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SOMMAIRE

Les kinases MAPK sont impliquées dans les signalisations intracellulaires

incluant la mécano—transduction, le mécanisme de transformation des forces mécaniques

en signaux biochimiques dans les muscles squelettiques. Ces signaux sont considérés

essentiels pour l’hypertrophie musculaire. Dans cette étude, divisée en trois parties. nous

avons premièrement examiné les niveaux d’activation de plusieurs kinases MAPK (p54-

JNK, p44-ERK, et p42-ERK) pendant 3 heures après une séance de stimulation

mécanique. Ce protocole comprend une chirurgie préparatoire in situ du nerf sciatique

ainsi que l’isolation du muscle plantaire chez le rat qui était ensuite exposé à des

étirements excentriques pendant 5 minutes.

L’analyse de l’activité des trois kinases démontre une activation maximale

immédiate ainsi qu’une déactivation assez rapide, 30 minutes après la fin du protocole.

Le résultat intéressant réside dans l’observation de l’oscillation de l’activation des

kinases de la famille ERK (p42 et p44). Ces observations suggèrent que la régulation des

kinases MAPK s’effectue selon un système dynamique et non linéaire. De plus, il est très

probable que les trois MAPK possèdent des voies de contrôle ainsi que des fonctions

différentes.

De plus, concernant le p54-JNK, nots avons examiné lexistence possible d’une

période réfractaire suite à une deuxième séance de stimulation mécanique. Le protocole a

été répété deux heures après la première séance, lorsque le niveau d’activation de p54-

JNK est à environ 50% du maximum (‘demie-vie’). Les résultats montrent que l’on peut

encore obtenir les niveaux d’activation maximale. Ainsi, même en présence d’une

régulation négative des MAPK, la relation entre ta stimulation mécanique et te niveau

d’activation de p54-JNK n’est pas modifiée.

finalement, nous avons examiné la relation quantitative entre les niveaux

d’activation des trois MAPK et la performance du muscle plantaire pendant le protocole.

En général. l’activation des trois MAPK est fortement liée à la production de force

absolue et plus encore, selon le type de MAPK. à la production de force corrigée pour les

propriétés intrinsèques physiologiques et/ou le poids du muscle.



Ces résultats suggèrent fortement que chaque MAPK a des fonctions et des voies

de contrôle differentes pendant la mécano-transduction. Ainsi, il est prohab]e que chaque

MAPK n’a pas la même implication dans la régulation de la synthèse protéique et dans

l’hypertrophie du muscle squelettique.

MOTS CLÈS : signalisations intracellulaires ; mécano-transduction kinases MAPK

étirements excentriques ; in situ ; période réfractaire oscillation de l’activation.
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ABSTRACT

MAPKs are integral components of intracellular signaling pathways, including

mechanotransduction in skeletal muscle. These biochemical signais are considered vital

to the hypertrophy process. This study, divided in three parts, first examined the time

course of activation of several MAPKs (p54-JNK, p42-ERK, and p44-ERK) for a period

ofthree hours after a mechanical stimulation bout. The protocol invoived in sitit isolation

ofthe rat sciatic nerve and plantaris muscle prior to a 5-minute bout ofeccentric

contractions.

Biochemical analysis ofthe MAPKs demonstrated immediate maximal activation

followed by significant negative regulation within 30 minutes. The interesting finding is

the presence ofa biphasic response in the ERK family, which suggests that MAPKs are

part ofa dynaniic, non-linear signaling system. Thus, it is probable that the MAPKs have

independent functions and regulation duri iig mechanotransduction.

Also, we examined the possible presence of a reftactory period for p54-JNK

following a second bout of mechanical stimulation. The stimulation protocol was

repeated near the approximate p54-JNK haif-life tirne, two hours following the flrst bout.

Maximal activation vas attained therefore, amidst negative regulation the relationship

between mechani cal stimulation and p54-JNK activation was unaltered.

Finally, we perfomied a quantitative analysis for the reÏationship between

mechanical workload and MAPK activation. In general, MAPK activation is strongly

related to tension. More specificalÏy, depending on the MAPK, activation levels can

either be strongly related to absolute or relative tension. Once again, this can be

interpreted as evidence that the MAPKs have independent functions and regulation.

in conclusion, it is very likely that each MAPK has a different role dciring

mechanotransduction and hypertrophy. Our findings can contribute to understanding

diseases such as muscular dystrophy and in the design of training protocols and disuse

atrophy countermeasures.

KEY WORDS: intraceiiular signaling; mitogen-activated protein kinases; in situ;

mechanotransduction; eccentnc contraction; time course; biphasi e; refractory period.
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INTRODUCTION

A ceil uses various messenger systems in order to adapt to changes in its

extracellular and intracellular envii-onment, thus achieving proper functionability. Each

signaling system does not act independently ofone another since there are many points of

convergence and divergence. This apparent complexity and interactivity may allow for a

specific ceil response to a variety of stimuli. The mitogen-activated protein kinases

(MAPK) are a vital component of this signaling network by acting as a point of

integration (Pearson, 2001). MAPKs are a family ofprotein kinase cascades that exist in

multiple parallel pathways. The three main pathways utilize the following subfamily as

their MAPK representative: 1) c-Juii NH2-terminal kinase (JNK), 2) extracellular signal

reguiated kinase (ERK), and 3) p38. In a wide variety of ccli types, they have been

induced by hormones (Liebmann, 2001), growth factors (Coolican, 1997), neural factors

(Si, 1 999), and chemical and physical stresses such as decreased pH (Xue and Lucocq,

1997), reactive oxygen species (Adler, 1999), UV light (Price, 1996), hyperosmolarity

(Kultz and Burg, 1998), heat shock (Adier, 1995), and static stretch (Boppart, 2001).

Physical activity is one type ofphysioiogical stress that can elicit immediate and

delayed responses. During exercise, mechanical and chemical signais are transduced in

contracting skeletal muscle ceils by the process of mechanotransduction. Via their

cytoskeletal components, skeietal muscle celis both generate and sense mechanical forces

(Chicurel, i998a), and this is a form of stress that activates MAPK signaling. It is weli

documented (reviewed by Widegren 2001) that MAPK activation increases in rats

(Aronson, 1997) (Ryder, 2000) and humans (Boppart, 1999) undergoing eiicited



contractions or physical activity. Furthermore, factors such as fiber type (Wretman,

2000), the exei-cise protocol used (Nader and Esser, 2001) (Wretman, 2001) and the

amount of tension generated (Mailineau and Gardiner, 2001) ail can have an effect on

individual MAPK activation. In tut-n, they coLlld target downstream nuclear and cytosolic

substrates, including several transcription-activating elements (Thomson, 1999) (Pearson,

2001) (Ganington and Johnson, 1999). These elements affect gene and protein

expression. Therefore, MAPK are considered to play an important role in the signal

transduction process during exercise and the adaptive process after exercise.

Nevertheiess, nuclear and initial mechanotransduction events are unclear. for leads, we

can look at the response ofother ceT! types to mechanical tension such as smooth muscle

(reviewed by Gerthoffer and Gunst, 2001) (Li and Xu, 2000) and cardiomyocytes

(reviewed by Schaub, 1997). Regardless ofthe form or direction, many ceii types are

sensitive to mechanicai forces (Goldspink, 1999) (Kumar, 2002) (Jo, 1997) (Le’, 1999).

In muscle and other ccli types, it is evident that MAPKs, especialiy ]NK, are highiy

implicated with a cell’s response to mechanical forces when considering its magnitude

dependant response behavior (Martineau and Gardiner, 2001) (Boppart, 2001) (Hamada,

199$) (Jo, 1997).

Resistance training bas been shown to produce seveial known adaptations in

skeletal muscle, namely, fiber hypertrophy and phenotype changes (Batdwin and Haddad,

2001) (Goldspink, 1999). However, the mechanisms for these two types of changes are

probabiy different (Murgia, 2000) with ccli size governed by mechanical forces

(Goldspink, 1999). Acutely, mechanical tension elicits a variety of temporal and spatial

molecular responses perhaps ail implicated with the hypertrophic response and probably
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mediated by MAPKs. for example, increased rnRNA levels of the immediate early

genes c-fos and c-pin (Aronson, 1997) (Dawes 1996), increased p70 phosphorylation

(Baar and Esser, 1999), and relocation ofmRNA and ribosomes to focal adhesion

complexes (Chicurel, 199$b).

As shown in figure 1, each MAPK is activated by a specific kinase (MAPK2),

whicli in tum is a point of convergence for severaÏ upstream activators (MAPK3).

Scaffold proteins (Figure 2) are thought to coordinate a specific response by the MAPK

system (Garrington and Johnson, 1 999). This response then diverges since every MAPK

may share common protein kinase and nuclear substrates in addition to their own specific

high affinity substrates (Pearson, 2001). furthemiore, there is the possibility ofreceiving

input from other signaling systems. in skeletal muscle, calcineurin, which is a calcium—

calmodulin regulated phosphatase, can infictence MAPK substrates (De Windt, 2000)

(Wu, 2000) (Dunn, 2000) (Dunn, 2001). Therefore, at a given time, the relative arnount

ofeach MAPK represents a specific response to a given stimuli as enabled by the high

level of coordination of the whole signaling system.

A family oC MAPK phosphatases activated by MAPKs through a negative

feedback system tightly regulates each MAPK thcts, resetting the signaling system and

allowing for the detection of changes in cellular environrnent (figure 3). Once activated,

MAPK can transiocate to the nucleus thereby inducing the synthesis ofvarious members

ofthe MAPK phosphatase family (MKP-1, -2, -3, etc.), each possessing different MAPK

substrate affinities and activity localization (Kaneda, 1 999).

An activated MAPK can be rapidly deactivated in the nucleus or cytosol even if

the activating stimulus is stifl present and, moreover, inactivated MAPK in the cytosol
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(modifled version from Garrington & Jolrnson, 1999)
Fi2ure I — MAPK pathwavs & exercise — upstream activators & downstrearn substrates.

LEGEND

LE VIL 3 - MAPK3 = MAPKKK = MAPKK kinases
LEVEL 2 — MAPK2 = MAPKK = MAPK kinases
LEVEL I — MAPK = mitogen-activated protein kinases



5

can be prevented from becoming activated (Camps, 2000). Such regulation could resuit

in a refractory period for MAPK reactivation as demonstrated in other celi types (Fucini,

1999) (Brecht, 1999) (Meskiene, 1998) (Polakiewicz, 1998). This could have

implications for the optimization of training protocols and disuse atrophy

countermeasures. Constitutive expression of MKP- I in cardiomyocytes attenuated the

hypertrophic response (Bueno, 2000). This demonstrates a relationship between MAPK

activation, hypertrophy, and level s of negative regul ators.

Figure 2 — MEKKI as ScatTold Protein.
(from Garrington & Johnson, 1999).

We hypothesized that, just below its haif-life time, the existence ofa refractory

penod would prevent the reactivation ofp54-JNK. Already demonstrated in our lab, we

utilized a protocol associated with a high amount of tension generation and also known

for its immediate activation ofJNK and ERK in rat plantaris in situ (Martineau and

STIMULUS

RESPONSE
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Gardiner, 2001). Initially in this study, a time course of activation and a quantitative

analysis provided some characteristics of ERK and JNK. b gain some insight into

MAPK regulation, we tested the hypothesis by restimulating the rat plantaris 2 hours after

the initial bout of mechanical stimulation, at a time when p54—JNK activation had

returned to approximately 50% of ils peak as determined earlier in the study. Resuits

indicate that near its haif-life time, p54-JNK can be reactivated and attain peak levels of

activation, similar to those measured immediately after the initial bout.

STIMULUS

TY RQ

CY1OPLA5AI

NUCLEUS

LEGEND

Pl-IOSPI-IATAS ES
DSP — dual spcciflc
PP2A — scrine/threonine

PTP
— tytosine

Q -
group

- dephoshorylation

V

_____

GENE EXPRESSION

Figure 3 — Neatke MAPK re2ulation.
(rnodified from Hancda, 1999)
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REVIEW 0F LITERATURE

(I) HYPERTROPHY - ADAPTATIONS

a) General

The study ofskeletal muscle hypertrophy draws on experimental evidence from

protocols utilizing resistance training, loaded contractions, functional overload, stretch,

and pharmacological intervention agonists. Exposure to increased workload produces

morphologi cal, biochemical and physiological adaptations.

The most obvious and documented adaptation is an increase in whole muscle girth

or muscle liber cross sectional area regardless of liber type. The augmentation of

myofibrillar protein synthesis appears to occur in two stages. The first and more rapid

stage is represented by increases in RNA activity involving transiational and

posttranslational mechanisms whereas the second stage, requiring more stimulation time,

is exernplified by increased mRNA levels mainly attributable to transcriptional

mechanisms (Carson, 1997). In addition to changes in the quantity of contractile

proteins, there are also qualitative changes. In rodents and humans, resistance training

produces isoform switching whereby the siower myosin heavy chain phenotype (lia

protein and mRNA) is expressed at a higher percentage (Baldwin and Haddad, 2001).

Newly synthesized myosin can be incorporated nonunifomily throughout the thick

filament, especially at the ends, allowing for the possible dominant expression ofthe

siower phenotype in heterogeneous skeletal muscle fibers (Russell, 1992). These

changes contribute to several physiological changes strongly colTelated with hypertrophy

including increases in peak tetanic force (Po), IEMG, rate of force developrnent (dP/dT),

and Vrnax, the latter possibly due to the adaptive expression of fast myosin light chains
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(Fitts and Widrick, 1996). An increase in muscle glycogen and decrease in mitochondrial

density is predictable, however, other changes in muscle support systems such as

metabolic enzymes, iipid stores, myogiobin content, and capillary density are inconsistent

(Kraemer, 1 996) and may depend on the specific resistance protocol used in the study

with factors such as intensity, duration, subject fitness level, speed and type of

contraction ail affecting tiber recruitment and adaptation ofenergy systems.

Skeletal muscle hypertrophy and phenotype switching likeiy occur by different

mechanisms since different Ras proteins are activated in each pathway (Murgia, 2000).

Hypertrophy, including that which occurs in other ccli types such as bone, cardiac and

smooth muscle, involves the cytoskeieton, mechanotransduction mechanisms, and is

highly dependant upon the amount ofapplied force (Goldspink, 1999). As previousiy

mentioned, increases in protein synthesis cari be accompiished by posttranscriptionai

mechanisms, for example, an increase in p70 activity leading to higher rates of translation

initiation (Baar and Esser, 1 999), and transcriptional mechanisms, by activating

transcription factors and their capacity for gene transcription (Carson, 1997) (Pearson,

2001). Phenotype switching is also influenced by force or contractile activity (stretch

sensitive promoter sequence in the myosin gene) (Goldspink, 1999), but, unlike

hypertrophy, phenotype switchi ng necessariiy i nvo Ives posttranscriptionaÏ changes,

specifically alternative gene splicing, and requires proionged acute or chronic stimulus

application (Carson, 1997). Before signi ficant iso form switching becomes detectabie

whereby incorporation favors the higher available concentration ofthe transcribed slow

isoforms versus the fast type isoforms, it appears that chronic stimulation is sufficient due

to the reiativeÏy long haif-life ofthe MHC protein (Russeli, 2000). Acuteiy, a prolonged
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stimulation bout resuits in fatigue and activity—induced increases in intracellular calcium

levels. A pathway involving calcineurin, a calcium-calmodulin regulated phosphatase, is

important for promoting the slow fiber type program (Delling, 2000). Nevertheless, the

importance ofa mechanical load signal is demonstrated by the inability ofthe over

expression ofcalcineurin alone without contractile activity to achieve phenotype

switching and skeletal muscle fiber hypertrophy (Dunn, 2000). Moreover, the exercise

protocols necessary for promoting expression ofthe slow isoforms is not limited to

chronic stimulation bctt includes abbreviated mechanical loading (Dunn, 2001).

b) llvperplasïa

Although hypertrophy of existing muscle fibers is considered the main method of

adaptation to resistance training, stretch, or compensatory regimens, there is evidence to

suggest that hyperpiasia, an increase in skeletal muscle fiber number, may contribute to

the overail increase in muscle mass. Increases in cross-sectional area are occasionally

associated with hyperpiasia yet sttidies that demonstrate evidence of hyperplasia are

almost certain to display significant increases in mean fiber area (Antonio and Gonyea,

1993). Hyperplasia and hypertrophy are likely distinct processes (Nishi, 2002)

(Fouistone, 2004) (Ishido, 2006) but both require satellite celI activity.

Hyperpiasia had been dismissed partly due to limits in methodology. The two

most common techniques for quantitative measuring of muscle fiber number have their

drawbacks, thus I imiting precision and accuracy. Hi stological cross-section counts are

based on the wrongful assumption that ah fibers run from origin to insertion (Monti,

1997) (Patel and Lieber, 1997), therefore, the use ofserial sectioning is required to



10

confirm the discontinuity ofnew myoflber formation and elirninate the possibility that

spiit myofbers undergoing repair are responsible for the eiioneous appearance (Antonio

and Gonyea, ‘93). The second technique, direct counting after nitric acid digestion,

sometimes resciits in total fiber number underestimation since small fibers may be missed

(Antonio and Gonyea, ‘93). Indirect (qualitative) evidence ofhyperplasia is imprecise

since it requires the use of estimative formulas and correction factors (Antonio and

Gonyea, 93).

