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Sommaire

L’objet de cette thése est de développer un systéme d’inférence exacte en échantillon
fini dans des modéles de régression et des modéles structurels sans imposer d’hypothése
parameétrique sur la distribution des erreurs.

Dans le premier essai, nous étudions la construction de tests et de régions de confiance
dans une régression linéaire sur la médiane. Le modéle que nous considérons n’impose pas
de restriction paramétrique sur la distribution des erreurs. Celles-ci peuvent étre non gaus-
siennes, hétéroscédastiques ou bien présenter une dépendance sérielle de forme arbitraire.
Habituellement, ’analyse de ce type de modéle a recours & des approximations asympto-
tiques normales, lesquelles peuvent étre trompeuses en échantillon fini. Nous introduisons
une propriété analogue a la différence de martingale pour la médiane, la « mediangale
», et remarquons que les signes d’une suite de « mediangale » sont indépendants entre
eux et suivent une distribution connue et simulable. Nous utilisons alors la transforma-
tion par les signes et proposons des statistiques pivotales qui, en plus d’étre robustes, per-
mettent de construire une approche d’inférence simultanée valide quelle que soit la taille de
I’échantillon. Grace a la méthode des tests de Monte Carlo et a celle des projections, nous
construisons tour a tour des tests et des régions de confiance simultanés puis des tests et des
régions de confiance pour n’importe quelle tranformation du parameétre. Nous fournissons
ensuite une théorie asymptotique sous des hypothéses plus faibles que la « mediangale ».
Les études par simulation montrent que la méthode proposée est plus performante que les
méthodes asymptotiques habituelles lorsque le processus est trés hétérogéne ou lorsque la
taille de I’échantillon est petite. Enfin, deux exemples d’application sont étudiés. Dans le
premier, nous testons la présence d’une tendance sur des données financiéres. Le deuxieme
s’appuie sur des données régionales, nécéssairement peu nombreuses, pour tester la théorie
macroéconomique de 3 convergence entre les niveaux de production des états américains.

Dans le deuxiéme essai, nous introduisons un estimateur et des outils d’inférence va-
lides en échantillon fini moins communément utilisés. Nous étudions, tout d’abord, la
fonction p-value qui associe un degré de confiance & chaque valeur testée du paramétre
étant donnée la réalisation de 1’échantillon. Celle-ci est reliée a la notion de distribution de

confiance et aux distributions fiducielles de Fisher [Fisher (1930)]. Ces outils fournissent
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un équivalent fréquentiste aux distributions bayésiennes a posteriori. Nous calculons des
fonctions p-value simulées a partir de tests de Monte Carlo simultanés, puis des versions
projetées pour chaque composante individuelle du paramétre. Nous suivons ensuite le prin-
cipe d’inversion de test de Hodges et Lehmann [Hodges et Lehmann (1963)] et propo-
sons d’utiliser comme estimateur, la valeur du paramétre associée au plus haut degré de
confiance (a la plus forte p-value). L’estimateur de signe qui en découle est sans biais pour
la médiane quand les erreurs sont symétriques, et il partage les propriétés d’équivariance
de I’estimateur des moindres valeurs absolues (« Least Absolute Deviations, LAD »). Il est
aussi convergent et asymptotiquement normal sous des conditions plus faibles que 1’estima-
teur LAD. En échantillon fini, les simulations suggérent qu’il est plus performant en termes
de biais et d’erreur quadratique moyenne pour des processus trés hétérogénes. Ces outils
permettent de compléter I’analyse des deux exemples empiriques étudiés précédemment.
Dans le troisiéme essai, nous développons une approche inférencielle exacte en échan-
tillon fini pour des modeles structurels non-linéaires. Nous proposons une version de la
propriété de pivotalité des signes adaptée a un modéle instrumental. Les tests exacts qui en
découlent ne dépendent pas du degré d’identification du paramétre. Ils sont en particulier
valides en présence d’instruments faibles, pour des erreurs possiblement hétéroscédastiques
et non gaussiennes. L’approche que nous proposons fait intervenir des régressions artifi-
cielles ou I’on régresse les signes contraints sur des instruments auxiliaires dans I’esprit
d’Anderson et Rubin [Anderson et Rubin (1949), Dufour (2003)]. Nous étudions de plus
la question des instruments optimaux a inclure dans le modeéle, ce qui permet de gagner de
la puissance en cas de suridentification. Les simulations montrent que notre approche est
plus performante que les méthodes usuelles (y compris celles qui sont robustes a la pré-
sence d’instruments faibles) lorsque les erreurs sont non gaussiennes, hétéroscédastiques
et lorsque I’échantillon est petit. Cette méthode est utilisée sur les données de Angrist et

Krueger (1991) pour analyser les rendements de 1’éducation sur le salaire.

Mots clés : inférence exacte ; régression sur la médiane : régression quantile ; test de signe ;
hétéroscédasticité ; non normalité ; dépendance ; test de Monte Carlo ; techniques de pro-
Jection ; distribution de confiance ; endogénéité ; modéle structurel; modéle non-linéaire ;

instrument ; instrument faible ; convergence.
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Summary

The objective of this thesis is to develop a whole system of exact inference in fi-
nite samples, for regression models and structural econometric models under very weak
distributional assumptions on the error term.

In the first essay, we study the construction of finite-sample distribution-free tests
and confidence sets for the parameters of a linear median regression when no parametric
assumption is imposed on the noise distribution. The setup we consider allows for non-
normality, heteroskedasticity and nonlinear serial dependence of unknown forms. Such
semiparametric models are usually analyzed using asymptotically justified approximate
methods, which can be arbitrarily unreliable in finite samples. We consider first the prop-
erty of mediangale — the median-based analogue of a martingale difference — and show that
the signs of mediangale sequences are distribution-free despite the presence of nonlinear
dependence and heterogeneity of unknown form. We point out that a simultaneous infer-
ence approach in conjunction with sign transformations does provide statistics with the
required pivotality features — in addition to usual robustness properties. Those sign-based
statistics are exploited — with Monte Carlo tests and projection techniques — in order to
produce valid inference in finite samples: simultaneous tests, confidence regions and then
more general projection-based tests are constructed. An asymptotic theory which holds
under even weaker assumptions is also provided. Simulations suggest the good perfor-
mance of that method for a wide range of processes. Finally, two illustrative examples are
presented. First, we test for the presence of a drift in financial series involving strong het-
eroskedasticity. Then, we exploit a cross-regional data set whose sample size is necessarily
small, and test for 3 convergence between levels of per capita output across U.S. States.

The second essay presents additional finite-sample-based tools that can be used in con-
junction with the sign-based inference system previously developed. First, we study the
p-value function which measures the confidence one may have in a certain value of the
parameter. It is related to the notion of confidence distribution and to Fisher fiducial dis-
tributions [Fisher (1930)]. Those notions provide a frequentist analogue to the Bayesian
posterior distributions. We combine sign-based Monte Carlo tests of simultaneous hy-

potheses with projection techniques to construct simulated p-value functions and projected



P
i )

v

versions for the parameter individual components. Second, sign-based estimators that are
the parameter values with the highest confidence (the highest p-value) are presented. These
are obtained using the Hodges-Lehmann principle of test inversion [Hodges and Lehmann
(1963)]. They are expected to present the same robustness properties than the test statistics
from which they are derived and can directly be associated with the exact inference proce-
dures described in the first essay. We also show they are median unbiased (under a sym-
metry assumption) and present equivariance features similar to the LAD estimator. Consis-
tency and asymptotic normality are also provided under regularity conditions weaker than
the ones required for the LAD estimator. In a simulation study of bias and root mean square
error (RMSE), we find that sign-based estimators perform better than the LAD estimator
in settings with sizable heteroskedasticity. Sign-based estimators and p-value functions are
then used to complete the analysis of the two practical examples studied previously.

The third essay develops finite-sample distribution-free exact inference in nonlinear
structural models. We propose an adapted version of the sign invariance that allows one to
construct exact tests. We notice that the validity of those tests does not depend on identi-
fication assumptions nor on parametric approximations imposed on the errors. Sign-based
tests equal the nominal size for any given sample size in presence of weak instruments,
with non-normal and heteroskedastic errors. Basically, the sign-based approach relies on
artificial regressions where the signs of the constrained residuals are regressed on some
“auxiliary” instruments [Anderson and Rubin (1949), Dufour (2003)]. We also study the
problem of building optimal instruments, which can lead to considerable gain of power
in case of overidentification. Simulations show that sign-based methods overcome usual
methods and methods robust to weak instruments in non-normal and heteroskedastic set-
tings. A re-analysis of the returns to education based on Angrist and Krueger (1991) data

is also provided.

Key words: exact inference; median regression; quantile regression; sign test; het-
eroskedasticity; non-normality; dependence; Monte Carlo test; projection techniques; con-
fidence distribution; endogenenity; structural models; nonlinear models; instrument; weak

instrument; consistency.
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Introduction

Tout le monde croit aux erreurs normales, disait Henri Poincaré', les mathématiciens parce
qu’ils s’imaginent que c’est un fait d’observation, et les observateurs que c’est un théoréme
mathématique.

Quand en économétrie, on relache ’hypothése de normalité des erreurs, c’est trés souvent
pour y revenir en ayant recours a des approximations asymptotiques. Ainsi, I’inférence «
a la Wald » est couramment utilisée : on calcule un estimateur, puis son comportement
asymptotique grace a un théoréme central limite, on en déduit ensuite des tests et des ré-
gions de confiance asymptotiques.

Pourtant, de nombreuses études empiriques ou par simulation soulignent les limites
des approximations asymptotiques. Les exemples de tests qui présentent des distortions de
niveau en échantillon fini sont nombreux [pour des exemples en séries temporelles, voir
Dufour (1981), Campbell et Dufour (1995, 1997) et dans le contexte d’une régression sur
la médiane, voir Buchinsky (1995), DeAngelis, Hall et Young (1993), Dielman et Pfaffen-
berger (1988a, 1988b)]. La normalité qu’elle soit imposée par le modéle paramétrique ou
approchée en asymptotique ne vient donc pas toujours d’un fait d’observation.

Les limites des méthodes asymptotiques sont aussi bien connues dans Ia littérature sta-
tistique. On sait depuis Bahadur et Savage (1956) qu’il n’existe pas de procédure de test
valide et puissante en échantillon fini pour tester une moyenne si on ne spécifie pas plus
la forme de la distribution. La conséquence en est qu’a distance finie, un test basé sur la
distribution asymptotique a une taille qui peut arbitrairement dévier de son niveau nominal.
En d’autres termes, la moyenne n’est pas testable dans un modéle non paramétrique. Pour
décrire une procédure de test qui soit valide en présence d’hétéroscédasticité de forme ar-
bitraire, il est nécessaire de recourir & une mesure de localisation, comme la médiane.
Lehmann et Stein (1949) nous indiquent par ailleurs qu’il existe des procédures robustes
a ’hétéroscédasticité de forme arbitraire : les procédures basées sur les signes. Ces deux

résultats de la théorie des tests impliquent, entre autres, que les méthodes asymptotiques,

'Plus précisément, Henri Poincaré rapporte les dires d’un collégue dans la préface de son ouvrage Ther-
modynamique, 1908 : « un physicien éminent me disait un jour a propos de la loi des erreurs : tout le monde y
croit fermement parce que les mathématiciens s’imaginent que c’est un fait d’observation, et les observateurs
que c’est un théoréme mathématique. »
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en particulier celles qui s’appuient sur la moyenne, ne permettent pas de contrler le ni-
veau des tests en échantillon fini, et ce, méme lorsque qu’elles sont dites « corrigées de
’hétéroscédasticité et de 1’autocorrélation (HAC) ». Elles ne sont pas valides a distance
finie. Utiliser la normalité asymptotique n’est donc pas toujours ce que conseillerait un
théoricien.

Un autre épisode de I’histoire économétrique a renforcé la méfiance que peut inspi-
rer 'inférence « & la Wald » : celui des instruments faibles. Lorsqu’un modéle structurel
fait intervenir des variables explicatives endogénes, c’est-a-dire corrélées avec le terme
d’erreur, on a habituellement recours & des méthodes instrumentales. Les instruments sont
des variables auxiliaires exogénes, c’est-a-dire non corrélées avec le terme d’erreur, qui
vont assurer I’identification des paramétres du modéle et permettre d’inférer sur leurs va-
leurs. Pour ce faire, ils doivent étre pertinents, c’est-a-dire bien corrélés avec les variables
explicatives endogénes. Lorsqu’ils ne le sont que faiblement, ils ne permettent pas de re-
trouver une bonne identification du paramétre (cas de non-identification ou de quasi-non-
identification). En présence d’instruments faibles ou en I’absence d’identification, les sta-
tistiques de type Wald ont des comportements asymptotiques inhabituels et les tests asymp-
totiques qui en découlent ne sont pas valides.

La littérature sur les instruments faibles met fortement en garde contre les défauts
des méthodes asymptotiques habituelles qui s’appuient sur une hypothése d’identification
et sur la normalité asymptotique des estimateurs. Elle rappelle aussi qu’il existe des
statistiques pivotales robustes aux problémes d’identification & partir desquelles on peut
construire des tests valides. La premiére d’entre elles est la statistique d’ Anderson et Rubin
(AR) [Anderson et Rubin (1949)]. D’autres ont suivi [Kleibergen (2002, 2005, forthco-
ming), Moreira (2001, 2003), voir aussi Dufour et Jasiak (2001), Stock et Wright (2000),
Dufour et Taamouti (2005), ...]. Cette littérature ameéne a réfléchir sur la mise en oeuvre

de ’inférence. Elle remet 1’accent sur I’importance des statistiques pivotales.

Partir des tests et d’une statistique pivotale pour en dériver un systéme d’inférence est
classique en statistique. Cette démarche permet de plus de redécouvrir différentes notions

moins communément utilisées en économétrie.



Encore faut-il que de tels pivots soient disponibles. C’est & cela que répond le résultat de
Lehmann et Stein : en échantillon fini, dans un modeéle avec hétéroscédasticité de forme

arbitraire, une transformation par les signes peut aider a construire des pivots.

Dans cette thése, nous proposons un systéme d’inférence exacte en échantillon fini pour
des modeles de régression semi-paramétriques sur la médiane. A partir de statistiques pivo-
tales basées sur les signes des résidus, nous construisons des tests de Monte Carlo [Dwass
(1957), Barnard (1963), Dufour (2006)] qui exploitent la distribution exacte de ces statis-
tiques. Le niveau de ces tests simultanés est contrdlé quelle que soit la taille de I’échantillon
et ce, pour des formes arbitraires d’hétéroscédasticité et de dépendance non-linéaire. Nous
construisons ensuite des régions de confiance simultanées en inversant ces tests, et des tests
d’hypothéses plus générales grice a des techniques de projection [Dufour et Kiviet (1998),
Dufour et Jasiak (2001), Dufour et Taamouti (2005)]. Nous étudions ensuite d’autres outils
d’inférence qui ont jusqu’a présent recu moins d’écho dans la littérature économétrique :
la fonction p-value et la distribution de confiance. L’estimateur constitue enfin la derniére
brique de ce systeme d’inférence. Cette approche inférentielle commence donc par les tests
et finit par I’estimateur puisque celui-ci ne présente d’intérét que si le paramétre est identi-
fiable.

Différents modéles sont étudiés tout au long de la thése. Nous commencons par un
modéle de régression linéaire, puis nous étendons la méthode aux régressions non-linéaires

et aux modeles structurels. Cette thése se compose de trois essais.

Nous étudions dans le premier essai la construction de tests et de régions de confiance
dans un modele de régression linéaire sur la médiane. Nous supposons que le processus
d’erreur est de médiane nulle conditionnellement aux variables explicatives et 4 son propre
passé sans imposer de restriction paramétrique supplémentaire sur sa distribution. Celle-ci
peut étre non gaussienne, hétéroscédastique ou bien présenter une dépendance sérielle de
forme arbitraire, ce qui inclut les processus ARCH, GARCH et de volatilité stochastique.
Seule est exclue dans un premier temps la dépendance linéaire. La transformation par les

signes des résidus contraints permet de définir des statistiques de test dont la distribution



ne dépend pas de paramétres de nuisance et est aisément simulable quelle que soit la taille
de ’échantillon. La méthode des tests de Monte Carlo ainsi que celle des projections nous
permettent tour a tour de construire des tests simultanés exacts et des régions de confiance
pour le vecteur de paramétres, puis des tests et des régions de confiance valides pour n’im-
porte quelle transformation possiblement non linéaire, et ce, quelle que soit la taille de
1’échantillon.

En revanche, les statistiques de signes que nous utilisons ne sont plus pivotales
lorsque le processus d’erreur est linéairement dépendant (cas d’un ARMA stationnaire,
par exemple). La matrice de variance asymptotique constitue dans ce cas un paramétre de
nuisance. Les méthodes HAC standard nous permettent de le corriger asymptotiquement.
La procédure de Monte Carlo développée précédemment est alors asymptotiquement va-
lide sous des hypothéses d’existence de moment et de densité plus faibles que les méthodes
asymptotiques habituelles. De plus, elle ne requiert pas d’approximer des parameétres in-
connus (ce qui, au contraire, constitue une des principales difficultés des méthodes des
noyaux par exemple).

Les études par simulation suggérent qu’elle est plus performante que les méthodes
asymptotiques habituelles pour des processus trés hétérogénes ou lorsque la taille de
I’échantillon est petite. Cette méthode est donc particuliérement adaptée & ’étude des
données financiéres qui sont souvent trés hétéroscédastiques ainsi qu’aux analyses qui
s’appuient sur un faible nombre d’observations (séries temporelles, études inter-régionales,

données d’enquéte, .. .).

D’approche inférentielle basée sur les tests permet de mettre en avant d’autres outils
moins communément utilisés en économétrie. Dans le deuxiéme essai, nous reprenons et
étudions, la notion de distribution de confiance associée 4 une statistique de test qui est une
réinterprétation des distributions fiducielles de Fisher [Fisher (1930), Efron (1998), Schwe-
der et Hjort (2002)]. La fonction p-value qui en découle associe un degré de confiance a
chaque valeur testée du paramétre, étant donnée la réalisation des données. Distributions
de confiance et fonctions p-value constituent un équivalent fréquentiste aux distributions

a posteriori bayésiennes. Elles résument les résultats des tests et en donnent une illustra-
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tion graphique. La distribution de confiance est pourtant rarement utilisée en économétrie
car elle ne se définit aisémment que dans le cas d’un paramétre réel et requiert I’ utilisation
d’une statistique pivotale. La fonction p-value peut, elle, étre étendue au cas d’un parametre
multidimensionnel. Notre objectif est d’étendre ces notions au cas multidimensionnel dans
le contexte d’une régression sur la médiane. La transformation par les signes nous permet
de construire des statistiques pivotales sans recourir a des hypothéses paramétriques. Nous
calculons des fonctions p-value simulées  partir de tests de Monte Carlo, puis des versions
projetées pour chaque composante individuelle du paramétre. Celles-ci donnent 2 la fois
une illustration graphique de I’inférence et du degré d’identification du paramétre. Cepen-
dant, comme elles s’appuient sur des statistiques discrétes, nous n’avons que des versions
approchées des notions initiales.

Le deuxiéme objectif de cet essai est d’associer un estimateur 4 la procédure d’infé-
rence. Pour ce faire, nous suivons le principe d’inversion de test de Hodges et Lehmann
[Hodges et Lehmann (1963)], et proposons d’utiliser comme estimateur la valeur du para-
meétre associé au plus haut degré de confiance (soit & la plus forte p-value). Nous montrons
que ’estimateur de signe qui en découle est sans biais pour la médiane quand les erreurs
sont symétriques et qu’il partage les propriétés d’équivariance de ’estimateur « Least Ab-
solute Deviations (LAD) ». 11 est aussi convergent et asymptotiquement normal sous des
conditions plus faibles que 1’estimateur LAD.

En échantillon fini, les simulations suggérent qu’il est supérieur a I’estimateur LAD,
du point de vue du biais et de I’erreur quadratique moyenne, pour des processus tres

hétéroscédastiques ou possédant des queues de distribution épaisses.

Le troisiéme essai porte sur les modéles structurels et non-linéaires. L’échec des mé-
thodes asymptotiques usuelles dans les modeles structurels motive fortement une étude a
distance finie. Pourtant, la plupart des procédures disponibles dans la littérature s’appuient
sur un modéle paramétrique ou ne sont qu’asymptotiquement justifiées. Dans un cadre non
paramétrique, seules les procédures de rang ont été adaptées aux échantillons finis. Ce troi-
siéme essai présente une procédure valide quelle que soit la taille de 1’échantillon et robuste

a I’hétéroscédasticité de forme arbitraire. Nous utilisons une version de la propriété de pi-



votalité des signes adaptée 4 un modéle avec instruments. Les tests qui en découlent sont
exacts et ne dépendent pas du degré d’identification du paramétre. Ils restent valides en
présence d’instruments faibles ou de probléme d’identification du paramétre.

L’approche que nous suivons peut aussi s’interpréter en termes de régressions artifi-
cielles. Les signes des résidus contraints sont régressés sur des instruments auxiliaires dans
Iesprit d’Anderson et Rubin [Anderson et Rubin (1949), Dufour (2003)]. Ce type de pro-
cédure a cependant le défaut de perdre de la puissance lorsque beaucoup d’instruments
sont utilisés. Ceci pose la question des instruments a inclure dans le modéle en cas de suri-
dentification. Nous étudions deux concepts d’optimalité et proposons d’utiliser la méthode
de partage de I’échantillon [ « split sample », Dufour et Jasiak (2001)] pour calculer des
versions approchées de ces instruments optimaux.

Les simulations montrent que notre approche est supérieure aux méthodes usuelles (y
compris celles qui sont robustes 4 la présence d’instruments faibles) lorsque les erreurs sont

non gaussiennes et hétéroscédastiques.



Chapitre 1

Finite-sample distribution-free inference in linear median

regressions under heteroskedasticity and nonlinear

dependence of unknown form
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1. Introduction

The Laplace-Boscovich median regression has received a renewed interest since two
decades. This method is known to be more robust than least squares and easily allows
for heterogeneous data [see Dodge (1997)]. It has recently been adapted to models in-
volving heteroskedasticity and autocorrelation [Zhao (2001), Weiss (1990)], endogeneity
[Amemiya (1982), Powell (1983), Hong and Tamer (2003)], nonlinear functional forms
[Weiss (1991)] and has been generalized to other quantile regressions [Koenker and Bas-
sett (1978)). Theoretical advances on the behavior of the associated estimators have com-
pleted this process [Powell (1994), Chen, Linton, and Van Keilegom (2003)]. In empirical
studies, partly thanks to the generalization to quantile regressions, new fields of potential
applications were born.! The recent and fast development of computer technology clearly
stimulates interest for these robust, but formerly viewed as too cumbersome, methods.

Linear median regression assumes a linear relation between the dependent variable y
and the explanatory variables z. Only a null median assumption is imposed on the dis-
turbance process. Such a condition of identification "by the median" can be motivated by
fundamental results on nonparametric inference. Since Bahadur and Savage (1956), it is
known that without strong distributional assumptions (such as normality), it is impossible
to obtain reasonable tests on the mean of ¢.i.d. observations, for any sample size. Moments
are not empirically meaningful without any further distributional assumptions. This form
of non-identification can be eliminated, even in finite samples, by choosing another mea-
sure of central tendency, such as the median. Hypotheses on the median of non-normal
observations can easily be tested by signs tests [see Pratt and Gibbons (1981)]. In nonpara-
metric setups, one may expect models with median identification to be more appropriate
than their mean counterpart.

Median regression (and related quantile regressions) provides an attractive bridge be-
tween parametric and nonparametric models. Distributional assumptions on the distur-

bance process are relaxed but the functional form remains parametric. Associated estima-

! The reader is referred to Buchinsky (1994) for an interpretation in terms of inequality and mobility topics
in the U.S. labor market, Engle and Manganelli (1999) for an application in Value at Risk issues in finance
and Koenker and Hallock (2001), Buchinsky (1998), for exhaustive reviews of this literature.
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tors, such as the least absolute deviations (LAD) estimator, are more robust to outliers than
usual LS methods and may be more efficient whenever the median is a better measure of
location than the mean. This holds for heavy-tailed distributions or distributions that have
mass at zero. They are especially appropriate when unobserved heterogeneity is suspected
in the data. The current expansion of such "semiparametric" techniques reflects an inten-
tion to depart from restrictive parametric framework [see Powell (1994)]. However, related
inference and confidence intervals remain based on asymptotic normality approximations.
This reversal to normal approximate inference is certainly disappointing when so much
effort has been made to get rid of parametric models.

In this paper, we show that a testing theory based on residual signs provides an entire
system of finite-sample exact inference for a linear median regression model. The level
of the tests is provably equal to the nominal level, for any sample size. Exact tests and
confidence regions remain valid under general assumptions involving heteroskedasticity of
unknown form and nonlinear dependence.

The starting point is a well known result of quasi-impossibility in the non-parametric
statistical literature. Lehmann and Stein (1949) proved that inference procedures that are
valid under conditions of heteroskedasticity of unknown form when the number of observa-
tions is finite, must control the level of the tests conditional on the absolute values [see also
Pratt and Gibbons (1981), Lehmann (1959)]. This result has two main consequences. First,
sign-based methods, which do control the conditional level, are a general way of producing
valid inference for any sample size. Second, all other methods, including the usual het-
eroskedasticity and autocorrelation corrected (HAC) methods developed by White (1980),
Newey and West (1987), Andrews (1991) and others, which are not based on signs, are not
proved to be valid for any sample size. Although this provides a compelling argument for
using sign-based procedures, the latter have barely been exploited in econometrics. Our
point is to stress their robustness and to generalize their use to median regressions.

To our knowledge, sign-based methods have not received much interest in economet-
rics, compared to ranks or signed ranks methods. Dufour (1981), Campbell and Dufour
(1991, 1995), Wright (2000), derived exact nonparametric tests for different time series

models. In a regression context, Boldin, Simonova, and Tyurin (1997) developed inference
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and estimation for linear models. They presented both exact and asymptotic-based infer-
ences for 7.i.d. observations, whereas for autoregressive processes with i.4.d. disturbances,
only asymptotic justification was available. Our work is positioned in the following of
Boldin, Simonova, and Tyurin (1997). We keep sign-based statistics related to locally opti-
mal sign tests, which are simple quadratic forms and can easily be adapted for estimation.
However, we extend their distribution-free properties to allow for a wide array of nonlinear
dependent schemes. We propose to conjugate them with projection techniques and Monte
Carlo tests to systematically derive exact confidence sets.

The pivotality of the sign-based statistics validates the use of Monte Carlo tests, a tech-
nique proposed by Dwass (1957) and Barnard (1963). The Monte Carlo method, adapted to
discrete statistics by a tie-breaking procedure [Dufour (2006)], yields exact simultaneous
confidence region for 3. Then, conservative confidence intervals (ClIs) for each component
of the parameter (or any real function of the parameter) are obtained by projection [Dufour
and Kiviet (1998), Dufour and Taamouti (2005), Dufour and Jasiak (2001)]. Exact Cls as
they are valid can be unbounded for nonidentifiable component. That results from the ex-
actness of the method and insures the true value of the component belongs to exact Cls with
probability higher than 1 — «. In practice, computation of bounds of confidence intervals
(or confidence sets) requires global optimization algorithms such as simulated annealing
[see Goffe, Ferrier, and Rogers (1994)].

Sign-based inference methods constitute an alternative to inference derived from the as-
ymptotic behavior of the well known LAD estimator. The LAD estimator (such as related
quantile estimators) is consistent and asymptotically normal in case of heteroskedasticity
[Powell (1984) and Zhao (2001) for efficient weighted LAD estimator], or temporal de-
pendence [Weiss (1991)]. Fitzenberger (1997b) extended the scheme of potential temporal
dependence including stationary ARMA disturbance processes. Horowitz (1998) proposed
a smoothed version of the LAD estimator. At the same time, an important problem in the
LAD literature consists in providing good estimates of the asymptotic covariance matrix,
on which inference relies. Powell (1984) suggested kernel estimation, but the most wide-
spread method of estimation is the bootstrap. Buchinsky (1995) advocated the use of design

matrix bootstrap for independent observations. In dependent cases, F itzenberger (1997b)
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proposed a moving block bootstrap. Finally, Hahn (1997) suggested a Bayesian bootstrap.?
Other notable areas of investigation in the L, literature concern the study of nonlinear
functional forms and structural models with endogeneity ["censored quantile regressions",
Powell (1984, 1986) and Fitzenberger (1997a), Buchinsky and J. (1998), "simultaneous
equations", Amemiya (1982), Hong and Tamer (2003)]. More recently, authors have been
interested in allowing for misspecification [Kim and White (2002), Komunjer (2005), Jung
(1996)].

In the context of LAD-based inference, kernel techniques are sensitive to the choice
of kernel function and bandwidth parameter, and the estimation of the LAD asymptotic
covariance matrix needs a reliable estimator of the error term density at zero. This may be
tricky especially when disturbances are heteroskedastic. Besides, whenever the normal dis-
tribution is not a good finite-sample approximation, inference based on covariance matrix
estimation may be problematic. From a finite-sample point of view, asymptotically justified
methods can be arbitrarily unreliable. Test levels can be far from their nominal size. One
can find examples of such distortions for time series context in Dufour (1981), Campbell
and Dufour (1995, 1997) and for L;-estimation in Buchinsky (1995), De Angelis, Hall,
and Young (1993), Dielman and Pfaffenberger (1988a, 1988b). Inference based on signs
constitutes an alternative that does not suffer from these shortcomings.

We study here a linear median regression model where the (possibly dependent) distur-
bance process is assumed to have a null median conditional on some exogenous explanatory
variables and its own past. This setup covers non stochastic heteroskedasticity, standard
conditional heteroskedasticity (like ARCH, GARCH, stochastic volatility models, ...) as
well as other forms of nonlinear dependence. However, linear autocorrelation in the resid-
uals is not allowed. We first treat the problem of inference and show that pivotal statistics
based on the signs of the residuals are available for any sample size. Hence, exact infer-
ence and exact simultaneous confidence region on 3 can be derived using Monte Carlo
tests. For more general processes that may involve stationary ARMA disturbances, these

statistics are no longer pivotal. The serial dependence parameters constitute nuisance pa-

2The reader is referred to Buchinsky (1995, 1998), for a review and to Fitzenberger (1997b) for a com-
parison between these methods.
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rameters. However, transforming sign-based statistics with standard HAC methods allows
to asymptotically get rid of these nuisance parameters. We thus extend the validity of the
Monte Carlo method. For these kinds of processes, we loose the exactness but keep an
asymptotic validity. In particular, this asymptotic validity requires less assumptions on
moments or the shape of the distribution (such as the existence of a density) than usual
asymptotic-based inference. Besides, we do not need to evaluate the disturbance density at
zero, which constitutes one of the major difficulties of kernel-based methods. In practice,
we derive sign-based statistics from locally most powerful test statistics. We obtain exact
simultaneous confidence region and then, conservative confidence intervals for each com-
ponent or any real function of 3 by projection techniques. Once again, we stress the fact
that sign-based statistics can provide finite-sample inference which is not the case for usual
inference theories associated with LAD and other quantile estimators, which rely on their
asymptotic distributions.

The paper is organized as follows. In section 2, we present the model and the notations.
Section 3 contains general results on exact inference. They are applied to median regres-
sions in section 4. In section 5, we derive confidence intervals at any given confidence level
and illustrate the method on a numerical example. Section 6 is dedicated to the asymptotic
validity of the finite-sample inference method. In section 7, we give simulation results
from comparisons to usual techniques. Section 8 presents illustrative applications: testing
the presence of a drift in the standard and poor’s composite price index series, and testing
for 8 convergence between levels of per capita output across the U. S. States. Section 9

concludes. Appendix A contains the proofs.

2. Framework

2.1. Model

We consider a stochastic process W = {W, = (y;, z}) : 2 —» RP*!, ¢ = 1,2,...} defined
on a probability space ({2, F, P). Let {W;, F;} t=12,.. be an adapted stochastic sequence,
i.e. F¢ is a o-field in {2 such that 7, C F; for s < ¢ and (W4, ..., W:) c F;, where
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(Wi, ..., W,) is the o-algebra spanned by W,,...,W,. W, = (yt, z;), where y, is the
dependent variable and z; = (241, ..., Z,)’, a p-vector of explanatory variables . The z,’s
may be random or fixed.

We assume that y, and z, satisfy a linear model and we shall impose in the following some

conditions on the median of the disturbance process:
w=zf+u, t=1,...,n. 2.0

In the following, y = (y1,...,y,)" € R™ stands for the dependent vector, X = [T1,...,Z,)
for the n X p explanatory matrix. (3 € RP is the vector of parameters, and
u = (u,...,u,) € R" the disturbance vector. Moreover, the distribution function

of u; conditional on X is denoted Fi(.|zy,. .., z,).

In the classical linear regression framework, {u;, ¢t = 1,2,...} is assumed to be a

martingale difference with respect to 7, = o(W1,...,W,), t =1,2,....

Definition 2.1 MARTINGALE DIFFERENCE. Let {u,, F, : t = 1,2,...} be an adapted

stochastic sequence. Then {u;,t = 1,2,...} is a martingale difference sequence with

respectto {Fy, t =1,2,...} iff
E(Ut|.7'-t_1) = 0, Vit > 1.

We depart from this usual assumption. Indeed, our aim is to develop a framework that
is robust to heteroskedasticity of unknown form. From Bahadur and Savage (1956), it is
known that inference on the mean of 4.i.d. observations of a random variable without any
further assumption on the form of its distribution is impossible. Such a test has no power.
This problem of non-testability can be viewed as a form of non-identification in a wide
sense. Unless relatively strong distributional assumptions are made, moments are not em-
pirically meaningful. Thus, if one wants to relax the distributional assumptions, one must
choose another measure of central tendency such as the median. The median is in particular

well adapted if the distribution of the disturbance process does not possess moments. As
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a consequence, in this median regression framework, the martingale difference assumption
will be replaced by an analogue in terms of median. We define the median-martingale dif-
ference or shortly said, mediangale that can be stated unconditional or conditional on the

design matrix X.

Definition 2.2 STRICT MEDIANGALE. Let {u,, 7y, t = 1,2...} be an adapted sequence.

Then {us, t =1,2,...} is a strict mediangale with respect to {F;, t = 1,2, .. Jiff
P[u1 < 0] = P[’LLI > O] = (0.5,

Plu; < 0|Fi—1] = Plu, > O|F,—1) = 0.5, fort > 1.

Definition 2.3 STRICT CONDITIONAL MEDIANGALE. Let {u, 7, t = 1,2...} be
an adapted sequence and F, = o(uy,...,u;, X). Then {ug, t = 1,2,...} is a strict

mediangale conditional on X with respect to {F,t=1,2,.. Jiff

Plu; < 0|X] = P[y; > 0|X] = 0.5,

Pluy < Oluy, ..., uy, X] = Pluy > O|uy, coy U1, X =05, fort > 1.

Note that the above distributions allow u; to have a discrete distribution except at zero. If

the latter constraint is relaxed, we get that following definition.

Definition 2.4 WEAK CONDITIONAL MEDIANGALE. Let {ue, Fyy t = 1,2...} bean
adapted sequence and F, = o (uy, ..., u;, X). Then {u,, t = 1,2,.. .} is a weak median-

gale conditional on X with respect to {F;, t =1,2,...} iff
P[u1 > 0|X] = P[u1 < 0|X],

Pluc > Oluy, ..., up1, X] = Plug < Oluy, ..., uy, X], fort=2,...,n.
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The sign operator s : R — {—1,0, 1} is defined as

1, ifa € A,
5(a) = 1p,100)(a) — L(—c0,0(a), 1a(a) = (22)
0, ifa ¢ A.
For convenience, the notation will be extended to vectors. Let v € R™ and s(u), the n-
vector composed by the signs of its components.

Stating that {u,, t = 1,2,...} is a weak mediangale with respect to {F, t=1,2,...}
is exactly equivalent to assuming that {s(u,), ¢t = 1,2, ...} is a martingale difference with
respect to the same sequence of sub-o algebras {F;, t = 1,2,.. .}. However, the weak
conditional mediangale concept as defined before differs from a martingale difference on
the signs because of the conditioning upon X. Indeed, the reference sequence of sub-¢
algebras is usually taken to {F, = o(W4,..., W), t = 1,2,...}. Here, the reference
sequence is {F; = o(Wy,..., W, X), t = 1,2, .. .}. Conditional mediangale requires
conditioning on the whole process X. We shall see later that asymptotic inference may be
available under weaker assumptions, as a classical martingale difference on signs or more
generally some mixing concepts on {s(u;),a(Wy,...,W,), t = 1,2,.. .}. However, the
conditional mediangale concept allows one to develop exact inference (conditional on X ).

We have replaced the difference of martingale assumption on the raw process {ug, t =
1,2,...} by a quasi-similar hypothesis on a robust transform of this process {s(u), t =
1,2,...}. Below we will see it is relatively easy to deal with a weak mediangale by a
simple transformation of the sign operator. To simplify the presentation, we shall focus on

the strict mediangale concept. Therefore, our model will rely on the following assumption.

Assumption A1 STRICT CONDITIONAL MEDIANGALE. The components of u =

(u1,...,uy,) satisfy a strict mediangale conditional on X.

It is easy to see that Assumption Al entails:

med(u1|zy,...,2,) =0,

med(u|zy, ..., To, Uy, u1) =0, t=2,...,n,
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Hence, we are in a median regression context. Our last remark concerns exogeneity.
As long as the z;’s are strongly exogenous explanatory variables, the conditional me-
diangale concept is equivalent to usual martingale difference for signs with respect to
Fo=a(W,...,lW), t=1,2,....

Proposition 2.5 MEDIANGALE EXOGENEITY. Suppose {z,: t=1,... ,n} is a strongly

exogenous process for 3 and

Plus > 0] = Plu; <0] = 0.5,

P[’U,t > 0|u1,. vy Ut—1,T1,. .. ,.’L‘t] = P[’U,t < Olul,... yU—1,T1,y . - - ,IEt] = 0.5.

