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SUMMARY

C

_

Introduction: X mactivation (Xi) randomly mactivates a single X chromosome (maternai or

patemai) in female somatic ceils. In a significant proportion of females however, Xi is flot random,

a phenomenon termed skewed Xi [arbitrarily defmed as preferentiai inactivation (75%) of the

maternai (Xm) or patemal X (Xp)]. The proportion ofXp inactivated relative to Xm is termed the X

inactivation ratio (XIR). The study of Xi in humans is hampered by two unrelated phenotypes. i)

The primary Xi trait. Initiated during early embryogenesis, in a developmental context, it induces a

similar Xi pattern, which can vary ftom random to skewed, among varions tissues. A resulting

skewed Xi paffem, tenned primary skewing (PS), may resuit from a small number of stem ceils

present when Xi is initiated However, other possibilities include genetic influences, such as

heterozygosity for the X-linked Xce locus, as observed in certain mice hybrids. That 9% of human

female neonates demonstrate a skewed Xi pattem in cord blood supports a PS trait in humans. ii)

the secondwy skewing trait, usualIy associated with a skewed Xi pattem in a tissue-specific mariner,

occurs after the initiation of Xi. Secondary skewing often resuits from a growth competition

between X-linked alleles, such as in female carriers of various X-linked immunodeflciency disease

alleles. Flowever, X-linked disease alleles are rare and do not explain the high prevalence of

skewing (38%) as observed in peripheral blood (PB) of ‘healthy’ females 60 years of age and older.

The latter trait, termed acquired skewing (AS), lias been assigned varlous etiologies. Recent data

support an X-linked genetic component influencing hematopoietic stem ceil (HSC) growtWsurvival

kinetics. Clinically, skewed Xi lias been associated with varlous biomarkers (breast cancer and

recurrent spontaneous abortion for example). In light of this data, a study was undertaken to resolve

the etiologies and biological / ciinical associations of Xi traits in liuman femaies. Methods: French

Canadian nuclear families (females oniy) were recruited for study analysis. Two biological tissues

were obtained: PB for analysis of the AS trait and buccal cetis (BC) for analysis of the primary Xi

trait. PB was fractionated and cell-sorted to obtain pure-ceil populations. The XIR was determined

by the HUMARA clonaiity assay. Xi phenotypes included. i) The )UR derived from BC for analysis

of the primary Xi trait. ii) The XW of PB for analysis of the AS trait and iii) the relative value of

AS obtained by quantitating deviation from the primary )UR (i.e., difference between the BC and

P13 )UR). Qualitative analyses included a skewed Xi pattem (25% deviation from random Xi for

the )UR and an AS value 0,25 for the relative AS trait). Subject data included a medical

questionnaire and blood counts, which were analyzed as a function of Xi phenotypes. Genetic

effects were determined by heritability studies. Resuits and Conclusion: 1144 females derived from

193 nuclear families were recruited. Age ranged from 3$-96 years, with a mean of 63,3 years.

90,8% of females were informative for the HIJMARA assay. findings related to the BC XIR were

four-fold: I) the incidence of Xi skewing in BC was low (12,4% - similar to that reported in
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neonatal cord blood, i.e. 8,6%); ii) the incidence of Xi skewing was relatively stable with advancing

age (p=O,21); iii) the BC )UR was modestly correlated with that of PB lineages (O,46<r<O,56) and

iv) heritabiÎity analysis revealed a genetic (piausibly X-linked) component (p<O,0001; h2O,30).

These findings are similar to the Xce-influenced primary Xi trait in mice, supporting evidence for

an XCE-Iike primary Xi trait in humans. further, this fmding suggests that the primary Xi trait in

humans is flot strictly a stochastic process as previously suggested. Clinically, the BC and blood

)UR was associated with asthma. Among hematopoietïc lineages, the incidence of skewed Xi was

higher versus BC: granulocytes (PMN) 36%; monocytes 36,6%; T cells 20,1% and B cells 26,5%.

The incidence of relative AS was 22,7; 27,2; 11,4 and 16,3%, respectively. With the exception of T

ceils, signilhcant correlation of AS values among B ceils and myeloid lineages (0,73<r<0,$5) was

consistent with a FISC origin of AS. The incidence of AS (relative and absolute) increased

significantly with age, particularly for myeloid lineages. Lack of T celis contribution may be

attributed to long-lived memory T cells. Heritability estimates attributed 20-39% of the variance of

AS values to genetic effects (plausibly X-Iinked), supporting linkage studies to map the trait(s).

Clinically, increasing AS values were associated with a decreased eosinophil count. Because

eosinophïl count is a predictor of ail-cause mortaiity, the finding suggests AS may 5e associated

with increased longevity. In effect, that the AS trait demonstrated a different biological profile

versus the PS trait (i.e., late versus early-onset, increased incidence of skewing with age versus

stable, different incidence of skewing, and a different clinical profile) is convincing evidence for

two distinct traits.

Key words: X chromosome, acquired skewing, primary skewing, HUMARA, heritability,

hematopoietic stem ceNs, buccal ceils, human, females, Québec, hematopoietic lineages, association

studies, clinical data, complete blood counts, age
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RÉSUMÉ

C .

Introduction: Dans les cellules somatiques de femmes, I mactivation du chromosome X (iX)

inactive, de façon aléatoire, l’un des deux chromosome X (maternel ou paternel). Cependant, dans

une certaine proportion de femmes, l’inactivation n’est pas aléatoire, un phénomène appelé IX

biaisé [arbitrairement défmi comme étant une inactivation préférentielle (?75%) du X maternel

(Xm) ou paternel (Xp)J. La proportion de Xp inactivé relatif au Xm est appelé le ratio d’ inactivation

du X (RIX). Chez l’humain, l’étude de iX est entravée par deux phénotypes non reliés: i) Le LX

primaire. Amorcé tôt durant l’embryogenèse, dans un contexte de développement donné, induit un

RIX similaire dans divers tissus, soit aléatoire ou biaisé, ce dernier est appelé le biaisé primaire

(BP). Le BP peut provenir d’un petit nombre de cellules souches présentent lors de l’initiation du

IX. D’autres causes incluant les influences génétiques, comme l’hétérozygocité du locus Xce lié au

X, observée dans certaines hybrides de souris. Le fait que chez 9% des nouveau-nés de sexe féminin

on observe l’IX biaisé dans le sang du cordon suggère un phénotype BP chez l’humain, ii) Le

phénotype biaisé secondaire, habituellement associé avec l’iX biaisé dans un tissu spécifique, a lieu

après l’initiation de IX. Le biais est le résultat d’un désavantage de croissance conféré par des

allèles mutant liés au X. Les exemples incluent des porteuses de différents allè]es de maladies

immunodéficientes liées au X. Malgré cela, ces allèles sont rares et n’expliquent pas la haute

fréquence (3 8%) de ce biais observé dans le sang périphérique ($P) chez des femmes âgées de 60

(au plus) et en santé. Ce phénotype, appelé biais acquis (BA), a été associé à diverses causes. De

récentes données indiquent une composante génétique liée au X qui influence la cinétique des

cellules souches hématopofétiques (CSH). Cliniquement, le phénotype iX biaisé a été associé à

différents marqueurs biologiques comme le cancer du sein et l’avortement spontané répétitif À la

lumière de ces données, une étude a été entreprise pour élucider les causes et les associations

biologiques des deux phénotypes iX chez les femmes. Méthodes: Des familles Canadiennes

Françaises (femmes seulement) ont été recrutées pour participer à l’étude. Deux tissus biologiques

ont été recueillis pour analyse: le sang périphérique (SP) pour l’analyse du phénotype BA et des

cellules buccales (CB) pour l’analyse du phénotype iX primaire. Le SP a été fractionné, et ses

cellules classées pour obtenir des populations de cellules pures. Le RIX a été déterminé par la

méthode de HUMARA. Les phénotypes de iX inclus sont: i) Le RIX obtenu des CB, représentatif

du phénotype IX primaire. ii) La valeur absolue du RIX pour ]‘analyze du phénotype BA et iii) la

valeur BA relatif calculé selon la différence entre les RIX primaires des CB et du SP. Pour les

analyses qualitatives, le RIX biaisé (25%) et la valeur BA relatif (0,25) ont été utilisé. Les

données cliniques incluant un questionnaire médicale et les analyse sanguines, ont été analysées en

relation avec le lUX. Une composante génétiquelfamiliale des phénotypes a été évaluée par une
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étude familiale. Résultats et conclusion: Parmi 193 familles, 1144 femmes ont été recrutées. Ces

(E dernières étaient âgées entre 3$ et 96 ans, pour une moyenne de 63,3 ans. Les résultats obtenus pour

le phénotype DC primaire sont de quatre ordres : i) la fréquence du DC biaisé dans les CB était faible

(12,4%-similaire au résultat obtenu dans les cordons de nouveau-nés (8,6%)), ii) le RIX des CB

était relativement stable avec l’âge (p=O.2l), iii) le RIX des CB corrélait signilitivement avec celui

des types cellulaires du SP (O,46<r<O,56) et iv) l’héritabilité des RIX des CB suggère une

composante génétique (p<O,000I; h2=O,30). Ces propriétés sont en lien direct avec un phénotype iX

primaire, possiblement en relation avec un locus Xce lié au X. Ceci suggère que le IX primaire chez

l’humain n’est pas un processus strictement stochastique comme suggéré précédemment.

Cliniquement, les RIX ont été associé à une augmentation des cas d’asthme. Parmi les types

hématopoïétiques, l’incidence du DC biaisé était plus élevée par rapport au CB: granulocytes (PMN)

36%, monocytes 36,6%; lymphocytes T 20,1% et lymphocytes B 26,5%. En utilisant la valeur BA

relatil l’incidence du BA (valeur 0,25) était 22,7; 27,2; 11,4 et 16%, respectivement. À

l’exception des cellules T, chez un individu les RIX entre les différentes cellules hématopoïétiques

corrèlent d’un façon significative (O,73<r<O,85), ce qui supporte une d’origine CSH. L’incidence de

BA augmentent significativement avec l’âge, particulièrement pour les types myéloïdes. Une

incidence du BA moins fréquente chez les lymphocytes T pourrait être attribuée à une plus grande

(E longévité. Les études d’héritabilité ont attribué 20 à 39% de la variance des valeurs de BA aux

effets génétiques, ce qui supportent les études de liaisons génétiques pour localiser les phénotypes.

Cliniquement, l’augmentation des valeurs de BA était associée à une diminution du nombre

d’éosinophiles. Puisque le compte d’éosinophiles est associé à la mortalité, une association négative

suggère que le BA est associé à la longévité. En conséquence, le fait que le phénotype BA ait

démontré un profil biologique différent de celui du phénotype BP (i.e. : l’apparition acquise versus

primaire, l’incidence de iX biaisé differentes et les profils cliniques differentes) suggère fortement

deux phénotypes distincts.

Mots clés: chromosome X, biaisé acquise, biaisé primaire, HUMARA, héritabilité, cellules souches

hématopoïétiques, cellules buccales, humain, femme, Québec, lignées hématopolétiques, études

d’association, donnée clinique, analys&sanguines, l’âge
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I THE X CHROMOSOME

(
1.1 Basic principles

‘flic term “X chromosome”, used to denote the sex chromosome that determines the development of

the homogametic female sex, lias been adopted in honor of Henking’s observation of a densely

stained body that appeared in haif of secondary spermatocytes of the heteropteran insect,

Pyrrhocoris apterus. 11e was uncertain of the clear nature of die body so lie labeled it “X” for

unknown, years later identified as the sex chromosome. The X is an exceptional chromosome as it

can undergo inactivation or reactivation - dependant on chromosome company, developmental

pathway (soma versus germiine) and stage of development. Among eutherian mammals, with few

exceptions, it is conserved in size and compromises roiighly 5% of the haploid genome (01mo,

1967). Moreover, as the X chromosome Iacks a pairing partner in males (aside from the PAR

regions that recombine with the Y), 01mo hypothesized that h is relatively protected from

rearrangements thus conserving gene linkage to the X chromosome across various eutherian

species.

Among mammalian species, X-Jinked gene dosage equivalence between XX females and XY males

is accomplished by a fundamental mechanism of gene regulation: X chromosome inactivation. By

the same mechanism, aneuploidy of the X chromosome (extra copies or monosomy) is well

tolerated. X inactivation (Xi) is initiated during eariy female development and is a fundamental

requirement for normal development. Failure to do so has been associated with severe

developmental defccts and embryonic lethality (Migeon et al., 1993). In partïcular, ectodermal ceil

death and absence of mesodermal formation lias been observed in mouse embryos bearing two

active Xs (Takagi and Abe, 1990). To achieve gene dosage equivalence with the autosomes, gene

expression from the single active X is upregulated approximately 2-fold, as demonstrated in

different mice strains where a particular bous was X-linked in one but autosomal in another (Adier

et al., 1997), consistent with Ohno’s hypothesis for an evolutionary requirement for high level gene

expression from the single active X chromosome (01mo, 1967).

1.2 Lyon’s Hypothesis

The X chromosome inactivation hypothesis, first proposed by Mary Lyon (Lyon, 1961), states that:

(ï) one of the two X chromosomes in mammalian female ceils îs genetically inactivated; (ii) the

inactive X could be maternai or patemal in origin; (iii) inactivation occurs early in embryonic

development and remains flxed in progeny celis. The latter is consistent with clonai inheritance of
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X inactivation patterns (Davidson et al., 1963). In other words, “X chromosome inactivation is the

transcriptional silenchig of a randomly selected X chromosome initiated in early female

development”. As a resuit, females are functional mosaics for X-linked polymorphisms, with two

distinct ceil lines/populations. Lyon based lier hypothesis on summation of the following

observations: i) the Barr body (then referred to as the X-chromatin body) was formed by

condensation of a single X chromosome (01mo et al., 1959); ii) the asynchronous labeling of the X

chromosomes (Gilbert et al., 1962); iii) mice with an X0 genotype were normal fertile femafes,

suggesting a single X is required for development (Welshons and Russell, 1959); and iv) mice

heterozygous for an X-linked coat color gene (moftled, brindled, tortoise-sheli, or tabby - most of

which are lethal in the hemizygous state) present a variegated coat phenotype (Welshons and

Russefi, 1959) (Lyon, 1960). In fact, in the heterozygous state, these genes give rise to a random

patchy, somewhat linear, distribution of abnormal and wild type coat colors (Lyon, 1962). Dosage

compensation by X inactivation lias been tested and extended to humans (Gartier et al., 1992).

Indeed, very similar patterns can be seen in female carriers ofvarious X-lïnked skin disease alleles.

1.3 Anatomical human X-m osaicism

In humans, the unes of Blashko, a nonrandom developmental pattem of the skin, manifest in the

heterozygous state of various X-linked gene defects, with mutant gene expression covering affected

areas and wiid-type gene expression constituting normal skin. Examples of X-linked skin disorders

with clinical manifestations foflowing the Blashko unes are focal dermal hypoplasia,

chondrodyspiasia punctata, and hypohidrotic ectodermal dyspiasia (Happle, 1985). The nature and

origins of the unes of Blashko may be best explained by the visible consequences of Lyonization

(Flappie, 1985), possibly reflecting the stream or trend of embryonic tissue growth. They describe a

V-shape over the spine, on the abdomen they frequently form whorls and on the limbs they mn in a

more or less perpendicular linear direction. When compared to mosaic defects of human skin, the

banding observed in mice is usually much more coarse, vaguely resembling the distribution of

Biashko’s unes.

Although the linear skin lesions are likely to reflect cional prolïferation of two functionaily different

ccli populations, analysis of smaH skin specimens (3-6mm) from normal individuals lias found

similar X inactivation paffems UP) in different regions of the same individual, suggesting skin

growth is characterized by considerable ccii mixing (Fiaikow, 1973). Similar findings were reported

for uterine tissue (Linder and Gartler, 1965) and hair roots (Gartier et aI., 1969). Moreover, in

human skin sampies composed of approximately 35 basai keratinocytes, a fme mosaic of tiles was

observed, with the maternai or paternal X chromosome inactivated in each tue (Asplund et al.,
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2001). It appears therefore that the distribution paftern of skin ceils may be influenced by X-liiilced

genetic factors: in healthy females, a fme mosaic of tues; in carrier’s of certain X-Iinked skin

disease alleles on the other hand, a linear pattem may be observed.

1.4 Timing of X inactivation: concurrent with tissue d!fferentialion

Aftbough the process and mechanism of Xi bas been investigated in several species, a prime model

is the mouse as it is experimentafly amenable and a plethora of information is available. The

following is an outiine.

Pre-fertitizution

During early female development, oogenesis is characterized by reactivation of the inactive X,

occurring prior to the leptotene stage (Kratzer and Chapman, 1981), (Gartler et al., I 9$0), ensuing

in two active X chromosomes (Epstein, 1972). During mate gametogenesis on the other hand, the

active X chromosome is progressively inactivated around fffst meiotic prophase (Lifschytz and

Lindsley, 1972), ensuing in formation of the XY body. Akin to the female soma, the inactive X is

relatively condensedlheterochromatic. In contrast however, althougb transcriptionally inactive

(Richier et aI., 1992), flic CpG islands ofhouse keeping genes are relatively unmethylated (Driscoli

and Migeon, 1990).

Post-fertilization

Key observations of Xi occurring post-fertilization have been documented in vivo using harvested

mouse preimplantation embryos and in embryonic stem (ES) ceils. In both systems, initiation of Xi

has been tightly regulated to tissue differentiation - sec figure 1 (page 6) . Upon fertilization, the

zygote and early blastocyst (prior to implantation) embodies two active X chromosomes (Gartier et

al., 1972). Reactivation of the sperm-derived inactive X chromosome however has not been well

characterized. Upon dïfferentiation, one X is inevitably selected for inactivation (Epstein et al.,

197$), (Kratzer and Gartier, 197$), (Monk and Kathuria, 1977), (Monk and Harper, 1979), (Penny

et al., 1996). In ceits destined to form extraembiyonic lineages (trophectoderm and primitive

endoderm), the patemal X bears a putative imprÏnt marking the chromosome for early inactivation,

wherein Xi is initiated 4,0-5,0 days post-coitum (dpc), shortly around or after the time of

implantation (Takagi and Sasaki, 1975), (West et al., 1977), (Takagi et aL, 197$), (Monk and

Harper, 1979), (Costanzi et al., 2000). After implantation (5,5 — 6,5 dpc), a genome-wide

demethylation event is believed responsible for erasure of the parental imprint(s) (Rastan, I 9$2a)

(Monk et al., 1987), ensuing in random inactivation of parental X chromosomes in cells ofthe inner

ceti mass (Gardner and Lyon, 1971).
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furthennore, aithougli preliminaiy data found that Xi occurs concurrently with tissue differentiation

(Monk aiid Harper, 1979), unequivocal evidence was derived from a mouse une transgenic for an

X-Iinked Lac Z transgene. The transgene, which was subject to inactivation, underwent inactivation

in a developmental context, gradually proceeding in sub-populations and Jineages, and was vfrtually

completed by 11,5 dpc (Tan et al., 1993; Tan et al., 2000). Thereafier, the inactive state of the

chromosome was clonally inherited in daughter celis. lii humans, Xi is speculated to occur

approximatety 16 dpc (Park, 1957).

2 MECHÀMSM 0f X INACTWATION

Xi is an intensely studied subject that involves several molecular mechanisms: counting and

choosing, initiation/propagation and maintenance. An introduction to the underlying principles,

properties and mechanisms of Xi wilJ be provided (for a comprehensive review see (Willard, 1996a;

Avner and Heard, 2001)). The X-inactivation center (Xic), spanning approximately 1MB, is a key

cis-regulator for the initiation of Xi. Several elements involved in the Xi process reside within the

Xic (Figure 2, page 7) (Table I, page 7).

2.1 The X inactivation center (XicIXIC)

The fïrst dues for an “initiator of X chromosome inactivation” came from genetic studies wherein

mutant X chromosomes lacking a particular region were unable to undergo inactivation. This

deleted region was thereafier called the X chromosome inactivation center (Xic). Evidence that the

Xic functions in cis lias been progressively defmed by the partial spreading of inactivation onto

autosomal segments in X-autosome transiocations containiiig the XicDUC (Russell, 1963), (Rastan,

1983), (Cattanach et al., 1991), (Jeppesen and Turner, 1993; Jeppesen and Turner, 1993).

Localization ofthe human )UC has been assigned to band Xq13 (Brown et al., 1991a), (Leppig et

al., 1993), (Lafreniere et al., 1993). There is no convincing evidence for more then a single XIC

(Wïllard, 1 996b). The corresponding syntenic region in mouse is somewhat smaller and the overali

organization ofthe XicDUC is poorly conserved between human and mouse (Debrand et al., 1998).

Three general processes have been attributed to the Xic/XIC: counting, choice and

initiatio&propagation.
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Figure 1. Timing and appearance of X inactivation during female mouse development. After

formation of the zygote, both Xs are relatively active. An imprinting pathway, where Xp (paternal

X chromosome) is preferentially inactivated, is operative in tissues destined to form extraembiyonic

structures. At around the time of implantation, random X inactivation begins in celis destined to

form epiblast-derived tissues.

Oocyte Sperm

Blastocyst

Implantation

celis destined to form extraembiyonic
tissue

- Xp marked (impnnted) for inactivation

inner celi mass
- both Xs active

Xp preferentially inactïvated

Random X inactivation

Zygote

uterine walI

Abbreviations: Xm, maternai X; X, paternal X; a, active; j, inactive
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figure 2. The Xic region and its defmed elements. The Xic, located at Xq13, bas been implicated in

three defined processes of X inactivation: ï) counting, ii) choice, and iii) initiationlpropagation.

Genetic elements identifïed within the Xic that play a rote in the X inactivation process are Xist,

Tsix and the Xce element. Distances between elements and the size of the genetic elements are

approximate.

Xic (Xq13)

_-

Xist gene expression
Xce element

4
Tsix gene expression

Table L The Xic and its elements.

Xic: A master control region required for the initiation of X inactivation. As the Xic functions in

cis, X chromosomes void of an Xic fait to undergo inactivation. A counting, choosing and spreading

role bas been attributed to this locus. Effector elements residing within the Xic includeXist, Xce and

Tsix.

Xist: Localized to the Xic region, the X inactive specific transcript (Xist) is a non-protein coding

mRNA essential for the initiation of X inactivation in cis and appears to be the primary signal for

propagation of inactivation along the chromosome.

Tsix: Tsix is a mRNA species transcribed antisense to and approximatety 15 Kb downstream of the

Xist gene. In mice, the transcript spans the whole of the Xist gene while in humans a shorter

transcript has been identified. Targeted deletions in the 5’ region of Tsix Ieads to skewed X

inactivation and disrupts imprinted X inactivation in extraembryonic tissues, suggesting Tsix

influences X chromosome choice. A possibte role of Tsix may be regulating Xist activity in cis.

Xe: The apparent function of the cis-acting X-chromosome controlling element (Xce) is to

modulate the probability upon which a particular X chromosome is inactivated. In the mouse, a

gradient of alleles bas been demonstrated. In the heterozygous state, the X chromosome bearing a

stronger allele is preferentiatly setected to remain active versus the X with the weaker alfele,

resulting in primary nonrandom X inactivation. Xce activity resides 3’ to Xist.
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i) Counting: This step senses the number of X chromosomes in the celi and ensures that only a

single X chromosome remains active per diploid celi - ai] other X(s) are inactivated (Therman and

Patau, 1974) (Rastan, 1982a). The absolute requirement ofat Ieast two Xics is required for initiation

of X inactivation (Rastan and Robertson, 1 9$5), (Rastan, 1983). How a single X is selccted is flot

presently clear. It is speculated that a blocking factor produced in limited amounts binds to a single

Xic (reviewed in (Migeon, 1994). Alternatively, allelic methylatïon differences within a proposed

differential methylation region may be another (Chao et aI., 2002). Since the number of active X

chromosomes is dependant on the number of chromosomal sets (ploidy number of autosomes), as

there are one to two active X’s in XXX triploids (69 chromosomes) and two active X’s in X)OOC

tetraploids (92 chromosomes), an autosomal origin for the blocking factor lias been supported (Carr,

1971), (Jacobs and Migeon, 1989). In fact, recent findings identified the CTCf insulator /

transcription factor as ‘the’ or ‘one of’ several putative trans-acting “blocking facto?’. As several

CTCF binding sites were identified in the mouse TsixIDXPas34 region, the authors postulate that

Tsix and CTCF work together to designate the future active X by inhibiting Xist activity in cis

(Chao et al., 2002). for a review of plausible mechanisms, see (Percec and Bartolomei, 2002). Ihe

role for CTCF as the human “blocking factor” is presently unclear as the number of CTCf binding

sites in the syntenic human region has signiflcantly less CTCf binding sites.

ii) Choice. During the choice process, one X is seiected to remain active and the other to be

inactivated. Although believed to be a random process, with maternai and paternal X boasting equal

inactivation probabïlity, deviation from random inactivation has been noted. for example, in extra

embiyonic lineages of mouse, the patemal X is marked for preferential inactivation. In the embryo

proper ahernatively, the imprint is believed erased soon after implantation, ensuing in random X

inactivation. Nonetheless, in mice, allelic variants ofthe Xce locus (the nature of which is presently

unclear) can compromise choice, ensuing in primaiy nonrandom X inactivation pattems. A gradient

of Xce alleles lias been identified, each influencing the probability of inducing cis-ïnactivation

(Cattanach and Isaacson, 1967), (Cattanach et al., 1969), (Cattanacli and Perez, 1970). it is

specuiated that the Xce affects affinity for the trans-blocking factor. Additional elements recently

implicated in the choice step are Tsix (Lee and Lu, 1999), Xist (Marahrens et al., 1997), (Boumil

and Lee, 2001), (Newali et aI., 2001) andXite (Ogawa and Lee, 2003). Further, as CTCF may act in

concert with Tsix in designating the future active X, it may aiso play a rote in the choice step.

iii) Initiation I propagation: This step involves initiation and spreading of the inactivation signal

onto neighboring regions in a cis-mediated manrier (Rastan, 1983), (Lee et ai., 1996), (Willard,

I 996a). Given the cis-Iimited function of Xist, binding sites or nucleation centers (booster elements)

have been specutated (Gartier and Riggs, 1983), (Riggs, 1990). As a candidate booster element,
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Lyon (Lyon, 199$) proposed long interspersed repeat elements- 1 (Li), based on two observations.

i) The X chromosome is enriched for sucli elements, approximately two-fold versus the autosomes

(Bailey et al., 2000). ii) In the event of X-autosome transiocations, the extent of inactivation

spreading onto autosomal regions correlated with levels of LI elements. Moreover, X-linked

regions that contain genes that escape inactivation are sïgnïficantly reduced in Li content versus

chromosomal segments containing genes subject to inactivation (Bailey et aI., 2000).

Although Xist RNA coating of the inactive X chromosome may have a chromatin-remodeling role,

(Clemson et al., 199$), Xist expression per se may flot be required for ‘maintenance’ of inactivation

(Csankovszki et al., 1999) (Wutz and Jaenisch, 2000) as Ioss of the )UC in humans bas flot been

associated wïth instability ofthe inactive state (Brown and Willard, 1994), thus suggesting that once

silencing bas been achieved, it is frreversible and thereof independent of Xist. Moreover, when Xist

expression was reactivated from the active X or when ectopic Xist expression was induced,

inactivation could flot be initiated (Wutz and Jaenisch, 2000) (Clemson et aI., 1998), consistent with

a developmental context ofXist expression.

2.2 Genetic elements of the Xic: Xist gene

The Xist gene, for X inactivation specific transcript, is believed to play a primary role in the X

inactivation process: I) it is located within the Xic (Xq 13.2), ii) is transcribed specifically from the

inactive X chromosome in both human (Brown et al., 1991b) and mouse (Borsani et aI., 1991),

(Brockdorff et aI., 1991), iii) is transcribed prior to Xi (Kay et al., 1993), and iv) bas been shown to

be essential for cis-mediated Xi by loss-of-function experiments (Penny et al., 1996), (Marahreiis et

al., 1997), (Lee et al., 1996). Although necessary for Xi, the Xist gene is flot required for male

development since male mice bearing a Xist deletion are fertile and physiologically normal

(Marahrens et al., 1997).

The Xist/XIST gene encodes a large untranslated RNA (Brown et al., 1992; Lee et al., 1996),

(Brockdorff et al., 1992) localized to the nucleus (Brown et al., 1992; Clemson et al., 1996; Lee et

aL, 1996). Although both the mouse and human gene contain at least $ exons, the )U$T cDNA

spans a maximal 19.3 KB (Hong et al., 2000) whule Xist cDNA spans at least 17.4 KB, however

smaller isoforms have been produced (Hong et al., 1999). The mouse and human Xist/XI$T gene

exhibit moderate but significant conservation of sequence and gene structure (Nesterova et al.,

2001).
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2.2.1 Developmental regulation ofXist

Dynamic changes in Xist expression mark one of the earliest events of the Xi process (Figure I .3a).

In undifferentiated murine embryonic stem (ES) celis (both male and female), the X-chromosomes

are relatively active and marked by basal Xist expression (Hong et al., 1999; Tai et al., 1994),

(Beard et al., 1995), (Daniels et al., 1997a), (Panning and Jaenisch, 1996) (Panning et al., 1997),

(Panning et al., 1997), (Johnston et al., 199$). This RNA however accumulates at the site of

transcription and does flot localize across the chromosome. Upon differentiation however, Xist RNA

expression is upregulated (>1 5-fold) from the X destined for iriactivation and is downregulated on

the future active X (Panning and Jaenisch, 1996) (Panning and Jaenisch, 1996). Xist upregulation is

thought to resuit from an increased RNA haif-life (Panning et al., 1997), (Sheardown et al., 1997),

possibly owing to a switch in Xist promoter usage (Johnston et al., 199$). However, recent data

suggcst an altemate mechanism: Tsix gene interference (vide infra) (Warshawsky et al., 1999).

Nonetheless, Xist accumulation is rapid, coating the inactive X within one celi cycle (Wutz and

Jaenisch, 2000), (Panning et al., 1997). $everal thousand X-linked genes are transcriptionally

silenced shortly afler the accumulation ofXist RNA (Keohane et al., 1996).

2.3 Characteristics acquired with Xist upregulation

Acquisition of Xi involves several progressively acquired changes in structure and function,

including recruitment of regulatory / chromatin proteins, many ofwhich have been identified. Both

genetic and epigenetic modifications have been characterized, see Table II (page 12) for an outiine.

Cytologically, the inactive X assumes a condensed, compact appearance coïned the Barr body (Barr

and Bertram, 1949).

Methylation of CpG islands of Xi-linked genes

During the course of Xi, the CpG islands of Xi-linked genes are generally hypermethylated (Wolf

and Migeon, 1982; Wolf et aI., 1984) (Keith et aI., 1986) (Bird, 1986), erisuing in transcriptional

silencing.

Asynchronous replication of the inactive X

With respect to its’ active counterpart, the inactive X chromosome (and residing genes) replicate
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Figure 3. Xist, Tsix and X inactivation. a) Xis! and Tsix expression in undifferentiated versus

differentiated ES ceils. b) Xist and Tsix expression in extraembryonic (pre-implantation) versus

embiyonic tissues (post-implantation).

a) ES Ceils

undifferentiated

Tsix upregutated
(Xist downregulated)

Xist upregulated
(Tsix downregulated)

b) Embryo

pre-imptantation

- preferential (imprinted) inactivation of Xp in
extraembiyonic tissues

Xist Xist
Tsix Isix

Tsix Xist
(preferentially (preferentially

maternai in paternal in
origin) origin)

differentiated post-implantation

future future

XaX

Xist (future Xi) Xist (fiture Xi)

- erasure of imprint

- random X inactivation
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Table U. Genetic/epigenetic and morphological characteristics acquired with inactivation of the X

chromosome.

Genetic nwdjficatians

- Xist gene upregulation

- Tsix gene downregulation

- General shutdown of most X-Iinked genes

Epigenetic nwd,ficatwns

- Xist mRNA coating

- hypermethylation of CpG islands

- asynchronous replication (usually late-repticating)

- hypoacetylation ofhistones 113 and 114

- hypermethylation ofhistone H3

- high concentration of core histone macroll2A 1.2

- enrichment for BRCA1 mRNA

- condensed chromatin structure, coined the Barr body

C
asynchronously (reviewed in (fleard et al., 1997)), namely in late S phase, (Boggs and Chinault,

1994), (Schmidt and Migeon, 1990). Genes that eseape X inactivation on the other hand, replïcate

in synchronicity with its’ active X homologue (Boggs and Chinault, 1994).

Covalent modifications of X chromosome associated histones

Histone acetylation
The transcriptionally active X is charactenzed by hyper-acetylation ofNTI2-terminal lysine residues

of histone H3 and 114 (Jeppesen and Tumer, 1993), (Gilbert and Sharp, 1999), (Boggs et aI., 1996),

while those associated with promoters of transcriptionally inactive genes of the inactive X

chromosome are essentially hypoacetylated.

Historie methylation

During X chromosome inactivation, methylation of lysine 9 of histone 113 (H3-K9 methylation)

occurs within or shortly afier Xist accumulation (fleard et al., 2001), (Mermoud et aI., 2002).
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Enrichment of histone variants

The inactive X is further characterized by a high concentration of the core histone macrofl2Al .2

(Costanzi and Pehrson, 1998). Localization of macrofl2Al .2 to the inactive X may be mediated by

interaction with Xist mRNA, possibly by formation ofa ribonucleoprotein compiex (Csankovszki et

al., 1999).

Ennchment of mRNA species

Recent studies have demonstrated that BRCAI mRNA associates (possibly essential) with )UST

mRNA in female somatic celis, mediating chromatin stability of the inactive X (Ganesan et al.,

2002). Thereof in absence of functional BRCA1 (either by germiine mutations, LOil or RNA

interference), i) the chromatin state of the inactive X was destabilized, ii) enrichment for

macrofl2Al .2 was suppressed and iii) particular X inactivated genes (a GfP transgene for example)

were partially upregulated, thus suggesting BRCAI plays a pivotai roie in mediating Xi. Thus, the

gender-speciflcity upon which BRCAI mutations transcend to ovarian and breast cancer may be

expÏained by genomic instability of the inactive X chromosome. Supportive evidence was derived

from various BRCAI4 tumors, of which demonstrated defects in chromatin structure and over

expression of several genes linked to the inactive X (Jazaeri et al., 2002). One hypothesis may be

that derepression of Xi leads to a dosage imbalance of genes required for normal

function!development of breast and ovaries.

2.4 Stability of X inactivation

Once Xi has been achieved, the chromatin state is clonally inherited (Davidson et ai., 1963) and the

inactive state believed stably maintained for duration ofthe cell lifespan (Migeon, 1972). However,

exceptions have been noted. i) The inactive X is reactivated as a normal part of oogenesis. ii) Albeit

at a low ftequency (1 0 to I 0), in vitro cuitivation has been associated with reactivation of varions

Xi-linked genes (Dyer et al., 1989) (Mohandas et al., 1981), (Graves, 1982). In addition, there ïs

convincing evidence in mice that particular Xi-linked genes are partially reactivated with advancing

age (Wareham et al., 1987) (Brown and Rastan, 198$).

3 REGULATORY ELEMENTS 0F THE XIC

To identify regulatoiy regions within the Xic, deletion and transgenetic analyses in and adjacent to

the Xis! gene and their consequential effects on cis-mediated Xi were investigated.
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Initiation etement

Targeted deletion of the 5’ region ofXist (7-Kb, including 30 bp of the promoter region) abolished

initiationlpropagation (Penny et aI., 1996), delïmiting initiation of Xi to thïs region (Lee et al.,

1 999a).

Counting elements

The counting process was delImited to a 37-Kb region lying 3’ to Xist, but genetically separable

from Tsix promoter and Xite. Moreover, as the aberrant X was also inactivated in differentiating XY

ceils, sex-specific factors in the Initiation of Xi are putatively excluded.

Choice elements

The choice process appears influenced by various elements within the Xic. i) The elusive Xce tocus,

reputably associated with nonrandom Xi patterns (Caftanach and Papworth, 19$1), has been

delimited to a rather large region 3’ to the Tsix locus (reviewed in section 7.3.2.1). ii) Targeted

deletion of the Xist antisense transcript, i.e., Tsix, induces constitutive Xist expression and

nonrandom Xi of the aberrant X (Lee and Lu, 1999). iii) The recently identified Xite gene

(downstream from Tsix) also mediates choice as targeted deletion of the gene downregulated Isix

activity in cis, resulting in Xist upregulation and preferential inactivation of the aberrant X (Ogawa

and Lee, 2003). iv) In humans, a rare base-pair mutation in the XIST promoter region lias been

associated with preferential inactivation of the mutant X (Plenge et al., 1997), suggesting

mutation/polymorphisms in the Xist gene may influence Xi pattems. A plausible mechanism may be

increased Xist transcription, thus increased probability of undergoing Xi. y) lnduced chemical

mutagenesis of the mouse genome identified two autosomal bd (yet to be clearly identified) which

when mutated altered X chromosome choice (Percec et aÏ., 2002).

3.1 Further characterization of the Tsix gene

The Tsix gene, so dubbed as it is franscribed antisense to Xist, encodes a 40-Kb transcript

originating some 2$ Kb downstream ofXist in both liuman and mouse (Lee et al., 1999b), (Sado et

al., 2001), (Migeon et al., 2001). Although originally deflned as having no conserved ORF, recent

studies suggest it is partially processed, giving rise to a 2,7 and 4,3 Kb franscript (Sado et al., 2001).

It is found exclusivety in the nucleus, but unlike Xist, remains bocalized to the Xic (Lee et aL,

1999b).

Rote of Tsix in regulation ofXist
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Because Tsix is i) transcribed antisense to Xist, ii) is concurrent with early Xist expression and iii)

Tsix upregulation from the future Xa is associated with Xist downregulation (Panning and Jaeniscli,

1996), (Lee et al., 1999b), a role in regulating Xist activity bas been speculated. Avallable evidence

suggests high Jevel Tsix expression represses Xist Jikely thougli a franscriptional mechanism (Lee

and Lu, 1999), however other mechanisms are plausible (sec (Avner and Heard, 2001) for review).

Once Xi is estabuished, Tsix expression from Xa ïs downregulated to undetectable levels.

Similar to the munne homologue, human T$IX is expressed exclusively in epiblast derived ceils.

However, it is truncatcd at its 3’ end, ending approximately at exon 5 of the XÎST gene, deriving a

transcript of approximately 35 Kb (Migeon et al., 2001). Moreover, human T$IX lach the 5’ CpG

is]and putatively required for murine Tsix imprinting fimction (Sado et al., 2001), suggesting TSJX

may flot function like its murine counterpart (Migeon et al., 2001).

4 IMPRINTED X INACTWATION

Genomic imprinting is a process whereby gene function is affected in a parental origin-specific

manner and is manifested as a difference in expression of parental alleles. The effects of genomic

imprinting arise from differential epÏgenetïc modification of parental alleles during gametogenesis,

followed by additional epigenetic processes that may occur afier fertilization (Latham, 1999).

Genomic imprinting may limit the effects of growth factors in the embryo andlor in extra

embiyonic tissues, in which there is differentiai parental investment (flaig, 1993). Strong epigenetic

effect of parental iniprinting on the X inactivation proeess has been observed in mouse and weaker

evidence has been found in human.

4.1 Preferential inactivation of the paternal X in extraembryonic tissues

li mice, unlike embryonic tissues that exhibit random Xi, the patemal X is preferentially inactivated

in the first ceils to differentiate, the physiologicai consequence of which is presently not clear,

eventually giving rise to tissues destined for extra-embiyonic development (Takagi and Sasaki,

1975), (West et aÏ., 1977), (Harper et al., 1982), with $7-$$% oftrophoblasts possibly showing Xp

inactivation (Takagi and Sasaki, 1975), (West et al., 1977). Resistance of Xm from undergoing

inactivation lias been ascribed to acquisition of an imprint during oogenesis (Lyon and Rastan,

1984), (Tada et ai., 2000). flic Xist gene is thought to play a vital role in the imprinted pathway

since female mice inheriting a patemai Xist deletion bear 2 active Xs and die early in

embryogenesis. Mice inheriting a maternai Xist deletion on the other hand, are normal and exhibit
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exclusive paternai Xi (Marahrens et al., 1997). In humans however, there is no evidence for

parental-specific preference of Xist expression (Daniels et al., 1997b) (Ray et al., 1997).

Interestïngly however, preferential inactivation of Xp in extra-embryonic tissues may flot be related

to imprinting at ail. Alternatively, relative to the active maternai X, the inactive X derived from

sperni may be more receptive to the inactivation signal (Monk and McLaren, 1981). Supporting

evidence was derived from elegant cloning experiments where the inactive X (maternai or paternal

in origin) of the donor-derived nucleus was preferentially inactivated in extra-embtyonic tissues of

the cioned embiyo (Eggan et aI., 2000), thus suggesting that the donor-derived inactive X, like in

sperm, is poised for early inactivation.

4.2 X-imprinting in humans

Unlike the mouse, evidence for preferential inactivation of Xp in extraembryonic tissues in humans

remains controversial. Although random Xi was observed in chorionic villi of eariy gestation

(Migeon and Do, 1979), (Migeon et al., 1985), (Mohandas et aL, 1989), (Bamforth et al., 1996),

preferentia! inactivation of Xp was observed by others (Harrison and Warburton, 1986), (ilarrison,

1989), (Goto et al., 1997) and partially supported by (Uehara et al., 2000). furthermore, whereas

trophoblasts from fuil-term placentas showed Jack of preferentiai inactivation of Xp (Looijenga et

al., 1999), Xp was preferentialiy inactivated in another study (Ropers et al., 197$). Discrepancies

may be explained by methodofogy used, tissue type andlor maternai ccli contamination.

5 ESCAPE FROM X INACTIVATION

An intriguing aspect of Xi is that certain genes escape inactivation, resulting in expression from

both X chromosomes. Approximately 30% of genes on the short arm of X and less than 5% of

genes on the long arm escape Xi, averaging over 10% of X-linked genes (Carrel et aI., 1999).

Relative to mice, humans are believed to have a larger number of genes that escape Xi (Disteche,

1999). These genes may be independent or clustered together, the latter found in or near the

pseudoautosomal region (PAR) (Lyon, 1962), (Miller and Willard, 199$), suggesting a

chromosomai domain model of regulation. It is unclear whether genes are initiaily inactivated and

then re-activated, or simply remain active. it was hypothesized that genes escape Xi to compensate

for functionai Y homologues in males. However, many genes that escape Xi do flot have an Y

homologue, suggesting dosage imbalance between the sexes. Interestingly, several genes display

variable escape from Xi, being expressed from the inactive X in some females but subject

to inactivation in others (Carre! and Willard, 1999), (Anderson and Brown, 1999). Escape
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from Xi may be a significant factor for physiological and disease susceptibility differences

tE between the sexes (see (Brown and Robinson, 2000) for review).

