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SUMMARY

TYPE 2 DIABETES is a group of metabolic disorders that may resuit in a

procoagulant and thrombogenic predisposition, which is related to the arterial

complications. However it remains undetermined whether diabetic conditions may

affect deep vein thrombosis (DVI) and its resolution. The objectives of this study

were to determine the effect of diet-induced type 2 diabetes on the organization,

resolution and recanalization of venous thrombi, the inflammatory response, and the

fibrinolytic and MMP systems in a murine experimental model of venous stasis as

assessed by angiography and molecular techniques.

The resolution and recanalization of DVI was decreased in type 2 diabetic mice as

revealed by angiography, thrombus size and content and neovascular channel

(J quantification by immunohistochemistry. Recmitment of monocyte/macrophages,

detected by an anti-CD68 antibody, was ïncreased, and a higher coïlagen deposition

was found in the thrombosed inferior vena cava of diabetic mice. The plasminogen

activators, u-PA and t-PA were downregulated, and their inhibitor, PAl-1 was

upregulated conferring a relatively antifibrinolytic state in diabetic mice. The MMP

system was enhanced in diabetic mice at one week post DVI followed by a

decreased synthesis and activity at 2 weeks.

Diet-induced type 2 diabetes may impair the organization, resolution and

recanalization of DVI through increased inflammatoiy response and dismption of

fibrinolytic and MTvIP systems.
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SOMMAIRE

LE DIABÈTE DE TYPE 2 est un groupe de désordres métaboliques dont l’impact

est une atteinte artérielle, microvasculaire et macrovasculaire aboutissant à la

dysfonction endothéliale avec pour conséquences: inflammation, hypercoagulabilité

et thrombogénicité. Cependant, il n’est pas établi si ces désordres métaboliques ont la

même répercussion sur le système veineux et notamment sur les mécanismes de

l’organisation et la dissolution du thrombus veineux. Grâce à un modèle animal de

diabète de type 2 par consommation de diète riche en lipides et un modèle de stase

veineuse par ligature de la veine cave inférieure chez la souris, nous avons pu

déterminer les effets de ces désordres sur la résolution du thrombus veineux. Les

souris diabétiques présentent une diminution de la résolution et de la recanalisation

du thrombus veineux comme l’indiquent les résultats angiographiques, la taille du

thrombus et la quantification des néo-vaisseaux par immunohistochimie. La réponse

inflammatoire détectée au niveau de l’expression génique du CDL4 et par

immunolocalisation d’un marqueur des macrophages le CD68, est fortement activée,

accompagnée d’un dépôt de collagène au sein de la paroi veineuse. Le système

fibrinolytique est également atteint par une réduction de l’expression des ARNm et

des protéines des activateurs du plasminogène (u-PA et t-PA) et par une régulation à

la hausse du profil d’expression du PAT-l. L’expression des métalloprotéinases

MMP-2 et MMP-9 est temporellement affectée au cours de la thrombose veineuse.

Après une induction!activation du système à une semaine après formation du

thrombus, une réduction de la synthèse/activité est observée chez les animaux

diabétiques.
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Le diabète de type 2 induit par une diète enrichie chez la souris semble altérer

l’évolution du thrombus veineux à travers une réponse inflammatoire amplifiée, une

activité du système fibrinolytique diminuée couplée à un système des MJVWs activé

mais dont la modulation à la baisse semble durée-dépendante.



VII

INTRODUCTION .1

1.1 DIABETES MELLITUS .1

1.1.1 Overview J

1.1.2 Cardiovascular complications and pathogenesis 1

1.1.3 Diabetes and risk ofthrombosis 4

1.1.3.1 Endothelial dysfunction 4

1.1.3.2 Increased adhesion ofplatelets and monocytes 5

1.1.3.3 Abnormal fibrinolysis and hypercoagulation 5

1.1.4 Diabetic mouse models 7

1.2 DEEP VENOUS THROMBOSIS 9

1.2.1 Prevalence and risk factors 9

1.2.2 Normal venous anatomy 10

1.2.3 Resolution ofthrombus 13

1.2.3.1 Cellularpathway 14

1.2.3.1.1 Inflammatoryceils 14

I.2.3.1.2Endothelial ceils 15

1.2.3.1.3 Myofibroblasts 17

1.2.3.1.4 Platelets 1$

1.2.3.1.5 Progenitor celis 19

1.2.3.2 Molecularpathway 20

1.2.3.2.1 The fibrinolytic system and major components 20

1.2.3.2.2 Matnx metalloproteinases and their inhibitors 24



VIII

1.2.3.2.3 Extracellularmatrix.25

1.2.3.2.4 Selectins 27

1.2.3.2.5 Proangiogenic factors 2$

1.2.4 Treatment of deep vein thrombosis 29

1.2.4.1 Standard treatments 29

1.2.4.2 New approaches 30

1.2.4.3 Angiogenic therapy 31

1.2.4.4 Cell-based approach 32

1.2.4.5 Gene therapies 32

1.2.5 Treatment of complication 33

1.2.6 AnimaI models of venous thrombosis 34

II. RESEARCH PROPOSAL 37

11.1. HYPOTHESES 38

11.2. RESEARCH GOALS 39

II. 2. 1. Main objective 39

II. 2. 2. Specific objectives 39



Ix

III. MATERIAL AND METHODS .41

ffi.1 Diet-induced type 2 diabetic mouse models 41

ffl.2 Animal model ofvenous thrombogenesis: a mouse inferior vena

cava stasis model 43

ffi.3 Angiography 44

ffi.4 Tissue harvest I Measurement of thrombus size and infrarenal vena

cava weight 45

ffi.5 flistopathologic and immunohistochemical ana]ysis 45

111.5.1 Macrophage content 4$

111.5.2 Neovascular channel quantification 4$

ffi.6 Western blot analysis 49

ffi.7 Zymographic activities 50

ffi.$ RNA isolation and RT-PCR analysis 50

ffl.9 Statistical analysis 52

IV. RESULTS 53

W. 1 Successfut development of type 2 diabetes in mice 53

W.2 Diabetic mice have less thrombus resolution 56

IV.2.1 Thrombus area 56

IV.2.2 Thrombus mass 56



X

IV.3 Thrombus recanalization is impaired in diabetic mice .59

IV.3.1 Angiography 59

IV.3.2 Histological and immunohistological analysis ofneovascular

channels 61

IV.4 Diabetic mice have a higher inflammatory response 65

IV.4.1 Expression of CD14 mRNA 65

IV.4.2 Immunohistochemical staining of CD6$ 65

IV.5 Vein wall fibrosis is elevated in diabetic mice 70

IV.6The fibrinolytic system is altered in diabetic mice 73

IV.6.1 u-PA and PAl-1 mRNA levels 73

IV.6.2 Expression of u-PA, t-PA and PAT-1 protein 76

IV.7 The MMP system is enhanced in diabetic mice followed by a

decreased synthesis and activity 81

IV.7.1 Expression ofMMP-2 and MMP-9 mRNA 21

IV.7.2 Gelatinolytic activities ofMMP-2 and MMP-9 $1

IV.7.3 Expression ofMMP-2 and MMP-9 proteins $2

V. DISCUSSION 89

V.! Type 2 diabetes decreascd the resolution and recanalization of

DVT 91

V.2 Type 2 diabetes increases inflammatory response in DVI 92

V.3 Type 2 diabetes elevated the vein waIl fibrosis in DVT 94

V.4 Type 2 diabetes alters the fibrinolytic and MMP system in DVT. . .95



M

V.4. 1 Type 2 diabetes inhibits the fibrinolytic system 95

V.4.2 Type 2 diabetes enhances MTvIP system 96

V. CONCLUSIONS 99

VI. REFERENCES 100



.

MI

LIST 0F TABLES

Table 1: Proangiogenic factors expressed within resolving thrombus 29

Table 2: Potential new therapies to promote recanalization and resolution ofvenous

thrombi 33

Table 3: Summary ofspecific objectives 40

Table 4: Composition ofthe diets 42

Table 5: List ofantibodies 47

Table 6: Sequences ofprimers of selected genes for RT-PCR 51

Table 7: Angiography scores in control and diabetic groups 61



XIII

LIST 0F FIGURES

Figure 1: Four main pathways implicated in hyperglycemia-induced diabetic

microvascular disease 3

Figure 2: Vein wall with the intima underÏying the endothetium, the media and the

adventitia 11

Figure3: Cellular and molecular pathways during resotution of

thrombus 13

Figure 4: Schematic representation of the role played by endothelial celis in

coagulation and fibrinolysis pathways 16

Figure 5: An extensive network of additional proteases, inhibitors, receptors and

modulators 22

Figure 6: Rat inferior vena cava (IVC) stenosis model of venous

thrombosis 44

Figure 7: Body weight growth in control and diabetic mice

54

Figure 8: Blood glucose levels in control and diabetic mice

55

Figure 9: Thrombus areas in control and diabetic groups at 1 week or 2 weeks after

surgery 57

Figure 10: Thrombosed IVC mass/length in control and diabetic groups at 1 week or

2 weeks afler surgery 58



o

XIV

Figure 11: Angiograms in control and diabetic groups at 1 week or 2

weeks 60

Figure 12: Neovasculization in 1 and 2 week-control and diabetic

groups 63

figure 13: Quantification of thrombus neovascular channels by positive GSL

1.staining 64

Figure 14: CDY4 mRNA expression in control and diabetic

mice 66

Figure 15: Macrophage content labeled by anti-CD68 antibody in the thrombus of

control and diabetic mice at 1 or 2 weeks afier IVC

thrombosis 6$

Figure 16: Thrombus macrophage content in control and diabetic mice at 1 or 2

weeks afier IVC ligation 69

Figure 17: Picrosirius red staining of total collagen in control and diet-induced

diabetic mice at E week and 2 weeks afier

surgery 71

Figure 18: Collagen quantification in control and diabetic mice at 1 or 2

weeks 72

Figure 19: Expression of u-PA mRNA in control and diabetic

mice 74

Figure 20: Expression of PAT-1 mRNA in control and diabetic

mice 75



xv

Figure 21: Western blot analysis of u-PA in control and diabetic protein

extracts 77

Figure 22: Western blot analysis of t-PA in protein extracts of control and diabetic

mice 78

Figure 23: Western blot analysis of PAl- 1 in protein extracts of control and diabetic

mice 79

Figure 24: Changes in u-PA and PAl-1 immunoreactivity afler I and 2-week DVT

in control and diabetic mice $0

Figure 25: Expression ofMMP-2 mRNA in control and diabetic mice 83

Figure 26: Expression ofMMP-9 mRNA in control and diabetic mice $4

Figure 27: Thrombosed IVC MrVLP-2 and MIVW-9 activities 85

Figure 23: Expression ofMMP-2 in control and diabetic thrombosed IVC $6

Figure 29: Expression of MMP-9 in control and diabetic thrombosed

IVC $7

Figure 30: Changes in MMP-2 and MMP-9 immunoreactivity afier I and 2-week

DVT in control and diabetic mice 8$



XVI

LISI 0F ABBREVIATIONS

Œ-SMA: Œ smooth muscle actin.

Œv33 : integrin receptor.

B-fGF: basic fibroblast growth factor.

CAMs: celi adhesion molecules.

CD 14: a celi marker of inflammation (especially macrophages).

CD 31: a cluster of differentiation molecular

CHD: coronary heart disease.

CVD: cardiovascular disease.

CVI: chronic venous insufficiency.

C DM: diabetes

ECM: extracellular matrix.

ECs: endothelial celis.

ENA-7$: epithelial neutrophil activating protein.

eNOS: endothelial ceil NOS.

EPCs: endothelial progenitor ceils.

IL-1: interleukin-1.

IL-8: Interleukin-8.

IP-1O: interferon inducible protein.

IVC : inferior vena cava

MC : monocyte

C Mph: macrophages



XVII

MCP- 1: Monocyte chemotactic protein- 1.

MMPs: matrix metalloproteinases.

MT-MMPs: membrane type MIVWs

NO: nitric oxide.

NOS: nitric oxide synthase.

PA: plasminogen activator

PAF: platelet activating factor.

PDGfs : platelet derived growth factor.

PE: pulmonary embolism

PGI2: prostacyclin.

PIGf : placenta! growth factor.

C PMN: polymorphonuclear neutrophi!.

SERPIN: serine proteinase inhibitor

TF: tissue factor.

TGF-f3 1: transforming growth factor beta 1.

Tie2: endothe!ial celi receptor tyrosine kinase.

TIMPs: inhibitors of matrix metalloproteinases.

TNF-Œ: tumor necrosis factor- a.

t-PA: tissue-type plasminogen activator.

TXA2: thromboxane A2.

UK: urokinase.

u-PA: urokinase-type plasminogen activator.

C uPAR: u-PA



XVIII

o

VCAM-1 vascular celi adhesion molecule-1

VEGf: vascular endothelial growth factor.

VN: vitronectin.

VTE: venous thromboembolism.

\ÏWF von Willebrand factor.

WPb: Weibel-Palade body.



XIX

ACKNOWLEDGEMENTS

I would like to thank the following people:

ÇZY. Jean Rgymond, for the enthusiasm and inspiration which were aiways there

when I needed it.

çlY Fati6a Bouzeg6rane for her mentorship and guidance, whose help, stimulating

suggestions and encouragement helped me during ail the time of research and

through the writing ofthis thesis.

Çuy(aine Çeviy, for her technical help

Cfinitette Ogoiu(i€pe, for help with molecular biology.

J4udrey cBoyce for help with the surgical procedures.

This work wouid flot have been possible without the financial contribution from the

Canaifum Institutes ofJfeattfi Rçsearcfi (CIIIR, MOP-44062) and the Que6ec Keart

anJStro FounJation.

I would like to take this opportunity to thank the Facutté ées Etudes Supérieures,

Programme & Sciences CBioméd?cates d r Vn.iversité & MontréaC



1

L INTRODUCTION

Li DIÂBETES MELLITUS

I. il Overview

Diabetes mellitus (DM) is a group of metabolic syndromes charactenzed by

chronic hyperglycemia, disturbances of carbohydrate, fat and protein metabolism

due to defects in ïnsulin secretion, insulin resistance or both (1, 2). Chronic

hyperglycemia is associated with multi-organ damage to the eyes, kidneys,

nerves, heart, and blood vessels (1). Cardiovascular disease is the leading cause

of premature death arnong patients with dïabetes. The new classification system

identifies four types of diabetes mellitus based on etiologv: type 1, type 2, “other

specific types” and gestational diabetes (1). The World Health Organization

(WHO) predicts that between 1997 and 2025, the number of persons affected

with diabetes vill double from 143 to approximatelv 330 million (3).