Nevertheless, hypertrophy and hyperplasia require different signaling pathways

although the involvement ofMAPKs and IGf is common to both (Foulstone, 2004).

Also, satellite cells are necessary for both processes by either fiising into an existing

myofiber or fusing with other satellite cells to form a new myofiber. Evidence from

skeletal muscle overload suggests that the hyperpiasia process would likely involve

satellite ce!! proliferation and di fferentiation (Ishido, 2006), each with distinct

characteristics and regu lation (Nishi, 2002) (Foulstone, 2004). Increased specialized

expressions ofadhesion molecuies may help direct iiew myofiber formation via satellite

ccli fusion (Ishido, 2006).

c) Satellite Ceils

Satellite cells, or adult myoblasts, are a population ofmononuclear myogenic

precursor celis located between the basal lamina and the muscle fiber sarcolemma. Their

migration, proliferation, and differentiation are needed for the repair and growth

processes because adult myonuclei are post-mitotic. They are normally dormant (or

quiescent) but can be induced to divide mitotically as daughter cells can migrate across

the plasma membrane into the cytosol, fuse with other satellite cells, and form a myotube.
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After differentiation, they are considered true functional myonuclei because their genetic

machinery can then contribute to protein production.

Resistance exercise resuits in myotrauma and an inflammatory-Iike response as

satellite cens are regulated by the interaction ofthe immune system, cytokines, hormones

and growth factors (Vierck, 2000). Locally, the combination ofgrowth factors and ECM

molecules needed for satellite ceil activation are produced by many cdl types including

myoblasts or rnyofibers themselves, and macrophages, which also help with other aspects

ofthe regeneration process such as angiogenesis and cellular debris removal (Grounds,

1998) (Vierck, 2000). However, satellite ceils have a limited capacity to divide since,

after a finite number of population doublings, they enter replicative senescence, a state of

growth arrest characterized by refractoriness to mitogens. This may be altered with

resistance training. Acute local over-expression ofIGF-1 in skeletal muscles, a situation

mimicking the existing environment after resistance training, prolonged the in vitro

replicative life of satellite ceils by facilitating GuS cdl cycle progression resulting in

additional cycles (Chakravarthy, 2000). Also, MAPKs induce production and formation

ofcyclin-cdk complexes involved with overcoming the GI checkpoint (Whitmarsh and

Davis, 2000).

Their migration from distant sites towards those that require regeneration can be

attributed to their chemotactic properties. Satellite cdl motility increases in response to

positive concentration gradients ofHGF and FGF, growth factors that are released during

muscle injury and exercise (Bischoff, 1997). Their responsiveness is increased by the

expression offunctional growth factor receptors and specific proteoglycans, which

prevent growth factor proteolytic degradation (Grounds, 1998). Combining their
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chemotactic properties with their expression of proteinases capable of degrading the

muscle fiber lamina, the possibility exists of transverse migration towards adjacent fibers

or muscles (Bischoff, 1 997) (Allen, 1999). The importance of recruiting new satellite

celis is shown by the observations that myonitclear number increased proportionally to

fiber cross-sectional area and is in agreement ofthe theoretical idea that a single

myonucleus can only supporta fuite volume ofcytoplasm (AIlen, 1999). Since MAPKs

increase activity ofthe rate—limiting enzyme in nucleotide synthesis (Whitmarsh and

Davis, 2000), one can speculate that they help produce the extra genetic machinery

available with satellite ceIl divisions and aid in the hypertrophy response.

d) Extracellular Matrix

The ECM, composed ofa variety ofcollagenous and noncollagenous proteins and

polysaccharides, can provide mechanical support, regulate the activity of secreted growth

factors, proteases and protease inhibitors, selectively influence macromolecular transport,

and affect myoblast activity. Consequently, one can safely predict that exetcise can

affect the ECM environment. Studies are beginning to show that mechanical stress can

cause qualitative and quantitative changes in the ECM although specific functional roles

ofindividua] macromolecular changes can only be speculated upon, especially in relation

to the role of or the effect on the MAPKs during this process.

Microa;ray analysis ofwork overload-induced hypertrophied rat soleus muscle

demonstrated an up-regulation ofgene production ofmRNA transcripts encoding for

extraceÏlular matrix proteins or matrix modifying enzymes (Carson, 2002). A family of

matrix metalloproteinases (MMPs) is responsible for ECM degradation ofspecific
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collagen types. Their activity is inhibited by a family of tissue inhibitors (TIMPs) and is

also regulated by the status ofintegrins. Many ECM molecules, including native and

degraded collagen, are ligands for integrins and thcts affect celi growth and signaling via

focal adhesion complexes (Kovanen, 2001). MMP and TIMP expression and activation

can be altered by exercise resulting in ECM remodeling and helps explain the change in

collagen subtype expression relative to a constant total collagen amount (Kovanen,

2001). In vascular smooth muscle ceils, mechanical strain caused modifications of

proteoglycan synthesis, proteoglycan interactions with other ECM molecules, and a

concomitant j ncrease in versican-hyaluronan aggregation (Lee, 2001).

At a minimum it is apparent that the ECM responds dynamically in response to

exercise. Although specific roles for or effects on the MAPKs is unknown,

reorganization ofthe ECM after mechanical loading may lead to alterations ofthe

mechanotransduction properties via changes in i ntegrin ligand bi nding.

(II) CELL SIGNALING - MECHANOTRANSDUCTION

The initial events responsible for the relay ofmechanical and chemicaÏ signais

during mechanical loading are unclear. It appears that they are not separate signaling

processes but are instead coordinated, linked via integrins and other protein complexes.

a) Mechanical and chemical si2naling (via integiins)

The total force generated by a muscle fiber is not entirely transmitted serially to

the MTJ since a significant percentage ofthe total force generated can be accounted for



14

by lateral transmission (Street, 1983). Biophysical and qualitative evidence allows for

the argument that via several possible sites, both radial and longitudinal forces can be

transmitted laterally (Patel and Lieber, 1997) (Paul, 2002). Costameric protein systems,

cytoskeletal complexes that link the functional sarcomere to the sarcolemma, are

considered to be the site of lateral transmission although there may be other potential

paths (Monti, 1999) (Patel and Lieber, 1997) (Paul, 2002). Two major protein systems

have been identified and partially characterized, one ofwhich includes integrin. They are

the dystrophin/dystrophin-associ ated protein (DAP) system and the vinculin/talin/integrin

system (Figure 4). Both systems provide a pathway between actin and the extracellular

Figure 4 — Force transmission to the ECM

NE

ACTIN

LEGEND
I - dystrophin
2 - a-dystroglycan
3 — t3-dystrogiycan
4 — sarcoglycan complex
5 — talin
6— vinculin
7 — a-integrin
$ — /3-integrin
9 — collagen/Iaminin network

(from Monti, 1999).



matrix and, recent experimental evidence suggests that they may function in a

coordinated manner rather than separately (Monti, 1999).

Integrins have been extensively stLldied due to their dual functional role as both

adhesive and signaling molecules, their probable importance in mechanotransduction or

force transmission, and thus their possible role in the hypertrophy response (Carson and

Wei, 2000). Integrins may act as mechanotransducers during mechanical loading by

activating MAPKs downstream (MacKenna, 199$) (Katsumi, 2005). The duaÏity ofthese

transmembrane receptors allows them to adhere to several protein types in the ECM and

participate in cellular signal transduction. Ligand binding and signaling speciflcity

depends on the a and 3 subunit isoforrns and it has yet to be determined if mechanicai

loading affects integrin isoform expression (Carson and Wei, 2000). The cytoplasmic

tails ofintegrins lack enzynlatic activity, thus the required association with adapter

proteins resulting in a macromolecular assembly called the (FAC) along with connections

to the cytoskeleton, cytoplasmic kinases, transmembrane growth factor receptors, and ion

channels helps to accomplish the task oftransducing signais (Carson and Wei, 2000)

(Giancotti and Ruoslahti, 1999).

Extracellular ligand binding activity and intracellular signaling activity can

regulate each other and heÏp meet the needs ofthe cefl. In adherent ceils, genetic

programs such as differentiation, proliferation, and apoptosis are governed by celiular

shape, which in turn are highly dependant upon the attachments of the integrin molecule

and focal adhesions (Ruoslahti, 1997) (Chicurel, 199$a). Moreover, FAC formation

changes during acute static stretching ofcardiac myocytes and chronic stretching of



skeietal muscle (Carson and Wei, 2000). The reorganization of ECM proteitis, integrins,

and cytoskeletal proteins during mechanical perturbations is reinforced by a positive

feedback system, which further promotes integrin clustering (Giancotti and Ruoslahti,

1999), and may help to increase or properly orient cellular tension. Also, integrin

binding and mechanical tension conelated highly with rapid relocation ofmRNA and

ribosomes to FACs, possibly in otder to enhance site-specific changes in protein

synthesis (Chicurel, I 998b). Mechanical stress can be transmitted to the nucleus and

cause movement or reorientation (Chicurel, 1998 b).

There are other examples ofhow mechanica] and chemical signais are Iinked.

Mechanical forces acting through integrins help activate myosin ATPase activity and

increase isometric tension (Chicurel, I 998a). Also, fAK and ERK2 phosphorylation

correlated positively with initial levels of integrin-ligand binding and ceil adhesion

(Asthagiri, 1999). Finally, there ai-e many downstream targets for integrin—mediated

signaling that can affect protein synthesis via changes in translation and transcription

(Carson and Wei, 2000).

In a review ofmechanical force transduction in vascular smooth muscle ceils, it

bas been proposed tbat in addition to integrins, receptor tyrosine kinases, GPCRs, and ion

channeis can act as mechanosensors (Li and Xu, 2000). Indeed integrins are needed for

optimal activation ofgrowth factor receptors (Giancotti and Ruoslabti, 1999). It should

aiso be mentioned that in other ccli types whereby force can be applied in different

directions and perhaps utilize mechanosensors other than integrin, the nature ofthe force

determines the speciticity ofMAPK activation (Lew, 1999).
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b) Non-receptor signalin%

An interesting study proposes a damage sensor model, without receptor signaling,

as the initial event of mechanotransduction (Grembowicz, 1999). It was deterniined that

temporary plasma membrane disruption coiielated quantitatively with c-fos expression in

mechanically injured monolayers. The model proposes that the initial event after plasma

membrane disruption is a flux ofnormally impermeable molecules such as growth factors

and ions. Stretch-sensitive ion channels can also act as mechanosensors (Li and Xu,

2000) and may contribute to this model.

c) IGF-1

Systemic and locally produced IGF-1 can affect protein synthesis in skeÏetal

muscle. Moreover, afler mechanical loading, a spiice variant ofIGF-1 (refeired to as

MGf) is produced locally and likely acts in an autocrine/paracrine fashion (Goldspink,

1999). Mechanical loading can cause local IGF-l availabiÏity to increase without a

change in serum IGF-1 due to either increased local IGF-1 production, significant

decreases in inhibitory IGFBP-4 mRNA, or increases in synergistic androgen availability

(Bamman, 2001). In skeletal muscle or skeÏetal myoblasts, MAPKs help relay the IGF

induced mitogenic or anabolic response (Coolican, 1997) (Adi, 2002) (Sarbassov, 1997)

(Weyman, 1997) (Wu, 2000) (Haddad and Adams, 2004). Other growth factors may also

play an important role in muscle hypertrophy.

d) MAPK Sigiialling Pathwavs
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As shown in Figure 5, the MAPKs (ERK, JNK, and p3$ subfamilies) are part of

the intracellular signaling network. The paths ofthe subfamiÏies run parallel to each

other, each with its own sensitivity to a given extracellular or intracellular stimulus. They

are part ofa phosphorylation cascade preceded by a series of kinases from three upstream

levels (MAPK2, MAPK3, and MAPK4) with possible regulation at every level.

Frotii the ce!! surface, receptor tyrosine kinases and G-protein linked receptors are

able to detect extracellular stimuli, some ofwhich are exercise related, and can initiate

the process of MAPK activation through to level one, the MAPK4 group. G-proteins

from the Ras/Rho family help mediate the signal to MAPK4. Also, enzymes and adaptor

proteins aid receptor tyrosine kinases in the signal relay. The enzyme pÏ2ORas-GAP cati

niodify cytoskeletal structures (actin aiid focal contacts) and the adaptor protein GRB2

can bind with FAK, a component ofthe integrin signaling pathway (Denhardt, 1996). G

protein Iinked receptors can interact with the Ras/MAPK cascade via RhoA and PKC,

aided by PKA, cAMP, Ca++, diacylglycerol and 1P3. Tliis cati help maximize MAPK

activation and attract protein complexes to the plasma membrane.

The MAPK4 group is not well defined and may include any protein between tlie

receptor and the MAPK3 level, for example, GAP, GEF, PKC, P 13-K, PAK, PKA,

phosphol ipases.

The MAPK3 group lias 14 members including Raf isofomis, MEKKI-3, and

TAK. Amplification of signais is possible due to the diverse regulatory motifs found

within group members. Thus, they eau receive input from a variety of sources, both Ras

dependant and independent, and each can activate one or iiiore MAPK2 proteins,
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Figure 5 - NI echanotransduction and Nlapk patInavs
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although different affinities for each substrate exists. 0f interest, MEKKY may play a

significant role in mechanotransduction since it can activate both the ERK and JNK

pathways beyond a tlweshold concentration and also colocalizes with cytoskeÏetal

components (Pearson, 2001) (Denhardt, 1996).

At the MAPK2 level, which includes seven members (MEKÎ-2, MKKI-2, 4-6,

SEK, and JNKK), amplification is not possible because of more specific kinase

preferences for both serine/threonine and tyrosine residues on native MAPKs.

The MAPK subfamilies (ERK, JNK, and p38) are together a superfamily of

protein kinases uniquely identified by a dual phosphorylation motif. Within subfamilies

exist isoforms, which sometimes have opposing reactions to a given stimulus, especially

the p38 family (Pearson. 2001). This demonstration of specificity must be taken into

account when designing experiments and selecting detection methods, thus helping avoid

conflicting resuits.

In mammalian celis, activation ofthe MAPK pathways bas been shown to occur

in response to various stimuli, some ofwhich are related to physical activity. A lowered

pH activates ail three main pathways (Xue and Lucocq, 1997) whereas osmotic stress

activates JNK and ERK (Kultz and Burg, 1998). Heat shock oniy activates JNK through

a Ras—indepenclent intracellular path invoiving the mitochondrion (Adler 1 995).

Interleukin-1, a cytokine associated with microtrauma, caused a mild activation ofp38, a

moderate activation ofJNK activators MKK4/7, and a high activation ofJNK isoforrns in

rnany ceil types including skeletal muscle (Finch, 2001). Reactive oxygen species/redox

potentiai activates ail three MAPK subfamilies, possibly invoiving kinases and cytokines

associated with cytoskeleton reorganization (Adler, 1999) and this signaling response
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may play a i-ole in cardiac myocyte hypertrophy (Xie, 1999). Finally, a variety of

bomones via GPCRs in many ceil types (Liebmann, 2001) and IGF in myoblasts

(Coolican, 1997) induce MAPK activity and influence growth processes.

Whether the protein targets are found in the membrane, cytoplasm, or nucleus,

MAPKs share common substrates and is likely accomplished by the complementary

binding of MAPK domains to the different docking motifs found on the substrates. Thus,

the result can be pre and posttranscriptional modifications. Transcriptional control can be

achieved via cytoplasmic targets. for example, ERK can regulate transcription by

activating cytoplasmic p90tsk (or MAPKAPK-1) and the subsequent phosphorylation of

possible targets such as CREB, c-fos, SRF, etc. (Pearson, 2001). An example of

posttranscriptional modifications is the interaction of ERK and p38 with protein kinases

Mnkl-2 and MAPKAPK2-3. Each can then phosphorylate the eukaryotic translation

initiation factor elF-4E and Hsp 25/27 respectively (Denhardt, 1996) (Pearson, 2001).

Phosphorylation of Hsp 27 is impÏicated with actin polymerization and cytoskeletal repair

processes (Denhardt, 1996) (Pearson, 2001). JNK interacts directly mainly with nuclear

targets.

MAPKs can transiocate to the nucleus and regtiÏate the activities of transcription

factors. ERK and JNK phosphorylate members of the AP-1 family (c-fos, c-jtm, ATF-2)

yet they have opposing effects on the DNA binding affinity ofc-/itn (Pearson, 2001).

