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Summary

Prostaglandin E2 (PGE2) is the major prostanoid synthesized in the joint and

play an important role in inflammation and pathogenesis of arthritis. High

concentrations of PGE2 have been detected in serum and synovial ftuids from arthritic

patients. In the PGE2 biosynthesis pathway, the synthesis of PGE2 from arachidonic

acid (AA) requires 2 enzymes acting sequentially. Cyclooxygenases catalyze the

conversion of AA to the intermediate prostanoid PGH2. Subsequently, PGES converts

COX-derived PGH2 into PGE2. At least three distinct PGES isoforms have been

identified, which are called microsomal PGES-l (rnPGES-l), mPGES-2, and

cytosolic PGES. Among them, mPGES-l is induced by various inflamrnatory stimuli

in some ceils and tissues and exhibits preferential functional coupling with COX-2.

Pro-inflammatory cytokines IL-113 and TNF-Œ have been shown to induce mPGES-l

expression in several tissues and ceil types. However, littie is known about the

expression and regulation ofmPGES-1 in cartilage.

In order to better understand the regulation of PGE2 production in joint

tissues, we analyzed mPGES-1 expression in nornal and OA cartilage. Furthemore,

we explored the effects of different inflammatory agonists on the expression of

rnPGES-l in OA chondrocytes and tested the effeci of 15-PGJ2 on IL-1-induced

rnPGES-1 expression in OA chondrocytes. Our present study showed that levels of

mPGES-1 mRNA and protein were markedly elevated in OA versus normal hurnan

cartilage. Treatment ofchondrocyte with IL-1M induced the expression ofmPGES —l

protein in a dose- and time-dependent manner. This appears to occur at the

transcriptional level as IL-113 induced the expression of mPGES- 1 rnRNA and the

activity of this gene prornoter. Furthermore, TNF-Œ and IL-17 also up-regulated the

expression of mPGES-1 protein and displayed a synergistic effect with IL-113. The

resuits obtained with 15-PGJ2 and PGE2 on mPGES protein expression of

chondrocytes were also interesting. We showed that 1 5-PGJ2 inhibits IL-1 13-induced

mPGES-1 protein expression, an effect that was reversed by exogenous PGE2.
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To conclude, our study shows that rnPGES-1 expression is up-regulated in

OA versus normal cartilage, proinflarnrnatory cytokines increased mPGES-1

expression and PPAR7 ligand 1 5d-PGJ2 repressed IL-1 3-induced mPGES- 1

expression in chondrocytes. These data suggest that mPGES- 1 may prove to be an

interesting therapeutic target for controlling PGE2.

Key words:

Osteoarthritis, Microsornal prostaglandin E synthase-1, Cartilage, Chondrocytes,

PGE2, PPARy, and 15d-PGJ2.
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RÉSUMÉ

La prostaglandine E2 est une prostanoïde majeure synthétisée dans

l’articulation. Celle-ci joue un rôle important dans l’inflammation et dans la

pathogenèse de l’arthrite. De hautes concentrations de PGE2 ont été détectées dans le

sérum et dans les liquides synoviaux des patients arthritiques. Dans la voie de la

biosynthèse de la PGE2, la synthèse de la PGE2 à partir d’acide arachidonique (AA)

nécessite l’action séquentielle de deux enzymes. La cyclooxygénase catalyse la

conversion de l’AA en prostanoïde intermédiaire PGH2. Ensuite, la PGE synthase

(PGES) convertit la PGH2 dérivée de la COX-2 en PGE7. Pas moins de trois isoformes

distincts de PGES ont été identifiés PGES-l microsomal (rnPGES-1), mPGES-2 ainsi

que PGES cytosolique. Parmi eux, rnPGES-l est induite par divers stimuli

inflammatoires dans certaines cellules et certain tissus, et elle est préférentiellement

couplée à COX-2.

Il a été démontré que les cytokines pro-inflammatoires IL-1 j3 et TNT-Œ

induisent l’expression de la rnPGES-1 dans plusieurs tissus et types de cellules.

Toutefois, très peu est connu au sujet de l’expression et de la régulation de la mPGES

1 dans le cartilage.

Dans le but de mieux comprendre la régulation de la production de la PGE2

dans les tissus de l’articulation, nous avons analysé l’expression de la rnPGES-l dans

le cartilage normal et celui ostéoarthritique (OA). De plus, nous avons exploré les

effets que différents agonistes ont sur l’expression de la mPGES-1 dans les

chondrocytes OA et nous avons testé l’effet de la 15-PGJ2 sur la mPGES-l induite par

IL-1W dans les chondrocytes OA. La présente étude démontre que les niveaux

d’ARNm et de protéines de mPGES-l sont élevés dans le cartilage OA

comparativement au cartilage normal. Le traitement des chondrocytes avec IL-l fI

induit l’expression de la protéine mPGES-1 de manière dose et temps dépendante.

Ceci semble survenir à l’étape de transcription au cours de laquelle IL-ifI induit

l’expression l’ARNm de mPGES-1 et l’activité de ce promoteur de gène. De plus,
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TNf-Œ et IL-17 augmente aussi l’expression de la protéine mPGES-1 et possède un

effet synergique avec IL-113. Les résultats obtenus avec 15-PGJ2 et PGE2 sur

l’expression de la protéine mPGES des chondrocytes sont également intéressants.

Nous avons démontré que 1 5-PGJ2 inhibe l’expression de la protéine mPGES-1 induite

par IL-l f3, un effet qui a été contré par la PGE2 exogène.

En conclusion, notre étude démontre que la mPGES-I est exprimé de manière

plus significative dans le cartilage OA que dans le cartilage normal. De plus, les

cytokines pro-inflammatoires augmentent l’expression de la mPGES-1, tandis que la

15d-PGJ2, un ligand de PPARg, diminue l’expression induite de la rnPGES-l par 1’IL-

lb dans les chondrocytes. Ces résultats suggèrent que la mPGES-1 est une cible

thérapeutique intéressante pour contrôler la production de la PGE2.

Mots clés

Ostéoarthnte, Prostaglandine microsomale E synthase- 1, Cartilage, Chondrocytes,

PGE2, PPARy, 15d-PGJ2.
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A. INTRODUCTION

I. Osteoarthritis (OA)

1.1. Definition and classification of OA

The terni arthritis refers to many diseases, the most common of which is

osteoarthritis (OA). OA is a group of overlapping distinct diseases, which may have

different etiologies but with similar biologie, morphologic, and clinical outcornes. The

disease processes not only affect the articular cartilage, but aiso invoive the entire

joint, including the subchondral bone, ligaments, capsule, synovial membrane, and

periarticular muscle. Ultirnately, the articular cartilage degenerates with fibrillation,

fissures, ulceration, and full thickness loss of the joint surface. OA diseases are a

result of both mechanical and biologie events that destabilize the normal coupling of

degradation and synthesis of articular cartilage chondrocytes, extracellular matrix, and

subchondrai bone (Brandt et al, 2003). When clinically evident, OA diseases are

characterized by joint pain, tendemess, limitation of movement, crepitus, occasional

effusion, and variable degrees of inflammation without systemic effects (Brandt et al,

2003).

OA is classified into two groups: primary (idiopathic) and secondary. Primary

OA is most common form and has no known cause, aÏthough it often is reiated to aging

and heredity. Primary OA is divided into two forms: localized and generalized. The

locaiized form affects single joint site (hands, feet, knee, hip, spine). The generalized

form involves three or more j oint groups. Secondary OA: An antecedent factor induces

the disease, then the OA that follow is tenned secondary. The factors include trauma,

congenital or developmental diseases, metabolic diseases, endocrine diseases and other

bone and joint diseases etc (Brandt et ai, 2003).

1.2. Epidemiology of OA

1.2.1. Prevalence and incidence ofOA

OA is an extremely common joint disorder in ail population. Its high

prevalence, especialiy in the elderly, and the frequency of OA-related physical
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disability make OA one of the leading causes of disability in the elderly. OA of the hip

and knee represents two of the most significant causes of aduit pain and physical

disability. It ranks fourth in health impact in women and eighth in men in the western

world (Munay & Lopez, 1996). The physical and economic burden of OA is

enormous, affecting up to 15% ofthe total population (>50% ofthe aging population

over 60 years of age) (Poole et al, 2002).

OA has a higher prevalence, and more ofien exhibits a generalized distribution,

in women than in men. Before the age of 50, men have a higher prevalence than

women, but, aller the age of 50 women have a higher prevalence, and this sex

difference in prevalence further increases with age (Felson et ai, 2000).

Overail, OA is the most common form of arthritis. It occurs frequently in

knees, hands, hips, back, neck, spares wrists and ankies. The incidence and prevalence

of this disease are higher in women than in men, especially aCter the age of 50. Many

people have joint symptoms without X-ray change and vice versa.

1.2.2. Risk factors for OA

Risk factors for OA include systemic factors and local biomechanical factors

(shown in Figure 1).

$ystemicfactors:

Age, Sex, and ethnicity: The most potent systemic vuinerabilities are increasing age

and female gender. Disease incidence and prevalence increase dramatically with age.

The framingham study found that 27% of those aged 63 to 70 had radiographic

evidence of knee OA, increasing to 44% in the over $0 age group (Felson et ai, 1995).

Racial factor is another systemic factor with those of Asian people having very low

rates ofhip OA (Haq et ai, 2003).

Genetics: OA is a group of clinicaliy heterogeneous disorders. Many genes have been

linked to OA. There is most concordance with chromosomes 2q, 4 and 16. Families

have been found with rare autosomal dominant pattems of inheritance of OA. The

defective genes are often coding for structural proteins of the extraceliular matrix

(ECM) ofthe joint and collagen proteins (Haq et ai, 2003).
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Hormonal status: Some women afler age 50 deveiop “menopausal arthritis” at the time

of menopause. These gender and age reiated prevalence pattems are consistent with a

role for post-menopausal hormone deficiency in increasing the risk of OA. Estrogen

loss has been strongiy implicated as a risk factor. Epidemiologic studies provide

evidence that estrogen replacement therapy is associates with a reduction in the risk of

knee and hip OA (Nevitt et al, 1994).

Nutritional factors: Peopie in the lower vitamin C and vitamin D blood levels had a

threefold risk of progression of knee OA (felson et ai, 1995). Vitamin C protects

against damage by reactive oxygen species and it serves as a cofactor for enzymes

contributing to type II collagen synthesis. Vitamin D sufficiency is necessary for

active bone turnover which may be critical in OA (Brandt et ai, 2003).

Local biomechanicalfactors.

Obesity: This is the strongest modifiable risk factor. Three to six times the body

weight is transferred across the knee joint during walking. Any increase in weight

should be muitipiied by this factor to estimate the excess force across the knee joint

when an overweight patient walks. Population-based studies show that overweight

persons are at higher risk of OA than non-overweight control. In the framingham

study, women who lost an average of 11 lbs decreased their risk for knee OA by 50%

(Felson et ai, 1992).

Major joint injury: With a major joint injury, a person cari sustain permanent damage

of many of the structures within a joint. This damage alters the biomechanics of the

joint, increases stress across particular areas of the joint and oflen dramaticaiiy

increases the risk of OA. The framingham study found men with a history of knee

injuries had a relative risk of 3.5 for subsequent knee OA; for woman the relative risk

xvas 2.2 (Feison, 1990). Prior joint surgery also is a risk factor in OA deveiopment.

Occupational and athietic activities: OA is common in those performing heavy

physicai work, especiaily if this invoives knee bending, squatting, or kneeling.

Dockers and miners have been found to have a higher prevaience of knee OA than

those in sedentary jobs (Hunter et ai, 2002). There is a significant relationship between

occupational kneeling and repetitive use of joints during work and OA. Competitive
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athietes are at greater risk for later development of OA. Epidemiologic study has

demonstrated that participation in certain competitive sports increase the risk for OA

(Buckwalter et ai, 1997). Sports activities that appear to increase the risk for OA

inciude those that demand high-intensity, adute, direct joint impact as a resuit of

contact with other participants, piaying surfaces, or equipment (Buckwalter et ai,

1997). Repetitive joint impact and torsionai ioading also appear to be associated with

joint degeneration.

:Systemic factoi Local bïomechancaI
Age fadors
Sex Obes•iy
Ethnfc haracteistics Joint injury

Joint dffGrmity
Bone density SusceptibiIty Sports parUdpation
Etrogen replacement to osteoarthritis Musde wekness

thetapy (in post
menopausai w.ornen)

Nutritiona factors ?)
Genetics Site and severity

of asteoarthrîtîs
Othtr systemic

factors

Figure 1. Pathogenesis of OA with putative risk factors (Feison et ai, 2000)
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1.3. Articular cartilage

Cartilage is known as elastic cartilage, fibrocartilage or hyaline cartilage,

depending on its different physical properties. Articular cartilage is a specialized

avascular and neural connective tissue that provides covering for the osseous

components of diarthrodial joints. It serves as a load-bearing material, absorbs impact,

and is capable of sustaining shearing forces. The unique properties of this tissue are

related to the composition and structure of its ECM, which is composed mainly of a

high concentration of proteoglycans entangled in a dense network of collagen fibers

and a large amount of water.

1.3.1 .General structure of articular cartilage

Articular cartilage is organized in a manner that reftects the tensile and

compressive force and shear stresses acting on this tissue. This tissue is composed of

an extensive ECM synthesized by chondrocytes. It contains different zones with

respect to depth from the articular surface and has a regional organization around the

chondrocytes. The cartilage is classified into four zones: superficial zone, mid- zone,

deep zone and calcified zone (Poole et al, 2001). (shown in Figure 2)
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Figure 2. Diagrammatic representation of the general structure of human
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In the superficial zone the chondrocytes are flattened. The tissue in this region

is maximally exposed to the shearing, compressive, and tensile forces of articulation.

The collagen fibrils throughout the more superficiai matrix are much thinner and are

frequentiy arranged parallel to each other and to the articular surface. Here, the small

proteoglycan decorin is most concentrated, being associated with the collagen fibrils,

whereas the large proteoglycan aggrecan is present in its lowest concentration. Beiow

the superficiai zone is the mid-zone where celi density is iower. The mid-zone consists

of rounded celis surrounded by an extensive ECM, rich in the proteoglycan aggrecan.

In the deep zone, celi density is at its lowest but aggrecan content and fibril diameter

are maximal, although collagen content is minimal. Ceils in this zone are oflen

grouped in clusters and resemble the hypertrophic chondrocytes of the growth plate.

Adjacent to the deep zone is the calcified zone. The calcified cartilage zone separates

the hyaline cartilage from subchondral bone. It appears to serve as an anchor of the

cartilage to the bone as collagen fibrils from the radial zone penetrate into the calcified

cartilage. In this zone, the celi population is very scarce and chondrocytes are usually

smaller.

The cartilage matrix consists of distinct regions sunounding the chondrocytes

of articular cartilage. Ail chondrocytes are surrounded by a thin pericellular matrix up

to 2im thick that contains few well-defined collagen fibrils, consists mainly of

filamentous and fine fibrillar material. A territorial region sunounds this pericellular

region that is present throughout the cartilage. In the deep zone, it is well-demarcated

from the territorial region by differences in proteoglycan aggrecan structure and

composition. This region is called the interterritorial region. It is the part of the matrix

most remote from the chondrocytes. Degradation products of aggrecan probably are

most concentrated here, produced as a result of incomplete proteolysis and retention of

degradation products that retain binding for hyaluronan.
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1.3.2. Composition ofthe articular cartilage

Condrocytes: Articular cartilage contains oniy one celi type, the chondrocyte. This

occupies only approximately 2% of the total cartilage volume in human aduits

(Stockweil et al, 1979). The remainder is occupied by an extensive ECM that is

synthesized by these celis. This contrasts to fetal and young immature (0—2 years)

cartilages where ceil volume is very much higher during growth. With increasing age,

there is a progressive decrease in cell content and in matrix synthesis, the latter

reaching its iowest point when the individuai is 20 to 30 years (Stockwell et ai, 1979).

The chondrocytes are responsible for the metaboiism of ECM.

ECM of cartilage: The ECM is composed of 65 to 80% water. The water content of

cartilage plays an important role in maintaining the resiliency of the tissue and

contributing to the nutrition and lubrication system. Collagen (mainly type II)

accounts for about 15 to 25% of the wet weight. Its concentration is usually

progressively reduced with increasing depth from the articular surface. It forms a fiber

network that provides the shape and form of the tissue. The proteoglycan content

(mainly the very large molecule called aggrecan) accounts for up to 10% of the wet

weight. Aggrecan content increases with depth. It is responsible for the compressive

properties associated with ioad bearing. The remainder of the matrix is normally

accounted for by other collagens including V, VI IX, XI and XIV, link protein and a

number of matrix proteins (Koopman et al, 1997).

Collagens: The structural backbone of cartilage matrix is the collagen fibril. It is

composed mainly of type II collagen. It also contains type IX collagen and type XI

collagen, both within and on the surface of the fibril, and as well leucine-rich

proteoglycans, including decorin, fibromodulin, and biglycan (Koopman et ai, 1997).

Type II collagen that makes up the bulk of these fibers is specific for cartilage and is

the primary collagen of articular cartilage. The fibrils that contain type II collage are

composed of tropocollagen molecules (each of which contains a triple lieux of three

identical Œ chains), with nonhelical amino- and carboxyl-terminal telopeptide

domains. Tropocollagen molecules assemble to form fibrils and larger fibers,

stabiÏized by covalent interfibrillar cross-links. The most important mechanical

properties of collagen fibres are tensile stifffiess and strength.
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Proteoglycan aggrecan: The major non-collagenous component in articular cartilage is

proteoglycan aggrecan. It constitutes the second largest portion of solid phase in

articular cartilage. This very large molecule consists of a central protein core of 2000

amino acids with several distinct domains and different functions. Its core protein

contains three globular domains and two glycosaminoglycan-attachment domains.

These domains play various roles to maintain cartilage structure and function. An N-

terminal globular domain Gi contains a site for binding with hyaluronan and link

protein to form huge aggregates. The link protein that has many structural features

similar to the Gi domain of aggrecan stabilizes the complex. The G2 domain is

homologous with the major part of the Gi domain. But it does flot interact with HA.

The C-terminal, G3 domains contain sequences homologous to the epidermal growth

factor, complement regulatory component and a lectin and may be involved in

interaction with other ECM glycoproteins. Other domains with important functional

properties are the chondroitin sulfate domains, CS1 and CS2. They carry a very large

number of negatively charged glycosaminoglycan chains of chondroitin sulfate. An

extended protein domain next to the chondroitin sulphate region has a rather specific

repeat structure and carnes a number of keratan sulphate chains. Aggrecan provides

the compressive stiffness of cartilage. This is achieved by hydration of the large

numbers of chondroitin sulfate and keratan sulfate chains that occupy the core protein

in the keratan sulfate and chondroitin sulfate nch regions between the G2 and G3

domains. Aggrecan creates a highly hydrated matrix, but the collagen fibrillar network

limits hydration and swelling. Thus, aggrecan is only partially hydrated and exhibits a

swelling pressure (Koopman et al, 1997). It is this property that endows cartilage with

its compressive stiffness and ability to resist deformation and dissipate load.

1.4. Pathology of OA

1.4.1. Cartilage

The pathology of OA reflects both damage to the joint and reaction to the

damage. The most striking gross changes are usually seen in the load-bearing areas of

articular cartilage. In the earlier stages the cartilage is thicker than normal (Brandt et
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aï, 2003). Excess mechanical stress induces edema, with stretching and thinning of the

superficial layer. Cartilage edema makes the perichondral collagen fibers more

susceptible to deformation damage, resulting in increased apoptosis and necrosis of

the vulnerable chondrocytes (Hashimoto et al, 1998). The reduction of the

chondrocyte population decreases the capacity of the tissue to secrete and maintain

matrix proteoglycans, initiating a cycle that accelerates the susceptibility to injury

(Brandt et al, 2003). With disease progression, the joint surface thins and the

proteoglycan concentration diminishes, leading to softening of the cartilage. The

integrity of the surface is lost and vertical clefis develop (fibrillation). With joint

motion the fibrillated cartilage is lost, exposing underlying bone. Areas of

fibrocartilaginous repair may appear (Brandt et aï, 2003). The chondrocytes replicate,

forming clusters called clones. Later, the remaining cartilage becomes hypocellular.

1.4.2. Bone

While loss of articular cartilage represents the pathologic hallmark of OA,

remodeling and hypertrophy of bone are also major features. At the beginning,

activation of osteoclast-osteoblast system resuits in bone resorption and incremental

bone formation. The remodeled bone matrix is more hydrated and less dense than

bone more distant from the joint surface. Appositional bone growth occurs in the

subchondral region, leading to the sclerosis; with decreased stress, bone resorption

leads to osteoporosis (Brandt et aï, 2003). Later in the OA process, with extensive

erosion of the cartilage surface, trabecular microfractures may contribute to the

stiffening of subchondral bone. Bone cysts form beneath the surface and weaken the

osseous support for the overlying cartilage. Growth of cartilage and bone at the joint

margins leads to osteophytes, which alter the contours of the joint and may restrict

movement.