Type 2 is the most common form of diabetes mellitus. It is a metabolic disorder

that is primarily characterized by insulin resistance, relative insulin deficiency,

and hyperglycemia and lead to function impairment of many organs, most

importantly the cardiovascular system. Its prevalence is projected to rise in the

future (5). Approximately 90-95% of diabetes is ascnbed to Type 2 (4, 7), the

development of which is attributed to both polygenetic and environmental factors.

1.1.2 Cardiovascular complications and pathogenesis

Diabetes mellitus causes considerable morbiditv and mortality primarily due to

microvascular (retinopathy, nephropathy, vasculopathy) and macrovascular
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(ischemic heart disease, stroke, peripheral vascular disease) complications (6, 7),

which can lead to considerable disability and premature death. Cardiovascular

disease (CVD) is the major complication of type 2 diabetes and is responsible for

more than 50% and up to 80% of deaths in people with diabetes as well as for

substantial morbidity and loss ofquality of life (3).

Although the pathogenesis of CVD in diabetes is not vet fully underslood.

multiple metabolic and endocrinologic factors are implicated (6, 7).

Hyperglycemia and hypennsulinemia due to insulin resistance are two metabolic

abnormalities associated with type 2 diabetes mellitus and result in macrovascular

and microvascular complications in multiple organ systems which accounts for

the morbidity and mortalitv associated with this disease.

The phenotype associated with insulin resistance includes a dyslipidemia that is

characterized by increased very low-density lipoprotein triglyceride levels,

decreased high-density lipoprotein-cholesterol levels, and the presence of small,

triglyceride-enriched, low-density lipoproteins (6, 8, 9). Clinical trials have

shown that correcting the hyperglycemia can attenuate some of the microvascular

complications of diabetes, such as retinopathy and nephropathy, but cannot

suppress macrovascular complications, such as coronary heart disease (CITD) due

to atherosclerosis.

Oxidant stress and inflammation accelerate CHD by activating the

diacylglycerol-protein kinase C (DAG-PKC) signal transduction pathway,

possibly by enhanced formation of glycosvlated proteins and advanced glycation

products and/or by increasing endothelial dysftinction (8). Recent studies have
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shown possible biochemical mechanismsl by which hyperglycemia could cause

its adverse effects on the vascular cells (figure 1).

Insulin possesses anti-atherogenic properties. Insulin increases mtrous oxide

(NO) production, which can cause vasodilatation and retard the migration and

growth of arterial smooth muscle ceils under physiological conditions (7). In

pathological states of insulin-resistance, the enhancement of NO production from

either acute activation of nitric oxide synthase (NOS) or endothelial ceil NOS

(eNOS) by insulin are blunted (9). Moreover, hypennsulinemia may contnbute to

atherogenesis by stimulating the growth and production of the extracellular

matrix (ECM) (10).
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Figure 1: Four main pathways implicated in hyperglycemia-induced diabetic
microvascular disease. (The Maillard reaction and diabetes mellitus. Dr Alejandro
Gugliucci MD, PhD).
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Metabolic risk factors include dyslipidemia, hypertension, glucose intolerance,

and a prothrombotic state (11). The latter is a newly recognized factor in type 2

diabetes which rnanifests with increased fibrinogen levels, increased plasminogen

activator inhibitor-1 (PAF-l), and platelet abnormalities (12-14).

1.1. 3 Diabetes and risk of thrombosis

There are several ways in which diabetes predisposes to a higher risk of

thromboembolic events: alteration of the coagulopathic proteins, endothelial

dysfunction, increased platelet adhesions, and altered fibrinolysis.

Diabetes can cause changes in the haemostatic system including increased

concentration of fibrinogen, factor VII, von Willebrand factor (vWf), and

plasminogen activator inhibitor 1 (PAl-1) (15), as weII as decreased tissue

plasminogen activator (tPa), eNOS, and NO production (16). These changes may

resuit in endothelial dysfunction, increased adhesion of platelets and monocytes,

abnormal fibrinolysis and hypercoagulation, and form a prothrombotic state. We

will review them in details.

1.1.3.1 Endothelial dysfunction

Vascular endothelial ceils maintain their vascular integrity through the release of

a variety of paracrine factors such as NO, which regulates vasodilatation,

anticoagulation, leukocyte adhesion, smooth muscle proliferation and the

antioxidative capacity of endothelial cells (17). Endothelial dysfunction has been

detected in patients with diabetes and now is a well recognized phenomenon.

Hyperglycemia and insu]in resistance are thought to be the primary reason, as
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they change intracellular metabolism and produce excess superoxide radicais

inside vascular celis (1$, 19). In mm, these molecules impair release of NO,

increase NO destruction, eiihance release of endothelium-derived constricting

factors and decrease sensitivity of the vascular smooth muscle to NO through

mediators such as protem kinase C, the polyol pathway, non-enzymatic glycation

and oxidative stress (18). As a resuit, titis leads to an imbalance between smooth

muscle ceil growth, promotion and inhibition, thrombosis and fibrinolysis,

inflammation, and ceil adhesion (20).

L 1.3.2 Increased adhesion of platelets and monocytes

Platelets are small anucleate discoid ceils that circulate in the bloodstream and

participate in hemostasis and repair of vascular injmy (19). The abnormal

metabolic state that accompanies diabetes may activate platelets and alter their

functional properties. Activated platelets interact with the endothelium and

promote adhesion of platelets to monocytes (21). Many studies have

demonstrated that platelet degranulation further increases platelet activation and

diminishes the platelet’s sensitivïty to natural antiaggregating agents (21-23).

Circulating platelet-monocyte aggregates may release procoagulant, oxidative and

mitogenic factors (24). Ail these signiflcantly contnbute to the inflammatory and

procoagulant response in diabetes.

1.1.33 Abnonnai fibnnolysis and hypercoagulatîon

Defects in the coagulation and fibrinolytic cascade are important pathological

mechanisms that can lead to thrombus formation (25). In healthy conditions. the

endogenous flbnnolytic system represents an equilibnum between activators of
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plasminogen (primarily tPA) and inhibitors of these activators such as PAl-1 (26).

PAl-1 synthesis and release is regulated by insulin, promsulïn, VLDL cholesteroL

and various cytokines. In the diabetic condition, the equilibrium between

endogenous tissue plasminogen activator and PAl-1 is akered, as evidenced by

decreased levels oftP& increased tissue factor (TF) and PAl-1 (26). This is likely

assocïated with increased production of proinflammatory cytokines such as

interleukin (IL-6) from adipocytes. Etevated PAl-1 decreases local fibrinolysis

and promotes hypercoagulation (27). Raised concentrations of fibnnogen, von

Willebrand factor and other endothelium-denved mediators increase blood

viscosity and promote platelet activation and adhesion (21).

Some evidence shows that diabetes mellitus mav resuit in abnormal fibrinolysis

and hypercoagulation predisposing to a procoagulant state. However, it is not

known whether these abnormalities cause increased nsk of venous

thromboembolism and whether they affect thrombus recanalization. Data about

this remains controversial. A recent retrospective study showed that the nsk of

VTE among diabetic patients is significantly increased as compared with the

non-diabetic population (16).

In addition, diabetes may resuft in loss of balance in the production and the

degradation of ECM proteins like fibronectin and collagen may lead to structural

alterations such as basement membrane thickening and ECM protem deposition

(28, 29). It is not known whether these changes cause an increased risk of venous

thromboembolism.
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L1.4 Diabetic mouse models

Mouse models of type 2 diabetes are likely to be as complex and heterogeneous

as the human condition. Strains of mbred mice and mice that spontaneously

develop a type 2 diabetes-like phenotype through spontaneous mutations or

induced mutations (La, transgenic, targeted/”knockout”, or chemicallv induced

mutations) have been generated and are used in a wide variety of research areas

including cardiovascular biology, developmental biology, diabetes and obesity,

genetics, immunology, neurobio!ogy, and sensorineura! research (30, 31).

The genetically obese Zucker rat (32) is a spontaneous model of type 2 diabetes

that has a missense mutation in the leptin receptor gene (33, 34). Other examples

of spontaneous genetic mutations include the diabetic dbldb mouse that contains a

mutation in the leptin receptor gene (35) and the ob/ob mouse, a mode! for obesity

that Yacks the leptin protein (36). Genetically engineered models are now

becoming the forefront of animal researcft Another common way to develop a

type 2 diabetic mouse mode! is by diet induction. To establish tins model, an

appropnate diabetogenic diet should be given to C57BL/6 mice for 10 weeks to

induce obesity, hyperglycemia (with fasting blood glucose levels greater than 240

mgldl), insulin resistance (with b!ood insulin levels of greater than 150

microU/ml), and increased plasma cholesterol concentrations. Thus, tins model

displays ail the metabolic abnormaiities of the human condition: obesity,

hyperglycemia, and hypennsulinemia (37).
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Genetic factors may determine susceptibility to diabetes even with a standard

high fat diet. Certain inbred mouse strains differ in their susceptibility to high fat

diet-induced diabetes (39, 40) with C57BL/6J mice showing susceptibility to the

weight gain and insulin resistance when feU with a high fat high sucrose

diabetogemc diet (30, 41) These and other observations show that profound

interactions between diet and genetic factors influence glucose homeostasis (38,

42, 43).

In this study, the C57BLI6J (B6) mouse stram vas chosen as a model for

studying diabetes mellitus, as this strain carnes a genetic predisposition to

develop non-msulin-Uependent (type 2) diabetes.
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1.2 DEEP VENOUS THROMBOSIS

Deep venous thrombosis (DVT) is a blood dot that forms in a vein deep in the

body. Generally, most deep vein dots occur in the lower leg or thigh. They also

can occur in other parts of the body such as in the lungs, resulting in pulmonary

embohsm (PE). They have a high prevalence both in the community and in

hospitals, and are of considerable morbidity and mortality (44).

L2.1 Prevalence and nsk factors

DVT is a life-threatening and costly health problem (45). In young individuals,

the incidence of DVT is of 1/100,000 people; al middle age it is approximately

1/1000, which is also the overail incidence; thereafler, it increases steeply and

approaches 1 %/year (46). DVT tends to be asymptomatic for long periods of time

and difficuit to detect by clinical examination unless it reaches a threshold for

occlusion leading to symptoms or signs ofvenous insufficiency.

The pathogenesis of DVT invokes ‘Virchowts triad’ and is considered to be a

combination ofchanges in stasis of blood within the veins, ‘intimai injury’ in the

wall ofthe blood vessel, and ‘hypercoagulability’. It is a senous problem because

of its clinical sequelae including pulmonary embolism and chronic venous

insufficiency (postphlebitic leg pain, swelling, chromc venous stasis ulcers,

venous valvular incompetence, lipodennatosclerosis and claudication).

The formation of DVT is multifactorial. Many of the classic risk factors for

artenal thrombosis are also risk factors for venous thromboembolism (47).

Hereditaiy factors include gene mutations (such as factor V Leiden, the G2021 OA
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(E prothrombin) and deficiencies in physiologic coagulation inhibitors (such as

protein C, protem S its non-enzymatic cofactor, and antithrombin). In addition,

increased levels of plasma factor VIII, fibrinogen, factor IX, factor XI,

prothrombm, homocysteine, lupus anticoagulant, and antiphospholipid antibodies

mav also be implicated (48, 49). Acquired factors that can contribute to DVT

include smoking, hypertension, varicose veins, cardiac dysfimctions, obesity,

malignancy, hospitalization, surgery, venous trauma, immobilization, estrogen

therapy and pregnancy (50). Recently, a retrospective study showed that the nsk

of venous thromboembolism among diabetic patients is greater than in the

non-diabetic population (49). 11 is widely accepted that multiple nsk factors

interact which determines the nsk of thrombosis (51).

1.2.2 Nonnal venous anatomy

Understanding venous pathophysiology requires some knowledge about venous

anatomy and physiology. The primay function of the systemic veins is to retum

deoxygenated blood back to the nght side of the heart and to act as a blood

resenroir. Approximately 75% of the blood volume is contained within the

venous system.

Veins differ from arteries. Thev possess the same 3 layers as arteries but the

muscle layer is reduced. From the lumen to the penphery, the intima of the vein

wall is a thin layer of smooth muscle cells (SMCs) covered by the endothelium.

Undemeath the intima, the media by which the appearance of a mdimentary

internaI elastica separates both layers consists of a thin inner layer of

longitudinally oriented SMCs and a more prominent outer layer of
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circular-onented SMCs. both embedded in an extracellular matrix. The adventitia

is composed of fibroblasts, bundies of collagen fibers, capillaries, and clusters of

longitudnmlly onented smooth muscle ceils (Figure 2).

The thin and collapsable venous wall allows variations in shape with minimal

changes in pressure (venous system is a low-pressure system) and is responsible

for the capacitance function of the venous circulation. Veins are normally only

partially fihled with blood. They have three times the cross-sectional area of

corresponding arteries.

‘:

“\Irtima

‘4’
Media

—

- .

-

Adventitia
2

-

Q

C

Figure 2: Vein wall with the intima underlying the endothelium, the media and

the adventitia Scale bar is 200 p.m (44).

Veins of the extremities have valves. These are thin delicate bicuspid structures

made of fibrous and elastic tissue lined with endothelium. At the site of each
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valve the vein is dilated creating a sinus space around the valve which facilitates

the opemng and closing ofthe valve. Few valves are located fi the femoral veins;

the vena cava and common iliac veins are valveless (52). Ttvo venous systems

exist in the upper and lower extremmes, the superficial and the deep venous

system which are connected by perforating veins. The major superficial veins of

the extremities have thicker walls than the deep veins. Under normal

circumstances, two ‘pumps’ (foot and caif pumps) work together to propel venous

flow against gravity and bicuspid valves direct flow from the superficial to the

deep system. The purpose of the valves is to break up the column of blood in the

vein and ensure unidirectional flow. Disease states interfere with these pumps

leading to venous stasis and thrombosis which compromises valve function and

resuits in venous hypertension (53).

In contrast to arterial thrombosis, which usually develops in association with

vascular-wall injuw leading to platelet-rich thrombus, venous thrombosis

develops in regions of disturbed flow and relative stasis (as obsened in the caif or

venous sinuses), ofien in association with increased coagulability or endothelial

damage. The thrombi are composed predominantly of fibnn and red blood celis

(54). Deep vein thrombosis may lead to residual venous obstruction or reflux and

resuh in post-thrombotic complications. Enhancing resolution of venous thrombi

may preserve valve integrity and reduce the incidence of post-thrombotic

complications (55).

L2.3 Resolution of thrombus
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DVT resolves by a the development of venous collaterals (vasculogenesis), dot

retraction, organization and recanalization (angiogenesis) that is similar to the

formation of granulation tissue in healing wounds (56). These processes may

occur simultaneously and are influenced by the fibrinolytic and matrix

metalloproteinases (MMPs) systems through a series of cellular and molecular

events (Figure 3) (57).

