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Résumé

Les plastides et mitochondries sont dérivées d’endosymbionts

prokaryotiques. Au cours de l’évolution, une grande partie de leurs génomes

a été transférée au noyau. Ce dernier contrôle donc le protéome des

organelles de la cellule. Cela permet la coordination des activités

métaboliques et facilite l’adaptation de la plante aux conditions changeantes

de l’environnement. La signalisation inverse, des organelles au noyau, est

peu caractérisée. Des signaux chloroplastiques, tels que les précurseurs de

la chlorophylle et certains intermédiaires oxido-réducteurs affectent les

activités du noyau par des mécanismes inconnus. Nous présentons ici le

clonage du gène codant pour p24, un nouvel activateur transcriptionel des

gènes de défense dans le noyau. Il est donc surprenant que p24 se retrouve

aussi dans les chloroplastes de la plupart des cellules, où il lie l’ADN de façon

séquence-spécifique et affecte l’expression d’un gène impliqué dans la

photosynthèse. p24 affecte également le transport linéaire et cyclique

d’électrons lors de la photosynthèse. De plus, l’expression du gène nucléaire

Fedi est contrôlée par l’effet de p24 sur la photosynthèse. Nous concluons

que p24 produit un signal photosynthétique qui se traduit par des

changements d’expression de gènes nucléaires.

La localisation nucléaire de p24 semble être contrôlée par un

programme développemental induit par l’hormone cytokinine. Les cytokinines,

tout comme les stress biotiques et abiotiques, induisent l’assimilation des

sucres solubles par les tissus « puits ». Cela est en accord avec l’observation

de p24 dans le noyau de cellules de racines, qui doivent obtenir leurs sucres

de tissus photosynthétiques qui agissent comme « sources ». Le mécanisme

pour la double localisation de p24 n’est pas clair, mais pourrait dépendre

d’extension des chloroplastes, les stromules. Nous démontrons ici que ces

stromules sont associés avec le réticulum endoplasmique.

En conclusion, la double localisation de p24 permet la coordination

des activités de défense des différents compartiments de la cellule, et aussi

entre tissus sources et tissus puits. p24 joue probablement un rôle important

dans l’orchestration de la réponse de défense à travers toute la plante.

Mots clés : pomme de terre, Phytophthora infestans, plastides, stromules,

double localisation, PR-1 Oa, source, puit, cytokinine, photosynthèse
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Summary

Plastids and mitochondria have evolved from prokaryotic

endosymbionts. They have in the process surrendered a large portion of their

genomes to the nucleus, which then exerts control over the protein

complement in plastids and mitochondria. This is required for the celi to

coordinate its biochemical and physiological activities and to adapt to

constantly changing conditions. The reverse signalling, from organelles to the

nucleus, is not as clearly understood. In plants, chloroplasts signal the

nucleus via their redox state and chlorophyll precursors, through unknown

mechanisms. Here, we report on the cloning of the gene coding for p24, a

novel plant transcriptional activator of defence genes in the nucleus.

Strikingly, p24 is most often present in the chloroplast where it binds DNA in a

sequence-specific manner and drives stress-dependent photosynthetic gene

expression. p24 also affects linear and cyclic photosynthetic electron f low

(PEF). In addition, the expression of the nuclear gene FeUl, known to be

controlled by PEF, s also affected by altered p24 levels in transgenic plants.

We conclude that chloroplast p24 induces a photosynthetic signal that affects

nuclear gene expression.

lnterestingly, a developmental program induced by the plant hormone

cytokinin causes p24 nuclear localization in cultured leat cells. Cytokinins, as

well as biotic and abiotic stress, are known to induce sink activity. This is

consistent with the observation of nuclear p24 in the roots, which must

receive sugars from photosynthetic source tissues. The mechanism for p24

dual localization is not clear, but may involve translocation through plastid

extensions known as stromules, which are shown here to associate with the

endoplasmic reticulum.

We speculate that dual-localization of p24 allows for tight coordination

of gene expression in plastids and the nucleus, and also between sink and

source tissues. p24 is likely an important player in orchestrating the whole

plant adaptation to stress.

Key words: potato, Phytophthora infestans, plastids, stromules, dual

localization, PR-lOa, source, sink, cytokinin, photosynthesis
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Preface

The topic of this thesis was, initially, the transcriptional activation of the

defence response. With new advances in this fieid however, it has become

obvious that the plant response to pathogens is intimately linked to ail other

plant functions, including growth and deveiopment. This is illustrated by many

of the experimental results presented here.

The format cf this thesis has therefore been adjusted to retlect the breadth

and diversity of topics covered. As such, a short general introduction

precedes three chapters that each present a detailed introduction to the

topic(s) addressed, methods, results and discussion. A final discussion

chapter attempts to Iink the three topics and to put them in the wider

perspective cf plant biology as a whole.

The results presented in Chapter Il (the cloning of the p24 gene) have been

published in Plant CelI (2000) 12:1477-1489. A second publication on the

results presented in Chapter III is currently in preparation.



Chapter I

introduction

The Plant Defence Response

Plants are sessile organisms and, as such, they must have elaborate

adaptation mechanisms to respond to an ever changing environment trom

which they cannot escape. These mechanisms are closely interrelated with

systems to evade or resist pathogen and herbivore attack.

Plants defend themselves using both pre-formed and inducible

mechanisms. The constitutively synthesized toxins produced by a few

species, the wax layer covering some leaves, as well as the celi wall

surrounding plant cells serve as effective barriers for a large number of

potential invaders. Some pathogens do breach these barriers however and, in

response, plants activate both general (non-host) and host-specific resistance

mechanisms. While, in animais, these two responses are separate and

correspond to innate and adaptive immunity respectively, plants do not have

adaptive defence responses. As a consequence, there is considerable

overlap between host and non-host resistance effectors in plant cells [1].

Non-Host resistance
Non-host resistance can be passive, such as the deposition ot callose

at the site of pathogen entry, but is most often induced. lnduced non-host

resistance in plants is similar to animal innate immunity, which activates

pathogen resistance when the host recognizes general pathogen-associated

molecular patterns (PAMPs) [1]. The latter are unique to pathogens and are

indispensable for pathogenicity [2]. Surface-derived structural molecules from

plant pathogens, such as fungal celI wall components (chitin, glucan, protein

and glycoprotein), bacterial lipopolysaccharide (LPS) and flagellin, induce

defence responses in a wide range of plant species [3-5]. Another example is

NPP1 (necrosis-inducing Phytophthora protein 1), a Phytophthora celi wall

protein, that is a member of a protein family that is widespread among

oomycetes, fungi and bacteria, and has elicitor activity in dicots [6]. Because

of their characteristics and their wide host range, pathogen elicitors are

therefore conceptually similar to PAMPs [1].



Plant cell wall degradation products, such as oligogalacturonides,

resulting from pathogen activity also act as strong elicitors [7]. In addition, the

pathogen enzymes themselves are often recognized by the plant. A recent

example is the surface transglutaminase GP42 from Phytophthora spp.

oomycetes. Pepl3, a 13 amino acid peptide that acts as a strong elicitor in

plants ot the Solanaceae family (such as potato and tomato), lies in the active

site of GP42 [8]. Interestingly, Pepl3 s recognized by potato, yet this plant is

highly susceptible to Phytophthora infestans [8]. The tact that Pepl3

recognition s not sufficient for resistance therefore calls into question the

biological relevance of elicitor detection in plant defence. It could be however

that pathogens have the ability to suppress basic non-host resistance.

Host-specific resistance
In contrast, host-specific resistance results from the recognition of a

single gene product from the pathogen (avirulence gene, Avr) by a single

resistance gene f rom the plant (R gene). This “gene-for-gene” theory stems

f rom the pioneering experiments of Flor [9] on the flax-rust interaction and

states that the presence ot a gene in one population depends on the

presence of a corresponding gene in another population. The interaction of

these two genes produces a single phenotype (disease resistance, known as

an incompatible reaction) [10]. The absence of either gene in the plant

pathogen pair causes disease (known as a compatible reaction). Therefore,

there appears to be a constant evolutionarily battle between plants and their

pathogens. In nature however, disease is rare and, when it occurs, it rarely

kiils the plant [11]. In fact, it has been hypothesized that the gene-for-gene

type of interaction allows the Iong-term survival of both the plant and the

pathogen species [12]. Still, the tact that pathogens maintain Avr genes in

their genome is puzzling. In practice however, most Avr genes are actually

virulence factors in the absence of the corresponding plant R gene, and there

s mounting evidence that these virulence determinants are able to suppress

the plant defence response [1]. For example, the pathogen Pseudomonas

syringae pv. Tomato DC3000 uses a type III secretion system to inject

virulence effectors in plant cells. These proteins induce a form of programmed

celI death (PCD, known as the hypersensitive response, HR) in resistant

plants. (t was shown that mutants for 6 proteins (HopPtoE, AvrPphEPto,

AvrPpiBlPto, AvrPtoB, HopPtoF and HopPtoG) elicited a stronger HR,
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suggesting that these proteins are inhibitors of celI death [13, 14]. In fact,

these bacterial effectors were also found to inhibit the ability of the pro

apoptotic protein Bax to induce PCD in plants and yeast [14]. The Delta CEL

mutation in P. syringae and the dspNE mutation in Erwinia amylovora are

aiso known to be impaired in virulence on their Arabidopsis and apple host

plants respectively. More specifically, these mutations elicit increased ceil

wall-based defences and are flot able to cause normal disease necrosis in

plants [15]. lnterestingly, these mutant phenotypes are dependent on the

presence ot the signalling molecule salicylic acid (SA) in the plant and, in P.

syringae, the hopPtoM and AvrE proteins were specificaily found to be

responsible for the suppression of SA-mediated defences [15]. SA is an

important mediator of the plant defence response, and the ability to suppress

SA-induced defences represents a signiticant advantage for pathogens. The

widespread conservation of pathogen effectors and the large number of these

effectors involved in suppressing the plant defence response suggests that

this is an important strategy for infection of host plants.

R genes
To counter these virulence genes, plants have evolved R genes that

recognize and neutralize the activity of their corresponding Avrgene. R genes

belong mostly to two structural classes: the nucleotide-binding site — leucine

rich repeat (NBS-LRR) class, and the receptor LRR-kinases [reviewed in 16].

While LRR-kinases have been also associated with normal plant development

and hormone perception [17, 18], NBS-LRR proteins have so far only been

linked to plant immunity [16]. In the model plant Arabidopsis thaliana, there

are 149 NBS-LRR genes [19]. NBS-LRR proteins have distinct N-terminal

domains. These can be either a coiled-coil (CC) domain, or a domain sharing

homology with the Drosophila TOLL and mammalian IL-1 receptors (TIR).

This suggests certain similarities between plant defence and animal innate

immunity. In support for this hypothesis, the NBS domain shares some

homology with that of animal pro-apoptotic proteins such as APAF-1 [20, 21].

0f ail these domains, however, mutational analysis indicates that the

LRR domain confers recognition specificity to the R-genes [reviewed in 22].

Given the gene-for-gene hypothesis, it appears logical that the R proteins act

as receptors and that they interact directly with pathogen avirulence proteins.

It has indeed been found that AvrPi-ta from the rice blast pathogen
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Magnaporthe grisea can bind directly to the LRR domain n the rice R protein

Pi-ta [23]. This is the exception rather than the rule however and, in most

plant-pathogen interaction, no interaction can be observed between the

corresponding R and Avr gene products [1]. Alternative hypotheses are

therefore needed to explain the role of R gene products in plant disease

resistance.

The guard hypothesis
It has recently been proposed that R gene products sense the ettect of

the Avr proteins rather than the proteins themselves [reviewed in 24]. As

such, R proteins would act as “guards” for the plant targets of the pathogen

Avr factors and would detect any interference with the host protein functions.

Strong support for the guard hypothesis cornes from the observation

that the Arabidopsis RPS5 NBS-LRR protein requires another host protein,

the kinase PBS1, to function [25]. lnterestingly, the pathogen protein AvrPphB

is a self-cleaving cysteine protease [26] that can also cleave PBS1 [27]. The

kinase activity and cleavage of PBS1 are both required for RPS5 activation

and signalling [27]. This suggests that RPS5 can “sense” the effect of

AvrPphB in the cell. lt would be interesting to determine the role of PBS1

proteolysis in virulence, in the absence of the RPS5 resistance gene.

The discovery of the RIN4 protein f rom Arabidopsis has also supported

the guard hypothesis. RIN4 forms a complex with the resistance proteins

RPM1 [28] and RPS2 [29, 30]. RPM1 confers resistance to P. syringae

harbouring the AvrB and AvrRpml genes [31], while RPS2 recognizes

AvrRpt2 [32, 33]. lnterestingly, AvrB and AvrRpml cause the phosphorylation

of RIN4 and activation of RPM1 [22]. On the other hand, AvrRpt2 causes the

degradation of RIN4 [29, 30]. This interferes with the function of RPM1, but

activates RPS2. According to the guard hypothesis, RIN4 would therefore be

the target of bacterial virulence proteins and is the “guardee” of both RPS2

and RPM1 though, once again, a role for RIN4 in virulence has yet to be

demonstrated.

Two recent studies have shown that RIN4 is not the only target of

AvrRpml and AvrRpt2 because these effectors are able to promote virulence

independently ot RIN4 [34, 35]. Thus, RIN4 may be important for disease

resistance (bacterial avirulence), but not for bacterial virulence. This highlights
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the tact that there s still much to do to decipher the role of resistance protein

complexes in virulence and avirulence.

Downstream responses
Despite the varied nature of plant-pathogen interactions and the

presence ot pathogen-specific recognition mechanisms in the plant, it was

suggested more than a decade ago that differences in downstream defence

responses between a resistant and susceptible plant are mostly

quantitative/kinetic rather than qualitative in nature [36]. This was confirmed

by a recent large scale analysis of gene expression during compatible and

incompatible interactions between Arabidopsis and the pathogen P. syringae

[37]. In this study, the expression of roughly 8000 genes was monitored using

an oligomicroarray approach in which each gene is represented by a set of 16

to 20 oligonucleotides. lnterestingly, approximately 2000 genes (25%)

showed reproducible and significant (at least 2 fold difference as compared to

control) expression level changes in at least one of the interactions studied.

This strongly suggests that plant defence entails comprehensive

reprogramming of cellular metabolism. More importantly, the genes affected

in basal resistance overlapped significantly with those involved in R-gene

specific resistance. The gene expression modifications were only delayed in

the compatible interaction. Both the shape and amplitude of the gene

expression profiles 30 h after infection with a low-dose of a compatible

pathogen were similar to the profiles obtained 9hrs post-infection in

incompatible interactions. It was apparent however that gene expression

resulting from incompatible interactions was more robust and less sensitive to

biological variation than compatible interactions. Surprisingly, even when

genetically separable R-gene pathways (RPS2 and RPM7) were analyzed,

the gene expression patterns were highly correlated (93% at 9 hrs post

infection). This suggests that different signalisation pathways must converge

onto a single pathway responsible for the changes in gene expression. The

authors propose a model in which perception by distinct R-genes modulates

the amplitude of a common signalling pathway [37]. This is in agreement with

the tact that RPS2 responses are generally slightly siower than those

mediated by RPM1, despite having the same profile.

RPS2 responses (but not RPM1 responses) are strongly suppressed

by mutations in the NDR7 gene, and by the presence of the NahO transgene
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that encodes salicylate hydroxylase and prevents the accumulation of SA

[371. 0f note, ndrl mutants also have defects in SA accumulation [38]. In

other words, RPS2 responses are more sensitive to SA than RPM1. Yet

these two R genes utilize different pathways to obtain similar resuits, only with

different intensities. Previous observations had suggested a signal

amplification loop controlled by SA [39]. Endogenous SA at physiological

concentrations (50 tM) is known to amplity the expression of defence genes

in the presence of a pathogen signal, independently of de novo protein

synthesis [39]. It is therefore possible that, for RPS2, SA is important in

amplifying the input signal so that resistance will occur, whereas the RPM1

signal is already strong enough to elicit resistance on its own [37].

Transcriptional activation of defence genes
The proposed common resistance signalling pathway leads to a

reprogramming of gene expression in response to pathogen attack [37]. The

transcription tactors responsible for detence gene expression are highly

sought after and have begun to be identified.

The WRKY transcription factors were first assigned a detence rote in

parsley [40] and represent the largest family of defence transcription factors

identitied so far with up to 100 representatives in Arabidopsis [41]. Not ail are

involved in defence however. WRKY transcription tactors have been

implicated in senescence, trichome development, root ceil maturation,

gibberellin signalling, and flower development [42]. AIl members of this

protein family have a conserved DNA-binding domain characterized by the

invariant amino acids W-R-K-Y-G-Q-K, hence their name. The structure of

this domain was recently elucidated and reveals a novel zinc and DNA

binding structure consisting of a four-stranded beta-sheet with a zinc binding

pocket formed by conserved Cys/His residues located at one end of the beta

sheet [43]. WRKY proteins bind the consensus DNA sequence

(C/T)TGAC(T/C), known as a W-box, and different family members act as

activators and repressors of transcription [41].

Despite their varied roles, WRKY factors are strongly associated with

the stress response. A change in the expression of 49 out of 72 tested

Arabidopsis WRKY genes occurred in response to SA treatment or infection

by the bacterial pathogen P. syringae [44]. In tobacco, several WRKY genes

are induced in response to treatment with SA, fungal elicitors or H202 and
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following infection with tobacco mosaic virus (TMV) or bacteria [45-48].

Finaily, a gain-of-function mutation in a mitogen-activated protein kinase

(MAPK) that acts upstream of SA-induced (SIPK) and wound-induced (WIPK)

protein kinases caused the transcriptional activation of four WRKY genes and

an increase in protein-binding to W-boxes in vitro [49].

There is aiso functional evidence for the invoivement of WRKY genes

in defence. The overexpression of AtWRKY29 in Arabidopsis provided

increased resistance to virulent P. syringae bacteria [50]. Furthermore, virus

induced gene siiencing (V1GS) of three WRKY genes compromised

resistance to TMV conferred by the N resistance gene [51]. The expression of

the gene coding for the plant defence regulator NPR1 is itself controiied by

WRKY transcription factors [52]. Finaliy, the protein WRKY7O was found to be

a noUe cf convergence for defence signalling induced by two important

moiecuies: SA and jasmonic acid (JA) [53]. There is a known antagonism

between these two pathways [54] and it was found that WRKY7O activates

SA-mediated responses, while it inhibits JA signalling [53].

A definitive genetic iink between WRKY proteins and the defence

response came from the cloning cf the RRS7 gene responsible for resistance

to Ralstonia solanacearum in Arabidopsis thaliana [55]. This unique gene

codes for a NBS-LRR protein that also possesses a WRKY domain, though

the latter has net yet been shown te be involved in transcription. lnterestingly,

RRS1 — also known as WRKY52 — is one of the rare exceptions in that it is a

resistance protein that interacts directly with its corresponding bacterial

aviruience factor PopP2 and both colocalize to the nucleus [56]. if this

interaction affects directly the transcriptional activity cf defence genes, this

would be an extremeiy condensed defence signailing pathway and it would be

interesting to determine what warrants such a pathway as opposed to other

signalling pathways that involve multiple layers and noUes. Possible

explanations could be that RRS1 activates a single inhibitor 0f pathogen

activity and that this is sufficient for resistance, or that RRS1 activates a

“master switch” for the defence response and that this switch activates ail

other downstream signalling pathways responsible for the ceilular changes

that are necessary for resistance to occur.

interestingly, the promoters cf pathogen-inducible WRKY genes are

significantly enriched in W boxes [44]. it is possible that the auto-regulation cf
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WRKY genes may provide the positive feedback loop required to amplify the

signal of selected resistance genes, as postulated above.

Other transcription factor families involved in the regulation of the

defence response include TGA, ERF and MYB factors [57]. The TGA basic

ieucine zipper (bZIP) DNA-binding proteins were first identified because of

their ability to bind tandem repeats ot the TGACG sequence in stress

responsive promoters [58]. Some members of the TGA famiiy from

Arabidopsis, tobacco and rice were later found to bind directly to the NPR1

signalling protein, though not ail members bind NPR1 with the same affinity

[59-63]. NPR1 does not have a DNA-binding domain itself, but it appears to

act as a co-factor that enhances the DNA-binding activity of some TGA

factors [60, 64, 65]. This is through a transient TGA-NPR1 interaction that can

not be detected in electromobility shift assays and it is therefore not yet

known how this interaction stimulates the DNA binding of TGAs.

