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Résumé

XerC et XerD, deux recombinases impliquées dans la recombinaison site spécifique,

résolvent des plasmides multimères en monomères. Les multimères générés lors de la

réplication du chromosome circulaire chez les bactéries, sont en général très instables et

peuvent engendrer des pertes de matériel génétique. Le rôle important de XerC et de XerD

est donc de veiller à la stabilité chromosomique chez les bactéries. Membres de la famille

des tyrosines recombinases, ont retrouvent plusieurs homologues de ces protéines chez les

bactéries. Chez Staphylococcus aureus. $treptococcus pneumoniae et Pseudornonas

fluorescens, des mutants Xer atténuent l’infection et la pathogénicité chez la souris. Chez

Streptococcus suis, une bactérie gram positive impliquée dans de nombreuses maladies

chez l’animal et l’humain, une forte homologie de séquences a été trouvée entre un gène et

celui de xer chez les bactéries $treptococcus. Pour déterminer l’implication de Xer dans la

pathogénicité chez Streptococcus suis, nous avons cloné, surexprimé et purifié XerC dans

le but de réaliser des études de fonctionnalité avec cette protéine. Comme c’est le cas chez

Bacitius subtilis, les résultats montrent que XerC s’attache sur l’ADN au site dif D’autre

part, nous montrons qu’une mutation dans XerC affecte la croissance et cause d’importants

changements morphologiques.

Mots-clés Recombinasion spécifique de site /tyrosine recombinase/XerC/dif’

Streptococcus suis
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$ummary

XerC and XerD mediated site-specific recombination contributes to the stabiÏity of circular

chromosomes in bacteria by resolving plasmid mutiimers and chromosome dimers to

monomers prior to ceil division. The XerC and XerD proteins are members of the tyrosine

recombinase family. Homologues of xerC/xerD genes have been found in many bacteria.

Recently, xer mutants in Staphylococcus aureus, Streptococcus pneumoniae and

Pseudomonas fluorescens have demonstrated reduced pathogencity suggesting a possible

relationship between Xer proteins and the pathogenicity of these bacteria. Streptococcus

suis is a Gram-positive bacterium, which is a leading cause of a wide range of diseases in

animais and is also implicated in human diseases. The analysis of the S. suis genomic

sequence demonstrated the presence of an open reading frarne (ORF) that shows strong

homology to the xer genes of streptococcal bacteria. In our project, we cloned,

overexpressed and purified the xerC gene and its product as a maltose binding protein

fusion. The function of XerC protein was characterized and showed DNA binding activity

at dif site of Bacillus subtiÏis. The df site of S. suis was aiso discovered during this work

and the XerC protein of S. suis showed specific binding to this site. A S. suis xerC mutant

showed a slower growth rate and displayed significant morphological differences.

Keywords: Streptococcus suis/Site-specffic recombination!tyrosine recombinase/XerC/dif
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Chapter I

Introduction

1. Site-Specific Recombination

Recombination is a ubiquitous process where organisms reshuffle their genetic

infoniiation. This genetic exchange occurs between DNA molecules from the two parents

or between two DNA segments within the same molecule. Such recombination may be

general, occurring between two DNA substrates with extensive homology, which is called

general homologous recombination, or site-specific, occurring between two specific,

relatively short DNA targets, which is designated site-specific recombination.

In DNA rearrangements mediated by site-specific recombination, four DNA strands

are broken, exchanged and resealed at specific positions of two separate recombination

sites (Stark et al., 1992; Landy, 1993; Nash, 1996; Jayaram, 1994). Outcomes of a

recombination event depend on the relative disposition of the two sites. Intramolecular

recombination between inverted or directly repeated sites will invert or excise respectively

the intervening DNA segment. Recombination between sites on separate DNA molecules

will integrate one molecule into the other (Figure 1).

These different structural consequences of site-specific recombination lead to various

biological functions. It includes integration and excision of bacteriophages into and out of

bacterial chromosomes, inversion gene switches that provides alternative gene expression

of bacterial celi surface proteins and of pliage tau fibers, conversion of initial products of

intermolecular genetic transposition into transposition end products, copy number control

and stable inheritance of microbial plasmids, and normal partition of the Escherichia cou

chromosome (reviewed by Sadowski, 1986; Stark et al., 1992).
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Inversion

Excision/resolution

Figure I Outcomes from site-specific recombination. Triangles show the orientation ofthe

recombination sites. a and b indicate the position of distinct genetic markers and the

recombination loci. ‘Excision’ and ‘integration’ refer to recombination events involving

genetic entities of different size and /or function (e.g., the bacterial chromosome and a

pliage genome), whereas ‘resolution’ and ‘fusion’ apply to equivalent DNA molecules,

(e.g., two pÏasmids) (Adapted from Hallet and $herratt, 1997).

Integrationlftision
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Site-specific recombinases utilise a topoismerase 1-like mechanism, cleaving and

rejoining one strand of DNA per promoter. A complete recombination event therefore

requires at Ïeast four molecules of the recombinase, two on each DNA recombination

partner. DNA strand exchange is conservative in two ways: there are no deletions or

additions of nucleotides at the site of exchange and there is no need for high- energy

factors. A transient 3’-phosphotyrosine/phosphoserine linkage between protein and DNA

conserves the energy ofthe cleaved phosphodiester bond (Nunes-DUby et aï., 199$).

Site-specific recombinases fail into one of two unrelated families, the resolvase/DNA

invertase family and the lambda integrase family (Hatfull and Grindley, 198$; Argos et aï.,

1986; Sadowski, 1986; $tark et al., 1992). Enzymes of both families catalyze conservative

DNA break-j oin reactions that proceed by two-step transesterifications in which protein

phosphodiesters act as reaction intermediates.

1.1 The Resolvaseflnvertase Family

The resolvase/invertase family, of which there are cunently approximately 40

different members, forms a rather homogenous group of related proteins in which a

conserved serine residue plays a key catalytic role (Hatfull et al., 1988; Leschziner et aï.,

1995). The best-characterized recombinases of this family are the invertases Gin from

bacteriophage Mu and Hin from $almoneÏÏa sp. and the resolvases of Tn3 and y

transposons ($tark et al., 1992; Van de Putte et al., 1992; Grindley et al., 1994; $tark et al.,

1995; Johnson, 1995; Johnson, 1991).
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In a recombination catalyzed by resolvases or invertases, double strand breaks

staggered by 2 bp occur at the rniddle of the two paired core sites, giving rise to recessed 5’

ends and 3’-OH overhangs. One recombinase subunit is linked to each of the 5’ ends

through the conserved the serine residue of the family (Reed et aï., 1984; Kiippel et aï.,

1988). This serine presumably provides the primary nucleophile hydroxyl group in the

cleavage reaction (Leschziner et al., 1995). The ligation step that follows strand exchange

can be viewed as the converse of the cleavage: the protein-DNA phosphoseryl bond of one

strand is attacked by the 3 ‘-OH end of the partner to release the enzyme and reseal the

DNA backbone in the recombinant configuration (Figure 2). Thus, recombination by a

resolvase/invertase family occurs by a mechanism in which four DNA strands are broken

and rejoined in a concerted manner.
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Figure 2 Model of the action of the resolvases/invertases. The subunit rotation model

is shown. The oyaIs represent recombinase subunits with the conserved catalytic serine’S’.

Thick and thin unes are the top and bottom strands of the recombination sites, respectively.

The short vertical bars are the 2 bp of the overlap region between the two cleavage points.

Black arrows represent the nucleophilic attacks of phosphates (black dots) by hydroxyl

groups (arrowheads). The four DNA strands are cleaved (a), exchanged by 1 $00 rotation of

the haif-site bound subunits (b) and religated in the recombinant configuration (c) (Hallet

and Sherratt, 1997).

3*

b
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1.2 Lambda Integrase Family

1.2.1 Generalities

The lambda integrase or ‘tyrosine recombinase’ family inc[udes over 130 members

identffied according to sequence similarity (Nunes-Dtiby et ai, 199$). Most biochemical

studies of this family of enzymes have focused on the integrase from bacteria phage X (Int)

(Landy, 1989), Flp recombinase from yeast 2 plasmid ($adowski, 1995), Cre recombinase

from bacteria phage Pi (Hoess et al., 1985) and the XerC and XerD recombinases from

Escherichia cou ($herratt et al., 1995). These proteins share only limited sequence

similarity and are rnuch more divergent, with only four completely invariant residues

intimately involved in catalysis: the RHRY tetrad (Argos et al., 1986; Abremski et al.,

1992; Blakely et al., 1996). However, these recombinases carry out site-specific

recombination using a common mechanism that involves the formation of a Holliday

junction (HJ) intermediate (Craig, 198$). Moreover, unlike the recombinases of the

resolvase/invertase family, site-specffic recombinases related to X Int exchange the two

pairs of DNA strands separately and sequentially.

1.2.2 The Recombination Reaction

To initiate the first strand exchange, the tyrosine residue of the conserved catalytic

motif RHRY attacks a specific scissile phosphate in one strand (defined here afier as the

top strand) of each recombination core sites, thereby forming a 3 ‘phosphotyrosyl-linked

recornbinase-DNA complex and generating a free S’-OH end (figure 3). The polarity of
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this cleavage reaction is thus reversed when compared to that of the resolvase/invertase

mediated cleavages. In a second step, the recombinase-DNA phosphotyrosyl bond is

attacked by the 5’-OH end from the partner duplex to generate a four-way branched

structure, or ‘Holiday junction’ intermediate, in which only two DNA strands have

recombined. To resolve this intermediate and complete the recombination reaction, the two

other (bottom) strands are exchanged by repeating the cleavage/religation process 6-8 bp

downstream ofthe first strand cleavage position (Hallet and Sherratt, 1997).
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Figure 3. Sequential strand exchange by the 2 Int family site-specffic recombinases. The

DNA strand swapping !isomerisation model is presented. The letter ‘Y’ refers to the

conserved catalytic tyrosine. The oyais represent recombinase subunits. Thick and thin

unes are the top and bottom strands of the recombination sites, respectively. Black arrows

represent the nucleophulic attacks of phosphates (black dots) by hydroxyl groups

(anowheads). The top strands (thick unes) are cleaved first ta), swapped between the two

partners (b), and then religated (c). The branch point of the generated Holliday junction

intermediate is positioned at the middle of the (6-bp) overlap region and the top strands are

crossed. Isomerisation of the Holliday junction to a recombination configuration in which

the bottom strands are crossed requires the reorganization of the DNA helices and the four

haif-sites-bound recombinase subunits within the complex (d). The resulting Holliday

junction isoform is resolved by repeating steps a to c in order to exchange the bottom

strands (e) (Hallet and Sherratt. 1997).

\)
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î
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1.2.3 The Conserved Motifs

The proteins of the tyrosine recombinase family are very divergent and share limted

similarity in the amino acid sequence, but how they can carry out site-specific

recombination using a common mechanism? Alignments of this integrase family of

proteins identffied some conserved motifs, which are related to their catalytic function. Ail

proteins harbor two conserved regions, Box I and Box II, with marked sequence similarity,

originaiiy identified from the alignment of only eight recombinases (Argos et aÏ., 1986).

Box I includes the fourth conserved residue R, and Box II contains other three conserved

residues, the triad H-R-Y, which includes the active site tyrosine (Abrernski and Hoess, 1992;

Nuiies Dtiby, 199$). The conservation of Box I is striking in prokaryotic recombinases and it

extends with some variation to eukaryotic recombinases. Box II is also relatively strongly

conserved among the prokaryotic recombinases, but Ïess so between prokaryotic and

eukaryotic proteins. Whereas the active tyrosine is absoiutely conserved, the surrounding

residues are rather divergent, allowing for quite different secondary structures.

Furthermore, the crystal structure of the 2 Int catalytic domain revealed an additional

pattem of conserved hydrophobic residues that forms the core of the globular structure. It

suggests that ail members of the integrase famiÏy adopt similar folds for the region

spanning Box I, the interval region and Box II (Nunes-DUby et aÏ., 1998).

In addition to the highly conserved Box I and Box II motifs and the pattern of core

hydrophobic residues, three patches of conserved sequence were identified in the extensive

aÏignment of the prokaryotic recombinases (Nunes-DUby et aÏ., 1997). Patch lis tocated within the
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short N-terminal region tipstream of Box I, consensus sequence LT-EEV—LL. Patch 11 contains a

lysine (K235) flanked on both sides by serine or threonine in one subgroup of proteins and by

glycine or methionine in another subgroup. For example, Lambda integrase (S234, K235, T236)

belongs to the first subgroup, whereas XerD (G234, K235, G236) belongs to the second one. Patch

III consists of a hydrophobic cluster rich in phenylalanines, preceded by acidic and followed by

polar residues in the majority of proteins: [D, E]-[F, Y, W, V, L, I, A] 3—6 [S, T]. It is located in the

divergent region between Box II and I, and is an important stabilizer oftÏie native folds of integrase

farnily recotnbinases (Nunes-DUby et al., 1998).

2. Xer Site-Specific Recombination

2.1 Generalities

The physical state of circular chromosomes, unlike linear chromosomes, can be

changed by homologous recombination. Odd numbers of homologous recombination

events between circular replicons during or afier replication, produce dimers that need to be

converted to monomers before they can be segregated normally at ceil division (Austin et

aï., 1981; 31akely et al., 1991; Kuempel et al., 1991). Plasmid dimers can also arise as a

consequence of rolling circle replication during conjugal transfer (Warren and Clark, 1980;

Erickson and Meyer, 1993). The Xer site-specific recombination system, initially

discovered for its role in plasmid Co1E1 stable inheritance, also functions in the normal

inherjtance of the Escherichia cou chromosome and the stable inheritance of other

multicopy plasmids. h is encoded by the circular chromosomes of many bacteria and

functions to ensure that both circular chromosomes and multicopy plasmids are monomeric
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before their segregation to daughter ceils at ce!! division (reviewed in Shenatt et al., 1995).

Xer recombination is mediated by enzymes that be!ong to the lambda integrase family of

site-specific recombinases (the ‘tyrosine recombinases’), which are structura!ly and

mechanistically related to the type lB topoisomerases of eukaryotes (reviewed in Sherratt

and Wigley, 199$).

However, Xer site-specific recombination exhibits three features that distinguisli it

from other well-characterized members of the lambda integrase farnily. First, it uses two

re!ated recombinases, XerC and XerD, each of which catalyses one specific pair of strand

exchanges (Blakely et aÏ., 1993, 1997; Arciszewska and Sherratt, 1995; Col!oms et al.,

1996, 1997; Arciszewska et al., 1997). The use of two recombinases potentia!ly allows

each pair of strand exchanges to occur separate!y and could direct the order of strand

exchanges (Co!!oms et al. 1996). Second, the recombination reaction has different

requirements and outcomes depending on whether it occurs at plasmid or chromosomal

recombination sites. Recombination at natural plasmid sites is preferentia!!y intramolecu!ar

and requires the two recombinases and the 28-30 bp recombination core site, as we!l as

additional accessory proteins and adjacent accessory DNA sequences. Interaction of the

accessory proteins and accessory sequences promotes the formation of a synaptic complex

ofprecise topology, that can form efficiently on direct!y repeated recombination sites in the

same molecu!e (Colloms et al., 1996, 1997). In contrast, the recombination at the E. cou

chromosome site, d7 requires only a 2$ bp recombination core site at which the two

recombinases act. Recombination in vivo at df present in multicopy p!asmids, occurs

both intermo!ecu!arly and intramolecularly (BlakeÏy et al., 1991, Leslie and Sherratt, 1995;
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Tecklenberg et aÏ., 1995). Third, despite the sequence divergence of integrase family

recombinases, Xer-like recombinase sequences are present in the majority of eubacteria,

suggesting that the mechanism of dimer resolution used by E. cou is highly conserved

(Table 1) (Recchia and Sherratt, 1999).

Table 1 The Xer recombinases and ftsK homologues in eubacteria and archaeabacteria.

for FtsK, ‘+‘ means having homologues. ‘—‘ means no homologue found [adapted from

Recchia and $herratt, 1999].

FtsK
Organism Recombinase Gene number Homologue
Eubacteria

Escherichia cou 2, xerC/xerD +

BaciÏlus subtitis 2, ripX/codV +

Mycobacterium tuberculosis 2, xer]/xer2 +

HaernophiÏus influenzae 2, xerC/xerD +

Heticobacter pylori J99 2, xer]/xer2 +

ChÏamydiapneumoniae 2, xer]/xer2 +

Treponema pallidum 2, xer]/xer2 +

Thermotoga maritirna 1 —

Synechocystic PCC6803 1 —

MycopÏasma genitalium O —

Mycoplasm pneumoniae O
—

Borrelia burgdorferi O +

Archaeabacteria

Pyrococctts horikoshii 1
—

4eropyrurn pernix 1
—

Methanococcusjannaschii O
—
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2.2 XerC and XerD

XerC and XerD are encoded at 4024 kb and 3050 kb on the E.coti chromosome

respectively. Each recombinase is expressed with at Ieast two other proteins that don’t

appear to have a role in Xer recombination (Colloms et al., 1990; Blakely et aÏ., 1993).

XerC and XerD belong to the large tyrosine recombinase family and possess the

characteristic RHRY signature of active site residues of this family (Esposito et al., 1997;

$henatt et al., 199$). They show 37% identity and bind to separate halves of the

recombination site (Blakely et aÏ., 1993).

2.2.1 The Conserved Genes

The alignment of the amino acid sequence of the tyrosine recombinases firstly reveals

that the complete genomes of 16 eubacteria and 5 archaebacteria contain proteins

homologous to XerC and XerD in bacteria with circular chromosome as shown in Table 1

(Recchia and $herratt, 1999). Now, There are more Xer recombinase have been found

such as Caulobacter crescentus (Jouan and $zatmari, 2003), LactobacilÏus

leishrnanniiBecker and Brendel, 1996), Proteus mirabilis (Manuela and Szatmari, 199$)

$treptococcus pneumoniae(Reichmann et al., 2002), Vibrio cholerea( Huber and Waldor,

2002). Moreover, most eubacteria with only partial genome sequences are also possess two

Xer protein including Pseudomonas, Vibrio, Bordetella, Neisseria, Staphylococcus and

Enterococcus species (Recchia et al., unpubUshed). Secondly. the majority of eubacteria

possess two putative Xer recombinases, suggesting that the mechanism of dimer resolution
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used by E. cou is highly conserved. However, two eubacterial species appear to contain

only one Xer homologue. In these cases, either one Xer protein lias been lost or, assuming

that xerC and xerD genes arose from a single ancestral gene, these organisms diverged

from other bacterial lineages prior to this duplication. Likewise, organisms in which no

Xer-like sequences were identified may have either lost both sequences or separated from

other bacterial lineages prior to the evolution of Xer. Thirdly, the bacteria with a linear

chromosome such as the spirocheaete Borrelia burgdrnferi lack any identifiable Xer

homologues, which may indicate the Xer recombination only occurs in bacteria with a

circular chromosome. Furthermore, species such as Mycoplasma genitaÏium and

Mycoplasmapneurnoniae are deficient in homologous recombination genes and also lack in

the Xer genes. These correlations are consistent with the functional inter-relationship

between homologous recombination and Xer recombination. Finally, most eubacteria that

possess Xer recombinases also possess ftsK homologues, whereas M genitaflïtm and M

pneurnoniae, which lack identifiable Xer homologues, also appear to lack an ftsK

homologue (Table 1). This suggests that the functional interaction between Xer and FtsK

proteins in controlling chromosome dimer resolution is highly conserved (Recchia and

Sherratt, 1999).

2.2.2 XerC

2.2.2.1 Generalitics

By sequence analogy, XerC appears to be a member of the bacteriophage lambda

integrase family ofrecombinase (Argos et aÏ., 1986; Colloms et aÏ., 1990). The xerC gene
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maps close to the E. cou origin ofreplication, oriC, at 85 min (3700 kb). It is expressed as

the third gene of a four-gene multicistronic unit that contains dapF, oij235, xerC and

orJ238. The oij235 and oij238 are unknown in their function but appear to be translated at

levels similar to those of dapf and xerC (Kohara et al., 1987; Richaud et al., 1987;

Richaud and Printz, 1988; Colloms et al., 1990).

The xerC gene encodes a protein with a calculated molecular mass of 33.8 kDa.

The translated protein sequence of XerC contains two regions, whieh are homologous to the

two conserved domains of the lambda integrase family of site-specific recombinases (Argos

et al., 1986; Colloms et al. 1990). Domain 2 of the XerC sequence has three totally

conserved amino acids, histidine (H), arginine (R), and tyrosine (Y), as well as other less

conserved amino acids. The XerC sequence has 32% amino acid identity to the E. cou

proteins FimB and FimE in an alignment covering about 160 amino acids. These two

proteins are involved in inverting a segment of the E. cou chromosome to switch fimbrial

antigen (Klemm et al., 1986). Within conserved domain 2, the XerC sequence shows

considerable similarity (66% identity) to an integrase-like inferred protein sequence from

plasmid R46 (Hall et al., 1927).

2.2.2.2 Function

The stable inheritance of natural muticopy plasmids related to Co1E1 requires the

function of the Xer site-specific recombination system (for example, cer in CoYE 1;

Summers and Sherratt, 1984). The recombination occurs only intramolecularly and

resolves plasmid multimers, which arise by intermolecular homologous recombination, to
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monomers. Three unlinked E.coli genes whose products are required for recombination at

cer and its natural plasmid homologs have already been discribed and characterized. XerC

has been shown to bind to recombination sites (Colloms et al., 1990). ArgR (originally

XerA) and PepA (originally XerB) are required for recombination at cer, arid have an

accessory role participating in the resolution selecticity process (Stirling et al., 1988, 1989;

Summers, 1989).

In addition to its role in converting multimers ofplasmid Co1E1 to monomers, XerC

also has a role in the segregation of replicated chromosome at celi division. xerC mutants

form filaments with aberrant nucleoids that appear unable to partition properly. A DNA

segment (dU) from the replication terminus region of the E. cou binds XerC and acts as a

substrate for Xer-mediated site-specific recombination when inserted into multicopy

plasmids. This df segment contains a region of 28 bp with sequence similarity to the cross

over region of CoÏE1 cer (Blakely et aÏ., 1991). Therefore, XerC not only functions in

maintaining CoYE1-like plasrnids in the monomeric state, but also has a role in normal E.

cou chromosomal metabolism, which resolve chromosome dimers to monomers prior to

celi division.

2.2.3 XerD

2.2.3.1 Generalities

During the characterization of the RecJ exonuclease of E. cou, an open reading

frame was reported and showed sequence similarity to the integrase family of site-specific

recombination (Lovett and Kolodner, 1991). This open reading frame was designated xerD
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(Blakeiy et al., 1993). The predicted amino acid sequence of the XerD protein showed a

37% amino acid identity to XerC. Both XerC and XerD are predicted to have 29$ amino

acids. A high degree of sequence conservation between XerC and XerD is present in

domain I and II, regions highly conserved in ail integrase famiiy recombinases (Biakeiy et

al., 1993). Note the presence ofthe invariant four amino acids (R.. .H.. .R. . .Y): Mutations

at each of these four positions lead to ioss of normal recombination activity in FLP

recombinase (Lee et al., 1992; Chen et aÏ., 1992). The conserved tyrosine in domain II of

FLP is required for the nucleophilic attack that initiates the first strand exchange (Prasad et

aÏ., 1987; Pargeilis et al., 198$). It has been proposed that the three other conserved

residues of fLP forrn part of the active site that is involved in activation of the

phosphodiester targets prior to nucieophilic attack during each of the transesterification

steps (Lee et al., 1992).

2.2.3.2 Function

XerD is also required in addition to XerC for site-specific recombination at cer and

df(B1ake1y et al., 1993). The xerD gene is cotranscribed with two other genes, xprA and

reci Insertion of Tn]O-9 into xprA and recJ did flot generate a Xer phenotype. In

contrast, an insertion at xerD gene gave a Xer phenotype suggested XerD is transcribed

from its own promoter. A plasmid containing a deletion that removes most of the xerD

gene fail to complemented the xerD2 mutation, whereas a piasmid deleted for more than

haif of the xprA gene complemented the xerD2 defect. Therefore, the two related

recombinases XerC and XerD are required for site-specific recombination at cer and dzfand
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the two genes that are coexpressed with xerD (xprA and recJ) have no apparent role in Xer

site-specific recombination. The putative catalytic active sites of both XerC and XerD are

required for normal Xer site-specific recombination in vivo. XerC and XerD bind

separately and cooperatively to the c4f and cer sites in vitro. XerC binds the djf lefi-haif

site and XerD binds the dfright-ha1f site (Blakely et al., 1993).

2.2.3.3 Structure

The structure of XerD bas been solved at 2.5À resolution and reveals that the

protein comprises two domains ($ubramanya et aÏ., 1997). Domain 1 consists ofresidues

1-107, while domain 2 comprises residues 108-29$. Domain 1 contains four a-helices,

arranged such that there are two parallel helix hairpins arranged at 90° to each other.

Domain 2 is also mainly a-helical, but with a tbree—stranded antiparalled f3-sheet along one

edge (Figure 4). The fold of this domain is similar to that determined for X and HP1

integrase (Hickman et al., 1997; Kwon et aÏ., 1997). Domain 1 and Domain 2 of XerD

correspond to domains of X Int, HP I Int and FLP identified by limited proteolysis (Moitoso

de Vargas et al., 198$; Evans et aÏ., 1990; Chen et al., 1991; Pan and Sadowski, 1993;

Sadowski, 1995; Hickman et al., 1997; Kwon et al., 1997).



19

The region of structural homology within the C-terminal domains of XerD, 2 Int and

HP1 Int spans 170 residues (figure 5). Two conserved sequence motifs are located in

domain 2 of XerD. The locations of motif I and the N-terminal portion of motif II are

similar in the structure of XerD (residues 145—159 and 244—2$ 1, respectively) and those of

2 and HP1 integrases (Hickman et al., 1997; Kwon et al., 1997). However, the extreme C-

terminal portions of these proteins, which include the C-terminal portion of motif II, are

quite different (Figure 5). In ?\. Int, these C-terminal residues (334—356) form a flexible

Ïoop that is disordered in one of the two molecules in the asymmetric unit, but is more

Figure 4. Overail structure of the XerD protein. The numbering refers to the beginning and

end of secondary structural elements. Residues that are not defined are located at the N

and C-termini and in three disordered loops (residues 64—70, 101—110 and 269-270).

(Subramanya et al., 1997).
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ordered in the other, where the final 15 residues form two additional f3-strands along one

edge ofthe antiparallel sheet. By contrast, in XerD, this region (residues 271—29$) forms a

turn followed by a long a-helix, containing the active site tyrosine, which extends almost to

the C-terminus) (Subramanya et al., 1997).

Figure 5. Comparison of the structures of the C-terminal domains of XerD. Int and HP 1

Int. Regions of the C-terminal domains of the proteins that show the greatest structural

similarity are shown in grey. The major structural differences (shown in magenta) are

located in the polypepfide segments that extend from conserved motif II (Argos et al.,

1986) to the C-terminus ofthe proteins. (Adapted from Subramanya et al., 1997).

2.2.4 The Catalytic Mechanism of XerC and XerD

XerC and XerD are related 298-amino-acid site-specific recombinases, each of

which is responsible for the exchange of one pair of strands in Xer recombination. Both

recombinases encode functions necessary for sequence-specific DNA-binding, co-operative

XerC/XerD interactions. synapsis and catalysis.
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In recombination mediated by XerC and XerD, DNA strands are cieaved and

rej oined through the formation of a transient DNA—protein covalent intermediate invoiving

a conserved tyrosine as the catalytic nucleophile. The same mechanism is used by the

related type lB topoisomerases (reviewed in Sherratt and Wigiey, 199$). However, type lB

topoisomerases break and reseal the same phosphodiester bond to remove supercoils in

DNA, whereas XerC and XerD catalyze two consecutive pairs of strand exchanges, with

the formation of a Hoiliday junction (HJ) as a recombination intermediate. Each reciprocal

strand exchange reaction is a concerted two-step process in which the 3’ phosphotyrosyl

DNA—protein bonds generated by cleavage of one DNA strand in each recombination site

are subsequentiy attacked by the free 5’ OH ends of the partner sites. DNA strands are

exchanged by swapping of a few central region nucleotides (Nunes-DUby et al., 1995;

reviewed in Guo et ai, 1999). This mechanism impiies that specific pairs of active sites are

sequentiaiiy switched on and off in the recombinase tetramer to ensure that appropriate

DNA strands wili be exchanged at both reaction steps. It has been demonstrated that the

catalytic activity of XerC and XerD is controiled by an interaction involving the extreme C-

terminal donor region of each protein and an internai acceptor region adjacent to the active

site [figure 6]. The donor—acceptor region interactions between adjacent recombinase

molecules act as moiecular springs in the switch that leads to sequentiai and synchronized

activationlinactivation of pairs of recombinase subunits during recombination (Hailet et aL,

1999).

XerC and XerD cleave DNA by providing ail catalytic residues in cis (Arciszewska

and Sherratt, 1995; Blakely et aÏ., 1997). Consistent with this, the crystai structure ofXerD
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shows that tyrosine and the other active site residues are clustered together (Subramanya et

aÏ., 1997). The integrases of phages lambda and HP1 and the recombinase Cre from

bacteriophage Pi can also cleave DMA in cis (Nunes-DUby et aÏ., 1994; Guo et al., 1997;

Hickman et al., 1997; Kwon et ai, 1997). However, the yeast recombinase FLP cleaves

DMA in trans (Chen et al., 1992; Lee et al., 1999).
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Color code is as in (A). The bail-and-socket joint depicts the interaction between the donor

and acceptor regions of adjacent subunits. Step i to step y j the recombination pathway in

which XerC strand exchange occurs first. (i) Interactions between XerC and XerD

molecules bound on a same duplex, possibly coupled with additional interpromoter

interactions across the synapse, force the DNA to bend in a configuration where the top

(green) strand of the recombination site central region is exposed toward the outside of the

duplex. The torsion energy stored in the bent DNA may act on the XerC—XerD donor—

acceptor interaction so as to activate XerC catalysis by repositioning of the tyrosine

nucleophile (arrowhead), and possibly other catalytic residues with respect to the DNA

target phosphate (circle). DNA torsion strains released upon cleavage may also promote the

unwinding and extrusion of the cleaved strands in order to orient the 5’ OH ends for the

rejoining step. (ii) Completion ofthe strand exchange reaction generates a 2-fold symmetric

HI intermediate in which the top strands are crossing. (iii) Coupled protein and DNA

conformation changes convert the complex into a configuration in which the bottom strands

(purpie) are crossing. (iv) This leads to synchronized inactivation of the XerC subunits and

concomitant activation of the XerD subunits. (y) The recombinant duplexes are bent in the

opposite direction to that of the initial recombination sites. This inversion of the DNA

bending strains may promote the restacking of the DNA helices and the dissociation of the

resealed molecules from the complex (Hallet et al., 1999).
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2.3 The Site of Action of the Xer Recombinases

Xer recombinase mediated recombination occurs in two different recombination

substrates and has different biological functions. One is at chromosome recombination

sites called dÇ originally found in Escherichia cou. The Xer site-specific recombination

ensures that dimeric chromosomes are converted monomers prior to ceil division (Blakely

et al., 1991; Kuempel et al., 1991). Another is at plasmid sites such as Co1E1 cer and

pSC1O1 psi. The Xer site-specific recombination system is involved in the stability of

naturally occurring plasmids by enstiring that plasmid multimers are converted to

monomers ($ummers and Sherratt, 1984; Cornet et al., 1994). The Xer site-specific

recombination is conserved in most eubacteria (Recchia and $herratt, 1999). The

alignment of 19 naturally occurring plasmids and some eubacterial chromosomes revealed

that the wide existence of the homologues of Xer recombination core site (Table 2) (Hayes

et al., 1997; Lesterlin et aÏ., 2004). XerC binding sites are more variable whereas XerD

binding sites are well conserved. The central region of the Xer sites, which displays no

consensus and separates XerCD binding sites by a 6 (chromosome site) or $ bp (plasmid

site) spacer, is a key determinant of the Xer recombination pathway. It determines the

requirements for accessory proteins and accessory sequences on the plasmid recombination

site (e.g. Co1E1 cer site or pSCÏOl psi site). It also determines the presence of ftsK in

chromosome dimer resolution (Barre et al., 2001). $everal sets of data, obtained on the Xer

systems and other tyrosine recombinase system, indicated that this region is an important

determinant of the comformation of the recombinase-core sequence complexes (Azaro and
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Landy, 1997; Gopaul et aï., 199$; Arciszewska et aÏ., 2000; Lee and Sadowski, 2001;

Capiaux et al., 2002).

Table 2 Alignment of dfsites from different bacteria and core sequences ofplasrnid-borne

Xer sites (Adapted from Rayes et aÏ., 1997 and Lesterin et aÏ., 2004)

XerC binding site Central region XerD binding site
Origin

Plasmids Sites
Co1E1 cer GGTGCGTACAA TTAAGGGA TTATGGTAAAT
ColA car GGTGCGTACAA ----CGGATG TTATGGTAAAT
C1oDFY3 parB GGTACCGATAA ----GGGATG TTATGGTAAAT
CoÏK ckr GGTGCGTACAA TTAAGGGA TTATGGTAAAT
CoiN GGTGCGTACAA --TAAGGGA TTATGGTAAAT
NPT16 GGTGCGCGTAA --TGAGACG TTATGGTAAAT
pMB1 GGTGCGTACAA TTAAGGGA TTATGGTAAAT
pSC1O1 psi GGTGCGCGCAA ----GATCCA TTATGTTAAAT
CoIE2 GGGGCGTACAA ----CGGGAG TTATGGTAAAT
Co1E3 GGTGCGTACAA ----CGGGAG TIATGGTAAAT
Co1E4-CT9 GGTGCGTACAA ----CGGGAA TTATGGTAAAT
Co1E5-099 GGTACGTACAA ----CGGGAG ITATGGTAAAT
Co1E6-CT14 GGTGCGTACAA ----CGGGAG TTATGGTAAAT
Co1E7-K317 GGTGCGTACAA ----CGGGAG TTATGGTAAAT
CoYE8-J GGTACGTACAA ----CGGGAA TTATGGTAAAT
Co1E9-J GGTACGTACAA ----CGGGAG TTATGGTAAAT
ChromosomeSites(dt)
E. cou GGTGCGCATAA TGTATA TTATGTTAAAT
S. typhirnurium GGTGCGCATAA TGTATA TTATGGTAAAT
S. typi GGTGCGCATAA TGTATA TTATGGTAAAT
V choÏerae chrl ATGGCGCATTA TGTATG TTATGGTAAAT
V. cholerae chrll AATGCGCATTA CGTGCG TTATGGTAAAT
H. infiuenzae ATTTCGCATAA TATAAA TTATGGTAAAT
B. subtilis ACTTCCTAGAA TATATA TTATGTAAACT
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2.3.1 Chromosome Recombination Site

2.3.1.1 Escherichia cou dif

2.3.1.1.1 Position and Polarity

Two main sites of the circular E. cou chromosome are implicated in the ceil cycle:

oriC, where replisomes are assembled for bidirectional replication (Messer et al., 1996),

and the diametricalÏy opposite c4f site, where chromosome dimers are resolved (Blakely et

aï., 1991; De Massy et al., 1987). The dfis located in the replication terminus region at

min 33.6 of the genetic map, kilobase 1608 of the physical map, between the innermost

terminators terA and terC (figure 7) (Kuempel et al., 1991). Recently, it has been

discovered that this position is crucial for dimer resolution (Leslie and Sherratt, 1995;

Tecklenburg et al., 1995; Cornet et al., 1996; Kuempel et al., 1996). To be active, dfmust

be inserted within a nanow zone around its natural position, the DAZ (d/ activity zone).

The DAZ is the scene of specific recombination between dif sites that occurs only in celis

that are able to form chromosome dimers (i.e. proficient for homologous recombination)

(Pérals et al., 2000; 2001).
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oriC

min 100/0

terA

Figure 7. Map ofthe E. cou chromosome, showing the position of the xerC and xerD

genes, the position of oriC and dtyÇ and the position of two replication terminator sites

[from Barre and Sherrat, 2002]

The sequences sunounding df appear to be intrinsically polarized along the oriC-c4f

axis and their relative orientation is the main determinant of DAZ positioning. Notably, the

deletion of sequences surrounding dfis harmless, whereas inversion of the same sequences

inhibits dimer resolution (Tecklenburg et al., 1995; Cornet et al., 1996; Pérals et aÏ., 2000).

The data suggest that the polarization determinants are present throughout a large terminal

dornain (more than 200 kb around dU) and are highly repeated. Chromosome sequences are

oriented following the oriC/ter axis, defining the two replichores (Blattner et aÏ., 1997).

Several types of short-sequence elements showing a strongly biased orientation following

the oriC-df axis exist. This resuits from the intrinsic biased orientation of chromosome

sequences that define its replichore organization: strongly expressed genes, G/C skew, Chi

dif
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sites and numerous other oligomers ($alzberg et ai., 1998; Lobry and Louarn, 2003).

Among these, short degenerate motifs, termed RAG, have been proposed as good candidate

based on their highly biased orientation (Lobry and Louai-n, 2003). However, previous

attempts to show that the RAG motif controls another FtsK activity or colocalized other

active elements were unfruitful (Pci-ais et ai, 2000; Massey et ai., 2004; Saleh et ai., 2004).

However, DNA motifs, named ftsK orienting polar sequences (KOPS), have been

identifted which direct the movement of the E. cou FtsK transiocase (Levy et aï., 2005;

Bigot et ai., 2005). Levy group (2005) identffied the GNGNAGGG motif, its complement,

or both as the best candidate to specify ftsK directionality. They found that a

GNGNAGGG sequence efficiently reverses FtsK transiocation. Bigot group (2005) used a

functional approach and also identified this motif, displaying a high biased orientation and

over-represented on the whole chromosome. In vitro, these motifs display KOPS activity:

they inhibit Xer recombination activation by ftsK in an orientation-dependent manner; they

also stop FtsK from dissociating branched DNA structures depending on their orientation;

additionally, single molecule data suggest that they block FtsK transiocation. Their effect

on ftsK transiocation is stochastic; the presence of two or three motifs is required to

observe a strong effect.

2.3.1.1.2 Structure

The minimal df site sufficient for chromosome monomerization activity and for

recombination in a plasrnid substrate is 28 bp in Iength (Leslie & Sherratt, 1995; Tecklenburg et aï.,

1995). This site (also called the core recombination site) consists oftwo 11 bp XerC and XerD
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binding sites separated by a 6 bp central region at the boundaries of which strand cleavage and

exchange occur. The XerC and XerD binding sites are partial palindromes, but the two halves ofdf

are recognized specifically by the XerC and XerD recombinases, which themselves share 59%

sirnilarity (Blakely et aÏ., 1993). The XerC and XerD binding sites are partial palindromes at six of

li positions, but other five positions are neyer palindromes which determine the specifically

binding ofXerC and XerD, as shown in f igure 8.

u h Ii
GGTGCGCATAA TGTATA TTATGTTAAAT
-14 -10 -5 -1 +1 +5 +10 +14

— — — —

Figure 8. Hierarchy of specfficity determinants in the XerC and XerD binding sites of df

Shaded boxes below the sequence denote positions that are palindromic between the XerC

and XerD binding sites. Bars above the sequence indicate the relative contributions of

particular nucleotides to XerC or XerD binding specificity. The longest bars identif’ bases

that are most significant for specificity and the shortest bars denote nucleotides whose

contribution is least critical. Bars of intermediate length indicate positions of intermediate

importance. Note that, while the T - C substitution at position +9 had a strong affect on

XerD binding and recombination in vivo, ail piasmid sites examined to date (except psi)

have a G nucieotide at this position (Adapted from Rayes et aÏ. 1997).
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2.3.1.2 Bacitltts subtitis dif

Homologues of E. cou cflf site have found in other bacterial chromosomes (Table 2).

The Bsdtf site is located at approximately 166° on the 3. subtilis chromosome, 6°

counterclockwise from the B. subtilis terminus of replication (Kunst et al., 1997). There

are six different nucleotides in the CodV (XerC) binding region when compared to the df

site, which may be required for the specific binding of CodV. The RipX (XerD) binding

site is more conserved and has only one divergent nucleotide. Experimental evidence has

been provided to substantiate the authenticity of this site. First, integration of

nonautonomously replicating plasmids carrying either cloned Bsdf DNA or a synthesized

3sdfo1igomer occurs at a high frequency in recA backgrounds. The integration of Bsdf

containing plasmids was dependent on the presence of RipX, CodV, and the chromosomal

df site. Second, deletion of the Bsdf site from the chromosome resulted in the

development of a subpopulation of cefls with aberrantly partitioned nucleoids that closely

resembled in appearance and frequency those seen in ripX mutants. Third, the RipX and

CodV proteins demonstrated specific binding to, and cleavage of, synthetic 3sdfDNA in

vitro. Therefore, Bsdtf is utilized by the CodV and RipX recombinases to ensure that

normal chromosome partitioning occurs in advance of the completion of ceil division

(Sciochetti et al., 2001).
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2.3.2 Plasmid Recombination Site

Unlike the 28 bp df site, which does flot require accessory sequences, the plasmid

borne sites contain accessory sequences and require additional accessory proteins. They

mclude a core site, to which XerC and XerD bind, and 1 $0 bp of adjacent upstream

accessory sequence to which additional accessory proteins bind (Stirling et al., 198$;

Colloms et al., 1997). The function of accessory proteins and accessory DNA sequences

impose a ‘topological filter’ on Xer recombination, which ensures that the recombination is

preferentially intramolecular (Alen et aÏ., 1997; Colloms et al., 1997).

2.3.2.1 Co1E1 cer

The cer locus of the Co1E1 plasmid is the archetype of sites displaying a strong bias

towards intramolecular exchanges and multimer resolution (Summers and $henatt, 1924).

Its presence improves plasmid stability in E. cou by maximizing the number of segregation

units at division (Summers et al., 1993; Summers and Sherratt, 1984). Importantly, the

core sequence alone is inactive, and the presence of accessory sequences and factors is

required flot only for directionality of exchanges but also for the overali recombination

activity of the site. The core 30 bp sequence, which is recognized by XerC and XerD

(Blakely et al., 1993) and contains the site of strand exchange (Summers et al., 1985;

Summers, 1989), is embedded in a longer sequence of 280 bp (Summers and Sherratt,

198$) which binds accessory factors required for full activity. These accessory factors are

ArgR and PepA. The structure of the cer site is different from the dfsite of E. cou in two

aspects: one is containing the accessory sequences; another is that the binding sites of
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XerC/D are separated by $ bp spacer. Recombination at cer sites is preferentially

intramolecular. This selectivity is correlated with the requirement for accessory protein and

18O bp of accessory sequences (Summers and Sherratt 1984; Summers, 1989; Sherratt et

al., 1995). What determines whether recombination will be preferentially intramolecular

and require accessory factors, or will be both intermolecular and intramolecular, requiring

only recombinases and a recombination core site? Summers (1989) demonstrated that the

central region size difference could determine recombination requirements and outcomes.

Moreover, Blakely and $herratt (1996) set up a model system to explore the selectivity for

intramolecular recombination. They found that the requirement for accessory factors could

arise by increasing the spacing between XerC- and XerD-binding sites from 6 to 8 bp. This

reduces the affinity of the recombinases for the core site and changes the geometry of the

recombinase/DNA complex. These changes are conelated with the altered interactions of

the recombinases with the core site and a reduced efficiency of the XerC-mediated

cleavage. The accessory sequences and proteins compensate for these changes and provide

a nucleoprotein structure of fixed geometry that can only form and function effectively on

circular molecules containing directly repeated sites (Blakely and Sherratt, 1996).

2.3.2.2 pSC 101 psi

In pSC1O1, the cer/dfhomolog, psi, is located between positions 6783 and 6810

(Bemardi et al., 1984), downstream from the essential replication gene repA and just

beyond an unknown open reading frame orj’X The psi and d/sequence are very similar in

the two 11-bp flanking elements, especially the right-hand one. The XerC-binding site has
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a two-nucleotide difference, whereas the XerD-binding site only has one divergent

nucleotide. The central region is also 6 bp like the c4f site but the sequence is different

(Cornet et al., 1994). Deletions of psi and its surrounding region resuÏted in the reduction

of stability compared with that of the parental pSC1O1 plasmid. The role of the psi

sequence in site-specific recombination lias been explored in two contexts. It was cloned in

a derivative of plasmid pi 5A and inserted into the chromosome in place of c4f In the first

situation, psi activity required accessory sequences and resulted in multimer resolution and

recombination was intramolecular; in the second situation, it suppressed the effects of the

djf deletion and promoted intermolecular exchanges. Thus, psi is a site whose

recombination activity (intramolecular or intermolecular) depends on the context, the first

in the cer/dffamiIy known to exhibit such flexibility (Cornet et ai., 1994).

Although the psi recombination site is similar to the cer site, differences between cer

and psi site recombination in vivo and in vitro have been observed. first, recombination

between psi sites in vivo requires PepA, XerC and XerD, but not ArgR, whereas cer sites

recombination requires both PepA and ArgR. Second, in in vitro reactions, recombination

at psi occurs by XerC-mediated top-strand exchange followed by XerD-mediated bottom

strand exchange, to produce a fully recombinant product via a Holliday junction

intermediate. However, recombination at cer stops after XerC-rnediated top-strand

exchange, producing a Holliday junction-containing product. Third, in vitro, cer produces

Holliday junctions whereas psi produces catenanes. In vivo, cer also produces Holliday

junctions early in the reaction which persist for quite some tirne, but recombination at psi in

vivo goes by XerC-mediated Holliday junction formation followed by XerD-mediated
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Holliday junction resolution (Colloms et al., 1996). Moreover, in addition to PepA as an

accessory protein for recombination at the psi site, another protein, ArcA, is required for

effecient recombination in vivo at psi. The DNA-binding protein ArcA and the sensor

kinase ArcB constitute a two-component regulatory system that regulates gene expression

in E.coli in response to anaerobic growth conditions. ArcA is an accessory protein for

recombination at psi in that ArcA-P binds to the accessory sequences ofpsi and stimulates

recombination. ArcB is flot absolutely required for recombination in vivo. ArcA plays a

sirnilar role atpsi to that played by ArgR at cer (Stirling et aï., 1988; Colloms et al., 1998).

2.4 Accessory Factors

In the Xer recombination system, accessory factors are required to complete the

recombination reaction. For example, a complete dimer resolution reaction during

recombination at dfrequires the action of the C-terminal domain of FtsK (FtsKc). The cer

and psi sites require accessory factors (ArgR/PepA, ArcAIPepA) to convert multimers to

monomers. These accessory factors don’t directly participate in the strand exchange

reaction, but are thought to activate (FtsK) or bring sites together in the correct

conformation (ArgR, ArcA and PepA).

Firstly. for the FtsK accessory factor, ftsK has been implicated in positioning the

terminus regions of chromosome dimers at mid-cell and synapsing their df sites (Capiaux

et al., 2002; Corre and Louam, 2002). Moreover, FtsK is directly involved in Xer

recombination and in locally promoting XerD strand exchanges after synapse formation

(Aussel et aï., 2002). Secondly, recombination at cer is exclusively intramolecular and
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occurs only between directiy repeated sites, so that it resolves but does flot generate
plasrnid multimers. ArgR, PepA and the accessory sequences of the ce,’ have been
implicated in ensuring this resolution selectivity. Evidence for this cornes from the study of
a number of conditionally constrained ce,’ variants which recombine exclusively
intramolecularly in the presence of ArgR, PepA and the accessory sequences, but
recombine inter- and intra- rnolecularly when any one of these factors is rernoved
(Summers, 1989; Guhathakurta and Summers, 1995; Guhathakurta et al., 1996).

2.4.1 ArgRIPepA

2.4.1.1 ArgR

ArgR, originally identffied as a repressor of genes for arginine biosynthesis, is also

essential for cer-rnediated multimer resolution (Stirling et aï., 1988). The ArgR protein is

156 amino acids long and is a 100 kDa hexarner of identical 17 kDa subunits (Lim et aï.,

1987; Lu et aï., 1992). The polypeptide forms a very stable hexamer in the presence of

arginine.

ArgR possesses at least two functions. f irstly, ArgR represses transcription of the

chrornosomal arg regulon by binding to two 18 bp inverted repeated sequence (ARG

boxes) separated by 2 or 3 bp (Cunin et al., 1986). Binding appears to be co-operative, as

the affinity for binding two boxes is about 100-fold higher than binding to a single box.

ArgR binding introduces a bend of about 70-90° in the DNA helix axis (Tian et aï., 1992:
Burke et aï., 1994). Secondly, it is required for cei’ recombination. The cer site contains a
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single binding box for ArgR approximately 100 bases to the lefi of the XerC binding site.

ArgR binds to the single ARO box within cer, 110 bp from the point of strand exchange,

and induces a bend of -65° (Burke et al., 1994). It seems likely that during recombination

at cer, a single ArgR hexamer binds to one ARG box from each participating cer site,

helping to synapse two cer sites and/or introducing a structurally important bend within the

accessory sequences. Miller group (1997) have proposed that AhrC, the Baciltus subtilis

homologue of ArgR, binds to a single ARG box bending the DNA around itself so that one

sepecific and one non-specific set of protein-DNA interactions are made. This model

might also be appropriate for the ArgR-cer interaction (Hodgman et al., 1998). It is

interesting to note that AhrC can substitute for ArgR in cer recombination (Smith et aï.,

1989).

Mutagenesis resuits have shown that the ArgR subunit is made up of two functional

regions: a basic N-terminal haif responsible for DNA binding and an acidic C-terminal haif

responsible for oligomerization and arginine binding (Burke et aÏ., 1994; Tian and Maas.

1994). The N-terminal domain (residues 1—70) is a member of the winged helix-tum-helix

family and adopts the same fold as shown for this region of BaciÏÏus stearothermophilus

(Ni et aÏ., 1999). The X-ray structure ofthe hexameric C-terminal oligomerization domain

shows that ArgR forms a 32-symmetric hexamer in which the subunits are organized into

two trirners, each with tightly packed hydrophobic cores. Each subunit has a Œ/f3 foÏd

composed of a four-stranded antiparallel -sheet and two antiparalleÏ a-helices. 3-strands 3

and 4 from each of tbree subunits contribute side-chains to form the hydrophobic core of a

trimer and the hexamer is formed by two dyad-related trimers (Figure 9A.) (van Duyne et
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al., 1996). The X-ray structure of the entire ArgR protein from B. stearothermophilus has

also been solved. It proposed a model, in which the arginine-bound ArgR interacts with

ArgR box (figure 9B) (Ni et al., 1999).
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Figure 9 (A) the structure ofthe ArgR C-terminal domain in E. cou [Adapted from van

Duyne et al., 19961. (B) The model of B. stearothermophilus ArgR binding to DNA

(Adapted from Ni et al., 1999).

2.4.1.2 PepA

PepA, originally designated as XerB, is an aminopeptidase and has strong similarity to

bovine lens leucine aminopeptidase (LAP) (Vogt, 1970; Stirling et al., 1989). It is a

hexamer in solution, consisting of six identical 55 kDa monomers, each comprising 503

amino acids. It is an Mn2*dependent aminopeptidase (McCulloch et al., 1994). The

structure of PepA has been determined at 2.5À resolution. PepA comprises two domains,

which have simjlar folds to the two domains of LAP. The smaller N-terminal domain
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(residues 1-166) probably plays a significant role in DNA binding and is rotated by 190

compared with its position in LAP. The larger C-terminal domain (residues 93-503)
contains the aminopeptidase active site. Both domains have a mixed Œ/t3 structure. A long
Œ-helix Iinks the N-terminal and C-terminal domain ($trter et al., 1999).

PepA is a multifunctional protein. firstly, it is an aminopeptidase and cleaves a
broad range of peptide substrates. It belongs to the widespread family of leucine
aminopeptidases, which are present in mammals, plants and bacteria (Cuypers et al., 1982;
Bartiing and Weiler, 1992; Burley et al., 1992; Wood et aÏ., 1993). Secondly, it is also
involved in pyrimidine-specific transcriptional regulation of the carAB operon. This
operon encodes the genes for carbamoylphosphate synthetase, which catalyses a comrnon
step in the liiosynthesis of arginine and pyrimidines (Charlier et aÏ., 1995). Thirdly, it has
been found that PepA is required for Xer site-specific recombination (Stirling et al., 1989).
It might play a structural role and could involve direct interactions between PepA and the
recombination site DNA andlor protein-protein interactions with ArgR and recombinases
(Guhathakurta et aÏ., 1995). It has been dernonstrated that the peptidase activity is not
required in the pyrimidine-specific regulation of carAB or in Xer site-specific
recombination (McCulloch et aÏ., 1994; Charlier et aÏ., 1995). PepA appears to act as an
architectural protein, bending and wrapping DNA so as to allow interaction between other
proteins bound at distant sites on the DNA.
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2. 4. 1. 3 Xer Svnaptic Complex

Since PepA and ArgR are required for Xer site-specific recombination at CoYEÏ cer
site, how they can assemble into a specific structure for completing the recombination
reaction. Iwo alternative models have been proposed for the Xer complex, in which either
one or two PepA molecuies, ArgR and the recombinases interact with the two cer sites
(figure 1OA) (Alén et al., 1997). Both types of complex are proposed to contain 2-fold
molecular axis, such that each cer site makes equivalent interactions with PepA and ArgR.
PepA makes contacts with cer adjacent to the recombinase-binding sites and adjacent to the
ARG box distal to the recombinases-binding sites. It also shows a highly curved 60 bp
loop of DNA bePveen the ARG box and the recombinase-binding sites. Furthermore,
based on the structural and biochemical data of PepA, a model for the cer synaptic complex
was presented (Figure 1 OB) (Striter et al., 1999). The most striking feature of this type of
molecular sandwich is that the presumed DNA-binding grooves of PepA form right-handed
helical paths, about which two cer sites couid be interwrapped to form a —3 synapse. Two
cer sites are wrapped around the common 3-fold axis ofPepA and ArgR and PepA again by
way of the PEP 1, ARG and PEP2 sequences. This leaves two vacant DNA-binding
grooves, which can bind to the third sequence (PEP3) of each cer site in order to juxtapose
the two recombination core sites and allow Xer recombination. Each cer site therefore
interacts with the proteins in the order PEP1-ARG-PEP2-6Obp LOOP-PEP3-XERC-XERD.

The model proposed by Striter et al is two hexamers of PepA and one hexamer of
ArgR are aligned alone their threefoid axes. The DNA is bound by the C-terminal grooves
of PepA and does not contact the N-terminai domains extensicvely. Ail three grooves are
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occupied by DNA in both PepA hexamers. However, Reijns et al. (2005) proposed
different model according to their resuits of mutagenesis of PepA. They selected PepA
mutants that were unable to support efficient Xer recombination. These mutants were
defective in DNA-binding and in transcriptional regulation of carAB, but had normal
peptidase activity. The mutations define extended patches of basic residues on the surface
of the N-terminal domain of PepA that flank a previously proposed DNA-binding groove in
the C-terminal domain of PepA. Based on their data, they propose a new model for the Xer
synaptic complex, in which two recombination sites are wrapped around a single hexamer
of PepA, bringing the cross-over sites together for strand exchange by the Xer
recombinases. In this model, PepA stabilizes negative plectonemic interwrapping between
two segments of DNA by passing one segment through the C-terminal groove while the
other is heÏd in place in a Ïoop over the groove. In this new model for the synaptic
complex, two DNA crossings are trapped on two faces of the triangular PepA hexamer, and
the recombination core complex occupies the third face. ArgR and ArcA serve only to
bend the DNA in the overpassing loops and it is easy to see how PepA alone could define
the entire structure and topology of the synapse. PepA is the major determinant of the
intervvrapped synapse structure. whereas in Strater model, much of the interwrapping of the
two sites is around ArgR rather than PepA.

The accessory sequences of both cer and psi are thought to form a specific
interwrapped synaptic complex with the accessory proteins before strand exchange at these
sites. This complex can only be formed easily between two sites in directly repeat on a
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supercoiled molecule (Alén et al., 1997; Colloms et al., 1997). The rcquirement for this

complex ensures that recombination occurs only between directly repeated sites on the

same molecule. This ensures the biologically important directionality of the recombination,

so that multimers are converted to monomers and flot vice versa.

A
« 1

Figure 10 (A) Model for complex formed between two cer sites in the presence of PepA

and ArgR (Adapted from Alén et al., 1997). (B) Mode! for the Xer Complex. PepA and

ArgR are represented by their mo!ecu!ar surfaces co!oured in b!ue and green, respective!y.

The two-cer sites are co!oured in ye!!ow and red (Strâter et al. 1999).

) XorC XarD C) AryR PeA
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2.4.2 FtsK

Chromosome dimer resolution requires the XerC and XerD recombinases; it also

requires FtsK, a large, multifiinctional, integral membrane protein, which coordinates

chromosome segregation and ceil division (Liu et ai, 1998; Capiaux et ai, 2001). FtsK can

be divided into three domains: a membrane-spanning 200 aa N-terminal domain (Ft5KN),

containing four transmembrane regions, which localizes to the division septum and is

essential for ceil division (Draper et ai, 1998); a long linker (600 amino acids) of unknown

function; and a 500 aa C-terminal AAA ATPase domain (FtsKc) (Yu et ai, 1998; Barre et

aÏ, 2000; Aussel et ai, 2002). It is necessary for normal chromosome segregation (Liu et al.

1998; Yu et ai. 1998b), at least in part because it is necessary for Xer recombination at cflf

(Recchia et ai. 1999; Steiner et ai. 1999). Cells lacking FtsKc form septate chains and

filaments with aberrant and mispositioned nucleoids. ftsKc is homologous with the C-

terminal domain of SpolliE, a protein involved in DNA transfer from the mother celi to the

prespore in Baciilus subtilis (Wu et ai. 1995). To date, two roles have been assigned to

ftsK in chromosome dimer resolution (CUR).

First, FtsK has been implicated in positioning the terminus regions of chromosome

dirners at mid-cell and synapsing their df sites (Capiaux et aÏ, 2002; Corre and Louarn,

2002). ftsK mobilized the DNA stretches that cross the septum to bring the two dif sites

together (Corre and Louarn, 2002; Bigot et ai., 2004). This may allow synapsis of the df

sites in or near the septum and FtsK-dependent activation of XerCD catalysis. FtsK may

thus be a major actor of the positional control exerted on dfactivity. Consistent with such

a role, FtsK5oc, an active derivative of FtsKc, was shown to be an ATP-dependent DNA
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transiocase in vitro (Aussel et ai, 2002). ftsK must operate flot just quickly but in the right

orientation; FtsK activity would be counterproductive if it pushed the two djf sites away

from each other. The single-molecule work with purified FtsK5oc demonstrated that the

DNA sequence directs the transiocase (Pease et aï., 2005). Bigot et a.i(2005) and Levy et

ai. (2005) identified a specific instance ofthe GNGNAGGG motif, its complement, or both

are effective in specifying ftsK’s directionality and that the skew of GNGNAGGG well

explains FtsK’s action in vivo. DNA motifs provide ftsK with the necessary information to

faithfully distribute chromosomal DNA to either side of the septum, thereby bringing the

dfsites together at the end ofthis process.

Second, FtsKc is directly involved in Xer recombination. In the absence of FtsK,

Holliday junctions (HI) formed at df in vitro are the resuit of catalysis by XerC (Barre et

ai., 2000). In contrast, in the presence of FtsK, XerD catalyzes HJ formation in vitro and in

vivo (Aussel et al., 2002). Moreover, a low level of HJ formation in vivo by XerD is also

reported when using a very sensitive detection assay in E. cou (Hallet et ai., 1999). Based

on the above data, Aussel et ai. (2002) proposed two alternative pathways (FtsK

dependent/independent pathway) of Xer recombination at d/ one initiated by XerC and the

other by XerD. The role of FtsK in promoting chromosome dimer resolution is to switch

the activity of the XerCD recombinases in the synaptic complex, so that Xer recombination

follows one pathway in which XerD mediates the first pair of strand exchanges to form HI

intermediates that are resolved to products by XerC (FtsK-dependent pathway). On the

contrary, the HI intermediates that are formed by XerC-strand exchanges in the absence of

FtsK are part of an abortive pathway as far as dimer resolution is concerned; the HJs are
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rapidly converted back to substrates in cycles of XerC-mediated strand exchanges (FtsK

independent pathway) (Figure 11) Consistent with this pathway, synthetic df HJs are

resolved efficiently by XerC (Arciszewska and Sherratt, 1995), while synthetic df HJs or

plasmid HJs formed by XerC are not resolved by wildtype XerD under any of the

conditions that have been tried, despite the presence of FtsK5oc (Aussel et al., 2002).

Therefore, the C-terminal domain of FtsK (FtsKc) is a DNA translocase implicated in

helping synapsis of the cflf sites and in locally promoting XerD strand exchanges after

synapse formation. Furthermore, it has been shown that FtsKc ATPase activity is directly

involved in the local activation of the Xer recombination and activation only occurs with a

DNA segment adjacent to the XerD-binding site. This suggests that FtsK needs to contact

the XerD recombinase to switch its activity on using ATP hydrolysis (Massey et al., 2004).
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Figure 11 FtsK-Dependent and independent Pathways of Xer Recombination at df In the

absence of FtsK, the Xer synaptic complex adopts a conformation suitable for XerC

mediated strand exchanges. ftsK can use the energy of ATP to switch the Xer synaptic

complex to a conformation suitable for XerD-strand exchanges (Adapted from Ausset et

al., 2002).
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2.5 Regulation of Xer Recombination

Xer recombination is subject to at least three different but interacting levels of control:

the location of the dtf site, homologous recombination, and the presence of the division

septum-associated protein ftsK. By their interacting control, df recombination can only

occur on dimer chromosomes but not on monomer chromosomes, which demonstrates the

directionality of d(f recombination. Therefore, Xer recombination is regulated temporally

(i.e. by time, just before cell division) and spatially (i.e. at the dfsite).

2.5.1 DAZ and FtsK Control

How the Xer system acts specifically to resolve chromosome dimers and not to create

them has been a long-standing question since the discovery that c4fis devoid of accessory

sequences and exhibits no directionality when inserted in multicopy plasmids (Blakely et

al., 1991; Kuempel et al., 1991). The first evidence for directionality of df site

recombination came from the work of $teiner and Kuempel (1998). According to their

observations, it was suggested that dfrecombination only occurs on dimeric chromosomes.

Moreover, it was found that efficient dimer resolution is dependents on the position of df

on the chromosome. for full activity, the df site must be located in a 30-kb zone, the df

activity zone (DAZ) (Cornet et al., 1996; Kuempel et al., 1996; Pérals et al., 2000;

Tecklenburg et al., 1995). Specific DAZ induction only operates on dimeric chromosomes,

restricting df recombination to dimers and preventing recombination between monomers

(Pérals et al., 2001). This resuit solved the first question but arises another question. How
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is dif recombjnatjon restricted to chromosome dimers? Recent data lias shown it was

controlled by the position of dfon the chromosome and the septum-located protein FtsK.

The location of dfon the chromosome is crucial factor for its activity. To recombine

efficiently and resolve chromosome dimers, df must be located in a 15-20kb region

surrounding its normal position, called the DAZ region. Transition between the DAZ and

the bulk of the chromosome occurs progressively along about 20-kb-long regions on either

side of c4f [Perals et al., 2000]. The transition regions are dispensable for df activity.

However, they contain polarization signais that condition the formation of the DAZ at their

junction. It is proposed that the DAZ-mediated control of CDR (Chromosome Dimer

Resolution) is achieved via positioning of the df sites at division septum (Pérals et aï.,

2000).

FtsK is another crucial factor for dif recombination. As mentioned before, FtsK lias

been assigned to two roles in the chromosome dimer resolution. One is directly involved in

Xer recombination catalysis by activating XerD; another is positioning the terminus regions

of chromosome dimers at mid-cell and synapsing their dfsites (Capiaux et al., 2002; Corre

and Louarn, 2002; Aussel et aï., 2002; Yates et al., 2003). How does the FtsK position the

chromosome for dimer resolution? Lesterlin et aï (2004) proposed a mode! in which

septum-associated FtsK would load onto chromosomes and mobiiize DNA according to its

intrinsic polarization (Figurel2). This process wou!d stop when encountering XerCD

bound df sites, thereby ensuring a proper sorting of chromosome DNA in the sister ceils

and synapse of the dif sites. Then a physical contact between two XerCD/dzf complexes

and septum-borne ftsK a!lows resolution of dimers to occur. When a dimer is present, the



49

XerCD/df complexes and FtsK colocalize at the division septum at the time of septation.

This restricts of dfrecombination to the septum region.

Localization of FtsK is ensured by its N-terminal domain and localization of the ‘1f

sites by a chromosome polarization-dependent process. Since a polarization-dependent

process is required for precise positioning of clif sites, it suggests ftsK may read

chromosome polarization (Lesterin et al., 2004). The chromosome polarity was revealed

during the searching the determents of DAZ positioning. The sequences sunounding ‘1f

appear to be intrinsically polarized along the ori-dfaxis and their relative orientation is the

main determinant of DAZ positioning. The polarization determinants are present

throughout a large terminal domain (more than 200 kb around dj,/) (Lesterin et aÏ., 2004).

Thus, how can DNA polarity affect ftsK-dependent positioning of ‘1f sites? Monitoring

DNA transiocation by ftSK5oc at the single molecule level did not reveal any direct

influence ofthe DNA sequence, suggesting that the control effected by DNA polarity on ‘1f

positioning is a complex phenomenon that implies the activities of other protein in vivo

and/or of other domains of the ftsK protein (Saleh et al., 2004). Interestingly, the C-

terminal domain of H. influenzae ftsK can replace its E. cou counterpart for the in vivo

processing of DNA polarity inside E. cou, which indicates conservation of the mechanism

of polarity reading (Bigot et aÏ., 2004). Furhtermore, a specific instance of the

GNGNAGGG motif rescently lias been identified. This motif, its complement, or both are

effective in specifying FtsK’s directionality. It provides ftsK with the necessary

information to faithflully distribute chromosomal DNA to either side of the septum, thereby

bringing the ‘1f sites together at the end of this process (Bigot et aï., 2005; Levy et aï.,
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Figure 12 Mode! for segregation of the Ter domains and chromosome dimer resolution

(Adapted from Lesterin et aÏ., 2004). The cartoon represents the central part of a dividing

ce!!. The yellow bouquet represents hexamers of ftsK bound at the constricting septum.

The chromosomes are shown as red and blue lanes, the df sites as black and white

dumbbells and the recombinases as the rose and green circles.
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2.5.2 Homologous Recombination Control

Complete Xer recombination product at chromosomal or plasmid dfa1so depends on a

functional homologous recombination system, which is necessary to generate dimeric

chromosomes. Furthermore, the leveis of Xer recombinational exchanges at dfseem to be

proportional to the amounts of ongoing homologous recombination (Recchia and Sherratt,

1999; Steiner and Kuempel, 199$a, 1998b).

The major role of homologous recombination is to aliow the reassembly of functional

repiication forks that have broken or stalied, either as a consequence of DNA breaks or

lesions (Cox et ai., 2000) or because of staiied transcription machinery (McGlynn et ai.,

2000). The recombination process can either exchange the flanking sequence (referred to

as sister chromatid exchange ($CE) or ‘crossing over’) to produce dimer, or noncrossover,

leaving monomeric chromosomes.

The rate of dimer formation depends on the frequency of recombination between

sister chromosomes and on the frequency at which recombination events iead to sister

chromatid exchange. There are two major Rec-dependent recombination pathways in E.

cou, the RecFOR and the RecBCD pathways. Both pathways produce a Hoïliday junction,

which is normally resolved by the RuvABC complex, aithough it maybe processed by other

means in the absence of Ruv (Van Gool et ai., 1999; Cromie and ieach, 2000; Michel et aï.,

2000). On the basis of the assumption that ail chromosome dimmers are resoived at d

chromosome dimer formation has been indirectiy quantified by monitoring Xer

recombinational exchanges at dfwith a density label assay. Dimer formation reaches 15%

in wild-type celis and depends on homoiogous recombination (Figure 13) (Steiner and
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Kuempel, 1998a, 199$b). Mutations in either of these pathways leads to about a 50%

decrease in the number of Xer recombinational exchanges at d whereas mutational

ablation of both pathways almost abolishes Xer recombination exchanges at df This

estimate of the frequency of SCEs that lead to dimers fits well with the general phenotype

of Xer mutants is consistent with 15% of divisions giving no viable progeny (Pérals et al.,

2000).

Figure 13 Dimer formation by homologous recombination. (Adapted from Barre and

Sherratt, 2002). HJs made by homologous recombination can 5e resolved to crossover or

noncrossover events. RuvABC (RusA/RecG) preferentially resolves them to noncrossover

events. However, crossover events still occur. Consequently, dimers are formed. The Xer

recombination system ensures their conversion to monomers.
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2. 6. Xer System and Pathogenicity

Xer recombination is catalysed by two site-specific recombinases of the tyrosine

recombinase family, XerC and XerD (Blakely et al., 1993; Azaro and Landy, 2002).

Orthologues of XerC and XerD are found in most eubacteria that harbour circular

chromosomes (Recchia and Sherratt, 1999; Chaiker et al., 2000) and have been shown to be

required for faithful segregation of the chromosome in Bacillus subtilis (Sciochetti et aï.,

1999) and V. cholerae (Huber and Waldor, 2002). However, Xer mutants sometimes

display intriguing and unexplained phenotypes, that Xer recombinases may function in

processes indicating other than chromosome dimer resolution, such as pathogenicity.

2.6.1 Pseudomonas fluorescens

The first indication about the relativity between Xer recombinases and pathogenecity

came from the biocontrol agent Pseudomonas fluorescens. The pseudomonads possess

orthologues of genes encoding site-specific recombinases. A gene from Pseudomonas

aeruginosa affecting pyoverdin production, and named sss, was shown to be homologous

to the E. cou xerC gene (Hofie et aï., 1994). An sss mutant of F. fluorescens WCS365 was

affected in competitive rhizosphere colonization, and was displaced by the wild type from

the root tip of a variety of plants (Dekkers et al., 1998). It has also been shown that

introduction of extra copies of the sss gene can improve rhizosphere colonization (Dekkers

et al., 2000) and biocontrol abilities of different pseudomonads (Chin-a-Woeng et al.,

2000). Lately, a second recombinase encoded by the xerD gene was found and also

implicated in phenotypic variation in F. fluorescens (Martinez-Granero et al., 2005).
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Mutants affected in the sss or xerD genes produced a very low quantity of phenotypic

variants compared to the wild-type strain, both under prolonged cultivation in the

laboratory and afier rhizosphere colonization, and they were severely impaired in

competitive root colonization. Both site-specific recombinases are involved in phenotypic

variation (Martinez-Granero et al., 2005).

2.6.2 Staphytococcus aureus

Homologs of the XerCD enzymes have been identified in the genomes of

StaphyÏococcus aureus. A S. aureus xerC nul! mutant displayed in vitro characteristics

consistent with the segregation defect reported for E. cou mutants, and was also found to be

signfficantly attenuated in a murine infection mode!, suggesting that even a small

impairment in the cell’s ability to segregate efficiently may be highly deleterious to the

successful establishment of infection. Strikingly, the S. aureus xerD gene appears to be

absolutely required for viabi!ity and may therefore be the first example of an essential gene

of the lambda integrase family. A 8. aureus xerD mutant in allelic replacement

mutagenesis studies could flot be obtained. A!! 24 transductants carrying the correct allelic

replacement were found to also contain a copy of the wild-type xerD gene, suggesting that

only xerD mutants contain a functional second gene copy are viable. The absolute

requirement of S. aureus XerD cannot be explained by a segregation deficiency alone.

Hence it seems likely that this gene product has a separate function, in addition to or

instead of a chromosome resolvase activity (Chalker et al., 2000).
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2.6.3 Streptococcus pneurnoniae

It was also found that a $treptococcus pneumoniae xer] (putative xerC) nul! mutant

was highly attenuated in a murine respiratory infection model, suggesting that it may

control processes that affect virulence (Chaiker et aï., 2000). Moreover, Reichmann and

Hakenbeck (2002) also found that S. pneurnoniae mutants in a putative xerD gene appeared

to have several growth defects, such as longer generation time and longer chains of

misshaped cells.

Taken together, Xer recombinases may encode other frmnctions, involved in the

pathogenicity of some species, in addition to chromosome dimer resolution. The results of

Chalker et al (2000) demonstrated that XerD is a potential target for a novel anti-8. aureus

inhibitor. In addition, the behaviour in their murine infection models of Saureus xerC

mutants and 8. pneurnoniae xer mutants demonstrated that targeting additional members of

the lambda integrase family could extend the spectrum of pleiotropic effects on virulence.

further investigations of the function of these enzymes in different bacterial species will

help to clarify their potential as antibacterial targets.

3. Streptocoecus suis

Streptococcus satis is a world-wide causative agent of infections in swine and

humans. Infections in pigs range from severe clinical forms, such as meningitis,

septicaemia, arthritis and bronchopneumonia, to subclinical forms resulting in

asymptomatic carriers (Chanter et al., 1993; Reams et al., 1994; Gottschalk and Segura,
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2000). In humans, S. suis can cause meningitis, especially persons exposed to animais

infected by £suis as an occupation (Arends and Zanen, 1988; Kopic et al., 2002).

The control of infection is hampered by the presence of many serotypes and limited

knowledge on pathogenesis and virulence factors. To date 35 serotypes have been

described based on capsular antigens (Higgins et aÏ., 1995). In addition, a substantial

number of non-typeable strains exist (Wisselink et aÏ., 2000). $erotype 2 strains are

considered the most important ones, because of the fact that they are frequently isolated

from diseased animais. However, in some geographical regions other serotypes show

higher prevalence, and it is now generally accepted that virulence of S. suis is not solely

associated with the serotype. A number of putative virulence factors have been identified

in recent years, such as the capsular polysaccharides (CPS), which protect bacteria against

phagocytosis (Smith et al., 1999); the muramidase released protein (MRP) and extracelluiar

protein factor (Ef), both of which are virulence associated proteins (Vecht et aÏ., 1991), and

the cytolytic toxin suilysin (Jacobs et al., 1994), of which the role in virulence is unclear.

further putative virulence associated factors are the Gala 1—4 Gal adhesin (Haataja et al.,

1993; Tikkanen et al., 1996), and the AdiS protein, a temperature induced surface protein

that is possibly involved in survival under acidic and anaerobic conditions (Winterhoff et

al., 2002). However, general conclusions from these studies are limited as most were

restricted to serotype 2 strains, which are not necessarily representative for virulent S. suis

as outlined above. So far, the CP$ is the only proven critical virulence factor since

unencapsulated isogenic mutants were shown to be completely avirulent and rapidly

cleared from the circulation in both pig and mouse models of infection (Charland et al.,
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1998; Smith et al., 1999). However, natural nonvirulent S. suis serotype 2 strains are also

encapsulated and have an amount of sialic acid in the CPS similar to the amount found in

virulent strains (Charland et al., 1996). On the other hand, suilysin, MRP, and EF protein

have been associated with the virulent phenotype of European strains, but they are absent in

most virulent North American strains (Gottschalk et al., 1999). The exact roles of MRP and

EF protein in S. suis pathogenesis are unknown.

Up to now, highly efficient treatment and control of diseases caused by S. suis are

stili not available. Attempts to prevent introduction of carrier pigs from endemic herds are

flot completely reliable because the infection can be subclinical, and there are no reliable

tests to monitor its presence. Furthermore, it may be introduced in other ways (e. g. by

flues). Another possibility when new outbreaks occur is that mild strains already endemic

have mutated to become more virulent. Once in a herd, it tends to remain endemic; neither

vaccination nor therapy of all animals will eliminate it. Although killed vaccines are used,

their efficacy is unproved. Good husbandry reduces environmental stress and decreases

clinical disease. Prophylactic or strategic medication is commonly used, usually in feed or

water but sometimes by injection of long-acting antibiotics. The organism tends to become

resistant to tetracyclines and sulfonamides. Most isolates are sensitive to penicillin, but it is

rapidly inactivated in feed and, therefore, may fail to control disease.

4. The Master’s Project

There are three reasons to focus on Streptococcus suis in our project. Firstly, S. suis is

a Gram-positive bacterium, which is the leading cause of a wide range of diseases in
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animais and is also implicated in human diseases. The genome of this organism has been

partially sequenced by the $anger Institute and Joint Genome Institute (JGI)

(http ://genome.j gi-psf.org/drafl microbes/strsu/strsu.home.html). The analysis of the

partial sequence demonstrated the presence of open reading frames (ORF) that show strong

homology to the xer genes of S. aureus and S. pyogenes. Therefore, one objective of our

project was to clone and characterize the potential S. suis xerC gene. Secondly, xer mutants

in S.pneurnoniae, S.aureus and F. fluorescens have shown that a slight defect in the

segregation of chromosomes can affect the growth and pathogenicity of these bacteria. It

would be significant to inactive xerC gene of S. suis and to observe its effect on growth and

pathogenicity. Thirdly, many strains of S. suis are poorly transformable by plasmids

containing a Gram-negative replication origin, due to a lack of suitable shuffle vectors.

fortunately, we were able to obtain an E. cou-S. suis shuttie vector fot this work. The

vector possesses both thermosensitive (Ts) replicons and gram-negative replication origin

and can be used as either a normal plasmid vector or as a suicide vector for transposon

delivery of gene inactivation studies. Takamatsu group and St-Hyacinthe group have

succefully inactivate S. suis genes by introducing this vector into S. suis. (Takamatsu et aï.

2001; Harel and Gottschalk, personal communication). Therefore, another objective of our

project is to use this thermosensitive vector to inactivate the xerC gene and explore the role

of this gene in the viability and pathogenicity of S. suis.
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Abstract

XerC and XerD are members of the tyrosine recombinase farnily and mediate site

specific recombination which contributes to the stability of circular chromosomes in

bacteria by resolving plasmid multimers and chromosome dimers to monomers prior to

ceil division. Homologues of xerC/xerD genes have been found in many bacteria. In

this paper, an open reading frame in Streptococcus suis with a strong homology to xer

genes found in streptococcal bacteria was discovered. The gene, designated xerC, was

cloned, overexpressed and purified as a maltose binding protein fusion. The purified

XerC-MBP fusion showed specific DNA binding activity to the df site of Bacillus

subtilis, as well as df site of S. suis. xerC mutants of S. suis showed significant growth

and morphological changes.
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1. Introduction

The Xer site-specific recombination system, initially discovered for its role in the

stable maintenance of plasmid ColE 1, also ftmctions in the normal inheritance of the

Escherichia cou chromosome. It is encoded by the circular chromosomes of many

bacteria and functions to ensure that both circular chromosomes and multicopy plasmids

are monomeric before their segregation to daughter celis at celi division (Sherratt et al.,

1995). Recombinations mediated by XerC/XerD are performed by the tyrosine

recombinase family of site-specific recombinases. Ah members of this family contain

invariant residues which are R.. .H-X-X-R. . .Y (Nunês-Duby et al., 1998). Homologues

of the xerC/xerD genes have been found in many bacteria (Recchia and Sherratt, 1999).

They have been functionally characterized in gram-negative bacteria, such as

Pseudomonas aeruginosa, E. cou, Salmonella typhimurium , Haemophilus influenzae,

Vibrio cholerae, Caulobacter crescentus, and Proteus mirabilis (Hôfie et al., 1994;

Sirois and Szatmari, 1995; Hayes et aï., 1997; Neilson et al., 1999; Huber and Waldor,

2002; Jouan and Szatmari, 2003; Villion and Szatmari, 2003). They have also been

characterized in gram-positive bacteria, such as Bacillus subtilis, Lactobacitius

ïeichmanni, Staphylococcus aureus and Streptococcus pneumoniae (Slack et al., 1995;

Sciochetti et aï., 1999; Becker and Brendel, 1996; Chalker et al., 2000; Reichmann and

Hackenbeck, 2002).

Xer recombination occurs at two different sites and produces different biological

outcomes. On chromosomal sites, like the df site of E. cou, Xer recombination ensures

that the chromosome is converted into two monomers prior to cell division (Blakely et

al., 1991; Kuempel et aï., 1991). On plasmid sites, such as cer (ColEl plasmid) and psi
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(plasmid pSC101), recombination is involved in the monomerization of plasmids,

increasing their stability. Ail these sites contain the recombination core site and many

homologues have been found in eubacteria and naturally occurring plasmids (Hayes and

Sherratt, 1997; Lesterlin et aÏ., 2004). In ail the Xer recombination sites. XerC and

XerD cooperatively bind to specific 11 bp consensus sequences that are separated by a

6- to $-bp central region at the borders of which the DNA strands are cleaved and

exchanged (Biakely et al., 1993). In recombination mediated by tyrosine recombinases,

DNA strands are cleaved and rejoined through the formation of a transient DNA-protein

covalent intermediate invoiving a conserved tyrosine as the catalytic nucleophile. The

mechanism is the same as that found in the related type 13 topoisomerases (Shenatt and

Wigley, 1998). On the chromosomai site df the minimal 28 bp recombination core site

is sufficient to promote both intra- and intermolecular recombination (Blakely et aï.,

1991; Blakely et aÏ., 1993; Neilson et al., 1999). However, to ensure that the correct

order of strand exchanges occur at the right time and location, the df site must be

located at the terminus of the E. cou chromosome, and the C-terminal region of the ftsK

protein is required (Steiner et al., 1999; Barre et al., 2000). Recombination at natural

plasmids also requires additional accessory factors such as PepA, ArgR and ArcA

(Stirling et al., 1988; 1989; Colloms et al., 199$).

Homologues to xer genes have been found in Staphylococcus aureus and

Streptococcus pneumoniae and xer mutations in these bacteria displayed attenuation in a

murine infection model (Chaiker et al., 2000; Reichmann and Hackenbeck, 2002).

Moreover, Pseudornonas fluorescens, the biocontrol agent, also possesses XerC and

XerD tyrosine recombinases and strains with xer mutations dispiayed reduced

pathogenicity (Dekkers et al., 1998; Martinez et aÏ., 2005). It suggests Xer
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recombinases may aiso function in processes other than chromosome dimer resolution

(CDR), or that deficiencies in CDR may have far-reaching consequences on other

celiular processes.

Streptococcus suis is a Gram-positive bacterium, which is leading cause of a wide

range of diseases in animais (Staats et aÏ., 1997) and has aiso been implicated in human

diseases (Arends and Zanen, 198$). By analyzing the available sequence data of S. suis,

an open reading frame (ORF) was found that showed a strong homoiogy to xer genes of

S. aureits and S. pneumoniae. In this paper, we report the cioning of the S. suis xerC

gene and characterization of its product by DNA binding assays. The S. suis xerC gene

was aiso inactivated, and the growth and morphoiogy of the xerC mutant was

characterized.

