 g for 10 min.

The supernatant was decanted and centrifuged at 10 000 g for 10 min. The pellet was

resuspended in 40 ml of suspension buffer (in mM : 250 sucrose, 10 Tris-Base, 0.1 EGTA, pH

7.4) and centrifuged at 7 000 g for 10 min. The final mitochondrial pellets were resuspended in

0.3 ml of suspension buffer for PLN and WG and 0.2 ml for SOL and protein concentrations

were determined by the bicinchoninic acid method (Sigma, St-Louis Missouri, USA).
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Materials

Ail chemicals were purchased from Sigma (St-Louis, MO, USA), with the exception of

Cyclosporin A (Tocris, Ellisviile, MO, USA), and CaGreen-5N (Molecular Probes, Eugene, OR,

USA).

Respirometry and enzyme activity

Mitochondrial oxygen consumption was measured poiarographically at 25 °C, using Clark-type

electrodes (Oxygraph, Hansatech Instruments). Experiments were started with the addition of 0.3

mg mitochondria in I ml of respiration buffer (in mM: 125 KC1, 10 Pi—Tris, 0.05 EGTA, 10

MOPS, 2.5 MgC12) supplemented with glutamate-malate (5:2.5 mM) or succinate-rotenone (5

mM — 1 îM). The medium was then supplemented with 0.25 mIVI ADP to measure maximal rate

of oxidative phosphorylation (VADP). The respiratory control ratio (RCR) was calcuiated as the

ratio VADp/Vo where V0 represents baseline respiration in the absence ofADP.

for the measurement of citrate synthase (CS) and cytochrome oxidase (COX) activity, aliquots of

the mitochondrial suspension were treated with 0.1 % Triton X-100 for 60 min on ice. Following

centrifugation for S min at 10 000 g, the activites of cs and COX in the supernatant were

determined spectrophotometrically as previously described (Csukly et cii., 2006) and repotled in

mU/mg prot.

Ca2 challenge

Mitochondria (0.15 mg/ml) were incubated at 25 °c in 1.5 ml of experimental buffer (in mM: 250

suci-ose, 10 MOPS, 0.05 EGTA, 10 Pi-Tris, pH 7.3) containing glutamate-malate (5:2.5 mM) or
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succinate-rotenone (5 mM - 1 jiM). Ail substrates were free acids buffered to pH 7.3. Changes in

extra-mitochondrial calcium concentration were monitored fluorimetrically (Hitachi, F4500 or

Ocean Optics SD2000 spectrofluorometer) using Calcium-green 5N (1 iM, excitation-emission:

505-535 nm) as described by Ichas et al. (Ichas et al., 1997). Residual calcium concentration was

adjusted to the same level at the beginning of every experiment by adding a small amount of

EGTA. Ca2 pulses (83 nmol/mg prot.) were then added at 2 min intervaïs until a Ca2-induced

mitochondrial Ca2 release was observed. CRC was taken as the total amount of Ca2

accumulated by mitochondria prior to the Ca2 pulse triggering Ca2 release. This value

represents a reliable index of the threshold [Ca2] required to open the PTP in the whole

mitochondrial population studied (Zoratti & Szabo, 1 995; Bernardi, 1999).

Endogenons Ca2 content

Mitochondria ifom the different muscles were isolated as described above except that ail buffers

were free of EGTA in order to avoid chelating Ca2. lsolated mitochondrial pellets were diluted

in 0.6 N HCI (1/10 w/v), homogenized with a polytron (2x10 sec at a setting of 3) and sonicated

(2x10 sec at 40% of maximal power output). Following 30 min of incubation in boiling water,

samples were centrifuged 5 min at 1 0 000 g and the supernatant was recovered. Ca2 content in

the supernatant was determined spectrophotometrically (VERSAmax, Molecular Devices) using

an O-Cresolphthalein Complexone assay according the manufacturer’s instructions (TECO

Diagnostics). Results were expressed in nmoles Ca27mg prot.
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Production of reactive oxygen species (ROS)

Mitochondrial H202 production vas measured fluorimetrically with amplex red (20 jiM:

excitation-emission: 560-5 84). Mitochondria (0.1 mg/ml) were incubated at 25 oc in 2 ml of

experimental buffer (in mM: 250 sucrose, 10 MOPS, 0.05 EGTA, 10 Pi-Tris, pH 7.3) containing

glutamate—malate (5:2.5 mM) or succinate (5 mM) and supplemented with 1.2 U/ml of

horseradish peroxidase. At the conclusion of each test, 1 76 pM of H202 was added to allow for

the calculation ofendogenous ROS production.

Western immunoblot analysis

The protein contents ofcyclophilin D (cypD), Adenylate transiocator (ANT) and Porin (VDAC)

were determined in the isolated mitochondrial fraction. Samples were prepared for SDS-PAGE

by dilutions with reducing sample buffer followed by a 10—min immersion in near-boiling water.

Twenty micrograms of protein were loaded in each lane and resolved on 1 2% polyacrylamide

mini-gels at room temperature. The gels were transferred to a PVDF membrane (Millipore).