The TCF family (Elk-1, SAP1-2) is regctlated by ail three subfamilies and

phosphorylation eau resuit in an increased formation oftemary complexes also involving

DNA and SRF (Pearson, 2001). Transcription factors can participate in homotypic and

heterotypic protein interactions in order to achieve altered gene expression (Cox, 1999)



and are aided by the influence ofMAPKs on histone activity and DNA accessibility

(Whitmarsh and Davis, 2000). This flexibility allows for cis and trans control of

transcription, which causes coordinated changes in the transcription rate and/or isoform

switching ofspecific muscle genes, for example, the synergistic interaction ofthe MyoD

and MEF2 family of transcription factors (Cox, 1999). In addition, MAPKs cari interact

with transcription factors from cytokine and metabolic signaling networks (Pearson,

2001) and interact with calcinenrin during phenotype switching (De Windt, 2000) (Wu,

2000).

e) MAPKs and Physical Activity

Review tables (Widegren, 2001) summarize how different exercise models resuit

in a rapid global increase ofMAPK activity in human and rat skeletal muscle, and, when

investigated, ofupstream or downstream kinases. MAPK activation does not require

systemic influence (Ryder, 2000) (Wretman, 2000) (Boppart, 2001) (Carïson, 2001), but

appears dependent upon tension and intramuscular signaling. Besides variations in

biochemical methodology procedures or time of activation measurement, differences in

measured activity can be attribctted to the exercise model used in the study.

in one study, only running and not HFES or LFES caused a biphasic activation of

ERK (Nader and Esser, 2001). The type of contraction (concentric vs. eccentric vs.

passive stretching) had different effects on ERK and p38 phosphorylation (Wretman,

2001). Also, the fiber type classification ofthe muscle cari inherently influence MAPK

activity. Phosphorylation of p38 was higher in fast twitch muscle although the total

amount of ERK and p38 proteins was higher in slow type muscle (Wretman, 2000).
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However, in another study, JNK and p38 activation was higher in slow liber muscle

(Boppart, 2001). Recently, there is evidence showingthat force generation perse is not

directly responsible for p38 activation (Dentel, 2005).

Most of the discrepancy can be explained by examining the force output ofthe

working muscle. The fact that studies demonstrate higher MAPK activation during

eccentric contractions vs. concentric or isometric contractions (Boppart, 1999) is likely

attributable to the larger forces generated by eccentric contractions since it has been

shown that there is a high correlation between JNKIERK activation and the amount of

tension generated by the muscle, regardless of the type of contraction and if it were

developed actively or passively (Martineau and Gardiner, 2001). The same reasoning can

be used to explain why HFES produces higher MAPK activation over LFES (Nader and

Esser, 2001). Furthermore, the role that muscle stiffness and differing liber lengths can

play during tension generation and resistance to defonnation (Patel and Lieber, 1997)

may explain MAPK activation differences between slow and fast type muscles.

Mechanical tension is known to have hypertrophie effects in many cdl types that

can sense mechanical forces including skeletal muscle (Goldspink, 1999), smooth muscle

(Gerthoffer and Gunst, 2001) and cardiomyocytes (Schaub, 1997). In endothelial cells,

ERK activation responded in a force-dependant manner (Jo, 1 997). JNK is dramatically

activated in a dose dependant manner in response to tension in rat skeletal muscle

(Martineau and Gardiner, 2001) (Boppart, 2001), and stretch in rat smooth muscle ceils

(Hamada, 1998). Therefore, there may likely be a high correlation between the amount

ofMAPK activation and hypeilrophy.
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III) MAPK REGULATION

a) Scaffolds

Scaffold proteins fonii oligomer complexes and are responsible for MAPK

regulation by seI-ially organizing MAPK cascades for efficient control and also restricting

locality or substrate specificity whenever receiving or outputting a signal (see figure from

Garrington and Johnson, 1999). JNK oligomerizes with members ofthe JIP scaffold

family, each with tissue and subcellular location specificities (Garrington and Johnson,

1999) (Pearson, 2001). Scaffolds may be responsible for the co-localization ofMEKKI

with various cytoskeletal components, including focal adhesions, and may aid in

transfemng signais to and from the cytoskeleton (Pearson, 2001). Positive and negative

regulation is possible via posttransiational control (phosphorylation or proteolysis) of

scaffold proteins or their binding partners (Garrington and Johnson, 1999).

b) Phosphatases

A major point of intraceliular regulation occurs at the level ofthe MAPK. The

duration and magnitude ofMAPK activity refiects the balance between MAPK

activators, usualiy upstream, and negative regulators. MAP kinase phosphatases (MKPs)

are responsible for the negative regulation or dephosphorylation of activated MAPK and

aiso ofupstream MAPK2. Since phosphorylation ofboth residues is required for MAPK

activation, dephosphorylation of one residue (by tyrosine-specific or serine/threonine

specific phosphatases) or both residues (by dual specificity tyrosine/threonine

phosphatases) will accomplish MAPK deactivation. Howevei, it is noteworthy to
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mention that recent evidence indicates dual specificity phosphatases can also act as

selective activators ofJNK (Shen, 2001).

Littie is known about the importance oftyrosine-specific or serine/threonine

specific phosphatases except that they appear to be constitutively expressed in the cytosol

and are probably partly responsible for rapid MAPK inactivation (Camps, 2000). On the

other hand, the family of(DSP) is transcriptionally induced by MAPKs relatively quickiy

(30-120 minutes) and is better characterized with parameters such as tissue specificity,

substrate specificity, haif-life, and subcellular compartmentaÏization (Camps, 2000)

(Haneda, 1999). They act predominantly in the nucleus but some can also perform their

function in the cytosot (Haneda, 1999).

The high level ofinteractivity between subfamilies and isofomis ofMAPKs and

MKPs represents an enormous unknown complexity ofthe MAPK regulation system.

Inactivation of an individuai MAPK isoform can be accomplished by different induction

pathways and MKPs, and at different time periods and intracellular locations as

demonstrated by differences in cytosolic and nuclear ERK kinetics (Reffas and Sdhiegel,

2000). Various phosphatases, cytosolic or nuciear, can be catalytically activated by the

sanie MAPK (Hutter, 2000).

Although there is functional overlap in ternis ofMAPK substrate specificity,

preferentiat binding exists for every phosphatase within both familles. The physicai

complex fornied by the binding of a MAPK to a MKP is highly specific and may be a

result of the physical orientation ofa MAPK with docking sites in scaffoid proteins

(Sharrocks, 2000). Also, MAPKs have a required docking site in order to bind and

activate MKP-1 (Slack, 2001). Furthermore, ail MKPs possess an amino terminus
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substrate-binding site and a catalytic domain at the carboxyl terminal. In MKP-3, the

ERK2 binding and catalytic regions partly overlap and are functionally coupled as

strttctural deterniinations proved that the upregulation ofphosphatase activity after ERK2

substrate binding to MKP-3 was caused by allosteric conforniational changes at the active

site (farooq, 2001). However, MAPK binding does not necessarily trigger the catalytic

activity ofa MKP. The correlation between binding strength and catalytic activity

appears to be questionable (Chen, 2001). Use ofMKPs with mutated binding sites

provide the explanation that JNK lias different sites of interaction as compared to ERK

and p38 (Chen, 2001) (Slack, 2001).

Also, the expression levels ofMKPs or MAPKs can influence the kinetics of

catalysis. An ERK-dependant pathway induced MKP-1 but, JNK and p38, and their

associated transcriptional events were more sensitive to the inhibitive action of

submaximal levels ofMKP-1 (Franklin and Kraft, 1997). In another example, catalytic

activation ofMKP-1 by a MAPK increases in a dose-dependant manner, however,

activation ofMKPI by p38a alone saturates at a lower concentration (Slack, 2001). This

demonstrates the existence ofa nonlinear system with thresholds, and how it can respond

specifically to a given stimulation protocol.

Substrate binding is not influenced by protein kinase activity, therefore, it is

possible that negative regulation occurs by preventing the phosphorylation of an inactive

MAPK after binding to MKP in addition to tue dephosphorylation of an active MAPK

(Camps, 2000). Such regulation can contribute to the presence oCa refractory period by

not allowing a constant stimulatory signal or restimulation to activate the MAPK system.
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Physiological outcomes vary depending on whether MAPK activation is

acute/phasic or chronic/sustained. In rat hepatocytes, acute and not sustained MAPK

activation prornoted progression through the Gl/S phase and an increase in DNA

synthesis (Tombes, 1998) whereas in hamster embryo fibroblasts, sustained activation of

ERKI was required for GI phase progression (Weber, 1997).

c) Desensitization/Refractorv Period

Studies using various celi types demonstrate that MAPK activation (and/or

immediate-early gene activation) cannot proceed indeflnitely while exposed to

continuous stimulation and is subject to periods of refractoriness. Desensitization cati be

classifled as homologous if responsive to stimuli other than the original or heterologous if

unresponsive to any form of stimuli including the original. The former appears to be

prevalent and suggests that sufficient MAPK is usually available for stimulation.

Continuous stretching and continuous overload of skeletal muscle resulted in

respective desensitization of c-fos and c-fun mRNA tevels (Dawes, 1996) and MAPK

phosphorylation (Canson, 2001). Similarly, continuous stretching in smooth muscle

(Franklin, 1997) and continuous shear stress in endotïielial ceils (b, 1997) resulted in

MAPK homologous desensitization. However, when refelTing to a repetition of

intermittent bouts of stretching, depending on the time of reapplication, there was either a

cumulative effect surpassing original peak levels, a reattainment ofpeak levels, or an

attenuated response (c-fos only) (Dawes, 1996). Therefore, there is questionable

evidence concerning the presence ofa refractory peniod.
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Other forms of stimulation in various ceil types show how desensitization is

probably a general feature of ail celis. However, the ceil type and the agonist or

stimulation protocol used strongÏy suggest specificity in the desensitization process. For

example, in ovary celis, insulin-induced desensitization of ERK activation resulted in a 2-

hour refractory period and vas found to be pathway specific, upstream of ERK but

downstream ofRaf(Fucini, 1997). Also, in mouse flbroblasts, anisomycin caused

homologous desensitization ofJNK, p38, and lE genes (Hazzalin, 1998). Finally, there is

evidence ofa connection between phosphatases and desensitization. Mechanical

wounding of plant ceils resuited in a 30-minute MAPK refractory period and, the timing

and amount ofphosphatase transcript strongly correlates with the length of the refractory

period and the levels ofMAPK activation (Meskiene, 1998).

Although there ai-e many possible mechanisms that ai-e not yet well understood,

the main mechanism of ccli desensitization usually i nvolves receptor endocytosis.

GPCRs are strongiy implicated because they are responsibie for the transduction ofa vast

array of extraceilular stimuli. The time frame of desensitization depends on the particular

rnechanism(s) that cornes into effect. Uncoupling of the receptor complex resuits in rapid

desensitization (seconds) as compared to internalization of ccli surface receptors

(minutes) whereas a decrease in the total cellular receptor pool via transcriptional

changes takes longer (hours) (Ferguson, 2001). The process and time frame of

resensitization appears to be closely linked to cellular desensitization. After endocytosis,

repiacement of surface receptors requires minutes if internalized receptors are recycled or

hours if dependent upon mobiiization of naïve receptors or de novo synthesis (Ferguson,

2001). Endocytosis is regtiiated and affected by the levels off3-arrestin and other proteins
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(Ferguson, 2001). Moreover, 3-airestin has been found to satisfy the requirements

necessary to be classified as a scaffold protein in JNK and ERK signaling cascades

mediated via GPCRs (Pierce, 2001). Since -a1Testm plays a significant role in both the

activation and desensitization process by contributing to the assembly ofsignaling

protein complexes and subsequent intracellular trafficking, it is possible that these

processes are ilot distinct but are indeed well coordinated.

The role, if any, ofGPCR regulation during mechanical load induced MAPK

signaling is unknown.
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PURPOSE 0f STUDY

Specific physiological responses depend on MAPK activation profiles. We

investigated the time course of activation ofMAPKs (JNK and ERK) in response to an

acute bout ofeccentric contractions. Kinetic data analysis bas shown that MAPK

activation profiles can be oscillatory (Kholodenko, 2000). ERK, in pailicular, bas

exhibited a biphasic induction profile in muscle ceils, for example, in myogenic celi unes

(Wti, 2000) and in skeletal muscle in response to continuous overload (Canson, 2001)

and to endurance running (Nader and Esser, 2001). Therefore, it is not unreasonable to

expect to find a biphasic response although, to our knowledge, no study using a brief

single bout ofmechanical loading as a stimulus bas yet to find such a response. In

addition, as a follow-up to a study previously perfonned in our lab (Martineau and

Gardiner, 2001), a quantitative analysis was performed in oider to assess the relationship

between activated MAPKs duning the time course and tension-related muscle

performance variables.

In order to test for the presence ofa refractory period, the stimulation protocol

was repeated 2 hours after the initial bout. We bypothesized that a refractory peniod

would prevent the activation ofJNK and would not be able to reattain initial levels of

activation. The absence or presence ofa refiactory peniod wiIl contribute to the

understanding ofMAPK-relayed mechanotransduction and tbe hypertrophy response.
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METHODS AND MATERIALS

ANIMAL CARE

38 female Sprague-Dawley rats weighing a mininuim of 180 grams were obtained

from Chartes Rivet (St.-Constant, QC) and randomly assigned to a group. They were

placed 2 per cage into standard rodent wire mesh cages and housed in a temperature

controlled animal care facility with a 12 hr. light/datk cycle and food and water

avaiiability cul Ïibituni. Care aiid treatment ofthe animais was approved by the animal

ethics committee ofthe Université de Montréal and were in accordance with the

principies ofthe Guide to the Care and Use ofExperimental Animals (Canadian Council

on Animal Care).

SURGERY (In situ nerve-mctscle preparation)

The piantaris muscle aiid sciatic nerve ofthe ieft ieg wete surgicafly isolated. The

plantaris muscle was isoiated from the other ankle extensors whiie taking care to not

distupt its vasculature, innervation, tendon, and not have any tension applied to the

muscle or sciatic nerve during the preparation. Before ail surgical procedures were

performed, animais wete anaesthetized with an intra-peritoneal injection ofketamine and

xyiazine (62 mg/kg ketamine and $ mg/kg xylazine) and included maintenance doses of

the same mixture (25% ofinitial dose) every 45 minutes. Ail soft tisstie exposed to the

air was kept moist with frequent applications of saline solution.

Initially, with a scalpel, a 1” longitudinal incision ofthe dermis is made over the

beily ofthe left leg extensors. Between the ankle/foot and the area approaching the

pelvis, fascia, fat, and the dermis were separated from the muscle group. Weights were



32

used to pull the separated dermis apart and allow easier access to the frontal part ofthe

leg. This was also used later as a reservoir for minerai bath ou. The hamstring (leg

extensors) vas pulled upwards with tweezers so as to separate it from the sciatic nerve

meanwhile using scissors to make an incision in order to create a window and allow for

visualization ofthe sciatic nerve. Micro-scissors were used to cut away suirounding

cascia. A glass probe tested for successfcil isolation by ensuring that a minimum of I cm

ofthe sciatic nerve would be accessible to electrodes.

After inserting and siiding blunt—end scissors centrally through the fascia notch,

the hamstrings could be separated from the gastrocnemius by cutting it lengthwise from

the original incision to the area approaching the common extensor tendon(s). The

calcaneus was clipped leaving a bone chip attached to the common tendon and a 4” long

2-O silk ligature was tied and hooked arotind at the bone tendon junction. The extensors

were gently pulled away from the leg by using a hemostat to pull on the silk loop.

Denervation ofthe foot vas accomplished by cutting the tibial nerve running along the

medial side ofthe ieg. The soleus vas cut near the proximai tendon, separated from the

plantaris and then ctit again near the common tendon. The medial gasti-ocnemius was eut

near the tendon and separated from the piantaris after using a glass probe to locate

anatomical notches within the center of the gastrocnemius. Denervation of the

gastrocnemius followed. To minimize damage to the plantaris, the lateral gastrocnemius

remained partially attached to it without affecting physiological measurements. Before

closing, the surgical area vas covered with saline saturated cotton bails. Finally, using a

scalpel, bilaterally, parallel to the spine, 2 slits ofthe paraspinal muscles were made

halfway between the pelvis and rib cage.
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MUSCLE PHYSIOLOGY

The animal xvas secured in the prone position within a stereotaxic frame with the

left foot immobilized by a clamp and the left knee pinned in a slightly flexed position to

the frame. The silk ligature ioop was attached to the lever arm ofa muscle puller

servomotor (Cambridge LR 350). The dermis ofthe hindlimb was pulled to form a bath

and fihled with heated minerai ou, monitored and maintained betweeii 35-37°C. Cote

temperature was monitored by a rectal probe and maintained between 35-37°C using a

heating pad.