Cellular pathway

Thrombus Growth Factors

Cytoldnes

Molecular pathway

j uPa

Ï

Figure 3: Cellular and molecular pathways during resolufion ofthrombus

9nhl ammatory ceils

•Endothelial ceils

Myofibroblasts

Platelets

Progenitor ceils

N.
• Organization

• Resolution

• The fibrinolytic system

• MMPs and their inhibitors

• Extracellular matrix

• Adhesion molecules

1.2.3.1 Cellular pathway
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(f The resolution of thrombus occurs through recruitment of inflammatoiy

(mainly monocytes), invasion of endothelial ceils (ECs), vascular smooth muscle

cells (VSMCs) and myofibroblasts leading to recanalïzation (5$). Several cellular

processes occur: (a) covering of the surface of thrombus with neutrophils,

monocytes (MCs) and an endothelial layer; (b) penetraflon by neutrophils and

monocytic ceils; (e) development of myofibroblasts and new capillaries; and (cl)

recanalization—the formation of one or more channels inside and parallel to the

original vesset (59).

1.2.3.1.1 Inflammatozy cel]s

Thrombus formation and its resolution are both strongly associated with a

subacute inflammatory reaction (60) with the release of fibrinolvtic, chemotactic

(J’ and growth mediators. Early afler venous thrombosis, circulating

migrate through the vein wall, possibly via the vasa vasora and respond to

chemokines by invading the thrombus, which causes thrombus retraction and

lysis. Subsequently, monocytes, macrophages and lymphocytes are the

predominant leukocyte subpopulations which promote tissue remodeling,

recanalization and also retraction of the thrombus (61, 62).

The thrombus contains trapped thrombm and fibnn that are potent monocyte

chemoattractants (17). The process of recanalization of thrombus is based on the

abilitv of MCs/Mphs (monocytes/macrophages) to penetrate the extracellular

matrices and create tubular spaces (“tunnels”) of lower density (60, 63).

Recanalization is induced by expression of a variety of cytokines, angiogenic

factors, proteases and their inhibitors that regulate cell migration, extracellular
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mati-ix turnover and tissue remodeling (4, 6, 24, 25). It is also plausible, however,

that once monocytes convert to the macrophage phenotype in the thrombus, their

fibnnolytic activity increases. which causes lysis of the thrombus (64). Currently,

proteolytic activity of MC5/Mphs on vasculogenesis based on the engraftment of

circulating EPCs is thought as an important mechanism of recanalization of

thrombus (59, 60).

Whether the inflammatoiy response after DVT is affected by hyperglycenna

remains to be determined.

1.23.1.2 Endothelial ceils

As a unique multifunctional ceil with cntical basai and inducible metabolic and

synthefic functions, ECs may react to physical and chemical stimuli within the

circulation and regulate haemostasis, vascular remodeling, vasomotor tone, and

immune and inflammatoiy responses. In addition, ECs play a pivotai i-ole in

angiogenesis and vasculogenesis (65, 66). Endothelium in resting state is both an

anticoagulant and antithrombotic by secretion of a variety of molecules important

for the regulation ofblood coagulation and platelet function, such as mtric oxide,

prostacyclin and thrombomodulin. Vessel exposure to cytokines or

proinflammatoiy molecules may shifi the balance towards a

procoagulantlprothrombotic phenotype of the ECs (Figure 4) (65) and inhibit

fibnnolysis by reducing the component of the fibnnolytic system. The balance of

endothelial properties can be tipped to favor platelet aggregation and dot

formation (67, 68). Operating in coordination, these changes can allow fibnn

formation and platelet activation.
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Figure 4: Schematic representation of the role played by endothelial ceils in

coagulation and fibrinolysis pathways. NO, nitric oxide; PAF, platelet activating

factor; PGI2, prostacyclin; tPa, tissue plasminogen activator; TXA2, thromboxane

A2; UK, urokinase; vWF, von Willebrand factor; WPb, Weibel-Palade body (65).

Moreover, ECs coordmate the recruitment of inflammatorv celis to sites of

thrombus. These celis produce and release cytokines and growth factors serving

as communication signais to leukocytes. Cytokines induce a promflammatoiy

phenotype of endothelial ceils. Upon activation of these ceils with tumor necrosis

factor- a (TNF-Œ) or mterleukin-1 (IL-1), platelet-activating factor (PAF) is

secreted and stimulates platelet aggregation and neutrophil adhesion to regulate

vascular remodeling (69).
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(E Recanalization of thrombus is similar to angiogenesis, because

may be conceived as the formation of endothelialized channels lined by

“endothelial-like” celis, which express many of the endothelial markers (e.g.

CD3I, VCAM-1 and ICAM-1) (70). Recanalization is also marked by new

formation of vessels which stain for laminin, a basement membrane protein that is

known to promote early EC migration and capillary tubule formation within the

organizing thrombus. vWF, thrombomoduÏin and tissue factor are expressed in

the larger, more prominent channels that appear in older thrombi suggesting that

they are lined by more mature ECs (71). This process requires different sequential

steps including the release of proteases from activated ECs with subsequent

degradation of the basement membrane, ECs migration, proliferation, and

differentiation of mature blood vessels into the interstitial space (69, 72).

Some studies performed in our Iaboratoiy on cou embolization of intracranial

aneurysms showed that early endothelial invasion of the dot leads to

recanalization and recurrence of aneulysms. Moreover, this process can be

prevented by endothelial denudation (73), which may prove that the endothelium

plays an important role in recanalization offlwombus.

However, whether the process of recanalization and neovascularization of

venous thrombi is affected by type 2 diabetes is unknown.

L23.13 Myofihrob]asts

Myofibroblasts are highly specialized mesenchymal ceils derived from

fibroblasts. These ceils populate the adventitia tunica (74) and participate in

vesse! injury repair as well as thrombus recanalization. In the injured vessel,
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numerous cytokines and growth factors (i.e., TGf-) can influence the

proliferation level offibroblasts as well as their transition to myoflbroblasts (74).

Several unes of evidence indicate that uPA appears to be an important

determinant influencing adventitial ceil proliferation and myofibroblastic

modulation. In injured adventitia, exogenous uPA stimulated myofibroblast

proliferation and in vitro, upregulated the content of Œ-SM actin in fibroblastic

celi culture. Moreover, uPA neutralizing antibody attenuated a-SM actin

expression by adventitial ceils after injuiy of vesse! (75).

During organization and recanalization of thrombus, the balance between

uPA-dependent development of endothelialized channels and MTvW-9-dependent

contraction by myofibroblasts of the residual provisional fibrin/collagen matrix

between recanalized channels, would resuit in progressive enlargement of the

recanalized spaces (59).

123.1.4 Ptatelets

Platelets are ceil fragments released from the bone marrow into the bloodstream

and involved in the cellular mechanisms of pnmaly haemostasis. When a blood

vessel injury occurs, platelets exhibit a sequence of events: 1) adhesion of

platelets to the injury site, 2) spreading of adherent platelets over the exposed

subendothelial surface. 3) secretion of platelet granule constituents, 4) platelet

aggregation, and 5) platelet coagulant activity (22, 76). Endothelium disruption

provides binding sites for adhesive proteins such as von Willebrand factor (vWF)

in the subendothelial matnx (winch binds to the platelet g!ycoprotein Ib/IX

complex) and flbnnogen, as well as fibronectin through integrin receptors. These
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adhesive proteins are thought to form a bridge between platelets and

subendothelial connective tissue. Once they adhere to the subendothelium,

platelets spread out on the exposed surface and additional platelets from the

circulation adhere, first to the basal layer of adherent platelets and eventually to

one another. Fibnnogen mediates platelet aggregation to form a mass of

aggregated platelets through building bridges from platelet to platelet (22, 76).

Imtially, the platelets involved in the thrombus formation favour angiostatic

chemokines, such as platelet factor-4 and subsequently secrete angiogenic

cytokines such as vascular endothelial growth factor (VEGf) which complexes

with fibronectin resulting in ECs migration and proliferation. This complex is

more potent than VEGf alone (77) which may regulate the revascularization of

thrombus.

1.23.1.5 Progenitor cetls

Progenitor cells arise from division of stem cells. A subset of these cells such as

endothelial progenitor cells (EPCs), along with the properties of hemangioblasts

that express the leukocyte antigen, CD45 (78), have been implicated in

revascularization, vascular repair, and myocardial regeneration. In addition,

mesenchymal stem cells also can differentiate into both VSMCs and endothelial

celis, and reveal a high degree of plasticity to participate in the development of

vascular systems, including angiogenic sprouting and vessel enlargement (79, 80).

Recent reports suggest that following thrombus formation, circulating EPCs

denved from bone marrow stem celis may arrest at the site of thrombus, infiltrate

through thrombus, and differentiate into endothelial cells to contribute to
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(E endothelialization/recanalization of thrombus, or into a-SMA positive ceils that

participate in neointima formation (81, 82). Their angiogenic effects are most

likely mediated by secretion of growth factors (82). Significant numbers of bone

marrow-derived progemtor ceils have also been found in naturally resolving

thrombus (59). As shown by Singh and coworkers, thrombus resolution is

markedly delayed in urokinase gene deleted animais which can be rescued by

bone marrow transplantation ($3).

L23.2 Moiecular patbway

The fibnnolytic system and matrix metalloproteinases (MMPs) are major

components of the molecular pathway and play a pleiotropic role in resolution of

thrombosis. The fibnnolytic system may regulate endotheiial ceii infiltration by

(E degrading fibnn matrices ($4). MMPs expressed by ECs, neutrophils,

monocytes/macrophages can degrade the extraceilular matrix to promote the

migration of ECs ($5). In addition, chemotactic agents and growth factors

(including angiogenic cytokines) expressed or secreted by inflammatoiy celis and

platelets also participate in the interaction of molecular and cellular pathways

(86). Ail ofthese may affect tissue remodeling and revascularisation ofthrombus.

1.2.3.2.1 The fibiïnolytic system and major components

The fibnnolytic system constitutes a critical response mechanism to thrombus

formation and evolution. The central components comprise an inactive

proenzyme, piasminogen that can be converted to the active enzyme, plasmin,

winch in tum degrades fibrin into soluble fibrin degradation products. Two

immunologically distinct physiologie plasminogen activators (PA) have been
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(Z identïfied: the tissue-type PA (tPa) and the urokinase type PA (uPa) together with

the major inhibitors of PA, plasminogen activator inhibitor-1 and -2 (PAl-1,

PAl-2), while plasmin is inhibited mainly by Œ2-antiplasmin. tPa, a serine

protease, is responsible for the removal of fibnn from the vascular tree (87, $8),

whereas, uPa bound to its receptor uPAR, is regarded as the critical trigger for

plasmin generation dunng celi migration and invasion, and may be responsible

for regulating the activation of other proteases, such as the MMPs (eg,

procollagenases and macrophage elastase) (figure 5) ($8). Plasmin can also

activate or liberate growth factors from the ECM including latent TGf-131, bfGF

and VEGf (89).

PAl-1. a member of the serine proteinase inhibitor ($ERPIN) family is the

pnmaly inhibitor of plasminogen activators in plasma and in the pencellular

matrices, which bonds two-chain active uPA or tPA to reduce actîvity of uPA or

tPA through covalent complex formation ($8). Vitronectin (VN) binds to uPAR,

an abundant plasma and matrix glycoprotein; whereas PAl-1 controls recognition

of VN by uPAR or the Œv133 integrin receptor, and is stabilized by binding to a

plasminogen activator inhibitor binding protein identified as S-protein, suggesting

a role in coordinating ceil adhesion and migration (90). Moreover, PAl-1

detaches celis from exïracellular matrices; vitronectin, fibronectin and type I

collagen through an uPA’uPAR-dependent mechanism by inactivating integrins

(91). Thus, PAl-1 could be considered as a deadhesion molecule (e.g.,

thrombospondin, tenasin) disrupting the link between the cytoskeleton and the

focal adhesion plaque and resulting in the loss of stress fibers and a decrease in

the strength of integrin—ligand interactions (182).
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Dunng natural resolution of venous thrombi, there is an increase in the activity of

the fibnnolytic mediators, tissue-type plasminogen actîvator (Wa) and

urokinase-type plasminogen activator (uPa) and this activity is expressed by

invading monocytes (182)
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Figure 5: M extensive network of additional proteases, inhibitors, receptors and

modulators are directly associated with and are influenced by the PA system. The

largest group is the mati-ix metalloprotemases (MMPs) and their respective

inhibitors, the tissue inhibitors ofMMPs (TIMP$) (94).

The levels of uPA were usuaÏly found to be greater than those of tPa Subsequent

gene knockout studies have shown that deletion of the gene encoding for uPA

markedly inhibited normal thrombus resolution, but the tPa gene knockout had no

effect. Absence of uPA is also associated with delayed monocyte recruitment into

the thrombus (83).
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uPa rnav have a dual function; one related to proteolytic matrix breakdown, the

other related to matrix production via proteolytic activation of growth factors,

such as the fibrogenic TGf-Bl. This dual role of uPa may explain why ECM

degradation and collagen deposition were both aftenuated in the absence of uPa

(95).

PAl- 1 plays a determining role in controlling thrornbus formation. PAl- 1 activity

was increased in patients with deep vein thrombosis (DVT) and pulmonary

embolism (96). further evidence for the role of PAl-1 in venous thrombosis

cornes from animal models. Transgenic mice, that were geneticaÏly engineered to

synthesize PAl- 1 in excess, had higher rates of venous thrombosis than mice with

normal PAl-l levels (97). In a mode! of venous stasis-induced DVT afler ligation

of the inferior vena cava, Deatnck and coworkers demonstrated an alteration in

the normal profibrinolytic to antifibnno!ytic state of the vessel by a decrease in

the ratio ofuPA to PAl-1 (60).

Clinical and expenrnental studies have suggested an irnportant role of PAl- 1 in

artenal and venous thrombosis and the maintenance of systemc vas cu!ar

hemostasis (98). Moreover, expenments with transgenic mice deficient in PAl- 1

support a role for this serpïn in both vascular remodeling afier arteria! injuiy (99)

and the formation of puÏmonaiy fibrosis that occurs afier inflammatory injury

(100). upregulation of PAl-1 in endothelial ceils and smooth muscle cells after

acute vesse! injuiy (lOi) and thrornbus formation (102) suggest that elevated

PAl-1 may play a role in vascular remodeling afler deposition of a

thromboembo!us.
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There is increasing evidence that diabetes mellitus is associated with several

defects in coagulation and fibrinolysis that may Iead to a procoagulant,

thrombogenic predisposition (103). However, it is flot known whether these

perturbations cause a decrease in thrombus recanalization.