1.4.3. Synovium

The synovium consists of a single, discontinuous, intimal layer comprised of

macrophages (type A ceils) and fibroblasts (type B cells), embedded in connective
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tissue containing thin collagen fibrils aligned parallel to the synovial surface. In early

phases of OA, edema is within the synovium. As the edema fluid is resorbed, the

matrix proteoglycan content increase. With the progression of OA, the synovial lining

becomes more continuous as the intimai ceils proliferate and as macrophages migrate

into the tissue. In OA effusions, proteolytic enzymes secreted by the synovium act to

digest cartilage matrix that has been sheared mechanically from the joint surface

(Brandt et ai, 2003).

1.5. Molecular mechanism of OA

1.5.1. Destruction of articular cartilage in OA

Cartilage loss is central to OA. The process of cartilage destruction in OA is

basically an error in cartilage homeostasis. Normally, anabolic and catabolic pathways

governing the synthesis and maintenance of ECM are in balance. While articular

cartilage ECM protein turnover is quite modest under normal conditions, chondrocytes

are able to synthesize and integrate into the ECM, those ECM proteins such as

proteoglycans, collagen, fibronectin, integrins and other adhesive proteins which

enable cartilage to maintain high tensile strength and low compressibility under load

throughout the life-span of the individual. Chondrocytes function in response to

cytokines and growth factor signais, and to direct physical stimuli, which interact in a

complex manner. The end result is a change in the rate of synthesis versus that of

enzymatic breakdown of the cartilage matrix, occurring both around the celis and at

some distance. Both autocrine and paracrine actions have been demonstrated in

chondrocyte and in synovial lining cells. In normal cartilage, there is strict regulation

of matrix turnover: a delicate balance between synthesis and degradation. In OA, this

balance is disturbed, with both degradation and synthesis usually enhanced. However,

in OA, this equilibrium between anabolism and catabolism is weighted in favour of

degradation.

Degradative proteinases, secreted by articular cartilage chondrocytes, such as

matnx metalloproteinases (MMPs) play a major role in the degradation in OA. These

include stromelysin-1 (MMP-3), gelatinases A (MMP-2), and B (MMP-9) and
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coliagenase- I (MMP- 1), coiiagenase-2 (MMP-8), coliagenase-3 (MMP- 13) and MT 1-

MMP (membrane type 1-MMP or collagenase 4 or MMP-14) (Shlopov et ai, 1997).

Most of these enzyme activities are increased in OA, whether by the mechanism of

increased synthesis, increased activation ofproenzymes by other MMPs or plasmin, or

decreased inhibitor activity. In nearly ail OA ceils, MMP-3, MMP-8 and MMP-13

were elevated. Many of these MMPs are stimuiated by exposure of the celis to

inflammatory cytokines. To agonize the effects of MMPs, expression levels of

inhibitors such as tissue inhibitor ofmetalloproteinases (TIMP)-1 are reduced in OA.

In OA, coilagenase is responsible for the breakdown of collagen type II

scaffolding in cartiiage. Ail three coiiagenases, collagenase-1 (MMP-I), collagenase-2

(MMP-$), coilagenase-3 (MMP-13) cleaves type II collagen. Coilagenase-3 is the

enzyme responsible for most of the collagen degradation (Billinghurst et ai, 1997),

which plays the greatest part in the pathoiogy of OA degrading the resident collagen

fibrils more remote from the ceil in the territorial and interterritiorial matrix. This

coliagenase is also used to remodel matrix in the growth plate. CoÏlagenase-1 is

believed to be more involved in the degradation of newly synthesized collagen. The

activities of collagenases are clearly increased in both advanced and end stage OA and

in the early deveiopment of focal OA lesions. In addition, stromelysin-1 (MMP-3) can

cieave in the nonhelical telopeptide of type II and IX collagens (Wu et ai, 1991),

leading to disntption of a collagen crosslink. This cleavage could result in a disrnpted

fibril structure. Furthermore, type II collagen telopeptide can also be cleaved by

MMPs 7, 9, 13 and 14. These findings indicated the presence in OA of a host of

enzyme candidates capable of disrupting the collagen network. Disruption of this

network will eventually lead to destabilization ofthe joint.

The large proteoglycan aggrecan, is cieaved by different MMPs and is also

degraded by a special class of MMPs known as aggrecanases at distinct sites in the

core protein. Two aggrecanases (aggrecanase-1 and aggrecanase-2) have been

identified as part of the ADAMTS family. These proteinases selectively cleave

particular peptide linkages in the G1-G2 interglobuiar domain and are largely

responsibie for the turnover of aggrecan in articular cartilage of both normal and OA

joints. There is evidence for the activities ofboth types ofproteinases in OA. Analysis
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of the proteoglycan aggrecan have revealed that excessive cleavage occurs in OA

cartilage in the core protein, particularly in the intergiobular domain between the G1

and G2 domains (Poole, 1999).

Afier the initial cleavage of type II collagen by collagenases it is denatured and

lost. Chondrocyte subsequently undergo further phenotypic change becoming

hypertrophic and expressing and secreting type X collagen. This differentiation is

normally seen in the growth plates as part of endochondral ossification (Poole et ai,

2001). Calcification of articular matrix also occurs in OA in association with these

changes. Thus, chondrocyte differentiation in OA seems to be a response to extensive

damage to the collage fubrillar network. Moreover, hypertrophic ceils eventualiy

undergo apoptosis. This is commonly seen in OA cartilage.

1.5.2. Mechanism responsible for matrix destruction and disease progression in OA

During matrix degradation, excessive catabolism of articular cartilage results

in the release into synovial fluid of matrix breakdown products including chondroitin

sulfate and keratan sulfate peptides, PG fragments, type II collagen peptides,

fibronectin fragments, chondrocyte membranes, etc. ail of which are antigenic and

elict an inflammatory response in the synovial membrane (Smith et al, 1997). The

activated synovial macrophages in the membrane release cytokines (IL-1, TNf-Œ,

etc), PGE2, proteinases and oxygen free radicals (superoxide, nitric oxide (NO)) into

adjacent tissues and the synovial fluid. These mediators in tum can act on

chondrocytes and synovial fibroblasts, modifiing their biosynthesis of PGs, collagen

and hyaluronan as well as promoting release of catabolic mediators. Some of the

matrix breakdown products are known to induce the expression and secretion of

MMPs and prodegradative cytokines sucli as IL-1 and TNF-Œ. There is increased

expression in OA chondrocyte of the IL-i and its receptors (Meichiorri et ai, 199$;

Martel-Pelletier et ai, 1992). TNf-Œ is also upregulated in OA (Melchiorri et ai, 199$)

and TNf-Œ receptors show increased expression when compared to normal cartilage

(Webb et ai, 1997). These cytokines derived from chondrocytes and the synovial

lining play a key role in cartilage degeneration in OA. Cytokines are responsible for
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accelerating the destruction of cartilage ECM via their ability to up-regulate

metalloproteinase gene expression. They also serve to suppress compensatory ECM

protein biosynthesis by chondrocytes. Another pathway involving the induction of NO

in cartilage by cytokines appears relevant to programmed ceil death (apoptosis) and

OA pathology (Lotz, 1999).

While cytokines are clearly important in up-regulating MMP gene expression,

other pathways relevant to the process include potent biological activity of fibronectin

fragments. fibronectin fragments enhance levels of catabolic cytokines and also up

regulate MMP expression, significantly enhance loss of proteoglycans from cartilage

and transientÏy suppress proteoglycans synthesis (Malemud, 1999). Changes in ECM

loading can also induce ECM cleavage as well as changing the synthesis of ECM

macromolecules (Poole, 1999). The pathological changes in cartilage ECM in OA are

likely to resuit in a disturbance ofthe normal balance between mechanical loading and

direct cytokine/growth factor signalling changing gene expression. Figure 3

summarizes some metabolic pathways responsible for cartilage degradation in OA

joint.
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figure 3. Summary of some the metabolic pathway responsible for cartilage

degradation in OA joint (Studer et ai, 2000).

+ coflagen synthesis
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II. Prostagla ndins biosynthesis pathway

II.1.Biosynthesis of eicosanoids:

11.1.1. Eicosanoids

The term eicosanoid refers to any twenty-carbon (C20) fatty acid.

Prostaglandins, thromboxanes, leukotriene and lipoxins are related compounds known

as eicosanoids, which have a large variety of biological activities. Most eicosanoids

are biosynthesized from C20 polyunsaturated fatty acids, primarily arachidonic acid

(AA). AA is the most plentiful C20 polyunsaturated fatty acid in most mammals

(Zubay, 198$).

11.1.2. Release ofAA and phospholipase A2 (PLA2) enzymes

AA is a 20-carbon unsaturated fatty acid distributed throughout the lipid

bilayer of ail mammalians. It is derived directly from the diet or via modification of

linoleic acid, and normally is stored in the ceil membranes, esterified in the sn-2

position of phospholipids (Irvine, 1982). Under normal conditions, the level of ftee

AA is low, but upon stimulation, AA is released by the hydrolytic action of PLA2

enzymes (involving secretory, cytoplasmic or both types of PLA2. AA is metabolized

tbrough oxygenation by three enzymatic pathways in mammals. Through

cyclooxygenase (COX) pathway, AA is converted to prostaglandin H2 (PGH2). PGH2

is then converted to PGE2, PGF2, TXA2, PGD2, or PGL2. Through the 5-lipoxygenase

(LOX) pathway, AA can be converted to a leukotriene A4 (LTA4). LTA4 can be

further metabolized into various leukotrienes and monooxygenase pathway leads to a

series of epoxy-and hydroxy-acid derivatives. Many PLA2 enzymes are active within

the cell or in the close vicinity and have distinct, but interconnected roles in AA

release. At least 19 PLA2 enzymes have been indentified in mammal, amongst which

the cytosolic PLA2 (cPLA2), secretory PLA2 (5PLA2) and Ca2+-independent PLA2

(iPLA2) families have been implicated in eicosanoid production (Kudo, 2002).

11.2. Prostag]andins biosynthesis

Prostaglandins are small lipophilic molecules that are produced by a variety of

cell types in response to both physiological and pathological stimuli. The general

pathway for the biosynthesis of prostaglandins is illustrated in figure 4. The first step
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in the pathway for the biosynthesis of prostaglandins involves intracellular release of

AA from plasma membrane phospholipids via the action of PLA2. AA is then

converted sequentially to PGG2 and PGH2 by the COX and peroxidase activities of a

single enzyme, PGH synthase (also called COX). There are two forms of PGH

synthase, a constitutive form (COX-1) and an inducible form (COX-2). Different

terminal synthases then convert PGH2 to the 5 primary prostaglandins: thromboxane

A2 (TXA2), PGD2, PGE2, PGF2Œ, or prostacyclin (PGI2). PGD2 gives rise to the

important derivatives 9a, 1113 PGF2 and the J-series PGs including PGJ2, A12PGJ2 and

15d-PGJ2, the latter through a series of non-enzymatic steps. Additional active and

inactive prostaglandins also denve from further isomerization of PGE2, PGF2a, PGJ2

and TXA2. The resulting products then exit the ceil via a carrier mediated process to

activate G protein-linked prostanoid receptors or in some cases may interact with

nuclear receptors.

Physiological actions of PGf2Œ, PGI2 TXA2 , PGD and PGE2 series

prostaglandins are mediated by binding to specific high afflnity G-protein coupled cell

surface prostanoid receptors.There is one PGF receptor termed FP, one PGI receptor

termed IF, one TXA receptor termed TP receptors, and two PGD receptor termed DP

and CRTH2. PGE has 4 separate receptors, termed EP1-EP4, each encoded by a

distinct gene. Depending on the receptor, the consequence of ligand binding to these

receptors can be increased cyclic AMP, decreased cyclic AMP, or a phosphoinositide

response (Narumiya, 1995). In addition to plasma membrane receptors, recent

evidence shows that prostanoids also can bind and signal through nuclear hormone

receptors, PPARs. Three distinct PPAR isoforms- PPARx, 13/6 and y- have been

isolated and characterized. PPARy binds some AA metabolites, especially the PGD2

metabolites such as 15d-PGJ2. PPARct and 6 bind a stable analog of PGI2,

carbaprostacyclin (cPGI).
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The nature of the final active product depends on the celi type, the stimulus,

and the presence of distinct PG synthase. TXA2 synthase (TXAS) is present in a

platelets and macrophages, prostacyclin synthase (PGIS) is present in the utems, two

type of PGD2 synthase (PGDS) are found in brain and mast ceils, and enzymes

responsible for the isomerization of PGH2 to PGE2 are expressed in synovial

fibroblasts (Stichtenoth et ai, 2001).

Prostaglandins play critical roles in numerous biological prosesses, including

kidney development, reproduction, bone metabolism, inflammation, maintenance of

gastrointestinal integrity, angiogenesis, modulation of immune responses, apoptosis

and mitogenesis. In contrast to some homones, which are released from a specific site

but have broad systemic effects in distant organs, prostaglandins are synthesized in

broad range of tissue type and serve as autocrine or paracrine mediators to signal

changes within the immediate environruent.

PGE2 produced is released from the celis and act on four types of the PGE

receptors, EP1, EP2, EP3 and EP4, ail of which are coupled with the trimeric G-protein

signalling. PGE2 plays crucial roles in various biological events, such as neuronal

functions, female reproduction, vascular hypertension, tumorigenesis, fever, gastric

mucosal protection, pain hypersensitivity, anti-allergic response and inflammation

associated bone resoption.

Overproduction of PGE2 is oflen associated with various diseases. Elevated

production of PGE2 plays an important role in the pathogenesis of arthritis. Several

studies suggest that PGE2 is the major prostaglandin (PG) produced by articular joint

celis and is involved in inflammation, apoptosis, angiogenesis, and tissue degradation

that characterize arthritic diseases. The induction of cartilage degradation by PGE2 is

due to the inhibition of collagen synthesis, induction of MMPs production and

induction of chondrocyte apoptosis. PGE2 is largely produced in arthritic joint tissues

and excessive production of PGE2 has been reported in serum and synovial fluids of

rheumatoid arthritic and osteoarthritic patients. Treatment with neutralizing anti-PGE2

antibodies prevents acute and chronic inflammation in a rat adjuvant arthritis model

(Portanova et ai, 1996). Mice lacking COX-2 or PGE2 receptors display reduced

incidence and severity of collagen-induced arthritis. These animais showed reduced
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inflammation and less cartilage and bone destruction (Myers et ai, 2000). The role of

PGE2 in arthritis is also supported by effective suppression of pain and inflammatory

responses in arthritis by nonsteroidal antiinftammatory drugs (NSAIDs) that reduce

PGE2 biosynthesis (Crofford, 2002).

11.3. COXs

COX, also called PGH synthase, is a heme-containing enzyme that catalyzes the

first two steps in the biosynthesis of the prostaglandins from the substrate AA. Two

sequential enzymatic reactions are the bis-oxygenation of AA leading to production of

PGG2 (COX reaction) and reduction of 15-hydroperoxid of PGG2 leading to formation

of PGH2 (hydroperoxidase reaction). Three COX isoforms, COX-1, COX-2 and COX

3, are found in mammals. COX enzyme was first purified in 1976 and cloned in 1988

(Merlie et ai, 1988). In the early 1990s, COX was demonstrated to exist as two distinct

isoforms. COX-1 is constitutively expressed as a “housekeeping” enzyme in most

tissues. COX-2 is flot constitutively expressed in appreciable amounts by most normal

tissues, but is rapidiy induced by proinflammatory cytokines, tumor promoters,

oncogenes, and growth factors. COX-3 was recently identified and shown to exhibit the

catalytic features of COX-1 and COX-2. COX-1 and COX-2 have very different

expression profiles in several physiological processes. The COX isozymes are also

involved in pathological processes. COX-1 is involved in thrombosis, while COX-2

mainly involved in inflammation, pain, fever, angiogenesis, cancer, Alzheimer’s

disease and several forms of arthritis. COX-l and COX-2 are of particular interest

because they also are the major targets ofNSADs including aspirin, ibuprofen, and the

new COX-2 inhibitors.

11.3.1. Gene structures and expression ofCOX isoforms

COX-1 and COX-2 have a molecular weight of 71 KDa and are almost

identical in length. The COX monomer consists of three structural domains: (a) An N-

terminal epidermal growth factor (EGF)-like domain of 50 amino acids at the N

terminus. The EGf-like domain may play a role in the integration of maturating COX

into the lipid bilayer. (b) A membrane-binding domain of about 50 amino acids. The

membrane-binding domain contains four short, consecutive and amphipathic a
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helices. This creates a hydrophobic surface that would interact with the one face of the

lipid bilayer, allowing COX enzymes to integrate into membranes through the

monotopic mechanism (Picot et ai, 1994). (c) A large C-terminal giobular catalytic

domain (about 460 amino acids) with a heme-bonding site. This domain is almost

entireiy comprised of Œ-helical structure, shares a great deal of structural simiiarity to

myeloperoxidase. The C-terminal PTEL and STEL sequences in COX-1 and COX-2,

respectively, represent an ER retention signai. The major sequence differences

between COXs isoforms occur in the membrane binding domain (Spencer et ai, 1999).

A unique difference between COX-1 and 2 is 1$ amino acids inserted 6 residues in

from the C terminus of COX-2 that are not present in COX- 1. Mature, processed

COX-1 contains 576 amino acids; the mature form of COX-2 contains 587 amino

acids. There is a 60%-65% sequence identity between COX-1 and 2 from same

species and 85%-90% identity among individual isoforms from different species.

However, the gene for COX-1 is approximateiy 22 kb in length with 11 exons and is

transcribed as a 2.8 kb mRNA, whereas that for COX-2 is approximately 8.3 kb in

length with 10 exons and is transcribed as 4.4 kb mRNA (Tanabe & Tolmai, 2002).

The COX-1 and COX-2 genes map to human chromosomes 9q32-q33.3 and 1q25.2-

q25.3, respectively (Tanabe & Tohnai, 2002)

COX-1 and COX-2 have significant sequence homoiogy and identical catalytic

activity, but their expression pattem is markedly different. COX-1 has been found in

neariy ail tissues under basal conditions and is thought to piay a ‘housekeeping’ role.

Nevertheiess, COX-1 is preferentiaily expressed at high ievel in selected ceils and

tissues, inciuding endothelium, monocytes, plateiets, renai coilecting tubuies, and

seminal vesicles, indicating that it is deveiopmentaiiy reguiated (Smith et ai, 2000). In

contrast to COX-1, ievels of COX-2 are typicaiiy low or absent in most tissues.

However, COX-2 can be induced by severai physiologicai and proinflammatory

stimuli, including IL-1, TNF-a, lipopolysaccharides (LPS), transforming growth factor

(TGF)-F3, epidermai growth factor (EGf), piatelet-derived growth factor (PDGF), and

fibroblast growth factor (FGF) and hormones in many ceil types like macrophages,

monocytes, synoviocytes, chondrocytes, osteobiasts, leukocytes and endothelial celis

(Dubois et ai, 1998). The induction of COX-2 is usualiy transient, with a retum to base
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une within 24-48 hours (Williams et ai, 1999). COX-2 is expressed constitutively in the

brain, kidney, during ovulation and blastocyst implantation.

11.3.2. Regulation of COX-2 expression

The COX-1 promoter region lacks a functional TATA or CAAT box ami is GC

rich, which is consistent with a housekeeping gene. There are several putative

transcriptional regulatory elements in the promoter region of the COX-1 gene, such as

two Sp-i sites, two AP-2 sites, NF-IL-6 site and GATA. The two Spi sites contribute

to constitutive expression of COX-1 (Xu et ai, 1997). To date these Spi sites are the

only cis-acting elements documented to regulate transcription of COX- 1.

The promoter of the COX-2 gene contains a TATA box and various

transcription elements, such as NF-IL-6, AP-2, Spi, NF-kB, CRE and E-box. $o far,

only a limited class of elements are shown to be involved in the regulation of COX-2

transcription, ofien in synergy, such as E-box, ATF/CRE sequences, NF-1L6 CAAT

enhancer binding sequence(C/EBP) and two NF-kB binding sites. The transcription

factors that bind and activate COX-2 transcription involved C/EBP3 and C/EBPa for

the NF-IL-6 elements, AP-1, ATF and CREB for the CRE elements, and USF-1 for the

E-box. Dependence on Nf-kB signalling for COX-2 expression has been demonstrated

by use of pharmacologie inhibitors offlcB kinase (Gallois et ai, 1998).

The signalling pathways that mediate COX-2 expression are tissue-specific and

depend on the stimulus. A number of signalling pathways are likely to regulate

transcription of COX-2. These include NF-kB and C/EBP, two common signalling

pathways in inftammatory response, and three mitogen-activated protein kinase

(MAPK) signalling cascades, ERK1/2, INKISAPK, and p38. Each of these signalling

pathways has been shown to contribute or be solely required for increased expression of

COX-2 in one or more cultured ceil systems.

The MAPK cascade is a very important signalling pathway for COX-2

expression and consists of three different subgroup of kinase (ERK: extracellular

regulated kinase, INXISAPK: Jun N-terminal kinase/stress activated protein kinase, and

p38: p38 mitogen-activated protein kinase). The ERKs are mainly activated by growth

factors and oncogenes including v-src and v-ras. Cellular responses to mitogens are

generally mediated by sequential activation of receptor tyrosine kinases, Src, Ras, and
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one or more of the MAPK pathways. Expression of COX-2 following stimulation with

serum and PDGF, or in response to v-Src or Ha-Rasexpression, requires activation of

the ERK1/2 and JNKJSAPK pathways (Xie & Herschman, 1995; Sheng et ai, 1998).