6 CLINICAL APPLICATION 0F THE LYON’S HYPOTHESIS

Several methods have been developed to determine the clonai nature of a pathologicai tissue.

Originally these methods relied on specific gene defeets associated with particular cancers

(reviewed in (Gilliland et al., 199 la)). For example (I) immunoglobulin and T ceil receptor gene

rearrangements in iymphomas, (ii) cytogenetic and fluorescence in situ hybridization analysis of

genetic aberrations (transiocations, deletions, duplications and inversions) in acute myeloid

leukemia, chronic myeloid leukemia and myeloproliferative disorders, (iii) point mutations in

criticai genes such as proto-oncogenes and tumor suppressor genes in hematological and

gastrointestinal cancers, and (iv) viral integration in vfral-associated lymphomas. However, not ail

tumors exhibit particular tumor-specific markers or the specific abnormalities are flot known.

6.1 X inactivation-based clonality assays

Xi based clonaiity assays were developed on precepts of the Xi hypothesis (Linder and Gartier,

1965). These assays, winch do not rely on the presence of tumor-specific markers, have the

advantage of detecting clonai derivation of ceils in any informative female. The finding that a

pathological tissue is monoclonal is consistent with a neopiastic process (i.e., that a tumor bas arisen

from acquired somatic mutation(s) in a single progenitor celi (Nowell and Hungerford, 1960))

whereas normal and reactive celi populations (inflammatory tissues) are typically polyclonal in

origin. Application of these assays is central to many aspects of our understanding of the normal

biology of hematopoiesis as weil as the pathogenesis of hematologic malignancies ((Busque and

Gilliland, 199$) for review). For example, the stem ceil origin of differentiated hematopoietic

lineages (Gartler et al., 1969), the clonai origin of numerous hematological and non-hematological

maiignancies (Linder and Gartler, 1965), and the stem celi origin of various hematologic

malignancies. In addition, these assays can be utilized for detection status of female carriers of

various X-linked disease alleles (reviewed in (Puck and Willard, 199$)).

6.2 Principles ofX-inactivation based clonatity assays

Xi-based ctonality assays, reÏy on two basic prerequisites. The first is to differentiate parental origin

ofthe chromosomes: Xp from Xm. The second is to distinguish the active X (aX) from the inactive
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X (iX). A limitation to these assays is exclusion of male (XY) samples. Table III (page 1$) provides

(E a list of informative Xi-based assays.

6.2.1 Distinguish Xp from Xm

The ability to distinguish Xp from Xm is based on polymorphisms that exist in the general

population at different loci on the X chromosome (reviewed in (Busque and Gilliland, 199$)).

These DNA polymorphisms are typically of a single base-pair variation or variation in tength of a

simple repeat sequence (SRS). Both PCR and Southern-blot based techniques are utilized, but PCR

is more efficient and does not requ ire large quantities of DNA starting material (pico- to nanogram

quantitÏes acceptable). Expression-based assays have been developed, which may be transcript- or

protein-based. The informativeness of a polymorphism is directly related to the frequency and

number of alleles present in the population, which may vary among different ethnic groups.

6.2.2 Distinguish active X (aX) from inactive X (IX)

The iX chromosome, characterized by hypermethylation of CpG dinucleotides in promoter regions

and repression of gene activity, is amenable to both epigenetic and expression-based assays

respectively (see (Busque and Gilliland, 1998) and (Gale and Linch, 199$) for review). Absolute

( requwements of the epigenetic-based assay are ï) one allele be invariably metliylated and the

invariably unmethylated, and ii) DNA methylation patterns be stable with advancing age.

Expression-based assays rely on the principle that transcript/protein expression occur exclusively

from the active X chromosome. Moreover, expression-based assays have the advantage of

analyzing non-nucleated ceils such as platelets and RBC. A comprehensive list of informative (>

30% heterozygosity) X-linked clonality assays is provided in Table W (page 18).

6.3 Utility of Xi based clonality assays

To bu useful, a clonality assay should be highly informative and exhibit strict differential

methylation pattems. Although not a single X-linked clonality assay is informative in 100% of

females, the HUMARA assay was utilized for our analyses as it exhibits a high degree of

heterozygosity, results are reproducible, has been thoroughly validated, and is the most frequently

used assay to infer Xi status of normal and neoplastic specimens.

6.3.1 HUMARÀ assay

The HUMARA locus (DXS 1213; Xq li-12) consists of eight exons spanning more than 90 Kb of

DNA (Kuiper et al., 1989), (Steddens et al., 1992), (Lubahn et aL, 198$), (Chang et al., 198$). The
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first exon contains a highly polymorphic in-frame CAG trimeric repeat. In the general population, $

to 36 CAG repeat units have been observed, corresponding to a 2$ allele-spectrum (J)ersonal

observations). The alleles follow a Gaussian distribution which approaches a constitutional

heterozygosity value of 90%, as determined in several racial groups (Sleddens et al., 1992), (Allen

et aI., 1992), (Edwards et aI., 1992), (Busque et al., 1996), (Desmarais et al., 199$). Significant

repeat expansion (3$-66 repeats) lias been associated with spinal and bulbar muscular atrophy

(Kennedy disease), an X-linked motor neuron dïsease (La Spada et al., 1991). Proximal to the

repeats are four particular methylation sensitive restriction enzyme (RE) sites that meet obligate

methylation pafterns. The cytosine residues within these sites are sfrictly methylated on the iX but

unmethylated on the aX. Utilizing these key features, the PCR-based HUMARA clonality assay

was deveioped (Ai]en et aI., 1992). Since the polymorphism is in the coding region, an expression

based assay (mRNA) lias also been developed (Busque et al., 1994). figure 4 (page 22-23) depicts

the principles ofthe HUMARA clonality assay and sample resijits are shown.

Utitia’ ofthe HUMARA assay

Advantages of the HUMARA assay inciude PCR-based requiring littie DNA as starting material, a

high rate of heterozygosity, and preciselaccurate quantitation of alleles. Commonly used techniques

in the assessment of band intensities are visual evaluation, laser densitometry, and more recently,

fluorochrome and phosphor imaging technology. The technique has been validated by severai

investigators, establishing a reliabie and reproducibie assay to study the clonai origin of sample

specimens. In fact, it bas confirmed or refuted the monoclonal and/or clonai origin (consistent with

a neoplastic growth) of several diseases/disorders (see Table 1V, page 24-25, for a comprehensive

list). However, clonality does flot necessitate expansion of a mutant clone, since in certain instances,

large X inactivation patches, as observed on diffuse intimai thickening of coronaries, may mimic

clonalïty (Muny et al., 1997). furtlier, in presence of a large polyclonal background, the assay is

unable of detecting a clonai ceil population (Allen et aI., 1992), (Gilliland et ai., 1991b). Because of

the high heterozygosity rate, the HUMARA locus ïs frequently used as a genotype marker

applicable for forensic/paternity testing (Desmarais et al., 199$) and Iinkage analyses. Moreover, as

length of the repeat lias been correlated witli functional activity of the receptor, role of the AR gene

in prostate, breast cancer (Giguere et al., 2001) and a wide variety of otlier diseases and conditions

has been investigated (reviewed in (Yong et al., 2000)).
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Figure 4. HUMARA cionality assay (figures A - C).

A) Clonai ccli population. n this hypothetical example, the paternai X chromosome (bearing the

smaller HUMARA alleie) is inactive in ail ceils. The DNA is extracted and subjected to methylation

sensitive restriction enzyme digestion (i.e., Hpa If). As the paternal allele is methylated, it is

resistant to enzyme digestion, thus amenable to PCR amplification. Upon gel electrophoresis, a

single band is detected on autoradiographic film, reflecting amplification of the inactive allele,

signifying a monoclonal ccli population. A mock digest (without addition of Hpa II) is aiso

included, serving as an internai control (determines zygosity status and quantifies potential

preferential amplification of the smaller allele). In a non-pathological seffing, as in normal tissue

samples, such a pattern is referred to as a skewed or a nonrandom X inactivation pattern.

B) Polyclonal ccii population. A mixed population of ceils where Xp and Xm are equaily

inactivated. Afler DNA extraction and RE digestion with Hpa Ij, only the intactlmethylated aileles

are amenable to PCR amplification, in this case, both alleles. Upon gel electrophoresis, two bands

of similar intensity are detected on autoradiographic film, reflecting a polyclonat cdl population. In

a non-pathological setting, as in normal tissue sampies, such a pattera is referred to as a random X

inactivation pattera.
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C) Sample HUMARA resuits of a clonai and polyclonat ccli population. Clonai ce!! population.

As two alleles are detected in the mock-digest lane, the sample is heterozygous thus informative for

clonality analysis. In the Hpa II digest lane, a single predominant band is observed, consistent with

clonai derivation (or a skewed X inactivation pattera if tissue was derived from a healthy female).

Polyclona! ce!! population. Two aileles are detected in the mock-digest lane, consistent with an

informative sample. In the Hpa II digest Jane, two aileles of approximate equal intensity are

detected, consistent with a polyclonai ceil population (known as a random X inactivation pattern if

tissue was derived from a healthy femaie).

Clonai ccli population Polyclonal ccli population

(skewed X inaclivation) (random X inactivaflon)

/
+ - +

—
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6.4 flematological application of clonality assays

C
6.4.1 Clonai origin of hematologic malignancies

Several precepts 0f modem hematologic oncology rety on data obtairied by Xi-based ctonality

assays. The documentation of monoelonaÏ derivation of ceils in acute myeloid Jeukemia (Wiggans

et al., 197$), acute lymphocytic leukemia (Dow et aI., 1985), chronic myeloid leukemia (Fialkow et

al., 1967), myelodysplastic syndromes (MDS) (Raskind et al., 1984), myelofibrosis with myeloid

metaplasia (Kreipe et al., 1991), and in various other myeloproliferative disorders (MPDs) (Anger

et aL, 1990), (Fialkow et al., 19$ 1) has provided a monoclonallneoplastic origin for most

hematologic malignancies.

6.4.2 Stem ccli origin of hematologic malignancies

The demonstration of a skewed Xi pattemn in multiple hematopoietic lineages has invoked a

multipotent stem ccli origin for various MPDs (Adamson et aI., 1976), (Gaetam et al., 1982),

(Raskind et al., 1985), (Fialkow et al., 1981), (Jacobson et al., 197$). Other studies however have

cited heterogeneity in lineage involvement (Anger et al., 1990), (Asimakopoulos et al., 1996), (el

Kassar et aI., 1995), (Tsukamoto et al., 1994), (Gilliland et al., 1991b), (Janssen et aL., 1990). In

MUS subjcets furthermore, although some scientists have reported the involvement of T

lymphocytes in disease pathogenesis thus suggesting a pluripotent stem ccli involvement

(Tsukamoto et al., 1993), (Janssen et al., 1989), (Tefferi et al., 1990), others have excluded the

uniform involvement of T lymphocytes (Raskind et al., 1984), (Abrahamson et al., 1991),

(Lawrence et al., 1987), consistent with a more differentiated stem ceil origin. Disparity in fmdings

remains enigmatic.

6.4.3 Camer detection of X-linked disorders

As a consequence of random Xi, female carriers of X-linked mutant alleles are functional mosaics,

with one population of cel]s expressing the wild type allele and the other the mutant. Mthough the

wild type ceJis are generally sufficient to sparc females from the clinical defccts of recessive X

Iinked mutant alIdes, in the hematopoietic department, a unique capacity for cellular compensation

exists. For certain X-linked disease alleles, celis expressing the mutant allele fait to mature along a

specific developmental pathway, rendering lineage development to be derived from precursor ceils

expressing the wiid type allele. Examples include female carriers of various X-linked

immunodeficiencies such as X-linked severely combined immunodeficiency (X-SCID), X-linked

agammaglobulinemia (XLA), and Wîskott-Aldrich syndrome (WAS) (sec section 7.3.3 for further

analysis). As such, identification of a clonai (or skewed) Xi pattern in the pertinent ccli lineage(s)
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may be used as a diagnostic marker to identify female carriers of X-Iinked disease alleles (reviewed

in (Beimont, 1995)).

6.5 Limitation of X-inactivation based clonality assay

Aside from pathological conditions such as hematologic malignancies and female carriers’ of X

linked disease alleles, clonai origin of ceils has been observed at a phenomena]ly higli frequency in

the general female population. Clinically, it poses a potential limitation to Xi-based clonality assays

since it mimics clonai derivation of ceils but does not equate with malignancy. for fundamentai

purposes, recent efforts have aftempted to identify ami characterize (incidence, implicated celi

types, etiologies, biological associations and consequences) of this “ftequentlnon-pathological”

form ofcionaiity.

7 NONRANDOM X-INACTIVATION

7.1 Binomial distribution of X-inactivation ratios

Because of the random nature of Xi, the maternai or paternal X chromosome may be inactivated in

any given celI (Gartier and Riggs, 1983). In any given female tissue, the proportion of celis

inactivating Xp relative to Xm can be quantitated, deriving the X inactivation ratio (XIR). Upon

examination of a large number of healthy females, XWs tend to follow a binomial or beli-shaped

distribution (Fialkow, 1973), (GaIe et ai., 1991; GaIe et al., 1992; Gaie et ai., 1994) (Naumova et

al., 1996a) (Busque et al., 1996). )URs about the mean represent symmetrical or equal inactivation

of the materna] and paternal X chromosome, defined as a random Xi pattem. Extremes of the

distribution represent significant departure from equaiity of inactivation, which can occur in favor

of the maternai or patemal X chromosome, defmed as preferentiai Xi, skewed X inactivation or

nonrandom X inactivation (a clonai Xi pattem is used in a pathological setting). As skewed Xi was

observed in ‘healthy’ females, a benign/non-pathological origm was speculated.

7.2 Skewed X-inacfivatiou as a discrete trait

The threshold value commonly used to delineate a skewed Xi pattem was arbitrarily assigned to a

disproportion of 75%:25% (3:1) or greater between the number of celis that inactivate Xp versus

Xm, or vice-versa. The tenn skewed Xi simply denotes a bias in choice of parental X selected for

inactivation (no association with the preferentially active or inactive X is given, uniess otherwise

stated). This ratio is widely accepted in the literature to delineate clonai derivation of ceils (Gale et
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aI., 1991; GaIe et al., 1992), (GaIe et aI., 1994); (Vogelstein et al., 1987), (AIlen et al., 1994),

(Busque et al., 1996). Using this threshold criterion, samples can be arbitrarily categorized as

skewed or non-skewed. A more stringent criterion for a skewed Xi pattern, i.e., a ratio of l 0:1,

whïch corresponds to greater than 90% of celis inactivating the same X chromosome, bas also been

utllized (Gale et al., 1992), (Fey et al., 1994), (Busque et aI., 1996), (Plenge et aI., 1997). Using the

3:1 criterion, the incidence of skewed X inactivation in the general female population was found to

vary from 3.7 to 23% (fialkow, 1973), (Vogelstein et al., 1987), (Gale et al., 1991), (Gale et al.,

1992).

In the absence of methods to precisely quantify the Xi paffem (or )UR), the trait lias been

tmditionally limited to qualitative analyses, where the Xi pattern was dichotomized as skewed or

non-skewed. ilowever, with the advancement of reliable quantitative techniques, quantitative trait

analyses are amenable.

7.3 Etiologies of skewed X inactivation

The normal distribution of )URs observed in the general population implies a highly variable trait.

Two general and unrelated phenotypes of Xi have been reported. i) The primary Xi trait. Initiated

during early embryogenesis, it induces Xi in a developmental context, concurrent with tissue

differentiation. Anecdotal evidence suggests it induces a relatively similar Xi pattem among various

tissues within the individual (i.e., a body-wide Xi pattem). $kewed Xi as a resuit of the primary Xi

trait lias been aptly termed primary skewing (PS). $tochastic processes such as a small number of

stem celis present when Xi is initiated are believed responsible for this skewed Xi pattem.

However, more compatible with the developmental context of initiation of Xi are other etiologies.

for instance, genetic influences, such as heterozygosity for the X-Iïnked Xce locus, as observed in

certain strains of mice, can induce a similar phenotype. ii) The second phenotype, termed secondary

skewing, usually associated with a skewed Xi pattem in a celI lineage or tissue-specific manner,

occurs after the initiation of Xi. The most widely accepted etiology is presence of an X-linked

mutant allele. Examples include female carriers of various X-Iinked immunodeficiency disease

alleles. in particular, skewing is the resuit of a growth competition between X-linked wiid-type

versus mutant atieIe(s). However, another etiology includes clonai derivation of celis [see Table V

(page 30) and (Belmont, 1996) and (Migeon, 1998) for reviewj.
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Table V. Primay versus secondai-y etiologies of skewed Xi paffems. Primary skewing bas been

fundamentally associated with a biased event of X inactivation occurring during early

embryological development and associated multiple tissue skewing. n contiast, secondary skewing

ensues afler the initiation of X inactivation, is nonnally tissue-specific and may reflect clonai

derivation of cetis or reflect a growth competition between celis expressing genetic variants of an

X-linked gene.

Etiologies of Primary skewiug: embryological event

Stochastic (based on a - Small number of precursor ceils: unequal inactivation of parental

binomial probability of X X chromosomes
inactivation) - Twinning: reduced number of precursor ceils

- CPM: reduced number ofprecursor celis (trisomy rescue)

- Early X inactivation: reduced number of precursor celis

Genetic - Xce allele heterozygosity

- XJST, TSJX or possibly XJTE gene mutations

- Imprinting of extraembryonic tissues

- Timing of X mactivation gene, may influence number of ceil

______________________

present at initiation of X inactivation event

Etiologies ofsecondaiy skewing: occurs aller the initiation ofrandom X inactivation

Stochastic - clonai hematopoiesis (pre-neoplasia)

- clonai dominance secondary to stem ccli depletion

Genetic - growth advantage conferred by an X-linked aiieie (hemizygous

celi seiection). Examples inciude female carriers ofX-linked

disease alleles.
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7.3.1 Etiology ofprimary skewing: Stochastic event

( As the choice of X selected for inactivation at the outset of Xi is speculated to be a random event,

the number of primordial celis present at such time will be a strong determinant of Xi ratios

(McLaren, 1972), (Fia&ow, 1973), (Luzzatto et al., 1979). As sucli, the variance in the distribution

of X[Rs will follow a binomial distribution where deviation from the mean is inversely proportional

to the number of celis present. It follows that if the number of cells is small, the probability of

unequal Xi is statistically large (for example, 3 7,5% if 4 cells are present). Likewise, if the number

of cells is large (e.g., n1 6), the probability of nonrandom Xi is small (4,90%). Therefore, by

assessing the incidence of skewing in the general female population, several studïes have deduced

the number of stem celis present at the onset of Xi. Assuming that i) Xi is random, ii) there is no

selection of X-linked alleles, and iii) that the variation XIRs is flot the consequence of early versus

late Xi, estimates for the progenitor ceil pool size, at least for the hematopoietic department, have

ranged from 4-20 cells (Gandini et al., 196$), (Fia&ow, 1973), (GaIe et al., 1991), (Puck et al.,

1992), (Prchal et al., 1996), (Gale et al., 1997), (Tonon et al., 199$). A progenÏtor pool size of

approximately n=1 6 cells has been deduced in felines (Abkowitz et al., 199$). Hypothetical

mechanisms that can possibly increase this variance, some of which may be genetically influenced,

are monozygous (MZ) twinning (Goodship et al., 1996), (Bamforth et al., 1996), confined placenta

mosaicism (CPM) (Lau et al., 1997), and earlïer X chromosome inactivation (lngerslev et al., 1 9$9).

A plausible mechanism may be a decrease in stem ceil precursor size, further increasing the

variance and probability of a skewed Xi pattem.

Originally, Xi was speculated to precede tissue differentiation (Nesbitt, 1971), (Nesbift and Gartier,

1971), implicating a common precursor celi pool from which ah tissues are derived, ensuing in

common XIRs among multiple tissues within the individual. That Xi patterns are relatively

consistent among various tissues within the individual, in both mice and human (vide infra: section

$.2) supports this model. However, more recent data suggests Xi occurs in a developmental context,

gradually proceeding in sub-populations and hineages (Monk and Harper, 1979), (Tan et al., 1993).

Consequently, according to this model, Xi pattems would be tissue-specific. However, that Xi

pafterns are body-wide argues in favor of alternative etiologies. For instance a genetic component to

acquisition ofthe primary Xi paffem.

7.3.2 Etiology of primary skewing: a hentable trait

Evidence for a genetic component to derivation of the primary Xi paftern is based on the following:

ï) the familial clustering of skewed Xi patterns in healthy familles (Luzzafto et al., 1979) (Naumova

et al., 1996b), and ii) the frequent concordance of a skewed Xi pattem in mother-daughter pairs



32

(Harris et al., 1992), (Tihy et aI., 1994), (Rupert et al., 1995), (Azofeifa et aI., 1995), (Parolini et al.,

199$), (Orstavik et al., 1999) (and personal observations see Annex 1, page ii).

Genetic elements hitherto identïfied that may play a role in P$ reside within the Xic region. This

includes allelic variants of the Xce locus and genetic perturbations of the Xist/XIST gene. Imprinted

inactivation of Xp in extraembryonïc tissues bas been omitted from this section as it was previously

described (section 4.1).

7.3.2.1 Xce aÏlele heterozygosity: a skewedXipattern in multtpÏe tissues

In mice, the X chromosome-controlling element (Xce), which co-localizes to the Xic but a separate

genetic element from Xist (Simmier et aI., 1993), blases the choice of X chromosome selected for

inactivation (Cattanach and Isaacson, 1967; Cattanach and Perez, 1970). Although, the molecular

correlates responsible for Xce allelism have not been fully elucidated (Avner and Heard, 2001), Xce

allele strength bas been correlated with the methylation status of the DXPas34 Iocus (located 15 Kb

downstream of Xist). In fact, DXPas34 is hypermethylated on Xce alleles that are more Iikely to

remain active (Courtier et aI., 1995). However, methytation anatysis of this bous at different stages

of embiyogenesis has determined differential methylation to be a late event, making it an unlikely

candidate for Xce alletism (Prissette et al., 2001). More recently however, the Xite gene,

approximate]y 40-Kb downstream from Xist, was found to regulate Tsix activity in cis (Ogawa and

Lee, 2003). In fact, deletion ofXite downregulated Tsix activity, resulting in a skewed Xi pattem.

Further, as molecular / allelic variants ofXite were noted, a candidate element for Xce-allehsm was

speculated. Regardless, at least three Xce alletes (Xc?, Xceb, Xcec) and possibly a fourth (Xce’)

have been identified. Mice heterozygous for the bous are susceptible to skewing, the degree of

which dependent on the strength and combination of alleles (XIRs are essentially random in

homozygotes). The alleles are classified on a gradient of increasing tendency to remain active:

Xce”> Xc?> Xceb> Xce’ (Cattanach and Williams, 1972), (West and Chapman, 1978), (Johnston

and Cattanacli, 1981). For example, in the Xceal Xce heterozygote, the X chromosome bearing the

Xc? allele is more likely to remain activate versus the X bearing the Xcea allele, resulting in a

skewed Xi pattern. Albeit a Gaussian distribution about the mean (Plenge et al., 2000), thus

implying variability in phenotypic expression, the distortion induced by Xce aIIeIe skewing

normaUy resuits in an average skew of 20-30%. Xce allele strength was originally defined by

counting vibrissae number in mice heterozygous for the X-Iinked mutation Tabby (Cattanach et al.,

1969), but more recent assays have examined protein polymorphisms (West and Chapman, 197$),

gene expression profiles (Singer-Sam et al., 1992), (Buzin et al., 1994), (Penny et al., 1996),

(Plenge et aL, 2000) and DNA methylation pattems (Courtier et aL, 1995), (Avner et al., 199$).



33

Cytological staining studies found that Xce X chromosome skewing resuits from a primary bias in

choice of X selected for inactivation rather then a consequence of secondaiy celi selection (Rastan,

1982b). The XIR induced by Xce allele skewing is relativety consistent among multiple tissues

(Johnston and Cattanach, 1981), (Nesbitt, 1971) (Krietsch et al., 1986), (Plenge et aI., 2000). In fact,

when six different tissues of 1$ mice were analyzed, there was ten times more variation between

animais then among tissues within any given mouse (Plenge et al., 2000). further, correlation

analyses of XIRs from two tissues in 74 Xce heterozygotes derived a correlation coefficient of 0,62.

These flndings suggest that the )UR, as a resuit ofXce ailele heterozygosity, is generally body-wide.

Consequently, due to the synteny between the mouse and human X chromosome and correlates of

X-linked loci implicated in the Xi process, we speculate an XCE-like locus may be operative in

humans, aithough none lias yet been clearly identified.

7.3.22 XIST/T$IX aberrations as u cause ofprimwy skewing

Mutations in and around the Xist/Tsix gene, as discussed in section 3 (choice element), have been

associated with a skewed Xi paffem in multiple tissues. 0f special interest, a more in-depth analysïs

of the Xist promoter mutation will be discussed here. In two unrelated families, female carrier’s

(n=9) of a XJST promoter mutation (C43G) were associated with preferential inactivation of the

mutated X in multiple tissues (Plenge et al., 1997). Paradoxically however, promoter construct

analysis found that the mutant promoter was consistently iess active versus the wild type promoter.

further, that the XJST mutation was detected in only one of 1166 aUdit ional X chromosomes

analyzed implies a rare mutation. In addition, the mutation was not detected in 32 DuchennelBecker

muscular dystrophy carriers nor in 34 normal control females exhibiting a skewed Xi pattem,

suggesting the mutation is not a common cause of skewing and/or the mutation by itself is

insufficient to induce skewing (Perefra and Zatz, 1999). Furthermore, that i) carriers of the mutation

exhibited variable skewing, ii) non-carrier famiiy members also exhibited a skewed Xi pattera, and

iii) that maies acquiring the mutation were healthy, suggests that the XI$T promoter mutation in of

itself is insufficient to induce skewing. If )UST polymorphisms are indeed implicated as a primary

cause ofskewing, they have yet to be identified.

7.3.3 Etiology of Secondaiy Skewing: selection against X-linked disease aIIeIe(s)

After random Xi is initiated, there is potential for natural selection pressures to influence the

balance of the two ceil populations (reviewed in (Belmont, 1995), (Belmont, 1996), (Puck and

Willard, 199$), (Migeon, 199$)). In the case of large X chromosome rearrangement, selection

favors the ‘)east disruptive’ gene-dosage event. Thus, cel)s bearing the normai X in the active state

are setectively eliminated (Disteche et al., 1981), (Russell and Cacheiro, 197$). Since negative
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selection occurs during embryogenesis, it is associated with multiple tissue skewing. In the event of

a deletion on the other hand, ceils with the deleted X in the active state are setectively eliminated.

Mutations in single genes have also been associated with a skewed Xi pattern, mostly in a

lineageltissue-specific manner, with ceils expressing the mutant allele failing to thrive along a

specific developmental pathway. Exampies ïnclude female carriers of X-linked immunodeficiency

alleles such as female carriers of the WA$P gene mutation whom exhibit a skewed )UP among

hematopoietic lineages (Prchal et al., 1980), (Fearon et al., 1988) but a random Xi pattern among

fibroblasts and oral epitheliai celis (Fearon et al., 198$), (Wengler et al., 1995); female carriers of

the X-linked agammaglobulinemia gene defect whom exhibit a skewed Xi pattem Iimited to B

lymphocyte (Conley et al., 1986); and carriers of the X-SCID gene mutation whom exhibit a skewed

Xi pattem limited to lymphocyte (Puck et al., 1987). Other diseases include female carriers of X

linked thrombocytopenia, whom have a skewed Xi pattern in lymphocytes (Saint-Basile et al.,

1991) and female carriers of the Lesch-Nyhan gene defect whom have a skewed Xi paffem in

erythroid celis (Nyhan et aI., 1970), (Albertini and DeMars, 1974). Less frequently however,

single-gene disorders may also resuit in a skewed XJP among multiple tissues, as seen in females

with X-linked Dyskeratosis Congenita. These subjects demonstrate a skewed Xi pattem in

peripheral blood and possibly in flbroblasts and buccal mucosa (Devriendt et al., 1997), (Vulliamy

et aI., 1997). Nonetheless, gross X chromosome aberrations and X-linked disease alleles are

relatively rare genetic events, therefore a negligibie cause for the high incidence of skewed Xi

patterns as observed in the general female population.

7.3.3.1 Suggestive evidence that secondary skewing may be incompletety penetrant

Selection against X-linked mutant alleles in female carriers of X-linked immunodeficiency

syndromes is usually greater than 95%. However, this may not be the case in “non

immunodeflciency” syndromes, as specutated by (Plenge et al., 1999). In a family originally

described for segregating a DDP gene mutation (Orstavik et al., 1996), of $ sibllngs, ail of whom

carried the mutation, 7 demonstrated a skewed Xi pattem. However, that one of the carriers

exhibited a random Xi pattem argues against secondaiy ccli selection as a cause of skewing.

Altematively, the authors speculated a primaly etiology of skewing. They hypothesize that the DPP

mutant allele was in linkage disequilibrium with an X chromosome skewing allele in 7/8 siblings. In

the non-skewed sibling however, a recombination event occurred between the two loci.

Altematively, (Plenge et al., 1999) argues in favor of a secondaiy etiology of skewing, wherein

selection against the mutant allele is not fiuiiy penetrant in some subjects. flowever, that the tissue

expression paftern of the DDP gene-product has not been ftilly evaluated, aside ftom high level

expression in fetal and aduit brain (Jin et al., 1996), selection against DDP mutant ailele as a cause

of secondary skewing in leukocytes warrants further investigation.



35

7.3.3.2 Nonhematopoietic tissues are generally robust to secondaiy skewing

Aithougli the hematopoietic department demonstrates a unique compensatory mechanism for

dealing with oeils expressing X-linked mutant alleles, anecdotal evidence suggests that

nonhematopoietic tissues (NHTs) are less subject to intrinsic factors of skewing such as X-Jinked

mutant allele(s). for example, females with Lesch-Nyhan syndrome, whom exhibit deficiency for

the X-linked enzyme hypoxanthine phosphoribosyl transferase (HPRT), exhibit normal NPRT

activity ïn both red blood ceils (RBC) and leukocytes but intermediate activity in skin specimens

(namely fibroblasts), suggesting that the mutant clone ïs selectively eliminated in the hematopoietic

department (i.e., negative selection occurring at the HSC level) but flot in skin (Nyhan et al., 1970).

In addition, selection in blood appears to be age-dependant, as the HPRT-deflcient clone was

detected at low leveis (5-10%) in young female heterozygotes (7-17 yo) (Aibertini and DeMars,

1974) but undetectable in aduit lymphocyte and erythrocyte lineages (McDonald and Kelley, 1972).

A similar foeding was made in mice: negative selection of the Hprt deficient clone was age

dependant and limited to the hematopoietic department as selection was not seen in N}ITs such as

skeletai muscle, kidney, liver, lung and brain (Anseli et aI., 1991), (Samuel et aI., 1993). further

findings were made in female carriers of class I glucose-6-phosphate dehydrogenase (G6PD)

mutations (Filosa et al., 1996), whom (n=4) demonstrated a skewed Xi pattera in several

hematopoietic lineages but a relativeiy random Xi pattem in NIITs (buccal mucosa oeils, urinary

tract ceils, and hait bulbs).

Lack of a secondaiy mechanism of skewing operatïng in NHTs may be explained by various

factors. i) NNTs, in contrast to hematopoietic lineages, may reflect lower metabolic/gene activity of

the X-Iinked gene of interest, therefore less proue to selection pressures. ii) Tissue-specific

differences (differentiated versus less differentiated) in timing of gene expression. for instance,

expression in NIITs may be occurring in more differentiated oeil types. As such, the stem ceil pool

would be unaffected, therefore a continuous source of mutant and wild-type celi types would be

provided.

Inasmuch as X-iinked mutant alleles are indeed capable of inducing skewed Xi in NIITs, they are

exceedingly rare in the population, therefore a negiigibie cause of NHT skewïng in the generai

female population.

7.4 Familial clustering of skewed Xi: Primary or secondary etiology?
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Familial clustering of skewed Xi was reported by several scientists (Ropers et al., 1977), (Orstavlk

et al., 1996), (Marcus et al., 1992), (Tihy et al., 1994), thus inferring a familial/genetic component.

Various examples are given beiow.

ï) In a famiiy segregating a paternally derived Fabry gene, (Ropers et al., 1977), leukocyte samples

from 4 siblings canying the mutation exhibited aipha-galactosidase activity 50% of normal (thus

speculative of a random Xi pattern). Mother four siblings aiso carrying the mutation cxhibited

enzyme activity levels 20% of normal (thus speculative of a skewed Xi pattem), suggesting 2

genetically heterogeneous subgroups. Since four heterozygotes had 50% of normal enzyme activity

and that the vast majorily of fabry heterozygotes have enzyme activity 30% of normal is

supportive evidence against negative selection as a general feature of Fabry carriers. further,

skewing as a resuit of a stochastic processes of Xi was argued against as this would service a

Gaussian distribution of enzyme activity among the siblings. Alternatively, that enzyme activity

was positively correlated in different tissues of the same individuai is consistent with a primary

etiology of Xi pattern derivation. Heterogeneity of enzyme activity among siblings (50% versus

20%) may be best explained by heterogeneity for a primary skewing gene (possibiy XCE-tike).

Accordingly, since the disease gene was paternaiiy derived and applying the ru les of Xce skewing,

pairing of the paternal X (assuming bearer of a sfrong XCE-iike aiieie) with a maternai X of weaker

XCE-like activity, preferential inactivation of the maternai X is speculated, resulting in low enzyme

activity, as seen among four siblings. On the other hand, if paired with a maternai ailele of equal

XCE-iike activity, a random Xi pattern is speculated, as seen with the remainiTlg siblings. 0f intcrest

however, that there was a high female-to-male ratio among the sibiings, one can speculate that the

mother may be transmitting a ‘more’ detrimentai X-llnked disease ailele (Migeon, 1993), causing

iethaiity in males and a skewed Xi pattem in favor of the ‘least’ disruptive allele in daughters (i.e.,

the patemal X).

ii) (Orstavik et al., 1996) studied the Xi pafterns of a famiiy segregating X-Iinked recessive dcafness

syndrome (Mohr-Tranebjaerg syndrome). Observed was a high incidence of skewed Xi in

ieukocytes of obligate female carriers. One however exhibited a random Xi pattem, a fmding

arguing against a secondaiy etiology of skewing. Alternativeiy, as described above, a primary

etiology of skewing was speculated.

iii) (Parolini et aL, 1998) identified a femaic carrier of a paternally derived denovo WASP gene

mutation whom had the majority of blood cells and oral epithelial ceils expressing the mutant atleie.

Normally however, ceils expressing a mutant WASP allele are selectively eliminated ftom
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circulation. As her mother aiso exhibited a skewed Xi paffem, with the maternai X preferentiaily

inactïvated in both mother and daughter, two etiologies of skewing were speculated: i) a pnmary

etiology of skewing genetically transmitted from mother to daughter or ii) selection against a ‘more’

detrimental X-iinked mutant allele (Migeon, 1993).

iv) Among a mothcr-daughter pair canying of a dystrophin gene deletion, the mother was

asymptotic while the daughter was affectcd with severe Becker muscular dystrophy (Tihy et al.,

1994). A probable cause for discordant phenotype was attributed to a discordant Xi pattern: mutant

X preferentially inactivated in the mother, while preferentiaily active in the daughter. Since the

DMD mutation is flot normally associated with negative ccli selection however, a primaiy etiology

of skewing was specuiated.

The clustering of skewed Xi paffems within these families and mother-daugbter pairs is sirong

evidence in favor of a familial/genetic component to derivation of Xi pattems. However, because

these familles also segregate X-iinked mutant alleles, the “true” cause of skewing (primaiy versus

secondary) was obscured (reviewed in (Migeon, 199$)). Therefore, to properly identify the formai

genetics and the putative bd that influence X chromosome choice, familles that do not segregate

X-Iinked mutant ailetes should be evaluated.

7.5 Randomty ascertained familles to identify the etiology of skewed Xi

In a preliminaiy study affempting to identify genetic control of X inactivation, Xi pattems of 36

randomiy ascertained families were analyzed (Naumova et ai., 1996a). One family demonstrated

significant aggregation of skewing, where ail 7 daugliters and the mother of the father exhibited a

skewed Xi pattem in lymphocyte samples. Preferential and consistent inactivation of the maternai X

among the daugbters argues against a nonnally distributed trait, but compliant with an X-Iinked

pattem of inheritance, plausibly transmitted from patemal grandmother to grandchildren. An XCE

Hke etiology of skewing was speculated. Smail famiiy size however limited genetic linkage studies.

Segregation analysis of FIUMARA and XIST alleles has excluded linkage to this region. Secondary

selection against a matemally derived X-linked mutant allele was excluded on basis of a random Xi

pattem in both mother and maternai grandmother. This study has provided pretiminary evidence in

favor of a genetic component to derivation of Xi patterns in humans.
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2 INCIDENCE 0F SKEWED Xi IN THE GENERAL FEMALE

POPULATION: variable

In the past 30 years, the incidence of skewed Xi in the human female population, as estimated by

different investigators, has been variable. for example, reanalysis of normal tissue samples

(granulocytes, skin, and muscle), as first descnbed by (Fialkow, 1973), but using a discrete criteria

of skewed Xi (>75:25), found 13% of samples to demonstrate a skewed Xi pattern. In a Jater study

(Vogelstein et aI., 1987), a lower incidence of skewing (3,7%) was reported for normal tissue

samples (colonic mucosa and lymphocytes). More recently, the prevalence of skewing in blood and

boue marrow samples ofhematologically normal females was figured at 22-23% (Gale et al., 1991)

(Gale et al., 1992). Similar fmdings have been reported in other studies (Brown and Browu, 1993),

(Barris et al., 1992), (Puck et al., 1992). The disparity in the reported incidence of skewing was

initially explained by the diversity of assays used, criteria used to delineate skewed Xi, and small

population sizes. However, a more plausible explanation came from studies that analyzed multiple

tissues from the same individual.

8.1 Righer incidence of skewed Xi in peripheral blood versus NIITs

C)
In contrast to Mils such as gastrointestinal mucosa and thyroid which demonstrated a Jow

incidence of skewed Xi (Fey et aI., 1992), an incidence of 33% was detected in blood leukocytes

(Fey et al., 1994). Similar findings were reported by (Gale et al., 1994), who observed a

significantly higher incidence of skewing in blood-derived ceils (40%) versus Ni-Ils such as skin

(20%), muscle (25%), and colon mucosa (12%). When tissues of different embiyonal origin were

analyzed (Azofeifa et al., 1996), a higher incidence of skewing was observed in leukocytes (70%)

versus NIITs such as muscle (20%), thyroid gland (30%) and suprarenal gland (40%). The tissue

specifïc incidence of skewing was thought to reflect differences in the timing of Xi (Tan et al.,

1993), together with tissue-specific differences in the number ofprogenitor celis present at the time

when Xi is initiated. The higher variance of skewing in blood implied a smaller progenitor pool

and/or earlier time of Xi.

8.2 Correlafion of XIRs among varlous tissues

A limited number of studies have investigated the correlation of XIRs among various tissues and

ceil types within an individual, which includes I) between the varions hematopoietic ceil lineages,

ii) behveen leukocytes and N}ITs, and iii) among varions N}ITs.



39

8.2.1 Correlation ofXERs among blood ccli lineages: strong

Within the hematopoietic department, with the exception of red blood celis (RBC), )URs are well

correlated and relatively similar among the various hematopoietic lineages within the mdividual

(Table VI, page 40), with a correlation coefficient r ranging from 0,97 to 0,99 (GaIe et al., 1994),

similar to previous fmdings (Gandmi and Gartler, 1969). Strong correlation was an expected fmding

since these celis are derived from a common progenitor ccli (i.e., FISC). Correlation of RBC with

leukocytes was modestly weaker (r0,77 with granulocytes; r=0,66 with lymphocytes), possibly

refloeting the influence of extrinsic factors [dietary factors (e.g., won, fava beans) and akitudeJ on

polymorphic X-linked genetic determinants (G6PD for exampie) governing RBC kinetics.

8.2.2 Correlation of XIRs among MITs: moderate, evidencefor a body-wide XJR

Correlation ofXIRs among NIITs, with the exception of muscle-thyroid comparison (0,46<r<0,M),

reveaied a modest correlation coefficient (r), varying from 0,71 to 0,99 (sec Table VI, page 40).

With few exceptions, these findings suggest that within an individual, )URs are generally simïlar

ftom one tissue to the next (i.e., body-wide )UR), consistent with properties of the pnmary Xi

pattem. Similar findings were observed in mice (Nesbitt, 1971), (Johnston and Caftanach, 19$1),

(E (Krietsch et al., 1986), (Plenge et ai., 2000).

8.2.3 Correlation ofXIRs betweeu blood cdils and NUTs: tow

Among the various NIIT-blood cel] lineage comparisons, extreme variation in correlation was

observed: 0,19 <r <0,99. Weakest correlation was observed between thyroid tissue ami leukocytes

(0,1 9<r<0,24) and between skin and RBC (r=0,34) (fable VI, page 40). Lack of significant

correlation between RBCs ami a NHT (haw roots) was previously demonstrated (Gartier et al.,

1969), as weII as weak correlation between polymorphonuclear celis (PMN) and hair buIbs, r=0,3 I

(Tonon et aI., 1998). High variability in correlation may be explained by the higher incidence of

skewed Xi in PB (section 8.1).
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Table VI. Correlation of XIR of different tissues within the same individual

Note. Abbreviations: gran, granulocytes; mono, monocytes; lympho, lymphocytes; RBC, red blood
ceils; thyr, thyroid gland; supra, suprarenal gland; leuko, leukocytes

Comparison Investigator Summar

Gale (94) fialkow (73) Azofejfa (96)
gran - (mono/B oeils) gran - lympho 0.66 - 0.99

0,99 (n26) 0,97 (n20)

gran-Tcells gran-RBC
Blood - Blood 0,97 (n25) 0,77 (n42)

RBC - lympho
0,66 (n=20)

skin - muscle muscle-muscle 0,46 - 0,99

0,79 (n20) 0,8$

skin - colon muscie - thyr
0,71 (n=9) 0,46 - 0,64

muscle - colon muscle - supra
0,94 (n=9) 0,85 - 0,95

NHT-NNT thYf-thYr
0,89

thyr - supra
0,8$ - 0,99

supra - supra
0,94

skin-gran skin-gran muscie-leuko 0,19-0,99
0,74 (n20) 0,X8 (nl$) 0,6]- 0,73

muscle - gran muscle - gran thyr - leuko
0,63 (n20) 0,99 (n=5) 0,19 - 0,24

MIT - 310041 colon - gran skin - lympho supra - leuko
0,69 (n=9) 0,89 (n=i 1) 0,46-0,51

skin - RBC
0,34 (n=1$)

muscle - RBC
0,99 (n =5)
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Concordance ofXi patterns between bÏood and NHTs: evidence ofa body-wide Xi pattern

Skewing in a MUT was generally associated with a skewed Xi pattem in blood (i.e., 100%

concordance for muscle-granulocyte comparison) (Gale et al., 1994). A skewed Xi pattem in blood

on the other hand was Iess ofien associated with skewing in a NNTs (i.e., 45% concordance for

blood-muscle comparison). Similar results were observed with skin-blood and colon-blood

comparisons (Gale et al., 1994) and by other scientists (Fialkow, 1973), (Azofeifa et al., 1996),

(Buller et al., 1999). These findings suggest Xi patterns are generally body-wide, consistent with the

properties of the primary Xi pattem. The higher incidence of skewing may be unrelated to skewing

in NHTs.