Then {u,, t € N} is a strict mediangale conditional on X.

Model (2.1) with the Assumption A1 allows for very general forms of the disturbance dis-
tribution, including asymmetric, heteroskedastic or dependent ones, as long as conditional
medians are 0. We stress that neither density nor moment existence are required, which
is an important difference with asymptotic theory. Indeed, what the mediangale concept
requires is a form of independence in the signs of the residuals. This extends results in
Dufour (1981) and Campbell and Dufour (1991, 1995, 1997).

Asymptotic normality of the LAD estimator is presented in its most general way in
Fitzenberger (1997b). It holds under some mixing concepts on {s(u;), o(Wy, ..., Wy, t=
1,2,...} and an orthogonality condition between {s(u;), t = 1,2,...} and {z¢, t =
1,2,...}. However, this requires additional assumptions on moments.* With such a choice,
testing is necessarily based on approximations (asymptotic or bootstrap). Here, we focus
on valid finite-sample inference without any further assumption on the form of the distrib-

utions. In order to conduct a fully exact method, we have to consider Assumption Al.

3X is strongly exogenous for 3 if X is sequentially exogenous and if Y does not Granger cause X, [see
Gouriéroux and Monfort (1995a)]

“In Fitzenberger (1997b), LAD and quantile estimators are shown to be consistent and asymptotically
normal if amongst other, Efz,s¢(u)] = 0, Vt = 1,...,n, densities exist and second-order moments for
(ue, ;) are finite.
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2.2. Special cases

The above framework obviously covers independence but also a large spectrum of het-

eroskedasticity and dependence patterns. For example, suppose that
U = 0¢(Ty,...,Ty) &, t=1,...,n,

where €;, . . ., £, are 4.i.d. conditional on X = [z;, ..., z,]’. More generally, many depen-

dence schemes are also covered: for example, any model of the form

w = oi(zy,...,T-1)e1,

U= 0Ty, Lo, UL, e, Uq)Er, t=2,..., 7
where €),...,e, are independent with median O, o1z, ... ,Zt—1) and
oi(T1,. .. Tn U1, ..., Y1), t = 2,...,n are non-zero with probability one. In

time series context, this includes:

1. ARCH(q) with non-Gaussian noise &;:
Ou(T1y ooy Tom1 Uy -y Um1)? = g + aul 4+ aquf_q;
2. GARCH(p, g) with non-Gaussian noises &;:
0t(T1,. s Temy s U, .., Upr)? = ot ul 4 ~+aqut2_q+’ylaf_1+- . -+’ypaf

o

3. stochastic volatility models with non-Gaussian noises &;:

uy = exp(w/2)rye; ,
Wy = QWi+ + QWp + Tyl
vy, ..., Uy are. i.1.d.. random variables.
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The first example is especially relevant for cross-sectional data when procedures are ex-
pected to be robust to heteroskedasticity. Other examples present robustness properties to
endogenous disturbance variance (or volatility) specification. Note again that the distur-
bance process does not have to be second-order stationary. For nonstationary processes
that satisfy the mediangale assumption, sign-based inference will work whereas all infer-
ence procedures based on asymptotic behavior of estimators may fail or require difficult
validity proofs. Note finally that the previous property is more general and does not specify

explicitly the functional form of the variance in contrast with an ARCH specification.

3. Exact finite-sample sign-based inference

The most common procedure for developing inference on a statistical model can be de-
scribed as follows. First, one finds a (hopefully consistent) estimator; second, the asymp-
totic distribution of the latter is established, from which confidence sets and tests are de-
rived. Here, we shall proceed in the reverse order. We study first the test problem, then
build confidence sets, and finally estimators.> Hence, results on the valid finite-sample test

problem will be adapted to obtain valid confidence intervals and estimators.

3.1. Motivation

In econometrics, tests are often based on t or x? statistics, which are derived from
asymptotically normal statistics with a consistent estimator of the asymptotic covariance
matrix. Unfortunately, in finite samples, these first-order approximations can be very
misleading. Test levels can be quite far from their nominal size: both the probability that
an asymptotic test rejects a correct null hypothesis and the probability that a component of
B is contained in an asymptotic confidence interval may differ considerably from assigned
nominal levels. One can find examples of such distortions in the dynamic literature [see
for example Dufour (1981), Campbell and Dufour (1995, 1997) and Mankiw and Shapiro
(1986)]; on inference based on L, estimators, see also Buchinsky (1995), De Angelis,
Hall, and Young (1993), Dielman and Pfaffenberger (1988a, 1988b). This remark usually

3For the estimation theory, the reader is referred to Coudin and Dufour (2005b).
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motivates the use of bootstrap procedures. In a sense, bootstrapping (once bias corrected)
is a way to make approximation closer by introducing artificial observations. However, the
bootstrap still relies on approximations and in general there is no guarantee that the level

condition is satisfied in finite samples.

Another way to appreciate the nonvalidity of asymptotic methods in finite samples is
to recall a theorem established by Lehmann and Stein (1949). Consider testing whether n

observations are independent with common zero median:

Hy : X1, ..., X, are independent observations a1
each one with a distribution symmetric about zero.
Testing Hy turns to check whether the joint distribution F,, of the observations belongs to
the set Hy = {F,, € F,, : F, satisfies Hy} without any other restriction. In other words, H,
allows for heteroskedasticity of unknown form. For this setup, Lehmann and Stein (1949)
established the following theorem (recalled and proved in Pratt and Gibbons (1981), see
also Lehmann (1959).

Theorem 3.1 If a test has level a for Hy, where 0 < o < 1, then it must satisfy the
condition

P(Rejecting Hy | | Xa|, ..., | Xn|] < o under Hy . (3.2)

The level of a valid test must equal o conditional on the observation absolute values.
Theorem 3.1 also implies that any procedure that does not satisfy condition (3.2) has size
one. Note that procedures typically designated as "robust to heteroskedasticity" or "HAC"
[see White (1980), Newey and West (1987), Andrews (1991), etc.] are not proved to satisfy
condition (3.2), so they can have size one for any sample size.

Sign-based procedures do satisfy this condition. Besides, as we will show in the next
section, distribution-free sign-based statistics are available even in finite samples. They
have been used in the statistical literature to derive nonparametric sign tests. The combina-

tion of both remarks give the theoretical basis for developing an exact inference method.
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3.2. Distribution-free pivotal functions and nonparametric tests

When the disturbance process is a conditional mediangale, the joint distribution of the
signs of the disturbances is completely determined. These signs are mutually independent
equalling 1 with probability 1/2 and —1 with probability 1/2. We state more precisely this
result in the following proposition. We see also that the case with a mass at zero can be

covered provided a transformation in the sign operator definition.

Proposition 3.2 SIGN DISTRIBUTION. Under model (2.1), suppose the errors
(u1,...,u,) satisfy a strict mediangale conditional on X = [z1,...,Z,]. Then the vari-

ables s(uy), ..., s(un) are i.i.d. conditional on X according to the distribution
1
Pls(us) = 1]z1,...,z0) = P[s(u;) = =1|zy,...,2,] = 5 t=1,...,n. (3.3)

More generally, this result holds for any combination of ¢t = 1,...,n. If there is a

permutation 7 : ¢ — j such that mediangale property holds for j, the signs are 7.7.d..

From the above proposition, it follows that the residual sign vector of the model con-

strained to (3,

S(y_Xﬂ) = [S(y1 _x’lﬂ)) ce S(yn_‘r;ﬂ)ll (34)

has a nuisance-parameter-free distribution (conditional on X), 7.e. it is a pivotal function.
Its distribution is easy to simulate from a combination of n independent uniform Bernoulli

variables. Furthermore, any function of the form
T =T(s(y — XP), X) (3.5)

is pivotal conditional on X. Once the form of T is specified, the distribution of the statistic

T is totally determined and can also be simulated.
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Using Proposition 3.2, it is possible to construct tests for which the size is fully and

exactly controlled. Consider testing
Ho(By) : B = By against Hi(By) : B # fo.
Under Ho(By), s(y: — 18,) = s(us), t =1,...,n. Thus, conditional on X,
T(s(y — BoX), X) ~ T(Sn, X) (3.6)

where S;, = (s1,...,8,) and sy, ..., s, are 4.5.d. random variables according to a uniform

Bernoulli distribution on {—1, 1}. A test with level « rejects the null hypothesis when
T(S(y—ﬂOX)1X) > CT(X’ a) (37)

where cr(X, @) is the (1 — a)-quantile of the distribution of T'(.S,,, X).

This method can be extended to error distributions with a mass at zero, i.e.,

P[u1 >0|X] =P[u1 <0,X],
Plus > 0| X, uy, ..., w—1] = Plu <0|X, wry ..., my], t>2. (3.8)

Besides dependence, this specification allows for discrete distributions with a probability

mass at zero, i.e. we can have:
Plus=0|X, u, ..., w] =p(X, uy, ..., u—1) >0 (3.9

where the p;(-) are unknown and may vary between observations. A way out consists in

modifying the sign function s(z) as follows:

8(z, V) = s(z) + [L — s(x)*]s(V — 0.5), where V ~U(0, 1), (3.10)
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If V; is independent of w, then, irrespective of the distribution of u;,

1

P[3(ut, Vi) = +1] = P[3(u, Vi) = —1] = 5 (3.11)

Proposition 3.3 RANDOMIZED SIGN DISTRIBUTION. Suppose (2.1) holds with the as-
sumption that uy, ... , u, belong to a weak mediangale conditional on X. Let V;, . .. , Va
be i.i.d random variables following a U(0, 1) distribution independent of u and X. Then

the variables 3, = 5(uy, V;) are i.i.d. conditional on X with the distribution
~ - 1

All the procedures described above can be applied without any further modification.

4. Regression sign-based tests

In this section, we present sign-based test statistics that are pivots and provide power against
alternatives of interest. This will enable us to build Monte Carlo tests relying on the exact
distribution of those sign-based statistics. Therefore, the level of those tests is exactly

controlled for any sample size.

4.1. Regression sign-based statistics

The class of pivotal functions studied in the previous section is quite general. So, we
wish to choose a test statistic (the form of the T function) that can provide power against
alternatives of interest. Unfortunately, there is no uniformly most powerful test of 3 = By
against 8 # [3,. Hence, different alternatives may be considered. For testing Ho(3,) : 8 =
B, against Hi(G,) : B # B, in model (2.1), we consider test statistics of the following

form:

Ds(Bo, $2n) = s(y — XBo) X 2n(s(y — XBo), X) X's(y — X By) (4.13)

where £2,,(s(y — X,), X) is a p x p weight matrix that depends on the constrained signs
s(y — XBo) under Hy(B,). Moreover, £2,(s(y — XB,), X ) is assumed to be positive
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definite.

Statistics of the form Dg(f3,, {2,) include as special cases the ones studied by Boldin,
Simonova, and Tyurin (1997) and Koenker and Bassett (1982). Namely, on taking 2, = I,
and 2, = (X'X)™!, we get:

SB(Bo) = s(y — XBo) XX's(y — XBy) = | X's(y — XBy)||” (4.14)

and

SF(B,) = s(y — Xﬂo)IP(X)S(y —XBp) = “XIS(I‘/ - Xﬂo)”?u (4.15)

where P(X) = X(X'X)~'X’. In Boldin, Simonova, and Tyurin (1997), it is shown that
SB(B,) and SF(B,) can be associated with locally most powerful tests in the case of
i.1.d. disturbances under some regularity conditions on the distribution function (especially
f'(0) = 0).° Their proof can easily be extended to disturbances that satisfy the mediangale
property and for which the conditional density at zero is the same £,(0|.X) = f(0|X), V¢ =
1,...,n.

SF(B,) can be interpreted as a sign analogue of the Fisher statistic. More precisely,
SF(f,) is a monotonic transformation of the Fisher statistic for testing v = 0 in the re-

gression of s(y — X G,) on X:
s(y—XBy) = Xy +w. (4.16)

Wald, Lagrange multiplier (LM) and likelihood ratio (LR) asymptotic tests for M-
estimators, such as the LAD estimator, in L, regression are developed by Koenker and
Bassett (1982). They assume i.i.d. errors and a fixed design matrix. In that setup, the LM
statistic for testing Ho(8,) : 8 = f3, turns out to be exactly the SF(8,) statistic. The same

8The power function of the locally most powerful sign-based test knows the faster increase when departing
from §3,. In the multiparameter case, the scalar measure required to evaluate that speed is the curvature of
the power function. Restricting on unbiased tests, Boldin, Simonova, and Tyurin (1997) introduced different
locally most powerful tests corresponding to different definitions of curvature. SB (8y) maximizes the mean
curvature, which is proportional to the trace of the shape [see Dubrovin, Fomenko, and Novikov (Ch. 2, pp.
76-86, 1984) , or Gray (Ch. 21, pp. 373-380, 1998) , for a presentation of various curvature notions]).
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authors also remarked that this type of statistic is asymptotically nuisance-parameter-free.
It does not require one to estimate the density of the disturbance at zero contrary to LR and
Wald-type statistics.

The Boldin, Simonova, and Tyurin (1997) interpretation can be extended to het-
eroskedastic disturbances. In such a case, the locally optimal test statistic associated with
the mean curvature — i.e., the test with the highest power function in the vicinity of the null

hypothesis according to a trace argument — will be of the following form.

Proposition 4.1 In model (2.1), suppose the mediangale Assumption Al holds, and the
disturbances are heteroskedastic with conditional densities f;(.|X), i = 1,2,..., that are
continuously differentiable around zero and such that f{(0|X) = 0. Then, the locally

optimal sign test statistic associated with the mean curvature is

SB(Bo) = s(y — XBo) X X's(y — X ) @.17)
where
f(0[X) 0
X= £(01X) X.
0 o Fa(0]X)

When the f;(0|z)’s are unknown, the optimal statistic is not feasible. The optimal weights

must be replaced by approximations, such as weights derived from the normal distribution.

These test statistics can also be interpreted as GMM statistics which exploit the property
that {s; ® z;, 7} is a martingale difference sequence. We saw in the first section that this
property is induced by the mediangale Assumption A1. However, these are quite unusual
GMM statistics. Indeed, the parameter of interest is not defined by moment conditions in
explicit form. It is implicitly defined as the solution of some robust estimating equations

(involving constrained signs):
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For i.1.d. disturbances, Godambe (2001) showed that these estimating functions are optimal
among all the linear unbiased (for the median) estimating functions "1, a,(8)s(y, — z.5).

For independent heteroskedastic disturbances, the set of optimal estimating equations is

n

Z s(ye — ,8) ® T, = 0.

t=1

In those cases X (resp. X) can be viewed as optimal instruments for the linear model.

We now turn to linearly dependent processes. We propose to use a weighting matrix
directly derived from the asymptotic covariance matrix of %s(y — XBy) ® X. Let us
denote this asymptotic covariance matrix by J,, (s(y — X/3,), X ). We consider

2 1

Da(s(y = XBo), X) = =Ju(s(y — XBy), X)~ (4.18)

S|

where J, (s(y — X 8,), X) stands for a consistent estimate of .J,, (s(y — XBy), X) that can
be obtained using kernel-estimators, for example [see Parzen (1957), White (2001), Newey
and West (1987), Andrews (1991)]]. This leads to

Ds(B,, %j,;l) - %s(y — XBo) XIT X's(y — XBy). (4.19)

JIn (s(y — XBy), X ) accounts for dependence among signs and explanatory variables.
Hence, by using an estimate of its inverse as weighting matrix, we perform a HAC

correction. Note that the correction depends on (3,

In all cases, Ho(f3,) is rejected when the statistic evaluated at § = £, is large:

Ds(Bo: $2) > ca,(X, a),

where cq, (X, a) is a critical value which depends on the level c. Since we are looking at
pivotal functions, the critical values can be evaluated to any degree of precision by simula-

tion. A more elegant solution consists in using the technique of Monte Carlo tests, which
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can be viewed as a finite-sample version of the bootstrap.

4.2. Monte Carlo tests

Monte Carlo tests have been introduced by Dwass (1957) and Barnard (1963) and can be
adapted to any pivotal statistic whose distribution can be simulated. For a general review
and for extensions in the case of the presence of a nuisance parameter, the reader is referred
to Dufour (2006).

All the tests presented above are on the same model: given a statistic 7, the test rejects
the null hypothesis when T is large, i.e. when T' > c, where ¢ depends on the level of the
test. Moreover, the conditional distribution of T given X is free of nuisance parameters.
All ingredients are present to apply Monte Carlo test procedures.

We denote by G(z) = P[T" 2 z] the survival function, and by F(z) = P[T < z] the
distribution function. Let T® be the observed value of T, and T®), ... T N indepen-

dent replicates of T. The empirical p-value is given by

_ N@N(m) +1

pn(z) N+1 (4.20)

where

N

. 1 .

Gn(z) = N Z Ljo,00) (T — ).
=1

Then we have
Ia(N +1)]

Pn(T9) < o] = N+l

,for0<a<i,

where I[z] stands for the largest integer less than equal to z; see Dufour (2006). If N is
such that (/N +1) is an integer, then P[pn (T?) < o] = . The level of the test is exactly
controlled.

In the case of discrete distributions, the method must be adapted to deal with ties.
Indeed, the usual order relation on R is not appropriate for comparing discrete realiza-
tions that have a strictly positive probability to be equal. Different procedures have been
presented in the literature to decide what to do when ties occur. They can be classified

between randomized and nonrandomized procedures, both aiming to exactly control back
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the level of the test. For a good review of this problem, the reader is referred to Coakley
and Heise (1996).

Here, we use a randomized tie-breaking procedure for evaluating empirical survival
functions in case of discrete statistics. The latter is based on replacing the usual order
relation by a lexicographic order relation can be used [see Dufour (2006)]. Each repli-
cation TV is associated with a uniform random variable W@ ~ 2/(0,1) to produce
the pairs (T0), WU)). The vector (W, ..., W) is independent of (T, . .. , T™).
(T®, W®)s are ordered according to:

(T®, Wy > (T, W) o {T® > TG o (T® = T0) gnd WO > W},

This leads to the following p-value function:

_ NGn(z)+1
u(a) = ToMEL AL

where

N N

~ 1 . 1 , )

Gn(@) =1- 53 Lpw(e —TO) + 7 2 10T = 2)1g oy (W — W),
i=1

i=1

Then
_ 1[N +1)]

Plon(T?) < o] = =

, for0<a<1.

The randomized tie-breaking allows one to exactly control the level of the procedure. This

may also increase the power of the test.

Here, we consider testing Hy(f;) in (2.1) under a mediangale assumption on the errors
using a statistic of the form DS(3, £2,). Take, for example, SF(S). After computing
SFO = SF(B,) from the data, we choose N the number of replicates, such that a(N +
1) is an integer, where « is the desired level. Then, we generate N replicates SF() =
SUYX(X'X)~1X'SY) where SY) is a realization of a n-vector of independent Bernoulli

random variables, and we compute f [SF®). Finally, the Monte Carlo test rejects H, (Bo)
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with level a if fy[SF)] < a.

S. Regression sign-based confidence sets

In the previous section, we have shown how to obtain Monte Carlo sign-based joint tests
for which we can exactly control the level, for any given finite number of observations.
In this section, we discuss how to use such tests in order to build confidence sets for Jo]
with known level. This can be done as follows. For each value 3, € RP?, perform the
Monte Carlo sign test for Hy(f3,) and get the associated simulated p-value. The confidence
set C'1—o(0) that contains any (3, with p-value higher than o has, by construction, level
1 — a [see Dufour (2006)]. From this simultaneous confidence set for £, it is possible, by
projection techniques, to derive confidence intervals for the components. More generally,
we can obtain conservative confidence sets for any transformation g(3) where g can be any
kind of real function, including nonlinear ones.

Obviously, obtaining a continuous grid of R? is not realistic. We will instead require

global optimization search algorithms.

5.1. Confidence sets and conservative confidence intervals

Projection techniques yield finite-sample valid confidence intervals and confidence sets for
general functions of the parameter 3. The basic idea is the following one. Suppose a

simultaneous confidence set with level 1 — o for j3, Ci-a(f), is available. Since

B € Ci-a(B) = 9(B) € 9(Cr-a(B)), (.1

we have:

PlB € Cr-a(B)) 2 1 — a=>P[g(B) € 9(C1-a(B))] > 1 - c.

"For examples of use in different settings and for further discussion, the reader is referred to Dufour
(1990, 1997), Abdelkhalek and Dufour (1998), Dufour and Kiviet (1998), Dufour and Jasiak (2001), Dufour
and Taamouti (2005).
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Thus, g(Cl_a(,B)) is a conservative confidence set for g(8). If g(0) is scalar, the interval

(in the extended real numbers)

Ig[Cl—a(ﬂ)]=[ inf g(B), sup g(ﬂ)}

BeC1_a(B) BEC:- ()

haslevell — o :

P [ﬂ inf g(B) <g(B) < sup g(ﬂ)] >1-a. (5.2)

Gcl-n(ﬁ) ﬁecl—u(ﬂ)

Hence, to obtain valid conservative confidence intervals for the component B, of the
parameter in the model (2.1) under mediangale Assumption Al, it is sufficient to solve the
following numerical optimization problems where s.c. stands for "subject to the constraint".

The optimization problems are stated here for the statistic SF";

géi{}, Br sc. pn(SF(B)) 2 o,

max B s.c. pn(SF(B)) > o,

where Py is computed as proposed in the previous section, using N replicates SFU) of the
statistic SF' under the null hypothesis. This can be done easily in practice with a global
search optimization algorithm, like simulated annealing [see Goffe, Ferrier, and Rogers
(1994), and Press, Teukolsky, Vetterling, and Flannery (2002)]. The method allows one to
perform tests for general hypotheses and to derive confidence sets. In the case of multiple
tests, an arbitrary number of hypotheses can be tested without ever loosing control of the
overall level: rejecting at least one true null hypothesis will not exceed the specified level

.
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Figure 1. Confidence regions provided by SF-based inference.

5.2. Numerical illustration

This part reports a numerical illustration. We generate the following normal mixture

process, for n = 50,

y¢=ﬁ0+ﬂ1z¢+ut, t=1,...,'ﬂ, (53)
iid. N[0, 1]  with probability 0.95
Up r~
N[0, 100%] with probability 0.05.

We conduct an exact inference procedure with N=999 replicates. The true process is gener-
ated with 3 = 8, = 0. We perform tests of Ho(3*) : 8 = * ona grid for 8* = (8, 5})
and retain the associated simulated p-values. As (3 is a 2-vector, we can provide a graph-
ical illustration. To each value of the vector 3 is associated the corresponding simulated
p-value. Confidence region with level 1 — « contains all the values of 3 with p-values big-
ger than a. Confidence intervals are obtained by projecting the simultaneous confidence
region on the axis of 3, or §,, see Figure 1 and Table 1.

The obtained confidence regions increase with the level and cover other confidence
regions with smaller level. Confidence regions are highly nonelliptic and thus may lead to
different results than an asymptotic inference. Concerning confidence intervals, sign-based
ones appear to be largely more robust than OLS and White CI and are less sensitive to

outliers.
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Table 1. Confidence intervals.

OLS White SF
Bo 95%Cl [4.57,0.82] [447,0.72] [-0.54,023]
98%Cl [-5.10,1.35] [-4.98,123] [-0.64,0.26]
B, 95%CI [-2.50,3.22] [-1.34,2.06] [-0.42,0.59]
98%Cl [-3.07,3.78] [-1.67,2.39] [-0.57,0.64]

6. Asymptotic theory

This section is dedicated to asymptotic results. We point out that the mediangale Assump-
tion Al can be seen as too restrictive and excludes some common processes whereas usual
asymptotic inference still can be conducted on them. We relax Assumption Al to allow
random X that may not be independent of u. We show that the finite-sample sign-based
inference remains asymptotically valid. For a fixed number of replicates, when the num-
ber of observations goes to infinity, the level of a test tends to the nominal level. Besides,
we stress the ability of our methods to cover heavy-tailed distributions including infinite

disturbance variance.

6.1. Asymptotic distributions of test statistics

In this part, we derive asymptotic distributions of the sign-based statistics. We show that
a HAC-corrected version of the sign-based statistic Dg(8,, %j; 1) in (4.19) allows one to
obtain an asymptotically pivotal function. The set of assumptions we make to stabilize the
asymptotic behavior will be needed for further asymptotic results. We consider the linear

model (2.1), with the following assumptions.
Assumption A2 MIXING. {(z},u%)}i=1,,., is a-mixing of size —r/(r — 2) withr > 2.3
Assumption A3 MOMENT CONDITION. E[s(u)z;] =0, VE=1,...,n, Vn € N.

Assumption A4 BOUNDEDNESS. z; = (Zy,...,Zp) and Elzy|" < A < 00, h =

1,...,p,t=1,...,n, Vne N.

8See White (2001) for a definition of a-mixing.
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Assumption AS NON-SINGULARITY. J, = var[\/iﬁ Y iy S(ut)zy] is uniformly positive
definite.

Assumption A6 CONSISTENT ESTIMATOR OF J,. (2,(8,) is symmetric positive definite

uniformly over n and {2,, — %Jn‘ 1,0

Theorem 6.1 ASYMPTOTIC DISTRIBUTION OF STATISTIC SHAC. In model (2.1), with

Assumptions A2- A6, we have, under H,,

Ds(Bo, £2.) — x*(p)-

Corollary 6.2 In model (2.1), suppose the mediangale Assumption Al and boundedness
Assumption A4 are fulfilled. If X' X [n is positive definite uniformly over n and converges

in probability to a definite positive matrix, then, under Hy,

SF(By) — Xx*(p)-

When the mediangale condition holds, J, reduces to E(X’X/n), and (X'X/n)™! is a

consistent estimator of J 1.

6.2. Asymptotic validity of Monte Carlo tests

We first state some general results on asymptotic validity of Monte Carlo based inference

methods. Then, we apply these results to sign-based inference methods.

6.2.1. Generalities

Let us consider a parametric or semiparametric model {Mp, 3 € ©}, where the parameter
B is identified. Let S,,(8,) be a test statistic for Hy(,). Let c, be the rate of convergence.
Under Ho(f,), the distribution function of ¢,S,(8,) is denoted F,(z) and Gn(z) is the
corresponding survival function. We suppose that F,(z) converges almost everywhere to a
distribution function F'(z). Let G(z) be the corresponding survival function. In Theorem

6.3, we show the following: if a series of conditional survival functions G (:1:|Xn (w)) given
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X (w) satisfies
Gn(z|Xn(w)) — G(z), with probability one,

where G does not depend on the realization X (w), then G,,(z) can be approximated by
Gn (7| Xn(w)). Consequently, G, (z|Xa(w)) can be seen as an approximation of G,,(z) or
a pseudo survival function of ¢, Sy (f,). Note that G(z) can depend on some parameters of

the distribution of X .

Theorem 6.3 GENERIC ASYMPTOTIC VALIDITY. LetS,(8,) be a test statistic for testing
Ho(By) : B = By against H(By) : B # B, in model (2.1). Suppose that, under Hy(B,),

PlenSn(By) > | Xn] = Gu(z|Xn) = 1 — Fo(z]X,) o G(z) a.e.,

where {c,} is a sequence of positive constants and suppose that G, (x| Xn(w)) is a series

of survival functions such that

Gn (2| Xn(w)) — G(z) with probability one.

n—oo

Then
lim P[Gn(caSn(Bo), Xa(w)) < 0] < . (6.1)

This theorem can also be stated in a Monte Carlo version. Following Dufour (2006), we
use empirical survival functions and empirical p-values adapted to discrete statistics in a
randomized way, but the replicates are not drawn from the same distribution as the observed
statistic. However, both distribution functions resp. F,, and F,, converge to the same limit
F.LetUN +1) = (U@, UD, ..., UM) be a vector of N + 1 i.i.d. real variables drawn
from a 1[0, 1] distribution, S is the observed statistic, and S, (N) = (S, ..., S a
vector of V independent replicates drawn from F,,. Then, the randomized pseudo empirical

survival function under the null hypothesis is

N N
5 1 N | . .
N 0
GU )(x,n, SO 5 (N),U (N+1)) =1-= E u(z—c,,S,({))+N E 8(cn SV —z)u(UD-UO)

J=1 7=1

(6.2)
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with u(z) = 1p,00)(2), 6(z) = (). Note that G [z,n, S, S,(N),U(N + 1)] isin a
sense an approximation of G’n(x) Thus it depends on the number of replicates, N, and the
number of observations, n. The randomized pseudo empirical p-value function is defined

as -
NGM(z) +1

SN () —
P (T) N1

(6.3)

We can now state the Monte Carlo-based version of Theorem 6.3.

Theorem 6.4 MONTE CARLO TEST ASYMPTOTIC VALIDITY. Let S,(8,) be a test
statistic for testing Ho(B,) : B = B, against Hy(By) : B # By in model (2.1) and S the
observed value. Suppose that, under Hy(3,),

PlenSn(Bo) = 2| X)) = Go(z|X,) =1 — Fo(z|X,) il G(z) a.e.,

where {c,} is a sequence of positive constants. Let S, be a random variable with condi-

tional survival function G,,(z|X,,) such that
PlenSn > 2| Xyn) = Gu(z]X,) = 1 - Fo(z]X,) — G(z) a.e.,

and (S,(ll) ey S ) be a vector of N independent replicates of S,, where (N+Daisan
integer. Then, the randomized version of the Monte Carlo test with level a is asymptotically
valid, i.e.

Jim P (8,) < o] < . (64)

These results can be applied to sign-based inference method. However, Theorems 6.3
and 6.4 are much more general. They do not exclusively rely on asymptotic normality: the
limiting distribution may be different from a Gaussian one. Besides, the rate of convergence

may differ from /n.



6.2.2. Asymptotic validity of sign-based inference

In model (2.1), suppose that conditions A2- A6 hold and consider the testing problem

Ho(By) : B = B, against H,(5,) : f # Bo-

Let Ds(B, J!) be the test statistic as defined in (4.19).
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e Observe SF® = Dg(,, J71). Draw N replicates of sign vector as if the n observa-

tions were independent. The n components of the sign vectors are independent and

drawn from a B(1,.5) distribution.

e Compute (SF), SF@ . SFN)) the N pseudo replicates of Ds(By, X' X

_1)

under the null hypothesis. We call them "pseudo" replicates because they are drawn

as if observations were independent.

e Draw N + 1 independent replicates (W, ... W& )Y from a U)o, distribution and

form the couple (SFU), W),

e Compute p{") (B,) using (6.3).

=(N)

e From Theorem 6.4, the confidence region {8 € R?|pn '(8) > o} is asymptotically

conservative with level at least 1 — o. We reject Hy if (Bo) < a.

Remark that, contrary to usual asymptotic tests, this method does not require the exis-

tence of moments nor a density on the {u,; ¢ = 1,2,...} process. Usual Wald-type

inference is based on the asymptotic behavior of estimators and consequently is more re-

strictive. More moments existence restrictions are needed, see Fitzenberger (1997b) and

Weiss (1991). Besides, asymptotic variance of the LAD estimator involves the conditional

density at zero of the disturbance process {u;; ¢ = 1,2, ...} as unknown nuisance parame-

ter. The approximation and estimation of asymptotic covariance matrix constitute a large

issue in asymptotic inference. This usually requires kernel methods. We get around those

problems by adopting the finite-sample sign-based procedure.
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7. Simulation study

In this section, we study the performance of sign-based methods compared to usual as-
ymptotic tests based on OLS or LAD estimators with different approximations for their
asymptotic covariance matrices. We consider the sign-based statistics Dg (B, (X'X )71
and Dg(83, J;!) when a correction is needed for linear serial dependence. We consider a
set of general DGP’s to illustrate different classical problems one may encounter in prac-
tice. Results are presented in the way suggested by the theory. First, we investigate the
performance of tests, then, confidence sets.

We use the following linear regression model:
p=z0g+u, t=1,...,n, 7.1

where z, = (1,z2,,z3,) and (3, are 3 x 1 vectors. We denote the sample size n. We
investigate the behavior of inference and confidence regions for 13 general DGP’s that are
presented in Table 2. For the first 7 ones, {u;, t = 1,2.. .} is 4.4.d. or depends on the
explanatory variables and its past values in a multiplicative heteroskedastic or dependent
and stationary way,

w = h(ze, upy,...,u1)e, t=1,...,n (7.2)

In those cases, the error term constitutes a strict conditional mediangale given X (see As-
sumption A1l). Correspondingly, the levels of sign-based tests and confidence sets are per-
fectly controlled. Next, we study the behavior of the sign-based inference (involving a
HAC correction) when inference is only asymptotically valid. In cases 8-10, z; and u; are
such that E(u;z,) = 0 and E[s(u;)z;] = O for all t. Finally, cases 11 and 12 illustrate
two kinds of second-order nonstationary disturbances. As we noted previously, sign-based
inference does not require stationary assumptions in contrast with asymptotic tests derived
from CLT.

More precisely, cases 1 and 2 present i.i.d. normal observations without and with con-
ditional heteroskedasticity. Case 3 involves outliers in the error term. This can be seen

as an example of measurement error in the observed y. Cases 4 and 5 involve other het-
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Table 2. Simulated models.

CASE I:

CASE 2:

CASE 3:

CASE 4:

CASE 5:

CASE 6:

CASE 6 BIS:

CASET:

CASE 8:

CASE 9:

CASE 10:

CASE 11:

CASE 12:

Normal HOM:

Normal HET:

Outlier:

Stat.
GARCH(],1):

Stoc.
Volatility:

Deb.
design mat.:

Deb. design matrix

+ HET. dist.:

Cauchy

disturbances:
AR(1)-HOM,
Py =5

AR(1)-HET,
Py = .5,
Pz =-5

AR(1)-HOM,
Pu=9:

Nonstat.
GARCH(1,1):

Exp. Var.

(:Dg't, .’L‘3,t, ut)' i."i.'d N(O, 13), t= 1, ey

(T2, T3¢, Ur)' iid N(0,I3)
uy = min{3,maz(0.21, [zo,|]} X Gy, t=1,...,n

(22 3,) "X N(0, I),

u, i { N[0,1] withp=0.95
‘ N[0, 1000%] with p = 0.05

T¢,Ut, independent, t =1,...,n.

(T2, z3,) gk N(0, I2), u; = os€; with

o? = 0.666u7_; +0.33302_; where ¢, “X* A(0, 1),
Z¢, €, independent, t =1,...,n.

(z2,e,z34) i N(0, I2), uy = exp(w;/2)e; with
wy = 0.5ws—1 + vy, where ¢ thd. N(0,1), v i x2(3),

T¢, Uy, independent, t =1,...,n.

a0 ~ B(1,0.3), z3, "% N (0, .012),
Uz it N(0,1), 24, u; independent, t = 1,...,n.

o "X N(0,1), za 27 xq(1),

iid .
ue = Tae, €~ N(0, 1), =4, ¢ independent, t = 1,...,n.

(1172,t, z3,t), ~ N(O, 12),
we "5 €2y, uy, independent, t = 1,...,m.

(2, T3z, VE) ~N(0,I3),t =2,...,n,
U = pyUut—1 + VY,
(z2,1,23,1) ~ N(0, I), v¥ insures stationarity.

Tjt = PrTjt~-1 + VZa .7 = 1127
ue = min{3, maz(0.21, [v2,|]} x i,
Ug = pylg—1 + VY,
idd
W3 v "IN, ), t=2,...,n
v2, 13 and v} chosen to insure stationarity.

(e, T3, V) ~N(0,I3),t =2,...,n,
U = pyUp-1 + VY,
(72,1, 23,1)" ~ N(0, I2), v} insures stationarity.

($2,t1 T3¢, Et), i."&"d' N(O, I3), t= 1, o,
uy = o€y, o2 = 0.8u?_; +0.807_,.

(w2,4, T3 8, €)' <y N0, I3), us = exp(.2t)e;.
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eroskedastic schemes with stationary GARCH and stochastic volatility disturbances. Case
6 is a very unbalanced design matrix (where the LAD estimator performs poorly). Case 6
BIS combines the previous unbalanced scheme in the design matrix with heteroskedastic
disturbances. Case 7 is an example of heavy-tailed errors (Cauchy). Cases 8, 9 and 10 illus-
trate the behavior of sign-based inference when the error term involves linear dependence
at different levels. Finally, cases 11 and 12 involve disturbances that are not second-order
stationary (nonstationary GARCH and exponential variance) but for which the mediangale
assumption holds. The design matrix is simulated once for all the presented cases. Hence,
results are conditional. Cases 1-2, 8-10 have been used by Fitzenberger (1997b) to study
the performance of block bootstrap (M B B).

7.1. Size

We first study level distortions. We consider the testing problem:
Hy : By = (1,2,3) against H; : B, # (1,2,3)".

We compare exact and asymptotic tests based on SF = Dg (,B, (X'X )“1) and SHAC =
Ds(8, jn‘ 1), where j,j ! is estimated by a Bartlett kernel, with various asymptotic tests.
Wald and L R-type tests are considered. We consider Wald tests based on the O LS estimate
with 3 different covariance estimators: the usual under homoskedasticity and independence
(11D), White correction for heteroskedasticity (W H), and Bartlett kernel covariance esti-
mator with automatic bandwidth parameter (BT') [Andrews (1991)]. Concerning the LAD
estimator, we study Wald-type tests based on several covariance estimators: order statistic
estimator (OS),” Bartlett kernel covariance estimator with automatic bandwidth parame-
ter [Powell (1984), Buchinsky (1995)] (BT, design matrix bootstrap centering around the
sample estimate (DM B) [Buchinsky (1998)], moving block bootstrap centering around
the sample estimate (M B B) [Fitzenberger (1997b)]'°. Finally, we also consider the like-

lihood ratio statistic (LR) assuming i.i.d. disturbances with an OS estimate of the error

%this assumes i.i.d. residuals; an estimate of the residual density at zero is obtained from a confidence
interval constructed for the n/2th residual {Buchinsky (1998)].
10The block size is 5.
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density [Koenker and Bassett (1982)]. Appendix C contains the formulas of the compared
estimators and test statistics.