2. Materials and methods

2.1 Bacterial strains and plasmids

The S. suis strains used in this study were the virulent strains P1/7, $735 and

31533 of serotype 2. E. cou strain AGi (recAl endA] gyrA96 thi-] hsdR] 7 [RK- MK]

supE44) was used for cloning and plasmid purification. For overexpression of maltose

binding protein (MBP)-fused genes, strain DS981 (thrl ÏeuB6 hisG4 thi] ara]4 zJ(gpt

proA)62 argE3 gaÏK2 supE44 xyl5 mtÏl tsx33 lac Y] rpsL3] (Strt) recf]43 lad q

zl(lacZ)M]5 xerC2) was used (Colioms et al., 1990).

Plasmid pQE3O (Qiagen) was used to clone the PCR-ampiified xerC gene of S.

suis. For overexpression and purification, the xerC gene was subcloned as a BamHI

SacI fragment into piasmid pMalC2 (New Engiand Bioiabs, NEB). The thermosensitive
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suicide plasmid pBEA756 was used for S. suis mutagenesis (gifi from M. Gottschaik

and J. Harel). This plasmid is derivative of pCIV2 (Okada et al., 1993). An internai

fragment of the xerC gene of S. suis was amplified by PCR and cioned into the EcoRI

site ofpBEA756.

2.2 Growth conditions and UNA manipulations

E. cou strains were routinely grown in LB broth or piated on LB agar, containing

the appropriate antibiotics when required. Ampicillin was used at 100 jig mL’,

kanamycin at 50 ig mL’. S. suis was grown in Todd-Hewitt broth (THY, Oxoid) or agar

(THA) with 1% yeast extract (Difco) and kanamycin (400 tg mL’) was supplied when

required. Restriction enzymes, Taq DNA poiymerase, Vent DNA polymerase and T4

DNA ligase were obtained from NEB and used according to the supplier’s conditions.

Ail routine DNA manipulations were performed as described by Jouan and $zatmari

(2003). DNA fragments were extracted from agarose gels using the QlAquick gel

extraction kit or QTAEXII gel extraction kit (Qiagen). Genomic DNA of S. suis was

prepared using the DNeasy Tissue Kit (Qiagen). Piasmids were extracted from S. suis

using the QlAquick miniprep kit with the following modification: celi pellets were

suspended in Pi buffer; img/ml iysozyme was added and incubated for 30 min at 37°C.

Southern hybridizations were done according to Sirois and $zatmari (1995).

2.3 PCR conditions

PCR reactions were performed using a CyclePro Thermocycier (Bio-Can) with

either Taq DNA poiymerase or Vent DNA poiymerase (NEB). For the amplification of
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the S. suis xerC gene, the cycling conditions were: 15 s at 95°C followed by 30 s at 54°C

and lmin 7s at 72°C for 30 cycles, a final extension at 72°C for 5 min. Reactions were

carried out in 50 pi reactions using chromosomal DNA from S. suis using Vent DNA

polymerase. Primers $suisXerCfwd (5’GATGAGACGCGAGTTATTATTGG3’) and

$suisXerCRev (5’TCACAACTGATCCAGAGCAT3’) were used. The PCR product

was sequenced by the CHUM sequencing facility of the Université de Montréal using

the foïlowing primers: pQE (5’GATTCAATTGTGAGCGGA3’), and SsuisXerCRev

(5’TCACAACTGATCCAGAGCAT3’). Primers were synthesized by BioCorp Inc.

2.4 Protein overexpression and purification

The £ suis xerC gene was amplified by PCR using Vent polymerase with primers

$suisXerCFwd and SsuisXerCRev using the cycling conditions described previously and

cloned into SmaI-cleaved pQE3O. The cloned xerC gene was then transformed into an E.

cou xerC - mutant strain DS98 1. The overexpressed histidine-tagged XerC protein was

insoluble when overexpressed. In order to overcome this problem, the pQE3O BamHI

SacI fragment containing xerC was subcloned into pMalC2 and was transformed into

DS98 1. Cells were incubated at 37°C to an 0D600 of 0.4-0.6 and then induced with 0.2

mM IPTG for 2h. Once harvested, pellets were resuspended in column buffer (2OmM

Tris-HC1, pH 7.4, 200mM NaC1, lmM EDTA) and were freeze-thawed and sonicated

followed by centrifugation at 13,000 xg at 4°C. Supernatants were passed through an

amylose column prepared according to the manufacturer’s directions. Elution steps were

performed according to the same protocol, except an additional step of washing in

column buffer was performed before elution with 10 mM maltose in colunm buffer.
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Most of the protein eluted in the first 1 ml fraction. Proteins were separated by $DS

PAGE on 12.5% gels and visualized by Coomassie blue staining. Protein concentrations

were estimated by the Bradford method using the Bio-Rad Protein assay (Bio-Rad).

The E. cou XerD and XerCMBP (E. cou XerC fused to the maltose binding protein

(MBP)) proteins were used as controls and also for the cooperative binding experiments

to test different combinations of Xer proteins from E. cou and S. suis. XerDEc (E. cou

XerD) was induced from pRM13O in BL21 pREP4 with 0.2 or 0.5 mM IPTG for 2 hr at

37°C. It was then purified as described by (Arciszewska et al., 1997) on a His-trap

column from Amersham Pharmacia Biotech. XerCMBP was induced from pGB500 in

DS9029 and purified as for XerCSs-MBP protein.

2.5 UNA-binding assay

Specific DNA binding was determined by the gel retardation assay (Jouan and

Szatmari, 2003) using specific fragments labeled with digoxygenin (DIG) by PCR. For

the E.coli df (dfEc) fragement, the following primers were used: difF22 (5’

CAGAAAAGCACTTCGCATCAC3’) and difR4 (5 ‘CAATCATGACCGCCAACGAC3’)

using the following conditions: 15s at 95°C followed by 30s at 58°C and 20s at 72°C for

30 cycles, a final extension at 72°C for 5 min. For labeling 3. subtitis dif (dURs)

fragment, the following primers were used: Bsdiff (5’

GCGCATATGGCGGATATGACGCTGG3’) and BsdifR (5’

CTGAATTGGCGATTTTCCGATTGGG3’) using the following conditions: 15s at 95°C

followed by 30s at 68°C and 40s at 72°C for 30 cycles, a final extension at 72°C for 5

min. The Dig-labeled fragments were extracted from polyacrylamide gel by using the

QIAEXII gel extraction kit (Qiagen). for labeling the 8. sttis df(dtfBs) fragment, the
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following primers were used: dif’SsuisF (5’AGTCTTTCCGACACCGAA3’) and

difSsuisR (TCATCAGTGTCCTAGTATTGTACGTTT3’), under the following

conditions: 15s at 95°C followed by 30s at 51°C and 30s at 72°C for 29 cycles, a final

extension at 72°C for 5 min. The dijSs fragment was purified by using QlAquick Gel

Extraction kit (Qiagen).

DNA binding assays were performed using TENg buffer (2OmM Tris-HC1, pH 7.5,

lmM EDTA, 5OmM NaCÏ and 5% glycerol) with 1 tg polydldC (Amersham Pharmacia

Biotech) and DIG-labeled df sites. Reactions were incubated at 37°C for 30 min and

electrophoresed at room temperature on a 6% polyacrylamide gel in 1 xTBE buffer at

2V/cm. Gels were then transferred onto positively charged nylon membranes

(HybondTM-N, Amersham) and UV-crosslinked. Final detections were done with CDP

Star (NEB), according to the standard digoxigenin detection methods and followed by

exposure to Fuji SuperRX-Xray film.

2.6 Preparation of S.sttis Electrocompetent ceit

An overnight culture of £ suis was diluted 1:40 into 200 ml of fresh THY medium and

grown at 37°C until 0D600 reached 0.4-0.5, corresponding to early-logarithmic growth

phase. The ceils were collected by centrifugation at 8000 rpm at 4°C for 15 minutes and

obtained ceil pellets. The ceils were washed four times with pre-chilled electroporation

medium (0.5 M sucrose) at 9000 rprn at 4°C for 15 minutes, resuspended in 2 ml chilled

0.5 M sucrose, aliquoted 50 pi in each tube and stored at -70°C until use.
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2.7 Electroporation and Inactivation of S. sttis xerC

The thermosensitive plasmid pBEA756 was used to inactivate the xerC gene of 8. suis.

This plasmid is a derivative of pCIV2 (Okada et al., 1993) and carnes a kanamycin

resistance element and an E. cou Co1E1 origin and a thermosentitive (Ts) gram-positive

replication origin from plasmid pVE6007 (Maguin et al., 1992). An internai sequence

of the xerC gene was amplified by PCR using the primers: S$XerCinF (CTA TGA ATT

CGG GAG CGT CCC TTG CT) and $SXerCinR (CTT CGA ATT CGG CAG ACC

ACG GTA TTC G), using the following conditions: 15s at 95°C followed by 30s at 57°C

and imin at 72°C for 30 cycles, a final extension at 72°C for 5 min. The 580 bp PCR

product was purified and Iigated into the PCR cloning vector pDrive (Qiagen). The

EcoRI-cleaved fragment from pDrive vector was subcloned into pBEA756 and

transformed into AGi, forming the plasmid pBEAXerCint. This plasmid was mixed

well with S.suis electrocompetent celis and transferred into chilled electroporation

cuvettes (inter-electrode distance 0.2 cm), then electroporated into S. suis using a

BioRad gene pulser with a setting of 25 tiF, 2.5 kV and 200Q. This setting resulted in

atime course ranging from 4.6 to 5.2ms. Immediately afier the pulse, 950 tl of THY

medium was added and the samples were incubated at 28°C for 3h, and spread on a THA

plate and incubated at 28°C (pennissive temperature for the Ts origin). The resulting

transformants were obtained afier prolonged incubation (3 days) afier electroporation,

and were then grown in THY broth overnight with kanamycin selection at 28°C. SmalY

aliquots of overnight cultures were spread on selective THA plates and incubated at

37°C (non-permissive temperature) to inactivate the Gram-positive origin. Celis, which

remained kanamycin-resistant, presumably had integrated the plasmid into the
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chromosome by homologous recombination at the xerC locus, inactivating the gene.

This was confirmed by Southem blot analysis.

2.8 Phenotypic analvsis/mïcroscopy

Because of the increased length of time required for xerC mutant celis to grow on

solid media, the generation time of wild type and xerC mutant strains was analyzed in

broth cultures. Overnight cultures were diluted in fresh 25 ml THY medium for both

xerU and wild type S. suis strains. Cultures were incubated at 37°C with vigorous

shaking. The optical density at 600 nm was measured at various time intervals using a

Bausch and Lomb Spec 20 spectrophotometer.

To examine the morphology of both wild type and xerC mutants, ceils from

overnight cultures were fixed in a mixture of 100 pi 16% formaldehyde and 0.4 tl 25%

gluteraïdehyde followed by a 5min centrifugation at 5,000 rprn and washed 2-3 times in

1 ml PBS. Twenty-five microliter samples were dropped on the slides and covered

with poly-lysine-treated coverslips, and were examined by DIC (differential

interferential contrast, also named Nomarski) microscopy using a Nikon TE2000U

fluorescence inverted microscope with a Nikon Plan Apo NA 1.4 100 x objective.

Images were captured using a Photometics Cool$nap HQ 12-bit CCD black and white

camera and were analysed using Metamorph ver6.3 (Universal Imaging Corporation).
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3. Results

3.1 Seguence analysis

The xerC gene of S. suis encodes a 356 aa protein, which shows typical features of

the tyrosine recombinase family (figure 1). It possesses ail the RKHRH conserved

residues and includes the catalytic tyrosine residue (Y) close to the carboxy-terminus.

Anaiysis of the sequence displays a very high degree of similarity with the Xer proteins

in other streptococcal bacteria. It shows 79% identity and 88% similarity with XerC

protein of S. pneumoniae, but oniy 27% identity and 45% similarity to XerC (CodV) of

B. subtilis (f igure 1). This protein was designated as a XerC recombinase by the

diagnostic residues XRs2 for XerC recombinase (Subramanya et al., 1997). It aiso

contains the tripeptide LGH, which is weil conserved among integrase famiiy members

(Cao et aï., 1997; Blakely and Sherratt, 1996).
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XerCSs ERIADIPLDVLEHLTKKDMEAFILYLRERPLLNANflQNGvSQTTINRTLSALSSLFKYL 120
XerCSpn DKISDIPLSVLENMSKKDMESFILYLRERPLLNANTTKQGvSQTTINRTLSALSSLYKYL 120
XerCBs INGFEEAAYQDTRI FLTEAYEK GLSRRTISKKISALRSFYKFL 87

:* . *: *: *:*: **::***

XerCSs TEEVENEQGEPYFYRNVMKKvSTKKKKETLAARAENIKQKLFLGDETMEFLDYVDKEYQv 180
XerCSpn TEEVENDQGEPYFYRNVMKKVSTKKKKETLAARAENIKQKLFLGDETEGFLTYIDQEHPQ 180
XerCBs MREKLIEE NPFQLVHLPKQ EKRIPKFLYQKELEELFEVSDISQPA 132

* * *: *: *.. . *

I III
XerCSs NLSKRALSSFQKNKERDLAILALLLASGVRLSEAVNLDLRDVNLNMMIIEVTRKGGKRDS 240
XerCspn QLSNRALSSFNKNKERDLAIIALLLASCVRLSEAVI1LDLRDLNLKMMVIOVTRKGCKRDS 240
XerCBs GMR DQALLELLYATGMRVSECCSITINDVDLFMDTVLVHGKGKKQRY 179

* *:: ** *:*:*:** *::* * : * **

XerCSs VNVAGFAKLYLEAYMGIRQQ--RYKAEKTDTAFFLSEYRG-LPNRIDASSIEKMVAKYSA 297
XerCspn VNVAAFAKPYLENYLAIRNQ--RYKTEKTDTALFLTLYRG-VPNRIDASSVEKMVAKYSE 297
XerCBs IPFGSYAREALKVYMNSGRQCLLMKAKEPHDLLFVNQRGGPLTARGIRHILSGLVQKASS 239

...:*: *: *: * *:.. :*:. * z. *
z.

II
XerCSs DFKIRVTPHKLRHTLATRLYDATKSQVLVSHQLGHANTQVTDLYTHIVNDEQKNALDQL- 356
XerCspn DFKVRVTPHKLRHTLATRLYDATKSQVLVSHQLGHASTQVTDLYTHIVSDEQKNALDSL- 356
XerC8s --TLHIHPHMLRHTFATHLLNEGADLRSVQELLGHSNLSSTQIYTHVSKEMLRNTYMSHH 297

** ****:**:* z
. .. ***:. . *::***: .:

XerCSs
XerCspn
XerCBs PRAFKKN 304

Figure 1. Alignment of XerC proteins of S. suis, £ pneumoniae and B. subtilis.

Alignments were done using: ClustalW from the European Bioinformatics Institute

sequence analysis server: http://www.ebi.ac.uk/clustalw/index.html. S. suis shares 79%

and 27% identities with S. pneumoniae and B. subtilis, respectively. Motifs I, II, III are

described by Cao et aL (1997). The catalytic residue (Y) and conserved residue (R, H,

R,) are indicated in bold. (*) corresponds to identity, (:) to a high degree of similarity

and (.) to a lower degree of similarity between amino acids.
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3.2 The S. suis XerC protein binds to the B. subtitis dif site

There are three well-characterized dif sites from the circular chromosomes of E.

cou, H influenzae and B. subtilis. Xer proteins bind specffically to df sites and carry

out their catalytic activities in the presence of the C-terminus of ftsK. The Xer

recombinases of several species like H infiuenzae, C. crescentus, P. mirabilis and B.

btilis have been shown to bind to the E. cou df site (Neilson et aï., 1999; Jouan and

$zatmari, 2003; Villion and $zatmari, 2003; Sciochetti et aï., 1999). Moreover, the

XerC and XerD proteins of E. cou could also bind to the B.subtiïis dfsites (Sciochetti et

aï., 2001). The S. suis XerC protein was cloned and expressed as an 82 kDa N-terminal

MBP fusion, which optimized the solubility of this protein when overexpressed in E. oïl.

Previous work had shown that the MBP fusion did not affect the protein’s binding

ability (Sciochetti et al., 1999).