As mentioned eariier, NPR1 has an important role to play in regulating

SA-mediated gene expression. lnterestingly, SA stimulates the interaction

between NPR1 and the Arabidopsis TGA1 protein [65]. It was found that,

upon pathogen recognition, the accumulation of SA in the plant leads to an

increase in the cellular reduction potential, and this precedes the

accumulation of reactive oxygen species (ROS) and celI death [66, 67]. This

increased reduction potential has a two-fold effect. First, it allows the

monomerization of NPR1 through the reduction of cysteine residues that form

inter-molecular disulfide bonds between NPR1 molecules [67]. These

monomers then move from the cytoplasm to the nucleus where they can

interact with TGAs [67]. Second, it reduces intra-molecular disulfide bonds in

TGA1 (and possibly other TGA factors) that preciude interaction with NPR1

[65]. SA therefore acts indirectly, through changes in the cellular redox

potential, to stimulate the DNA-binding activity of TGA factors, via NPR1.

As is the case for WRKY factors, TGA family members can be either

activators or repressors of transcription. This is evident in the PR-1 promoter

that contains two TGA boxes important for the regulation of this gene. One of

them (LS7) acts as a positive cis-element, whereas the other (LS5) acts as a

repressor of transcription [68]. AIso, silencing of the Arabidopsis TGA4 and

TGA5 genes Ied to the activation and repression, respectively, of the octopine

synthase promoter in response to pathogen signais, SA and H202 [69]. This
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theretore suggests that TGA4 s a repressor, while TGA5 is an activator ot

gene expression.

Despite these varied roies, there appears to be some redundancy in

the TGA family. It was shown that a single knock-out mutation ot TGA6, or a

double tga2 tga5 mutation, is flot sufficient to biock PR-7 expression in

response to defence signais [70]. AIl three genes are essential however

because a triple tga2 tga5 tga6 mutation completely blocked PR-7 activation

[70].

In contrast to WRKY DNA-binding sites, TGA boxes are not enriched

significantiy in promoters of genes that are co-reguiated in the defence

response [71]. This couid be because TGA factors can toierate some

variation in the DNA sequence they recognize, and it wouid theretore not be

as straightforward to identity which promoters contain a TGA box [57, 72].

Ethyiene-response factors (ERF) are another important class of

transcription factors with a role in detence. ERFs bind GCC boxes

(GCCGCC) that are usuaiiy invoived in ethylene responsiveness and, like

WRKYs and TGAs, can be either activators or repressors of transcription [73-

75]. However, GCC boxes aiso respond to pathogen signais, including

elicitors, JA and SA [76-79]. Interestingly, this response is sometimes

independent 0f ethylene [77]. In tact, SA antagonizes the ethylene-dependent

activation ot GCC box-containing promoters of defence genes [78].

The genes coding for ERF tactors are themselves transcriptionally

activated by ethylene, wounding, SA, JA and infection with the bacterial

pathogen P. syringae [79-83]. 0f interest, the tomato gene JERF7 is activated

by JA and ethylene, as well as by sait stress and the plant hormone abscisic

acid, suggesting that JERF1 could be a node that integrates biotic, abiotic

and developmentai signais [83].

The finding that the tomato ERF tactors Pti4, Pti5 and Pti6 interacted

physicaiiy with the protein kinase Pto that confers resistance to bacterial

speck disease was the first strong indication that the ERF family of

transcription factors is involved in plant defence against pathogens [84]. Pto

mediated resistance to P. syringae pv. tomato depends on the presence of

one of two avirulence proteins (AvrPto and AvrPtoB) in the pathogen, and Pto

is therefore considered a R protein [85-88]. While Pto does not possess LRR

and NBS domains, as do most R genes characterized to date, it does require
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the NBS-LRR protein Prf to conter disease resistance [89]. Pto

phosphorylates Pti4, and most likely Pti5 and Pti6 as well [78].

Overexpression of ail three Pti genes results in enhanced expression of

known SA-induced genes, as weII as JA and ethylene-induced genes [90].

This was contirmed by microarray and by serial analysis 0f gene expression

(SAGE) with plants overexpressing Pti4. These plants were shown to have

induced expression of numerous GCC box-containing genes involved in the

defence response [90, 91]. Furthermore, overexpression of Pti4 or Pt15

causes enhanced disease resistance [92, 93].

lnterestingly, the ERF protein Pti4 also activates genes that do not

have a GCC box in their promoter, and it was demonstrated by chromatin

immunoprecipitation (ChIP) that Pti4 does bind at least some cf these

promoters [91]. Pti4 could either bind directly to a non-GCC box site in the

DNA, or indirectly by interacting with another transcription factor. To this

effect, it is worth noting that, in a recent study, the Pto signalling pathway was

found to require two MAPK cascades, as welI as the signalling molecule

NPR1 and the transcription factors TGA1a and TGA2.2 [94]. As mentioned

earlier, expression of NPR1 itself is induced by WRKY transcription factors

[52] and there is therefore potential for considerable overiap between the

WRKY, TGA, and ERF signalling pathways.

Not surprisingly, the activity of another class of transcription factors

involved in disease resistance (MYB) is also closely linked to that of the

transcription factors described above.

In contrast to the widely spread Ri R2R3 MYB factors, the R2R3 MYB

family is unique to plants [95]. Ri, R2 and R3 are repeats in the conserved

MYB DNA-binding domain. Members of the plant R2R3 MYB family possess

two conserved cysteine residues that form a disulfide bridge under non

reducing conditions that prevents DNA binding [96]. This indicates that

conditions that favour TGA factor binding (see above) also favour the DNA

binding of plant MYB factors.

As is the case for WRKY factors, the MYB family is very large and flot

ail members involved in the defence response are induced by the same

stimuli. For example, tobacco MYB7 is induced by TMV, incompatible

bacterial pathogens and SA [97], whereas the rice ]AMyb gene is induced by

both compatible and incompatible fungal pathogens, as well as by wounding
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and JA, but flot by SA [98]. It was recently found that both MYB1 and WRK1-

3 transcription factors are involved in resistance to TMV conferred by the N

resistance gene [99]. NPR1 is also involved in this pathway [100], suggesting

a Iink with TGA tactors and supporting the role of SA in resistance to TMV

and in the activity of MYB1. interestingiy, the same two MAPK pathways

(MEK1 and NTF6) involved in Pto signalling with TGA and ERF factors [94,

see above] are also required for N-mediated signaliing to WRKY and MYB

factors [99]. Finally, the promoters of genes reguiated by the ERF factor Pti4

were found to be significantly enriched in potential MYB-binding sites [91].

The above list of transcription factors involved in the detence response

is by no means exhaustive and other families are emerging in the literature.

Nonetheiess, these observations highiight the facts that: 1) the transcription

factor families described in this chapter do not act independentiy to activate

the defence response, but in a highly coordinated manner, and 2) that there is

significant cross-talk between the different signalling pathways that iead to

defence gene activation.

Organelles and the defence response
While transcriptional changes in the nucieus contribute to the

establishment of disease resistance, other events occur throughout the ceil

before and atter these changes and these rely on a tight coordination of

activities in ail of the cell’s compartments. Such events downstream of

incompatible pathogen perception include a rapid and sustained oxidative

burst, an activation of calcium signailing and, ultimately, programmed celi

death (hypersensitive response — HR) at the site of infection [101]. The

primary oxidative burst aiso causes secondary bursts in distant tissues,

leading to celi death in a few, discrete ceils and to the development of

systemic resistance to a wide range of pathogens (viruses, bacteria, fungi)

[102]. The SA signalling pathway is necessary for the establishment of such

systemic acquired resistance tSAR) [1 03].

Disease resistance is compromised when either the oxidative burst or

the HR are impaired [104, 105]. In some cases however, ceil death does not

appear to be absolutely essential for resistance, as evidenced by the

identification of mutant plants that are disease resistant while having a much

reduced HA [106]. in fact, for some necrotrophic pathogens (that can feed on
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dead tissue), celi death actually facilitates infection and is promoted by the

pathogen [107].

In animal celis, it is clear that the stress response and programmed

celi death (apoptosis) are flot solely controlled by transcriptional changes in

the nucleus. Organeiles such as mitochondria, lysosomes, the endoplasmic

reticulum (ER) and the golgi apparatus ail participate in stress sensing and

are able to initiate signais that will lead either to stress adaptation or celi

death [108]. in fact, t appears that dying celis degrade important molecules in

ail compartments. There is also extensive communication between organelles

because mutations in genes with a precise localization can prevent apoptosis

induced by damage in another compartment. For example, the endosomal

protein RhoB appears to respond to apoptotic signais f rom the nucleus [109].

Nevertheless, regardless of the origin of the death signal, the final stages of

animai apoptosis appear to depend invariabiy on the “central executioner”,

which involves caspase activation and/or mitochondrial membrane

permeabilization and release of proteins such as cytochrome c f rom the

mitochondria [1081.

Obvious sequence homology with animal caspases has not been

found in plants, though caspase activity has been detected and animal

caspase inhibitors inhibit programmed celi death in plant ceNs [110, 111]. In

addition, caspase activity has also been associated with the plant HR and

disease resistance [110]. Plant vacuolar processing enzymes (VPE) display

structural homology to animal caspases [112]. They were found to have

caspase activity and to be responsible for programmed celi death induced by

tobacco mosaic virus in tobacco and by the bacterial pathogen P. syringae

pv. tomato DC3000 in Arabidopsis [113, 114]. Another class of proteases

common to fungi and plants, the metacaspases, display weak sequence

homology to animal caspases, do not have caspase activity in vitro, but

induce caspase activity and celi death in vivo [112]. Metacaspases are

induced by both compatible and incompatible pathogens, suggesting their

involvement in the defence response [112, 115, 116]. This is in contrast to

animal caspases that tend to be constitutively expressed in an inactive form

and activated by processing. Another interesting difference between plant and

animal caspases is intra-cellular localization. While animal caspases are

cytosolic, except fora few exceptions such as the ER caspase-12 [117] and
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the nuclear caspase-2 [118], plant VPE are localized to the vacuoles [119]

and some metacaspases are predicted to be mitochondrial and chloroplastic

[112].

Mitochondrial membrane permeabilization [120] and cytochrome c

relase [121] also occur in plants at the onset of celi death, and it has been

found that mitochondria play a role in the HR [122]. It theretore appears that

signais that trigger the HR also converge on an “executioner”, though it is

probably not as “central” as that seen in animal ceils, because of the varied

localization patterns of plant caspase-like proteins.

Important redox changes are also a constant in plant and animal stress

adaptation and programmed ceil death, though there are once again

signiticant differences. Whereas the oxidative burst seen in animal

phagocytes originates mainly f rom a NADPH oxidase present at the plasma

membrane and at the surface of phagosomes [123], there are a multitude of

sources of reactive oxygen species (ROS) in elicited plant celis. These

sources are both intra- and extracellular and include celi wall peroxidases and

amine oxidases, plasma membrane-bound NADPH oxidases and intracellular

oxidases and peroxidases in mitochondria, chloroplasts, peroxisomes and

nuclei [104, 124-1 27]. It is flot clear to what extent each system contributes to

the oxidative burst, but it is likely that they act in concert. It was tound for

example that even a slight amount of oxidative stress could elicit H202

production by the mitochondrial respiratory chain (complexes I and iii) of non

photosynthetic tobacco cells and lead to membrane permeabilization and ceii

death [128]. Multiple sites of ROS synthesis therefore allow signal

amplification, while providing the celi with many control checkpoints.

Moreover, the tact that synthesis of ROS can be accomplished in various

organelles allows the compartmentalization of downstream responses.

Ozone elicits responses very similar to those caused by biotic elicitors

in plants, including the SAR [129]. in a recent study on the eftect of ozone in

plant epidermal ceils, it was tound that the first site of ROS production (within

5 minutes of ozone treatment) was the chloroplasts ot guard cells [130].

Subsequently, the membrane NADPH oxidase of these guard celis became

activated, produced diffusible H202 and this, in turn, induced ROS production

in various compartments of neighbouring cells [130]. lttherefore appears that,
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at least under these conditions, chloroplasts play a central role in initial stress

signalling.

There is considerable evidence linking chloroplasts with disease

resistance. For example, altering porphyrin metabolism in chloroplasts

induced defence genes and conferred increased resistance to TMV [131]. A

recessive mutation in the plastid fatty acid desaturase SSI2 [132] also

induces SA accumulation, PR gene activation and disease resistance in a

NPR1-independent manner [133]. lnterestingly, ssi2 mutants have impaired

JA-dependent gene activation, suggesting that SSI2 mediates cross-talk

between the JA and SA pathways of defence signalling [132], as does the

transcription factor WRKY7O mentionned above. Overexpression ot a

truncated version of SSI2, missing the putative N-terminal chloroplast transit

peptide, is unable to rescue the ssi2 mutation [134]. Furthermore, the defects

observed in ssi2 appear to be caused by a reduction in soluble 18:1

chloroplast fatty acids in these plants, in relations to the levels ot 18:0 [134].

The acti mutation, which causes an increase in 18:1 fatty acid levels in the

chloroplast is able to completely reverse the effects 0f ssi2 [134]. These

results strongly suggest that the site for JA and SA cross-talk is the

chloroplast and that it involves faffy acid signalling.

A portion of the cellular SA is synthesized in the chloroplast and this

portion is necessary for disease resistance [135]. Also, at least one SA

binding protein (SABP3) is chloroplastic [136]. lnterestingly, SA also binds

and inhibits catalase [137, 138], an enzyme present in the peroxisomes that

detoxifies ROS produced following photorespiration in the chloroplast and is

important for stress defence [139]. Photorespiration is a wasteful process that

serves as an energy dissipation mechanism to avoid overproduction of ROS

in conditions ot stress, excess light and/or low carbon fixation [140]. Under

such conditions of excess excitation energy (EEE) [141], the photosynthetic

electron transport chain becomes over-reduced, and this gives rise to the

production of ROS and to a phenomenon known as photoinhibition, which is

the degradation of photosystem Il following oxidative damage. If the oxidative

stress exceeds the inherent detoxification capacities of the cell, this ultimately

leads to celI death. Photorespiration is one cf a number ot energy dissipation

mechanisms under these conditions.
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Further evidence for the role cf photorespiration in pathogen defence

cornes f rom a recent study that showed that SHMT1 s a serine

hydroxymethyltransferase that functions in the chloroplast photorespiratory

pathway and provides resistance to both biotic and abiotic stresses [142].

Mutations in this gene caused excess production of H202 and resulted in the

appearance and uncontrollable spread of leaf lesions following abiotic stress

and pathogen infection [142]. Mutations in the lesion simulating disease 7

(LSD7) gene cause a similar phenotype and were recently found to be

associated with a deficiency in the dissipation of EEE by photorespiration

[143]. The LSD1 protein is a novel zinc finger protein [144] and t has been

proposed that it controls catalase during acclimation to EEE [143].

Summary
While the gene-for-gene theory dates f rom the 1940s, the first plant

resistance gene was cloned in 1993 [145], less than 15 years ago. Since

then, our understanding of plant disease resistance has progressed

dramatically. In 2000, the first complete genome sequence of a higher plant,

Arabidopsis, was published [146]. This achievement, combined with the

advent of tools for whole genome analysis (genomics) has allowed the study

cf multiple co-regulated genes and has highlighted the fact that disease

resistance stems from the interaction of numerous pathways. It is very logical

that it would be so. To produce defence compounds, carbon needs to be

diverted frorn primary metabolism. This carbon is fixed by photosynthesis in

tissues known as source and distributed to sink tissues. Regulation 0f

photosynthesis and the movement of photosynthates are therefore likely to be

intimately linked to disease resistance. Oeil death is triggered at the site of

infection but needs to be controlled in the surrounding celis. ROS play a role

in both these situations. Furthermore, ROS act as signaliing molecules but

are toxic. They need to be synthesized and degraded, depending on the

cellular context. AIl these actions call upon multiple enzymes and biochemical

pathways in numerous cellular compartments. Most importantly, ail these

actions need te be tightiy coordinated.

The future cf plant disease resistance research lies in the

understanding cf this coordination and how it is achieved. This thesis aims te

be part cf this effort.
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Objectives
The primary objective of this thesis was to clone and characterize the

gene coding for the DNA-binding protein in the plant transcription tactor PBF

2, responsible for the elicitor-dependent activation of the defence gene PR

lOa. Specific objectives were:

• To screen a complementary DNA (cDNA) library for sequences

corresponding to two small peptides sequenced trom the PBF-2 factor;

• To clone the fuII-length gene;

• To verify that the protein encoded by this gene is part of PBF-2;

• To purify the recombinant protein to produce an antibody;

• To verify the intra-cellular localization of this protein using a green

fluorescent protein (GFP) fusion in both transient and stable

expression;

• To produce and characterize transgenic plants over- and

underexpressing this gene;

This project was intended to improve the knowledge of transcriptional

activation during the defence response. Unexpected findings allowed us to

show a role for the DNA-binding protein of PBF-2 in the coordination of

stress-dependent gene expression in nuclei and chloroplasts.
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Chapter II

Cloning of a nove! transcriptiona! activator

Introduction

Phytophthora infestans, the causal agent cf the potato late blight

disease, is mostly known as one cf the factors invoived in the Irish Great

Potato Famine cf 1837. Incompatible races cf this oomycete, however, cause

typicai hypersensitive response symptoms on potato leaves and tubers [1]. A

ceil-tree homogenate 0f P. infestans is also able to elicit the hypersensitive

response in tubers. The molecules with elicitor activity in such extracts were

found to be the twenty-carbon polyunsaturated fatty acid, arachidonic acid

and eicosapentaenoic acid, and both are able to cause the hypersensitive

response on their own [2].

Gene expression during the potato hypersensitive response was

investigated using in vitro translation cf mRNAs isolated from tubers elicited

with arachidonic acid. The accumulation of at least 16 mRNAs varied, of

which 13 were more expressed following elicitation [1]. One of these induced

genes was found to be PR-lOa (formerly known as STH-2). PR-lOa s

induced in tubers either wounded, elicited with arachidonic or

eicosapentaenoic acid, or treated with P. infestans homogenate [1, 3, 4, 5].

Live compatible and incompatible strains cf P. infestans also elicit this gene,

but compatible strains show a smaller induction [4]. In leaf tissues, however,

only the homogenate [3] and live pathogen [4] are able to induce PR-70a

gene expression. In tubers, the induction is rapid (detectabie 8 hrs after

treatment), reaches a maximum at 24 hrs, and is sustained well after 72 hrs

post-elicitation [3]. It was tound that anaerobiosis can inhibit the accumulation

cf the PR-70a mRNA in elicited tuber discs [3]. A study involving a fusion of

the PR-70a promoter with the f3-glucuronidase (GUS) gene allowed a more

extensive study cf PR-lOa gene expression patterns. Histochemical staining

cf elicited or infected tissues showed that PR-lOa induction was strongest in

vascular bundles [5]. As detence signais are known to be transported through

the vasculature [6, 7] to distal portions cf the plant, it is possible that PR-lOa

could be involved in the synthesis of such a signal. Interestingly, the PAL

gene, involved in the synthesis cf SA, as well as the PR-1 gene, are also
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expressed in vascular bundles [8, 9]. Alternatively, PR-lOa could be involved

in assimilate metabolism or movement, as the detence response is otten

characterized by a source-to-sink transition involving mobilization of sugar

reserves through the vasculature [10, 11]. In healthy tissue, GUS staining

could only be seen at the surface of the stigma [5]. This finding is intriguing

given the fact that PR-1O genes are homologous to the major allergen of birch

pollen [12], though GUS staining could not be detected in pollen. Given the

tact that both the defence response and stigma-pollen interactions involve

self/non-self recognition, it is possible that these processes use similar

schemes. This would explain the apparent dual role of PR-70a suggested by

its Iocalization in two different cell types.