1.2.3.2.2 Matnx metatioproteinases and their inhibitors

Matnx metalloprotemases (MMPs) are a family of zinc-dependent

endopeptidases, which can degrade essentially ail ECM components in

physiological and pathological conditions, but also parficipate in celi migration,

angiogenesis, and tissue remodeling dunng organ development, wound healing,

inflammation, and cancer (104, 105, 106). Currently more than 24 members ofthe

MMP family have been identified and classified into subgroups of collagenases,

gelatinases, stromelysins, and membrane types (MT-MMPs) based on their

structure and substrate specificity (107, 10$). MI’Ws are produced by secretion of

both vascular and inflammatory celis. Their activity is regulated at multiple

levels: gene transcription and synthesis of inactive zymogens, posttranslational

activation of zymogens, and interactions of secreted MMPs with tissue inhibitors

of metalloproteinases (TIMPs) (104, 105). The TIMP family known at present

consists of four distinct members (TIMPs 1 to 4), and is expressed in most tissues

and body fluids. Except for TIMP-dependent inhibition of MMPs, these

proteinases have been recently recognized to stimulate ceil proliferation

participating in mitosis and tissue differentiation, to regulate ceÏl survival and

apoptosis, and to inhibit angiogenesis (105). The balance of MMPs and TIMPs

activity controls the diffusion of substances and the migration of ceils through

ECM. These proteinases also modulate signal transduction pathways by various
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substrates, mcluding inflammatorv mediators, growlh factors, and growth factor

receptors (105).

MMP-2 ami MMP-9 (gelatinases A and B) are the main enzymes able to degrade

non natural ECM gelatin and type IV collagen (109), which is the major structural

protein of the ECM. but also an ïntegral part of endothelium basement

membranes. ECM degradation and basement membrane disruption are the key

steps in thrombus organizatïon and recanalization. These enzymes play a cntical

role in vascular remodeling induced by altered arterial flow (110, 111), tissue

ischemia and aortic aneurysms (112). Moreover, MMP-2 activity is cntical for

migration of endothelial cells (113) and monocytes/macrophages (114). Targeted

deletion of MMP-2 abolishes angiogenesis in vivo (115, 116). Thrombin

treatment of endothelial celis induces MMP-2 activity (117) and pro-MMP-2 can

also be proteolytically activated in vitro by the coagulation proteins activated

proteinC (APC) (11$) and factorXa(119).

During expenmental venous thrombosis, the expression of MMP-2 and

MMP-9 is increased (60, 120). But their invo]vement in thrombus resolution

and vein walI fibrosis in diet—induced type 2 diabetic mice remains

undefined.

1.23.23 Extracellular matrix

The thin extracellular matnx (ECM) underlying the endothelium is termed the

basement membrane. It is made up of structural interacting glycoproteins

produced by VSMCs and fibroblasts (121). The most abundant components are

laminin, entactin, collagen W and glycosaminoglycans (heparan sulfate) (122).
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These ECM components act as structural support promotmg celi adhesion and

barners between tissue compartments regulating cellular migration. Basement

membrane components contain the RGD (arg-gly-asp) sequence that control ceil

shape, migration, proliferation, differentiation, morphogenesis, and survival

(123). Celis use a series of receptors (integrins, celi surface proteoglycans, and a

newly described class of cell-surface-expressed tyrosine kinase receptors) to form

linkages with ECM. In this cellular behavior, celis can be provided with

directional guidance dues for migration (124). When blood vesse! is damaged or

presents a platelet-fibnn thrombus, the ECM may act as a ligand to adhere to in

areas of exposed basement membrane on the endothelial monolayer by circulating

blood celis and neointimal ceils (123). The phenomena of the ceil-matrix

interaction can be modulated by the balance of activity of a class of proteases

known as MMPs and their inhibitors.

Thrombosis and inflammation that occur in DVI resuit in valve destruction and

chronic vein wall changes that lead to venous reflux and the syndrome ofchronic

venous insufficiency marked by thickened, noncompliant vein walls and

incompetent valves.

Afler the development of a DVT, a late fibrotic response, similar to a healing

wound, occurs in vein walls (60), involving the progression of the normally thin

and compliant vein wall to a relatively thick and fibrotic state. There is

deposition and accumulation of collagen procollagen I and procollagen III, and

loss of normal vessel ECM such as heparin su!phate which has antifibrotic

properties and is important for mediating norma! vessel phvsiologic responses
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dcposition and accumulation of collagen procoltagen I and procollagen Iii, and

!oss of normal vessel ECM such as heparin suiphate which bas antifibrotic

properties and is important for mediating normal vesse! physiologic responses

(125). Extracellular matrix molecules such as fibronectin and vitronectin enhance

endothelial cet! migration and tubute formation by binding to uv33 (126).

The presence of these molecules has yet to be confirmed in naturally

resolving thrombi, and moreover in hyperglycaemic conditions, but it seems

)ikely that they have a role in this process.

1.2.3.2.4 Selectins

The selectins are a small family of lectin-like adhesion receptors. There are three

fami)y members, L-, E-, and P-selectin. Their major physiotogicat rote is thought

to be largety responsibte for the initial attachment and rolling of leukocytes on

stirnulated vascular endothetium. Ibis family consists of P-selectin expressed on

activated platelets and activated endothelium, E-selectin expressed on activated

vascular endothelium, and L-selectin expressed on the surface of neutrophils.
P-selectin is present in the granules of platelets and the Weibel—Palade bodies of

ECs. It is first translocated to the plasma membrane of these ceils, mediating the

initial inflammatory response (127, 128). P-selectin plays a rote in perithrombotic
inflammation and in mediating leukocyte influx into areas of inflammation.

Previous studies have shown that decreases in thrombogenesis and increases in
thrombolysis can be achieved in primate, porcine, and rat modets of arterial and

venous thrombosis in which P-selectin is antagonized (5$, 129, 130). These
P-selectin driven interactions tead to activation of the coagulation cascade withC
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leukocyte tissue factor (TF) upregulation, which further potentiates vein wafl

inflammatory events.

1.2.3.2.5 Proangiogenic factors

Monocytes express a variety of proangiogenic factors such as VEGF, bfGF and

interleukin-$ (IL-8), a prototypic cysteine-X-cysteine (CXC) chemokine with

polymorphonuclear neutrophil (PMN)-activating and chemoattractant properties,

and confers proangiogenic activity (134), which may generate an ‘angiogenic

drive’ within the thrombus (65, 135). Both VEGF and bFGF are expressed in

resolving thrombi, and are associated with the appearance of channels within and

around the thrombus (136). VEGE expression was localized to several ceils in the

thrornbus, including endothelial celis and the monocyte infiltrate. Expression of

bFGF was found on mononuclear celis ami spindle-shaped ceils within the

thrombus (136).

Monocyte chemotactic protein-1 (MCP-Ï) is a potent and specific activator of

monocytes and basophils. In a rat mode! of venons thrornbosis, the vein wall

adjacent to the thrombus was found to contain increasing amounts ofMCP-1 and

when this cytokine is directfy injected into venous thrombus, it alters its

organization (137). Part of the effect produced by injecting MCP-1 may have

been as a consequence oC its angiogenic properties (Table 1).

o
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VEGF EC chemotaxis (135)

t EC mitosis

Mobilize EPC’s
bfGf EC mitosis (135)

t EC migration

t ŒV33 integrin

MCPI t EC chemotaxis (54)

t_capillary_sprouting
IL$ t EC chemotaxis (58, 65)

t EC mitosis

MMP2 t EC migration (6)
MMP9

*These are gencratly known proangiogenic activities associated with these factors

Table 1: Proangiogenic factors expressed within resolving thrornbus (70).

1.2.4 Treatment of deep vein thrombosis

Treatment costs to the U.S. health care system are in the range of billions of
dollars per year just for the acute treatment of venous thrombosis, without even
considering the arnount of rnoney spent on the treatrnent of the sequelae of DVT
(chronic venous insufficiency) and PE (chronic pulmonary hypertension) (13$).

1.2.4.1 Standard treatments

Prophylaxis and treatment of DVT aim to prevent propagation of the fractured
thrombi as emboli leading to death from pulmonary embolism. Another goal is to
minimize the sequetae of CVI known as the post-thrombotic syndrome. Enhanced

Factor ProAngÏogenÏcActivity* Reference
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thrombus resolution is associated with reduced valvutar damage and venous

hypertension and fewer long term complications (6, 139). Standard treatments

include anticoagulants (low-rnolecular-weight heparin that acts on both thrombin

and factor Xa or warfarin), thrombolytics agents (for example, streptokinase,

recombinant urokinase and tissue-plasminogen activator that lyse the thrornbi),

surgical thrombectomy and compression stockings as prophylactic measures.

These agents are often considered alternatives by inhibiting thrombus extension

and do flot accelerate natural thrombus resolution. Thrombolytics are less used

because ofa small but significant risk of severe hemorrhage (140) and in patients

with stroke or with a recent operation (6, 139, 140). Compression stockings are

sornetimes recommended to relieve pain and swelling, (141). However, these

treatments do not seem to effectively reduce the incidence ofthe post-thrombotic

venons insufficiency (142, 143).

1.2.4.2 New approaches

AÏthough acute therapy for DVT is well established, potential new therapies have

emerged to promote thrombus vascularization and resolution without altering the

normal hemostatic mechanisms, such as delivery of angiogenic growth factors

and cell-based therapy. The application of these methods may enhance rapid

resolution ofDVT, but also provide other perspectives on treatment.

1.2.4.3 Angiogenic therapy

A number of pro-angiogenic factors, including VEGF, IL-X, bfGf, have been

reported to enhance neovascularization of ischemic tissues (6, 61). Currentty the

concept of stimulating therapeutic angiogenesis has also been applîed to the
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recanalization of venous thrombus (Table 2). Treatment with recombinant iL-8 in

a rat model of JVC thrombosis resulted in increased recruitment of neutrophils,

monocytes and markedly promoted early neovascularization enhancing the

resolution ofthrombosis (61).

Varma and coworkers (144) used therapeutic administration of pro-angiogenic

compounds promoting DVI neovascularization, such as interferon inducible

protein (IP-1O), an angiostatic chemokine, basic (bFGF), a pro-angiogenic factor

and epithelial neutrophil activating protein (ENA-78), a pro-angiogenic cytokine.

These angiogenic chemokines increase thrombus neovascularization, but this

does flot correlate with smaller or less fibrotic DVT. Mechanisms other than

neovascularization may be more important to hasten DVI dissolution. VEGf

administration (136) enhance thrombus resolution by a variety ofrnechanisms (6).

VEGf, bFGf, platelet derived growth factor (PDGfs), placental growth factor

(PIGF), the angiopoietins and their receptors, which are mediators associated with

angiogenesis, have also been provcd to promote the formation of blood vessel

function (145, 146). These factors could provide more choice in treatment of

thrombosis.

1.2.4.4 Cell-based approach

Thrombus resolution depends on the interaction of an assortment of cells. Bone

rnarrow-derived progenitor cells are known to participate in revascularization,

provide the necessary precursors as these immature ceils can differentiate into a

diversity of phenotypes, including macrophage, lymphocyte and endothelial celis

(147). Recent studies have shown that thrombus resolution is markedly detayed in
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uPA knock out animais, but rescucd by bone rnarrow transplantation ($3). These

progenitor celis have been made to improve thrombus resolution as a celI-based

approach and showed some benefit in small clinical trials (147-149). Endothelial

progenitor celis, delivered Iocaily or injected into the circulation, incorporate into

newly formed vessels to enhance Local angiogenesis by secreting a variety of

pro-angiogenic cytokines (150).

Modulation of monocyte fibrinolytic and growth factor production in vitro, with

subsequent reinjection of these ceits, may provide an alternative treatment for

venous thrombosis. This therapy might also be useful to recanalize mature

thrombi when fibrinolytic treatment is ineffective (]5 1).

1.2.4.5 Gene therapies

Gene therapy is the insertion ofgenes into an individuals celis and tissues to treat

a disease. Endothelial progenitor cells are also used as vectors to deliver

pro-angiogenic genes. It bas been conflrmed that transplantation of endothelial

progenitor cells transfected with VEGf are more effective than unrnodifled cells

in the angiogenesis and revascularization of ischcmic tissues (152, 153). However,

this therapy is limited by vector toxicity. Current studies of gene therapy focus on

reducing toxicity and improving vectors by looking into mechanisms retargeting

vector to the tissue of interest, minirnizing or eliminating viral gene expression

(Table 2) (135).

o
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G

1L8 t neovascularisation, t blood tlow (61)
distal venous pressure, î resolution

VEGf î neovascularisation, î MO recruitmenL (88)
t organization, t LPA/uPA,

t_EPC mobilisation

bFGf t neovascularisation, î blood flow (56)

MuItpJe chemokines

VEGF isoforms lOOx more potent angiogenic etïect in (102)(121/165/189) ischaemic tissue

VEGF + PIGF Robust neovascularisation (101, 103)

Ccii based

EPCs ]ncorporate into neovessels, secrete (107,110, 1 11)
proangiogenic cytokines, known benefïts
in ischaemic tissue

Pluripotent stem Supply progenitors for multiple celi types (74, 107, 112)cells/bone marrow (Monocyte, lymphocyte, endothelial) into thromb s

o

Table 2: Potential new therapies promoting recanalization and resolution of

venous thrombi (6).

1.2.5 Treatment of complication

Proangiogenic therapy can cause complications such as inflammation with an

immunogenic response to viral vectors (154). Stimulation of therapy to

angiogenesis may resuit in rupture of atherosclerotic plaques, development and

growth of vascular malformations (155). Enhanced angiogenesis therapy atso
carnes risks of neoplasia and tumour growth. In addition, administration of bone

Therapy

Single chemokines

Actions inThrombus Reference

EPC as veCtor (EPC
+Ad.angiogenic I

gene construct)

More effective than EPC alone, greater celi
longevity

(113,115)
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marrow ceils can carry a theoretical possibility for malignant transformation. The

selection of single types of stem ceil may reduce treatment complication (6, 155).

1.2.6 Animal models ofvenous thrombosis

If an optimal animal model exists, it would have a natural propensity for venous

thrombosis, a similar clotting cascade and platelet interaction to that ofthe human,

a Iower extremity that cÏosely resembles the human with a functional caif

musculature, ability to walk upright and sufflciently tau (when standing) to allow

hemodynamic study and sufficiently large to allow surgical intervention (164).

Overali, large animais like pigs and monkeys have been better suited to study

thrombosis as they are more similar to human physiology than smaller species

such as mice, rats, rabbits and dogs (39). However, the study ofthrombosis with

these animais is restricted by cost and ethical considerations. Nevertheless,

numerous studies have used rodent models taking advantage of low cost,

availability, practical breeding, technical feasibility and the availability of

transgenic knockout mice. Some limitations may limit extrapolation to human

thrombi as the relatively rapid (3-4 weeks) rate of thrombus resolution in rodent

moUds and the difference in hemodynamics in the smaller diameter of the vena

cava may affect thrombus revascularisation (6).