The COX-2 gene has been shown to be an important Ras target since oncogenic

mutation in Ras and overexpression of COX-2 is found in many forms of human

cancers, including breast cancer and colorectal carcinoma (Subbaramaiah et ai, 1996).

The JNXISAPK and p38 pathways are activated by inflammatory stimuli,

including IL-1f3, TNF-a, and LPS, as well as the phorbol ester TPA and environmental

stress, like oxidative stress. Proinflammatory cytokines including TNF-Œ and IL-1 f3

have been shown to selectively activate INK ami p38 MAP kinase in cultured human

articular chondrocytes (Geng et aI, 1996). Several studies demonstrated that the

selective p38 MAPK inhibitors prevented IL-1 f3-induced COX-2 expression in human

synovial fibrobÏasts (Faour et ai, 2001) and chondrocyte ceÏi une (Thomas et ai, 2002).

The NF-icB pathway is a common mediator of inflammatoiy responses and

plays an important role in COX-2 expression in several celi types, including rheumatoid

synoviocytes (Crofford et aÏ, 1997). The COX-2 promoter contains two consensus

sequences for the cis-acting regulatory sequences that are recognized by the NF-icB

family of transcription factors. IL-1 f3 treatment of human synovial fibroblast induced

binding of the p65-p5O heterodimer and the p50 homodimer to the COX-2 promoter,

and pre-treatment of the ceils with NF-icB p65 antisense oligonucleotides prevented

NF-icB binding and markedly decreased COX-2 expression (Crofford et ai, 1997).

furthermore, transfection experiments with reporter plasmid demonstrated that

mutations in the NF-KB cis-regulatory sites attenuate transcriptional activation of the

COX-2 promoter in response to TNF-Œ stimulation (Yamamoto et ai, 1995). Nf-KB

regulates COX-2 expression in response to the appropriate activators in specific celI

types.

The C/EBPf3 and C/EBP transcription factors are commonly involved in the

regulation of inflammatory responses. This family of transcription factors is activated

by most of the inflammatory stimuli that induce COX-2 expression. An NF/IL-6

regulatory element is present in the COX-2 promoters ftom ail species examined and

C/EBP proteins have been shown to bind to these promoter sequences. In human



24

synovial fibroblasts, TNf-a induced c/EBP binding to COX-2 promoter in addition to

NF-icB (Alaaeddine et aI, 1999). The C/EBP transcription proteins appear flot to work

independentiy but instead to cooperate with USF-1, NF-icB and c-jun to activate COX

2 transcription (Morris & Richards, 1996).

Dexamethasone is a common anti-inflammatory steroid, which binds to the

gïucocorticoid receptor and activates transcription of a number of genes via

glucocorticoid response elements (GREs). Dexamethasone is an efficient suppressor of

inftammatory-induced COX-2 expression aithough the COX-2 promoter does flot

contain GREs. The mechanism for glucocorticoid-mediated repression of COX-2

induction invoïves suppression of the AP-1 and NF-KB-dependent transcription

(Scheinman et ai, 1995; Yang-Yen et ai, 1990) and destabiiization and degradation of

COX-2 mRNA and protein (Newton et ai, 199$). The nuciear receptor PPARy lias been

shown to down-reguiate the expression of COX-2. PPARy reguiate gene expression by

binding their heterodimeric partner retinoid X receptor to specific PPAR-responsive

elements (PPREs). The promoter region ofthe human COX-2 gene harbors a PPRE at —

3721 to —3707 bp (Meade et ai, 1999). 15d-PGJ2, a PPARy iigand, covalently binds to

1KB kinase, leading to inactivation of the NF-icB pathway and thereby to repression of

COX-2 transcription (Straus et ai, 2000). On the contrary, other studies have shown that

PPARy augments COX-2 transcription by binding to the PPRE element in the COX-2

promoter (Meade et ai, 1999).

11.3.3. Biological function ofCOX-2

COX-2 and COX-1 have significant differences in tissue expression and

regulation. Therefore they have different biologicai function. COX-2 is associated with

inflammation and many malfunctions.

COX-2 lias some role in regulating brain function. High basal levels of COX-2

are found in the brain. In the centrai nervous system (CNS), COX-2 is up regulated by

neural activity. COX-2 protein or mRNA was detected in neurones and in the

nonneuronal celis of the CNS (Yamagata et ai, 1993). These suggested that COX-2

enzyme might be invoived in CNS function. Proinflammatory cytokine IL-1 Ç3 was

shown to be the major inducer of COX-2 up-reguiation in the CNS. Intraspinal
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administration of an interleukin-converting enzyme or COX-2 inhibitor decreased

inflammation-induced central PGE2 levels and mechanicai hyperalgesia. These

indicated that IL-1 13-mediated induction of COX-2 in the CNS contributed to

inflammatory pain hypersensitivity (Samad et ai, 2001). Fever is thought to be the

effect of PGE2 in CNS. COX-2-knockout mice suppressed both fever and PGE2 level in

the CNS (Li et aI, 1999), implying that PGE2 involved in the febriie response may drive

from COX-2.

Prostaglandins (PGs) are involved in normai renal function including control of

renin release, control of tubular function and regulation of vascular tone. In COX-2 nuli

mice, the kidneys fail to develop normaliy resulting in death, whereas COX- 1 nuil mice

fail to produce a detectabie renal pathology (Morham et ai, 1995). Additionaily, the

involvement of COX-2 in renai functions was also suggested by ciinical studies.

Clinical studies showed that the COX-2 inhibitors, similar to other NSAIDs, cause

qualitative changes in urinary prostaglandin excretion, glomerular filtration rate, and

sodium retention. (Brater et ai, 2001). Thus, COX-2 may play a role in physiological

renal functions.

Ovulation, the process by which oocytes are reieased from the preovulation

follicle in the ovary, is accompanied by induction of prostaglandin synthesis as a

consequence of the LII surge. This marked response ied to the first observation of

COX-2 induction during a normal physiological event. The induction of COX-2 is

necessary for the successful rupture of the follicie, probabiy mediating directiy the

generation or activation of proteolytic enzymes necessary for this process (Isafriri,

1995). Afier fertilization, COX-2 appears to mediate the embryo-uterine interactions

during implantation. COX-2 nuil mice show multiple failures in reproduction ftinction,

inciuding ovulation, fertilization, implantation, and decidualization, underscoring the

multiple roies of PGs during these processes (Lim et ai, 1997).

Inflammation and arthritis: Studies using animal modeis of inflammation

artbritis have provided evidence that increased expression of COX-2 is responsible for

increased prostaglandin production seen in inflamed joint tissues (Anderson et ai,

1996). COX-2 induction lias been observed in human OA-affected cartilage (Amin et

ai, 1997). Other studies found that COX-2, not COX-1, expression was elevated in a

disease-related pattem in synovial tissues from patients with rheumatoid arthritis (RA),
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ankylosing spondylitis, psoriatic arthritis, and OA (Siegie et ai, 1998). The

proinflammatory agents IL-1, TNF-a and LPS, as well as the growth factors TGf-j3,

EGF, PDGF, and fGF, have ail been shown to induce COX-2 expression in primary

culture ceils derived from human synovial tissue or catilage. On the other hand, the

anti-inflammatory cytokines IL-4 and IL-13, as well as the immunosuppressive

glucocorticoids, are shown to decrease COX-2 levels (Crofford, 1997).

COX-2 enzymes also play functional roles in tumorigenesis. High levels of

constitutive expression of COX-2 have been found in various cancer ceils and tissues,

and studies employing overexpression, antisense suppression, and specific inhibitors of

COX-2 have demonstrated that COX-2 contributes to the progression of severai types of

cancer. Both human and animal colorectal tumors express high ievels of COX-2

(Eberhart et ai, 1994). There is a reduction in the relative risk of colorectai cancer in

individuals taking N$AIDs (Mamett, 1992). Suppression of tumorignesis in COX-2 (-I

) mice has confirmed epidemiological studies, demonstrating that N$AIDs suppress the

incidence of colon cancer (Oshima et ai, 1996). COX-2 may biunt the apoptotic

response in tumor cells and may play a roie in the regulation of angiogenesis associated

with neopiastic tumour celis (Tsujii et ai, 1998).

The cytoprotective actions of prostaglandin preventing gastric ulceration are

mediated by endogenous prostacyclin and PGE2, which reduce gastric acid production,

stimulate gastric fluid secretion, increase secretion of viscous mucus and exert a direct

vasodilator action on gastric mucosa. Classical NSAID use causes a variety ofproblems

in the gastrointestinai tract, including irritation and ulceration of the stomach lining.

The primary mechanism of NSAIDs in the treatment of inflammation is the inhibition

of both COX-1 and COX-2. COX-2 mediates the inflammatory response. An NSAID

that inhibits COX-2 seiectively should decrease inflammation but flot influence normal

physiologic functions and thus should cause fewer gastrointestinal side effects.

Selective COX-2 inhibitors are widely used. Rofecoxib and the novel COX-2 inhibitors

etoricoxib and valdecoxib have a higher degree of COX-2 selectivity than traditional

NSAIDs. However, rofecoxib induces thromboembolic adverse effects more frequently

than classical NSAIDs. Caution is warranted regarding the use of these drugs (Evensen

et al, 2005).
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11.4. PGE Synthase (PGES)

11.4.1. The MAPEG-supperfamiiy

A widespread superfamily MAPEG (membrane-associated proteins in

eicosanoid and glutathione metabolism) lias been defined according to enzymatic

activities, sequence motifs, and structural properties. A total of 136 proteins belonging

to the MAPEG superfamily were found in database and genome screenings. Ail

MAPEG proteins have similar molecular masses of 16-1$ kDa and, except 5-

lipoxygenase-activating protein (FLAP). Ail MAPEG proteins have similar three

dimensionai and membrane-spanning topographie properties (Jakobsson et ai, 2000).

Multiple sequence alignments of human MAPEG members reveal six strictly conseiwed

amino acids. The family consists of six human proteins including fLAP, leukotriene C4

(LTC4) synthase, microsomal glutathione $-transferase 1 (MG$T1), MGST2, MGST3,

and MGST1-like 1 (MGST1-L1 or PGES). The genes encoding these proteins ail reside

on different chromosomes. In addition, several nonmammalian members have been

identified, including those from plants (Arabidopsis thaliana, Oryza sativa, and Ricinus

communis), fungi (Aspergillus nidulans), and bacteria (Synechocystis sp. [SynMGST],

Escherichia cou, and Vibrio cholerae)( Jakobsson et ai, 2000).

On the basis of the multiple sequence alignments, MAPEG family can be

subdivided into four subgroups. The first subfamily consists of the members FLAP,

LTC4 synthase, and MGST2 and is important for leukotriene biosynthesis. The second

subfamily consists ofMGST3 together with the members found in plants and flingi. The

third subfamily is composed of the proteins identified in bacteria (E. cou and

V. cholerae). The human MGST1 and MGST1-L1 proteins constitute a fourth subgroup

possibly involved in cytoprotection. (Jakobsson et ai, 2000).

11.4.2. PGES identification

Metabolism of AA by COX yields only the unstable intermediary PGH2, which

can be further metabolized into PGE2, PGD2, PGf2, PGI2, or TXA2. The enzyme

responsible for the isomerization of PGH2 into PGE2 is PGES, the terminal enzyme

responsible for PGE2 synthesis. PGE$ activity, in most cases glutathione (G$H)

dependent, bas been detected both in microsomal and cytosolic fractions of various

ceils, more than one form of PGES exist. At least four distinct PGES isoforms have
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been identified, including cytosolic PGES (cPGES), GST.t, microsomai PGES-1

(mPGES-1), and mPGES-2.

Human mPGES-1 is a member of the MAPEG superfamily. It was initialiy

discovered and identified as a homologue of MGST1 with 38% identity on the amino

acid sequence level. The protein thus was referred to as MGST1-iike 1(MGST-L1). The

same protein was also identified as a p53-induced gene and referred to as PIG12. In

1999, Jakobsson et al first reported mPGES-1 (Jakobsson et ai, 1999). The recombinant

human microsomal GST-l-like 1 (MGST1-L1) bas an ability to catalyze the coversion

of PGH2 to PGE2 with strict substrate specificity. Then this protein was cloned from

several animal species and shown to represent a long-sought membrane bound form of

PGES. This enzyme now is called mPGES-i. Soon after mPGES discovery, two

cytosolic forms of PGES were purified and identified. One enzyme termed cytosolic

PGES (cPGES). cPGES is a 23 kDa cytosolic protein and identical to p23, a heat shock

protein 90 (Hsp9O)-associated protein (Tanioka et ai, 2000). The other is a member of

the ,t form of the cytosoiic GST family. In 2002, the second form of membrane

associated PGES, termed mPGES-2 was identified.

11.4.3. mPGES-1 gene structure and catalytic function:

The primary structures of mPGES- 1 proteins of various animal species reveai a

high degree of sequence homology ($0%). mPGES-1 aiso shows significant homology

with other MAPEG superfamily proteins, including MGST-1, MGST-2, MGST-3,

FLAP and LTCS, with the highest homology being found with MGST-1 (‘-40%)

(Jakobsson et al, 1999).

The gene for human mPGES-1 maps to chromosome 9q34.3 is divided into

three exons and two introns, and span 14.8 kb. Exon-intron junctions follow the GT

AG mie except for the 5’-site of intron 2, which consists of GC instead of GT. The

intron sizes are 4.2 kb and 8.8 kb respectively (Forsberg et ai, 2000). The gene structure

of mPGES is similar to its ciosest relative MGST1 with regards to exonlintron borders

and differs from other MAPEG members that contain additionai exons. The cDNA for

human mPGES-1 encodes a protein composed of 152 amino acid residues (—16 kDa).

Mutation of Argi 10, in mPGES-1, which is the residue strictly conserved in ail
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MAPEG proteins, abrogates its catalytic activity, indicating an essentiai role of this

residue (Murakami et ai, 2000). The cofactor GSH is absoiutely required for mPGES-1

enzymatic activity. GSH invoives in detoxification reactions with hydrogen peroxide

and organic peroxides and aiso has a stabilizing effect on solubiiized mPGES-1.

mPGES-1 activity was inhibited by the COX-2 inhibitory NSAffl NS-398 and

sulindac sulfide with 1C50 values of 20,80 .iM. rnPGES-1 was aiso inhibited by MK

866, an inhibitor ofFLAP and LTC4 with 1C50 values of 1-5 tM (Mancini et ai, 2001).

MK-866 binds to the AÀ-binding region of fLAP, which is highiy conserved in LIC4

and mPGES-1 and couid possibly be involved in the binding ofeicosanoids (Mancini et

al, 2001). furthermore, 15d-PGJ2 and some poiyunsaturated fatty acids were also

reported to inhibit the activity ofmPGES-1 (Quraishi et ai, 2002). mPGES-1 activity is

flot inhibited by ciassicai cytosolic GST inhibitor, in contrast to cPGES.

11.4.4. features ofmPGES-1 promoter

The human mPGES-1 promoter is GC rich and lacks a TATA box at a

functionai site and contains numerous potentiai transcription factor binding sites,

inciuding two GC-boxes, two tandem Barbie boxes and an AHR (aryl hydrocarbon

response element). The putative promoter region of mPGES-1 was shown to be

transcriptionaiiy active and was inducted by IL-1 f3 and down-reguiated by

Phenobarbital (forsberg et ai, 2000).

The mouse mPGES-1 promoter contains severai transcription factor binding

sites (figure 5), including two tandem GC-boxes, C/EBPa and -f3, AP-1, and three

GRE and two progesterone receptors (PR). The tandem GC box sequences in the

mPGES promoter play a major role in reguiating its inducibie transcription. Egr-1

(eariy growth response factor-1), an inducibie zinc finger protein that recognizes the

GC-rich consensus DNA sequence 5’-GCG(TIG) GGGCG-3’ binds to the proximal

GC box in the mPGES promoter region and faciiitates inducibie transcription of the

mPGES gene. Egr-1 gene is rapidly and transientiy induced by a variety of stimuli

(TPA, cytokines, and LPS) or celiular stresses. Cytokine-induced mPGES-1

expression was reguiated by Egr-1 (Naraba et ai, 2002).
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The sequence of the mouse and human mPGES promoters (-1 to —640) is oniy

48% homologous, but, the homology between them around the tandem GC boxes (-70

to —124) is relativeiy high 78%. Thus, the tandem GC boxes are critical for

transcriptional activation of both the human and the mouse mPGES gene (Naraba et

ai, 2002).

EgT-1

‘4,

mPGES-1 gene

Figure 5. Regulatory eiements in the mouse mPGES-1 promoter. Egr-1

binds to the proximai GC-box and triggers mPGES-1 transcription

C/EBPa GR y-i GR GR,PR GC box
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11.4.5. Expression and regulation ofmPGES-1

Tissue distribution of mPGES-1 in different species: The human tissue

distribution was analyzed by Northem biot analysis. High expression of mPGES-1

mRNA was detected in A549 and HeLa cancer celi unes. Intermediate level of

expression was demonstrated in placenta, prostate, testis, mammary gland, and bladder

whereas low mRNA expression was observed in severai other tissues (Jakobsson et ai,

1999); Northem biotting of mPGES-i in various mouse tissues revealed that the

mPGES-1 mRNA was expressed intenseiy in the epididymis and weakiy in the lung,

spleen, skin, kidney, colon, and brain. No mRNA for mPGES-1 was detectabie in the

utems, ovary, or oviduct of female mouse reproductive organs (Lazams et ai, 2002); A

low basai expression of mPGES-1 had aiso been found in several rat tissues, but high

constitutive expressions were seen in the stomach and in the thymus of rat (Mancini et

ai, 2001). The distribution ofmPGES-1 mRNA expression was aiso studied in various

bovine tissues by RT-PCR/Southem blot. Resuits showed that leveis of mPGES

transcripts varied across tissues. Levels of mPGES mRNA were highest in the seminal

vesicle and in a preovuiatory foilicie obtained 24 h after HCG treatment, moderate to

high in the stomach, intestine, pituitary and iiver, and reiativeiy iow in other tissues

tested (Filion et ai, 2001). mPGES-1 may be invoived in normal physioiogy.

The mPGES-1 was induced in vitro by various proinflammatory stimuli

inciuding LPS, IL-1f3, TNF-a, Ç3-amyloid, and phorbol 12-myristate 13-acetate (PMA).

Various proinflammatory stimuli have been shown to co-ordinately induce mPGES-1

and COX-2 in severai types of culture ceiis, often associated with increased PGE2

production. Up-regulation of mPGES-1 was previously reported to occur in a human

lung carcinoma-derived A549 celi une after treatment with IL-113 (Forsberg et ai, 2000)

and in human dermal fibroblasts and vascular smooth muscle ceils afier stimulation

with IL-113, TNF-a, PMA, and LPS (Soier et ai, 2000). Up-regulation ofmPGES-1 aiso

occurred in human orbital fibroblasts afler stimulation with IL-113 and TNP-a (Han et

ai, 2002) and in human rheumatoid synovial ceils and OA articuiar chondrocytes afler

treatment with IL-lB and TNF-a (Kojima et ai, 2004). Moreover, the induction of

mPGES-l was demonstrated to take place in rat and mouse osteoblasts and peritoneai

macrophages after stimulation with IL-113, TNF-u, and LPS (Murakami et ai, 2000), in



32

rat colon upon LPS stimulation (Mancini et ai, 2001) and in rat astrocytes after

stimulation with beta-amyloid (Satoh et ai, 2000).

The induction of PGES has aiso been reported recentiy in two inflammatory

modeis in vivo, including LPS-induced pyresis and adjuvant-induced arthritis (Mancini

et ai, 2001). Induction of PGES occured in tissues from Harlan Sprague-Dawley rats

after LPS-induced pyresis in vivo. Rat PGES was up-reguiated at the mRNA level in

iung, colon, brain, heart, testis, spleen, and seminai vesicies. PGES and COX-2 were

also up-regulated to the greatest extent in a rat modei of adjuvant-induced arthritis. The

RNA induction ofPGES in iung and the adjuvant-treatedpaw correiated with a 3.8- and

16-foid induction of protein seen in these tissues by immunoblot anaiysis (Mancini et

al, 2001). furthermore, the reguiation ofPGES under physiologicai conditions had been

described by using the bovine preovuiatory foiiicle modei, the results indicated that

PGES expression was not constitutive in foilicular ceils but was induced by

gonadotropins prior to foliicuiar rupture (Fiiion et ai, 2001).

The expression of mPGES is stimuius-inducible and is downreguiated by anti

inflammatory glucocorticoids. mPGES-1 expression induced by cytokine was reversed

by dexamethasone in A549 ceiis. The upregulation of mPGES-1 expression by IL-13

can be blocked by dexamethasone in human orbitai fibroblasts (Han et ai, 2002).