To gain insight into the regulation of PR-lOa transcription during the

defence response, promoter deletion analysis was undertaken [13]. It was

found that a 30 bp region between -135 and -105 was necessary and

sufficient for the elicitor responsiveness of the PR-10a promoter. This region

was therefore called the Elicitor Response Element (ERE). Strong activation

0f the promoter, however, required the presence of an enhancer region

between -155 and -135. Finally, a negative regulatory region was found

between -52 and -27. lnterestingly, in transient expression assays in potato

mesophyll protoplasts, the ERE was able to activate transcription, even in the

reverse orientation, and duplication of this element leU to almost twice the

levels of transcription observed with a single ERE element [13].

The ERE was specifically recognized in vitro by a nuclear factor, PBF

2 (for PR-70a binding factor 2), isolated from potato tubers [14]. Binding of

PBF-2 to the ERE after wounding or elicitation with arachidonic acid

correlated with the accumulation of PR-lOa mRNA [14]. Furthermore, both

PR-70a gene expression and PBF-2 binding to the ERE are controlled by a

functional homologue ot protein kinase C (PKC) [15]. These results suggest

that PBF-2 could play an important role in the activation of PR-lOa during the

defence response.

To further characterize the function of PBF-2, it became important to

isolate its constituent protein(s). lnterestingly, PBF-2 was found to bind single

stranded DNA, as it could bind with high affinity to both the coding (CS) and

the non-coding strand (NCS) of the ERE [16]. t was theretore purified, from

potato tubers elicited with arachidonic acid, by a combination of anion
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exchange chromatography and two rounds ot DNA-affinity chromatography

using a biotinylated torm of the NCS. After the first round of DNA-affinity

chromatography, three proteins of 105, 48, and 24 kD could be detected but,

after the second round, only the 24 kD protein was found [16]. PBF-2 DNA

binding activity could not be detected in crude nuclear extracts of fresh

tubers. However, a comparable amount of DNA-binding activity as with

elicited tubers could be detected when the fresh tuber extracts were purified

by anion-exchange chromatography [16]. This suggests that PBF-2 is present

in an inactive form in fresh tuber nuclei, and that its DNA-binding activity is

activated upon elicitation.

Purified PBF-2 was UV cross-linked to radio-labelled NCS, digested

with DNase I, and electrophoresed on a SDS-polyacrylamide gel. A single 24

kD protein could be detected in this way, suggesting that it is the DNA-binding

component of PBF-2. It is hereafter designated as p24. In order to clone the

gene encoding p24, the purified protein was excised f rom a polyacrylamide

gel and digested with trypsin. After capillary electrophoresis, two peptides

were selected and sequenced by Edman degradation. The partial amino acid

sequences of the two peptides obtained in this way were: SPEFSPLDSGAFK

and VEPLPDG.

This chapter presents the cloning of p24, a novel single-stranded DNA

binding protein. Recombinant p24 showed the same DNA-binding sequence

specificity as the purified PBF-2 factor and was shown to be the DNA-binding

component of PBF-2 [16].

Materials and methods

Cloning of p24

A partial tomato expressed sequenced tag (EST) sequence

(A1488224.1) coding for the p24 large peptide (SPEFSPLDSGAFK) and an

Arabidopsis bacterial artificial chromosome (BAC) clone (AC002521) coding

for both peptides were aligned and polymerase chain reaction (PCR) primers

were designed to flank the large peptide. The primers derived f rom the tomato

EST sequence were as follows: 5’-ATATACAAAGGGAAGGCAGT and 5’-

GATAGATCCAATTTCAGTCAC. These primers were first used to amplify

potato genomic DNA. A single DNA fragment of —550 bp was amplified,
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cloned, partially sequenced, and shawn ta share 99% identity over 109 bp

with the tomato sequence and ta code for the large peptide (data flot shown).

As illustrated in Figure 2.1, a moditied version of the method described

by lsrael [17] was used ta screen a patato cDNA Iibrary made in Lambda ZAP

(Stratagene) tram mRNAs isolated tram patata tubers elicited with

arachidanic acid far 72 hr [3]. Appraximately 960 000 plaque-tarming units

(ptu) were used ta infect Escherichia coIiXL-1 Blue (Stratagene), and aliquats

were dispensed in a 96-well microtiter plate at 10000 pfu per well in 100 pL.

The phages were amplitied far 8 hrs at 37°C. An aliquat tram each weIl was

mixed with an equal volume ot water, and 3 pL tram each sample was used in

a PCR reactian with the p24 primers described abave. Appraximately 336 000

ptu tram a positive well were aliquoted in anather 96-well plate at 4 000 ptu

per well, amplified, and analyzed by PCR as above. This pracess was

repeated a total at four times, with 3 000 and 250 pfu per well in the third and

taurth screens, respectively. Isolation ot the p24 cDNA clone was dane by

hybridizatian af plaques tram a positive well with the genamic DNA fragment

described abave. A positive clone was excised using the ExAssist system

(Stratagene), according ta manutacturer’s instructions. The clone was

sequenced an bath strands.

DNA gel blot analysis

Genamic DNA tram wild-type patata (cultivar Kenebec) was extracted

using 3% (w/v) hexadecyltrimethylammanium bramide (CTAB), as described

previausly [18]. The DNA (10 jig) was digested far 4 haurs with the restriction

enzymes EcoRl, BamHl, Hindlll and HaeIlI. The DNA fragments were then

separated avernight in a 0.8% agarose gel and transterred ta a nitrocellulose

membrane. The membrane was baked at 80°C far 2 haurs and stared at raam

temperature until it was used far hybridizatian.

The p24 cDNA clone was randam-primer labelled with [OE32PJdCTP.

The probe was then puritied an a home-made 1 mL Sephadex G-50

(Pharmacia) column. Membrane hybridizatian was dane as described [19].
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Figure 2.7

Rapid PCR screening of a cDNA library. A cDNA library in phages is

separated into 96 pools. Each pool s tested by PCR for the presence 0f a

gene of interest. A positive pool is identified, the phage is amplitied, and the

new library is further separated into 96 pools. This process is repeated 4

times. The phages from the final positive pool are plated onto Petri dishes,

transferred to membranes and hybridized with a gene-specific probe. Phages

f rom a positive plaque are excised and the insert is sequenced.



37

Amplïfy phage from positive pool

-

00000
0•000 PCR

00000 —p

00000

Plate

\

I
—— —w w — —

Plaque lift,
Hybrîdize

/

.

Excise, Sequence



38

Expression and purification of the recombinant protein

The p24 coding region was amplified by using PCR primers (5’-

CCAAAAATCTCTTGGATCCATGTCC and 5’-CCAGAACTCGAGAHCCAT-

TC) that inserted a BamHl site immediately preceding the ATG and a Xhol

site after the STOP codon, respectively. The PCR product was purified and

inserted into the BamHl and Xhol sites of the pET-21a vector (Novagen),

creating a fusion protein with a T7 tag at the N-terminus and a histidine tag at

the C-terminus. The truncated version of the p24 protein was produced by

using the same Xhol primer and a primer (5’-TTAACATGTCGCGGATC-

CGAUA I I I I G) inserting a BamHl site 67 amino acids from the N-terminus.

These constructs were made in XL-1 blue E. cou cells (Stratagene) and then

transferred into the expression strain BL21 pLysS (Novagen). A single colony

f rom the latter was then grown at 37°C, and protein expression was induced

for 3 hrs using 1 mM isopropyl-3-D-thiogalactopyranoside (IPTG). The cells

were harvested and resuspended in START buffer (20 mM Na2HPO4 pH 7.2,

500 mM NaCI). The celis were Iysed by f reeze-thaw and sonication, then

centrifuged at 11 000 g for 1 hr at 4°C. One volume of 50% (wlv) PEG 8000

was added to the supernatant and the precipitated proteins were centrifuged

at 11 000 g for 1 hr at 4°C. Pellets were washed and resuspended in START

buffer. Fusion proteins were purified using HiTrap affinity columns and a fast

protein liquid ch romatography (FPLC) apparatus (Amersham Parmacia

Biotech), according to manutacturer’s instructions. Purified proteins were

eluted in START buffer containing 50 mM EDTA and were stored a -80°C in

10% (v/v) glycerol. For EMSA, the eluted samples were first diluted 1:1 in

EMSA buffer (20 mM Hepes-KOH pH 7.9, 1.5 mM MgCI2, 0.2 mM EDTA).

Electrophoretic mobility shift assays

Single-stranded synthetic oligonucleotides for non-coding strand ot the

-130 to -105 region of the ERE (5’-CTAGACCAI I I I IGACAHTGTGTCAT

TUATCTAG) were labelled using T4 polynucleotide kinase [16]. Reaction

mixtures contained 1 tL (20 000 cpm) of end-labelled nucleotide and 40 iL of

purified protein with a final EDTA concentration of 50 mM. Reactions were

performed at room temperature for 15 min and subsequently loaded on a

5.4% polyacrylamide gel (29:1 acrylamide:bisacrylamide in 100 mM Tris-HCI

pH 8.0, 100 mM borate, 2 mM EDTA). After electrophoresis, the gels were
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blotted onto Whatman 3MM paper and autoradiographed at 800C on Kodak

XAR film.

Gel filtration chromatography
The PBF-2 complex was purified as described, using anion-exchange

chromatography, f rom potato tubers elicited for 9 hours with arachidonic acid

[16]. The purified proteins were loaded onto a Superose 12 (Pharmacia) gel

filtration chromatography column in EMSA buffer containing 200 mM NaCI.

Fractions of 0.5 mL were collected and subjected to EMSA using the non

coding strand of the ERE as a probe (see above).

Resuits and discussion

Cloning of p24
The PBF-2 factor was previously purified from elicited tubers [16] and

peptide sequencing from the p24 protein revealed two peptides

(SPEFSPLDSGAFK and VEPLPDG) that showed no significant similarity to

proteins of known function. The large peptide sequence, however, was

encoded by a partial expressed sequenced tag (EST) f rom tomato carpel

tissue extracted 5 days pre-anthesis to 5 days post-anthesis (accession

Al488224.1). This EST showed homology to an Arabidopsis thaliana BAC

clone (accession AC0022521) from chromosome Il that also encoded the

other peptide sequence of p24. The sequence of a fragment amplified from

potato genomic DNA encoded the large peptide and aligned with the tomato

EST and the Arabidopsis BAC clone (data flot shown). The same PCR

primers were used to amplify a single fragment from a potato cDNA library

constructed f rom tubers elicited with arachidonic acid for 72 hours. Using a

PCR-based cDNA pooling approach [17], we isolated a cDNA clone for p24.

The frequency of this cDNA clone in the 72-hr elicited cDNA library was found

to be approximately 0.0000083 (1/120 000), suggesting that the p24 gene is

not highly expressed after long periods of elicitation.

The cDNA clone revealed a single open reading frame encoding a

protein of 274 amino acids. As indicated in Figure 2.2, both peptides from the

purified p24 were present in the encoded protein. This protein has a predicted

molecular weight 0f 30.3 kD, suggesting that the protein may be processed.
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Figure 22

Amino acid sequence encoded by the p24 gene. The two peptides obtained

by sequencing of protein fragments from the purified PBF-2 factor are shown

in red. The poly-Q domain s shown in blue. The putative peptide processed

f rom the mature p24 protein is underlined.
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1 MSNFSLSPSPTSGFSLNLQN

21 PTKTSYLSFSSSINTIFAPL

41 SSNTTKSFSGLTHKAALPRN

61 LSLTCRHSDYFEPQQQQQQQ

81 QQQPQGASTPKVFVGYS IYK

101 GKLTVEPRSPEFSPLDSG

121 AFKLSREGMVMLQFAPAAGV

141 RQYDWSRKQVFSLSVTEIGS

161 II SLGAKDSCEFFHDPNKGR

181 SDEGRVRKVLKVEPLPDGSG

201 HFFNLSVQNKLINLDENIYI

221 PVTKAEFAVLVSAFNFVMPY

241 LLGWHTAVNSFKPEDASRSN

261 NANPRSGAELFWNR
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p24 is part of a small gene family
The p24 gene is unique to plants and ESTs encoding proteins with

strong similarity to p24 can be found from evolutionarily distant plants such as

loblolly pine, rice, maize, Arabidopsis and tomato (Figure 2.3). This

conservation of sequence suggests that p24 may play an important role in

fundamental processes in the plant. Figure 2.4 shows a phylogenetic tree of

the plant p24 sequences.

A DNA gel blot of potato genomic DNA hybridized with a p24 probe

suggests that there are three to five members of this gene family in potato

(Figure 2.5). It is also possible that some of the restriction site patterns

observed are partly due to different alleles, as potato plants are tetraploid.

PBF-2 is a 100 kD complex
Gel filtration chromatography of PBF-2 purified from nuclei of elicited

potato tubers showed that PBF-2 is a complex of at least 100 kD (Figure 2.6).

Two other proteins, of 48 and 105 kD, co-purify with p24 up to the first round

of DNA-affinity chromatography [16] and it is possible that they are part of the

PBF-2 complex. The crystal structure of p24, however, has since revealed

that p24 is found as a tetramer [20], which explains the molecular weight of

—100 kD. It is therefore likely that, in elicited tissues at least, PBF-2 consists

only of p24. In fresh tissues on the other hand, the presence of an inhibitor in

the PBF-2 complex cannot be ruled out, as it has been shown that anion

exchange chromatography s necessary to uncover the DNA-binding activity

of PBF-2 [16]. It will be interesting to perform gel filtration chromatography on

fresh potato tuber extracts, to see if PBF-2 elutes at a higher molecular

weight.

p24 possesses a glutamine-rich domain
Strikingly, a stretch of 11 glutamine residues interrupted by only one

proline can be found in the N-terminal half of p24. Such glutamine stretches

are part of the proline/glutamine class of transcriptional activation domains.

Polyglutamine stretches have been found to activate transcription in human

HeLa cells [21] and in plant ceNs [22]. lnterestingly, aIl p24 sequences found

in the GenBank database tait into two main groups (Figures 2.3 and 2.4) that

differ mainly in the presence/absence of this polyglutamine domain. This
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Figure 2.3

The p24 protein sequence is evolutionariiy conserved. Proteins with similarity

to the fuIl-Iength potato p24 sequence were extracted from the GenBank

database and aligned with the Ciustal W multiple sequence alignment

program (http://www.ebi.ac.uklciustalw/), using the default settings. Protein

sequences used were from the following accession numbers: potato I

(AAF91282), Arabidopsis I (AAG48815), Arabidopsis II (AAL59932),

Arabidopsis iii (AAU1514O), rice I (BAD68773), and rice II (BAD28177). In ail

other cases, protein sequences were translated from nucleotide expressed

sequence tag (EST) sequences. For some, more than one EST had to be

assembied to form a complete protein sequence. Accession numbers were as

follows: potato II (BQ506067, BQ506068), Chlamydomonas (Bi 717574,

BU650445, BU649234), wheat I (CD373469, BE426410, CA498265), wheat Ii

(CD871 144, CJ538235), tomato (AW222339, A1488224), grape (CB339732),

barley (BF627441), lotus (CN825759, AV765571), maize (CF007396,

CD650748), alfaifa (BE202518, AL373682), pine (DT635552), sorghum

(CN148887), and soybean (BU547135, CA782570). Ail sequences, except for

the aifalfa sequence, are presumed to be complete protein sequences.

Conserved amino acids are shown in red.

Symbols: * residues are identical in ail sequences in the alignment

conserved substitutions are observed

semi-conserved substitutions are observed
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toReRo 1 1 - MLKVSRLLHPRNQLLHKK- 18
7rabidopsis II MFCQARSLL-SRSLCDQSKS 18
Rhoat II MLRLSRFLP--STSRGVT 18
Barloy MLRFSRFLPSTS1SRGVI 18
Rice II MQRLSRFVP--SSSRRVT 16
PoLoto T MSNESLSPS PISGRSLNLQI4PTKTS_YLSFSSS1NFFRAPLSSN TIrS 47
Tomoto MSVESFSASP SSVSLM———PTRTSSYLSESSSIMTIFAPtTSM TIRS 45
Crapo MHHLHLLSS---SFTIQ---NPRLCPTJHSF SSLHSSSPLSFTSR TPLL 42
Arahidopsi s I MS--QLLSTPLMA2FJ JJPRFLSSSSVLVTCGFAVKR HOFA 38
Arohidopsis III MS--QLLSSPPMAVFSKTFINHLFSDARFLSSHSILTSGGFAGR hP 45
Lotus IJLIILQLQLHSPPPLLLS SSSSLRLPPIIPHSLSL RRFP 37
Soyboao MSNLQLQIIISPPPSLLSY SSSSLSSSSSLRLFPN-IIPLSS RSLP 43
Alfolfo
tlhoat MPPP---LSVSLPSPQP LSLLPRIIARAAFISIIP LALA 33
Rire T MPPPSPPLFLSLPSPPP PPLPHLLPSHRPAAA LTLA 36
Mai se NSISN—11VLGFLFDFE% OFNNPFNDDUNNFRKGSSGGIIT8FSRAFLAOPT 49
SorghLim HPPP--PAPRFLSIA5P PALLPVHHHHNHPRS LLPPL 35
Pino MLRLRCLCTQILRGAAT RRLQPLCTPFSSSHWYS 34
Chlarnydomooos -MLLSRLAIISALPASLR ASALSSASSQLHAVPR 32

Pototo II —- LPSVF;VRG—STWQHPFNTFAQFSTvRQrJ5v6 DASRRFGRVFA 59
Arahidopsis II -LFSASTF.RCFASWSHSSTPSRGFPGF DAARPSGRLFA 55
Whoot II DLKD VLWSGSIJPI,’FHAI!SiSAANV 8RNASV FYA 50
Borley CLRD-ALWSGSLTFRHALSTSALNV DENASAÏREA 52
Rico II DLRD-ALiISCSLTFQHALSTFAA DENTSCRFA 48
Pototo I PSGLTFIRAALPRNLSLTCRHSDYFEPQQQQQQQQQQ PQGASTPEV5V 94
Tomate FSLLTYLAALPRNLSLTCRHSDYFEPQQQQQQ LQGASTPVVLV 88
Drope LS———TTRLFRKRRSLQCHQSDYF——QQQN LTNRQ PPNDSSVDDAIQPLVFV 89
Arohiclops s I i.F———PTTRIVRLI*SVKSRQTDYRERQRFGDSSSSPSP ARGIPAI?FYV 83
Arahidopsis III LK---PTAR--LRLTVKSRQSDVFEKQ%FCDSSSSQ NIAEVSSP1FYV 88
Lotus S---KPLTLIRDRHSDLFDQRTFSSSTPQPAHP AAVSVCAIPP}VW 81
Soybean FMTPLPFS-LRCRI-ISDLFDQNTLAS-TPRPTRP SASVGALPPRVYV 87
Alfalfo FÀATPP NNPLVRALPPRVYV 20
Wheat QPLSTRAPPSSACSVV PAIIFI5DYIDPRAPPSQ-—RDAYGQPPL—VNDPPVPGSQAG VFA 90
Rire T PALSSRR-VSSVCPVASQRHSDYFDPRAPPPPPPRDDYGGPAY-SPPAAQGDQQHDFVFS 94
Noise LASSRRALAVPACPVASPRHSDYFDPRAPPPP--N5855---Y-GRPP--NSAQDG VVT TOI
Do rghue vASIIIRAASLPACPVLSPRHSDYFDPRAPPPP- -RDDSSD- -Y-DRAP- -NDAQDD VFT 88
Pine ———NVVFASSNDFLSViSSISSSLGHYAPTQPD FLRRQ18R F ‘A 75
Chlamydomonos VASAAPRAPSHVAQYSNGSAAPVPPNFALP NDRMJSSSDPVST 76

PeLote II PYSVFRDRA !!5 RRLPTI.NR DS LVI N 1IVV II i W ‘S LV R 106
Arahidopsis li PYSIFRDRAAIS TVL ‘ShIT i%RSNLV DHRSSLNHTrN8AECE R 102
Wheot II SYJVFFDKAAL5 SsILPLI’’I’K ‘VSLDS SDI’NSS’INFTl’l”i’VVDQ R 97
Barley SY VFKCRAA’,SISPIL’L-TK -2 LS2 tITIS III TRFPAVDQ R 99
Rire II SYVFRDFAAISMQPILL’5E5K ESDCS 11H15 JILTFFR2LQ R 95
Pototo I DYSIYRDRAZ TÏEPRSPEPSPLDSDAFFLSPECPPSILQFATAADV R 141
Tomoto DYSIYRDRAALTALPRSLEISPLDSRAFLLSLEGMVULQPAPZZDV R 135
Drope DHS1 TKDRAAIFP :Ri TIAPEHPPIDSDAFR• S FFVLRQFAP-*DV R 136
Arobidopsis T 5H51 yFDFPAT,TVDI’RAi’EhVA L AF ,SrDSFI T iQI’Ai’S LV R 130
Arohidopsis III DH3IYFDF?LTTRL’RAVVA F2’IAFFITIEflLLLQTAPAACV R 135
Lotus DM2 IYKGKAALTVTI-’RPIEVAp ROIAFF’ SVRCYZI ,QFAPKIAS R 128
Soyheau DY :YRDRZ:ZTLTPRPPEFMPLDSDAYPZSLESTZ TAPADT R 134
Alfalfa GH: YRDRAALTTTIP’RSVTLDSCAYV SaDDCT LQFA1S CP R 67
Wheot SYS YFDKAAI,ARDPRP’’QvPiFSSAYI AREDFVIIQi•API ISP R T37
Rire I TV YRDRAMISLDPRPPQLVP’ DSDAYF’VLEGr* T,QPAPTLV\T R 141
Moi se SYJ YKDFAAI,SFDlRplLi%t 8SDAYI’ A’R5FVI,IQ’APAVAT R 148
Sorghum. SYS1YKSKAAL5FDI’RP1Qi’VpI855Ay1VAVRSFI LQ-APAVA’P R 135
Pine RH TRDEDALDMRT’RLPDYTTLRHIDVT AVRSC’’» IESTPA TP R 122
Chhamydoaonas IIYV YFTRAAT4t1RLLPLIbAR-Q-D-RV E DIT EATNAAAPDAS5DPADTPJI4R 135
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Figure 2.4

There are two major groups ot p24 sequences. Phylogenetic tree of the

sequences shown in Figure 2.3. The tree was obtained using the Multalin

program (http://prodes.toulouse. inra.f r/multalin/multalin . html). Default settings

were used. PAM = Point Accepted Mutations per 100 aligned positions.
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Figure 2.5

p24 belongs to a small gene family in potato. DNA gel blot 0f potato genomic

DNA digested with 4 restriction enzymes and probed with the p24 cDNA.
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Figure 26

PBF-2 is a protein complex of approximately 100 kD. Gel filtration

chromatography of the PBF-2 complex in elicited potato tubers. Each 500 tL

elution fraction was subjected to EMSA. The elution volume is indicated.