8.3 Suggestive evidence for an XCE-Iike X chromosome skewing trait

Findings of a body-wide )URJXI pattern imply a common mechanism/etiology of Xi pattem

derivation among various tissues within an individual. Md although recent data suggests Xi

proceeds with different schedules in different tissues (Tan et al, 1993), strong correlation of XIRs

among multiple NIITs argues against a stochastic etiology of Xi paftern derivation as this would

foster tissue-specific )URs. A secondary etiology of skewing is also unlikely as X-linked mutant

alleles are exceedingly rare and do not generally induce skewing in NIITs (section 7.3.3.2). Rather,

j) that strong correlation of )URs among multiple tissues in mice corresponds to a primary etiology

of XTR derivation, i.e., Xce allellsm, and ii) due to synteny of Xi-related elements between human

and mouse (Xic, Xist, Tsix), we speculate that the Xi paffem of a human N}IT reflects zygosity for

an XCE-like locus. No conclusive evidence, albeit suggestive (Naumova et al., 199$), for a human

XCE-correlate lias been identified.

Identification of the genetic element(s) implicated in derivation of the primary Xi paffem may shed

light on the molecular elements implicated in the Xi pathway andlor the choice step of Xi. Further,

as PS resuits in preferentia] expression of a parental X chromosome (similar to imprinting), the

clinical consequences (fecundity, disease susceptibility) warrants investigation.

9 ANALYSIS 0F BLOOD Xi PATTERNS AS A FUNCTION 0F AGE

Unequivocal insight into the higher incidence of skewed Xi patterns in blood versus NUTs was

provided by the examination of )URs as a function of age. Preliminary data suggested a

significantly higher incidence of extremely skewed Xi pafterns in leukocytes of elderly females

(aged 75-96 years) versus healthy chiidren (aged 2-8 years) and younger females (aged 20-5$ years)
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(Fey et al., 1994). However, given the Jack of reliability and ambiguity in interpreting resuits based

on the M273 clonality assay (Fey et al., 1994), we conducted a similar study based on a larger

sample size utilizing a more reliable clonality assay, i.e., HtJMARA. This study comprised the core

of my Master’s research project entitled: Clonality Analysis of B]ood-Denved Ceils in Healthy

Females: Evidence for Age-Dependent Increase in Clonai Hematopoiesis. In total, 295 normai

females cross-sectioned into three different age groups were recruited. We found that the incidence

of skewed Xi increased significantly with advancing age: 8,6% in cord blood of neonates, 16,4% in

penpheral blood (PB) of 2$-32 year oids, and 37,9% in PB of females 60 years of age and oider

(Busque et al., 1996). The phenomenon (trait) was termed acquired skewing (AS) and represents

significant departure from random Xi in blood ceils with advancing age. Although the increased

incidence of skewing in the 2$-32 year old (yo) group was marked, it was flot significantly higher

versus neonates. The incidence of skewing in the elderly group (>60 yo) was significantly higher

versus neonates (p<O,000I) and the 2$-32 yo group (p=0,0064).

9.1 AS: confirmation studies

The increased incidence of skewed Xi with advancing age lias recently been confirmed. In one

study the incidence of skewed Xi in the polymorphonuclear (PMN) fraction of cord blood was 8.3%

(Tonon et al., 199$), whule in a second study 26% (GaIe et al., 1997). The discrepancy may be due

to the small sample size analyzed by Gale (n23) versus n=36 (Tonon et al., 199$) and n162

(Busque et al., 1996). In mïddle age females (17-50 yo), the incidence of skewed Xi in the PMN

fraction of PB was 16.7% in one study (Tonon et al., 199$) and 22% when total white blood

ceWneutrophul fractions were analyzed (Gale et al., 1997). Both are similar to the 16.4% Xi skewing

incidence reported by (Busque et al., 1996) for females aged 2$-32 yo. When eîderly females were

analyzed (75 yo and older), resuits have been relatively consistent, with the incidence of skewed Xi

ranging from 35-56% (Gale et al., 1997), (Tonon et al., 199$), (Christensen et al., 2000).

Remarkably, when centenarians were analyzed (Christensen et aI., 2000), 67% of samples

demonstrated a skewed Xi pattem.

That the incidence of skewed Xi reached 67% in centenarians (p<O,0l versus 73-93 yo), implies

that the AS trait gradually increases with advancing age. However, that the variation in XIRs in

sequential analyses, 24 months apart (fonon et al., 199$) or longer (Prchal et al., 1996), were not

significantly different, suggests that XIRs vary veiy slowly. In a further study, XJR analysis during

an 1 $-month period of three hematopoietic lineages (granulocytes, monocytes and T celis) derived

from healthy females of varying age groups (young, middle-aged and elderly) detected no

significant fluctuation of KIRs (van Dijk et al., 2002). These resuits argue against the hypothesis
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that AS reflects the stochastic contribution of a small number of emerging stem ceils from the

inactive IISC pool.

9.2 Clarifications in light of the AS phenomenon

In light of the AS trait, ambiguities raised in prior studies may be better clarified.

j) AS plausibly represents the major confounding variable for discrepancies in the incidence of

skewed Xi observed in the human female population (section 7.2), thus invoking age as an

important variable in skewed Xi studies.

ii) The large range in estimates of stem ceil precursor size (section 7.3.1) may be invariably

explained by the AS trait. In effect, estimate of primordial pool size should be mathematically

dependent on age: as the incidence of skewed Xi ïncreases with advancing age, size estimation of

the primordial pooi should decrease. As sucS, estimates shoiild be based on neonatal samples

(Tonon et al., 199$).

iii) $ince AS mimics clonai derivation of ceils, ambiguity in the stem ceil origin (undifferentiated

versus more differentiated) for various MPDs (section 6.4.2) may be best explained by the AS trait.

For instance, in absence of AS, a skewed Xi pattem may be limited to pathological lineage(s) only.

However, in the event of AS, a skewed Xi pattem may appear in additional lineages, thus implying

a more undifferentiated stem celi origin. Thus, age should be considered a confounding variable in

clonality studies.

iv) A smaller progenitor pool size ascribed to the hematopoietic department (HD) versus Nuls

(section 2.1) may 5e best explained by the AS trait Consequently, and confounding for age, the

precursor pool size for the HD may not differ signiflcantly from NHTs.

y) The low correlation of )URs observed between blood and NNTs (section $.2.3) may be

reasonably explained by AS trait. In the absence of AS, as in the case of young females, )URs

among various tissues should be similar. In the event of AS however, as in older females, XIR

correlation between blood and NIITs should 5e tower.

10 ETI0L0GY 0F SKEWED Xi IN C0RD BLOOD: primary skewing trait
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b speculate on the cause of skewed Xi paffems in cord blood samples, the following was

considered. Foremost, it is unlikely to reflect a secondary etiology of skewing since X-iinked

disease alleles are relatively rare. Moreover, it is unlikely to reflect AS since it is a late-onset trait.

Rather, that XIRs and Xi pattems are generally body-wide, a primary etiology of Xi pattern

derivation (XCE-like) was specuiated. Consequently, we hypothesîze that in neonates, )URs of

varïous tissues be well correlated, warranting tissue-correlation studies for confirmation.

11 PLAUSIBLE ETIOLOGIES 0F ACQUIRED SKEWING

Plausible etiologies of AS are discussed below, these include both stochastic (clonai derivation,

stem ceil depletion) and genetic (X-Iinked polymorphisms). AS is unl&ely to reflect selection

against X-linked disease alleles as these are relativeiy rare.

11.1 Stochastic event: clona! dominance secondary (o stem ceil deptetion

Various estimates on the number of HSC contributing to hematopoiesis have been made, the

majority suggesting that the hematopoietic department bas an enormous reserve potential, with FISC

depletion plausibly prevented by relatively few stem celis being used at anyone time, i.e., clonai

succession model (Kay H.E.M, 1965). That HSCs are generally quiescent supports this model. In

fact, in mice, approximately 5% of HSC are believed to confribute to the maintenance of

hematopoiesis at any one point in time, with 99% estimated to enter ceil cycle once every 57 days

(Cheshier et al., 1999). Aitematively, others theorize that the FISC pool may be smali but capable of

continuous seif-renewai. In effect, regulation ofthe stem ceil pool requfres further analysis and is of

major therapeutic importance if manipulation of FISCs is warranted.

Preliminary insight into FISC behavior was provided in female Safari cats undergoing bone marrow

transplantation with a iimited number of autologous marrow celis. As these cats were heterozygous

for the G6PD locus, Xi pattera analysis was possible. While untransplanted cats retained polyclonal

hematopoiesis, transplanted cats developed a skewed Xi pattem, demonstrating that small doses of

marrow celis can induce a skewed Xi pattera (Abkowitz et al., 1995) (Abkowitz et al., 199$).

Moreover, these studies were the basis for mathematical modeling showing that clonai dominance

can occur simply by chance when the number of hematopoietic stem ceils (FISC) is small

(Abkowitz et aI., 1996). Consequently, assuming IISC decisions are stochastic and implementing

predefined rates of FISC seif-renewal, differentiation and apoptosis, simulation studies predicted
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that small differences in FISC kinetics can generate the observed drifi in G6PD phenotype (Catlln et

al., 1997).

As a human correlate, stochastic depletion of FISC with advancing age and random differentiation

of the few residual HSC bas been a plausible mechanism of AS (Gale et ai., 1997). In support of

this view, by age 70, hematopoietic cellularity of the iliac crest in bone marrow is reduced to

approximately 30% relative to that of young aduits (Gilleece and Dexter, 1993). Similar fmdings

were recently obtained, but only in much older females ($0-90 years olU) (Ogawa et al., 2000). A

trend towards a decreased abso]ute number of hematopoietic progenitors andlor CD34+ stem celis

in PB and bone marrow of elderly people bas also been observed (Egusa et al., 199$), (Bagnara et

al., 2000), (Hfrota et al., 1988), (Nilsson-Ehle et al., 1995). However, the ability of elderiy mouse

marrow to support serial transplantation is the same as that of young mice (Harrison and Astie,

1982), and FISC from bone marrow of eiderly mice are five times more frequent than those from

young mice, albeit a reduced homing capacity (Morrison et al., 1996). furthermore, in human

recipients of allograft bone marrow transplantation, whom receive a relatively smail number of the

donor’s FISC, hematopoiesis is stable and polyclonal (Nash et al., 198$), (Turban et al., 1989),

(Saunders et ai., 1995), Çfonon et al., 199$), (Mathioudakis et al., 2000), suggesting that severe

FISC depletion, well above that which occurs in transplanted patients, is an unfounded cause of AS.

To uttimately mie out stem celi depletion as a putative cause of AS, the number of FISCs present in

skewed versus non-skewed females should be investigated. ilowever, since HSCs are infrequent

(<1 in 106 nucieated marrow cetis) and difficuit to isolate by physical or immunological methods

(Wang et al., 1997), analysis may prove difficult.

11.2 Stochastic event: clonai “pre-neoptasia” hematopoiesis

According to the multi-hit model of neoplasia, a number of random genetic hits are required for

neoplastic transformation. In theory, a limited number of genetic mutations (autosomai andlor X

linked) acquired by a FISC may provide the celi with a non-pathological but measurable growth

advantage, ailowing it to dominate over polyclonal hemopoiesis, thus resulting in a clonallskewed

Xi pattern. An argument in favor of this hypothesis is the increased incidence of hematological

malignancies with age, particulariy for diseases such as MDS and AML (Oscier, 1997), (Sandler,

1987). However, the rarity of hematologic malignancies, incidences of less than 0,01% for even the

most common, makes this explanation favorably unlikeiy. As indirect support, women with a

skewed Xi pattem have normai blood counts (Busque et al., 1996). Moreover, when a group of

women exhibiting AS were prospectively examined for several years, no evidence for increased

occurrence of hematoiogic malignancy was observed (Tonon et al., 199$). Although the frequency
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of clonai populations of lymphocytes in heahhy females increases with advancing age (Posnett et

aI., 1994), clonai populations of T and B lymphocytes did flot differ between elderiy skewed and

elderly non-skewed females (Annex 2, page xviii), ruling out lymphocyte clonaiity as a probable

cause of AS. Nonetheiess, to directly impiicate clonai hematopoiesis as a probable cause of AS, one

must identify genetic mutations/aberrations directly responsïble for pre-neoplastic growth.

11.3 Continuation of the PS trait

Although the AS trait is late-onset and that of P5 early-onset, thus implying distinct traits, that both

are potentially X-linked theoreticaily implies that they may be one and the same. Because PS

normally resuits in a maximal skewing of 20-30%, it is possible that AS represents a continuation

(or completion) of the PS trait. If frue, we postulate that direction of AS (in favor of Xp or Xm)

shouid occur in favor of the same parental X preferentially inactivated in the primary Xi trait.

Analysis of the direction of AS as a function of the primary X pattern should provide insight.

11.4 Genetic: X-tinked hemizygous cett setection

Since the hematopoietic system is mitotically active (producing 1011 celis on a daily basis), thus

particularly sensitive to genetic polymorphisms affecting ceil growth, we speculate that AS may

resuit from a relative growth competition between celis expressing genetic variants of an X-linked

gene.

12 X-LINIŒD KEMIZYGOUS CELL SELECTION ETIOLOGY 0F AS

12.1 AS in felines

Insight into the genetic basis of AS was provided by Xi analysis of aging female Safari cats - the fi

generation derived from crossing the domestic cat with the Geoffioy cat. Since the parental strains

have evolved independently for 12 million years, it is highly probable that the FI generation will be

heterozygous for several genetÏc loci. In particular, the female Safari cats were heterozygous for the

G6PD locus (with the G aliele derived from the Geoffroy cat and the d aliele from the domestic

cat), thus informative for Xi-based assays. In young cats (2-3 months), balanced hematopoiesis (i.e.,

random Xi) (equal number of ceils expressing the G and d allele) was observed. With advancing age

however, and in absence of any pathological consequence, there was an increasing percentage of

blood cefls expressing the G aiieie. By 4-6 years of age, 67% of cats exhibited skewed Xi ( 75%

expression of a parental-specific X chromosome), with the X derived from the Geoffroy cat
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preferentially active. A primaiy etioiogy of skewing was rejected as hematopoiesis was iriitially

polycionai Attemativeiy, a relative growth advantage conferred by an X-llnked ailele was

speculated (Abkowitz et al., 1998). These flndings argue against both the stem ccli depletion and

clonai “pre-neoplasia” etiologies of AS since skewed Xi would have occurred in favor of either

parental X chromosome when Fi felines were examined. An imprinted autosomal basis is atso

uniikely as an imprinted gene can be paircd with either parental X chromosome. An imprinted X

linked genetic basis however, could flot be ruled out as parental derivation of G6PD alleles (i.e., Xp

versus Xm) was not investigated.

12.1.1 Hematopoietic stem ccli ongm of AS

Since hematopoiesis can be partially defined as differentiation ofpluripotent stem celis into various

differentiated hematopoietic lineages (Tili and McCulioch, 1980), identiI’ing the hematopoietic

lineages impiicated in AS may provide insight into the ccli origin of AS.

The contribution of lymphocytes to the AS trait lias been contradictory. In our initial study (Busque

et al., 1996), as a majority offemales were extremely skewed (XIR1O:1), we spcculated that both

myeloid and Iymphoid lineages contributed to the AS trait, consistent with a FISC origin of AS.

However, when ccli lincages were analyzed independently, significantly more Xi skewing was

observed in granuiocytes (46%) versus T lymphocytes (19%) of elderly females (63-95 years),

suggesting AS differently affects the granulocyte and T lymphocyte lineage (p<O,Ol) (Champion et

al., 1997). Similar findings were reported by (Gale et al., 1997) wlio observed a skewed Xi

incidence of 56% in neutrophuls of elderly females (aged 75 years and otder) versus 40% in T

lymphocytes. When a more stringent criterion of skewed Xi was used (> 90% expression of one

allele), 33% of females exhibited a skewed Xi pallem in neutrophuls versus 9% in T lymphocytes.

lii a fiirther study, although the overail correlation of )URs between PMN and T ceils was

significant (r=0,66), correlation was sfronger in younger females (25-32) (r=0,77) versus older

females (>75 years) (r=0,57) (Tonon et ai., 199$). These fïndings suggest that relative to T

lymphocytes, granulocytesfPMN are more affected by AS. Lack of T ccli contribution may reflcct

Iongevity of lymphocytes (Gale et al., 1997). Altematively, it may reflect restriction of the AS

process to the granulocyte/myeloid lineage.

Preliminary insight into the plausible H$C origin of AS was derived by analysis of autologous BM

transplantation studies in female Safari cats (Abkowitz et al., 199$). When individual hematopoietic

lineages were analyzed, Xi skewing was detected in progenitor celis, RBC, and granulocytes. T

lymphocytes, demonstrated a lack of Xi skewing, postulated to reflect either Iongevity of T celis
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and/or restriction of the AS phenomenon to the myeloid lineage. For clarification, autologous

Q transplantations were performed. Among elderly cats establïshed as having AS, although sample

size was small (n=2), BM was harvested and reserved for autologous infusion. The cats

subsequently received myeloablative therapy and re-infused with the harvested BM. Upon Xi

analysis 3-20 months post-BMT, a skewed Xi pattern was detected in ail lineages analyzed:

progenitor ceils, granulocytes and T lymphocytes. The latter was consistent witb derivation from a

common precursor, an argument in favor of a FISC origin of AS. These resuits corroborate that T

celis are Iess likely to contribute to the AS trait due to their long circulatory-half lives. Anecdotal

evidence from a pilot study also demonstrated a FISC origin of skewing (Annex 3, page xxii).

12.2 X-linked genetic basis of the AS trait extended to humans

The findmg of an AS-like trait in felines bas been instrumental is assigning an X-linked genetic

basis to the AS trait in humans. Due to the resemblance of various Xi skewing features between

felines and humans (e.g., age-related penetrance ami exclusion of T lymphocytes), we speculate an

X-linked genetic basis to the AS trait in humans. We speculate that in female carrier’s of the X

Iinked AS allele (i.e., heterozygous for the AS gene), HSCs bearhig a strong AS allele (on the active

X) will out-compete FISCs bearing a weak AS allele (on the active X), manifesting as AS. In theory,

the X-linked gene can modify FISC kinetics such as replication, differentiation and/or apoptosis. A

model ofthe AS trait is presented in figure 5 (page 49). As observed, XTRs in neonates are initially

random (reflective of die primary Xi pattern). With advancing age however, FISC bearing the

stronger X-linked AS allele outgrow celis expressing the weaker allele, significantly dominating in

cell number by age 60 and older.

12.3 Twin studies support an X-Iinked genetic basis to AS in humans

12.3.1 Correlation ofXlRs in elderly MZ twin pairs

Since MZ twins are essentially genetically identical, a genetically influenced trait should be weII

correlated within the pair. As such, PB was collected from 71 MZ twin pairs aged 73 to 93 yo and

)URs determined. 35% of the subjects exhibited a skewed Xi pattem. Moreover, twiii pairs

demonstrated preferential inactivation of the same parental X chromosome (r0,57), evidence in

favor of an X-linked genetic component (Christensen et al., 2000). 1f stochastic or autosomal

etiologies were implicated, littie or no correlation in preferential inactivation of a particular parental
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Figure 5. X-iinked genetic hemizygous theory of AS. Diagrammatic representation of a typicai

bone marrow where hematopoiesis occurs. Biow-up of the circular object depicts HSC expressing

either the maternai or patemal X chromosome. YeIIow celis - Xp active, blue celis - Xm active. In

neonates, X inactivation is initiaiiy random. With advancing age however, dominance of one ceil

type occurs. By age 30 and 60 yo and older, FISCs expressing the “stronger” X-iinked AS aliele (Xp

in this example) significantly outnumber HSCs expressing the “weaker” AS aliele. For this

hypotheticai example, XIRs and Xi-skewing in favor ofthe patemal X were arbitrariiy assigned.

Neonates

0000
0000
0000
0000
0000
0000
0000
0000

XPa: 50%

Xma: 50 %

30 years old

0000
0000
0000
0000
0000
0000
0000
0000
Xpa: 621 %

Xma: 37.5 %

> 60 years old

0000
0000
0000
0000
0000
0000
:0Q0
0000
XPa: $7.5 %
Xma: 12.5 %
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X chromosome would have been observed. A limitation however, is that a proportion MZ twins

may share a common biood supply during intra-uterine growth, thus possibly inflating the

corretation coefficient.

12.3.2 Genetic contribution to the AS trait

Classical twin studies offer a dynamic model in which to quantify the contribution of genetic factors

to human trait variation. Correlation of phenotype is compared among MZ twins, whom are

essentially genetically identical, versus dizygous (DZ) twins whom on average share 50% of their

autosomal material and 75% of their X-linked genetic material. Environmental influences are not

considered since MZ and DZ twiu pairs hypotheticaliy share similar environments. Consequently, if

a trait is genetically influenced, correlation should be stronger among MZ versus DZ twin pairs. To

quantify the contribution of genetic factors in the etiology of AS, the )UR (measured as a function

of Xp inactivated relative to Xm) of 29 MZ and 1$ DZ twin pairs were studied (Viekers et al.,

2001). Mean ages of twins were 61 and 63 years, respectively. Among the MZ twin pairs, the

intraclass correlation of ailele ratios was 0,53 and 0,26 for granulocytes and T celis respectively.

Among the DZ twin pairs, the intraclass correlation of allele ratios was 0,19 and 0,36 for

granulocytes and T ceils respectively, deriving a lieritability score [h2 = 2(r - rDz)] of 0,6$ for

granulocytes and zero for T celis, supporting a modest genetic (X-Iinked) component to derivation

ofXIRs in granulocyte. However, resuits may be artifactual since a proportion ofMZ twins share a

common blood suppiy during intra-uterine growth, thus artifactually increasing correlation of )URs.

It is flot clear why T celi )UR correlation was stronger in DZ versus MZ twin pairs, but significant

variability in correlation coefficients due to smaller sample size is speculated. That genetic factor(s)

explain only 68% of the variance of )GRs in granuiocytes suggests additional factors may play a

role in derivation of blood )UR: clonai disorders, environmentai influences, stochastic events and

experimental error.

12.4 Intrinsic versus extrinsic factors in the etiology of AS

That environmental factors possibly influence XIRs lias been previously documented. In South

African females heterozygous for X-linked G6PD deficiency, found were random MRs in youths

(thus haif the ceils deficient for G6PD activity and the other haif full enzyme activity). Despite the

hematopathology associated with G6PD deficient ceils, they are relatively resistant to malaria

(probably owing to impaired entry and growth of the parasites during eiythropoiesis), therefore

selectively retained in circulation (Luzzatto et al., 1969). Afler puberty however, as females acquire

a stronger immune system, immune-related anti-malarial activity is upregulated, thus eliminating

malarial parasites from circulation. Consequently, in absence of the stimulus (malaria), celis
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expressing the G6PD (-) allele, whom are at a relative growth disadvantage versus G6PD (+) celis,

are effectively eliminated from circulation (Hitzeroth and Bender, 1981). The study suggests

women fully exploit polymorphie X-linked genes. for instance, in the presence of a particular

external influence(s), ceils bearing an X-linked allele whïch haphazardly provides it with a growth

disadvantage is counter-balanced by preferential destruction (by malarial parasites) of ceils bearing

the stronger allele. Altematively, in absence of the extrinsic factor, celi survival kinetics are based

solely on intrinsie factor(s): X-linked allele(s) which can provide the celi with a relative growth

advantage.

In a similar study, the G6PD phenotype was analyzed in a group of 77 Sardinian females

heterozygous for G6PD deficiency. It was found that the majority of females had an excess of

G6PD (+) celis in their blood (Rinaldi et al., 1976). High susceptibility of G6PD (-) RBCs to

hemolytic noxae was the most likeiy explanation. This was further supported by the presence of

mild noncompensated anemia in heterozygotes. However, as not ail females were skewed in favor

ofthe normal (+) allele, but rather some in favor ofthe deficient (-) alIele, it was speculated that in

some instances, the G6PD (-) allele may have a relative growth advantage. As mentioned above,

G6PD (-) ceils are retained/selected in young females with active malarial parasitemia. However,

other causative agents are possible.

Thus, the G6PD locus offers a dynamic model to illustrate the intricacies of the AS trait. It

introduces the mechanism by which both intrinsic and extrinsic factors influence preferential

dominance of X-Iinked alleles, thus implying a multifactorial trait where genetic, environment and

gene-environment interactions are plausible. Thus we predict that both intrinsic (X-linked

potymorphisms) and extrinsic factors may play a role in the etiology of AS. Possible

externallenvironmental factor(s) includes infectious diseases, the BM microenvironment, medicinal

products, allergens, pollutants, altitude, diet, and certain lifestyle factors (smoking habits,

psychological state, physical activity).

12.5 Molecular characteristics of the AS trait: Genetic modet

Assuming i) that AS occurs in females who are heterozygous for an AS gene, ii) that females

heterozygous for the AS gene are flot at a viable disadvantage and iii) that the AS gene is fully

penetrant, a two-al]ele model for the AS gene would predict a maximum incidence of skewed Xi of

50%. That 67% of centenarians demonstrated a skewed Xi pattern argues against such a model. This

implies 1) if limited to a single locus, there are more then two alleles; ii) genetic heterogeneity;

and/or iii) a polygenic trait (additive or multiplicative epistasis model).
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The X-linked genetic variation / polymorphism may consist of a single base-pair substitution or

may vary in length of a simple sequence repeat. It is however uniikely to be a gross genetic

alteration or a deleterlous X-linked mutation since these are I) relatively rare, ii) normaiiy manifest

as a clinical condition in female carriers and iii) lethai in males, inducing a high female-to-male

ratio distortion among offspring. The poiymorphism may reside within coding regions and/or

regulatory etements. The genetic variant may flot be limited to the DNA sequence as epigenetic

modffication(s) are also plausible.

Aside from clonai derivation, the AS trait does flot preclude the involvement of autosomal factors,

the limiting factor however, would have to be heterozygosity for an X-linked genetic polymorphism

as homozygosity would equally favor the parental X’s, resulting in a random Xi paftem. X-linked

genetic candidate elements include: a gene promoter region(s), transcription factor, enzyme, signal

transduction molecule, ceil surface receptor, celI membrane channe], and/or structural protein.

Linkage analysis of families segregating the trait is one method of identifying potential candidate

gene(s) (Naumova et al., 199$). However, a candidate gene approach is also feasib]e (Plenge et al.,

1997).

13 CLINICAL ASSOCIATIONS 0F SKEWED Xi

Although the vast majority of females with skewed Xi appear physiologically normal, various

pathophysiological associations have been cited. Whether the clinical association is a consequence

or a cause of skewing, or associated with a primaiy or secondary etiology of skewing is sometimes

discussed.

131 Skewing and expression of X-Iinked disease allele(s)

In the “unfortunate” event of a skewed Xi pattem in favor of the X bearing the mutant alleie

preferentially active, femafe carriers of recessive X-linked disease alleles can manifest X-Iinked

recessive traits (Tihy et al., 1994), (AraI et al., 1996), (Favier et al., 2000), (Orstavik et al., 1999),

(Azofeifa et al., 1995). As secondary skewing normally reflects negative selection of flic mutant

clone, these females are likely to reflect a primary etiology of Xi skewing, or selection against a

‘more’ detrimental X-linked disease allele (Migeon, 1993). Moreover, based on observation that

some obligate carriers of various X-Iinked hematologicai discase alleles exhibit late-onset disease

symptoms, a role for AS in decreasing expression is specuiated. This list includes X-linked

sideroblastic anemia (Cazzola et al., 2000), G6PD deflciency (Beutier et al., 1996), X-linked
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agammaglobulinemia (Aruffo et al., 1994), X-linked SCID ($mith and Notarangelo, 1997), and X

linked chronic granulomatous disease (Cazzola et al., 19$5), (Rosen-Wolff et al., 2001).

Surprïsingly, hematopoietic ceils with the X chromosome expressing the mutant allele were

preferentially selected over thefr wild type counter-part, suggesting j) that the AS gene is a stronger

determinant of Xi pattems over X-linked mutant alleles or ii) expression of the AS allele occurs in a

less differentiated FISC versus the an X-tinked mutant allele.

13.2 Skewing and RSA

Versus controls, a high frequency of skewed Xi was observed among females’ experiencing

recurrent spontaneous abortions (R$A). RSA lias been defined as 2-3 or more consecutive losses

under 20 weeks gestation, and estimated to affect 1-2% of couples wishing to bear chuidren

(Pegoraro et aI., 1997), (Sangha et al., 1999), (Lanasa et al., 1999). A plausible etiology is

transmission of a lethal X-Iinked allele inducing both skewed Xi in the female carrier (wild-type X

preferentially active) and the spontaneous abortion ofa male conceptus (Lanasa and Hogge, 2000).

13.3 Skewing and susceptibility to ovarian/breast cancer

(E Ktinefelter males (XXY genotype) comprise a unique set of individuals in which to analyze the role

of the extra X chromosome and its associated gene products in promoting or protecting disease

pathogenesis. M increased incidence of autoimmune diseases (rheumatoid arthritis and systemic

lupus erythematosus) and breast carcinoma were noted among Klinefelter subjects, suggestiiig that

a gene derived ftom the extra X chromosome (possibly escaping Xi) may increase dïsease

susceptibility (Bandmann et al., 1984). Moreover, versus controls, a higher incidence of skewed Xi

lias been observed in leukocytes of females experiencing invasive ovarian cancer and in ovarian

cancer patients carrying a germiine BRCAI mutation (Buller et al., 1999), however a cause and

effect relationship could not be determined. Moreover, because of the AS trait, lack of proper age

matched controls may have confounded resuks. Nonetheless, that BRCA1 associates with die

inactive X chromosome (Ganesan et al., 2002) supports a relationship between Xi and breast cancer

susceptibility. Moreover, ftequent loss of heterozygosity of the X chromosome in ovarian cancer

patients (Osborne and Leech, 1994) suggests that an unidentified tumor suppressor gene (TSG) may

reside on the X chromosome (Cheng et aI., 1996). The AR gene is a candidate locus since mutations

have been associated with male breast cancer (Lobaccaro et aL, 1993). Moreover, length of the

CAG polymorphism in exon I of the AR gene has been controversialty associated with female

breast cancer development. Although some studies associate aggressive fonns of breast cancer with

shorter CAG repeat lengths (Yu et aÏ., 2000), other studies, versus age-matched controls, found no
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association between CAG repeat length and early-onset breast cancer (Spurdie et al., 1999),

(Kristiansen et aI., 2002). However, among BRCAI mutation carriers, longer repeat Iengths were

associated with increased risk of developing early-age breast cancer (Rebbeck et al., 1999). In spite

of these conflicting resuits, the relationship between skewing (whether primary or secondary) and

ovarian/breast cancer susceptibility merits further investigation.

13.4 Skewing and predisposition to autoimmunity

Compared to males, females have enhanced immuno-reactivity, which although protects them from

many types of infections, has also been associated with increased susceptibility to autoimmune

disorders. For example, females demonstrate an increased prevalence of systemic lupus

erythematosus (SLE), multiple scierosis (MS), and rheumatoid arthritis (RA), suggesting disease

susceptibility alleles are sex-influenced, developmentally andlor hormonally regulated. Estrogens

for example, which possïbly elicit an immuno-stimulatory effect, have been associated with disease

exacerbation (Cooper et al., 199$). Mdrogens on the other hand, have been linked with a decrease

in autoimmune activity (Cutolo and Masi, 199$). Altematively, the XX genotype of females may

pose a disease risk factor. Since severa] genes escape Xi, dosage imba]ance for any one of these

genes may increase disease susceptibility. Similarly, a protective role for Y-linked genes in males,

SRY for example, is another possibility.

Moreover, an association between Xi pattems and autoimmunity was speculated. In one study, the

authors, in combination with their own data, conducted a survey of the literature and found that

female carriers of X-linked immunodeflciency diseases normally associated with random Xi, i.e.,

X-linked lymphoproliferative syndrome (XLP), X-linked Hyper-IgM (XLHM), and X-linked

granulomatous disease (XCGD), had clear features of autoimmunity versus immunodeficiency

diseases normally associated with skewed Xi patterns, i.e., agammaglobulinemia (XLA) and X

linked severe combined immunodeficiency (X-SCIE)). These results suggest that a skewed Xi

pattern protects females from an autoimmune-retated phenotype (Martin-Villa et al., 1999), possibly

owing to negative selection of the mutant allele. Altematively, theoretical data suggests that a

skewed Xi pattem may pose a risk factor for susceptibility to autoimmune disorders. As first

speculated by (Stewart, 199$), the Xi paffem of the thymus may constitute a risk factor for loss of T

cdl tolerance to seif-antigens. Theoretically, a skewed pattern of Xi in thymic tissue may lead to

inadequate elimination of potentially seif-reactive T celis. Consequently, in visceral tissues, antigen

expression from the X chromosome preferentially inactivated in the thymus (but preferentially

active in visceral tissue) may be recognized by T ceils as non-self possibly eliciting an autoimmune

response. Recently, the incidence of skewed Xi in leukocytes in a population of females with
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putative autoimmune disorders (MS, $LE, juvenile RA, and type I diabetes mellitus) was compared

with control females. A major role for skewed Xi in female predisposition to autoimmune disorders

however could not be supported nor disproved. One possibility may be lack of appropriate tissue

analysis, as thymus was unavailable (Chitnis et al., 2000). Nonetheless, the relationship between

skewing (whether primaiy or secondary) and autoimmune function merits further investigation.

13.5 Skewing and longevity

Since i) AS occurs in a vast majority of elderly females and ii) females live relatively longer than

males, an X-linked genetic basis to longevity was postulated (Christensen et al., 2000). AS

reflecting the selection ofX-linked ‘longevity alleIe(s)’ may be one possibility.

13.6 Iherapeutic applications

Since the AS gene plausibly modulates FISC kinetics (replication, differentiation, survival),

identification of the AS gene(s) may be of clinicaVtherapeutic relevance. For example, assuming

that the AS gene can be identified and manipulated, the following are theoretically possible: i)

stimulation of FISC to replicate, thus assisting horizontal DNA integration into normally quiescent

celis. ii) Stimulation of HSC to differentiate, thus inducing differentiation of hematopoietic

malignancies characterized by inhibition of differentiation. iii) Regulation of apoptosis, ideal for

inducing apoptosis in malignancies.

Consequently, identifying the AS gene may promote novel therapies in treating medical disorders

and provide a clearer understanding of the aging hematopoietic system.

14 HYPOTHESIS and GOALS

We hypothesize that Xi pattem analysis in humans is hampered by two unrelated events. One which

corresponds to the primary Xi trait, and the other to the AS trait. By proper tissue, age and clinical /

biological analyses, we speculate that both traits can be properly distinguished, quantitated and

etiologies determined.

Our goals therefore were to distinguish the two traits.
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1) Characterizafion ofthe two traits

(E • Detennine incidence of skewed Xi as a function of tissue type

• Analyze )URs as a function of age

• Analyze mtraindividual correlation ofXIRs between different tissues

• Analyze intraindividual correlation of XIRs among various hematopoietic lineages

2) Determine etiologies of skewed Xi patterns

• Determine heritability coefficient ofXIRs

• Analyze segregation ofthe skewed Xi trait

• Analyze familial aggregation of skewed Xi

• Determine role of environmental factors

3) Clinical relevance of Xi patterns

• Analyze association between XWs and family data

• Determine impact of AS on hematopoietic indexes

• Determine whether skewed Xi is associated with disease pathogenesis

(E 15 STRATEGIES, RATIONALE AND EXPERIMENTAL DESIGN

We speculate that prior attempts to map the XCE-Jike gene, although putatively mapped to two

regions of the X chromosome, one consistent with the )UC region (Naumova et al., 199$), was

primarily confounded by etiologic heterogeneity. for instance, since their sample population did flot

consist of neonates and choice of study tissue was lymphocytes, we speculate that their skewing

trait was confounded by both the P5 and AS traits. Moreover, since selection criterion was flot

based on ethnicity, thus increasing overali probability of genetic and environmental variability,

increased genetic variability is speculated. Thus, to circumvent these confounding variables,

prudent choices such as appropriate tissue controls, age and ethnicity were considered in our study

design.

Our approach therefore was to analyze skewed Xi in a population of females where i) the skewed Xi

trait would 5e relatively high. ii) Etiologic heterogeneity wou]d 5e relatively reduced. iii)

Appropriate tissue controls would be available. iv) Large family size would be available, permitting

trait segregation and potential genetic linkage analyses.
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15.1 Recruitment of elderly females

Since AS is a late-onset trait, analysis of elderly females was required. In addition, a family versus a

population-based approach was elected, thus permitting genetic linkage analysis in the event of

significant evidence of heritability.

15.2 Genefic analyses: sib-pair approach to dissect a complex genetic trait

Notwithstanding an X-linked genetic component of inheritance, on basis of variable expressivity,

impossibility of assigning Xi phenotype in males, age-dependant phenotype, tissue-specificity of

phenotype, plausible role of environmental factors and specuiation of genetic heterogeneity, a

complex genetic basis to skewed Xi was speculated. As specification of mode of inheritance ami

large multigeneration families are flot required, the most robust approach to dissect the genetics of a

complex trait would be by non-parametric sib-pair analysis. Parametricflarge pedigree analyses

would flot be ideal since it requires a specific genetic model and large muÏtigeneration families. In

addition, since the AS trait is late onset ( 60 yo), the likelihood of obtaining living parents is

markedly reduced, and chiidren moreover would not be informative for AS, thus limiting analyses

to a single generation.

15.3 Collection of familles

To reduce or eliminate ascertainment biases, families were ascertained without regard to trait status

and family history. However, relatively large families were selected as this would increase i) the

number of affectids for qualitative analyses ami ii) the number of informative meioses in which to

study genetic transmission of the skewïng trait. M arbifrarily assigned criterion for family sïze was

4 or more female siblings. Further, since AS is a late-onset trait, a criterion for study enrollment was

to have at least one female sibling 60 years of age or older. To be eligible for study enroliment,

subjects had to be relatively heaithy with no active cancer; and with the exception of self-reported

anemia, no active b]ood disorder. Upon recruitment of a subject, she was responsible for

recruitment ofher sisters.

15.3.1 Benefit of a relatively isolated population

Ideally, when conducting a genetic-epidemiologic and/or linkage study, minimal population

stratification, population admixture and environmental influences are warranted. As such, study of

an isolated population offers several key advantages [sec (Peltonen et al., 2000) for review] as

background noise is reduced thus increasing statistical power. for one, isolated populations are
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founded by a relatively small founder population, reducing overali genetic heterogeneity, thus

families in the sample should have a similar underlying genetic predisposition. By studying isolated

populations in which genetic variability is relatively reduced,, a complex paftern of inheritance can

be converted to one resembling a simple Mendelian trait (Jorde, 1995), thus improving the ability to

detect the effects of a particular gene. Due to linguistic and geographical considerations, french

Canadian families residing in the province of Québec, Canada, founded by a relatively smafl

population (estimated to range from 2500 to $500 individuats) between the years 1609 - 1759, has

been relatively isolated until the early I 900’s; thus providing a relatively homogeneous population

in which to study complex genetic traits. Noting that people in isolated populations typically share a

common environment and culture (diet, exercise, seasonal influences and exposure to infectious

diseases) reduced variability by non-genetic factors (phenocopies) to trait variance is speculated. In

addition, well maintained geneaiogical records, minimal ethnie outbreeding and relatively large

family sizes are ideal criteria for genetic-epidemiologic analyses. Due to the lifestyle during the

early I 900’s, e.g., Catholic upbringing thus the banning of contraception by the church, it was not

uncommon to find families with a large number ofchildren. In addition to being remotely available,

it was on basis of these criteria that familïes of French-Canadian origin were accrued for study

analysis.

15.4 Sample size Q. estimation): power studies

For complex diseases, power to detect linkage is dependant on the following factors: unit of

relationship, level of recombination between marker and trait, marker heterozygosity, mode of

inheritance, genetic heterogeneity and the relative risk (X value) (Risch, 1990). The X value, a

measure of familial aggregation possibly due to genetic effects, is generally obtained by comparing

the trait incidence in affected family members to that observed in the general population. For

common trait alleles, the preferred model to estimate X value is among sibs. However, since

ftequency of the skewing trait is both age and tissue dependent, thus prevalence of the trait in the

general population an inappropriate measure, a modification was made to calculation ofthe X value

as follows. The recurrence risk ratio (or Xr) of the skewed Xi phenotype was calculated by using a

bank of families (n9$) recruited on basis of other diseases, namely HLA typing and calcium stone

formation. Two-generation familles where at least one daughter and mother were both informative

for the HUMÀRA clonality assay (i.e., )UR available) were included in the analysis (n=53

families). )UR determination was performed on DNA extracted from PB. Briefly, one daugliter was

randomly selected from each family and dichotomized as skewed (case) or non-skewed (control).

The Xi pattern of the corresponding mother was then analyzed. 0f n 16 cases (skewed Xi pattem),
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62,5% (10/16) had mothers who atso demonstrated a skewed Xi pattera. On the other hand, of n37

controls (random Xi pattera); 37,8% (14/37) had a mother with a skewed Xi pattera, deriving a

value of 1,65. Although small, the value is above 1, supporting a familial / genetic component.

