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ABSTRACT

This paper considers the problem of testing the randomness of

Gaussian and non-Gaussian time series. A general class of para-.

metric portmanteau statistics, which include the Box~Pierce and the
Ljung-Box statistics, 1is 1introduced. Using the exact first and
second moments of the sample autocorrelations when the observations
are i.i.d. normal, the exact expected value of any portmanteau
statistic 1s obtained for this case. Two new = portmanteau
statistics, which exploit the exact moments of the sample auto-
correlations, are studied. For the nonparametric case, a rank
portmanteau statistic 1s 1introduced. The latter has the same
distribution for any series of exchangeable random variables and
uses the exact moments of the rank autocorrelations. We show that
its asymptotic distribution is ‘chi~square. Simulation results
indfcate that the new portmanteau statistics are better
approximated by the chi-square ésymptotic distribution than the
Ljung-Box statistic. Several analytical results presented in the

paper were derived by using a symbolic manipulation program.




RESUME

Ce texte considére le probléme qui consiste i tester le caractére
aléatoire de séries chronologiques gaussiennes et non-gaussiennes. Nous
définissons une classe générale de statistiques ''portemanteau' qui inclut
la statistique de Box-Pierce et celle de Ljung-Box. Utilisant les pre-
miers et seconds moments exacts des autocorrélations échantillonnales
pour le cas d'observations i.i.d. normales, nous dérivons 1'espérance
mathématique exacte de toute statistique portemanteau dans ce cas. Nous
€tudions deux nouvelles statistiques portemanteau qui exploitent les mo-
ments exacts des autocorrélations échantillonnales. Pour le cas non-
gaussien, nous introduisons une statistique portemanteau de rang. Cette
derniére a la méme distribution pour toutes les séries de variables aléa-
toires interchangeables et utilise les moments exacts des autocorréla-
tions de rang. Nous démontrons que la distribution asymptotique de cette
statistique est chi-carré. Nous présentons des résultats de simulation
qui indiquent que les nouvelles statistiques portemanteau ont des distri-
butions qui sont mieux approximées par la distribution chi-carré asymp-
totique que la statistique de Ljung-Box. Nous avons obtenu plusieurs
de nos résultats analytiques en utilisant un logiciel de manipulation

symbolique.




1. INTRODUCTION

Testing the randomness of a time series is one of the basic
problems of statistical analysis. Many inference procedures apply
only to independent identically distributed (i.i.d.) observations.
It is the first question that gets raised when ldentifying a time
series model. Theories in various fields can be verified by
testing the randomness of certain series. For example, important
economic hypotheses can be tested in this way: market efficiency
(see Fama, 1970), rational expectations (Kantor, 1978), the life
cycle-permanent income hypothesis (Hall, 1978), etc. In
particular, one can check the efficiency of a speculative market by
testing whether first differences of relevant asset prices, like
stock prices or exchange rates, are independent (the random walk
hypothesis).

To test the randomness of a series Xl,...,Xn against serial
dependence alternatives, 1t is standard practice to. look at the

sample autocorrelations

n-k n
- - X -3 - xy2 =
T z (Xt X)(Xt+k X/ T (Xt X) R 1<k<n 1, (1.1)
t=1 t=1
- n
where X = I Xt/n. Under the assumption that Xl""’ Xn are 1.1i.d.
t=1

with finite variance, the asymptotic distribution of /ﬁrk is N(O,1)
(see Anderson, 1971, Chap. 8). Thus, by considering normalized
autocorrelation coefficients /ﬁrk and asymptotic critical values
from the N(O0,1) distribution, one can test randomness against
serial dependence at each lag k. Moreover, in many situations, a
global test against serial dependence at several 1lags (say
k=l,...,m) 1is required. An especially simple statistic for this
purpose 1is the portmanteau statistic suggested by Box and Plerce