Protein sizes correspond to protein standards eluted in parallel, under the

same conditions.
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raises the possibility that flot ail members ot the p24 gene family act as

transcriptional activators, or that they do flot ail act in the same way.

Glutamine-rich activation domains are known to activate transcription

preferentiaily from proximal promoters, in concert with enhancer elements

[23]. Similarly, PBF-2 acts from a proximal element (-135 to -105) of the PR

lOa promoter, and distal enhancer elements (-155 to -135 and -670 to -441)

are required for high expression of PR-lOa [14]. In plant celis, a fusion protein

containing the GAL4 DNA binding domain, the VP16 activation domain, and a

stretch of 51 glutamine residues activated transcription 14-fold more than did

the GAL4/VP16 fusion alone [22]. Studies in animal cells have shown that

fusion proteins with a tract of 10 glutamines displayed the most transcription,

while proteins with >26 glutamine residues showed progressively less

transcription [21]. These observations suggest that the polyglutamine domain

found in p24 has the potential to activate transcription. This has since been

shown, using transient expression in plant celis [24].

lnterestingly, glutamine-rich domains have also been shown to bind

ssDNA and to stabilize melted dsDNA [25]. Similarly, the p24 polyglutamine

domain may help stabilize ssDNA in the ERE.

p24 is a DNA-binding protein
To confirm that p24 is a DNA binding protein, a truncated version of

the p24 protein lacking the first 67 amino acids was expressed as a histidine

tag fusion protein. An electrophoretic mobility shift assay (EMSA) with the

purified recombinant protein showed that p24 can indeed bind the non-coding

strand of the ERE (Figure 2.7). It was shown, using mutant versions of the

NOS that recombinant p24 can bind ssDNA with the same sequence

specificity as PBF-2 [16]. The recombinant protein was also used to produce

antibodies and these were found to cross-react with a single 24 kD protein in

purified PBF-2, and to inhibit the PBF-2 shift in an EMSA. These combined

results show that p24 is the DNA binding component of PBF-2.
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Figure 2.7

Recombinant p24 binds the ERE in vitro. EMSA showing the binding 0f

recombinant p24 to a single-stranded ERE probe. The probe shift is observed

only when the bacterial culture expressing p24 is induced with IPTG.
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Chapter III

Dual localization of p24 and plastid-nucleus communication

Introduction

The previous chapter has presented the cloning and initial

characterization of p24, a gene coding for a 24 kD transcription factor found in

potato tuber nuclei and involved in the activation of the nuclear gene PR-lOa.

lnterestingly, the p24 cDNA encodes a 30 kD polypeptide, suggesting that the

protein is processed. Closer examination of the pre-sequence reveals that it

contains a putative chloroplast transit peptide. Accordingly, three different

protein localization prediction programs (PSORT [1], TargetP [2, 3] and

Predotar [4]) concluded that the p24 protein should be localized in

chloroplasts (Figure 3.1). When the predicted transit peptide sequence is

removed and the remaining sequence is submitted to the PSORT program,

the predicted localization is cytoplasmic (not shown). This appears to be in

contradiction with previous resuits that demonstrate a role for p24 in the

nucleus. While it does not possess a clear nuclear localization signal (NLS),

p24 was initially purified from nuclei and it was shown that its binding to the

ERE in the PR-lOa promoter correlates with the activation of PR-lOa gene

expression [5, 6]. Furthermore, chromatin immunoprecipitation using anti-p24

antibodies showed that p24 is bound to the PR-70a promoter in vivo, in

wounded and elicited tissues [6]. Together, these data would therefore

suggest dual chloroplast’nucleus localization for p24.

Plastids refer to a group of organelles of which the photosynthesizing

chloroplasts, the starch-storing amyloplasts, and the colourful chromoplasts of

fruits are the best known. The plant plastid originated when a eukaryotic,

mitochondria-possessing cell engulfed a photosynthetic cyanobacterium,

more than a billion years ago. Since then, the endosymbiont lost its autonomy

and most of its genome to the nucleus [7]. Today’s plastids contain circular

genomes of 120-160 Kb, containing approximately 130 genes [8]. A single

leaf cel! may contain up to 100 plastids, each harbouring approximately 100

identical copies of the plastid genome, for a total of up to 10 000 copies of the

genome per celI [9]. This complexity, and the fact that many chloroplast

proteins are now encoded by the nucleus demands a tight coordination of the
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Figure 3.1

The fuIl-Iength p24 protein is predicted to be targeted to chloroplasts. The p24

sequence is represented with the predicted transit peptide cleavage site at

position 54 indicated with a blue triangle. Results trom 3 intracellular

localization prediction programs are indicated.
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p24

PSORT Resuits:
Chloroplast stroma --- Certainty= 0.859
Chloroplast thylakoid membrane Certainty= 0.491
Chloroplast thylakoid space --- Certainty= 0.434
Microbody (peroxisome) --- Certainty= 0.357

TargetP Resuits:
Chloroplast transit peptide --- Probability= 0.964
Mitochondria transit peptide --- Probability= 0.039
Signal peptide --- Probability= 0.018
Other --- Probability= 0.081

Probable length of transit peptide: 54 amino acids

Predotar Resuits:
Chloroplast --- Probability= 0.733
Mitochondria --- Probability 0.002
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activities in both compartments. The best example s perhaps that 0f ribulose

bisphosphate carboxylase, the enzyme responsible for carbon fixation. The

most abundant protein on earth is composed of two subunits. The large one

(RbcL) is encoded by the chloroplast genome while RbcS, the small subunit,

is encoded in the nucleus. Therefore, a mechanism must exist to ensure that

both subunits are expressed at the same level. It was found that the presence

of RbcS in the chloroplast influenced the translation of RbcL, through an

unknown mechanism [10].

There s also a communication channel f rom chloroplasts to the

nucleus. At Ieast two known mechanisms are responsible for this

communication. The first involves a precursor of chlorophyll, Mg

protoporphyrin IX which, when it accumulates, represses the expression of

nuclear genes encoding chloroplast proteins [11]. The redox state ot the

chloroplast also has a strong effect on nuclear photosynthetic gene

expression [12]. In both these cases, while the nature of the signal is known,

the nature of the nuclear receptor is still elusive.

Dual localization cf a protein in the nucleus and chloroplasts offers an

attractive alternative for communication between the two compartments. The

presence or absence of such a protein in a given compartment could act as a

signal, or a post-translational modification of that protein in one compariment

could theoretically communicate information to the other compartment. The

latter assumes movement of the protein between the two compartments,

rather than differential importation in each organelle. Alternatively, if a protein

acts as a receptor for a given stimulus, the presence of that protein in two

cellular compartments would allow for a coordinated response.

Dual localization has been reported before, though it is not a

widespread phenomenon. The tobacco SigA2 protein, a putative chloroplast

sigma factor involved in transcription, was found to have dual localization

when fused to GFP [13]. However, the authors suggested that the nuclear

localization of SigA2 was an artefact, as GFP itself can localize to the

nucleus. If this were true, it would be expected that SigA2-GFP fluorescence

would also be seen in the cytoplasm because GFP itself diffuses freely

between the nucleus and the cytoplasm, but this was not the case. In

addition, although only the first 184 amino acids ot SigA2 were fused to GFP,

this region contains two nuclear localization signaIs (NLS) and the program
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PSORT predicts a nuclear localization for SigA2 with a certainty score of

0.940. The chloropiast stroma is the second predicted iocalization, with a

score of 0.545. The authors were either unaware of these resuits, or they did

not present them. if this is a true case of doubie-locaiization, it wouid be an

interesting paraliel to the case of p24, as sigma factors bind to specific DNA

sequences in gene promoters and tether the piastid polymerase to these

promoters.

Another example is pBrp, a transcription factor ilS (TFIIB)-reiated

protein from Arabidopsis. pBrp is part of a piant-specific family of general

transcription factors (GTF). In this case, pBrp was found on the cytopiasmic

face of the chioropiast envelope and accumulated in the nucieus whèn the

proteasome was inhibited [14]. The authors suggested that pBrp could be part

of a retrograde signalling pathway f rom the chloroplast to the nucleus.

Finaiiy, SEBF, a transcriptional repressor that binds the siiencing

element in the PR-lOa promoter, aiso appears to have dual iocalization. Like

p24, SEBF is synthesized as a precursor. It has a putative transit peptide and

is predicted to be targeted to chloroplasts [15]. SEBF appears to be a single

copy gene in potato and alternative spiicing was ruied out as a possible

mechanism for producing two forms cf the protein that wouid Iocalize to the

two different compartments. in ceil f ractionation experiments, SEBF was

cieariy iocaiized in chloropiasts and nuclei [15], though the possibiiity that the

antibodies also recognized a homologue of SEBF stiii cannot be completeiy

exciuded at this stage. The confirmation for the double localization of SEBF,

however, came trom laser-scanning contocal microscopy observations. An

SEBF-GFP fusion could be seen in both compartments in transient and stable

expression (Gidda S. and Joyeux A., unpublished). Furthermore, the protein

detected in both compartments was of the same size, suggesting that the

nuclear torm of SEBF has iost the transit peptide [15]. While the role cf SEBF

in the chioroplast is not known, tobacco homologues (not known to be dually

iocalized) are involved in RNA metabolism in the chloroplast [16, 17]. SEBF is

a singie-stranded DNA binding protein and t is possible that it too couid have

a role in RNA metaboiism.

In animais, several proteins known to have a role in the nucieus were

recently found to be present in mitochondria under certain conditions. For

exampie, p53, a weli-known transcription factor, is known to induce apoptosis
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by activating the transcription of nuctear genes such as Bax and Apaf-7, and

by repressing the transcription of Bd-2 [Reviewed in 18]. However, p53 also

induces apoptosis via a transcription-independent pathway [19, 20]. It was

shown that p53 can accumulate at the mitochondrial membrane [21] where it

interacts directly with the protective BcIXL and Bc12 proteins, resulting in

cytochrome c release [22]. Furthermore, artificially targeting p53 to

mitochondria is sufficient to induce ceil death [21]. Interestingly, p53 interacts

with BcIXL via its DNA-binding domain. In human tumour cells, naturally

occurring mutations in this domain inhibit the interaction with BcIXL and the

ability of p53 to cause apoptosis [22]. However, these same mutations cause

constitutive accumulation of p53 at the mitochondria, while p53 is normally in

the nucleus in non-induced conditions [22]. Hence it appears that, in addition

to its role in the nucleus, the role of p53 at the mitochondrial membrane is

crucial to promote apoptosis.

Sim ilarly, the transcription tactor TR3/N ur77/NG FI B induces apoptosis

by relocating f rom the nucleus to the surface of mitochondria, where it

induces cytochrome c release [23]. As for p53, the DNA-binding domain and

transactivation function of TR3 are dispensable for its apoptotic function.

Apoptosis inducing factor (AIE) is another dually localized protein

involved in apoptosis. Unlike p53, however, AIF has a mitochondrial

localization signal (MLS), in addition to two NLS, and it translocates to the

nucleus only upon apoptosis induction [24]. Once in the nucleus, AIE

contributes to celI death by inducing large-scale DNA fragmentation.

Interestingly, it possesses NADH oxidase activity and it is thought that this

allows AIE to have a protective role in mitochondria under normal conditions

[25, 26]. Accordingly, mouse harlequin (Hq) mutants have 80% less AIF and

exhibit progressive degeneration of terminally ditferentiated cerebellar and

retinal neurons, due to excessive accumulation of lipid hydroperoxides [26].

Furthermore WT AIE can rescue the increased oxidative stress-induced celI

death in Hq cells [26]. Finally, the oxidase domain of AIE is dispensable for its

apoptosis-inducing properties [25, 27]. Interestingly, it has recently been

shown that mouse or human celis lacking AIE display a severe reduction in

respiratory chain complex I activity, suggesting that AIF is involved in the

biogenesis or maintenance of this protein complex [28].
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It is flot known whether the role of AIF in mitochondria is related to its

role in the nucleus. It is probable however that the transiocation ot AIE away

f rom mitochondria during apoptosis increases oxidative stress and therefore

induces further signalling to the nucleus to promote celI death [29]. AIE can

associate with DNA [30], and deletions that intertere with this property also

abolish the apoptosis-inducing capabilities of AIE [31]. This suggests that AIE

induces apoptosis by associating with DNA. How AIE promotes DNA

degradation is flot clear however, as it does flot possess any intrinsic

nuclease activity [32]. lnterestingly, another protein that translocates trom

mitochondria to nuclei upon apoptosis is endonuclease G [33]. In

Caenorhabditis elegans at least, the Worm AIE homologue (WAH-1) iflteracts

directly and cooperates with the endonuclease G orthologue CPS-6 (ced-3

protease suppressor 6) in a complex that has been termed the

“degradosome” [32]. It is theretore possible that the nuclear role of AIE during

apoptosis is to tether endonuclease G to DNA.

Dual Iocalization of p24 in chloroplasts and the nucleus is therefore flot

inconceivable. If p24 is localized in two cellular compartments however, what

is the role of this dual Iocalization? Given the role of p24 in the activation of

defence genes in the nucleus, we could expect that the role of p24 in the

chloroplast would be related to defence and that p24 could coordinate the

activities of these two compartments during the plant defence response.

Alternatively, the roles of p24 in these two compartments may be

antagonistic, such as appears to be the case for AIE.

This chapter presents the dual localization of p24 in chloroplasts and

the nucleus. In chloroplasts, p24 is involved in the wound-induced activation

of a gene involved in photosynthesis. This, in turn, generates a signal that is

perceived outside the chloroplast and resuits in altered nuclear gene

expression. These results are discussed in the larger context of cellular

defence.

Materials and methods

Plant materïal

Potato (Solanum tuberosum cv Kennebec) and tobacco (Nicotiana

tabacum) plants were grown in an environmental growth chamber (Conviron)

under long-day (16h) photoperiod conditions [see 15]. In vitro plants were
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also grown under 16h photoperiod in standard MS medium (Sigma) and

transplanted to fresh medium every four weeks [see 15].

Plasmid constructs and plant transformation

The p24-GFP construct was produced as tollows: the coding sequence

f rom the Emerald GFP (Clontech) was excised trom the pGFP plasmid using

the BamHl and Xbal enzymes and inserted into pBluescript (Stratagene).

The p24 sequence, including the 5’ untranslated region (134 nucleotides, see

Accession AF233342), was inserted in trame 5’ of the GFP. The p24-GFP

fusion was then inserted into the pBinl9 binary vector containing a double

35S cauliflower mosaic virus (CaMV) and a NOS terminator [34]. The CT

GFP vector [35] was a gitt from M.R. Hanson, Cornell University.

The p24 sense construct was produced by excising the p24 cDNA

sequence from the pBluescript plasmid using the enzymes BamHl and Kpnl

and inserting it into a pBIN19 binary vector containing a double 35S

cauliflower mosaic virus (CaMV) and a NOS terminator. For the antisense

construct, the p24 coding sequence was amplified with the primer 5’-

TGCTTGTAGCGGTACCAGAAC and the pBluescript Reverse primer. The

DNA fragment was then inserted into the Kpnl and Sacl of the pBIN19

vector. Ail constructs were electroporated into Agrobacterium turnefaciens

LBA4404. Leaf discs were transtormed as described [36]. Transtormed plants

were selected by including 50 mg/L Kanamycin in regeneration medium.

Three transgenic potato unes (51, S2 and AS) and two transgenic tobacco

unes (p24-GFP and CT-GFP; 1 une of each) were selected and used

throughout this thesis.

For transient expression, the p24-GFP fusion was extracted from the

pBinl9 vector and cloned into the pBl223 vector [6]. Leat mesophyll

protoplasts were isolated and transformed as described [5].

Protein purification

Purified potato chloroplast and nuclear fractions for protein gel blot

analysis were isolated as described [15]. For tobacco, 10 g ot leaf tissue or 8

g of root tissue were frozen in Iiquid nitrogen and ground in 1 mL cf NEBH

buffer (12.8% (v/v) hexylene glycol, 10 mM Pipes-KOH pH 6.0, 0.15 mM

spermine, 10 mM MgCI2, 0.5 mM spermidine, 20 mM beta-mercaptoethanol).
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After centrifugation for 5 min at 4 000 g at 4°C, the pellets were resuspended

in 10 mL (leaf samples) or 8 mL (root samples) of NP4O buffer (10 mM MES

NaOH pH 6.0, 260 mM sucrose, 10 mM NaCI, 1 mM EDIA, 0.15 mM

spermine, 0.5 mM spermidine, 14.3 mM beta-mercaptoethanol, 0.1 ¾ (w/v)

bovine serum albumin, 1% (v/v) Nonidet-P40). The extracts were centrifuged

for 10 min as above and the supernatants were frozen at -80°C in 10 ¾ (v/v)

glycerol (chloroplast fraction). The pellets were then washed four times in 25

mL NP4O buffer. The final pellets were resuspended in 3 mL (leaf samples) or

2.44 mL (root samples) lysis buffer (20 mM Hepes-KOH pH 7.9, 1 .5 mM

MgCI2, 0.2 mM EDTA). The nuclei were lysed by sonication, incubated for 30

min on ice, and centrifuged for 45 min at 12 000 g at 4°C. The supernatants

were f rozen at -80°C in 10 % (v/v) glycerol (nuclear fraction).

Laser-scanning confocal microscopy

GFP fluorescence (500-530 nm) was visualised with a Leica DM IRB/E

laser-scanning confocal microscope using a 488 nm laser excitation source.

Chlorophyll autofluorescence was visualised at 650-700 nm. Hand-made thin

sections of fresh leaves or roots from in vitro grown plants were placed in

sterile water on a slide, under a cover slip sealed with nail varnish, and

examined directly. Protoplasts were visualised by placing a drop of protoplast

solution on the slide, covering with a cover slip, and sealing with nail varnish.