Since calculation of Â is influence by trait prevalence in the general population, a low value is flot

surprising for a common trait such as skewed Xi. Other diseases with a low Â value included

Alzheimer disease (Â 3,5). Nonetheless, assuming a trait ftequency of approximately 40% in a 60

yo population, and an average sib-ship size of 6, we estimate 2 affected sib pairs per family.

Following published tables, a Â of 1,6 requires 400 affected sib pairs to detect iinkage (bd score>

3,0) with 59% power. This translates to an accrual of approximately 1200 females (200 families).

15.5 Definition of the phenotype

An obstacle ftequently encountered in complex trait analyses is uncertainty of phenotype defmition.

For skewed Xi, most studies have traditionally quantitated significant departure from random Xi

(i.e., )UR 3:1) in P3. However, in light that both the P5 and AS traits influence Xi paffems in PB

(i.e., a combination of both the primary Xi pattera and AS trait), re-evaluation of methods to

quant itate the Xi pattern in P3 is warranted. Thus a mode I to quantify the AS trait in absence of the

primary Xi pattera (i.e., relative AS) was developed. Although there is as yet no “correct” model

from which to quantify relative AS, the utilization of T celis as a control tissue from which to

quantify AS has been previously examined (Vickers et al., 2001). However, since j) T cells clonally

expand in response to antigenic exposure, ii) clonai populations of T lymphocytes increase with

advancing age and iii) as there is no evidence which unequivocally precludes T ccli involvement in

the AS trait, it appears that T ceils are not an ideai control tissue from which to quantify AS.

Alternatively, to properly quantify relative AS, the primary )UR (derived from a NHT) should be

subtracted from the blood )UR, deriving a putative true AS value (relative AS).



Chapter II

MATERIALS AND METHODS
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2.1 Subjects

‘Healthy’ eiderly female subjects and ber ‘healthy’ female siblings were recruited through multiple

sources, including advertisements in senior cïtizen newsletters and through word of mouth. When

available, mothers (n=37) and ber female siblings were also recruited. Ail procedures were

undertaken with ethical approval from the Hopital Maisonneuve-Rosemont Etbics Committee (sec

Annex 5 for consent fonu) and with the subjects’ written informed consent. for confidentiaiity,

family pedigrees were diagrammed and each family and individual received an identifier code

number.

2.2 Medical Questionnaire

Each participant responded to a medical questionnafre (Annex 6) administered by trained hcaith

care professionals. Data was collected on age, smoking habits, family data, ami clinical data (self

reported medical conditions and medicinal use). Some of these variables were selected a priori and

others as a resuit of exploratoiy analyses. MI data was collected in two instaliments, by interview

on the day of biological sample collection and by phone interview approximately 6-12 months afier

sample collection. Information was collected about themselves, parents, siblings, and offspring. It is

not clear whether self-reported conditions were self-diagnosed or derived from a medical clinician.

2.2.1 Age

Age of participant was derived dfrectly by interview and verified by medical ID cards.

2.2.2 Smoking habits: environmental stimulus

The role of environmental factor(s) as a cause of Xi pattern skewing was investigated. Rationale for

selecting cigarette smoke as a possible stimulus is I) an affect on hematopoiesis bas been

documented, ii) smoking habits are quantifiable (discrete and continuous), and iii) cigarette smoke,

with many ofthe undesfrable effects attributed to nicotine, benzene and/or carbon monoxide, causes

hemato-toxicity (leading to an imba]ance in hematopoietic homeostasis), leukocytosis and altered

immunologicai function.

Discrete variables of smoking habits included current smoker and ex-smoker status. Current

smokers were defmed as those currently exposed to directlvoluntary cigarette consumption and ex

smokers as those who had ever regularly smoked cigarettes but have now quit. for the ex-smoker

variable, in our data sheets, a nuli-value was given if the subject was neyer a smoker, a zero value if

a current smoker, and a truc value (i.e., 1) if an ex-smoker. Current smoker was given a zero value
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figure 6. Distribution of family size, i.e, number of participant female siblings per family. N193

families, median sibling size offive, mean of 5,6.

Figure 7. Age distribution of female participants. Ages ranged from 38 to 96 years, with a mean of

63,3 years ± 10,0.
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Figure 8. Incidence of skewed X inactivation (DS score 0,25). The percentage of femaÏes skewed

for each ce!! type is indicated above the bar. for buccal cel!s, the incidence of skewing

speculatively corresponds to flic frequency of primary skewing (PS). The incidence of skewing in

blood hypothetically reflects the contribution from both the primary skewing and AS traits.
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Figure 9. Incidence of AS in hematopoietic lineages. A) Qualitative analyses (skewed in blood, flot

skewed in BC). B) Quantitative analyses (ASDS score 0,25).

a) Incidence of AS - qualitative analyses: ASQI

b) Incidence of AS - quantitative analyses: ASQT
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figure 11. Frequency distribution of ASDS scores (range: O to 0,75).
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Figure 12. Age-PAmat score scatter-plots. Resuits of LR method provided. a) BC, b) PMN, e)

monocytes, d) T celis, e) B celis.
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Figure 13. Age-DS score (skewing) scatter-plots. Resuits of GEE method provided. a) BC, b)
PMN, c) monocytes, d) T lymphocytes, e) B lymphocytes.
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figure 14. Age-ASpAm score scatter-plots. Resuits of LR method provided. a) PMN, b) monocytes,

e) T ceils, d) B celis.
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Figure 15. Age-ASD5 score (AS) scatter-ptots. Resuits ofGEE statistical method provided. a) PMN

b) monocytes c) T lymphocytes d) and B lymphocytes. Lower ASDS scores (stronger correlation) in

younger versus older females is consistent with AS representïng deviation from the primaly Xi

ratio.
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Figure 16. Primary XIR: intra-individual correlation of PAmat scores between BC and the varlous

hematopoietic lincages. Regression prediction une and 95% confidence intervals are shown. Sec

Table XII (page 105) for table format ofresuits.
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figure 17. B]ood skewing: intra-individual correlation of PAmat scores among hematopoietic

lineages. Regression prediction une and 95% confidence intervals are shown. See Table b) XII

(page 105) for table format of resuhs.
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Figure 18. AS: intra-individual correlation of scores among hematopoietic lineages.

Regression prediction une and 95% confidence intervals are shown. See Table XII e) (page 105) for

table format of resuits.
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Figure 19. Direction of AS relative to the primary )UR: suggestive evidence for distinct Xi skewing

traits. Method: The score was analyzed as a function ofthe primary )UR (BC PAmat score).

Scailer plots for each hematopoietic lineage are shown. The BC PAmat score ranged ftom O to 1, a

score of 1 defïning complete inactivation of the paternal X. In leukocytes, scores ranged

from —0,8 to 0,8, a score of +0,8 defining preferential inactivation of the patemal X. As shown, the

direction of AS in PMN and monocytes appears to occur random to the BC PAmat score,

suggesting the AS trait does flot reflect a continuation of the primary Xi trait. In T and B

lymphocytes however (particularly for T lymphocytes), direction of AS does not appear normatly

distributed. In fact, as seen in Table XIV (page 107), T celi AS relative to the BC XIR appears to

reflect selection ofcells bearing the alternate inactive X. Regression prediction unes are shown.
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Q Table VIII. Number of informative females (DNA amplified and heterozygous for the HUMARA

clonality assay). For buccal ceils and granulocytes, ail DNA samples amplified, deriving a

heterozygosity rate of 90,8%.

Number ofsamples Number of informative samples (DNA

Cel] type ampllfied and heterozygous)

Buccal cells 1144 1039 (90,8%)

PMN (granulocytes) 1144 1039 (90,8%)

CDI4 (monocytes) 1144 1000 (87,4%)

CD3 (T lymphocytes) 1144 1026 (89,7%)

CD19 (B lymphocytes) 1144 1022 (89,3%)

Table IX. Incidence of skewing (D$ score 0,25) and AS (three methods given: estimated, ASQL,

ASQI). 0f the three methods used to measure the incidence of AS (see table below and text for

more details), the AS score may be a more accurate method as ii utilizes a more stringent criterion

of skewing.

Ceil type Skewed X Estimated incidence of ASQL QT

inactivation AS -skewed m blood (ASs score

(DS score (incidence of blood -

. . . -not-skewed m BC 0 25)
> 0 25’

skewmg - mcidence of
‘ BC skewing)

Buccal ceIl 12,4 % - - -

PMN 36,0 % 23,6 % 32,2 % 22,7 %

Monocyte 36,6 % 24,2 % 34,6 % 27,2 %

TcelIs 20,1% 7,7% 16,3% 11,4%

B cells 26,5 % 14,1 % 22,5 % 16,3 %
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Table X. Mean X inactivation ratios. a) Mean D$ scores and standard deviations. b) Mean ASDS

scores and standard deviations.

a) Mean DS scores

DS score Std. deviation

Cdl type n (mean) min max (+1-)

BC 1034 0,123 0,0000$6 0,5 0,094

PMN 1033 0,204 0,001001 0,5 0,129

Monocytes 995 0,207 0,000066 0,5 0,136

T lymphocytes 1016 0,153 0,000359 0,5 0,111

B lymphocytes 1012 0,174 0,001910 0,5 0,112

b) Mean ASDS scores

AS score

(mean) Std. deviation

Ccli type n min max (+1-)

PMN 874 0,159 0,000012 0,722287 0,125

Monocytes $40 0,173 0,000557 0,692075 0,133

T lymphocytes $5$ 0,127 0,000007 0,61$5$4 0,099

B lymphocytes 854 0,142 0,000146 0,692075 0,110
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Table XI. Skewing as a function of age. Resuits of LR, GEE and SOLAR statistical methods are

o provided (when available).

a) PAmat score

LR method GEE method SOLAR method

Cefl type p-value beta p-value beta p-value

BC 0,85 1 0,0001

PMN 0,556 0,0005

Monocytes 0,841 0,0002

T lymphocytes 0,171 - 0,0009

B lymphocytes 0,73$ - 0,0003

b) DS score (PS)

LR method GEE method SOLAR method

Ccli type p-value beta p-value beta p-value

DC 0,1752 - 0,0004 0,2069 - 0,0004 0,29

PMN <0,0001 0,001 $ 0,0004 0,0016 0,00009

Monocytes 0,0007 0,0015 0,0056 0,0013 0,005

T lymphocytes 0,1 224 0,0006 0,1341 0,0006 0,2$

B lymphocytes 0,0827 0,0007 0,3481 0,0004 0,23

c) score

LR method GEE method SOLAR method

Ccli type p-value beta p-value beta p-value

PMN 0,582 0,0004

Monocytes 0,782 0,0002

T lymphocytes 0,115 - 0,0009

B lymphocytes 0,596 - 0,0004

d) AS score (AS)

LR method GEE method SOLAR method

Ccli type p-value beta p-value beta p-value

PMN <0,000 1 0,0025 <0,0001 0,0024 9x10

Monocytes 0,0001 0,0019 0,0004 0,0019 0,0035

T lymphocytes 0,0095 0,0009 0,037$ 0,0009 0,13

B lymphocytes 0,0002 0,0015 0,0021 0,0013 0,14



105

o

o

Table XII. Intra-individual correlation of X inactivation ratios, a-c.

a) Coi-relation between BC and blood ceils (PAmat score).

Coi-relation (PAmat) BC PMN Monocytes T cefis B cefis

BC
Pearson coi-relation 1,000 0,535 0,462 0,563 0,546

Sig. (2-tailed) <1017 <j-I7 <1017

N $96 $96 $63 $78 $76

b) Correlation among blood celis (PAmat score).

Correlation (PAmat) PMN Monocytes T cells B cdils

PMN
Pearson correlation 1,000 0,8$ 1 0,695 0,824

Sig. (2-tailed) <iOE <1OE17

N 896 863 $7$ 876

Monocytes
Pearson correlation 1,000 0,649 0,787

Sig. (2-tailed) <l0 <W’7

N 863 $51 849

Tcells
Pearson correlation 1,000 0,712

$1g. (2-taited) <iOE’

N $7$ $66

Bcells
Pearson correlation 1,000
Sig. (2-tailed)
N 876

c) Correlation among blood ceils (AS, score).

Correlation (PAmat) PMN Monocytes T ceNs B ceils

PMN
Pearson correlation 1,000 0,846 0,562 0,749

Sig. (2-tailed) <i0-’ <W’7 <W’7

N $87 860 $72 $71

Monocytes
Pearson correlation 1,000 0,550 0,728

Sig. (2-tailed) <10’ <iO’7
N 860 848 $47

Tcells
Pearson correlation 1,000 0,600

$1g. (2-tailed) <io-’7

N $72 $61

Bcells
Pearson coi-relation 1,000

Sig. (2-tailed)
N $71
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Table XIII. Evidence supporting a primaiy Xi skewing trait (PS). Methods: Females with a skewed

Xi pattern in BC were examined for Xi pattern analysis in hematopoietic tineages. We hypothesized

that in the event of a primaiy Xi skewing trait, BC skewing should be high]y concordant witli

leukocyte skewing (body-wide skewing). On the other hand, W Xi-skewing were tissue-specific, the

incidence of leukocyte skewing should be unrelated to BC skewing, thus expected to reflect the

incidence of skewing observed in our cohort population of females (column 3). As observed in

columu 4, concordance for a skewed Xi paffem between the two tissues vaned ftom 53,6 to 64,3%,

supporting both a body-wide and lineage-specific etioÏogy of skewed Xi paffems. Other etiologies

include the AS trait, clonai derivation of ceils, stochastic processes, methodologies used and/or

technical variability. Moreover, as direction of skewing (preferential inactivation of a parental

specific X chromosome) was highly concordant between the two tissues (94 to 98,6%, column 5)

suggesis a common mechanism in derivation of skewed Xi pafterns between the two tissues,

congruent with an X-linked etioiogy or derivation from a common stem ceil pool.

Celi type Expected incidence Expected incidence Observed incidence Concordance in

ofskewing in blood ofskewing in btood ofskewed Xi in direction of

if skewing were if skewing were blood when skewed skewing between
body-wide (%) tissue-specific (%) in BC (%) the two tissues

(%)
PMN 100 36,1 64,3 ($3/129) 94,0 (78/83)

Monocytes 100 37,3 53,6 (67/125) 94,0 (63/67)

T lymphocytes 100 20,2 47,2 (60/127) 98,3 (59/60)

B lymphocytes 100 26,8 56,7 (72/127) 98,6 (71/72)
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() Table XIV. Direction ofAS relative to the BC XII?. Method: The direction of AS relative to the BC

PAmat score was anaiyzed for each hematopoietic lineage. Briefly, in informative subjects the BC

PAmat score was dichotomized as preferential inactivation of a paternal X (PAmat> 0,50) or

maternai X (PAmat < 0,50). Next, the PAmat score of b]ood as a function of BC PAmat was

analyzed. Direction of AS in blood was dichotomized as concordant with direction of skewmg in

BC or discordant with direction of skewing in BC. Resuits are provided in the table below. As

observed, direction of AS in both PMN and monocytes was random relative to the primary (BC) Xi

ratio, suggestive evidence that AS does flot represent completion of the primary Xi trait in BC

tissue. Ahernatively, in T and B lymphocytes, direction of AS was preferentially discordant with

direction of skewing in BC, i.e., skewing towards a rnndom Xi pattem was observed in B and

particuiarly T ceils.

Ceil type n Concordant in Discordant in Sigmficance

direction of skcwing direction of skewing (du-test)

PMN 906 451 455 0,$9

Monocytes 864 419 445 0,3$

T lymphocytes $79 365 514 <0,0001

B lymphocytes 877 404 473 0,02
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Chapter IV

RESULTS (PART II)
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Since the AS and primary (body-wide) skewing traits were prevalent in a large proportion of our

French-Canadian female population (reviewed in Part I), a comprehensive investigation was

undertaken to identify clinical associations and etiologies. As explored in Section 13 of the

introduction, Xi skewing has been associated with several pathophysiological conditions

(expression of X-linked disease alleles, R$A, ovarian cancer, autoimmune disorders and plausibly

longevity). Other than the unfortunate preferential inactivation of the wild type X in female carriers

of X-linked mutant alleles as the cause of disease expression, whether Xi skewing is the cause or

consequence of phenotype expression and variability of the above mentioned medical conditions

and how it contributes to disease progression lias flot been clarified and well validated. Insight may

be provided by identifying the molecular elements implicated in the etiology of Xi skewing andlor

identifying the biomolecules I genes possibly altered as a consequence of Xi skewing. Altemative]y,

insight may also be gained through a prospective study where two groups of females: one

demonstrating skewed Xi patterns (cases) and the other random Xi patterns (controls), are examined

for clinical trait expression. We conjecture that if the clinical trait is a consequence of Xi skewing,

the case group should demonstrate a different incidence versus controls. Alternatively, to determine

whether skewing is the consequence of a medical condition a case-control prospective study where

females demonstrating early clinical disease symptoms and in the absence of a skewed Xi pattem

are recruited. Likewise, age-matched controls are aiso recruited. Analysis of Xi pattems as a

function of aging between the two groups would provide insight. Regardless, as no prospective

studies have been performed in this study, the maiority of analyses in this project have been 11m ited

to association studies.

Particular medical disordersfbiological variables selected for analysis include: blood counts, cancer

(ail-type), disorders with an autoimmune component, medicinal use and number and occurrence of

spontaneous abortions. An interesting facet to these disorders is whether 1) the finding can be

replicated in our populationlfamily based study and ii) whether the variable is associated with P5

andlor AS.

A first step to investigate the etiologies of Xi skewing (be they genetic, environmental andlor

stochastic) was to analyze familial resemblance of XlRs. This included both qualitative (familial

aggregation of skewing) and quantitative analyses (correlation of )URs within versus among

familles by ANOVA and maximum likelihood heritability estimates). The variance component

approacli of the SOLAR software allowed attribution of trait variance to both genetic and non

genetic factors. Non-genetic covariates taken into consideration were age and smoking habits.
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4.1 Characteristics of the sample population

L
Although demographic and skewing characteristics of our cohort population of females were

primarily described in Part 1, further characteristics are provided below; in particular,

hematopoietic, clinical, smoking and family/parity data.

4.1.1 Hematopoietic indices

Resuits of blood work and count differentials, as obtained for the majority of participants (97,5%),

are provided in Table XV (page 150). Whether these means are particular to French Canadian

females andlor to ail femaies of this age group was not thoroughly investigated. See (Tsang et al.,

199$) for review of hematopoietic indices as a function of age groups. The ftequency distributions

of blood counts are depicted in figure 20 and as shown, the majority of lineages demonstrated a

normal but slightly skewed distribution. The normal distribution of blood indices is likely due to

variabiiity liiduced by age, genetic and environmental influences. Whether the distribution departed

from Gaussian distribution (possibly tested by using the Shapïro-Wilk statistic and/or Kolmorogov

Smimov test for normal ity) was not investigated. The most extreme case was observed for

basophils. Artifactual basophil count by the celi-counter has been speculated as the primary

determinant.

Since outiiers can have a significant and drastic effect on statistical analyses, they were identified

and selectively removed for several of the statistical analyses. The criterion for removal was

arbifrarily based on extreme values. In some instances however, exclusion was also validated by

hematotogic standards. The criterion for exclusion were: counts 14,50 for WBC (n4), counts

11,00 for neutrophils (n4), counts 4,32 for lymphocytes (nl), counts 1,10 for monocytes

(n5), counts 0,60 for eosinophils (n$), a concentration 160 for hemoglobin (n =1), and counts

45 and 500 for platelets (n2). No significant outiiers were identified for MCV. Table XVI

(page 151) presents the number of cases removed ftom each particular hematopoietic lineage and

Figure 21 (page 14$-149) presents distribution of blood counts without extreme outliers, thus

depicting the distribution of a “healthier” population. As observed, distributions were less skewed.

Although femaies demonstrating extreme hematopoietic values are likely to represent chronic

andlor acute diseases, for instance increased leukocyte, WBC and eosinophil count has been

associated with increased mortality (de Labry et al., 1990) (Weiss et al., 1995) (Hospers et al.,

2000), on ethical grounds, no clinical follow-up was conducted.



111

Possible factors contributing to variability of hematopoietic values includes inter-individual

variation (age, hormonal balance, genetic variation), intra-individual variation (diet, smoking habits,

medicinal use, altitude, exercise and clinical conditions) and possibly Iaboratory I technical error.

4.1.2 Clinical charactenstics

Ctinical data was self-reported as no clinical files were investigated for confirmation. Medical

conditions included asthma, RA, SLE, anemia and cancer history. Medicinal use included cancer

related therapy (radiotherapy and chemotherapy) and other medicinal types (n=9). A limitation to

the cancer analyses was the clustering of alt cancer types into one variable. Descriptive statistics for

clinical data is provided in Table XVII (page 152).

4.1.2.1 Prevalence ofclinicat traits versus reftrence populations:

Rheumatoid arthritis: Since i) RA has a population prevalence of 1% (occurs in ail ethnie

groups) (Lawrence et al., 1989), ii) is a common clinical problem in the elderly (although anyone

can get RA, the disease usually begins in middle adult years), and iii) demonstrates a high

female:male ratio distortion (approximateiy 3-to-l), the rate observed in this study (i.e., 6,1%) may

be an appropriate estimate. Moreover, a proportion of false-positives (55%) is speculated, lîkely to

reflect OA (Lynn et al., 1995).

Anemia: Although the diagnostic criterion for anemia in females is a hemoglobin concentration <

120 g/L (World Health Organization), anemia was self-reported in this study (plausibly determined

with the alU of a medical doctor). factors plausibly involved in the etiology of age-related anemia

are inflammation, chronic disease, blood Ioss and nutritional deficiencies (jwotein-energy

malnutrition: folie acid and vitamin B 12 deficiency — megaloblastic anemia). However, because of

increased iron stores with advancing age, iron-deficiency is an unlikely cause of anemia in the

elderly. Epidemiologic analyses have reported I) an annual incidence of 1-2% in the general

population, ii) a higher incidence in males versus females and iii) a significantly higher incidence in

older individuals: 4-6 fold higher in Caucasians >65 yo (Lipschitz, 1999). Thus, taking these factors

into consideration, the reported incidence in this study, i.e., 3,2%, is in agreement with

epidemiologic fmdings.

Asthma: In Canada, 10-15% of the population suffers from asthma, with the incidence on the rise

particularly in chiidren. The Iower incidence reported in our population therefore (7,8%), may

reflect selection of an elderly female study population whom may be Iess susceptible to asthma.
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The incidence of cancer (8,7%) and SLE (0,3%) was flot compared with reference populations.

4.1.3 Smoking characteristies

Discrete and quantitative variables of smoking habits are provided in Table XVIII (page 153).

Discrete variables included whether the subject was a non-smoker, current smoker or ex-smoker.

Quantitative measures of smoke included pack-years (pack/day x number of years smoked), years

smoke and years-stop smoking. Pack-years and years-smoke are the cumulative of both current and

ex-smokers. Whether smoking statistics for this population was consistent with reference

populations was flot investigated.

4.1.4 Family I parity data

Descriptive statistics for family I parity data are provided in Table XIX (page 154). Included were

variables such as number of participating families (n=193), number and sex of siblings, number of

participating mothers (n3 7), number and sex of offspring, sex ratio of offspring and the occurrence

/ number ofmiscarriages.

4.2 Confounding variables

Prior to analyzing the associations between skewing and the various biological variables (blood

counts, medical conditions, use of medicinal products, parity and smoking characteristics), it was

vital to identify potential confounding variables. The latter were investigated by several methods

that included linear or logistic regression analysis (LR) and multivariate linear regression

(Generalized Linear Model — GLM). Moreover, as the data was correlated, i.e., data was derived

from families, a more robust approach for regression analyses was to utilize the General Estimating

Equation (GEE method). A further approach, which also took familial correlation into

consideration, was the SOLAR statistical method, which tested various variables to determine

whether they accounted for a significant proportion of trait variance.

Once confounding variables were identifled, rather than selective]y removing these individuals from

statisticat analyses, the confounding variable(s) was (were) included as a covariate(s).

4.2.1 Age as a confoundmg variable



113

Age-hematopoietic indices

As blood counts have been previously cited to vary with age (Keliy and Munan, 1977), (Jemigan et

al., 1980), (Zauber and Zauber, 1987), we elaborated whether blood counts varied signiflcantly in

our population of elderly females (mean age of 63.3). Hematopoietic outiiers as displayed in Table

XVI (page 151) were excluded from analyses and resu Its provided in Table XX (page 155). As

shown, age clearly predicted the blood counts of various hematopoietic lineages: monocytes,

eosinophils, hemoglobin concentration and MCV, as it was demonstrated by ail three statistical

methods. In particular, whule monocyte and eosinophil counts increased with age, hemoglobin and

MCV decreased. Whether the fluctuations are a normal consequence of the aging process or reflect

an underlying abnormality bas flot been determined. A possible association may also exist between

age and WBC, neutrophil and basophil count, as a significant p-value was demonstrated by the

SOLAR method and a statïstical trend by LR and GEE analyses. Lymphocyte and platelet count

demonstrated a statisticat trend by the LR and GEE methods but p-values were clearly insignificant

by the SOLAR method. The small influence of age on lymphocyte counts is consistent with

previous findings (Hait et al., 2000). Thus, since age predicted btood indices for various lineages, it

was included as a confounding variable in the blood-skewing analyses when appropriate.

Age-clinical data

Since medicinal use and the prevalence of various medical conditions are age-related, for instance

the prevalence of cancer increases significantly with each successive decade, the association

between age and clinical data was investigated. As shown in Table XXI (page 156), age predicted

(positive association) the occurrence of medical conditions such as aIl-type cancer (p=O,O37 LR)

and RA (p0,OO6 LR, pO,OO34 SOLAR), consistent with published data. Lack of an association

between age and anemia (p=O,1 5$) was consistent with published data: prevalence of anemia in

elderly females (>59 yo) was similar to that of women of childbearing age (Lipschïtz, 1999). Lack

of an association between age and asthma is consistent with a non-age-related form ofasthma.

Among medicinal use, age demonstrated an inverse relationship (-) with HRT (p<O,000I) but a

positive relationship (+) with use of med-heart (p<0,000Î), mcd anti-inflam (p<0,000I) and med

other (p<O,000I). Thus age was included as a confounding variable in the skewing-clinical data

analyses when appropriate.

Age-smoking habits

The relationship between age and smoking characteristics are provided in Table XXII (page 157).

for categoricat variables, while the number of current smokers significantly decreased with
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advancing age (p<O,000 1), the number of ex-smokers increased (p0,OO 1), suggesting that the

decrease of current smokers is due to the increased number of ex-smokers. Observation of an

inverse relationship (-) between age and the quantitative variables pack-years (p<O,0001 LR,

p=O,000I I SOLAR) and years-smoke (p=O,0003 LR) indicates that older females have been

exposed to less voluntary smoke (quantity and duration) versus younger females. Whether any

biases exist in the data, such as older females being less honest (or having a failed memory) on the

quantity and duration of cigarette smoking could flot be determined. A positive association (+)

between age and years-stop smoking (p<O,000 1, LR) is consistent with the increased number of ex

smokers with advancing age. Thus, age was mcluded as a confounding variable in the smoke

skewing analyses when appropriate.

Age-parity

The relationship between age and parity data (occurrence and number of miscarriages, offspring

sex-ratio and number of offspring) was investigated. As showu in Table XXIII a) (page 15$), age

signiflcantly (+) predicted two miscarriage variables: occurrence (p0,000l LR) and number of

miscarriages (p<0,0001 IR, p5x1OE7 SOLAR). However, adjusting for number of offspring

(muttivariate analyses — Table b) XXffl, page 158), significance was lost. This finding can be most

reasonably explained by the following: since eider females bore more children (p<O,000I) and

assuming that a greater number of pregnancies (offspring) translate into a greater number of

miscarriages, that older females had an increased prevalence of miscarriages was not surprising.

Offspring sex-ratio was atso significantly associated with age (pO,022), however, exciuding parity

data of mothers of subjects selected for study enroilment (n37), as they represent a selection bias

(i.e., familles with 4 or more female siblings were selected), the relationship was no longer

significant (p=O,l 97). Number of offspring significantly increased with advancing age (p<0,000 1),

as expected, reflective of the lifestyle of more elderly females. Thus, age was included as a

confounding variable in the skewing-parity analyses when appropnate.

4.2.2 Clinical data as a confounding variable

4.2.2J Clinical data-blood counts

In order to derive general andlor supportive information on clinical data, the association between

clinical data and blood counts was investigated (Table )OUV, page 159-160), thus providing insight

into the physiological basis of the clinical trait and possibly supportive evidence in favor of a

genuine medical trait. For instance, an association between asthma and eosmophilia is well

documented (Bousquet et al., 1990). However, since clinical data was self-reported, a proportion of

false positives may confound the findings. In addition, as each medicinal type (n=9) comprises a
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heterogeneous list of medications, associations cannot be directed to specific drugs. A similar

corollary can be made for medical conditions. That is, each medicinal condition is 1 ikely composed

of a heterogeneous group of diseases. For example, cancer is comprised of a heterogeneous group of

cancers, RA confounded by OA, and anemia possibly confounded by a non-specific fatigue

syndrome. Conditions that can mimic asthma include chronic obstructive pulmonary disease

(COPD), congestive heart failure, coronary obstruction due to various causes, vocal cord

dysfunction and esophageal spasrn. Nonetheless, controlling for age when necessary, various

associations were identified. Resuits provided in Table XXIV (page 159-160) are discussed be]ow.

Asthma / med-asthma: Since both asthma and med-asthma demonstrated a positive (+)

association with WBC, neutrophil and eosinophil count, evidence for a genuine asthma daim was

speculated. Flowever, upon multivariate analyses (controlling for asthma, med-asthma and age -

Table XXIV b) (page 159-160), WBC and neutrophil count were no longer associated with asthma

and med-asthma, suggesting a spurious fmding. The association between asthma and eosinophil

count however remained significant (p=O,023), in keeping with published data, consistent with a

genuine asthma daim. However, the association between med-asthma and eosinophil count was

lost, implying most of the variation was attributable to asthma.

C
Anemia: Although anemia was self-reported, that an inverse relatïonshïp (-) was observed between

anemia and both hemoglobin concentration (p=0,000l) and MCV (p=0,0O2), is consistent with a

hypochromic, microcytic form of anemia. Moreover, analysis of CBCs by the principal investigator

(L. Busque, MD, FRCPC, hematologist) validated an authentic form of anemia for the majority of

cases.

RA: Controlling for age, a positive association (+) was observed between RA and WBC (p0,O42)

and neutrophul count (p’0,O41). Whether this finding is consistent with the physiological basis of

RA, a resuit of the medicinal products used to treat RA or due to confounding variable(s) was flot

investigated.

Medicinal products: Several associations were observed between medicinal products and blood

counts. However, whether medicinal products had a direct effect on blood counts or was merely a

reflection of a clinical condition, which of itself influenced blood counts, could flot be determined.

Pharmacologie indications and/or prospective studies would be required. F indings are as follows: i)

an inverse relationship (-) was observed between chemotherapy intervention and lymphocyte count

(p0,046) and ii) between med-other and hemoglobin concentration (pO,O26). However, since the
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findings were limited to a single hematopoietic lineage and the p-values were barely significant, a

(E spurlous fmding is speeulated. A highly signiflcantlpositive (+) association was observed between

iii) med-anti-inllam use and eosinophil count (pO,OO4) and iv) med-anti-convulsants and MCV

(pO,OO6). flowever, whether these flndings are consistent with published data andlor due to

confounding variables was not investigated. y) The use of HRT, med-heart and med-hemato were

associated with the blood counts of several hematopoietic lineages, with highly sigiiiflcant p-values

in certain instances, thus suggestive of ai authentic fmding. Whether the finding is consistent with

published data and whether these medicinal products have a direct/primaiy effect on blood counts

(therefore blood count the responsive variable) was flot investigated. Nonetheless, medical

conditions and medicinal use were included as a confounding variable in the blood counts —

skewing analyses when appropriate.

4.2.2.2 Clinicat data —parity data analysis

The relationship between clinical and family data was investigated. A limitation to the analyses

however, as mean female age was 63,3, current medicinal use I medical condition may flot be

reflective of the clinical situation at the time of offspring deliverylmiscarriage. Nonetheless, it may

reveal consequences associated with family choices such as bearing a low versus high number of

children.

As shown in Table XXV (page 161), controlling for age, a positive relationship (+) was found

between use of med-heart and the number of offspring (p=O,004), the occurrence of a miscarriage

(pO,OlO) and a statistical trend with the number of miscarriages (p’’O,O55). Tiowever, when

controlling for number of chiidren, the association with miscarriage data was lost, implying only

increased parturition as a plausible cause of med-heart use.

Both asthma fa statistical frend with occurrence of a miscarriage (p”O,06O) and number of

miscarriages (p=O, 102)] and med-asthma (pO,O4$ with number of miscarriages), demonstrated a

positive (+) association with miscarriage data unconfounded by number of children, implying a

plausible association between miscarriage and asthma, possibly consistent with an

immunelautoimmune component common to both conditions.

RA was associated (+) with number of chiidren (pO,O42), number of miscarriages (pO,O3l) and a

statistical trend with occurrence of a miscarriage (pO,l 56). However, controlling for number of

chiidren, the association with miscarriage data was ]ost, implying that increased parturition may be

the only family variable associated with increased occurrence of RA. Assuming that med-anti
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inflam is used by females with RA, the latter fmding ïs compounded by a positive association

between med-anti-inflam and number ofchildren (p=O,017).

The relationship between use of HRT and offspring sex-ratio distortion (pO,043) is Iikely to be

spurious andlor biologically incomprehensible as females on HRT are typically menopausal,

therefore beyond the child-bearing age.

4.2.3 Smoke as a confounding variable

To determine whether cigarette smoke was a significant confounding variable, the relationship of

smoking habits with i) clinical data, ii) blood counts and iii) parity was investigated.

4.2.3.1 Smoke-cÏinical data

Since smokmg bas been î) associated with various medical conditions, for example, a potential risk

factor for RA (Flutchinson et al., 2001), MD$ (Bjork et al., 2000) and atherosclerosis (Blann et al.,

199$) and ii) demonstrates a suppressive effect on human immunity (Moszczynski et al., 2001), the

association between smoking habits and clinical data was investigated. Resuits are given in Table

XXVI (page 162). As discussed below, significance of the resu Its is dependent on several

assumptions and the medical condition in question. Age was included as a covariate when

necessary.

HRT: A significant inverse relationship (-) was observed between current smoker status and the use

of HRT (p=O,O34). ilowever, as the association was flot detected with other variables of smoke, a

spurious finding is speculated.

Med-asthma / asthma: Pack-years of cigarette smoke and years-smoked were both associated (+)

with use of med-asthma (p<O,000I and p=O,OO2 respectively). In addition, pack-years was also

associated (+) with asthma (p=O,0O2 GLM, p0,OO$7 SOLAR). In ail instances, the relationship

was positively correlated, consistent with published data citing exposure to cigarette smoke with

increased severity of symptoms (Landau, 2001). Moreover, assuming smoke is a risk-factor for

asthma, that ex-smoker and years-stop smoking were not associated with a decrease in med

asthmalasthma implies that onset of asthma is flot reversed by smoke-cessation. However, this

finding may be population-dependent and lirnited to our elderly population offemales. Furthermore,

that discrete variables of smoke (current and ex-smoker) were not associated with asthma suggests

that smoking in of itself may not be sufficient to induce asthma. That is, the quantity (intensity and

duration) ofsmoke may be a more important risk-factor. Altematively, discrete variables of smoke
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may be limited by smaller sample size (nl $9 for current smoker versus n=1 128 for pack-years),

thus statistically less powerful versus quantitative variables.

Med-other: Use of med-other was signiflcantly related (+) with pack-years (p=O,OO3) and number

ofyears-smoked (pO,OOO2). However, whether use of med-other is due to smoking or vice-versa is

not known.

Med-heart: Controlliiig for age, use of med-heart was associated (+) with pack-years (pO,Ol$) and

years-smoked (p’O,OO3), suggesting that large quantities of andlor many years of cigarette smoking

may result in heart complications necessitating medical attention. Smoking has been previously

associated with heart disease (Blann et al., 199$), consistent with a causal relationship. Curiously

however, discrete smoking variables, current smoker in particular, was not associated with use of

med-heart (p=O,$9l). This may be most reasonably explained by: i) smaller sample size (n1$9 for

current smokers versus n=1 12$ for pack-years), suggesting discrete variables of smoke are

statistically less powerful versus quantitative variables; ii) current smoking, for reasons that some

may be light smokers, is insufficient by itself to induce use of med-heart. Moreover, the resuits

suggest that once use of med-heart bas been initiated, the number of years-stop smoking is flot

statisticatty sufficient to reverse the use of med-heart (p=O,l 63).

Anemia: The flndings suggest that current smoking may be a risk-factor (+) for anemia (p0,065)

while quitting smoke (ex-smoker) a protective mechanism (-) (pO,O2O). That the findmgs are

complementary adds an element of authenticity to the fmding. That the association was flot

observed with the quantitative variables pack-years and years-smoke may most reasonably be

explained by confounding variables. That is, since these variables are the cumulative of both current

and ex-smokers, their individual effects may be plausibly neutrallzed. Therefore, reanalysis with the

variables pack-years and years-smoke but dichotomized into current and ex-smoker is warranted.

Altematively, the finding could be spurious or confounded by covariates. Paradoxically, smoking is

reported to increase hematocrit (Rampling, 1999) and hemoglobin concentration [(Kondo et al.,

1993) and present study included — see Table XXVII, page 163], thus plausibly confounding the

relationship between smoking and anemia.

RA: Results of the SOLAR statistical method, although those of the GLM were not significant,

suggest a significant relationship between RA and current-smoker status (pO,O34) and pack-years

of smoke (pO,O39). The former is consistent with data in the literature citing men who are current

smokers had an increased risk of developing seropositive RA (Uhhig et al., 1999) while the latter is
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consistent with the cumulative exposure of cigarette smoke as a risk-factor for RA (Hutchinson et

al., 2001).

4.2.3.2 Smoke-bÏood counts

Since cigarette smoke influences blood counts ((Corre et al., 1971), (Grimm, Jr. et al., 1985),

(Schwartz and Weiss, 1994), (Tsang et al., 199$)) and associated with B-cell lympliocytosis -

primarily in women (Delage et al., 2001), the relationship between smoking habits and

hematopoietic indices in our population of females was investigated. As presented in Table XXVII

(page 163) results of LR, GLM, GEE and most of the SOLAR statistical analyses clearly indicate

that current smoker status, pack-years and years-smoke predicted (+) the counts of WBC,

neutrophil, lymphocyte, monocyte, basophil, MCV and hemoglobin. Evidence of a relationship for

eosinophil count and platelet count with smoking habits was inconsistent, dependent on the

statistical method used and smoking variables anatyzed. Since platelet count was significantly

associated with quantitative variables of smoking habits (pack-years and years-smoked) however

implies an authentic finding. Although we failed to demonstrate a consistent association between

smoking habits and eosinophil counts, others have not (Mensinga et al., 1994), (Schwartz and

Weiss, 1994). Discrepancies may lie in sample size. That a negative association f-) was detected

between blood counts and ex-smoker status and years-stop smoking suggests that afier remova] of

the stimuli (i.e., smoke), hematopoietic indices return to original levels, suggesting that smoke is the

causal factor. These findings suggest that smoking habits should be included as a confounding

variable in the blood-skewing analyses.

4.2.3.3 $moke-parity

Although the association between smoking habits and parity data is flot clear, for instance i) are

current smoking habits reflective of past smoking habits when parturition occurred and ii) are

smoking habits the cause or consequence of parturition data. Analyses were nonetheless conducted

and parity data set as the dependent variable. As shown in Table XXVIII (page 164), other than a

negative association between number of children with pack-years and years-smoked, no other

significant associations were found, suggesting cigarette smoking is flot a significant predictor of

parity data or vice-versa.
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4.2.4 Parity data as a confounding variable

(J Parity and bÏood

To determine whether parity data was predictive of blood counts, the association was investigated.

As presented in Table XXIX (page 165), other than some marginal associations, no strong or

consistent association was observed.

4.2.5 Covanates associated with blood counts: multivanate analyses

As several covariates were associated with hematopoietic indices, multivariate analyses were

conducted — resuits provided in Table XXX (page 166). For WBC, significant covariates were med

heart (p0,0 17), ex-smoker (pO,OO8) and pack-years of cigarette smoke (pO,OO4). Neutrophil

count was associated with asthma (p=O,OO9) and pack-years (pO,OO9). The oniy variable to

significantly influence lymphocyte count was ex-smoker (pO,OOl). Age was the only variable to

predict monocyte count (p<0,000 1). Eosinophil count was associated with HRT (pO,04 1), med

anti-inflam (p=O,Ol$) and asthma (p=O,O43). Age (p=0,024) and current smoker (p0,OOI)

predicted basophil count. Platelet count was associated with HRT (p0,035). Hemoglobin was

associated with med-asthma (p<O,000I), med-other (p=O,005), anemia (p<0,000I) and pack-years

(p=O,O43). MCV was predicted by age (p=O,025) and med-anti-conv (p=O,015). Thus for future

(J statistical analyses pertaining to blood counts, the aforcmentioned variables shouid be considered.

4.2.6 Maximum likeihood heritability estimates of confounding variables

The phenotypic variance of confounding variables (blood counts, number of miscarriages, smoking

habits) attributable to genetic factors was investigated by maximum likelihood estimates (adjusted

for age, pack-years of cigarette smoke, current smoker and ever smoker). Although flot investigated

in this study, familial aggregation and heritability of RA (Deighton and Walker, 1991), asthma

(Palmer et al., 2000) and COPD (Khoury et al., 1985) has long been recognized. In fact, utilizing a

classic twin study design, 73% of the variation in susceptibility to asthma and 60% of the risk of

developing RA can be explained by genetic factors (Skadhauge et al., 1999) (MacGregor et al.,

2000).

Blood counts

As presented in Table XXXI (page 167), the variance of ail hematopoietic iineages demonstrated

significant heritability estimates (0,14 h 0,66; pO,O45), implying a genetic component to

derivation of blood counts. In particular, MCV demonstrated the strongest familial resemblance

(h20,66; p<lxlOE7), followed by platelet count (h2=0,54; p<1x107). Monocyte and lymphocyte

counts also demonstrated modest h2 values (0,44 and 0,43, respectivety, p<lxlOE7). Lack of strong
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heritability of basophil count may be attributed to a Iow mean count (0,033) and a high standard

deviation (± 0,055) — see Table XV (page 150).