Murine in vivo models are appealing because of their well-defined genetic

background, and the possibiiity of using syngeneic “knockout” and mutant mice

producing a variety ofmetabolicsettings.

Animal modeis of venous thrombosis have been classified as non-genetic and

genetic modeis. Non-genetic models of thrombosis have been produced by a
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combination of blood-flow stasis with either increased coagulability or

endothelial damage (46).

Several injury models applied to the arterial systems have also been used in the

venous system. injection ofendotoxin (156), collagen and cpinephrine, factor Xa,

or tissue factor (157), thrombin (158) as well as hyperoxia (159) or hypoxia (160)

ail served to induce a hypercoagulable state and fibrin deposition in the mouse.

Other methods included application of 70 % ferric chioride (161), or sodium

morrhuate or long-term nitTic oxide synthase inhibition using L-NAME (162). In
addition, thrombosis can be induced using 1251-labeled fibrinogen mixed with

thromboplastin (163) After administration of the thrombogenic stimulus
systemically or directly into the stasis region, this mode! can be performed with
or without mechanical vena cava stasis (2). They include vein ligation (164), orC vein interruption by means of a silicone band or an intralurninal balloon catheter
(165), or by the intra-stent stenosis (166). f low stasis was also induced by a
combination of devascularization, electric injury (167), or photochemical injury
(23). These models represent useful tools for the better understanding of the
venous thromboembolic events under conditions similar to those seen in humans
(54). Other genetic models (such as transgenic models of thrombosis) are a
number of spontaneous or genetically engineered mouse strains with
overexpression or deletion of various elements in the lipid transporters,
coagulation, platelet, and fibrinolysis pathways.

As our objectives are focused on the pathogenesis of venous thrombosis in
diabetic mice, we used a reproducible model of venous thrombosis (168). The
inferior vena cava (IVC) stenosis model, with a 94.4% ± 0.5% reduction in IVC
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diameter (38), leading to a stasis-induced venous thrombosis is more adapted to

our goals, as shown by earlier studies that venous thrombi produced in this model

were forrned in flowing blood and were morphologically similar to human

thrombi (151). Moreover, this model bas more availability, improved technical

feasibility, standardization of local thrombosis and lower maintenance costs (169).

Thus, the ability to study thrombus recanalization in diabetic mice should be

appropriate in this model.
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C’ II RESEARCH

There is increasing evidence that cardiovascular complications in type 2 diabetes

mellitus can, in part, be explained by several defects of coagulation and

fibrinolysis (47), promoting adhesion of platelets and monocytes, and endotheliat

dysfunction increasing the risk ofthrombosis and vascular damage (170).

Venous thrombosis develops in regions of dïsturbed flow and relative stasis often

in association with increased coagulability or endothelial damage which should

predispose diabetic subjects to development of venous thrombosis.

(47). Recently, a retrospective study showed that a higher incidence of VTE i.e.

deep vein thrombosis (DVT) and pulmonay embolism (PE) was associated with

diabetes (47) and obesity, independent of age, race and sex. (171).

Furthennore. the concept that thromboembolic arterial diseases and VTE are two

distinct entities has been revised with numerous case control studies

demonstrating the potential link between venous and artenal thrombosis (172).

These finding led us to speculate that thrombus organization and resolution are

affected by the metabolic perturbations that arise in association with type 2

diabetes, such as hyperglycemia, insulin resistance, and increased release of free

fatty acids that engender a cascade of endothehum-mediated dysfimctions that

potentiate inflammation, abnormal fibrinolysis and thrombosis (7, 38, 47).

Because the majority of patients with type 2 diabetes have diet induced obesity,

we sought to study the effects of diabetes on venons disease using an

experimental modal of DVT in a mouse model of diet induced obesity/diabetes.
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(Z In this diabetic model, endothelial dysfunction and hypercoagulation have been

confinned (12).

11. 1. HYPOTHESES

Our hypotheses are that diet-induced type 2 diabetes will:

1) Impair venous thrombi resolution and recanalization.

2) Affect monocyte/macrophage recruitment in venous thrombi by activating

the inflammatory response which would be expected to enhance thrombus

resolution as reported by numerous studies in normal mice.

3) Resuh in prolonged exposure of vein wall to thrombus which allows vein

wall remodeling through ECM deposition.

C
4) Downregulate the molecular factors involved in the regulation of

fibrinolysis: the fibnnolytic system, especially uPa, the main protease

implicated in thrombus resolution.

5) Affect the plasminogen activators, the MMP system, particularly MMP-2

and MMP-9 will be enhanced.

11.2. RESEARCH GOALS

11. 2. 1. Main objective
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The aim of the study was to determine whether the metabolic perturbations that

characterïze type 2 diabetes mduced in fat diet fed mice would impair thrombus

organization, resolution and recanalization in an expenmental mouse model of

DVT using angiography analysis and molecular techniques.

11. 2. 2. Specific objectives

Many specific objectives arise from the main objective to achieve this research

project (summaiy in Table 3).

1) The first goal was to assess thrombus resolution and recanalization to see

whether type 2 diabetes alters angiographic and angiogenic responses

through analysis of angiographic scores, thrombus size and weight. and

neovascular channels detected by immunohistochemistr.

o
2) Second. to confirm the elevated inflammatoiy response through the

examination of the involvement of the monocytelmacrophage recmitment

in diabetes-related impairment of resolutïon in vivo by

immunohistochemistry.

3) Additional goal includes insight into the fibrotic response to evaluate

whether diet-induced type 2 diabetes mediates vein wall damage by

companng ECM deposition in thrombosed WC sections from normo- and

hyperglycemic mice.

4) Venous thrombolysis in vivo is mediated pnmarily by activation of the

plasminogen-plasmin axis. We thus examined the relation of the

fibrinolytic system to DVI resolution in high fat diet mice, through the

quantification of the mRNA and protein levels of the plasminogen

activators, uPa and tPa and their major inhibitor. PAl-1.
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5) Finally, we ïnvestigated MIvIP-2 and MMP-9 gene and protein expression

and their gelatinolytic activities in IVC/thrombus specimens obtained

from control and diabetic mice and their immunolocalization and

expression in IVC/thrombus sections.

Experimental design

10 week-diet-induced type 2 diabetes

Inferior vena cava thrombosis model
1 week 2 weeks

I - Thrombus resolution a) Angiographie score
RecanahzationlNeovascularization b) Thrombus area and mass

c) Neovascular channel quantification

a) CD 14 gene expression
t II - Inflammation b) Immunohistochenucal stammg

III - Fibrosis Picrosirius red staining

a) Gene expression (RT-PCR)
IV - Fibrmolytic system (uPA, tPA and PAl-1) b) Protem expression (Western blolling,
MMP system (MMP-2 and MMP-9) zymography and immunohistochemistry)

Table 3: Summary of specific objectives
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III. MATERIAL AND METHODS

Ail experimental procedures were approved by the institutional animal care

committee in accordance with guidelines of the Canadian Council on Animal

Care.

111.1 Diet-induced type 2 diabetic mouse models

The C57BL!6 mouse strain was used as a model of diet-induced type 2 diabetes.

Only male mice were used to avoid the potentially confounding effects of sex.

The C57BL/6 strain was chosen as it has provided the background for previous

experiments (173) and has the availability of various genetic knockouts. forty

mice, 5 weeks of age, purchased from Charles River (St-Constant, Quebec) were

maintained in a temperature-controlled barrier facility with a 12-hour light/dark

cycle and were given free access to food and water. Mice were fed rodent chow

pellets for a 1-week acclimatation period prior to initiation ofdiet studies.

Thereafter, the mice, 20 per group, were assigned to I of 2 dietary treatments for

10 weeks: the Iow-fat diet D12450B (control group) and the high-fat diet D12451

(diabetes group) fed ad libitum. D12450B (10 kcal% fat)! D12451 (45 kcal% fat)

have been used widely to develop diet-induced type 2 diabetes mice. Furthermore

D12450B was also used as diet of control group (203). Research Diets (New

Brunswick, N]) manufactured the diets. The composition of the diets is listed in

Table 4.

Body weight and plasma glucose of each animal were measured weekly

throughout the study until age of 16 weeks. Blood was drawn afler an 8-hour fast
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via saphenous vein in non-anesthetized mice. Plasma glucose concentration was

determined with ONETOUCH Ultra (LifeScan, Inc.). A successful type 2 diabetic

C57BL/6J mouse was defined as having average fasting blood glucose levels of

greater than l2mmolIL (174).

Table 4: Composïtion of the diets (formulated by Research Diets, Inc.,)

Product# D12451 D12450B

gm% kcal% gm% kcal%

Protein 24 20 19.2 20

Carbohydrate 41 35 67.3 70

Fat 24 45 4.3 10

Total 100 100

kcallgm 4.73 3.85

Ingredient gm kcal

Casein. 80 Mesh 200 $00 200 $00

L-Cystine 3 12 3 12

Corn Starch 72.8 291 31.5 1260

Maltodextrin 10 100 400

Sucrose 172.8 691 350 1400

Cellulose. BW200 50 0 50 0

Soybean Oïl 25 225 25 225

Lard 177.5 159$ 20 180

Minerai Mix S10026 10 0 10 0

DiCalcium Phosphate 13 0 13 0

Calcium Carbonate 5.5 0 505 0

Potassium Citrate. I H20 16.5 0 16.5 0

Vitamin Mix V10001 10 40 10 40

Choline Bitartrate 2 0 2 0

FD&C Red Dye #40 0.05 0 0.05 0

Total $58.15 4057 1055.0 4057
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C.’ 111.2 Animal model ofvenous thrombogenesis: a mouse infetior vena cava

stasis model.

M established rodent mode! of DVT by a combmation of low flow and

endothelial damage was used to mduce the formation of venous thrombi in the

vena cava of normal and diet-ïnduced diabetic mice (Figure 6) (175). Mice were

anesthetized with isoflurane (Baxter Health care Ltd), and the inferior vena cava

vas exposed below the renal veins through a midiine laparotomy incision. The

intestines were retracted, and retropentoneal blunt dissection of the infrarenal

vena cava was performed to mobilize aS mm segment distal to the lefi rena! vein.

A 5-0 Prolene suture was p!aced alongside the vena cava. A severe stenosis was

produced in the vein by tying a 5-0 silk suture around the vena cava to inc!ude the

Prolene suture. The Prolene tvas then pulled out to allow blood to continue to

pass up the vein. A neurosurgical vascu!ar clip was app!ied to the dissected vena

cava for 15 seconds on 2 separate positions, 30 seconds at a time to induce

endothelial damage. The intestines were replaced, and the abdominal wall was

sutured. The animais were then allowed to recover from the anaesthesia. The

mice tolerated the procedure well and were recovered in the !aboratoiy before

being retumed to the anima! housing facility. All operative deaths occurred in the

immediate penoperative penod and were re!ated to anaesthetic administration. No

remote deaths secondarv to infection occurred, and the mice continued to feed

well and had access to water and chow.



44

111.3 Angiography

Angiography was used to assess blood flow through thrombus recanalization. The

mice were sacrificed at 1 (DM n10, control n10) and 2 weeks (DM n10.

control n=10) afier angiography was performed. Mice were injected with lethal

dose of pentobarbital (Somnotol; MTC Pharmaceuticals, Cambridge, Ontario,

Canada) (65 mg/mL; 120 mg/kg intraperitoneally) just before angiography. A I

ml syringe fihled with radiopaque contrast medium (iodixanol [Visipaque], 320

Figure 6: Rat inferior vena cava (IVC) stenosis mode! of venous thrornbosis (58).

A severe stenosis was produced in the vein by tying a 5-0 silk suture around the

vena cava to include the prolene suture in the right panel. The prolene was then

pulled out to allow blood to continue to pass up the vein in the Ieft panel.
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mg/mL) and a 26 1/2G needle were used in the femoral vein for injection.

Occlusion was defined as the absence of anterograde blood flow through the

thrombosed venous segment; any antegrade opacification was sufficient to label

the vena cava as recanalized.

111.4 Tissue harvest / Measurement of thrombus size and infrarenal vena

cava weight

The inferior vena cava to the iliac bifurcation was harvested and weighed, and the

weight was normalized to vein length (mglcm) to calculate the mass of thrombus

that formed during the period of venous stasis. This technique is an indirect

measure ofthrombus content but a reliable measure ofthrombus resolution (61).

The samples were then irnmediately snap-ftozen by immersion in Iiquid nitrogen

and store at —80°C until further processing for biochemical study or were fixed

ovemight in Zn-Tris solution (176), dehydrated, and embedded in paraffin using a

routine histological procedure for immunohistochemistry. Each group (n10) of

samples was processed for mRNA extraction (n=4), zymography and western

blottïng (n3), and immunohistochemistry (n3).

The sizes of the thrombi were marked by using the area of thrombus in each

section measured with image analysis software Vision PE, Clemex Technologies

Inc., (Longueuil, QC, Canada). These measurements were expressed in square

millimeters.

111.5 Hïstopathologic and immunohistochemical analysis

C
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Histological and immunohistochemical studies were performed on

paraffin-embedded venous tissue sections. Five-micrometer thick samples were

deparaffinized in xylene and rehydrated in decreasing concentrations of alcohol.

Endogenous peroxidase was quenched by incubation of sections in 0.3% F1202 in

methanol for 15 min. The siides were washed twice with 0.05 molli Tris+IC1,

0.15 mollI NaCI, and 0.03% Tween 20 (TBT) pH 7.4, between each step

throughotit the experiment. Nonspecific binding was biocked by 30-min

incubation with 10% normal goat serum (NGS) or 5% dry miik in TBT (TBB).

lmmunoreactivity was detected for ail primary antibodies iisted in Table 5 by

overnight incubation in TBB in a humidified chamber and revealed by

peroxidase (Vectastain ABC KIT, Vector Laboratories, Burlingame, CA).

Peroxidase activity was detected with 1 mglml diaminobenzidine

tetrahydrochloride (Pierce Biotechnology, Rockford, IL) as chromogen and 0.1%

H20, as substrate. Sections were counterstained with haematoxylin solution

(Vector, Burlingane, ON) and subsequentiy dehydrated in graded ethanol

solutions, cleared in xylene, and mounted in Permount (Fisher Scientific,

Montreai, QC). Slides were visualized with a computerized imaging system

(Vision PE, Clemex Technologies Inc., Longueuii, QC, Canada). Nonspecific

staining was verified by omission ofthe primary antibody or by using nonimmune

normal serum. Perivascuiar coilagen fibrils were detected histoiogically by

Picrosirius red staining (177) and examined by polarized light rnicroscopy.