When errors are 4.i.d. and X is fixed, the LM statistic for testing the joint hypothesis
Hy(B,) turns out to be the SF sign-based statistic. Consequently, the three usual forms
(Wald, LR, LM) of asymptotic tests are compared in our setup.

In Tables 3 and 4, we report the simulated sizes for a conditional test with nominal level
a = 5% given X. The number of replicates for the bootstrap and the Monte Carlo sign-
based method is the same, i.e. N = 2999. All bootstrapped samples are of size n = 50.
We simulate M = 5000 random samples to evaluate the levels of these tests. For both
sign-based statistics, we also report the asymptotic level whenever processes are stationary.

Table 3 contains models where the mediangale condition Al holds. Sizes of tests de-
rived from sign-based finite-sample methods are exactly controlled, whereas asymptotic
tests may greatly overreject or underreject the null hypothesis. This remark especially
holds for cases involving strong heteroskedasticity (cases 4, 6 BIS). The asymptotic ver-
sions of sign-based tests suffer from the same underrejection than other asymptotic tests,
suggesting that, for small samples (n = 50), the distribution of the test statistic is really
far from its asymptotic limit. Hence, the sign-based method that deals directly with this
distribution has clearly an advantage on asymptotic methods. When the dependence in the
disturbance process is highly nonlinear (Case 6 BIS), the BT method based on a kernel

estimation of the LAD asymptotic covariance matrix is not reliable anymore.
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Table 3. Linear regression under mediangale errors: empirical sizes of conditional tests
for Hy : f = (1,2,3)".

Yt = 0 + uy, SIGN LAD OLS
t=1,...,50. SF SHAC | OS DMB MBB BT IR {IID WH BT
L Stationary models

*CASE 1: .052 050 |.086 .050 .089 .047 .068 | .060 .096 .113
Pe = pz = 0,HOM. | .047%*% (]9%*

*CASE 2: .052 .057 |.300 .037 .059 .051 .137].162 .100 .118
pe = p; = 0, HET. 045%%  023**

*CASE 3: .047 048 | .088 .043 .083 .039 .066 | .056 .008 .009
Outlier: .044*%  Q15**

*CASE 4: .042 046 |.040 005 .005 .004 .012|.080 .046 .046
St. GARCH(1,1): .040%* [ 013%*

*CASE 5: .043 041 | 063 .006 .014 .006 .031)|.054 .014 .014
Stochastic Volatility: | .045%* .02]**

*CASE 6: .047 049 | .080 .048 .084 .043 .064 | .085 .060 .095
Debalanced: 043%*  (22**

*CASE 6 BIS: .044 .042 .687 .020 .044 152 307 | .421 .171 173
Deb.+ Het.: .040**  018**

*CASE T: .058 059 |.069 .013 .033 .012 .044 | .061 .023 .023
Cauchy: 049%*%  2]**

| Nonstationary models

*CASE 11: .054 057 {.003 .000 .001 .000 .002|.060 .016 .016
Nonst. GARCH(1,1):

*CASE 12: .049 051 | .017 .000 .000 .000 .000|.132 .014 .014
Exp. Var.:

*: cases when mediangale condition holds.
**: sizes using asymptotic critical values based on x?(3).
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Table 4. Linear regression with serial dependence: empirical sizes of conditional tests for

Hy:6=(1,2,3).
Yt = 20 + ug, SIGN LAD OLS
t=1,...,50. SF SHAC| OS DMB MBB BT LR |IID WH BT
l Serial dependence

“CASE 8: .126 022 A71 124 118 .085 .151 | .201 .240 212
pPe = .5, p, =0, HOM - L019%*

“CASE 9; 218 .026 440 131 .097 .108 308 [ .407 .328 .276
pe = p, = .5, HET - 0I7

SCASE 10!!: 521 012 553 516 339 355 551 .649 677 .534
v =.9, p, =0, HOM - 003 **

@: cases when mediangale condition fails.
*#: sizes using asymptotic critical values based on x? (3).

In Table 4, we illustrate behaviors when the error term involves linear serial depen-
dence. The Monte carlo SHAC sign-based test does not control exactly the level but is
still asymptotically valid, and yields the best results. We underscore its advantages com-
pared to other asymptotically justified methods. Whereas the Wald and LR tests overreject
the null hypothesis, the latter test seems to better control the level than its asymptotic ver-
sion, avoiding underrejection. There exists important differences between using critical
values from the asymptotic distribution of SH AC statistic and critical values derived from
the distribution of the SH AC statistic for a fixed number of independent signs. Besides, we
underscore the dramatic overrejections of asymptotic Wald tests based on HAC estimation
of the asymptotic covariance matrix when the data set involves a small number of observa-
tions. These results suggest, in a sense, that when the data suffer from both a small number
of observations and linear dependence, the first problem to solve is the finite-sample dis-

tortion, which is not what is usually done.

7.2. Power

Then, we illustrate the power of these tests. We are particularly interested in comparing the
sign-based inference to kernel and bootstrap methods. Others methods may not be reliable

even in terms of level. We consider the simultaneous hypothesis Hy as before. The true
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process is obtained by fixing (3, and §; at the tested value, i.e 3, = 1 and B3 = 3, and letting
vary [3,. Simulated power is given by a graph with 3, in abscissa. The power functions
presented here (figures 2, 3) are locally adjusted for the level, which allows comparisons
between methods. However, we should keep in mind that only the sign-based methods
lead to exact confidence levels without adjustment. Other methods may overreject the null
hypothesis and do not control the level of the test, or underreject it, and consequently loose
power.

Sign-based inference has a totally comparable power performance with usual methods
in cases 1, 2, 3, 8 with the advantage that the level is exactly controlled for any sample size,
which leads to great difference in small samples. In very heteroskedastic cases 4,5, 11,
12), sign-based inference greatly dominates other methods: levels are exactly controlled
and power functions largely exceed others, even other methods that are size-corrected with
locally adjusted levels. Any HAC correction has only an asymptotic justification. In the
presence of linear serial dependence, the Monte Carlo test based on Dg(f, J;!) does not
exactly control the level in theory for a given sample size. However, it is still asymptotically
valid and seems to lead to good power performance, along with a better size control. Only
for very high autocorrelation (close to unit root process), the sign-based inference is not

adapted anymore.
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Figure 3. Power functions (level corrected) (2).
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7.3. Confidence intervals

As the sign-based confidence regions are by construction of level higher that 1 — o when-
ever inference is exact, a performance indicator for confidence intervals may be the width
of those confidence intervals. Thus, we wish to compare the width of confidence intervals
obtained by projecting the sign-based simultaneous confidence regions to those based on
t-statistics on the LAD estimator. We use M = 1000 simulations, and report the means
and the empirical standard deviations of those widths. We only consider the stationary ex-
amples. In the nonstationary cases, inference based on t-statistics may not mean anything.
In Table 5, we report average width of confidence intervals for each B, and coverage prob-
abilities. Spreads of confidence intervals obtained by projection are larger than asymptotic
confidence intervals. This is due to the fact that they are by construction conservative con-
fidence intervals. However, it is not clear that valid confidence intervals that do not have

this feature can even be built.
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8. Examples

In this section, two illustrative applications of the sign-based inference are presented. One
on financial data, one in growth theory. First, we consider testing a drift on the Standard and
Poor’s Composite Price Index (S&P) 1928-1987, which is known to involve a large amount
of heteroskedasticity. We consider robust tests on the whole period and on the 1929 Krach
subperiod. In the second illustration, we test for the presence of 3 convergence across the
U.S. States during the 1880-1988 period using the Barro and Sala-i Martin ( 1991) data set.
Finite-sample sign-based inference is also particularly adapted to regional data sets, which

have by nature fixed sample size.

8.1. Standard and Poor’s drift

We test the presence of a drift on the Standard and Poor’s Composite Price Index (SP),
1928-1987. That process is known to involve a large amount of heteroskedasticity and
have been used by Gallant, Hsieh, and Tauchen (1997) and Valéry and Dufour (2004) to
fit a stochastic volatility model. Here, we are interested in robust testing without modeling
the volatility in the disturbance process. The data set consists in a series of 16,127 daily
observations of S, then converted in price movements, y; = 100[log(SP;) — log(SP,_;)]
and adjusted for systematic calendar effects. We consider a model involving a constant and
a drift:

y=a+bt+u, t=1,...,16127; (8.3)

and we let the possibility that {ut}t=1,m,16127 presents a stochastic volatility or any kind
of nonlinear heteroskedasticity of unknown form. White and Breush-Pagan tests for het-
eroskedasticity both reject homoskedasticity at 1%.!2.

We derive confidence intervals for the two parameters with the Monte Carlo sign-based
method and we compare them with the ones obtained by Wald techniques applied to LAD
and OLS estimates. Then, we perform a similar experiment on two subperiods, the whole
year 1929 (291 observations) and on the last 90 opened days of 1929, which roughly cor-

responds to the 4 last months of 1929 (90 observations), to investigate behaviors of the dif-

"2White: 499 (p-value=.000) ; BP: 2781 (p-value=.000)
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ferent methods in small samples. Due to the financial crisis, one may expect data to involve
heavy heteroskedasticity during this period. Let us remind the Wall Street krach occurred
between October 24 (Black Thursday) and October 29 (Black Tuesday). Hence, the second
subsample corresponds to September, October with the krach period, and November and
December with the early beginning of the Great Depression. Heteroskedasticity tests reject
homoskedasticity for both subsamples. '

In Table 6, we report 95% confidence intervals for a and b obtained by various methods:
finite-sample sign-based method (for sign-based statistics 'S and SHAC involving a HAC
correction); LAD and OLS with different estimates of their asymptotic covariance matrices
(order statistic, bootstrap, kernel...). If the mediangale Assumption Al holds, the sign-
based confidence interval coverage probabilities are controlled.

First, results on the drift are very similar between methods. The absence of a drift
cannot be rejected with 5% level. But results concerning the constant differ greatly between
methods and time periods.

In the whole sample, the conclusions of Wald-tests based on the LAD estimator differ
greatly depending on the choice of the covariance matrix estimate. Concerning the test of a
positive constant, Wald tests with bootstrap or with an estimate derived if observations are
i.2.d. (OS covariance matrix) which is totally illusory in that sample, reject, whereas Wald
test with kernel (so as sign-based tests) cannot reject the nullity of a. This may lead the
practitioner in a perplex mind. Which is the correct test?

In all the considered samples, Wald tests based on OLS seem really unreliable. Either,
confidence intervals are huge (see OLS results on both subperiods) either some bias is
suspected (see OLS results on the whole period). Take the constant parameter, on the one
hand, sign-based confidence intervals and LAD confidence intervals are rather deported to
the right, on the other hand, OLS confidence intervals seem to be biased toward zero. This
may due to the presence of some influential observations. Moreover, the OLS estimate for
the whole sample is negative. In settings with arbitrary heteroskedasticity, least squares

methods should be avoided.

131929: White: 24.2, p-values: .000 ; BP: 126, p-values: .000; Sept-Oct-Nov-Dec 1929: White: 11.08,
p-values: .004; BP: 1.76, p-values: .18.




Table 6. S&P price index: 95 % confidence intervals.

Whole sample Subsamples
Constant parameter (a) (16120 0bs) 1929 (291 obs) 1929 (90 obs)
Methods
Sign
SF statistics [-.007, .105] [-.226,.522] [-1.464, .491)]
SHAC statistics [-.007, .106] [-.135, .443] [-.943, .362]
LAD (estimate) (.062) ((163) (-.091)
with OS cov. matrix est. [.033,.092] [-.144,.470] [-1.015, .832]
with DMB cov. matrix est. [.007,.117] [-.139,.464] [-1.004, .822]
with MBB cov. matrix est. (b=3) [.008, .116] [-.130, .456]  [-1.223, 1.040]
with kernel cov. matrix est. (Bn=10) | [-.019, .143]  [-.454,-.780 1 [-1.265, 1.083]
OLS (-.005) (.224) (-522)
with iid cov. matrix est. [-.041, .031] [-.276, .724] [-2.006, .962]
with DMB cov. matrix est. [-.054, .045] [-.142, .543] [-1.335,.290]
with MBB cov. matrix est. (b=3) [-.056, .046] [-.140, .588] [-1.730, .685]
Drift parameter (b)
Methods x107° x10~2 x10~!
Sign
SF statistics [-.676, .486] [-.342, .344] [-.240, .305]
SHAC statistics [-.699,.510] [-.260, .268] [-.204, .224]
LAD (184) (.000) (-.044)
with OS cov. matrix est. [-.504,.320] [-.182,.182] [-.220, .133]
with DMB cov. matrix est. [-.688,.320]  [-.256,.255] [--281,.194]
with MBB cov. matrix est. (b=3) [-.681,.313] [-.236,.236] [-.316, .229]
with kernel cov. matrix est. [-.671, -.104] [-.392, .391] [-.303, .215]
OLS (.266) (--183) (.010)
with iid cov. matrix est. [-.119,.651] [-.480,.113] [-.273, .293]
with DMB cov. matrix est. [-.213,.745] [-.544, .177] [-.148, .169]
with MBB cov. matrix est. (b=3) [-228,.761] [-.523,.156] [-.250, .270]
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Sign-based tests seem really adapted for small samples settings. Let us examine the

third column of Table 6. The tightest confidence intervals for the constant parameter is

obtained for sign-based tests based on the SH AC statistic, whereas LAD (and OLS) ones

are larger. Note besides the gain obtained by using SHAC instead of SF in that setup.

This suggests the presence of autocorrelation in the disturbance process. In such a circum-

stance, finite-sample sign-based tests remains asymptotically valid such as Wald methods.
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However, they are also corrected for the sample size and yield to very different results.

8.2. [-convergence across U.S. States

With the neoclassical growth model as theoretical background, Barro and Sala-i Martin
(1991) tested B convergence between the levels of per capita output across 48 U.S. States
for different time periods between 1880 and 1988. They used nonlinear least squares to

estimate equations of the form

(1/T)In(yie/yie-1) = a— [In(yie—1)] x [(1 — e™#T)/T] + 26 + 7, (8.4)
i=1,...,48, T = 8,10 or 20,
t = 1900, 1920, 1930, 1940, 1950, 1960, 1970, 1980, 1988.

Their basic equation does not include any other variables but they also consider a spec-
ification with regional dummies (Eq. with reg. dum.). The basic equation assumes that
the 48 States share a common per capita level of personal income at steady state while the
second specification allows for regional differences in steady state levels. Their regressions
involve 48 observations and are run for each 20-year or 10-year period between 1880 and
1988. They tended to accept a positive 5 and concluded on a convergence between levels
of per capita personal income across U.S. States.

However, both the NLLS method and the Wald-type tests they performed are only as-
ymptotically justified and can be unreliable for only 48 observations. This unreliability
is strengthened when the data suffers from heteroskedasticity, departure from normality,
presence of outliers or observations with possibly high influence.

Therefore, we first study whether such problems are present. Regression diagnostics
are summarized in Table 8 in the Appendix B and presented in details in Figures 4-21.
One can notice that departures from a normal standard case are present in most periods. !4
For example, clues pointing to high influential observations, heteroskedasticity and non-

normality of the residuals exist for the basic equation in the 1880-1900 period. Only, the

14Omitted variables, misspecification of the model can also lead to similar conclusions, we do not consider
those problems here, which yields to entirely rethink the growth theory and the model.



[ /— ““\\

51

outstanding growth period of 1960-1970 does not seem to show potential data problems.
Similar results hold for the equation with regional dummies. This survey highly reduces
the validity of least squares methods and suggests the need of a test, valid in finite samples

and robust to heteroskedasticity of unknown form.

Hence, we propose to perform finite-sample based sign tests to see whether the conclu-

sion of S-convergence still holds. We consider the linear equation:
(1/T) In(yse/vie-7) = a + vlln(yse-7)] + 26 + 7 (8.5)

where z; contains regional dummies when included, and compute projection-based CI for
7, a, and for § = —(1/T)In(yT + 1) as a bijective transformation of v, in both specifi-
cations. We compare projection-based valid 95%-confidence intervals for 3 based on the
sign-based statistic SF' with Barro and Sala-i-Martin nonlinear least squares asymptotic

95%-confidence intervals (Table 7).

The results we find for the basic regression are close to those of Barro and Sala-i Martin
(1991). We fail to reject § = 0 at 5%-level, for the 1880-1900, 1920-1930, 1980-1988 pe-
riods, whereas Barro and Sala-i Martin (1991) fail to reject 8 = 0 at 5% (asymptotic)-level
for the 1920-1930 and 1980-1988 periods. Our results differ only for the 1880-1900 period.
That may be due to the strong heteroskedasticity and departure from normality affecting
least squares methods as we show in Table 8. When regional dummies are included, we
fail to reject 3 = 0 at 5%-level 7 times over 9 whereas Barro and Sala-i Martin (1991)
fail to reject 3 times over 9. Finally, a positive # convergence seems to pass both NLLS-
based asymptotic tests and finite sample-based robust sign tests with the basic specification,
yielding to a strong argument in favor of the theory. However, that is no longer true for the
specification with regional dummies, which reduces the idea of a strictly positive 3 conver-
gence with possibly different regional steady state levels. This also may in part be due to
the conservativeness of the projection-based method but there is no evidence that smaller

exact confidence intervals can be constructed.
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Table 7. Regressions for personal income across U.S. States, 1880-1988.

Period | Basic equation | Eq. with reg. dum.

I5} | SIGN (SF) NLLS* I SIGN (SF) NLLS*

1880-1900:  [95%CI] | [-.0010,.0208]  [.0058,.0532] | [-.0033,.0251] [.0146, .0302]
(BNELS) (.0101) (.0224)

1900-1920: [.0092,.0313]  [0155,.0281] | [-.0081,.0558] [.0086, .0332]
(.0218) (.0209)

1920-1930: (-.0301, .0018] /[-.0249, -.0049] | [-.0460, .0460] [-.0267, .0023]
(-.0149) (-0122)

1930-1940: [.0043,.0234]  [.0082,.0200] | [-.0187,.0377] [.0027,.0227]
(0141) (.0127)

1940-1950: [.0291,.0602]  [.0372,.0490] | [.0082,.0620] [.0314,.0432]
(.0431) (.0373)

1950-1960: (.0084,.0352]  [.0121,.0259] | [.0007,.0506] [.0100,.0304]
(.0190) (.0202)

1960-1970: [.0099,.0377]  [.0170,.0322] | [-0112,.0431] [.0047,.0215]
(.0246) (0131)

1970-1980: [.0021,.0346]  [.0076,.0320] | [-.0227,.0721] [-.0016, .0254]
(.0198) (0119)

1980-1988: [-.0552,.0503] [-.0315,.0195] | [-.0467,.0754] [-.0273, .0173]
(-.0060) (-.0050)

* Barro and Sala-i Martin (1991) NLLS results are reported in those two columns.
9. Conclusion

In this paper, we have proposed an entire system of inference for the 3 parameter of a
linear median regression that relies on distribution-free sign-based statistics . We show that
the procedure yields exact tests in finite samples for mediangale processes and remains
asymptotically valid for more general processes including stationary ARMA disturbances.
Simulation studies indicate that the proposed tests and confidence sets are more reliable
than usual methods (LS, LAD) even when using the bootstrap. Despite the programming
complexity of sign-based methods, we advocate their use when arbitrary heteroskedasticity
is suspected in the data and the number of available observations is small. Finally we have
presented two practical examples. First, we test the presence of a drift on the Standard
and Poor’s Composite Price Index (S&P), for the whole period 1928-1987 and for various

shorter subsamples. Secondly, we reinvestigate whether a 3 convergence between levels of



per capita personal income across U.S. States occurred between 1880 and 1988.
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Appendix

A. Proofs

A.1. Proof of Proposition 2.5

We use the fact that, as {X;, ¢ = 1,2,...} is strongly exogenous, {u;, t =
1,2,...} does not Granger cause {X, ¢ = 1,2,...}. It follows directly that
Wstlug—r, ... ur, T, ..., 21) = Usglug_y, ..., Uy, Ty - . . ,Z1) Where [ stands for the den-

sity of s; = s(u).

A.2. Proof of Proposition 3.2

Consider the vector [s(u1), s(u2), ..., s(un)]’ = (s1,82,...,5,). From Assumption Al,

we derive the two following equalities:

Plus > 0|X] = E(P[uy > Oluy,. .., uy, X]) = 1/2,
Plus > Ofs¢-1,...,51,X] = Plug > Ofue-y, ..., u, X] = 1/2,Vt > 2.

Further, the joint density of (sy, 52, ..., s,)' can be written:
Us1,82,--, 82l X) = [JUstlse-1s.- -, 51, X)
t=1

n

= HP[ut > 0|ug—1, ... ,uI,X](l_s‘)/2
t=1
{1 - P[’Ut > OI’Ug_l, . ,ul,X]}(1+")/2

= [Ia72)0=p - q/2)eror = a2,
t=1
Hence, conditional on X, s, s, ..., s, are distributed like 7 i.i.d random variables with
distribution:

P[St=1]=P[3t=_1]= ,t=].,...,'n,.

D |
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A.3. Proof of Proposition 3.3

Consider model (2.1) with {u;, ¢ = 1,2,...} being a weak conditional mediangale given
X. Let show that [3(u;), 5(uz),. .., 5(un)] can have the same role in Proposition 3.2 as

[s(u1), s(u2), ..., s(us)] under Assumption A1. From equation (3.10), we have:
8(uy, Vi) = s(ue) + [1 ~ s(u;)?)s(Vi — .5),
hence
P5(us, Vi) = Ly, ..., w1, X] = P[s(uy) + [1 — s(u)?|s(V; — .5) = Luy_q, .. Su, X
As (V4,...,V,) is independent of (uy, . .., u,) and V, ~ U(0,1), it follows
P[8(us, Vi) = 1] = Pluy > Oy, - .., uy, X] + —;—P[ut =0lug-1,...,u, X].  (A.1)

Let p, = Pluy = Ous—1, ..., u1, X), the weak conditional mediangale assumption given X
yields:
1—p

P[’U.g > O|ut_1, - ,’LL1,X] = P[ut < 0|ut_1, e ,ul,X] = _2- (A2)

Substituting (A.2) into (A.1) yields

- 1- 1
P[S('U,t,‘/t) = llut_l, ce ,Ul,X] = —2p—t -+ I—;E = 5 (A3)

In a similar way,

~ 1
P[S('U,g, ‘/t) = —1|’LLg_1, e ,ul,X] = 5 (A4)

The rest is similar to the proof of Proposition 3.2.

A.4. Proof of Proposition 4.1

Let us consider first the case of a single explanatory variable case (p = 1) which contains
the basic idea for the proof. The case with p > 1 is just an adaptation of the same ideas
to multidimensional notions. Under model (2.1) with the mediangale Assumption A1, the
locally optimal sign-based test (conditional on X) of Hy : 8 = 0 against H; : § # 0

is well defined. Among tests with a given confidence level , the power function of the
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locally optimal sign-based test has the highest slope around zero. The power function of
a sign-based test conditional on X can be written Pg[s(y) € W,|X], where W, is the
critical region with level a. Hence, we should include in W, the sign vectors for which
a%Pg[S(y) = 5|X]p=0, is as large as possible. An easy way to determine that derivative, is
first to compute a Taylor expansion at order one around zero and then to identify the terms.
Under the mediangale Assumption Al, we have

PslS(y) = s|X] = f[[Pﬂ(yi > 0|X)] M+ 2[Py(y; < 0)X) 12 (AL5)

i=1

= H[l— Fy(—x: 81 X)) 02 [Fy(—z; 8| X)) 4=50/2. (AL6)

Assuming the existence of continuous densities at zero, a Taylor expansion at order one

entails:
PalS) =six] = 55 [+ 2400z:58-+o(6) (A7)
- - 1423 AOX)zs8 +o(B) | (A8)

i=1
All other terms of the product decomposition are negligible or equivalent to o(3). That

allows us to identify the derivative at § = 0:

=I5 =X =21 (Ol (89)
Therefore, the required test has the form
W, = {s =(S1,.--,5)] if,-(0|X)z,-si| > ca} , (A.10)
i=1
or equivalently,
W, = {s|s(y) X X's(y) > c.}, (A.11)

where ¢, and ¢, are defined by the significance level.

When the disturbances have a common conditional density at zero, f(0|.X), we find
the results of Boldin, Simonova, and Tyurin (1997). The locally optimal sign-based test is
given by

= {s|s(y)' X X's(y) > cL} . (A.12)
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The statistic does not depend on the conditional density evaluated at zero.

When p > 1, we need an extension of the notion of slope around zero for a multidi-
mensional parameter. Boldin, Simonova, and Tyurin (1997) propose to restrict to the class
of locally unbiased tests with given level « and to consider the maximal mean curvature.

Thus, a locally unbiased sign-based test satisfies,

dPﬁ( a)
B

As f{(0) = 0, Vi, the behavior of the power function around zero is characterized by the

, (A.13)
B=0

quadratic term of its Taylor expansion

1 (d?Pg(W,
3 ( 5(2 )) = g2 Z > _Li(01X) 58z ;(01X) s}, (A.14)

,6 1<i# j<n
The locally most powerful sign-based test in the sense of the mean curvature maximizes

d?Py(Wa)
T P
Boldin, Simonova, and Tiurin (p. 41, 1997), Dubrovin, Fomenko, and Novikov (ch. 2, pp.

76-86, 1984) or Gray (ch. 21, pp. 373-380,1998). Taking the trace in expression (A.14),

the mean curvature which is, by definition, proportional to the trace of ; see

we find (after some computations) that

i« (M ) S5 AO1X) f5( 0|X)318]Z$1L-'13_7L (A.15)
£B=0

2
dﬂ 1<i# j<n
By adding the independent of s quantity Y- | 5% _ zZ to (A.15), we find

k=1 \:i=1

Z (Z a:ikfi(0|X)s,> =s'(y) X X's(y). (A.16)

Hence, the locally optimal sign-biased test in the sense developed by Boldin, Simonova,

and Tyurin (1997) for heteroskedastic signs, is
Wo={s:5@)XX's(y) > c.}. (A.17)

Another quadratic test statistic convenient for large-sample evaluation is obtained by stan-

dardizing by X' X:

= {s: s’(y)X(X'X)'lX's(y) >c}. (A.18)
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A.5. Proof of Theorem 6.1

This proof follows the usual steps of an asymptotic normality result for mixing processes
[see White (2001)]. Consider model (2.1). In the following, s, stands for s(ut). Under
Assumption AS, Vn_l/ 2 exists for any n. Set Z,, = /\’Vn"l/ 2z§s(ut), for some A € RP
such that A'A = 1. The mixing property A2 of (z},u,) gets transmitted to Z,,,; see White
(2001), Theorem 3.49. Hence, NV, '/ 2s(m) ® z; is a-mixing of size —r/(r — 2), r > 2.

Assumptions A3 and A4 imply
EINV, Y 2xs(u)] =0, VE=1,...,n, Vn e N. (A.19)
EINV, 2z} s(w,)|" < A < o0, Vt=1,...,n, Vn €N. (A.20)

Note also that

I 1 <
- Z =V - lv—1/2 = Iv—l/fl a —1/2y _ )
Var(\/ﬁ; m) ar[\/ﬁ;)\ TPs(u) @y | = NV V2 =1
(A.21)
The mixing property of Z,,; and equations (A.19)-(A.21) allow one to apply a central limit

theorem [see White (2001), Theorem 5.20] that yields
1 - ny~1/2
7 ; NV V25(u) @ o, — N0, 1). (A22)

Since A is arbitrary with A’A = 1, the Cramér-Wold device entails

n

Vn_l/z'n_l/2 Z s(uy) @ 2 — N(0, ). (A.23)

t=1

Finally, Assumption A6 states that {2, is a consistent estimate of V-1, Hence,

n 2O " s(w) ® e — N (0, ), (A.24)

t=1
and,

nls' (y — XBo) X 2. X's(y — X By) — x*(p). (A.25)
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A.6. Proof of Corollary 6.2

Let 7 = o(yo, .- -, ¥t, 2o, - - - , 7). When the mediangale Assumption A1 holds, {s(u,) ®
zy, Fi, t =1,...,n} belong to a martingale difference with respect to F; . Hence,
Vp = Var L.S(X)X = liE(m 5¢8,T4) = liE(ar; Ty) = lE(X’X)
n \/7_7, n - totopdy n - tlyg n 3

and X'X/n is a consistent estimate of E(X'X/n). Theorem 6.1 yields SF(8,) — x,(p).

A.7. Proof of Theorem 6.3

First, we prove the following lemma A.1 which will be needed in the proof of Theorem

6.3.

Lemma A.1 Let (Fy,)nen and F be right continuous distribution functions. Suppose that,

F,(z) — F(z), Vz e R.

n—oeo

Then, (Fy,)nen converges uniformly to F in R, i.e.
sup |F(z) — F(z)| — 0.
—00<T<+00 n—oo

Proof: Suppose reversely that there exist ¢ > 0, a sequence {n;, k € N} of integers
tending to +o00, and a real sequence {z;, k € N}, such that for all k, |F,, (z;) — F(zp)| >
€ > 0. If {z:} is not a convergent sequence, consider instead a convergent subsequence.
This can be done as R U {—00, +00} is compact. Cases when z;, — oo can be excluded
as Fy,(+00) = 1 = F(+00) and F,,(—00) = 0 = F(—00) by the definition of distribution
functions. Hence, without loss of generality, we can choose {z} — ¢ where —co < £ <
+co.

Let us consider two sequences {7, } and {r?,} tending to £ and such that 72 < £ < rb
For sufficiently large k, we face the following cases,

if {z}} is increasing and z;, < & :

€ < Fh(zx)— F(zi) < Fo (€7) — F(r2)

< Fo(§7) = Fo (€) + Fo () = Fryy) = F(rs,);
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if {z}} is increasing and z;, < € :

€ < F(xy) — Fozi) S F(E7) — Fo (72)

m

S F(E7) = F(ry) + F(ry,) — Fo (r0);
if {z;} is decreasing and z;, > ¢ :

¢ < F(z) = Fo(zk) < F(ry,) — Fu (€)
S F(rp) = F(rf) + F(rs,) = Fo(r) + Fo (€7) — Fo, (6);

and if {z;} is decreasing and z; < ¢ :

€ < Fo(zi) — Flzy) < Fp (1) — F(€)
< Fo () = Fou(r%) + Fry(rs) — F(r2) + F(r%) — F(£).

In each case, for fixed k, m can be chosen such that %, and 7%, are arbitrarily close to £
Then, using right continuity properties of F and F,, the right hand member of each chain of
inequalities does not exceed a quantity that tends to zero as n;, — oo. Thus a contradiction
is obtained. We conclude on the uniform convergence of F,, towards F. Similar proofs can
be found in Chung (2001) and a similar result in Chow and Teicher (1988). Q.ED.

Let us now return to the proof of the theorem. G‘n can be rewritten as

én(cnsn(ﬂo)lxn) = [én(cnsn(ﬁo)lxn(w)) - G(cnsn(ﬂo))]
+[G(Cn5n(,30)) -Gy (CnSn(,Bo)|Xn(w))]
+Gn(CnSn(:80)|Xn)-

Since G(—00) = Gnp(—00) = 0, G(+00) = Gn(4+00) = 1, and én(z|Xn(w)) —

G(z) a.e., Lemma A.1 entails that the convergence is uniform. Hence
[G(Cnsn(ﬂo)) - én (CnSn(ﬂO)IXn)] = 0p(1).
The same holds for G,,,

[G(Cnsn(ﬂo)) ~Gn (cnSn(ﬂO)IXn)] = op(l)'
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Hence

G (enSn(B)| Xn) = Gn(caSn(Bo)| Xn) + 0p(1). (A.26)

Note that c,Sg is a discrete positive random variable and G,,, its survival function is
also discrete. It directly follows from properties of survival functions, that for each

ael m(Gn(R+)) , 2.€. for each point of the image set, we have
P{Gn(cnSa(By)) < @] = . (A.27)

Consider now the case when a € (0, 1)\Im(G,(R*)). o must be between the two values
of a jump of the function G,,. Since G,, is bounded and decreasing, there exist a;, ag €

Im(Gn(R*)), such that @; < a < a and

P[Gn(cnSn(ﬂo)) <a < P[Gn(cnSn(ﬁo)) <a] < P[Gn(cnSn(ﬂo)) < ay].

More precisely, the first inequality is an equality. Indeed,

P[Gn(cnSn(Bs) S @] = P[{Gn(caSn(Bo)) < 1} U{en < Gr(caSu(By)) < a}]
= P[Ga(caSn(Bo)) < 1] +0,

as {a; < Gn(cnSn(By)) < a} is a zero-probability event. Applying (A.27) to oy,
P[Gn(caSn(Bo)) < @] = P[Gn(caSn(B)) S 1] =1 < . (A.28)
Hence, for o € (0, 1), we have
P[Gn(cnSa(B0)) < @] < @ (A.29)
Equation (A.29) combined with equation (A.26) allows us to write,
P[Ga(cnSn(Bo)) < o] = P[Cn(caSa(B)) < o] +05(1) Sa+0p(1),  (A30)

that is,
lim P[Gn(caSa(By)) < a] < a. (A31)
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A.8. Proof of Theorem 6.4

Let UN +1) = (U®,UW, ..., UM) be a vector of N + 1 4.i.d. random variables drawn
from a /[0, 1] distribution, S5 the observed statistic and Su(N) = (89, S, a
vector of IV independent replicates drawn from ﬁ‘n(z). The randomized empirical survival

function of 51(10) conditional on X, under the null hypothesis, is given by

Gy [z,n, 89, Spu(N),U(N +1)|X,] = Z s(z — cnSD) (A.32)

N
il ) _ @) _ s
+5 Za(cns,g z)s(UD — yO)y,

with 4(z) = 1(o,00)(%), 6(x) = 1{o}. The corresponding randomized empirical p—value is

NGN(z)+1

~N _
(@) = = (A33)

Usually, validity of Monte Carlo testing is based on the fact the vector (cnS,(zO), . cnS(N))
is exchangeable. Indeed, in that case, the distribution of ranks is fully specified and
yields the validity of empirical p—value [see Dufour (2006)]. In our case, it is clear that
(cnS,(lo), e ,cnS,(lN)) is not exchangeable, so that Monte Carlo validity cannot be directly
applied. Nevertheless, we will show that asymptotic exchangeability still holds, which will
enable us to conclude. To obtain that the vector (c,,S(O) .SV ) is asymptotically

exchangeable, we show that for any permutation 7 : [1, N] — (1, N],

lim PS> 19, S8 > 1y,..., 88 > tn]—P[SEO > 19, 570 > ¢, ..., S™N) > 4] = 0.
First, let rewrite

PIS® > to, SU > 11,...,5M > ty] = Ex, {PIS® > 15, SV > t1,..., 8™ > tw, X, = z.]}.

Hence, if we use the conditional independence of the signs vectors (replicated and ob-

served), we obtain
N

PISY > 10,58 > ty,..., 8™ > ty, Xp = 2,] = P[X, = z,] [1PS® > ti|x, = ]
i=0

= Gp(to|Xn = zn) n(ti]| Xn = z,).

uzz
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As each survival function converges with probability one to G(z), we finally obtain

N
PISO) > ¢, S0 > t1,...,8M >ty X, = z,] — ][ G(t:)with probability one.
i=0
(A.34)

Moreover, it is straightforward to see that for 7 : [1, N] — [1, N], we have as n — oco:

N
PISO > tr), STW > ¢1,..., 8™ > ¢y X, = z,] — [ G(t:)with probability one.
=0

Note that as G(t) is not a function of the realization X (w) so that
lim P[S® > t, SM > 11,...,8M > ty]—P[STO > 1,570 > 1,,..., 8™ > 3] = 0.
n—0o0

Hence, we can apply an asymptotic version of Proposition 2.2.2 in Dufour (2006) that
validates Monte Carlo testing for general possibly noncontinuous statistics. The proof of
this asymptotic version follows exactly the same steps as the proofs of Lemma 2.2.1 and
Proposition 2.2.2 of Dufour (2006). We just have to replace the exact distributions of
randomized ranks, the empirical survival functions and the empirical p—values by their
asymptotic counterparts and this is sufficient to conclude. Suppose that IV, the number of

replicates is such that a(/N + 1) is an integer. Then,

lim pY (c,SY) < a.
n—+0Q

B. Detailed analysis of Barro and Sala-i-Martin data set

This appendix contains additional results for the Barro and Sala-i-Martin application. First,
a residual analysis which includes outlier detection, heteroskedasticity tests, etc. is sum-
marized in Table 8 and detailed in Table 9 and Figures 4-21. Second, complete sign-based

inference results for the model parameters are reported in Tables 10 and 11.
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Table 8. Regressions for personal income across U.S. States, 1880-1988: summary of
regression diagnostics.

Period Heterosked.*

Nonnormality**

Influent. obs.**

Possible outliers**

Basic eq. Eq Reg.

1880-1900 yes
1900-1920 yes
1920-1930 -
1930-1940 -
1940-1950 -
1950-1960 -
1960-1970 -
1970-1980 -
1980-1988 yes

Dum.

yes
yes

yes

yes

yes

yes
yes
yes
yes
yes
yes
yes
yes

yes
yes
yes
yes
yes
yes
yes

no
yes (MT)

no

no
yes (VT)
yes (MT)

no
yes (WY)
yes (WY)

no
yes
no
no
yes (VT)
yes (MT)
no
yes (WY)
yes (WY)

* White and Breush-Pagan tests for heteroskedasticity are performed. If at least one test rejects at
5% homoskedasticity, a "yes" is reported in the table, else a "-" is reported, when tests are both

nonconclusive.

** Scatter plots, kernel density, leverage analysis, studendized or standardized residuals > 3, DF-
beta and Cooks distance have been performed and lead to suspicions for nonnormality, outlier or
high influential observation presence.

Table 9. Regressions for personal income across U.S. States, 1880-1988: tests for

heteroskedasticity.