Farity data

As shown in Table )OQU (page 167), a heritable / genetic component (h20,12; p=0,002) was

demonstrated for multiple miscarriage occurrence. Genetic components possibly include genetic

aberrations andfor miscarriage susceptibility allele(s).

Smoking habits

As shown in Table XXXI (page 167), phenotypic variance attributable to genetic effects for the

quantity of smoke inhaled (pack-years) was significant (h20, 1$; p’O,OOOO2), suggesting that

quantitative variables of smoking habits have a genetic component, consistent wïth a genetic

component to smoking addiction (Munafo et al., 2001).

4.3 familial aggregation of skewed Xi pafferus

To determine whether genetic and/or environmental factor(s) influence derivation of )URs, familial

aggregation of skewed Xi patterns was examined. As such, the recurrence risk (RR) and recurrence

risk ratio (RRR) were determined for each skewed Xi phenotype. Confidence intervals were flot

determined.

4.3.1 Pnmary skewing trait (DS score 0,25)

As shown in Table XXXII (page 168), familial aggregation of skewed Xi pattem in BC, PMN and

T lymphocytes was flot significant (RRR 1,01; 1,12 and 1,19; respectively), suggesting that

genetic andlor shared environmental factors do flot contribute to derivation of )URs for these tissues

/ lineages. These findings imply a stochastic and/or non-genetic mechanism(s) of skewed Xi pattern

derivation.

Nonetheless, and assumÏng a genetic component to skewed Xi patterns in BC, lack of familial

aggregation may be attributed to: i) Small sample size of cases (n20) versus controls (n=l7$), thus

necessitating a larger case sample size. ii) A too stringent criterion of skewing. For example, in

mice, as in the case of extreme heterozygotes (Xcea /Xcec heterozygotes), Xce X chromosome

skewing achieves a maximum skewing of 20-30%. A Iower degree is expected in weaker

heterozygotes (Xcea /xce’’ for exampie). Therefore, and assuming a shnilar mechanism of skewing

in humans, reanalysis of skewed Xi paffems BC but with a less stringent criterion, a DS score 0, 1$
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for example, is warranted. Pertaining to T lymphocytes, and assuming a genetic component to

skewed Xi patterns in T lymphocyte, iack of familial clustering may be explained by I) small

sample size of cases (n39) versus controls (n1 58), thus requiring a larger sample size. ii) As in

the case of BC skewing, a DS score 0,25 criterion may be too stringent, thus necessitating

reanalysis but with a less stringent criterion (e.g. DS score 0,18).

In monocytes and B lymphocytes on the other hand, evidence for signitïcanl familial clustering of

skewed Xi pattems was observed (RRR 1,2$; p<O,Ol and 1,62; p<O,OO1 respectively), evidence in

fayot of a genetic component and/or shared environmental influence(s). To decipher whether the

genetic component was plausibly X-linked, an estimate ofheritability and correlation in direction of

skewed Xi pattems (i.e., Xp versus Xm) among siblings vas analyzed (Chapter 4.5.2). The effect of

smoke as a possible environmental stimulus was also investigated (Chapter 4.5.1).

Surprisingly, as both monocytes and PMN are of myeloid origin, and strongly correlated for XIRs

(Figure 17, page 99), thus specutated to exhibit a similar Xi phenotype, lack of familial aggregation

for skewed Xi pattems in PMN is unclear. One possibility may be that analyses lacked sufficient

power, thus requiring a larger sample size. Alternatively, the finding may be genuine, implying a

strong stochastic etiology to derivation ofXlRs in PMN.

4.3.2 AS trait (ASDS score 0,25)

As presented in Table XXXII (page 16$), the AS trait (ASDS score 0,25) was significantly

aggregated within familles as demonstrated for ail four hematopoietic lineages (1.57RRR2,63;

p<O,Ol), suggesting that genetic andlor shared environmental factors play a role in derivation of the

AS trait. Among the various lineages, aggregation was strongest for T lymphocytes (RRR’2,63),

suggesting a strong heritable component. fleritability estimates may provide further insight for the

role of genetic factors in derivation of the AS trait (Chapter 4.5.2). To determine whether X-linked

genetic factor(s) are plausibly implicated in derivation ofthe AS trait, correlation in direction of AS

score) among siblings was also analyzed (Chapter 4.5.2.2). The role of cigarette smoke as

a possible environmental stimulus in derivation ofthe AS trait will be reviewed in Chapter 4.5.1.2.

4.4 Physiological relevance of skewed Xi patterns: association with

biological variables

The significance ofthe findings herein stated are dependent on several factors: i) statistical strength

(p-value), ii) whether the finding can be demonstrated in more than a single hematopoietic lineage,
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iii) the biological significance ofthe finding and iv) temporaÏity. Moreover, as multiple testing was

performed, thus increasing the probability of incurring a type I error, one can raise the argument

that resuits should be interpreted with caution. Therefore, a sfraight Bonferroni correction for

multiple testing should be included. Altematively a more stringent alpha level of 0,01 may be used.

Both DS and AS scores were utilized for the association studies. As introduced in Part 1, the BC

DS score putatively quantitates the primary XIR. further, in blood, the DS score putatively

quantitates the primary )UR confounded by the AS trait. Thus the AS5 was employed to quantitate

the AS trait more effectively. PAmat and scores on the other hand, as they provide a

measure of the direction of skewing (Xp versus Xm), were excluded from the analyses. That is, we

were interested in the relationship between ‘magnitude’ of Xi skewing and biological variables and

flot between ‘direction’ of Xi skewiiig and biological variables. The latter however may prove

fruitful for analyses wishing to investigate the relationship between parental source of Xi skewing

and biological end-points, potentiaïly identifying imprinted X-linked traits.

4.4.1 Hematopoietic indices and Xi skewing

To determine the physiological significance of AS, as modulation of H$C kinetics is speculated,

blond counts as a function of )URs was investigated. Association analyses included LR, GLM and

GEE statistical methods. Confounding variables are stated in parentheses of Table XXXIII (page

169-170).

4.4.1.1 D$ score

The relationship between DS score and blood counts are provided in Table XXXIII a) (page 169-

170).

BC DS score: As shown, other than a marginal association between the BC DS score and MCV

(p0,O49), the BC DS score did not predict hematopoietic counts for any of the remaining

hematopoietic lineages, suggesting that the primary Xi pattera is not associated with variations in

the hematopoietic department.

Blood DS score and eosinophil count: With or without adjusting for covariates, a negative

reiationship (-) was observed between DS scores of ail four hematopoietic lineages and eosinophil

count (resuits of LR, GLM and GEE aH significant). This result suggests that with increasing DS

scores, there are less eosinophils in PB. Lack of an association with the BC DS score limits the
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relationship to the hematopoietic department. An association with the AS trait is thus speculated

(see below).

Blood DS score and platelet count: Platelet count was negatively associated (-) with blood DS

scores, as observed with the DS scores of monocytes, B lymphocytes ami a statistical trend with T

lymphocytes. Lack of an association with PMN, a ccli type well correlated with the PAmat score of

monocytes, is presentiy unclear. Nonetheless, and although the mechanism is unknown, increasing

blood DS scores may be associated with vascular aiterations, such as reduced efficiency to control

bieeding and/or thrombocytopenia.

Blood D$ score and hemoglobin: With or without controliing for confounding variables,

hemoglobin concentration was significantly associated (+) with PMN and monocyte D$ scores (LR,

GLM ami GEE methods). As these ccli types demonstrated the highest incidence of AS, an

association with the AS trait was speculated. No relationship with ASDS scores was found [Table b)

)OOUII; page 169-170], limiting the association to DS values. Further, since hemoglobin

concentration is negatively related to anemia, we queried an association between XIRs and anemia.

As seen in Table XXXIV (page 171-172), although myeloid DS scores were not associated with

anemia, the AS05 scores of monocytes and B lymphocytes were. However, this association was lost

to confounding variables (smoke, ex-smoker and hemoglobin — GLM method). Thus increasing

hemoglobin concentration as a function of increasing DS scores appears unrelated to self-reported

anemia. Altematively, the positive association between DS scores and hemoglobin may be

associated with intravascular hemolysis. Analysis of DS scores as a function of RBC numbers

should derive further insight.

Blood D$ score and MCV: A marginal negative (-) association was observed between MCV and

T lymphocyte DS scores. However, a spurious finding ïs speculated as i) direction ofrelationship (-

) was not consistent with the finding in BC which was positive (+), ii) p-values were marginal

(p=0,049 for BC and p0,Ol2 for T ceils) and iii) DS scores for the other three hematopoietic

lineages were not significant.

4.4L2 A$Ds score

The relationship between AS and btood counts are provided in Table b) )QOUII (page 169-170).

ASE5 score and eosinophil count: Consistent with blood DS score results, eosinophil count was

negatively (-) associated with ASDS scores, as detected with various lineages (resuits of GEE
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method: pO,O35 with PMN; pzO,Ol3 with T lymphocytes, and pO,Oll with B lymphocytes).

Controlling for additional covariates slightly reduced the signifïcance of p-values (GEM method).

Monocyte ASD5 scores however, for reasons which are presently unclear, were flot associated with

eosinophil counts (p=O,357 GEE method). Nonethe]ess, that both DS and AS05 scores were

associated with decreasing eosinophil counts implies an authentic fmding. As such, an X-linked

genetic factor to eosinophil counts is speculated.

AS score and platelet count: A significantlpositive association (+) was observed between

platelet count and the ASDS score of PMN (p=O,043 GEE method), suggesting that AS may be

associated with mild thrombocytosis. However, since the finding was barely significant (pO,O43)

and was restricted to a single hematopoietic lineage (PMN), a spurious finding is speculated.

Moreover, this finding is in contrast to DS score results in which the relationship between DS

scores and platelet count was inversely related and was detected in more than a single hematopoietic

lineage.

4.4.2 CiinicaI data and Xi pattems

b determine whether varying Xi pattems were associated with clinical data, self-reported medical

C conditions and a partial list of medicinal use were anatyzed as a function ofDS and ASDS scores.

4.4.2.1 DS score

DS score and asthma: As shown in Table a) XXXIV (page 171-172), a positive relationship (+)

was observed between increasing DS scores and asthma. As the association was observed with BC

tissue (pO,O32; LR) and hematopoietic lineages: PMN (pO,O32; LR) and possibly monocytes

(p0,054; GEE), an association with the primaiy skewing trait is speculated. Lack of T and B ceil

contribution may be aftributed to the lower incidence of skewing for these lineages. Controlling for

confounding variables (GLM and GEE methods) did flot drastically alter p-values. A positive

association between med-asthma and the DS scores ofPMN (p=O,Ol3), monocytes (pO,O$l) and B

lymphocytes (p=O,04 I) further supports the relationship. Lack of a relationship between asthma I

med-asthma and ASDS scores [Table b) )OOUV (page 171-1 72)J delimits the association to the

primaiy skewing (DS score) trait. Since DS scores were not associated with med-allergy, grounds

for an association ofthe primaly Xi pattern with allergie diseases in general could flot be supported.

score and RA: With or without controHing for confounding variables, an inverse relationship

(-) was observed between myeloid DS scores and RA. As the observation was limited to the

hematopoietic department (PMN and monocytes), we conjecture an association with the AS trait. In
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fact, as seen in Table b) XXXIV (page 171-172), increasing ASDS scores for PJv1N and monocytes

( were associated with a decreased occurrence of RA (p0,045 for PMN, GLM method and a

statistical trend for monocytes ASDS scores for ail three statistical methods). Since med-anti-mflam

was flot associated with DS ami ASDS scores, a general association between DS scores and

inflammatory conditions could be concluded.

DS scores and I-TRI: A significant association (-) was observed between the fiSC 0f FIRT and the

DS score of PMN (LR resijit: p=O,O23). However, loss of significance upon multivariate analyses

and lack of association with monocytes suggests a spurious fmding.

No significant association was observed between skewing (D$ score) and cancer, cancer related

therapy (chemotherapy, radiotherapy), anemia, SLE, med-allergy, med-anti-inflam and med-heart.

4.4.2.2 score

ASDS score and anemia: As presented in Table b) XXXIV (page 171-172), although a negative

association (-) was detected between ASDS scores of PMN, B lymphocytes and T lymphocytes

(statistical trend) ami anemia as observed with the LR and GEE statistical methods, the association

(E was lost upon controlling for confounding variables (GLM method), thus attributmg trait variance

to the latter variables. Interestingly, this finding is consistent with a Jack of an association between

ASDS scores and hemoglobin concentration and MCV [Table b) XXXIII (page 169-170)].

score and RA: As presentcd in Table XXXIV b) (page 171-172), AS scores of PMN

(p=O,O45 for GLM and p=0,064 for GEE) and possibly monocytes (pO,O93 for GLM and p0,O57

for GEE), were associated with a decreased (-) reporting of RA. Similar fmdings with DS scores

suggest that increasing DS and ASDS scores in myeloid lineages plausibly affributable to the AS

trait, may be associated with protection from RA. Consistent with an ïntrinsïc X-linked growth

advantage model of AS, one possibility may be that genetic variants of the AS gene, in addition to

providing the celi with a relative growth advantage, confer reduced susceptibility to RA. Evidence

of an X-linked genetic component to RA (Jawaheer et aI., 2001) supports the latter.

No significant association was detected between ASDS scores and cancer, chemotherapy,

radiotherapy, asthma, SLE and use of [[RI, med-allergy, med anti-inflam and med-asthma.
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4.4.3 Parity data and Xi patterns

To determine whether the primary skewing trait (DS score) and/or the AS trait (ASDS score) were

associated with X-linked disease aflele(s), the association between parity data ami )URs was

investigated. Our rationale is that X-linked disease alJeIe(s) will induce both a skewed X

inactivation pattem in female carriers of the disease allele and the mîscarriage of a male conception

(as a female can transmit either of her X chromosomes, she is expected to transmit the mutant X

half the time. Moreover, as a male is hemizygous for the X, the disease alJele is likely to be ftuliy

penetrant, possibly inducing the spontaneous abortion of the developing fetus). 1f X-linked mutant

alleles are indeed common in the Québec female population, we speculate that skewed Xi pattems

are associated with increased miscarriages and an increased female:male offspring ratio. Resuits

provided in Table XXXV (page 173).

4.4.3.1 D$ score

No significant associations were identified between parity data and BC DS scores, implying that

primary skewed Xi paffems are unlikely due to the presence of X-linked mutant allele(s). Among

hematopoietic lineages, a negative association was observed between PMN DS score and

miscarriage occurrence (p0,04$) and number of offspring (p=O,047), implying that a skewed Xi

paffem in blood may be associated with reduced fertility. However, i) controlling for confounding

variables (GLM), the association with miscarriage occurrence was Iost (pO, 132), ii) Jack of an

association with monocytes, and iii) marginaHy significant p-values, ail impiy a spurious finding.

Moreover, Jack of an association with offspring sex-ratio (pO,$59) and number of mïscarriage

(pO,330) sfrongiy argue against a general role for X-linked mutant allele(s) in the etiology of

skewed Xi pattems. This fmding however is flot consistent with data in the literature citing a ‘high’

frequency of skewed X inactivation among femates experiencing RSA. Discrepancies are Iikely due

to i) clinical criterion, as we did flot collect information on the recurrence frequency of

miscarriages. Unlike previous studies that defined R$A as 2-to-3 (or more) consecutive Iosses under

20 weeks gestation, the criterion utilized in this study was unreiated to gestation period and

irrelevant to consequtiveness of the miscarriages. ii) Since D$ scores were obtained in an elderly

population of females (mean age 63,3) and flot derived strictJy ftom those whom have recently

undenvent parturition, temporal differences in DS scores are specuiated. iii) Statistical power may

be limited by smaller sample size of females experiencing a miscarriage (n=352) versus controls

(n792).
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4.4.3.2 ASDS score

Similar to the DS score resuits, a significant inverse relationship (-) was observed between

miscarriage occurrence and increasing ASDS scores, as observed for PMN, monocytes and B

lymphocytes, particularly when controlling for confounding variables (GLM). Since the current

ASDS score may flot be reflective of that when parturition occurred (as it occurs at a later age), the

finding implies that women who have experienced a miscarriage are less likely to develop AS.

Nonetheless, unlike DS score results, several features implicate an authentic finding: i) Like the DS

score analyses, PMN were significantly implicated. ii) PMN, monocytes and B lymphocytes (the

three hematopoietic tineages most implicated in AS) were consistent in direction of relationship,

i.e., inverse (-) relationship. iii) Like the DS score analyses, AS0 analyses also produced a negative

relationship. Nonetheless, these findings argue against X-linked mutant aileles as a general cause of

AS since X-linked disease alleles would have been associated with i) an ‘increased’ miscarriage

occurrence and ii) other variables of parity (offspring sex-ratio, number of miscarriages and number

of chiidren).

4.5 Etiotogies of skewed Xi patterns

As skewed Xi pattems for varlous hematopoietic lineages demonstrated significant familial

aggregation (Chapter 4.3), the role of environmental and genetic etiologies were investigated. The

role of age in trait evolution has been previously scrutinized (Part I ofResuits).

4.5.1 Environmental etiology: cigarette smoke

for reasons declared in Chapter 2.2.2, cigarette snioke was investigated as a possible environmental

stimulus in the etiology of skewed Xi patterns. Smoking characteristics of participant females are

provided in Table XVIII (page 153). )URs were set as the dependent variable and significant

predictors of XIRs were included as covariates.

4.5.1.1 138 score

As shown in Table a) XXXVI (page 174-175), the BC DS score was not associated with smoking

variables, an expected finding since the primary )UR is putatively acquired during embryogenesis

and relatively stable thereafter (Resuits, Part 1). Among hematopoietic lineages and controlling for

confounding variables, other then a marginal association between B ccli DS scores and current

smokcr (p=O,O4) and a statistical trend (pO,O7) with pack-years (SOLAR method), no other

significant associations were found, suggesting that cigarette smoke is not a significant factor in

derivation of blood DS scores. The association identified with B lymphocytes poses an interesting

dilemma since i) p-values derived with the other statistical methods (LR, GLM and GEE) were
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clearly insignificant and ii) since B lymphocyte DS scores did flot significantly increase with

advancing age, ït is flot clear how enviromuental factors are significantly implicated in derivation of

B ccli )GRs, thus implying a spurious finding.

4.5.L2 ASDS scores

As shown in Table b) XXXVI (page 174-175), controiling for confounding variables (GLM

method), current smoker status [statistical trend for both PMN (p=O,067) and monocytes (J)=O,O74)J

and pack-years of cigarette smoke (p=O,O 12 for PMN and pO,O69 for monocytes) predicted ASDS

scores, suggesting that cigarette smoke may be involved in the etiology of the AS trait. Lack of an

association with T and B lymphocytes may be attributed to the low incidence of AS for these

lineages. We hypothesize that a chemical particulate(s) of cigarette smoke, the smoking habit itseIf,

or a covariate associated with cigarette smoke be associated with derivation ofthe AS trait.

4.5.2 Familiailgenetic etiology: sibling correlation ofXIRs and hentability coefficients

To derive evidence of a plausible X-Iinked genetic component to derivation of XIRs, sibling

correlation of X[Rs (ANOVA) and maximum likelihood heritability estimates (adjusted for age,

pack-years of cigarette smoke, current smoker and ever-smoker) were analyzed. The latter derived

(f_
estimates of the genetic effect (h2). We speculate that if Xi patterns are influenced by a familial

“5 component, the magnitude of skewing (DS and ASDS scores) should be more similar within versus

among families. Moreover, if skewing is influenced by an X-Iinked genetic locus, direction of

skewing (that is preferential inactivation of a parental-specific X chromosome) should be more

similar within versus among families. The latter analysis was performed by evaluating PAmat and

ASPMmI scores.

4.5.2.] Xi Skewing trait: deviationfrom random Xi

Primary I BC XIR: As seen in Table a) XXXVII (page 176), although the magnitude of BC

skewing (DS score) was not significantly related among siblings (p=O,24 for ANOVA, h2=O,04),

thus consistent with the Jack of familial aggregation of skewed Xi pattems in BC (Table XXXII,

page 16$), PAmat scores were signilicantly related among siblings (p3.3x1W9 for ANOVA,

h2=0,30). The latter is consistent with an X-linked genetic component to derivation of BC PAmat

scores, plausibly consistent with an XCE-like etiology. Autosomal or stochastic etïologies are

improbable as they would favor a normal or random distribution ofPAmat scores among siblings.

0f special note, resuits pertainmg to DS and ASDS scores should be interpreted with caution as they

violate an assumption ofANOVA and SOLAR statisticai methods: these variables are flot normally

distributed as required (sec f igures 10, 11; pages 92, 93).
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() Blood XIR: Among the various hematopoietic imeages [Table a) XXXVII, page 176], both DS

scores (p2,9x104 for ANOVA, 0,1 1h20,24) and PAmat scores (p2,7x105 for ANOVA,

0,20h20,39) were signifïcantly related among siblings, evidence supporting a genetic, possibly X

linked, component to derivation of blood )URs. Similar to resuits in Table XXXII (j)age 168),

familial resemblance of DS scores was strongest for monocytes and B celis (h2=O,21 and h2=0,24,

respectively) and weakest for PMN (h2=0, 11). Interestingly, T ce!! PAmat scores demonstrated the

strongest familial resemblance (p=l ,6x I 02 for ANOVA, h2=0,39), implying a strong genetic (X

linked) component.

4.5.2.2 AS trait: Deviationfrom the BCXJR

Among the various hematopoietic lineages [Table b) )OCXWI, page 176], with the exception of the

PMN ASDS score, both the ASDS score (p5,2x10 for ANOVA, 0,1 7h20,30), and score

(p3,1x105 for ANOVA, 0,20h20,36), were signiflcantly related among siblings, compefling

evidence of a genetic basis, possibly X-linked, component to derivation of AS scores. Lack of

familial correlation for PMN ASDS scores utilizing the SOLAR statistical method is present!y

unclear as both ANOVA analyses (p=l,5x104) and familial aggregation resuits [RRR=1,71;

(j p<O,O05; Table XXXI! (page 16$)] demonstrated significant familial resemblance of PMN ASDs

scores. Similar to PAmat resuits, an extremely significant p-value was found for T lymphocyte

ASpAmat scores (p=3,lxlo” for ANOVA; h2=0,36), implying a strong X-linked genetic component

to T lymphocyte AS.

4.5.3 Segregation analysis of skewed Xi paffems (preliminary findmgs)

To derive further evidence for an X-Ïinked genetic component to derivation of skewed Xi patterns,

segregation analysis of skewed Xi pafterns within families was analyzed. We hypothesize that if the

trait is X-linked, the X of same parental origin (i.e., direction of skewed Xi) should be preferentially

inactivated among sib!ings more ofien then expected by chance alone.

4.5.3.1 Segregation anatysis ofskewedXipatterns (DS score 0,25)

BC tissue: Among families demonstrating a skewed Xi pattern in BC (DS score0,25) and

informative for parental derivation of X (i.e., Xp versus Xm) (n91 familles), n=27 carried at least

two sib!ings demonstrative of a skewed Xi pattern in BC, thus Informative for segregation analysis.

Results are presented in Table a) XXXVIII, (page 177-183). As found, when direction of skewed Xi

patteras (i.e., preferential inactivation of a parental-specific X; i.e., Xp versus Xm) was tabutated

among these familles, the X of same parental derivation (i.e., same) tended to be preferentially
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inactivated among siblings: 54 (same parental X) versus 8 (alternate parental Xs). These values

significantly differ from those expected if skewed Xi pattems were determined exclusively by a

stochastic process: 34 (same parental X) versus 2$ (alternate parental Xs). This fmding is consistent

with an X-linked genetic component (p<O,0001) to derivation of skewed Xi patterns in tIC tissue,

plausibly consistent with an XCE-like etiology. Lack of further concordance is congruent with a

genetically complex trait.

Interestingly, when parental derivatïon of the skewed (preferentially inactive) X chromosome was

tabulated among ail families carrying at Ieast one sibling with a skewed Xi pattem in BC, Xm was

found to be preferentiaiiy inactivated versus Xp (n=74 versus n52, pO,O5O). Various explanations

are provided in the discussion.

PMN: Among families demonstrating a skewed Xi paftern in PMN and informative for parental

derivation of X (Xp versus Xm) (n144 families), n=103 carried at least two siblings whom

demonstrated a skewed Xi paffem in PMN, thus informative for segregation analysis. As presented

in Table b), XXXVTII (page 177-183), when direction of Xi skewing (preferential inactivation of a

parental-specific X) was tabulated among these families, it appeared that the X of same parental

origin was preferentially selected among siblings: 235 (same parental X) versus 61 (alternate

parental Xs). These values were significantly higher than expected if skewed Xi pattems were

dictated solely by stochastic processes: 163 (same parental X) versus 133 (atternate parental Xs).

This finding is consistent with an X-linked genetic component (p<O,0001) to derivation of skewed

Xi patterns in PMN. Lack of further concordance in direction of skewed Xi patterns among siblings

is congruent with a genetically complex trait.

Similar to resuits observed in tIC tissue, when ail families containing at Ieast one sibling with a

skewed Xi pattem in PMN were tabulated, Xm (n=197) tended to be preferentially inactivated

versus Xp (n= 141) (pO,002), consistent with a parent-of-ongin effect for skewed Xi patterns in

PMN celis.

4.5.3.2 Segregation anaÏysis ofthe AS trait (ASDS score 0,25)

Among familles demonstrating an AS phenotype in PMN (ASDS score0,25) and informative for

parental derivation of X (Xp versus Xm) (n1 10 familles), n=5$ contained two or more siblings

demonstrating an AS phenotype in PMN, thus informative for segregation analysis. As presented in

Table e) XXXVIII (page 177-183), when direction ofthe AS trait (i.e., preferential inactivation ofa

parental-specific X) was tabulated among these families, it was found that a parental-specific X was
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preferentially inactivated among siblings demonstrating an AS phenotype in PMN: 119 (same

parental X) versus 29 (alternate parental Xs). This value was significantly different from those

expected if the AS trait was exclusively dictated by a stochastic process: $3 (same parental X)

versus 65 (alternate parental Xs). This finding is consistent with an X-linked genetic component

(p<O,000 1) to derivation of the AS trait in PMN. Lack of further concordance is congruent with a

genetically complex trait.

Unlike DS score resuits, when parental derivation of the preferentially inactivated X chromosome

was tabulated among ail families carrying at least one sibling with an AS phenotype hi PMN, Xm

and Xp were equally inactivated (99 versus 101, respectively), liiniting the parent-of-origrn effect to

DS score resuits.

DISCUSSION FOR PART II

Descriptive statistics and confounding variables

As presented in Tables (XV-XIX, pages 150-154) and Figures (20-21, pages 146-149), frequency

distributions, descriptive statistics and reference values for various biological variables were

determined for our elderly population of French-Canadian females. This included hematopoietic

indices, cimical characteristics, smoking habits and family/parity data. The distribution of blood

counts was analyzed and extreme outliers were identified and removed for some statistical analyses.

Prior to analyzïng the relationship between Xi pattems and these biological variables, the influence

of potential confounding variables was investigated. As found, age was a significant predictor of

particular blood counts (Table XX, page 155), medical conditions/medicinal use (Table XXI, page

156), smoking habits (Table )OUI, page 157) and parity data (Table XXIII, page 15$). [The

influence of age on )URs was previously analyzed - Part IJ. Various associations were identified

between ciinical data and hematopoietic indices (Table XXIV, page 159-160), thus providing i)

physiologica] background to the clinical trait and ii) data from which to support or refute a self

reported clinical condition (that is, to determine whether variations in blood counts were consistent

with published data of the medical trait). In addition, the relationship between medicinal use and

blood counts may be used as an indirect method to infer a medical condition. for example, the

association between use of med-asthma and blood counts was consistent with the association

between asthma and blood counts, thus use of med-asthma was an indirect method to infer a clinical

trait (i.e., asthma). However, in some instances, it was flot known whether medicinal use had a
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direct effect on blood counts, for example the effect of NRT on blood counts. Smoking habits were

(E linked to varlous clinical conditions (Table XXVI, page 162) (asthina, anemia, RA, use of med

heart and med-other) and associated with variance of blood counts (Table XXVII, page 163), a

finding consistent with published data, implying a causal role. Multivariate analyses of blood counts

identified covariates significantly associated with variance of blood counts (Table )OOÇ page 166).

familial resemblance (heritability estimates) identified a significant genetic component to blood

counts (O,14h20,66), number of miscarriages (h20 12) and smoking habits (h2=0,18), implying a

genetic contribution to trait variance (Table XXXI, page 167).

Genetic component to vanability of hematopoietic cd numbers

A heritable component to variance of blood counts is consistent with classical twin model

approaches, which aftributed 61 to 96% of variance in blood celi measures to genetic factors (Evans

et al., 1999). In a fiirther study comprised entirely of females, 50% of absolute T lymphocyte count

was attributable to geneticfheritable factors (Hall et al., 2000). Since the age of females participating

in the former study (12 yo) was younger versus our study (3$-96 yo) and the latter (1$-80 yo)

suggests that genetic effects, particularly so for T lymphocytes counts, decreases with advancmg

age. That lymphocyte count was predicted by current smoking habits and inversely related to ex

smoker status suggests that non-genetic factors (environment and possïbly clonai expansion) play

an increasing role in the decrease of lymphocyte levels with advancing age [(statistical trend —

Table XX, page 155) and as previously reported (Hall et al., 2000)]. Moreover, that the magnitude

of genetic effects may differ between the sexes (Evans et al., 1999), sex-limited attributes, such as

genetic linkage to the sex chromosomes, may be a further source of variation. Nonetheless, taldng

into consideration the various non-genetic factors as covariates, genetic linkage studies and/or

genetic association studies are merited to identify genetic determinants implicated in homeostatic

regulation of blood counts.

Pnmary Xi pattem: BC MR

Evidence ofan X-linkid genetic component: familial aggregation / correlation analyses

Although skewed Xi patterns in BC tissue were flot aggregated within families (RRR1,01),

(possibly owing to small sample size and/or DS score 0,25 too stringent of a criterion to defïne a

skewed Xi pattem), nor were BC DS scores significantly correlated among siblings (p=0,24;

h2=0,04) (possibly owing to analysis of a non-normally distributed trait), PAmat scores were

signiflcantly correlated among siblings (p=3,3x1 0) and demonstrated a modest heritability

coefficient (h2=0,30; p’1x1OE7). This finding implies preferential inactivation of a parental-specific

X chromosome among siblings, consistent with a genetic (possibly X-linked cis-acting) component
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to derivation of BC PAmat scores. Autosomal or stochastic processes are unlikely as they would not

foster familial correlation of PAmat scores. In addition, segregation analysis of skewed Xi pafferus

in BC tissue found significant concordance in preferential inactivation of a parent-specific X (Xp

versus Xm) among siblings, compelling evidence for an X-Iinked genetic component.

Candidate gene:

Because the )UC region plays an essentiat role in Xi, candidate genes likety reside within this

region. As discussed in the introduction (Section 7.3.2.1), several observations support an XCE-like

etiology in derivation of the primaiy XIR. As such we speculate that part of the variability of BC

PAmat scores reflect genetic variants of XCE-like alleles. Although the latter is consistent with a

monogenic trait (see below), severat fmdings in this project support a geneticaÎly comptex trait. X

linked mutant alleles have been excluded as a major cause of skewed Xi paftem in BC due to iack

of an association between BC DS scores and parity data.

Groundsfor a geneticaÏly complex trait

Assuming i) an X-linked genetic component in derivation of skewed Xi pafterns, ii) maternai or

paternal inheritance of the skewing gene, iii) genetic Iinkage of the skewing gene outside of the

(E PAR (thus no genetic recombïnation expected between the skewing gene and our

HUMARA marker on the paternal X) and iv) ah female siblings to share the same patemal X, we

expected to find some famïhies demonstrating a high incidence of skewed Xi pafterns among

siblings when the skewing gene was paternally derived (i.e., in 50% of families). However,

aithough some familles did demonstrate a high incidence of skewed Xi paffems in BC, in particular

famiiy 121 where 5 of $ siblings were skewed in favor of the same parental X (thus consistent with

an X-Iinked genetic etiology), the fmding was exceptional. These findings are consistent with a

genetically complex trait. Variability of BC )URs may plausibly be explained by variable

expressivity, incomplete penetrance, polygenic inheritance, genetic heterogeneity, environmentai

(in utero) influences and/or stochastic processes. In utero influences may include maternai factors

such as age, birth order and gestational diseases (e.g., gestational diabetes).

Number ofprogenitor celis present when Xi is initiated

In light of a genetically complex trait, it appears therefore that )URs are flot strictly reflective of a

random/stochastic process dependant on the number of stem celis present at the initiation of X

inactivation. Rather, a combination of both a stochastic process and X-hinked cis-acting controhliiig

element(s) plausibly play a rote in derivation of the primary Xi pattern. We speculate that this X

linked genetic element(s) gives the allusion that a smait number of progenitor celis are present when
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Xi is initiated. Therefore, we deduce that the number of progenitor present is actually higher than

previously suggested.

Liukage analysis of a geneticatly complex trait

Parametric analysis

One of several methods to map the putative XCE-Iike gene is by linkage analysis (LA). Genetic

Iinkage refers to the tendency of alleles from two bd on a chromosome to segregate together in a

family. The extent of Jinkage is a function ofthe distance between two loci, and can be measured by

the number of crossover events between the two bd among the observed meioses (i.e., the

recombination fraction). The bd are said to be linked if the recombination fraction between them is

less than 0,5. Calculation ofthe bd score estimates the recombination fraction and the significance

of the evidence for linkage. Lod score analysis requires specifying a genetic model, which includes

mode of inheritance, disease allele ftequency and penetrance. In addition, multigeneratïon families

may be required. The trait can be qualitative or quantitative. This model lias been successftut for

one-Iocus disease models and occasionally for genetically complex traits (early-onset breast cancer

for example (1-lali JM et al., 1990)).

For the primary Xi trait, several parameters of the genetic model cnn be derived. Inheritance eau be

set as X-linked. Setting the trait alleIe frequency is more difficuit as both stochastic (environment)

and genetic factors (Table XXXVII, page 176) likely participate in derivation of the primary Xi

paffem. Nonetheless, a heritabilily coefficient of 30% was observed for BC PAmat scores, thus 30%

of variability in BC XIRs atiributable to X-linked genetic effect(s). Assuming a fully penetrant trait,

disease allele frequency can be set to approximately 12,4% (i.e., frequency of skewed Xi pattern in

BC) x 30% 0,037. Alternatively, penetrance may be set Iower, thus trait allele frequency set

higher. Disease phenotype may be set as affected, unaffected or unknown (the latter is ideal when

penetrance is unknown as in complex genetic traits). An affecteds-only approach may also be used

for parametric LA of a genetically complex trait since assumptions concerning unaffected

individuals are eliminated. Lod scores are summed across families, and a score 3,0 is indicative of

linkage. A Iower score requires additional methodologies to narrow the region, this may include

multipoint bd score analysis, recruitment of additional families, saturation genotyping of the region

and/or analysis of key recombinants. Candidate genes may then be sequenced to identify trait

allele(s). As a first approach, saturation genotyping of the MC region could be performed since the

XCE-Iike element is speculated to reside here.
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Nonparamefric analysis

Although a parametric approach may be used to map complex genetic traits, it ïs susceptible to

producing misleading resuits since genetic parameters are flot fully known. Alternatively, since

nonparametric methodologies of LA do not require knowledge ofthe genetic model, they have been

advocated as the method of choice for mapping susceptibility genes in genetically complex traits.

Both qualitative and quantitative traits can be studied by this approach. for common trait alleles,

the most powerfifi affected relative pair sampling unit is affected sibs. For qualitative traits, affected

sib-pair Iinkage is measured by allele sharing (J or 2 alleles for an X-lïnked marker) between a

known marker and a trait. This is based on the assumption that affected sibs who share marker

alleles will be phenotypically similar for traits influenced by a nearby gene. For quantitative traits,

testing for linkage between a marker locus and a quantitative trait consists of regressing the squared

difference in trait values between two sibs on the number of shared marker alleles. further, three

types of sib-pairs may be analyzed: i) random sampling of sib-pairs, ii) sib-pairs that are both

concordant for trait value and iii) sib pairs who are discordant for trait values. The latter appears to

be the most powerful (Risch N. ami Zhang H, 1995). A more powerfut approach are multipoint

methods such as variance components approach, which uses sibship data rather than sib pairs

(Goidgar DE, 1990). Because the primary Xi trait demonstrates a complex genetic architecture: i.e.,

genetic and stochastic (environment) factors contribute to trait variance, penetrance unknown, and

the fact that most recruited families consist of sib-ships, the sib-pair allele sharing method and/or

variance components approach is advocated. Utilizing a panel of X-linked markers, both qualitative

and quantitative analyses of the Xi trait can be analyzed for LA as previously performed (Naumova

et al., 199$). As a first step, for qualitative analyses, families containing two or more affected sibs

may be selected for linkage analysis. This could inciude both concordant and discordant sib pairs.

For quantitative analyses, to obtain maximum information, analyses should utilize ail three types of

sib-pair modeis. Once a region of interest is found, and if the region is small enough (1-2 Mbp), one

option is to select candidate genes and sequence for functional polymorphisms. Aiternatively if this

is not possible, the goal is to narrow the regions as much as possible which may include saturation

genotyping ofthe region, recruitment ofadditional familles and reanalysis ofthe data by LA and/or

by alielic association studïes (such as TDT).

Altelic association

A further tool to identify susceptibility genes in genetically complex traits is through atielic

association. Ailelic association refers to significant deviation in occurrence ofa marker allele with a

trait versus a controi group. The association can be bioiogically true (the APOE-4 aliele in

Alzheimer disease for example) or due to tight iinkage (i.e., Iinkage disequilibrium) with a nearby
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susceptibility locus, the doser they are the stronger the disequilibrium. Linkage disequilibrium (LD)

mappmg is especially powerful in isolated populations since trait susceptibility haplotypes in such

populations are speculated to have arisen from a common ancestor. LD mapping utilizes ail

recombination events in that population, thus statistically more powerful versus family-based LA.

Allelic association studies can be family andlor population (case-control) based.

Population (case-control) studies compare allele frequency in a group of unrelated affecteds to a

matched control group. However spurious associations can arise due to population stratification.

Unlike population-based methods, family-based association studies use nuclear family data to

estimate control marker allele frequencies, thus avoids possible confounding factors introduced by

population sub-structure. The transmission disequilibrium test (TDT) tests for evidence of both

iinkage and LD when the two co-exist. The TDT is advocated for analysis of geneticatly complex

traits, particularly in relatively isolated populations and for detecting genes of minor or modest

effect size. Utilizing mother-father-affected child trios, the TDT evaluates whether the ftequency of

a particular disease-marker haplotype among affected chiidren deviates from those expected by

Hardy-Weinberg equilibrium. Utilizing genotypic data from affected and unaffected siblings the

sib-TDT is applicable for late onset disorders (Spielman RS and Ewens WJ, 1998) thus applicab]e

for analysis of the AS trait.

AS trait: hematopoietic XIRs

Evidence ofan X-lïnked genetic component: familial aggregation /correlation analyses

Among hematopoietic lineages, skewed Xi patterns (DS score 0,25) were significantly aggregated

within families for monocytes and $ lymphocytes. Lack of familial aggregation for PMN and T

lymphocytes may be due to small sample size as the criterion to define a skewed Xi pattern may

have been too stringent. This may be particularly true for T lymphocytes that demonstrated a low

incidence of skewed Xi (20,1%). Pertaining to the AS trait (ASDS score 0,25), although ail

hematopoietic lineages demonstrated significant familial aggregation, thus evidence in favor of a

heritable component to derivation of the AS trait, T lymphocytes demonstrated strongest evidence

of familial aggregation. Corroborating data was observed with quantitative analyses: DS, AS05,

PAmat and scores were significantiy correlated among siblings, compeiling evidence for a

genetic (X-linked) component to trait derivation. Strongest familial correlation was observed for B

lymphocytes for DS and AS0 scores and strongest for T lymphocytes when PAmat and AS

scores were considered. Surprisingly, although modest evidence for familial aggregation for skewed

Xi paffems (DS score 0,25, ASDS score 0,25) in PMN was observed, corroborated by modest

familial correlation of DS and ASDS score scores (h2 0,11), segregation analysis of the AS
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phenotype (Table XXXVIII, page 177-183) reveaied significant familial aggregation in direction of

skewing, compeiling evidence for a genetic / X-linked component.

Although deviation from both random Xi (DS score) and from the BC (primary) Xi pattem (i.e.,

AS score) was weaker in lymphocytes versus myeloid lineages (Figures 13 and 15, pages 95 and

97), thus weaker genetÏc effects speculated for lymphocytic lineages, familial correlation and

heritabiiity coefficients of XIRs were approximately simïtar for ail fout hematopoietic iineages

(Table XXXVII, page 176). This finding implies that utilizing qualitative methods of Xi trait

analyses, such as a DS score 0,25 to define skewed Xi pattems may undermine underlying genetic

components to trait variance, thus warranting quantitative trait analyses as the preferred method.

T lymphocyte XIRs: strong evidence ofafamiliat /X-tinked genetic component

A stronger heritability coefficient was observed for T lymphocyte PAmat and ASpA. scores versus

PMN, monocytes and B lymphocytes, implying a stronger genetic component to trait derivation,

suggesting strong selection ofX-linked allele(s) 15 occurring in T cells. Clonai expansion of T ceils

is unhikeiy as this would flot foster correlation of PAmat and ASus scores among siblings. Because

T ceil DS and ASDS scores were relatively stable with agmg suggests that X-]inked allele selection

occurred prïmarily prior to age range 3$-96, thus an etiology different from AS is speculated.

AS trait: groundsfor a geneticaÏly complex trait

The above fmdings provide unequivocai evidence and rationaie to map the genetic determinants of

the AS trait. Similar to skewed Xi pafterns in BC, the AS trait may be anaIyzed by parametric

methods. Inheritance can be set as X-linked; allele frequency can 5e calculated by factoring the

heritability coefficient (Table XXXVII, page 176) by trait frequency (ASDS score 0,25) (Figure 9,

page 91). However, because trait penetrance is unknown, env ironmental factor(s) (cigarette smoke)

possibly implicated, stochastic processes and genetic heterogeneity speculated, a multifactoriai

(complex) trait is specuiated. Consequently, a nonparametric method of linkage analysis is merited.