Equal sample loading was confirmed by Ponceau S stain (Sigma-Aldrich). The membrane was

flxed for 10 min with 0.05% glutaraldehyde in phosphate-buffered saline with 0.1 % Tween 20

(PBS-T) then blocked in 5 % non-fat milk (cypD, VDAC) or 5% BSA (ANT) in PBS-T at room

temperature for 90 mm, and incubated ovemight at 4 °C with the following primary antibodies

dilLlted in PBS-T with 5 % BSA: anti-cypD (1:2000 dilution, Afflnity Bioreagents), anti-VDAc

(1:2000 dilution, Alexis Biochemicals) and anti-ANT (1:2000 dilution, calbiochei). Membranes

were then incubated for 90 min at room temperature in secondary antibody solution (1: 50000

dilution, Jackson Imm unoresearch). Revelation vas performed by enhanced chemiluminescence
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with film exposure times ranging from 5 to 45 min. Films were scanned and bands quantified

using ImagePro soflware.

Statistical analysis

Data were analyzed using one-way ANOVA followed by Fisher’s post-hoc test. Significance was

assumed at P < 0.05.
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RESULTS

Isolation of mitochondria from SOL and PLN yielded significantly more mitochondrial protein

per gram of muscle compared to WG (Table 1). This is consistent with the predominant

phenotype of these muscles, with the SOL containing a high proportion of slow-oxidative type I

fibers (87 ¾ type 1, 15 ¾ type IIA-IIX, 0% type 113), PLN containing a mixture of

iredominantly fast-oxidative and fast-glycolytic tibers (6 ¾ type I; 45 % type lIA — I1X and 47 ¾

type 113), whereas the WG contains more than 90 ¾ fast-glycolytic fibers (0% type I, 8 % type

lIA- I1X, 92 % type 113) (DeIp & Duan, 1996). As for the activity ofthe marker enzymes CS and

COX present in the mitochondrial fraction, no significant differences were observed among

muscles.

Table 2 shows the resuits of respirometry experiments aimed to determine basic parameters of

oxidative phosporylation in presence ofstibstrates for complex I and II. Values for V\Dp were not

si gni fi cantly di fferent among muscles, regardless of the substrate oxidized. Basal ADP-restricted

respiration tended to be higher in PLN and WG compared to SOL, but this difference reached

statistical significance only when mitochondria were energized with the complex II donor

succinate. RCR values ranged from 9.4 to 11 in presence ofglutamate-malate and from 4.9 to 7.4

in presence of succinate, indicating that mitochondria from the three muscles were well-coupled.

RCR values tended to be higher in SOL compared to PLN and WG, but this difference was iiot

statistically significant. Overali, these resuits indicated no substantial variations in respiratory

properties across muscle type under our conditions.
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figure I shows the resuits of experiments in which the sensitivity of mitochondria to Ca2-

induced PTP opening vas detennined. Figure 1 A-C shows typical Ca2 uptake traces during

Ca2 challenge experiments in mitochondria from the three muscles when energized with the

complex II donor succinate in presence of rotenone. Under this condition, mitochondria from

PLN and WG were able to accunuilate 531 + 62 and 456 ± 79 nmol Ca2/mg prot respectively

before PTP opening was triggered (Figure 1D). In contrast, under the same conditions, 55 %

less Ca2 was required to trigger pore opening in mitochondria from SOL muscle (232 + 16

nmol/mg prot), indicating an enbanced vulnerability to peniieabiIiy transition. In addition, the

kinetics ofCa2 uptake was signiflcantly slower in SOL compared to PLN and WG (time to 50%

tiptake: 39 + 1, 24 ± 3 and 20 + I sec respectively).

In energized mitochondria, the type of substrate oxidized is known to influence Ca2-induced

PTP opening, with substrates feeding complex I acting as sensitizers compared to substrates for

complex II (Fontaine et cii., 1998; Csukly et cii., 2006). In order to determine if the difference in

CRC across muscle types was specific to the substrate oxidized, Ca21 challenge experiments were

also performed in presence of the complex I substrates glutamate-malate. In line with previous

results (Fontaine et cii., 199$; Csukly et cii., 2006), CRC measured in presence of glutamate

malate was significantly lower than with succinate in the three muscles (Figure I D). In addition,

CRC remained lower in mitochondria fiom SOL compared to PLN and WG. Indeed, in presence

ofglutamate-malate, mitochondria from PLN and WG were able to accumulate 121 + 60 nmol

Ca2*/mg prot whereas mitochondria isolated from SOL were unable to accumulate the first Ca2

pulse of $3 nmol/mg prot, implying that CRC was beÏow this value.
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In presence of Ca, reactive oxygen species are known to favor PTP opening (Halestrap et cil.,

1997; Halestrap et cd., 2002). ROS production by the respiratory chain was therefore measured in

mitochondria in order to determine whether this could account for differences in CRC across

muscle types (figure 2). In presence of the complex II donor succinate, ROS production was

significantly lower in mitochondria from SOL compared to WG, and mitochondria from PLN

displayed intermediate values. In presence of substrates for complex I, ROS production in

mitochondria from the three muscles displayed a similar profile, although the differences between

muscles did flot reach statistical significance. In accordance with previous studies (Capel et cil.,

2004; Kudin et ut., 2005; Anderson & Neufer, 2006), ROS production in mitochondria energized

with complex II substrates was significantly higher than that observed in presence of complex I

sLlbstrates, ii-respective of the musc le type.