Period Basic equation Eq. with reg. dum.
p-values White test  Breush-Pagan test White test Breush-Pagan test
1880-1900 .018 .652 .249 .830
1900-1920 .023 .043 .069 .050
1920-1930 723 .398 435 557
1930-1940 .673 .633 537 .601
1940-1950 243 .943 513 272
1950-1960 .595 223 740 221
1960-1970 .205 247 .236 441
1970-1980 .641 675 771 .264
1980-1988 .058 .022 .080 226



Figure 4. Residual analysis: basic equation 1880-1900
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Figure 5. Residual analysis: basic equation 1900-1920
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Figure 6. Residual analysis:
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Figure 8. Residual analysis: basic equation 1940-1950
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Figure 9. Residual analysis: basic equation 1950-1960
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Figure 10. Residual analysis: basic equation 1960-1970
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Skewness=-.518 Kurtosis=3.34
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Figure 11. Residual analysis: basic equation 1970-1980
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Skewness=1.790 Kurtosis=8.54

Outliers detection results: WY has some influence.

Studentized residuals >3 . wY
Standardized residuals > 3 wY
DFbeta > 1 : 0

Cooks distance > .5 : 0, but max for WY
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Figure 12. Residual analysis: basic equation 1980-1988
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Figure 13. Residual analysis: regional dummies 1880-1900
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Figure 14. Residual analysis: regional dummies 1900-1920
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(a) Scatter plot (b) Kernel density (c) Leverage analysis
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Outliers detection results: yes : MT.

Studentized residuals > 3 : MT
Standardized residuals >3 MT
DFbeta > 1 :  MT on DFbeta(y) and D Fbeta(south)

Cooks distance > .5 : MT
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Figure 15. Residual analysis: regional dummies 1920-1930
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Outliers detection results: No.
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Figure 16. Residual analysis: regional dummies 1930-1940
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Figure 17. Residual analysis: regional dummies 1940-1950
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Skewness=.028 Kurtosis=3.90

Outliers detection results: VT has some influence.

Studentized residuals > 3

Standardized residuals > 3

DFbeta > 1 :

Cooks distance > .5 : 0, but max for
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Figure 18. Residual analysis: regional dummies 1950-1960
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Skewness=-,975 Kurtosis=4.50

Outliers detection results: MT has some influence on y (and a high influence on dummies).

Studentized residuals > 3 MT
Standardized residuals >3 MT
DFbeta > 1 : MT with influence mostly is on & dummy
Cootks distance > .5 : MT has influence
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Q._ Figure 19. Residual analysis: regional dummies 1960-1970
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Skewness=-.093 Kurtosis=2.48

Outliers detection results: No.

Studentized residuals > 3
Standardized residuals > 3
DFbeta > 1

Cooks distance > .5
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Figure 20. Residual analysis: Regional Dummies 1970-1980
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Skewness=1.708 Kurtosis=7.33

Outliers detection results: WY has a high influence on West but not on personal income.

Studentized residuals > 3 : wY
Standardized residuals > 3 : wY
DFbeta > 1 : 0, WY but on West
Cooks distance > .5 : 0, but max for WY
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Figure 21. Residual analysis: regional dummies 1980-1988
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Skewness=-1.25 Kurtosis=5.28

OQutliers detection results: WY with high influence on personal income and West.

Studentized residuals > 3 : wY
Standardized residuals > 3 : WY
DFbeta > 1 : WY nearly 1 for y and West

Cooks distance > .5 : 0, but max for WY
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Table 10. Regressions for personal income across U.S. States, 1880-1988: preliminary

Period

results.

Basic equation

Eq. with reg. dum.

Variable: constant (a)

93% projection-based Cl(a)

1880-1900
1900-1920
1920-1930
1930-1940
1940-1950
1950-1960
1960-1970
1970-1980
1980-1988

[-.0147, -.0020]
[-.0205, -.0084]
[-.0018, .0328]
[-.0232, -.0042]
[-.0452, -.0258)
[-.0297, -.0080]
[-.0314, .0088]
[-.0296, -.0020]
[-.0414, .0695]

[.0206, .0005]
[-.0431, .0095]
[-.0351, .0589]
[-.0443, .0221]
[-.0517, -.0070]
[-.0435, .0043]
[-.0345, .0119]
[-.0478, .0288]
[-.0563, .0566]

Variable: In(y) (y)

95% projection-based Cl(a)

1880-1900
1900-1920
1920-1930
1930-1940
1940-1950
1950-1960
1960-1970
1970-1980
1980-1988

[-.0170, .0010]
[-.0233, -.0084]
[-.0018, .0351]
[-.0209, -.0042]
[-.0452, -.0253]
[-.0297, -.0080]
[-.0314, -.0094]
[-.0292, -.0020]
[-.0414, .0695]

[-.0197, .0034]
[-.0336, .0088]
[-.0369, .0584]
[-.0314, .0206]
[-.0462, .0079]
[-.0397, -.0007]
[-.0350, .0119]
[-.0514, .0255]
[-.0566, .0566]



ll/"_\

76

Table 11. Regressions for personal income across U.S. States, 1880-1988: complementary
results.

Period

Equation with regional dummies

Variables:

95% projection-based CI

midwest

south

west

1880-1900
1900-1920
1920-1930
1930-1940
1940-1950
1950-1960
1960-1970
1970-1980
1980-1988

[-.0091, -.0069]
[-.0130, -.0130]
[.0022, .0204]
[-.0074, -.0073]
[-.0358, -.0385]
[-.0187, -.0142]
[-.0178, -.0126]
[-.0053, -.0015]
[.0036, .0190]

[-.0109, -.0080]
[-.0248, -.0008]
[-.0038, .0404]
[-.0345, .0105]
[-.0401, -.0124]
[-.0283, -.0074]
[-.0319, -.0010]
[-.0379, -.0045]
[.0122, .0179]

[-.0110, -.0100]
[-.0218, -.0014]
[-.0112, .0476]
[-.0082, -.0010]
[-.0264, .0231]
[-.0152, -.0088]
[-.0194,.0177]
[-.0246, .0129]
[.0026, .0058]
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C. Compared inference methods in simulations

Two sign-based statistics are studied: one adapted for mediangale process, SF =
Ds(B,, (X 'X)~1), see equation (C.35) and one corrected for serial dependence, SHAC =
Ds(Bg, J;1), see equation (C.36).

Dg(8,, (X'X)_l) =5y — XBo) X(X'X) ' X's(y — XBo)- (C.35)
Ds(By, J71) = s(y — XBo) X 71 X's(y — X By). (C.36)
where - .
Jo=— k (L) Fu(h), :
— pj_;ﬂ 3 ) £0) (C37)
with

o { LS BV (B forj 20 ©38)

I (3)
11_12?=—j+1 Veri(Bo)V{(Bo) forj <0,

and V;(By) = s(ye — xiBy) X z, t = 1,...,n and k() is a real-valued kernel, here
Bartlett kernel is used. The bandwidth parameter B,, is automatically adjusted [see An-
drews (1991)].

Sign-based tests are compared to LR and Wald-type tests based on OLS and LAD
estimators with different covariance matrix estimators.

Wald-type statistics for testing Hy : 3 = (3, are of the form

n(B — Bo) D71 (B — By) (C.39)

where D, is an estimate of the asymptotic covariance matrix for ,B
The OLS estimator is computed in GAUSS:
Bors = (X'X)™'X"y. (C.40)

Both classic i.i.d. and White covariance matrix estimators are considered. W H asymp-
totic covariance matrix estimator is corrected for heteroskedasticity but not for linear de-

pendence:

"Boss) = (7 Z%) (71(—;_—,6)2&?%4) (%Z“’t"‘*)_l
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The LAD estimator is computed in GAUSS by the greg procedure, which uses a minimiza-

tion by interior point method:

Brap = argmin ) _ |y, — z,0|. (C.41)

t=1
The following LAD covariance matrix estimators are considered.
The order statistic estimator (OS) [see Chamberlain (1994), Buchinsky (1995, 1998)] is
valid for %.i.d observations and is used as a benchmark. For i.5.d observations, the LAD

covariance matrix reduces to

D(Brao) = 7755 (Bl ™ = oL ap(Blsw) ™,
where f, stands for the density of u;. An estimate for o 4p can be constructed from a
confidence interval for the sample median, i.e., the n,/2-th order statistic. let y,vs, ..., yn
be independent random observations with distribution function F,(.) and Y(5)» Y(k)» the j—th

and the k—th order statistics of y;, s, . . . , Y. Note that

Plyg) < &1 = Y CL(1/2)" (C.42)
i=j
entails
Plyy < &2 <wywl = Plyy) < &ij) — Plyw < &1yl
k-1
= > Ci(1/2m
i=j

A symmetric confidence interval with level 1 — « can be constructed as follows. Let j =
int(n/2—1), k = int(n/2+1) and X ~ B(n,1/2), with E[X] = n/2 and var(X) = n/4.
Then,

PYinsms2-1y < €12 < Yimsnpzeny) = Plint(n/2) — 1 < X < int(n/2) + ]
X —n/2 l

=P[m§m]'

A central limit theorem,
X —-n/2

VoY — N(0,1)
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entails that

= Zl_a/z\/’n./4

where Z;_q/7 is the 1 — a/2th quantile of a standard normal distribution. Approaching the
width of the exact confidence interval by that of asymptotic confidence interval allows one

to estimate oy 4p
co (Yinumsrt) = Yinetny2-n)?
Orap = 4 Z2 P .
l-«a

Finally, D(3, 1) can be estimated by,

(ﬂLAD —ULAD< sz )

Design matrix bootstrap centering around the sample LAD estimate (DM B) is also con-
sidered [see Buchinsky (1995, 1998)]. Let (y},z}), i = 1,...,m be a randomly drawn
sample from the empirical distribution function F,,,. Let ,Bz ap be the bootstrap estimate
obtained from a LAD regression of y* on X*. This process is carried out B times and
yields B bootstrap estimates, ,Bz AD1» Bz AD21 -+ ,Bz App- The design matrix bootstrap

asymptotic covariance matrix estimator is given by,

B
DPMB — -:’l—l {% > (Brav; — Brap)Brap; — BLAD),} : (C.43)
i=1

The moving block bootstrap centering around the sample estimate (M BB) was pro-
posed by Fitzenberger (1997b). Basically, blocks of fixed size b are bootstrapped in-
stead of individual observations. ¢ = T — b + 1 blocks of observations of size b,
B; = ((iy i), - -+, (Yity Tizs)) are defined. m blocks, drawn from the initial sample,
constitute a bootstrapped sample Z; of size m x b. Fromeach Z;, j = 1,...,B,a LAD
regression is performed yielding the estimate ,BZJ'AD. The M BB estimator of the LAD

asymptotic covariance matrix can then be approached thanks to the bootstrap paradigm, by
B

~ P b ~ % ~ ~ ~
DMBB(3, \p) = % {Z(ﬂmm = Brap)(Brap; — ﬂLAD)I} - (C.44)

j=1
Both for OLS and LAD estimators Bartlett kernel covariance matrix estimators with auto-

matic bandwidth parameter (BT are also considered [see Parzen (1957), Newey and West
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(1987), Andrews (1991)] with a methodology similar to the one presented previously for
deriving the S H AC-sign statistic.
Finally, the LR statistic [see Koenker and Bassett (1982)] has the following form:

47.00) [ 3 lvs = w480l = 3 ls — 4Bl (C45)

where an OS estimate is used for f,,(0).
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1. Introduction

The median regression framework is known to be more appropriate than the mean regres-
sion when unobserved heterogeneity or departure from normality is suspected in the data
[see Dodge (1997)]. The associated estimators are more robust to outliers than usual least
squares methods. They are also more efficient whenever the median is a better measure of
location than the mean. This holds for heavy-tailed distributions or distributions possess-
ing a mass at zero. The least absolute deviations (LAD) estimator has been widely stud-
ied in the literature and many papers have relaxed the distributional assumptions needed
for consistency and asymptotic normality [see Powell (1984), Weiss (1991), Fitzenberger
(1997b)]. The advantages of departing from a restrictive parametric framework is however
reduced by the fact that inference is commonly based on asymptotic approximations (LAD
asymptotic normality, Wald-type tests) in conjunction with kernel methods [Powell (1984)]
or bootstrap procedures [design matrix bootstrap in Buchinsky (1995), block bootstrap in
Fitzenberger (1997b), Bayesian bootstrap in Hahn (1997)].!

Asymptotic inference may be greatly misleading in small samples. Asymptotic tests
may indeed present important size distortions. This point is well documented in LAD-
based regressions [see Dielman and Pfaffenberger (1988a, 1988b), De Angelis, Hall, and
Young (1993), Buchinsky (1995), Coudin and Dufour (2005a)] and time series [see Dufour
(1981), Campbell and Dufour (1995, 1997)]. Asymptotic failures motivate us to adopt a
different approach in the context of the median regression. In Coudin and Dufour (2005a),
we focused on the testing problem. We developed a system of inference based on a gen-
eral class of sign-based statistics, which allows one to conduct simultaneous tests on the
complete vector of parameters with a fully controlled level for any sample size and un-
der very weak distributional assumptions. Especially, the disturbance process may not be

second-order stationary and may not possess a density. We assumed that the median of

I'The reader is referred to Buchinsky (1995, 1998), for a review and to Fitzenberger (1997b) for a com-
parison between these methods. Other notable research on LAD estimators and their variants: the efficient
weighted LAD of Zhao (2001), the smoothed LAD of Horowitz (1998), adaptations to allow for endogeneity
[Amemiya (1982), Powell (1983), Hong and Tamer (2003)], nonlinear functional forms [Weiss (1991)] and
generalization to quantile regressions [Koenker and Bassett (1978)]. Concemning empirical studies, Buchin-
sky (1994) used LAD and quantile estimators to study inequality and mobility in the U.S. labor market, and
Engle and Manganelli (1999) provided an application in Value at Risk issues in finance. For reviews of the
empirical literature on this topic, see Buchinsky (1998) and Koenker and Hallock (2000).
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the current disturbance conditional on its own past and on the whole explanatory variable
process is zero. The inference method is completely free of nuisance parameter, so Monte
Carlo tests can be built.? This method does not require one to estimate the error density at
zero in contrast to tests based on kernel estimates of the LAD asymptotic covariance ma-
trix. Valid confidence regions and general tests are then derived by projection techniques
[Dufour (1990, 1997), Dufour and Kiviet (1998), Abdelkhalek and Dufour ( 1998), Dufour
and Jasiak (2001), Dufour and Taamouti (2005)]. Therefore, the test criteria are modified
to cover linear dependence and the resulting inference is asymptotically valid.

The present paper introduces inference tools that can be associated with the previous
system. First, the confidence distribution [Schweder and Hjort (2002)], which is a reinter-
pretation of Fisher fiducial distributions and the corresponding p-value function, yield the
degree of confidence one may have in a certain value of the parameter. Second, the parame-
ter value with the highest confidence (i.e. the highest p-value) provides a Hodges-Lehmann
sign-based estimator [Hodges and Lehmann (1963)].

In frequentist econometrics, inference results are usually reported using confidence in-
tervals and p-values [Neyman (1941)]. Fisher’s fiducial distributions [Fisher (1930), Efron
(1998)] are not commonly used. Fisher introduced the fiducial probability as a frequentist
competitor to Bayesian posterior probabilities. Ignored for a long time, fiducial inference
has recently enjoyed a renewed interest in the statistical literature with the introduction of
confidence distributions and similar inference methods [see Hannig (2006) for a review].
The confidence distribution is defined in the one-dimensional model as a distribution whose
quantiles span all the possible confidence intervals [Schweder and Hjort (2002)]. The latter
authors introduced it as a Neymanian interpretation of Fisher’s fiducial distribution. This
tool summarizes all the inference results on the parameters and gives a graphical represen-
tation of them. Confidence distributions are not commonly used in econometrics for two
reasons. First, they are only defined in the one-parameter case. Second, they require the
exact distribution of the test statistic. The sign transform enables one to construct statistics
that are pivots with known distribution without imposing parametric restrictions on the sam-

ple. Since the sign-based statistics are discrete, only approximate confidence distributions

2See Dwass (1957), Bamard (1963), Dufour (2006).
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are obtained. The confidence distribution is related to the p-values for testing hypotheses of
the form Ho(B,) : B = Bo. The p-value can be seen as the degree of confidence one may
have on the tested value. Our aim is to adapt those notions to a multidimensional parameter
in a median regression context. For this, we shall combine sign-based tests of simultaneous
hypothesis with increasing level with projection techniques. For each component, a pro-
Jected p-value function provides a graphical illustration of both the inference summary and
the degree of identification.

Then, we shall derive estimators and study their properties. Hodges and Lehmann
(1963) proposed a general principle to directly derive estimators from test statistics for a
given sample size.’ They suggest to invert a test for Ho(8,) : 8 = By, and to choose
the value of 8 which is "least rejected” by the test. In a multidimensional context, this
leads one to select the value of 3 with the highest degree of confidence i.e. with the highest
p-value. It is natural to associate the resulting sign-based estimator with a finite-sample-
based inference method. This estimator also inherits some of the attractive properties of
sign-based tests (robustness to model specification, gross errors and heteroskedasticity).
We shall see that this estimator can be computed by minimizing quadratic forms of the con-
strained signs (with probability one). So it has a classical GMM form [Hansen (1982), and
Honore and Hu (2004) for GMM statistics involving signs]. We show that sign-based es-
timators are consistent and asymptotically normal under regularity conditions weaker than
the ones required by the LAD estimator usual theory. In particular, asymptotic normality
and consistency hold for heavy-tailed disturbances that may not possess finite variance.
This interesting property is entailed by the sign transformation. Signs of residuals always
possess finite moments so no further restriction on the disturbance moments is required to
complete the proofs. Contrary to usual GMM estimators, sign-based estimators are not just
asymptotically justified by the analogy principle. They are first Hodges-Lehmann estima-
tors associated with a finite-sample-based statistic.

The class of estimators so obtained includes some special cases studied in the statistical

literature: Boldin, Simonova, and Tyurin (1997) derived sign-estimators from locally most

3First applied by Hodges and Lehmann to the Wilcoxon’s signed rank-statistic for estimating a shift or a
location, this principle was adapted for a regression context by Jureckova (1971), Jaeckel (1972) and Koul
(1971). The latter authors derived so-called R-estimators from rank or signed-rank statistics.
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powerful test statistics for 7.i.d. observations and fixed regressors. In such a context, they
proved consistency and asymptotic normality. More precisely, assuming 3.i.d. observa-
tions and fixed regressors, they showed a well standardized sign-estimator is asymptotically
equivalent to the LAD estimator. However, in finite samples and for various setups, LAD
and sign methods exhibit very different features. The simulation studies of bias and root
mean squared error (RMSE) we present show that sign-based estimators are more robust
than the LAD estimator in the presence of heteroskedasticity. We shall therefore compare
both their finite-sample and asymptotic properties. We will provide consistency when point
identification is available, asymptotic normality and a Monte Carlo study of performance.

Instrumental versions of sign-based estimators are presented in Honore and Hu (2004)
and Hong and Tamer (2003). Honore and Hu (2004) derived the so-called median-based
estimator as an instrumental GMM version of the quantile estimator. The authors mo-
tivated to use the latter along with other rank-based estimators for their general robust-
ness properties. However, the major advantage of signs upon ranks is to easily deal with
heteroskedastic disturbances. In the present paper, we do not assume i.i.d. disturbances.
We derive various sign-based statistics and associated sign-based estimators depending on
the setup. Many heteroskedastic and possibly dependent schemes are covered and, when
needed, an heteroskedasticity and autocorrelation correction is included in the estimator cri-
terion function. Restricting on 7.1.d. cases, Honore and Hu (2004) observed in simulations
that inference based on rank-based estimators performed better than the median-based one.
In particular, the estimates of the asymptotic standard errors of the median-based estima-
tor, that they obtained by kernel, were too small and the associated inference suffered from
overrejection of the null hypothesis. Deriving sign-based estimators as Hodges-Lehmann
estimators motivates us to definitely combine them to the inference method they come
from. The latter, based on the exact distribution of the corresponding sign-based test statis-
tics does not depend on any nuisance parameter and does control test levels [see Coudin and
Dufour (20052)]. Finally, sign-based tests, projection-based confidence regions, projection-
based p-values and sign-based estimators constitute a whole system of inference valid for
any given sample size under very weak distributional assumptions.

The paper is organized as follows. Section 2 presents the model, the sign-based sta-



T

86

tistics and the Monte Carlo tests. Section 3 is dedicated to confidence distributions and
p-value functions. In section 4, we introduce the sign-based estimators, which are ob-
tained by maximizing the p-value function. Finite-sample and asymptotic properties of
sign-based estimators are established in section 5. In section 6, we present a simulation
study of bias and RMSE. In section 7, we apply sign-based estimation for deriving robust
estimates in two cases: first, in a financial setup involving large heteroskedasticity (S.&P.
index); second, in a cross-sectional regional data set where the sample size is necessarily
small (B-convergence of output levels across U.S. States). Section 8 concludes. Appendix

A contains the proofs.

2. Framework

2.1. Model

We consider the framework of Coudin and Dufour (2005a). Let {W, = (ye, z) :
2 — RPF},_;1, . be a stochastic process defined on a probability space ({2, F, P).
{W:, Fi} t=12,.. is an adapted stochastic sequence, i.e., F; is a o-field in {2 such that
Fs © Fyfors < tand o(Wi,...,W;) C F, where a(W;,...,W,) is the o-algebra
spanned by Wy,..., W,. We set W, = (y;, z;), where y, is the dependent variable and
Ty = (Te1, . . ., Tep)', @ p-vector of explanatory variables. The z,’s may be random or fixed.

We assume that y; and z, satisfy a simple linear model of the form:

yt=w:ﬁ+ut1 t=11""n1 (21)

or, in vector notation,
y=XB+u, 2.2)
wherey = (y1,...,¥x) and u = (uy,...,u,) aren x 1 real vectors, X = [z, .. S Ty s

an n x p real matrix. 3 € RP is the vector of parameters. The u,’s can be heteroskedastic

each one with conditional distribution function denoted F,(.|X):

wlX ~ F(|X), t=1,...,n.
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The traditional form of a median regression assumes u,’s are 7.i.d. with median zero
Med(w|z1,...,2,) =0, t=1,...,n. 2.3)

Here, we relax the assumption that the u; are 7.7.d. and consider instead moment conditions

based on residual signs where the sign operator s : R — {—1,0, 1} defined as

S(a) = 1[0,+oo)(a‘) - 1(—00,0](a)a a€R (24)

For convenience, the notation will be extended to vectors. Let u € R™ and s(u), the n-

vector composed by the signs of its components. We assume the following assumption

holds.

Assumption A1 SIGN MOMENT CONDITION. E[s(u;)zi]) =0, fork=1,...,p, t =

1,...,n, andn € N.

Assumption Al is fulfilled if the disturbances are i.i.d. and more generally if the signs

satisfy a martingale difference with respect to the past information 7, = o(Wy, ..., W,):
E[s(u;)|Fi-1) =0, Vt > 1. (2.5)

Assumption Al also covers many weakly dependent processes including usual linear de-
pendent processes, such as AR(1) disturbances with normal innovations and mean zero.
This has been pointed out by Fitzenberger (1997b). Next, Assumption A1 holds when u

satisfies the strict conditional mediangale condition defined in Coudin and Dufour (2005a):

Assumption A2 STRICT CONDITIONAL MEDIANGALE. Let {u;, F;}1=1... be an adapted
stochastic sequence where Fy = o (uy, . .., us, X). {t}i=1,.. is a strict mediangale condi-

tional on X with respect to {F; }i—1,.. if
P[u1 < 0|X] = P[U1 > OIX] = 0.5,
Plus < Olug, ..., us—1, X) = Pluy > Oluq, ..., u-1,X] = 0.5, fort > 1.

Assumption A2 and more generally the moment condition A1 are exploited to construct

test statistics.
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2.2. Sign-based statistics and Monte Carlo tests

For testing Ho(By) : B = By vs. Hi(By) : B # B, in model (2.1), we consider general
quadratic forms involving the vector of the residual signs for the constrained model s(y —
XBo):

Ds(Bo, $2n) = s(y — XBo) X 2u(s(y — X o), X)X's(y — XBy) (2.6)

where (2,(s(y — Xf,), X) is a p x p positive definite weight matrix that may depend
on the constrained signs. In Coudin and Dufour (2005a), we developed distribution-free

Monte Carlo tests under the mediangale Assumption A2. We briefly summarize it.

If the disturbances satisfy the mediangale Assumption A2, the sign-based statistics sat-
isfying equation (2.6) are shown to be pivotal functions under Hy(3,). The distribution of
the statistic conditional on the realization of X, is perfectly specified and can be simulated.
Monte Carlo tests with controlled levels are constructed in the following way. For testing
Ho(By) : B =By vs. Hi(By) : B # B, with level a € [0, 1], we denote Dg)) = Dg(8,)
the observed statistics, ( Dg), ey D(SN) )’ an N-vector of independent replicates drawn from
the same distribution as Dg(8,) and (W©, ..., WMY a N + 1-vector of i.i.d. uniform
variables. A Monte Carlo test for Hy(/3,) consists in rejecting the null hypothesis whenever

the empirical p-value 5&° (8,) is smaller than o, where

B (Bo) = 1-5——= i 1, 0(DS” — DY) = i 1io)(DY — DG\, ey (WO — W) | .

= = @.7)
This empirical p-value is well adapted to discrete statistics. When two realizations of the
statistic are equal, they are ordered using the auxiliary continuous uniform variables W)
(randomized tie-breaking). When the number of replicates /V is such that a(N + 1) is an
integer, the level of the Monte Carlo test is equal to « for any sample size n [see Dufour
(2006), Coudin and Dufour (2005a)]. Next, simultaneous confidence regions for the entire

parameter 3 are obtained by inverting those simultaneous tests. The simultaneous confi-

dence region C)_,(5) with level 1 — « contains all the values §* with empirical p-value
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P (B*) [associated with the test of Hy(8*) : 8 = (*] higher than a:

Cr-a(B) = {B*[53°(B") = a}.

By construction, this confidence region has level 1 — o for any sample size. It is then
possible to derive general (and possibly nonlinear) tests and confidence sets by projection
techniques. For example, individual confidence intervals are obtained in such a way. If Dg
is an asymptotically pivotal function all previous results hold asymptotically. For a detailed

presentation, see Coudin and Dufour (2005a).

3. Confidence distributions

In the one parameter model, statisticians have defined the confidence distribution notion
that summarizes a family of confidence intervals; see Schweder and Hjort (2002). By
definition, the quantiles of a confidence distribution span all the possible confidence in-
tervals of a real 4. The confidence distribution is a reinterpretation of the Fisher fiducial
distributions and provides, in a sense, an equivalent to Bayesian posterior probabilities in
a frequentist setup [see also Fisher (1930), Neyman (1941) and Efron (1998)]. This sta-
tistical notion is not commonly used in the econometric literature, for two reasons. First,
it is only defined in the one-parameter case. Second, it requires that the test statistic be a
pivot with known exact distribution. Our aim is to extend that notion (or an equivalent) to
multidimensional parameters. The sign transformation enables one to construct statistics
which are pivots with known distribution without imposing parametric restrictions on the
sample. Consequently, our setup does not suffer from the second restriction. In that sec-
tion, we briefly recall the initial statistical concept and apply it to an example in univariate

regression. Then, we address the extension to multidimensional regressions.

3.1. Confidence distributions in univariate regressions

Schweder and Hjort (2002) defined the confidence distribution for the real parameter 3 such

a distribution depending on the observations (y, =), whose cumulative distribution function
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evaluated at the true value of 3 has a uniform distribution whatever the true value of 3. In

a formalized way, this can be expressed as follows:

Definition 3.1 CONFIDENCE DISTRIBUTION. Any distribution with cumulative C D(3)

and quantile function CD~Y(B), such that
PylB < CD™ (o y;2)] = Po[CD(B;y;2) < o] = a G.1)

Jor all a € (0,1) and for all probability distributions in the statistical model, is called a
confidence distribution of (.

(=00, CD7*(a)] constitutes a one-sided stochastic confidence interval with coverage
probability c,* and the realized confidence C D(8,; y; z) is the p-value of the one-sided hy-
pothesis Hy : 8 < B, versus Hy : 3 > (3, when the observed data are y, z. The realized
p-value when testing Hy : = [, versus H; : 3 # f,is 2min{CD(8,),1 — CD(B,)}.
Those relations are stated in Lemma 2 of Schweder and Hjort (2002), which states:
the confidence of the statement "3 < [3," is the degree of confidence CD(B,) for the
confidence interval ( — 00,CD™? (CD(,BO))], and is equal to the p-value of a test of
Hy: 8 < Byv.s. Hy: B> [, Hence, tests and confidence intervals on £ are contained in
the confidence distribution. Moreover, the values associated with the highest confidence
statement (or equivalently with the highest p-value for testing Hy : 3 = ,) may provide

estimators of 3.

Schweder and Hjort (2002) also note that, since the cumulative function CD(f3) is an
invertible function of 5 and is uniformly distributed, C D((3) constitutes a pivot conditional
on z. Reciprocally, whenever a pivot increases with 3 (for example a continuous statistic
T'(B) with cumulative distribution function F' that is independent of 3 and free of any nui-
sance parameter), F(T(,B)) is uniformly distributed and satisfies conditions for providing
a confidence distribution. Let 3 be such a continuous real statistic increasing with G with

. c o eq e . . ~obs
a free of nuisance parameter distribution. A test of Hy : § < (3, is rejected when ,Bo *is

“for continuous distributions, just note that Pg[8 < CD~!(a)] = Ps{CD(8) < CD(CD Ya))} =
Ps{CD(B) < o]} =
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large, with p-value P3 |3 > BObs]. Then,

Pal > B = 1= Fp,(8”") = CD(6y) (32)
where Fp_ (,B) is the sampling distribution of 3. Consequently, simulated sampling distri-
butions and simulated realized p-values as presented previously yield a way to construct
simulated confidence distributions. The sampling distribution and the confidence distri-
bution are fundamentally different theoretical notions. The sampling distribution is the
probability distribution of 3 obtained by repeated samplings whereas the confidence distri-
bution is an ex-post object which contains the confidence statements one can have on the
value of 3 given y, x, ,BObs.

A last remark relates to discrete statistics. Confidence distributions based on discrete sta-
tistics cannot lead to a continuous uniform distribution. Approximations must be used.

Schweder and Hjort (2002) proposed half correction. For discrete statistics, they used

~ obs

CD(B) = Paylf > 5™ + 3 B, [8 = B, (3)

We rather use randomization as in section 2. The discrete statistic ,B is associated with
an auxiliary one Uj, which is independently, uniformly and continuously distributed over

[0,1]. Lexicographical order is used to order ties.
~ obs ~ obs
CD(Bo) = Pg, |8 > 5™ + PIUY > Ul Py, [8 = 5”7, (34)

Let us consider a simple example to illustrate those notions. In the model y; = Bz;+u;, i =

1,...,m, (u, ) & N(O, L), the Student sign-based statistic

SET(p) = 2qh )™

is a pivotal function and decreases with 3. The confidence distribution of 3 given the

realization y, z can be approximated by
CD(Bo) = 1 - F3,(SST(By)), (3.5)

with ﬁ‘ﬁo a Monte Carlo estimate of the sampling distribution of SST under 8 = f,.

Figure 22 presents a simulated confidence distribution cumulative function for 3, given
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Figure 22. Simulated confidence distribution cumulative function based on SST.

200 realizations of (u;,z;) based on SST. The Monte Carlo estimate of F[]O is obtained
from 9999 replicates of SST under H,. Testing Hy : § < .1 at 10% can be done by
reading CD(.1), which equals the p-value of Hy, here .88. The test accepts Hy. Further,

(—00, .15] constitutes a one-sided confidence interval for 3 with level .95.

Another interesting object is the realized p-value function when testing point hypothe-
ses Hy(fy) : B = B,. The latter is a simple transformation of the C'.D cumulative function:

Pssr(Bo) = 2min{CDssr(By), 1 — CDssr(Bo)}- (3.6)

Consider now the statistic SF' = SST?2. SF is a pivotal function but not a monotone func-
tion of 3 contrary to SST. An entire confidence distribution cannot be recovered from SF
because of this lack of monotonicity. However, the p-value function can be constructed us-
ing equation (2.7). Figure 23 compares p-value functions based on SST and SF'. Inverting
the p-value function allows one to recover half of the confidence distribution and conse-
quently half of the inference results, i.e. the two-sided confidence intervals. For example,

[—.12,.14] constitutes a confidence interval with level 90% for both statistics. The p-value
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Figure 23. Simulated p-value functions based on SST and SF.

function provides then an interesting summary on the available inference. Especially, it
gives the confidence degree one can have in the statement § = ;.

The spread of the p-value function is also related to the parameter identification. When
the p-values are low (or high) whatever the value of 3, one may expect the parameter to be
badly identified either because there exists a set of observationally equivalent parameters,
then, the p-values are high for a wide set of values; either because there does not exist
any value satisfying the model and then the p-values are small everywhere. To illustrate
that point, let us consider an example where the first n, observations satisfy y; = G;z; +

. iid
wi, = 1,...,mq, (Ui, zi) ~

N (0, I,) and the np followings, y; = By + ui, & = ny +
1,...,n1 + ng, (u;, ;) £ N(0,I;), with 8, = —1 and 3, = 1. The model y; = fz; +
u;, © = 1,...,m1 + ny, is misspecified. In Figure 24, we notice the spread of the p-value
function based on SF is large which we can interpret as a lack of identification: the set of
observationally equivalent 3 is not reduced to a point.

The p-value function has an important advantage over the confidence distribution: it is

straightforwardly extendable to multidimensional parameters.
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Simulated p-values functions based on SST and SF with beta badly identified
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Figure 24. Simulated p-value functions based on SST and SF when the parameter is badly
identified.

3.2. Simultaneous and projection-based p-value functions in multi-

variate regressions

If p > 2, the confidence distribution notion is not defined anymore. However, simulated
p-values for testing Hy : § = 3, can easily be constructed from the SF statistic and more
generally from any sign-based statistic which satisfies equation (2.6). Simulated p-values
lead to a mapping for which we have a 3-dimensional representation for p = 2. Consider
the model: y; = B'zy; + B2T0 +uiy i = 1,...,1, (Ui, T1i, T2:) = N(0,I5), B = (0,0),
Y=Y,y ¥n)s = (U1,... %), 21 = (T11,. .., Z1n)s T2 = (T21,...,T2n) and X =
(z1,22). Let Ds(B,(X'X)™!) = s'(y — XB)X(X'X) 'X's(y — XB). In Figure 25, we
compute the simulated p-value function ﬁﬁs (B,) for testing Hy : 3 = (B, on a grid of values
of 3y, using N replicates of the sign vector. p?f,s (B,) allows one to construct simultaneous
confidence sets for 3 = (B, %) with any level. By construction, the confidence region
C1-o(f) defined as

C1-a(B) = {BlBN° (Bo) 2 a}, G-7

has level 1 — « [see Dufour (2006)]. Hence, by construction, C;_,(8) corresponds to the

intersection of the horizontal plan at ordinate « with the envelope of ﬁ,‘?,s (B,)- For higher
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Figure 25. Simulated p-value functions based on SF (n = 200, N = 9999).
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dimensions (p > 2), a complete graphical representation is not available anymore. How-
ever, one can consider projection-based p-value functions for each individual component
of the parameter of interest in a similar way than projection-based confidence intervals.
For this, we apply the general strategy of projection on the complete simultaneous p-value

function. The projected-based p-value function for the component 7' is given by:

~ﬁ (,30) mangb [(ﬂmﬁo ]- (3.3)

Figure 26 presents projection-based confidence intervals for the individual parameters of
the previous 2-dimensional example. [—.22,.21] is a 95% (conservative) confidence inter-
val for 3*. [—.38, .02] is a 95% (conservative) confidence interval for 3%. Testing 8* = 0 is
accepted at 5% with p-value 1.0. Testing 3% = 0 is accepted at 5% with p-value .06.
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(a) Projection-based pvalues for 3! (b) Projection-based pvalues for 32

Figure 26. Projection-based p-values.

4. Sign-estimators

Sign-based estimators complete the above system of inference. Intuition suggests to con-
sider values with the highest confidence degree, i.e, with the highest p-values. Estima-
tors obtained by that sort of test inversion constitute multidimensional extensions of the

Hodges-Lehmann principle.



97

4.1. Sign-based estimators as maxima of the p-value function

Hodges and Lehmann (1963) presented a general principle to derive estimators by test
inversion; see also Johnson, Kotz, and Read (1983). Suppose 1z € R and T(pg, W) is a
statistic for testing . =y, against 42 > p, based on the observations W. Suppose further
that T'(4, W) is nondecreasing in the scalar . Given a known central value of T'( g, W),
say m(u,) [for example Eyw T, W)], the test rejects pu = , whenever the observed T is
larger than, say, m(u,). If that is the case, one is inclined to prefer higher values of y. The
reverse holds when testing the opposite. If m (1) does not depend on pg [m(1g) = mg), an
intuitive estimator of u (if it exists) is given by p* such that T'(u*, W) equals mg (or is very

close to my). 11* may be seen as the value of 1 which is most supported by the observations.

This principle can be directly extended to multidimensional parameter setups through
p-value functions. Let 3 € RP. Consider testing Hy : 8 = 3, versus H; : § = B with
the positive statistic T'. A test based on T rejects Hy when T'(8,) is larger than a certain
critical value that depends on the test level. The estimator of 3 is chosen as the value of
0 least rejected when the level « of the test increases. This corresponds to the highest p-
value. If the associated p-value for 8 = B, is p(8,) = G(Ds(B,)|B,), where G(x|8,) is
the survival function of Ds(f,), i.e. G(z|B,) = P[Ds(B,) > z], the set

M1 = arg max p(3) 4.1)

BeRP
constitutes a set of Hodges-Lehmann-type estimators. HL-type estimators maximize the
p-value function. There may not be a unique maximizer. In that case, any maximizer is

consistent with the data.

4.2. Sign-based estimators as solutions of optimization problems

When the distribution of T'(3,) and the corresponding p-value function do not depend on
the tested value 3, maximizing the p-value is equivalent to minimizing the statistic 7" (Bo)-
This point is stated in the following proposition. Let us denote F(z|3,) the distribution of
T(B,) when 8 = 3, and assume this distribution is invariant to 3 (Assumption A3).
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Assumption A3 INVARIANCE OF THE DISTRIBUTION FUNCTION.
F(z|B,) = F(z) Vz € R*, V8, € RP.
Then, the following proposition holds.