Candidate gene(s) for AS: modulation of HSC ldnetics

$ince we postulate modulation of HSC kinetics in derivation of the AS trait and that the X

chromosome is peppered with varions interieukin receptors, candidate loci include: IL-1R, IL-1-

RAPLI, IL-l-RAPL2, IL-2-Rg, IL-3-Ra, IL-9-R, and 1L-13-RA2. Other hematopoietic growth

factor receptors, signaling peptides or transcription factors include: CSF-2R BMX, PIG-A, GATA

J and DKC-1. The role of these genes may be tested by analyzing frequency distribution of

polymorphisms in these genes between affecteds and matched control groups. In the event of



139

positive linkage, a TDT may be pursued. In addition, saturation genotyping may also provide

insight. X-linked disease alleles have been excluded as candidate genes since AS was flot associated

with increased miscarriage occurrence and offspring sex-ratio distortion. However, subtie mutations

/ poiymorphisms in these genes cannot be excluded.

Role of environmental factor(s) in variance of the AS trait: cigarette smoke

Analysis of smoking habits as a potential environmental stimulus in the etiology of AS found

current smoker and pack-years of cigarette smoke to be positively associated with the ASDS score of

both PMN and monocytes, suggesting cigarette smoke is a potentïal environmental stimulus in the

etiology of AS. That removal of the stimulus (ex-smoker) was negatively associated (statistical

trend) with monocyte ASDS scores is a complementary fmding, implying a causal role. Slightly

smaller p-values with discrete smoking variables may be explained by smalier sample size (thus Iess

power) versus quantitative variables. Absence of an association with T and B lymphocytes may be

exp]ained by a lower contribution ofthese celi types in the AS trait. An undetermined component(s)

of cigarette smoke, a biological metabolite activated in response to smoking, and/or a covariate

associated with cigarette smoking (diet for example) may be implicated. In light of this finding, the

increase of ASDS scores with aging (Part I) may be explained in part by the cumulative exposure of

cigarette smoke with advancing age, thus meriting reanalysis of age-XIR analyses controlling for

confounding variables.

Since the AS trait is conjectured to reflect modulation of H$C kinetics and that cigarette smoke

elicits the production of pro-inflammatory mediators (TNF-Œ, IL-i, -6, -s) and hematopoietic

growth factors (GM-CSF and G-CSF) (reviewed in (Van Eeden and Hogg, 2000)), evidence for a

plausible interaction between cigarette smoke and HSC modulation, resulting in AS, is supported.

Hypothetically, the X chromosome may carry receptors for any of these mediator(s), and in the

heterozygous state, HSCs bearing the ‘stronger’ receptor will demonstrate a graduai growth

advantage, resuiting in AS. further investigation is thus warranted.

The drawback of having environmental factors (cigarette smoke) contributing to trait variance is a

reduction in power to detect linkage (Risch NJ and Zhang H, 1996).

Hematologic associations I consequence of AS

Although a relative growth advantage conferred by an X-linked allele(s) in FISCs bas been

postulated as a mechanism of AS, that the AS trait was flot associated with a general increase or

decrease of blood counts implies that hematopoiesis is stili under the control of ‘normal’
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hematopoiesis. Rather, the data is consistent witli a territorial / ‘Darwinian’ competition between

the two X-linked alleles, with HSCs expressing the stronger aliele outcompeting HSC expressing

the weaker allele. Nonetheless, blood )URs were associated with variations in particular lineages,

thus possibly associated witli lineage-specific hemato-pathologies.

BloodXi-skewing (DS score) and hemogtobin concentration

Increasing DS scores of PMN and monocytes were associated with an increase of hemoglobin

concentration unrelated to anemia. An association with hemolysis (perhaps insufficient to cause

clinicai hemolysis) is thus speculated. Indeed, evidence for an X-iinked genetic component(s) to

variability in hemoglobin has been previously demonstrated (Dover et ai., 1992), (Huebner et al.,

1986). 0f interest, mutations in the X-Ïinked FiG-A gene [associated with the clinical condition

paroxysmal noctumai hemoglobinuria (PNN)] have been associated with intravascular hemolysis.

And although PIG-A mutations are found in normal individuals, albeit a low frequency (0,002%),

(Araten et aI., 1999), an aplastic BM environment lias been speculated as the causative factor for

clonai expansion of PIG-A mutant FISCs. The latter is consistent with extrinsic factor(s) in the

etiology of clonai expansion (Araten et al., 2002). Moreover, that cytopenias associated with PNN

respond to immunosuppresion, thus implying an association with immuno-modulation (possibly

autoimmunity favoring selection of the PIG-A mutant clone - i.e., selection against FISCs

expressing the wild-type PIG-A gene product), is consistent with the association of the AS trait with

autoimmune diseases. We hypotliesize that a subtie mutation(s) I polymorphism(s) in the FIG-A

gene be a candidate iocus for skewed Xi pattems in hematopoietic Jineages. Supporting evidence

stems from the following: like PNH, the AS Irait has i) a HSC origin, ii) a putative immuno

modulating role, iii) associated with hemolysis and iv) a rote for extrinsic factors (cigarette smoke

in the case of AS) in trait evolution.

AS trait (DS andASDs scores) and eosinophil counts

Increasing DS and AS scores of hematopoietic lineages were associated with a decrease in

eosinophul counts, suggesting an X-linked genetic basis to eosinophul counts. Physiologically, since

eosinophils are implicated in varlous biological fiinctions, the relation with clinical data merits

discussion. Although vanous allergic diseases are associated with eosinophulia, ASDS scores were

flot associated with allergic conditions such as asthma and use of med-aftergy [Table b) XXXIV

(page 171-172)], thus arguing against such a relationship. Altemativeiy, since the naturai role of

eosinophils is to defend against parasites, we conjecture that AS (DS and ASDS scores) be

associated with an increased occurrence of parasitic infections. However, sïnce parasitÏc infections

are not common in Québec, this type of data was flot availabie ftom our female participants, thus
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meriting investigation in a more relevant population. Nonetheless, employing the extrinsic model of

(E AS, the finding suggests that in Iack of particular environmental factors (parasites),

genetic determinant(s) which offer resistance to parasitic infections (i.e., X-linked allelïc variants

coding for high eosinophui numbers versus low number allele) have a relative growth disadvantage,

selectively eliminated with advancing age. An other hypothesis may be that females preferentially

expressing X-linked genetic factors coding for high eosinophul numbers demonstrate a survival

disadvantage, selectively eliminated with advancing age. In fact, since eosinophilia is associated

with increased ail-cause mortality (Hospers et al., 2000), we speculate that increasing blood

DS/AS scores, thus decreased eosinophil count, be associated with increased longevity. The latter

may be a significant factor as to why women live longer then men. Although a role for skewed Xi

pattems in the Iongevity differences between males and females lias been previously addressed

(Christensen et aI., 2000), this is the first piece ofevideace linldng )URs and eosinophul counts with

Iongevity. A prospective study examining the relationship between XIRs, eosinophul count and

Iongevity is thus merited.

BloodXi-skewing (DS score) andpÏatelet count

A possible association may exist between Increasing blood DS scores and a decrease in platelet

count, suggesting skewed Xi pafterns in blood may be associated with increased bleeding, mild

thrombocytopenia andlor reduced thrombotic complications (thrombosis and hemorrhage). Lack of

an association with the AS trait limits the relationship to DS scores ofhematopoietic lïneages.

Whether ail three hematoiogic fïndings are reiated to a single X-linked gene is presently unclear. If

liinited to a single gene, it is likely to have pleiotropic activity. Alternatively, if multiple genes are

implicated, one specific for each liematopoietic lineage, the etiology of skewed Xi pattems is likely

to be family-speciflc. The latter poses a limitation to genetic linkage studies as multiple loci may be

identified. To circumvent this problem, Xi traits may be sub-phenotyped by additional clinical /

biological features such as hemoglobin concentration, eosinophil and platelet counts for example.

As such, genetic linkage studies can be performed on subtypes of skewed Xi traits, thus increasing

the power of linkage analysis by plausibly decreasing genetic heterogeneity.

Clinical cousequence ofthe pnmary Xi paffem

Primwy Xi pattern and asthma

Increasing D$ scores were associated with an increased reporting of asthma and use of med-asthma.

And since the primary XIR is relatively stable with advancing age (as presented in Part I), we
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speculate that a skewed Xi pattem in TIC tissue poses a risk-factor (rather then a consequence) of

asthma susceptibility.: increasing D$ scores equates with increased asthma susceptibility.

Moreover, since asthma is associated with eosinophilia (De Monchy et al., 1985), we anticipated a

positive relationship between BC DS score and eosinophil count. However, as seen in Table a)

)OOUII (page 169-170), TIC DS scores were flot associated with eosinophil counts, arguing against

such a relationship. One possibility may be that the clinical condition ‘asthma’, as it was self

reported, may in fact be a related phenotype (chronic obstructive pulmonary disease (COPD) for

example), thus possïbly unrelated to eosinophul counts. Interestingly, the negative relationship

between eosinophul counts and AS (DS and AS scores) is speculatively unrelated to the relationship

between skewing (DS scores) and asthma since the former is linked to the AS trait while the latter

to the primary Xi trait.

A plausible association between asthma and skewed Xi pattems is consistent with published data

where an X-linked genetic component to asthma susceptibility was reported (Lynch et al., 1999). In

this seminal paper, the researchers mapped the gene for the human cysteiriyl leukotriene receptor- 1

(CysLT1) — an important mediator of human bronchai asthma, to the long arm of the X

chromosome (Xq I 3-Xq2 1). In addition to the Cy5LT1 receptor, a second is CysLI2, both of which

are activated by cysteinyl leukotrienes (LIC4 LTD4. LIE4) — important mediators of bronchial

asthma (Lewis et al., 1990). Biochemical analyses found that activation of the CysLT1 receptor by

leukotriene D4 (LTD4) resulted in hallmark features of asthma: constriction and proliferation of

smooth muscle tissue, eosinophil migration, edema, and damage to the mucosal lining of the lung.

Consequently, treatment of asthma has included pharmacologic development of CysLT1 — selective

antagonists. Another important X-linked mediator of asthma is interleukin- 13.

XCE-Ïike locus may influence expression ofX-tinkedgenes

Atthough the mechanism by which a primary skewed Xi pattem increases the susceptibility to

asthmalCOPD is presently unclear, one can theorize that upregulation of the X-linked CysLT1

receptor gene may pose a risk-factor for asthma susceptibitfty. Since the molecular consequences of

a primaiy skewed Xi pattem are unknown, one can theorize that the Xce iocus, in addition to

influencing overali probabitity of undergoing Xi, increases expression of particular (or

chromosome-wide) gene expression. Supporting evïdence was drawn from twin studies which

demonstrated stronger correlation of X-linked gene expression in MZ versus DZ twins (Brewer

et al., 1967), thus consistent with a role of genetic factors influencing quantitative X-linked gene

expression. Consequentiy, mcreased expression of CysLT1 for exampie, wilI translate into an

increased susceptibility to asthmalCOPD. Quantitative expression analysis of the CysLT1 receptor

in skewed versus non-skewed females is thus merited. That the CysLIj receptor is expressed in
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both PB leukocytes and smooth muscle tissue is consistent with our resuits, namely an association

C of asthma with increasing DS scores in both hematopoietic lineages and a NHT (i.e., BC).

Altematively, since T lymphocyte release of IL-14 and IL-4 can also up-regulate CysLT1 receptor

expression, a fiirther possibility may be that the PS trait affects T lymphocyte immune function.

In spite of a positive association between increasing BC DS scores and asthma susceptibility,

eosïnophil count was flot associated with BC DS scores. Interestingly however, eosinophil count

was ‘inversely’ related to increasing DS and ASDS scores in hematopoietic lineages. One reason

may be the use of anti-allergie therapies such as corticosteroids, anti-leukotrienes and anti

interleukin-5 among asthmatic patients, resulting in downregulation of eosinophul survivallcounts

((Wallen et al., 1991), (Gauvreau et aL, 2000)). However, controlling for med-asthma (Table

)OOUII, page 169-170) did flot alter the relationship between eosinophil count and D$ / ASDS

scores, evidence against the latter. As such, the relationship between the primary Xi pattern and

asthma susceptibility is likely unrelated to decreasing eosinophil counts as a function of increasing

blood DS / ASDs scores.

Preferentiat inactivation ofXm versus Xp

When parental derivation of the skewed (preferentiafly inactive) X chromosome was tabulated

among ail families carrying at least one sibling with a skewed Xi pattem in BC, Xm was found to

be preferentially inactivated versus Xp (n=74 versus n52, p0,O5O). Several explanations are

possible. 1) Females with the patemal X prefercntially inactivated in BC tissue have a survival

disadvantage, and are relatively elïminated with advancing age. Parental derivation ofthe skewed X

in young females versus older females may provide insight. 2) Altematively, the finding may

suggest a parent-of-origin effect. As such, perhaps the matemally derived X, relative to the patemal

one, is more susceptible to the inactivation signal during embryogenesis. If consistent with an XCE

like etiology of skewed Xi pattem, a possible mechanism may be that the action ofXCE-like alleles

are deperident on parental derivation. That is, consistent with the model in mice where Xce ailele

strength ïs correlated with methytation status, it is possible that XCE-like alteles are preferentially

methyiated (thus relatively stronger) when patemally versus matemally derived, resuhing if

preferential inactivation of the maternaI X. This hypothesis is consistent with stronger social

(verbal) skills in Tumer syndrome females whom have acquired Xp relative to Xm, consistent with

the notion that some X-Iinked genes are preferentially expressed when paternally versus maternally

derived. 3) A final possibility may be that the findings are artifactual, possibly reflecting a bias in

PCR amplification ofthe inactive Xrn versus the inactive Xp. That is, perhaps Xp is relatively more

heterochromatic versus Xm, therefore less accessible to PCR amplification. However, that the DNA
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is denatured to 94°C prior to amplification (thus relaxing secondary DNA structures) argues against

C the latter.

Clinical associations of the AS trait

AS cwd susceptibility to RA

Both increasing DS and ASDS scores of hematopoietic lineages were associated with a significant

decrease in self-reported RA. Since RA has an autoimmune component, the fmding supports

published data Jinking skewed Xi pattems with protection from autoimmune-related phenotypes

(Martin-Villa et a1, 1999). This fmding implies that a RA-related gene(s) resides on the X

chromosome, in keeping with published data (Jawaheer et aI., 2001). A candidate gene in vicinity to

marker DXS6897 bas been postulated. Three models have been invoked to elucidate the findings. i)

Extrinsic factor(s) influencing selection of X-linked alleles. Hypothetically, similar to negative

selection of autoreactive T lymphocytes in the thymus or negative selection of HSC bearing wild

type PIG-A expression (versus FIG-A mutations) in an aplastic BM environment, perhaps the BM

environment (stromal layer, macrophages, fibroblasts and/or endothelium), for whatever reason,

may be dictating negative selection ofHSC bearing X-linked RA susceptibility aÎlete(s). ii) Intrinsic

factor(s) (X-linked genetic variants) goveming HSC growth kinetics. Assuming that a relative

growth advantage is gained by HSC expressing an X-linked RA protective allele versus a RA

susceptibility allele, the AS trait may reflect the growth competition conferred by HSCs expressing

RA protective allele(s). Nonetheless, in light that RA demonstrates a femate preponderance possibly

exacerbated by sex hormones, if our hypothesis holds true, we speculate that with advancing age,

since the frequency of the AS trait increases with aging, female preponderance of RA should

decrease. Epidemiologic analysis of RA as a function of advancing age is warranted for

confirmation. iii) Another possibility may be that females bearing X-Iinked RA susceptibility

allele(s) (versus RA protective allele) on the preferentially active X are selectively eliminated with

advancing age. Thus AS should reflect survival offemales bearing RA-protective allele(s).

AS and immune-modulation

Interestingly, increasing ASDS scores were associated with a ‘decreased’ occurrence of miscarriages.

Because multiple miscarriage occurrences have been associated with autoinunune disorders

(Shelton et al., 1994), we hypothesize that the AS trait may be associated with immune-modulation,

specilically with a ‘Iess’ autoreactive immune system. Supportive findings are reduced eosinophil

counts, and reduced reporting of RA with increasing DS and ASDS scores. A candidate gene may

reside in the region of Xq2$ as a small deletion mapped to this region has been associated with a

high rate of SA (Pegoraro et al., 1997). However, that about 70% of human conceptions are lost
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before implantation, thus flot expected to be reported as miscarriage, may open the possibility that

(E perhaps miscarriage occurrence ïs equal between skewed and non-skewed females but occurring

much earlier in skewed versus non-skewed females. Although this argues against AS playing a role

in ‘decreased’ autoreactivity (as it supports ‘increased’ autoreactivity to allo-antigens), it

nonetheless stili supports a role of AS in immune-modulation.

Unlike previous studies citing an association between skewed Xi pattems and invasïve ovarian

cancer (Buller et al., 1999), we found no significant association between )URs and ail-type cancer.

However, reanalysis of )URs as a function of individual cancer subtype (breast, ovarianlutems,

skin, lymphatic, digestive) requires further elucidatïon.

o
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(see Figure 20 for frequency distribution of MCV)
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Table XV. Descriptive statistics for hematologic indices. Ail informative females (97,5%) were

included. Mean values, range, mean proportion and standard deviations were reported.

parameter n Mean Count Range Mean
proportion

White blood ccli 1115 6,387 ± 1,75$ (10g I L) 2,500 - 22,100

Neutrophil 1115 3,$99 ± 1,441 (10g IL) 0,576 - 18,697 0,602 ± 0,082

Lymphocyte 1115 1,$4$±0,561 (109/L) 0,504-4,715 0,296±0,075

Monocyte 1115 0,457 ± 0,162 (10/ L) 0,121 - 1,760 0,073 ± 0,022

Eosinophil 1115 0,147 ± 0,10$ (10g / L) 0- 0,859 0,023 ± 0,017

Basophil 1 115 0,033 ± 0,055 (1O / L) O - 1,550 0,005 ± 0,010

Platelet 1115 236,4±56,$(1091L) 9-539

Hemoglobin 1115 132,33±9,33g/l 93-169

MCV 1114 91,04±4,l5fL 70,3- 103,6

Abbreviations: MCV, mean corpuscular volume
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Tabie XVH. Descriptive statistïcs of clinical data. Medical conditions and medicinal use were self

reported.

Clinical characteristics I medicinal tise n mean range

Mean date ofbirth 1144 1936,4 1908 - 1961

Mean age 1144 63,3 ± 10,0 3$-96

Ever had cancer 99 8,7%

- chemotherapy 13 1,1%

- radiotherapy 3$ 3,3 %

Asthma $9 7,8%

Anemia 36 3,2%

$LE 3 0,3%

Rheumatoid artbritis 70 6,1%

Hormone replacement therapy (HRT) 539 47,1%

Med-allergy 9 0,8 %

Med-anti-conv 20 1,7 %

Med-anti-inflam 192 16,8 %

Med-asthma 3$ 3,3 %

Med-other 438 38,3 %

Med-hcart 441 38,5 %

Mcd-hemato 44 3,8 %

Med-vit-other 749 65,5 %
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(J Table XVIII. Descriptive statistics of smoking habits. Discrete variables included current smoker

and ex-smoker. The continuous variables years-smoke and pack-years (pack/day x years-smoked)

are the cumulative of both current and ex-smoker. If the subjcct was a non-smoker, a false value of

O was assigned for ycars-smoke and pack-years. Non-smokers were given a nuli value for years

stop smoking.

Smoking characteristic n mean range

Discrete variables:

Current smoker I $9 16,5 %

Ex-smoker 37$ 33,0%

Continuous variables:

Pack-years (current and cx) I 12$ 7,4 ± 13,7 0-99,2

Years-smoke (current and ex) 1139 10,2 ± 14,5 0-60

Years-stop smoking 546 13,5 ± 13,2 0-65
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Table XIX. Descriptive statisties offamily / parity data.

n mean range

No. of participation familles 193 - -

No. offemale siblings I family - 7,1 ± 2,1 4-14

No. ofparticipatiug female sibllngs I family - 5,6 ± 1,6 3-12

Number of male siblings 905 4,7 ± 2,2 0-11

Participatmg mothers 37 19,2 % -

Living children 2,9 ± 2,0 0-18

Daughters 1816 1,6 ± 1,$ 0-11

Sons 1762 1,5± 1,6 0-12
Offspring sex-ratio 932

0,49 ± 0,32 -

Ever had spontaneous abortioWmiscarriage 352
308 % -

Number of miscarriages 0,49 ± 0,95 0-9

0 794

I 21$

2 90

3 26

4 $

5 3

6 0

7 3

s I

9 1

‘j

Note: two females (id 439, 571) had missing values for number ofmiscarriages.
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o

Table XX. Association between age and hematopoietic indices. Blond outiiers were removed from

analyses. The relationship was analyzed by linear regression (LR), Generalized Estimating

Equation (GEE) and the SOLAR methods. When significant and known (pO,05), the direction of

relationship (+ or -) is given in parentheses. Values in gray hidicate a statistical trend but p-values

are insignificant.

o

Age

Cd type u LR GEE SOLAR
. p-value p-value p-value

(dependant variable)

WBC count 1 111 0,090 (+) 0,075 0,0 17

Neutrophil count 1110 0,052 (-1-) 0,07 1 0,046

Lymphocyte count 1114 0,076 f-) 0,092 0,82

Monocyte count 1110 <0,0001 (+) <0,0002 (+) 2,$x107

Fosinophil count 1 107 0,0002 (+) 0,0026 (±) 0,00 15

Basophilcount 1111 0,059 (+) 0,113 0,016

Plateletcount 1113 0,074 (-) 0,126 0,2$

ilemoglobin conc. 1114 <0,0001 (-) <0,000 1 (-) 0,0043

MCV (fL) 1114 0,0005 (-) 0,0033 (-) 0,03$

Abbreviations: conc, concentration; MCV, mean corpuscular volume
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Table XXL Association between age and clinical data: medical conditions and medicinal use. The

relationship was analyzed by LR, GEE and SOLAR methods. Clinical data was collected on 1144

females. When signilicant (pO,O5) and known, the direction ofrelationship is given in parentheses.

Medical condition / Age

medicinal use LR GEE SOLAR

p-value p-value p-value

Cancer 0,03 7 (±) n.d. n.d.

- chemotherapy 0,30$ n.d. n.d.

- radiotherapy 0,157 n.d. n.d.

asthma 0,55$ n.d. 0,8

anemia 0,15$ n.d. n.d.

SLE 0,947 n.d. n.d.

RA 0,006 (±) n.d. 0,0034

HRT <0,0001 (-) n.d n.d.

Med-allergy 0,$01 n.d. n.d.

Med-anti-conv 0,887 n.d. n.d.

Med-anti-inflam <0,000 1 (±) n.d. n.d.

Med-asthma 0,193 n.d n.d.

Med-other <0,0001 (+) n.d. n.d.

Med-heart <0,0001 (+) n.d. n.d.

Med-hemato 0,696 n.d. n.d.

Med-vit-other 0,07$ nd. n.d.

Abbreviations: n.d., flot determined
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() Table XXII. Association between age and smoking characteristics. The relationship was analyzed

by LR, GEE and the SOLAR method. When significant (pO,O5), the direction of relationship is

given in parentheses. Years-smoke and pack-years of smoke are the cumulative of current ami ex

smoker. Smoking habit is the dependent variable.

Age

LR GEE SOLAR

Smoking habit p-value p-value p-valus

Current smoker <0,000 1 (-) n.d. n.d.

Ex-smoker 0,001 (+) n.d. n.d.

Years-smoke (current and ex) 0,0003 (-) n.d. n.&

Pack-years smoke (current and ex) <0,0001 (-) n.i 0,00011

Years-stop smoking <0,000 1 (+) nd. n.d.

Abbreviations: n.d., not determined

o
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s Table XXIII. Association between age and parity data. The relationship was analyzed by LR, GEE

and the SOLAR statistical methods. When significant (pOO,05), the direction of relationship is

given in parentheses. a) bi-variate analyses, b) multi-variate analyses

a) bi-variate analyses

Age

Parity data LR GIE SOLAR

(dependant variable) p-value p-value p-value

Had a miscarriage 0,0001(+) n.d. n.d.

Number ofmiscarriages <0,0001(+) n.d. 5x107

Offspring sex-ratio (including mothers) 0,022 (+) n.d. n.d.

Offspnng sex-ratio (exciuding mothers) 0,197 n.d. n.d.

Number ofchildren <0,000I(+) n.d. n.d.

G
b) Muhi-variate analysis (GLM)

Age

Parity data Dependant variable

p-value

Had a miscarriage 0,871

Number ofmiscarriages 0,144

Offspring sex-ratio (exciuding mothers) 0,416

Nuniber ofchildren <0,0001 (+)

Abbreviation: n.d., flot determined
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(D Table XXV. Association between clinical data and parity. Age was included as a confounding

variable when significant (sec Tables )OU and )OUH, pages 156, 15$). When significant (pO,O5),

the direction of relationship is given in parentheses. Parïty data was the dependent variable.

Medical condition or Parity data
medicinal therapy had a number of offspring number of
(dependant variable) miscarriage miscarriages sex-ratio children
Chemotherapy

-GLM (age) 0,622 0,965 0,59$ 0,831

Radiotherapy

-GLM (age) 0,503 0,841 0,35 8 0,577

URT

-GLM (age) 0,733 0,846 0,043 (+) 0,300

Med-al]ergy

-GLM (age) 0,355 0,189 0,276 0,623

Med-anti-conv

-GLM (age) 0,927 0,980 0,3 77 0,202

Med-anti-inflam

-GEM (age) 0,111 0,15$ 0,844 0,017 (+)
Med-asthma
-GLM (age) 0,297 0,04$ (+) 0,892 0,223

Med-other

-GLM (age) 0,98$ 0,200 0,284 0,400

Med-heart
-GLM (age) 0,0 10 (+) 0,055 (+) 0,5 16 0,004 (+)
-GLM (age, num ofchildren) 0,057 0,200 - -

Med-hemato

-GLM (age) 0,576 0,4 19 0,749 0,188

Med-vil-others

-GLM (age) 0,103 0,934 0,643 0,190

Cancer

-GLM (age) 0,150 0,141 0,49$ 0,084

Asthma

-GLM (age) 0,060 (+) 0,102 (+) 0,211 0,473

Anemia

-GLM (age) 0,851 0,60$ 0,744 0,272

SLE
-GLM (age) 0,929 0,764 0,747 0,222

RA

-GLM (age) 0,156 (+) 0,03 1 (+) 0,887 0,042 (+)
-GEM (age, num ofchildren) 0,346 0,083
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Table XXVI. Association between smoking habits and clinica] data. The relationship was analyzed

Q by LR, GLM and SOLAR method in some instances. Age was included as a covariate when

necessary. When significant (pO,O5), the direction ofrelationship is given in parentheses. Direction

of association is not given for the SOLAR method.

Smoking habit
Medical condition or Current- Ex- Pack-years Years-smoke Years-stop
medicinal therapy smoker smoker smoke
(dependant variable)
Chemotherapy

-LR 0,389 0,802 0,246 0,196 0,61$

Radiotherapy

-LR 0,920 0,682 0,187 0,054 0,063

HRT

-GLM (age) 0,034(-) 0,124 0,525 0,849 0,119

Mcd-allergy

-LR 0,181 0,181 0,541 0,87$ 0,75$

Anti-convulsants
-LR 0,673 0,371 0,246 0,517 0,380

Anti-inflammatory

-GLM (age) 0,763 0,780 0,160 0,105 0,275

Med-asthma
-LR 0,902 0,620 <0,000 1 (+) 0,002 (+) 0,40$

Med-other

-GLM (age) 0,162 0,507 0,003 (+) 0,0002 (+) 0,442

Med-heart

-GLM (age) 0,891 0,949 0,0 18 (+) 0,003 (+) 0,163

Med-hematopoietic
-LR 0,34$ 0,512 0,139 0,287 0,351

BRT

-GLM (age) 0,055 0,112 0,521 0,847 0,078

Med-vit-others

-LR 0,195 0,315 0,740 0,705 0,504

Cancer

-GLM 0,532 0,308 0,975 0,246 0,084

Asthma
-LR 0,930 0,69$ 0,002 (+) 0,175 0,466

-SOLAR 0,16 nd 0,0087 nd nd

Anemia

-LR 0,065 (+) 0,020 (-) 0,592 0,393 0,152

SLE

-LR 0,44 1 0,346 0,528 0,798 0,38$

RA

-GLM (age) 0,184 0,086 0,577 0,700 0,682

-SOLAR 0,034 nU 0,039 nU nd
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(D Table XXVII. Association between smoking habits and blood counts (without outliers). Statistical

methods included: LR, GLM, GEE and $OLAR. When signilicant (pO,05), the direction of

relationship (± or -) is given in parentheses. Hematopoietic indices were the dependent variable.

Smoking habit

Blood count Current- Ex-smoker Pack- Years- Years-stop

(Dependent variable) smoker years smoke smoke

WBC
-GLM (age) <0,000 1 ± <0,000 1 - <0,0001 + <0,0001 + 0,002 -
-GEE (age) <0,0001 + 0,819 <0,0001 + nU nd

-SOLAR 0,007 nU 0,0003 nU nd

Neutrophil
-GLM (age) <0,0001 ± <0,0001 <0,0001 + <0,0001 + 0,017 -
-GEE (age) <0,0001 + 0,894 <0,000 1 + nd nU

-SOLAR 0,08$ nd 0,0009 nd nd

Lymphocyte
-LR <0,0001 + <0,0001 - <0,0001 + <0,0001 ÷ 0,001 -
-GEE (age) 0,0007 + 0,500 <0,0001 + nd nU

-SOLAR 0,002 nd 0,031 nd nU

Monocytes

G
-GLM (age) 0,002 + 0,020 - <0,0004 + <0,0001 + 0,072

-GEE (age) 0,0042 + 0,716 0,0043 + nd nU

-SOLAR 0,12 nU 0,10 nU nd

Eosinophil
-GLM (age) 0,67 1 0,566 0,137 0,046 + 0,707

-GEE (age) 0,646 0,08$ 0,246 nd nd

-SOLAR 0,96 nd 0,39 nU nU

Basophil
-GLM (age) 0,022 + 0,410 <0,0001 + <0,0001 + 0,659

-GEE (age) 0,036 + 0,171 0,0012 + nd nd

-SOLAR 0,0002 nd 0,40 nU nd

Platelet
-LR 0,04$ + 0,2 12 0,02$ + 0,001 + 0,392

-GEE (age) 0,213 0,957 0,109 nd nd

-SOLAR 0,47 nd 0,12 nd nd

Hemoglobin
-GLM (age) <0,0001 + <0,0001 - <0,0001 + <0,0001 + 0,0001

-GEE (age) <0,0001 + 0,939 <0,000 1 + nU nd

-SOLAR 0,0038 nd 0,0014 nd nd

MCV
-GLM (age) <0,0001 + <0,0001 - 0,001 + <0,0001 + 0,002 -

-GEE (age) <0,0001 + 0,0 122 - 0,0002 + nU nU

-SOLAR 0,00003 nU 0,084 nd nU
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() Table XXVIII. Association between smoking habits and parity. When age was a sigrnficant

confounding variable (sec Tables XXII and XXIII, pages 157, 15$), it was included as a

confoundiiig variable. When significant (p0,05), the direction of relationship (+ or -) is given in

parentheses. Parity data was the dependent variable.

_______________________ ________ ________

Smoldn habit

___________

o

Parity data Current- Ex- Pack- Years- Years-stop

(Dependent variable) smoker smoker years smoke smoke

Rad a miscarnage

-GLM (age) 0,555 0,511 0,328 0,562 0,261

Number of miscarriagcs

-GLM (age) 0,535 0,444 0,544 0,466 0,746

-SOLAR 0,40 - 0,40 - -

Offspring sex-ratio

-GLM (age) 0,916 0,722 0,809 0,796 0,710

Number ofchildren

-GLM (age) 0,419 0,111 0,064 (-) 0,020 (-) 0,155
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G Table XXIX. Association betwecn parity and blood counts (without outiiers). When significant (sec

Table XX, page 155), age was included as a confounding variable, stated in parentheses next to

variable name. When significant (pO,O5), the direction of relationship (+ or -) is given in

parentheses. Blood count was the dependent variable.

Parity data

Blood count Had a Number of Offspnng Number of
(dependant variable) miscamage miscamages sex-ratio chiidren

WBC
- GLM (age) 0,470 0,23 5 0,507 0,976

Neutrophïl

- GLM (age) 0,9 19 0,445 0,486 0,641

Lymphocyte
- LR 0,373 0,563 0,442 0,$44

Monocytes
- GLM (age) 0,711 0,990 0.156 0,183

Eosinophil
- GLM (age) 0,165 0,377 0,126 0,03$ (+)

Q
Basophil
- GLM (age) 0,281 0,192 0,048 (+) 0,075

Platelet
- LR 0,527 0,859 0,257 0,533

Hemog Iobïn
- GLM (age) 0,706 0,082 0,411 0,363

MCV
- GLM (age) 0,202 0,5 19 0,911 0,080



Tabfr XXX. Covariates associated with hematopoietic indices: mukivariate analyses (GLM).

covanates WBC count covanates Basophil count

Age 0,3 77 Age 0,024 (+)
Med-asthma 0,380 Smoker 0,001 (+)
Med-heart 0,017 (+) Pack-years 0,918

Asthma 0,069
RA 0,928
Smoker 0,296
Ex-smoker 0,008 (-)
Pack-years 0,004_(+)

Neatrophil count Platetets count

Age 0,098 URT 0,03 5 (+)
Med-asthma 0,807 Smoker 0,263

Asthma 0,009 (+) Pack-years 0,104

RA 0,980
Smoker 0,61$
Ex-smoker 0,056
Pack-years 0,009_(+)

Lymphocyte count ifemogtobin conc

Chemotherapy 0,333 Age 0,063

Med-heart 0,16$ Mcd-asthma <0,0001 (+)
Med-hematopoietic 0,833 Med-other 0,005 (-)
$moker 0,052 Med-heart 0,180

Ex-smoker 0,00 1 (-) Med-hemato 0,896
Pack-years 0,05$ Memia <0,0001 (-)

Smoker 0,751
Ex-smoker 0,1 16
Pack-years 0,043 (+)

Monocyte count MCV

Age <0,000 1 (+) Age 0,025 (-)
Med-heart 0,145 HRT 0,073
Smoker 0,663 Med-anti-conv 0,015 (+)
Ex-smoker 0,560 Anemia 0,084
Pack-years 0,177 Smoker 0,776

Ex-smoker 0,055
Pack-years 0,609

Eosinophil_count
Age 0,179
HRT 0,04 1 (-)
Med-anti-inflam 0,01$ (+)
Med-asthma 0,634
Med-heart 0,062
Asthma 0,043 (+)
Number_ofchildren 0,337

166
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Table XXXI. Heritability estimates of confoundmg variables. Included m the analyses were blood

counts, number of mïscarriages and pack-ycars of smoke. Provided are heritabllity coefficients (h2),

standard error (SE) and corresponding p-values.

fleritabiity coefficient

Variable h2 +1- SE p-value

Biood counts

White blood ccli 0,27 +1- 0,056 lxlOE7

Neutrophil 0,22 ±1- 0,05 lxlOE7

Lymphocyte 0,43 +1- 0,06 1x107

Monocyte 0,40 +1- 0,06 lxlOE7

Eosinophil 0,25 +1- 0,056 lxi OE7

Basophil 0,14 +1- 0,08 0,045

Platelet 0,54 +1- 0,067 1x107

llemogtobin 0,38 +1- 0,061 txlOE7

MCV 0,66 +1- 0,067 lxlW7

Parfty data

Number ofmiscarriages 0,12 +1- 0,05 0,002

Smoking characteristics

Pack-years of smoke 0,1$ +1- 0,05 0,00002
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() Table XXXII. familial aggregation of the skewing (DS score 0,25) and AS (AS05 score 0,25)

traits. Metbods: A proband was randomly selected from each family and categorïzed as case

(skewed) or control (random X inactivation). The relative risk (RR) of skewing in remaining

siblings was then determined for cases (RR) and controls (RRtr). The relative risk ratio

(RRR), derived by the following ratio: RR, / provides an indication as to whether the

trait is aggregated within families. A RRR-score >1,00 is normally indicative of familial

aggregatïon of the trait. Enviromnental versus genetic influences however, are not discemible.

RRR-scores highlighted in bolU are significant (p-values given).

Cdl type and RR RRtmi RRR p-value

skewing trait (chi2-value)

BC skewing 11/81 = 0,1358 96/716 = 0,1341 1,01 p>0,95 (0,002)

PMN skewing 118/302 0,3907 179/510 = 0,3510 1,12 p>0,10 (1,66)

Monocyte skewing 115/265 = 0,4340 171/505 = 0,3386 1,2$ p<O,Ol (6,76)

T ccli skewing 37/154 = 0,2403 129/638 = 0,2022 1,19 p>0,25 (1,0$)

B ccli skewing 75/191 = 0,3927 144/595 = 0,2420 1,62 p<O,OOl (16,32)

PMN AS 39/1 17 = 0,3333 113/580=0,1948 1,71 p<O,0O5 (10,59)

Monocyte AS 66/191 =0,3455 104/472=0,2203 1,57 p<O,001 (11,19)

Tcell AS 15/58 = 0,2586 61/621 = 0,0982 2,63 p<O,00I (17,74)

B ccli AS 23/100 = 0,2300 $3/584 = 0,1421 1,62 p<O,Ol (5,03)
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() Table XXXIII. Association between skewing and blood counts (wïthout outliers). Analyses

included LR, GLM and GEE. Confounding variables for GLM and GEE are stated in parciitheses.

P-values and the type ofrelationship (+ or -) for DS score (a) and ASDS score (b) are provided.

A) DS score

ci

__

__

Blood Count BC PMN Mono T ceils B ceils

(dependent variable) p-value p-value p-value p-value p-value

WBC
-LR 0,242 0,46$ 0,675 0,584 0,326

-GLM (age, m-ast, m-hrt, ast, RA. smlç pk-)T, x-smk) 0,62$ 0,745 0,45$ 0,757 0,355

-GEE (age, sink, pk-yr, x-smk) 0,194 0,$02 0,387 0,68$ 0,161

Neutrophil
-LR 0,352 0,352 0,953 0,722 0,399

-GLM (age, m-ast, ast, RA, smk, pk-yr, x-smk) 0,943 0,965 0,764 0,829 0,227

-GEE (age, smk, pk-yr, x-smk) 0,272 0,911 0,475 0,243 0,1 $0

Lymphocyte
-LR 0,409 0,593 0,710 0,096 0,751

-GLM (chemotherapy, m-hi-t, m-hem, sink, pk-yr, x-smk) 0,230 0,451 0,634 0,332 0,902

-GEE (age, smk, pk-yr, x-smk) 0,407 0,507 0,984 0,107 0,857

Monocyte
-LR 0,572 0,074 0,473 0,765 0,472

-GLM (age, m-hi-t, smk, pk-yr, x-smk) 0,300 0,820 0,60$ 0,853 0,997

-GEE (age, smk, pk-yr, x-smk) 0,270 0,433 0,299 0,792 0,404

Eosinophi!
-LR 0,24$ 0,024 (-) 0,014 (-) 0,019 (-) 0,0019 (-)
-GLM (age, HRT, m-anti-in flam, m-ast, m-hi-t, ast, 0,466 0,004 (-) 0,004 (-) 0,010 (-) 0,0008 (-)
num ofoflpr)
-GEE (age, smk, pk-yr, x-smk) 0,091 0,007 (-) 0,004 (-) 0,041 (-) 0,0002 (-)
Basophil
-LR 0,504 0,135 0,851 0,265 0,983

-GLM (age, smk, pk-yrs) 0,653 0,327 0,596 0,241 0,989

-GEE (age, smk, pk-yr, x-srnk) 0,587 0,396 0,446 0,271 0,69$

Platdet
-LR 0,260 0,492 0,006 (-) 0,060 (-) 0,054 (-)
-GLM (HRT, pk-yr) 0,37$ 0,650 0,0 10 (-) 0,073 (-) 0,0$4 (-)
-GEE (age, smk, pk-yr, x-smk) 0,155 0,902 0,049 (-) 0,170 0,02$ (-)
Hemolobin
-LR 0,6 14 0,04$ (+) 0,022 (-f) 0,785 0,3 12

-GLM (age, m-ast, m-oUi, m-hi-t, m-hem, an, smk, 0,21$ 0,015 (+) 0,003 (+) 0,859 0,326
pk-yr, x-smk)
-GEE (age, smk, pk-yr, x-smk) 0,666 0,025 (+) 0,048 (-f) 0,833 0,427

MCV
-LR 0,330 0,11$ 0,533 0,091 0,400

-GLM (age, HRT, m-anti-conv, an, smlç pk-yr, x-smk) 0,049 (+) 0,689 0,974 0,268 0,479

-GEE (age, smk, pk-yr, x-smk) 0,663 0,116 0,920 0,012 (-) 0,209
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G

170

Blood count Mono T cefls B celis

(dependent variable) p-value p-value p-value p-value

WBC
-LR 0,637 0,722 0,103 0,495

-GLM (age, m-ast, m-hit, ast, RA, smk, pk-yr, x-smk) 0,327 0,649 0,123 0,47$

-GEE (age, smk, pk-yr, x-smk) 0,142 0,463 0,053 0,246

Neutrophil
-LR 0,66$ 0,705 0,190 0,627

-GLM (age, m-ast, ast, RA, smk, pk-yr, x-smk) 0,1 5$ 0,476 0,073 0,277

-GEE (age, smk, pk-yr, x-smk) 0,107 0,207 0,073 0,234

Lymphocyte
-LR 0,927 0,306 0,7$0 0,883

-GLM (chemotherapy, m-hit, m-hem, smlç pk-yr, x-smk) 0,841 0,400 0,852 0,850

-GIE (age, smk, pk-yr, x-smk) 0,85$ 0,10$ 0,941 0,818

Monocyte
-LR 0,75$ 0,491 0,919 0,590

-GLM (age, m-hit, smk, pk-yr, x-smk) 0,406 0,657 0,772 0,899

-GEE (age, smk, pk-yr, x-smk) 0,234 0,11 1 0,764 0,212

Eusinophil
-LR 0,112 0,384 0,027 (-) 0,064 f-)
-GLM (age, HRT, m-anti-inflam, m-ast, m-hrt, ast, num of offspr) 0,141 0,482 0,065 (-) 0,050 (-)
-GEE (age, smk, pk-yr, x-smk) 0,035 (-) 0,357 0,013 (-) 0,01 1 (-)
Basophil
-LR 0,15$ 0,283 0,461 0,324

-GLM (age, smk, pk-yrs) 0,394 0,457 0,450 0,434

-GEE (age, smk, pk-yr, x-smk) 0,315 0,542 0,475 0,59

Platelet
-LR 0,066 (+) 0,716 0,132 0,615

-GLM (HRT, pk-yr) 0,065 (+) 0,730 0,118 0,61$

-GEE (age, smk, pk-yr, x-smk) 0,043 (+) 0,78$ 0,061 0,7 14

Hemoglobin
-LR 0,800 0,935 0,457 0,921

-GLM (age, m-ast, m-oth, m-hrl, m-hem, an, smlç pk-yr, x-smk) 0,418 0,463 0,3 79 0,974

-GEE (age, snrk, pk-yr, x-smk) 0,665 0,984 0,203 0,962

MCV
-LR 0,667 0,486 0,06$ 0,225

-GLM (age, HRT, m-anti-conv, an, smk, pk-yr, x-smk) 0,873 0,136 0,840 0,534

-GEE (age, smk, pk-yr, x-smk) 0,510 0,20$ 0,190 0,05 9

Abbreviations: m-ast, med-asthma; m-hit, med-heart; ast, asthma; smk, cuffent smoker; pk-yr,

pack-years of cigarette smoke; x-smlç ex-smoker; m-hem, med-hemato; m-oth, med-other; an,

anemia; m-anti-conv, med-anti-conv; num of offspr, number of oflpring
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Table XXXIV. Association between skewing and clinïcal data. Analyses included LR, GLM and

GEE. Confounding variables are prmted in parentheses. P-values and direction of relationship (+ or

-) are given when known for DS score (a) and ASDS score (b).