For DNA staining, protoplasts were incubated with 5 pM Syto85 (Molecular

Probes) for 10-30 min at room temperature, washed with fresh culture

medium, and examined right away. SytoS5 fluorescence (570-600 nm) was

visualised using a 568 nm laser excitation source. GFP and Syto85

fluorescence images were collected sequentially, and no fluorescence cross

talk was observed under our conditions (not shown). Pseudocoloring of the

images, maximal projections, and image overlays were done using the Leica

confocal software (LCS).

Search for PB sites

A program was designed to screen the published sequence of the

tobacco chloroplast genome (accession NC_001 879) for potential p24 binding

sites. This PerI computer program can be found in Annex 1.
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DNA immunoprecipitation

Tobacco leaves (10 g) f rom wild-type (WT) and a p24-GFP transgenic

plants were harvested, de-veined, and placed overnight in the dark at 4°C.

Tissues were fixed for 15 min in 1% (v/v) formaldehyde, rinsed in distilled

water and blotted dry. Chloroplasts were isolated and purified on a 40/80%

(v/v) two-step percoll gradient as described [37] and lysed osmotically in

immunoprecipitation buffer (50 mM Tris-Cl pH 7.5, 150 mM NaCI, 1% (v/v)

Nonidet P-40, 0.5% (w/v) deoxycholate) supplemented with a cocktail of

protease inhibitors (Roche) and 1 mM phenylmethylsulfonyl fluoride (PMSF).

The lysate was centrifuged for 5 min at 12 000 g at 4°C, and filtered through

glass wool. Chloroplast DNA was sonicated twice for 20 s, resulting in —1kb

DNA segments, and immunoprecipitated as described [6] except that protein

G-agarose (Santa Cruz Biotechnology) was used. The antibodies used (4tg

of each) were anti-GFP (Roche), and mouse pre-immune serum (Sigma). A

300 bp fragment of the Ycf3 promoter (accession Z00044), containing a PB

element, was amplified using the primers 5’-GTAGCAATCCATTCTAGAAT

and 5’-TCTflGTAAHT-GTATCATGAT. A 300 bp control region 0f

chloroplast DNA flot containing a PB (position 5853, accession NC_001879)

site was amplified using the primers 5’-ATCGAAAAAGHTGATCAAHC and

5’-GTTGTGGAHTGTACATCCA. The polymerase chain reaction (PCR)

conditions were 5 min initial denaturation at 94°C followed by 25 cycles of 45

s at 94°C, 1 min at 50°C, and 1 min at 72°C. This was followed by 5 min at

72°C. For the control region, the cycling conditions were extended for another

5 cycles, in order to ensure that no DNA fragment had been

immunoprecipitated with the anti-G FP antibodies.

Gene expression analysïs

Leaf RNA samples from WT and p24 transgenic potato plants were

isolated using TRIZOL (lnvitrogen). For RNA gel blot analysis, the Ycf3

(accession Z00044) and Fedi (accession AJ307031) genes were amplified

from tobacco and potato DNA respectively, and random-primer labelled with

a32P-dCTP. The Ycf3 gene was amplified using the primers 5’-

CCTAGATCACGGATAAATGGAA and 5’-CTTCAACCAAHA-TGCGCTTCA.

The Fedi gene was amplified using the primers 5’-CTGGTACCATGAH-
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AGCACT and 5’-GAAAAGTAAATGCTCATGAAAC. RNA hybridization and

detection was performed according to standard methods [38].

To analyze the expression of p24 in WT and transgenic potato plants,

a protein gel blot was performed on total protein extracts with the anti-p24

antibodies (dilution 0.001). The antibody-antigen interaction was revealed

using the enhanced chemiluminescence detection kit (Amersham Pharmacia

Biotech) according to manufacturer instructions [also see 15].

Chlorophyli fluorescence analysis

Leaf segments (3 cm x 3 cm) were cut from the terminal leaf let of the
7th leaf of WT and p24 transgenic potato plants. The segments were f loated

on water or water + 10 jiM 3-(3,4-dichlorophenyl)-1 ,1 -dimethylurea (DCMU) in

Petri dishes and incubated in a growth chamber (Conviron) for 24 hours,

under 16-hour photoperiod. Alternatively, photosynthesis was measured f rom

fresh leaves directly on the plant. Following 30 min of dark-adaptation,

chlorophyll a fluorescence induction was analyzed using a pulse amplitude

modulated (PAM) fluorometer (FMS, Hansatech Instruments) as described

[39]. The saturating flash and modulated lights were of 700 and 1 p.mol

photons m2 s respectively. The actinic light intensity was 330 tmol photons

m2 s for the fresh and wounded treatments and 65 iimol photons m2 s1 for

the wounded + DCMU treatment. The experiment was repeated twice with

different plants. On each occasion, three readings were done for each

treatment and each transgenic me. PSIl was calculated as (Fm’-Fs)/Fm’,

where Fm’ is maximum fluorescence in the light and F5 is steady-state

fluorescence. Electron Transport Rate (ETR) was calculated as 3PSII x

actinic light intensity.
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Resuits and discussion

p24 dual localizatïon
The apparent contradiction between the predicted chloroplast

Iocalization of p24 and its demonstrated raie in the nucleus prompted us to

examine the functional relevance ot the transit peptide. A protein gel blot of

chloropiast and nuclear fractions from potato leaves showed that p24 is

present in both compartments (Figure 3.2a). To ensure that this dual

iocaiization did not result from two different genes, we produced tobacco

plants expressing a p24-GFP fusion under the control of a constitutive

promoter. As a control, we used plants overexpressing a transit peptide-GFP

fusion (CT-GFP) (with the same promoter) targeted only ta plastids [35]. A

protein gel blot with anti-GFP antibodies showed p24-GFP in bath

compariments while CT-GFP, as expected, was found mainly in plastids

(Figure 3.2b). No band was detected with the anti-GFP antibodies in

untransformed plants (data not shown). The presence of a small amount of

CT-GFP in the nuclear fraction is probably due ta contamination by the plastid

fraction as RbcL, the large subunit of the Rubisco enzyme normally present

exciusively in chiaroplasts, was also detected in the nuclear fraction of CT

GFP plants. AIl bands detected were of expected sizes (RbcL 52.5 kD, Cdc2

--32 kD, Hi -29.8 kD).

lt should be noted that the relative abundance of p24 in bath

campartments cannot be estimated f rom these blots. The same amount 0f

protein was loaded in each lane but the total protein concentration differs in

chloroplasts and nuclei. In fact, it was estimated that nuclear proteins are

over-represented by a factor of 55 in these blots (data not shown). If the

pratein quantities in each lane are adjusted for this dilution factor, p24 is

detectable in chloroplasts but only barely in nuclei (data not shown).

The dual Iocalization ot p24 was confirmed by laser-scanning confocai

microscopy (LSCM) (Figures 3.3 and 3.4). Figure 3.4a shows the presence 0f

p24-GFP in bath the nucleus and the surrounding plastids in roots, while the

fluorescence in CT-GFP plants was only detected in plastids (Figure 3.4b).

However, in most cells, p24-GFP fluorescence was difficult ta distinguish

above background in the nucleus and was only seen in plastids. The latter
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Figure 3.2

Dual localization of p24. A Detection of endogenous p24. Protein gel blot with

purified plastid (PI) and nuclear (N) fractions trom potato leaves. The

antibodies used are as indicated. Each lane contains 40 tg of protein. B

Detection of GFP-tagged p24 in tobacco leaves and roots. Protein gel blot 0f

purified plastid (PI) and nuclear (N) fractions from p24-GFP and CT-GFP

tobacco plants. The antibodies are as indicated. Each lane contains 5.6 tg ot

root protein or 17.5 tg of leaf protein.
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Figure 3.3

LSCM of a p24-GFP tobacco root. Upper panel is GFP fluorescence pseudo

coloured in green. Bottom panel is corresponding phase-contrast image.

Scale bars $ tm.
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Figure 3.4

A Laser scanning confocal microscopy (LSCM) of p24-GFP tobacco roots

stained with the fluorescent DNA dye Syto85. The upper left panel is GFP

fluorescence pseudo-coloured in green, the upper right panel is Syto85

fluorescence pseudo-coloured in blue, the bottom left panel is the overlay of

GFP and Syto85 fluorescence, and the bottom right panel is the

corresponding phase-contrast image. B LSCM of CT-GFP tobacco roots. The

upper panel is GFP fluorescence and the bottom panel is the corresponding

phase-contrast image. Arrows indicate the nuclei. Maximum projections are

shown. Scale bars = 8 jim.
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observation is difficuit to reconcile with the biochemical data. As mentioned

however, the quantity of p24 protein in nuclei is probably overestimated in the

protein gel blots, and it is possible that there is not enough p24-GFP in most

nuclei to be detectable by confocal fluorescence microscopy. This would

imply that, either nuclear p24 is being degraded post-translationally, or that

only a small number 0f the p24 proteins are being imported in most nuclei. In

accordance with the confocal resuits, there was relatively more p24-GEP in

the nuclear fractions of tobacco roots vs. leaves, compared to the plastid

fractions (Figure 3.2b).

The reason for a larger abundance of p24 in some root nuclei is

unknown. The human AIE protein is translocated f rom mitochondria to the

nucleus only upon apoptosis [24]. Likewise, p24 might be imported into nuclei

under certain specific conditions. Previous biochemical experiments however

have suggested that PBF-2, the protein complex containing p24, is always

present in nuclei, albeit in small quantities [5]. While PBF-2 activity can only

be detected in potato tuber crude nuclear extracts after elicition, the same

activity can be detected in fresh potato tuber nuclei after purification. This

suggests that PBF-2 is flot imported into nuclei exclusively upon elicitation.

While these results may flot be applicable to aIl cells, they are in agreement

with the biochemical data presented in Figure 3.2. This does not exclude the

possibility that, under certain conditions, p24 is needed in larger quantities in

the nucleus, as suggested by the confocal data.

p24 is a chloroplast DNA-binding protein
Examination of p24-GFP fluorescence in transgenic leaf cells indicated

that p24 is present in speckles within chloroplasts (Figures 3.5). Optical

sections through leaf ceils showed that at least some of the p24-GFP

speckles are inside the chloroplasts, and not at the periphery (Figure 3.6).

While p24-GFP is presented in guard cells only, fluorescent speckles could

be observed in most leaf celis.

These speckles are reminiscent of nucleoids, DNA-protein complexes

that contain the plastid genome. Furthermore, most p24-GFP speckles

appear to be associated with the chloroplast stroma, rather than the
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Figure 3.5

Localization of p24 with in chloroplast speckies. LSCM of p24-GFP tobacco

leaf guard celis. Upper left panel is maximal projection of chlorophyll

autofluorescence pseudo-coloured in red. Upper right panel is maximal

projection of GFP fluorescence pseudo-coloured in green. Bottom left panel is

overlay of chlorophyll and GFP fluorescence. Bottom right panel is

corresponding phase-contrast image. Scale bars = 8 jim.
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Figure 3.6

p24-GFP is localized inside chloroplasts. Laser scanning confocal microscopy

(LSCM) was used to collect optical sections (0,5 tm between each section)

through a p24-GFP transgenic tobacco leaf guard celi. Six consecutive

sections are shown numbered 1-6. GFP fluorescence was pseudo-coloured in

green, while chlorophyli autofluorescence was pseudo-coloured in red. The

images were overlaid using the Leica confocal software. The arrow indicates

a speckle of p24-GFP fluorescence that appears in the second section and

disappears in the fourth section, indicating that it is inside the chloroplast.
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fluorescent chlorophyll-containing thylakoid membranes (Figure 3.7). These

resuits, combined with the fact that p24 is a DNA-binding protein [5],

suggested that p24-GFP could be bound to chloroplast DNA.

Co-localization of Syto85, a fluorescent DNA dye, with p24-GFP in

chloroplasts of tobacco mesophyll protoplasts (Figure 3.8) contirmed that p24

is associated with DNA. This was more easily observed in protoplasts, as the

Syto85 dye did not appear to penetrate the celI wall of plant cells in leaf

tissues. It should be noted once again that, while the nucleus was visible with

Syto85, p24-GFP was only seen in the chloroplasts of the leat protoplasts

observed (Figure 3.9).

p24 binds the chloroplast Ycf3 promoter in vivo
We next examined whether p24 binds chloroplast DNA in vivo.

Eighteen putative p24-binding sites (PB element; GTCAAAAA) are present in

the tobacco chloroplast genome (Table I). One of these sites lies in the

promoter of the Ycf3 gene and is conserved in many Ycf3 proximal

promoters, including that of potato Ycf3 (Figure 3.10), suggesting that the PB

element plays an important role in the expression of this gene.

A chromatin immunoprecipitation method was adapted to chloroplasts

(Figure 3.11) to test whether p24 is bound to chloroplast DNA in vivo. The

Ycf3 promoter, but not a DNA fragment exempt of p24-binding sites, was

immunoprecipitated f rom p24-GFP tobacco chloroplast DNA with anti-GFP

antibodies (Figure 3.12). In WT plants, the Ycf3 promoter could flot be

immunoprecipitated with anti-G FP antibodies. Together, these results

confirmed that p24 binds chloroplast DNA in vivo, and with sequence

speciticity.

Ycf3 transcription is p24-dependent in wounded tissues
p24 is a transcriptional activator in the nucleus [6] and binding of p24 to

the promoter of Yct3 raises the interesting possibility that it plays a similar role

in chloroplasts. However, RNA gel blot analysis of Ycf3 in f resh leaves of

potato plants over- and underexpressing p24 (Figure 3.13) showed only a

small difference in Yct3 expression (Figure 3.14a). This indicates that p24

does not play a significant role in Ycf3 expression in fresh tissues. The

presence of several bands in Ycf3 RNA gel blots is explained by the fact that

this gene is part of a gene cluster containing Ycf3, psaA, psaB and rpsl4 that
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Figure 3.7

p24 is associated with the chloroplast stroma. LSCM of an isolated

chloroplast from a p24-GFP transgenic tobacco plant. The upper panel shows

an overlay cf the GFP image (green) with the chlorophyli fluorescence image

(red). The bottom panel shows an overlay of the GFP image (green) with the

corresponding phase contrast image. Scale bars = 1 .44 tm.
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Fïgure 3.8

LSCM of a tobacco leat mesophyll protoplast transiently expressing p24-GFP

and stained with the DNA dye Syto85. First panel is maximal projection of

chiorophyli autofluorescence pseudo-coloured in red. Second panel is

maximal projection of GFP fluorescence pseudo-coloured in green. Third

panel is maximal projection of Syto85 fluorescence pseudo-coloured in blue.

Bottom panel is overlay of ail three images. Scale bars = 8 11m.
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Figure 39

Single optical section of a tobacco mesophyli protoplast transiently

expressing p24-GFP. The protoplasts were incubated with the fluorescent

DNA stain SytoS5. The top lett panel shows GFP fluorescence pseudo

coloured in green. The top right panel shows SytoS5 fluorescence pseudo

coloured in blue. The bottom left panel shows chlorophyll autofluorescence

pseudo-coloured in red. The bottom right panel shows the overlay of ail three

images. Scale bar = 8 im.
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Table I
Table of potential PB sites in tobacco chloroplast genome. The description,

position and DNA strand of each PB site were derived f rom the annotation of

the tobacco chloroplast genome (accession NO_007879).



89

o

Table of potential PB sites in tobacco chloroplast genome

POSITION STRAND DESCRIPTION

221 + Between tRNA-His & psbA

13550 + Between atpF& atpH

92676 + Inside Ycf2

114366 + -695ofATGofrpI32

123828 + InsidefirstexonofndhA

19622 - Inside rpoC2

29443 - Between tRNA-Cys & Ycf6

31297 - Between psbM & tRNE

45018 - Inside first intron of Ycf3

46417 - InpromoterofYcf3

59190 - 219 bp after RbcL

70944 - Betwenrpsl8andrpl2O

82349 - Inside initiation factor 1

113761 - Inside ndhF(same), between arsi & rp132

122184 - Inside Iast exon of ndhA

125292 - Inside rpsl5

126890 - Farupstreamofrpsl5

149940 - Inside Ycf2

G
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Figure 3.10

The p24-binding (PB) site in Ycf3 promoters is conserved in plant chloroplast

genomes. Arrows indicate the position of the PB element relative to the ATG.

Accession numbers are as follow: Tobacco NC_001 879, Potato DQ231 562,

Spinach NC_002202, Rice NC_001320, Maize NC_001666, Wheat

NC002762, Arabidopsis NC_000932, Mustard AJ242660.
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Figure 3.71

The chloroplast DNA immunoprecipitation method. Leaf tissues f rom WT and

p24-GFP transgenic tobacco plants are fixed in formaldehyde. Chloroplasts

are isolated on a Percoll gradient and then lysed. The DNA is extracted and

sheared. Protein-DNA complexes are immunoprecipitated with anti-GFP

antibodies. The cross-links are reversed and the DNA-binding sites are

amplitied by PCR.
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Figure 3.72

p24 binds the Ycf3 promoter in vivo. DNA immunoprecipitation 0f chloroplast

Ycf3 promoter with anti-GFP antibodies in wild-type (WT) and p24-GFP

tobacco plants. Input is the extracted DNA prior to immunoprecipitation. DNA

immunoprecipitation was also performed with the p24-GFP plants using a

pre-immune serum (Pre-Immune). The same experiment was performed with

a region of chloroplast DNA containing no PB site (No PB).
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Figure 3.13

Transgenic plants have altered p24 levels. Protein gel blot of wild-type, p24

overexpressing (Si and S2) and p24 antisense (AS) potato plants. p24

antibodies were used. The bottom panel shows the same blot stained with

Ponceau red.
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Figure 314

Ycf3 gene expression and photosynthesis in fresh potato leaves. A ANA gel

blot of WT and p24 transgenic plants with a 1982 bp Ycf3 probe. Two

overexpressing (Si and S2) unes and one underexpressing (AS) line were

examined. Each lane contained 20 tg of total RNA. Ethidium bromide staining

of ribosomal RNAs s shown as a loading control. B Electron transport rate

(ETR) measured in WT and p24 transgenic lines. Results are averages (±SD)

ot 6 readings f rom two separate experiments. The resuits are not statistically

signiticant (p>0.486).
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is alternatively spliced into multiple transcripts and processing intermediates

[40].

Previous results have shown that p24 proteins from potato and

Arabidopsis are involved in stress induction of nuclear genes [6, 41]. To see if

the control of chloroplast gene expression by p24 is also stress-dependent,

we examined Ycf3 RNA abundance in wounded potato plants. Figure 3.15a

shows that Ycf3 RNA levels were indeed greatly reduced in leaves of p24

antisense plants after wounding. Furthermore, the sense plants showed a

slight increase in Ycf3 expression under these conditions. This increase in

Ycf3 expression was also observed with sense p24-GFP tobacco plants (data

not shown). These results indicate that p24 has a major contribution in the

expression ot Ycf3 atter wounding and suggests that the role of p24 in stress

induced gene regulation is similar in chloroplasts and nuclei, providing a

possible way by which both compartments could respond to the same stimuli.

It should be noted that, in the DNA immunoprecipitation experiment, the

chloroplast isolation protocol required the leaves to be cut and incubated in

the cold room overnight [37]. The results presented in Figure 3.11 therefore

showed that p24-GFP is bound to chloroplast DNA of wounded leaves. It

would be interesting to repeat the same experiment with fresh leaves to see if

chloroplast p24 is free from the DNA in fresh tissues, as is p24 in the nucleus.