Human synoviocytes from patients with RA express low levels of mPGES-1 and

mPGES-1 mRNA and protein expression were significantly upregulated by IL-1f3 and

dexamethasone inhibited mRNA and protein expression for mPGES-1 in IL-1f3

stimulated ceils (Kojima et ai, 2002). Dexamethasone markedly suppressed the LPS

induced expression of mPGES in rat and mouse macrophages and osteobiasts

(Murakami et ai, 2000). Morever, COX-2-seiective inhibitor NS-398, SC58 125,

rofecoxib, or meloxicam prevented IL-1E3-induced mPGES-i expression and this

reduction of expression was reversed by PGE2 (Kojima et ai, 2003). PPAR-y and

PPARy iigands are also invoived in mPGES-1 reguiation. PPARy iigands have been

shown to inhibit a number of inflammatory events. PPARy iigands inhibited the

expression of the inducible nitric oxide synthase, MMP- 1, MMP- 13, and COX-2 in

human synovial fibrobiasts and chondrocytes (Fahmi et ai, 2002). Our previous study
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showed that PPARy ligands inhibited the expression of mPGES in human synovial

fibroblasts (Cheng et ai, 2004).

11.4.6. mPGES-1 implication in physiology and pathology

mPGES-1 is an inducible perinuclear enzyme that is functionally linked with

COX-2 in marked preference to COX-l. COX-2 and mPGES-1 are essential

components for delayed PGE2 synthesis, which may be linked to inflammation, fever,

osteogenesis, and even cancer. Recent reports demonstrated that mPGES-l is an

important enzyme in the production of PGE2 related to the development of chronic

inflammation in patients with arthritis.

Inflammation: The classical signs of acute inflammation are pain, swelling, fever, local

reddening and loss of function. PGE2 is a potent mediator of inflammation. Induction of

mPGES following proinflammatory stimuli both in vitro and in vivo strongly suggested

that this terminal enzyme is an essential component for PGE2 production during the

inflammatory response. mPGES-1 has been shown to be colocaiized with COX-2 in

mouse peritoneal macrophages stimulated with LPS (Murakami et ai, 2000) and

mPGES-l is overexpressed in synovial tissues from patients with RA (Westman et ai,

2004). Animai models ofpyresis have been used to examine the role ofmPGES-1 in

fever. mPGES-1 and COX-2 co-expressed in the perinuclear region of brain

endothelial ceils of rats during LPS induced pyresis fever which was associated with

increase in PGE2 levels in the cebrospinal fluid (Yamagata & Matsumura, 2001). Mice

with targeted mPGES-l gene disruption do not produce PGE2 and fail to develop fever

in response to LPS (Engblom et ai, 2003). These findings indicated that central PGE2

synthesis by mPGES-1 is a general and critical mechanism for fever during infectious

and inflammatory conditions. In addition, inflammatory pain hypersensitivity was

reduced significantly in mPGES-1-deficient mice relative to WT mice, suggesting that

mPGES-1 is involved in mediating acute pain during an inflammatory response (Kamei

et ai, 2004).

Arthritis: The role of mPGES-l in arthritis was recently elucidated. The rat adjuvant

induced arthritis tATA) model is one of the well-known animal modeÏ of human RA

that lias been used for the preclinical development of NSADs and COX-2 inhibitors.

The expression of mPGES-1 lias been examined in a rat model of AIA. Mancini et al
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utiiized this model to detect mPGE-1, and 5 days afier adjuvant treatment, a significant

increase in the inducibie mPGE-1 was detected in treated paw and no mPGES-1 was

detected in the naive (vehicle-treated) rat paw (Mancini et ai, 2001). Similarly, in the

same animai model, another report confirmed that the profile of induction of mPGES- 1

(50- to 80-fold) in the adjuvant-treated paw was similar to that of COX-2 by both RNA

and protein analysis. The induction ofmPGES-1 was detected on day 1 and persisted to

day 25 foiiowing adjuvant treatment in the primary paw. The maximum induction was

measured at days l—3 with a 60- to 80-fold increase of mPGES-1 as compared with the

nonadjuvant-treated paw at time zero. These resuits show that mPGES-1 is up

reguiated throughout the development of AJA and suggest that it piays a major role in

the eievated production ofPGE2 in this modei (Claveau et ai, 2003).

The invoivement of mPGES-1 in arthritis was aiso demonstrated in a collagen

antibody-induced arthritis (CAlA), another model for human RA. In CAlA model, the

arthritic symptoms were apparentiy mild in mPGE$-1 KO mice compared with

replicate WT mice. Moreover, bone destruction and juxtaarticuÏar bone ioss in CAlA

were less obvious in mPGES- 1 Imockout mice than in repiicate WT mice. Coliectively,

these resuits provide unequivocal evidence that mPGES-1 contributes to the formation

of PGE2 involved in pain hypersensitivity and inflammation (Kamei et ai, 2004).

furthermore, induced expression ofmPGES-1 was seen in human rheumatoid synovial

celis and OA articuiar chondrocytes, afier treatment with IL-lB and TNF-Œ (Kojima et

ai, 2004). Intracellular mPGES-1 staining was observed in synoviai membranes of RA

patients studied. Specifically, strong expression of mPGES-1 was detected in synoviai

lining ceiis. The demonstration of mPGES-1 expression in synoviai tissues from

patients with RA suggests a roie for mPGES-1 in the RA disease process (Westman et

aÏ, 2004). Taken together, it can be conciuded that mPGES-1 is invoived in various

types of inflammation, including fever, pain hyperaigesia, and inflammatory arthritis.

Tumorigenesis: PGE2 is one of the key prostanoids responsible for tumorigenesis. Both

COX-2 and mPGES-1 are needed for efficient PGE2 biosynthesis. Transfection of

mPGE$-1 in combination with COX-2 into HEK293 celis ieads to cellular

transformation, which is manifested by aggressive growth, pilling up and aberrant

round-shape morphoiogy (Murakami et ai, 2000). In another study, co-expression of

mPGES-1 and COX-2 resulted in colony formation in sofi agar culture and tumor
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formation when implanted into nude mice (Kamei et ai, 2003). HCA-7, a human

colorectal adenocarcinoma ceil une that displays COX-2- and PGE2-dependent

proliferation, expressed both COX-2 and mPGES-1 constitutiveiy. Treatment ofHCA-7

celis with an mPGES-l inhibitor or antisense oligonucleotide attenuated PGE2

production and ceil proliferation. These resuits suggest that aberrant expression of

mPGES-1 in combination with COX-2 can contribute to tumorigenesis. Furthermore,

the expression ofmPGES-1 is markedly elevated in several types of cancer, such as in

colon cancer, lung cancer and eridometrial carcinoma.

Reproduction: Ovulation and fertilization are key processes in female reproduction,

which is regulated by several hormones including gonadotropins. PGE2, dominant

prostanoid in the ovary, which play a central role in the inflammatory reaction, are also

key mediators of ovulation. The predominant and obligatory role of PGE2 is evidenced

from the anovulatory phenotype observed in mice deficient for the PGE2 receptor EP2

(Tilley et ai, 1999). In bovine female reproductive organs, mPGES-1 is highly

expressed in granulosa celi layer of follicles afler stimulation with gonadotropins.

Induction of mPGES-1 by gonadotropins in the same ceil type directly parallels the

induction of COX-2. This study provided the first evidence of a marked up-regulation

ofmPGES-1 in the hours just prior to ovulation, a process during which PGE2 synthesis

is obligatory (filion et ai, 2001). In monkey granulosa celis, expression of mPGES-1

mRNA and protein by granulosa celis ofperiovulatory follicles increased in response to

HCG (human chorionic gonadotrophin) administration, peaking just before the

expected time of ovulation. Monkey granulosa cells also expressed mPGES-2 and

cPGES mRNA, but mRNA levels did not change in response to HCG administration.

These data suggest that mPGES-1, a gonadotropin up-reguiated PG synthesis enzyme,

may be the primary PGE$ responsible for the increased follicular PGE2 levels

necessary for primate ovulation (Duffy et ai, 2005). mPGES-1 is also constitutively

expressed in male reproductive organs at high levels. In male mice reproductive tract,

the expression ofmPGES-1 increased from the testis to the cauda epididymis and was

highest in the vas deferens (Lazarus et ai, 2002).

Bone metabolism: Bone remodelling, comprising resorption of existing bone and de

novo bone formation, is required for the maintenance of a constant bone mass. PGs,

particularly PGE2, are produced by bone and have potent stimulatory effects on bone
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resorption and bone formation. They stimulate the differentiation of precursors of both

the bone osteociasts and the bone osteobiasts, they stimulate bone resorption in vitro,

and stimulate bone formation when PGs are administered exogenously in vivo (Pilbeam

et ai, 1996). The production of PGE2 in bone is highiy reguiated by severai

proinflammatory cytokines. The muitifunctionai reguiation is probably mediated by

different PG receptors. Bone resorption caused by proinftammatory stimuli in vivo is

impaired in mice deficient in PGE2 receptor EP4 (Sakuma et ai, 2000). In cuitured rat

and mouse osteobiastic ceils, proinflammatory cytokines induce mPGES-1 expression,

which occurs in parailel with the induction of COX-2 and the generation of PGE2

(Murakami et ai, 2000). In the mouse cocuiture system of osteobiasts and bone

manow, an antisense oiigonucieotide blocking mPGES expression inhibited not oniy

PGE2 production, but aiso osteociastogenesis and bone resorption stimuiated by the

cytokines, which was reversed by addition of exogenous PGE2 (Saegusa et ai, 2003).

These observations suggest that mPGES- 1, acting downstream of COX-2 is invoived in

bone metabolism.

11.4.7. cPGES

cPGES is a 23 kDa cytosoiic protein that is identical to p23, a heat shock

protein 90 (Hsp9O)-binding protein, which has been originally implicated as a cofactor

for the moiecuiar chaperone function of Hsp9O. cPGES is highiy conserved among

animai species (>95%). The murine cPGES gene spans approximately 22 kb and

consists of eight exons. The cPGES gene promoter is GC-rich and contains many SPi

sites but iacks an obvious TATA box motif (Zhang et ai, 2003). cPGES enzymes

beiong to the GST superfamiiy and require GSH as an essentiai co-factor for its

activity. The homology between cPGES and other cytosoiic GSTs is iow (20%), but

they ail share a conserved tyrosine near the N-terminus (Tyr9), which is known to be

criticai for the activity of cytosoiic GSH S-transferase, was essential for PGES activity

(Tanioka et ai, 2000).

The expression of cPGES/p23 is constitutive and is unaitered by

proinflammatory stimuli in various celis and tissues, except that it is increased

significantly in rat brain afier LPS treatment. cPGES is mainly localized to the
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cytosol, but can move to the endoplasmatic reticulum after Ca2 -ionophore challenge.

Cotransfection and antisense experiments suggest that cPGES is firnctionally coupled

to COX-1 for the generation of PGE2 particuiariy during the immediate PGE2

biosynthetic response to increasing Ca2. Thus, functionai coupling between COX-1

and cPGES/p23 may contribute to production of the PGE2 that plays a role in

maintenance of tissue homeostasis (Tanioka et ai, 2000).

11.4.8. mPGES-2

A novel type of mPGES (termed mPGES-2), which was originally purified

from the microsomai fraction of bovine heart (Watanabe et ai, 1999), has been cioned.

The gene for human mPGES-2 maps to chromosome 9q33-34. The cDNA encodes a

41 kDa protein that contains an N-terminai hydrophobic region and the consensus

region of glutaredoxin and of thioredoxin. The mPGES-2 enzyme is activated by

various SH-reducing reagents and is non-specific for GSH. Moreover, the mPGES-2

mRNA distribution was high in the heart and brain, but not expressed in the seminal

vesicles. In several ceil unes, mPGES-2 promoted PGE2 production via both COX-1

and COX-2 in the immediate and delayed responses with modest COX-2 preference.

In contrast to the marked inducibiiity of mPGES-1, mPGES-2 was constitutively

expressed in various celis and tissues and was not increased appreciably during tissue

inflammation or damage (Murakami et ai, 2003). Collectively, mPGES-2 is a unique

PGES that can be coupled with both COXs and may play a role in the production of

the PGE2 involved in both tissue homeostasis and disease.



j

III. PPARy and 15d-PGJ2

111.1. Peroxisome proliferator-activated receptors (PPARs):

PPARs are transcriptional factors belonging to the ligand-activated nuclear

hormone receptor super-family, which includes the steroid, retinoid, and thyroid

hormone receptors. To date, three major type of PPAR, encoded by separate genes,

have been identified; they are PPARa (NR1C1), PPAR/ (NR1C2), and PPARy

(NR1 C3). The PPARs dispiay different tissue distributions and appear to serve different

biologicai functions. Natural fatty acids and the fibrate class of hypolipidaemic drugs

are known activators of PPARs (Wahii et ai, 1995). The actions of PPAR were

originally thought to be crucial for controlling lipid and glucose metabolism. Recent

studies have shown that PPAR aiso reguiates inflammatory responses, immune

response, ceil growth, differentiation, proliferation and apoptosis (Escher & Wahli,

2000; Corton et ai, 2000). In addition, PPAR is also invoived in the regulation of

various types oftumours, inflammation, atherosclerosis, obesity and diabetes.

The nuclear receptors have a highly conserved moduiar structure organized into

ftinctionai domains. Simiiar to other nuclear receptors, ail three PPAR isoforms contain

four major functionai domains caiied A/B, C, D and E/f. The N-terminai AIB domain

contains a ligand-independent activation function 1 (AF-1) responsible for the

phosphorylation of PPAR. The DNA binding domain or C domain promotes the

binding of PPAR to the peroxisome proiiferator response element (PPRE) in the

promoter region of target gene. The D site is a docking domain for cofactors. C-

terminal E/f domain inciude Jigand-binding domain responsible for ligand specificity

and activation of PPAR binding to the PPRE, which increases the expression of

targeted genes and the ligand-dependent transactivation domain (Af-2 domain). Gene

mapping studies demonstrated that these three PPAR isoforms are encoded by distinct

genes mapping to human chromosome 22, 6, and 3, respectively (Desvergene & Wahii,

1999).

The gene transcription mechanism is identical in ail PPAR subtypes. The

process of transcription begins with the binding of iigands (endogenous or exogenous)

to the PPAR receptor. Ligand-bound PPAR heterodimerises with retinoid X receptors

(RXR), a subfamiiy of molecules within the nuclear receptor superfamily that are



j

activated by 9-cis retinoic acid, this heterodimer bind to specific PPRE, located in the

promoter regions of target genes (Ijpenberg et ai, 1997). PPRE consists of a direct

repeat of hexameric core recognaition elements spaced by lbp (DR1,

5’AGGTCANAGGTCA-3’). Afier activation of the PPAR]RXR heterodimer at the

PPRE, the PPAR!RXR compiex can recruit diverse nuclear receptor co-factors

(coactivators and corepressors) that modulate transcriptional activity of PPAR and

RXR receptor heterodimer. This resuits in the expression and/or repression of a variety

of genes whose promoters contain PPRE. In addition to RXR, a number of PPAR

interactive proteins (cofactors) have been shown to associate with PPAR such as

p300/CBP, the steroid receptor coactivator-1, c-jun p65, and nuciear factor of activated

T ceils (Nf-AT). The expression ievel of PPAR receptors, the chemicai properties and

local concentrations of PPAR-specific ligands, and the avaiiabiiity of these co-factors

ail contribute to the biologic effect of PPAR activation or inactivation.

Three PPARs are differentiaiiy expressed among tissues. PPARŒ is highiy

expressed in tissues that possess high mitochondriai and f3-oxidation activity, including

liver, renai cortex, intestine mucosa, and heart. PPARy is highly enriched in adipose

tissue, but lower expression in urinary biadder, intestine, kidney, heart, iiver, and

vasculature. PPARI3/ seem to be ubiquitously expressed at low leveis in many tissue

(Mukherjee et ai, 1994). In addition, PPAR is present in the joint connective tissue ceils

including chondrocytes, synoviocytes and osteoclasts.

111.2. PPAR ligand

The iigand-binding domains of the three PPAR isotypes have sufficientiy

divergent amino acid sequences to allow some ligand specificity. PPAR ligands are

classified in synthetic iigands, such as hypoiipidemic, anti-inftammatory and insulin

sensitizing compounds and in naturai iigands, such as medium and iong-chain fatty

acids and eicosanoids. Although many fafty acids are capable of activating ail three

PPAR isoforms, some preference for specific fatty acids by each PPAR has been

demonstrated. Synthetic iigand, the hypoiipidemic agent WY-14643 is potent ligand for

activating PPARŒ. This compound does not bind to or activate PPARy or f3 and

therefore serves as a useful pharmacologicai tool to selectively modulate PPARŒ
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activity. Endogenous AA COX metabolite prostacyclin, the linoleic acid 15-

lipoxygenase-1 product 13-S-hydroxyoctadecadienoic acid, and synthetic compounds

including L-165041 and GW2433 have been found to be selective PPARf3/ Iigands.

(Shureiqi et ai, 2003).

Natural PPARy Iigands inciude: polyunsaturated fafty acids such as linoleic

acid, AA and eicosapentaenoic acids; oxidized lipids such as 9-hydroxy-

octadecadienoic acid (9-HODE), 13 HODE and I 5-hydroxyeicosatetraenoic acid (15-

HETE); and PGD2 metaboiite 1 5d-PGJ2 which was the first endogenous PPAR’y ligand

identified. This prostaglandin is currentiy widely utilized as a naturaily occurring

PPARy activator. Synthetic PPARy ligands antidiabetic thiazolidinediones (TZD)

including troglitazone, ciglitazone, piogiitazone and rosigiitazone are potent PPARy

selective agonists and very effective in improving glycemic control via insuiin

sensitization (Lehmann et ai, 1995). Two of these drugs, rosiglitazone and pioglitazone,

are in widespread clinical use for the treatment of type 2 diabetes. In addition to TZD,

other synthetic compounds have been identified as PPARy agonists. Several NSAID,

such as indomethacin, ibuprofen, fenoprofen, and flufenamic acid, bind and activate

PPARy and promote adipocyte differentiation (Lehmann et ai, 1997).

111.3. 15d-PGJ2

111.3.1. 15d-PGJ2 synthesis

The cyciopentenone prostaglandins PGJ series contain a cyclopentenone ring

structure, which is characterized by the presence of a chemicaliy reactive a, f3-
unsaturated carboyl. The members of the cyclopentenone prostaglandin famiiy have

anti-infalmmatory, anti-neoplastic, anti-viral activities. In contrast with the PGs, which

elicit a biological response by binding to G-protein coupled receptors, cyclopentenone

prostaglandin PGJ2 interacts with other specific cellular targets, including signailing

molecules and transcription factors.

Synthesis of 1 5d-PGJ2 begins with the sequential action of three classes of

enzymes. AA generation by PLA2 initially regulates synthesis of ail PGs. AA then can

be oxidized by COXs, yielding PGH2, which is in mm, sequentially converted to

various PGs. PGD7 is generated by the action of hematopoietic and /or lipocaline PGD2
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synthases (H-PGDS, L-PGDS). PGD2 undergoes chemical dehydration, losing water to

form the cyclopentenone prostaglandin PGJ2. The final product of this pathway, PGJ2 is

then nonenzymatically converted into 1 5d-PGJ2. However, no specific 1 5d-PGJ2

synthase has been identified. Rather, 1 5d-PGJ2 is a derivative of PGD2, and its synthesis

initialiy depends upon the enzymatic machinery for PGD2 generation.

15d-PGJ2 was initially identified as a product of albumin-cataiyzed

transformation of PGD2 in vitro (Fitzpatrick & Wynalda, 1983). To establish a

physiological role for 15d-PGJ2 or PGJ series, one needs to demonstrate that they exist

in vivo in sufficient quantities to elicit a biological response. There are some evidences

that the PGJ series do exist in vivo. For example, previous studies showed that delta 12-

PGJ2, a downstream metabolite of PGD2 is present in significant quantities in human

urine. It is formed naturaiiy in the body and excreted as a urinary PGD2 metabolite. In

1999, Giiroy et al. identified 1 5d-PGI2 in inflammatory fluids by using an EIA method

and demonstrated that levels of this compound increase during the resolution phase of

inflammation. Recent study by Shan et al demonstrated the presence of 1 5d-PGJ2 in

arthritic synovial fluids, though at picomolar levels, using a recently- deveioped ELISA

assay (Shan et ai, 2004). Much excitement was generated in 1995 when this compound

was found to be a high affinity ligand for the PPARy. It is crucial to note that PGD2 is

among the most abundant prostaglandins in synovial fluid (Pietiia et ai, 1984).

Therefore, it is likely that PGD2 derivatives 1 5d-PGJ2 are present in sufficient amounts

to activate PPARy and act as negative feedback ioop for inflammation in vivo.

111.3.2. PGD synthase and PGD2

PGD2 is naturally and rapidly converted into PGJ2 by noenzymatic pathways,

and PGJ2 itself is rapidly metabolized to A’2 —PGJ2 and 1 5d-PGJ2 afler elimination of

one or two water moiecules. Therefore, PGD synthase could be as PGJ2-synthesizing

enzyme. PGD2 is formed abundantly in several tissues, most notably in mast cells and

in the brain. PGD synthase catalyzes the isomerization of PGH to PGD, which acts as

an endogeous somnogen and an allergic mediator. There are two distinct types of

PGDS in mammals: One of them is lipocalin-type PGDS (L-PGDS) localized in the

central nervous system, male genitals, and heart; and the other is hematopoietic PGDS



42

(H-PGDS) in mast celis, antigen-presenting celis and Th lymphocytes. L-PGD$ is the

same as beta-trace, a major protein in human cerebrospinal fluid, and is also secreted

into the seminal plasma and plasma. The L-PGDS concentration in various body fluids

is useful as a marker for various diseases such as renal failure and coronary

atheroscierosis. H-PGDS, a cytosolic enzyme, is a member of the Sigma class of GST.