Proposition 4.1 Under Assumption A3, the two following sets M1 and M2 are equal with

probability one:
M1 = argmax p(). 4.2)
BER?P
M?2 = argmin T((). (4.3)
BERP

Maximizing p(8) is equivalent (in probability) to minimizing 7°(3) if Assumption A3
holds. Under the mediangale Assumption A2, any sign-based statistic Dg does satisfy
Assumption A3. Consequently,

Bo(2) € argmin §'(Y — XB)X 2 (s(Y — XB), X) X's(Y — XP) (4.4)

BERP

equals (with probability one) a Hodges-Lehmann estimator based on Dg(§2,,). Since
Dg(12,, B) is non-negative, problem (4.4) always possesses at least one solution. As signs
can only take 3 values, for fixed n, the quadratic function can take a finite number of values,
which entails the existence of the minimum. If the solution is not unique, one may add a
choice criterion. For example, one can choose the smallest solution in terms of a norm or
use a randomization. Under conditions of point identification, any solution of (4.4) is a
consistent estimator.

The whole argmin set of (4.4) remains informative in models with sets of observation-
ally equivalent values of 3 [see Chernozhukov, Tamer, and Hong (2006)]. The identified
feature of those models is a set instead of a point value. Any inference approach relying
on the consistency of a point estimator (which assumes point identification), gives mislead-
ing results, but the estimation of the whole set can be exploited. Let us remind that the
Monte Carlo sign-based inference method [Coudin and Dufour (2005a)] does not rely on

identification conditions and leads to valid results in any case.
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The sign-based estimators studied by Boldin, Simonova, and Tyurin (1997), are solu-

tions of

~

B.(I,) € arg[rilé%g, SY - XB)XX's(Y — XB) = arg rﬂnelllg SB(8), 4.5)
and
B.l(X' X)) e arg min SY -XB)X(X'X)' X's(Y — Xf) = arg min SF(B). (4.6)

For heteroskedastic independent disturbances, we introduce weighted versions of sign-
based estimators that can be more efficient than the basic ones defined in (4.5) or (4.6).
Weighted sign-based estimators are sign-based analogues to weighted LAD estimator [see

Zhao (2001)]. The weighted LAD estimator is given by
BYEAD — argmin Z dily: — 0. 4.7)
Berr 4

The weighted sign-based estimators are solutions of

~DX

B, €argmins'(Y — XB)X(X'X)'X'D's(Y — Xp) (4.8)
BeERP
with
d 0
X= d; X
0 d,

where (d;)i=1,..» are positive reals. Weighted sign-based estimators that involve optimal
estimating functions in the sense of Godambe (2001) are solutions of

~ DX x

B,  €argmin &'(Y — XB)X*(X*' X*)1X*D's(Y — Xp) (4.9)
BERP
where
H(0lX)y 0
X* = fi(()lX ) X

0 o Ja(01X)

with f;(0]X),t = 1,...,n, the conditional disturbance density evaluated at zero. The in-
herent problem of such a class of estimators is to provide good approximations of f;(0| X)’s.

Densities of normal distributions can be used.
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4.3. Sign-based estimators as GMM estimators

Sign-based estimators have been interpreted in the literature as GMM estimators exploiting
the orthogonality condition between the signs and the explanatory variables [see Honore
and Hu (2004)]. In our opinion, a strictly GMM interpretation hides the link with the
testing theory. That is the reason why we first introduced sign-based estimators as
Hodges-Lehmann estimators. The quadratic form (4.4) refers to quite unusual moment
conditions. The sign transformation evacuates the unknown parameters that affect the error
distribution. It validates nonparametric finite-sample-based inference when mediangale
Assumption holds. However, in settings where only the sign-moment condition A1l is
satisfied, the GMM interpretation of sign-based estimators still applies and entails useful

extensions.

For autocorrelated disturbances, an estimator based on a HAC sign-based statistic

Ds(B, ;1) can be used:
Ba(J7h) € arg min (Y = XB)X[Jo(s(Y - XB), X)| ' X's(Y = XB), ~ (4.10)

where jn‘ ! accounts for the dependence among the signs and the explanatory variables.
[ appears twice, first in the constrained signs, second in the weight matrix. In practice,
optimizing (4.10) requires one to invert a new matrix J, for each value of (B whereas
problem (4.6) only requires one inversion of X'X. In practice, this numerical problem
may quickly become cumbersome similarly to continuously updating GMM. We advo-
cate to use a two-step method: first, solve (4.6) and obtain 3, ((X'X)~!); compute then
JY(s(Y — XB,((X'X)™1), X) and finally solve,

B () € arg min (Y = XB)X[Jo(s(Y = XB,), X)| ' X's(Y = XB).  (4.11)

The 2-step estimator is not a Hodges-Lehmann estimator anymore. However, it is still
consistent and share some interesting finite-sample properties with classical sign-based

estimators. The properties of sign-based estimators are studied in the next section.
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3. Some basic properties of sign-based estimators

In this section, both finite and asymptotic properties of sign-based estimators are studied.
We demonstrate consistency when the parameter is identified under weaker assumptions
than the LAD estimator, which validates the use of sign-based estimators even in settings
when the LAD estimator fails to converge. Their finite-sample behavior also presents use-
ful features. They share invariance properties with the LAD estimator and are median-
unbiased if the disturbance distribution is symmetric. Finally, sign-based estimators are

asymptotically normal.

5.1. Identification and consistency

We show that the sign-based estimators (4.4) and (4.11) are consistent under the following

set of assumptions:

Assumption A4 MIXING. {W; = (y;,2}) }1=1,2,... is a-mixing of size —r[(r — 1) with

r> 1

Assumption AS BOUNDEDNESS. z, = (zy,...,Zp) and Elzp|™! < A < 00, h =

1,...,p,t=1,...,n, Vne N,
Assumption A6 COMPACTNESS. [ € Int(©), where O is a compact subset of RP.
ASSIlmptiOll A7 REGULARITY OF THE DENSITY.
1. There are positive constants fi, and p; such that, for alln € N,
Pfi(0|X) > fr] >p, VE=1,...,n, as.
2. fi(.|1X) is continuous, for all n € N for all t, a.s.

Assumption A8 POINT IDENTIFICATION CONDITION. V4 > 0,37 > 0 such that

1 )
hmme;P[lztcﬂ > 71 £(0|z1, ..., 2,) > fr] > 0.

n—o0
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Assumption A9 UNIFORMLY POSITIVE DEFINITE WEIGHT MATRIX. (2,(8) is symmet-

ric definite positive for all 3 in ©.

Assumption A10 LOCALLY POSITIVE DEFINITE WEIGHT MATRIX NEAR (. 2,(0) is

symmetric definite positive for all 3 in a neighborhood of (3,.

Then, we can state the consistency theorem. The assumptions are interpreted just after.

Theorem 5.1 CONSISTENCY. Under model (2.1) with the Assumptions Al, A4-A9, any

sign-based estimator of the type,

B.(£2,) € argmin s'(Y — X)X 2 (s(y — XB), X) X's(Y - X ), (5.12)
BeRr
or
B (2,) € argmin §'(Y — XB)X 2u(s(y — XB), X) X's(Y — XB), (5.13)
BERP

R ) . . . ~28 .
where (3 stands for any (first step) consistent estimator of B, is consistent. 3, defined in

equation (5.13) is still consistent if Assumption A9 is replaced by Assumption A10.

Let us interpret precisely Assumptions A4-A10 and compare them to the ones required for
LAD and quantile estimator consistency [see Fitzenberger (1997b) and Weiss (1991) for the
most general setups]. Assumptions on mixing (A4), compactness (A6) and point identifi-
cation (A7, A8, A9) are classical. The mixing setup A4 is needed to apply a generic weak
law of large numbers [see Andrews (1987) and White (2001)]. It was used by Fitzenberger
(1997b) to show LAD and quantile estimator consistency with stationary linearly dependent
processes. It covers, among other processes, stationary ARMA disturbances with continu-
ously distributed innovations. Point identification is provided by Assumptions A8 and A7.
Assumption A8 is similar to Condition ID in Weiss (1991). Assumption A7 is usual in
the LAD estimator asymptotics.® It is analogous to Fitzenberger (1997b)’s conditions (ii.b
and c) and Weiss (1991)’s CD condition. It implies that there is enough variation around
zero to identify the median. It restricts the setup for some ’bounded’ heteroskedasticity

in the disturbance process but not in the usual (variance-based) way. Indeed, so-called

5 Assumption A7 can be slightly relaxed covering error terms with mass point if the objective function
involves randomized signs instead of usual signs
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diffusivity, Tl(o)’ can be seen as an alternative measure of dispersion adapted to median-
unbiased estimators. It measures the vertical spread of a density rather than its horizontal
spread and is involved in Cramér-Rao-type lower bound for median-unbiased estimators
[see Sung, Stangenhaus, and David (1990) and So (1994)]. Besides, in Assumptions A9
and A10, the weight matrix {2, is supposed to be invertible for estimators obtained in one
step whereas only a local invertibility is needed for two-step sign-estimators. One differ-
ence with the LAD asymptotic properties relies on Assumption A5. For sign consistency,
only the second-order moments of z; have to be finite, which differs from F itzenberger
(1997b) who supposed the existence of at least third-order moments. And above all, we do
not assume the existence of second-order moments on the disturbances ;. Indeed, the dis-
turbances appear in the objective function only through their sign transforms which possess
finite moments up to any order. Consequently, no additional restriction should be imposed
on the disturbance process (in addition to regularity conditions on the density). Those
points will entail a more general CLT than the one stated for the LAD/quantile estimators

in Fitzenberger (1997b) and Weiss (1991).

5.2. Unbiasedness and equivariance

Sign-based estimators share some attractive equivariance properties with LAD and quantile
estimators [see Koenker and Bassett (1978)]. It is straightforward to see that the following

proposition holds.
Proposition 5.2 EQUIVARIANCE. If 3(y, X, u) is a solution of (4.4), then

B, X,u) = MB(y, X, u), VAER (5.14)
Bly + X7, X,u) = By, X, u) +7, ¥y ERP (5.15)
B(y, XA u) = A"IB(y, X,u), forany nonsingular k x k matrix A. (5.16)

To prove this property, it is sufficient to write down the different optimization problems.
Equation (5.14) states that B is scale invariant: if y is rescaled by a certain factor, B is

rescaled by the same one. Equation (5.15) states that B is location invariant, while (5.16)
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states a reparameterization invariance with respect to the design matrix: the transformation
on 3 is given by the inverse of the reparameterization scheme.
Moreover, if the disturbance distribution is assumed to be symmetric then sign-

estimators are median unbiased.

Proposition 5.3 MEDIAN UNBIASEDNESS. Ifu ~ —u, then any sign-based estimator 3

solution of minimization problem (4.4) is median unbiased, that is,
Med(B ~ ) = 0

where 3, is the true value.

5.3. Asymptotic normality

Sign-based estimators are asymptotically normal. This also holds under weaker assump-
tions than the ones needed for LAD estimator asymptotic normality. Sign-based estimators
are specially adapted for heavy-tailed disturbances that may not possess finite variance.

The assumptions we need are the following ones.

Assumption A11 UNIFORMLY BOUNDED DENSITIES. 3fy < +oo such that ,Nn €
N,VA e R,

sup |fi(A|z1,...,za)| < fu, as.
{te(1,...,n)}

Under the conditions A1, A4, AS and A11, we can define L(3), the derivative of the limit-
ing objective function at (3:

L(B) = 1}:1{.10 % ;E[xtmgft(a:é(ﬂ — Bo)lz1, - .., Zn)] = nlgl; L,(B). (5.17)

where

La(8) = = 3 Elraifu(al(8 — Bolen, .. 2.)]. (5.18)

The other assumptions are merely used to show asymptotic normality.

Assumption A12 MIXING WITH 7 > 2. {W, = (w, %) }im10,.. is a-mixing of size
—r/(r — 2) witht > 2.
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Assumption A13 DEFINITE POSITIVENESS OF Ly,. Ly,(8,) is positive definite uniformly

inn.

Assumption A14 DEFINITE POSITIVENESS OF J,. The matrix J, =
E[L 370, s(ue)zix,s(us)] is positive definite uniformly in n and converges to a definite

positive symmetric matrix J.

Then, we have the following result.

Theorem 5.4 ASYMPTOTIC NORMALITY.  Under the conditions for consistency (Al,
A4-A9), and A12-A14, we have:

STYAM(B, () — Bo) % N0, ) (5.19)

where

Sn = [Ln(B0) 20 Ln(Bo)] ™" Ln(Bo) 2082 L (Bo) L (Bo) 20 Ln(Bo)]

and

La(By) = %ZE[ztz;f,(om,...,zn)]. (5.20)

t

Remark that when (2, = jn” ! we have

[Ln(IBO)j-;an(ﬂO)]—1/2\/5(:311( An_l) - ﬁO) —d') N(O’ IP) (521)

This corresponds to the use of optimal instruments and quasi-efficient estimation. ,B(jn‘ D
has the same asymptotic covariance matrix as the LAD estimator. Thus, performance differ-
ences between the two estimators correspond to finite-sample features. This result contra-
dicts the generally accepted idea that sign procedures involve a heavy loss of information.

There is no loss induced by the use of signs instead of absolute values.

Note again that we do not require that the disturbance process variance be finite. We
only assume that the second-order moments of X are finite and the mixing property of
{Wi, t = 1,...} holds. This differs from usual assumptions for LAD asymptotic normal-

ity.® This difference comes from the fact that absolute values of the disturbance process

6See Fitzenberger (1997b) for the derivation of the LAD asymptotics in a similar setup and Koenker-
Bassett(1978) or Weiss (1991) for a derivation of the LAD asymptotics under sign independence
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are replaced in the objective function by their signs. Since signs possess finite moments at
any order, one sees easily that a CLT can be applied without any further restriction. Conse-
quently, asymptotic normality, such as consistency, holds for heavy-tailed disturbances that
may not possess finite variance. This is an important theoretical advantage of sign-based
rather than absolute value-based estimators and, a fortiori, rather than least squares esti-
mators. Estimators for which asymptotic normality holds on bounded asymptotic variance
assumption (for example OLS) are not accurate in heavy-tail settings because the variance
is not a measure of dispersion adapted to those settings. Estimators, for which the asymp-
totic behavior relies on other measures of dispersion, like the diffusivity, help one out of
trouble.

The form of the asymptotic covariance matrix simplifies under stronger assumptions.
When the signs are mutually independent conditional on X [mediangale Assumption A2],

both 3, ((X'X)~!) and ,B(j,;l) are asymptotically normal with variance
Sn = [La(Bo)l T E(1/n) X0, mexy] [La(Bo)] ™"
If w is an 7.2.d. process and is independent of X, then f,(0) = f(0), and
Sp = ——— E(z,z})"". (5.22)

In the general case, f,(0) is a nuisance parameter even if condition A11 implies that it can

be bounded.

All the features known about the LAD estimator asymptotic behavior apply also for
the SHAC estimator; see Boldin, Simonova, and Tyurin (1997). For example, asymptotic
relative efficiency of the SH AC (and LAD) estimator with respect to the OLS estimator is
2/ if the errors are normally distributed N (0, 02), but SH AC (such as LAD) estimator can
have arbitrarily large ARE with respect to OLS when the disturbance generating process is

contaminated by outliers.

S5.4. Asymptotic or projection-based sign-confidence intervals?

In section 4, we introduced sign-based estimators as Hodges-Lehmann estimators asso-

ciated with sign-based statistics. By linking them with GMM settings, we then derived
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asymptotic normality. We stressed that sign-based estimator asymptotic normality holds
under weaker assumptions than the ones needed for the LAD estimator. Therefore, sign-
based estimator asymptotic normality enables one to construct asymptotic tests and confi-
dence intervals. Thus, we have two ways of making inference with signs: we can use the
Monte Carlo (finite-sample) based method described in Coudin and Dufour (2005a)- see
subsection 2.2- and the classical asymptotic method. Let us list here the main differences
between them. Monte Carlo inference relies on the pivotality of the sign-based statistic.
The derived tests are valid (with controlled level) for any sample size if the mediangale
Assumption A2 holds. When only the sign moment condition A1 holds, the Monte Carlo
inference remains asymptotically valid. Asymptotic test levels are controlled. Besides, in
simulations, the Monte Carlo inference method appears to perform better in small sam-
ples than classical asymptotic methods, even if its use is only asymptotically justified [see
Coudin and Dufour (2005a)]. Nevertheless, that method has an important drawback: its
computational complexity. On the contrary, classical asymptotic methods which yield tests
with controlled asymptotic level under the sign moment condition A1 may be less time
consuming. The choice between both is mainly a question of computational capacity. We
point out that classical asymptotic inference greatly relies on the way the asymptotic co-
variance matrix, that depends on unknown parameters (densities at zero), is treated. If the
asymptotic covariance matrix is estimated thanks to a simulation-based method (such as
the bootstrap) then the time argument does not hold anymore. Both methods would be of

the same order of computational complexity.

6. Simulation study
In this section, we compare the performance of the sign-based estimators with the OLS and

LAD estimators in terms of asymptotic bias and RMSE.

6.1. Setup

We use estimators derived from the sign-based statistics Ds (3, (X'X)~!) and Ds(, Jh

when a correction is needed for linear serial dependence. We consider a set of general
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DGP’s to illustrate different classical problems one may encounter in practice. We use the

following linear regression model:

Y = Ty 00 + ut, 6.1

where z; = (1, z3:,23,)" and 5, are 3 x 1 vectors. We denote the sample size n. Monte
Carlo studies are based on M generated random samples. Table 12 presents the cases
considered.

In a first group of examples (A1-A4), we consider classical independent cases with
bounded heterogeneity. In a second one (B5-B8), we look at processes involving large
heteroskedasticity so that some of the estimators we consider may not be asymptotically
normal neither consistent anymore. Finally, the third group (C9-C11) is dedicated to au-
tocorrelated disturbances. We wonder whether the two-step SHAC sign-based estimator
performs better in small samples than the non-corrected one.

To sum up, cases Al and A2 present 7.5.d. normal observations without and with con-
ditional heteroskedasticity. Case A3 involves a sort of weak nonlinear dependence in the
error term. Case A4 presents a very debalanced scheme in the design matrix (a case when
the LAD estimator is known to perform badly). Cases BS, B6, B7 and B8 are other cases
of long tailed errors or arbitrary heteroskedasticity and nonlinear dependence. Cases C9
to C11 illustrate different levels of autocorrelation in the error term with and without het-

eroskedasticity.
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Table 12. Simulated models.

CASE Al:

CASE A2:

CASE A3:

CASE A4:

CASE Bs:

CASE Bé6:

CASE B7:

CASE BS:

CASE C9:

CASE C10:

CASE C11:

Normal HOM:

Normal HET:

Dep.-HET,
pr=.5:

Deb. design mat.:

Cauchy dist.:

Stoc. Volat.:

Nonstat.
GARCH(1,1):

Exp. Var.
AR(1)-HOM,
Py =5

AR(1)-HET,
Py = .5, :
Pz =D

AR(1)-HOM,
P =.9:

($2,ta T3ty ut)l i;'i\"d N(O, -[3), t= 1, B 1)

(@2, T3, ) "~ N0, I)
uy = min{3,maz[0.21, |zo4|]} X G, t =1,...,n

wj,t = szj,t—l + U{v J = 172)

uy = min{3, maz[0.21, |zo,4|]} x v¥,
i.i.d

WL v REN(0, L), t=2,...,n

v2 and /3 chosen to insure stationarity.

Tae ~ B(1,0.3), T3, "% N(0,.012),
Ug R N(0,1), z;, u; independent, t = 1,...,n.

(x2,t., :L'S,t)l ~ N(01 -[2)’

i, .
uy R CoLy, Us, independent, t =1,...,n.

(T2, T31)’ iid. N(0, I), u; =Hea:p(wt/2)et with
wy = 0.5we_1 + v, where ¢; "% N(0,1), v i~ X2(3),

Ty, U, independent, t =1,...,n.

, iid.
(z2,t, I3t 6!) ~ N(Oa -[3)1 t= 1’ N,
uy = 046, 07 = 0.8u?_; +0.807_,.

idd.
(T2, T3y, &) ~ N(0, I3), us = exp(.2t)e,.

(o, Tag, V¥) ~N(0,L3),t =2,...,n,
U = Py U1 + VY,
(z2,1,%3,1) ~ N(0, I), v} insures stationarity.

xj,t = szj,t—l + V.t7, J — 1721

uy = min{3, maz[0.21, |zq,|]} x @,
Uy = py e + VY,

2,03, 08Y FEN(0, L), t=2,...,n

v2,v3 and V¥ chosen to insure stationarity.

(Tag, 23, V¥) ~N(0,L3),t =2,...,n,
U = P U1 + VY,
(%2,1,731)" ~ N (0, I), V¥ insures stationarity.
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6.2. Bias and RMSE

We give biases and RMSE of each parameter of interest in Table 13 and we report a norm
of these three values. n = 50 and S = 1000. These results are unconditional on X

In classical cases (A1-A3), sign-based estimators have roughly the same behavior as the
LAD estimator, in terms of bias and RMSE. OLS is optimal in case A1. However, there is
no important efficiency loss or bias increase in using signs instead of LAD. Besides, if the
LAD is not accurate in a particular setup (for example with highly debalanced explanatory
scheme, case A4), the sign-based estimators do not suffer from the same drawback. In case
A4, the RMSE of the sign-based estimator is notably smaller than those of the OLS and the
LAD estimates.

For setups with strong heteroskedasticity and nonstationary disturbances (B5-B8), we
see that the sign-based estimators yield better results than both LAD and OLS estimators.
Not far from the (optimal) LAD in case of Cauchy disturbances (B5), the signs estimators
are the only estimators that stay reliable with nonstationary variance (B6-B8). Indeed, no
assumption on the moments of the error term is needed for sign-based estimators consis-
tency. All that matters is the behavior of their signs.

When the error term is autocorrelated (C9-C11), results are mixed. When a moderate
linear dependence is present in the data, sign-based estimators give good results (C9, C10).
But when the linear dependence is stronger (C11), that is no longer true. The SHAC sign-
based estimator does not give better results than the non-corrected one in these selected
examples.

To conclude, sign-based estimators are robust estimators much less sensitive than the
LAD estimator to various debalanced schemes in the explanatory variables and to het-
eroskedasticity. They are particularly adequate when an amount an heteroskedasticity or
nonlinear dependence is suspected in the error term, even if the error term fails to be sta-
tionary. Finally, the HAC correction does not seem to increase the performance of the es-
timator. Nevertheless, it does for tests. We show in Coudin and Dufour (2005a) that using
a HAC-corrected statistic allows for the asymptotic validity of the Monte Carlo inference

method and improves the test performance in small samples.
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Table 13. Simulated bias and RMSE.

e

OLS LAD SF 2SSHAC
n=>50, S=1000 Bias RMSE | Bias RMSE | Bias RMSE | Bias RMSE
Case Al: Bo .003 142 .002 179 | 002 179 | .004 .178
pe=p, =0, b1 .003 .149 .006 184 | 004 182 | .004 .182
HOM B, | -.002 .149 -.007 186 | -.006 .185 | -007 .183

[1Bl1* | .004 .254 009 316 | .007 315 | .009 .313

Case A2: Bo | -.003 136 .000 090 | -000 .089 |-000 .089
pe=p, =0, By | -0135 230 -.006 218 | -010 218 |-010 .218
HET B, .002 142 -.001 095 }-001 .092 |-001 .092
118I1 014 303 007 254 | 010 253 | 010 .253

Case A3: Bo 022 .167 018 Jd08 | 025 107 | 023  .107
0. =0, p, = .5, Gy | -1.00 228 .005 215 | .003 214 | 002 215
HET B, .001 150 .005 05 ] 007  .104 | 007  .105
118l] 022 320 019 263 | 026 261 | .024  .262

Case A4: Be | -001 174 007 2102 | .010 2181 | .008 2171
z3 ~ B(1,.3), By | -016 313 -.011 375 | -021 396 | -.021 .394
z3 ~ N0, .012) B2 | -.100 14.6 .077 18.4 014 741 | 049 740
118l| .101 14.6 .078 185 | .027 742 | 054 741

Case BS: B 16.0 505 .001 251 004 248 | .003 248
z2,z3 ~ N(0, I), B | -331 119 015 264 | 020 265 | .020  .265
u~C By | -2.191 630 .000 256 | .003 258 | .001  .258
1181| 26.0 817 015 445 | 021 445 | 020 445

Case B6: By | -908 29.6 -1.02 274 | 071 228 | .083 228
Stoch. Volat. B 2.00 37.6 3.21 684 | 058 238 | .069 239
Ba 1.64 59.3 2.59 91.8 | -101 230 |-089 229

18Il 2.73 76.2 4.25 118 | 136  4.02 | 139  4.02

Case BT: Bo | -127 3289 -.010 785 | -008 3.16 |-028 3.17
GARCH(1,1) By | -814 237 .130 112 | -086 3.80 |-08 3.823
By | -31.0 1484 -314 120 | -021 3.606 | -009 3.630

118]] 154 4312 340 182 | .089 612 | .091 6.15

Case B8: By | <-10" >101° | <-10° >10'° | 312 567 | 307 567
u = exp(t)e By | >10 >10° | >10° >10° | 782 540 | 863 546
By | <-101 >1010 | <-10° >10'° | 696 552 | .696 5.55

II8]] | >101° >10}| >10° >10Y | 1.09 958 | 1.I5 9.63

Case C9: Bo .005 279 .001 308 | .003 309 | .004 311
pe=5,p, =0, By | -002 .163 -.005 201 | -004 200 |-005 .199
HOM B, .001 165 -.004 204 | .003 198 | .002  .198
HEE]]] .006 .363 .007 420 | 006 418 | 006 .419

Case C10: Bo | -013 284 -.010 315 | -015 314 | -014 314
pe = 5,p, = .5, B | -009 .182 -.009 220 | -011 218 |-011 219
HET B .008 .189 011 222 | 007 215 | 007 215
118l] .018 387 018 444 | 020 439 | 019 439

Case Cl1: Bo 070 1.23 -.026 308 | 058 126 | 053 127
pe=9,p, =0, B | -.000 268 .005 214 | -005 351 |-008 .354
HOM Bs .001 273 -.004 210 | 002 361 [-001 361
18Il 070 1.29 027 430 | 059 136 | .054 137

*||.]| stands for the euclidian norm.
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7. TIlustrations

In this section, we go back to the two illustrations presented in Coudin and Dufour (2005a)
where sign-based tests were derived, with now estimation in mind. The first application
is dedicated to estimate a drift on the Standard and Poor’s Composite Price Index (S&P),
1928-1987. In the second one, we search a robust estimate of the rate of 8 convergence
between output levels across U.S. States during the 1880-1988 period using Barro and
Sala-i Martin (1991) data.

7.1. Drift estimation with stochastic volatility in the error term

We estimate a constant and drift on the Standard and Poor’s Composite Price Index (SP),
1928-1987. That process is known to involve a large amount of heteroskedasticity and have
been used by Gallant, Hsieh, and Tauchen (1997) and Valéry and Dufour (2004) to fit a
stochastic volatility model. Here, we are interested in robust estimation without modeling
the volatility in the disturbance process. The data set consists in a series of 16,127 daily
observations of SF;, then converted in price movements, y; = 100[log(SP;) — log(SP,_1 )]
and adjusted for systematic calendar effects. We consider a model involving a constant and
a drift,

nw=a+bt+u, t=1,...,16127, (7.2)

and we allow that {u;};=1, 16127 exhibits stochastic volatility or nonlinear heteroskedas-
ticity of unknown form. White and Breush-Pagan tests for heteroskedasticity both reject
homoskedasticity at 1%.”

We compute both the basic SF' sign-based estimator and the SH AC version with the
two-step method. They are compared with the LAD and OLS estimates. Then, we redo
a similar experiment on two subperiods: on the year 1929 (291 observations) and the last
90 days of 1929, which roughly corresponds to the four last months of 1929 (90 observa-
tions). Due to the financial crisis, one may expect data to involve an extreme amount of

heteroskedasticity in that period of time. We wonder at which point that heteroskedasticy

See Coudin and Dufour (2005a): White: 499 (p-value=.000) ; BP: 2781 (p-value=.000).
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can bias the subsample estimates. The Wall Street krach occurred between October, 24th
(Black Thursday) and October, 29th (Black Tuesday). Hence, the second subsample corre-
sponds to the period just before the krach (September), the krach period (October) and the
early beginning of the Great Depression (November and December). Heteroskedasticity
tests reject homoskedasticity for both subsamples.?

In Table 14, we report estimates and recall the 95% confidence intervals for a and b
obtained by the finite-sample sign-based method (SF and SH AC);? and by moving block
bootstrap (LAD and OLS). The entire set of sign-based estimators is reported, i.e., all the

minimizers of the sign objective function.

Table 14. Constant and drift estimates.

Whole sample Subsamples
Constant parameter (a) (16120 obs) 1929 (291 obs) 1929 (90 obs)
Set of basic sign-based 062 (-160, .163)* (-.091, .142)
estimators (SF) [-007, .1057**  [-226,.521]  [-1.453, .491]
Set of 2-step sign-based .062 (-160, .163) (-.091, .142)
estimators (SHAC) [-.007, .106] [-.135, .443]  [-1.030, .362]
LAD .062 .163 -.091
[.008, .116]  [-130, 456]  [-1.223, 1.040]
OLS -.005 224 -.522
[-.056, .046] [-.140, .588]  [-1.730, .685]
Drift parameter (b) x107° %1072 x10~1
Set of basic sign-based (-.184,-.178) (-.003, .000) (-.097,-.044)
estimators (SF) [-.676, .486] [-.330, .342] [-.240, .305]
Set of 2-step sign-based (-.184,-.178) (-.003, .000) (-.097, -.044)
estimators (SHAC) [-.699,.510]  [-260,.268] [--204, .224]
LAD -.184 .000 -.044
[-681,.313]  [-236,.236] [-.316,.229]
OLS .266 -.183 010
[-228,.761]  [-523,.156] [--250, .270]

* Interval of admissible estimators (minimizers of the sign objective function).
** 95% confidence intervals.

First, we note that the OLS estimates are importantly biased and are greatly unreliable

81929: White: 24.2, p-values: .000 ; BP: 126, p-values: .000; Sept-Oct-Nov-Dec 1929: White: 11.08,
p-values: .004; BP: 1.76, p-values: .18.
%see Coudin and Dufour (2005a)
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in the presence of heteroskedasticity. Hence, they are just reported for comparison sake.
Presenting the entire sets of sign-based estimators enables us to compare them with the
LAD estimator. In this example, LAD and sign-based estimators yield very similar esti-
mates. The value of the LAD estimator is indeed just at the limit of the sets of sign-based
estimators. This does not mean that the LAD estimator is included in the set of sign-based
estimators, but, there is a sign-based estimator giving the same value as the LAD estimate
for a certain individual component (the second component may differs). One easy way to
check this is to compare the two objective functions evaluated at the two estimates. For
example, in the 90 observation sample, the sign objective function evaluated at the basic
sign-estimators is 4.75 x 1072, and at the LAD estimate 5.10 x 10~2; the LAD objective
function evaluated at the LAD estimate is 210.4 and at one of the sign-based estimates
210.5. Both are close but different.

Finally, two-step sign-based estimators and basic sign-based estimators yield the same
estimates. Only confidence intervals differ. Indeed, both methods are expected to give

different results especially in the presence of linear dependence.

7.2. A robust sign-based estimate of 5 convergence across US States.

One field suffering from both a small number of observations and possibly very heteroge-
neous data is cross-sectional regional data sets. Least squares methods may be misleading
because a few outlying observations may drastically influence the estimates. Robust meth-
ods are greatly needed in such cases. Sign-based estimators are robust (in a statistical sense)
and are naturally associated with a finite-sample inference. In the following, we examine
sign-based estimates of the rate of 3 convergence between output levels across U.S. States
between 1880 and 1988 using Barro and Sala-i Martin (1991) data.

In the neoclassical growth model, Barro and Sala-i Martin (1991) estimate the rate of
3 convergence between levels of per capita output across the U.S. States for different time
periods between 1880 and 1988. They use nonlinear least squares to estimate equations of

the form

(1/T)In(yie/yiz-1) = a—[In(yie—1)] % [(1 — e PT)/T) + 6 + ez’T, (7.3)
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i=1,...,48, T = 8,10 or 20,
t = 1900, 1920, 1930, 1940, 1950, 1960, 1970, 1980, 1988.

Their basic equation does not include other explanatory variables but they also consider
a specification with regional dummies. The basic equation model assumes that 48 States
share a common per capita level of personal income at steady state while the second
specification allows for regional differences in steady state levels. Their regressions
involve 48 observations and are run for each 20-year or 10-year period between 1880 and

1988.

Their results suggest a 3 convergence at a rate somewhat above 2% a year but their
estimates are not stable across subperiods, and vary greatly from -.0149 to .0431 (for the
basic equation). This instability is expected because of the succession of troubles and
growth periods in the last century. However, they may also be due to particular observations
behaving like outliers and influéncing the least squares estimates.!® These two effects are
probably combined. We wonder which part of that variability is really due to business
cycles and which part is only due to the nonrobustness of least squares methods. Further,
we would like to have a stable estimate of the rate of convergence at steady state. For this,
we use robust sign-based estimation with Dg (ﬁ, (X'X )‘1). We consider the following

linear equation:

(U/T)In(yie/vie-1) = a+vy[In(yi—r)] + zi6 + 7, (7.4)
i=1,...,48, T = 8,10 or 20,
t = 1900, 1920, 1930, 1940, 1950, 1960, 1970, 1980, 1988.

where z; account for regional dummies when included, and we compute Hodges-Lehmann
estimate for 8 = —(1/T) In(yT + 1) for both specifications. We also provide 95%-level
projection-based CI, asymptotic CI and projection-based p-value functions for the parame-

ter of interest. Results are presented in Table 15 where Barro and Sala-i Martin (1991)

19A survey of potential data problem is performed and regression diagnostics are summarized in Table 16
in the Appendix B.1. It suggests the presence of highly influential observations in all the periods but one.
Outliers are clearly identified in periods 1900-1920, 1940-1950, 1950-1960, 1970-1980 and 1980-1988.
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NLLS results are reported.

Sign estimates are more stable than least squares ones. They vary between
[—.0147,.0364] whereas least squares estimates vary between [—.0149, .0431]. This sug-
gests that at least 12% of the least squares estimates variability between sub-periods are
only due to the nonrobustness of least squares methods. In all cases but two, sign-based
estimates are lower (in absolute values) than the NLLS ones. Consequently, we incline to
a lower value of the stable rate of convergence.

In graphics 28(a)-30(f) [see Appendix B.2], projection-based p-value functions and op-
timal concentrated sign-statistics are presented for each basic equation over the period
1880-1988. The optimal concentrated sign-based statistic reports the minimal value of Dg
for a given 3 (letting a varying). The projection-based p-value function is the maximal
simulated p-value for a given 3 over admissible values of a. Those functions enable us
to perform tests on 5. 95% projection based confidence intervals for 3 presented in Table
15 are obtained by cutting the p-value function with the p = .05 line. The sign estimate
reaches the highest p-value. Remark that contrary to asymptotic methods, the estimator is
not at the middle point of any confidence interval. Besides, the p-value function gives some
hint on the degree of precision. The 3 parameter seems precisely estimated in the period
30-40 [see graphic 29(b)], whereas in the period 80-88, the same parameter is less precisely

estimated and the p-value function leads to a wider confidence intervals [see graphic 30(f)].

8. Conclusion

In this paper, we introduce inference tools that can be associated with the Monte Carlo
based system presented in Coudin and Dufour (2005a): the p-value function (and its in-
dividual projected versions) which gives a visual summary of all the inference available
on a particular parameter, and Hodges-Lehmann-type sign-based estimators. The p-value
function associates to each value of the parameter the degree of confidence one may have
in that particular value. It extends the confidence distribution concept to multidimensional

parameters and relies on a reinterpretation of the Fisher fiducial distributions. The para-
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Table 15. Regressions for personal income across U.S. States, 1880-1988.

Period Basic equation Equation with regional dummies
BSIGN GNLLS 4 4y gSIGN BNLLS 4 4
1880-1900 0012 .0101 .0016 .0224
[-.0068, .0123]* [.0058, .0532]** [-.0123,.0211] [.0146,.0302]
1900-1920 0184 0218 .0163 .0209
[0092,.0313]  [.0155,.0281]  [-.0088,.1063] [.0086,.0332]
1920-1930 -.0147 -.0149 -.0002 -.0122
[-.0301,.0018]  [-.0249, -.0049]  [-.0463, .0389] [-.0267, .0023]
1930-1940 0130 .0141 0152 0127
[.0043, .0234] [.0082, .0200]  [-.0189,.0582] [.0027,.0227]
1940-1950 .0364 .0431 .0174 .0373
[.0291, .0602] (0372, .0490]  [0083,.0620] [.0314, .0432]
1950-1960 .0195 .0190 .0140 .0202
[.0084, .0352] [0121,.0259]  [-.0044, .0510] [.0100, .0304]
1960-1970 .0289 .0246 .0230 0131
[.0099, .0377] [0170,.0322]  [-.0112,.0431] [.0047,.0215]
1970-1980 .0181 .0198 .0172 .0119
[.0021,.0346]  [-.0315,.0195] [-.0131,.0739] [-.0273,.0173]
1980-1988 -.0081 -.0060 -.0059 -.0050
[--0552, .0503] (.0130) [-.0472, .1344] (.0114)

* Projection-based 95% CI.
** Asymptotic 95% CI.
*4% Columns 2 and 4 are taken from Barro and Sala-i Martin (1991).
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meter values the less rejected by tests (given the sample realization and the sample size)
constitute Hodges-Lehmann sign-based estimators. Those estimators are associated with
the highest p-value. Hence, they are derived without referring to asymptotic conditions
through the analogy principle. However, they turn out to be equivalent (in probability) to
usual GMM estimators based on signs. We then present general properties of sign-based
estimators (invariance, median unbiasedness) and the conditions under which consistency
and asymptotic normality hold. In particular, we show that sign-based estimators do require
less assumptions on moment existence of the disturbances than usual LAD asymptotic the-
ory. Simulation studies indicate that the proposed estimators are accurate in classical setups
and more reliable than usual methods (LS, LAD) when arbitrary heterogeneity or nonlinear
dependence is present in the error term even in cases that may cause LAD or OLS consis-
tency failure. Despite the programming complexity of sign-based methods, we recommend
combining sign-based estimators to the Monte Carlo sign-based method of inference when
an amount of heteroskedasticity is suspected in the data and when the number of available
observations is small. We present two illustrative applications of such cases. In the first
one, we estimate a drift parameter on the Standard and Poor’s Composite Price Index, using
the 1928-1987 period and various shorter subperiods. In the second one, we provide robust
estimates for the 5 convergence between the levels of per capita personal income across

U.S. States occurred between 1880 and 1988.
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Appendix

A. Proofs

A.1. Proof of Proposition 4.1

We show that the sets M1 and M2 are equal with probability one. First, we show that if
,B € M2 then it belongs to M 1. Second, we show that if 3 does not belong to M2, neither
it belongs to M 1.

If 3 € M2 then,

Ds(B) < Ds(B), VB € R?, (A1)

hence

F(Ds(B)) < F(Ds(B)) =1, VBeR® (A2)

and B maximizes the p-value. Conversely, if B does not belong to M1, there is a non
negligible Borel set, say A, such that Dg(83) < DS(B) on A for some . Then, as F(z) is
an increasing function and A is non negligible,
F(Ds(B)) < F(Ds(P)), (A3)
hence,
1-F(Ds(8)) > 1-F(Ds(B)).

The latter expression can be written in terms of p-values:

p(B) > p(B), (A4)

and ﬂ does not belong to M2,

A.2. Proof of Theorem 5.1

We consider the stochastic process W = {W, = (g, z}) : 2 - RP*'},_;,  defined on
the probability space ({2, F, P). We denote

a(We.8) = (qa(Ws,B),...,0(WeB))’
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= (s(y: — ziB)zu,- .., sy — z;ﬂ)ztp)l, t=1,...,n.

The proof of consistency follows four classical steps. First, 2 =, q,(W;, 8) — E[q.(W,, 8)]
is shown to converge in probability to zero for all € © (pointwise convergence). Second,
that convergence is extended to a weak uniform convergence. Third, we adapt to our setup
the consistency theorem of extremum estimators of Newey and McFadden (1994). Fourth,
consistency is entailed by the optimum uniqueness that results from the identification
conditions.

Pointwise convergence. The mixing property A4 on W is exported to {gy,(W;, B8), k=
1,...,ph=12,.. Hence, V8 € O, Vk = 1,...,p, {gu(Ws, B)} is an a~mixing process
of size r/(1 — r). Moreover, condition AS entails E|gix(W;, 8)|"*® < oo for some & > 0,
forallt € N, k = 1,...,p. Hence, we can apply Corollary 3.48 of White (2001) to
{qu:(Wt, B) }1=1,2,.... It follows V3 € O,

1 n
=2 a(We B) — Elaw(We, B)] B0 k=1,...,p,
t=1

Uniform Convergence. We check conditions A1, A6, B1, B2 of Andrews (1987)’s generic
weak law of large numbers (GWLLN). Al and B1 are our conditions A6 and A4. Then,

Andrews defines

qﬁ(u/zaﬁvp) = .Sllp Qik(vVinB):
BeB(B,p)

qLic(Wi, B,p) =  inf gu(W;, 0),
BeB(B,p)

where B(f, p) is the open ball around # of radius p. His condition B2 requires that
ail (We, B, p), qru(We, B, p) and qy.(W,) are random variables; gl (., 8, p), ara(., B, p) are
measurable functions from (2, P, F) to (R, B), Vt, B € O, p, where B is the Borel o-
algebra on R and finally, that sup Equ(W;)¢ < oo with € > r. Those points are derived
from the mixing condition A4 aild condition AS which insures measurability and provides
bounded arguments.

The last condition (A6) to check requires the following: Let i be a o-finite measure that
dominates each one of the marginal distributions of W;, t = 1,2.... Let p,(w) be the

density of W; w.r.t. u, qu(Wy, B)p:(W,) is continuous in 3 at 3 = $8* uniformly in ¢ a.e.
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w.rt. u, for each 8* € O, qu.(W,, ) is measurable w.r.t. the Borel measure for each ¢
and each 8 € O, and [ sup,sg geo qu(W, B)|p(w)du(w) < co. As u, is continuously
distributed uniformly in ¢ [Assumption A7 (2)], we have Pj[u, = z:0] = 0, V8, uniformly
in t. Then, g is continuous in 3 everywhere except on a P;-negligeable set. Finally, since
qu: is Li-bounded and uniformly integrable, condition A6 holds.

The generic law of large numbers (GWLLN) implies:

(a) - Z E|q.(W;, B)]is continuous on © uniformly over n > 1,

®)  sup|o th We, B) - Eq(W,, B)| —

as n — oo in probability under P.

The Consistency Theorem consists in an extension of Theorem 2.1 of Newey and Mc-
Fadden (1994) on extremum estimators. The steps of the proof are the same but the limit
problem slightly differs. For simplicity, the true value is taken to be 0. First, the generic

law of large numbers entails that

lim — Z E[s(us — z,0)z] is continuous on @,k = 1, ..., p. (AS)

n—oo 7,

Let us define

Qk(ﬂ _ztﬂ) sy Py

QR (B) = -z, k=1,.

We consider {3, }n>1 a sequence of minimizers of the objective function of the non-

weighted sign-based estimator

25 (Soustu =) =St

Then foralle > 0, > 0 and n > Ny, we have:

P (@B < Z[Qﬁ(0)12+6/3] >1-34. (A.6)
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Uniform weak convergence of QF to QZ* at 3, implies:

QEF (B, < [QE(B,))P+¢/3p, k=1,...,p, with probability approaching one as n — oo,
(A7)

hence,

Z:[Q,’f’“(ﬂn)]2 < Z:[Qﬁ(ﬁn)]2 + €/3, with probability approaching one as n — oo.
k k
(A.8)
With the same argument, at 3 = 0

Z[Qﬁ(O)]2 < z:[Qf’“(O)]2 + ¢/3, with probability approaching one as n — co. (A.9)
k k
Using (A.8), (A.6) and (A.9) in turn, this entails

Z[ka (B < Z[ka(O)]2 + €, with probability approaching one as n — oo.
* ¢ (A.10)
This holds for any €, with probability approaching one. Let N be any open subset of ©
containing 0. As @ N N is compact and lim,, Y, [Q:*(8)]? is continuous (A.5),

38" € ©N Nesuchthat sup lim ) [QE%(B)]* = lim ) [QZ(p))%.
BEONN:E T & n &
Provided that 0 is the unique minimizer, we have:
lim Z[ka(ﬂ")]2 > lim Z[Qf’“(O)P, with probability one .
k k
Hence, setting
— 1 : Ek %112
e=3 {h;n;[czn o) } :
it follows that, with probability close to one,
. 1], e o . : . :
lim > Q7 (B < 5 [h,rp >_IQZH(B") + lim Z[Qf"(o)f] < Sup lim ) QA
k k k k

Hence, §,, € N. As this holds for any open subset N of © we conclude on the convergence

of 3, to 0.
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For identification, the uniqueness of the minimizer of the sign-objective function is insured
by the set of identification conditions A1, A8, A7, A9. These conditions and consequently
the proof, are close to those of Weiss (1991) and Fitzenberger (1997b) for the LAD and
quantile estimators. We wish to show that the limit problem does not admit another solu-

tion. When §2,(5) defines a norm for each 3 (condition A9), this assertion is equivalent

to
lim E Zs(ut - 1:2(5):5,} =0=0=0, § € R?, (A.11)
t
and
) 1
nh_{& ’nZs (ue — 30) ] =0=6=0, 6 €R". (A.12)

Let A(d) = E[2 3, s(u, — z}0) 4|21, . . ., Tn]. Then,

1 ' 1 7
- zt:s(ut - mtd)xt] =FE {E - Zt:s(ut — ) x|z, . . .,x,{| } .

E[AQG)] = E

Note that
z} 8

1 z,6
Els(uy—z30)|z1, . .., o] = 2 [5 - / fi(ulzy, ... ,xn)du] = -2 fe(ulzy, ..., z,)dy]
—00 0

Hence A(d) can be developed for 7 > 0 as

2 126
A((S) = ; iné {I{|z’t¢$[>r} [I{I26>0} / —ft(u|:r1, oo ,:En)d’u
0

0
+I{z:5$0} / ft(’U,|.’L'1, ceay :vn)du:|
zid

EA)
+1{1z61<7) [I{x;bo}/ —fi(ulz1, ..., z0)du
0

0
+I{m1550}/ ft(u|x1,...,zn)du] }
8

L

Then,
E[A(0)]= E {5 21725 [I{mapr} (I{z;6>0}/0 —fe(ulzy, ..., z,)du

0
+1 (g1 5<0) / fe(ulzy, - .. ,:vn)du)
T8
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A
+ {1z 61<r) ({{z1550) / —fi(u|zy, ..., zo)du
0

0
+ 1{12550}/ fi(ujzy, ... ,zn)du)] } .
z,6

Remark that each term in this sum is negative. Hence, s(E[A(6)]) < 0 and |E[A(d)]| =
—E[A(d)], and

|E(A)| = E

2 x4
;ZZZJI{mapT} (I{z;5>0}/ fe(ulzy, ..., z,)du
0
0
—I{%JSO} / ft(ulxl, sy zn)du
6

2 ) zi0
+E [;Z%M{lzzaisf} <1{z;6>0} /0 filulz, ... 2n)du

0
-—-[{12550} /,5 ft(u|:1:1, N ,mn)du)]

2 226
> E|=) Lassn) <$251{z;6>0} /0 felulzy, ..., zn)du
0
—zééI{xigso}/ fiulzy, ..., zn)du (A.13)
zi8
2 E{=) Ligasn |€0luss0) / filulzy, ..., zn)du
0
0
— 1251{12550}/ fe(ulzy, ... zn)du| [fi(Olzy, ..., z0) > fr]p1 p(A.14)
x,6
2
> mE {E ZI{|z;a|>r}Tde|ft(0|$1, ceey Tp) > fL} , (A.15)
2 !
> Tpifrd> > Pl|zi8| > 7| fi(0lzy, - .., z0) > f1)]. (A.16)

To obtain inequation (A.13), just remark that each term is positive. For the inequation
(A.14) we use condition A7. For inequation (A.15) we minorate |z.6| by 7 and each inte-

grals by frd; where d; = min(7,d/2). Condition A8 enables us to conclude, by taking the
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limit,
lim |E[A(6)]| 2 27p1 frd x liminf P[|zé| > 7| f;(0|z1,...,22) > f1] >0, V6 >@.17)

hence, we conclude on the uniqueness of the minimum, which was the last step to insure

consistency of the sign-based estimators. [J

A.3. Proof of Proposition 5.3

Consider 3(y, X, u) a solution of problem (4.4), let 3, be the true value of the parameter /3
and suppose that u ~ —u. Equation (5.14) implies that

~ -~

ﬂ(ua Xa u) = _IH(_U')X, U)
Hence, conditional on X, we have
u~ —u = Bu, X,u) ~ —B(~u, X, u) = Med(B(u,X,u)) =0. (A.18)

Moreover, equation (5.15) implies that

By, X,u) = Bly—XBo, X,u)+ By

~

= By, X,u) + By (A.19)
Finally, (A.18) and (A.19) imply

Med(B(y1 X7 u) - ,80) =0.

A.4. Proof of Theorem 5.4

We prove Theorem 5.4 on asymptotic normality. We consider the sign-based estimator
,B(.Qn) where (2, stands for any p x p positive definite matrix. We apply Theorem
7.2 of Newey and McFadden (1994), which allows to deal with noncontinuous and
nondifferentiable objective functions for finite n. Thus, we stand out from usual proofs
of asymptotic normality for the LAD or the quantile estimators, for which the objective
function is at least continuous. In our case, only the limit objective function is continuous

(see the consistency proof). The proof is separated in two parts. First, we show that L(3)
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as defined in equation (5.17) is the derivative of limn o 5 >, E[s(u — z}(8 — By)) ).
Then, we check the conditions for applying Theorem 7.2 of Newey-McFadden.

The consistency proof (generic law of large numbers) implies that

% > " E[s(u — 7,(8 - Bo))ze] (A.20)

t=0
is continuous on © uniformly over n. Moreover condition A5 specifies that X is L2+

bounded. As the f;(A|zy,...,x,) are bounded by fy uniformly over n and A (condition

A1l), dominated convergence allows us to write that

%E[xts(ut —zy(B — By))] = E[zez,fe(zi(B — Bo)lz1, - - - z5)]. (A.21)

And, these conditions imply that
1 n
Ln(B) = = > Elzaifu(i(B ~ Bo)ley, - -, T)] (A.22)
t=1

converges uniformly in 3 to L(3). Uniform convergence entails that lim, 1 57 E [s (ue—

n t=0
z;(B — By))x:] is differentiable with derivative L(().

We now apply Theorem 7.2 of Newey and McFadden (1994) which presents asymptotic
normality of a minimum distance consistent estimator with nonsmooth objective function
and weight matrix {2, - 2 symmetric positive definite. Thus, under conditions for con-

sistency (A1, A4-A9), we have to check that the following conditions hold:
() zero is attained at the limit by £;

(i) the limiting objective function is differentiable at 3, with derivative L(,) such that
L(B,)2L(B,)' is nonsingular;

(ii1) B, is an interior point of O,
(IV) \/ﬁQn(IBO) - N(O’ J)
(v) forany b, — 0, supyg_gq +/AllQn(8)— Qn(Be) — EQUBNI/(1+ v/l 18— Boll) & 0
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Condition (i) is fulfilled by the moment condition Al. Condition (ii) is fulfilled by the
first part of our proof and condition A13. Then, Condition (iii) is implied by A6. Using
the mixing specification A12 of {u;, X;}+—1 2. and conditions A1, A5, A10 and A14, we
apply a White-Domowitz central limit theorem [see White (2001), Theorem 5.20]. This
fulfills condition (iv) of Theorem 7.2 in Newey and McFadden (1994):

v 2Qn(By) — N(0, I) (A.23)

where J, = var [ﬁ 1 s(u,—)w,—]. Finally, condition (v) can be viewed as a stochastic
equicontinuity condition and is easily derived from the uniform convergence [see McFad-

den remarks on condition (v)]. Hence, ,B( {2,,) is asymptotically normal
VS (B(82) = Bo) — N0, I).
The asymptotic covariance matrix S is given by the limit of

Sn = [Ln(Bo) 2(Bo) L (80)] ™" Ln(B0) 2 (B0) Jni2u(Bo) Ln(Bo) [ L (B0) 20 (B0) L (Bo)] -

When choosing £2, = J;! a consistent estimator of J;71, Sy, can be simplified:

VS A (B(J) - By) — N (0, 1)

with

Sn = [Ln(ﬂo)jn_an(ﬁo)]_l-

When the mediangale Assumption (A2) holds, we find usual results on sign-based estima-

tors. 3 (I,) and B[(X'X )~!] are asymptotically normal with asymptotic covariance matrix

lim S, = lim % [, Bz} £i(01X))] ™ Blzewl) [, B (ze; f(01X))]
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B. Detailed empirical results

This appendix contains additional results for the Barro and Sala-i-Martin application. First,
a residual analysis which includes outlier detection, heteroskedasticity tests, etc. is sum-
marized in Table 16. Second, graphics of concentrated sign-based statistics and projected

p-values for the 3 parameter are presented in Figures 27-29.

B.1. Regression diagnostics

Table 16. Summary of regression diagnostics.

Period Heterosked.* Nonnormality** Influent. obs.** Possible outliers**
Basic eq. Eq Reg. Dum.

1880-1900 yes - yes - yes yes no no
1900-1920 yes yes yes yes yes yes yes (MT) yes
1920-1930 - - - - yes - no no
1930-1940 - - yes - yes yes no no
1940-1950 - - - - yes yes yes (VT)  yes (VT)
1950-1960 - - - yes yes yes yes (MT) yes (MT)
1960-1970 - - - - - - no no
1970-1980 - - yes yes yes yes yes (WY) yes (WY)
1980-1988 yes - - yes yes yes yes (WY) yes (WY)

* White and Breush-Pagan tests for heteroskedasticity are performed. If at least one test rejects at
5% homoskedasticity, a "yes" is reported in the table, else a "-" is reported, when tests are both
nonconclusive.

** Scatter plots, kernel density, leverage analysis, studendized or standardized residuals > 3, DF-
beta and Cooks distance have been performed and lead to suspicions for nonnormality, outlier or
high influential observation presence.

B.2. Concentrated statistics and projected p-values



35 —
307
103
o
35
5 [
§ 20 |
8 15[
E
=]
E
£
E
5
a0 L TR i
01 -005 0 005 01
beta

(a) Basic equation: 1880-1900: concentrated DS

minimum concentrated DS
&

0 = i
-0 -005 0 005 0.1
beta

(c) Basic equation: 1900-20: concentrated DS

3 . —
=}
o
]
B
B -
: —
815
c
g | £
5 104
£
E
5
4 am 0 0.05 04
beta

(e) Basic equation: 1920-30: concentrated DS

129

-

projected p-value
2 2 o o o ©
- h ® N > w»

el
w

01 -005 005 0.1

0
beta

(b) Basic equation: 1880-1900: projected p-value

o o o o

@ N o ©
O -
i

projected pvalues
o o
R

0.3

0.
0.

2

1

o- ’ ik _—
1

-0. -005 0
beta

(d) Basic equation: 1900-20: projected p-value

Projected p-value
© © o o o o o o
»N w o~ @ o -~ -3 -]

154
P

s -005 0 005 01
beta

(f) Basic equation: 1920-30: projected p-value

Figure 27. Concentrated statistics and projected p-values (1880-1930)



()

130

minimum concentrated DS
=3 & S 5

0

el
o

projected p—value
o
L3

0.1

[ o —. S —

005 0.1 0.1 -0.05 0 005 0.1

005 0
beta beta

(a) Basic equation: 1930-40: concentrated DS (b) Basic equation: 1930-40: projected p-value

minimum concentrated DS
= & = R 8 &

&

© © o © o o
& ~N @ @

projected p—value

e
w

02

0.1_1-

4

L ! " . . " —
-0.05 0 005 01 3 005 0 005 01
beta beta

(c) Basic equation: 1940-50: concentrated DS (d) Basic equation: 1940-50: projected p-value

n
&

minimum concentrated DS
3 & S

o
-

projected p—value
o o © © o ©

o

3

i -

005 01

&2

% [) o5 01 005 0
beta beta

(e) Basic equation: 1950-60: concentrated DS (f) Basic equation: 1950-60: projected p-value

Figure 28. Concentrated statistics and projected p-values (1880-1930)



A

minimum concentrated DS

30

25

20

15

10 4
§ 1
T N T

0
beta

01

(a) Basic equation: 1960-70: concentrated DS

minimum concentrated DS

357
|
30
!
|
254
l
204
15F
I|
10}
!
B
.f
oi. —— b i
-0.1 -0.05 0 0.05
beta

0.1

(c) Basic equation: 1970-80: concentrated DS

minimum concentrated DS

- s s o
S N R 3 a8
=

3s 205 )
heta

0.05

01

(e) Basic equation: 1980-88: concentrated DS
Figure 29. Concentrated statistics and projected p-values (1880-1930)

projected p~value
e ® o © o
~N (2] & (<4 g

e
=

—ar

3 -005 0
beta

(b) Basic equation: 1960-70:

projected p—value
® © © © © © © © ©
— N (2] o o o -~ (-] w

0
beta
(d) Basic equation: 1970-80:

do

-0.05

131

T

005 041

projected p-value

0.05 0.1

projected p-value

projected p-value
° © ® o o o o o
[X] w & o o ~N @ w

e
=

S s 0
beta

005 01

(f) Basic equation: 1980-88: projected p-value



132

Chapitre 3

Finite and large-sample distribution-free inference

in median regressions with instrumental variables
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1. Introduction

Instrumental Variable (IV) regression results greatly rely on the quality of the instruments
used. When the latter are weakly correlated with the endogenous variable, usual estima-
tors are biased and asymptotic approximations are not anymore valid; see Bound, Jaeger,
and Baker (1995), Staiger and Stock (1997), Dufour (1997, 2003), Wang and Zivot (1998),
Stock and Wright (2000). Inference relying on estimator asymptotic behavior such as Wald
tests may be greatly misleading. One approach to circumvent the problem of weak instru-
ments is to dissociate testing from estimation and to investigate alternative test procedures.
Contrary to Wald tests, tests based on the Anderson-Rubin (AR) statistic have correct size
for normally distributed disturbances without requiring the parameter to be identified. AR
tests are valid in the presence of weak instruments; see Anderson and Rubin (1949), Du-
four (1997), Nelson, Startz, and Zivot (1998). However, the AR procedure relies on a
Gaussian assumption or at least on some asymptotic justification. In small samples with
non-Gaussian disturbances, AR tests (such as any asymptotic test) may be affected by size
distortions. Fully exact inference procedures in models where some regressors are endoge-
nous have been less studied. In a regression setup, we propose to use the residual signs to
conduct nonparametric valid tests with controlled level for any sample size.

We consider here a possibly nonlinear equation which involves endogenous regressors.
A set of exogenous variables is available and no parametric assumption is imposed on
the disturbance process. The latter is only assumed to have median zero conditional on
the exogenous variables (hereafter, the instruments) and its own past. Without any fur-
ther restriction, we notice that the sign vector distribution of the constrained residuals is
a pivotal function. Its distribution does not depend on nuisance parameters and can easily
be simulated. Basically, we use Monte Carlo test techniques [see Dwass (1957), Barnard
(1963) and Dufour (2006)] to construct joint sign-based tests that control the level for any
sample size. The validity of these tests does not depend on identification assumptions nor
on any parametric approximation. In the presence of weak instruments or identification
failures, sign-based test levels still equal their nominal size. Then, a complete system of

finite-sample inference - as well as asymptotic extensions - can be applied [see Coudin and
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Dufour (20052)]. Simultaneous confidence sets for the whole parameter are obtained by
test inversion. Next, confidence sets and tests of general hypotheses are built using pro-
jection techniques [see Dufour and Kiviet (1998), Dufour and Jasiak (2001), Dufour and
Taamouti (2005)]. Finally, Hodges-Lehmann estimators are provided in identified cases
[Hodges and Lehmann (1963), Coudin and Dufour (2005b)). They correspond to the pa-
rameter value least rejected by the tests. As entailed by the results in Dufour (1997), the
derived confidence regions may have a non-zero probability of being unbounded in the
presence of identification failures.

Nonparametric approaches investigated up to now in the literature have been based on
rank and permutation tests. A rank-version of the AR test was introduced by Andrews
and Marmer (2005). It dominates the usual AR in terms of size and power for asymmet-
ric and thick tail error distributions. It yields exact tests if the exogenous regressors are
independent of instruments and errors. Besides, Bekker and Lawford (2005) proposed
exact inference based on permutation tests. Both methods are especially adapted to cross-
sectional data, since the errors are assumed to be independent and identically distributed
(2.3.d.). By contrast, sign-based methods are known to be the only way of producing in-
ference procedures that are proved to be valid under heteroskedasticity of unknown form
for a given sample size; see Lehmann and Stein (1949) and Coudin and Dufour (2005a).
Sign-based methods provide valid results under very few assumptions. Especially, they
allow for general forms of nonlinear dependence in the data. For example, the shape of the
error distribution may depend on the instruments provided a sign invariance condition is
satisfied. Our approach, which can be applied in time series and in cross-section contexts,
extends that part of the literature.

Other test procedures, which are valid in the presence of weak instruments, are para-
metric or asymptotically justified. A first approach exploits AR-type statistics; see Dufour
(1997), Dufour and Jasiak (2001) and Stock and Wright (2000). More recently, Dufour and
Taamouti (2005) extended the AR procedure to construct a whole system of inference on
the structural parameters. They derived closed-form solutions for the simultaneous confi-
dence regions and for projection-based confidence intervals in special cases. The second

approach, followed by Kleibergen (2002, 2005, forthcoming), considered a score-type sta-
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tistic in the limited information simultaneous equation model (LISEM). The so-called K
statistic, which is asymptotically a pivotal function, does not depend on the number of
instruments, in contrast with AR tests which loose power when many instruments are in-
volved in the model. In a Gaussian context, Bekker and Kleibergen (2001) investigated the
K statistic properties in finite samples. They derived a conservative inference by bound-
ing its behavior. Finally, the conditional approach proposed by Moreira (2003) relies on
similar tests; see also Moreira (2001), Moreira and Poi (2003), Cruz and Moreira (2005),
Andrews, Moreira, and Stock (2004, 2006). Under the null hypothesis, the size of similar
tests does not depend on unknown parameters (especially the endogenous explanatory vari-
ables and the instruments). Consequently, a similar test remains valid in the presence of
weak instruments. Moreira showed that similar tests can be constructed from non-similar
ones by associating a critical value function of those unknown parameters. The conditional
likelihood ratio test (CLR) so derived exhibits the best properties. Heteroskedastic and
autocorrelation corrected versions of the K and the LR statistics are proposed by Kleiber-
gen (forthcoming). See also Andrews and Stock (2005) for a complete review of the IV
literature.

The sign-based approach is in the spirit of Anderson and Rubin.! Basically, test statis-
tics are obtained by regressing the signs of the constrained residuals on auxiliary regressors
(the instruments) with the particularity that tests are performed using the exact distribution
of those statistics. Like the AR procedure, a sign-based test may suffer from underrejection
when many instruments are involved. This well-known drawback of AR-type procedures is
corrected by considering "optimal" instruments which maximize test power. Two optimal-
ity concepts are considered: the first one leads to locally optimal tests in the neighborhood
of the tested value; the second one to point-optimal tests against a particular alternative.
Approximate optimal instruments are constructed by split-sample methods; see Angrist
and Krueger (1995), Dufour and Jasiak (2001), Dufour and Taamouti (2005).

Other works on median (and quantile) regression with endogenous regressors have fo-
cussed on estimation. The starting point was the two-stage-least-absolute-deviation esti-

mator (2SLAD) introduced by Amemiya (1982), which is an adaptation of 2SLS to the

't is also related to Moreira’s approach since the derived tests are similar.
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least absolute value (LAV) regression [see also Powell (1983) for the asymptotic proper-
ties]. In a first stage, the endogenous variable is regressed by ordinary least squares on
the instruments. The second stage consists in a LAV regression which involves the fitted
values of the endogenous variable. Chen and Portnoy (1996) extended the idea of two
step-estimation to other quantiles. Two robust IV quantile estimators based on GMM for-
mulations are due to Honore and Hu (2004). The first one involves signs of the residuals and
the second one their ranks. In a linear median regression model, Hong and Tamer (2003)
proposed a minimum distance kernel-based estimator that can be used both in a point iden-
tified setup or when there exists a set of observationally equivalent parameters. Besides,
control function approaches were used by Lee (2003) in a partially linear quantile regres-
sion, by Chernozhukov and Hansen (2004) with a double simultaneous optimization,? and
by Sakata (2001) who proposed a general approach also based on a double optimization
of the ratio between the error dispersion controlled by the instruments and the dispersion
without control. Here, we propose to associate a Hodges-Lehmann-type estimator to the
finite-sample-based inference results when the parameter is identified. The estimate (or the
set of estimates) is the (set of) value(s) least rejected by sign-based tests, or equivalently
the one(s) leading to the highest p-value [see Hodges and Lehmann (1963) and Coudin and
Dufour (2005b)].

The paper is organized as follows. The model and notations are presented in section
2. In section 3, general results on the finite-sample sign-based inference are stated: the
distribution of the constrained signs is derived under the sign invariance assumption. Then,
simultaneous tests with controlled level are constructed by Monte Carlo test techniques.
Further, confidence sets and general tests are built using projection techniques. In sections
4 and 5, we go further in details and choose the form of the sign-based test statistics on
the basis of power properties. Pointwise and local optimality concepts are both considered
for choosing the instruments. We also follow two different approaches for determining the
form of the sign-based statistic. First, we study a classical GMM statistic that is a quadratic

form of the residual signs with a certain weight matrix. We also consider a Tippett-type

Their estimate of the parameter suffering from endogeneity both satisfies the regression criterion min-
imization and minimizes the instrumental regressors parameters norm. They also obtain valid confidence
regions by test inversion.
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combination [Tippett (1931)], which relies on the minimum of the p-values corresponding
to each sign-based moment equation tested separately. Section 6 is dedicated to asymptotic
properties of the proposed test procedures under assumptions weaker than the ones required
for finite-sample validity. Section 7 presents IV sign-based estimators when identification
holds. The power performances of the sign-based methods are compared to other usual
methods in the simulation studies of section 6. Finally, an illustrative application to the
returns to schooling [Angrist and Krueger (1991)] is provided in section 8. We conclude in

section 9. Appendix A contains the proofs.

2. Framework

In this section, we extend the linear median regression framework used in Coudin and
Dufour (2005a) and Coudin and Dufour (2005b) to a nonlinear and instrumental setup. Let
{Wy = (w, =, 2): 02— RPtEH1},_, | be a stochastic process defined on a probability
space (§2, F, P), and {W,, F;};=1,..» an adapted stochastic sequence where ; is a o-field
in {2 such that 7, C F, for s < t and o(W1,...,W,) C F,. y, is the real dependent
variable, which can take continuous or discrete values, z; = (41, - - - ,Ttp)' 1s a p-vector
of explanatory variables (possibly endogenous) and z; = (z,...,2x) is a k-vector of
exogenous variables. We further assume that y;, z; and the parameter of interest, § € RY,

are related through a nonlinear function f : R*7*7 — R up to an error term u;:
FWeT,0) =wg, t=1,...,n.

For convenience, we will use the following matrix notation

fly, X,0)=u 2.1
where y = (y1,...,¥a) and u = (uy,...,u,) are real n-vectors, X = (z1,...,z,) isa
n X p real matrix.

We denote Z = (z1,...,2,) the n x k real matrix of instruments. The terminology

of instruments is very general. It covers exogenous random variables but the instruments

may also depend on the parameter 6 such as a score vector in a nonlinear model. In such
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a case, we shall denote Z, := (z1(9), e, zn(H))'. Instruments may be strongly or weakly

correlated with the endogenous regressors, but they have to be valid in the following sense.

Assumption A1 Z-CONDITIONAL MEDIANGALE. Let {uy, F;} 1=12,.. be an adapted

stochastic sequence and F; = o(uy, . .., us, Z). We assume that

Plu; > 0|Z]) = Plu; < 0|Z] = 1/2,
P[’U,t > OlZ,Ut_l, ce ,ul] = P[’U.g < O|Z,ut_1, c ,ul] = 1/2, fort > 1.

Assumption Al is an adaptation of the mediangale concept defined in Coudin and Dufour
(20052) to an instrumental setup. We condition on Z instead of X since some explanatory
variables are endogenous. {u;}:—;,. . are not supposed to be 4.i.d.. The past values of u;
may have an influence on the form of the distribution of the current u;, provided they do not
affect its probability of being positive or negative. This flexible setup covers the standard

limited information simultaneous equations model (LISEM) [see Hausman (1983)]:

Y = T30 + uy,
Ty = 2,11 + v,
U i
b (0,X), fort=1,...,n,
Ut
(u¢, v}) independent of z;, fort =1,...,n,

where y, is a scalar dependent variable, , is a p-vector of explanatory and possibly endoge-
nous variables, z; is a k-vector of exogenous variables, u, is the error term of the structural
equation , and v; is the p-vector of disturbances of the instrumental equation. @ is a p-vector
of structural parameters and IT is the £ x p matrix of the reduced form parameters. In a
standard LISEM, (u;, v}) are 7.i.d. normally distributed and independent of z;.

Model (2.1) with the Assumption Al is much more general. Parametric assumptions
on the error term distribution are relaxed. The normality restriction is not required neither
in finite samples nor asymptotically. Assumption Al allows for heteroskedasticity of un-
known form. Only the median is assumed to be zero (conditional on Z). This leads to three

important special cases.
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First, the independence assumption between the observations is relaxed. Past realiza-

tions of u; can have an influence on the shape of the current u, distribution. For example,

u, t =1,...,n, can satisfy the following assumptions:
Uy = 0161,
u =0y (uy, ..., 1), fort=2,...,n
€1, ... , €n are independent with median zero,
oy and {oy(u1, ..., us—1)}e=o,..,n are non-zero with probability one. (2.2)

This includes in a time series context ARCH(g) with non-Gaussian noise &;, where

oi(ug, ..., u,_l)2 = ag + aluf_l + -+ aquf_q. 2.3)

Second, the instruments may have an influence on the shape of the current u, distribu-
tion, provided the probability of being positive or negative is not affected. In finite samples,
an instrument affecting the shape of the disturbance distribution, may be the cause of as-
ymptotic test great distortions. Examples can be found in section 8. In such a case, one can
exploit Assumption Al that allows for some nonlinear dependence between Z and u, for

any sample size. A large spectrum of heteroskedastic patterns is covered, such as:
’U,t=0't(Z) &ty t=1,...,’n, (24)

where ey, ..., €, are ¢.i.d. conditional on Z. This can be useful when the instrument choice
is limited by data availability.

A third interesting case arises when the endogenous variables affect the shape of the
structural error distribution. The usual linear specification simplifies calculus and interpre-
tation. However, if the relation is not well captured by linear modeling, the shape of the
structural error distribution may be affected. In such a case, asymptotic tests are invalid
even in a large sample.

When u; and 2; are only asymptotically uncorrelated, Assumption A1 may not hold
(e.g. due to feedback on the error signs). However, we will see below that sign-based tests

are still asymptotically valid.
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3. Finite-sample inference with possibly weak instru-
ments

Assumption Al is the cornerstone of the validity of sign-based inference methods. If the
disturbances satisfy a conditional mediangale condition, their signs have a known joint dis-
tribution that does not depend on any nuisance parameter (conditional on the instruments).
This property holds for any sample size, without imposing additional distributional assump-
tions. The sign pivotality property was stated in Coudin and Dufour (2005a) for classical
median regressions. It was exploited to construct sign-based simultaneous tests with con-
trolled level for any sample size by Monte Carlo test techniques. In that section, we extend
that result to nonlinear and possibly instrumental regressions. Then, we follow the same
strategy and conduct simultaneous tests. More generally, the whole finite-sample based
inference system presented in Coudin and Dufour (2005a, 2005b) applies here. Simulta-
neous confidence regions with controlled level are constructed by inverting simultaneous
tests; and more general confidence sets or tests, by projecting the simultaneous confidence
regions. We rapidly present the leading ideas and principles of finite-sample based in-
ference system. For a detailed presentation, the reader is referred to Coudin and Dufour

(2005a, 2005b).

3.1. Pivotality

Let us begin with some notations. We define the sign operator s : R — {—1,0,1} as

1, ifa € A,
s(a) = 1jo,400)(@) — L(~c0,0)(a), Where 14(a) = . 3.1
0, ifa ¢ A.

For convenience, the notation will be extended to vectors. Let u € R™ and s(u), the n-
vector composed by the signs of its components. This enables us to formally state the

following proposition:

Proposition 3.1 SIGN DISTRIBUTION. Under model (2.1), suppose the errors

(u1, ..., un) satisfy Assumption A1 conditional on Z,. Then the variables s(u,), . .., s(uy,)
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are i.i.d. conditional on Zy according to the distribution
Pg[s(ut) = 1|Zg] = Pg[s(ut) = —1|Zg] = 1/2, t= 1, cee N (32)

The proofs of the theorems and propositions appear in the Appendix.

From the latter proposition, it follows that the vector of constrained signs

s(f(y, X, 0)) = (s(f(41,21,9)), - . , 5(f (Yn,Z0,0)))’ (3.3)

has a nuisance-parameter-free distribution (conditional on Z), i.e. it is a pivotal function.
When the disturbance process satisfies Assumption A1, the error signs are mutually inde-
pendent according to a known distribution.

Furthermore, any real-valued function of the form

TO (ya 9) = T(S(f(y,.X, 0))) Zo, 9) (34)

has a distribution which does not depend on unknown nuisance parameters. Its conditional
distribution given Zy can be analytically derived or simulated because the joint distribution
of s(f(y, X, 0)) is completely specified by Proposition 3.1. Consequently, we can construct
conditional tests for which size is fully controlled.

Consider the problem of testing
H0(9()) 0= 90 \A Hl(ao) 10 # 90.

Under H,,
T(S(f(y,X, 60))1Z9m90) ~ T(SmZ00100) (35)

where S, = (s1,...,8,) and sy,..., s, are i.i.d. Bernoulli random variables conditional
on Zjy, that equal 1 with probability 1/2 and —1 with probability 1/2. A test with level

rejects the null hypothesis when
T(S(f(y, X, 00))1 Zeoa 90) > CT(Zeoa a, 90) (3.6)

where cr(Zg,, o, 8p) is the (1 —a)-quantile of the distribution of T'(S,,, Zs,, 6y) conditional

on Zg,.
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This property is an extension of the one stated in Coudin and Dufour (2005a); see
also Dufour (1981), Campbell and Dufour (1991, 1995) and Wright (2000).> Here,
T(s( f(y, X, 60)), Zg,, 00) and Zy, depend on the tested value 6y. This property can be
adapted to error distributions with a mass at zero by randomly breaking the zeros in a way
similar to Coudin and Dufour (2005a).

Furthermore, the sign pivotality result allows one to construct nonparametric tests

through Monte Carlo test techniques.