Before performing the eccentric contraction protocol (Figure 6), the optimal

length (Lo) for muscle twitch tension development was deterrnined starting from a

relaxed length. The muscle was indirectly stimulated via the sciatic nerve using a

piatinum bipolar electrode. AI! tension developments were visuatized on an oscilloscope

and recorded with a microcomputer (Figure 7). Supramaximal (5V) single square pulses

of 0.05 ms in duration were de!ivered every second by a Grass S88 Stimulator. In order

to remove slackness in the silkltendon attachment, one isometric tetanic contraction

(100Hz) (lOOms) was performed. Lo was redetermined at a more accurate length and

was held there for 30 seconds before the onset ofthe contraction protocol.

lime course ofJNK activation was measured after a 5-minute bout ofeccentric

contractions. This protocol for maximal MAPK activation vas performed earlier in our

laboratory (Martineau and Gardiner, 2001). Indirect stimulation ofthe sciatic nerve with

5V, 150 ms of 0.05 ms single sqtiare pulses delivered at 100Hz once every second

resulting in 300 tetanic contractions. During the eccentric contractions, utilizing a ramp

function simuitaneously with a computer-controlled servomotor, the muscle was
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stretched to a new Ïength ofLo + 3mm at a constant velocity of 20 mrn/sec and held there

for 350 ms. The muscle retumed to the starting Iength also over a 150 ms time period and

constant velocity, allowing 350 ms before the next stimulation. This resuits in a 50:50

dLlty cycle. Depending on the group, after the stimulation protocot, the muscle was kept

at the predetermined Lo at physiological core and muscle temperature for 0, 30, 60, 120,

or 180 minutes before muscle excision. One unstimulated control group was included in

order to discount the effects of stretch, Lo detei-mination, and MAPK baseline activation.

For this group, after Lo vas determined including one tetanic isometric contraction, the

plantaris was held at Lo for 5 minutes without stimulation.

To determine if a refractory period existed, one group was stimulated a

second time, 1 20 minutes after the first bout. The time course of activation demonstrated

that the JNK activation haif-life was 120 minutes. The abovementioned protocol to find

Lo was used again to determine a new optimal starting length j ust prior to the I 20—minute

mark at which time, the second bout ofeccentric contractions commenced followed

immediately by muscle excision. To control for the 2-hour period as a possible source of

influence on maximal MAPK activation during which the muscle is held at Lo, without

an initial stimulation bout at time 0, one group had the plantaris held at Lo for 120

minutes before redetemiining Lo and then performing the ensuing stimulation protocol.

Should a refractory period exist, this control group was necessary in order to prove that

maxima] MAPK levels were attainable fter the rat plantaris was held at Lo for 2 hours.

Muscle excision was performed within 10 seconds following the end ofthe

stimulation protocol for the relevant groups. Immediately following excision, muscles

were frozen in liquid nitrogen and stored at -80°C for subsequent biochemical analysis.
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fIGURE 6. Graphical representation of the eccentric contraction protocol.
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BIOCHEMICAL PROCEDURES

MAPK activation requires dual phosphorylation, which can be measured by

phospho-specific antibodies using Western immunoblot techniques as described

previously (Martineau and Gardiner, 2001).

Homoenization and sample preparation

Frozen whole plantaris muscles, after tendon removal, were quickly weighed

followed by use ofa nitrogen-chifled mortar and pestie to grind them into a fine powder

and transferred to a set ofchilled microcentrifuge tubes and kept in liquid nitrogen.

Approximately 80 mg ofthe available powder from each sample vas transfelTed to a

separate set ofchilled microcentrifuge tubes. This set was kept in liquid nitrogen until

solubilized by the addition of0.8 ml ofice-cold modified RIPA buffer (5OmM HEPES,

150 mM NaCI, 5% glycerol, 1% sodium deoxycholate, 1% Triton X-100, 0.1% SDS,

5mM EGTA, 2mM MgC12,pH 7.4) containing a cocktail ofprotease inhibitors (Mini

Protease, Boehringer; 2 mM phenylmethylsulfonyl fluoride) and phosphatase inhibitors

(100JLM sodium oiihovanadate, lOmM sodium fluoride, lmM sodium pyrophosphate).

Each homogeneous sample was immediately vortexed for 30 seconds and placed on ice

for 1 hour during which samples were vortexed every 10 minutes. Then, to remove

insoluble material, samples were centrifuged for 1 hour at 4500 g, and 4CC. The

supernatants were decanted into a set ofchilled microcentrifuge tubes and the pellets

were discarded. Using triplicate measurements, the protein concentration ofthe

supernatants was measured by Bradford protein assay (Bio-Rad) using known

concentrations of bovine serum albumin as a standard. Samples ofequal total protein

concentration were prepared for SDS-PAGE by diluting an appropriate calcctlated amocint
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ofthe supernatant in reducing sample Laemmli buffer (60mM Tris, 10% glycerol, 5% B

mercaptoethanol, 2% SDS, pH 6.8) followed by 1 minute ofboiling to break disulfide

bonds. Unused amounts ofeach aliquot were frozen and stored for repeats ofthe

electrophoresis and Western blot procedure.

Electrophoresis and Western blot

The procedure was performed twice, once for the time course of activation, and

another to test for the presence ofa refractory period.

Bach muscle sample, containing 180 pg of total protein in a 90 d total volume,

was resolved by loading onto a 16 cm long 9% polyacrylamide gel, separated at 10°C

overnight, and simultaneously eiectrotransferred to a polyvinylidene di fluoride

membrane (Millipore). After a 15 second water rinse, ail proteins on the membrane were

visualized by staining with Ponceau S for 2 minutes, and followed by a second water

rinse, in order to conflrm equal sample loading and a successftil transfer. The stain was

removed by rinsing for 2 minutes with TBST. The membrane was blocked with Triton

(TBST; 5OmM Tris, 150 mM NaCÏ, pH 7.4, 0.5% Triton X-100) and 3% bovine serum

albumin in Tris-buffered saline for 1.5 hours, rinsed with TBST, and then incubated

overnight at 4°C in primary antibody. Using a concentration of 1:2000 in TBST plus 1%

BSA and 0.5% NaN• monoclonal antibodies acting against p-JNKI, p-ERKI, p-ERK2,

and p-38 (Santa Cruz Biotechnology) were used. Membranes were washed with TBST in

a methanol tray, agitated lightly for 5 minutes, and the wash repeated. Next, for 1.5

hours, the membrane was incubated at room temperature in a secondary antibody solution

(horseradish peroxidase-conjugated anti-mouse lgG) (Jackson Immunoresearch) using a
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concentration of 1:10, 000 in TBST plus BSA. Visualization is accomplished by bathing

membranes in an oxidizing, chemfluminescence substrate (ECL, Arnersham) and exposed

to blue-light sensitive film (ECL Film, Amersliam) for 5-40 minutes. Using a flatbed

scanner and NIH Image software, hands were quantified by densitometry.

Membranes were washed, stiipped, reblocked, and reincubated to obtain

phosphorylation vaLues for the previously mentioned MAPK target substrates.

STATISTICS

ANOVA was used to test for between-group differences for the time course of

activation and stimulation/resti nutlation data. Analyses were confirrned with Newman—

Keuls post hoc tests and Dunnett post hoc tests for baseline comparisons (STATISTICA)

(Appendix B). ANOVA was also used to test for between-group differences of ail

control variables (Appendix C).

Using Excel, curved and linear regression was performed to assess the

relationship between various tension-related muscle performance variables and MAPK

activation. Among the variables investigated included maximal peak tension and average

peak tension (over first 60 contractions and entire 300 contractions), each unadjusted or

normalized by maximal twitch or maximal tetanic tension, and/or muscle weight.

STATISTICA was used to create 3-D surface plots for the variable judged to give the

highest correlation values throughout the time course, especially taking into consideration

the correlation values during maximal activation at O minutes. 3-D surface plots provided

a visual representation of the relationship between variables including some noticeable

peaks and valleys.
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RESULTS

TIME COURSE 0F MAPK ACTIVATION

p54-JNK (Fig. 8) — The activation profile did not demonstrate multiphasic

induction which, to our knowledge, had neyer been previously shown for JNK in muscle.

Peak activation (approximately 30-fold baseline levels) was reached immediately after

the stimulation bout at O minutes and remained significantly higher than baseline

throughout the time course, reaching a low at 120 minutes conesponding to values just

below half-peak. The 0-minute group was significantly different from ail groups. As

previously demonstrated (Martineau and Gardiner, 2001), the JNK response amplitude

due to mechanical loading is much higher than that of ERK1/2.

p44-ERK (Fig. 9) - The activation ptofile demonstrated a biphasic induction in

agreement with previous studies for ERK in muscle (Carlson, 2001) (Nader and Esser,

2001) (Wu, 2000). Peak activation (approximately 3-fold baseline levels) vas reached

immediately after the stimulation bout at O minutes and quickly retumed to and remained

at near baseline levels until 180 minutes post-stimulation whereby it again became

significantly higher than baseline. The 0-minute group was significantly different from

ah groups. The I 80-minute group vas significantly different from ail groups except the

30—minute group, thus confirming a biphasic induction profile.

p42-ERK (Fig. 10) - The activation profile demonstrated a biphasic induction in

agreement with previous studies for ERK in muscle (Canson, 2001) (Nader and Esser,

2001) (Wu, 2000). Peak activation (approximateiy 2-fold baseline levels) vas reached

immediately after the stimulation bout at O minutes and quickly retumed to and remained
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at near baseline levels until 180 minutes post-stimulation whereby it again became

significantly higher than baseline. The 0-minute group was significantly different from

ail groups except thel $0-minute group. The 1 80-minute group was significantly different

from the 30—and 1 20—minute groups, thus confirming a biphasic induction profile.
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phospho-p44 ERK vs. post-stimulation time
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ABSENCE 0F A REFRACTORY PERIOD FOR p54-JNK (Fig. 11)- When

considering the stimulation/restimulation data, oniy the 2—hour post stimulation group is

statisticaliy different from the others. Ail oftbe other groups produce similar maximal

p54—JNK activation levels, including the restimulation group, thus contradicting our

hypothesis of an existing refractory period. As expected, the control group (120-min. +

stimulation) was one of the groups that produced similar maximal p54—JNK activation

levels. This experimentat design proved that JNK sensitivity to a maximal bout of

eccentric contractions in rat plantaris muscle vas unaltered regardless ofthe prior history,

wbether it was subject to a stimulation bout 2 hours earlier or held at Lo for 2 hours.
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CORRELATIONS

General Observations — Using linear regression correlation coefficients, there were

certain trends that became apparent after studying the relationships between MAPK

activation and possible contributing tension-rel ated variables and/or intrinsic muscle

parameters. They were as follows: 1) initial maximal MAPK activation was positively

colTelated with muscle work output, and 2) during the time course of activation study

following the bout of stimulation, the relationship between nutscle work output variables

and MAPK activation demonstrated oscillatory behaviour as phosphorylated MAPK

values presumably diminish gradually towards baseline values, b elaborate on the

latter, many ofthe tension-related colTelation values were rnuch lower and/or negative at

30— and 120—minutes post-stimulation vs. 0- and 60—minutes post—stimulation. Another

trend became apparent but can only be considered as a strong possibility due to the low

sample size of the baseline group (n=3). When considering JNK and ERK2, baseline

levels of MAPK activation were positiveÏy correlated with muscle weight.

In addition, it vas not possible to conclude if the relationships are indeed linear or

curvilinear since for the most part the differences in the cotTelation coefficients between

the linear and curvilinear fits were minimal, thus rendering a more thorough statistical

analysis to test for this determination unnecessary. However, it should be noted that for

almost every linear regression comparison, at Ieast one ofthe curvilinear values either

matched or surpassed the tinear value. Moreover, arnong the curvilinear functions

(Iogarithmic, exponential, power), it was difficult to consider one ofthese functions as

the distinguishable best curvilinear fit function by examining which one consistently

provided the best correlation values throughout the data. Depending on the specific
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tension-related variable examined, any one ofthe three curvilinear functions provided the

best value. Whenever correlation values are quoted, the linear values viÏ1 be used.

Although there does iiot appear to be a significant difference, more points may

distinguish which type of fit is indicative ofthe true relationship between the studied

parameters.

p54-JNK (Table 1) (Figures 12,13)— JNK phosphorylation showed a near perfect

positive relationship with muscle weight at baseline (r2 = 0.9$ foi- muscle weight)

suggesting that muscle weight may have an effect on JNK activation values during the

time course. Indeed, the relationship between JNK activation and muscle weight became

moderately negative (-0.3$ <= r <= -0.60) through the first 60 minutes ofthe time

course. This suggested an inverse relationship when pertaining to mechanotransduction

sensitivity and this was proven by the overali higher correlation values when data was

nomialized to take muscle weight into account. In general, maximal p-54 JNK activation

coiielated rnuch higher when surveying peak tensions over the entire 300-contraction

protocol instead of limiting the investigation to the first 60 seconds. The highest

coi-relation value for maximal p54-JNK activation vas produced when plotting it against

one ofthe 300-second variables (T-300/twitch/wt, r2 = 0.73). A 3-D surface plot (p-S4

JNK vs. T-300/twitch/wt. vs. time) visually demonstrated a weakening of the relationship

over time and the presence ofa valley at approximately 90-minutes post-stimulation.

p-44 ERK (Table 2) (Figures 14,15,16) — ERK1 demonstrated a negligible

relationship with muscle weight at baseline and throughout most ofthe time cotii-se.

Moreover, as expected because ofthis, peak tensions norrnalized by muscle weight

generally showed lower coiTelation values with ERKI, especially maximal levels at 0-
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minutes. Therefore, contrary to JNK and ERK2, maximal ERKI activation correlated

strongly with absolute tension and not relative tension.

Unlike JNK, ERKI activation coirelated higher when surveying peak tensions for

the first 60 contractions instead ofover the entire 300-second protocol, especially at O

minutes. Peak tensions normalized by maximal twitch or tetanic tension did not, in

general, produce higher correlation values. The highest value during maximal ERK1

activation was produced by plotting a regression utilizing unnormalized peak tensions

over the first 60 contractions (Avg. Pk. T-60, 1.2 = 0.93), and this parameter also was

judged to provide the highest values thmughout the time course. The global

negative/negligible colTelations at 30- and 120-minutes vs. the global positive

correlations at 0- and 60-minutes post-stimulation suggested an alternating relationship

when pertaining to mechanotransduction sensitivity. A 3-D surface plot (p-44 ERK vs.

Avg. Pk. T-60 vs. time) visually demonstrates how the relationship quickly weakens at 30

minutes and essentially becomes the inverse at 120 minutes (r2 = -0.83).

p-42 ERK (Table 3) (Figures 17,18)— ERK2 phosphorylation showed a moderate

relationship with muscle weight at baseline (r2 0.64 for muscle weight) suggesting that

muscle weight may have an effect on ERK2 activation values during the time course. The

fair to moderate relationship between ERK activation and muscle weight alternated

between negative and positive correlations throughout the time course (-0.31 <= 1.2 <

0.95). This suggested an alternating relationship when pertaining to mechanotransduction

sensitivity and this was proven by the global negative correlations at 30- and 120-minutes

vs. the global positive coirelations at 0- and 60-minutes post-stimulation. Similarly to

ERKI, ERK2 activation generally coirelated higher when surveying peak tensions for the
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first 60 contractions instead ofover the entire 300-second protocol, especially at O minutes.

In addition, peak tensions normaÏized by maximal twitch or tetanic tension did not, in

general, produce higher correlation values. For the pararneter with the highest correlation

value during maximal activation (T-60/wL, r2 0.86) and judged to demonstrate the

strongest relationship throughout the time course, the values followed forni to the

abovementioned altemating retationship in mechanotransduction sensitivity. A 3-D surface

plot (p-42 ERK vs.T-60/wt. vs. time) visually demonstrated how the positive relationship

remains strong at 60 minutes (r2 = 0.76) until a fair reversai in mechanosensitivity occurs at

120 minutes (r2 = -0.42).



Table 1. p54-JNK time course correlation values (R2)

Assessment of linear reression between p-JNK and tension-retated variables.

49

Max. Peaklen sio n
T-60
T-6O/ttitcli
T-60/tetanic
T-300
T-300/twitch

neg.
neg.

(.27)!p (.38)
neg.

(.36)/e (.41)
(.55)/e (.60)
(.32 )Ie( 37)

(-.45)Ip (-.51)

(—.16)71 (—.16)
neg.

(-.23)71 (-.23)
(-.78)/t (-.77)
(—.12)/1 (—.11)
(—.17)71 (—.19)
(-.37)71 (-.39)

(-.38)7e (-.45)

neg.
neg.

(.1 1)71 (.11)
neg.
ne.
ne.

neg.
(.84)71 (.87)
(.88)!p (.90)
(.89)7! (.93)
(.46)Ip (.61)
(.60)/p (.76)
(.55)/p (.69)

neg.

PARAMETER BASELINE O min.- 30 min. 60 min. 120 min. 180 min.

MAX

linear/curved Iinear/curved Iinear/curved Iinear/curved Iinear/curved Iinear/curved

T-60/wt.
-

(.2$)!p (.41) (.34)!p (.41) (.23)7e (.24) (.38)lp (.56) (.59)71(59)
T-60IttitchIwt. - (.53)7e (.62) neg. (.37)71 (.37) (.34)/p (.48) neg.
T-60/tetanic/wt.