Since Ca2 accumulation in the matrix is a key facto;- triggering pore opening, the endogenous

Ca2 levels present in mitochondrial extracts prior to the Ca2 challenge was determined. Figure 3

shows that endogenous Ca2 ]evels in mitochondria from SOL were 111 + li nmol/mg prot, —2-

fold higher than in mitochondria from PLN and WG (54 + 7 and 56 + 4 nmol/mg prot

tespectively). figure 4 shows Ca2 retention capacity ofmitochondria normalized for endogenous

Ca2 present at baseline before addition of exogenous Ca2. Differences in endogenous Ca2

levels across muscle type signiflcantly accounted for the lower CRC observed in mitochondria

from SOL when energized with glutamate-malate. However, this was not the case when

mitochondria were energized with succinate, siiice CRC values nonalized for endogenous Ca2

remained signiflcantÏy — 40 ¾ lower in SOL compared to WG and PLN. Figure 4 also shows the

results of experiments performed in presence of CsA, a drug that reduces vulnerabitity to Ca2-
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induced PTP opening by binding to CypD (Crompton et al., 1988). CsA significantly increased

CRC in mitochondria from ail muscles but did not abolish the differences among muscle groups.

Immunoblot anal ysi s performed on mitochondri al fractions showed no significant differences in

the content of the regulatory protein CypD (Figure 5). However, the levels of ANT and VDAC

were significantly higher in SOL compared to PLN and WG.
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DISCUSSION

In the present study, we report that mitochondria isolated from skeletal muscles with different

fiber type compositions are heterogeneous with respect to their vulnerability to Cu2-induced PTP

opening, with mitochondria from the SOL being more vuinerable compared to PLN and WG.

This greater sensitivity appears in the absence of major differences in respiratory capacities and

despite the ract that ROS production, a factor known to favor PTP opening, was the Iowest in the

SOL. Our resuits also indicate that the increased sensitivity to PTP opening in SOL is obseiwed

irrespective oF the type of substrate oxidized and is at least partly due to the greater endogenous

Ca2 levels.

Respiratory function

The lack of substantial variations in the content of the market enzymes CS and COX and in

respiratory properties across muscle type reported in the present study is in general agreement

with previous reports that have characterized fiber type differences in mitochondrial function.

lndeed, the activities ofthe TCA cycle enzyme CS (Yajid et al., 199$; Leary et cil., 2003), several

respiratory chain complexes including COX (Schwerzmann et al., 1989; Leary et cii., 2003) and

ATP synthase (Leary et ctÏ., 2003) were found to be relatively similar in mitochondria from

oxidative and glycolytic muscles. In addition, mitochondria from stow-oxidative muscles were

reported to have similar (Pande & Blanchaer, 1971 ; Schwerzmann et ai., 1989; Yajid et ciL, 1998;

Leary et cii., 2003; Mogensen & Sahlin, 2005) or slightly higher (Jackman & Willis, 1996)

capacities for oxidative phosphoryl ation and simi lar values of ADP-restri cted respiration

(Jackman & Willis, 1996; Yajid et ctÏ., 1998; Leary et ctt., 2003; Mogensen & Sablin, 2005)

compared to mitochondria from fast-glycolytic muscles when energized with TCA cycle
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substrates feeding complex I or complex II. 0f note, fiber type specificity in the capacity to

oxidize lipid substrates (Baldwin et aï., 1972; Jackman & Willis, 1996; Mogensen & Sahiin,

2005) as well as in the relative stoichiometries of some TCA cycle enzymes (Jackman & Willis,

1996; Leary et aÏ., 2003) have been reported but these differences, if present in our preparations,

had no significant impact on respiratory function under our experimental conditions.

In muscle, it is well known that ANT exerts a major control on oxidative phosphorylation under

physiological conditions (Vignais, 1976; Bohnensack, 1981; Balaban, 1990). In the present study,

we observed that the mitochondrial content of ANT was signiflcantly Iower in PLN and WG

compared to SOL despite the absence ofdifference in VADP among muscles. These results clearly

indicate that the degree ofcontrol exerted by ANT on maximal oxidative phosphorylation varies

across muscle types, being more important in predominantly fast-twitch muscles compared to

slow-twitch muscles. Variations in ANT content across muscle fiber type could thus contribute to

explain why mitochondrial respiration in fast muscles is mainly controlled by changes in [ADP]

and {ATP] while in slow-oxidative muscle, changes in the concentration of adenylates play a less

important role (Hochachka & McClelland, 1997).

Vulnerability to permeabitity transition

Very little information is currently available on the regulation of the PTP in skeletal muscle and

the question of whether fiber type specific differences in its regulatory properties exist bas not

been addressed previously. Fontaine et al. (Fontaine et aï., 1998) have shown that in

mitochondria isolated from pooled hindlimb muscles, CRC is 3-4 fold Iower in mitochondria

energized with complex I (glutamate—malate) compared to complex II (succinate + rotenone)
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substrates. This phenomenon was found to be due to the fact that electron flow through complex I

acted as a potent sensitizer to Ca2-induced PTP opening (Fontaine et aï., 199$). Resuits from the

present study confimi and extend these data by showing that CRC vas substantialiy lower in

presence of glutamate-malate compared to succinate in ail muscles, which indicates that this

regulatory feature is conserved across muscle fiber types.