If that is the case however, it would mean that p24 is present in nucleoids of

fresh tissue chloroplasts without being bound to DNA (see Figure 3.5).

p24 could be involved in NEP-dependent transcription
lnterestingly, the Ycf3 gene has two active promoters. The f irst one

directs transcription by a plastid-encoded polymerase (PEP), while the

second controls a nuclear-encoded, phage-like polymerase (NEP). The PEP

polymerase recognizes typical -35/-10 promoters and its DNA sequence

specificity is provided by nuclear-encoded proteins similar to bacterial sigma

tactors. So far, six sigma factor genes have been found in the Arabidopsis

nuclear genome [42-44]. The PEP polymerase plays an important role in

chloroplast development and photosynthesis, as shown by mutant analysis

[45-47]. These studies however also highlighted the importance of the NEP

polymerase in plastid gene transcription. As a general rule, it was found that

most photosystem I and Il (PSI and PSII) genes are only transcribed by PEP,
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Figure 3.15

Ycf3 gene expression and photosynthesis in wounded potato leaves. A RNA

gel blot of WT and p24 transgenic plants with a 1982 bp Ycf3 probe. Two

overexpressing (Si and S2) lines and one underexpressing (AS) une were

examined. Each lane contained 20 tg of total RNA. Ethidium bromide staining

of ribosomal RNAs is shown as a loading control. B Electron transport rate

(ETR) measured in WT and p24 transgenic unes. Results are averages (±SD)

ot 6 readings trom two separate experiments. * Statistically significant

compared to WT using a one-way ANOVA (p=O.00i).
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whiIe most other genes have promoters for both polymerases. FinalIy some

genes such as accD (encoding a subunit of acetyl-CoA carboxylase), the

ribosomal protein genes rp133 and rpsl8, ycf2 (encoding protein of unknown

function) and the rpoB operon (encoding three PEP subunit genes) appear to

be transcribed only by NEP [45-47]. AIso, many of the NEP-transcribed

mRNAs were more abundant in the PEP mutant plants than in the WT,

suggesting an antagonistic relationship between the activities of both

polymerases. It was hypothesized that NEP is most important in non-green

plastids and in immature chloroplasts.

Recent studies, however, have shown using run-on transcription that

most of the chloroplast genome is stili transcribed in PEP mutants (aibeit at

different levels than in the WT plants) [48-49]. It appears that the differences

in steady-state levels of chloroplast ANAs depend on post-transcriptional

processing and stabilization/degradation, the rates of which depend on the

specitic polymerase used to transcribe each gene [48-50].

In the mustard Ycf3 gene, the positions of the PEP and NEP promoters

have been weII-characterized [40] and the p24-binding site is adjacent to the

NEP promoter, suggesting that p24 could facilitate NEP-dependent

transcription. It should be noted however that flot ail chloroplast NEP

promoters have an adjacent p24 binding site. p24 therefore likely controls a

limited subset of NEP-dependent genes.

Stress-dependent control of photosynthesis by p24
The photosynthetic electron transport chain proceeds from the spiitting

of water at PSII to the electron carrier plastoquinone, the cytochrome b6/f

complex and finally to PSI, where NADP+ is ultimately reduced through the

action of ferredoxin/NADP oxidoreductase. Chlorophyll molecules capture

light at each photosystem and excite the electrons, facilitating the reduction ot

downstream components. These photosynthetic oxidoreduction reactions

create a proton gradient across the thylakoid membranes and the energy

f rom this gradient is then harvested to produce ATP.

Ycf3 is essential for the assembly of the multi-subunit PSI [51]. Targeted

inactivation ot Ycf3 results in a biock in PSI accumulation and in fewer

functional P511 centres. The latter is probabiy due to photooxidative damage

caused by the Iack of electron acceptors downstream of P511 [52] and/or to

photosystem stochiometry adjustment, a mechanism by which the redox state
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cf the plastoquinone pool dictates the abundance cf each photosystem as to

maximize the efficiency of photosynthesis [12].

Because p24 affects Ycf3 gene expression in a wound-dependent

fashion, we expected that photosynthesis would be altered in the wounded

p24 transgenic plants, but flot in their fresh tissues. This was measured by

determining the electron transport rate (ETR), which is indicative of the

amount cf electrons passing through PS!I during steady-state photosynthesis.

As expected, the tresh tissues of wild-type and transgenic potato plants had a

similar ETR (Figure 3.14b). The wounded (see methods) p24 antisense

leaves, however, had a lower ETR than the wild-type while the wounded

sense tissues showed a slightly higher ETR, in agreement with their

respective Ycf3 expression levels (Figure 3.15b). These combined results

indicate that p24 controls wound-dependent Ycf3 gene expression and that

this is correlated with wound-dependent changes in photosynthesis.

The role cf p24 in photosynthesis during the wound response was

further highlighted by incubation of leaf discs with a lcw concentration (10iM)

of 3-(3,4-dichlorophenyl)-1 , 1 -dimethylurea (DCMU). DCMU inhibits electron

flow downstream cf PSII and therefore causes over-reduction of PSII centres.

DCMU had little effect on Ycf3 expression (Figure 3.16a), compared to

wcunding without DOM U. However, it had a major impact on the ETR, leading

te a 92% reduction in the antisense plants (Figure 3.16b). In ccntrast, the

same concentration of DCMU had no significant effect on ETR in the sense

plants, suggesting that the higher level of Ycf3 expression in these plants

compensates for the effect of DOMU (Figure 3.16b). lt should be noted that

the levels of Ycf3 expression presented in Figures 3.14a, 3.15a and 3.16a

can be compared as they are f rom the same ANA gel blot.

Role cf cyclic electron flow in stress defence
During stresses such as wounding, treatment with a pathogen elicitor or

ozone, drcught and anaerobiosis, linear photosynthetic electron flow is down

regulated [53-57]. The mechanism is not known but is thcught to involve

feedback control of photosynthesis by the altered ATP/ADP and

NADPH/NADP+ balances in stressed leaf cells [58]. Mechanisms to dissipate

excess light energy therefore need to be activated in part because the unused
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Figure 316

Yct3 gene expression and photosynthesis in wounded potato leaves treated

with DCMU. A RNA gel blot of WT and p24 transgenic plants with a 1982 bp

Ycf3 probe. Two overexpressing (Si and S2) unes and one underexpressing

(AS) une were examined. Each lane contained 20 ig of total RNA. Ethidium

bromide staining of ribosomal RNAs is shown as a loading control. B Electron

transport rate (ETR) measured in WT and p24 transgenic unes. Resuits are

averages (±SD) of 6 readings from two separate experiments. * Statistically

significant compared to WT using a one-way ANOVA (Si: p=0.00i, S2:

p=O.O4., AS: p.<O.00i).



106

Wounded+DCMU
A

Ycf3

.
rRNA

B

C

j)

c1

E
o
E
j

Hw

wJ- si



107

light energy in PSII poses the threat of superoxide formation following

oxidation of molecular oxygen by triplet electrons in the PSII chlorophyll

antennas. PSI plays a central role under these conditions as a downstream

electron acceptor for PSII and as a participant in cyclic electron flow. It has

been shown that there is a switch from linear to cyclic electron flow in

response to stress and that this has a protective role [55].

Cyclic electron flow around PSI scavenges electrons and helps to

maintain the proton gradient across thylakoid membranes [59]. This is

necessary to maintain appropriate Ievels of ATP in the ceIl, and for the

function of other light dissipation mechanisms such as non-photochemical

quenching (NPQ) [60]. NPQ is a process that normally dissipates the extra

energy as heat and is caused in part by the de-epoxidation 0f the pigment

violaxanthin into the light-quenching molecule zeaxanthin [61]. NPQ requires

a strong proton gradient across the thylakoid membranes to function [61].

One possible explanation for the switch to occur between linear and

cyclic electron flow could be that photosynthetic gene expression fie. by the

PEP polymerase) is down-regulated and that gene expression involved in

cyclic electron flow and homeostasis (ie. by the NEP polymerase) is up

regulated. We are hypothesizing that this occurs, at least in the Ycf3

promoter. This would be a long term adaptive response however and faster

mechanisms, such as state transitions (a movement of antenna molecules

f rom PSII to PSI), occur at the onset of the stress [62]. Interestingly, in WT

plants, Ycf3 gene expression does not change from fresh to wounded leaf

tissues (Figures 3.14a and 3.15a). However, wounding affects Ycf3 in p24

antisense plants. These results show that, in WT plants, a p24-dependent

gene expression mechanism is activated in response to stress and this

prevents the down-regulation of Ycf3 under these conditions. As described

before, wounding can Iead to photooxidative stress. In this context, the

maintenance of Ycf3 expression and photosynthetic electron transport by p24

during the wound response wiIl likely have a protective effect.

Under normal conditions, the gene PsaA that is downstream of Ycf3 is

expressed via its own PEP promoter [40]. However, in PEP mutant plants,

larger RNAs containing both PsaA and Ycf3 are up-regulated, most Iikely

transcribed f rom the NEP promoter upstream of Ycf3 [49]. Interestingly, larger

Ycf3 RNAs are particularly affected in wounded p24 transgenic plants,
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compared to WT plants (Figure 3.15a). This result supports the ideas that 1)

p24 contributes to NEP-dependent gene expression and that 2) there s a

competition between NEP- and PEP-dependent transcription mechanisms.

p24 antisense plants are defective in chlororespiration
One form cf cyclic electron f Iow is chlororespiration, which is due to the

cycling of electrons from reduced donors in the chloroplast stroma, such as

NADH, back to plastoquinone [63]. Chlororespiration is accomplished by the

NAD(P)H-dehydrogenase (NDH) complex, which is composed cf 11 to 16

subunits [64]. In practice, chlororespiration can be visualized as the recovery

of chlorophyll fluorescence in the dark, after illumination with high light [65].

This transient increase in fluorescence is due to the reduction of the

plastoquinone pool that leads to closure of PSII reaction centers [66J. The

change in fluorescence is typically small and any difference is likely to be

significant. lnterestingly, the recovery of chlorophyll fluorescence was

impaired in the potato p24 antisense plants, compared to the WT plants

(Figure 3.17). This lack of fluorescence recovery in p24 antisense plants is

reminiscent of ndhB mutant plants that are deficient in cyclic electron

transport around PSI [67]. In contrast, the potato p24 overexpressing plants

displayed a slightly more important fluorescence recovery than the WT.

These results are consistent with the effect of p24 on Ycf3. If PSI is not

assembled correctly, because of a Iack of Ycf3, it is likely that Iess cycling

electron f low wiII occur. However, t is possible that these observations are

also due to a dÏrect effect of p24 on ndh genes. The p24 binding site can be

found inside the first and Iast exons of ndhA, as well as inside the ndhFgene

(Table I). These can be internaI transcription regulation sites, or may be

responsible for post-transcriptional processing. As a single-stranded nucleic

acid binding protein, p24, like the PR-70a repressor SEBF, could control RNA

metabolism in addition to transcription. The involvement of specific

transcription factors such as p24 in transcription and post-transcription could

explain the observed polymerase-dependent differences in chloroplast RNA

metabolism [48-50].

It is likely that the expression of PSI and NDH genes is coordinated

during stress, in order to favour cyclic electron flow. The phenotype of p24
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Figure 3.17

Steady-state chlorophyli fluorescence analysis of wounded WT and p24

transgenic leaf tissues. In the dark, following illumination, a transient increase

in fluorescence due to cyclic electron tlow occurs in WT, sense, but not

antisense plants. In addition, the fluorescence recovery is more important in

sense plants than in WT and antisense plants, suggesting that more cyclic

electron transport occurs in plants overexpressing p24. Closed triangle:

actinic light off. The increase in fluorescence occurs after the actinic light is

turned off.
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transgenic plants is therefore probably due to a combination of the action of

p24 on both PSI and NDH (and other genes involved in related processes).

p24 antisense plants Iack the M transition
As mentioned above, cyclic electron f low serves in part to maintain the proton

gradient across thylakoid membranes. Accordingly, the potato p24 antisense

plants also lack the “M transition” during the initial decrease in fluorescence

(Figure 3.18). The M transition is suggested to be Iinked to the establishment

ot the proton gradient [68] and this suggests that p24 antisense plants have a

reduced proton gradient across chloroplast thylakoid membranes.

Interestingly, mutant plants for the PGR5 gene involved in cyclic electron flow

display a reduced proton gradient, possibly due to increased conductivity of

the ATP synthase, in addition to decreased linear electron f low [69].

Physical separation of PSII and PSI
P511 s present mainly in the stacked thylakoid membranes, while PSI is

present in both the unstacked thylakoids and at the periphery of stacked

thylakoids [70]. It has been suggested that the physical separation of the

photosystem pools aliows for fine tuning of the balance between linear and

cyclic electron flow in the chloroplast [70]. Accordingly, functional studies of

photosynthesis have suggested that there are two distinct pools of PSI and

that, in response to stress, up to 30% of aIl PSI centres become involved in

cyclic electron f low [58].

If during stress, when cyclic electron flow is favoured, the newly

synthesized PSI is inserted in a “cyclic electron flow” pool, then it is possible

that, by controlling Ycf3 (and therefore PSI) at specific times (i.e. during

stress), p24 contributes mainly to cyclic electron fiow. Under normal

conditions, other transcription factors would maintain steady-state Ycf3

expression (ie. through the PEP promoter). This would explain the

chiororespiration and M transition resuits described above. Alternatively, or in

addition to this possibility, p24 may control other genes involved in cyclic

electron f low.

Photosynthesis-dependent nuclear gene expression
As photosynthetic signais affect nuclear gene expression [12], changes

in Ycf3 levels and photosynthesis in p24 transgenic plants should be reflected

at the nuclear level. We therefore determined whether the expression of
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Figure 3.78

Early fluorescence events. Following fluorescence induction upon actinic light

illumination, the decrease in fluorescence is transiently delayed (M transition).

This secondary peak in fluorescence is present in leaf tissues from wounded

WT and p24 Sense plants (A) but not in antisense plants (B), suggesting that

p24 underexpressing plants do not support a strong proton gradient across

the thylakoid membranes. Open triangle: Saturating light flash.
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Fedi, a nuclear gene encoding ferredoxin, is changed in p24 transgenic

plants. We selected this gene because it is positively regulated by

photosynthetic electron flow (PEF) [70] and is unhikely to be controlled by

nuclear p24, as it contains no p24 binding site. While Fedi expression was

not different in WT and p24 potato transgenic fresh leaves, it was greatly

reduced after wounding (Figure 3.19). This reduction in Fedi expression was

more pronounced in antisense p24 plants.

The repression of Fedi expression observed in the antisense plants

was rescued by the addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea

(DCMU), an inhibitor ot photosynthetic electron flow, confirming that this

repression is regulated by photosynthesis (Figure 3.19). lnterestingly, in fresh

tissues, DCMU is an inhibitor of Fedl expression [70], whereas we have

tound that it actually rescued Fedi expression to wild-type levels in wounded

p24 antisense plants. This suggests that, under stress, the reduced f low of

electrons to PSI from PSII, because of DCMU, allows the reducing potential

of PSI to be better matched to the decreased demands of carbon fixation.

This would likely reduce the importance of cyclic electron flow relative to

linear electron flow and should theoretically eaU to an accumulation ot

reduced photosynthetic products, mimicking a “normal” situation. 0f note, the

low concentration of DCMU used here did not inhibit linear electron flow

completely.

This could also explain why overexpressing plants are not rescued by

DCMU to the same extent, because the increased Ycf3 (and PSI activity) in

these plants maintains the imbalance between PSII and PSI activity. In

contrast, DCMU had little effect on the modified expression of Ycf3 in

wounded transgenic plants (Figure 3.16a). This suggests that p24 controls

Ycf3 independently of PEF, in agreement with our DNA immunoprecipitation

results (Figure 3.12). We conclude that, under stress, the chloroplast p24

protein generates a photosynthetic signal that is perceived outside the

chloroplast, resulting in altered nuclear gene expression.
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Figure 3.79

Fedl gene expression. RNA gel blot as in Figure 3.14 — 3.16, with a 485 bp

Fedi probe. Each lane contained 2Oig of total RNA.
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Chapter IV

Intra-cellular dynamics of p24

Introduction

The previous chapter has demonstrated the dual chloroplast/nucleus

localization of the p24 transcriptional activator. Moreover, t appears that, in

both chloroplasts and nuclei, p24 activates transcription in a stress-dependent

manner. The dual localization of p24 therefore represents a possible

mechanism by which different cell compartments could respond to the same

stimuli.

One important issue that remains unresolved however is the

mechanisrn by which p24 localizes to both compartments. Most nuclear

encoded chloroplast-localized proteins possess a N-terminal transit peptide

and are translocated across the chloroplast double-membrane via channels

called “translocon at the outer envelope membrane of chloroplasts (Toc)” and

“translocon at the inner envelope membrane of chloroplasts (Tic)” [1]. Protein

transiocation occurs at sites where the two membranes are held in close

proximity [2]. Following import, the transit peptide is cleaved by the

processing peptidase in the stroma (SPP), which is a metalloendopeptidase

related to the f3 subunit of the mitochondrial processing peptidase [3]. p24

appears to go through this import pathway as it possesses a transit peptide

and is processed to its mature form in vivo.

While chloroplast protein import occurs post-translationally, it is

thought that pre-proteins are maintained in a partially unfolded state, as they

corne off the ribosome, by the chaperone Hsp7O [4]. Furthermore, many

transit peptides possess phosphorylation sites that allow interaction with 14-3-

3 proteins and the interaction of pre-proteins with Hsp7O and 14-3-3 factors is

thought to serve as a guidance complex that increases import efficiency [5].

This theory is at least partially challenged by the recent finding that mutations

of predicted phosphorylated residues in transit peptides did flot alter import

competence of preproteins [6]. Another model suggests that one protein f rom

the Toc complex (Toc159) is present in a soluble form in the cytoplasm and

directs the newly synthesized preproteins to the outer chloroplast membrane

[7, 8]. This theory is also disputed however [9]. Nonetheless, it is very likely
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that chlaraplast impart is tightiy regulated, in order to avaid mistargeting ta

other organelles, and that cytoplasmic factors help to direct proteins ta the

chlaroplast.

According ta this model, proteins with chlaraplast transit peptides

(inciuding p24) shauid iocalize exciusively ta chioraplasts. It is known

hawever that the chlaraplast impart machinery is deveiopmentaily reguiated,

with chlarapiasts in aider tissues pragressively iosing their ability ta import

prateins [10]. One example is starch phospharylase that ceases ta be

imparted inta aider patata tuber amylaplasts [11]. Interestingiy, in that case,

the cytasaiic pratein was faund ta have its transit peptide cieaved, suggesting

that there is a cytasaiic farm af the SPP ar that anather pracessing site in the

pratein is used [1 1]. Anather ievei af contrai is at the Tic campiex, where

companents are reguiated by the redax status inside the chiarapiast,

suggesting cantrai af chiarapiast pratein impart by iight and biaenergetics in

the strama [12]. Furthermare, calcium aiso reguiates the impart af prateins

cantaining a transit peptide [13]. This suggests that chlaraplast impart cauid

be affected during canditians such as the defence respanse. in agreement

with this hypathesis, the impart at poiyphenai axidase by chiaraplasts is

enhanced by the defence signaiiing malecule jasmanic acid [14]. Simiiariy,

abiatic stresses differentially affect the impart af prateins into plant

mitachandria [15].

It is therefare passible that, in certain tissues and under certain

canditians, p24 is synthesized but natimparted inta chloraplasts. it wauld

then accumulate in the cytaplasm, where it cauld eventuaily be imported inta

the nucieus. This is uniikeiy hawever, as the dual lacalizatian af p24 as been

shawn in a single celi, suggesting that bath chiarapiast and nuciear impart af

the p24 pratein can functian simultaneausly. Furthermare, p24 daes nat

passess a characteristic nuclear lacalizatian signai and, as it farms a

tetramer, it wauid thearetically be taa large ta diffuse freely inta the nucieus

[16]. We cannat exciude the passibility hawever that p24 aniy tetramerizes in

the nucleus.

lnterestingly, examples exist that suggest a certain flexibility in the

intracellular targeting af proteins. In additian ta the dually lacalized prateins

mentianed in the previaus chapter, several plant prateins exhibit bath

chlaraplast and mitachandrial lacalizatian [17]. it was found that this dual
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targeting resuited trom overiapping signais in the transit peptides of these

proteins [18, 19]. In vitro however, mitochondria were found to be abie to

import pureiy chloropiastic proteins, whereas the opposite couid flot be

achieved [20]. In an import assay containing both organelies, no mistargeting

occurred [20]. This suggests that chloroplast import is more selective and that

additional factors must be necessary in vivo to avoid inappropriate targeting

to plant mitochondria. In contrast, a recent study showed developmentaiiy

reguiated “mistargeting” of a protein carrying a vacuolar sorting signal to

piastids of young sugarcane and Arabidopsis leaves [21]. Targeting signais

therefore do flot allow exclusive iocalization to a single compartments and it is

probabiy the interaction ot the signai and its ceilular context that dictates the

final locaiization(s) of a protein. In turther support of this hypothesis, it was

recentiy shown that RB6O, a chioropiast protein disuifide isomerase (PDI)

f rom the photosynthetic aigae Chlamydomonas reinhardtii, also localizes to

the endoplasmic reticulum (ER) [22]. in chloroplasts, RB6O is in the stroma as

weii as tightly bound to thylakoid membranes [23]. RB6O binds to and affects

the translation of the chloroplast photosystem I PsbA mRNA in response to

changes in the redox potential [24]. In the ER, RB6O most likely acts as a

typical PDI [22].