-
(.27)!p (.37) neg. (.36)!! (.36) (.44)!p (.62) (.16)7e (.19)

T-300/t.
- (.60)7e (.66) neg. neg. (.19)!p (.37) (.52)71 (.52)

T-300/twitch/wt.
- (. 73)/e t. 79) iteg. (.15)/e (.16) (.23)4 (.41) (.35,),’! (.35)

T-300/tetanic/wt.
-

(.S8)/p (.65) neg. neg. (.2l)/p (.40) (.19)71 (.19)

T-300/tetanic

Muscle wt. (.98)7e (.98)

(—.21)/1 (—.21)

(-.60)71 (-.60)

neg.
(.38)7e (.38)
(.15)71 (.15)

neg.
(.26)!p (.30)
(.21)71(21)

nec.

neg.

In bold italics (T-300/twitch/wt.) — group of correlation values judged to be highest.

neg. = negligible (R2<0.10)
curvilinear regression (I = logarithrnic, p = power, e = exponential)
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Table 2. p-ERK1 time course correlation values (R2)

Assessment of linear re2ression between p-fRKI and tension-related variables.

M ax. PeakTension
T-60
T-300

T-60/tw itcli
T-60/tctan ic
T-300/twitch
T-300/tetanic

(.23)11 (.22)
(.93*1 (.93)
(.67)7e (.74)
(.83)/e (.87)
(.63)7e (.66)
(.4$)/e (.56)
(.45)Ie (.53)

(—.17)71 (—.17)
neg.

(—.21 )I1 (—.20)
ne.

(—.15)71 (—.15)
neg.

(—.17)71 (—.18)

tie.

(.38)/1 (.39)
(.13)71 (.10)
(.40)/p (.49)
(.1 5)7e (.15)
(.25)11 (.25)

neg.

neg.
(-. 83)/e (-.86)
(-.87)7e (-.85)
(-.42)le (-.44)
(.75)7e (-.78)
(-.55)/e (.60)
(-.80)7e (-.81)

(-.33)71 (-.37)
(-.13)4 (-.14)

neg.
(—.12)71 (—.15)
(-.17)!! (-.19)
(—.12)71 (—.14)

neg.

PARAMETER BASELINE O min.- 30 min. 60 min. 120 min. 180 min.
MAX

linear/curved linear/curved linear/curved tinear/curved Iinear/curved linear/curved

Muscle wt. neg. neg. tleg. (-.52)/e (-.55) neg. (-.29)71 (-.29)

T-60/wt.
- (.77)7e (.77) neg. (.7l)/p (.79) (-.27)7e (-.33) neg.

T—60Itwitch/tt. — (.42)/1 (.45) neg. ( .57)/p (.71) (—.1 1)7e (—.13) neg.
T-60/tetanic/wt.

- (.44)/1 (.47) (-.16)71 (-.17) (.58)’p (.66) (-.28)7e (-.35) (-.12)71 (-.14)
T-300/wt.

- (.61)7e (.68) (-.25)71 (-.27) (.52)71 (.55) (-.30)7e (-.39) neg.
T-300/twitch/wt.

- (.41 )/p (.52) neg. (.53)71 (.64) (-.15)7e (-.21) neg.
T-300/tetanic/wt.

-
(.42)/p (.53) (-.16)71 (-.19) (.52)7! (.54) (-.27)7e (-.36) neg.

In italics (Avg. Pk. T-60) — group of correlation values judged to be highest.

neg. = negilgible (R2<O1O)
curvilinear regression (I = logarithrnic, p= power, e = exponential)
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Table 3. p-ERK2 time course correlation values (R2)

Assessment of linear regression between p-ERK2 and tension-related variables.

Nlax.PeakTension
T-60
T-60/twitch
T-60/tetanic
T-300
T-300/twitch
T-300/tetanic

(.25)!! (.24)
(.51)71(51)
(.71)7e (.72)
(.17)7e (.16)
(.48)7e (.48)
(.44)7e (.45)
(.26)7e (.27)

(.55)/1 (.59)
(.69)71 (.71)
(.67)/1 (.68)

neg.
(.55)71 (.55)
(.24)71 (.23)

ne.

neg.
(.60)71 (.60)
(.73)/p (.76)
(.26)71 (.26)
(.33)71 (.33)
(.60)71 (.60)

neg.

(.57)71 (.57)
neg.
ueg.
neg.
neg.

(-.18)7e (-.24)
nec.

PARAMETER BASELINE O min.- 30 min. 60 min. 120 min. 180 min.

MAX
Iinear/curved Iinear/curved linear/curved lincar/curved linear/curved linear/curved

Muscle wt. (.64)7e (.60) (-.33)7e (-.39) (.35)/p (.37) (-.31 )1e (-.36) (.94)71 (.93) (-.26)71 (-.26)

T-60/wt.
- (.86)/e (.87) (.13)4 (.13) (. 76)/p (.80) (-.42)/e (-.48) teg.

T-60/twitch/wt. - (.68)7e (.74) neg. (.7S)!p (.80) (-.54)7e (-.61) neg.
T-60/tetanic/t. - (.47)/e (.52) (-.19)7e (-.20) (.47)!p (.53) (-.41 )Ie (-.48) neg.
T-300/wt.

- (.62)/e (.64) neg. (.69)/1 (.69) (-.47)7e (-.52) neg.
T-300/twitch/wt.

- (.52)Ie (.56) neg. (.8O)/p (.86) (-.63)7e (-.69) neg.
T-300/tetanic/wt.

-
(.4l)/p (.47) (-.1 l)/p (-.13) (.57)/p (.59) (-.54)7e (-.60) neg.

(—.19)71 (—.23)
neg.
neg.
neg.
neg.
neg.
neg.

In bold italics (T-60/wt.) — group of corretation values judged to be highest.

neg. = negligible (R2<0.10)
curvilinear regression (1 = logarithmic, p = power, e exponential)
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DISCUSSION

A time course ofMAPK activation in response to an acute bout ofeccentric

contractions was performed in order to help characterize the profile and the possible role

of MAPK signaling during mechanically induced skeletal mtiscle hypertrophy. Cellular

outcomes are usually heavily influenced by MAPK signaling and can generally be

divided into either on/off celitilar decisions or graded responses. Cellular growth

involves on/offdecisions ofproliferation or differentiation, reguiated by celi cycle

control checkpoints that require either acute/phasic or chronic/sustained MAPK

activation depending on the stimulus and ccli type (Tombes, 199$) (Weber, 1997) (WLI,

2000). Thus, the time course ofMAPK activation is likely an upstream regulator of

protein synthesis and ccli growth in mechanicaÏly loaded skeletal muscle. Cellular

processes associated with earÏy hypertrophy events such as protein nuclear transiocation,

qualitative or quantitative changes in transcription, ribosome recruitment, formation of

cyclin-cdk complexes, and satellite ccli processes (Carson, 1997) (Chakravarthy, 2000)

(Chicurel, 1998) (Coolican, 1997) (Goldspink, 1999) (Haddad and Adams, 2002)

(Whitmarsh and Davis, 2000) may be influenced by MAPK signaling.

A 3-hour time course vas performed including measurements ofindividual

phosphorylation values for p54-JNK, p44-ERK, and p42-ERK. As expected, there is a

dose-dependant relationship between muscle tension and MAPK activation. Several

studies have showu a magnitude dependant relationship between mechanical stress and

MAPK or lE gene activation (Boppart, 2001) (Dawes, 1996) (Martineau and Gardiner,

2001) (Hamada, 1998) (Jo, 1997). However, the results ofthis study suggest that there

are detailed differences for each MAPK with regards to the strength and duration ofthe
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response, biphasic behaviour, and with muscle-related physiological parameters that eau

predict baseline and activation quantitative values. The major finding ofthis study is the

lack of an existing refractory period for JNK activation 2 hours after an initial stimulation

bout, thus allowing for speculation on the role ofthe JNK response and its downstream

effects.

TIME COURSE 0F MAPK ACTIVATION

This study has produced the observation that the activation profile for JNK is

different from that ofERK1 and ERK 2. Each MAPK member investigated in this study

differed in their temporal profile and/or their maximum response amplitude. It is very

common to have different response amplitudes and/or different time course patterns

between JNK and ERK1/2 in mechanically stressed skeletal muscle (Aronson, 1997)

(Canson, 2001) (Mailineau and Gatdiner, 2001) (Widegren, 2001), smooth muscle

(Hamada, 1998), or endothelial ceils (Jo, 1997). This strongly suggests individual roles

and thus, different modes ofregulation for the pataud MAPK signal pathways in the

hypertrophy process.

The MAPK time courses demonstrate evidence of either variable, sustained

activation or biphasic on/offstates. MAPK signaling, whether it is acute/phasic or

chronic/sustained, can influence on/off ce!! ular processes that involve checkpoints

(Tombes, 1998) (Weber, 1997) (Wu, 2000). Satellite cell recruitment involves several

on/offprocesses and their activation in skeletal muscle is considered to be a vital aspect

ofthe hypertrophy process in skeletal muscle (Adams, 1999) (Allen, 1999) (Rosenblatt,

1994) (Vierck, 2000). MAPK pathways and IGF-1 together eau promote some ofthe
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distinct phases ofproliferation, differentiation, fusion and hypertrophy in skeletal muscle

or skeletal myoblasts (Coolican, 1997) (Adi, 2002) (Sarbassov, 1997) (Weyman, 1997)

(Wtt, 2000) (Haddad and Adams, 2004). Although experiments using rat skeletal muscle

loading have shown so far that the onset of IGF/MGF wili iikeiy occur after our 3-hour

time course investigation (Haddad and Adams, 2002) (Adams, 1999) (Adams 2002),

MAPKs and IGF/MGf may nevertheless interact sometime post-stimulation to increase

satellite celi cycle progression and replicative capacity by overcoming ccli cycle check

points (Chakravarthy, 2000) (Adams, 2002).

Also, indirect temporal evidence from a survey of studies utilizing mechanical

stress implicates MAPK activation with affecting downstream signaIs that promote

protein synthesis. Our three-hour time course of MAPK activation appears to precede the

onset ofincreases in translational protein synthesis (Baar, 1999) (Hemandez, 2000)

(Nader, 2001) and the expression of growth-related genes (Chen, 2002). Nevertheless,

these effects may be rnediated via temporally related AP-1 activation (J0, 1997) and/or

temporally related induction of lE genes c-fos and c-jtm (Aronson, 1997) (Harnada,

1998).

p-54 JNK — As previousiy reported, it is very likely that JNK signaling is

associated with rnechanically induced hypertrophy (Martineau and Gardiner, 2001)

(Aronson, 1997) (Boppart, 1999) (Boppart, 2001) (Hamada, 1998) (Jo, 1997). One bout

ofeccentric contractions produced immediate and massive p54-JNK activation

(approximately 30-fold baseline leveis), peak levels which confirm the much higher

response amplitude to mechanical stress ofJNK versus ERK1/2 (Martineau and Gardiner,
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2001) (Hamada, 1998) (Boppart, 2001). Other studies provided unclear resuits

concerning the maximum response levels ofJNK versus ERK1/2 (Aronson, 1997)

(Carlson, 2001) (J0, 1 997). Nevertheless, as will be discussed later, this study reinforces

the previously discovered dose-dependant relationship between mechanical stress and

JNK activation (Martineau and Gardiner, 2001) (Boppart, 2001) (Hamada, 1998), and

hence, the probable involvement ofJNK with the hypertrophy response.

There was quick negative regulation, assumed to be due to MKPs, producing

significantly lower levels of p54-JNK within 30 minutes post-stimulation. However, the

initial rapid trend towards baseline levels did not continue and would requit-e a time

period longer than 3 hours since p54-JNK levels remained significantly above baseline

for the entire time period investigated. Activation levels did not drop lower than those at

its estimated haif-life time of 2 hours (approximately 13-folU baseline) and the minor

oscillations throughout the time course were not significant. Thus, based on ail ofthese

resuits, the JNK time course of activation can be considered as a prolonged ‘on’ response

but with varying fold-baseline levels (intermediate levels) of activation. It would be of

interest to investigate the relationship or colTelation, if any, between the JNK time course

of activation and MKPs activation pattems.

Several other studies that utilized different protocols also demonstrated a more

prolonged JNK activation response in comparison to the ERKI/2 profile (Aronson, 1997)

(Hamada, 1998) (Jo, 1997) while the resuits ofothers appear contradictory (Canson,

2001). Sustained JNK activation may be important for augmenting ti-ansci-iptional or

translational protein synthesis since its time course precedes the reported onset time of

these processes. for example, using p70 levels and polysome profiles as indicators, the
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first evidence of an increase in transiational protein synthesis in rat skeletal muscle

occured 3-6 hours post-stirnulation (Baar, 1999) (Hemandez, 2000) (Nader, 2001). Also

in rat muscle, substantialÏy more growth-related genes were upregulated 6 hours versus 1

hour after an acute bout ofresistance training via transcription and translation (Chen,

2002). Prolonged JNK signaling may be a prerequisite for these adaptations by

pennitting enough time to potentially influence downstream regulators that have been

temporally related in past studies. More specifically, JNK activation preceded one ofthe

AP-l activation phases (Jo, 1997) and c-jtui activation was also sustained for long time

periods (Angel and Karin, 1991) (Aronson, 1997) (Dawes, 1996) (Hamada, 1998).

Moreover, JNK and c-jit,, activation were both dose-related to stretch (Dawes, 1996)

(Hamada, 1998).

Up to now, the myogenic program is considered to be INK-independent (Wu,

2000). Therefore, studies investigating the myogenic program in myoblasts or developed

skeletal muscle have focused on ERK1/2 rather than JNK. Since sustained MAPK

activation in certain protocols helped bypasss celi cycle checkpoints (Weber, 1997) (Wct,

2000) and satellite cell activity was required for hypertrophy (Rosenblatt, 1994), it is

possible that the prolonged JNK response plays a role during the initial and extended

post-stimLllation phase of satellite celI proli feration. Also, JN K activation was sustained

for a minimum of 6 hours before myoblasts commenced differentiation (Gredinger,

1998). Prolonged JNK activation may act cooperatively with transient ERK signaling to

promote satellite cell differentiation after the proliferation phase.

JNK bas been implicated as a strong candidate for interacting with calcineurin to

help mediate its cardiac hypertrophic and/or phenotype switching effects (De Windt,
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2000). Calcineurin had strong interactions with a group of transcription factors linked

with genes responsible for skeletal muscle hypertrophy and phenotype switching

(Delling, 2000) (Dunn, 2000) (Dunn, 2001). The prolonged activation profile ofJNK in

our study does not appear to bring forth evidence against the abovementioned proposed

interaction ofJNK with caïcineurin. Traditionally, it has been thought that an extended

duration ofphysical activity concomitant with sustained elevated calcium concentrations

is required for calcineurin activation. This concept bas been reflned by the flndings that

any relative increase in physical activity, including abbreviated high frequency

stimulation or overload, cari respectively resuit in immediate or sustained calcineurin

activation and promote sÏow-fiber type conversion, especially in the fast plantaris muscle

(Dunn, 2001). from this, assuming a positive correlation between calcineurin activation

and JNK activation (De Windt, 2000), and assuming that our protocol was similar enough

to those which have resuÏted in a prolonged increase ofcalcineurin activation (Dunn,

200 1), one cannot argue against the possible interconnection between JNK with

calcineurin. AlthotLgh this is only indirect temporal evidence, contradictory findings

have not been brought forward in this study. Future stctdies may support or provide

evidence against the possible interactions ofJNK with the calcineurin pathway during

skeletal muscle hypertrophy and phenotype switching.

FRK1/2 (p-44 ERK/p-42 E RK) — The time course of activation for both p42-

ERK and p44-ERK exhibited a very similar temporal pattem and relatively small

response amplitude when compared to JNK. The ERKI/2 time profile exhibited an

on/offform of activation, which is significantly diffei-ent from the prolonged ‘on’
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response ofJNK. As previously mentioned and reported in several studies (Martineau

and Gardiner, 2001) (Hamada, 199$) (Boppart, 2001), the maximal response amplitude

of p42-ERK (approximately 2-fold baseline) and p44-ERK (approximately 3-fold

baseline) was considerably lower than that ofJNK (approximateÏy 30-fold baseline).

Regardless, as will be discussed later, ERK1/2 did respond in a dose-dependant manner

with regards to tension. Dissimilarities in the type of activation and response amplitude

suggest a difference ofroles and regulation for these parallel pathways during the

hypertrophy signaling process.