(1970):

m m
Q. = I (var,)2=n I r2 (1.2)
L =1 . kel K

Under the null hypothesis of randomness, Q1 has a y2(m) asymptotic
distribution. However, various theoretical and simulation results
suggest that the chi-square approximation is not accurate even for
moderately large samples (Davies, Triggs and Newbold, 1977; Ljung




and Box, 1978; Ansley and Newbold, 1979). Instead, considering

autocorrelations based on uncentered data

- n—k n
r, = ¥ a.a / £ a? , l<k<n-1,
k =1 t t+k =1 t

Ljung and Box (1978) observe that
E(r,)=0 Var(r,) = (n-k)/[n(n+2) ]

when al,...,an are 1.i.d. normal, and suggest replacing the
asymptotic standard error 1/v/n by [(n—k)/n(n+2)]%. This leads to a

second portmanteau statistic
m

Q, = n(n+2) = ri/(n-k) . (1.3)
k=1

Q2 is asymptotically equivalent to Q1 but its finite-sample distri-
bution appears better approximated by the xz(m) distribution, even
though it remains far from perfect.

When the mean of the data 1is unknown, the portmanteau
statistics Q1 and Q2 are based on approximate normalizations of the
sample autocorrelations: both the mean and the variance of each
coefficient rk are approximate. While taken to be zero, the exact
mean of rk is —(n-k)/[n(n~1)] for any series of i.1.d. wvariables.
This result was proved several years ago by Moran (1948) but was
not apparently exploited in the context of portmanteau tests. The
exact variances and covariances of the sample autocorrelations for
the case of a Gaussian white noise and for rank autocorrelations
from an arbitrary random series were derived recently by Dufour and
Roy (1984). Further, simulation results indicate that normalizing
each sample autocorrelation with 1ts exact mean and variance,
instead of the usual approximate moments, can improve considerably
the accuracy of the asymptotic N(0,1) distribution.

In this paper, we use the results of Moran (1948) and Dufour
and Roy (1984) to obtain exact results on the distribution of port-
manteau statistics and propose new parametric portmanteau tests
whose distributions are better approximated by the chi-square
distribution. We also introduce a nonparametric portmanteau
statistic based on rank autocorrelations, whose distribution under
the null hypothesis of randomness 1is relatively well approximated

by the chi-square distribution. Besides, since several of our




analytical results require long derivations, we checked them with
the symbolic manipulation program MACSYMA (1983).

In section 2, we first define a generalized parametric
portmanteau statistic as a positive definite quadratic form based
on sample autocorrelations. Both the Box-Pierce and the Ljung~Box
statistics (Q1 and QZ) belong to this family. We derive the exact
expected value of any parametric portmanteau statistic for the case
of a Gaussian white noise. We define two new portmanteau
statistics: the first one (Q3) uses the exact means and variances
of the sample autocorrelations in the Gaussian case while the
second one (Qd) also takes into account the covariances between the
autocorrelations. In contrast with Q1 and QZ’ both Q3 and Q4 in
the Gaussian case have exactly the same expected value as the x2(m)
distribution. We observe that the distribution of any parametric
portmanteau statistic is the same for all samples that follow a
spherically symmetric (s.s.) distribution: since the distribution
of a Gaussian white noise 1is s.s., any result valid in the latter
case also holds for the more géﬁeral class of s.s. distributions.
Further, we give upper bounds on the expected values of Ql’ Q2 and
Q3, valid for any sequence of exchangeable random variables and
thus also for an arbitrary random sample. We observe that these
bounds are remarkably close to the exact expected values obtained
in the Gaussian case.

Ih section 3, we derive closed-form expressions for the first
and second moments of rank autocorrelations from an arbitrary
random sample. Since these derivations (as well as certaln results
of section 2) require tedious algebra, we use MACSYMA to check
them. We exploit these results to define a nonparametric portman-
teau statistic based on rank autocorrelations (QS)' We observe
that the distribution of this statistic is the same for all samples
where the observations are continuous exchangeable, irrespective of
the form of the distribution. We show that the asymptotic
distribution of QS is xz(m) for any series of continuous
exchangeable random variables.