It is H-PGDS that controls PGD2 production in various peripheral tissues. Recent

studies reveled that human articular chondrocytes constitutively express L-PGDS and

that proinflammatory cytokines up-reguiate H-PGDS mRNA expression in these celis

(Shan et al, 2004).

111.3.3. PPARy-dependent 1 5d-PGJ2 actions

Prostaglandins of the J2 series form in vivo and exert effects on a variety of

biological processes. While most of PGs mediate their effects through G protein

coupled receptors, the mechanism of action for the J2 series of PGs remains unclear. In

1995, 15d-PGJ2 was identified as both a PPARy ligand and an inducer ofadipogenesis.

Thus, adipogenic prostanoids initiate key transcriptional events through a common

nuclear receptor signaling pathway and suggest a novel mechanism of action for PGs of

the ‘2 series (Forman et al, 1995). Although the affinity of 1 5d-PGJ2 for PPARy is

significantly lower then that of classical steroid hormones for their cognate intracellular

receptors, it represents the highest affinity natural ligand for PPARy identified to date.

The binding of ligand 1 5d-PGJ2 to PPARy results in the expression andlor repression of

a variety of genes whose promoters contain PPRE. The LPS induced transcription

responses of AP-1, NF-KB and STAT1 can be repressed by 15d-PGJ2 in PPARy

dependent mariner tRicote et ai, 1998). 15d-PGJ2 represses the COX-2 transcription

gene via PPARy, thereby exerting a negative feedback control on its own biosynthesis.

On the other hand, 1 5d-PGJ2 has been shown to enhance gene expression such as TNF

a, IL-6 and IL-8. The mechanism of transcriptional activation involves the recruitment

of coactivator complexes to the promoter. Altematively, the receptor-dependent

transcriptionai repression of genes, involves negative reguiation of the activity of other

transcription factors such as AP-1 and NF-icB.
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111.3.4. PPARy-independent 1 5d-PGJ action

There are numerous reports demonstrating PPARy dependent mechanisms of

action of I 5d-PGJ2, but there are also experiments showing a PPARy-independent

action of 1 5d-PGJ2 for instance, 1 5d-PGJ2 repressed iNOS promoter activity in celis

that did flot express PPARy (Petrova et ai, 1999). Comparison of the protency of

different PPARy ligands in inhibiting inflammatory gene expression in macrophages

showed that relatively high concentrations of TZD, which are considered highly

selective for PPARy, were needed to promote effects similar to those of the iess specific

PPARy iigand 1 5d-PGJ2, suggesting that PPARy independent mechanisms might be

invoived in these processes. Therefore, 15d-PGJ2 can have PPARy-independent actions.

At ieast two identified candidates can reasonably be suspected to mediate PPAR

independent actions: the PG receptors and the NF-icB system.

PG receptors: Uniike other PGs, 1 5d-PGJ2 has no known specific membrane receptor,

even though PGJ2 can signal through PGD2 receptor with the same potency as PGD2

itseif. Two PGD2 receptors have been identified: DP1 receptor and DP2 receptor (aiso

designated CRTH2, chemoattractant receptor-homologous moiecule expressed on T

heiper (Th)2 celis). CRTH2 differs from DP in its signal pathways: CRTH2 is coupied

with Gi-type G protein and DP is coupied with Gs-type G protein. PGD2 acts via the

DP1 receptor and Gs to activate adenyi cyclase and raise intraceliuiar cAMP leveis and

PKA activity. Several studies suggested that 15d-PGJ2 has a weak ligand affinity on

DP1 receptors in human neutrophiis, and in a human naturai killer ccli une (Zhang &

Young, 2002). PGD2 acts through the CRTH2 receptor and Gai and plays important

roies in allergic inflammation, through induction of chemotactic migration and /or

activation of Th2 ceils, eosinophils, and basophuis (Tanaka et ai, 2004). Resent studies

indicated that 1 5d-PGJ2 activates CRTH2 on eosinophils, increasing intraceilular

calcium fluxes with a potency nearly equal to that ofPGD2, the principal iigand for the

receptor (Monneret et ai, 2003). Thus, the DP receptors have a role in mediating some

ofthe PPARy-independent effects of 15d-PGJ2.

Nuciear factor-id3 (NF-KB) system: There is abundant evidence implicating NF-xB as

a major target for receptor-independent gene repression by 1 5d-PGJ2. NF-id3 is a

transcription factor, which resides in the cytoplasm in association with its repressor I-
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KB. In response to signaling by inflammatory cytokines, I-KB can be phosphoryiated by

the I-KB kinase (IKK), resuiting in the release of NF-icB and its migration to the

nucleus and activation of gene expression. 1 5d-PGJ inhibits NF-icB either by inhibiting

the I-KB kinase, thereby preventing I-KB degradation and nuclear entry ofNF-icB or by

directly interacting with NF-icB to inhibit binding of NF-icB to target DNA sequences.

One study demonstrated that 1 5d-PGJ2 repressed the activity of an NF-KB reporter

construct. Repression of this reporter occurred in the absence of PPARy, although the

effect was enhanced in the presence of 15d-PGJ2 tRicote et ai, 199$). This cleariy

indicated that NF-KB was repressed by 1 5d -PGJ2 via PPARy-dependent as well as

PPARy-independent mechanism.

Furthermore, COX-2 is under the control ofNF-KB and its expression is inhibited

by 1 5d-PGJ2. COX-2 is negativeiy regulated by 1 5d-PGJ2 via at least three routes, one

involving PPARy-mediated repression of NF-icB and the others resulting from a direct

action of PGs on the I-KB! NF-id3 system. Direct inhibition of NF-kB signalling by

1 5d-PGJ2 may contribute to negative regulation of prostaglandin biosynthesis and

inflammation (Straus et al, 2000).

It is now known that 1 5d-PGJ2 is both an endogenous PPARy ligand as weli as a

direct inhibitor of several other signal transduction pathways. The consequences of

these activities are complex, but are very likely to play a role in the prevention andlor

resolution of inflammation.

111.4. PPARy

To date, three spiice variants of the PPARy isoform, designated PPARy1,

PPARy2, and PPARy3 have been identified. PPAR expression is tissue dependent.

PPARy1 is found in a broad range of tissues, whereas PPAR72 is restricted to adipose

tissues. PPARy3 is abundant in macrophages, the large intestine and white adipose

tissue (Braissant et ai, 1996).
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IV. Proinflammatory cytokines

The term cytokine, or immunocytokines, was used initially to separate a group

of immunomodulatory proteins, called also immunotransmitters, from other growth

factors that modulate the proliferation and bioactivities of non-immune celis. Today the

term cytokine is used as a generic name for a diverse group of soluble proteins and

peptides, which act as humoral regulators at nano- to picomolar concentrations and

which, either under normal or pathological conditions, modulate the functional

activities of individual cells and tissues. Cytokines are soluble or cell surface molecuÏes

that play an essential role in mediating cell-cell interactions and regulate processes

taking place in the extracellular environment. Within tissues, cytokines exert their

effects through autocrine, paracrine, and juxtacrine action. Many growth factors and

cytokines act as cellular survival factors by preventing programmed cell death. The

cloning of cytokines through recombinant DNA technologies established the full

spectmm of the functional properties of the individual cytokines and pleiotropy of their

biologic activities.

Cytokines rarely exert their biological activities in isolation and most often they

act in concert with multiple other cytokines that may or may not be members of the

same family. The interaction of these structurally and functionally distinct factors in

highly ordered temporal and spatial sequence creates a cytokine network that ultimately

determines the response pattem within a given tissue. The integration of the activities

of the individual cytokines within the cytokine network provides a mechanism for

additive or synergistic interactions and system for regulating biological processes

through a balance of inhibitory and stimulatory effects. fi addition, the networks

provide a system for feedback regulation. The effects of cytokines on ceils may be

modulated by the induction of products that can act back on target cells to modulate

their function by autocrine or paracrine mechanisms.

It is believed that cytokines play an important role in the pathophysiology of

OA. They are closely associated with functional alterations in synovium, cartilage and

subchondral bone, and are produced both spontaneously and following stimulation by

the joint tissue ceils. They appear to be first produced by the synovial membrane and

diffused into the cartilage through the synovial fluid. They activate the chondrocytes,
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which in tum could produce catabolic factors such as proteases and proinflammatory

cytokines through auto- and parcrine mechanisms. In OA synovium, the synovial lining

celis are key inflammatory effectors.

The major cytokines believed to be involved in cartilage metabolism in OA

include: catabolic cytokines IL-1Œ, IL-113, TNF-Œ, IL-17, IL-18; oncostatin M;

regulatory cytokines IL-6 and IL-8; as well as inhibitory cytokines IL-4, IL-10, IL-13

and IL-1 receptor antagonist (IL-iRa). Several anabolic cytokines (growth factors) also

appear to be involved in this disease, such as TGF-F3, FGf, and insulin-like growth

factor (IGF).

IV.1. IL-13

Monocytes are the main source of secreted IL-1. They express predominantly

IL1-F3 while human keratinocytes express large amounts of IL-1Œ. Murine macrophages

display a transition from IL-1 F3 to IL-1 Œ production during maturation of monocytes

into inflammatory macrophages.

IL-1 f3 is synthesized as precursors of approximately 35 kDa (269 amino acids).

The mature proteins are generated by proteolytic cleavage by a number of proteases.

Active form ofILl-f3 is 17 kDa, 153 amino acids. IL1-1f3 encoded gene has length of

9.7 kb and comprise seven exons. Its mRNA has a length of 1.6-1.7 kb. The human

IL1-f3 gene maps to chromosome 2q13-q21. In articular joint tissue, including synovial

membrane, synovial fluid and cartilage, IL-113 has been found in the active form.

The biological activation of IL-1 in celis is mediated through association with

specific ceil-surface receptors (IL-R). Two receptors have been identified, type I and

type II, with type I being responsible for signal transduction. IL-113 binds to the

membrane-bound IL-1 type I receptor (IL-1R1), leading to the recmitment of the IL-1

receptor accessory protein (IL-lRacP). This heterotrimeric complex transduces a signal

to the ccli nucleus, culminating in production of inflammatory and destructive

mediators. The IL1-f3 but flot the IL1-Œ precursor must be processed before it can bind

to the receptor. Both type ofIL-1R can also be shed from the ccli surface, and they are

named IL-1 soluble receptors (IL-lsR). For IL-1, the shed receptor may function as a

receptor antagonist because the ligand-binding region is preserved, and thus is capable
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of competing with the membrane-associated receptors of the target celis. It has been

shown that the elevated expression of type I IL-R in chondrocytes and synovial

fibroblasts in OA may render these ceils more sensitive to stimulation by IL-1 (Martel

Pelletier et ai, 1992), thereby increasing their potential to secrete MMP and mediate

joint destruction.

IL-1 receptor mediated signal transduction involves adenylate cyclase which

transiently increases intracellular cMvIP levels. A cAMP-dependent protein kinase

(PKA) and a pertussis toxin-sensitive GTP binding protein of 46 kDa are also involved.

Binding of IL-1 to its receptor activates transcription factor NF-kB.

The action of IL-l can be inhibited by IL-iRa, a natural competitive inhibitor of

IL-1. IL-iRa has a high affinity for the IL-1RI. However, binding of the inhibitory

protein to the receptor does not allow the recruitment ofthe IL-lRacP, thus there is no

signal transduction. The strong binding of IL-Ra to IL-1RI blocks the access of IL-1Œ

and IL-1 3 to the receptor. It is believed that IL-1 Ra has a pivotal role in homeostasis in

the joint. Its production in OA synovium may not be in sufficient amounts to inhibit the

effects of locally producted IL-1.

Role of IL-113 in cartilage degradation: IL-113 is the prototypical

proinflammatory cytokine implicated in the pathogenesis of cartilage matrix

degradation in OA. In the early studies, IL-1 soluble factor, originally termed catabolin,

produced by normal, noninflamed porcine synovial fragment cultures was shown to

stimulate chondrocytes to break down the surrounding cartilage matrix (Dingle et al,

1979). Similar activities in culture supematants from mononuclear cells and synovium

were found to activate secretion of prostaglandins and to stimulate the production of

proteolytic enzymes by chondrocytes (Dayer et al, 1984). Subsequently, the catabolin

isoforms were later identified as IL-1Œ and IL-113 with the capacity to induce

chondrocyte-mediated cartilage degradation (Saklatvala et ai, 1984).

IL-1f3 is considered to be one of the most potent catabolic factors in joint

disease. First, it is produced in considerable quantities in OA joints, among other cells,

by OA chondrocytes. IL-113 and other proinflammatory cytokines are present in OA

synovial fluids and are expressed in the synovial tissues of patients with early OA.

Immunohistochemical studies of cartilage showed the presence of IL-113 in OA
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chondrocytes, predominantïy in the superficial layer. Second, IL-1f3 is the most

powerful driving force for the production of destructive proteases. IL-l f3 can induce

joint articular celis, such as chondrocytes and synovial ceils to produce other cytokines

such as IL-8, IL-6, Leukemia inhibitory factor and their own production, as well as

stimulate proteases and PGE2 production. Third, it was also shown that IL-1f3 could

contribute to the depletion of the cartilage matrix by decreasing the synthesis of

cartilage-specific collagens and proteoglycans. Finally, IL-1f3 also potently involves

induction of the expression of MMPs and other inflammatory factors, including iNOS,

COX-2, mPGES-1 and PLA2 which can modulate chondrocyte function in OA.

Chondrocytes are capable of expressing these enzymes when stimulated by IL-l alone

or in combination with TNF-a. These ail support a role for IL-1 f3 in the pathogenesis of

cartilage matrix breakdown in OA. Studies in animal models in vivo provide further

evidence implicating a role for IL-l f3 in cartilage degradation in OA. For example,

intra-articular injection of highly purified or recombinant IL-l f3 into the rabbit induced

depletion of cartilage proteoglycan (Pettipher et ai, 1986). Moreover, IL-1f3-deficient

mice were found to have normal inflammatory responses, but defective acute-phase

responses, resistance to type II collagen-induced arthritis, and protection against

cartilage destruction in streptococal cell wall-induced arthritis (Zheng et al, 1995).

IV.2. TNF-Œ

In mammals, TNT-Œ is secreted by macrophages, monocytes, neutrophils, T

cells, NK-cells following their stimulation by bacterial LPS. Stimulated peripheral

neutrophilic granulocytes and also a number of transformed celi unes, astrocytes,

microglial, smooth muscle cells, and fibroblasts also secrete TNF-Œ.

Human TNF-a is a non-glycosylated protein of 17 kDa and a length of 157

amino acids. Murine TNF-Œ is N-glycosylated. TNF-Œ forms dimers and trimers.The

great majority of the cellular actions for TNF-Œ correspond to the secreted, soluble

form of mature TNF-a. The 17 kDa mature form of TNF-Œ is produced by processing

of a precursor protein of 233 amino acids. During its synthetic process, the mature form

of TNF-Œ is formed by proteolytic cleavage of the extracellular portion of 26 kDa

transmembrane pro-TNFŒ. A TNF-u converting enzyme (TACE) has been shown to
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mediate this conversion. Therefore, TNF-Œ is expressed in two different forms: a

soluble, mature 17 kDa form and a transmembrane 26 kDa form. The TNF-Œ gene has

a length of approximately 3.6 kb and contains four exons. The primary transcript has a

length of 2762 nucleotides and encodes a precursor protein of 233 amino acids. The

amino terminal 72 amino acids function as a presequence. The human gene maps to

chromosome 6p23-6q12.

TNF-Œ also acts by binding to two specific receptors on the celi membrane,

named according to their molecular weight: TNFR1 (p55) and TNFR2 (p75). These two

TNF-Œ receptors are transmbrane glycoproteins with a high degree of structural

homology and expressed virtually in ail ceil types. It is known that TNFR1 and TNFR2

both bind TNF-a with high affinity. Althrough it lias been generally believed that

TNFR1 mediates the cellular actions of TNF-Œ, recent evidence points towards an

important role for TNFR2 in mediating, at least in part, the biological activities ofTNF

a. Both type receptors appear to be actively involved in signal transduction and both

receptors are iinked to distinct intracellular second-messengers. As is the case for IL

1R, both TNFR1 and TNFR2 can also be shed from celi surface. Similar to the TNF-a

ligand, membrane-bound TNFR1 and TNFR2 can be proteolytically cleaved to release

soluble forms of the receptors, which are able to bind TNF-Œ and, as a result, block the

TNF activity or stabilize the trimeric conformation to maintain activity. In articular

tissue celis, TNFR1 seems to be the dominant receptor responsible for mediating TNF

c activity. In OA chondrocytes and synovial fibroblasts, there is enhanced expression

ofTNFR1.

Role of TNF-a and synergism with IL-1: In OA, TNF-Œ also appears to be an

important mediator of matrix degradation and a pivotai cytokine in synovial membrane

inflammation, althrough this cytokine is detected in OA articular tissue at a low level.

Studies both in vitro and in vivo showed that the effects of TNF-Œ were similar to or

synergistic with IL-1 (Œ and 3) and also suggested a role for this cytokine in cartilage

destruction. Chondrocytes are the most likely source of TNF-Œ in the OAjoint, because

OA chondrocytes show high expression of this cytokine compared with OA synovial

celis (Melchiorri et ai, 1998). OA cartilage displays elevated messenger RNA levels of

TNF-Œ and the TNF convertase enzyme as compared with those of normal cartilage



50

(Amin, 1999). The increase in TNF convertase enzyme will resuit in enhanced

production of functional TNF-Œ. TNF-a shows effects on chondrocytes that are similar

to those of IL-1, including stimulation of the production of matrix-degrading

proteinases and suppression of cartilage matrix synthesis. This cytokine aiso induces

chondrocytes to synthesize imflammatory factors, such as PGE2 and NO. TNF-Œ 1S

considered to be far less potent than IL-1 [3 as a destructive mediator, but it is probabiy

an important driving force of IL-1 [3 synthesis. Synovial fibroblasts from OA joints

show enhanced TNF-Œ receptor expression, and focal loss of articular cartilage in OA

joints is associated with upregulation ofthe TNF-Œ p55 receptor (Webb et al, 1997). In

animal models of RA, treatment with TNF-binding proteins such as the soluble TNF

receptor, or the IL-1 receptor antagonist revealed that the presence of TNf-Œ was

sufficient to drive inflammation at the onset of arthritis, whiie IL-1 [3 had a pivotai role

in sustaining both the inflammation and cartilage erosion (van den Berg et aI, 1999). It

can be concluded that TNF-Œ is a pivotal mediator of inflammation, whereas IL-1 is

the most potent mediator of cartilage destruction.

IL-1 [3 is much more potent than TNF-Œ. However, the activities of these two

cytokines produce strong synergistic effects. Animal studies showed that intraarticular

injection of recombinant preparations of IL-l (cc and [3) stimuiated the destruction of

the articular cartilage, while injection of recombinant or purified preparations

containing both TNF-cc and IL-1 (cc and [3) elicited more severe cartilage damage than

did injection of either cytokine alone (Page-Thomas et ai, 1991). Clinicai studies of

combination therapy are in progress to assess safety and efficacy in patients with RA.

further work is required to determine whether cytokine synergism extends to OA.

IV.3. IL-17

IL-17 is proinflammatory cytokine secreted by activated T lymphocytes,

predominantly of the CD4+ subtyte. It encodes a giycoprotein of 155 amino acids

sequence. 20-30 kDa of this cytokine presents as a homodimer with variable

glycosylated polypeptides.

The IL-17 protein family binds to a unique mouse receptor. A cDNA encoding a

human homologue (CDw2 17) of the murine IL- 17 receptor isolated ftom a human T-
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ceil iibrary is 69% identical with the murine receptor and shares no homology with

previously identified cytokine receptor families. Expression ofthe human receptor gene

displays a broad tissue distribution. The human gene was localized to chromosome 22.

Recombinant human IL- 17 binds to the human receptor with low affinity.

IL-17 enhances expression of the intracellular adhesion molecule- 1 (ICAM- 1)

in human fibroblasts. Human IL-17 also stimulates epithelial, endothelial, or

fibroblastic ceils to secrete IL-6, IL-8, and PGE2. In the presence of human IL-17,

fibroblasts can sustain the proliferation of CD34 (+) hematopoietic progenitors and

their preferential maturation into neutrophiis.

IL-17 is additional cytokine that is a potent inducer of catabolic responses in

chondrocytes. It presents in RA synovial fluid and tissue. This cytokine increases the

expression of IL-113, IL-6, iNOS and COX-2 in human articular chondrocytes, and

stimulates the production of IL-6, NO, COX-2 and MMPs. IL-17 also increases

degradation and suppresses the synthesis of cartilage proteoglycans independent of IL

113. Adenoviral over-expression of IL-17 induces cartilage proteolycan loss in the joint

with minor cartilage erosion and enhances the deveiopment of cartilage erosions

induced by coilagen-induced arthritis (Lubberts et ai, 2001). However, whether this

cytokine has roles in the pathogenesis of OA has not been weii estabiished.