The higher ERK1/2 baseline values as compared to JNK support the idea that

their kinetics or mechanism of activation differ (Martineau and Gardiner, 2001). This

idea is further teinforced in this study since there is an inverse relationship between

baseline and maximal activation valties. For exampie, p42-ERK has both the highest

baseline value and the iowest response amplitude. Although beyond the scope ofthis

study, the nan-ow response range observed in our study may be partly explained by

speculating on two interpretations. Firstiy, as wiii be explored later, the ERK famiiy may

be part ofa pathway responsible for sensing and relaying signais caused by force

transmission in a different direction than that ofJNK. The second explanation involves

enzyme kinetics, more specifically, thresholds of activation and enzyme saturation. It has

been reported that due to higher sensitivity, at lower tension levels ERK but not JNK is

activated and, as tension leveis increase, JNK becomes much more responsive (Martineau

and Gardiner, 2001). Perhaps as ERK activation approaches saturation, JNK necessarily

becomes more sensitive to increasing leveis of tension. This was aiso the case for the

activation ofthe p46-JNK isoform during concomitant higher tension and saturating p54-
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JNK levels (Martineau and Gardiner, 2001). It is not uncommon to find dose-dependant

changes in sensitivity and activation thresholds as this would reflect the dynamics of an

existing physiological nonlinear system involving the interactions ofMAPKs and MKPs

(Fratklin and Ksaft, 1997) (Chen, 2001) (Slack, 2001). The two explanations may be

linked by evidence ofthe effects ofmechanical tension on kinase kinetics (Chicurel,

199$).

A major and unique finding in this study is the biphasic induction ofboth ERK1

and ERK2 in rat plantaris muscle 3 hours after exposure to an abbreviated mechanicai

stimulation bout. Other studies that discovered an ERK biphasic induction profile

differed in the experimentai protocol and findings inciuding use ofa myogenic celi une

(Wu, 2000), or exposure to endurance training (Nader and Esser, 2001), or use of

continuous mechanical overload to discover a biphasic induction ofERK2 in rat soleus

muscle only (Canson, 2001). One possible function of this biphasic on/off form of

signaling is that it may be coupled to distinct satellite ccli phases.

The myogenic and anabolic program in myobiasts or satellite ceils consists of

on/off stages inciuding proliferation, differentiation, fusion and myotube hypertrophy.

ERK activation was necessary for some ofthese processes and ultimately for skeietai

muscle hypertrophy (Haddad and Adams, 2004). It appears that biphasic or transient

ERK activation was a common and required feature in hypertrophy-reÏated studies in

order to promote and regulate these phases (Weyman. 1997) (Wu, 2000) (Adi, 2002).

Moreover, the dual roles and biphasic activation ofERK1/2 vas coupled to that ofIGF-1

and coincided with or preceded many downstream processes and signais (Haddad and

Adams, 2002) (Adi, 2002). The opposing myogenic and mitogenic phases had precursor



63

signaling markers with transient activation states that alternated inversely to each other

(Rosenthal and Cheng, 1995), therefore, ERK is a likely upstream regulator oftemporally

separate myogenesis and mitogenesis (Wu, 200), and these effects may be mediated by c

fos (Coolican, 1997) (Gredinger, 1998). ERK and c-fos both exhibit a transient form of

activation (Dawes, 1996) (Angel and Karin, 1991) (Aronson, 1997) (Izumo, 1988) and c

fos activation bas been reiated to work overload in heart muscle (Izumo, 1988). Also,

indirect temporal evidence suggests that other downstream targets may be affected by

ERK activity. For example, ERK activation preceded one ofthe spikes in AP-1

activation (Jo, 1997) and several transcription factoi-s responded in a biphasic manner

after static stretch (Ranch, 2005).

ABSENCE of a REFRACTORY PERIOD

MAPK signaling in ail-or-none physiological outcomes have been studied

previously. The main characteristic for this type ofresponse system is strong bistabitity

(on/offl ofMAPK activation and relevant cascade ofdownstream protein activities,

whereby positive Feedback loops help provide features ofirreversibility that may include

ultrasensitivty or hysterisis (Bagowski and Ferreil, 2001) (Xiong and FelTeil, 2003). This

feature allows for only stimuli ofa certain level ofstrength, transient or not, to achieve to

completion an ail or none cellular response (Bagowski and Ferreli, 2001) (Xiong and

Ferreil, 2003). In such a response system, enough time w’ould be provided for the

necessary protein interactions that may involve MAPKs, mitogens, cyclins, cdks, and

transcription factors to achieve a subsequent on/offresponse, for example, satellite ccii

cycle progressions.
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On the other hand, as further confirmed in this study, mechanical stress causes

MAPK signaling 01. downstream lE gene activation to respond in a graded manner

(Boppart, 2001) (Dawes, 1996) (Martineau and Gardiner, 2001) (Hamada, 1998) (b,

1997). Such a response system mctst have characteristics different from the before

mentioned digital response system (Hazzalin and Mahadevan, 2002) including the likely

predominance ofnegative regulation from MKPs over positive feedback. Negative

feedback regu]ation can affect MAPK signaling by desensitizing the cellular response to

a stimulus (Brecht, 1999) (Ferguson, 2001) (Fucini, 1999) (Hazzalin, 1998) (Meskiene,

199$) (Pierce, 2001) (Polakiewicz, 199$) and MKPs are implicated with inducing a

refractory period (Meskiene, 1998). There is evidence that continuous overload or stretch

causes MAPK desensitization (Canson, 2001) (Franklin, 1997) (Jo, 1997) or lE gene

desensitization (Dawes, 1996). When considering intemittent stimuli and lE gene

induction, the presence ofa refractory peniod is questionable and may depend on the time

of stretch reapplication (Dawes, 1996). in sorne instances, refractory periods may help

ensure speciflcity of cellular responses. 1f a stimulus is homologous to the original, a

refractory period ensures that the signaling system is reset in order to permit full

sensitivity to the repeated stimulus. If it is heterologous, a refractory peniod would

prevent from interference with the original stimulus until completion ofthe signaling

response.

Thus, one ofthe goals ofthis study was to be the first to test for the presence ofa

JNK refractory period in skeletal muscle and begin the process ofmodeÏing the standard

MAPK response due to repeat bouts ofmechanical stimulation. A repeat ofthe protocol

produced maximal p54-JNK activation in the restimulation group, which was not
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significantly different from the O-minute group. The lack ofevidence for desensitization

implies that the ability of skeletai muscle to sense and relay signais foliowing a 2uid bout

ofmechanical stimulation remains intact. Therefore, the absence ofa refractory period

near its haif-life time or, more specifically, the reproduction of statisticaÏly similar

maximal p54-JNK activation, allows us to conclude that, amidst negative regulation, the

magnitude-dependant relationship between tension and p54-JNK activation appears

unaltered.

The net effect ofa 2uid round of maximal JNK activation on downstream events

can only be speculated on. The most trivial assumption is that ofa greater adaptation.

There is evidence that acctte changes in signaling may resuit in iong—term gains in muscle

mass (Baar and Esser, 1999). Intraceliular relocation of important components (Chicurel,

I 99$) and changes in transcriptional or posttranscriptionai processes (Carson, 1997)

(Goldspink, 1999) are general source areas of adaptation and may once again contribute

to a further increase in mRNA and protein production (Carson, 1997) (Goldspink, 1999),

and a larger influx ofnewly synthesized myosin protein into the filaments (Russeil,

2000). It is possible that a larger time requirement would be necessary to achieve this

greater adaptation since there appears to be a lag time between MAPK signaling and

increases in protein synthesis (Baar, 1999) (Hemandez, 2000) (Nader, 2001) (Chen,

2002). If not, one can argue that there is no net efect, possibly because ofa bottleneck

effect. The existence ofa point of limitation anywhere downstream such as Ïimited

availability ofdownstream substrates, the inability to further increase rates of

transcription or translation, or unnecessary increases in myofibrillar protein synthesis,

could classify the 2uid wave ofsignaling as being redundant.



66

Nevertheless, there is support for the trivial assumption ofa net increase in

protein synthesis. It has been proposed that an amplitude-dependant MAPK signaling

response is translated to frequency modulation by directly affecting transcription iates

(Hazzalin and Mahadevan, 2002). In addition, a correlation between acute changes in

transiational control signaling and Iong-term gains in muscle mass has already been

demonstrated (Baar and Esser, 1999). Using the abovementioned information as a

mode! and extrapolating it to graded MAPK signaling in rnechanically loaded skeletal

muscle, a higher burst in JNK activation from a fully sensitive 2 bout would result in

higher amounts ofprotein synthesis. Since higher levels of generated tension cause

higher levels of mechanical deformation and strctctural microtraurna (Lieber, 1 994)

(Boppart, 1 999), and hence a higher requirement for myofibriÏlar hypertrophy, the mode!

would satisfy the theoretical need to have matching levels ofMAPK signaling and

protein synthesis in order to produce proper muscular adaptation. Thus, the 2 wave of

maximal JNK signaling produced by the experimental restimu!ation group bas the

potentia! to cause further increases in myoflbrillar protein synthesis.

Another aspect ofinterest is the possible connection between tension, force

transmission paths, and spatially organized MAPK signaling. Evidence ofscaffolds and

organized localization pattems ofMAPK signaling bas been reviewed (Ganington and

Johnson, 1999) (Pearson, 2001) (Samaj, 2004). More specificaÏly, MAPKs and scaffoïds

may interact with contractile or cytoskeletal proteins that likely participate in the tension

generating and sensing process (Chicurel, 1998) (Samaj, 2004). Due to the similar

maximal JNK activation values in both the 0—minute group and the restimulation group,

using electron microscopy and immunodetection techniques, it is possible to confim or
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refute that both groups exhibit a similar activation-mapping pattem. Ail ofthe above can

impiy that MAPK activation occurs in a spatially structured arrangement.

CORRELATIONS

The importance of the MAPK pathways, including JNK, was proven when

constitutive expression ofMKP-1 attenuated the hypertrophy response in cardiomyocytes

(Bueno, 2000). Without contribution from systemic factors (Ryder, 2000) (Wretman,

2000) (Boppart, 2001) (Carlson, 2001), tension was required and sufficient to promote

hypertrophy (Goldspink, 1999) and helped mediate the effects ofcalcineurin (Dunn,

2000). As expected, avetage maximal tension, either over the first 60 seconds or the

entire 300-second protocol, is strongly coirelated with MAPK activation.

Similar to the analysis previously conducted in our lab (Martineau and Gardiner,

2001), linear regression correlation coefficients were used to measure the relationship

between initial maximum MAPK activation and various muscle tension—related variables.

Although some ofthe variables utilized were similar to the abovementioned study, new

variables were used to explore other intrinsic parameters that may possibly affect the

sensitivity ofMAPK activation. Namely, variables coiiecting for intrinsic parameters

such as muscle mass and maximal tetanic tension were added to the list of variables

con-ecting foi- peak twitch tension oniy. Therefore, to summarize, we utilized several

abso lute tension variables and relative tension-related variables.

The use ofuumerous relative tension-related variables provided a thorough

attempt to define relative mechanical stress. We believe that it is best defined as muscle

workload per unit of muscle mass. Due to the nature ofskeletal muscle, maximal
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stimulation can cause high levels of tension to be simultaneously generated and sensed by

muscle itself(Chicurel, 1998) (MacKenna, 199$). The ability ofmuscle to transmit force

laterally in multiple directions and at various sites throughout its volume (Street, 1983)

(Monti, 1999) (Patel and Lieber, 1997) (Paul, 2002) requires us to consider mechanical

stress in ternis ofthree dimensions. Since mammilian muscle density has been used as a

constant when performing calculations (Patel and Lieber, 1997), according to the formula

d=m/v, mass and volume are linearly proportionally to each other. Therefore, muscle

mass can be used as a quantitative equivalent of volume, which represents an estimate of

the three-dimensional capacity of muscle to dissipate mechanical stress. Hence, as a

measure of relative mechanical stress, tension vas divided by muscle mass for many of

the variables.

Con-ecting for intrinsic physiological properties such as peak twitch tension or

maximal tetanic tension in addition to correcting for muscle mass may help provide a

more accurate definition of relative mechanical stress. Regardless, ail ofthe variables

can be classified as muscle work output variables since the amoLint of tension generated

by the plantaris muscle is represented in some form within every variable (except foi- the

variable used to correlate MAPK activation with muscle mass alone). In general, initial

maximal MAPK activation was positively correlated with average maximal tension or

rather, average muscle work output. Other studies have also shown a correlation between

tension and MAPK activation (Boppart, 2001) (Martineau and Gardiner, 2001) (Hamada,

1998) (Jo, 1997). Our study provides further support for the important signaling i-ole of

MAPKs during mechanotransduction and the muscle hypertrophy adaptive process.
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It was our goal that one of the variables, absolute or relative, would be

distinguishable by consistently exhibiting the highest correlation value throughout the

study. Ibis was not the case and supports the notion that MAPK activation is specific

and may be dependant on specific force transmission pathways. Our resutts suggest that

depending on the MAPK, absolute or relative tension can represent the more accurate

predictor ofmechanical stress. In other words, longitudinal and lateral force transmission

each contributes to purposeful tension converging at the tendon yet they may have

different mechanisms (Street, 1983) (Monti, 1999) (Patel and Licher, 1997) (Paul, 2002),

requiring different inhibitors (MacKenna, 1998), which may be proven in the future to

affect MAPK activation. Different sites of force transmission vary qualitatively and

quantitatively in their protein content inciuding the type ofintegrins (Paul, 2002). In fact,

during mechanical loading, MAPK activation was influenced by the type ofupstream

matrix substrate and integrin binding (MacKenna, 199$). Co-localization ofMAPKs

with certain structural proteins (Samaj, 2004) further supports the idea that MAPK

activation may be related to the spatial organization of muscle and may be dependant

upon specific force transmission pathways.

CORRELATIONS and BASELINE MAPK VALUES — Although the low sample

number used for baseline data (n=3) makes it difflcult to accept findings as being

significant, some interesting trends appear to have been discovered. The ERK famiÏy had

much higher baseline activation values as compared to the very low value for JNK. This

demonstrates that EPJK1I2, especially ERK2, is activated during resting tension. As

previously reported, ERKI/2 are more sensitive at lower tension Ievels (Martineau and
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Gardiner, 2001). This may highlight the capacity or physiological range of certain force

transmission pathways associated with ERK activation. One can speculate that since

certain force transmission pathways are utilized during resting tension (Street, 1983),

ERKI/2 activatioii may be associated with these predominately non-contractile elements.

On the other hand, JNK activation may be more dependant upon force transmission

pathways that are affected by contractility.

Also, ERK2 and JNK showed moderate and high correlations respectively with

muscle mass during resting tension. Thus, this vas taken into consideration when

determining relative mechanical stress during stimulation. Beyond the scope ofthis

study, another possible significance for the apparent trend between baseline JNKJERK2

activation and muscle mass is the possible involvement ofMAPKs with baseline protein

synthesis.

CORRELATIONS and MAPK ACTIVATION VALUES - Lateral and longitudinal

force transmission pathways contribute to useful net force production at the tendon.

There is evidence to suggest that the lateral pathways can contribute a majority ofthe

percentage ofmuscular force production (Street, 1983). Force dissipated in three

dimensions throughout the volume of muscle would support the notion of a larger

capacity to transmit tension versus simple linear transmission (Street, 1983) (Monti,

1999) (Patel and Lieber, 1997) (Paul, 2002). Instead, force that is produced by

myofibriflar contractility can be dissipated in multiple directions per unit volume ofa

muscle lattice network.
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As expected, since their baseline values conelated highly with muscle mass, JNK

and ERK2 both coirelated strongly and positively with a relative mechanical stress

variable. In other words, the activation values corielated highly with variables that divide

some representation oCmechanical tension by the measured mass ofthe muscle. The fact

that they colTelate well to the linear inverse of muscle mass suggests that JNK and ERK2

may be associated with measuring stress in lateral transmission pathways. Rowever,

their mechanism may be different and their involvernent may not be limited only to

lateral transmission. Firstly, the saiiie MAPK can be impÏicated in both axial and

transverse forms of force transmission in skeletal muscle yet each form has a different

si gnaling mechan j sm (Kum ar, 2002). Indeed, di fferent structural elements and proteins

are involved with various possible pathways (Street, 1983) (Monti, 1999) (Patel and

Lieber, 1997) (Paul, 2002) and MAPKs can localize with specific cytoskeletal proteins

(Samaj, 2004). In another example, during mechanical stretch in cardiac flbroblasts,

ERK2 and JNK were activated by a different variety of upstream matrix substrates and

integrins (MacKenna, 1 998). Furthermore, the low JNK activation baseline values at

resting tension and the greater sensitivity ofJNK at higher tensions suggest that it is

strongly implicated with contractile elements. Final ly, since mechanical tension can

affect the chemical kinetics ofvarious molecules and kinases within a ccli (ChicureÏ,

1 998), JNK or its upstream activators may be more responsive to this effect.

Contrarily, ERKI is different from both JNK and ERK2 in that it colTelates the

highest with absolute tension and not relative mechanical stress. Since the volume effect

of force dissipation does flot appear to be a necessary correction factor, this suggests that

ERK1 may be predominately associated with linear force transmission, possibly with the
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MTJ site and its relevant molecuÏes. The MTJ is a site involved only with linear force

transmission, receiving tension produced in series from the sarcomeres, and expresses a

specialized group ofintegrins and proteins (Paul, 2002). A hypothetical model is

As discussed, this hypothetical model helps demonstrate a connection between what is suggested
by the colTelation values and information found in the literature.