In section 4, we consider the problem of testing the random~
ness of a Gaussian time series and study by Monte~Carlo methods how
well the distributions of the five portmanteau statistics discussed

above are approximated by their asymptotic distribution. We find




that Q3 1s better approximated by the asymptotic xz(m) distribution
than Q1 and QZ: normalizing the sample autocorrelations with their
exact means and variances yields more accurate critical values. On
the other hand, Q3 and Q4 yleld almost identical results; taking
into account the covariances between the sample autocorrelations
does not seem to improve the control of the level. Finally, we
find that the critical values of the rank portmanteau statistic Q5
are about as well approximated by the chi-square asymptotic

distribution then those of QB'

2. PARAMETRIC GENERALIZED PORTMANTEAU STATISTICS

Both the Box—~Pierce and the Ljung-Box statistics may be viewed
as speclal cases of

Q=(x- 29'251(5.' » o, (2.1)
where r = (rl,...,rm)' . X"~(v1""’Wm)' is a vector of constants
and ZO is an mxm positive definite fixed matrix. Usually, one
wishes to set Vv and ZO close to the true mean anglthe true cova-
riance matrix of r. If we take v =0 and ZO = n Im’ we get the
Box-Pierce statistic Ql. If we take y=0 and ZO = Diag(cf,...,cé)
where cﬁ = (n-k)/[n(n+2)], we get the Ljung-Box statistic Qz.

When the underlying sample is random, whether normal or non-
normal, neither Q1 nor Q2 uses the exact first and second moments
of the sample autocorrelations. If Xl,...,Xn are i.i.d. (Moran,
1948) and, more generally, if they are exchangeable (Dufour and
Roy, 1984), the expected value of r is

by = =(n=k)/[n(n-1) ] , l<k<n=1 (2.2)

This holds irrespective of the form of the distribution (provided
P[X,L =X, = ee. = Xn] = 0). We will also use the following results
from Dufour and Roy (1984). The variance-covariance structure of
the rk's depends on the form of the distribution only through
n .
2 = -X J j . s e eleda
E(SA/SZ)’ where Sj T (Xt X), j»1 When Xl’ ,Xn are i.i.d

t=1
N(u,cz), the exact second moments of the sample autocorrelations

are

n* - (k+3)n3 + 3kn? + 2k(k+1)n - 4k2

Var(rk) = () n2(n=1)? » l<k<n-1, (2.3)




- 2[kh(n~1) = (n=h)(n?-k)] _
Cov(rk,rh) (ot )n2(n-1) 2 , l<k<h<n-1

. (2.4)

The distribution of the sample autocorrelations is the same for all
samples that follow a spherically symmetric (s.s.) distribution:
since the distribution of a Gaussian white noise 1s s.s., the ‘5
results in (2.3) and (2.4) hold whenever the sample has a s.s.
distribution. Further, when Xl,...,Xn are exchangeable, the
following upper bound on the variance of L2 holds:

2 =03 = (k+5)n2 + (5k+6)n + 2k(k-4)

Var(rk) < Uk a(a=1) 2(n=-3) s k21, n>3. (2.5)

Again thils bound is valid irrespective of the form of the distribu-
tion. For most values of n and k, it is only slightly larger than
the true variance in the normal case.

From the above results, we can suggest alternative portmanteau
statistics and study the exact expected value of any portmanteau
statistic. Namely, when testing the randomness of a normal sample, ,
it seems natural to 'nOrmalize the sample autocorrelations with

their exact means and variances. This leads to the statistic

- !

-1 : |

= - 2/ 42 = = v = .

Qq kfl (r, = )4/l = (@ -WD (x-w , (2.6)
where My is given by (2.2), oi = Var(rk) is givén by (2.3),

D = Diag(of,...,cﬁ) and yu = (pl,...,um)'. Q3 however does not take
into account the covariances between the autocorrelations. Since

the latter are also available, we are led to consider the

alternative statistic

Q = (x-w'r - w (2.7)
where | = [ij] is the covariance matrix of r as given by (2.3) and
(2.4).

For i.i.d. random variables with finite variances, /ﬁg. is
asymptotically N(O, Im) (see Anderson, 1971, Corollary 8.4.3.) and
Q1 is asymptotically x?(m) as n tends to infinity (with m fixed).

TR T T -

Furthermore, it 1s easy to see that QZ’ Q3 and QA are
asymptotically equivalent to Q1 and thus have a y2(m) asymptotic

distribution under the same conditions.
We will now study in greater detail the expected values of the i

e ———



portmanteau statistics described above. 1In general, the expected
value of any portmanteau statistic Q in (2.1) can be written as
-1 -1

E(Q) = tr(ZO L) + (u - 39'20 (=¥ , (2.8)
where I is the true covariance matrix of I. Consider the case
where X, ,...,X are i.i.d. normal. Then, we see easily that

1 n
E(Qy) = E(Q) = m (2.9)

so that Q3 and Q4 have exactly the same mean as the xz(m) distribu-
tion. On the other hand, from (2.3) and (2.4), we have
2 .03 - (tlH)n2 + 32

E(ri) = p 26D , l<k<n-1 (2.10)
from which we get
m
E(Q,) = n kji pZ2 (2.11)
e 2 S p2
E(Q,) = kfa (Dk/ck) = n(n+2) kfi DS/(n=k) . (2.12)

Further, we can obtain a simple expression of E(Ql) in terms of m

and n:

2
m[n?(2n-m-3) + (w+l)(2m+l) ]
m(m+3) -2
E(Qp) = Zn(n2-1) TR, tom )
It 1is interesting to observe here that the modified Box-Plerce
statistic suggested by Li and McLeod (1981) for multivariate time

serlies reduces In the univariate case to

* m+1
Q =q + m2n . (2.14)

. (2.13)

Though it does not fully correct the mean of Ql’ this modification
clearly moves the mean in the right direction.

For non-normal distributions, 1t is interesting to note that
the distribution of any generalized parametric portmanteau
statistic is the same for all samples that follow a s.s. distribu-
tion. Consequently the results (2.8) - (2.12) hold exactly for
this more general family of distributions, which includes probabi-
lity laws that can differ markedly from that of a Gaussian white
noigse (e.g. the multivariate Student-t distribution, a multivariate
Cauchy, etc.). Further, 1f we only assume that Xl""’xn are
exchangeable, we can obtain from (2.5) an upper bound on E(rf):




E(ri) < Vi, where

vZ = U2 + {(n-k) %/ [n%(n-1) 2]}

_nd - (k+3)n? + 2kn + 3k?
n<(n-1)(n-3)

, k31, n>3 . (2.15)

Upper bounds for E(Qi)’ i=1,2,3, are then easily derived:

m ) m[2n3 - (m+7)n? + 2(m+l)n + 2m2 + 3m +l]
Q) <n L Yy = 2n(a-1)(a=3) » (2:16)
m 2 v } m ) ’
E(Q.,) < T (V./ec,) = n(n+2) £ V4/(n-k), (2.17)
2 k=1 k' "k k=1 k
m 2
E(Q3) < T (Uk/ck) . (2.18)
k=1

These bounds hold for any sample of 1.i.d. observations, irrespect-
ive of the form of the distribution. We did not obtain a similar
bound for E(QA)'

Table 1 provides numerical evaluations of the exact means
E(Qi)’ i=1,2,3, and the corresponding upper bounds, for a number of
values of m and n. We see that E(Ql) 1s appreciably smaller than
m, in particular for n small and m large with respect to n. Even
the upper bound 1s smaller than m. E(Qz) is always larger than m,
though the distortion is clearly less pronounced than for Ql' Of
course, E(QB) is exactly equal to m. For all cases examined, the
upper -bounds are remarkably close te the exact values in the normal
case.

Some derivations in this section require lengthy algebraic
manipulations, especially (2.3), (2.4), (2.5), (2.13) and (2.16).
The latter were all checked with the symbolic manipulation program
MACSYMA (1983).

3. RANK PORTMANTEAU STATISTIC

Rank autocorrelations were studied by several authors as an
attractive nonparametric alternative to standard autocorrelation
coefficients; see Wald and Wolfowitz (1943), Stuart (1956), Knoke
(1977), Gupta and Govindarajulu (1980), Aiyar (1981), Dufour
(1981), Bartels (1982), Dufour, Lepage and Zeidan (1982),
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Govindarajulu (1983), Bhattacharyya (1984), Dufour and Roy (1984),
Hallin, Ingenbleek and Puri (1985a, b). The rank autocorrelation
at lag k 1s obtained by replacing each observation'xt by its rank

Rt:
n-k n
T . -3 - R - Ry2 -
T, L (R, = R(Ry = R / T (R =R) , l<k<n-1 , (3.1)
t=1 t=1
where R = IR /n=(0+1)/2 and I (R - R)?2 = n(n?-1)/12. Though
t=1 t=1

a number of alternative definitions have been considered in the
literature, the latter 1s the simplest and most natural one. The
distribution of the rank autocorrelations 1s the same whenever
Xl,...,Xn are continuous i{.i.d. random variables, irrespective of
the form of the distribution. Actually, this holds under the
weaker assumption that Xl,...,Xn are continuous exchangeable,
because all rank permutations in this case are equally probable.
When testing randomness (or exchangeability) against serial
dependence at several lags,/ it 1is natural to combine rank
autocorrelations 1in a portman;éau statistic. To do that however,

we need the first and second moments of ?k under the null

hypothesis.

Since R1
able and continuous, the mean of . is given by (2.2). Further,
using (2.3), (2.5) and (3.3) of Dufour and Roy (1984), we get after
some tedious algebra:

var(s ) = 50" = (5k+9)n3 + 9(k-2)n2 + 2k(5k+8)n + 16k?
arity 5(n-1)2n2(n+1)

,...,Rn are exchangeable when xl,...,xn are exchange~

, l<k<n-1,
(3.2)

o 2503 - (Sh-6)n2 - (Shk-k+6h)n - 8hk |
Coviry,ry) = = 5(n=1) 2nZ(a+l)

» 1<k<h<n"1,
(3.3)
We checked the two last expressions with the program MACSYMA. If

-2
we expand these formulas up to order n =, we see that

Var(?k) - 213:%%7:-3 + O(n’3) R (3.4)

Cov(E,,Ep) = - %7 +0m3y . (3.5)
Given the above results, we define the following portmanteau
statistic
m ~ ~
Q= T (r - w )2/ (3.6)

k=1
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where Sﬁ = Var(; ) 1s given by (3.2). It is easy to see that E(QS)

= m. Further, we can show that the asymptotic distribution of Q

is x2(m), when Xl""’xn are continuous exchangeable. We state
this result in the following theorem.

THEOREM: Let Xl""’xn be exchangeable and coantinuous random
variables, r a rank autocorrelation obtained from these by (3.1)
and r = (rl,rz,...,r )' where m < n. Then, for m fixed, the
asymptotic distribution of /ﬁ[g = E(E}] as n»x is N[Q, Im] and the
asymptotic distribution of Qs 1is x2(m).

PROOF: To prove this theorem, we will find convenient to use the
results of Hallin et al (1985b). Consider the alternative defini-

tion
n-k -
I RR,, - (n-k)R 2
R - (nfk) t=1n , l<k<n-1 (3.7)
L (R - R)?2
t=1

and let_g = (ﬁi,...,ﬁ;)' whgfe m is fixed. Under the assumption
that Xl,...,Xn are 1.1.d. with a density satisfying certain
regularity conditions, Hallin et al (1985b) show that /—[_ g E(R)]
is asymptotically N[_ I ]. However, in this case,. the distribution
of R is determined by the distribution of the rank vector which is
uniform over the set of all permutations of 1,2,...,n. Since the
latter property also holds in the more general case where Xl""’xn
are continuous exchangeable, we can infer that the asymptotic
distribution of va[R - E(R) ] 1s Nﬂg,lm] whenever Xl""’xn are
continuous exchangeable.

The latter result also holds for r = (r ,...,r Y'. To see

this, let rk = [(n-k)/n]Rk and observe that

n-k - - n—k =
- = = = +
b (Rt R)(Rt+k R) T Rth+k (n-k)R D,
t=1 t=1
where
k n

D= -2kR2 + R[ R.+ L R
t=1 t=n—k+1

Since 1 < R < n and R = (atl)/2, we have |D| < (k/2)(n+1)(3ntl),
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hence
~ * 0 -1
|rk rk, =0(n ") . (3.8)

Further, we can write
kr,

~ ~ n ~ * k

A = U R el
hence, using (3.8) and ,?L' <1,

~ _ %51l = -1 ~ o~ - ~1

|t, - K| =0 , ’E,“k) E(R)| = 0(n ™)
and

/a[rk - E(rk)] = /ﬁ[ak - E(R )]+ o(1/va) . (3.9)
Consequently, /ﬁ[g = E(E}] and /E[E = E(E)] have the same asympto-
tic distribution, and va[f - E(r) ] is asymptotically N[Q,Im].
Further, the asymptotic covariance matrix of.z may also be obtained
by directly taking the limits of (3.2) and (3.3). In particular,

~2 = . - E = = - = =
iii (nck) 1 Since E(rk) W, and T, = [rk uk]/ok
/ﬁ[rk E(rk)]/(nck)
-— ]

l—(Tl,...,Tm) is also asymptotically N[Q,Im] and Q5 is
asymptotically xz(m). Q.E.D.

O0f course, one rejects the null hypothesis of randomness (or

, k=1,...,m, we can conclude that the vector

exchangeability) against serial dependence alternatives (e.g. an
ARMA model) when Q5 is greater than the approbriate critical value
determined by using a table of the chi-square distribution.

The statistic QS is derived .in a way analogous to the para-
metric statistic Q3. We could also consider statistics analogous
to Ql’ Q2 or QA' However, in view of the simulation results
obtained for the parametric statistics (see section 4), we did not

study these alternatives in detail.

4. SIMULATION RESULTS

Even if the asymptotic distribution of all the portmanteau
statistics described above 1s the same, the reliability of the
chi-square approximation to set critical values may differ markedly
in finite samples. In particular, we wish to know whether the new
paramctric portmanteau statistics are better approximated by the

chi-square distribution than the Ljung~Box statistic and whether

.P
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the rank portmanteau statistic (whose distribution is actually
discrete) 1is reasonably well approximated by the chi~square
distribution.

To investigate these issues, we conducted the following Monte-
Carlo experiment. For each of five different series lengths (n=10,
20, 30, 50, 100), 10000 independent realizations of a Gaussian
white noise were generated using the subroutine GGUBS of IMSL
(1984). For each realization, the parametric statistics Qi’
i=1,...,4, were computed with a number of values of m. To
appreciate the accuracy of the x2(m) approximation, we examined the
empirical frequencies of rejection of the null hypothesis of
randomness by each test with five different nominal levels (1, 5,
10, 20 and 30 percent). We also computed the empirical variances
of the test statistics.

To minimize the computation costs, we considered the rank
portmanteau statistic (QS) separately. Under the hypothesis of
randomness, the vector of ranks (Rl""’Rn) is a random permutation
of the integers l,...,n. For each series length, 10000 independent
random permutations of the integers l,...,n were generated directly
using the subroutine GGPER of IMSL. For each permutation and each
value of m, Q5 was computed. To evaluate the accuracy of the chi-
Square approximation, we considered the same indicators as for the
parametric statistics.

The resulta of the experiment are presented in Table 2. We
make the following observations. First, for the Box~Pierce
statistic (Ql)’ the experiment confirms that the x2(m) distribution
is a poor approximation, even for series of 100 observations: in
most cases, the empirical levels and varilances are much lower than
the theoretical ones. Second, the distribution of the Ljung-Box
statistic (Qz) is much closer to the xz(m) distribution. However,
for n small (n=10), for m>5 with n=20, and for m»l0 with n=30, 50,
100, the empirical significance levels can be appreciably larger
than the theoretical ones. For all values of 0 and for m>1l, the
empirical variance of Q2 is larger than the theoretical value 2m.
Third, Q3 yields the best set of results. The agreement between
the cempirical and the theoretical levels 1s in general better than
for Qz. However, for levels less than or equal to 10 percent and

for m large with respect to n, the empirical frequencies of
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rejection remain larger than the theoretical values. Fourth, the
sampling distribution of Q4 is almost identical to the distribution
of Q3: taking Iinto account the covariances between the sample
autocorrelations does not seem to improve the control of the level.
This may be explained by the fact that the covariances are of order
O(n-z). Finally, the empirical significance levels of the rank
portmanteau statistic Q5 are very close to those of Q3; indeed, the
x2(m) distribution provides a better approximation of the

distribution of Q5 than of QZ'

5. CONCLUDING REMARKS

For cases where the true underlying distribution 1s normal,
the above results suggest that the new portmanteau statistic Q3,
which uses the exact means and variances of the sample auto-
correlations, is better approximated by the y<(m) distribution than
the Ljung—-Box statistic and, a fortiori, the Box-Pierce
statistic. Qh which takes into account the covariances between the
sample autocorrelations 1is equally well approximated by the same
distribution but is computationally less convenient. Besldes, the
statistic Q5 based on rank autocorrelations behaves almost as well
as Q3 and has the advantage of having the same distribution for all
random series. Consequently, when testing randomness with
.portmanteau statistics, we suggest to use Q3 when the distribution
1s reasonably close to the normal and Q5 when more robustness is
required.

OQur results also underscore a number of topics worthwhile
further investigation. First, even if the distributions of the new
portmanteau statistics are better approximated by the xz(m) distri-
bution, the approximation is far from perfect. Obtaining the exact
distributions of pormanteau statistics remains an ilmportant though
probably difficult problem. We may note here that deriving the
distribution of the parametric portmanteau statistics for a
Gaussian white noise and the distribution of the rank portmanteau
statistic constitute quite separate problenms. Second, it {is
possible that alternative portmanteau statistics have different

power characteristics against various serial dependence
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alternatives, especially in finite samples. This topic may require
extensive analytical and/or simulation studies. However, 1t 1is
certainly worthwhile further study.

Third, though this paper focused on the problem of testing
randomness, the modified portmanteau tests suggested abdve could
also be applied to the residuals from a fitted ARMA model (with an
appropriate degrees-of-freedom correction). Indeed, portmanteau
tests were originally suggested as a way of checking the specifica-
tion of time-series models; see Box and Pierce (1970), Ljung and
Box (1978), McLeod (1978), Ansley and Newbold (1979), Davies and
Newbold (1979), Clarke and Godolphin (1982), Ljung (1982), Newbold
(1983). 1t is easy to see that_the modified parametric portmanteau
statistics Q3 and Q4 are asymptotically equivalent to Ql and Q2 (at
least under the null hypothesis) and thus the asymptotic null
distribution is y2(m-p~q) when an ARMA(p,q) model has been fitted.
Since a large proportion df eﬁpirical ARMA models assume a non-zero
mean, wWe can conjecture that using the exact first and second
moments for the special case where only the mean is estimated may
lead té statistics whose distributions are better approximated by
the chi-square distribution. This question {is the toplc of

on—-going research.
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