However our resuits clearly indicate that illespective of the respiratory substrate oxidized,

mitochondria isolated from muscles composed predominantly of slow type I fibers (SOL) are

significantly more vuinerable to PTP opening in response to Ca2 toading compared to

mitochondria from muscle expressing mainly fast type II fibers (PLN and WG). Among the

factors known to increase the sensitivity to permeability transition is ROS production, which

favors pore opening by oxidizing critical SH residttes of pore forming proteins (Zoratti & Szabo,

1995). However, in the present study, we observed that the rate ofROS production in presence of

succinate was lower in SOL compared to WG while mitochondria from PLN displayed

intermediate values. A similar trend vas observed in presence of glutamate-malate, although no

significant difference between muscle types was noted. These results are in accordance with

recent studies showing that mitochondrial ROS production is higher in isolated mitochondria and

saponin-skinned fibers froiii muscles expressing mainly type II fibers (Capel et ctl,, 2004;

Anderson & Neufer, 2006). Overali, these data argue against a role for ROS production in

explaining the fiber type difference in PTP regulation under our experimental conditions.

Endogenous Ca2 was two-foid higher in mitochondria from SOL compared to PLN and WG

muscles. This observation is consistent with the fact that steady state {Ca2j in the cytosol is
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signiflcantly higher in slow twitch compared to fast twitch fibers likely because of a lower

capacity ofthe sarcoplasmic reticulum for Ca2 storage and to the absence ofthe cytosolic Ca2-

binding protein parvalbumin (fryer & Stephenson, 1996; Carroll et aÏ., 1997; Carroll et aï.,

1999). Since the accumulation of Ca2 in the matrix is the main trigger for PTP opening (Zoratti

& Szabo, 1995), this difference in endogenous Ca2 at least pailly contributed to the greater

vulnerabiiity to PTP opening in mitochondria from SOL compared to PLN and WG. This was

particularly evident when mitochondria were incubated in presence of glutamate-malate since

under this condition the Ca2 threshold for PTP opening (between 111—170 nmol/mg prot) was

equal to or only slightiy higher than the endogenous Ca2 levels (54—111 nmol/mg prot) due to the

sensitizing effect of complex I substrate on pore opening (Fontaine et cil., 1998). In contrast,

when compiex Ï was bypassed with succinate, CRC was substantially higher than endogenous

Ca2 levels in ail muscies and therefore differences in endogenous Ca2 had a proportionately

smaller role in determining the sensitivity to external Ca . However, under this condition CRC

was still 40 ¾ lower in SOL, implying that in this muscle additional factors were responsible

for the increased vulnerability to pore opening.

In this regard, the matrix protein foldase CypD was recently shown to play an important role in

sensitizing the PTP to Ca2 (Baines et cd., 2005; Basso et aÏ., 2005; Nakagawa et at., 2005;

Schinzel et cd., 2005). Recent studies have indeed shown that CypD-knockout mice are more

resistant to Ca2-induced PTP opening (Baines et aÏ., 2005; Basso et aï., 2005; Nakagawa et aï.,

2005; Schinzel et ctt., 2005) while overexpression of CypD leads to enhanced mitochondrial

swelling (Baines et aÏ., 2005). Moreover, the loss of sensitivity to CsA was shown to parallel the

loss of CypD expression indicating that CypD is the molecular target of CsA and is responsible
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for its inhibitory effect on the PTP. In the present study, the potency of CsA at inhibiting PTP

opening was similar in mitochondria, irrespective of muscle type. in addition, the expression of

CypD was similar in the three muscles, suggesting that CypD does not play a i-ole in the fibre

type difference in the sensitivity to PTP opening (Baines et cii., 2005; Basso et ctL, 2005;

Nakagawa et ai., 2005; Schinzel et cii., 2005). On the othei- hand, in mitochondria from SOL we

observed a significantly greater expression ofANT, an abundant protein known for its capacity to

form the PTP together with VDAC (Beutner et cii., 199$; Crompton et ciL, 1999; Halestrap et aï.,

2002). Recent studies have shown that in mice harboring a liver-specific knockout of both

isoforms of ANT, PTP opening can stili occur indicating that ANT is not absoltitely required.

However, significantly greater amounts of Ca2 ai-e required to induce PTP opening in the

absence of ANT suggesting that ANT confers greater Ca2 sensitivity (Kokoszka et ai., 2004).

Therefore one possibility could be that in presence of conditions favoring permeability transition

the greater abundance of ANT and its binding patiner VDAC in the SOL may increase the

likelihood that some of these proteins loose their role of specific excbangers to paliicipate in the

formation ofthe PTP.

An important consideration regards the possibility that the so-called white portion of the

gastrocnemius also includes portions of intermediate gastrocnemius, which bas a fiber type

composition similat to that of the PLN (DeIp & Duan, 1996). This possibility could paiiially

accotmt for the general lack of difference reported in this sttidy between PLN and WG with

respect to pararneters such as endogenous Ca2 content, vulnerability to Ca2-induced PTP

opening, Ca2 retention capacity, and protein content of ANT, VDAC, and CypD. In light of this

possible caveat, it may be more suitable to compare only slow and fast muscle (including two
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different fast muscles), rather than proposing distinctions according to predominant fiber types.

In future studies, it would be valuable to include actual measurements of the fiber type

composition of the representative samples.

In conclusion, the present study provides the first evidence that in predominantly slow twitch

oxidative muscles, mitochondria are more sensitive to PTP opening compared ta mitochondria

from predominantly fast-twitch muscles and display greater levels of ANT and VDAC, two

proteins that can be involved in pore formation (Crompton et ctL, 1 999; Halestrap et al., 2002).