Recentiy, numerous studies have described synergistic or additive effects

between IL-113, TNF-Œ, and IL-17 in many systems in vitro and in vivo. For example,

in human OA synovial fibroblasts, the combination of IL-17 and TNf-a synergistically

stimulated production of IL-1 f3, IL-6, and IL-8, and IL-1 f3 and TNT-Œ synergize to

induce PGE2 production and COX-2 expression in rabbit articular chondrocytes

(Berenbaum et ai, 1996). furthermore, in vivo studies confirmed the above resuits. On

human RA bone explants, the combination of IL-17 and IL-113 had a much larger effect

on IL-6 production than either cytokine alone. IL-1 f3 or IL-17 increased bone resorption

and decreased formation and combination of IL-113 and IL-17 in these conditions

increased the effect. Synergy between IL-113, TNF-Œ and IL-17 on NO and PGE2

production by explants of human OA knee menisci was also demonstrated (LeGrand et

ai, 2001).
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In vitro and in vivo studies show that cytokines, acting individually or

synergistically in networks, can profoundly alter chondrocyte activity. The role of

cytokines in the pathogenesis of cartilage destruction in RA and related form of

inflammatory arthritis is well established. Several unes of evidence suggest that

cytokines may also play a role in abnormal chondrocyte function and cartilage matrix

destruction in OA. The recent demonstration of clinical improvement in a small number

of patients with OA treated with intraarticular IL-iRa indicates the need for further

investigation of the role of cytokines in the pathogenesis of dysregulated chondrocyte

function in OA.
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V. Researcli hypothesis

PGE2 plays a critical role in inflammation and the pathophysiology of articular

joint diseases, such as RA and OA. Recently, an inducible mPGES-1 was identified.

This enzyme is functionally coupled with COX-2 and converts the COX product PGH2

to PGE2. Pro-inflammatory cytokines, IL-113 and TNFŒ, have been shown to induce

mPGES-1 expression in several tissues and celi types, including synovial fibroblasts

and osteoblasts. However, littie is known about the expression and regulation of

mPGES-1 in cartilage. We hypothesize that mPGES-1 plays a role as a modulator of

inflammation in the regulation of PGE2 production in joint tissues of OA patients. We

analyzed mPGES-1 expression in normal and OA cartilage and explored the effects of

different inftammatory agonists on the expression ofmPGES-1 in OA chondrocytes.
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The Journal of Rheumatology 2005,32(5):887-95

Expression and Regulation of Mïcrosomal Prostaglandîn E Synthase-1 in
Human Osteoarthritic Cartilage and Chondrocytes

Xinfang Li, Hassan Afif, Saranette Cheng, Johanne Martel-Pelletier, Jean-Pierre

Pelletier, Pierre Ranger, and Hassan Fahmi.

ABSTRACT.

Objective. Elevated production of prostaglandin E2 (PGE2) plays an important role in

the pathogenesis of arthritis. Recently, an inducible microsomal prostaglandin E

synthase-1 (mPGES-1) was identified. This enzyme is functionally coupled with

cyclooxygenase-2 (COX-2) and converts the COX product PGH2 to PGE2. In the

present study, we analyzed the expression of mPGES-1 in human normal and

osteoarthritic (OA) cartilage and determined the effect of different inflammatory

agonists on the expression ofmPGES-1 in OA chondrocytes.

Methods. The expression ofmPGES-1 mRNA and protein in cartilage was determined

by quantitative real-time reverse transcriptase-polymerase chain reaction and

immunohistochemistry, respectively. OA chondrocytes were treated with different

inflammatory agents and mPGES- 1 protein expression was evaluated by Western blot.

Activation of the mPGES-1 promoter was assessed in transient transfection

experiments.

Resuits. Levels of mPGES- 1 mRNA and protein were markedly elevated in OA versus

normal cartilage. Treatment of chondrocytes with interleukin-1 f3 (IL-1 f3) induced the

expression ofmPGE$-1 protein in a dose- and time-dependent manner. This appears to

occur at the transcriptional level, as IL-1 f3 induced the expression of mPGES-l mRNA

and the activity of this gene promoter. Tumor necrosis factor-Œ (TNf-a) and IL-17 also

up-regulated the expression ofmPGES-1 protein and displayed a synergistic effect with

IL-43. Peroxisome proliferator-activated receptor y ligands, 15-deoxy-A12’14-
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prostaglandin J2 and troglitazone, inhibited IL-1 3-induced mPGE$-1 protein

expression, an effect that was reversed by exogenous PGE2.

Conclusion. This study shows that mPGES-1 expression is up-regulated in OA versus

normal cartilage and that pro-inflammatory cytokines increased mPGES-1 expression

in chondrocytes. These data suggest that mPGES-1 may prove to 5e an interesting

therapeutic target for controlling PGE2 synthesis. (J Rheumatol 2005;32:$$7-95)
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INTRODUCTION

Biochemical, genetic, and clinical evidence indicate that prostaglandin (PG) E2

plays a critical role in inflammation and in the pathophysiology of articular joint

diseases, such as rheumatoid arthritis (RA) and osteoarthritis (OA). for example,

arthritic joint tissues produce large quantities of PGE2 (1). Treatment with neutralizing

anti-PGE2 antibodies prevents acute and chronic inflammation in a rat adjuvant arthritis

model (2). More direct evidence for the role ofPGE2 in arthritis have been provided by

gene targeting studies. Genetic disruption of either the PGE2 receptor EP4 (3), or

cyclooxygenase-2 (4), one of the key enzymes in PGE2 biosynthesis, reduced the

incidence and severity of collagen-induced arthritis in mice. These animais showed

reduced inflammation and less cartilage and bone destruction. The role of PGE2 in

arthritis is aiso supported by effective suppression of pain and inflammatory responses

in arthritis by nonsteroidal antiinflammatory drugs (NSAIDs) that reduce PGE2

biosynthesis (5, 6).

Chondrocytes are a major source of PGE2 in the joint; the production of this

prostanoid can be induced by proinflammatory cytokines, mitogens, mechanicai stress,

and trauma (5, 7, 8). The synthesis of PGE2 from arachidonic acid (AA) requires two

enzymes acting sequentially. Cyclooxygenases (COXs) catalyze the conversion of AA

to the intermediate prostanoid PGH2. Iwo isoforms of the COX enzyme have been

identified: COX-1 is constitutively expressed in most tissues; whereas COX-2, is

induced by various stimuli, including iipopolysaccharide (LPS), growth factors, and

proinflammatory cytokines (reviewed in refs. (5, 9)). Subsequently, PGE synthase

(PGES) convert COX-derived PGH2 into PGE2. At least three distinct PGES isoforms

have been identified (10). Cytosolic PGES (cPGES), which is identicai to the heat

shock protein 90-associated protein p23, is ubiquitously and constitutively expressed

and displays functional coupling with COX-1. In contrast, microsomal PGES-1

(mPGES-1), originally designated microsomal glutathione S-transferase 1-like 1

(MGSTI-L1), is an inducible enzyme that exhibits preferential functional coupling with

COX-2. The most recently identified isoform, mPGES-2, is ubiquitously expressed in

diverse tissues, but its function and regulation remain obscure (10).
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The up-regulation of mPGES- 1 expression lias been reported in conditions in

which PGE2 has been implicated, such as arthritis (11) and studies with mPGES-1-

deficient mice have shown that induced PGE2 synthesis is largely dependent on this

enzyme (12, 13). Pro-inflammatory cytokines IL-l f3 and TNF-Œ have been shown to

induce mPGES-1 expression in several tissues and ceil types, including synovial

fibroblasts and osteoblasts (14, 15). However, littie is known about the expression and

regulation ofmPGES-1 in cartilage.

In order to better understand the regulation of PGE2 production in joint tissues,

we analyzed mPGES-1 expression in normal and OA cartilage. Furthermore, we

explored the effect of different inflammatory agonists on the expression of mPGES- 1 in

OA chondrocytes.

MATERIALS AND METHODS

Reagents. Recombinant human (rh) IL- 1f3 was obtained from Genzyme (Cambridge,

MA), rhTNf-Œ and rhIL-17 were from R&D Systems (Minneapolis, MN). 15-deoxy-

A’2”4-prostaglandin J2 (15d-PGJ2), troglitazone, Wy14643, and PGE2 were from

Cayman Chemical Co (Ann Arbor, MI). BRL 49653 was from American Radiolabeled

Chemicals, Inc. (St. Louis, MO). Dulbecco’s modified Eagle’s medium (DMEM),

penicillin and streptomycin, fetal caïf serum (FCS), and TRIzol® reagent were from

Invitrogen (Burlington, ON, Canada). Ail other chemicals were purchased from either

Bio-Rad (Mississauga, ON, Canada) or Sigma-Aldrich Canada (Oakville, ON, Canada).

Specimen selection and chondrocyte culture. Human normal cartilage (femoral

condyles) was obtained at necropsy, within 12 hours of death, from donors with no

history of arthritic diseases (n=7, mean ± SEM age: 61 ± 15 years). To ensure that only

normal tissue was used, cartilage specimens were thoroughly examined both

macroscopically and microscopically. Only those with neither alterations were further

processed. Human OA cartilage was obtained from patients undergoing total knee

replacement (n=25, mean ± SEM age: 64 ± 14 years). Ail OA patients were diagnosed

on criteria developed by the American College of Rheumatology Diagnostic
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Subcommittee for OA. At the time of surgery, the patients had symptomatic disease

requiring medical treatment in the form of NSAIDs or selective COX-2 inhibitors.

Patients who had received intraarticular injections of steroids were excluded. The

Clinical Research Ethics Committee of Notre-Dame Hospital approved the study

protocol and the use ofliumari tissues.

Chondrocytes were released from cartilage by sequential enzymatic digestion as

previously described (16). Briefly, this consisted of 2 mg/ml pronase for 1 hour

followed by 1 mg/ml collagenase for 6 hours (type IV; Sigma-Aldrich) at 37°C in

DMEM and antibiotics (100 U/ml penicillin, 100 tg/ml streptomycin). The digested

tissue was briefly centrifiiged and the pellet was washed. The isolated chondrocytes

were seeded at high density in tissue culture flasks and cultured in DMEM

supplemented with 10% heat-inactivated fCS. At confluence, the chondrocytes were

detached, seeded at high density, and allowed to grow in DMEM, supplemented as

above. The culture medium was changed every second day, and 24 hours before the

experiment the cells were incubated in fresh medium containing 0.5% fCS. Only first

passaged chondrocytes were used.

Immunohistochemïstry Cartilage specimens were processed for immunohistochemistry

as previously described (16). The specimens were fixed in 4% paraformaldehyde and

embedded in paraffin. Sections (5 jim) of paraffin-embedded specimens were

deparaffinized in toluene, and dehydrated in a graded series of ethanol. The specimens

were then preincubated with chondroitinase ABC (0.25 U/ml in PB$ pH 8.0) for 60

minutes at 37°C, followed by a 30 min incubation with Triton X-100 (0.3%) at room

temperature. Siides were then washed in PBS followed by 2% hydrogen

peroxyde4nethanol for 15 min. They were further incubated for 60 min with 2% nonnal

serum (Vector Laboratories, Burlingame, CA) and overlaid with primary antibody for

18 h at 4 °C in a humidified chamber. The antibody was a rabbit polyclonal anti-human

mPGES-1 (Cayman), used at 10 ig/ml. Each siide was washed 3 times in PBS pH 7.4

and stained using the avidin-biotin complex method (Vectastain ABC kit; Vector

Laboratories). The color was developed with 3,3’-diaminobenzidine (DAB) (Vector

Laboratories) containing hydrogen peroxyde. The slides were counterstained with
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eosin. The specificity of staining was evaluated by using antibody that had been

preadsorbed (1 hour, 37°C) with a 20-fold molar excess of the specific corresponding

peptide, and by substituting the primary antibody with non-immune rabbit IgG

(Chemicon, Temecula, CA, used at the same concentration as the primary antibodies).

The evaluation of positive-staining chondrocytes was performed using our previously

published method (16). For each specimen, 6 microscopic fields were examined under

40X magnification. The total number of chondrocytes and the number of chondrocytes

staining positive were evaluated and resuits were expressed as the percentage of

chondrocytes staining positive (ceil score).

RNA extraction and reverse transcriptase-polymerase chain reaction. Total RNA from

homogenised cartilage or stimulated chondrocytes was isolated using the TRIzol®

reagent (Invitrogen) according to the manufacturer’ s instructions. To remove

contaminating DNA, isolated RNA was treated with RNase-free DNase I (Ambion,

Austin, TX). The RNA was quantitated using the RiboGreen RNA quantitation kit

(Molecular Probes, Eugene, OR), dissolved in diethylpyrocarbonate (DEPC)-treated

F120 and stored at -80°C until use. One microgram of total RNA was reverse

transcribed using Moloney Murine Leukemia Virus reverse transcriptase (Fermentas,

Burlington, ON, Canada) as detailed in the manufacturer’s guidelines. One fifiieth of

the reverse transcriptase reaction was analyzed by real-time quantitative PCR as

described below. The following primers were used: mPGES-1, sense 5’-

GAAGAAGGCCTTTGCCAAC-3’ and antisense 5’-

GGAAGACCAGGAAGTGCATC-3’; cPGES, sense 5’-

GCAAAGTGGTACGATCGAAGG-3’ and antisense 5’-

TGTCCGTTCTTTTATGCTTGG-3’; and glyceraldehyde-3 -phosphate dehydrogenase

(GAPDH), sense 5’-CAGAACATCATCCCTGCCTCT-3’ and antisense 5’-

GCTTGACAAAGTGGTCGTTGAG -3’.

Real-time Quantitative PCI?. Quantitative PCR analysis was performed in a total

volume of 50 j’1 containing template DNA, 200 nM of sense and antisense primers, 25

jil of SYBR® Green master mix (Qiagen, Mississauga, ON, Canada) and uracil-N
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glycosylase (UNG, 0.5 Unit, Epicentre Technologies, Madison, WI). Afier incubation

at 50°C for 2 minutes (TING reaction), and at 95°C for 10 min (UNG inactivation and

activation of the AmpliTaq Gold enzyme), the mixtures were subjected to 40

amplification cycles (15 s at 95° C for denaturation and 1 min for annealing and

extension at 600 C). Incorporation of SYBR® Green dye into PCR products was

monitored in real time using a GeneAmp 5700 Sequence detection system (Applied

Biosystems, foster City, CA) allowing determination of the threshold cycle (CT) at

which exponential amplification of PCR products begins. After PCR, dissociation

curves were generated with one peak, indicating the specificity of the amplification. A

threshold cycle (CT value) was obtained from each amplification curve using the

software provided by the manufacturer (Applied Biosystems). Preliminary experiments

showed that the amplification efficiency of cPGES, mPGE$-1, and GAPDH were

similar.

Relative amounts of mRNA in normal and OA cartilage were determined using

the standard curve method. Serial dilutions of intemal standards (plasmids containing

cDNA of target genes) were included in each PCR mn, and standard cuiwes for the

target gene and for GAPDH were generated by linear regression using log (CT) versus

log (cDNA relative dilution). The CT were then converted to number of molecules.

Relative mRNA expression in cultured chondrocytes was determined using the AACT

method, as detailed in the manufacturer’s guidelines (Applied Biosystems). A ACT

value was first calculated by subtracting the CT value for the housekeeping gene

GAPDH from the CT value for each sample. A z\CT value was then calculated by

subtracting the ACT value of the control (unstimulated cells) from the AC1 value of each

treatment. fold changes compared with the control were then determined by raising 2

to the AACT power. Each PCR reactïon generated only the expected specific ampÏicon

as shown by the melting-temperature profiles of the final product and by gel

electrophoresis of test PCR reactions. Each PCR was performed in triplicate on two

separate occasions for each independent experiment.

PGE2 assay. At the end of the incubation period, the culture medium was collected and

stored at - 80°C. Levels of PGE2 were determined using a PGE2 enzyme immunoassay
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kit from Cayman Chemicai. The detection limit and sensitivity was 9 pg/ml. Ail assays

were performed in dupiicate.

Plasmids and transient transfection. The luciferase reporter constructs pmPGES-1-Luc

and pcPGES-Luc were kindly provided by Dr. Terry J. Smith (University of Caiifornia,

Los Angeles) (17). pmPGES-1-Luc contains a 510-bp fragment ofthe human mPGES

1 promoter spanning -538 to -2$. pcPGE$-Luc contains a 1 824-bp fragment of the

human cPGES promoter spanning -1893 to -69. f3-gaiactosidase reporter vector under

the control of SV4O promoter (pSV4O-f3-galactosidase) was from Promega (Madison,

WI). Transient transfection experiments were performed using FuGene-6 (1 tg DNA :4

pi FuGene 6) (Roche Appiied Science, Lavai, Quebec, Canada) according to the

manufacturer’s recommended protocol. Briefly, chondrocytes were seeded and grown

to 50-60% confluence. The celis were transfected with I tg of the reporter construct

and 0.5 tg of the internai controi pSV4O-f3-galactosidase (Promega). Six hours iater,

the medium was replaced with DMEM containing 1% fCS. The next day, the ceils

were treated for 1$ h with or without IL-1 f3. After harvesting, luciferase activity was

determined and normaiized to f3-gaiactosidase activity (16).

Western blot anatysis. Chondrocytes were lysed in ice-cold lysis buffer (50 mM Tris

HCi, pH 7.4, 150 mM NaCi, 2 mM EDTA, 1 mM PMSF, 10 j.ig/mi each of aprotinin,

leupeptin, and pepstatin, 1 % NP-40, 1 mM Na3VO4, and 1 mM Naf). Lysates were

sonicated on ice and centrifuged at 12000 rpm for 15 min. The protein concentration of

the supernatant was determined using the bicinchoninic acid method (Pierce, Rockford,

IL). Ten tg of total celi lysate was subjected to SDS-poiyacryiamide gel

electrophoresis and eiectrotransferred to a nitrocellulose membrane (Bio-Rad). Afier

biocking in 20 mM Tris-HC1 pH 7.5 containing 150 mM NaC1, 0.1 % Tween 20, and 5

% (w/v) non-fat dry miik, blots were incubated overniglit at 4°C with primary

antibodies and washed with a tris buffer (Tris-buffered saline (TB$) pH 7.5, with 0.1 %

Tween 20). The biots were then incubated with horseradish peroxidase-conjugated

secondary antibody (Pierce), washed again, incubated with SuperSignal Ultra
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Chemiluminescent reagent (Pierce), and, finally, exposed to Kodak X-Omat film

(Eastman Kodak Ltd, Rochester, NY).

Statistical analysis. Data are expressed as the mean ± SEM. Statistical significance was

assessed by the 2-tailed Student t-test. p values less than 0.05 were considered

significant.

RESULTS

Increased expression of mFGES-] in OA cartilage. We first analyzed the levels of

mPGES-l mRNA in normal (n7) and OA (n8) cartilage using real-time quantitative

RT-PCR. As shown in figure lA, levels ofmPGES-1 expression in cartilage from OA

patients were 2.8-fold higher compared with those from normal cartilage (p <0.05). In

contrast to mPGES-1, there was no statistically significant difference in the level of

cPGE$ expression between OA and normal cartilage (fig. lB).

To examine whether mPGE$-1 protein is also expressed in cartilage, normal (n

= 5) and OA (n = 5) cartilage were processed for immunohistochemical analysis. In

normal cartilage, the positive immunostaining for mPGES-l was located only in a few

chondrocytes in the superficial layer (mean ± SEM 9.1 ± 0.6%) (fig. 2A). In contrast,

the celi score was higher in OA cartilage (mean ± SEM 24.4 ± 1.8%) than it was in

normal cartilage (Fig. 2B). Statistical evaluation of the celi score for mPGES-1

indicated significant differences between normal and OA cartilage (p<0.001). The

specificity of staining was confirmed by immunohistochemical staining using an anti

mPGES-l antibody that had been preadsorbed with the peptide antigen (fig. 2C) or

non-immune rabbit IgG at the same concentration (data not shown). These

observations demonstrate an up-regulation ofmPGES-l expression in OA cartilage.

Induction of mPGES-1 expression by IL-1/3 in chondrocytes. To explore the

mechanisms by which mPGES- 1 is regulated in cartilage, we examined the effect of IL-

1f3, a key mediator in the pathogenesis of arthritis, on both the expression of mPGES- 1

and the production of PGE2 by OA chondrocytes. Under basal culture conditions, OA

chondrocytes express low levels of mPGES-1 protein. Treatment with IL-lf3 (100
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pg/mi) enhanced the expression of mPGE$-1 protein in a time-dependent manner (fig.

3A). The level of mPGES- 1 expression started to incrcase 6 h post-stimulation with IL

1f3 and reached the maximum at 24 h. The increased expression of mPGE$ was

sustained for at least 48 h. The induction of mPGES-1 protein expression was also

dose-dependent (fig. 3B). The level of mPGE$-1 was increased at IL-1f3

concentrations as low as 1 pg/mi and reached a maximum at 100 pg/ml. In concert with

the effects on mPGES-1 expression, IL-1 f3. stimuiated PGE2 production in a time- and

dose-dependent manner (fig. 3, lower panels). In contrast, the level of cPGES was flot

altered as a consequence of IL-1 f3 treatment.

IL-1/3 induces mPGES-1 expression at the transcrzptionaÏ level. To further elucidate the

mechanism responsible for the up-reguiation of mPGES-l protein, we analyzed the

effect of IL-1 f3 on the expression of mPGES- I mRNA. Chondrocytes were treated with

increasing concentrations of IL-1f3 for 12 h, and specific mRNA for mPGES-1 and

cPGES were quantified by reai-time RT-PCR. IL-l f3-induced changes in gene

expression were expressed as -fold over control (untreated celis) after normalizing to

the internai control GAPDH. Resuits showed that IL-1 f3 induced a dose-dependent

increase in mPGES-1 mRNA expression, but had no effect on the leveis of cPGES

mRNA (Fig. 4A).

To determine whether changes in mRNA levels can be ascribed to changes in

promoter activity, chondrocytes were transientiy transfected with the human mPGES-1

or cPGES promoter-luciferase reporter genes. Treatment of transfected celis with

increasing concentrations of IL-1f3 ied to a dose-dependent increase of the mPGES-l

promoter activity (fig. 4B). In contrast, IL- 1f3 had no significant effect on the cPGES

promoter activity. These data are consistent with the regulation ofmPGES-1 expression

by IL- 1f3 being at the level of transcription.

Effect ofthe combination ofIL-]/i TNf-a and IL-17 on mPGES-1 expression. The pro

inflammatory cytokines TNf-o and IL-17 are aiso implicated in the pathogenesis of

arthritis, and are potent inducers of COX-2 expression and PGE2 production in articular
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chondrocytes (18, 19). Therefore, we examined the effect ofboth cytokines on mPGE$

1 expression. Chondrocytes were stimulated with increasing concentrations of IL-17

(0.5-1000 ng/mI) or TNf-a (0.5-10000 pg/ml) for 24 h and mPGES-1 protein

expression was evaluated by Western blot analysis. As shown in figure 5A and 5B,

treatment with TNF-Œ or IL-17 induced mPGE$-l expression and PGE2 production in a

dose-dependent manner. At optimal concentrations the effect of IL-1f3 (100 pg/ml) was

more potent than that of IL-17 (1000 ng/ml) or ofTNf-a (10 ng/ml).

Previous studies have demonstrated that low concentrations of IL-1 3, TNf-OE

and IL-17 were synergistic in a number of systems (20-24). Therefore, we examined the

effect of different combinations of these cytokines on mPGE$-1 expression and PGE2

production. At a lower concentration, IL-1 3 (0.1 pglml), IL-17 (0.5 ng/ml) or TNf-x

(0.5 pg/ml) alone had littie or no effect on mPGES-1 expression and PGE2 production.

Each combination of two cytokines resulted in a marked increase of mPGES-1

expression versus either cytokine alone, indicating a synergistic effect (Fig. 5C). The

combination of either IL-1f3 and TNF-c4 or IL-113 and IL-17 resulted in a greater effect

than IL-17 and TNF-cL. In addition, the combination of three cytokines led to a more

potent effect versus the combination of any 2 of the cytokines (Fig. 5C). These

findings indicate that low levels of cytokines can act in combination to up-regulate the

expression of mPGES- 1.

Feroxisome prolferator-activated receptory (FFAR) ligands inhibited IL-1fl-induced

mPGE$-1 expression. PPARy ligands have been shown to inftibit the expression of a

number of genes involved in the pathogenesis of arthritis (25). b assess the effect of

these molecules on mPGES-1 expression in chondrocytes, we first examined the natural

PPARy ligand, 15-deoxy-A12”4-prostaglandin J2 (1 5d-PGJ2). Chondrocytes were

stimulated with IL-113 (100 pg/ml) in the absence or presence of increasing

concentrations of 1 5d-PGJ2, and the expression of mPGES-1 was evaluated by

Western blotting. As shown in Figure 6A, 15d-PGJ2 dose-dependently prevented IL-

1 13-induced mPGES- 1 expression. Troglitazone, a synthetic and selective PPARy

ligand, also inhibited IL-1f3-induced mPGES-l expression (fig. 6B). In contrast. the
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PPARŒ ligand, Wy14643, did flot affect IL-1f3-induced mPGE$ expression (fig. 6C).

cPGES expression was not affected by these treatments (fig. 6, lower panels). Taken

together, these data suggest that 1 5d-PGJ2, prevented IL-1 -induced mPGES- 1

expression, at least in part, through a PPARy-dependent mechanism.

PPARy ligands inhibited IL-]fi-induced mPGE$-1 expression is aÏleviated by PGE2.

Next, we evaluated the foie of PGE2, the end product of mPGES- 1, in the repressing

effect of PPARy ligands. Chondrocytes were preincubated with increasing

concentrations of PGE2 (0.01-1 iM) for 30 mm, prior to the addition of 15d-PGJ2 (20

tM) or troglitazone (50 tM), and were subsequently stimulated with IL-1f3 (100 pg/ml)

for 24 h. Western blot analysis revealed that PGE2 dose-dependently alleviated the

suppressive effect of 15d-PGJ2 (Fig. 7A) or troglitazone (fig. 7B) on IL-1f3-induced

mPGES-1 expression. 0f note, PGE2 alone had no significant effect on mPGES-1

expression (fig. 7A and B, last three lanes). As expected, the level of cPGES

expression was not affected by these treatments.

DISCUSSION

It is well established that increased production of PGE2 plays a central role in

the pathogenesis of arthritis, and inhibitors of PGE2 synthesis are widely used in the

treatment of OA and RA (5, 26). PGE2 biosynthesis from AA is controlled by two rate

limiting enzymatic reactions. The first step is catalyzed by COX, which transforms AA

into the unstable metabolite PGH2. The second step is catalyzed by PGES, which

converts PGH2 into PGE2. Several PGES were identified, among which mPGES-1 has

been shown to be functionally coupled with COX-2 and to be up-regulated by pro

inflammatory stimuli in several ceil types and tissues (10). However, little is known

about the expression and regulation ofmPGES-1 in human cartilage.

In this study, we showed that human cartilage also expresses mPGES- 1. Using

real time quantitative RT-PCR, we found that mPGES-1 mRNA expression was

elevated in OA cartilage when compared with normal cartilage. Immunohistochemical

analysis corroborates these findings, showing higher mPGES-1-positive ceils in OA

versus normal cartilage. This is similar to the resuits oftwo recent studies showing that
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mPGE$-1 is overexpressed in OA cartilage (27, 28). In our studies, the positive

immunoreactive staining for mPGES-1 was located mainly in chondrocytes in the

superficial layers. Interestingly, IL-1f3, one ofthe most important mediators involved in

articular inflammation and degradation processes, has been shown to accumulate in

these zones (29, 30). This suggests that IL-1f3 could be a key mediator of mPGES-1

expression in chondrocytes. Indeed, celi culture experiments demonstrated that IL-1f3

induced mPGES-1 protein expression in a dose-dependent manner. Time course

analysis showed that mPGES- 1 protein started to increase 6 h post-stimulation with IL

1f3 and remained elevated even 48 h afier IL-1 f3 stimulation. This is in contrast to other

IL-1 f3-induced genes in chondrocytes, the expression of which is rapidly induced (2-3

h), reaching a maximum at 8 h, and then gradually decreased to reach basal level at 24-

36 h. These differences in the kinetics of induction suggest that the mechanisms

controlling ifie expression ofthese genes are flot identical.

The up-regulation of mPGES- 1 expression by IL-1 f3 occurred, at least in part, at

the transcriptional level, as detemined by real-time quantitative RT-PCR and transient

transfection experiments. With regard to the mechanism by which IL-lf3. induces

mPGES-1 transcription, it is known that the human mPGES-1 promoter contains

several potential transcription factor-binding sites, including two GC boxes, two Barbie

boxes, and an aryl hydrocarbon response element (31). Naraba et al (32) showed that

the binding of Egr-1, an inducible transciption factor, to the proximal GC box plays an

essential role in the induction ofmPGES-1 in macrophages and osteoblastic cells. This

is consistent with other reports that Egr-1 is important for mPGES-1 transcription in

human colonocytes (33) and synovial fibroblasts (34). Although we have flot

investigated Egr-1, it seems likely that this transcription factor may also play an

important role in induced mPGE$-1 gene expression in chondrocytes.

The pro-inflammatory cytokines TNF-u and IL-17 have also been implicated in

the pathogenesis of arthritis. These mediators are present at elevated levels in articular

joint tissues and are believed to induce their effect through enhancing the production of

a number of inflammatory and catabolic factors (18, 19, 35, 36). Like IL- 1f3, we found

that TNf-cL and IL-17 also induced mPGES-1 expression. At optimal concentrations,

the effect of IL-17 or TNF-a on mPGES- I expression and PGE2 production was less
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potent than that of IL-113. Recently, numerous studies have described synergistic or

additive effects between IL-113, TNF-q and IL- 17 in many systems. Katz et al (20)

demonstrated in human OA synovial fibroblasts that the combination of IL- 17 and

TNF-Œ synergistically stimulated the production of IL-1, IL-6, and IL-8. Chabaud et al

(21) found that combinations of IL-113, TNF-Œ and IL- 17 were synergistic on the

production of macrophage inflammatory protein-3Œ by RA synovial fibroblasts.

Berenbaum et al (24) showed that IL-113 and TNF-Œ synergize to induce PGE2

production and COX-2 expression in rabbit articuair chondrocytes. Synergy between

IL-1f3, TNf-c and IL-17 on nitric oxide (NO) and PGE2 production by explants of

human OA knee menisci was demonstrated by LeGrand et al (22). Here, we extend

these findings by showing that combinations of IL-1, TNf-cç and IL-17 were

synergistic on the induction of mPGES-1 protein expression. Moreover, the effect of

the combination of three cytokines was stronger than that of each of the two cytokines,

suggesting that the combination of cytokines may be of importance in the increased

expression of mPGES-1. As expected, the level of cPGES expression was not altered

by these treatments. mPGES-2 protein was also present in cuhured chondrocytes, but

its expression did not change with any of the treatments used in our studies (data not

shown). This is consistent with other reports showing that the expression of mPGES-2

is flot affected by proinftammatory stimuli in several cell types, including chondrocytes

(27, 37).

Recently, numerous studies have shown that PPARy ligands inhibit the

expression of several genes involved in the pathogenesis of arthritis. For example,

PPARy ligands prevent the expression of IL-1, IL-6, and TNf-Œ in activated

monocytes/macrophages, as well as that of collagenase- 1 in synovial fibroblasts, and

collagenase-3 and the inducible NO synthase (iNOS) in chondrocytes (25, 38). PPARy

ligands were also shown to inhibit the induction of PGE2 production in a number of

experimental systems (34, 39, 40). In the present study, we showed that the PPARy

ligands 15d-PGJ2 and troglitazone, but not the PPARa ligand Wy14643, repressed IL

1 13-induced mPGES-1 expression. Interestingly, treatment with PGE2 restored the

expression of mPGES-1. However, PGE2 had no significant effect on unstimulated
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mPGES-1 expression, indicating that additional signais are provided by IL-1

stimulation, that PGE2 aione cannot provide. These data also suggest that the up

regulation of mPGES-1 is dependent, at least in part, on PGE2 production. This

suggestion is supported by the findings that inhibition of IL-1 3-induced mPGES

expression by NSAIDs is restored by exogenous AA and PGE2 (41, 42).

In addition to its pro-inftammatory effects, the eievated biosynthesis of PGE2

has been associated with the erosion of cartilage and juxta-articular bone. PGE2 can

contribute to joint tissue damage by inhibiting collagen and proteogiycan synthesis,

promoting the production of matrix metalloproteases, and suppressing the synthesis of

tissue inhibitor of metalloproteases (5, 43). In addition, PGE2 triggers osteoclastic bone

resorption (5). The up-reguiation of mPGES-1 in cartilage from OA patients suggests

its involvement in local increased PGE2 production and tissular destruction. This is

supported by the findings that the degradation of cartilage and bone were reduced in

mPGES-1 deficient mice (13, 44).

In conclusion, the data presented in this report show that the expression of

mPGES- 1 is up-regulated in OA cartilage. The pro-inflammatory cytokines IL-1, TNF

a, and IL-17 may be responsibie for this up-reguiation. Combined with resuits from

previous studies showing a critical role of mPGES-1 in the synthesis of PGE2 and the

pathogenesis of arthritis (11-13, 44, 44). these data suggest that mPGE$-1 constitutes a

novei therapeutic target in the treatment of arthritis and possibly that of other diseases

in which increased production of PGE2 is implicated.
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Figure 2, Li et al.
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FIGURE LEGENDS

figure J. Relative expression of mPGES-1 (A) and cPGES (B) in normal and OA

human cartilage. RNA was extracted from normal (n7) and OA (n=8) cartilage,

reverse transcribed into cDNA, and processed for real-time PCR. The threshold cycle

values were converted to the number of molecules, as described under Materials and

Methods. Data were expressed as copies of gene’s mRNA detected per 1000 GAPDH

copies. *p<o.o5 versus normal samples.

figure 2. Representative immunostaining of human normal (n=5) (A) and OA cartilage

(n=5) (B) for mPGES-1. C, OA specimens treated with anti-mPGES-1 antibody that

was preadsorbed with a 20-fold molar excess of the blocking mPGES-1 peptide

(control for staining specificity). Resuits are representative of three separate

experiments.

figure 3. Effect of IL-1 f3 on mPGES-1 protein expression in OA chondrocytes. A, ceils

were treated with 100 pg/ml IL-1f3 for the indicated time periods. B, Chondrocytes

were treated with increasing concentrations of IL- 1 f3 for 24 h. Celi lysates were

prepared and analyzed for mPGES-1 protein by Western blotting (upper panels). The

blots were stripped and reprobed with a specific anti-cPGES antibody (middÏe panels).

The blots are representative of similar resuits obtained from 4 independent experiments.

In the lower panels, conditioned media was collected and analyzed for PGE2. Results

are expressed as the mean ± SEM of 3 independent experiments. *p<O.05 compared

with unstimulated cells.

figure 4. IL-1f3 induced mPGE$-1 expression at the transcriptional level. A,

Chondrocytes were treated with increasing concentrations of IL- lf3 for 12 h. Total RNA

was isolated; reverse transcribed into cDNA; and mPGES-1, cPGES, and GAPDH

mRNAs were quantffied using real-time PCR. All experiments were performed in

triplicate, and negative controls without template RNA were included in each

experiment. B, chondrocytes were co-transfected with 1 tg/well of either the mPGE$-1
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promoter or the cPGE$ promoter and 0.5 jig/well of the internai control pSV4O-f3-

galactosidase, using fuGene 6 transfection reagent. The next day, transfected celis were

treated with increasing concentrations of IL-1 f3 for 18 h. Luciferase activity values were

determined and normalized to f3-galactosidase activity. Resuits are expressed as —fold

changes, considering 1 as the value of untreated cells and represent the mean ± SEM of

4 independent experiments. *p<O.05 compared with unstimulated cells.

figure 5. Effect of TNF-Œ and IL-17 on mPGES-1 protein expression in OA

chondrocytes. Celis were treated with increasing concentrations of IL-17 (A), TNf

OE(B) or IL-1f3 (100 pg/ml). C, celis were treated with IL-1f3 (0.1 pg/mi), IL-17 (0.5

ng/ml), TNF-Œ (0.5 pglml), alone or in combination. Afier 24 h, ce!! lysates were

prepared and analyzed for mPGES-1 and cPGES proteins by Western bloffing. The

blots are representative of similar results obtained from four independent experiments.

In the lower panels, conditioned media was collected and analyzed for PGE2. Results

are expressed as the mean ± $EM of 3 independent experiments. *p<0.05 compared

with unstimulated ceils.

figure 6. PPARy ligands inhibited IL-1 f3-induced mPGES-1 protein expression.

Chondrocytes were pretreated with increasing concentrations of 1 5d-PGJ2 (A),

troglitazone (B) or Wy14643 (C) for 30 min before incubation in the presence of 100

pg/ml IL-1f3 for 24h. Ceil lysates were prepared and analyzed for mPGES-1 protein by

Western bloffing. In the lower panels, the blots were stripped and reprobed with a

specific anti-cPGES antibody. The blots are representative of similar resuits obtained

from four independent experiments.

figure 7. PPARy ligands inhibited IL-1f3-induced mPGES-1 expression is alleviated

by PGE2. Chondrocytes were pretreated with increasing concentrations of PGE2 for 30

min. The celis were then treated with or without IL-1f3 (100 pg/ml) for 24 h in the

absence or presence 20 iM 1 5d-PGJ2 (A) or 50 .iM troglitazone (B). Ce!! lysates were

prepared and analyzed for mPGES-1 protein by Western blotting. In the lower panels,
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the blots were stripped and reprobed with a specific anti-cPGES antibody. The blots are

representative of similar resuits obtained from four independent experiments.
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C. DISCUSSION

Up-regnlation of mPGES-1 expression in OA cartilage

Prostaglandins are critical modulators of numerous physiological and

pathophysiological conditions including inflammation, immune regulation, cancer, and

arthritis. PGE2 is by far the major prostanoid synthesized in the joint and plays an

important role in inflammation and pathogenesis of arthritis and inhibitors of PGE2

synthesis are widely used in the treatment of arthriris. High levels ofPGE2 are found in

serum and synovial fluids from arthritic patients. In addition to its proinflammatory

actions, PGE2 contributes to joint damage by promoting MMP-13 production,

osteoclastic bone resorption, and angiogenesis. The critical roles of PGE2 in the

pathology of arthritis were also demonstrated by pharmacological inhibition and gene

targeting ofCOX-2 and the four PGE receptors EP1-EP4. With increased understanding

of the biosynthesis of PGs, it is generally considered that COX activity is the key step

in PG synthesis. However, metabolism ofAA by COXs (COX-l or COX-2) yields only

the unstable intermediary PGH2, which then can be further metabolized into various

prostanoids by specific terminal PG synthases, of which PGES enzymes convert PGH2

to PGE2 specifically. Among the PGESs, mPGES-l has been shown to be functionally

coupled with COX-2 and to be upregulated by proinflammatory stimuli in several

cellular types and tissues including synovial fibroblasts and osteoblasts. Chondrocytes

are responsible for maintaing the structural and functional properties of the ECM

components of adult articular cartilage. A large number of studies conducted in vitro

and in vivo have suggested that cytokines can contribute to the regulation of

chondrocytes activity under physiologic and pathologic conditions. Although

investigators have used cartilage and isolated chondrocytes from different sources, the

resuits are markably consistent, suggesting that proinflammatory cytokines such as IL

1 f3 and TNF-a contribute to the dysregulation of chondrocyte function that leads to the

progressive degradation of the cartilage matrix and loss of joint function. Previous

studies have demonstrated that IL-1 f3 stimulates the expression of secreted PLA2 and

COX-2 genes in articular chondrocytes, resulting in increased PGE2 production

(Thomas et al, 2000). In this study, we focused on PGES, the last enzyme in the PGE2

biosynthesis pathway, and our resuits showed that mPGES- 1, but not cPGES was
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overexpressed in OA cartilage and in human articular chondrocytes stimulated with IL

1f3. Both mPGES-1, but flot cPGES mRNA expression and protein expression were

elevated in OA cartilage when compared with normal cartilage. The positive

immunoreactive staining for mPGES-1 was located mainly in chondrocytes in the

superficial layers. Proinflammatory cytokine IL-1 t aiso has been shown to accumulate

in these zones. Previous studies have shown that IL-1f3 expression is increased in

synovial membrane tissues from patients with OA (Smith et ai, 1997). These studies,

together with our results, suggest that expression of mPGES-1 in chondrocytes from

patients with OA may be promoted by endogenous IL-1f3 and TNF-Œ released from

cartilage and synovial membrane.

Functïonal coupling of mPGES-1 and COX-2

In almost ail systems studied, the induction of mPGES-1 expression by

proinflammatory stimuli was correiated with increased expression of COX-2 and PGE2

generation. The coordinate up-regulation of COX-2 and mPGES-1 and attendant PGE2

production are simultaneously reversed by glucocorticoids. In mPGES-1 knockout

mice, LPS-stimuiated production of PGE2 by macrophages was blunted entirely, thus

comfirming the absolute requirement of this enzyme for the COX-2-dependent delayed

PGE2-biosynthetic response. These studies suggest that a functionai linkage exists

between COX-2 and mPGES. To explore this, functional coupiing of COX-2, but flot

COX- 1, with mPGES has been demonstrated by co-transfection experiments performed

in human embryonic kidney 293 celis. HEK 293 ceils cotransfected with COX-2 and

mPGES-1 produce higher amounts of PGE2 then cells with either enzyme alone. An

increase in PGE2 production was also observed in celis cotransfected with mPGES and

COX-1, their coupling became apparent only when a high concentration of AA was

suppiied exogenousiy (Murakami et ai, 2000). This study provides the unequivocal

evidence that PGE2 generation by mPGES-1 occurs predominantly through the COX-2-

dependent pathway, particularly during the delayed responses induced by

proinflammatory stimulus. Moreover, specific COX-2 inhibitors reduce production of

PGE2 more then other stable prostaglandins in vivo. This observation suggests that the

COX-2-dependent pathway may be more selectively linked to PGFS than to the other
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terminal PG synthases (Harada et ai, 1998). Several reports have showed that COX-2

and mPGES-1 are coiocalized in the perinuclear membrane. mPGES-1 and COX-2

showed perinuclear colocalization in IL-1f3-stimuiated RA synovial fibroblasts (Kojima

et ai, 2002) and chondrocyte (Kojima et ai, 2004). These observations impiy that

colocalization of COX-2 and mPGES- 1 in the same subceilular compartments criticaliy

affect their efficient coupling and might be related to the preferentiai increase of PGE2

production afier IL-1f3 stimulation due to functional linkage between these two

enzymes.