(a) JNK and ERK2 may be implicated with indicating levels of mechanical stress in lateral
transmission pathways. This would involve multi-directional force transmission per unit
volume.

(b) ERKI may be involved only with linear force transmission between sarcomeres and the

proposed in Diagram 1

si%naling with axis of force dissipation.

MTJ.
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PATTERN ofCORRELATION VALUES and MAPKTIME COURSE - The

experirnental design allowed for this type of analysis to be extended throughout the time

course of activation in order to permit comparisons of ail the post-stimulation groups

with the maximal activation group. Thus, we determined if variables with an initially

high correlation value during maximal MAPK activation immediately post—stimulation

would maintain this relationship at ail the time points. Our resuits have indicated the

presence of oscillatory or flip-flop behaviour between tension-related variables and

MAPK activation during the time course of activation. In other words, in general,

positive correlations at 0— and 60-minutes post—stimulation alternated with negiigible or

negative correlations at 30- and 120-minutes post-stimtilation.

The only speculative explanatioti is that positive conelations coincide with

upswings in MAPK activation, negative correlations coincide with negative regulation,

and negligible relationships reflect transitional periods ofregulation. MKPs are

responsible for rapid negative regulation ofMAPKs, usualiy within minutes (Camps,

2000) and together with MAPKs fomi an oscillatory signaling system (Khoiodenko,

2000). Thus, it may be discovered that MKPs osciflate in a pattent that mirrors that of

the MAPKs, albeit with a slight delay or lag period. Although MKP measurements were

not made, one cati speculate that MKP activation values may correlate positively with

MAPK activation and muscle workload.

For example, the foïtowing is a scenario that would satisfactorfly explain much of

the resufts. A high workload stimulation bout resuits in high, immediate maximal MAPK

activation and thus a strong positive conelation at 0-minutes. This causes a strong
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counteraction ofMKPs quickly producing high negative regulation (MAPK deactivation)

thus canceling off the positive correlation and moreover, especially in the case of

ERKI/2, producing negligible or negative correlations. In other words, assuming an

oscillatory wave response, a higher workÏoad would produce larger positive and negative

amplitudes (i.e. higher peaks during/after activation phases and lower valleys during/after

deactivation phases). The cycle can then ;epeat itselfwith varying amplitudes as it

progresses through the time course of activation until eventually smaÏler oscillations

predominate and values return to baseline levels.
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FUTURE EXPERIMENTS!LIMITATIONS 0F STUDY

Ail three major parts ofthis study possess specific areas that can be explored in

future experiments. Some ofthese have already been mentioned. The findings in this

study have a major limitation in that ail the resLitts are derived from the plantaris muscle

in young fernale Sprague-Dawiey rats.

CORRELATIONS There are several foliow-up experiments, mainly by simply

increasing the sample size and thus its statistical power, which can ciarify the possible

existence of certain quantitative relationships discovered in this study. firstly, from our

small sample size (n=3), the limited data suggests that baseline activation values for JNK

and ERK2 is positively correÏated with muscle weight. This bas important implications

for understanding and identifying the regulatory mechanism responsible for baseline

myofibrillar protein synthesis or the mechanical signaling state at resting ‘taut’ tension.

Increasing the sample size to one that bas strong statistical power wouÏd help conflrm this

relationship, especially since this directly affects the need to utilize a weight-adjusted

approach for certain MAPKs with regards to activation sensitivity due to mechanical

loading. It would be interesting to determine if resistance training would have an impact

on some aspect related to the baseline signaling state, for example, baseline MAPK

activation and/or resting tension values.

Also, as mentioned previously, we were unable to determine ifthe relationship

between MAPK activation atid different tension-related variables in response to maximal

mechanical loading exhibits a linear or curvilinear relationship. Regardless ofthe

variable, the linear and curvilinear correlation values were very similar and wouid require
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a substantial increase in sample size in order to distinguish with confidence, ifthere

exists a difference at ail between the two classes. Differences greater than those found in

this study would require the use of an advanced statistical analysis in order to confirm or

reftite its significance.

However, in our lab, a previous study utilizing a much wider range of tension

valties already detennined convincingiy that the JNK activation response is a curvilinear

power function (Martineau and Gardiner, 2001). It is very possible that the naiow range

of tension values used in this study did not altow us to differentiate and that data spread

out over a wider range is necessary to distinguish bctween linear and curvilinear response

functions. The previous study investigated JNK activation over a wide range of tension

values from passive to maximal eccentric. Our natiow range focused only on maximal

eccentric contractions, which corresponds to the steeper, higher end of the p54-

JNKltension curve produced in that study.

One can explore the effects ofresistance training on mechanotransduction.

MAPK activation values, muscle mass, rates of fatigue, and ail tension values (resting,

twitch, tetanic, average peak activation) may be affected by physiologicai training

adaptations. This may alter correlation values and mechanosensitivity in general.

TIME COURSE/IMPLICATED PATHWAYS - There is a set ofexperiments

that can be conducted in the future which focus on data related to the time course

following a mechanical stimulation bout.

Firstiy, the MAPK activation profile cati be complemented with a MKP tirne

course. MKPs are known to act as negative regulators ofMAPKs and often show

coincidental onset time of activation/deactivation depending on the experimental protocol
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(Meskiene, 199$) (Reffas and Schlegel, 2000). Assuming the temporal profiles ofa given

MAPK and a potential negative regulator, for example JNK and MKP-1, showed

coincidentai activation/deactivation, such indirect temporal evidence would help confirm

the importance ofMKPs during negative MAPK regulation in skeletal muscle

mechanotransduction. This woctid also help clarify the roTe ofMKPs during the biphasic

ERK1/2 response. Further confirmation would require, for example, the use ofa MKP

inhibitor to heip pi-ove the requirement ofMKPs foi- MAPK regulation.

Secondiy, a time course that features downstream substrates or upstream signais

may yield insightfui information shouÏd there be coincidentai or preceding time ofonset of

activation. Downstream substrates or signaling molecules may be responsible for cellular

processes invoived in increasing protein synthesis such as translation, transcription, and

ecu-cycle control. Likely candidates would include p-70, elf-4E, AP-1, cyciins, cdk, c-fos

and c-fun mRNA/protein. Ail ofthese have been strongiy irnpiicated with the response of

skeletal muscle to mechanical loading. Potential upstream signais such as Ras and Rho

proteins can also be investigated. furthermore, a temporal connection can be made

between the biphasic ERK1/2 response and upstream signais that may produce this

characteristic or downstream rnarkers that may help mediate its effects. The time course of

activation ofcaicineurin and IGF/MGF may help to reveal the relationship, if any, ofthese

important moiecules with the MAPK pathways. It is culTently unclear if they act upstream,

downstream, or parallel to MAPK pathways during mechanotransduction.

Therefore, any kinetic information involving any ofthe abovernentioned signals

or markers would heip piece together a model foi- the sequence of eariy events during

adaptive hypertrophy. The implication that mechanically induced MAPK activation acts
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as an upstream regulator of a given substrate or molecule can be partially confirmed by

inhibiting the specific MAPK and observing differences in these potential downstrearn

activities. Similarly one can inhibit a potential upstream signal and determine its effect,

if any, on MAPK activation. Additionally, any relationship, if any, between tension and

downstrearn, upstrearn or parallel signal activation would also be determined. One eau

also investigate the effects ofusing a different protocol that produces lower tension, say

isometric contractions, on downstrearn events such as c-fos and c-juii.

It may be necessary to extend the time course beyond three hours in order to

obtain some tiseful information relating to adaptive cellular processes. The timeline of

many early events has yet to be fufly determined and, moreover, past experiments

involving some ofthe abovementioned substrates such as IGf and p70 have required

time courses exceeding three hours (Haddad and Adams, 2002) (Adams, 1999) (Adams

2002) (Baar, 1999) (Hemandez, 2000) (Nader, 2001). Tirne course studies that exceed

three hours may also provide the added benefit ofrevealing prolonged ‘on’ signaling or

other significant MAPK oscillations that were not present within the thrce—hotir time

frame. This hypothetical discovery would then necessitate an expanded viewpoint ofthe

role ofMAPKs during intermediate or long-term events.

Another important aspect that cati be taken into consideration for future

experiments is the tise of different time points since there is evidence in the literature that

each MAPK possesses different time periods during oscillatory signaling (Kholodenko,

2000). This wociÏd help eliminate the risk ofmissing a peak or valley during oscillatory

signaling may represent the difference between having comparisons of certain time

groups reach statistical significance or not. It is unknown if MAPK time periods are
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influenced by the protocol, more specifically, the amount ofworkload performed or

tension produced by skeletal muscle.

Also, an interesting and thoroughÏy informative future experirnent would be one

that is able to precisely control muscle tension (or workload) and thus, allow for the

production of isotension curves throughout the time course. These isocurves would

connect several group samples that have perforrned identical mechanical workloads.

From this we could compare the effect of different workloads on the time course of

activation profile. This would help confirm some of the trends or potential relationships

discovered in our study, namely the altemating positive and negative correlations

between workload and MAPK activation during the time course. In addition, a general

predictive kinetic equation that takes into account as many factors as possible such as

MAPK/MKP kinetics, post-stimulation time, tension, and relative workload could

conceivably be forniulated.

Finally, in order to study potential force transmission pathways associated with a

certain MAPK, one can use specific inhibitors that can parcel ont linear and lateral

directions of transmission. Every site of force transmission bas a unique expression of

proteins, especially integrins. for example, inhibition of an integrin located only at the

MTJ, the site associated with linear transmission, may aber MAPK signaling during

mechanical stimulation. The findings may help confimi the suggestion ofour results that

ERKI may be implicated with linear force transmission. Furthermore, using electron

microscopy and immunodetection techniques, visualization of MAPK co-localization can

bring forth important evidence conceming the role ofcytoskeletal proteins in
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mechanotransduction and perhaps further conflrm the dependance of MAPK signaling on

force transmission pathways.

RESTIMULATION/REFRACTORY PERIOD - Other future experiments can

focus on the re-stimulation part ofthe time course. One can choose an earlier time to

invoke a 2 stimulation bout in order to test for the possible presence of an additive

effect that would resuft in JNK activation values (or ERK1/2 or other signais) that are

signiflcantfy higher than the initial maximal values immediately following the st

stimulation bout. Past time course experiments involving mechanical stretch have shown

that an additive effect may be present for the induction of JE genes (Dawes, 1996),

therefore, c-fos and c-jtin induction can be tested during repeat botits ofmechanical

loading. On the other hand, although without any indication from our stctdy, an earlier

time ofre-stimulation may actually reveal the presence ofa MAPK refractory period.

Evidence thus far suggests that re-stimulation at an earlier time point wifl likely either

reproduce maximal MAPK activation or perhaps produce an additive effect.
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CONCLUSION

In surnmary, IVIAPKs are likely involved with mechanically induced intracellular

signaling and early hypertrophy events in skeletal muscle. Tension is known to be

necessary for hypertrophy. A quantitative anal ysi s demonstrated that phosphorylati on of

JNK and ERK2 correlated with relative tension and ERK1 colTelated with absolute

tension.

However, each MAPK possibly has distinct functions and modes ofregulation.

Fii-stly, there exist specific differences in the abovementioned tension-related variables

that can predict MAPK activation. Secondly, during the time course of activation, JNK

exhibited a prolonged ‘on’ response whereas ERK1/2 exhibited a biphasic response.

Also, ERKI/2 dispÏayed much lower response amplitudes as compared to JNK.

Finally, a 2nd mechanical stimulation bout 2 hours after the first demonstrated an

absence ofa refractory period for mechanically induced JNK activation. Maximal JNK

activation was re-attained with the same protocol. Thus, there is no evidence for

mechanical desensitization in rat plantaris muscle.

Our findings can contribute to understanding diseases such as muscular dystrophy

and in the design of training protocols and disuse atrophy countermeasures.
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APPENDIX A

TABLE Ai - SUMMARY of RAW DATA

Preparatory parameters Developed tension (g) FoId-baseline
activation

Group/Sarnple# Body Muscle L0 L0 Maximal Avg. Avg. P54- P42- P44-
weight weight twitch tetanic peak peak peak JNK ERK ERK
( g) (mg) tension tension tension tension tension

(g) (g) after 60 after
seconds 300

seconds
Baseline/I 190 221 4$ 200 - - - - - -

Baseline/2 215 398 72 354 - - - - - -

Baseline/3 201 259 60 298 - - - - - -

O min.!l 205 265 66 285 572 317 $6 24.5 1.4$ 2.2
O min./2 22$ 376 78 297 400 343 14$ 22.2 1.30 2.3
O min./3 205 284 65 275 423 370 228 29.1 1.53 2.9
Ornin./4 182 254 62 304 406 329 211 39.4 1.82 2.7
O min./5 205 282 74 339 601 459 252 30.6 2.10 3.9
30min./1 19$ 230 70 275 414 315 189 22.6 0.75 1.3
30min./2 190 244 62 273 444 335 217 18.9 1.21 1.9
30min./3 194 271 77 359 466 370 193 26.4 1.24 2.0
30 min./4 19$ 285 68 265 432 326 184 1 1.1 0.95 2.0
30 miniS 217 302 73 322 599 416 241 12.5 1.34 1.3
60 min.!l 205 239 68 287 405 299 143 26.6 1.04 1.2
60min./2 207 265 81 310 392 365 219 15.6 1.07 1.4
60min./3 199 280 72 333 399 374 230 19.6 1.34 1.5
6ûmin./4 203 328 83 284 422 307 199 17.3 0.85 0.7
60 min./5 210 263 66 332 556 429 257 23.8 1.33 1.4
6Omin./6 205 324 75 302 518 353 210 10.0 0.94 1.0
l2Omin./l 216 266 64 305 531 262 134 6.9 0.85 2.0
l2Ornin./2 190 209 63 281 380 340 214 12.8 0.62 1.5
120 min.!3 185 282 79 303 415 356 229 9.8 0.93 1.0
l2Omin./4 176 230 59 266 411 372 236 13.6 0.59 1.0
l2Omin./5 200 310 65 281 580 416 221 17.5 1.06 1.0
180 rnin.!1 20$ 254 74 312 412 363 215 19.7 1.81 2.9
180 rnin./2 202 260 63 317 622 466 25$ 23.2 1.53 2.1
180 rnin./3 200 215 53 261 478 286 122 7.3 1.62 2.5
180 rnin./4 215 272 67 305 530 382 208 17.7 0.94 1.2
180 min./5 217 300 68 281 536 408 252 8.0 1.33 1.9
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! 600 t
C

500

400
w

300

200
z

1o:Ï
baseline

Sample # baseline O min. 30 min. 60 min. 120 min. 180 min.
1 14 418 384 452 118 335
2 23 377 322 266 217 395
3 15 495 448 333 167 124
4 - 669 188 294 231 301
5 - 521 213 404 297 137
6 - - - 171 - -

Average 17 496 311 320 206 258
St.Dev. 4.9 113 111 100 68 122
S.E.M. 2.9 50 50 41 30 54

Table BI. Raw Data - Arbitrarv p54-JNK values throughout post-stimulation time couise.

Sample # baselitie O min. 30 miii. 60 mm. 120 min. J $0 miii.
1 - 24.5 22.6 26.6 6.9 19.7
2 - 22.2 18.9 15.6 12.8 23.2
3 - 29.1 26.4 19.6 9.8 7.3
4 - 39.4 1 1.1 17.3 13.6 17.7
5 - 30.6 12.5 23.8 17.5 8.0
6 - - - 10.0 - -

Avg. folU - 29.2 18.3 18.8 12.1 15.2
bascline
St. Dcv. - 6.7 6.5 5.9 4.0 7.2
S.E.M. - 3.0 2.9 2.4 1.8 3.2

700

‘VarV; LSMeans

phospho-p54 JNK vs. post-stimulation time
Current effect: F(5, 23)=9.7560, p=.00004

Effective hypothesis decomposition
Vertical bars denote 0.95 confidence intervals

T

-F

0 30 60 120 180

post-stimulation time (minutes)

Table B2. Raw Data — fold baseline p54-JNK values throughout post-stimulation time course.
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Ceil No.

Newman-Keuls test; variable (p54 JNK) (Spreadsheet9 in Workbook7)
Probabilities for Post Hoc Tests
Error: Between MS = 10839., df = 21.000
(time) {1} {2} {3} {4} {5}

49600 31100 32000 20600 25840
1 0024621 0.013012 0001842 0.007305
2 3f 0.024621 0.890886 0.258856 0.42579e
3 6f 0.013012 0.890886 0.319247 0.614722
4 120 0.001843 0.258856 0.31924? 0.427532
5 180 0.007300 0.425798 0.614722 0.427532

CelI No.