Collagen volume fractions were evaiuated by analyzing staining intensity per

pixel in multiple fieids mentioned ART Recherches et Technologies Avancees

Inc that only vein wall collagen has been quantified (15—20 fields/section, 2

(J sections/animal, and 3 mice/group
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Antibodies Source Dilution Antigen Specificity
Anti- retrieval

Biotinylated Vector Labs., 1:300 None
GSL-1 Burlingame, Endothelial

CA ceils
-Integrin Chemicon 1:50 10 minutes ai ECs,
«43 95°C in 10 Macrophages,
Clone LM609 mM sodium VSMCs and

citrate (pH Fibroblasts
6.0)

-CD68 Santa Cruz 1:20 10 minutes al
(T-1-2550): Bïotechnology, 95°C in 10 Macrophages
se-9139 Inc. mTvI sodium

citrate (pH
6.0)

-MMP-9 Neomarkers 10 minutes ai Myofibroblasts,
Clone VUC2 Lab vision 95°C EDTA ECs and

Corp lmMpH 8.0 Macrophages
-MMP-2 Neomarkers 1:20 10 minutes al VSMCs, ECs
Clone CA-4001 Lab vision 95°C EDTA and

Corp lmM pH 8.0 Macrophages
-tPA Chemicon
lone GMA-043

-uPA Santa Cruz 1:20 10 minutes aI
(T-I-140): Biotechnology, 95°C in 10
se-14019 Inc. mM sodium

citrate (pH
6.0)

-PAl-1 Santa Cruz 1:100 12 minutes in
(T-1-135): se-$979 Biotechnology, 0.1% Trypsin)

Inc. in TBS ai
room
+nn*narnis ira

Table 5: List of antibodies
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111.5.1 Macrophage content

Paraffin sections of the thrombus taken at 7 and 14 days after surgery from groups

of control mice and diabetic mice (n=3 per group). They were processed for

macrophage immunoreactivity using the monoclonal antibody against the CD 6$

antigen. The percentage area of the thrombus containing the stained CD 6$

antigen (macrophage density) was measured with the image analysis software

described above. In a blinded fashion, positively stained ceils in ten high-power

fields radially around the thrombus were counted and totalled and then indexed to

total thrombus area. The average macrophage density in each group was

calculated.

111.5.2 Neovascular channel quantification

Neovascularization was defined by Griffonia Simplicifolia Lectin 1 (G$L-1) or

Œvf33 positive stained channels. GSL-1 is a biotinylated lectin that identifies ECs

that specifically display Œ-methyl-D-galactopyranosyl groups (17$). The specific

Œvf33 mtegrin represents also a marker of neovascularization as it has been

identified as a cntical modulator of angiogenesis (179).

These channels were counted in the entire thrombus section and totaled. Total

channel counts were then indexed to total thrombus area to account for

differences in section technique, WC sample location, and size of thrombus.

111.6 Western blot analysis
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Protems were extracted from PiC samples by homogenating with lysis buffer

(1M Tris pH 7, 1M NaC1, lOOmM Sodium Fluoride, 200mM Sodium

ortho-vanadate, NP-40 lOOuIJlOml, 1 tablet of Complete mini, JOOmM PMSF)

and protem concentration determined by the Bradford method (BIO-RAD protem

assay, BIO-RAD). Tissue samples were denaturated and equal amounts of

protein extracts (20 j.tg) were loaded onto a 10% SDS-polyacrylamide gel

accordmg to Laemlli (180). ImmediateÏy afler electrophoresis, the proteins were

transferred to Pure Nitrocellulose Membrane (BIO-RAD Trans-blot Transfer

Medium) in transfer buffer (Tris—glycine, pH 8.3 and 20% methanol). The

mtrocellulose membrane was saturated with 5% skimmed milk powder ni blotting

buffer (0.05M NaPO4 PH 7.4, 0.154M NaCI, 01% Tween 20) for 1 hour at room

temperature. The membranes were washed in TBS-T, and then incubated with

MMP-2 or MMP-9 antibody (1:400 dilution), and uPa and tPa antibody (1: 200

dilution) overnight at 4°C with gentie shaking. Antibody binding was visualized

either with goat anti-mouse or anti-rabbit IgG annbody conjugated to horseradish

peroxidase (Calbiochem, San Diego, Calif) (1:5000) for 90 min at room

temperature. Peroxidase activitv vas revealed by chemiluminescence with

SuperSignal West Pico (Pierce, Rockford, IL). The membranes were exposed to

x-ray film and developed. Quantification of the bands was assessed with

MphaEase software (Alpha Innotech Corporation, San Leandro, CA) and

corrected per ug of protein.

111.7 Zymographic activities

Gelatinolytic activities of MMP-2. MMP-9 were determined by zymographv.

This technique is a modification of SDS-PAGE, based on the incorporation of an
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enzymatic substrate (gelatin) into the electrophoretic gel and the incubation of the

gel in appropnate buffers. It allows visualization of gelatin-degradmg enzymes ai

picogram levels. Electrophoresis of equivalent amounts of total soluble protein

prepared as one part sample with one part Tris-Glycine SDS sample buffer (2X),

was performed under non-reducing conditions in a 7.5% SDS polyacrylamide gel

containing I mg/mL gelatin (Sigma Chemical). The gel vas then washed three

times for 20 min in 2.5% Triton X-100 to remove the sodium dodecylsulfate. The

gel was developed for 18 hours at 370 C in a solution containing 50 mmol/L

Tns-HCL (pH 7.9) and 5 mmoUL CaC12. The solution was removed, and the gel

was stained with coomassie blue and then destained in 10% acetic aci&40%

methanol. MP’W activities were then observed in the gel as light bands against a

dark background. Control zymograms were performed in a similar fashion with

C’ samples known to express both MTVIP-2 and MTvIP-9 (melanoma cell line). Gels

were photographed and densitometric analysis of lysis areas were quantified

using AlphaEase software (Alpha Innotech Corporation, San Leandro, CA).

111.8 RNA isojation and RT-PCR analysis

Aller sacrifice, tissues were subjected to mechanical homogenization in TRIzol

reagent (Molecular Research Center, mc, Cincinnati, Ohio) and combined with

chloroform. $amples were centrifuged, and nucleic acids (RNA) were extracted

from the aqueous layer. The RNA vas subjected to reverse transcription to

produce cDNA. Aliquots of total thrombus RNA (500 ng) were used for first

strand cDNA synthesis in 201.d reaction volume using Superscnpt II reverse

transcriptase (Invitrogen). Aller determining the linear range of RT-PCR for each

of the target genes, amplification of the gene under investigation vas carned out
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using the pnmers summarized in Table 6 amI chosen in two different exons to

distinguish genomic contamination. PCR amplifications were performed with

Platinum Taq DNA polymerase (Invitrogen) accordmg to manufacturer’s

instruction on an Eppendorf Mastercycler gradient usmg following program: step

1, 94°C for 1 mm; step 2, between 52 and 64°C for 1 mm; and step 3, 72°C for 1

min. 40 cycles were performed for the amplification of genes of mterest and 30

cyclers for f3-actm. The amplification for each gene vas in the lïnear curve. PCR

products were visualized on 1.5% agarose gel stained with ethidium bromide and

UV trans-illumination. Quantitative analysis ivas camed out using a

computenzed densitometric imager (ImageQuant; Amersham Biosciences,

Canada) to obtain gene/3-actin ratios. Genes that were studied mcluded

metalloproteinases (MMP-2 and 9), uPa and PAl-1 classically involved in dot

fibnnolysis and thrombus organization and CD14 for monocyteJmacrophage

activity. The list of primer sequences are summerized in Table 6.

Gne Forward primer Reverse primer

M1’4Y-2 5’-CHTGCAGGAGACAAGTTCTGc3-3’ 5’-TTAAGGTGGTGCAGGTATCTGG-3’

MN’W-9 5’-CCATGAGTCCCTGGCAG-3’ 5’-AGTATGGATGHATGATG-3’

CDI 4 5’-GGAAGCCAGAGAACACCATCG-3’ 5’-GCAGGGCTCCGAATAGAATCC-3’

uPa 5’- GGAGAGCTCCTATAATCCTG-3’ 5’-CCAGCTCACAATCCCACTCA-3’

PAT-l 5’-AGGGCTTCATGCCCCACHCTTCA-3’ 5’-AGTAGAGGGCATTCACCAGCACCA-3’

13-actin 5’-CATGGATGACGATATCGCTGCGC-3’ 5’-GCTGTCGCCACGCTCGQTCAGGATC-3’

Table 6: Sequences of pnmers of selected genes for RT-PCR
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ffi.9 Statistical analysis

Descriptive statistics were collected and data reported as mean ± SEM. Graphic

representations were created using Sigma Plot (y 3.5). Statistical analysis vas

performed with Sigma Stat (y 3.5). Mgïographic occlusion rates at different

times were analyzed by fisher s Exact test. for comparison between DM group

and control group, ail data, blood glucose, body weight, thrombus size and

weight, mRNA expression levels and protein levels (western blot and

zymography), were subjected to statistical analysis by a nonparametric

Mann—Whitney test or by two-way analysis of variance (if normally distributed).

for ail statistic tests, a P value ofless than 0.05 was considered signïficant.
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W RESULTS

There was no surgical mortalily in the operatmg process. Deep vein thrombosis,

with or without recanalization, did flot lead to loss of function of limb in any

mouse.

W.1 Successul development of type 2 diabetes in mice

Aduit C57BL16 male mice were fed dunng 10 weeks wïth a high-fat diet to

induce obesity and diabetes. The body weight increased faster (+17.5%) in high

fat-diet fed mice than that in chow-diet fed mice, and reached to the significantÏy

different point by 10 weeks (37.5 ± 2.2 g versus 31.9 ± 2.1 g, n20 in each group,

F< 0.001) and maintained thereafler (figure 7). The same happened to plasma

glucose level, and the significant increase showed in 10 weeks of feeding reached

55.5% (12.6±1.1 mmol/L versus 8.1±0.9 mmol/L, n=20 in each group,P < 0.001),

which indicated the successfiul development of mild type 2 diabetes in these mice

(figure 8).
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f W.2 Diabetic mice have Iess thrombus resolution

The 8-day time point of thrombi was chosen from previous studies done by

Wakefield et al. (56), who reported that no outcome measurements revealed any

significant difference between groups at 4 days, consistent with the notion that an

angiogenic response develops later in the course ofthrombus resolution.

Tbrombus resolution was assessed by two separate methods, thrombus area and

thrombus mass.

W.2.1 Thrombus area

At 1 week, the thrombus area was 13.69 ± 0.49 mm2 in control group and 24.23 ±

1.66 mm2 in the diabetic group, which ivas statistically different (P<0.05) (Figure

9). Two weeks afier DVI, a higher sigrnficant difference was also observed

between these two groups (2.6$ ± 1.34 vs 12.41 ± 0.71 P<0.05).

Furthermore, 2 weeks afier the surgery, the thrombus area in both groups became

smaller, especially in the control group, where the reduction was 80% for the

normoglycemic mice, compared to 49% for diabetic mice (P<0.05).

W.2.2 Thrombus mass

As a gross but reliable measure ofthrombus dissolution, djabetic thrombosed WC

weight normalized by length was significantly higher at 1 and 2 week-DVT than

control mice (Figure 10). At these time points, the increase was 85% and 56%

respectively (P<0.05). $imilarly as in thrombus area, the decrease in thrombus

weight 2 weeks afier surgeiy was statistically significant in the 2 groups and more
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Figure 9: Thrombus areas in control and diabetic groups at 1 week or 2

weeks after surgery. Thrombus area in the diabetic group was greater than in the

control group with 1 .$-fold and 4.6-fold increase at 1 and 2 weeb respectively.

At 2 weeks, there was a significant decrease in both groups, which was more

conspicuous in the control group (80% vs 49% in diabetic mice) (*P< 0.05

compared with respective control; # P <0.05 compared within control mice $ P <

0.05 compared within diabetic mice, n=3).
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Figure 10: Thrombosed IVC mass/Iength in control and diabetic groups at 1

week or 2 weeks after surgeiy. There ivas a statistically signfficant difference

between control and diabetic group at both 1 week and 2 weeb after surgery.

(*p< 0.05 compared with respective control; # P < 0.05 compared within control

mice $ p <0.05 compared within diabetic mice, n=3).
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IV.3 Thrombus recanalization is impaired in diabetic mice

To determine whether diabetes would impair natural thrombus recanalization,

angiography analysis of thrombus blood flow and immunohistological methods

were used.

IV.3.1 Angiography

Mgiography analysis enables detection of in vivo mtra ami perithrombus blood

flow through thin plane in the thrombosed INC, ami is used in a similar manner to

that described for models of experimental intracranial aneurysms elaborated in

our laboratory (73). Restoration of blood flow afler WC ligation was scored O for

occluded veins and 1 for recanalized, as shown in figure 11 with representative

angiographies. Both 1 week-control and 1 week-diabetic mice presented with

occluded WC. Two week-control mice showed blood flow through side

collaterals and within the thrombus body, whereas blood flow in 2-week diabetic

mice vas mainly via side collaterals.

As shown in Table 7, at 1 week after the surgely, 80% (8/10) mice in control

group occurred complete fliC occlusion, meanwhile 90% (9/10) mice in diabetic

group did. No significant differences in flow restoration between them.

At 2 weeks afler the surgeiy, ii was documented in 90% (9/10) of control mice,

meanwhile it was efficient in 10% (1/10) ofdiabetic mice (P0.001, n=10).

C
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1 week

2 weeks

Figure 11: Angiograms in control and diabetic groups at 1 week or 2 weeks.

A and B show two representative mice which presented with complete IVC

occlusion at 1 week. C shows thrombus recanalization in control group at 2 weeb.

D reveals maintained complete WC occlusion in the diabetïc group at 2 weeks

(The venous blood recirculated through by-pass vein).

Contro] Diabetes
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Time Group Amount Recanalization

Yes No Rate

Control 10 2 $ 20%

DM 10 1 9 10%

Control 10 9 1 90%

DM 10 1 9 10%

Tabte 7: Angiography scores in control and diabetic groups

W.3.2 Histologicat and immunohistotogical analysïs of neovascutar

channels

In many studies, thrombus neovascularization identified by histological and

immunohistoligical methods confirmed that channels communicate with the

systemic circulation (56, 61). In the current study, thrombus neovascularization

was assessed by immunohistochemistry and was estimated by counting G$L-1 or

aV3 mtegrin-positive channels. The correlation between avf33 positive channels

and GSL-lstaining is essentially identical (data not shown). As shown in Figure

12a and b in both control and diabetic mice, recanalizing channels were

identified as spaces, lined by flat GSL-1 positive endothelial-like ceils. These

channels were identical in morphology and develop in the penphery of the

thrombus as part of the normal course of resolution but varied in proportion

between the two groups. Fewer channels were present in 2 weeks of diabetic mice

thrombi as compared with controls despite an important immunostaining in the

margin of the thrombus (Figure 12d). Some GSL- 1 positive celis were also
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detected mvading the thrombus. In the 2 week-control mice, thrombus had been

reduced to a longitudinal. endothelialized subintimat streak (arrow in Figure

12c).