This greater vulnerability to pemieability transition is at Ïeast partly due ta the greater

mitochondrial Ca2 levels present in mitochondria from slow—twitch oxidative muscles but not ta

differences in the production af ROS or ta the expression of the regLtlatory pratein CypD. Thus,

increased susceptibility af PTP apening might pravide a mechanism that acts ta predispose SOL

muscle ta significant atrophy and slaw-to-fast phenotypic transitions with loss of mitochondrial

mass under various conditions where normal activity pattems are modified (unloading,

spaceflight, immobilization) (Marshall et aÏ., 1989).
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Table 1: Muscle mass and mitochondrial isolation yieÏds and enzymatic activities

SOL PLN WG

Muscle mass (mg) 274 ± 8.78 “ 589 ± 9.55 a,c 889 ± 24.7

Mitochondrial yield 1.19 ± 0.119 2.37 ± 0.195 2.40 ± 0.212
(mg)

Mitochondrial yield 4.34 ± 0.421 4.04 ± 0.346 2.68 ± 0.194 a,b

(mg/g)

COX activity (mU/mg) 7.39 ± 0.43 1 7.37 ± 1.00 7.77 ± 0.780

CS activity (mU/mg) 8.83 ± 0.852 8.05 ± 0.365 6.32 ± 0.593

U: Significantly different from SOL; b: significantly different from PLN; C: significantly different

from WG, P<0.05, where n 5 for each muscle.
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Tab]e 2: Respiratory function in mitochondria from SOL, PLN, and WG muscle. Presented are

values for basal ADP-restricted (V0), maximal rate of oxidative phosphorylation following

addition of 1 mM ADP (VADp), and respiratory control ratio (RCR) in mitochondria energized

with glutamate-malate (5, 2.5 mM) or with succinate-rotenone (5mM- J jiM). Data are presented

as means ± SE, where n 7 for each muscle. a Significantly different from SOL (P <0.05).
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FIGURE. LEGENDS

Figure 1: Calcium uptake kinetics during Ca2 challenge experiments in mitochondria from SOL,

PLN, and WG muscle. The figure shows typical Calciurn-green 5N tracing of muscle

mitochondria (0.15 mg/mL) energized with succinate-rotenone in SOL (panel A), PLN (panel B)

and WG (panel C). Tracings show progressive Ca2 accumulation followed by release of

accumulated Ca2 secondary to PTP opening. Each spike indicates the addition ofa Ca2 pulse of

$3 nmol/mg. Calcium retention capacity measured in several experiments in presence of

succinate + rotenone (SR) or glutamate-malate (GM) is shown in Panel D for each muscle. Data

are presented as means + SE, where n = 5 for SOL and PLN, and n= 6 for WG. a: significantly

diffèrent from PLN and WG.

Figure 2: Mitochondrial H202 production. The figure shows F1202 production (picoM mg prot

min ) in mitochondria isolated from SOL, PLN, and WG muscles energized with substrates for

complex II or complex I (hatched bars). Data are presented as means + SE, where n = 9 for each

muscle. a: significantly different from SOL and PLN; b: significantly different from condition

with complex II substrate, (P < 0.05).

Figure 3: Endogenous Ca2 content ofmitochondria isolated from SOL, PLN, and WG muscles.

The figure presents endogenous Ca2 content measured in the mitochondrial fraction of SOL,

PLN, and WG muscles. Data are presented as means + SE, where n = 5 for SOL, and n = 6 for

PLN and WG muscles. a : significantly different from PLN and WG (P < 0.05).
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Figure 4: Effect of substrate and the PTP inhibitor CsA on calcium retention capacity in

mitochondria from SOL, PLN, and WG muscles. The figure shows the effect of incubation with

glutamate-malate and succinate-rotenone with or without cyclosporin-A (1 tM) on calcium

retention capacity. Values are expressed as the sum of the contribution of endogenous

mitochondrial Ca2 (black bars) and the Ca2 added during the in vitro challenge. Data are

presented as means ± SE, where n 5 for SOL and PLN, and n= 6 for WG. a: significantly

different from PLN and WG; b: significantly different from condition with glutamate-malate; c:

signiflcantly different from condition with succinate—rotenone.

Figure 5: Cyclophilin D, VDAC and ANT content of mitochondrial fraction from SOL, PLN,

and WG muscles. Representative immunoblots of cyclophilin D (CypD: 21 kDa), voltage

dependent anion channel (VDAC: 31 kDa) and adenine nucleotide translocase (ANT: 31 kDa) in

muscle mitochondrial fraction isolated from SOL, PLN, and WG muscle. Densitometric analysis

for each protein represents the mean ± SE, where n = 6 for SOL and PLN, and n 5 for WG. a:

Significantly different from PLN and WG, (P < 0.05).
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5. CotcLusIoNs AND GENERAL. DISCUSSION

The three original studies presented in this thesis have provided information regarding

the cellular processes regulating disuse muscle atrophy with respect to: 1) the

understanding of intracellular signaling potential in disused muscle in response to a

mechanical stimulus; 2) the effect of loss of neural input to muscle fibers on changes in

the sensitivity and modulation of PTP opening; 3) a characterization of the properties

and function of the mitochondrial PTP in different skeletal muscles characterized by

different fiber types. Based on the observations and resuits ofthese studies, we propose

the following conclusions:

1. decreased JNK phosphorylation response to mechanical stimulation indicates

that atrophic muscle may lose the ability to transduce mechanical signais to the

MAPK pathways. In light of this decline in muscle responsiveness to

mechanical stimuli with continued unweighting, we propose that

countermeasures designed to preserve muscle mass in situations of unloading

(bed rest, spaceflight, immobilization) should be implemented promptly

following the onset of mechanical unloading;