The c4f site from B. subtilis (dfBs) was first chosen to analyze the binding activity

of 8. suis XerC-MBP fusion protein (XerCSs-MBP), since it is the only well

characterized df site from gram-positive bacteria. To ascertain if XerCSs-MBP could

specifically bind dfBs, gel retardation analysis was performed using DIG-labeled dfBs

with the purified XerCSs-MBP (figure 2A). Iwo protein-DNA complexes that

migrated with reduced mobility were observed at a concentration of 1 tM XerCSs-MBP

(Figure 2A). The retarded hands were observed in the presence of 600 ng polydldC

competitors.
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1 23 4 5 6 7 $
0 67 101 135 16$ 202 236 269

Figure 2. DNA binding assays with Xer proteins ftom S. suis and E. cou. A. XerCSs

MBP protein binding to dtjBs. The binding reactions were performed with 600 ng poly

dIdC competitor. Lane 1, no added protein; lane 2, 1 mM XerC$s-MBP. B. XerCSs

MBP binding to d/Ss. The amount of XerC$s-MBP added from lanes 1-8 are 0, 67,

101, 135, 16$, 202, 236 and 269 nM, respectively. Each reaction contained 600 ng poly

dIdC. C. E. cou XerC/ XerD binding to potential dUSs. One microgram dIdC was added

to each reaction. Lane 1, no protein; lane 2, 29$ nM XerCEc-MBP; lane 3, 1.5 mM

XerDEc.

3.3 Cooperative Binding studies

Since the S. suis XerC protein possesses ail conserved residues of site-specific

recombinases and displays some similarity with XerC protein from E. cou, the dfsite of

E. cou (dUEc) was initially used to analyze its binding activity by gel retardation assay.

However, no specific binding to dUEc was detected in our assays (data not shown). In

1 2 1 2 3



74

E. cou, XerC and XerD bind cooperatively (Blakely et al., 1993); and it is possible that

8. suis XerC might require its potential partner such as XerD for binding to dijEc, but

the addition of XerDEc to the binding reaction did flot affect the binding of XerCSs to

dfEc in our assay (data flot shown). However, it was interesting to note that stronger

retardated bands were observed for XerDEc binding to dfEc in the presence of XerCSs

MBP (Figure 3). This suggests that 8. suis XerC protein stirnulated XerDEc binding to

dfEc. XerCEc and XerDEc have been shown to bind cooperatively df site (Blakely et

al., 1993). Our observation suggests that these two proteins may cooperate in binding to

dijEc, but do not form additional complexes as observed in Blakely et aÏ. (1993).

XerDEc 0 0.39 053 0.66 0.80 0.93 1.07 1.20 0 0.39 0.53 0.66 0.80 0.93 1.07 1.20

XerCSs-MBP - + + + ÷ + + + - ÷ + + + + + +

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

44 Id XerD compIe>es

b Wi. —FreeDNA

Figure 3. XerC 8. suis stimulates XerDEc binding to djEc. Lanes 1-8, increasing

amounts of XerDEc (JIM) added to d/Ec in the presence of XerCSs-MBP (O.67p.M).

Lanes 9-16, XerDEc binding to dfEc without XerCSs-MBP. One microgram dIdC

competitor was added in each binding reaction.
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3.4 Discovery of a putative S. suis dif site

Since XerCSs-MBP showed specific binding activity to d7Bs, it was quite likely

that a specific DNA sequence similar to dfBs may be found on the S suis chromosome.

By homology searching, a potential df site of S. suis was found (figure 4). The site,

named dzjSs, is defined by two 11 -bp haif-sites separated by a 6-bp central region. An

alignment of dUSs with dif sites from B. subtiÏis, H inJluenzae and E. cou demonstrates

that the right haif-site sequence is highly conserved (11 -bp matches to dzjBs, 9-hp

matches to dUEc and c47Hin), whiÏe the lefi half-site is more divergent (6-hp matches to

dfBs and dUEc, 7-hp matches to dfI-Iin) (f igure 4).

difSs 5’ AGT TTA CAC AA AA TA AA TTA TGT AAA CT
difBs 5’ ACT TCC TAG AA TA TA TA TTA TGT AAA CT
difEc 5’ GGT GCG CAT AA TG TA TA TTA TGT TAA AT
difHin 5’ ATT TCG CAT AA TA TA AA TTA TGT TAA AT

* * * * *

Figure 4. Alignment of chromosomal recombination site sequences. c4fSs, dfBs and

dfEc refer to recombination sites ftom 8. suis, B. subtilis and E. cou, respectively.

Central region sequences are in bold face type.

The binding activity of XerC$s-MBP to dUSs was analysed by gel retardation

assays. In binding reaction mixtures, increasing quantities of XerCSs-MBP were added

to a fixed concentration of DNA and 600 ng polydldC competitors. A retarded band

was observed at 67nM protein (figure 2B, lane 2), with additional retarded hands

observed with increasing concentrations ofXerC$s-MBP (figure 2B, Lanes 2-8).
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Since d/Ss site aiso shows similarity with dfEc, we speculated that XerC and XerD

of E. cou might also bind to this site. A gel retardatïon assay was performed to detect

this possibility using purified XerC-MBP and XerD of E. cou. Addition of E. cou XerC

MBP to dzjSs did flot produce a detectabie complex; however, addition of 1.5 j.iM E. cou

XerD alone gave rise to two complexes (Figure 2C lane 3).

3.5 Inactïvation of the S. suis xerC gene

The vector pBEA756 possesses both Gram-positive thermosensitive (Ts) and

Co1E 1 replication origins. An internai fragment of the S. suis xerC gene was generated

by PCR and cioned into this vector, generating the piasmid pBEA756XerCint. This

plasmid was then successfuiiy introduced into S. suis by electroporation and was

extracted as described in section 2.2. At the restrictive temperature (3 7°C), homologous

recombination events were selected for by maintaining growth in the presence of

kanamycin. A single crossover event between the cloned xerC gene on the piasmid and

the chromosome copy of xerC resuits in the inactivation of the xerC gene, which was

first confirmed by PCR (data not shown), and by Southern biot (Figure 5).
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Figure 5. Southem blot analysis of wild type and mutant S. suis. HindIII-digested total

genomic DNAs from wild-type and xerC mutant strains of S. suis were separated by

electrophoresis through 0.7% agarose gel, transferred and hybridized with a DIG-labeled

xerC gene probe. Lane 1, mutant; lane 2, mutant genomic DNA control (non digested);

lane 3, wild-type; Lane 4, molecular weight marker (2-10g DNA ladder).

3.6 Phenotypic analysis of an xerC mutant of S. suis

The xerC mutant of S. suis was viable, but showed a siower growth rate when

compared to wild-type (figure 6A). The mutant culture showed an extended lag phase

of up to one hour in THY medium, resulting in a 40-60% reduction in cell numbers at

each time point compared with wild-type control. It also extended by about two hours

the time required to reach stationary phase.

Microscopic analysis ofxerC mutant celis showed a significant increase in average

chain length, averaging 6-1 $ compared to 2-7 cells per chain in wild-type cells (figure

6B). Most of wild-type ceils are 2 or 3 celis long, while mutants are more than 6 ceils
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long, and extremely long chains, containing more than 30 cells, were also observed

(Table 1).

A

—-—wildtype —*— mutant

0.01

0-aol

1 2 3 4 5 6 7 6 9 1 11

time(h)

Figure 6. Growth curves and morphology of S. suis xerC mutant. A. Growth curves of

xerC mutant (triangles) and wild type (squares) S. suis. B. Micrograplis of celis ofxerC

mutant (left) and wild-type S. sttis (right).
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Table 1. Chain length comparison between wild type and xerC mutant of S. suis. Chain

lengths were enumerated from micrographs in figure 5. “Chain length” 1 refers to the

number of cocci per chain and “number” 2 refers to the number of chains observed for

each respective length.

WiId-type Mutant

chains length1chains number2chains Iength chains number

2-3 99 2-3 6

4 36 4 25

5 19 5 15

6-7 15 6-7 49
9 1 9 11

over 10 0 10-20 37

Total 170 Total 143

4. Discussion

In this report, we described the cloning, overexpression, purification and

inactivation of the 8. suis xerC gene and its MBP-fused product. The deduced amino

acid sequence of the 8. suis XerC protein displays ail the conserved triad residues RHR

and catalytic tyrosine residue (Y) of site-specific recombinase family. It especially

displays strong similarity to XerC proteins of other streptococcal bacteria. for example,

it displays 79% identity and 88% similarity with the S. pneumoniae XerC protein.

However, it only displays 27% identity with XerC (CodV) B. subtilis (figure 1). The

same low identity was also observed when comparing with XerC/XerD of E. cou. This

may be explained by the great evolutionary divergence of the two organisms from which
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the proteins were derived. According to the phylogenetic tree of Reichmann and

Hackenbeck (2002), it was proposed that two distinct groups might exist in the XerD

family, one of which is represented by the streptococcal protein. These proteins show

lower identity when they compared to the Xer proteins of E. cou or B. subtilis.

The S. suis XerC recombinase was overexpressed and purified as a maltose binding

protein fusion. The purified fusion protein displayed specific binding to the df site from

B. subtilis. Addition of XerCSs-MBP to clUBs gave rise to two protein-DNA complexes

that migrated with reduced mobility (Figure 2). This result differs from what has been

observed with CodV binding to the dfBs site (Sciochetti et aÏ., 2001), which only gave

rise to a single protein-DNA complex that migrated with mobility consistent with a

single recombinase monomer binding to the recombination site (Sciochetti et al., 2001;

Blakely et al., 1997). It is possible that XerCSc-MBP might bind to both halves of

d/Bs.

Since the S. suis XerC protein possesses ail conserved residues of site-specific

recombinases and displays some similarity with XerC protein from E. cou, the dfsite of

E. cou (dijEc) was initially used to analyze its binding activity by gel retardation assay.

However, no specific binding to djEc was detected in our assays (data flot shown). We

speculated several possibilities of the failure to detect binding. Firstly, the failure to

detect binding to dfEc might be due to differences between XerC proteins of E. cou and

S. suis in the residues implicated in base and phosphate contacts that determine binding

specificity (Subramanya et al., 1997). $econdly, the binding might be of such low

affinity that our assays are unable to detect it.

In E. cou, XerC and XerD bind cooperatively; it is possible that XerCSs-MBP

might require its XerD partner for binding, but the addition of XerDEc to the binding
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reaction did flot have any effect on XerCSs-MBP binding to dURe (data flot shown). It

suggests that XerDEc could flot cooperatively stimulate XerC S. suis binding to dfEc. It

is possible that the high degree of divergence between these proteins may not allow for

cooperative binding at dijEc or at dUSs. We also attempted to find the xerD gene of S.

suis. An open reading frame was identified that displayed a strong similarity with $.

aureus XerD, but this protein was truncated by about 100 aa at its amino terminus. With

the completion of S. suis genomic sequencing, the putative xerD gene might be explored

and the two proteins cooperatively binding might be examined in the future study.

Altematively, it is possible that this truncated XerD protein may still be able to interact

with XerC$s for binding cooperativity and to catalyze site-specific recombination.

Future studies will look at this possibility.

However, it was interesting to note that stronger retardated bands were observed for

XerDEc binding to dfEc in the presence of XerC$s-MBP (Figure 3). This suggests that

S. suis XerC protein stimulated XerDEc binding to dfEc. XerCEc and XerDEc have

been shown to bind cooperatively df site (Blakely et aÏ., 1993). Our observation

suggests that these two proteins may cooperate in binding to dUEc, but do flot form

additional complexes as observed in Blakely et al., 1993.

A potential dfsite from the £ suis chromosome was found by homology searching,

which demonstrated a high degree ofhomology with dURs. The dfsites from E. cou, H.

inftuenzae and B. subtilis have been characterized by the presence of two 11-bp half

sites that contain partial dyad symmetry separated by 6-bp central region (5’-ATAA N6

TTAT or 5’AGAA N6 TIAT) that delineates the positions of strand cleavage and

exchange (Blakely et al., 1997; Neilson et al., 1999; Sciochetti et al., 2001). The right

half-site of potential dfSs shows a high degree of conservation when compared to the
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Gram-negative bacterial sites dfEc and dfHi and Gram-positive bacterial site chfBs

(former 9 of 11 -bp match, latter complete 11 -bp match) considering their great

evolutionary divergence (Figure 4). The left haif-site of cflfSs is much more divergent

compared to other XerC binding sites. it is important to note that for the nucleotides at

those important positions for binding specfficity, such as —9 and —13, mutations at these

positions of dUEc site abolished XerC binding (Hayes and Sherratt, 1997), which might

be one possible explanation why we were unable to detect specific binding of XerCSs

MBP to dUEc. We also note that the central region sequence of dfSs is very similar to

the H. influenzae df site (5-bp matches) and suggests that maintenance of this sequence

may be of major functional importance.

Specific binding of dijSs was detected at XerC$s-MBP concentrations of 67 nM

and above, in the presence of poly dIdC competitor (Figure 2B). Additional retarded

bands were observed with increasing concentrations of protein. XerC$s-MBP displayed

a higher affinity for the dUSs site (binding observed at 67 nM protein concentration,

Figure 23) than for dfBs (binding observed at 1 jiM protein concentration, Figure 2A).

In the Xer recombination site, different nucleotides at the lefi haif-site DNA sequence

determine the binding specificity of XerC (Hayes and Sherratt, 1997). More than one

DNA-protein complex was observed with dUSs binding which is similar to results

observed with XerC$s-MBP binding to d/Bs (Figure 2A). It has been shown that B.

subtiÏis RipX (XerD) could bind both half-sites of difBs, but CodV (XerC) could only

bind to one half-site (Sciochetti et al., 2001). The observation of more than one

complex may suggest that XerCSs-MBP is binding to both haif-sites of dUSs. Since a

strong candidate xerD gene of S. suis lias not yet been discovered, we also speculate the
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possibility that S. suis may only use one recombinase and in vitro experiments are

currently underway to explore this possibility.

Despite the strong of similarity between chfEc and dijSs, no cooperative binding

between XerCSs-MBP and the E. cou XerD (XerDEc) proteins was observed. But our

resuits showed XerDEc alone could bind to dUSs (Figure 2C). XerDEc binding to dtjSs

is most likely due to the high conservation of right-half sites between dUSs and dijEc.

The failure to detect E. cou XerC-MBP binding to dUSs is similar to what has been

observed with its binding behavior to dfBs. Even the cooperative interactions between

XerC and XerD of E. cou are flot sufficiently strong to overcome the low affinity of

XerC for the dfBs (Sciochetti et al., 2001). It might be the sirnilar case for d7Ss and is

probably related to the divergence of lefi-haif site between two recombination core sites.

It has been observed that xer mutations in S. pneumoniae, S. aueus and P.

fluorescens also affected the pathogenicity of these bacteria (Chaiker et al., 2000;

Reichmann and Hackenbeck, 2002; Martinez-Granero et al., 2005). This suggests that

Xer recombinases may function in processes other than chromosome dimer resolution or

that affects in chromosome segregation may have far reaching consequences for the

bacterial celis.

Inactivation of the S. suis xerC gene generated mutants that were viable but grew

with a considerably longer generation time compared with wild-type S. suis (f igure 6A).

Mutants also had a tendency to grow in longer chains of cells (figure 6B). Similar

phenomena were observed with an xerD mutant of S. pneumoniae and an xerC mutant of

aureus (Chalker et al., 2000; Reichmann and Hackenbeck, 2002). In order to

investigate the phentype change of chains length that might corne from the mutant XerC

protein, rule out the possibility of the interruption of the downstream gene expression of
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xerC $.suis, the in vivo complementations assay of& sui xerC mutant will be done in the

future study. It is quite possible that the lower growth rate of the xer mutants might be

related to a defect in chromosome segregation. Nucleoid morphology was investigated

by DAPI-staining wild-type and mutant celis, but no significant morphological changes

were observed by this method (data not shown). In coccus bacteria, dimensional

changes resulting from perturbation of chromosome segregation may be rather subtie as

they have the potential to occur in more than one plane, and this may explain why

microscope was insufficiently sensitive to detect the morphological changes.