Consistent with these observations was channel quantification (Figure 13). At 1

week after DVT, there was no difference in the number of neovascular channels

between control and diabetic mice. Control mice had 6.3 ± 0.3 channels/thrombus

area (mm2) and diabetic mice had a similar number of channels (5.6 ± 0.4

channels/thrombus area (mm2). 0f note, 2 week-diet induced type 2 diabetic mice

had 3-fold fewer GSL-1 positive channels compared with controls (n3; f<0.05).
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Figure 13: Quantification of thrombus neovascular channels by positive

GSL-1 stmning. No significant difference was observed between the number of

channels in diabetic and control mice thrombi at 1 week afler surgery. Note

significantly fewer channels in 2 week-diabetic thrombi as compared with

controls. (*p< 0.05 compared with respective control: # P < 0.05 compared

within control mice $ P <005 compared within diabetic mice, n=3).
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IV.4 Diabetic mice have a higher inflammatory response

IV.4.1 Expression of CD14 mRNA

Thrombus macrophage content was investigated by CD14 mRNA experession at

surface of macrophages. As compared with control mice, the expression of CD 14

mRNA was upregulated in diabetic mice. This difference was statistically

significant in I and 2-week-old thrombi with a 1.3 fold (F<O.05) and 9 fold

(P<O.05) increase respectively. Interestingly, CDI4 mRNA expression decreased

by 7 fold at 2 weeks in control group (P<O.0001), while contrarily it showed a

higher increase at 2 weeks in diabetic group. However, the difference of CDI4

( mRNA expression level between 1 and 2 weeks in diabetic group did flot reach

significance; due to the high variability ofthe values (Figure 14).

IV.4.2 Immunohistochemical staining of CD68

The inflammatory response in each thrombus cross-section was investigated by

an immunohistochemical technique using a monoclonal CD62 antibody to

identify macrophages. At I week post-ligation, venous thrombi in diet-induced

type 2 diabetic animals exhibited more CD68 positive cells (Figure 15b) than

normoglycemic mice (Figure 15a). At this time point, the macrophages were

mainly found within the periphery of the thrombus in both control and diabetic

mice. In contrast, in 2-week-old venous thrombi, the distribution was different in

diabetic mice (Figure 15d); macrophage recruitment invaded the totality of the

thrombus and the staining was significantly enhanced. No apparent macrophage
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Figure 14: CD14 mRNA expression in control and diabetic mice. At I week,

CD14 mRNA was upregulated in diabetic group compared to control group

(0.977 ± 0.0741 vs 0.745 ± 0.02$). At 2 weeks, CD14 mRNA was continuously

upregulated in diabetic group (0.977 ± 0.0741 vs 1.217 ± 0.405), while it was

downregulated in control group (0.745 ± 0.028 vs 0.105 ± 0.065). (*P<0.05

compared with respective control; # P < 0.05 compared within control mice n=3).
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infiltration was observed in 2-week-old venous thrombi of control mice which

were ail without any significant staining (Figure 15c).

The quantification of the inflammatory response in diet-induced type 2 diabetes

mice as seen in Figure 16, showed approximately a two fold increase at I week

as compared to control animais (F<O.O I). At 2 week-post ligation, intrathrombus

macrophages in diabetic sections were 35 times greater than in controi sections

(P<O.00 1).

Moreover, thrombus macrophage content decreased significantly as the thrombus

ages between 1 and 2 weeks in control mice (six-fold tesser, P<O.O1); while it

ampiifïed in 2-week-diabetic mice within the same period (three fold greater than

one-week-diabetic mice, P<O.O I).
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Figure 16: Thrombus macrophage content in control and diabetic mice at 1

or 2 weeks after IVC ligation. By image analysis, the percentage of CD68

stained ceils per thrombus size area was evaluated for three mice in each group.

(*p<o.os compared with respective control; #P<O.05 compared within control

mice $ P<O.05 compared within diabetic mice, n3).
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IV.5 Vein wali fibrosis was elevated in diabetic mice

To assess if the altered DVT resolution in the diabetic mice affected the normal

thrombus fibrotic process, histochemical staining for total collagen ivas

investigated. Picrosinus red staining showed the intensity of fibrosis to be

concentrated in the thrombus penpheiy and in the vein wall at 1 -week time point

in both control and diabetic mice (Figure 17a and 17b).

At 2 weeks, a strong staining was documented in both groups (Figure 17c and

17d). Collagen level quantification of the vein wall was reported in Figure 18,

and indicated at 1 week-post DVT, two-fold less collagen deposition in diabetic

mice than control mice. While the fibrotic response showed a trend toward an

increase in diabetic mice at two weeks, this difference did not reach statistical

(Z significance. Both groups showed an increase in collagen deposition between 1

and 2 weeb afier surgery. However, the increase in control mice was 25.7%

whereas it vas 183% in the diet fat-feU mice, reflecting higher alteration in the

vein wall remodelling.



n

C
o
n
tr

ai
m

ic
e

a
b

G
)

T

•
•

s

L

20
0

cm

•
‘•

C
-

1

u, .

D
ïa

be
ti

c
m

ic
e

F
ig

ur
e

17
:

P
ic

ro
si

nu
s

re
d

st
ai

ni
ng

of
to

ta
l

co
lla

ge
n

in
co

nt
ro

l
ta

,
c)

an
d

di
et

-i
nd

uc
ed

di
ab

et
ic

m
ic

e

(b
,

d)
at

1
w

ee
k

(a
,

b)
an

d

2
w

ee
ks

(c
,

d)
af

te
r

su
rg

er
y.

C
om

pa
re

d
to

co
nt

ro
l

m
ic

e,
m

uc
h

m
or

e

co
ll

ag
en

fl
bn

ls
w

er
e

fo
un

d

in
th

e
m

ar
gi

n
of

th
e

th
ro

m
bu

s
an

d
th

e
ve

in
w

al
l

in
th

e
di

ab
et

ic
m

ic
e

at
2

w
ee

ks
af

ie
r

th
e

su
rg

er
y.

Sc
al

e
ba

r:
20

0
jtm

.
W

,
w

al
l

an
d

T,
th

ro
m

bu
s.

71

w T

* u
* -w

i_
f

r
T

_
l
/
(

t
:
j
j

-

f
-
:

r
.

20
0

iim 20
0

im



72

o
70

60

C
5O

o

tL40
w
E
z
33o
>
Cw
20

o
o

10

o

o
Figure 18: Collagen quantification of the velu waJI in control and diabetic

mice at 1 or 2 weeks. Data are derived from quantification of the mtensit of

staining per pixel in each IVC section and represent the mean of 15-20 fields per

section, two sections per mouse, n=3 per group. (*P< 0.05 compared with

respective control and $P < 0.05 compared within dïabetic mice, n=3).
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IV.6 The fibrinolytic system was altered in diahetic mice

As other investigators have shown, the fibrinolytic system is probably the primwy

mechanism for DVT resolution (83, 181, 182). Gene expression was analyzed and

detection of protein expression vas perfonned for plasminogen activators uPA

and tPA, and for their main inhibitor PAl-1.

IV.6.1 uPa and PAl-1 mRNA levels

uPA mRNA levels trended to lesser expression in diabetic mice at 1 week (-21%)

and 2 weeks (-12%) afier thrombus induction, but these decreases did flot reach

statistical significance (Figure 19). However. analysis of the thrombosed WC

homogenate showed a significant downregulation in uPA gene expression

between 1 and 2 weeks in both groups (-57%, P = 0.013 in control group and

—52% P = 0.02 1 in diabetic group).

PAl-1 and uPA mRNA expressions trend in opposite directions in the thrombosed

IVC during DVT resolution. One week aller WC lïgation, mRNA levels of PAl-1

increased in diabetic mice by 20% (Figure 20). Although tins did flot reach

statistical significance, the up-regulation was greatest (+55%) in 2-week-old

thrombosed WC (control mice 0.74 ± 0.06 vs diabetic mice 1.15 ± 0.02, P =

0.002, n=4).

As thrombus ages and resolves, gene expression of PAl-1 vas less downregulated

in diabetic mice (-14%, P = 0.023) than in control mice (-34%. p = 0.061)

reflecting less fibnnolytic activity leading to reduced thrombus resolution with

diet-induced type 2 diabejes.
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Figure 19: Expression of uPa mRNA in control and dïabetic mice. uPA

mRNA levels normalized with -actm mRNA levels showed a twofold decrease

at 1 and 2 week afler surgery in both control and diabetic mice. (#P<0.05

compared within control mice $P <0.05 compared within diabetic mice. n=4).
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Figure 20: Expression of PAl-1 mRNA in control and diabetic mice. PAl-1

mRNA expression showed higher levels in diabetic IVC/thrombus samples than

in controls. A significant downregulation followed as the thrombus matured in

both groups (-14% vs -34%) (*P<O.05: compared with respective control;

#P<O.05 compared within control mice and $P<O.05 compared within diabetic

mice, n4),
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W.6.2 Expression ofuPa, tPa and PAl-1 pmtein (Western blot analysis)

At 1 week, there vas no sigrnficant difference of uPa protem expression between

control and diabetic groups (F=O 098) (Figure 21). At 2 weeks, uPa protem

expression was down-regulated compared to control (18% less than control

P=0.0098). In both groups, uPa expression was decreased with time by 30% at 2

weeks when compared to 1 week P<0.05).

The expression of tPa in diabetic mice vas down-regulated compared to the

control either at 1 week (P=0.0269) or at 2 weeks (P=OE0369). The tPa level at 2

weeks was lower than that at 1 week in both control and diabetic groups but this

decrease did not reach statistical significance (Figure 22).

In contrast, the expression of PAl- 1 protein was up-regulated in diabetic mice

compared to the control either at 1 week (P=0.0033) or at 2 weeb (P0.0466).

However, as the thrombus ages, there was no sigrnficant difference between the

PAl-1 level at 1 week or at 2 weeks in diabetic group (Figure 23)

$erial thrombosed WC sections from control and diabetic mice were

immunostained with an antibody against uPa and PAl-1 (Figure 24). In organized

thrombus, uPa and PAl-1 were mainly found in the ingrowing subendothelium.

uPa was accumulated in the subendothelium under microthrombi and was

strongly positive in control group at E week (Figure 24a) and 2 weeks (Figure

24c), as compared with DM group (Figure 24b and 24d). PAl-1 was slightly

stronger positive in DM group at 1, 2 weeb, as compared with control group..

C
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W.7 The M11P system is enhanced in Diabetic mice followed by a

decreased synthesis and activity

W.7.1 Expression of MMP-2 and MMP-9 mRNA

Compared to the control mice, the MMP-2 mRNA levels of diabetic mice were

up-regulated at 1 week (P=O01 8) but down-regulated at 2 weeks (P0.002)

(Figure 25). The mRNA level vas increased at 2 weeks in the control group

(f=0.0014), and decreased in the diabetic group (P0.0021).

The MMP-9 mRNA expression of diabetic mice vas up-regulated at 1 week

(2.36-fold increase compared to control group, P = 0.02$) (Figure 26), whiÏe

decreased to the control level at 2 weeks. The difference between the mRNA

level at 2 weeb and at 1 week in diabetic mice vas statisticatly significant (P

0.013), whereas the control group showed an upregulation of MMP-9 mRNA

level by 2 weeks afler IVC ligation.

IV.7.2 Gelatinoiytic activities of MMP-2 and M1IP-9

1 week- MMP-2 total gelatinolytic activity in diabetic mice was 1 .7-fold greater

than in control mice (P<0.05) and became 1.2-fold increased by 2 weeks (P<0.05)

(Figure 27). As thrombus matured, MMP-2 activity decreased by 20% in diabetic

mice contraly to control mice where the MMP-2 activity augmented by 12.5%

(P<OE05). Simitarly, MMP-9 activity was greater in diabetic thrombi 1 .5-fold at 1

week and 1 .3-fold at 2 weeks as compared with controls (P<0.05). However the

decrease by 2 weeb was not statistically significant in diabetic mice.
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W.7.3 Expression of MMP-2, MMP-9 proteïn

Densitometnc analysis ofMMP-2 and MMP-9 levels by Western immunoblotting

showed sïgnificantly increased levels in the thrombosed vein homogenate at 1 and

2 weeks in diabetic mice as compared with controls (Figure 28 and 29).

Two-fold greater protein level of MMP-2 and 1.7 fold greater protem level of

MMP-9 were present in the diabetic ligated vein at 1 week, as compared with

control thrombi (P<O.05). By 2 weeks, less MMP-2 (-30%) and MMP-9 (-18%)

activities were present in the diabetic groups (P<O.05) although, stili remaining

more elevated than controls groups.

Thrombosed WC sections ftom control and diabetic mice were immunostained

with an antibody against MIVW-2 and MMP-9 (Figure 30). Staining was present

C in both the vein wall and cellular components of the thrombus. Both at 1 week

and 2 week-DVT, the diabetic mice showed more IvflvW-2 and MMP-9 staining

compared to control mice. Two weeks afier surgeiy, the immunoreactivity of both

MMP-2 and MMP-9 in diabetic mice was less pronounced as compared to the

immunostaining 1 week afler DVT.

C
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Figure 25: Expression of MMP-2 mRNA in control and diabetic mice.

Diabetic mice showed an upregulation of MMP-2 mRNA levels by 1 week

whereas, a dowegu1ation occuned by 2 weeks after thrombus induction (*P<O.05:

vs control; $P<O.05: vs 1-week diabetic mice, #P<O.05: vs 1-week control mice,

n=3).
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C V. DISCUSSION

In the first part of the thesis, molecular and cellular mechanisms associated with

venous thrombus organization and resolution in normoglycemic mice and those

related to the artenal complications of type 2 diabetes were reviewed. However,

arterial and venous thromboses are separate pathological disorders, different in

their pathology, pathophysiology, epidemiology and treatments. Arterial

thrombosis could be considered as a chronic disease related to a slowly increasing

severity of atherosclerosis, although its symptoms are usually acute due to

blocking of the vital blood flow to an organ. In contrast, venous thrombosis is an

acute disorder with chronic symptoms and occurs from a sudden dot. Arterial and

venons thrombosis share and differ vastly in some etiologies. For example, the

atherogenic factors for arterial thrombosis such as smoking, hypertension and

hyperlipidemia do flot appear to affect the nsk of venous thrombosis (183).

Therefore, the current smdy associates these two pathologies. DVT and

diet-induced type 2 diabetes, to determine whether there is an adverse hemostatic

impact of type 2 diabetes on the formation and resolution of DVT in mice.

In addition to promoting obesity, high-fat diets have been associated with an

increased risk for developing type 2 DM in epidemiological studies, and notably

this association has been found independent of obesity (43).