2. since the contribution of cellular apoptosis has been proposed as a possible

mechanism regulating the loss of myofibers which occurs as a resuit of reduced

mechanical loading, increased JNK-mediated regulation of cel lular apoptosis

may explain the increased basal phosphorylation levels measured in muscle

following hindlimb suspension;

3. we suggest that the expression o’ CypD, by virtue of its PPIase activity, is

increased in muscle atrophied by denervation as an initial defense or protective

mechanism against protein misfolding. But as mitochondria become

progressively overloaded with Ca2, this evolves into a maladaptive response by

promoting PTP formation and opening;

4. vie contribute important information regarding the characterization of PTP
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properties in mitochondria isolated from skeletal muscle tissue. We demonstrate

that basic PTP function and sensitivities are different depending on the type of

muscle fiber from which mitochondria are isolated. Mitochondria isoiated from

SOL dispiay increased sensitivity to Ca2-induced PTP opening as evidenced by

a significant decrease in Ca2tretention capacity and significantly slower Ca2t

uptake kinetics. This greater sensitivity appears in the absence of major

differences in respiratory capacities and despite the fact that ROS production, a

factor known to favor PTP opening, is the lowest in the SOL. This phenomenon

may be partiy caused by an increase in endogenous mitochondrial Ca2 levels in

this muscle but, unlike in the denervation study, is not associated with

differences in the protein expression of CypD. This is coiroborated by the

finding that PTP inhibition by CsA, an inhibitor whose molecular target is

CypD, is equally effective in ail muscle types studied. Kowever, the levels of

ANT and VDAC proteins are significantly higher in SOL compared to PLN and

WG. Thus, in presence of conditions favoring permeability transition, the

greater abundance of ANT and its binding partner VDAC in the SOL muscle

may increase the likelihood that some of these proteins loose their role of

specific exchangers to participate in the formation of the PTP. Increased

susceptibility ofPTP opening might provide a mechanism that acts to predispose

SOL muscle to significant atrophy and slow-to-fast phenotypic transitions with

loss of mitochondrial mass under various conditions where normal activity

patterns are modified (unloading, spaceflight, immobilization). These findings

support the emerging view that mitochondria display distinct properties that

differ qualitatively according to muscle phenotype.

5. 1 Genercil Discuss ion

A loss of skeletal muscle mass and functional capacity is an undesirable, yet inherent

consequence of muscle disuse. Inactivity-mediated protein breakdown occurs in rnany

circumstances ranging from events such as illness or injury, to unique environments

such as microgravity, and to less blatant causes such as the progression of aging in the

elderly. Regardless of the underlying cause, the consequences of inactivity are readily
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observable and debilitating.

The functional adaptations to disuse in the muscles of humans are often difficuit to

investigate because adaptations occur over a period ofweeks, months, or even years and

there is a large variability in response to muscle disuse among humans. To circumvent

these issues, various animal models have been developed which quickly resuit in

extensive muscle atrophy. Such models allow plecise control of the loading,

innervation, and can provide accounts of muscle activation throughout the disuse

intervention.

Mechanistically, the loss of lean muscle mass during inactivity is the resuit of a chronic

imbalance between muscle protein synthesis and breakdown. The results of numerous

studies have demonstrated that these processes are controlled by multiple signals

originating both inside and outside the muscle, with downstream intracellular signal

transduction pathways interacting in complex ways (Hunter et al., 2002; Glass, 2003;

Homberger & Esser, 2004; Jackman & Kandarian, 2004; Glass, 2005; Kandarian &

Jackman, 2006). There is accumulating new evidence suggesting that apoptosis is a key

process during muscle atrophy resulting from diverse causes. Although apoptosis can

occur through several mechanisms, mitochondria have been implicated as major

regulatory centers for apoptosis. The discovery that mitochondria operate not only as

providers of cellular energy necessary for life, but also as sources of signaIs foi- ceil

death has prompted great interest in the investigation of mitochondria-associated

signaling of apoptosis.

As we have seen, mitochondria contain a structctre that, in vitro forms a large unspecific

channel cafled the PTP under conditions of high Ca2, P, and oxidative stress

(Crompton et ctÏ., 1988). Opening ofthis so-called PTP channel has mostly been studied

for its involvement in apoptosis. It was believed that opening of the PTP would cause

two important changes to mitochondria: 1) it would interfere with mitochondrial

electron transport, and therefore ATP production; 2) it would cause mitochondrial

swelling due to the disequilibrium of water and jolis between the cytosol and matrix

resulting in bursting of the mitochondnal membranes and the release of their pro-
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apoptotic contents (Kroemer et ctÏ., 1998; Green & Kroemer, 2004). Presently, it is not

entirely clear whether the mitochondrial PTP complex bas a i-ole in normal ceil

physiology. It bas been suggested by some that the pore may represent a route for Ca2

to escape from overloaded mitochondria under physiological conditions (Ichas et aï.,

1997). However, it is weIl known that pore opening destroys the protonmotive force so

it bas been argued that it is unlikely that mitochondrial Ca2 levels are regulated by a

mechanism that causes enzymes of the electron transport chain to be lost to the cytoso]

and ATP to be hydrolyzed (Crompton & Costi, 1990).

An interesting and important task that remains to be completed is to determine the

molecular composition of the mitochondrial PTP. Although several hypotheses are

being considered, there is stili no clear resolution of this issue (Green & Kroemer,

2004). One of the curious aspects of the PTP complex is that it is assembled from

components that have other weil-established i-oies in celis. For instance, the function of

VDAC is to allow specific solutes of low molecular weight access to the transport

systems ofthe inner membrane. As foi- ANT, the physiological role for this protein is to

mediate the exchange of ADP for ATP, a process that is essential for the primary

bioenergetic function of the mitochondria.

5.2 Possible cilternatefiinctions ofPTP components

The function of CypD is not as welI established, but a Iikely roTe is the control of

protein misfoÏding. In our second study, we show that denervation induces an increase

in the relative expression of CypD and an over-representation of this protein compared

to other putative PTP components, establishing a condition which may predispose

mitochondria to Ca2-induced permeabiïity transition. Recentiy, CypD was shown to
2+play an important role in sensitizing the pore to Ca (Baines et cil., 2005; Basso et cil.,

2005; Nakagawa et ciL, 2005; Schinzel et al., 2005). Indeed, in mitochondria from Ppif”
2+mice, which lack CypD, the amount of Ca reqmred to trigger PTP opening was

increased several fold compared to that observed in mitochondria from strain-matched

wild type mice (Basso et cii., 2005; Nakagawa et al., 2005; Schinzel et aï., 2005). In

addition, in the absence of CypD, PTP opening in response to Ca2 loading xvas
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absolutely insensitive to CsA indicating that CypD is the molecular target responsible

for the inhibitory effect of CsA on pore opening (Basso et aÏ., 2005; Nakagawa et cil.,

2005; Schinzel et cil., 2005). A striking parallel can be made between the Ppt mice

data and the results obtained in our study. Indeed, we observed that CsA was

signiflcantly more potent at inhibiting Ca2—induced PTP opening in mitochondria from

denervated muscles, while trifluoperazine, which inhibits pore opening through

mechanisms that are independent from CypD (Bernardi e aÏ., 1993), was equally

effective in the sham and the denervated groups. Immunoblot analysis on mitochondrial

fractions confirmed the hypothesis that CypD expression may be increased following

denervation, leading to an over-representation of this protein relative to ANT and

VDAC, two other putative structural components ofthe PTP (Zoratti & Szabo, 1995;

Crompton, 1999; Halestrap et cd., 2000; Kim et cd., 2003b; Mayer & Oberbauer, 2003;

Zoratti et ctÏ., 2005). Taken together, these restLlts indicate that an increased expression

of CypD signiflcantly contributed to the sensitization of mitochondria to Ca2-induced

pore opening in denervated muscle mitochondria. To our knowledge, this is the first

study to demonstrate a link between changes in CypD expression and PTP

dysregulation in a non-transgenic moUd ofdisease.

The basis for this apparent increase in CypD expression in response to Ioss of

innervation is cctlTently unclear. CypD by virtue of its PPIase activity is thought to act

as a protein foldase that presumably interacts with one or more chaperonins to limit

mitochondrial protein misfolding that occurs after oxidative stress or other various

perturbations (He & Lemasters, 2002; Kim et cd., 2003a). Lemasters et al. (He &

Lemasters, 2002; Kim et aï., 2003b) recently proposed a model in which the PTP is

formed by clusters of misfolded proteins. In this model, CypD initially binds these

clusters to refold proteins to their native states. However, in presence of Ca2, CypD

turns these clusters into non-specific channels, an effect that is antagonized by CsA (He

& Lemasters, 2002; Kim et al., 2003b). Therefore, one possibility is that CypD

expression is increased in denervated muscles as an initial defense mechanism against

potential protein misfolding in denervated muscle. Further studies will be necessary to

fully understand this potential alternate role for CypD.
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In our study on the vulnerability of different fiber types to PTP opening, we reported

that mitochondria isolated from skeletal muscles with different fiber type compositions

are heterogeneous in their response to Ca2tinduced PTP opening, with mitochondria

isolated from muscle predominantly composed of slow-twitch fibers (SOL) being more

vuinerable than mitochondria from muscle expressing mainly fast-twitch fibers (PLN

and WG). We measured the protein content of the putative PTP structural proteins and

observed that the mitochondrial content ofCypD vas similar across fiber types, but that

the contents ofVDAC and ANT were significantly lower in PLN and WG than in SOL

muscle. Recent studies in ANT knockout mice have shown that despite the absence of

ANT, PTP opening can stiÏl occur, but signiflcantly greater amounts of Ca2 are

required to induce opening (Kokoszka et al., 2004). Given this observation, we suggest

that in slow-twitch muscle fibers under conditions that favor opening of the

mitochondrial PTP, a greater ANT abundance may increase the likelihood of PTP

formation, a phenomenon which could account for the greater sensitivity of SOL

muscle to PTP opening observed in our study. Again, further studies will be required to

clarify this alternate mole for ANT.

5.3 Stuclv limitations

In order to understand the ways in which mitochondria behave in relation to other

aspects of ceil physiology, and to understand how other cellular functions respond to

changes in mitochondrial function, then it is necessary to have experimental models in

which these processes can be studied in intact ceils. This approach also has the

advantage that tissues where the sample size might be too small for the preparation of

isolated mitochondria for conventional biochemical studies, may become accessible for

study. In fact, one of the major challenges we encountered during our studies of the

properties of mitochondria from skeletal muscle tissue was the small size of the protein

isolation yields, especially in the muscle denervation study. The weight of tissue

harvested from SOL muscle denervated for 21 days vas, in some cases, inferior to 100

ug. This sample size proved to be too small to isolate a sufficient quantity of viable

mitochondria. Since there was no way to increase sample size, other than by pooling

together numerous SOL muscles, we needed to modify the isolation procedure such that
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viable mitochondriai sampies could be isolated from smailer tissue volumes, a task that

unexpectedly proved to be mot-e difficuit than originally anticipated.

Mitochondrial studies performed on preparations of mitochondria isoiated from major

tissues (heart, ]iver, andbrain) have provided a large portion ofour understanding ofthe

ways in which mitochondria function in their control of the processes of life and death.

Propeilies of the PTP have been studied most extensively in isolated mitochondria.

Because of the signal averaging over a large population of mitochondria in these types

ofexperiments, PTP opening is evident as a graduai process. The permeability transition

ofeach individuai mitochondria, however, is beiieved to be a very fast phenomenon and

the graduai response recorded from mitochondrial populations is caused by the

successive recruitment of organelles undergoing pore transitions (Gunter et cl., 1994).

In vivo, mitochondria are organelies that ai-e highiy organized within structtirai

compartments. For example, structural contacts between the sarcoplasmic reticulum and
7+the mitochondria are involved in the control of’ Ca homeostasis and ATP production

(Szalai et cii., 2000). In 1988, it was found that the kinetics of respiration by ADP

measured in mitochondria in situ in carefully prepared permeabilized muscle fibers are

signiflcantly different from those observed in vitro in preparations of isolated

mitochondria (Kummel, 1 98$). In the studies presented here, parameters of PTP

function were investigated in isoÏated mitochondrial preparations only. In order to

extrapolate our restiits to parameters of integrated physiological function, it would be

imperative to investigate these parameters in intact, permeabilized muscle fibers.

ldeally, parameters of mitochondrial PTP function should be monitored in intact

muscles, however, this procedure is not yet feasible.

Since apoptosis is an ATP-dependent event, should cellular ATP levels decrease beyond

a critical threshoÏd, the celi would inevitably die by necrosis. Thus, if PTP opening is

proÏonged rather than transient, or if numerous mitochondria experience PTP opening at

the sanie time, ATP levels would not be maintained and cellular necrosis would result.

Therefore, it would appear that the balance between the number of”closed” and “open”

PTPs within a mitochondrial population is critical in determining whether a ceil vi1l die

or recover. It lias been suggested that depending on the severity of the apoptosis
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initiating stimulus, only a small population of the mitochondria might adopt the open

pore conformation (Zoratti & Szabo, 1 995). Alteniatively, it bas been proposed that

perhaps PTP opening is a transient event causing a “flickering” effect (Duchen et al.,

199$). Unaffected mitochondria remain capable of either producing sufficient ATP to

support formation of the apoptosome or are able to uptake the Ca2 released by

mitochondria whose PTPs have opened. This is currently a topic of debate among

experts in the area. Considering the in vitro nature of the experiments presented in this

thesis, it is not possible to determine whetber our observations reflect the activity of the

mitochondrial population as a whole, or whether our measurements reflect the behavior

of a select subpopulation of the mitochondria within the sample. Thus, although the in

vitro methods commonly used to investigate selective parameters of PTP function in

isolated mitochondria bas allowed for a thorough characterization of PTP function, in

the process of isolating organelles form their integrated cellular environment, artifact

may become inttoduced in the measurements.

Furthemiore, the results presented in tbis thesis were derived from work obtained by

exposing isolated mitochondria to high concentrations of Ca2. In vitro, these conditions

reveal increased susceptibility to PTP opening in mitochondria from soleus muscle

fibers, however, it is likely that such conditions are not encountered by mitochondria in

vivo. finally, it shoctld be considered tbat altbough similarities in physiological function

between the rat and human are well established, the results obtained in the present

studies may be species- and/or model-specific and tberefore not entirely transferable to

humans.

PTP opening in vitro is followed by water influx across the mitochondrial membrane

caused by the bigh protein concentration of tbe mitochondrial matrix. This causes

mitochondrial swelling and results in dramatic impairments in mitochondrial function

including the collapse of membrane potential across tbe inner membrane required to

drive ATP synthesis. However, it is worth mentioning that some reports suggest tbat

swelling is not a necessary consequence of pore opening (Pfeiffer et aÏ., 1995) since

swelling results from the influx of water across tbe inner mitochondrial membrane but

only in the presence of an osmotic imbalance. Indeed, studies performed in vitro have
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shown that mitochondrial swelling following PTP opening could be completely

prevented by counterbalancing the osmotic pressure developed by the matrix proteins

by adjusting the concentration ofnon-diffusible molecules. The authors suggest that this

‘adjustrnent’ reflects a condition that is certainly more representative of the conditions

existing in living celis.

In conclusion, based on careful observation and interpretations of the data acquired

from experimental investigations in the rat, we have attempted to further characterize

and contribute to a better explanation of various aspects of the cellular processes

operant during conditions of muscle atrophy. As is often the case, the elucidation of

one question instigates the conception of numerous more. Although the past few years

have seen great contributions to the identification of intracellular signaling processes

implicated in muscle atrophy, there is stiil much to be learned about this fascinating

reaim of skeÏetal muscle physiology. The objective of ongoing studies in this area will

be to further dissect the various signal transduction pathways that play a role in the

atrophy process in the efforts to construct an integrated, unifying picture to better

understand muscle atrophy.
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