Our report is the first work which characterizes the XerC protein in streptococcal

bacteria. In the future, fiirther investigations of the catalytic activity of XerC and its

interaction between other cellular proteins and DNA will allow us to determine how Xer

recombination functions in these medically-important bacteria. Future work with animal

infection models will help to show the effect ofxerC on pathogenicity in S. suis.
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Chapter HI

Discussion

1. The xerC Gene of Streptococcus suis

Analysis of the availabie bacteriai genome sequences reveais that XerC and XerD

homologues are present in many bacteria that have circular chromosomes (e.g. see

Nunes-DUby et al., 199$). By homology searching, the xerC gene of S. suis was found,

cioned and overexpressed as a maltose binding protein fusion. The moiecular weight of

the fusion protein was $2 kDa (including 43 kDa MB? fusion protein), in good

accordance with its predicted molecular weight of 39 kDa (Figure 14). The deduced

amino acid sequence of the S. suis XerC protein contains ail the conseiwed triad residues

RHR and the catalytic tyrosine residue (Y) of the tyrosine recombinase family

(Appendix 1). Analysis of the sequence dispiays a very high degree of simiiarity with

the Xer proteins in other streptococcal bacteria. It shows 79% identity and 88%

similarity with the XerC protein of S. pneumoniae. However, it only displays 27%

identity and 45% similarity with CodV of B. subtiÏis (chapter 2, Figure 1). When

compared to XerC and XerD of E. cou, a similar low identity was also observed. This

may be explained by the great evolutionary divergence of the two organisms from which

the proteins were derived. According to the phylogenetic tree in Reichmann and

Hakenbeck, 2002, it was proposed that two distinct groups exist in the XerD family, one

of which is represented by the streptococcal protein. These proteins show Ïower identity

when they were compared with the XerD proteins of E. cou or B. subtiÏis.
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2. DNA Binding Activity of XerCSs-MBP

The cflf site from B. subtilis (dURs) was initially used in our DNA binding assays as

it represents the best characterized cflf site from gram-positive bacteria (Sciochetti et al.,

2001). To ascertain ifS. suis XerC$s-MBP protein could specifically bind to dURs site,

we used gel retardation analysis of DIG-labeled dfBs with purified protein. XerCSs

MBP, at concentration of I 1.tM and above, displayed specific binding to dfBs site, by the

formation of two protein-DNA complexes that migrated with reduced mobility (Figure 3

in chapter 2). This resuit differs from what has been observed with CodV binding to the

dURs site which only gives rise to a single protein-DNA complex (Sciochetti et al.,

2001). It is possible that XerCSs-MBP might bind to both halves ofdfBs, which would

require further investigation in the future.

Since the XerC protein of S. suis bound specifically to dfBs, we speculated that the

S. suis chromosome must possess a specific DNA sequence similar to dtBs. One

potential df site from the S. suis chromosome was found by homology searching, which

demonstrated high similarity with d/Bs. The df sites from E. cou, H influenzae and B.

subtilis have characterized by the presence of two 11-hp half-sites that contain partial

dyad symmetry separated by 6-hp central region (5’-ATAA N6 TTAT or 5’AGAA N6

TTAT) that delineate the positions of strand cleavage and exchange (Blakely et aï.,

1997; Neilson et al., 1999; Sciochetti et al. 2001). The right half-site of the potential

dUSs shows a high degree of homology conservation when compared to the gram

negative bacterial sites dJEc and dfl-Iin and the Gram-positive bacterial site dURs

(former 9 of 11 -bp match, latter totally 11 -bp match) considering their great

evolutionary divergence (figure 3). The left half-site of dj/Ss is much more divergent

compared to other XerC binding sites. It is important to note mutation at positions —9
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and —13 of dUEc abolished XerC binding (Hayes and Sherratt, 1997). We also noted

that the central region sequence of dtjSs was very similar to dfHin site (5 of 6 matches)

and suggests that maintenance ofthis sequence may be of major functional importance.

XerC was overexpressed and purified as a maltose binding protein fusion. Specific

binding to dfSs site was detected at XerCSs-MBP concentrations of 67 nM and above,

in the presence of poly dIdC competitor (figure 2A). This binding was of a higher

affinity than that observed for dURs (67 nM vs 1 uM). In the Xer recombination site,

different nucleotides at the lefi haif-site DNA sequence determine the binding specificity

of XerC (Rayes and Shenatt, 1997). Additional retarded hands were observed with

increasing concentrations of protein. Multiple protein-DNA complexes were also

observed with XerCSs binding to dURs (Figure 2). It had been previously shown that B.

subtilis RipX (XerD) could bind both half-sites of dfBs (Sciochetti et al. 2001), but

CodV (XerC) only bind to one half-site (Sciocheffi et al., 2001). It would require further

investigations to determine if the formation of more than one complex was caused by

XerCSs-MBP binding to both half-sites of dijSs. This could be done by creating half

sites ofds and using these as substrates in gel shifi assays.

Because of the strong similarity between c4fEc and dUSs, XerC and XerD of E. cou

were tested for binding to dUSs. Our resuits showed XerDEc (1 .51.iM) could bind to

dUSs but no binding of XerCEc was observed (figure 2B). XerDEc binding to dUSs was

not surprising, given the high degree of conservation of the right-half sites of dUSs and

dfEc. The failure to detect XerCEc binding to dUSs is similar to what has been

observed with its binding behaviour to dJBs. Even the cooperative interaction between

XerC and XerD of E. cou are flot sufficiently strong to overcome the low affinity of

XerC for the dfBs (Sciochetti et al., 2001). It might be the similar case for dUSs site and
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might be related to the divergence of the left-half site between two recombination core

sites.

Since the S. suis XerC protein possesses ail conserved residues of site-specific

recombinases and displays some similarity with XerC protein from E. cou, the df site of

E. cou (dUEc) was initiaily used to analyze its binding activity by gel retardation assay.

However, no specific binding to dUEc was detected in our assays. We speculated

severai possibilities of the failure to detect binding. Firstly, the failure to detect binding

to chfEc might be due to differences between the XerC proteins of E. cou and S. suis in

the residues implicated in base and phosphate contacts that determine binding specificity

(Subramanya et al., 1997). Secondly, The XerC binding site ofdfsites are much more

divergent than XerD binding sites. There are some important nucleotides implicated in

binding specificity, such as —9 and —13, mutations at which dfEc binding was abolished

(Hayes and Sherratt, 1997), which might be one possible explanation why we were

unabie to detect specific binding to dfEc. finally, the binding might be of such low

affinity that our assays are unable to detect it.

3. Cooperative Binding studies

In E. cou, XerC and XerD bind cooperatively (Blakely et al., 1993); and it is

possible that S. sîtis XerC might require its potential partner such as XerD for binding to

dfEc, but the addition of XerDEc to the binding reaction did not affect the binding of

XerCSs to c4fEc in our assay. It suggests that XerDEc could not cooperatively stimulate

XerC S. suis binding to dijEc. It is possible that the high degree of divergence between

these proteins may not allow for cooperative binding at dijEc or at dUSs. We also

attempted to find the xerD gene of £ suis. An open reading frame was identified that
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displayed a strong similarity with S. aureus XerD, but this protein was truncated by

about 100 aa at its amino terminus. With the completion of S. suis genomic sequencing,

the putative xerD gene might be explored and the two proteins cooperatively binding

might be examined in the future study. Alternatively, it is possible that this truncated

XerD protein may stili be able to interact with XerCSs for binding cooperativity and to

catalyze site-specific recombination. Future studies wilY look at this possibility.

However, it was interesting to note that stronger retardated bands were observed for

XerDEc binding to dUEc in the presence of XerCSs-MBP (Figure 3 in article). This

suggests that S. suis XerC protein stimulated XerDEc binding to dUEc. XerCEc and

XerDEc have been shown to bind cooperatively df site (Blakely et al., 1993). Our

observation suggests that these two proteins may cooperate in binding to dijEc, but do

not form additional complexes as observed in Blakely et ai., 1993.

4. Phenotypic Assay of xerC Mutant

The Xer site-specific recombination system is important to ensure circular

chromosomes are monomeric before their segregation to daughter cells at ceil division.

xer mutants in S. pneumoniae, S. aureus and P. fluorescens also affect the pathogenicity

of these bacteria (Chaiker et ai, 2000; Reichmann and Hakenbeck, 2002; Dekkers et ai,

1998). It suggests that Xer recombinases may ftinction in processes other than

chromosome dimer resolution, or that defects in chromosome dimer resolution may

affect other cellular processes. The thermosensitive vector pBEA756 was used to

inactive the xerC gene of S. suis to explore the potential role of xer gene in the growth

and viability of$. suis.
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The xerC gene was inactivated by the homologous recombination of the suicide

vector pBEA756XerCint into the S. suis chromosome. xerC mutants were viable but

grew with a considerably longer generation time compared with wild-type £ suis (Figure

5). Mutants also had a tendency to grow in longer chains of celis (Figure 5). Similar

phenomena were obseiwed with an xerD mutant of S. pneumoniae and an xerC mutant of

S. aureus (Chalker et al., 2000; Reichmaim and Hakenbeck, 2002). It will be required

to further elucidate whether the longer chains are due to the xerC mutation are in a

downstream gene, this could be demonstrated by complementing the xerC mutant strain

with a cloned xerC gene in a plasmid vector. We speculated that the siower growth rate

might be related to a defect in chromosome segregation. Nucleoid morphology was

investigated by DAPI-staining wild-type and mutant celis, but no significant

morphological changes were observed by this method. A failure to detect defects in

nucleoid morphology was also found with the xerC mutant of S. aureus (Chaiker et al.,

2000). In coccus bacteria, dimensional changes resulting from perturbation of

chromosome segregation may be rather subtie as they have the potential to occur in

more than one plane, and this may explain why fluoresence microscopy was

insufficiently sensitive to detect the morphological changes. It might require other

efficient methods to detect the possible change ofxerC mutant.

5. In vitro Recombination Reaction

E. cou recombinases form Holliday junctions on a plasmid containing two cer sites in

the presence of accessory proteins and PepA (Colloms et aÏ., 1996). After digestion of

the plasmid DNA having undergone the action of recombinase, this junction can be

distinguished from the linear form of the plasmid in an agarose gel; because of its
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particular structure, it migrates more slowly than the linear form. This Holliday junction

was obtained during in vitro reactions with plasmid pCS2Ol (which contains two cer

sites flanking the lacZ gene)($tirling et al., 1989; Manuela and Szatmari, 2003) . We

have characterized XerC recombinase and it showed that it bound specifically to the

dUSs. In vitro recombination reactions were performed to examine its catalytic activity

and to determine if XerC alone could perform the recombination reaction at c4fSs. We

constructed a plasmid containing two directly repeated cflfSs sites and in vitro

recombination reactions were performed (described in Colloms et al., 1996) to detect the

possible recombination products or intermediate products. However, we did flot detect

any recombination product by using XerCSs-MBP, under any of the conditions used

(data flot shown). Because of the similarity between dijSs and dijEc, we assumed that

XerC and XerD from E. cou might act at the two cloned dUSs sites vector. In vitro

recombination was also carried out with these two proteins on the two dfSs vector but

no recombination products were detected (data flot shown).

The failure to detect recombination products might be due to difference between in

vivo and in vitro reaction conditions. Additional factors may be required for the

recombination reaction, for example, XerD and ftsKc. Aussel et al., (2002) proposed

two alternative pathways (ftsK-dependent/independent pathway) of Xer recombination

at d/ one initiated by XerC and the other by XerD. The role of FtsK in promoting

chromosome dimer resolution is to switch the activity of the XerCD recombinases in the

synaptic complex, SO that Xer recombination follows one pathway in which XerD

mediates the first pair of strand exchanges to form HJ intermediates that are resolved to

recombination products by XerC (FtsK-dependent pathway). Another possibility is

that the small amount products might be undetectable in out assay. Holliday junctions
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forrned at df in vitro are the resuit of catalysis by XerC (Barre et al., 2000). The HJ

intermediates are rapidly converted back to substrates in cycles of XerC-mediated strand

exchanges in the absence of FtsK (FtsK-independent pathway) and make them

undetectable.

6. In vivo Recombination

It has been proposed that the failure to observe recombination between df sites in

vitro reflects the requirement for an in vivo control that activates Xer recombination in

ceils containing chromosome dimers (Neilson et al., 1999). Therefore, we tried to study

the catalytic activity ofXerCSs in vivo.

f irstly, we introduced a plasmid containing two directly repeated di/Ss site into

different E. cou strains to detect possible recombination reaction in vivo. It was

interesting that no recombination products were detected and that plasmids were

eventully lost from E. cou xerC strains. The 2-dfp1asmid was stable in E.coÏi strain

with xerC or xerD mutations or xerC/xerD double mutants. However, it was unstable in

xerC and xerD E. cou strains. It is quite likely that the plasmid integrated into the

chromosome of E. cou; further studies like southern blotting, are currently being

undertaken to explore this possibility. Because of the short region of homology between

c%fSs and dfEc in the chromosome, the possibility of homologous recombination

between these two sequences is very low. furthermore, the putative integration

phenomenon was observed in recA strains (DH5 ci ). We also observed stable 2-df

plasmids in E. cou strains harboring a deletion of df site, further suggesting that the
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instability phenomena we observed was due to Xer-mediated recombination between the

S. suis and E. cou dfsites.

Since Xer proteins from E. cou have showed effects at two dUSs site. It would be

interesting to examine this effect in S. suis, factual attempts to examine this phenomenon

were flot successftil due to the instability of one E. cou-S. suis shuttie vector in Xer E.

cou strains. This problem can easily be overcome in the future by constnlcting xer - of

the E. cou strain which expresses the RepA protein, which is required for the replication

of one shuttie vector. Once this plasmid is constructed, it would be interesting to test the

effects of this vector in xerC wild-type and mutant strains of S. suis to see if this

instability is coimected to Xer-related recombination.

7. Perspectives

Our report is the first functional characterization of an XerC protein in streptococcal

bacteria, and its site of action, dUSs. The XerC recombinase showed DNA binding

activities and an xerC mutant demonstrated significant growth and morphological

changes. In the future, further in vitro investigations of XerC’s catalytic activity and its

interaction between protein and DNA would be interesting. Animal infection studies

should also be performed to analyze the pathogenicity of xerC mutant. The potential

dUSs sequence would require further characterization, especially to investigate whether

XerC could bind to both haif sites of c4fSs. Since an open reading frame was identified

that displayed a strong similarity with S. aureus XerD, but this protein was truncated by

about 100 aa at its amino terminus. In the future, the cloning and expression of the

truncated XerD would help to give further insight in the mechanisms of Xer

recombination in this species of bacteria.
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APPENDIX I
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_____

4— 83kDa

Figure 14. Overexpression and purification of S. suis XerC. Lane 1, partial purified XerC;

lane 2, 3 washing fraction; lane 4, flow-through; lane 5, induced crude extract; lane 6, no

induced crude extract; lane 7, protein molecular weight standard.
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APPENDIX II

XerC gene of S. suis

atgagacgcgagttattattggaaaaaattgatcaactaaaagaaattat

gccttggtttgttctggaatattatcagtcaaaattggctgtgccttaca

qttttactaccttatatgaatacttgaaagaataccgtcgtttttttgaa

tggttacaggattcggatttggtggctgttgaacggattgctgacattcc

gctggatgttctggaacatctgacaaaaaaagatatggaagctttcattc

tttatctgcgggagcgtcccttgctgaacgccaataccacgcagaatggt

gtgtcgcagaccaccattaaccgtaccctctcggccctttctagtctctt

caagtatttaaccgaagaagtggagaatgagcagggcgagccctacttct

accgcaatgtcatgaaaaaggtatctactaagaagaagaaggaaaccttg

gcagcgcgggcggagaacatcaagcaaaagctctttttgggcgatgaaac

gatggagttcttggactatgtggacaaggaataccaagtcaatctctcta

aacgtgccctctcctccttccagaaaaataaggagcgggatttggcgatt

ctggcgcttctcttggcttctggcgtccgtctgtcagaagcggtgaattt

ggatcttcgagatgtaaacctcaatatgatgattatcgaagtaactcgta

agggtggtaaacgggactcggtcaatgtggctgggtttgctaagctctac

ttagaagcctacatgggcatccgtcagcaacgctacaaggctgaaaaaac

ggatacagccttcttcctgtccgaataccgtggtctgcctaaccgtatcg

atgcttcttctattgaaaaaatggttgccaagtactctgcggacttcaag

atacgcgtaaccccccacaaactccgtcacacattggcaactcgtctcta

cgacgccaccaagtcgcaagttctagtcagtcatcagctgggccatgcca

atacccaggtcaccgatctctacacccatatcgtcaacgatgaacagaaa

aatgctctggatcagttgtga

1071 nucleotides
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Amino Acid Sequence of XerC S. suis

MRRELLLEKI DQLKEIMPWF VLEYYQSKLA VPYSFTTLYE YLKEYRRFFE

WLQDSDLVAV ERIADIPLDV LERLTKKDME AFILYLRERP LLNANTTQNG

VSQTTINRTL SALSSLPKYL TEEVENEQGE PYEYRNVMKK VSTKKKKETL

AARAENIKQK LFIGDETMEF LDYVDKEYQV NLSKRALSSF QKNKERDLAI

LALLLASGVR LSEAVNLDLR DVNLNMMIIE VTRKGGKRDS VNVAGFAKLY

LEAYMGIRQQ RYKAEKTDTA FFLSEYRGLP NRIDASSIEK MVAKYSADFK

IRVTPHKLRH TLATRLYDAT KSQVLVSHQL GHANTQVTDL YTHIVNDEQK

NALDQL

356 amino acids
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