Several murine models of type 2 diabetes to study vascular complications have

been reported. One animal model that is particularly susceptible to the effects of

dietary fat is the C57BLI6J (B6) mouse. This animal will develop severe obesity,

hyperglycemia, hyperinsulinemia, insulin resistance and endothelial dysfiinction

C’ (36) when weaned to high-fat diets, but will remain lean and euglycemic if the fat
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cE’ content ofthe diet is limited (184). As a model of type 2 diabetes, B6 mice seem to

closely resemble common forms of the human disease in that they will on!y

manifest the disease afier developing obesity and in which the disease results ftom

the interaction between environmental factors and genetic predisposition.

Animal models of stasis-induced DVT after ligation ofthe inferior vena cava (IVC)

have been widely used to investigate the mechanisms responsible for thrombus

resolution (61, 131 and 181). Our mouse mode! design is inspired by combination

ofreduced flow and endothelia! disturbance, two components ofVirchow’s Triad.

The venous thrombi produced in this mode! have a laminar structure and were

morpho!ogically sirnilar to human thrombi (56, 61).

A!though type 2 diabetes has been long demonstrated as a high risk factor of

thrombosis, to the author’s knowledge, no study has shown its ro!e in the

formation and evolution ofthe deep vein thrombus (DVT).

DVT reso!ution invo!ves dissolution of the thrombus matrix by fibrinolysis,

cel!u!ar influx and neovascularization. Our current data (resu!ts of western blot

were normalized by per ug of protein) show that a!l these parameters are affected

in diabetic mice, revea!ing that DVT reso!ution is impaired and might suggest

that the metabolic disorders, such hypergtycemia, insulin resistance, dystipidemia

and advanced glycation end product might be implicated in the pathogenesis of

DVT.

The data herein support several mechanisms associated with type 2 diabetes that

may direct!y affect thrombus resolution. f ive interre!ated conclusions can be

drawn from the data where diet induced type 2 diabetes is associated with: 1)

decreased venous thrombus reso!ution and neovascu!arization; 2) a higher

Ç inflammato response in the thrombosed IVC, 3) a more pronounced vein wal!
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remodeling; 4) an altered fibrinolytic balance with a trend towards an

antifibrinolytic state; and 5) an upregulation followed by a dowregulation in the

expression profile of the MMP system. These findings may present plausible

molecular mechanisms for impaired venous thrombi resolution which could

contribute to more risk of post-phlebitic syndrome in type 2 diabetes.

V.1 Type 2 diabetes decreases the resolution and recanalization ofDVT

Venous thrombi resolution and recanatization involves thrombus retraction and

neovascularization. Retraction resuits in the formation ofcell-lined clefts between

the body of the thrombus and intima of the vein wall. This is combined with new

vascular channels within the thrombus as a resuit of endothelial ceil proliferation

and migration. Therefore similar to angiogenesis, thrornbus recanalization is

affected by the same mechanisms that regulate new vessel formation.

Our diet-induced diabetic mice showed a significant reduction in venous thrombi

resolution and recanalization as evidenced by a larger thrombus size and content,

by unfavorable angiographic evolution and, by a reduced number of neovascular

channels identified and quantified through the use ofimmunohistochemistry.

Diabetes is associated with abnormal angiogenesis. The insufficient angiogenesis

contributes to impaired wound healing, and impaired new vessel growth

development (185). Diabetes-induced impairment of collateral formation bas

been demonstrated in animal models. Hindlimb ischemia created by ligation of

the femoral artery is associated with a reduced formation of capillaries and a

reduction in blood flow to the ischemic Iimb in diabetic (NOD) versus

C” non-diabetic (C57) mice (186). A possible mechanism by which diabetics are
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affected in their ability to forms collaterals was reported by the study of Tepper et

al., which suggests that type 2 diabetes may alter circulating endothelial

progenitor celis (EPCs) biology exhibiting impaired proliferation, adhesion and

incorporation into vascular structures. Interestingly, EPCs are recruited into

venous thrombi and may play an important part in the resolution ofthrombi (71).

These findings may suggest a similar alteration in EPC functions during DVT

resolution in diabetic mice.

In addition, the abnormal metabolic state of type 2 diabetes increases adhesion of

platelets and monocytes and resuits in abnormal fibrinolysis and

hypercoagulation. Activated platelets interact with the endothelium and promote

adhesion ofplatetets to monocytes. Circulating platelet-monocyte aggregates may

release procoagulant, oxidative and mitogenic factors (24). The equilibrium

between endogenous tissue plasminogen activator and PAl-1 is altered. AIl these

significantly contribute to the inflammatory and procoagulant response in

diabetes.

V.2 Type 2 diabetes increased inflammatory response in DVT

Diabetes associated vascular disease affects multiple vascular beds. There is a

significant inflammatory component with activation of the transcription factors

such as nuclear factor-iB and activator protein I, increased endotheliat and

leukocyte expression of adhesion molecules and release of chemokines that

aftract monocytes and inflammatory cytokines such as IL-1, TNf-Œ (187).

The interrelation between venous thrombosis and inflammation has been well

C characterized. Previous studies have shown that monocytes are recruited in large
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numbers into maturing human and experimental venous thrombi (62). Moreover,

a role for the thrombus in directing the inflammatory reaction has been suggested

and thrombus resolution did flot occur if their recruitment is restricted (60-62).

Our data showed markedly upregulated CDI4 gene expression in thrombosed

IVC ftom diabetic mice and intense macrophage invasion initially around

thrombus edge which became entirely distributed within the thrombus. This

temporal and spatial pattem of monocyte movement was reported previously in

non diabetic mice by McGuinness et al. (15 1).

The concept that a proinflammatory environment is crucial for venous thrombi

resolution has been documented in many laboratories (128, 164). it is possible as it

bas been shown in normoglycemic mice, that monocytes/macrophages orchestrate

thrombus resolution by producing a variety of cytokines, chemotactic factors,

angiogenic factors, proteases and their inhibitors that regulate celi migration, ECM

turnover and revascularisation. However, in diabetic mice this increasing

macrophage recruitment into the thrombus did flot improve its resolution. It is

likely that once monocytes convert to macrophage phenotype in the thrombus,

their fibrinolytic activity decreases (down-regulation of uPA/tPA and

up-regulation of PAl-1) which will impair lysis ofthrombus ftom within.

Thus, it is reasonable to speculate that a mechanism which is macrophage

dependent may contribute to altered DVT resolution in diabetic mice and these

inflammatory ceils may be prothrombotic as shown in many circumstances via

the production of tissue factor (188), PAl-1 (189) and thrombin activation (190).

(J V.3 Type 2 diabetes elevates the vein wall fibrosis in DVT
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ECM displays a very dynamic equilibrium with constant synthesis, degradation

and reorganization. Vascular ECM proteins such as coliagen 1 and 3, fibronectin

and thrombospondins flot oniy function as scaffolding proteins but are aiso

invoived in matrix signalïng by ÎnteractÏng with the integrin family of protein and

trigger growth-promoting signais (191).

Many studies have provided evidence for diabetes—induced aiteration in ECM

turnover and reguiation. There is a particular impact on the ECM component, the

basement membrane whose thickening is an ultrastructurai haiimark in diabetic

patients (192). In veins from human diabetic patients and an experimentai

diabetic animal model, patches of thickening were observed and could be reiated

to endotheiiai ceil dysfunction (19).

Prior study has suggested that a late fibrosis that occurs in vein wails after the

development of a DVI is the resuit of a loss of the dynamic equilibrium. This

involves the progression of vein walls ftom normaily thin and compiiant to a

relativeiy thick and fibriotic state, with the deposition and accumulation of

coiiagen and the loss of normal vessel ECM (194). In this study, afler

two-week-DVT, the elevated vein wali fibrosis was found in both control and

DM; however, the increase coliagen deposition in diabetic mice within I and 2W,

is by far more important than in CM, which indicated a higher aiteration in the

vein wall remodeling. Thus it is iikely that type 2 diabetes contribute to vein wall

damage with further enhancement of thrombus collagen deposition, which

thickens the venous waii. This is known to compromise valvuiar function and

leads to post thrombotic venous insufficiency (193).

C
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G) V.4 Type 2 diabetes alters the fibrinolytic and MMPs system in DVT

fibrinolytic systemic activity is known to be diminished in diabetic and

insulin-resistant human subjects, which might be attributable to several

mechanisms, including PAl-1 production (16). Hyperglycemia directly or

indirectly (eg, via oxidative stress or advanced glycation products) increases

MMP expression and activity (194).

DVT resolution is known to be an inflammatory process and involves fibrinolytic

and MMP systems through a series of cellular and molecular events. Previous

studies have shown that the activities of the fibrinolytic system are altered and

those of MMPs (MMP-2, MMP-9) are markedly increased (60, 95) after

formation ofvenous thrombi.

V.4.1 Type 2 diabetes inhibits the fibrinolytic system

Prior experimental studies suggest the abnormality of the fibrinolytic system is

one of the major etiologic factors in DVT (195, 196). The plasmin system, by

activation of uPA, is a primary mechanism of venous thrombolysis (164).

Urokinase, with its dominant role in ceil invasion, is thought to be an important

mediator of pericellular proteolysis, whereas, tPA is responsible for the

dissolution of fibrin from the vascular tree. Both are inhibited by PAl-1. In

normoglycemic conditions, fibrinolytic activity is enhanced by upregulation of

expression and activities of uPA and tPA after DVT (95, 197), but is impaired in

arterial vessels in type 2 diabetes (7, 198).

o
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Our data show that diet-induced type 2 diabetic mice is associated with a decrease

in uPA and tPA expressions and an increase in their PAl-1 expression at the gene

and protein levels in the thrombosed IVC. These variations demonstrate an

alteration in the fibrinolytic state in the venous bed with a trend towards an

anti-fibrinolytic state. Increased PAl- t production and reduced uPA and tPA

levels seemed to be an important contributor to the development of venous

thrombosis and the failure of resolution and recanalization in diabetic mice as

evidenced from impaired venous thrombus resolution in uPA-/- knockout mice

(164).

In addition to fibrin degradation, the fibrinolytic system also plays a role in other

biological processes including angiogenesis. One of the functions of plasmin in

the vascular wall is the activation ofMMPs.

V.4.2 Type 2 diabetes enhances MMPs system

The MMP family is essential for ceil migration, matrix remodeling, and

angiogenesis. Their proteolytic activity must be precisely regulated by TIMPs

through complexes of the catalytic MMP domains with various TIMPs (7, 104).

In concert, MMPs are abte to degrade a wide spectrum of matrix proteins and

therefore, they are considered to be the primary class of proteases involved in

degradation of the endothelial basement membrane and interstitiat matrix

degradation. Quiescent ECs produce littie or no MvIPs, whereas the expression of

several MMPs is strongly up-regulated in activated ECs in vitro and in

endothelium ofvessels in wound healing, inflammation and tumors (199). MMPs

stimulate angiogenesis primarly by matrix degradation and also may include the
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activation of growth factors and cytokines, the recruitment of EPCs and the

degradation of inhibitors.

In Type 2 diabetes, it is well documented that gene expression and activity of

MMPs are altered in arterial vessel wall. However, there are stili controversies

regarding the effects of type 2 diabetes on vascular MMPs. These changes resutt

in an imbalance in vascular matrix homeostasis and contribute to damage of a

gel-like form and scaffolding structure. Some of studies have shown increased

mRNA levels and activity of MMPs, independent of the presence or absence of

tPA or uPA in type 2 diabetes (191, 200).

The expression of the principal collagenases (MMP-2 and MIvIP-9) is increased

in the DVT model (7, 57, 60). Circumstantial evidence has suggested an

(Ej important role of MMPs systems in molecular pathway involved in the resolution

ofthe thrombus (7, 57).

Our data showed that mRNA expression and activity of MMP-2 and MMP-9

signiflcantly increased at 1 and 2 week-post DVT compared to normoglycemic

mice. However, their expression was decreased at 2 weeks, after formation of

DVT in type 2 diabetic mice. These resuits may suggest that gene expression of

MMP-2 and MMP-9 were stimulated by type 2 diabetes and formation of DVT,

but stimulation of type 2 diabetes dominated in late resolution of thrombus and

revealed time-dependent differential regulation ofMMPs (60, 105, 109). Our data

are in agreement with resuits of the arterial vasculature reported by Portik-Dobos

and colleagues (201). They showed that changes in MMP synthesis and activity

might be time dependent and speculate that in the early phase of diabetes, the
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MMP system may be upregulated to allow the vascutar ceils to migrate and

contribute to intimai hyperpiasia. Kowever, with the progression of diabetes, the

MMP system is suppressed, causing ECM deposition and fibrosis.

In addition, the pathogenesis of impaired angiogenesis in diabetes may be

explained by an up-regulation of MMP-2 and MÎVIP-9 resuiting in an increased

formation of potent angiogenic factor such as tumstatin and angiostatin generated

by theses proteases through proteolytic cleavage of plasminogen as reported by

Chug et al., 2006 (202) in the arterial vasculature. Furtheremore, in our study the

downregulation ofMMP-2 and MMP-9 at 2-weeks was correlated with increased

collagen deposition suggesting impaired collagenolysis.

DVT formation and Type 2 diabetes coutd increase activities of MMP-2 and

MMP-9 respectively. Their increased activities observed in diabetic venous

thrombi are probably the combinations ofthe effects ofthe two pathologies.

o
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C V.5 CONCLUSIONS

Using a deep venous thrombosis model in diabetic mice, this study demonstrated

a higher risk of thrombosis and less thrombus resolution in the diabetic

environment as ïllustrated by higher thrombus weight and size, and decreased

recanalization. An increase of late macrophage infiltration to the thrombosis site

under the diabetic condition may contnbute to the increased fibrosis during the

thrombosis pathogenesis. The upregulated PAl-1, and downregulated uPA and

tPA protein level in diabetic DVT mice may contnbute to the higher nsk of

thrombosis. Interestingly, the upregulation followed by a downregulation of

MMP-2 and MMP-9 is associated with the increase of thrombosis in diabetic

mice which may be explained by the in situ abnormal degradation of ECM

induced by MMPs followed by the exposure of thrombogenic tissue to the

penpheral blood in hypercoagulatic condition.

It is likely that type 2 diabetes amplified the nsk of venous thrombosis and flirther

impaired its resolution through a higher inflammatory response and alteration of

the fibnnolytic and MMP systems. However, it would be necessary to confirm

these resuits in other expenmental models of type 2 diabetes.

finally, this study may suggest that thromboembolic arterial diseases share some

similarities with venous thrombosis.

Alteration of endogenous fibrinolytic balance through modulation of PAT-1, uPA,

and tPA might be a useful therapeutic target for the prevention of thrombosis in

diabetic patients.

C
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