RB6O possesses both a chloroplast transit peptide, as well as a C-

terminal ER retention signai. The first 50 amino acids of the protein are

sufficient for both iocalizations however [22]. This transit peptide is cleaved in

the ER but not in the chloropiast [22]. The authors hypothesize that

ditterential protein-protein interactions dictate the various functions of RB6O in

both compartments. They aiso suggest that proteins in the cytoplasm

compete for binding to the newiy synthesized RB6O polypeptide and

determine its ultimate iocalization. This also appears to be the case for animai

proteins that are targeted to both the mitochondrial membrane and the ER.

Several pro- and anti-apoptotic proteins such as Bax, Bak, Bid and Bd-2 have

indeed recently been shown to have this dual iocalization and to coordinate

mitochondria-ER communication in response to apoptotic signais [24-28]. It is

thought that these proteins regulate the release of calcium from the ER and

the subsequent permeabilization of the mitochondrial membrane and release

of cytochrome c [26-27, 29]. lnterestingiy, Bd-2, Bax and Bid are also

Iocalized in the nuclear membrane [25, 28] and both Bd-2 and Bax have been
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found inside the nucieus [30]. A recent study showed that calcium signaliing

and crosstalk between mitochondria and the ER is also important for PCD in

soybean ceils [31]. Whether plant proteins play similar roies as Bd-2, Bax and

Bid is flot known however. Finaiiy, communication between the ER and

mitochondria 15 probably faciiitated by physicai contacts that form between

these two compartments, a process controiled by the protein PACS-2 in

animais [32]. Upon apoptosis, PACS-2 also controls the transiocation of Bid

to mitochondria [32].

The functionai and physicai association of the chioropiast with the

secretory system is therefore flot surprising, nor is it new. Eariy microscopic

observations had shown that the ER sometimes cornes in close proxirnity of

piastids [33, 34]. Moreover, chioroplast thyiakoids and the ER can exchange

membrane iipids [35, 36]. Other biosynthetic pathways, such as that of the

plant hormones gibbereiiins, are aiso shared between chioropiasts and the

ER [37].

Association of chioropiasts with the ER may even date back to the

endosymbiotic event that gave rise to chioropiasts. t has been shown in

animais that the ER fuses with the plasma membrane of macrophages at the

onset 0f phagocytosis [38]. Some intraceiiuiar pathogens are able to stop the

maturation of the phagoiysosome and can survive inside these non-lytic

ER/phagosome compartments [38]. These resuits showed that the ER can

unexpectediy fuse with other compartments and suggested a way by which

organisms couid find a safe haven inside host ceiis. This couid partiaiiy

expiain the eariy events of endosymbiosis.

Some uniceiiuiar algae possess “complex piastids” that are thought to

have resuited from a secondary endosymbiosis event [39] and are

surrounded by 3 or 4 membranes [40]. Interestingiy, in some groups of

piastids with 4 membranes, the outer membrane is continuous with the ER

and is known as “chioropiast ER” [41]. Protein import into these plastids is

therefore greatiy compiicated by the additional membrane barriers and is stiil

flot very weii characterized. Preproteins targeted to compiex piastids contain

a N-terminal, hydrophobic, ER-targeting signai peptide foiiowed by a

chioropiast transit peptide rich in hydroxyiated and positiveiy charged amino

acids [40]. Once attached to the ER, these proteins proceed to the piastids

via vesicies of the secretory pathway [40].
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The recently proposed “secretory transport hypothesis” suggests that,

following the primary and secondary endosymbiotic events and the transter 0f

genes from the symbionts to the host nucleus, protein transport back to the

symbionts occurred via the secretory pathway, using the host machinery [42].

These proteins would have acquired a signal peptide and the adjacent region

would have evolved into a chloroplast transit peptide to ensure specificity of

plastid targeting fie. to avoid targeting to other organelles such as vacuoles

and lysosomes) [42]. Later, as specific receptors of transit peptides evolved in

the outer plastid membrane, the signal peptide was lost because it was no

longer necessary [42]. This view is supported by the finding that Toc159

bears sequence homology to signal recognition particle receptors involved in

targeting to the ER [43].

Finally, to further illustrate the versatility of plastid membranes and of

organelle import/export pathways, stromal proteins have been found to be

exported from chloroplasts of C. reinhardtii in vesicles that fused with lytic

vacuoles [44]. A similar phenomenon has been observed in soybeans, where

chloroplasts were found to secrete lipid/protein globules into the cytoplasm

during senescence [45]. Membrane tubular extrusions containing stroma (and

theretore called “stromules”) also extend from plastids, sometimes linking two

plastids together [46]. Stromules are able to actively transport proteins [46-

48]. They are sometimes associated with the plasma membrane and they

have been observed to go through invaginations in the nucleus [49].

In summary, chloroplast protein import must be tightly regulated to

avoid mistargeting to other organelles. Yet there appears to be a wide range

of methods to achieve this import in the plant kingdom. The celI apparently

has many more channels and doors than previously thought. The secretory

pathway from which chloroplast protein import probably evolved may still be

used in some instances and protein transport may not always be

unidirectional. In animal cells, proteins are also more promiscuous than was

believed previously.

The present chapter presents the localization 0f p24 in plastid

stromules. Unexpectedly, these p24-containing stromules co-localize with the

ER. The ER is also found to encircle chloroplasts in some instances and this

is reminiscent of algal chloroplast ER. It is not inconceivable that p24 gains

access to the secretory pathway from chloroplasts and that this is how it
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reaches the nucleus. In apoptotic human dopaminergic SH-SY5Y celis,

glyceraldehydes-3-phosphate dehydrogenase uses the golgi apparatus to

transit to the nucleus [50].

Materials and methods

Tobacco ceil cultures

Square (—5 mm2) leaf sections from wild-type, p24-GFP and CT-GFP

tobacco plants were placed on solid Nu medium (lx MS salts, 100 mg/L

myo-inositol, 1 mg/L thiamine, 0.2 mg/L 24-D, 180 mg/L KH2PO4, 3% (w/v)

sucrose, 8 g/L agar, pH 5.8) [51] to induce callus formation. Callus pieces

were then transferred to 50 mL of liquid NT1 medium in 250 mL conical flasks

and incubated with continuous shaking in a growth chamber with a 16 hr

photoperiod. Ceils were transterred to fresh medium every 2-3 weeks.

Induction of xylogenesis was performed as described [52]. In short,

cultured cells were transterred to 50 mL of liquid xylogenesis medium [NT1

medium minus 2,4-D, plus 0.23 mg/L 6-benzylaminopurine (BAP, Sigma)] and

incubated with shaking for 48 hrs.

Laser-scanning confocal microscopy

GFP fluorescence (500-530 nm) was visualised with a Leica DM IRB/E

laser-scanning confocal microscope using a 488 nm laser excitation source.

Chlorophyli autofluorescence was visualised at 650-700 nm. Hand-made thin

sections of fresh leaves or roots from in vitro grown plants were placed in

sterile water on a slide, under a cover slip sealed with nail varnish, and

examined directly. OeIls in culture were visualised by placing a drop of ceil

culture on the slide, covering with a cover slip, and sealing with nail varnish.

For ER and golgi staining, cells in culture were incubated with 0.01 tg/mL

Bodipy-brefeldin A (Bodipy-bta, Molecular Probes) for 10-30 min at room

temperature, washed with fresh culture medium, and examined right away.

Bodipy-bfa fluorescence (570-600 nm) was visualised using a 568 nm laser

excitation source. GFP and Bodipy-bfa fluorescence images were collected

sequentially, and no fluorescence cross-talk was observed under our

conditions (not shown). Pseudocoloring of the images, maximal projections,

and image overlays were done using the Leica confocal software (LCS).
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Disruption 0f ER membranes was achieved by treatment of tobacco

celi cultures with 50 tM nordihydroguaiaretic acid (NDGA, Sigma) for 10-30

min.

Fluorescence recovery after photobleaching

The Leica DM IRB/E laser-scanning confocal microscope is flot

specifically designed for fluorescence recovery after photobleaching (FRAP)

experiments. The Leica confocal software was therefore programmed to

perform the following actions sequentially. First, four images were taken at

intervals of 5 s to ensure that the GFP fluorescence was flot affected at the

laser intensity used. Second, a square area fit is flot possible to select round

areas) corresponding to the nucleus was selected and the laser intensity

increased to maximum. This area was scanned 20 times, over a period of 1

min. Under our conditions, this resulted in a decrease of over 90% of the GFP

fluorescence in the nucleus. Fluorescence recovery was then monitored by

taking an image of the entire celi every 15 s for 600 s, yielding a total of 41

images.

Resuits and discussion

p24 is present in chloroplast extensions

The mechanism for dual localization of p24 is an open question. As

seen previously, p24-containing plastids are often clustered around the

nucleus. This provides the intriguing possibility that there could be a direct

exchange of molecules between these two organelles, as has been

suggested before [49, 51]. If this is the case, then which channel would p24

go through?

Plastids are known to sometimes have extensions, known as

stromules because they are continuous with the stroma, that can extend to

the plasma membrane and link plastids together [46-49, 51]. It has been

shown that GFP can travel within stromules using what appears to be an

active, ATP-dependent mechanism [46, 47]. Figure 4.la shows p24-GFP

fluorescence in root plastids and in stromules. It should be noted that root

plastids are much smaller than leaf chloroplasts. This picture is virtually

identical to those published with GFP alone, suggesting that p24-GFP is also
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Figure 4.1

p24-GFP is found in plastid stromules. LSCM of root ceils (A) and cells in

culture (B) from transgenic p24-GFP tobacco plants. Maximal projections are

shown. GFP fluorescence is pseudo-coloured in green. N = nuclei. PI =

plastids. S = stromules. Scale bars = 1O.64im (A) and 24.46.im (B).
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transported in stromules, though t remains to be determined whether p24-

GFP is transported actively or moves by diffusion alone. Stromules are

difficuit to observe without GFP fluorescence, and it is therefore flot possible

to say whether some stromules do flot contain p24.

In most root celis, p24-GFP is seen in stromules while, in leaf celis,

p24-GFP stromules are very rarely seen. This is in accordance with the

published fact that stromules are tissue-specific and developmentally

regulated [51]. They occur more frequently in non-photosynthetic tissues, and

very rarely in leaf cells. Our results therefore indicate that stromules

containing p24-GFP appear in cells where p24 can be dually localized fie.

root cells). This begs the question as to whether stromules could be a direct

channel to the nucleus.

p24 nuclear Iocalization can be induced
A celi culture system was developed to test this hypothesis. Plastids

f rom celis in culture have very extensive stromules and are almost aiways

clustered around the nucleus [51]. Transgenic p24-GFP cells also have

extensive stromules (Figure 4.lb) but do not display dual localization of p24.

Our cell cultures are derived from de-difterentiated leaf cells. It appears that,

though celi culture conditions stimulate the production of stromules, the

stimulus for nuclear localization of p24 is missing.

In the nucleus, p24 is a transcriptional activator of PR-lOa. 0f note, in

plant tissues, both wound- and pathogen-induced expression of PR-lOa is

strongest in the vasculature [53]. It was therefore hypothesized that the

differentiation of cultured ceils into vascular cells may induce the nuclear

localization of p24. Published protocols allow the differentiation of culture cells

into vascular tracheary elements (xylem). As xylem cells are dead cells, this

differentiation ends in cell death.

We induced xylogenesis, by changing the hormonal balance in celI

cultures, for a period of 48 hrs. This time point marks a peak in the expression

of vascular gene markers, but precedes tracheary element formation which

occurs 8-15 days post-induction [52]. Figure 4.2 shows that, in p24-GFP

transgenic cells, dual localization of p24-GFP was induced by the xylogenesis

treatment. Control CT-GFP celis however did not display any GFP

fluorescence in the nucleus after induction. 0f note, dual-localization of p24-

GFP was flot seen in aIl induced cells. Rather, it was seen in cells present in
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Figure 4.2

p24-GFP accumulates in the nucleus when xylogenesis is induced. LSCM of

CT-GFP and p24-GFP celis in culture f rom transgenic tobacco plants. The

cells were examined before (non-induced) and after (induced) xylogenesis

induction. GFP fluorescence is pseudo-coloured in green. Maximal

projections are shown. N = nuclei. PI = plastids. S = stromules. Scale bars =

2Oprn (A, B), 19.92tm (C), 2O.35tm (D), 9.52!lm (E), 14.84jim (F), 6.85jim

(G), 4.47pm (H).
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large aggregates that appeared after induction. lnterestingly, it was tound that

larger aggregates express larger quantities of vascular marker genes and are

more likely to form tracheary elements [52]. This suggests that the dual

localization of p24 is linked to the xylogenesis developmental program.

Interestingly, stromules are also much Iess frequent in induced celis. Whether

the stromules retract or fuse with other cellular membranes (ie. ER) remains

to be determined. In any case, the possibility that the nuclear Iocalization of

p24 could be associated with a form of programmed ceil death is reminiscent

of the dual mitochondrial/nuclear localization observed with AIF, as described

in the previous chapter.

Cytokinins as inducers of p24 nuclear Iocalization?
To induce xylogenesis, the culture medium must be supplemented with

the plant hormone cytokinin and deprived of auxin [52]. Notably, at the whole

plant level, cytokinins were found to be responsible for vascular differentiation

in the root [54]. Cytokinins have many other effects in plant cell cultures,

however, and p24 dual localization could be a consequence of any of these

outcomes. For example, cytokinins were found to induce nitric oxide (NO)

formation in tobacco cell cultures [55] and NO is an important signalling

molecule in the defence response [56]. Cytokinins were also found to induce

cell division via a D-type cyclin in Arabidopsis cell cultures, but this effect also

requires the presence of auxin [57]. Unsurprisingly, apoptosis is induced in

Arabidopsis and carrot cell cultures by cytokinins [58]. In this study, cell death

was observed after just 24 hours, but the hormone concentration used was

13-27 1aM, which is much higher than the concentration used here (1 tM).

Finally, the difterentiation of plastids into starch-storing amyloplasts is

stimulated by auxin depletion and by addition of cytokinins in tobacco BY-2

cell cultures [59, 60]. This is interesting, because both stromules and p24-

dual localization are more frequent in non-photosynthetic, amyloplast

containing tissues.

The determination of the exact cause of p24 nuclear localization will

require the study of each individual cytokinin effect. For example, it would be

interesting to treat cell cultures with physiological concentrations of NO and

determine whether p24 nuclear localization is induced.

Such experiments would help to determine “why” and “when” p24 is

localized in the nucleus, but would not answer the question “how”.
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Nonetheless, the xylogenesis induction assay provides a system in which

inhibitors of various protein transport processes can be assayed for their

effect on p24 nuclear localization.

Close association of stromules with the secretory system
The secretory system is a possible candidate for p24 transport, given

its close association with both plastids and the nucleus. Furthermore, in

animais, at least two proteins (Bd-2 and Bax) dually localized in mitochondria

and the nucieus are also associated with the ER. NDGA is a compound that

disrupts ER membranes but does flot visibly affect the golgi [61]. lnterestingly,

preliminary results show that p24-GFP stromuies completely disappear from

tobacco cells in culture following NDGA treatment (Figure 4.3), suggesting

that stromule membranes are either directiy affected by NDGA or depend on

ER membranes for their growth. Furthermore, stromules containing p24-GFP

co-localize with the fluorescent ER marker Bodipy-Bfa (Figures 4.4 and 4.5).

Ail observed stromules co-localized with ER, but flot ail ER membranes co

localized with stromules. Time-lapse imaging of WT tobacco cells in culture,

stained with the same concentration of Bodipy-Bfa, showed the movement ot

ER strands and goigi vesicles (flot shown), suggesting that the secretory

pathway is flot disrupted under these conditions. Bodipy-Bfa is known to stain

ER and golgi membranes without any visible effect on the secretory pathway

at low concentrations [62]. Negative ettects on ER and golgi membranes

observed at higher concentrations are delayed and are thought to resuit f rom

the cleavage and release of Bfa by cellular enzymes, not f rom activity of

Bodipy-Bfa per se [62].

lnterestingly, Figure 4.6 shows that membranes stained by Bodipy-Bfa

flot only co-localize with stromules, but also completely surround plastids in

some instances. As can be seen on the graph, peaks of Bodipy-Bfa

fluorescence are on either side of the wide GFP fluorescence peak,

suggesting that ER membranes are surrounding the plastids containing p24-

GFP. This is reminiscent of chloroplast ER observed in algae and suggests

that, in some celis and under certain conditions, chloroplast ER may torm in

higher plants.

These results suggest a close association of stromules with the ER.

Alternatively, stromule membranes may have ER-like attributes that allow

staining by Bodipy-Bfa. in either case, it would now be interesting to test
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Figure 4.3

p24-GFP stromules are sensitive to NDGA. LSCM of p24-GFP celi cultures

f rom transgenic tobacco. The cetls were either treated with the ER inhibitor

NDGA or with an equivalent amount of DMSQ. This experiment was

performed twice. GFP fluorescence is pseudo-coloured in green. N = nuclei.

PI = plastids. S = stromules. Scale bars = 15.13tm (DMSO), 2Otm (NDGA).



139

DMSO

NDGA



140

Figure 4.4

p24-GFP stromules co-localize with ER strands. LSCM of p24-GFP celI

cultures f rom transgenic tobacco (only a part of a celI is shown), stained with

the fluorescent ER marker Bodipy-Bfa. A The left panel shows GFP

fluorescence, pseudo-coloured in green. The right panel shows Bodipy-Bfa

fluorescence, pseudo-coloured in blue. Maximal projections are shown.

Rectangles highlight areas of visible co-localization. B Overlay of the two

images. A white line is drawn through an area of co-localization.

Fluorescence intensity is measured along this line and plotted on the graph

below for each fluorescent marker (Green = GFP, Blue = Bodipy-Bfa). Scale

bar = 20tm.
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Figure 4.5

p24-GFP stromules co-Iocalize with ER strands — Part 2. LSCM of p24-GFP

ceIl cultures from transgenic tobacco (two celis are shown), stained with the

fluorescent ER marker Bodipy-Bfa. A The Ieft panel shows GFP fluorescence,

pseudo-coloured in green. The right panel shows Bodipy-Bfa fluorescence,

pseudo-coloured in blue. Maximal projections are shown. Rectangles

highlight areas ot visible co-localization. B Overlay of the two images. A white

line is drawn through an area of co-localization. Fluorescence intensity is

measured along this line and plotted on the graph below for each fluorescent

marker (Green = GFP, Blue = Bodipy-Bfa). Scale bar = 2Otm.
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Figure 4.6

Tobacco celis have chloroplast ER. LSCM of p24-GFP cell cultures trom

transgenic tobacco (two cells are shown), stained with the fluorescent ER

marker Bodipy-Bfa. A The Ieft panel shows GFP fluorescence, pseudo

coloured in green. The right panel shows Bodipy-Bfa fluorescence, pseudo

coloured in blue. Maximal projections are shown. Arrows point to plastids

surrounded by ER. B Overlay of the two images. A white une is drawn

through a plastid surrounded by ER. Fluorescence intensity is measured

along this line and plotted on the graph below for each fluorescent marker

(Green = GFP, Blue = Bodipy-Bfa). Scale bar = 2Ojim.
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whether inhibitors of the secretory pathway (such as NDGA) can inhibit p24

nuclear localization in the xylogenesis assay. However, such experiments wilI

be complicated by the rapid action of NDGA compared to the nuclear

localization of p24. A long disruption of the ER wiii have many pleiotropic

eftects and may impede p24 transport indirectiy.

Transit of p24 from chloroplasts to the nucleus?
Another question regarding p24 dual localization is whether nuclear

p24 cornes from the plastids or from the cytosol. Preliminary resuits using

FRAP on transgenic p24-GFP tobacco roots suggest that p24 can transit f rom

the plastids to the nucleus directly (Figure 4.7). In this experiment, GFP

fluorescence in the nucleus was bleached, while GFP in the surrounding

plastids was mostly unaffected. Followi ng bleaching, fluorescence recovered

in the nucleus but decreased in ail surrounding plastids, indicating the p24-

GFP transited from the plastids to the nucleus. This was only achieved once

however, despite several trials, and more replicates need to be performed.