Although COX-2 and mPGES-1 express very simiiariy in response to the same

stimuli, there are differences in the specific timing for induction. Our time course ofthe

expression of mPGES-1 in IL-113 stimulated chondrocytes analysis showed that

mPGES-1 protein expression started to increase 6h post-stimuiation with IL-113,

reached maximum at 24h, and remained elevated even 4$h after IL-1 f3 stimulation. This

is in contrast to IL-113- induced COX-2 in chondrocytes, in which expression is rapidly

induced 2-3h, reaching a maximum at 8h, and then graduaily decreases to reach basal

levels at 24-3 6h. Expression of mPGES-1 was delayed compared with that of COX-2.

In contrast, the levei of cPGES protein was not affected by IL-113. The promoter of the

mPGES- 1 gene lacks many of the elements usuaiiy associated with cytokine-inducible

genes. No binding site for NF-icB, CRE or E-box has been found in the mPGES-1

promoter, as seen in COX-2 induction. The IL-113 induced COX-2 expression seems to

involve NE-KB, but mPGES-1 promoter does flot contain any such NE-KB site.

furthermore, the 3 ‘region of mPGES lacks the AUUUA instability sequences found in

the COX-2 gene (Forsberg et ai, 2000). Thus, these findings suggest that the regulatory

mechanisms for induction ofthe two enzymes mPGES-1 and COX-2 are different.

IL-1 indu cted mPGES-1 expression at the transcriptional level

Among the various cytokines, we examined the effect of IL-113, a key mediator

in the pathogenesis of arthritis, on both the expression of mPGES- 1 and the production

of PGE2 by OA chondrocytes. Our resuits showed that IL-113 induced mPGES-1 protein

expression in a does-dependent manner. Our previous studies showed that mPGES-1
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overexpression in OA synovial fibroblasts was stimulated with IL-1F3 (Cheng et ai,

2004).

Upregulation of mPGES-1 expression by IL-1 F3 occurred, at least in part, at the

transcriptional level, as determined by reai-time RT-PCR and transient transfection

experiments. We analyzed the both effect of IL-113 on the expression of mPGES-1

mRNA and mPGES-1 promoter activity in articular chondrocytes from OA patients and

our resuits showed that IL-1f3 induced a does-dependent increase in mPGES-1 mRNA

expression and of mPGES- 1 promoter activity. In contrast, IL-113 had no effect on the

cPGES mRNA and promoter activity. Evidence is emerging that mPGES-1 is an

inducible enzyme, the expression of which is markedly increased in various ceils and

tissues foïlowing proinflammatory stimuli. Inducible genes contain particular

nucleotide elements within their promoter regions that are responsible for regulated

transcription. It is known that the human mPGES-1 promoter contains several potential

transcription factor-binding sites, including 2 GC boxes, 2 Barbie boxes, and an ary

hydrocarbon response element. The intracellular signalling pathways that lead to

upregulation of mPGES-l are stiil unclear. However, it was recently shown that

mPGES-1 expression in response to various stimuli is regulated by a transcription

factor Egr-1. The binding of Egr-1 to the proximal GC box in the mPGES-1 gene

promoter is an essential event that directs the regulatory expression of mPGES-1 in

several ceil types including macrophages, osteoblastic ceils and human colonocytes.

This is consistent with our previous finding that Egr-1 is important for mPGES-1

transcription in human synovial fibroblasts (Cheng et ai, 2004). In electrophoretic

mobility shifi and supershifi assays for Egr-1 binding sites in the mPGES-1 promoter,

we observed that IL-113 induced DNA-binding activity of Egr- 1 in human synovial

fibroblasts (Cheng et ai, 2004). Although we have not investigated Egr-Ï, it is very

likely that this transcription factor may also play an important role in induced mPGES

1 gene expression in chondrocytes. Similar to our previous experiments in synovial

fibroblasts by using EMSA and supershift assays, we can determine whether IL-113

couid induce binding of Egr- 1 to the mPGES- 1 promoter in chondrocytes.

In addition to Egr-1, the mPGES-1 promoter contains binding sites for

transcription factors such as AP- 1. Although the role of those elements in IL-113-
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induced mPGES-1 transcription is stili unknown, we cannot exciude the possibility that

these transcription factors may be aiso involved in the induction of mPGES-1

expression. Recent data suggest a regulatory role for Erk and p38 MAPK and

phosphatidylcholine phospholipase C on mPGES-1. for instance, mPGE$-1 is

stimulated in human chondrocytes by the proinflammatory cytokine IL-113 via

activation of both ERK- 1/2 and p3 $ MAPK in an isoform-specific manner (Masuko

Hongo et ai, 2004). Moreover, other studies indicate the possible roie of NF-KB and

Nf-1L6 in induction of mPGES-1 expression. In one study, data showed that IL-113

induces mPGES-1 expression through the transcription factor Nf-KB in A549 ceils

(Catley et ai, 2003). On the other hand, in vivo study of mice indicated that LPS failed

to induce mPGE$-1 expression in macrophages from Nf-1L6-deficient mice (Uematsu

et aI, 2002). However, the mPGES-1 promoter contains neither NF-KB nor Nf-1L6

responsive elements, suggesting that these transcription factors may regulate mPGE$-1

expression via mechanisms that do not involve their direct interaction with the mPGES

1 promoter. More complete characterization of the mechanism invoived in the

regulation ofmPGES-1 needs flu-ther investigation.

IL-113, TNF-Œ and IL-17 synergistically stimulate the expression of mPGES-1

Cytokines such as IL-1 and TNF-Œ have been shown to play a pivotai role in

pathologies of arthritis. IL-1 and TNf-Œ promote ECM degradation through the

induction of MMPs, such as coliagenase and stromelysin. In addition, these

inflammatory cytokines inhibit proteogiycan synthesis and induce inflammation

mediating enzymes iike COX-2 and iNOS. Human articuiar chondrocytes stimulated

with IL-1, TNf-Œ, and LPS produce high ieveis of prostaglandins and NO. These

mediators are present at elevated leveis in articular joint tissues. In addition to IL-113

and TNF-Œ, severai other cytokines can be detected in arthritic joints, such as IL-17.

IL-17 has been impiicated in the pathogenesis of arthritis and is beiieved to induce their

effects also through enhancing production of a number of inflammatory and catabolic

factors. Since ail these proinfalmmatory cytokines are potent inducers of COX-2

expression and PGE2 production in human articuiar chondrocytes, in the present study

we examined the effect of both cytokines TNf-Œ and IL-17 on mPGES-1 expression.
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We found that TNF-Œ and IL-17, like IL-1f3, aiso induced mPGE$-1 expression and

PGE2 production in a does-dependent manner. At optimal concentrations, the effect of

TNf-cL or IL-17 on mPGES- 1 expression and PGE2 production was less potent than IL

I f3. Our data indicated that IL-17, TNF-a as potential additional players in the cytokine

networks invoived in arthritis and play potential role in the induction of inflammatory

responses in chondrocytes.

IL-17 shares many properties with IL-1f3 and TNF-Œ. The three cytokines

activate the common transcription factor Nf-icB in a variety of ceil types. They ail

stimulate stromal celis such as dermal and synovial fibrobiasts, endothelial ceils and

epithelial celis to secrete IL-6, IL-8 and PGE2. They also effect osteoclasts and bone

destruction. Moreover, cartilage degradation is largely dependent on IL-1 f3 and TNF-a

and recent in vivo study showed the capacity of IL-17 to replace the catabolic fiinction

of IL-1 f3 in cartilage damage during experimental arthritis (Koenders et ai, 2005);

Interactions between these three cytokines further amplify these effects. IL-17 induces

IL-113 and TNf-Œ production by human macrophages (Jovanovic et ai, 1998). More

importantiy, combination of IL-113 with TNF-u and IL-17 ofien leads to synergistic or

additive effects, which further increase their biological effects.

Combination of IL-113 or TNF-Œ with IL- 17 was found to be synergistic in bone

stromal cells, in synovial fibroblasts, and in bone and meniscus expiants. Many studies

have considered these cytokine acting alone at concentrations, which may flot be

achieved, in vivo. In diseases such as RA, cytokines are present in combination but

probably at lower concentrations. Since IL-113, TNF-Œ, and IL-17 have many additive

and/or synergistic effects in vitro and in vivo, in present study we extend these findings

by examining the effect of different combinations of these cytokines on mPGES- 1

expression and PGE2 production. Our results showed that at a lower concentration, IL

113, IL-17, and TNF-ci alone had little or no effect on mPGES-1 expression and PGE2

production. The combination of IL-113, IL-17, and TNF-Œ were synergistic on induction

of mPGES-1 protein expression. The combination of either of IL-113 and TNF-a or IL

113 and IL-17 resulted in a greater effect then IL-17 and TNF-Œ. Moreover, the effect of

the combination of three cytokines was stronger than that of each of the two cytokines,

suggesting that the combination of cytokines may be of importance in increased
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expression of mPGES-1 and PGE2 production. In contrast, the level of cPGES and

mPGES-2 expression were flot altered by these treatments. Since IL-1 f3, IL-17, and

TNF-Œ are key mediators in arthritis, their control represents a major therapeutic goal.

Our study demonstrated the potency of cytokine combination at low concentrations on

mPGES-1 expression and PGE2 production in OA chondrocytes. Accordingly, the

understanding of synergistic activation is critical as this may lead to new therapeutic

applications. Such mechanisms may need further explanation at transcriptional level.

PPARy and 15d-PGJ2 in inflammation and arthrïtis:

The biological effects of 15d-PGJ2 relate to activation of PPARy. PPARy plays a

role in articular joint ceils such as articular chondrocytes, synovial fibroblast cells and

osteoclasts. The consequences of PPARy activation are compiex, but evidence to date

suggests that these transcriptional regulators have the anti-inflammatory ability to

modulate inflammatory responses in vitro and in vivo.

Cartilage chondrocytes: Previous studies on PPAR expression pattems have shown that

PPARy is expressed in human articular cartilage and cultured chondrocytes. It is

believed that MMPs and NO play a central role in articular inflammation and cartilage

damage. 15d-PGJ2 and other PPARy activators, but flot PPARa ligands inhibit IL-1 I

induced NOS expression and synthesis and inhibit IL-1f3-induced MMP-13 expression

and production by these ceils. The inhibitory effect of PPARy activation is not

restncted to IL-1 f3 since TNF-a and IL-17 induced NO and MM?- 13 production were

also inhibited by 15d-PGJ2 in the same celis (Fahmi et ai, 2001). PPARy iigands aiso

inhibite the induced NOS expression in chondrocyte ftom OA patients. In addition to

inhibition of MMP and NO production, the PPARy activator 1 5d-PGJ2 inhibit IL-1 f3

inducted PGE2 production and COX-2 expression by human chondrocytes (Fahmi et ai,

2002) and 15d- PGJ2 and troglitazone counteracted the IL-lf3 induced decrease in

proteoglycan synthesis in rat chondrocytes. The inhibition occurs at least at the

transcriptionai level through a PPARy-dependent pathway, probably by interfering with

the activation of AP-1 and NF-icB. Ail these evidences indicated the protective effects

of PPARy activators in articular cartilage. In contrasted, 1 5d-PGJ2 induced apoptosis of

chondrocyte from OA or RA patients in a PPARy-dependent maimer and inhibition of
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NF-icB and activation of P3 $ MAPK were found to be involved in 1 5d- PGJ2 induced

chondrocyte apoptosis. These resuits suggest that 1 5d- PGJ2 may play a role in the

pathogenesis of arthritic joint destruction via a regulation of chondrocyte apoptosis

(Shan et ai, 2004). Thus, 15d-PGJ2 may have both chondroprotective and

chondrodestructive effects.

Synovialfibroblast celis: PPARy is expressed and transcriptionaily functional in human

synovial fibroblasts. Synovial fibroblast celis from patients with RA and OA also were

shown to express PPARy (Kawahito et ai, 2000). PPARy activators 1 5d-PGJ2 inhibited

IL-13-induced MMP-1 synthesis in a dose-dependent manner in human synovial

fibroblasts. The inhibitory effect of 1 5d-PGJ2 occurs at the transcriptional level, at least

in part, through inhibition of the transcription factors AP-1 activity. Similarly to

chondrocytes, PPARy activator 1 5d-PGJ2 inhibited induced PGE2 production and COX

2 expression by human synovial fibroblasts (Fabmi et ai, 2002). Moreover, our previous

study showed that both natural (1 5d-PGJ2) and synthetic PPARy ligands (trogiitazone)

inhibit IL-113-induced mPGES-1 expression in human synovial fibroblasts. We

demonstrated that this suppressive effect is transcriptional and PPARy-dependent and

the PPARy activation suppresses mPGES-1 expression via negative interference with

transcription factor Egr-1. Taken together, our resuits reveal a novel function ofPPARy,

further supporting its role in the control of inflammatory responses (Cheng et ai, 2004).

Accumulating data above have shown that PPARy iigands inhibit expression of

several genes involved in the pathogenesis of arthritis and suggest a possible role for

1 5d-PGJ2 as well as PPARy in regulation of human arthritis. Much attention has been

focused on 1 5d-PGJ2 because it is a high affinity ligand for PPARy and because of its

potent anti-inftammatory activity. In our present study, we assessed the effect of these

molecules on mPGES-1 expression in chondrocytes. Our results showed that the

PPARy ligands 15d-PGJ2 and troglitazone, but not the PPARŒ ligand Wy14643,

repressed IL-1 13-induced mPGES- 1 expression. These data suggest that 1 5d-PGJ2

prevented IL-1 F3-inducted mPGES- 1 expression, at least in part, through a PPARy

dependent mechanism.

Because arthritis is a complex process involving interactions of many celi types

and mediators, it is difficuit to extrapolate the above in vitro data to predict the in vivo
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impact of PPARy and its ligand 15d-PGJ2. Animal model and human studies are

essential to clarify the biological role ofPPARy and 15d-PGJ2 in artbritis.

Intraperitoneal administration of PPARy iigands (1 5d-PGI2 and troglitazone)

ameliorated adjuvant-induced arthritis with suppression of pannus formation and

mononuciear celi infiltration in female Lewis rats. Anti-inflammatory effects of 1 5d-

PGJ2 were more potent than troglitazone. These findings suggest that PPARy may be an

important immunoinflammatory mediator and its iigands, especially I 5d-PGJ, may be

usefiul in the treatment of RA (Kawahito et ai, 2000). 1 5d-PGJ2 reduced the expression

of iNOS and COX-2 in the iungs of carrageenan-treated mice and in the joints from

coliagen-treated mice. Thus, 1 5d-PGJ2 reduces the deveiopment of acute and chronic

inflammation (Cuzzocrea et ai, 2002).

Human subjects with active psoriatic arthritis PsA treated with a PPARy agonist

pioglitazone for 12 weeks showed improvement in the Psoriasis Area and Severity

Index (PASI) in patients with more than 2% skin invoivement and significant reduction

of median tender joint count (interquartile range) and the median swoilen joint count.

Treatment with a PPARy agonist appears to be a promising therapeutic principie in PsA

(Bongartz et ai, 2005).

PGE2 functions as a positive feedback regulator of mPGES-1

In our present study, we evaluated the role ofPGE2, the end product ofmPGES

1, in the repressing effect of PPARy ligands. Our resuits showed that PGE2 dose

dependentiy alieviated the suppressive effect of 1 5d-PGJ2 or troglitazone on IL-1 t -

induced mPGES-1 expression and PGE2 had no significant effect on unstimulated

mPGES-1 expression suggesting that additionai signais are provided by IL-113

stimulation, which PGE2 alone cannot provide. This suggestion is supported by findings

that inhibition of IL-1f3-induced mPGES-1 expression by NSAID is restored by

addition of PGE2 (Kojima et ai, 2003). PGE2 exerts various physiologicai functions

through the EP receptor, which has four subtypes (EP1-EP4). The EP2 and EP4 receptors

increase cyciic AMP via activation of adenylate cyclase. EP2 and EP4 receptors are

expressed in synovial fibroblasts from RA patients and in chondrocytes, making these

ceiis likely targets for receptor-dependent action of PGE2. Furthermore, excessive
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production of PGE2 has been detected in serum and synovial ftuids of RA and OA

patients. PGE2 enhances the expression of mPGE$-1 in synovial fibroblasts and

chondrocytes may be by increasing cAMP through activation of EP2 and EP4 receptors.

Thus, PGE2 is a strong enhancer of IL-13-induced mPGES-l expression in synovial

fibroblasts and chondrocytes. Autoregulation of mPGES-1 expression by PGE2 may

play an important role in the circle of inflammation associated with arthritis.

mPGES-1 as a novel drug target for arthritis

PGE2 is a potent mediator of pain and inflammation, and high levels ofthis lipid

mediator are observed in numerous disease states. Overproduction of PGE2 clearly

plays a central role in the pathogenesis of arthritis. The inhibition of PGE2 production

to control pain and to treat diseases such as RA to date has depended on nonsteroidal

antiinftammatory agents such as aspirin. Clinicially, NSADs (COX inhibitors) have

been used most frequently as prophylactic and therapeutic drugs for arthritis. Thus,

agents that inhibit PGE$ enzymes could be also effective on the therapy of these

diseases.

It has been shown that NSAJDs are widely used in Northem America and are

used most commonly in the treatment of arthritis. Because of their anti-inflammatory

and analgesic properties, NSAms are usually prescribed for the initial and long-term

treatment of RA and they are also effective in controlling pain in patients with mild-to

moderate OA. NSAIDs also are used to treat many other conditions such as headache,

fever and gout.

With increased understanding of the biosynthesis of PGs and the demonstration

in earlier work that the primary mechanism of NSADs in the treatment of

inflammation is the inhibition of COX, which exists in two forms, leading to the

inhibition of PG production. COX-l appears to regulate many normal physiologic

functions, and COX-2 mediates the inflammatory response. Inhibition of COX accounts

for many of the side effects of NSADs, because NSADs inhibit PGI2 and TXA2

production in gastric mucosa, endothelial ceils, the kidneys, and platelets. Despite their

widespread use, NSAIDs are often associated with severe adverse effects, the most

common being gastrointestinal (GI) toxicity.
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It is believed that the anti-inftammatory actions ofNSATDs are primariiy due to

inhibition of COX-2 and that N$AD-induced adverse effects are iargeiy caused by

inhibition of COX-1. The identification of COX-2 as a key enzyme in PGE2 synthesis

resuited in the introduction of several COX-2 selective inhibitors. Theoreticaliy, the

new class ofNSAIDs that inhibits COX-2 selectively should decrease inflammation but

not influence normal physiologic functions and thus should cause fewer gastrointestinal

side effects. Clinical data on the selective COX-2 inhibitors suggest that these agents

may be as effective as traditional NSADs but are iess likely to cause GI complications.

Aithough these drugs have decreased gastrointestinal toxicity compared with traditional

NSAIDs, they stili have other unwanted side effects such as renal toxicity, thrombosis

and increased risk of cardiovascular events. Therefore, a specific mPGES-1 inhibitor is

desirabie.

The inhibition of PGE2 production to control pain and to treat arthritis to date

has depended on N$AIDs. However, these agents inhibit the synthesis of ail

prostanoids. To produce bioiogicaiiy active PGE2, terminal enzyme PGE synthases act

downstream of COX-2 to cataiyze the isomerization of COX-2 into PGE2. Thus

specific terminal enzyme mPGES-1 inhibitor should more specifically inhibit PGE2

synthesis, while maintaining other normal physiologic prostanoid levels in the kidneys,

brain and elsewhere.

Advantage with specific inhibition of mPGES-1 was also seen in mPGES-1-

deficient mice. These animais dispiayed no abnormaiities compared with wiid-type

controls, suggesting that other PGES substitute for mPGES-1 in normai physioiogy

(Trebino et ai, 2003). Since 15d-PGJ2 is an inhibitor of mPGES-1 and has anti

inflammatory properties, studies with 15d-PGJ2 and other specific inhibitors of

mPGES-1 on various systems are needed to further eiucidate its therapeutic potentiai.
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D. CONCLUSION

Our data show that expression of mPGES-1 is upgulated in OA cartilage. The

proinflammatory cytokines IL-1f3, TNF-Œ, and IL-17 may be responsible for this up

regulation. Combined with resuits ftom previous studies showing a critical role of

mPGES-l in the synthesis of PGE2 and the pathogenesis of arthritis, these data suggest

that mPGE-1 constitutes a novel therapeutic target in the treatment of arthritis and

possibly other diseases in which increased production of PGE2 is implicated.
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