3.2. Monte Carlo tests

Under Hy(6,) and Assumption A1, the conditional distribution of Ty, (s(f(y, X, 6o)), Zy,)
given Zy, is free of nuisance parameters with a known distribution that can be simulated.
Those two features are sufficient to apply Monte Carlo test procedures.* Given Ty, the
test proposed in section 2 rejects Hy(6o) when Tp, > ¢, with ¢ depending on the level.
The general idea of Monte Carlo tests is to order the observed statistic with N simulated
ones. The Monte Carlo test rejects Hy(p) when the observed statistic is larger than at least
(1—a)x N simulated replicates. As the distribution of Ty, is discrete, we need a criterion to
order two equal realizations. We shall use the randomized tie-breaking presented in Dufour
(2006) and Coudin and Dufour (2005a).

The Monte Carlo test for Hy(6y) can equivalently be conducted with empirical p-values.
Let Tég) be the "observed" statistic, (Tg(:), . ,Tg(év)) be a N-vector of independent repli-
cates drawn from the same distribution as Tp,, and (W® ..., W) be a N + 1-vector of
1.1.d. real uniform variables. A Monte Carlo test with level o consists in rejecting the null
hypothesis whenever the empirical p-value, denoted ﬁf\‘,‘(To(g)), is smaller than o with
_ N Gh(z)+1

N+1

3A similar property is stated in Chernozhukov, Hansen, and Jansson (2006) independently from the pre-
vious cited works. They use it to compute finite-sample critical values for tests based on a particular GMM
statistic, see equation 5.17. They do not use Monte-Carlo version of those tests and restrict on conditionally
independent observations.

4See Dwass (1957), Barnard (1963) and Dufour (2006)

PR (z) (3.7)
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where

N N
- 1 i 1 i i
GR(@) =1 =5 2 Loen(@ = To) + 7 > 10(T5;) = 2)lioo)(WS = W)

i=1 i=1

is the simulated survival function. If N is such that a(V + 1) is an integer
P[f’?\?(To(:)) <aol=afor0<a<l.

The Monte Carlo test so obtained has size « for any given sample size T. No identification
condition is needed to conduct tests with fully controlled level. The instruments may be
poorly informative, the test levels are always controlled provided that the instruments are
exogenous in the sense of Assumption A1. We shall see later on that Assumption Al can

be slightly relaxed while maintaining the test levels asymptotically controlled.

Those basic joint tests constitute the matrix for a whole nonparametric inference system
where simultaneous confidence regions are obtained by test inversion and tests of general

hypothesis by projection techniques.

3.3. Confidence sets, projection-based confidence intervals and confi-

dence distributions

We use the simultaneous sign-based tests to build confidence sets for 6 with given level.
These are obtained in the following way: Monte Carlo sign-based tests for Hy(6) are
performed for any value of 6, € R? (or more reasonably for a grid of values) yielding a
p-value p?‘,’é,’ (Tg(g)). This associated p-value reflects the degree of confidence one may have
in the hypothesis § = 6, given the realization T,,(g) [see Coudin and Dufour (2005b)]. The
simultaneous confidence region with level 1 — « is composed by the values of §, with p-
value higher than o. Next, from this simultaneous confidence set for 6, it is possible to

derive confidence intervals for the individual components and to perform tests for general

nonlinear hypotheses using projection techniques.” In Coudin and Dufour (2005b), we

SFor examples in different settings and for further discussion on projection techniques, the reader is re-
ferred to Coudin and Dufour (2005a), Dufour (1990), Dufour (1997), Wang and Zivot (1998), Dufour and
Jasiak (2001), Dufour and Taamouti (2005).
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directly applied projection techniques on the simulated p-value function. The projected
p-value function associated with the individual component 6, gives a graphical summary
of the inference results on ;.

The functions involved here are highly nonlinear and no closed-form analytical so-
lutions can easily be obtained. Practical implementation requires to solve optimization
problems under nonlinear constraints. Search programs such as simulated annealing are
used [see Goffe, Ferrier, and Rogers (1994) and Press, Teukolsky, Vetterling, and Flannery
(2002)].

3.4. Simplifications: restrictions on the parameter space

This approach requires in theory to evaluate the sign-based statistic for any value of the pa-
rameter in the parameter space. When the size of the parameter space increases, the search
programs rapidly become computationally intensive especially when projection techniques
are used. So, any additional piece of information that helps to reduce the size of the para-
meter space is welcome and must be included as a constraint in the program. First of all,
restrictions implied by the economic theory or by the relevance of the model have to be
taken into account. If the underlying economic model specifies that a certain coefficient
must be less than one (such as an elasticity for example), there is no use to investigate what
happens outside.

More generally, a conditional approach is also possible. If one accepts to fix some of
the parameter components in a certain subspace, say ©¢, the approach presented above
gives results conditional on 6 belonging to ©°.

An alternative approach consists in restricting the parameter space to a consistent set
estimator. Such confidence-set restricted Monte-Carlo tests are asymptotically valid under

some general regularity conditions; see Dufour (2006).

The two following sections are dedicated to the construction of efficient test statistics
which satisfy the general form Ty(s(f(y, X,6)), Zg) so that the finite-sample inference
system can be applied. We consider two approaches. First, we establish the general form

of point-optimal tests versus a specified alternative. This theoretical result yields a power



£,

.),’._‘\

145

frontier for sign-based procedures. However, methods that combine various point-optimal
tests to approach the power envelope are not easily tractable in practice. Hence, we turn to
a more classical approach and derive locally optimal instruments. We study statistics that
involve signs in a quadratic form and a Tippett-type combination although other (less usual)
statistics could also be envisaged (e.g. linear plus quadratic forms or polynomials at various
orders involving signs). The class of quadratic IV-type sign-based statistics provides good

competitors when the final aim is estimation.

4. Point-optimal tests

Point-optimal tests are usually derived for parametric models since they rely on the like-
lihood ratio that follows from the classical Neyman-Pearson lemma. Here, they can be
constructed for nonparametric models thanks to the sign transformation. In this section, we

present point-optimal tests for signs in a general context and then, in a regression context.

4.1. General point-optimal sign-based result

Point-optimal tests based on signs are derived for a very general nonparametric framework
in which signs are independent and heterogeneously distributed according to Bernoulli

distributions with parameters (py, ..., pn).
Plsy=1)=p, Plss=-1=1-p, t=1,...,n. 4.8)
Let us consider the problem of testing
Ho: (p1,--pn) = (P01, -+, Pon)'s (4.9)

against

H1 . (pl, ...,pn)' = (pu, ---:pln),- (410)

Proposition 4.1 POINT-OPTIMAL SIGN-BASED TEST. When testing Hy versus Hy, the

most powerful test based on signs rejects Hy when

Zs In (p“ p"‘)> > c(e, Hy)

pot(1 — p1e)
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with c(a, Hy) depending on the level.

The proof is a direct application of the Neyman-Pearson lemma [see for example
Gouriéroux and Monfort (1995b)]. Point-optimal tests are often derived in parametric se-
tups because they rely on the form of the likelihood function under the null hypothesis and
under the alternative. Here, the point-optimal test can be derived in a nonparametric setup
thanks to the sign transformation. The main strength of the sign transformation is indeed
to get rid of the distributional characteristics of the underlying process. However, one has

to choose the alternative hypothesis to specify {p1;}i=1,.. n.

4.2. Point-optimal sign-based tests in a regression framework

We now go back to the regression framework of model (2.1) with Assumption A1. Consider

testing Hy : 6 = 6y against H, : 6 = 6y, Proposition 4.1 yields the following corollary.

Corollary 4.2 POINT-OPTIMAL SIGN-BASED TEST IN A REGRESSION CONTEXT. In
model (2.1), let {W; = (y, z,, 2})}t=1,..n be ai.i.d. process and {ut}t=1,..n have a
common distribution function G conditional on Z that does not depend on 0. Suppose
Jurther that the mediangale Assumption A1 holds. Then the most powerful sign-based test

of Hy : 0 = 0y versus H, : 0 = 0, in the sense of Neyman-Pearson rejects Hy when

> " s(ue)In (%) > c(a, 6;) (4.11)

where (hla sy hn)l = (f(ylvxla 61)_f(yl)$1) 90)7 ey f(yrnzn’ 01)_f(yn1 Tn, 90))1' and
c(a, 01) depends on the level.

The point-optimal sign-based test is a linear form of the signs with weights depending on
the error distribution and the chosen alternative hypothesis. When the distribution function
G is logistic, the statistic simplifies and the optimal weights turn out to be {ht}i=1,.. -
Point-optimal sign-based tests are theoretically interesting objects because they bound
what can be done with signs and combining them allows one to approach the power enve-

lope. However, a point-optimal test requires first to specify the alternative hypothesis and
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a parametric setup, this can be done analytically. But in a nonparametric setup (as here),
the error distribution is not fixed and {py; }+=1,...» are not straightforward to choose. Point-
optimal statistic can be approached if one "guesses" the behavior of the error term under
the alternative hypothesis. This can be done by split-sample techniques. A first part of the
sample is used to approach the error distribution, the other part, to construct the statistic;
see Dufour and Taamouti (2006) for an example of use.

However, approaching point-optimal tests and power envelope quickly become com-
putationally intensive. For this reason, we turn in the next section to another optimality
concept that does not require to specify the alternative hypothesis and still provides "lo-
cally" optimal tests. The so-called locally optimal test statistics turn to be quadratic forms
of the constrained signs and of optimal instruments. We also study other combinations
(than quadratic) of sign-based moment equations that may present power in weak identi-

fied cases.

5. IV sign-based statistics

The easiest way to introduce IV sign-based statistics is to refer to a GMM setup. Signs and
instruments that satisfy the mediangale Assumption Al also satisfy usual moment condi-
tions. GMM statistics exploiting the orthogonality between the error signs and the instru-
ments can be constructed using the analogy principle. More generally, we follow the idea
of auxiliary regressions [Anderson and Rubin (1949) and Dufour (2003)] to circumvent
the problem of endogeneity; see also the artificial regressions of Davidson and McKinnon
(2001). We consider regressions of the constrained signs on "auxiliary" instruments (when
present in the model their coefficient must be zero). We consider two approaches. IV sign-
based statistics correspond either to F-type statistics for testing that the parameter vector
in the previous multivariate regression is zero (denoted GMM-type), either to Tippett-type
combination of univariate regressions involving one "auxiliary" regressor at once (denoted
Tippett-type). The proposed sign-based statistics are pivotal functions and exact sign-based
tests can be built for any sample size regardless of the strength of the instruments. Then,

we focus on 1V sign-based statistics that yield to the best (local) power considerations and
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on the corresponding optimal instruments.

3.1. Sign-based moment equations

In a usual LISEM model (with valid instruments), the estimating equations correspond to

the orthogonality conditions between 2, and u,.
El(ys — 20)z) =0, forj=1,....k t=1,...,n. (5.12)

Under Assumption A1, Proposition 3.1 entails that the error signs are 1.i.d. conditional on Z
and centered. Consequently, in model (2.1), the following "sign-based" moment conditions

(where the residuals are replaced by their signs) hold:
E[s(f(yt,zt,a))zjt] =0, forj=1,...,k t=1,...,n. (5.13)
More generally, Assumption Al entails
E {s(f(yt,zt,e))gj(zt(Q),B)} =0, forj=1,...,J,t=1,...,n. (5.14)

where {g;};=1,..s are measurable functions of the instruments and 6.5 If necessary, we
shall redefine instruments as z;;(6) = g;(2(0),0), t = 1,...,n, j = 1,...,J but the
following applies without any further modification.

In those sign-based moment equations, the parameter of interest is not present in an explicit
form but is implicitly involved through a robust transformation by the sign operator. The
sign operator gets rid of any nuisance parameter affecting the distribution of the error term
and enables one to conduct fully robust tests against heteroskedasticity of unknown form
for any sample size.

The analogy principle entails the following sample-based moment equations:

n

> s(fYe,0)2 =0, j=1,...,k. (5.15)

t=1

®Hong and Tamer (2003) proposed for example to use kemel functions.
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5.2. Combining sign-based moment equations: GMM or multiple

tests

These new orthogonality conditions can be exploited for constructing GMM-type statistics.
For testing Hy(o) : 8 = 6, versus H; (o) : § # 6y in model (2.1), we shall consider test

statistics of the following form:
DS(OOa Z, ‘Qn) = S(f(yv X, 90)),Z90'Qn (s(f(y, X, 00))1 Zgo)ZéoS(f(y, X, 90)) (516)

where £2, (s(f(y, X, 60)), Zs,) is a k x k positive definite weight matrix that may depend
on the constrained signs s(f(y, X, 6p)) under Hy(6).

The statistic associated with §2,, = (Zj,Zg,) ™" is given by: ’

Ds (00, Zoo) (Z(I)OZBO)_I) = S(f(y, X, 90))1P(Z90)S(f(y, X, 90)) (5.17)

where Pz, = Zy,(Zy Zp,) ™" Z,. That is the squared norm of the fitted values from the re-
gression of s(f(y, X, 8o)) on Zg,. In other words, Ds (6, Zg,, (Z4,Zs,) ") is a monotonic
transformation of the Fisher statistic for testing v = 0 in the artificial regression model
s(f(y, X,00)) = Zgyy + v.

Another way to approach the problem of building sign-based statistics is then to con-

sider regressions of the constrained signs on appropriately chosen “instruments”;

s(f(y,X,Gg)) =Zgo’)’+’U. (518)

Testing Hy(6p) is equivalent to test v = 0 in (5.18) where Z(6;) are related to X but ex-
cluded from the structural model. Z (o) are called "auxiliary regressors": when present in
the model, their coefficient must be zero. Remark that the unilateral point-optimal test pre-
sented in Proposition 4.1 can also be viewed as a ¢-test obtained by regressing the signs on
some appropriate auxiliary instruments (precisely the scores under the alternative). Thus,
the set of test-statistics based on auxiliary instruments is very general and includes point-

optimal Neyman-Pearson-type statistics among the related t-statistics.

TThis is the GMM statistic studied by Chernozhukov, Hansen, and Jansson (2006) in their conditionally
independent setting.
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Fisher and GMM-type statistics are quadratic forms of the moment equations. Other
types of combination of sign-based moment equations can be exploited. We can for exam-

ple follow Tippett (1931) and consider
Dgip(g(),zao) = min(pls"'apk) (519)

where py, . . ., pi are the (empirical) p-values associated with testing y; = 0 in the univariate

regression involving one instrument (here z;4,) at once:

s(f(y, X,60)) = Vizooi» 1 =1,..., k. (5.20)

The idea behind is the following. Statistics based on a quadratic combination of moment
equations are specifically adapted for test and estimation when the parameter is well iden-
tified because they rely a local optimality concept. However, in weakly identified cases,
there is no gain to restrict on statistics that provide power in the vecinity of the true value
parameter because those values may be observationally equivalent (due to the lack of iden-
tification). In such cases, other combinations of the moment equations such as the Tippett

combination may provide better overall properties.

5.3. Artificial regressions

The use of artificial regressions such as (5.18) and (5.20) to circumvent endogeneity has
been first proposed by Anderson and Rubin (1949) [see also Dufour (2003), Davidson
and McKinnon (2001) who presented artificial regressions in general nonlinear models].
In the linear Gaussian model, they proposed an exact test of v = 0 based on a Fisher-type
statistic. The derived inference is valid and robust to possibly weak instrument settings [see
also Dufour (1997), Staiger and Stock (1997), Dufour and Taamouti (2005)]. However, the
procedure power depends on the choice of the instruments. In the LISEM model with
exact identification and Gaussian disturbances the AR procedure is optimal, but it may
suffer from underrejection when a large number of instruments is involved in the model.
With "many instruments", asymptotically justified methods such as Kleibergen’s K statistic

or Moreira’s LM statistic may provide better asymptotic power. However, those statistics
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are no longer pivots in finite samples and a relying inference without other adjustment may
suffer from size distortion even in a Gaussian context.?

Here, our objective is double. We propose test statistics that are first pivotal functions
for any sample size, under the null hypothesis and with known distribution, in order to
conduct exact inference (i.e. that satisfy Assumption A1) and that are based on an "optimal"

choice of instruments.

S.4. Locally optimal instruments

In case of overidentification, instruments can be selected to improve power considera-

tion. When testing Hy(fy) with level o, the power function of the sign-based statistics

T(s(f(y, X, 00)), Zg, ) is:
ﬁ(G) =5 [T(s(f(y, X, 00)), Zgo) > CT(ZgO, Ot)] . (521)

We search for instruments that "maximize" the power function locally around 6, in a just
identified setup.® Around 6y, sign-based test power functions follow the behavior of their
second derivatives w.r.t. 6, which turn to be quadratic forms of the sign vector. Conse-
quently, we derive the optimal instruments from the weights involved in the latter quadratic
forms and derive locally optimal sign-based test statistics. This result is stated in the follow-
ing proposition. Locally optimal instruments are derived in a setup with 7.1.d. observations.

In the sequel, all results are conditional on the available set of instruments.

Proposition 5.1 LOCALLY OPTIMAL INSTRUMENTS. Consider the problem of testing
Hy : 8 = 0, in model (2.1) versus a sequence of alternatives H,, : 0 = 0,, such that

8, — 0y, and assume that:
On#60

a) (Y, Ty, 2), t =1,...,n are identically and continuously distributed:

b) f is continuously differentiable in 0, with continuous derivative Hy(§) = %%“92
and H(0) = (Ho(8)',...,H,(8)) fort=1,...,n;

8The K statistic distribution depends on nuisance parameters in finite samples. In a Gaussian context,
Bekker and Kleibergen (2001) derived bounding distributions and conservative tests.

% Another alternative is to compute instruments maximizing the power function against a specified alter-
native. This strategy has been followed by Dufour and Taamouti (2002) who derived point-optimal AR tests
in a Gaussian context.

[
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¢) 3V (6y) such that

1s) , Ty, 0
sup E[—%] = swp BHO <M, Vi=1,. .n
AeV(8y) 9 8V (6o)

d)  u, has continuous distribution function G which is continuously differentiable at zero
with derivative G' also continuously differentiable at zero and G"(0) = 0, for t =

1,...,n;
e) setting Py, [u, — (H,(0) — EH,(9))(8, — 6o) < z] = G2(x),

Tk (G3(0) — G(0)) — 0 and (G2(0) - G'(0)) — 0,
Jor all 8 such that ||6y — 8]| < |16 — 6n]|-

Then, a locally optimal set of instruments is given by
Z*(80) = E[H(60)), (5.22)
and a locally optimal GMM sign-based statistic is
Di(60) = 5(f (v, 3, 60))' EH (60) [EH (6o) EH(80)| " EH (60)'s (4, ,60)).  (5.23)

The regularity conditions b,c and d insure continuity, differentiability and integrability
of f and of its derivatives. Condition d states that the errors possess a mode at zero.
Further, condition e sets the speed of convergence of the distribution functions G,, towards
G. Further, if u, — [H,(0) — EH,(9)](6» — 6o) has a symmetric distribution for any value
of @,, then condition e holds.

If the matrix H,(6y) is exogenous it can directly be used. If not, we need an exogenous
estimate to ensure inference validity for a given n. This is feasible by splitting the sample

into two parts.

5.5. Quasi-optimal instruments and split-sample

When observations are independent, one may resort to split-sample techniques.'® The

principle is the following. The sample is divided into two parts: (Y, X(1), Z(1)) and

19The split-sample technique was used by Dufour and Taamouti (2002) in a quite similar context to ours.
They search an exogenous estimate of the point-optimal matrix of instruments, which, in a Gaussian context,
allow them to construct exact inference based on generalized AR statistics, [see also Angrist and Krueger
(1995), Dufour and Jasiak (2001) for other uses and a discussion on the optimal split of the sample].
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(Y(2), X(2), Z(2))- The first part is used to estimate

of Yy, Xy, 0) |

= h(Zq), 00) +¢, (5.24)
o0’ 0=, )

yielding an estimate A. This first stage regression may be linear or not, parametric or not

depending on the structural model. A sign-based estimation can also be used.

Then, quasi-optimal instruments are constructed for the second part of the sample,

Z(z) = fz( Z(3)) and used as auxiliary regressors in the second step regression:
s(f(Y2), X(2),00)) = ¥Z2) + v(ay- (5.25)
A test of Hy(6p) is thus based on a GMM sign-based statistic
558(6o) = s(f(Y2), X(2), 60)) Z2) [Zi2y 2] ™ 2oy s (f (Yizy X(2), 00)) - (5.26)

The latter statistic does not depend on nuisance parameters under the null hypothesis be-
cause Z(g) is exogenous. Consequently, Monte Carlo tests can be used. This point also

validates the use of simulation-based statistics such as a Tippett-type statistic

TSS(6o) = min{py,...,pp} (5.27)
where py, . .., p, are the empirical p-values for testing y; = 0 in the univariate regressions
of the form

s(f(Yi), X(2),00)) = ViZigz), i =1,...,p. (5-28)

6. Asymptotic properties

A drawback of the mediangale Assumption Al is the exclusion of linearly dependent
processes even though usual asymptotic inference can still be conducted on them. In
Coudin and Dufour (2005a), we pointed out that heteroskedasticity and autocorrelation
corrected sign-based statistics are asymptotically pivotal functions when signs and explana-
tory variables are uncorrelated. We also showed that Monte Carlo testing method remained

asymptotically valid under weaker distributional assumptions than usual asymptotic Wald
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tests. In particular, heavy-tailed distributions including infinite variance disturbances were
covered. In this section, we show these results apply to IV sign-based statistics without any
major modification. We established them for a general nonlinear instrumental regression.
A sign HAC-statistic with a weight matrix directly derived from the asymptotic covariance
matrix of the signs and the instruments, say Dg (9, Z, %jn‘ Yz )) , turns out to be asymptot-

ically x?(k) distributed under Hy where k is the number of instruments used.

6.1. Asymptotic behavior of IV GMM sign-statistics

We consider model (2.1) with the following assumptions.

Assumption A2 MIXING. {(zi, 2;(60), u¢) }e=1,2,., is a-mixing of size —r/(r — 2) with

r> 21
Assumption A3 MOMENT CONDITION. E[s(u;)z(6p)] =0, Vt=1,...,n, Vn e N.

Assumption A4 BOUNDEDNESS.  z(60) = (21:(60),- -, 2pt(60))’ and E|zm(6o)|" <
A<oo,h=1,...,k,t=1,...,n, VneN.

Assumption AS NON-SINGULARITY. J% = var [% Yo, s(ut)zt(ﬁo)] is uniformly

positive definite.

Assumption A6 CONSISTENT ESTIMATOR OF J%. 2% is symmetric positive definite

uniformly over n.and 2% — 1(Jjéo)-1 L, o,

Then we have the following asymptotic distribution.

Theorem 6.1 ASYMPTOTIC DISTRIBUTION OF STATISTIC SHAC. In model (2.1), with

Assumptions A2- A6, we have, under Hy,

Ds(eo, Zgo, .ng) — X2(k).

'See White (2001) for a definition of o mixing.
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Corollary 6.2 In model (2.1), with the mediangale Assumption Al and Assumption A4.
If Z'Z[n is positive definite uniformly over n and converges in probability to a definite

positive matrix, we have under Hy,
Ds(60,2,(2'Z)") — x*(k)-

Theorem 6.1 holds for split-sample statistics with n, — oo and when Z depends on 8 (with
Z evaluated at 6). The proofs are adaptations of Theorem 6.6 and Corollary 6.7 in Coudin
and Dufour (2005a).

The x?(k) distribution is familiar in instrumental and weak instruments settings. The
statistic k x AR is asymptotically x?(k) distributed [see Anderson and Rubin (1949),
Staiger and Stock (1997), Dufour and Jasiak (2001), Dufour and Taamouti (2005)]. This
distribution also bounds the LR and LM statistics [see Wang and Zivot (1998)]. How-
ever, the x*(k) distribution is directly related to the number of instruments and the use of
many instruments (k large) may entail a power loss. This pleads for the K -statistic favor
[see Kleibergen (2002)] in setups with normally distributed disturbances or for any statistic
whose distribution does not depend of the number of instruments used. When the setup
involves more general processes like non-normal of heteroskedastic errors, there is no rea-
son why the power of a K test would be higher than the one of a sign-based test in finite
samples. Nevertheless, if one is concerned about the "many instruments” curse, let us un-
derline that sign-based statistics with quasi-optimal instruments are asymptotically x2(p)
distributed as the K -statistic, with the advantage of also providing exact inference in finite
samples. Only the combination of a joint testing approach with valid instruments entails

exact inference for any sample size.

6.2. Asymptotic validity of Monte Carlo tests

Let a test statistic be asymptotically free of nuisance parameters under Hy, with asymptotic
distribution F. Monte Carlo tests that rely on replicates possessing the same asymptotic
distribution F' will asymptotically control the level. This result entails that Monte Carlo
tests presented in the previous sections "do at least as well as" asymptotic methods when

the mediangale Assumption A1l is relaxed and replaced by a classical moment condition
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(Assumption A3); see Coudin and Dufour (2005a). Moreover, those Monte Carlo tests
present two considerable advantages over classical asymptotic methods. First, if median-
gale Assumption Al holds, one is sure that the level of Monte Carlo tests is controlled
for any sample size. The second advantage comes from the fact that Monte Carlo tests are
constructed with replicates based on the same sample size. This differs to a classical Monte
Carlo test with replicates constructed from the asymptotic distribution. Simulation studies
suggest that such Monte Carlo tests perform an implicit sample-size correction [Coudin
and Dufour (2005a)]. Indeed, for a given sample size, the distribution of the sign statistic
may be closer to the one of the replicates than to the (common) asymptotic distribution.
Although the use of such Monte Carlo tests is asymptotically justified, they can be more
reliable in small samples than tests based on asymptotic critical values. Under Assumptions
A2- A6, testing
Hy(6o) : 0 = 6y versus Hy(6y) : 6 # 6,

with the statistic D (6, Zq,, Jt (Zs,)) is conducted in the following way:

1. Observe Dg)) = Ds(8o, Zoy, J; 1(Z,)). Draw N replicates of the sign vector as if
the n observations were independent. The n components of the replicates are thus

independent and drawn from a B(1, .5) distribution.

2. Construct (Dg.l), Dg), ey DgN) ), the N pseudo replicates of
Ds (80, Zo,, (Z4, Zs,)~") under the null hypothesis. We call them pseudo replicates

because they are drawn as if observations were independent.

3. Draw N + 1 independent replicates (W, ..., W™) from a U}y ;) distribution and
form the couple (DY, W),

4. Compute p$(6,) using (3.7).

5. The confidence region {# € RP|pS"(6) > o} level is at least 1 — . We reject H if
" (60) < .

In contrast with Wald-type tests based on LIML or GMM estimators which require identi-

fication, those asymptotic results lead to valid inference whatever the informative power of
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the instruments is and for any degree of identification. Finally, moments and density on the

u; process may not exist.

7. 1V sign-based estimators

In the previous sections, we have presented simultaneous tests, confidence sets and more
general tests based on signs. Estimation is the last step to a complete the inference system.
1V sign-based estimators are obtained in a way similar to the one used for the sign-based
estimators studied in Coudin and Dufour (2005b) in a linear regression without instrument.
The estimators maximize the p-value function of the parameter given the form of the IV
sign-based statistic and the sample size. They present the highest confidence degree based
on the chosen IV GMM sign-based statistic. They also turn out (with probability one)
to minimize the quadratic function of the signs that is given by the sign-based statistic.
Here, we introduce 1V sign-based estimators for a general nonlinear possibly instrumental
regression. We show, for those general models, that they are consistent with asymptotic

normal distribution.'?

7.1. IV sign-based estimators under point identification

When 6 is identified, we can define an IV sign-based estimator as any solution 9n(.(2n) of

the problem

l;relg} S(f(y,X, 9)),Z0'Qn (S (f(y) Xa 0)) vZG) ZéS(f(y, X1 9)) (729)

IV sign-based estimators are analogues of sign-based estimators studied in Coudin and
Dufour (2005b). These constitute Hodges-Lehmann-type estimators in the sense that they
are associated with the highest degree of confidence one may have in a value of § given
the realization of the sample and the choice of the sign-based test statistic Ds(Zy, §2,,,6)
[Hodges and Lehmann (1963)]. The reader is referred to Coudin and Dufour (2005b) for a

detailed presentation. IV-sign based estimators can also be interpreted as GMM estimators

I2Estimators based on the Tippett-sign statistic could be defined as solutions of a double optimization
problem: maximization of the minimal p-value (a sort of Rawls criteria between the moment equations).
That question is not addressed in the present paper.
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exploiting the orthogonality between error signs and instruments. See Honore and Hu
(2004) for a presentation in an instrumental linear regression with 7.5.d. disturbances
and Coudin and Dufour (2005b) for equivalence (with probability one) between both

definitions.

. . . A28 .
For practical use, we also introduce a two-step estimator 6, (f2,,) as any solution of the

problem
min s(f(y, X,0)) Zou(s( (Y, X,00)), 25 ) Z4s(f (0, X,0)),  (7.30)

where @n is a first stage consistent estimator.

In the following, we show that the IV sign-based estimators defined in equations (7.29)

and (7.30) are consistent and asymptotically normal if the parameter is identified.

7.2. Consistency

We first prove the consistency of IV sign-based estimators when the auxiliary regressors
are integrable and continuous functions of the parameter 6 and of some I-vector process

v, t=1,2,..., on which the mixing conditions are imposed. Let h; : @ xR! — R*, Vt,
Zt(e) = ht(e,’Ut), t= 1, (731)
We assume that the following conditions hold.

Assumption A7 MIXING. {W} = (v, x},v}) }i=1,2,... is a-mixing of size —r /(T — 1) with

r> 1.

Assumption A8 CONTINUITY OF F. f(y;, Z:, 6) is measurable, a.e. continuous in 6 with
P[f(ys,z,0) = 0] =0, VO € 6.

Assumption A9 BOUNDEDNESS AND CONTINUITY.

a) z(0) = (21(8),...,2pt(0)) and E|zp(0)* < A < 00, h =1,...,k, t =
1,...,n, Vn €N, Vo € O.
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b) 2zn(60) is a.e. continuous in 8, Vt.
¢) Plz(0) =0]=0, V8 € O, V.
Assumption A10 COMPACTNESS. 6 € Int(©), where © is a compact subset of RP.

Assumption A11 POINT IDENTIFICATION.

lim E -};Zs(f(yt,zt,ﬁ)) ® 2(0)| = 0= 0 =6,

n—00
t

Assumption A12 UNIFORMLY POSITIVE DEFINITE WEIGHT MATRIX. §2,,(9) is sym-

metric positive definite for all 0 in ©.

Assumption A13 LOCALLY POSITIVE DEFINITE WEIGHT MATRIX NEAR 6. §2,(0) is

symmeltric positive definite for all § in a neighborhood of 6.

The mixing condition (Assumption A7) is imposed on a underlying process, {v;}i—12...
because the instruments are functions of the parameter. Assumptions A8 and A9 contain
the regularity conditions required on the functions f and h;. Remark in particular that the
sets of zeros are assumed to be negligible. Assumption A10 is the classical compactness
condition. Assumptions Al1, A12 and A13 are classical and required for identification.

Then we have the following property.

Theorem 7.1 CONSISTENCY. Under model (2.1) with the Assumptions A3 and A7-A12,
any 1V sign-based estimator defined by (7.29) is consistent.

When Assumption A12 is replaced by Assumption A 13, the two-step estimators defined in
(7.30) are consistent. Consistency is established without requiring second-order moment
existence of the disturbances u,. Indeed, the disturbances appear in the objective function
only through their sign transforms which possess finite moments at any order. Conse-
quently no additional restriction should be imposed on the disturbance process. Those

points also entail a more general CLT than usual.
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7.3. Asymptotic normality

Asymptotic normality requires some additional assumptions.

Assumption A14 UNIFORMLY BOUNDED DENSITIES. 3gy < oo such that ,Nn €
N,VA € R,

sup |g(Alzy,...,Z0)| < gu, as.
1<t<n

Assumption A15 DIFFERENTIABILITY OF f. f is a.e. continuously differentiable in 0
and E|| % ||| < +oo, VO € 6.

Assumption A16 MIXING WITH r > 2. {W, = (y;, 2}, v}) }i=12,.., is a-mixing of size
—r/(r—2) withr > 2.

Assumption A17 DIFFERENTIABILITY OF h. 2, = hy(6,v:) and h, is a.e. continuously
differentiable in 6 and E|| % ||| < +oo, VO €O, YVt =1,...,n, Vn € N.

Assumption A18 DEFINITE POSITIVENESS OF J,(00). Jn(6o) is k x k and uniformly

positive definite in n and converges to a definite positive symmetric matrix J, where,

Jn(6) = var [ﬁ S s(ue) a6, vt)].

Assumption A19 DEFINITION OF L,. L,(6o) is a p x k matrix defined as:

Ly iae
L.(6) = —ZE[ht (6,092 8) )g(f(yt,zt,enzl,u.,zn)}

= Z E [‘Z’;f Fye ze, 9))] .

L!,(60)§2,L,,(6y) is nonsingular uniformly in n.

Assumption A16 is the classical mixing condition required in asymptotic normality proofs.
Assumptions A15, A17 and A19 are regularity conditions for nonlinear setups. Assumption
A14 is usual in the LAD and quantile theory: bounded variance conditions (horizontal
spread) are replaced by bounded vertical spreads. Assumption A18 is classical. We see
in Assumption A19 that L,,(6) has a second term induced by the fact that the instruments

depend on the parameter. Then, we have the following theorem.
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Theorem 7.2 ASYMPTOTIC NORMALITY.  Under the conditions for consistency and

Assumptions A14-419 we have:
S 2/ (0a(12:) — 60) 5 N(O, I) (7.32)
where
[Ln(60) 2 L (606)') ™ L(80) 20820 L (60) [Ln(B0) 20 Ln(60)) .
When 2, = J7,
[Ln(80)J7 Ln(60)] 2/ (B (J7Y) — 60) = N(O, I,). (7.33)

Theorem 7.2 holds in particular for classical instrumental setups when the instruments Z

do not depend on 6. In such a case, L, () simplifies to

ZE[ A y(;’;t’ wo2u6) gz )z, )| (7.34)

This result extends the classical sign-based estimator asymptotic normality established in
Coudin and Dufour (2005b) for nonlinear and instrumental regressions. Note again the
existence of the second-order moment disturbances is not required. The sign asymptotic
normality holds for heavy-tail distributions whereas usual estimators, such as the 2SLS
estimator, do not. The dispersion measure adapted to sign-based estimators do not refer to
the error variance but to the (inverse of the) error density evaluated at zero. This alternative
dispersion measure, called the "diffusivity", is involved in Cramér-Rao type lower bound
for median-unbiased estimators; see Coudin and Dufour (2005b), Sung, Stangenhaus, and
David (1990) and So (1994).

The properties of consistency and asymptotic normality entirely rely on the identifi-
cation assumption whereas the sign-based inference presented previously does not. This
provides the occasion to recall the main message of the weak IV literature: when some
identification failure or the presence of weak instruments are suspected, tests based on the
asymptotic behavior of estimators should be avoided. Inference should be based on test
statistics that are robust to identification failure such as IV sign-based statistics. The next
section illustrates by a simulation study, how important it can be to use the exact distribu-

tion of such robust statistics.



.'/"_‘-\-H\

162

8. Simulation study

In this section, we present simulation studies comparing the performance of sign-based
methods with usual instrument-based techniques. We consider the basic sign-based statis-
tic Dg(6, Z,(Z'Z)~!) (denoted BS) and a split-sample based one that aims to overcome
possibly power loss when "many instruments" are used (SSS). We compare tests based on
those two statistics with Wald tests based on the 2SLS estimator and the 2SLAD estimator
(both estimators are unreliable in the presence of weak instruments), and with some tests
that are "robust to weak instruments". Those robust tests rely on the Anderson-Rubin sta-
tistic (AR) [Anderson and Rubin (1949)], the Anderson-Rubin statistic with split-sample
(SSAR) [Dufour and Jasiak (2001)], the score statistic proposed by Kleibergen (2002) (K)
and the score statistic corrected for heteroskedasticity (KLM) [Kleibergen (forthcoming)].
We use the following linear model taken from Kleibergen (2002) with different numbers of

instruments, degrees of identification and various disturbance behaviors:

y=Y0+e¢
Y=XII+V,

where n is the number of observations, y, ¥ : nx 1, X : nxk, X ~ N, I, ® I,),
II : kx1,606 =0. InIT = (my,...,m), four different values of 7, are considered: 1
(strong valid instrument), 0.5 (instrument of mild strength), 0.1 (weak instrument), and 0
(no identification). Other components of IT are set to zero. The number of instruments k
alternatively equals 1, 5 or 10 in view of studying the effect of including irrelevant instru-
ments.

We wonder what the test performances are for various schemes of disturbances. There-
fore, we do not restrict on i.i.d. normal disturbances. We also study heavy-tailed distur-

bances and heteroskedastic schemes. We use the four following data generating processes:
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Case 1: 7.1.d. normal disturbances:
1 .99
99 1

(6,V)~N(0,XQL,), X =

Case 2: i.7.d. Cauchy disturbances:
1 .99
99 1

(e',V1) ~ Cand (&, V;)' = Z(e}, V1), with & =

Case 3: some instruments affect the shape of the structural error ¢ :

(e, V)~ N0, XQ L), ¢, =zhel,t=1,...,T.

Case 4: the endogenous variable affects the shape of e:

V)~ N0,EQ1L,), e, =Y2t=1,...,T.
¢ €

Cases 1 and 2 illustrate the effect of a departure from normality on the different tests:
homoskedastic disturbances, which are normally distributed in case 1 and Cauchy distrib-
uted in case 2. In normal cases, with one instrument, the K statistic which equals the AR
is optimal. We wonder what happens when normality is relaxed and especially when the
disturbances possess heavy tails. The next DGPs (cases 3 and 4) illustrate heteroskedas-
ticity. In case 3, the instruments affect the variance of the structural error. In case 4, the
endogenous variable affects the variance of the structural error. We illustrate how the clas-
sical tests (K, AR) fail in the presence of heteroskedasticity and we focus on comparing
sign-based tests to the KLM tests that are corrected for heteroscedasticity. Remark that for
the four cases, the mediangale Assumption A1 holds and sign-based methods do exactly

control levels for any sample size.