Dunnett test; variable p54]NK (Spreadsheetl in full time course)
Probabilities for Post Hoc Tests (M>Control)
Error: Between MS = 9899.0, df 23.000

Van {4}
17.333

1 0 0000026
2 30 0.001153
3 60 0.000619
4 baseline
5 120 0.031742
6 180 0.006406
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I

Sample # baseline 0 min. 30 min. 60 min. 120 min. 180 min.
1 1798 2706 1375 1897 1555 3299
2 2091 2377 2200 1956 1133 2795
3 1579 2790 2256 2438 1704 2954
4 - 3310 1737 1540 1077 1718
5 - 3799 2441 2425 1935 2422
6

-
- - 1720 -

-

Average 1823 2996 2002 1996 1481 263$
St.Dev. 257 560 436 367 370 603
S.E.M. 148 250 195 150 165 270

Table B3. Ra Data - Arbitrary p42-ERK values throughout post-stimulation time course.

Sample # baseline O min. 30 min. 60 min. 120 min. 180 min.
1 - 1.48 0.75 1.04 0.85 1.81
2 - 1.30 1.21 1.07 0.62 1.53
3 - 1.53 1.24 1.34 0.93 1.62
4 - 1.82 0.95 0.85 0.59 0.94
5 - 2.10 1.34 1.33 1.06 1.33
6

-
- - 0.94

-
-

Average - 1.65 1.1 1.1 0.8 1.45
bld

baseline
St. Dey. - 0.32 0.24 0.20 0.20 0.33
S.E.M. - 0.14 0.11 0.08 0.09 0.15

Var1; LS Means

phospho-p42 ERK vs. post-stïmulation time
Current effect: F(5, 23)=7.2223, p.00034

Effective hypothesis decomposition
Vertical bars denote 0.95 confidence intervals

4000

3500
t

J 3000[

2500
w
•0

2000,

.0

1500
n::
w

1000

500
baseline 0 30 60 120 180

post-stimulation time (minutes)

Table B4. Raw Data — fold-baseline p42-ERK values throughout post-stimulation time course.
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Newman-Keuls test; variable (p42 ERK) (Spreadsheet9 in Workbook7)
Probabilities for Post Hoc Tests
Errer:_Between_MS =_2232E2,_df__21.000

__________

{2} (3) {4} {5}
2R4 2flf1 R lqqEin l4RflR 2637.6

Celi No.

Dunnett test; variable p42ERK (Spreadsheetl in full time course)
Probabilities for Post Hoc Tests (M>Control)
Errer: Between MS = 2096E2, df = 23.000

Van {4}
1822.7

1 0 0.004074

?.. 30 0.638600
3 60 0.638753
4 baseline
5 120 0.985663
6 180 0044013

CelI No.
(time) {1}

1 0 0.00763e 0.013213 0.000476 0.235645
2 30 0.007636 0.984539 0.202868 0.042255
3 60 0.013213 0.984539 0.094227 0.097487
4 12f 0.000476 0.202862 0.094227 0.003999
5 18C 0.235645 0.042255 0.097487 0.003999
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1000

— 900

800

•; 7oo:
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“Van”; IS Means

phospho-p44 ERK vs. post-stimulation time
Current effect: F(5, 23)=9.5508, p”.O0OO5

Effective hypothesis decomposition
Vertical bars denote 0.95 confidence intervals

post-stimulation time (minutes)

Sample # baseline O min. 30 min. 60 min. 120 min. 180 min.
1 277 584 329 312 522 744
2 263 607 483 367 402 549
3 241 759 530 392 268 654
4 - 692 523 176 262 324
5 - 1024 333 355 254 501
6 - - - 258 - -

Average 260 733 440 310 342 554
St.Dev. 18 177 101 81 118 160
S.E.i’1. 10 79 45 33 53 71

Table B5. Ra’ Data - Arbitrarv p44-ERK values throughout post-stimulation time course.

Sample # baseline O min. 30 min. 60 min. 120 min. 180 min.
1 - 2.2 1.3 1.2 2.0 2.9
2 - 2.3 1.9 1.4 1.5 2.1
3 - 2.9 2.0 1.5 1.0 2.5
4 - 2.7 2.0 0.7 1.0 1.2
5 - 3.9 1.3 1.4 1.0 1.9
6 - - - 1.0 - -

Avg.told - 2.8 1.7 1.2 1.3 2.1
baseline
St. Dcv. - 0.7 0.4 0.3 0.45 0.65
S.E.1V1. 0.3 0.16 0A2 0.2 0.29

Q

L
o

baseline 0 30 60 120 180

Table B6. Raw Data — Fod-baseline p4’s-ERK values throughout post-stirnulation time course.
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Oeil No.

Newman-Keuls test; variable (p44 ERK) (Spteadsheet9 in Wotkbook7)
Probabilities for Post Hoc Tests
Error:_Between_MS 16945.,_df=_21.000

_________

(time) {1} {2} {3} {4} {5}
733 20 43 Sfl 31000 341 fl 54 40

1 0 0.004420 0.000419 0.000613 0.038545
2 30 0.00442C 0.267314 0.239572 0.170920
3 60 0.000419 0.267314 0.700308 0.030732
4 12 0.000613 0.239572 0.700308 0.040045
5 180 0.038545 0.170920 0.030732 0.040045

Dunnett test; variable p44ERK (Spreadsheetl in full time course)
Probabilities for Post Hoc Tests (M>Control)
Error: Between MS = 15500., df = 23.000

Van (4]
Oeil No. 260.33

0 0.000069
2 30 0.106598
3 60 0.625978
4 baseline
5 120 0.474367
6 180 0.007768
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Max. Peak Tension (grams)

0-MAX. 30 min. 60 min. 120 min. 180 min.
572 414 405 531 412
400 444 392 380 622
423 466 399 415 478
406 432 422 411 530
601 599 556 580 536

-

- 518 - -

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance
Column 1 5 2402 480.4 9557.3
Column 2 5 2355 471 5477
Column 3 6 2692 448.6667 4924.667
Column 4 5 2317 463.4 7552.3
Column 5 5 2578 515.6 6022.8

ANOVA

Source of Variation 55 df MS F P-value F crit
Between Groups 13299.68 4 3324.921 0.502106 0.734533 2.840096
Within Groups 139060.9 21 6621.949

Total 152360.6 25
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Av%. Pk. T-60 (grams)

0-MAX 30 min. 60 min. 120 min. 180 min.
317 315 299 262 363
343 335 365 340 466
370 370 374 356 286
329 326 307 372 382
459 416 429 416 408

-

- 353 - -

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance
Column 1 5 1818 363.6 3233.8
Column 2 5 1762 352.4 1688.3
Column 3 6 2127 354.5 2275.9
Column 4 5 1746 349.2 3179.2
Column 5 5 1905 381 4326

ANOVA

Source of Variation SS df MS F P-value F crit
Between Groups 3323.146 4 830.7865 0.285593 0.884003 2.840096
Within Groups 61088.7 21 2908.986

Total 64411.85 25
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03

Av2. Pk. T-300 (grams)

0-MAX. 30 min. 60 min. 120 min. 180 min.
86 189 143 134 215
14$ 217 219 214 258
228 193 230 229 122
211 184 199 236 20$
252 241 257 221 252

-

- 210 - -

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance
Column 1 5 925 185 4546
Column 2 5 1024 204.8 570.2
Column 3 6 1258 209.6667 1459.867
Column 4 5 1034 206.8 1724.7
Column5 5 1055 211 2959

ANOVA

Source of Variation 55 df MS F P-value F crit
Between Groups 2282.605 4 570.6513 0.257719 0.901653 2.840096
Within Groups 46498.93 21 2214.235

Total 48781.54 25



Avg. Pk. T-60!tw itch (grarns/grarns)

0-ItIAX. 30 min. 60 min. 120 min. 180 min.
4.8 4.5 4.4 4.1 4.9
4.4 5.4 4.5 5.4 7.4
5.7 4.8 5.2 4.5 5.4
5.3 4.8 3.7 6.3 5.7
6.2 5.7 6.5 6.4 6.0

-
- 4.7 - -

Anova: Single Factor

SUMMARY
Groups Count Sum Average Variance

Column 1 5 26.4 5.28 0.507
Column 2 5 25.2 5.04 0.243
Column 3 6 29 4.833333 0.902667
Column 4 5 26.7 5.34 1.073
Column 5 5 29.4 5.88 0.887

ANOVA
Source of Variation SS Uf MS F P-value F crit
Between Groups 3.290128 4 0.822532 1.125044 0.371451 2.840096
Within Groups 1 5.35333 21 0.73 1 1 1 1

Total 18.64346 25
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Ave. Pk. T-60/tetanic (grarns/grams)

0-MAX. 30 min. 60 min. 120 min. 180 min.
1.1 1.15 1.04 .86 1.16

1.15 1.23 1.18 1.2 1.47
1.35 1.03 1.12 1.17 1.09
1.1 1.23 1.08 1.4 1.25

1.35 1.29 1.29 1.48 1.45
-

- 1.17 - -

Anova: Single Factot

SUMMARY

Groups Count Sum Average Variance
Column 1 5 6.05 1.21 0.01675
Column 2 5 5.93 1.186 0.01008
Column 3 6 6.88 1.146667 0.007747
Column4 5 6.11 1.222 0.05812
Column 5 5 6.42 1.284 0.02908

ANOVA

Source of Variation 55 df MS F P-value F crit
Between Groups 0.054858 4 0.013715 0.582002 0.679022 2.840096
Within Groups 0.494853 21 0.023564

Total 0.549712 25
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Avg. Pk. T-300/twitch (grams/grams)

0-MAX. 30 min. 60 min. 120 min. 180 min.
1.3 2.7 2.1 2.1 2.9
1.9 3.5 2.7 3.4 4.1
3.5 2.5 3.2 2.9 2.3
3.4 2.7 2.4 4.0 3.1
3.4 3.3 3.9 3.4 3.7

-

- 2.8 - -

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance
Column 1 5 13.5 2.7 1.055
Column 2 5 14.7 2.94 0.188
Column 3 6 17.1 2.85 0.403
Column 4 5 15.8 3.16 0.503
Column 5 5 16.1 3.22 0.492

ANOVA

Source of Variation SS df MS F P-value F crit
Between Groups 0.948385 4 0.237096 0.454 0.768416 2.840096
Within Groups 10.967 21 0.522238

Total 11.91538 25



Avg. Pk. T-3 OO/tetan ic (grarns/grarns)

0-MAX. 30 min. 60 min. 120 min. 180 min.
0.3 0.69 0.5 0.44 0.69
0.5 0.79 0.71 0.76 0.81

0.83 0.54 0.69 0.76 0.47
0.69 0.69 0.7 0.89 0.68
0.74 0.75 0.77 0.79 0.89

-
- 0.7 - -

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance
Column 1 5 3.06 0.612 0.04497
Column 2 5 3.46 0.692 0.00902
Column 3 6 4.07 0.678333 0.008457
Column 4 5 3.64 0.728 0.02877
Column 5 5 3.54 0.708 0.02532

ANOVA

Source of Variation SS df MS F P-value F crit
Between Groups 0.038985 4 0.009746 0.43 1248 0.784454 2.840096
Within Groups 0.474603 21 0.0226
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Muscle Wei%ht (grams)

0-Max. 30 min. 60 min. 120 min. J$O min.
265 230 239 266 254
376 244 265 209 260
284 271 280 282 215
254 285 32$ 230 272
282 302 263 310 300

-

- 324 - -

Anova: Single Factor

SUMMARY

Groups Count Sum Averaoie Variance

Column 1 5 1461 292.2 2348.2

Column 2 5 1332 266.4 865.3

Column 3 6 1699 283.16667 1274.9667

Column 4 5 1297 259.4 1629.8

Column 5 5 1301 260.2 951.2

ANOVA
Source of
Variation SS df MS F P-value F crit

Between
Groups 4422.7051 4 1105.6763 0.7856845 0.5472795 2.8400998
Within Groups 29552.833 21 1407.2778

Total 33975538 25
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Av%. Pk. T.-60!rnuscle weight (grarns/grams)

0-max. 30 min. 60 min. 120 min. 180 min.
1.20 1.37 1.25 0.99 1.43
0.91 1.37 1.38 1.63 1.79
1.30 1.37 1.34 1.26 1.3
1.30 1.14 0.94 1.62 1.40
1.63 1.38 1.63 1.34 1.36

-
- 1.09 - -

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance
Column 1 5 6.34 1.268 0.06647
Column 2 5 6.63 1.326 0.01083
Column 3 6 7.63 1.271667 0.057657
Column 4 5 6835 1.367 0.07282
Column 5 5 7.31 1.462 0.03507

ANOVA
Source of
Variation SS df MS F P-value F crit

Between
Groups 0.132635 4 0.033159 0.676678 0.615668 2.8401
Within Groups 1.029043 21 0.049002

Total 1.161678 25
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Avg. Pk. T.-60/twitch/muscle weight (grarns/grams/grarns)

0-max. 30 mïn. 60 min. 120 rnïn. 180 min.
181 19.6 18.4 15.4 19.3
11.7 22.1 17.0 25.8 28.5
20.1 17.7 18.6 16.0 25.1
20.9 16.2 11.3 27.4 21.0
22.0 18.9 24.7 20.6 20.0

-

- 14.5 - -

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance
Column 1 5 92.8 18.56 16.738
Column 2 5 95.1 19.02 4.127
Column 3 6 104.5 17.41667 20.30167
Column4 5 105.2 21.04 30.128
Column 5 5 113.9 22.78 15.277

ANOVA
Source of
Variation 5$ Uf MS F P-value F crit

Between
Groups 96.48282 4 24.12071 1.381754 0.274192 2.8401
Within Groups 366.5883 21 17.45659

Total 463.0712 25



Avg. Pk. T.-60/tetanic/muscle wei%ht (grams/grams/grams)

0-max. 30 min. 60 min. 120 min. 180 min.
4.2 5.0 4.4 3.2 3.7
3.1 5.1 4.5 5.7 4.6
4.8 3.8 4.0 4.1 4.2
4.3 4.3 3.3 6.1 4.1
4.8 4.3 4.9 4.8 5.2

-

- 3.6 - -

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance
Column 1 5 21.2 4.24 0.483
Column 2 5 22.5 4.5 0.295
Column 3 6 24.7 4.116667 0.357667
Column 4 5 23.9 4.78 1.387
Column 5 5 21.8 4.36 0.323

ANOVA
Source of
Variation 55 df MS F P-value F crit

Between
Groups 1.386205 4 0.346551 0.619878 0.653295 2.8401
Within Groups 11.74033 21 0.559063

Total 13.12654 25
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Ave. Pk. T. 300/muscle weiglit (grarns/grams)

O max. 30 min. 60 min. 120 min. 180 min.
0.32 0.82 0.60 0.50 0.85
0.39 0.89 0.83 1.0 0.99
0.80 0.71 0.82 0.81 0.57
0.83 0.65 0.61 1.02 0.76
0.89 0.80 0,98 0.71 0.84

-
- 0.65 - -

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance
Column 1 5 3.23 0.646 0.07223
Column 2 5 3.87 0.774 0.00893
Column 3 6 4.49 0.748333 0.023257
Column 4 5 4.04 0.808 0.04657
Column 5 5 4.01 0.802 0.02367

ANOVA
Source of
Variation SS Ut MS F P-value F crit

Between
Groups 0.086563 4 0.021641 0.629541 0.646809 2.8401
Within Groups 0.721883 21 0.034375

Total 0.808446 25
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Av%. Pk. T. 300/twitch/muscle weight (grams/grams/grarns)

0-max. 30 min. 60 min. 120 min. 180 min.
4.9 1 1.7 8.8 7.9 11.3
5.1 14.3 10.4 16.3 15.8
12.3 9.2 11.4 10.3 10.6
13.4 9.5 7.2 17.4 1 1.4
12.1 10.8 14.9 11.1 12.3

-

- 8.6 - -

Anova: Single Factor

SUMMARY
Groups Count Sum Average Variance

Column 1 5 47.8 9.56 17.578
Column 2 5 55.5 11.1 4.215
Column 3 6 61.3 10.21667 7.417667
Column 4 5 63 12.6 16.59
Column 5 5 61.4 12.28 4.237

ANOVA
Source of
Variation SS df MS F P-value F crit

Between
Groups 34.74551 4 8.686378 0.878814 0.493324 2.8401
Within Groups 207.5683 21 9.884206

Total 242.3138 25
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Avg. Pk. T. 300/tetanic/muscle weight (grams/grams/grams)

0-max. 30 min. 60 min. 120 min. 180 min.
1.2 3.0 2.1 1.7 2.7
1.3 3.2 2.7 3.6 3.1
2.9 2.0 2.5 2.7 2.2
2.7 2.4 2.1 3.9 2.5
2.6 2.5 2.9 2.5 3.0

2.2

Anova: Single Factor

SUMMARY
Groups Count Sum Average Variance

Column 1 5 10.7 2.14 0.673
Column 2 5 13.1 2.62 0.232
Column 3 6 14.5 2.416667 0.113667
Column 4 5 14.4 2.88 0.782
Column 5 5 13.5 2.7 0.135

ANOVA
Source of
Variation 55 df MS F P-value F crit

Between
Groups 1.628282 4 0.407071 1.088101 0.387849 2.8401
Within Groups 7.856333 21 0.3741 1 1

Total 9.484615 25



n

n