The difficulty lies in having a fluorescent nucleus and plastids in close

proximity and in the same plane. Also, ail observed organelles must remain in

the same plane for the duration of the experiment. Furthermore, fluorescence

recovery in the nucleus could still result from p24-GFP synthesized in the

cytosol. To eliminate this possibility, if would be interesting to repeat this

experiment in the presence of the protein synthesis inhibitor cyclohexirnide.

Conclusive results could also be obtained with the use of p24 fusions with

photo-convertible fluorescent proteins such as the Kaede-GFP [63] and the

newly described monomeric PS-CFP {64J. These proteins display an

irreversible change in excitation and emission spectra following excitation with

UV or violet light. Therefore, if photo-conversion is targeted to plastids

containing the p24 fusion protein, then appearance of fluorescence of the

shifted wavelength in the nucleus would confirm that p24 has moved from the

plastids to the nucleus.

Conclusion
This chapter has presented the occurrence of p24-GFP in chloroplast

stromules. These strornules are closely associated with the ER. Some

plastids of ceils in culture are even surrounded by ER strands, which is

reminiscent of chloroplast ER found in some algae. While p24 is mostly found
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Figure 4.7

Fluorescence recovery after photobleaching. LSCM ot a transgenic p24-GFP

tobacco root celI. The top left panel represents the celI before bleaching. The

right panel represents the ceil after bleaching, but before recovery. Regions ot

interest (ROI) are circled and numbered 1-6. ROI 1 corresponds to the

nucleus, while ROIs 2-5 are surrounding plastids. GFP fluorescence is

pseudo-coloured green. The bottom graph shows the change in fluorescence

intensity for each of the ROIs.

Note: the bleached area was square and slightly larger then ROI 1.
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in plastids, nuclear Iocalization could be induced by cytokinin treatment 0f

ceils in culture. The mechanism of p24 nuclear Iocalization s flot clear, but

preliminary FRAP resuits suggest that p24 is transported f rom surrounding

chloroplasts.
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Chapter V

Discussion

As sessile organisms, plants must cope with sometimes adverse

environmental conditions. They have therefore evolved very sensitive

mechanisms to perceive changes in their environment. Responses to such

changes depend on the metabolic and developmental state of the plant and

are finely tuned to balance protection with other energy demanding activities

such as growth and reproduction.

Further metabolic complexity in plants results from the coexistence of

heterotrophic and autotrophic tissues in the same organism. Carbon fixed in

photosynthetic “source” tissues needs to be transported to heterotrophic

“sink” tissues to ensure balanced growth. This process is tightly coordinated

and therefore requires extensive signalling throughout the plant. Signalling is

also required within cells, to ensure equilibrium between carbon fixation,

usage and storage.

This thesis began with the identification of a protein (p24) that binds

the promoter element of the pathogenesis related gene PR-lOa in potato

tubers. Major tindings presented here include the tact that p24 is an

evolutionarily conserved gene that encodes a protein with a chloroplast transit

peptide. This protein is localized in plastids and nuclei and appears to

regulate stress-dependent gene expression in both compartments,

contributing to signalling between them. The mechanism for dual localization

has not been elucidated but appears to depend on plant hormones.

Furthermore, p24 is present in chloroplast stromules that associate with ER

membranes.

Role of PR-1O
PR-1O proteins have no known function though it has been suggested

that they are ribonucleases [1, 2]. This conclusion is disputed however. Two

other studies have shown that PR-1O is a cytokinin-binding protein [3, 4]. It is

not clear whether PR-1O would be a cytokinin transporter or if it would be

sequestering these hormone molecules and therefore inhibiting their

signalling. Finally, PR-1O has been crystallized bound to deoxycholate [5].

This molecule is not found in plants, but it is highly similar to the plant
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hormones brassinosteroids and it was suggested that the latter are the

physiological ligands of PR-1O [5]. Brassinosteroids and PR-10 are both

present in high concentrations in pollen. It was hypothesized that PR-1O

proteins are steroid carriers and allow the presentation ot these hydrophobic

hormones to their receptors [5]. PR-10 proteins might bind both cytokinins

and brassinosteroids because they appear to possess two distinct ligand

binding sites [4].

Cytokinins in induction of sink activity
Cytokinins are known to induce sink activity in plant tissues and to

delay senescence, through the induction of genes coding for extracellular

invertases and sugar transporters [6, 7]. Extracellular invertase genes are

also induced by pathogens [8]. These enzymes are responsible for

conversion of sucrose to glucose and fructose. As such they are responsible

for the local assimilation of sugars transported throughout the plant [8].

lnterestingly, a putative p24 binding site can be found in the promoter

(position -373) of the Lin6 extracellular invertase gene f rom tomato (Figure

5.1). In addition, 5 PB sites are found in the first intron of L1n6, and one of

these is 12 nucleotides from the left border of the intron. It is therefore

possible that p24 contributes to the transcriptional activation and/or post

transcriptional processing of Lin6. In contrast, no PB sites are present in the

promoter of the upstream LinB gene, and a single PB site can be found in the

second intron of that gene. Lin6, but flot Lin8, is induced by brassinosteroids

[9], cytokinins, glucose, wounding and pathogen elicitors [10].

As noted in the previous chapter, cytokinins induce the nuclear

Iocalization of p24 in plant cell cultures. This allows for the intriguing

possibility that p24 participates in the induction of sink activity by cytokinins,

possibly through the activation of a potato Lin6 homologue. In support of this

hypothesis, p24 antisense plants produce much smaller potato tubers than

WT plants (data not shown). Expression of extracellular and vacuolar

invertase, but not cytoplasmic invertase, also leads to expression of PR

genes in tobacco [11]. It was suggested that sensing of sugars in the

secretory pathway, if their concentration exceeds a certain threshold, Ieads to

activation of the defence response [11].

p24 in the nucleus activates PR-70a in response to wounding, infection

or pathogen elicitors. PR-1 Oa might in turn promote brassinosteroid signalling.
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Figure 5.1

Putative PB sites in celi waIl invertase (CWlnv) genes trom tomato. The L1n8

and Lin6 genes are adjacent to each other in the tomato genome (Accession

AF506004). Introns are indicated by blue triangles. The putative PB sites are

indicated with red unes.
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To that effect, it is interesting to note that cytokinin and sugar signalling

appear to be upstream of brassinosteroid synthesis and signalling [12].

It s also noteworthy that PR-70a s mainly induced in the vasculature,

where it could play a role in source-sink relations. It has been shown that

modifications in the source/sink balance are associated with induction of the

defence response and the establishment of SAR [11].

Model of p24 activity
Chapter III showed that p24 controls photosynthesis in a stress

dependent manner. One possibility is that this serves to maintain the

production of sugars and energy in source tissues to support detence

activities in infected tissues that are converted to sinks. Figure 5.2 illustrates

the possible roles and localization of p24 throughout the plant. Under stress

conditions, such as infection, autotrophic cells not directly intected would

have p24 in the chloroplasts, where it would serve to maintain photosynthesis

and avoid overproduction of ROS, thus protecting these ceils. Conversely, in

sink cells or in infected source cells converted to sinks, p24 would move to

the nucleus. There, it would activate defence genes such as PR-lOa only if a

stress stimulus such as wounding or an elicitor was present. Nuclear p24

might also induce extracellular invertase to amplify the stress response.

This would explain why, in potato, PR-lOa is only strongly induced in

tubers, but not in leaves, following elicitor treatment [13]. While the elicitor

might be sufficient to induce the defence response, it s not sutticient to

induce p24 nuclear localization. Infection with P. infestans does induce PR

lOa in leaves however [13]. This makes sense because pathogens have been

shown to induce sink activity [8, 14]. This source-sink transition would

presumably cause p24 nuclear localization and elicitors from the pathogen

would then promote induction of PR-lOa. While p24 was observed in leat celI

nuclei using biochemical methods (see Figure 3.2), it should be emphasized

that we cannot determine the ceIl type or the abundance of p24 in these

nuclei. The amount of tissue required to detect p24 suggests that it is of very

low abundance in leaf celi nuclei.

Cytokinins and source-to-sink transitions are not likely to be the sole

determinants of p24 nuclear Iocalization however. lndeed, in the xylogenesis

assay presented in chapter IV, only a fraction of the cells in culture exposed

to cytokinins and high sucrose concentrations showed p24-GFP nuclear
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Figure 5.2

Proposed model of p24 action and localization. p24 is always present in

plastids where it has a protective function by regulating photosynthesis.

Nuclear localization of p24 depends on a certain developmental program

requiring cytokinins and another unknown signal. This developmental

program probably coincides with the activation ot sink activity. Upon nuclear

localization, a stress signal causes p24 to induce defence gene expression.

PR-lOa is thought to be a brassinosteroid carrier, and both brassinosteroids

and soluble sugars are known to participate in defence signaling. Solid

arrows: demonstrated links. Dotted arrows: proposed links.
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Iocalization. Also, most root cells express the genes for cytokinin receptors

[15], but only a few cells trom transgenic roots showed p24-GFP in the

nucleus. Another signal, probably developmental, is therefore required for

transiocation of p24 to the nucleus.

Similarities between p24 and animal pro-apoptotic proteins
In plastids, our results suggest that p24 could control cyclic electron

f low by affecting the activity cf the plastid NDH enzyme (see Figure 3.18).

NDH is homologous to the mitochondrial respiratory chain complex I [16, 17].

Strikingly, animal AIE, a protein shown to have dual mitochondrial/nuclear

localization, was shown to be important for the activity 0f mitochondrial

complex I under normal conditions [18]. lt is thought that AIE protects the cell,

through its intrinsic NADH oxidase activity, by maintaining complex I activity

and providing resistance to oxidative stress [18]. This is in direct contrast to

the apoptotic activity of AIF in the nucleus.

It is interesting that complex I and its plastid homologue (ie. NDH)

could both be targeted by proteins that also localize to the nucleus, though

the significance of this is flot clear. AIF, once translocated to the nucleus,

induces apoptosis [19]. There is no evidence yet that nuclear p24 contributes

to programmed ceIl death. Like p24, AIE associates with nuclear DNA, though

it is in association with endonuclease G, and AIE does flot appear to be a

transcriptional regulator [20]. In conclusion, although there are strong

similarities between these two systems, there are also significant differences.

In that sense, p24 is more similar to the transcriptional regulator p53.

p53 is also a tetramer [21]. Both proteins are present in two locations in the

same cells [22 and Chapter III]. lnterestingly, a traction ot p53 is at the

surface of mitochondria while a certain number of p53 molecules are inside

mitochondria [22]. In some confocal pictures of plant cells expressing p24-

GFP, it sometimes appears that some of the p24-GFP speckles are on the

outside of chloroplasts, rather than inside. It would be interesting to purity

these intact chloroplasts and treat them with proteases to see if a fraction of

p24-GEP disappears, which would mean that it was at the surface of the

chloroplast.

In contrast to p24 however, there is no evidence that p53 affects

organelle gene expression, though a recent study has identified a putative

p53-binding site in the human mitochondrial genome [23]. This site is
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recognized by p53 when inserted into the nucleus [23]. It has also been found

that p53 interacts directly with mitochondrial manganese superoxide

dismutase and inhibits its activity [24]. The possibility that p24 has other non

transcriptional effects in chloroplasts also cannot be excluded at this stage.

p24: prokaryotic or eukaryotic transcription factor?
The DNA-binding and transcriptional activities cf p24 in both plastids

and the nucleus poses another challenging question. How can p24 be a

transcriptional activator in both a prokaryotic and an eukaryotic context? As

mentionned in chapter III, there are at least two types cf polymerases

operating in plastids and p24 appears to contribute te NEP-dependent

transcription. The PEP polymerase is ot prokaryotic origin, while the NEP

polymerase has the same characteristics and is sensitive to the same

inhibitors as the viral T7 polymerase [25]. A study in animal celis showed that

a reporter gene under the 17 promoter, inserted into the nuclear genome,

was transcribed just as efficiently in the presence or absence of a T7

polymerase transgene [26]. This shows that T7 promoters are recognized by

the eukaryotic nuclear transcription machinery. In that context, it is possible

that different proteins in each compartment serve as bridges between the

DNA binding proteins (such as p24) and the respective polymerases.

It is interesting that other dually-localized plant proteins, such as SEBF

and SigA2 are also involved in transcription. p24 likely acts in concert with

these proteins te control gene expression in chloroplasts and nuclei, and the

communication between these two compartments.

Future prospects
The study of p24 has proven both challenging and rewarding. Like AIE

and p53, p24 appears to have many functions and cellular locations. A model

is emerging in which p24 has a protective function in the chloroplast, by

maintaining photosynthesis, and a role in pathogen defence in the nucleus.

These two roles are probably complementary, especially when considered in

the context cf the whole plant. Finally, it is likely that p24 has several other as

yet unidentified functions.

A number of questions warrant further study in the near future. First, it

is still unclear how p24 moves to the nucleus. As mentionned above, this

could be addressed by using fusions of p24 with photo-convertible fluorescent
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proteins. It might also be informative to try different p24 mutations in the

xyiogenesis assay to see which domains of p24 are involved in nuclear

Iocalization. Inhibitors of the ER or golgi apparatus, such as Bfa or NDGA,

could test whether p24 nuclear localization depends on the secretory

pathway. FRAP also holds promise to test whether p24 moves from the

chloroplasts to the nucleus. Use of cycloheximide would ensure that p24

accumulating in the nucleus does not result from de novo synthesis in the

cytosol.

Another important issue is the role of dual Iocalization. The double role

of p24 is most Iikely to ensure a coordinated response to stress. Nonetheless,

the identification of mutations in p24 that Iead to single local ization would give

dues as to the precise role of p24 in each compartment. Furthermore, such

mutations would allow the study of chloroplast-nucleus signalling.

The role of p24 in source-sink relations is another attractive avenue of

research. Given the putative PB sites in a stress-responsive extracellular

invertase gene (Figure 5.1), it would be interesting to see if p24 affects the

expression of this gene and if this depends on cytokinins. Levels of soluble

sugars and starch in p24 transgenic plants could aiso be determined. In

addition, to confirm that cytokinins are responsible for changes in p24

Iocalization, cytokinin-insensitive mutant plants or plants with defects in

cytokinin synthesis could be tested for p24 nuclear localization.

Finally, the subject of how p24 controls gene expression in two

compartments could have an important impact on evolutionary theories. Is the

PR-lOa promoter recognized by a prokaryotic transcription system? Do

chloroplast NEP promoters function in the nucleus? Did the nucleus inherit

promoter sequences and coactivator genes from the cyanobacterial

endosymbiont?

Concluding remarks
Plant responses to their environment are finely tuned to both internai

and external stimuli. This coordination depends on extensive signalling

throughout the plant and within each celi. The discovery of proteins that have

multiple roles and cellular locations has offered a potential mechanism by

which different compartments could respond to the same stimuli in a

coordinated fashion. The novei transcriptional activator p24 appears to
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synchronize photosynthetic activity with the energetic demands ot biotic and

abiotic stress defence.

This thesis offers a framework by wich intracellular signalling and

stress defence can be studied in the context of whole-piant biology. Doing so

will provide one with, as Barbara McCiintock would have said, a better

“feeling for the organism”.

Note added in proof
A recent publication reported the purification of two members cf the

p24 tamiiy as part of a protein complex corresponding to a membrane-bound,

transcriptionally active chromosome (TAC) in plastids of both Arabidopsis and

mustard [27]. Other proteins in this compiex included subunits of PEP, as wefl

as a DNA gyrase, elongation factor Tu, several ribosomal proteins,

superoxide dismutase (SOD), phosphotructokinase, thioredoxin and others.

This mix ot proteins suggests that plastid transcription might be linked to

translation and be controiled by ROS, sugars and redox signais. t wili be

interesting to determine the roie of p24 in these processes.

Finaiiy, the intraceilular iocalization of ail three Arabidopsis members

of the p24 famiiy has been elucidated [28]. Both At1g14410 and At2g02740

were tound to be targeted to the chloropiasts when fused to GFP, while

Ati g71 260 was found in mitochondria. The work presented in this thesis does

not include the study of the potato homologue of Ati g71 260, and it wouid be

interesting to see if this protein also participates in stress-dependent gene

expression in mitochondria.
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Annex 7
A peri computer program to search for potential transcription factor binding

sites in a given sequence

44 1 !/usr/bin/perl -w
print “This is a program to look for DNA motifs in a
seguence\n\n”;

use strict;
use warnings;

my $DNAfilename = T T;

my @DNA =0;
my $p24 searchresults=’p24results.txt’

44 10 Ask for file name
print “Please type the f ilename of the DNA sequence data:’;
$DNAfilename = <STDIN>;

# 14 Remove the new une f rom the DNA f ilename;
chomp $DNAfilename;

# 17 Open the file or exit
unless ( open(DNAFi1e, $DNAfilename) ) {

print “Cannot open file \“$DNAfilename\”\n\n”;
exit;

44 23 Read the file and store the data into array @DNA
@DNA = <DNAFi1e>;

# 26 Close the file
close DNAFi1e;

44 29 Declare and initialize variables
my $sequence T

T

foreach my $line (@DNA)

# 34 discard blank line
if ($line =- /\s*$/)

next;

# 38 discard comment une
elsif($line /\s#/) {

next;

44 42 discard fasta header une

} elsif($line =- />/) {
next;

44 46 keep line, add to sequence string

} else

$sequence $line;
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# 52 remove non-sequence data (in this case, whitespace)
from $sequence string

$sequence =- s/\s//g;

# remove digits
$sequence = s/[0-9]//g;

# 57 Check for p24 motif
my $motifl = tat] gtc [at] [at] [ati [at] [at] ‘;

#60 Look for motif
if ($sequence =.- /$motifl/)
print “I found it!\n\n”;

} else {
print “I couldn\’t find it.\n\n”;

sub match_positions {
my ($motif, $dnaseq) =

my @positions = O;
whule ($dnaseq = /$motif/ig)
push (@positions, pos($dnaseq) - length($&H;

return @positions;

open (OUTFILE, “»$p24searchresults”)
my @locations=f);
my $array=’
my $x=’’;
my $n=’’;
@locations = match_positions ($motifl, $sequence)
if (@locations) {

print “The motif $motif 1 was found at positions: \n”;
print join(” “, @locations) ,

# 83
$n=0;
foreach $x(@locations) {
if (($x-150)<0) {

print “Position is too close to beginning’;
$x=150;

} else {
$x=$x;

$array = substr($sequence, $x-150, 300)

print (OUTFILE ‘> I);

for ($n > length(@locations)) {
print (OUTFILE $locations [$n])

print (OUTFILE T is:\n’)
for (my $pos = O ; $pos < length($array) ; $pos += 80)

print (OUTFILE substr($array, $pos, 80), “\n”)

print (OUTFILE “\n”);
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} else {
print “The motif $motifl is flot in this DNA\n’;

# 57 Check for p24 motif
my $motif2 = [ati [at] [at] tat] [at] gac [ati ‘;

#60 Look for motif
if ($sequence = /$motif2/)
print “I found it!\n\n”;

} else {
print I couldn\’t find it.\n\n”;

my @locations2=t);
my $array2= T

my $y=’’;
my $m=’
@locations2 = match_positions($motif2, $sequence)
if (@locations2) {

print The motif $motif 2 was found at positions: \n”;
print join(” “, @locations2) ,

# 83
$m=0;
foreacli $y(@locations2)
if (($y-150) <0)

print ‘Position is too close to beginning”;

$Y=150;
else

$Y=$Y;

$array2 = substr($sequence, $y-lSO, 300);

print (OUTFILE T> T)

for ($m > length(@locations2)) {
print (OUTFILE $locations2 [$m]);

print (OUTFILE “ is:\n”)

for (my $pos2 = O ; $pos2 < lengthf$array2) ; $pos2 +=

80) {
print (OUTFILE substr($array2, $pos2, 80), “\n”)

print (OUTFILE “\n”)

++ $m;

} else {
print “The motif $motif2 is not in this DNA\n”;

44104
close OUTFILE;

exit;