A) DS score

Clinical data BC PMN Mono T celis B cefls

(dependant variable) p-value p-value p-value p-value 7-value

Cancer
-LR 0,594 0,650 0,43$ 0,156 0,611

-GLM (age) 0,546 0,8 14 0,567 0,180 0,671

-GEE (age) 0,479 0,703 0,440 0,133 0,680

Chemotherapy
-LR 0,876 0,131 0,524 0,6$3 0,685

-GLM (lymphocyte) 0,$98 0,131 0,523 0,601 0,714

Radiotherapy
-LR 0,889 0,537 0,323 0,145 0,743

-GLM (years-smoke, years stop-smoke) 0,080 0,700 0,544 0,960 0,816

Asthma
-LR 0,032 (+) 0,032 (+) 0,123 0,143 0,160

-GLM (WBC, neut, eos, pk-yr) 0,05 1 (+) 0,02$ (+) 0,113 0,129 0,104

-GEE (age, ces, pk-yr, pk-yr sec) 0,063 0,016 (+) 0,054 (+) 0,101 0,105

Anemia
-ER 0,69 1 0,902 0,291 0,634 0,742

-GLM (hemo, MCV, smk, x-smk) 0,409 0,26$ 0,913 0,773 0,545

-GEE (age, MCV) 0,605 0,940 0,242 0,887 0,605

SLE
-LR 0,647 0,57$ 0,176 0,522 0,237

RA
-LR 0,546 0,048 (-) 0,040 (-) 0,3 17 0,829

-GLM (age, WBC, neut, smk, x-smk) 0,534 0,062 (-) 0,059 (-) 0,784 0,399

-GEE (age) 0,604 0,007 (-) 0,0 10 (-) 0,326 0,708

HRT
-LR 0,634 0,023 (-) 0,48$ 0,745 0,214

-GLM (age, eos, plat, MCV, smk) 0,365 0,226 0,980 0,08 1 0,40$

Med-alkrlijr
-LR 0,721 0,397 0,261 0,314 0,531

Med-anti-inflam
-LR 0,21$ 0,610 0,627 0,909 0,269

-GLM (age, ces) 0,205 0,74$ 0,297 0,805 0,121

Med-asthma

-LR 0,331 0,028(+) 0,111 0,771 0,112

-GLM (WBC, neut, ces, hemo, pk-yr) 0,304 0,0 13 (+) 0,081 (+) 0,453 0,041 (+)

Med-hcart

-LR 0,765 0,084 0,135 0,885 0,749

-GLM (age, WBC, Iymp, mono, ces, hemo, pk-yr) 0,679 0,996 0,783 0,96$ 0,543
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o

o

B) AS score

Abbreviations: eos, eosinophil count; pk-yr, pack-years of cigarette smoke; pack-yrs cig sec, pack

years of cigarette smoke second-hand smoke exposure; RA, rheumatoid arthritis, SUE, systemic

Clinical condition PMN Mono T cefls B ceils

(dependant variable) p-value p-value p-value p-value

Cancer

-LR 0,797 0,489 0,147 0,632

-GLM (age) 0,525 0,697 0,200 0,813

-GEE (age) 0,559 0,654 0,245 0,8 10

Chemotherapy

-LR 0,053 0,513 0,884 0,506

-GLM (lymphocyte) 0,056 0,567 0,900 0,498

Radiothcrapy

-LR 0,854 0,863 0,46$ 0,967

-GLM (years smoke, years stop smoke) 0,91 1 0,685 0,287 0,895

Asthma
-LR 0,196 0,487 0,692 0,756

-GLM (WBC, neut, eos, pk-yr) 0,182 0,3 96 0,8 13 0,707

-GEE (age, cos, pk-yr, pk-yr sec) 0,130 0,37$ 0,978 0,514

Anemia

-LR 0,277 0,026 (-) 0,066 (-) 0,033 (-)
-GLM (hemo, MCV, smk, x-smk) 0,775 0,31$ 0,143 0,701

-GEE (age, MCV) 0,292 0,002 (-) 0,219 0,050 (-)
SUE

-LR 0,103 0,590 0,138 0,266

RA
-LR 0,095 0,083 0,782 0,540

-GEM (age, WBC, neut, smk, x-smk) 0,045 (-) 0,093 -) 0,587 0,632

-GEE (age) 0,064 (-) 0,057 (-) 0,81$ 0,471

HRT
-LR 0,711 0,365 0,341 0,556

-GLM (age, ces, plat, MCV, smk) 0,88 8 0,211 0,303 0,761

Med-allergy

-LR 0,740 0,176 0,987 0,424

Med-anti-inftam

-LR 0,697 0,111 0,279 0,276

-GLM (age, ces) 0,336 0,055 0,147 0,209

Med-asthma

-LR 0,808 0,643 0,070 0,505

-GLM (WBC, ncut, ces, hemo, pk-yr) 0,666 0,58$ 0,139 0,572

Med-heart

-LR 0,893 0,709 0,16$ 0,771

-GLM (age, WBC, Iymp, mono, ces, hemo, pk-yr) 0,051 0,291 0,041 (-) 0,533

lupus erythematosus; HRT, hormone replacement therapy
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Table XXXV. Parity data and skewing (search for X-]inked disease alleles). Analyses included LR,

GLM and GEE. Confounding variables are given in parentheses. P-values and direction of

relationship (+ or -) are provided for DS scores (a) and ASDS scores (b).

A) DS score

B) AS5 score

Parity data PMN Mono T cdils B ceils

(dependant variable) p-value p-value p-value p-value

Offspring sex-ratio

-LR 0,957 0,656 0,571 0,882

-GLM (FRT) 0,97$ 0,696 0,522 0,8 19

-GEE (age) 0,841 0,701 0,359 0,972

Miscarriage occurrence

-LR 0,046 (-) 0,1 1$ 0,247 0,141

-GLM (age, med-hrt, num ofchild) 0,030 (-) 0,036 (-) 0,260 0,041 (-)
-GEE (age) 0,019 (-) 0,057 f-) 0,235 0,0%

Numbcr of misca triages

-LR 0,290 0,443 0,422 0,474

-GLM (age, med-asthma, RA, nuin of child) 0,197 0,253 0,355 0,2 12

-GEE (age) 0,167 0,28$ 0,356 0,419

Number of offspring

-LR 0,592 0,123 0,865 0,070

-GLM (age, med-anti-inflam, med-hrt, RA) 0,259 0,57$ 0,620 0,437

o

Panty data BC PMJ1 Mono T ceils B ceils

(dependant variable) p-value p-value p-value p-value p-value

Offspring sex-ratio

-LR 0,610 0,948 0,305 0,316 0,979

-GLM (HRT) 0,599 0,859 0,289 0,311 0,964

-GEE (age) 0,590 0,9 13 0,379 0,355 0,934

Miscarriage occurrence

-LR 0,50$ 0,140 0,454 0,793 0,444

-GLM (age, med-hrt, num ofchild) 0,692 0,132 0,336 0,731 0,455

-GEE (age) 0,393 0,04$ (-) 0,267 0,687 0,302

Numbcr of miscarriages

-LR 0,907 0,429 0,984 0,383 0,4 19

-GEM (age, med-asthma, RA, num of child) 0,857 0,384 0,876 0,49$ 0,479

-GEE (age) 0,687 0,330 0,73$ 0,480 0,540

Number of offspring

-ER 0,349 0,954 0,544 0,722 0,941

-GLM (age, med-anti-inflam, med-hrt, RA) 0,1 19 0,047 (-) 0,456 0,727 0,553
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() Table XXXVI. Association between smoking habits and skewing: role of smoke as a plausible

environmental stimulus. Analyses incltided LR, GLM and GEE. Confounding variables are

provided in parentheses. P-values and direction of relationship (+ or -) are provided for DS scores

(a) and ASDS scores (b).

A) DS score

o

Ccli type — skewing Current Ix-smoker Pack-yrs

(dependant variable) smoker p-value p-value

p-value

BC

-LR 0,277 0,740 0,903

-GLM (asthma) 0,284 0,730 0,91$

-GEE (age) 0,375 0,27$ 0,920

-SOLAR 0,07 - 0,19

PMN

-LR 0,384 0,55 1 0,97$

-GLM (age, eos, hemo, asthma, RA, HRT, m-ast, SA) 0,167 0,600 0,941

-GEE (age) 0,077 0,972 0,581

-SOLAR 0,11 - 0,71

Monocytes

-LR 0,840 0,620 0,497

-GLM (age, eos, plat, hemo, RA) 0,534 0,702 0,7 14

-GEE (age) 0,569 0,92 1 0,949

-SOLAR 0,60 - 0,70

Tcefls

-LR 0,353 0,251 0,082

-GLM (eos) 0,346 0,233 0,15 1

-GEE (age) 0,297 0,022 (-) 0,089

-SOLAR 0,20 - 0,09

Bcells

-LR 0,314 0,082 0,264

-GLM (eos) 0,230 0,579 0,57 1

-GEE (age) 0,2 14 0,089 0,385

-SOLAR 0,04 - 0,07
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B) ASDS SCOre

Celi type — skewing Current smoker fx-smolœr Pack-yrs

(dependant variable) p-value p-value p-value

PMN

-LR 0,3 75 0,457 0,079 (+)

-GLM (age, SA) 0,067 (+) 0,204 0,012 (+)

-GEE (age) 0,061 0,7$7 0,009 (+)

-SOLAR 0,7$ - 0,59

Monocytes

-LR 0,325 0,202 0,168

-GLM (age, anemia) 0,074 (+) 0,0$ 1 (-) 0,069 (+)

-GEE (age) 0,083 0,569 0,032 (+)

-SOLAR 0,74 - 0,61

Tcefts

-LR 0,664 0,470 0,65$

-GLM (age, eosinophil) 0,26$ 0,342 0,999

-GEE (age) 0,59 1 0,581 0,720

-SOLAR 0,81 - 0,72

Bcells

-LR 0,553 0,565 0,766

-GLM (age, anemia) 0,1 $9 0,31 $ 0,491

-GEE (age) 0,319 0,343 0,3 $6

-SOLAR 0,52 - 0,72
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Table XXXVIL familial resemblance of XIRs; familial correlation and heritability estimates by

ANOVA and SOLAR statistical methods trait analysis included I) DS and ASDS scores (magnitude

of Xi skewing) and ii) PAmat and ASpA,, scores (magnitude aiid direction of skewing). a)

Deviation from random Xi (DS and PAmat scores). for the primary I BC )UR, although the

magnitude of skewing (DS score) was flot significant]y related among siblings, direction of skewmg

(PAmat score) was, implying an X-lmked genetic component. A significant h2 coefficient supports

the latter. Among hematopoietic lineages, both DS and PAmat scores were significantly related

within families (ANOVA resuits) and demonstrated significant heritability coefficients (SOLAR

resuits), consistent with an X-linked genetic component to derivation of blood )URs. T ceils

interestingly, demonstrated the strongest familial resemblance for PAmat scores, implying a strong

X-linked genetic component. b) AS Irait (ASDS and scores). With the exception of the PMN

ASDS score, ail hematopoietic lineages demonstrated significant resemblance of AS0 and ASpft

scores witbin families. This was compiemented by modest heritability coefficients, consistent with

an X-Jinked genetic component in derivation of AS scores. An extremely significant p-value for T

ceil scores and a strong heritabillty coefficient imply a strong X-linked genetic component

to derivation of T ceil AS.

n) Xi skewing trait: deviation from random Xi

BC PMN Monocytes T ceils B ceNs

p-value p-value p-value p-value p-value

DS
ANOVA: p-value 0,242 2,9x104 2,$x104 5,2x1OE5 1,3x1 W7

SOLAR: p-value (h2) 0,1$ (0,035) 0,005 (0,11) 4x104 (0,21) 4x104 (0,20) 3x1OE7 (0,24)

PAmat

ANOVA 3,3x1OE9 1,lxlW5 2,7x1OE5 1,6xlOE’2 7,3x104
SOLAR; p-value (h2) I x1OE (0,30) 1,1x105 (0,22) 5x1 W5 (0,20) lxi W7 (0,3 $5) 9,2x107 (0,20)

b) AS trait: deviation from the primary Xi pattern

PMN Monocytes T ceNs B cetls

p-value p-value p-value p-value

AS9
ANOVA: p-value 1,5x104 5,2x103 2,1x104 1,5x1OE5

SOLAR p-value (h2) 0,05$ (0,069) 1,2x1 W5(0,20) 5,6x1 W5 (0,17) lxi0 (0,30)

ASpA11t
ANOVA: p-value 8,2x104 7,8x104 3,lxlW” 3,lxlW5

SOLAR p-value (h2) 6,3x1 (0,23) 6x1 W5 (0,23) 1x1 W 0,36) 7x105 (0,20)



177

Table XXXVIII. Segregation analysis of skewed Xi pattems. a) skewed Xi paftern in BC tissue

(DS score 0,25), b) skewed Xi pattern in PMN (DS score 0,25), e) AS trait in PMN (ASDS score

0,25). families where at least one sibling demonstrating a skewed Xi pattem (X preferenhially

inactivated) and where parental derivation (Xp versus Xm) was known were included in the tables

below. ‘Family TD’ refers to family number; ‘Number skewed’ refers to the number of Xi skewed

sïblings per family, ‘X skewed (observed)’ refers to the number of siblings demonstrating a skewed

Xi pattera for a parental specific X (Xp versus Xm); ‘Direction of skewing (observed)’ refers to the

same values as in column ‘X skewed (observed)’, however only when n2 siblings demonstrated a

skewed Xi pattera were included. further, preferential inactivation of a parental-specific X was

redressed as ‘same’ (i.e., versus the index case, the number of siblings Xi skewed in favor of the

same parental X) and ‘different’ (i.e., versus the index case, the number of siblings Xi skewed in

favor of the altemate parental X); ‘Direction of skewing (expected)’ refers b the expected number

of sibllngs demonstrating a skewed Xi pattem in favor of the same parental X (same) versus

number of individuals expected to inactivate the altemate parental X (different) if skewed Xi

patterns were determined exclusively by stochastic processes.

a) slœwed Xi pattern in BC tissue (DS score 0,25)

family ID Number X skewed (observed) Direction ofskewing Direction ofskewing
skewed (observed) (expected)

Xm Xp Saine Different Same Different

2 ¼ 1 0
4 1/6 1 0
9 ¼ 1 0
10 1/7 0 1
14 2/5 1 1 1 1 1 1

15 21$ 2 0 2 0 1

17 1/6 1 0
26 1/10 1 0
27 1/5 0 1
29 ¼ 1 0
33 2/7 2 0 2 0 1 1

41 1/5 0
44 1/6 0
47 1/6 1 0
50 1/3 1 0
53 2/4 2 2 2 0 1 1

59 1/8 1 0
64 ¼ 0 1
6$ 2/9 2 0 2 0 1 1

71 2/9 1 1 1 1 1 1

73 ¼ 1 0
78 2/6 0 2 2 0 1 t

79 2/5 2 0 2 0 1 1

$0 115 1 0
$2 1/5 1 0
83 1/5 0 1
87 ¼ 1 0
91 ¼ 1 0
94 1/3 0 1
96 2/5 1 1 1 1 1 1
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98 1/3 1 1

O
99 215 2 0 2 0
100 2/3 0 2 2 0
102 ¼ 1 0
103 2/5 2 0 1 1
104 3/5 3 0 3 0 2
107 1/8 1 0
10$ ¼ 1 0
113 1/6 1 0
114 ¼ 1 0
115 1/1 1 0
120 2/4 2 0 2 0
121 5/8 5 0 5 0 3 2

122 1/6 0 1
123 3/6 0 3 3 0 2
124 ¼ 1 0
125 1/6 0 1
128 ¼ 1 0
131 ¼ 0 1
134 2/4 0 2 2 0
136 1/6 1 0
137 ¼ 0 1
141 1/5 0 1
142 ¼ 1 0
143 1/5 1 0
144 1/5 1 0
145 3/6 1 2 2 1 2

147 ¼ 0 1
14$ ¼ 0 1
149 1/7 1 0
152 2/5 1 1 1 1
153 2/6 2 0 2 0
154 ¼ 0 1
155 2/5 2 0 2 0
160 1/5 0 1
162 ¼ 0 1
16$ 2/3 0 2 2 0
169 1/5 0 1
170 1/6 0 1
172 217 0 2 2 0
174 1/8 0 1
175 1/5 1 0
176 1/7 0 1
17$ 1/6 1 0
185 ¼ 1 0
187 1/6 0 1
1$$ 1/5 1 0
1$9 1/5 1 0
191 3/7 0 3 3 0 2
194 1/7 0 1
201 1/ 0 J
204 1/11 1 0
205 1/6 1 0
207 2/6 1 1 1
213 11$ 1 0
215 1/6 1 0
216 ¼ 0 1
217 2/6 0 2

____

2 0
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21$ 115 1 0
220 1/9 1 0
222 3/9 2 1 2 1 2 1

91 126/492 74 52 54 $ 34 2$

b) Skewed Xi pattern in PMN (DS score 0,25)
Family ID Number X skewed (observed) Direction of skewing Direction ofskewing

skewed (observed) (expeded)

Xm Xp Same Different Saine Different

2
3
4
5
6
7
9
10
12
14
15
16
17
20
21
24
25
26
27
29
31
33
35
36
38
41
42
43
44
46
50
53
54
56
57
5$
59
61
62
63
M
65
66
67
68
69
70

2/4

4/6
2/4
2/4
2/3
¼
2/7
¼
4/5
3/8
1/3
1/6
¼
¼
¾
1/3
6/10
2/5
2/4
1/6
1/7
2/5
¾
I/I
2/5
3/5
3/6
5/6
1/5
2/3
¾
1/3
2/6
¼
4/5
4/8
11$
1/5
4/7
4/4
1/3
1/6
215
3/9
1/6
4/6

2
2
4
I

o
I

O
4
2
o
I
O
1
o
I
2

2
I
I
2
I
I
o
o
2
4
I
I
2
I
2
o
2
3
O

3
2
O
o
I
2
o
3

o
I
o
I
1
2
o
I
I
O
I
I
O
I
o
3
o
4
I
o
o
o
o
2
o
2
3
1
I
o
1
I
O
o
I
2
I
I
o
I

2
1
I
I
I
1

2
2
4
I
I
2

I

4
2

3

4
I
2

2
2

2
3
2
4

I
2

2

2
3

3
2

I
2

3

o
I
o
I
I
O

I

O
I

O

2
I
o

o
I

o
o
I
I

I
I

o

2
I

1
2

I
J

I

2
2
I

1

2
2

2

3
J
I

2

1
2
2
3

2

I

2
2

2
2

2

2

I
I
2
1
I
I

1

2
I

I

3
I
I

I
I

I
I
I
2

I
I

1

2
2

2
2

I
I

2
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71 419 4 1 4 - 0 2 2

Q
72 1/5 1 0
73 ¼ 1 0
74 ‘/ 0 1
76 2/4 2 0 2 0 1 1

77 ¼ 0 1
7$ 216 0 2 2 0 1 1

79 3/5 2 1 2 1 2 1

$0 215 2 0 2 0 1 1

$1 3/4 2 1 2 1 2 1

$2 4/5 3 1 3 1 2 2

$3 4/5 1 3 3 1 2 2

91 4/4 4 0 4 0 2 2

92 2/5 0 2 2 0 1 1

93 4/6 3 1 3 1 2 2

94 2/3 1 1 1 1 1 1

95 1/6 0 1
96 3/5 1 2 2 1 2 1

97 ¼ 1 0
98 213 1 1 1 1 1 1

99 1/5 1 0
100 2/3 0 2 2 0 1 1

101 2/4 1 1 1 1 1 1

102 ¼ 1 0
103 2/5 2 0 2 0 1 1

104 5/5 5 0 5 0 3 2

105 3/7 0 3 3 0 2 1

107 2/8 2 0 2 0 1 1

10$ 1/4 1 0
111 4/4 2 2 2 2 2 2

113 2/6 0 2 2 0 1 1

114 2/4 2 0 2 0 1 1

115 1/1 1 0
116 2/$ I I J I J

117 2/5 2 0 2 0 1 1

118 1/6 0 1
120 2/4 2 0 2 0 1 1

121 3/8 3 0 3 0 2 1

122 2/6 0 2 2 0 1 1

123 3/6 0 3 3 0 2 J

124 4/4 3 1 3 1 2 2

125 2/6 1 1 1 1 1 1

127 4/6 3 1 3 1 2 2

12$ 1/5 1 0
129 2/$ J I 1 1 1 1

131 2/4 1 0 2 0 1 1

133 2/4 1 1 1 1 1 1

136 116 1 0
137 2/4 2 1 1 1 1 1

13$ 2/6 0 2 2 0 1 1

140 2/5 2 0 2 0 1 J

141 1/5 1 0
142 2/2 2 0 2 0 1 1

143 2/5 2 0 2 0 1 1

144 1/5 1 0
145 5/6 1 4 4 J 3 2

147 2/4 1 1 1 1 1 1

14$ 2/4 1 1 1 1 1

______

1
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c) AS trait in PMN (A çscoreO,25)
Family ID Number X skewed (observed) Direction ofskewiig Direction ofskewing

skewed (observed) (expected)

Xm Xp Saine Different Saine Diffetent

2 1/1 0 1
3 ¾ 2 1 2 1 2 1

4 1/6 1 0
5 ¼ 0 1
6 2/4 1 1 1 1 1 1

10 1/7 0 1
12 ¼ 0 1
14 4/5 4 0 4 0 2 2

15 3/$ 0 3 3 0 2 1

16 1/3 0 1
17 1/6 1 0
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21 1/4 1 0

Q
25 1/3 0 1
26 4/10 1 3 3 1 2 2

29 1/4 1 0
31 2/6 1 1 1 1 1 1

35 2/5 2 0 2 0 1 1

42 2/5 0 2 2 0 1 1

43 1/6 1 0
44 2/6 2 0 2 0 1 1

46 ‘/ O I
47 1/6 1 0
50 1/3 0 1
53 1/ 0 1
5$ 4/5 2 2 2 2 2 2

59 31$ 2 1 2 1 2 1

63 2/7 1 1 1 1 1 1

M 2/4 1 1 1 1 1 1

66 1/6 0 1
67 2/5 1 1 1 1 1 1

68 2/9 1 1 1 1 1 1

71 2/9 2 0 2 0 1 1

72 2/5 2 0 2 0 1 1
74 Y4 0 1
75 1/5 0 1
76 1/4 1 0
80 1/3 1 0
81 2 1 2 1 2 1

$2 1/5 0 1
$3 3/5 1 2 2 1 2 1

91 ‘/4 1 0
93 2/6 1 1 1 1 1 1

94 1/3 0 1
95 1/6 0 1
96 1/5 0 1
97 ‘/4 1 0
9$ 213 1 1 1 1 1 1

101 ¼ 0 1
104 1/5 1 0
105 3/7 0 3 3 0 2 1

107 1/8 1 0
113 2/6 0 2 2 0 1 1

114 ¼ 1 0
115 3/3 0 3 3 0 2 1

116 2/8 0 2 2 0 1 1

117 2/5 2 0 2 0 1 1

118 1/6 0 1
120 y O i
121 2/8 0 2 2 0 1 1

123 2/6 2 0 2 0 1 1

124 2/4 1 1 1 1 1 1

127 2/6 1 1 1 1 1 1

129 2/$ 1 1 1 1 1 1

131 2/4 2 0 2 0 1 1

133 2/4 1 1 1 1 1 1

137 ¼ 1 0
138 1/6 0 1
140 2/5 2 0 2 0 1 1

141 1/5 0 1

_________ _________ _________

—
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143
144
145
147
149
150
152
155
15$
160
162
163
166
168
169
173
174
175
176
17$
1$’
185
186
187
lxx
195
200
201
202
204
205
207
209
213
214
215
216
217
220
222

2/4
2/5
1/5
3/6
¼
1/7
¾
2/5
1/5
1/3
3/5
1/4

1/5
3/5
2/3
4/5
4/9
5/8
3/5
4/7
3/6
2/7
¼
2/9
3/6
3/5
1/1
2/8
1/2

1/5
2/11
1/6
1/6
1/1
2/2
1/6
3/6
¼
2/6
1/9
3/9

1
2
1
O
1
o
o
1
o
I
2

I
3
2
o
3
5
o
2
3
o
o
I
I
O
o
o
I
O
2
o
1
I
2
o
I
o
2
I
1

I
O
o
3
o
I
3
I

O

o
o
o
O
4
I
O
3
2
o
2

2
3

2
o
I
o
1
o
o
o
1
2
I
O
o
2

2

3

3
1

2

3
2
4
3
5
3
2
3
2

I
2
3

2

2

2

2

2

2

O

O

o
1

o
o
o
I
O
o
2
o
o

I

O

o

O

o

I

o

I

2

2

2

2

2
2
3
2
2
2
I

2
2

1

2

2

I

I

1
I

I

I
I
2
2
2
I
2
1
I

I
I
1

I

I

I

I

I
110 200/571 99 101 119 29 $3 65

o
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Chapter V

CONCLUSION, PERSPECTIVES AND FUTURE DIRECTIONS
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5.7 Conclusion

b further elucidate the etiologies and characterization of Xi phenotypes in human females, a cohort

population of French Canadian females were recruited for study analysis. This was a monumental

work necessitating recruitment of 193 families (1144 females) from various regions of the province

of Québec Canada, the Iargest study of its kind. Because analysis of Xi phenotypes in human

females is confounded by two unrelated phenotypes: the primary Xi trait versus the secondary (or

acquired) Xi pattern of blood ceils. methodologies to effectively distinguisli and quantitate the two

were developed. Careful analysis of the literature suggested that Xi patteras of NHTs were

generally body-wide and relatively resistant to secondary factors of skewing (X-linked disease

alleles). Consequently, the Xi pattern of a NHT (i.e., BC tissue) was used to further characterize the

primary Xi trait and used as a control tissue te quantitate AS. Because a higher incidence of

skewing occurs in P3 versus NHTs, we speculated that the acquired from of skewing (i.e., AS)

represents deviation from the primary Xi trait. Thus methodologies were derived to further

characterize and quantitate the AS trait. In fact it was quantitated by measuring deviation from the

primary (BC) XIR. This is the first study to our knowledge utilizing such a measure ofthe AS trait.

Pnmary Xi trait

12,4% of females demonstrated a skewed Xi pattera in BC tissue, a low incidence of skewing

similar to that found in cord blood of neonates. Age- DS score analysis of BC tissue suggested that

the incidence of skewing was retatively stable between the ages 3 8-96 yo, implying a stable Xi trait.

Convincing support for a primary (body-wide) Xi pattera was derived by significant intraindividual

correlation of PAmat scores between BC tissue and hematopoietic lineages. Lack of complete

correlation however may be explained by the AS trait occurring in hematopoietic.

Genetic (X-linked) component to variability ofBC XIRs

Because the X-linked Xce locus in mice plays a role in derivation of the primary Xi paftern, we

speculated a similar mechanism may be occurring in humans. That PAmat scores of BC tissue was

signïficantly similar between siblings (h2=O.30) and that the X of same parental derivation (i.e., Xp

versus Xm) was preferentially inactivated among siblings is consistent with an X-linked genetic

component (possibly XCE-Iike) influencing the primary Xi pattern. If so we speculate genetic

linkage of skewed Xi patteras in 3C tissue to the XIC region. These findings provide clear and

rational support to map the trait(s) influencing variability of the primary Xi pattera. plausibly

identifying the long sought XCE locus and/or factors implicated in the choice step of Xi.
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Clinicalfindings associated with the BC XII?

The primaiy Xi pattern (BC DS score) was associated with an increased reporting of asthma I

COPD, suggesting a primary skewed Xi pattem may pose a risk factor for asthma / COPD

susceptibility. A possible mechanism may be upregulation ofX-linked asthma /COPD susceptibility

aileles as a consequence ofa prhiiary skewed pattem.

AS trait

Great undertakings were initiated to characterize the AS trait as a function of independent

hematopoietic lineages, the first such extensive study of its kind. Two sets of variables were used to

quantitate the AS trait of hematopoietic lineages: i) deviation from random Xi (DS and PAmat

scores) and ii) deviation from the primaly Xi pattem (ASDS and AS scores). Versus BC tissue, a

higher incidence of skewing was observed in hematopoietic lineages. And because DS score-age

analyses found the incidence of skewing of hematopoietic lineages to increase with age, the higher

incidence of skewing was attributed to the AS trait. Utilizing both sets of variables to measure AS, a

hig-ier incidence of skewing was observed in PMN, monocytes and B celis versus T lymphocytes.

The higher incidence of skewing in PMN versus T ceils vas previously reported and may reflect

longevity differences between short-iived myeloid versus long-iiveU T ceils andlor other etiologies.

Hematopoietic stem ceil origin ofAS

Supporting evidence for a HSC origin of AS was derived by strong intraindividual correlation of

PAmat and scores among PMN, monocytes and B celis.

Genetic (X-linked) component to variability ofAS values

Significant correlation ofPAmat and ASpAmat scores among siblings and significant concordance in

direction of AS (i.e., preferential inactivation of a parental-specific X) among siblings, with h2

coefficients ranging from 0,39 h2 0,20 is consistent with both genetic (plausibly X-linked) and

stochastic (possibiy environmental factors such as cigarette smoke) influencing the AS trait,

consistent with a multifactoriai trait. Evidence of a genetic factor provides clear and rationai support

to map the AS gene(s). X-linked candidate genes possibly include any gene that can influence fISC

kinetics: growth factors, transcription factors, intracellular transduction molecules, chemokines and

related receptors. Aitematively, the entire X chromosome may be scanned for genetic linkage.

Hematologic associations ofthe AS trait

Although AS vas flot associated with variability of total WBC count, AS was associated with

variability of particular lineages. i) Increasing DS scores in hematopoietic lineages were associated
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with increasing hemoglobin concentration, suggesting AS may reflect selection ofX-linked allele(s)

coding for iow hemogiobin expression, a candidate gene could be FIG-A. ii) increasing DS and

ASDS scores were associated with decreasing eosinophul counts, suggesting a gene coding for

variability in eosinophii numbers is X-f inked and that the AS trait may reflect seiection ofX-Iinked

alleles coding for iow eosinophif numbers. Since eosinophils are implicated in ail-cause mortality,

the finding suggests AS may be associated with increased Iongevity.

Clinical associations ofAS

AS (DS and AS5 scores) was associated with a decreased reporting of RA, suggesting that the X

chromosome may code for a RA susceptibi]ity allele (consistent with publisbed data). The fmding

may suggest that the AS trait reflects selection ofX-linked RA protective alleIe(s).

Because the AS trait was associated with a decreased reporting of miscarriage occurrence, in

addition to decreased eosinophil count and decreased reporting of RA, a role for AS in decreased

autoimmune activity (or reduced disease susceptibility) is insinuated. Genetic identification of the

btood skewingfAS gene(s) may provide elucidation of genetic determinant(s) for these disorders,

possibly identifying immune-modulating gene(s). Whether a single gene of pleiotropic activity

andlor whether genetic heterogeneity is responsible for the various clinical features of AS merits

investigation. If severai genes are implicated, sub-phenotypes of skewed Xi patterns based on

clinical features vill assist in the genetic linkage studies, since individuals with a more common

phenotype are more likely to share a common genetic predisposition. 1f limited to a single gene

however, the finding is consistent with one of immune-modulation, thus affecting several

hematopoietic and immunological functions. An X-linked transcription factor controiling the

expression of various immunelhematopoietic related genes (which need flot be X-linked) is

plausible. The mechanism however by which this X-linked aileie(s) is favored as a function of

aging remains elusive. Consistent with the X-linked aliele competitive growth model of AS, one

possibility may be that the X-Jinked protective disease allele(s) confers an intrinsic growth

advantage to FISC. Altemativety, extrinsic factors such as cigarette smoke andlor the BM

microenvironment may dictate survival kineties of HSCs expressing particular X-Jinked ailele(s).

Other extrinsic factors which may be considered for further investigation include: bioactive

compounds (hormones, growth factors and cytokines), infectious agents, vaccines, diet, medicinal

products, pollutants and lifestyle factors (stress, psychological temperament and physical activity).

A final possibility may be that, in part, AS reflects survival of females bearing X-linked disease

protective allele(s).
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5.2 Perspectives and Future Directions

Aside from the various ‘additional works merited I warranted’ mentioned in the Resuits section,

additionai analyses sbould include the followinu.

Since the DS score of BCs sllghtly decreased with advancing age, analysis of younger females may

provide ftirther insi%ht as to whether a sinnificant decrease occurs with advancinOE ane. For a more

powerful analysis, XIR-age analysis may be anatyzed as a cross-sectional study of various age

groups.

Because cigarette smoke may be an environmental factor in the etiology of AS, in vitro studies to

identifv the bioIoicatly active constituent(s) and/or the hioloicat metabotite(s) altered in response

to cigarette smoke is warranted. However, as cigarette smoke contains over 3800 chemicals, many

bioIoicatty active (Vineis and Caporaso. 1995). identifvin% the active compound(s) appears

overwhe1minlv tedious.

Segregation analysis of the HUMARA Iocus among familles where the mother demonstrated a

skewed Xi paftern (DS score 0.25) in the PMN fraction (n=1 6) found that the preferetitiallv

inactive X was preferentially transmitted to daughters more often than expected by chance. That is,

ofthe 94 female offsprin ofthese mothers. 59 received the HUMARA allele ofthe preferentiallv

inactive X versus 35 the preferentially active X (59 of 94 meioses, pO,O13). This finding implies a

transmission-ratio distortion (TRD) ofthe maternai Xs. A similar findin was observed amonn male

offspring of skewed mothers (Naumova et aI., 1995). Possible mechanisms include meiotic drive

(biased se%renation duriwz rneiosis), ametic selection (differential success of 2amates achievin

fertilization) and postzygotic survïval selection based on particular genotypes, with the latter

seeminlv plavinu an important role (Zollner S et aL 2004). Reardiess of the rnechanism. our

finding suggests that the two maternai Xs in oocytes of skewed mothers are flot equal. One X (the

one that is preferentiallv inactive in maternai tissue) dernonstrates better survival kinetics when

paired with the paternally derived X versus the X that is preferentiafly active in maternai tissues.

This fïndinu insinuates that a ene(s) retated to fertilitv tesides on the X chromosome, consistent

with pubiished data (Lanasa and Hogge, 2000), (Di Pasquale E et al., 2004). Paradoxically, it

appears that while the X-[inked fertilily allele provides a relative survival advantage to develooing

embryos, it provides a relative growth disadvantage to adult HSCs. Nonetheless, it implicates the

AS ene in both embrvo survival kinetics and HSC rowth kinetics.
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Since blood skewing I AS may be associated with altered expression of immune related gene(s)

(E (cytokines, growth factors, associated receptors and transcription factors), expression analysis of

these factors in skewed versus non-skewed, by enzyme-linked immunoabsorbant assay, may

provide pivotai evidence.

In die event that power to detect linkage is insufficient, and providing additional familles are

available, an efficient mthod to recruit additional families is to analyze a single sibhing per family.

1f skewed (XIR score 0,25), the rest of the family could be recruited. On die other hand, if a

random XIR is found, die family could be dropped ftom enroilment. This is based on our findings

that familial aggregation is consistent with a genetic contribution. Although a biased approach, it is

efficient for genetic Iinkage analyses.

To hetp determine whether RA is a cause, a consequence or mutually exclusive with the AS trait, a

prospective study is merited. Ideally, a case (skewed) — control (non-skewed) group of females

(matched for age) without RA could be monitored for disease onset as a function of aging.

However, that die prevalence of both traits increase concurrently with advancing age, analysis may

prove inconctusive.

Because the FIIJMARA locus is reportedly associated with vanous diseases / conditions, and that

allele sizes have been determined for 90,8% of our study participants, the relationship between

allele size and self-reported diseases could be investigated. Moreover, and assuming i) that the

HIJMARA locus is a candidate gene for die skewinglAS trait and ii) that different alleles of the

CAGE polymorphism in exon I represent a gradient of alleles - each conferring a relative but

different growth advantage to HSC (akin to the relation between HUMARA allele length and

androgen receptor actwity in prostate cancer) - we hypothesize that the magnitude of skewing (DS

and ASDS scores) may be associated with HUMARA allele Iengths. For example, XIRs could be

analyzed as a function ofthe difference (allele I — allele 2) in HUMARA allele sizes.

That the incidence of the AS trait reported in our Québec population was similar to that observed in

European populations (35-56%) (Gale et al., 1997), (Tonon et al., 199$), (Christensen et al., 2000)

suggests a commonly found trait, ruling ont founder effects to explain die high ftequency of skewed

Xi pallems. Mternatively, die wide geographic range of AS argues in favor of a heterozygote

advantage. Nonetheless, as vanous regions of die province of Québec demonstrate characteristics of

a founder population, particularly the region of Saguenay, Lac-St-Jean, the incidence of skewed Xi

could be analyzed as a function of region, allowing potential detection ofa founder effoet.
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The heterozygote advantage mode! may be invoked to account for the high frequency of skewed Xi

(E by several models. i) Assumirig a genetic basis to variability of the AS trait, one method is to

analyze reproductive fitness measures among carriers of the trait allele versus non-carriers. In fact,

for the pnmary Xi pattem, no increased reproductive fitness was associated with the BC Xi paffem,

thus no link can be made with the primary Xi trait. Altematively, increasing ASDS scores were

associated with reduced reporting of miscarriage occurrence. However, since the AS trait is late

onset, thus unlikely to re&ct the Xi pafferu at time of parturition, and assuming that time of

miscarriage occurrence is the same between females with a low versus a high ASDS score, the

finding implies that women whom have iucurred a miscarriage are less Iikely to undergo AS. Since

the AS trait may reduce female susceptibility to RA and is associated with reduced eosinophil

count, invokes a link between AS and reduced autoimmune complications. As such, although

elderly females tbemselves may flot be reproductively active, that they are relatively heaithier may

imply beffer caring of thefr chiidren / grandchildren. Consequently, and speculatively, befter

conditions promotmg active reproductive choices for their chiidren. Consequently, AS susceptibility

alIele(s) are selectively passed on to future generations. further data corroborating this model can

be invoked by analyzing other measures of improved reproductive fitness and measures of

improved health in females demonstrating the AS trait versus non-AS females. ii) A further method

to support the heterozygote advantage mode! is to identi1y factors associated with the AS

susceptibility alIele(s) which increases the carrier’s probability of attaining age of reproductive

capability. Consistent with a role of the immune system, such factors could include increased

resistance to childhood diseases. iii) Genetic data to corroborate the heterozygote advantage mode!

includes 1) estimation of allele age, 2) number of trait-associated alleles and 3) inferred geographic

origin ofalleles (Risch N et al., 2003).

Because an association between )URs and diseases with a putative X-linked genetic component was

observed (i.e., RA, astiuna, miscarriages), investigation of other disease/syndromes with an X

linked genetic component is warranted. further, assuming diseases demonstrating a female

preponderance have an X-Iinked genetic component, the investigation of female preponderant

diseases (osteoporosis and Alzheimer’s disease (Gao et al., 199$) for example) as a function of

skewing is justifled. These studies may provide further elucidation in the role of skewed Xi in

femate health.

M a genetic (X-linked) component to variance of )URs was presented, segregation analysis may be

used to evaluate whether a major gene contributes to variability ofthe phenotype.
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Abstract

Nom-andom X-mactivation occurs m a significant proportion of normal females. This phenomenon is

thought to be caused by the small number of celis present at time of X-inactivation, most of which

stochastically inactivate the same X-chromosome. However, it is also possible that nonrandom X

inactivation is genetically determined as in the mouse Xce model. In this model, alleles of different

strengths have an influence, in cis, on which X chromosome is to be inactivated. To test for heritability of

nonrandom X-inactivation in humans, we examined X-inactivation ratios at the human androgen receptor

(HUMARA) Iocus in 142 heterozygous female neonate-mother pairs for concordance of nonrandom X

inactivation. Neonates were categonzed into two groups: those exhibiting random X-inactivation (1.0

ratio < 3.0) or those with nonrandom X-inactivation (ratio? 3.0). The incidence ofskewing in the mothers

ofnon-skewed neonates was 20.8% (26/125), while the incidence was 58.8% (10/17) in mothers ofskewed

neonates (p = 00018). Cornordance for nonrandom X-iiiactivation between neonates and their respective

mothers indicates that primary nonrandom X-inactivation is a heritabte trait in hemans, possibly determined

genetically. This implies that the estimation of the primordial hematopoietic stem oeil pool size cannot be

made accurately ifbased exclusively on the stochastic mode] ofnonrandom X-inactivation. No evidence for a

rare XIST mutation predisposing tu skewing was detected Further studies are required to determine whether

genetic ffictors are implicated in pnmary nonrandom X-inachvation.

(J Key words: X chromosome ïnactïvation, nonrandom X inactivation, HUMARA, Xce, XIST PGK

Introduction

X-chromosome inactivation allows gene dosage compensation between XX females and XY males.’