8.1. Size

We first investigate level distortions. We consider the testing problem: Hp : 6 =

0 against H; : 6y # 0, and report empirical rejection frequencies for tests of level .05.
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Empirical sizes are computed using 10000 simulations. Bootstrap and Monte Carlo meth-
ods are both based on 2999 replicates. For split-sample statistics (SSAR and SSS), 15
observations are used for the first stage and 35 for the second stage.

Sign-based tests (BS, SSS) are the only ones that have perfectly controlled levels in
the four presented cases. Empirical sizes of sign-based tests equal the nominal size. In
contrast, empirical sizes of Wald tests (2SLAD, 2SLS) greatly suffer from the small number
of observations, the weakness of the instruments and the presence of irrelevant instruments.
The empirical sizes of the AR, SSAR and K tests are smaller than the Wald-type test ones
in homoskedastic setups because their asymptotic levels equal the nominal one whatever
the strength and the number of instruments. However, they are affected by finite-sample
distortions and loose their relevance in heteroskedastic setups. Finally, tests based on the
KLM statistic involving a White-type correction for heteroskedasticity have empirical sizes
close to the nominal one for setup 3, but this is no longer true when endogeneity affects the
variance of the structural error (setup 4).

Simulations confirm the theory. Sign-based tests allow to control test levels for a very
wide range of setups and for any sample size. They are the only ones that are robust to

heteroskedasticity of unknown form.
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Case 1 : i.i.d. normal distribution

nb inst. k=1 k=5 k=10

1 1 5 .1 0 1 5 .1 0 1 5 1 0
W2SLS .087 123 375 911 .315 .708 .994 1.00 | .548 939 1.00 1.00
W2SLAD | .028 .019 .001 .000 | .161 .352 .691 .715(.296 .595 .873 .889
AR 059 .059 .059 .059 | .067 .067 .067 .067 |.088 .088 .088 .088
SSAR 16 116 116 .116 | .095 .096 .097 .097 | .085 .086 .084 .084
K 059 059 .059 .059|.057 .057 .056 .070 | .060 .060 .060 .088
KLM 048 .048 .048 .048 | .024 .024 .024 .036 | .016 .016 .016 .032
BS 050 .050 .050 .050 | .045 .045 .045 .045|.056 .056 .056 .056
SSS 052 .052 .052 .052|.049 .048 .047 .047 | .052 .050 .051 .051

Case 2 : i.i.d. Cauchy distribution
1 1 S5 .1 0 1 5 1 0 1 5 .1 0
W2SLS A77 607 822 937 | 987 .998 1.00 1.00 | 1.00 1.00 1.00 1.00
W2SLAD | .001 .001 .000 .000|.037 .037 .038 .036 |.045 .047 .048 .047
AR .061 .061 .061 .061|.063 .063 .063 .063 .081 .081 .081 .08l
SSAR J21 121 121 0121 |.103 .103 .102 .102 | .080 .082 .081 .081
K .061 .061 .061 .061 | .054 .054 .055 .066|.066 .067 .067 .077
KILM 019 019 .019 .019|.034 .034 .034 .032|.027 .028 .028 .029
BS .051 .051 .051 .051|.053 .053 .053 .053|.056 .056 .056 .056
SSS 050 050 .050 .050 | .047 .047 .047 .047 | .056 .053 .056 .055
Case 3 : instruments affect the shape of error distribution
ol 1 5 .1 0 1 .5 .1 0 1 5 .1 0
W2SLS 01 (129 203 213 | .140 256 475 493 | .160 .328 .674 .700
W2SLAD | .021 .0I5 .004 .003 | .048 .039 .017 .016 | .088 .081 .047 .044
AR 417 417 417 417 | 249 249 249 249 | 223 223 223 223
SSAR 510 510 510 510 | 280 .215 .184 .179 | .179 .131 .111 .11i
K A17 417 417 417 | 329 263 159 153 | 357 .259 .129 .120
KLM 029 029 .029 .029 | .026 .034 .040 .040 | .032 .038 .043 .042
BS 053 053 .053 .053].048 .048 .048 .048 | .057 .057 .057 .057
SSS 053 .053 .053 .053|.055 .051 .052 .050 |.051 .051 .053 .054
Case 4 : endogeneity affects the shape of error distribution

™ 1 5 1 0 I 5 1 0 1 5 1 0
W2SLS 744 519 234 216 | .898 .849 821 .822|.923 967 972 972
W2SLAD | .012 .006 .00l .001 | .030 .028 .027 .026 | .056 .059 .062 .064
AR 526 .220 068 .061 | .300 .128 .072 .069 | .323 .162 .084 .080
SSAR 527 269 128 .121 | .282 .135 .097 .096 | .221 .108 .081 .079
K 526220 .068 .061 | .406 .128 .068 .068 | .497 .169 .081 .082
KLM 321 126 .032 028 | .207 .077 .040 .039 | .055 .068 .044 .041
BS 051 .051 .051 .051|.044 .044 .044 .044 | 054 .054 .054 .054
SSS .050 .050 .050 .050 | .049 .052 .051 .051|.049 .051 .050 .050
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8.2. Power

Then, we compare the power of these tests. Tests of Hy : § = 0 are performed on data
obtained by letting vary 6. Simulated power is given by a graph with 6 in abscissa; see
Figures 30, 31, 32, 33. The power functions presented here are locally adjusted for the level
when needed, which allows comparisons between methods. However, we should keep in
mind that only sign-based tests do exactly control the level for any sample size. All results
concerning homoskedastic or heteroskedastic setups with a given number of instruments
and for various instrument strength are contained in a single figure. In Figures 30 and 31,
errors are homoskedastic, either normal (first column), either Cauchy (second column).
The number of instruments equals one for Figure 30, and five for Figure 31. Therefore,
comparing both columns illustrates which effect a departure from normality (here Cauchy
disturbances) entails on the test powers. The effect of heteroskedasticity is then illustrated
by Figures 32 (model with one instrument) and 33 (model with five instruments). We
are particularly interested in comparing the sign-based method to the KLM method (and
2SLAD, 2SLS for strong instruments) which is corrected for heteroskedasticity since the
K and the AR methods are not.

Let us now examine the results. In a model with one instrument (Figure 30), the K
statistic and the AR statistic are equal. The AR statistic is best for the 7.7.d. normal case
1 but the sign-based power curve is not far from that optimal power curve (first column
of Figure 30). With Cauchy distributions (case 2, column 2 in Figure30), the sign-based
power curve is far above all the others. This holds regardless of instrument strength. The
power curves of Wald tests based on the 2SLS and the 2SLAD estimators are also reported
when the instruments are strong. In case 1, these methods are biased; in case 2, they do not
present power anymore.

The AR procedure and the sign-based procedure loose power as the number of (irrele-
vant) instruments included in the model increases. Figure 31 illustrates the power curves
when the model involves five instruments. For the 7.7.d. normal case (case 1, column 1 in
Figure31), the K statistic, which now differs from the AR statistic, does not encounter this

loss of power and leads to the highest power curve whereas both the sign-based power curve
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and the AR-based one stand lower. However, as soon as we turn to the Cauchy setup (case
2, column 2 in Figure31), the sign-based statistic yields again the highest power. This holds
regardless of instrument strength. The two methods involving a split-sample (SSAR and
SSS) do not present good results because of the limited number of observations. Here, the
sample size is 50. First step regressions involve only 15 observations and second step re-
gressions 35 observations. However, the corresponding power curves generally follow the
same tendencies as the power curves of the corresponding statistic without split-sample.

Results are very clear in Figures 32 and 33 (heteroskedastic setups: case 3 and 4).
Sign-based methods exhibit there more power than all the other studied methods which
are robust to weak instruments (AR, K) included methods corrected for heteroskedasticity
(KLM). In the presence of strong instruments, Wald tests based on 2SLAD and 2SLS have
higher power than sign-based methods. However, the Wald tests are clearly biased and they
are no longer valid as soon as the strength of the instruments decreases.

In conclusion, sign-based tests present good power properties for a wide range of
processes. They are not far from the optimal AR test in i.7.d. normal case and they pro-
vide more power than other studied methods in setups involving heavy-tailed distributions,
heteroskedasticity or nonlinear dependence. They still provide power under some general
endogeneity schemes, especially when the endogeneity affects the shape of the structural

error distribution without affecting its sign.
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9. Application: schooling returns

In this section, we apply the method proposed above to study the effect of education on
earnings [Angrist and Krueger (1991), Angrist and Krueger (1995), Bound, Jaeger, and
Baker (1995), Staiger and Stock (1997), Dufour and Jasiak (2001), Kleibergen (2002, 2005,
forthcoming), etc.].” Angrist and Krueger (1991) consider an earning equation where
the log weekly wage (y;) is explained by the year number of schooling (z;) and other
covariates (such as the year of birth, age, age squared, race, metropolitan statistical area...).
They propose several specifications depending on the included covariates. Further, they
use the interactions between the quarter of birth and the year of birth as instruments for
correcting the education endogeneity. However, the relation between the instruments and
the endogenous variable is apparently weak.

We restrict here on the Angrist and Krueger (1991)’s model specification with dummies
for the year of birth as explanatory variables. The data set comes from the 1980 census 5%

public-use sample and is composed of n = 329500 men born 1930-39.
10

yi=ﬂ0$i+z:ﬂkdki+fi: i1=1,...,n, ®.1)
k=1

where dj, are dummies for the year of birth. Further, the 30 interactions between the quar-
ter and the year of birth constitute the available "excluded" instruments to correct for the
schooling endogeneity. F-statistic for instrument relevance equals 1.573 (with asymptotic
p-val=.024), which is low enough to suspect the presence of weak instruments.

We apply split-sample sign-based inference method and compute valid confidence in-
tervals for the education parameter. More precisely, the sample is divided into two parts (1)
and (2). With the first part of the sample, we choose the form of quasi-optimal instruments:
the year number of schooling is regressed on instruments by OLS. With the second subsam-
ple, we construct sign-based statistic using a fitted education. The split-sample sign-based
statistics rely on the 11 following moment equations:

10
Els(y® — Boz® =3 Bidis) x 52] =0, fori=1,...,ny, j=1,...,11; (9.2)
k=1

130ther questions raised by these data include, for example, the impossibility of a punctual nonparametric
identification with discrete instruments [Chesher (2003)] and the problem of many instruments [Hansen,
Hausman, and Newey (2005)].
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where EJ(.?) =dj;, j=1,...,10 and Zﬁ’z is the fitted education. We follow Dufour and

Jasiak (2001), and use 10% of the sample for the first stage and 90% for the second one.
Two split-sample sign-based statistics are considered. The first one combines moment
equations in a classical quadratic GMM form (SSS90). In the second one (TSS90), moment
equations are combined following Tippett (1931). Then, Bonferroni-type induced tests are
performed using o, = a/p. The idea behind is that quadratic combination of orthogonality
conditions refers to some local optimality around the true value of the parameter. In a badly
identified setup such as here, other type of combinations like the Tippett’s one, may provide
better overall properties and smaller confidence intervals.

Table 18 contains 95%—confidence intervals obtained with SSS90 and TSS90 but
also the Anderson and Rubin statistic (AR), Kleibergen score statistic (K) and Wald (non
reliable) CI based on the OLS and the 2SLS estimators. We also report in Table 19 OLS,
2SLS, LIML, SSIV and sign estimates for the return to education.'

Projection sign-based confidence intervals obtained using the SSS90 and the TSS90
statistics have smaller spreads than the asymptotic ones based on the AR and K statistics
and they are theoretically valid. Moreover, they tend to accept smaller values of the return
to education. Table 19 on estimates confirms that point. Sign-based estimates that are very
close to 2SLAD estimates, suggest a return to schooling around 4% which is smaller than
usually admitted. Such a figure is in adequation with a positive ability bias as expected by

the theory.

Then we redo the same experiment on subsamples of 10000 and 2000 observations
drawn from the initial sample. We wonder what happens when the sample size gets smaller.
Confidence intervals results are reported in Table 20 and estimates in Table 21. We only
consider procedures that are robust to weak instruments: K, AR, SSS90 (with 999 repli-
cates) and TSS90 (with 879 replicates).

“The CI are smaller than those found by Chernozhukov, Hansen, and Jansson (2006) who exploited a
GMM statistic based on the 40 moment equations and included in their model more explanatory variables.
We use simulated annealing with different starting points. They used a MCMC algorithm with different
starting points.



Table 18. Confidence intervals for schooling returns.

Cl 95% 90% 80%

Wald OLS [.070,.072] [.071,.072] [.071,.071]
Wald 2SLS [.058,.120] [.063,.115] [.069, .110]
Wald 2SLAD*  [-.002,.079] [.004, .073] [.012, .065]
AR [.014,.180] [.022,.169] [.033,.157]
K [.054,.133] [.060, .126] [.068, .119]
TSS90 [.034,.045] [.036,.044] [.037, .043]
SSS90 [.035,.045] [.036,.041] [.038, .039]

* W2SLAD CI are obtained by design matrix bootstrap, with 99 replicates [Buchinsky (1998)].

Table 19. Estimates for schooling returns.

OLS

2SLS LAD 2SLAD

B, 071

.089

.039

LIML SSIV90 SSS90

B, 093

018

174
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Cl 95% 90% 80%
n=10000
K [-1,1] [-1,222]U[.239,1] [-1, -.300]U[-.012,.145]U[.404,1]*
AR [-1,1] [-.636,.664] [-.291,.395]
TSS90 [-.190,.109] [-.110,.083] [-.034,.049]
SSS90 [-1,1] [-1,1] [-1,.236]
n=2000
K [-1,1] [-1,.073]U[.106,1] [-.563, .016]U[.160,.541]*
AR [-1,1] [-1,1] [-1,.154]U[.562,1]
TSS90 [-.392,.135] [-.216,.075] [-.130,.043]
SSS90 [-1,1] [-1,1] [-1,1]

* ClIs can be reduced by combining with a J test [Kleibergen (forthcoming)].

Table 21. Estimates for schooling returns: subsamples n=10000 and n=2000.

n=10000
By OLS 2SLS LAD 2SLAD LIML SSIV90 SSS90

072 .076 .065 022 .067 -.012 .022
n=2000

Bo OLS 2SLS LAD 2SLAD LIML SSIV90 SSS90
071 014 .067 022 -119  -013 .023

175

Table 20. Confidence intervals for schooling returns: subsamples n=10000 and 7=2000.
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The Mincer equation (9.1) sets that the education coefficient has an elasticity form.
Consequently, this parameter is constrained in the programs to rely between -1 and 1. Then,
a confidence interval of [—1, 1] may refer to an (unconditional) "unbounded" confidence
interval. Such a confidence interval indicates a badly identified setup and is in accord
with the fact that valid confidence intervals have positive probability to be unbounded in
nonidentified setups [Dufour (1997)].

The CI spread based on SSS90 and AR statistics increases as the number of observa-
tions decreases. 90%-CI based on the AR statistic is bounded for n = 10000 whereas for
n = 2000, the 90%-CI is [—1, 1]. The same occurs with 95%-CI based on the SSS90 sta-
tistic. The behavior of the K statistic is less clear. As it is a quadratic form of the score
of the concentrated log-likelihood, it basically contains information on a slope. Its use is
locally justified around the LIML estimator but may follow a somewhat odd behavior out-
side that neighborhood. The Tippett-sign-based statistic provides the smaller Cls for both
subsamples, which indicates that quadratic combinations of orthogonality conditions are
not optimal in small subsamples.

Concerning estimates (Table 21), our findings are similar to the whole sample ones.
Sign-based estimates are very close to 2SLAD estimates and suggest returns to schooling
around 2% in both subsamples which is in adequation with the theoretically expected ability

bias.

10. Conclusion

In this paper, we presented a finite-sample sign-based inference system for the parameter
of a structural possibly nonlinear model. We introduced a condition of instrument validity
with respect to the signs of the structural error. We showed that, under the instruments
validity, the distribution of the structural error sign vector is known and does not depend on
any nuisance parameter. This allowed us to conduct a Monte Carlo-based inference using
on the exact distribution of IV sign-based statistics. The derived joint tests are exact for
any sample size and are robust to identification failures. Tests of more general hypothesis

and confidence sets are then constructed using projection techniques. Our approach is in
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the spirit of Anderson and Rubin (1949). The IV sign-based statistics we studied can be
constructed from auxiliary regressions of the constrained signs on auxiliary instruments.
We also considered the problem of approaching the optimal set of instruments to include in
the model in case of overidentification using two different optimality concepts (point and
local optimality). Finally, IV sign-based estimators are presented. They turn to be consis-
tent and asymptotically normal when identification holds under weaker assumptions than
the ones required in the 2SLAD asymptotic theory. Besides, they can directly be associated
with previous sign-based inference, which avoids one to use complicated methods such as
the bootstrap. By construction, the level of IV sign-based tests is controlled and simula-
tions indicate that those tests perform better than usual ones (including methods that are
robust to weak instruments or identification failures) in finite samples, when the data are
heterogenous, heteroskedastic or when endogenous variables affect the structural error dis-
tribution without affecting its sign. Finally, sign-based inference is applied to the Angrist
and Krueger’s returns to schooling problem. Sign-based estimate of the return to school-
ing is around 4% and projection-based confidence intervals, besides being more robust, are
more precise than those based on the AR or the K statistics. In small samples, it seems that
Tippett-type combination of orthogonality conditions provides better properties than usual

quadratic combination and leads to more precise confidence intervals.
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Appendix

A. Proofs

A.1. Proof of Proposition 3.1

Consider the vector [s(u1), s(uz),...,s(u,)] = (51,52, ... ,8n)’. From Assumption Al,

we derive the two following equalities:

P(u; > 01Z) = E[P(u > Olug-1,.-.,u1, Z))] =1/2,
P(u; > 0|ss—1,...,81,Z) = Plu > Olue—1,...,u1,Z2) =1/2,¥t=2,... n.

Further, the joint density of (sy, s2, . .., s,)’ can be written:
n

Us1,82,---,82|12) = [[Ustlse-rs--.,51,2)
t=1

= HP(Ut > 0|'U/t_1, cea, U, Z)(l_s‘)/2
t=1

1— P(ut > 0|ug—y, ..., up, Z)}(1+s,)/z

(1/2)0-021 — (1/2))0+%72 = (1/2)".

I
—= X

il
[

Hence, conditional on Z, sy, 59, ..., s, are distributed like 7 i.i.d random variables with
distribution:
1
P(St=1) =P(St=—1)= 5, t=1,...,n.

A.2. Proof of Proposition 4.1

This is a direct application of Neyman-Pearson lemma. The likelihood function of S under
Ho is

14s4)/2 (1—8.)/2
LO(Sla ey STI) = Hp(()t+ W/ p(()t W/
t=1

and under H,,

Li(s1,...,8,) = H pliten/2p=s/2
t=1
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Hence, after some computations, the loglikelihood ratio becomes
Ll) n [ (plt(l _plt)) (plg(l —pOt)):,
In{— )= 1/2) |In | ————= ) +s;In | ———2 ||, A.l
(LO ;( /2 pot(1 — pot) ‘ Pot(1 — p1z) (AD)

and yields the optimal test against H;. The most powerful test based on S rejects Hy when

Zs In (”“ p"‘)> > (o, Hy)

Poe(1 — p1e)

where c(a, Hy) = ¢ — Y1 (1/2) [ln (]’;;‘g‘z;‘;)] with ¢ derived from Neyman-Pearson

condition.

A.3. Proof of Corollary 4.2

In the regression framework, (poi, . . ., pon) and (py1, - .., p1n) are known. As Assumption

Al holds under Hy, we have py, = .5, and under H,, we can write for ¢t = 1,...,n.,

Pt = PHI [f(yh I, 00) > O] = PHI [f(yt,xh 91) > f(yt’zta 91)_f(yt,zt, 00)] = l_G(ht)a

where hy = f(y.,1,00) — f(ye, %1, 01). Hence, the point-optimal sign-based test of Hy

against H, rejects Hy when

Zs(ut) In <1;(—if;&t)> > c¢(a, b), (A2)

Where (hl) e ,hn)l = (f(yh Iy, 01) —f(yla Ty, 00), C )f(y'n.) Ly, 91) —f(yna Tn, 00)), and
c¢(a, 6;) depending on the level.

A.4. Proof of Proposition 5.1

First, we prove the following lemma.

Lemma A.1 Let {G,}n be a sequence of real functions tending uniformly towards G on
a compact set K C R and 0 € int(K). Suppose further that G,, and G are differentiable
with continuous derivative on K for all n and satisfy n(G,(0) — G(0)) — 0 and G, (0) —
G'(0) — 0. Then,

sup ||Gn(y) — GW)I| = o(1/n).
yeB(0,1)
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Proof of Lemma A.1. Taylor expansions gives

Gr(z) = Gn(0) + G, (0) + o(|z|), Vz € B(0,1/n) N K, (A3)
and
G(z) = G(0) + zG'(0) + o(|z]), Yz € B(0,1/n) N K. (A4)
We can write
|Gn(2) ~ G(2)| = |Gn(0) — G(0) + z(Gr(0) — G'(0)) + o(1/n)]. (A.5)
Hence,

Ga(®) = G@)] < 1Ga(0) = G(O)| + -1GH(0) ~ CO)| +ol1/m)  (AS)
by majoring |z| by 1/n. That entails
|Gn(z) — G(z)| = o(1/n).0 (A7)

Let us now consider the problem of testing Hy : § = , against alternatives of the general

form H; : 6 = 6. The power function of a sign-based test T conditional on Z is
B(61) = Po, [T(s(f(y,7.60)), Z) > 1 — cr(Z,0)|Z] = Py, [S € Wal|Z] (A.8)

where S is the random variable of the constrained signs and W, the critical region of the
test with level o. In the sequel, we omit to write that all results are conditional on Z. To
identify the instruments which maximize the power function in the neighborhood of §,, we
first derive the sign distribution under H,. The independence assumption implies that the

sign distribution is the product of terms of the form
Poy[se = 5] = Po,[f(ye, 20, 60) 2 0% Po,[f (31,50, 60) < O'F". (A9)

As f is continuously differentiable, the mean value theorem entails

af(yt’ It 9)

f(ytvxta 91) = f(ytvxt,HO) + ae[

(01 — 00), t= 1,. ey N, (AIO)

0=0,
where 8, = p,0, + (1 — p;)8: with p, = p(y, 7¢,60,8,) € [0, 1, t=1,...,n. Letus

denote
I 6 ] ] 9
H,(@8,) = f(yat‘;tl

L t=1,...,n. (A.11)
6=6,
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We can rewrite

f(ye, 1, 60) = f(ye, 2, 61) — [Hi(8:) — EH,(6,))(61 — 60) — EH,(8,)(6: — 6o). (A.12)

This yields, using equation (A.9)

- — — Lfs
Pgl [St = S] = Pgl [’U.t - (Ht(Gt) - E'Ht(ﬁt))(ﬁl - 00) > EHt(Ot)(Gl nd 90)] 2
X Po,[us — (H(B:) — EHy(8:)) (61 — 60) < EH,(8.)(61 — 60)] =
As the observations are 3.7.d., we will not write the subscript ¢. Let us denote
G (z) = Py, [u~ (H(8.) — EH(B,)) (6 — 60) < 1] (A.13)

where the real random variable u ~ G. Equation (A.13) can alternatively be written

P[5 = sq] = % — G% (EH(,) (6, — 60)) | 50 + % (A.14)

where again s stands for a real random variable and not for a vector.

Let us now examine

R = GU(EH(8.)(6n — 60)) — G(EH(®B.) (6 — 60)) (A.15)
+ G(BH@.)(6: — 00) - G(0) — G'(0)EH(,) (0 — )
- %G”(O)(Gn — 80) EH(@,)EH(8») (6, — 05). (A.16)

When 6, — 6, we want to show that R is o(||6y — 6,||?). For this, we denote:

A=Gl (EH(B,) (8 — 60)) — G(EH(8,) (6. — 60)),

B = G(EH(?H)'(On - 00)) — G(0) - G'(0)EH (0,.) (6, — 6,)
~ 5C"(0)(6. — 00) EH(@,)EH(E,) (60 — 65).
We first consider B. We easily have
I1BII = o({|6s — 60l [*) (A.17)

using a Taylor expansion of G in the vicinity of zero, because EH(8,,) is uniformly

bounded by M, around 6, (condition c). Let us consider now A. We can major [|Al| by

||Al] < My]165 — 6ol sup IG(y) — Ga(w)I. (A.18)

YEB(0,M1{[60—6x|)
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Moreover, as {G,}nen are increasing continuous functions that converge everywhere to
G, a Dini-type theorem implies the convergence is uniform. Hence, Lemma A.1 applies.
Finally

sup IG(Y) = Ga()Il = o({l6 — bol])- (A.19)
¥EB(0,Mi]00—0n])

Finally
1Al = o(]|6n — 6o][?). (A.20)

Consequently, inequalities (A.20) and (A.17) with condition d entail:

Po[se=s] = 5 = 5[ — G'(0)(EH,(6n) (6 — 60)) + o(||6, — Bol[?)]. (A2D)

l\')lr—l

As (s1,...,8p) are i.i.d., it follows

BolS = (51, 50)] = (%)—(%) 3 alC 00 0 - )

— <%) Z 5:51[G'(0)*(8,, — 00)(EH(0,)")(EH(6,)) (6 — 6))]

t<i

+ 0(]|6 — 60| |%)). (A.22)

The remainder follows the proof of Proposition 4.1 in Coudin and Dufour (2005a) and
Boldin, Simonova, and Tyurin (1997). We consider sign-based tests that maximize the
mean curvature around . It is trivial to see that the locally optimal test with critical region

W is locally unbiased (assuming the opposite goes to a contradiction), 7.e.

dPg[W,]
di  lo_p,

=0. (A.23)
The behavior of the power function around zero is then totally defined by the quadratic
term of its Taylor expansion which can be identified thanks to equation (A.22). The mean
curvature is by definition proportional to the trace of d?_zzw at § = 6y [see Boldin, Si-
monova, and Tyurin (1997), p. 41, Dubrovin, Fomenko, and Novikov (1984), Chapter 2,
pp. 76-86 or Gray (1998), Chapter 21, pp. 373-380]. Taking the trace in the expression of
equation (A.22), we find (after some computations) it is proportional to

D0 G0 s EHy(80) EHi(6o)'- (A.24)

1<t# I<n
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By adding the quantity )7, (EH,(6,)EH,(6,)") to (A.24), we find the locally optimal
sign-based test in the sense proposed by Boldin, Simonova, and Tyurin (1997) is

W= {s : §'(y) [EH(60) EH(6,)]'s(y) > c;,} . (A.25)
Standardizing by EH (6,)' EH (6,) then leads to

W = {s: s'(y)EH(60)[EH (6o) EH(60)] " EH(60)'s(y) > ¢} . (A.26)

A.S. Proof of Theorem 7.1 (Consistency)

Consistency of IV sign-estimators is an extension of consistency of classical sign estimators
[Theorem 5.9 in Coudin and Dufour (2005b)]. Both proofs follow the same classical 4
steps (pointwise convergence, weak uniform convergence, consistency and identification).
Here, we indicate only points that differ. The stochastic process considered here is W¥ =

{WP = (y, zi, v)) him12,. : 2 — RPTFH and we denote
qe(w, 0) = s(f(yt,a:t,ﬂ)) ® hi(v,8), t=1,...,n, (A.27)

which satisfies the same mixing condition. Similarly to Theorem 5.9 in Coudin and Dufour
(2005b), pointwise convergence for any § is implied by assumptions A7, A9 (boundedness
point) and Corollary 3.48 of White (2001).

Uniform convergence and continuity of the limiting function are implied by the generic law
of large number of Andrews (1987). Andrew’s conditions B1, B2 and A1 are fulfilled by
assumptions A7, A8, A9 and A10. Furthermore, we use his comment 3 to conclude on the
weak continuity condition (A6). Condition A6(a) allows g;(w, 8) to have isolated disconti-
nuities provided q;(w, 6)p (w) is continuous in 6 uniformly in ¢ a.e.[u], where p is a o-finite
measure, that dominates each of the marginal distribution of W;, t = 1,2... and pi(w) is
the density of W, w.r.t. . Condition A6(b) states that [ sup,s; |g:(w, 8)|p:(w)du(w) < .
Here, we consider u = P, q,(w, 6)p,(w) is continuous in 6 a.e. w.r.t. P, as p, does not de-
pend on 6 and ¢; is a continuous function everywhere except at { f(y;, z;, 0) = 0} which is
a P-negligible set: P[{w : f(y:,z:,6) = 0}] = 0 (no tie assumption A8). Furthermore, g,

is L;-bounded and uniformly integrable. Then, condition A6 is fulfilled. The consistency
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part applies without further modifications. Finally, the identification conditions A11 and

A12 allow to conclude on consistency.

A.6. Proof of Theorem 7.2 (Asymptotic Normality)

If z, = hy(6,v:), Assumptions A9, A17, Al4 and A15 allow to differentiate below the
integral.

a‘Z,E[ht(o v)s(f(y, 71,0))] = E[ht(ﬁ,vt)Wgt(f(yt,mt,ﬁ)lzl,...,zn)]

\E [%} s (F(yer 0, ). (A28)

By uniform convergence (shown in the consistency part), it follows that the limiting objec-

tive function, lim,, 2 37 E[2(0)s(f(y, 2., 6))], is differentiable with derivative L(6):

L( = hm ZE [h't 3 t 8f(yat’0:/l;t’ ) (f(yhxta )Izh ey Zn)]

n—oo N
oh
_ZE[ag,t yt,xt,ﬁ))} .

Theorem 7.2 in Newey and McFadden (1994) may then be applied. Their condition (i),
which states that 0 is attained at the limit by 6, is fulfilled by the moment condition A3.
Their condition (ii) states that the limit objective function is differentiable at , and positive
definite. This is fulfilled by the first part of our proof and condition A19. Then, their
condition (iii) (interior) is implied by A10. Using the mixing specification A16 of {w} and
conditions A3, A9, A13 and A18, we apply a White-Domowitz central limit theorem [see
White (2001), Theorem 5.20]. This fulfills condition (iv) of Theorem 7.2 in Newey and
McFadden (1994). Finally, condition v (stochastic equicontinuity) is implied by uniform

convergence (see the consistency part) which completes the proof.
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Conclusion générale

Nous avons développé dans cette thése, un systéme d’inférence exacte pour des modéles
semi-paramétriques de régression et des modéles structurels avec instruments. Ce systéme,
qui s’appuie sur des transformations par les signes et la technique des tests de Monte
Carlo, donne des résultats valides, quelle que soit la taille de 1’échantillon, pour des
erreurs hétéroscédastiques de forme trés générale. L’inférence reste par ailleurs asymp-

totiquement valide en présence de dépendance linéaire. La thése se compose de trois essais.

Dans le premier essai, nous avons étudié des statistiques de signes pivotales, et nous
avons construit des tests simultanés pour le vecteur de paramétres d’une régression linéaire
sur la médiane. En échantillon fini, le niveau de ces tests égale le niveau nominal si les
signes des erreurs satisfont une certaine condition d’invariance (« mediangale »). Les tests
restent asymptotiquement valides en présence de processus plus généraux comme, par
exemple, des ARMA stationnaires. Nous avons ensuite utilisé les méthodes d’inversion
et de projection pour construire des régions de confiance et des tests d’une hypothése
genérale possiblement non linéaire. Les études par simulation suggérent que, dans des
¢chantillons de petite taille, les tests et les régions de confiance que nous proposons
sont plus fiables que les méthodes habituelles (moindres carrés, LAD) dés lors que les
données sont hétérogénes. Ceci reste vrai méme quand ces méthodes habituelles sont
corrigées par un « bootstrap ». La procédure proposée s’avére aussi préférable a une
version asymptotique lorsqu’elle n’est qu’asymptotiquement justifiée. Prenons I’exemple
de données peu nombreuses et linéairement dépendantes. L’approche a distance finie
n’est alors qu’asymptotiquement justifiée. Pourtant, elle permet de prendre en compte
la distortion due a la petite taille de 1’échantillon, ce que ne font pas les approches
asymptotiques habituelles. Nous avons présenté deux exemples d’application. Le premier
teste la théorie de convergence (3 entre les niveaux de production des états américains entre
1880 et 1988. Le second teste la présence d’une tendance dans I’indice « Standard and

Poor’s Composite Price » entre 1928 et 1987, ainsi que pour diverses sous périodes.
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Dans le deuxiéme essai, nous avons developpé plusieurs outils d’inférence a distance
finie facilement utilisables dans le systéme précédent. La fonction p-value (ainsi que ses
versions individuelles qui s’obtiennent par projection) résume graphiquement 1’inférence
disponible sur un paramétre. Elle mesure le degré de confiance que I’on peut avoir dans
une valeur donnée du paramétre et permet facilement d’étendre les notions de distribution
de confiance a un vecteur de paramétres. Fonction p-value et distribution de confiance
s’appuient sur une réinterprétation des distributions fiducielles de Fisher. Elles fournissent,
en un sens, un équivalent fréquentiste aux distributions a posteriori bayésiennes. Des tests,
nous sommes ensuite passés a I’estimation. Nous avons introduit un estimateur de signe
gréce au principe de Hodges-Lehmann. 11 s’agit de la valeur du paramétre associée  la plus
grande p-value ; ou encore la valeur la moins rejetée quand le niveau des tests augmente ;
autrement dit, la valeur ayant le plus fort degré de confiance. Cet estimateur ne s’appuie
pas sur des considérations asymptotiques contrairement au principe d’analogie. Toutefois,
maximiser la p-value équivaut parfois (en probabilité) 4 une méthode des moments
classique dans laquelle les conditions de moments font intervenir les signes. Nous avons
étudié les propriétés de ces estimateurs. Ils présentent plusieurs formes d’invariance et
sont sans biais pour la médiane lorsque les erreurs sont symétriques. Les conditions de
convergence et de normalité asymptotique des estimateurs de signes sont aussi plus faibles
que celles requises par ’estimateur LAD. En particulier, la variance des erreurs peut ne
pas étre finie. D’apres nos simulations, les estimateurs de signes ont de bonnes propriétés
dans les cas habituels et sont plus fiables que les méthodes de moindres carrés ou que le
LAD quand les données sont trés hétérogénes. Malgré le fait qu’ils font intervenir des
méthodes numériques, nous conseillons de combiner les estimateurs de signe 4 la méthode
d’inférence présentée dans le premier essai lorsque les données sont peu nombreuses ou

lorsqu’elles semblent trés hétérogénes.

Le troisiétme essai a porté sur les modéles structurels et les modéles non-linéaires
4 EN I3 ¢ ’ Py ’ .
en présence d’instruments. Nous avons développé une procédure d’inférence exacte qui

est aussi robuste au degré d’identification du paramétre structurel. Celle-ci s’appuie sur
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une condition de validité des instruments vis-a-vis des signes de ’erreur structurelle. La
distribution des signes est alors pivotale et facilement simulable, et I’on peut construire des
tests de Monte Carlo et des régions de confiance par inversion. Notre approche est dans
Iesprit d’Anderson et Rubin [Anderson et Rubin (1949)]. Les statistiques IV que nous
étudions se déduisent de régressions artificielles des signes des résidus sur des instruments
dits « auxiliaires ». Ces instruments n’entrent pas dans la spécification économique du
modele, ils ne servent qu’a calculer la statistique. Les statistiques IV correspondent aussi
a des combinaisons de conditions d’orthogonalité qui font intervenir les signes. Nous
avons considéré deux types de combinaisons : la forme quadratique habituelle de laquelle
découlent des statistiques de type GMM ou Fisher et qui permet d’associer un estimateur,
ainsi qu’une approche de type Tippett qui combine les p-values de chaque condition
d’orthogonalité testée séparement. Cette derniére approche semble donner de meilleurs
résultats que la précédente en cas de faible identification du paramétre. Les tests issus de
ces statistiques sont exacts et robustes aux problémes d’identification. Nous nous sommes
aussi demandé quels instruments inclure dans le modéle en cas de suridentification.
Nous avons présenté deux concepts d’optimalité des instruments selon les propriétés de
puissance des tests qui leur sont associés. Enfin, nous avons présenté des estimateurs.
Ceux-ci, comme tout estimateur, ne doivent étre utilisés que lorsque le paramétre est
identifié. Ils sont convergents et asymptotiquement normaux sous des conditions plus
faibles que celles requises dans la théorie des doubles moindres carrés et de ’estimateur
« Two-Stage Least Absolute Deviations, TSLAD ». Ces propriétés restent, entre autres,
valables si les erreurs présentent des queues de distributions épaisses. Les simulations
suggerent que les tests de signes sont plus performants que les tests usuels (y compris
ceux qui sont robustes a la présence d’instruments faibles ou & un manque d’identification)
en échantillon fini, quand les données sont hétérogeénes, hétéroscédastiques ou lorsque
la variable endogene influe sur la distribution de I’erreur structurelle sans en affecter le
signe. Enfin, comme exemple d’application, nous sommes revenus sur le probléme des

rendements de I’éducation de Angrist et Krueger (1991).

Cette thése a fourni I’occasion d’insister sur I’intérét des approches a distance finie



f-..\__

198

dans divers modeles économétriques. La transformation par les signes permet d’étendre ces
approches a des modéles non ou semi-paramétriques sous des hypothéses distributionnelles
trés générales.

Plusieurs extensions 2 ce travail sont envisageables. Les méthodes proposées sont tout
d’abord aisémment adaptables 4 d’autres quantiles que la médiane [voir Koenker et Bassett
(1978) qui introduisent les régressions quantile]. La théorie ne changera pas ou trés peu. En
revanche, le champ d’application pratique en sera fortement étendu. Ensuite, le lien entre
p-value et identification pourrait étre exploité pour construire des tests de spécification. En-
fin, les statistiques de signes étudiées sont souvent des formes quadratiques associées aux
tests localement optimaux. Développer d’autres classes de statistiques de signes constitue
une extension prometteuse a ce travail, ce que suggére les performances des tests obtenus a
partir de la statistique de type Tippett. 1l pourrait s’avérer ainsi judicieux de combiner des
statistiques de test point-optimal en ayant recours a des inégalités de type Bonferroni ou a
des méthodes adaptatives. De telles approches pourraient permettre des gains supplémen-

taires en puissance selon les cas étudiés.