Malysis of X chromosome deletions and X-autosome transiocations have suggested X-inactivation to be

dependent oit a cis residing segment, termed the X-iiiactivation center (Xic),2’3 regionalized to Xq I 3•4

Brown et al identified a gene, localized to the same interval as Xic, that was expressed exclusively from the

inactive X (Xi).4’5 The gene was termed XJ$T for X-inactivation specific transcript. The human XIST gene

dors flot appear to encode a protein, but may fimction as a structural RNA.6 Penny et al have recently

provided clear evidence for the involvement ofXist in X-inactivation: X chromosomes bearing a knockout

Xist gene ml to undergo cis inactivation while the norma] X chromosome would undergo X-inactivation.7

In the developing normal embryo, both X-chromosomes of the new]y fertilized egg are in the active state.8

The flrst occurrence ofXIST expression was found at the 4-ceit stage and is limited to the trophoectoderm of

the developing blastocyst and is imprinted with exclusive expression of the unmethylated patemal allele9’1°

This is followed by preferential paternal X-inactivation in extraembryonic tissues. A genome wide

demethylation mechanism thought to occur between the $ oeil and the blastocyst stage is believed

responsibte for erasure of the parental imprints,10” I resultiiig in random XIST expression of the inner oeil
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mass, hence random X-inactivation as seen at the gastrula stage. Once X-inactivation lias occurred, it is

stably inherited through successive ceil divisions.12 Random X-mactivation resuits in females being

mosaics for X-iinked aileles, with a baianced expression between maternai (Xm) and patemal (Xp)

afleles.’3 Any significant deviation from the theoreticai 1:1 ratio between the Xp/Xm is termed nonrandom

X-inactivation (synonymous for excessive Lyonization or skewing).

Clonai disorders such as leukemias (reviewed in 14), carrier states for a deleterious mutation on the X

chromosome such as in the Wiskott-Aldrich syndrome (reviewed in 15) and possiNy stem ceÎÎ depletion,1 6

1g cause skewed pafterns of X-inactivation. Furthermore, close to 25% of normal females exhibit

nonrandom X-inactivation paftems in blood-derived cefls.’921 These females are presuined to be

excessively Lyonized and exhibit no evidence for one of the causes of skewing above stated. The exact

etiology of primary nonrandom X-inactivation in normal females is flot kno. The most accepted

hypothesis is based on a pure stochastic model of X-inactivation, where inactivation occurs when the

primordial ccii pool is composed of as few as I O-20 celis.1 9,22 Accordingly, the variance ofthe distribution

of X-inactivation pallems in females wiil follow a binomial distribution with a significant proportion

carrying unbalanced X-chromosome inactivation pattems. In contrast to the situation in humans, a genetic

model for nonrandom X-inactivation lias been well documented in mice.23 The X chromosome controiiing

element (Xce) can bias the choice ofwhich X is to be inactivated during embryogenesis, thereby interfering

with the randomness of X-inactivation. Xce lias three weIi characterized alleles classified in a gradient of

strength: XceC > XceÏE > Xce”,24 whereby heterozygotes manifest nonrandom X-inactivation. Xce maps to

or within the vicinity of the Xic region,25 and lias been showr both biochemically24 and cytological]y26 to

cause primary nonrandom X-inactivation rather than secondary seiection of celis. furthermore, the effects

ofdifferent Xce alleles can modi1j the imprinted preferential inactivation ofXp in extraembryonic tissues.27

Recently, Xce and Xist were found to be separable genetic ioci.28

As in the mense model, demonstration of hentability of nonrandom X-inactivation in humans may provide

evidence for a genetic basis of skewing. Mthough the fàmilial ctustering of skewed X inactivation has been

previously reported (Orstavik, Pegoraro, P]enge, Naumova), thus imp)ying a genetic (X-]inked) genetic basis

to skewing, selection against X-linked mutant alleles is stiil a plausible mechanism, thus warranting ffirther

investigation. Nonctheless, the lack of highly informative X-inacflvation assays lias preciuded such

investigations in the past. The identification of a highly polymorphic CAG short tandem repeat in the first

exon ofthe X-linked human androgen receptor gene (FIUMARA) coupled with differential methylaflon sites

allowing the distinction between the active (Xa) and inactive X (Xi) chromosome has provided a powerfiul

means of analyzing X-inactivation patterns in more thaii 90% of females.29 The HUMARA assay bas been

validated in numerous studies,30’3’ ,32 and lias aliowed us to search for evidence of heritability of primary

nonrandom X-inactivation by analyzing the relationship between the degree ofnonrandom X-inactivation in

mother-daughter (neonate) pairs. Neonate-mother pairs were chosen because we have recently documented
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that the incidence ofnomandom X-inactivation increases with age in blood celis of normal females.33 The

incidence in female neonates was 8.6%, increasing to 16.4% in females close to 30 years old, and to 37.9%

in females aged 60 years and over. As neonates have flot been submitted to environmental exposure to the

same extent as older females, they represent a group where a genetic influence on primaiy nonrandom X

inactivation might be casier to detect.

Matenals and Methods

Normalfemale population.

Peripheral blood from 177 female neonate-mother pairs (total of 354 female individuals) was screened for

heterozygosity at the HUMARA locus under the auspices of institutional approval for analysis of anonymous

discarded blood samples. Only samples where both the mother and daughter were heterozygous for the

NUMARA Iocus were included in this study. The mother group was compnsed ofhealthy females comiiig

to the obstetric department for delivery. The neonatal group was comprised of at term heatthy singleton

babies. for this group, cord blood was selected instead of peripheral blood. Each of these lèmales were

hematologically healthy, had a normal CBC and WBC differential, including normal red cdl indices.

DNA extraction.

Peripheral blood was processed for DNA extraction as follows: 3-5 ml of peripheral blood was lysed with

Triton X-100 (Sigma, St.-Louis) lysis solution (0.32 M Sucrose; lOmM Tris pH 7.5; 5 mM MgCl; 1%

Triton X-100), digested with proteinase K in SDS buffer (Proteinase K 2 mglml, 5% SDS) at 37°C for 24

hours. Then DNA was extracted with phenol, phenol/chloroform and chloroform, precipitated with 2

volumes ofabsolute ethanol and 1/10 volume of 3 M sodium acetate, and resuspended in Tris-EDTA (TE)

buffer.

HUM4RA ctonality assay.

The HUMARA assay was carried out as previously described29 with minor modifications. Briefly, genomic

DNA was pre-cut by mixing sample DNA (IOOng-1 ig in 2 j.tl) with Hpa 11 (1 t1, high concentration, 40

U/t1), Rsa 1(0.5 pI, high concentration, 40 U/pl), L buffer (2 pI, Boehringer Mannheim) and H20 (14.5 pI).

M auto-control was prepared in the same way except that Hpa II was omifted from the mix. PCR

amp1cation ofthe HUM4RA locus: 2p1 of digested DNA were added to 23 jtI of a PCR mix containing

buflèr, dNTPs (200 tiM each); 12.5 pmol each primer: HUMARA 1 (5’-

GCTGTGAAGGTTGCTGTTCCTCAT-3’), and HUMARA II: (5’-TCCAGAATCTGTTCCAGAGCGTGC-

3’) ; DMSO (1.0 tl, Sigma); D-32P end Iabeled HUMARJ1. J primer (1.25 pmol), Taq polymerase (0.5 units,

Perkin Elmer-Cetus); H20 to final volume of 23 p1. Samples were amplified on a programmable thermal

cycler (MJ Research, hic.); initial DNA denaturation at 94°C for 3 min., then 2$ cycles starting with 94°C
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for 45 sec, 60°C for 30 sec and 72°C for 30 sec. Amplified PCR products (8-10 t1) were electrophoresed on

a 4% acrylamide-urea-formamide denaturing gel at 60 watts for approximately 3 hours.

Quantitation ofatteles.

The allele ratio was defined as the ratio between the two X-linked alleles in a given sample. The corrected

ratio (CR) was defined as the allele ratio of the pre-cut sample divided by the ailele ratio of the non-precut

sample ofthe same specimen. The CR compensates for potentiaÎ preferential amplification ofone ofthe two

alleles. Gels were exposed to high performance autoradiography film overnight at -80°C. Developed film

was scanned on a LKB Bromma Ultroscan XL laser densitometer (Pharmacia AB, Bromma, Sweden) and

the ratios between the two X-linked alleles were measured using Gel Scan XL software (Pharmacia LKB

Biotechnology AB, Bromma, Sweden).

Phosphoglycerate kinase (PGK)-PCR clonality assay (PPCA)

This technique was performed as described previously.34

Hha I restriction digest.

The restriction assay was carried out as previously described (Plenge) with minor modifications. Briefly, PB

DNA (30 ng) were added to 23 rI ofa PCR mix containing buffer; dNTPs (200 jiM each); 12.5 pmol ofeach

C primer: G7R (5’-GAAGTTGTGACTCCTGGTCT-3’) and GIOR (5’-GAGAGATCTTCAGTCAGGAAG-3’);

DMSO (4%), Taq DNA polymerase (0.5 units, BM); H20 to final volume of 23 rl. Samples were amplified

on a programmable thermal cycler (MJ Research, hic.); initial DNA denaturation at 94°C for 3 min., then

35 cycles starting with 94°C for 45 sec, 55°C for 30 sec and 72°C for 30 sec. Amplified PCR products (10

111) were electrophoresed on a 3% etidium bromide-stained agarose gel.

Criteriafor nonrandom X-inactivation

Criteria for nonrandom X-inactivation is arbitrary. However, to allow comparison with previous literature

we chose CR 3:1 which corresponds to greater than 75% expression ofone allele. This ratio was widely

accepted in the literature.’9’20’33’35’36

Statisticat anatysis.

Overali comparison ofthe two neonate categories (CR <3.0, CR 3.0), with respect to allele ratios in the

mother population, was performed via chi-square analysis or fisher exact test when appropriate.

Resuits

Incidence ofnonrandom X-inactivation.
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DNA samples of 142 of the 177 (80.2%) mother-neonates pairs were both heterozygous at the HUMARA

locus. The allelic ratio between the two X-linked alleles at the HUMARA iocus were detennined for cadi

individual. Tic overail incidence ofskewing (CR 3:!) in the maternai population was 25.4% (36/142).

These frmales were aged from 16 to 40 years old with a mean at 27.2 yo. The incidence of skewrng was

12.0% (17/142) in the neonate population. This increased incidence of skewhig with age was statistically

significant (p0.003$, L= 8.37).

Concordance in nonrandom X-inactivation between neonates and their mothers.

Allelic ratios for the neonate population were scored into two categories: skewed (n17) or non-skewed

(n=125). For the 17 skewed neoiates, 10 (58.8%) had mothers that were also skcwed. In contrast, ofthe

125 non-skewed neonates, only 26 (20.8%) had mothers that were skewed (fig 1). Statisticaliy, the

incidence of skewing in the mothers of skewed neonates was significantly different from that of non-skewed

neonates (p=0.00 1$, fisher’s exact test, 2-tau), figure 2 shows some examples cf skewed mother-daughter

pairs. Tic mean age of mothers of skewed neonates was 26.53 years old, which was not significantly

different from mothers ofnon-skewed neonates: 26.99 years old.

Parental origin ofthe inactive X chromosome in skewed neonates.

0f the 17 neonates found skewed (CR LI 3:1) by J-IU!vIARA analysis, $ had the patemal X skewed

(preferentialiy inactive), arid 9 had the maternai X skewed (data flot shown).

Concordance ofactivation states in skewed mother-neonate pairs

Analysis cf the activation status cf the transmitted X chromosome from parent to daughter is limited to the

analysis of maternai X’s. Ten of 17 skewed neonates had skewed mothers, thereby aliowing this aiialysis.

In 7 pairs the activation state was retained: the transmifted X was inactive in the mother and inactive in the

daughter (fig 2A), or the transmitted X was active and remained active in the daughter (fig 28). The

activity state was discordant in 3 pairs: the inactive X was transmitted but became preferentialiy active in

the daughter (fig 2C), or the active X was transmifted and became preferenfially inactive in the daughter

(fig 2D).

PGK-PCR clonality analysis.

0f the 17 neonates skewed by FIUMARA analysis, 7 were informative (heterozygous) for PGK anaiysis. Ail

7 were also skewed by PGK analysis (data not shown). Similariy, of tic 36 mothers skewed by 1-IUMARA

analysis, 15 were informative and skewed at the PGK iocus. The 7 non-skewed mothers of skewed neonates

were also tested, 3 were PGK informative and exhibited a random X-inactivation paftem. Lastly, 26 non

skewed daughters of skewed mothers were tested. Seven were PGK informative: 6 exhibited random X

inactivation pallems whiie one had a skewed paftern of X inactivation. Therefore, 31 of 32 (96.9%) had

concordant resuits at both bd.
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Xist minimalpromoter mutation.

A C-to-G mutation at position 43 in the minimal promoter ofthe Xist gene creates a novel flha I restriction

enzyme site. M internai Hha I site serves as an internai control. 0f the 17 mother-neonate pairs analyzed,

none exhibited the Xist promoter mutation (data not shown).

Discussion

In this study we have documented, for the first time, a highly significant correlation between the degree of

nonrandom X-inactivation in female neonates and their mothers. We found that a neonate with nonrandom

X-inactivation lias a 59% chance of having a mother exhibiting the same phenomenon. Only 20% of

neonates with random X-inactivation had a mother with a skewed pattem of inactivation. It bas been

possible to document convincingly the hentability ofnonrandom X-inactivation on account ofthe HUMARA

assay’s highly informative polymorphism. More than $0% ofmother-neonate pairs were heterozygous, thus

evaluable for concordance. In comparison, the analysis of other loci, sucli as PGK, would have aliowed the

analysis of only 10 % of mother-daughter pairs, which may have lead to an acertainement bias.

Furthermore, the skewing documented in the neonate population may correspond to primary nonrandom X

inactivation since their blood celis have flot been subjected to selective pressure or enviromnental factors to

the same extent as in older femaies. The presence ofphenocopies, as documented by the increase ofskewing

with age, would have obscured the heritability ofthe trait if older subjects were analyzed.

The aggregation ofskewing in mother-daughter pairs suggests that nonrandom X-inactivation is a heritable

trait in humans. IfX-inactivation was purely stochastic and nonrandom X-inactivation was a rare statistical

event where most colis have inactivated the same X only by chance, no concordance between the mother and

daughter would have been expected. However, heritabiÏity of skewing, as for any case of fiimiliality, could

be caused by shared environment or by genetic fiictors, either autosomal, mitochondrial or X-linked.. The

analysis of this observation is difficuit since nom-andom X-inactivation may be caused by several different

mechanisms occurring at different times in the development of the embryo (Table 1). Several of these

mechanisms may be heritaNe.

The possibility that heritability of skewing in humans is causcd by a cis-acting element that biases the choice

of the X to be inactivated has to be thoughtftuiiy considered. The evolutionary conservation of severaÏ

mechanisms and sequences responsible for X-inactivation in eutherians reinforces the possibility that the

mouse Xce may have an human equivaient. In fàct, the data obtained in the mother-daughter pairs does not

exciude an XCE model in humans. Strong XCE alleles can be transmifted by either parent and concordance

of activation state between a skewed mother and daughter is expected if the XCE locus is genetically iinked

to the HUMARA locus. The discordance of activation state in 3 ofthe 10 pairs could be due to the efforts of

recombination (genetic distance) between the HUMARA locus and a putative XCE iocus, or alternatively, to

the efforts of the paternal XCE allele, whose “strength” cannot be assessed relative to the maternai allele.

Another possibility is that these three discordant mothers are phenocopies, i.e. manifest skewing for other
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reasons. and that the father is transmitting flue strong XCE allele. Is there further evidence for an XCE

model in hurnans? The only supporting evidence would corne from a unique family reported by Namnova,37

where an inhented pattern of nonrandom X-inactivation was observed in a healtiuy fanuly. Seven daughters

wcre skewcd with the patemal X being the prefercnfially active one. if the XCE model is operational in this

familv. the phenotype may be caused by an exceptionally strong allele that can completely bias the choice of

the X to be inactivated. However. [lue occurrence of such strong alleles is probably veiy rare: we have

analyzed 69 familîes composed of 387 individuals and found no such pattera of transmission (Mio R and

Busque L, unpublished). One possible limitation in the analysis of skewing in multigenerational families is

[lie increased incidence of skewing with age. This phenomenon is particularly signilicant aller the age of

60. Sïnce the cause(s) of acquired skcwing are flot known. several of these skcwed females may represent

phenocopies and obscure the evidence for specific genetic transmission of the skewing trait. This acquired

skewing phenomenon was evidcnt in [lie rnothcr-daughters pairs since the incidence of nonrandom X

inactivation was 12% in the neonates and 25.4% in the mothers (pO.OO3$). However, the mother’s age had

no effect on the incidence of skewing in [lue neonates since the mean age of mothers of skewed neonates was

the sarne as mothers ofnon-skewed neonates.

Mutations in the Xist promoter have also been implicatcd as a heritable cause of skewing. However. the

mutation was not detectabie in our 17 mother-skewed neonate pairs. furthermore, In [lue study by Plenge et

al., of 1166 independent X chromosomes analyzcd, only one was found to harbor the mutation, Titis

suggests it is a rare mutation and does not explain [lie majorfty of skewed individuals in the population.

Camer state for mutant X-hnked alictes is also associated with heritable skewing of the X chromosome,

siiuce celis witl; the active X carrving the deleterious gene are selected against. However, if the ;nother is

transmitting thc mutant allele. it is expccted fluai the maternai allele will be inactive in tue daughter. Thus

ail daugh[ers of skewed females will have [lie patemal X in the active state. This uvas not the case for 4 of

the 10 daughters of skewed mothers. Furthennore, the mutant allele model would imply that at least 12% of

flue normal female population carry deletenous genes on the X chromosome. There is no evidence for such a

higlt incïdence of X-linked diseases in the normal population.

Another theoretical rnechanism possibly associated with heritabilitv of skewing is the presence of a trans

acting factor [bat may influence the choice of the X to be inactivated. This factor could be X-linked.

autosomal. or even mitochondrial. The analysis of the mode of transmission has shown that a potential

skewing gene may be transrnitted by either parent. Titis would be Iess compatible wi[h mitochondrial

iniieritance but would favor autosomai or X-tinkcd inhentance. However. [hem is no definite documentation

ofa trans-acting factor [hat regulates X-inactivation. Mthough we have mainly considered genetîc factors so

far, several otlier rncchanisms may be tieritable. Even a pure stochastic model of X-inactivation may show

heritabilitv if the number of celis present at the time of X-inactivation varies in families. For exampie, if X

inactivation occurs when flue number of embrvoblasts is consistently lower in certain families. [bis will lead
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to an increased incidence of nonrandom X-inactivation in these farnilies. even in the absence of influence on

die choice of the X to be inactivated.

The documentation of hcritabïhlv. ii-respective of its cause. may force recvaluatïon of certain assertions made

in the past. For example, the incidence of nonrandom X-inactivation in normal females has been used to

evaluate [lie number of embiyological celis contributing to die hcmatopoïetic stem ceti pool, assuming a pure

stochastical model of X-inacfivation. The number of contnbuting celis estimated by this rnethod is relatively

low: 5y$19,22,4144 However, if other causes ofskewing such as a gendic predïsposïtion. as suggested hi

heritabilily of the trait. accounts for a significant proportion of skewed females. the estimation of the

primordial pool size has been underestimated.

The documentation of heritabititv of nonrandom X-inactivation justifies [lie efforts of mapping and

identifying die skewing gene(s). This wiII gain insight in the mechanism of X-inactivation and die

interactions between genetic factors and nonrandom X-inactivation. However, due to n multipiicity of causes

giving rise to skewed patterns of X-ïnacfivation, mapping of die skewing gene(s) may be a difficuit task.

Mapping strategies should focus on identifving n population with low phenocopies. The better

understanding of primarv nonrandom X-inactivation will help characterize the etiology of acquired skewing

documented in aging normal females. Titis may lead to a better understanding of [lie biology of

hematopoiesis with age.
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Footnotes

1. AbhreWations used in this paper: CR. corrected ratio: HUMARA. hurnan androgen-receptor gene; PGK.

phosphoglycerate kinase: Xa, active X chromosome: Xi. inactive X chromosome: Xm. maternai X

chromosome; Xp, patemal X chromosome: XCE. X chromosome controlling etement: MC. X-inactivation

center: )UST, X-inactivation spedilic transcript.
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Figure 1. Concordance of skewing in mother-daughter pairs. Neonates were categorized according to the

allelic ratios obtained at the HUMARA locus: skewed (ratio 3.0) or non-skewed (ratio < 3.0). The

incidence of skewing in respective mothers was 58.8 % (10/17) for skewed neonates and 20.8% (10/17) for

non-skewed neonates (p=O.00l$).
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Figure 2. Representative resuits of the HUTvIARA clonality assay in mother-daughter pair analysis. 0f

seventeen skewed neonates, ten had mothers that were also skewed - four pairs are shown above (samples A-

D). For the remaining seven neonates, mothers exhibited random X inactivation paftems (data flot shown).

Lane I (-) contains the auto-control, lane 2 (+) the ffpatI digested sample. Samples A and B, the status of

the matemally derived X is retained in the daughter. Samples C and D, the activation state ofthe maternally

derived X is flot retained in the daughter. Resuits are expressed as corrected ratios (C.R.). Ratios greater

than or equal to 3 represent nonrandom X-inactivation pattern. M, mother; D, daughter (neonate).

Sample A B C D

Re1aton M D M D M D M D
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SKEWED Xi AND LYMPHOCYTE CLONAHTY
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SKEWED Xi AN]) LYMPHOCYTE CLONALITY

C .Smce the frequency of clonai populations of lymphocytes increases with age (Posneft et al., 1994),

we set ont to determine whether lymphocyte clonality was contributing to the AS trait. In particular,

the clonai status of T and B lymphocytes (as determined by TCR-y and IgH gene rearrangements)

was analyzed as a function of the Xi phenotype (skewed versus non-skewed). For T lymphocyte

cionaiity, T-ceil receptor gene rearrangements at the (TCR)-y chain iocus were analyzed (Short et

al., 1996). for B lymphocyte clonality, rearrangements of immunogiobulin heavy chain (1gB) genes

were analyzed (Achulie et aI., 1995). Methods: For TCR-y and IgH gene rearrangements, DNA ftom

23 Xi-skewed (6Oyo) and 25 non-skewed (6Oyo) femaies were investigated (Xi skewing status

was determined by HUMARA analysis ofPMN celis). The criterion to delineate a clonai population

was the visuai assessment of a single or two predominant amplification products (bands). Resuits:

TCR-y gene rearrangement anatysis. As shown in Figure Annex 2-1 a) and b) (page xx), versus

the positive controls (Figure Annex 2-1 c) (page xx), clonai populations of T lymphocytes were

equaliy observed in both Xi-skewed and non-skewed females, suggesting T lymphocyte clonality

does not contribute to skewed Xi pattems. IgH gene rearrangement analysis. As shown in Figure

Annex 2-2 a) and b) (page xxi), die majority of females do not support clonai populations of B

lymphocytes. Further, the ftequency of B lymphocyte clonality was equally distributed among Xi

skewed and non-skewed femaies, suggesting B lymphocyte clonality does flot contribute to skewed

Xi patterns. Conclusions: lymphocyte clonality (determined gene rearrangements) does not appear

to contribute to a skewed Xi pattern when PMN celis are analyzed. Nonetheiess, as the criterion for

skewed Xi was based on PMN analysis, a more insighffui study may be to analyze lymphocyte

cionaiity in femaies whom demonstrate a skewed Xi pattera in lymphocytes.
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Figure Annex 2-1. T lymphocyte clonality assessed by TCR-y gaie rearrangements.

a) skewed females (60 yo) (n=23)

‘j

b) non-skewed females (60 yo) (n=25)

e

P1?_#I41iI1e:
e

c) positive controls (Iymphoma) (nz2)

1
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figure Annex 2-2. B lymphocyte clonality assessed by immunoglobulin heavy chain gene

rearrangements.

a) skewed females (60 yo) (n23)

e

c) positive controls (B celi Iymphoma) (n2)

e.

b) non-skewed females (60 yo) (n25)
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EVIDENCE 0f A HSC ORIGIN 0F SKEWING IN HUMANS
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Hematopoietic stem ccii ongin of skewing in humans

To determine the celi origin of Xi skewïng in hematopoietic lineages, the )UR of progenitor ceils

was compared to that of more differentiated ceil types. Methods: With informed consent, PB

samples of eligible female BM donors were evaluated for Xi status. Based on a skewed Xi pattern,

three healthy female volunteers were selected for analyses. A small aliquot of BM aspirate was

dedicated for study analysis. Pure populations of committed progenitor celis (CD34+ 3$+), less

commifted progenitor celis (CD34+ 38-), and differentiated ce!! populations: T ceils (CD3+), NK

ceils (CD56+), B celis (CD2O+) and monocytes (CDI4+) were obtained by florescent activated celi

sorting (FACS). The Xi pattem was determined by the ITUMARA clonality assay. Resulis and

Conclusion: based on visual examination, )URs of individual lineages within each individual were

highly concordant, consistent with derivation from a common progenitor, evidence in favor of a

HSC origin of AS. However, since only blood ceils were analyzed, a limitation to the study was

whether Xi skewing was primary or secondary/acqufred in origin.
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Annex 4

Q PILOT STUDY: EVIDENCE FOR TWO Xi TRAITS IN ELDERLY HUMÀN

FEMALES
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EVIDENCE FOR TWO Xi TRAITS IN ELDERLY HUMAN FEMALES

b derive preliminary evidence in favor of two Xi traits in human females, the incidence of skewed

Xi and concordance for a skewed Xi pattera among various tissues was analyzed. Methods: A

small cohort of elderly females entering the arnbulatory center for complete blood counts were

accrued for study enroliment. To obtain females demonstrating the AS trait. elderly females (based

on visual appearance) were primarily setected. With written mfonned consent (page xxviii), two

biological samples were obtained from volunteering females (n=52): P3 and buccal ceils (BC). P3

was separated into polymorphonuclear (PMN) and mononuclear (MLL) layers by cellular

fractionation (see Chapter 2.5 and 2.6 for biological and cellular fractionation procedures). DNA

was isolated and the Xi pattern determined by the HUMARA clonality assay (Chapter 2.9 for

methods). Seven subjects were removed from analyses due to non-informativeness (homozygosity

for the F{UMARA locus), 2 additional samples were excluded due to poor PCR resuits, rendering a

total of 43 informative females. Mean age of participants was 50,7 yo. Resuils and Conclusions:

34.9% of females had a skewed Xi pattern in PMN ceils and 20,9% in BC samples (see Table

Annex 4, page xxvii) for individual subject resuits). This difference was significantly different

(pO,O5). The higher incidence of Xi-skewing in PMN is consistent with the AS trait. A skewed Xi

pattern in BC was highly concordant with a skewed Xi pattera in leukocytes (7/9 or 78%),

consistent with the properties of the prirnary Xi trait. In contrast, Xi-skewing in blood (n=15) was

Iess ftequently concordant with skewing in BC (7/15 or 47%) (see Figtire Annex 4 (page xxvi) for

sample resuits), stiggesting that the AS trait is unrelated to the primary Xi trait.
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figure Annex 4. Intraindividual concordance of Xi patterns. a) Random Xi in both PMN and BC,

illustrative of a primary Xi pattern. b) Skewed Xi pattern in both PMN and BC, consistent with the

properties of a skewed primaly Xi pattern. c) Skewed Xi pattern in PMN but random Xi in BC,

consistent with the properties ofthe AS trait.

a) Concordant for random X inactivation

PMN BC

+ - +

q-
(R) (R)

b) Concordant for skewed X inactivation: body-wide skewing

PMN BC

- + - +

w.

(S) (S)

e) Discordant for X inactivation paftems: AS

PMN BC

- + - +

t

(S) (R)

Abbreviations: -. mock digest; + Hpa II digest; R. random X inactivation;
S. skewed X inactivation.
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Table Annex 4. Xi pattems in polymorphonuclear ceils (PMN) versus buccal ceils.

Identifier code X inactivation phenotype Age
PMN Buccal cells

591 R R 62
592 R R 2$
594 R R 49
597 R R 52
59$ R R 49
600 R R 4$
602 R R 67
607 R R 39
610 R R 46
612 R R 50
614 R R 31
616 R R 77
61$ R R 22
619 R R 36
620 R R 24
62$ R R 4$
629 R R 41
647 R R 34
651 R R 56
653 R R 55
655 R R 7$
659 R R 5$
663 R R 79
67$ R R 72
680 R R $5

2650A R R 31
587 S R 79
595 S R 46
599 S R 51
609 5 R 59
627 S R 44
656 5 R 63
719 5 R 20

$0$A S R 39
601 R S 43
624 R S 45
58$ S S 79
605 5 S 65
60$ S S 46
611 S 5 49
617 S S 47
621 S S 59
625 S S 27

Abbreviations: PMN, polymorphonuclear cells, R, random X inactivation, S skewed X inactivation
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Etude sur te skewing des cellules ématopOiétiqUeS.

Un consentement éclairé a été obtenu pour chacune des patientes entoilées dans

l’étude selon les directives du comité d’étique de l’hôpital MaisoflfleUVeR0Sem0nt Ces

consentements sont conservés dans les filières du Dr. DeniS Claude Roy.

Les patients ayant eu un frottis buccal ont une copie de leur leur consentement dans

cette fihère.
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Pavillon Malsunneuve 5415, boul. dc l’Assomption. Montré,,). Qc HIT 2M4 Tél. :(514) 252-3400 peste 3329.Tél&opieur: 1514)252-5430
Pavillon Rosemont 5689. boul. Rosensont, Monuéai. Qu HIT 2H1 Tél. ;(514) 252-3400 poste 4959, Tékcopictw; (514) 252-3821
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O fORMULAIRE DE CONSENTEMENT

Dons de sang de sujets normaux

• Nous sommes à la recherche d’échantillons de sang provenant de sujets
normatix pour étudier les cellules sanguines. De cette façon, nous croyons
pouvoir améliorer notre compréhension sur les leucémies et lyrephomes.
Seulement des prises de sang sont nécessaires.

• Les leucémies et les tymphomes Sont des cancers impliquant des cellules du
sang. Nous avons développé des.thôdes-d’analyse-zenaçants 1sque
nous croyons impliqués dans le développement de ces cancers. Cependant, noor
ignorons si la présence de ces gènes est directement reliée à la maladie ou:s’i!
s’agit, parfois, d’une observation de laboratoire sana con.équcnce. Pour. éclaircir
ce point, nous voulons déterminer si ces gènes sont présents chez les individus
normaux, et ce en fonction de leur âge. En somme, nos recberches -visent à
mieux comprendre ces maladies, leur apparition et leur développement

• En participant à ces études, vous contribuerez à l’avancement des connaissances
sur les maladies sanguines telles que les leucémies et les lymphomes.

POUR ÊTRE ADMISSIBLE, IL FAUT:

N’avoir aucune maladie du sang

Q Ne pas avoir ou avoir eu un cancer.

EFFET SECONDAIRE

Les effets secondaires sont ceux reliés à la prise de sang. II y aura de la
douleur au moment de la prise de sang à cause de la piqûre. Rarement, il
peut y avoir une ecchymose (bleu) au site de la ponction, plus rarement
encore, il peut y avoir un hématome ou une infection au site de ponction.

TYPES D’ANALYSES

Nous utiliserons les cellules du sang, leur ADN et dérivés afin:

De caractériser des molécules associées à certains cancers (bel-2, bcr-abl,
ras, c-fins, p53, etc.).

D’étudier la structure et le comportement des chromosomes (polymorphisme,
inactivation du chromosome X, mutation, etc.). -



(J • D’isoler et étudier des cellules actives du sang face à certains cancers
(lymphocytes, cellules NK, etc.).

Bien qu’il n’y aura pas de commercialisation directe ou indirecte des spécimens ou
des données génétiques, il est possible que les connaissances acquises lors de ces
études puissent éventuellement donner lieu à des applications diagnostiques ou
thérapeutiques lesquelles pourraient être commercialisées.

CONFIDENTIALITÉ

Toutes les mesures seront prises pour que les résultats soient gardés
confidentiels. Si ces données étaient publiées, l’anonymat seia conseriL
Cependant, vous pourrez être informés des résultats d’analyses. De plus, si vous
acceptez, il nous sera possible de communiquer avec vous afin d’effectuer des
analyses sanguines supplémentaires.

Voici votre choix de type de participation (cocher une case seulement):

D J’accepte de donner un échantillon de mon sang pour cette étude. De
plus, j’accepte d’être éventuellement contacté et pourrai être informé des..
résultats par lettre confidentielle.

D J’accepte de donner de façon confidentielle un échantillon de mon sang,
mais je ne veux pas être contacté et ne serai pas informé des résultats de
mes analyses.

D Je refuse de participer à cette recherche

Signature du sujet NOM (Caractères d’imprimerie)(No. téléphone) DATE

Signature du témoin NOM (Caractères dimprÏmerie) DATE

Pour de plus amples informations, vous pouvez contacter les docteurs Dems
Claude Roy ou Lambert Busque responsables de ces études, Département
d’Hématologie-Immunologie, Hôpital Maisonneuve-Rosemont, au 252-3495.
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Annex 5

FORMULAIRE DE CONSENTEMENT
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Hôpital Maisonneuve-Rosemont Mresse PoStale: 5415, boul. de l’Assomplion

Centre affilié à l’Université de Montréal Montréal (Québec) HiT 2M4

L FORMULAIRE DE CONSENTEMENT
Projet:

IDENTIFICATION D’UN GÈNE CONTRÔLANT LA PRODUCTION DES CELLULES
SANGUINES, SITUÉ SUR LE CHROMOSOME X.

INTRoDuCTION:

Le laboratoire d’hématologie moléculaire du centre de recherche de l’Hôpital Maisonneuve
Rosemont se spécialise dans l’étude des maladies du sang (leucémies, lymphomes) et les
greffes de moelles osseuses à l’aide d’analyses basées sur l’inactivation du chromosome X
chez les femmes.

Nous avons récemment découvert que près de 40% des femmes normales âgées de plus de
60 ans ont une variation de la normale qui fait que un des deux chromosome X est
préférentiellement inactivé au niveau des cellules de la moelle osseuse fhématopoïèse
clonale, skewing). Le projet de recherche vise à mieux comprendre ce phénomène et
potentiellement à identifier un gène important pour la production des cellules du sang situé
sur le chromosome X.

Ce projet nous permettra de mieux comprendre le vieillissement de la moelle osseuse et
possiblement les causes des cancers de la moelle osseuse. De plus, il est possible que nous
identifions un ou des gènes importants pour la production des cellules sanguines, ce qui
pourrait un jour favoriser le développement de nouveaux médicaments.

REcRUTEMENT DE FAMILLES (4 soeurs ou plus, dont l’une âgée de 60 ans ou plus).

Afin de poursuivre nos recherches, nous devons recruter des familles n’ayant pas de
maladies du sang. Nous avons besoin de familles où il y a up minimum de 4 soeurs, et dont
au moins une des soeurs est âgée de 60 ans ou plus.

POURQUOI SOMMES-NOUS INTÉRESSÉS PAR LES FEMMES?

Nous utilisons un test basé sur la présence de 2 chromosomes X, c’est pourquoi seulement
les femmes peuvent participer à notre étude.

POURQUOI RECRUTER DES FAMILLES?

Car il est plus facile de suivre la transmission des gènes dans une famille afin d’identifier un
ou des gène (s) responsablefs) de l’anomalie des cellules du sang.

COMMENT PARTICIPER À L’ÉTUDE?

• Être en bonne santé et ne pas avoir de maladie du sang;
• Ne pas avoir de cancer actif;
• Avoir 3 soeurs ou plus, dont l’une est âgée de 60 ans ou plus;
• Demander vous-même à vos soeurs si elles veulent participer à l’étude;
• Consentir à une prise de sang;
• Consentir à un frottis buccal (se faire gratter doucement l’intérieur de la joue avec une

petite brosse);

Pavillon Maisonneuve Pavillon Rosemont Pavillon Rachel4bungny PaviHon pédiatnque Centre d’accueil

5415. bout, de l’Assomption 5689. boul. Rosemont 5305. boul. de l’Assomption Thérèse’de1fturratde Judith-Jasmin

Montréal HIT 2M4 Montréat HiT 2H1 Montréal HiT 2M4 6900, 42e Avenue 8850. rue B,saillon

Tél. (514) 252-3400 Tél. (514) 252-3400 Tél.: (514) 252-3400 Montréal HiT 2t2 Montréat H1K 4N2

Tél.: (514) 374-7940 Té!. (514) 354-5990
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Une infirmière clinicienne prendra rendez-vous avec vous. Elle fera le prélèvement à votre
domicile au moment où vous serez disponible. Ce n’est pas un problème si vos soeurs
n’habitent pas la même région que vous, notre infirmière se déplacera pour faire les
prélèvements.

RISQUES

Les seuls risques sont ceux d’une prise de sang. Il y aura de la douleur au moment de la
prise de sang à cause de la piqûre. Rarement, il peut y avoir une ecchymose (bleu) au site
de la ponction, plus rarement encore, il peut y avoir un hématome ou une infection au site de
ponction.

TYPES D’ANALYSES:

Nous utiliserons les cellules du sang, leur ADN (acide déoxyribonudéique) et dérivés afin:

• De trouver la cause de l’anomalie de clonalité (skewing) des cellules sanguines chez les
personnes de plus de 60 ans en étudiant la stwcture et le comportement des
chromosomes (înactivatïon du chromosome X, polymorphisme, mutation, etc.).

• De faire des analyses connexes permettant de mieux comprendre les maladies du sang.

CoNsERvATIoN DES ÉcHANTILLONS ET DES DONNÉES SCIENTIFIQUES

Les spécimens et les données seront détruits après 50 ans ou plus tôt selon les directives du
sujet. La conservation de l’ADN est sujette aux cas fortuits et à la force majeure.

C0NFJDENTIALrrÈ:

Toutes les mesures seront prises pour que les résultats demeurent confidentiels et soient
gardés au laboratoire de recherche.

Les résultats de cette étude seront éventuellement publiés dans une revue spécialisée de
médecine. Toutefois, il n’y aura aucune mention de l’identité des sujets analysés
(confidentialité). De plus vous avez le droit de vous retirer de l’étude en tout temps en
communicant avec le responsable de l’étude, le Docteur Lambert Busque MD FRCPC au
service d’hématologie de l’Hôpital Maisonneuve-Rosemont (252-3400 poste 3741).

Je comprends que je ne recevrai pas d’information médicale provenant de ce projet de
recherche.

u J’accepte d’être recontactée si le projet requiert d’autres spécimens, pour répondre
aux questions d’ordre médical ou encore pour de nouvelles études.
Je comprends qu’il est de ma responsabilité d’informer le responsable de l’étude de
tout changement d’adresse.

fl Je refuse d’être recontactée si le projet requiert d’autres spécimens, pour répondre
aux questions d’ordre médical ou encore pour de nouvelles études.
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C

Commercialisation

Il n’y aura pas de commercialisation directe ou indirecte des spécimens ou des données
génétiques. Ceux-ci demeureront la propriété de l’Hôpital Maisonneuve-Rosemont.
Toutefois, il est possible que les connaissances acquises lors de ces études donnent lieu
éventuellement à des applications diagnostiques ou thérapeutiques lesquelles pourraient être
commercialisées. Il n’y aura aucune retombée économique pour les participants à l’étude.

Une compagnie, dont le Docteur Lambert Busque est actionnaire minoritaire, détiendra toute
propriété intellectuelle éventuelle qui pourrait résulter du présent projet.

ÉVALUATION ÈTHIQUE

Le Comité d’éthique de la recherche de l’Hôpital Maisonneuve-Rosemont a approuvé le
présent projet.

L Ayant été informée et ayant eu l’occasion de poser mes questions, j’accepte de
donner un échantillon de sang pour l’étude de l’inactivation du chromosome X et pour
des analyses connexes permettant de mieux comprendre l’inactivation du
chromosome X.

L Je refuse de participer à cette recherche

Signature du chercheur

Pour de plus amples informations, vous pouvez contacter le Dr Lambert Busque MD FRCPC
responsable de l’étude au service d’hématologie, Hôpital Maisonneuve-Rosemont ((514) 252-
3400 poste 3741) ou Linda Lizoffe au (514) 252-3400 poste 4685 (ou au 1-800-726-3403).
Advenant un problème avec le déroulement de celle étude vous pouvez joindre une
personne indépendante de l’équipe de recherche. La représentante du comité d’éthique est
le Dr. Yvette Bonny (514-252-3400).

Signature du sujet Date

Nom (caractères d’imprimerie)

Adresse

(no téléphone)

Signature du témoin Nom (caractères d’imprimerie) Date
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Annex 6

O QUESTIONNAIRE MÉDICAL
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Q
OUEST ION N AIRE

1. DATE DE NAISSANCE:____________________

2. VOTRE MÈRE EST-ELLE VIVANTE? Q OUI Q NON

3. VOTRE PÈRE EST-IL VIVANT? D OUI Q NON

4. COMBIEN DE SOEURS AVEZ-VOUS?_________

5. COMBIEN DE FRÈRES AVEZ-VOUS?

_________

6. COMBIEN DE FILLES AVEZ-VOUS?

__________

7. COMBIEN DE FILS AVEZ-VOUS?

8. AVEZ-VOUS FAIT DES FAUSSES COUCHES? Q OUI Q NON

COMBIEN?

__________

9. FAITES-VOUS DE LANÉMIE? Q OUI Q NON

O 7O.AVEZ-VOUS DÉJÀ EU UN CANCER? O OUI D NON

11.PRENEZ-VOUS DES HORMONES? Q OUI Q NON

12. ÊTES-VOUS FUMEUSE? Q OUI Q NON
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C
Famille:

___________________________________

lnUMUu:

_____________________________________

Paroisse mariage des grands-parents paternels:

Paroisse mariage des grands-parents maternels:_______________________________

Cause de décs:
Pète

_______________

Frète

_______________

FïIs

________________

Mère_______________ Soeur

_______________

Fille_______________

Cancer

Quand:

____________

Type:

Traitement: radiothérapie E]

______________________________________

Chimiothérapie D

______________________________________

Si fumeuse (au moment de la prise de sang)

Nb d’année

____________

Nb de paquet par jour (au moment de la prise de sang)

Si non-fumeuse:

A déjà fumée? OulE] NonE]

Si oui Combien de temps?

Combien de paquetjour

Arrêt depuis quand?

Fumée secondaire: Oui D Non D
Si oui

Combien de temps?

Arrêt depuis quand?

____________

Personne fume combien de paquet par jour en sa présence?____________

Souffrez-vous de maladies tel que:

Asthme: Q
Lupus: Q
Arthrite rhumatoïde : D (Attention gonflement des articulations et non

arthrose)



xxxviii

Liste de tous les médicaments et produits naturels pris au moment de la prise de sang
(vitamines, aspirine, pression etc.)

Hormonothérapie:

Commentaire:


