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$ommaire
L’objet de cette thèse est de développer un système d’inférence exacte en échantillon

fini dans des modèles de régression et des modèles structurels sans imposer d’hypothèse

paramétrique sur la distribution des erreurs.

Dans le premier essai, nous étudions la construction de tests et de régions de confiance

dans une régression linéaire sur la médiane. Le modèle que nous considérons n’impose pas

de restriction paramétrique sur la distribution des erreurs. Celles-ci peuvent être non gaus

siennes, hétéroscédastiques ou bien présenter une dépendance sérielle de forme arbitraire.

Habituellement, l’analyse de ce type de modèle a recours à des approximations asympto

tiques normales, lesquelles peuvent être trompeuses en échantillon fini. Nous introduisons

une propriété analogue à la différence de martingale pour la médiane, la « mediangale

», et remarquons que les signes d’une suite de « mediangale » sont indépendants entre

eux et suivent une distribution connue et simulable. Nous utilisons alors la transforma

tion par les signes et proposons des statistiques pivotales qui, en plus d’être robustes, per

mettent de construire une approche d’inférence simultanée valide quelle que soit la taille de

l’échantillon. Grâce à la méthode des tests de Monte Carlo et à celle des projections, nous

construisons tour à tour des tests et des régions de confiance simultanés puis des tests et des

régions de confiance pour n’importe quelle tranformation du paramètre. Nous fournissons

ensuite une théorie asymptotique sous des hypothèses plus faibles que la « mediangale ».

Les études par simulation montrent que la méthode proposée est plus performante que les

méthodes asymptotiques habituelles lorsque le processus est très hétérogène ou lorsque la

taille de l’échantillon est petite. Enfin, deux exemples d’application sont étudiés. Dans le

premier, nous testons la présence d’une tendance sur des données financières. Le deuxième

s’appuie sur des données régionales, nécéssairement peu nombreuses, pour tester la théorie

macroéconomique de /3 convergence entre les niveaux de production des états américains.

Dans le deuxième essai, nous introduisons un estimateur et des outils d’inférence va

lides en échantillon fini moins communément utilisés. Nous étudions, tout d’abord, la

fonction p-value qui associe un degré de confiance à chaque valeur testée du paramètre

étant donnée la réalisation de l’échantillon. Celle-ci est reliée à la notion de distribution de

confiance et aux distributions fiducielles de Fisher [Fisher (1930)]. Ces outils fournissent
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un équivalent fréquentiste aux distributions bayésiennes a posteriori. Nous calculons des

fonctions p-value simulées à partir de tests de Monte Carlo simultanés, puis des versions

projetées pour chaque composante individuelle du paramètre. Nous suivons ensuite le prin

cipe d’inversion de test de Hodges et Lehmann [Hodges et Lebmann (1963)] et propo

sons d’utiliser comme estimateur, la valeur du paramètre associée au plus haut degré de

confiance (à la plus forte p-value). L’estimateur de signe qui en découle est sans biais pour

la médiane quand les erreurs sont symétriques, et il partage les propriétés d’équivariance

de l’estimateur des moindres valeurs absolues (« Least Absolute Deviations, LAD >). Il est

aussi convergent et asymptotiquement normal sous des conditions plus faibles que l’estima

teur LAD. En échantillon fini, les simulations suggèrent qu’il est plus performant en termes

de biais et d’erreur quadratique moyenne pour des processus très hétérogènes. Ces outils

permettent de compléter l’analyse des deux exemples empiriques étudiés précédemment.

Dans le troisième essai, nous développons une approche inférencielle exacte en échan

tillon fini pour des modèles structurels non-linéaires. Nous proposons une version de la

propriété de pivotalité des signes adaptée à un modèle instrumental. Les tests exacts qui en

découlent ne dépendent pas du degré d’identification du paramètre. Ils sont en particulier

valides en présence d’instruments faibles, pour des erreurs possiblement hétéroscédastiques

et non gaussiennes. L’approche que nous proposons fait intervenir des régressions artifi

cielles où l’on régresse les signes contraints sur des instruments auxiliaires dans l’esprit

d’Anderson et Rubin [Anderson et Rubin (1949), Dufour (2003)]. Nous étudions de plus

la question des instruments optimaux à inclure dans le modèle, ce qui permet de gagner de

la puissance en cas de suridentification. Les simulations montrent que notre approche est

plus performante que les méthodes usuelles (y compris celles qui sont robustes à la pré

sence d’instruments faibles) lorsque les erreurs sont non gaussiennes, hétéroscédastiques

et lorsque l’échantillon est petit. Cette méthode est utilisée sur les données de Angrist et

Krueger (1991) pour analyser les rendements de l’éducation sur le salaire.

Mots clés : inférence exacte; régression sur la médiane régression quantile; test de signe;

hétéroscédasticité; non nonnalité; dépendance; test de Monte Carlo; techniques de pro

jection; distribution de confiance; endogénéité; modèle structurel; modèle non-linéaire;

instrument; instrument faible; convergence.
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$ummary
The objective of this thesis is to develop a whote system of exact inference in fi

nite samples, for regression models and structural econometric models under very weak

distributional assumptions on the error term.

In the first essay, we study the construction of finite-sample distribution-free tests

and confidence sets for the pararneters of a linear median regression when no parametric

assumption is imposed on the noise distribution. The setup we consider allows for non

normality, heteroskedasticity and nonlinear serial dependence of unknown forms. Such

serniparametric models are usually analyzed using asymptotically justified approximate

methods, which can be arbitrari]y unreliable in finite samples. We consider first the prop

erty ofrnediangale — the median-based analogue ofa martingale difference — and show that

the signs of mediangale sequences are distribution-free despite the presence of nonlinear

dependence and heterogeneity of unknown form. We point out that a simultaneous infer

ence approach in conjunction with sign transformations does provide statistics with the

required pivotality features — in addition to usual robustness properties. Those sign-based

statistics are exploited — with Monte Carlo tests and projection techniques — in order to

produce valid inference in finite samples: simultaneous tests, confidence regions and then

more general projection-based tests are constructed. An asymptotic theory which holds

under even weaker assumptions is also provided. Simulations suggest the good perfor

mance of that method for a wide range of processes. Finally, two illustrative examples are

presented. First, we test for the presence ofa drifi in financial series involving strong het

eroskedasticity. Then, we exploit a cross-regional data set whose sample size is necessarily

small, and test for /3 convergence between levels of per capita output across U.S. States.

The second essay presents additîonal finite-sample-based tools that can be used in con

junction with the sign-based inference system previously developed. f irst, we study the

p-value function which measures the confidence one may have in a certain value of the

parameter. It is related to the notion of confidence distribution and to Fisher fiducial dis

tributions [Fisher (1930)]. Those notions provide a frequentist analogue to the Bayesian

posterior distributions. We combine sign-based Monte Carlo tests of simultaneous hy

potheses with projection techniques to constmct simulated p-value functions and projected
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versions for the parameter individual components. $ecotid, sign-based estimators that are

the parameter values with the highest confidence (the highest p-value) are presented. These

are obtained using the Hodges-Lehmann principle of test inversion [Hodges and Lehmann

(1963)]. They are expected to present the same robustness properties than the test statistics

from which they are derived and can directly be associated with the exact inference proce

dures described in the first essay. We atso show they are median unbiased (under a sym

metry assumption) and present equivariance features similar to the LAD estimator. Consis

tency and asymptotic normality are also provided under regularity conditions weaker than

the ones required for the LAD estimator. In a simulation study ofbias and root mean square

error (RMSE), we find that sign-based estimators perform better than the LAD estimator

in settings with sizable heteroskedasticity. Sign-based estimators and p-value functions are

then used to complete the analysis of the two practical examples studied previously.

The third essay devetops finite-sample distribution-free exact inference in nonlinear

structural models. We propose an adapted version of the sign invariance that allows one to

construct exact tests. We notice that the validity of those tests does not depend on identi

fication assumptions nor on parametric approximations imposed on the errors. Sign-based

tests equal the nominal size for any given sample size in presence of weak instruments,

with non-normal and heteroskedastic errors. Basically, the sign-based approach relies on

artificiat regressions where the signs of the constrained residuats are regressed on some

“auxiliary” instruments [Anderson and Rubin (1949), Dufour (2003)]. We also study the

problem of building optimal instruments, which can lead to considerable gain of power

in case of overidentification. Simulations show that sign-based methods overcome usual

rnethods and methods robust to weak instruments in non-normal and heteroskedastic set

tings. A re-analysis ofthe retums to education based on Angrist and Krueger (1991) data

is also provided.

Key words: exact inference; median regression; quantile regression; sign test; het

eroskedasticity; non-nonnality; dependence; Monte Carlo test; projection techniques; con

fidence distribution; endogenenity; structural models; nonlinear models; instrument; weak

instrument; consistency.
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Introducfion
Tout le monde croit aux erreurs normales, disait Henri Poincaré1, les mathématiciens parce

qu’ils s’imaginent que c’est un fait d’observation, et les observateurs que c’est un théorème

mathématique.

Quand en économétrie, on relâche l’hypothèse de normalité des erreurs, c’est très souvent

pour y revenir en ayant recours à des approximations asymptotiques. Ainsi, l’inférence «

à la Wald » est couramment utilisée : on calcule un estimateur, puis son comportement

asymptotique grâce à un théorème central limite, on en déduit ensuite des tests et des ré

gions de confiance asymptotiques.

Pourtant, de nombreuses études empiriques ou par simulation soulignent les limites

des approximations asymptotiques. Les exemples de tests qui présentent des distortions de

niveau en échantillon fini sont nombreux [pour des exemples eti séries temporelles, voir

Dufour (1981), Campbell et Dufour (1995, 1997) et dans le contexte d’une régression sur

la médiane, voir Buchinsky (1995), DeAngelis, Hall et Young (1993), Dielman et Pfaffen

berger (19$8a, 1988b)]. La normalité qu’elle soit imposée par le modèle paramétrique ou

approchée en asymptotique ne vient donc pas toujours d’un fait d’observation.

Les limites des méthodes asymptotiques sont aussi bien connues dans la littérature sta

tistique. On sait depuis Bahadur et Savage (1956) qu’il n’existe pas de procédure de test

valide et puissante en échantillon fini pour tester une moyenne si on ne spécifie pas plus

ta forme de la distribution. La conséquence en est qu’à distance finie, un test basé sur la

distribution asymptotique a une taille qui peut arbitrairement dévier de son niveau nominal.

En d’autres termes, la moyenne n’est pas testable dans un modèle non paramétrique. Pour

décrire une procédure de test qui soit valide en présence d’hétéroscédasticité de forme ar

bitraire, il est nécessaire de recourir â une mesure de localisation, comme la médiane.

Lehmann et Stem (1949) nous indiquent par ailleurs qu’il existe des procédures robustes

à l’hétéroscédasticité de forme arbitraire : les procédures basées sur les signes. Ces deux

résultats de la théorie des tests impliquent, entre autres, que les méthodes asymptotiques,

Plus précisément, Henri Poincaré rapporte les dires d’un collègue dans la préface de son ouvrage Ther
modenarnique, 1908 «un physicien éminent me disait un jour à propos de la loi des erreurs tout le monde y
croit fermement parce que les mathématiciens s’imaginent que c’est un fait d’observation, et les observateurs
que c’est un théorème mathématique.»
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en particulier celles qui s’appuient sur la moyenne, ne permettent pas de contrôler le ni

veau des tests en échantillon fini, et ce, même lorsque qu’elles sont dites « corrigées de

l’hétéroscédasticité et de l’autocorrélation (HAC) ». Elles ne sont pas valides à distance

finie. Utiliser la normalité asymptotique n’est donc pas toujours ce que conseillerait un

théoricien.

Un autre épisode de l’histoire économétrique a renforcé la méfiance que peut inspi

rer l’inférence « à la Wald» : celui des instruments faibles. Lorsqu’un modèle structurel

fait intervenir des variables explicatives endogènes, c’est-à-dire corrélées avec le terme

d’erreur, on a habituellement recours à des méthodes instrumentales. Les instruments sont

des variables auxiliaires exogènes, c’est-à-dire non corrélées avec le terme d’erreur, qui

vont assurer l’identification des paramètres du modèle et permettre d’inférer sur leurs va

leurs. Pour ce faire, ils doivent être pertinents, c’est-à-dire bien corrélés avec les variables

explicatives endogènes. Lorsqu’ils ne le sont que Jaiblement, ils ne permettent pas de re

trouver une bonne identification du paramètre (cas de non-identification ou de quasi-non

identification). En présence d’instruments faibles ou en l’absence d’identification, les sta

tistiques de type Wald ont des comportements asymptotiques inhabituels et les tests asymp

totiques qui en découlent ne sont pas valides.

La littérature sur les instruments faibles met fortement en garde contre les défauts

des méthodes asymptotiques habituelles qui s’appuient sur une hypothèse d’identification

et sur la normalité asymptotique des estimateurs. Elle rappelle aussi qu’if existe des

statistiques pivotales robustes aux problèmes d’identification à partir desquelles on peut

construire des tests valides. La première d’entre elles est la statistique d’Anderson et Rubin

(AR) [Anderson et Rubin (1949)]. D’autres ont suivi [Kleibergen (2002, 2005, forthco

ming), Moreira (2001, 2003), voir aussi Dufour et Jasiak (2001), Stock et Wright (2000),

Dufour et Taamouti (2005), .. .]. Cette littérature amène à réfléchir sur la mise en oeuvre

de l’inférence. Elle remet l’accent sur l’importance des statistiques pivotales.

Partir des tests et d’une statistique pivotale pour en dériver un système d’inférence est

classique en statistique. Cette démarche permet de plus de redécouvrir différentes notions

moins communément utilisées en économétrie.
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Encore faut-il que de tels pivots soient disponibles. C’est à cela que répond le résultat de

Lehmann et Stem en échantillon fini, dans un modèle avec hétéroscédasticité de forme

arbitraire, une transformation par les signes peut aider à construire des pivots.

Dans cette thèse, nous proposons un système d’inférence exacte en échantillon fini pour

des modèles de régression semi-paramétriques sur la médiane. A partir de statistiques pivo

tales basées sur les signes des résidus, nous construisons des tests de Monte Carlo [Dwass

(1957), Bamard (1963), Dufour (2006)] qui exploitent la distribution exacte de ces statis

tiques. Le niveau de ces tests simultanés est contrôlé quelle que soit la taille de l’échantillon

et ce, pour des formes arbitraires d’hétéroscédasticité et de dépendance non-linéaire. Nous

construisons ensuite des régions de confiance simultanées en inversant ces tests, et des tests

d’hypothèses plus générales grâce à des techniques de projection [Dufour et Kiviet (1998),

Dufour et Jasiak (2001), Dufour et Taamouti (2005)]. Nous étudions ensuite d’autres outils

d’inférence qui ont jusqu’à présent reçu moins d’écho dans la littérature économétrique

la fonction p-value et la distribution de confiance. L’estimateur constitue enfin la dernière

brique de ce système d’inférence. Cette approche inférentielle commence donc par les tests

et finit par l’estimateur puisque celui-ci ne présente d’intérêt que si te paramètre est identi

fiable.

Différents modèles sont étudiés tout au long de la thèse. Nous commençons par un

modèle de régression linéaire, puis nous étendons la méthode aux régressions non-linéaires

et aux modèles structurels. Cette thèse se compose de trois essais.

Nous étudions dans le premier essai la construction de tests et de régions de confiance

dans un modèle de régression linéaire sur la médiane. Nous supposons que le processus

d’erreur est de médiane nulle conditionnellement aux variables explicatives et à son propre

passé sans imposer de restriction paramétrique supplémentaire sur sa distribution. Celle-ci

peut être non gaussienne, hétéroscédastique ou bien présenter une dépendance sérielle de

forme arbitraire, ce qui inclut les processus ARCH, GARCH et de volatilité stochastique.

Seule est exclue dans un premier temps la dépendance linéaire. La transformation par les

signes des résidus contraints permet de définir des statistiques de test dont la distribution
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ne dépend pas de paramètres de nuisance et est aisément simulable quelle que soit la taille

de l’échantillon. La méthode des tests de Monte Carlo ainsi que celle des projections nous

permettent tour à tour de construire des tests simultanés exacts et des régions de confiance

pour le vecteur de paramètres, puis des tests et des régions de confiance valides pour n’im

porte quelle transformation possiblement non linéaire, et ce, quelle que soit la taille de

l’échantillon.

En revanche, les statistiques de signes que nous utilisons ne sont plus pivotales

lorsque le processus d’erreur est linéairement dépendant (cas d’un ARMA stationnaire,

par exemple). La matrice de variance asymptotique constitue dans ce cas un paramètre de

nuisance. Les méthodes HAC standard nous permettent de le corriger asymptotiquement.

La procédure de Monte Carlo développée précédemment est alors asymptotiquement va

lide sous des hypothèses d’existence de moment et de densité plus faibles que les méthodes

asymptotiques habituelles. De plus, elle ne requiert pas d’approximer des paramètres in

connus (ce qui, au contraire, constitue une des principales difficultés des méthodes des

noyaux par exemple).

Les études par simulation suggèrent qu’elle est plus performante que les méthodes

asymptotiques habituelles pour des processus très hétérogènes ou lorsque la taille de

l’échantillon est petite. Cette méthode est donc particulièrement adaptée à l’étude des

données financières qui sont souvent très hétéroscédastiques ainsi qu’aux analyses qui

s’appuient sur un faible nombre d’observations (séries temporelles, études inter-régionales,

données d’enquête, .
.

L’approche inférentielle basée sur les tests permet de mettre en avant d’autres outils

moins communément utilisés en économétrie. Dans le deuxième essai, nous reprenons et

étudions, la notion de distribution de confiance associée à une statistique de test qui est une

réinterprétation des distributions fiducielles de Fisher [f isher (1930), Efron (199$), Schwe

der et Hjort (2002)]. La fonction p-value qui en découle associe un degré de confiance à

chaque valeur testée du paramètre, étant donnée la réalisation des données. Distributions

de confiance et fonctions p-value constituent un équivalent fréquentiste aux distributions

a posteriori bayésiennes. Elles résument les résultats des tests et en donnent une illustra-
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tion graphique. La distribution de confiance est pourtant rarement utilisée en économétrie

car elle ne se définit aisémment que dans le cas d’un paramètre réel et requiert l’utilisation

d’une statistique pivotale. La fonction p-value peut, elle, être étendue au cas d’un paramètre

multidimensionnel. Notre objectif est d’étendre ces notions au cas multidimensionnel dans

le contexte d’une régression sur la médiane. La transformation par les signes nous permet

de construire des statistiques pivotales sans recourir à des hypothèses paramétriques. Nous

calculons des fonctions p-value simulées à partir de tests de Monte Carlo, puis des versions

projetées pour chaque composante individuelle du paramètre. Celles-ci donnent à la fois

une illustration graphique de l’inférence et du degré d’identification du paramètre. Cepen

dant, comme elles s’appuient sur des statistiques discrètes, nous n’avons que des versions

approchées des notions initiales.

Le deuxième objectif de cet essai est d’associer un estimateur à la procédure d’infé

rence. Pour ce faire, nous suivons le principe d’inversion de test de Hodges et Lehmann

[Hodges et Lehmann (1963)], et proposons d’utiliser comme estimateur la valeur du para

mètre associé au plus haut degré de confiance (soit à la plus forte p-value). Nous montrons

que l’estimateur de signe qui en découle est sans biais pour la médiane quand les erreurs

sont symétriques et qu’il partage les propriétés d’équivariance de l’estimateur « Least Ab

solute Deviations (LAD) ». Il est aussi convergent et asymptotiquement normal sous des

conditions plus faibles que l’estimateur LAD.

En échantillon fini, tes simulations suggèrent qu’il est supérieur à t’estimateur LAD,

du point de vue du biais et de l’erreur quadratique moyenne, pour des processus très

hétéroscédastiques ou possédant des queues de distribution épaisses.

Le troisième essai porte sur les modèles structurels et non-linéaires. L’échec des mé

thodes asymptotiques usuelles dans les modèles structurels motive fortement une étude à

distance finie. Pourtant, la plupart des procédures disponibles dans la littérature s’appuient

sur un modèle paramétrique ou ne sont qu’asymptotiquementjustifiées. Dans un cadre non

paramétrique, seules les procédures de rang ont été adaptées aux échantillons finis. Ce troi

sième essai présente une procédure valide quelle que soit la taille de l’échantillon et robuste

à l’hétéroscédasticité de forme arbitraire. Nous utilisons une version de la propriété de pi-
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votalité des signes adaptée à un modèle avec instruments. Les tests qui en découlent sont

exacts et ne dépendent pas du degré d’identification du paramètre. Ils restent valides en

présence d’instruments faibles ou de problème d’identification du paramètre.

L’approche que nous suivons peut aussi s’interpréter en termes de régressions artifi

cielles. Les signes des résidus contraints sont régressés sur des instruments auxiliaires dans

l’esprit d’Anderson et Rubin tAnderson et Rubin (1949), Dufour (2003)]. Ce type de pro

cédure a cependant le défaut de perdre de la puissance lorsque beaucoup d’instruments

sont utilisés. Ceci pose la question des instruments à inclure dans le modèle en cas de suri

dentification. Nous étudions deux concepts d’optimalité et proposons d’utiliser la méthode

de partage de l’échantillon [ «spiit sample », Dufour et Jasiak (2001)] pour calculer des

versions approchées de ces instruments optimaux.

Les simulations montrent que notre approche est supérieure aux méthodes usuelles (y

compris celles qui sont robustes à la présence d’instruments faibles) lorsque les erreurs sont

non gaussiennes et hétéroscédastiques.
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Chapitre 1

Finite-sample distribution-free inference in linear median

regressions under heteroskedasticity and nonhinear

dependence ofunknown form



$

1. Introduction

The Laplace-Boscovich median regression has received a renewed interest since two

decades. This method is known to be more robust than least squares and easily allows

for heterogeneous data [see Dodge (1997)]. It has recently been adapted to models in

volving heteroskedasticity and autocorrelation [Zhao (2001), Weiss (1990)], endogeneity

[Amerniya (1982), Poweil (1983), Hong and Tamer (2003)], nonlinear functional forms

[Weiss (1991)] and has been generalized to other quantile regressions [Koenker and Bas

sett (197$)]. Theoretical advances on the behavior ofthe associated estimators have com

pleted this process [Poweil (1994), Chen, Linton, and Van Keilegom (2003)]. In empincal

studies, partly thanks to the generalization to quantile regressions, new fieÏds of potential

applications were bom.’ The recent and fast development of computer technology clearly

stimulates interest for these robust, but formerly viewed as too cumbersome, methods.

Linear median regression assumes a linear relation between the dependent variable y

and the explanatoiy variables x. Only a nuli median assumption is imposed on the dis

turbance process. Such a condition of identification “by the median” can be motivated by

fundarnental resuits on nonparametric inference. Since Bahadur and Savage (1956), it is

known that without strong distributional assumptions (such as normality), it is impossible

to obtain reasonable tests on the mean ofi.i.d. observations, for any sample size. Moments

are not empirically meaningful without any further distributional assumptions. This form

of non-identification can be etiminated, even in finite samples, by choosing another mea-

sure of central tendency, such as the median. Hypotheses on the median of non-normal

observations can easily be tested by signs tests [see Pratt and Gibbons (1981)]. In nonpara

metric setups, one may expect models with median identification to be more appropriate

than their mean counterpart.

Median regression (and related quantile regressions) provides an attractive bridge be

tween parametric and nonparametric models. Distributional assumptions on the distur

bance process are relaxed but the functional form remains parametric. Associated estima

‘The reader is referred to Buchinsky (1994) for an interpretation in terms of inequality and mobility topics
in the U.S. labor market, Engle and Manganelti (1999) for an application in Value at Risk issues in finance
and Koenker atid Hallock (2001), Buchinsky (1998), for exhaustive reviews ofthis literature.
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tors, such as the least absolute deviations (LAD) estimator, are more robust to outiiers than

usua! LS methods and may be more efficient whenever the median is a better measure of

location than the mean. This holds for heavy-tailed distributions or distributions that have

mass at zero. They are especiaily appropriate when unobserved heterogeneity is suspected

in the data. The current expansion of such sernipararnetric” techniques refiects an inten

tion to depart from restrictive parametric framework [see Poweil (1994)]. However, reiated

inference and confidence intervals remain based on asymptotic normality approximations.

This reversai to normal approximate inference is certainiy disappointing when so much

effort bas been made to get rid ofparametric modeis.

In this paper, we show that a testing theory based on residual signs provides an entire

system of finite-sample exact inference for a linear median regression mode!. The !eve!

of the tests is provably equal to the nominal level, for any sample size. Exact tests and

confidence regions rernain valid under general assumptions involving heteroskedasticity of

unknown form and nonlinear dependence.

The starting point is a weli known resuit of quasi-irnpossibiiity in the non-parametric

statisticai literature. Lehmann and Stem (1949) proved that inference procedures that are

valid under conditions of heteroskedasticity ofunknown form when the number of observa

tions is finite, must contro! the level ofthe tests conditiona! on the abso!ute values [see also

Pratt and Gibbons (1981), Lehmann (1959)]. This result has two main consequences. First,

sign-based methods, which do controi the conditionai ievei, are a generai way 0f producing

vaiid inference for any sampie size. Second, ail other methods, including the usuai het

eroskedasticity and autocorrelation corrected (HAC) methods developed by White (1980),

Newey and West (1987), Andrews (1991) and others, which are flot based on signs, are not

proved to be vaiid for any sample size. Aithough this provides a compelling argument for

using sign-based procedures, the latter have barely been exploited in econometrics. Our

point is to stress their robustness and to generalize their use to median regressions.

To our knowiedge, sign-based methods have flot received much interest in economet

rics, cornpared to ranks or signed ranks methods. Dufour (1981), Carnpbell and Dufour

(1991, 1995), Wright (2000), derived exact nonparametric tests for different time series

modeis. In a regression context, Boldin, Simonova, and Tyurin (1997) deveioped inference
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and estimation for linear models. Thcy presented both exact and asymptotic-based infer

ences for i.i.d. observations, whereas for autoregressive processes with i.i.d. disturbances,

only asymptotic justification was available. Our work is positioned in the following of

Boldin, Simonova, and Tyurin (1997). We keep sign-based statistics related to locally opti

mal sign tests, which are simple quadratic forms and can easily be adapted for estimation.

However, we extend their distribution-free properties to allow for a wide array of nonlinear

dependent schemes. We propose to conjugate them with projection tecimiques and Monte

Carlo tests to systernaticalty derive exact confidence sets.

The pivotality ofthe sign-based statistics validates the use of Monte Carlo tests, a tech

nique proposed by Dwass (1957) and Bamard (1963). The Monte Carlo metliod, adapted to

discrete statistics by a tie-breaking procedure [Dufour (2006)], yields exact simultaneous

confidence region for 3. Then, conservative confidence intervals (CIs) for each component

ofthe parameter (or any real function of the parameter) are obtained by projection [Dufour

and Kiviet (1998), Dufour and Taamouti (2005), Dufour and Jasiak (2001)]. Exact Cis as

they are valid can be unbounded for nonidentifiable component. That resuits from the ex

actness of the method and insures the tme value of the component belongs to exact CIs with

probability higher than 1 — c. In practice, computation of bounds of confidence intervals

(or confidence sets) requires global optimization algorithrns such as simulated annealing

[see Goffe, ferrier, and Rogers (1994)].

Sign-based inference methods constitute an alternative to inference derived from the as

ymptotic behavior of the well known LAD estimator. The LAD estimator (such as related

quantile estimators) is consistent and asymptotically normal in case of heteroskedasticity

[PowelI (1984) and Zhao (2001) for efficient weighted LAD estimator], or temporal de

pendence [Weiss (1991)]. fitzenberger (1997b) extended the scherne ofpotential temporal

dependence including stationary ARMA disturbance processes. Horowitz (1998) proposed

a smoothed version of the LAD estimator. At the same time, an important problem in the

LAD literature consists in providing good estimates of the asymptotic covariance matrix,

on which inference relies. Poweil (1984) suggested kemel estimation, but the most wide

spread method of estimation is the bootstrap. Buchinsky (1995) advocated the use of design

matrix bootstrap for independent observations. In dependent cases, f itzenberger (l997b)
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proposed a moving block bootstrap. Finally, HaIm (1997) suggested a Bayesian bootstrap.2

Other notable areas of investigation in the L1 literature concem the study of nonlinear

ffinctional forms and structural models with endogeneity {“censored quantile regressions”,

Poweil (1984, 1986) and Fitzenberger (l997a), Buchinsky and J. (1998), “simultaneous

equations”, Amemiya (1982), Hong and lamer (2003)]. More recently, authors have been

interested in allowing for misspecification [Kim and White (2002), Komunjer (2005), Jung

(1996)].

In the context of LAD-based inference, kernel techniques are sensitive to the choice

of kemel function and bandwidth parameter, and the estimation of the LAD asymptotic

covariance matrix needs a reliable estimator ofthe error term density at zero. This may be

tricky especially when disturbances are heteroskedastic. Besides, whenever the normal dis

tribution is flot a good finite-sampie approximation, inference based on covariance matrix

estimation may be problematic. from a finite-sampie point ofview, asymptoticaliyjustified

methods can be arbitrariÏy unreliable. Test levels can be far from their nominal size. One

can find examples of such distortions for time series context in Dufour (1981), Campbell

and Dufour (1995, 1997) and for L1-estimation in Buchinsky (1995), De Angelis, Hall,

and Young (1993), Dielman and Pfaifenberger (1988a, 1988b). Inference based on signs

constitutes an alternative that does flot suifer from these shortcomings.

We study here a linear median regression model where the (possibly dependent) distur

bance process is assumed to have a nuil median conditional on some exogenous explanatory

variables and its own past. Ibis setup covers non stochastic heteroskedasticity, standard

conditional heteroskedasticity (like ARCH, GARCH, stochastic volatility models, ...) as

well as other forms of nonlinear dependence. However, linear autocorrelation in the resid

uals is not allowed. We first treat the problem of inference and show that pivotai statistics

based on the signs of the residuals are available for any sample size. Hence, exact infer

ence and exact simuttaneous confidence region on /3 can be derived using Monte Carlo

tests. For more general processes that may involve stationary ARMA disturbances, these

statistics are no longer pivotal. The serial dependence parameters constitute nuisance pa

2The reader is referred to Buchinsky (1995, 1998), for a review and to Fitzenberger (1997b) for a com
parison between these methods.
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rameters. However, transforming sign-based statistics with standard HAC methods allows

to asymptotically get rid of these nuisance pararneters. We thus extend the validity of the

Monte Carlo method. For these kinds of processes, we loose the exactness but keep an

asymptotic validity. In particular, this asymptotic validity requires less assumptions on

moments or the shape of the distribution (sucli as the existence of a density) than usual

asymptotic-based inference. Besides, we do flot need to evaluate the disturbance density at

zero, which constitutes one of the major difficulties of kernel-based rnethods. In practice,

we derive sign-based statistics from locally most powerful test statistics. We obtain exact

simultaneous confidence region and then, conservative confidence intervals for each com

ponent or any real function of 3 by projection techniques. Once again, we stress the fact

that sign-based statistics can provide finite-sample inference which is flot the case for usual

inference theories associated with LAD and other quantile estimators, which rely on their

asymptotic distributions.

The paper is organized as follows. In section 2, we present the model and the notations.

Section 3 contains general resuits on exact inference. They are applied to median regres

sions in section 4. In section 5, we derive confidence intervals at any given confidence level

and illustrate the method on a numerical example. Section 6 is dedicated to the asymptotic

validity of the finite-sample inference method. In section 7, we give simulation resuits

from comparisons to usual techniques. Section 8 presents illustrative applications: testing

the presence of a drift in the standard and poor’s composite price index series, and testing

for 3 convergence between levels of per capita output across the U. S. States. Section 9

concludes. Appendix A contains the proofs.

2. Framcwork

2.1. Model

We consider a stochastic process W {W, (Yt, x) : Q — R»l, t = 1,2, . . .} defined

on a probability space (Q, F, P). Let {l47, FL} t=1,2,... be an adapted stochastic sequence,

i.e. is a u-fietd in Q such that F8 . for s < t and u(Wi,. . . , W) C J, where
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o-(W1,. .. , W) is the u-algebra spanned by W1,. .. , W. W = (y, x), where y is the

dependent variable and xt = (Xti, . .. , x)’, a p-vector of explanatory variables. The xt ‘S

may be random or fixed.

We assume that Yt and Xt satisfy a linear model and we shall impose in the following some

conditions on the median ofthe disturbance process:

yj xt3+u, t 1,... ,n. (2.1)

In the following, y = (yi, . - y1)’ e R’ stands for the dependent vector, X = [xi

for the n x p explanatoiy matrix. /3 e R is the vector of parameters, and

n = (n1, . .. , n,)’ e R’ the disturbance vector. Moreover, the distribution function

of’u conditional on X is denoted Ft(.Ixi,. .. , xv).

in the classical linear regression framework, {n, t = 1, 2, .
. .} is assumed to be a

martingale difference with respect to J = cr(Wi, . .. , W,), t = 1, 2

Definition 2.1 MARTINGALE DIFFERENCE. Let {Ut, J : t = 1, 2, . . .} be an adapted

stochastic sequence. Then {u, t = 1, 2,
.. .} is a martingale dfference sequence with

respect to {.T, t = 1, 2, .} /ff

= O, Vt> 1.

We depart from this usual assumption. Indeed, our aim is to develop a framework that

is robust to heteroskedasticity of unknown form. from Bahadur and Savage (1956), it is

known that inference on the mean ofi.i.d. observations of a random variable without any

further assumption on the form of its distribution is impossible. Such a test has no power.

This problem of non-testability can be viewed as a form of non-identification in a wide

sense. Unless relatively strong distributional assumptions are made, moments are not em

pirically meaningftil. Thus, if one wants to relax the distributional assumptions, one must

choose another measure of central tendency such as the median. The median is in particular

weli adapted if the distribution of the disturbance process does flot possess moments. As
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a consequence, in this median regression framework, the martingale difference assumption

will be replaced by an analogue in terms ofrnedian. We define the median-martingale dif

ference or shortly said, inediangaÏe that can be stated unconditional or conditional on the

design matrix X.

Definition2.2 STRICT MEDIANGALE. Let t = 1,2.. .}beanadaptedsequence.

Then {rit, t = 1, 2, . . .} is a strict mediangale with respect to {F, t = 1, 2, . . .} (if

P[ui <0] = P[ui > 0] = 0.5,

P[u < 0IF_i] P{u > 0IF_i] 0.5, for t > 1.

Definition2.3 STRICT CONDITIONAL MEDIANGALE. Let t 1,2.. .} be

an adapted sequence and F = u(uY,. . ,u,, X). Then {Ut, t = 1,2,. . .} is a strict

mediangale conditional on X with respect to {, t = 1,2,. . .} ff

P[ui <OIX] = P[ui > OIX] = 0.5,

P[u <Ojui,...,’ut_i,X] = P[u > 0ju1,...,u_1,X] =0.5, fort >1.

Note that the above distributions allow rit to have a discrete distribution except at zero. 1f

the latter constraint is retaxed, we get that following definition.

Definition 2.4 WEAK CONDITIONAL MEDIANGALE. Let {rit, t = 1, 2. . .} be an

adapted sequence and 1 = u(u1,... ,rit, X). Then {Ut, t 1, 2,. .} is a weak median

gale conditional on X with respect to {F, t = 1,2,. . .1 ‘ff

P{n1 > OjX] P[ui <0X],

P[u > 0ri1,. . . X] = P[u < 01111,. .. X], for t 2, . . . ,ri.
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The sign operator s R —* {—1, O, 1} is defined as

f 1, ifa E A,
s(a) = 1[o,+)(a) — 1(_,o](a), 1A(a) = (2.2)

L. O, ifa A.

For convenience, the notation wifl be extended to vectors. Let n e R” and s(n), the n

vector composed by the signs ofits components.

Stating that {Ut, t = 1, 2, .
. .} is a weak mediangale with respect to {F, t 1, 2, .

.

is exactly equivalent to assuming that {3(Ut), t = 1,2, . . .} is a martinga’e difference with

respect to the same sequence of sub-o- algebras {F, t = 1, 2, .
. .}. However, the weak

conditional mediangale concept as defined before differs from a martingale difference on

the signs because of the conditioning upon X. Indeed, the reference sequence of sub-u

algebras is usually taken to { u(Wi, . . . , W), t = 1, 2,. . .}. Here, the reference

sequence is {F = u(W1,. . , W, X), t = 1,2,.
. .}. Conditional mediangale requires

conditioning on the whole process X. We shah see later that asymptotic inference may be

available under weaker assumptions, as a classical martingale difference on signs or more

generally some mixing concepts on {S(Ut), u(W1,. .. , t = 1,2,.
. .}. However, the

conditional mediangale concept allows one to develop exact inference (conditional on X).

We have replaced the difference of martingale assumption on the raw process {Ut, t =

1,2, .

. .} by a quasi-simihar hypothesis on a robust transform ofthis process {S(Ut), t

1, 2, . . .}. Below we will see it is relatively easy to deal with a weak mediangale by a

simple transformation of the sign operator. b simplify the presentation, we shah focus on

the strict mediangale concept. Therefore, our model will rely on the fohlowing assumption.

Assumption Al STRICT CONDITIONAL MEDIANGALE. The colnponents of u =

(u1,. . . , n,,) satisfy a strict rnediangaÏe conditional on X.

It is easy to see that Assumption Al entails:

med(niIxi,...,x,,) =0,

=0, t=2,...,n,
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Hence, we are in a median regression context. Our last remark concems exogeneity.

As long as the Xt ‘s are strongly exogenous explanatory variables,3 the conditional me

diangale concept is equivalent to usual martingale difference for signs with respect to

J=o-(I’Vi,...,Wt), t=1,2

Proposition 2.5 MEDIANGALEEXOGENEITY. Suppose {xt: t = 1,... ,n}isastrongly

exogenous processJôr t and

P{’ui > 0] P[’ui <0] = 0.5,

> 0j, . . . ,u_y,xl,. .. ,x] = P[u <Oui,... ,ut_i,Xi,. . . ,x] = 0.5.

Then {Ut, t N} is a strict mediangale conditional on X.

Model (2.1) with the Assumption AI allows for very general forms ofthe disturbance dis

tribution, including asymrnetnc, heteroskedastic or dependent ones, as long as conditional

medians are 0. We stress that neither density nor moment existence are required, which

is an important difference with asymptotic theory. Indeed, what the mediangale concept

requires is a form of independence in the signs of the residuals. This extends resuits in

Dufour (1981) and Campbell and Dufour (1991, 1995, 1997).

Asymptotic normality of the LAD estimator is presented in its most general way in

Fitzenberger(1997b). It holds under some mixing concepts on {S(Ut), u(Wi, . .. , W), t =

1, 2, . . .1 and an orthogonality condition between {S(ut), t = 1, 2,. . .} and {Xt, t =

1, 2, .

. .}. However, this requires additional assumptions on moments.4 With such a choice,

testing is necessarily based on approximations (asymptotic or bootstrap). Here, we focus

on valid finite-sampi e inference without any further assumption on the form of the distrib

utions. In order to conduct a ffilly exact method, we have to consider Assumption Al.

3X is strongly exogenous for if X is sequentially exogenous and if Y does flot Granger cause X, [sec
Gouriéroux and Monfort (1995a)]

41n fitzenberger (1997b), LAD and quantile estimators are shown to be consistent and asymptoticalty
normal if amongst other, E[xtso(ut)j = O, Vt 1,.. . , n, densities exist and second-order moments for
(Ut, Xt) are finite.
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2.2. Special cases

The above ftamework obviously covers independence but also a large spectrum of het

eroskedasticity and dependence pattems. For example, suppose that

= . . . , x) , t = 1, . . .

where E,. . . ,a, are i.i.d. conditional on X = [x1,. . . ,x,]’. More generally, many depen

dence schemes are also covered: for example, any model of the form

zLy=

Ut = JttXi, ,Xti ,‘U1, , , t = 2, . . . , ri

where cy, ... , are independent with median O, u1(x1 Xt_i) and

Jt(Xi,. . . ,x,, ,n1, ... , ni), t = 2, . .. , n are non-zero with probability one. In

time series context, this includes:

1. ARCH(q) with non-Gaussian noise et:

• . u; ut—i) = o + i_i + • • + ŒqU_q

2. GARCH(p, q) with non-Gaussian noises et:

Xt_1 ,Ul, . . . , Ut_i)2 = û+iU_;+ +qU_q+7iU_i+

3. stochastic volatility models with non-Gaussian noises et:

Ut exp(w/2)ret

G1Wt_1 + + aiW_ +

V7, are. i.i.d.. random variables.
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The first example is especiatly relevant for cross-sectional data when procedures are ex

pected to be robust to heteroskedasticity. Other examples present robustness properties to

endogenous disturbance variance (or volatility) specification. Note again that the distur

bance process does flot have to be second-order stationary. For nonstationary processes

that satisfy the mediangale assumption, sign-based inference will work whereas ail infer

ence procedures based on asymptotic behavior of estimators may fail or require difficuit

validity proofs. Note finatly that the previous property is more general and does not specify

explicitly the functional form ofthe variance in contrast with an ARCH specification.

3. Exact finite-sample sign-based inference

The most common procedure for developing inference on a statistical model can be de

scribed as follows. f irst, one finds a (hopefully consistent) estimator; second, the asyrnp

totic distribution of the latter is established, from which confidence sets and tests are de

rived. Here, we shah proceed in the reverse order. We study first the test problem, then

build confidence sets, and finally estimators.5 Hence, resuits on the valïd finite-sample test

problem will be adapted to obtain valid confidence intervals and estimators.

3.1. Motivation

In econometrics, tests are often based on t or x2 statistics, which are derived from

asymptotically normal statistics with a consistent estirnator of the asymptotic covariance

matrix. Unfortcinately, in finite samples, these first-order approximations can be very

misleading. Test levels can be quite far from their nominal size: both the probability that

an asymptotic test rejects a correct nuli hypothesis and the probability that a component of

t3 is contained in an asymptotic confidence interval may differ considerably from assigned

nominal tevels. One can find examples of such distortions in the dynamic hiterature [see

for example Dufour (1981), Campbell and Dufour (1995, 1997) and Mankiw and Shapiro

(1986)]; on inference based on L1 estimators, see also Buchinsky (1995), De Angelis,

Hall, and Young (1993), Dielman and Pfaffenberger (1988a, 1988b). This remark usually

5For the estimation theory, the reader is referred to Coudin and Dufour (2005b).
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motivates the use of bootstrap procedures. In a sense, bootstrapping (once bias corrected)

is a way to make approximation doser by introducing artificial observations. However, the

bootstrap stili relies on approximations and in general there is no guarantee that the level

condition is satisfied in finite samples.

Another way to appreciate the nonvalidity of asymptotic methods in finite samples is

to recali a theorem established by Lehmann and Stem (1949). Consider testing whether n

observations are independent with common zero median:

H0 : X1, ... , X,, are independent observations

each one with a distribution symmetric about zero.

Testing H0 tums to check whether the joint distribution F,, of the observations belongs to

the set ?- = {F,, e F,, : F,, satisfies H0} without any other restriction. In other words, H0

allows for heteroskedasticity ofunknown form. For this setup, Lehmann and Stem (1949)

established the following theorem (recalled and proved in Pratt and Gibbons (1981), see

also Lehmann (1959).

Theorem 3.1 If a test has ÏeveÏ ci for H0, where O < ci < 1, then it must satisfy the

condition

P{RejectingHo XH ... IX] ci zinderH0 . (3.2)

The level of a valid test must equal ci conditional on the observation absolute values.

Theorem 3.1 also implies that any procedure that does flot satisfy condition (3.2) has size

one. Note that procedures typically designated as “robust to heteroskedasticity” or “I-TAC”

[see White (1980), Newey and West (1987), Andrews (1991), etc.] are flot proved to satisfy

condition (3.2), so they can have size one for any sample size.

Sign-based procedures do satisfy this condition. Besides, as we will show in the next

section, distribution-free sign-based statistics are available even in finite samples. They

have been used in the statistical literature to derive nonparametric sign tests. The combina

tion ofboth remarks give the theoretical basis for developing an exact inference method.
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3.2. Distribution-free pïvotal functions and nonparametric tests

When the disturbance process is a conditional mediangale, the joint distribution of the

signs of the disturbances is completely determined. These signs are mutually independent

equalling 1 with probability 1/2 and —1 with probability 1/2. We state more precisely this

resuit in the following proposition. We see also that the case with a mass at zero can be

covered provided a transformation in the sign operator definition.

Proposition 3.2 SIGN DISTRIBUTION. Under model (2.1), suppose the ermrs

(u1,. . . , u) satisfy a strict mediangale conditional on X [x1,. . . , x,]’. Then the vari

ables s(u1),..., s(u) are i.i.d. conditional on X according to the distribution

P[s(ut) 1 xi, . .. , x,] = P[s(u) = —lxi,. .. , x,] = , t 1, . . . , n. (3.3)

More generally, this resuit holds for any combination of t = 1, .. , n. 1f there is a

permutation ii : i
—

j such that mediangale property holds for j, the signs are i.i.d..

from the above proposition, it follows that the residual sign vector of the model con

strained to 43

s(y
- Xt3) [s(yi - x/3), ... , s(y - x/3)]’ (3.4)

has a nuisance-parameter-free distribution (conditional on X), i.e. it is a pivotai function.

its distribution is easy to simulate from a combination of n independent uniform Bernoulli

variables. furthermore, any fiinction of the fonu

T = T(s(y — X/3), X) (3.5)

is pivotai conditionai on X. Once the form of T is specified, the distribution ofthe statistic

T is totally determined and can also be simulated.
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Using Proposition 3.2, it is possible to construct tests for which the size is fully and

exactly controlled. Consider testing

H0(t30) t /3 = /3 against H1(/30) t /3 /30.

Under H0(/30), s(y — s(u), t = 1,... , n. Thus, conditional on X,

T(s(y — /30X), X) T(S7,, X) (3.6)

where S, (Si s7) and i,••• , s7, are i.i.d. random variables according to a uniform

Bernoulli distribution on {—1, 1}. A test with level c rejects the nuil hypothesis when

T(s(y — /30X), X) > CT(X, c) (3.7)

where cT(X, c) is the (1 — c)-quanti1e ofthe distribution of T(S7,, X).

This method can be extended to error distributions with a mass at zero, i.e.,

P[ui > OIX] = P[ui <0 IX],

P[u > DIX, ‘u1, ... u_] = P[ut <DIX, ‘uy,..., u_jj, t 2. (3.8)

Besides dependence, this specification attows for discrete distributions with a probability

mass at zero, i.e. we can have:

= O IX, ‘uy, ... , u_] = p(X, u, ... , ‘u) > 0 (3.9)

where the pt() are unknown and may vary between observations. A way out consists in

modifjing the sign function s(x) as follows:

(x, V) = s(x) + [ï — s(x)2]s(V — 0.5), where V U(0, 1), (3.10)
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If’ is independent of t then, in-espective ofthe distribution of t,

P[(u, ) = +1] = P[(u, V) = —Ï] = . (3.11)

Proposition 3.3 RANDOM1ZED SIGN DISTRIBUTION. Suppose (2.1) holds with the as

sumption that u1, ... , u. belong to a weak mediangale conditional on X. Let V1, ... , V,

be i.i.d random variables following a U(O, 1) distribution independent of u and X. Then

the variables t 4) are j. j. U. conditional on X with the distribution

P[t1X]=P[t=—ÏIX] =, t=1,...,n. (3.12)

Ail the procedures described above can be applied without any further modification.

4. Regression sign-based tests

In this section, we present sign-based test statisties that are pivots and provide power against

alternatives of interest. This will enabie us to build Monte Carlo tests relying on the exact

distribution of those sign-based statistics. Therefore, the level of those tests is exactly

controlled for any sample size.

4.1. Regression sign-based statïstics

The ciass of pivotai functions studied in the previous section is quite general. So, we

wish to choose a test statistic (the form of the T function) that can provide power against

alternatives of interest. Unfortunately, there is no uniformly most powerful test of

against 3 4 /3e. Hence, different alternatives may be considered. for testing Ho(t30) : =

against H1 (j3) /3 i30 in model (2.1), we consider test statistics of the following

form:

Ds(30, !2) = s(y — X/30)’Xf2(s(y — X/30),X)X’s(y — X/30) (4.13)

where !2(s(y — Xt30), X) is a p x p weight matrix that depends on the constrained signs

s(y — X/30) under H0(/30). Moreover, Q(s(y — X/30), X) is assumed to be positive
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definite.

Statistics ofthe form D8(f30, Q) include as special cases the ones studied by Boldin,

Simonova, and Tyunn (1997) and Koenker and Bassett (1982). Namely, on taking Q = I,

and !2 (X’X)’, we get:

$3(/3) = s(y — X430)’XX’s(y — X/30) = IIX’s(y —
X/30) 112 (4.14)

and

$F(/30) = s(y - X/30)’P(X)s(y - X/30) = IIX’s(y - Xt30)II,1 (4.15)

where P(X) X(X’X)’X’. In Boldin, Simonova, and Tyurin (1997), it is shown that

SB(/3) and SF(/30) can be associated with locally most powerful tests in the case of

i.i.d. disturbances under some regularity conditions on the distribution function (especially

[(O) = O).6 Their proof can easily be extended to disturbances that satisfy the mediangale

property and for which the conditional density atzero is the sarne ft(OIX) = f(OIX), Vt =

SF(f31) can be interpreted as a sign analogue of the Fisher statistic. More precisely,

$F(f30) is a monotonic transformation of the Fisher statistic for testing y = O in the re

gression ofs(y — Xf30) on X:

s(y—X/30) =X’y+v. (4.16)

Wald, Lagrange multiplier (LM) and likelihood ratio (LR) asymptotic tests for M

estimators, such as the LAD estimator, in L1 regression are developed by Koenker and

Bassett (1982). They assume i.i.d. errors and a fixed design matrix. In that setup, the LM

statistic for testing Ho(/30) /3 = f3 tums out to be exactly the SF(/30) statistic. The same

6The power fiinction ofthe Iocally most powerful sign-based test knows the faster increase when departing
from /. In the multiparameter case, the scalar measure required to evaluate that speed is the curvamre of
the power function. Restricting on unbiased tests, Boldin, Simonova, and Tyurin (1997) introduced different
localty most powerful tests corresponding to different definitions ofcurvature. SB(/30) maximizes the mean
curvature, which is proportional to the trace ofthe shape [see Dubrovin, fomenko, and Novikov (Ch. 2, pp.
76-$6, 1984) , or Gray (Ch. 21, pp. 373-380, 1998) , fora presentation ofvarious curvature notions].
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authors also remarked that this type of statistic is asymptoticalÏy nuisance-parameter-free.

It does flot require one to estimate the density ofthe disturbance at zero contrary to LR and

Wald-type statistics.

The Boldin, Simonova, and Tyurin (1997) interpretation can be extended to het

eroskedastic disturbances. in such a case, the locally optimal test statistic associated with

the mean curvature — i.e., the test with the highest power function in the vicinity ofthe nuli

hypothesis according to a trace argument — will be ofthe following form.

Proposition 4.1 In moUd (2.1), suppose the mediangale Assumption Al holds, and the

disturbances are heteroskedastic with conditionat densities f (. IX), i 1, 2 that are

continuousÏy dfferentiabÏe around zero and such that f(OIX) = O. Then, tue Ïocally

optimal sign test statistic associated with the mean curvature is

SB([3) s(y — X/30)’XX’s(y — X/30) (4.17)

where

f1(OX) O

f(OjX) X.

o ... f(OIX)

When the fj(OIx)’s are unknown, the optimal statistic is flot feasible. The optimal weights

must be replaced by approximations, such as weights derived from the normal distribution.

These test statistics can also be interpreted as GMM statistics which exploit the property

that {St 0 x’, Y} is a martingale difference sequence. We saw in the first section that this

property is induced by the mediangale Assumption Al. However, these are quite unusual

GMM statistics. Indeed, the parameter of interest is not defined by moment conditions in

explicit form. It is implicitly defined as the solution of some robust estimating equations

(involving constrained signs):

s(yt —X)0Xt =0.
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for i.i.d. disturbances, Godambe (2001) showed that these estimating functions are optimal

among ail the linear unbiased (for the median) estimating fiinctions at(41)s(yt — x/3).

For independent heteroskedastic disturbances, the set of optimal estimating equations is

—
0.

In those cases X (resp. ) can be viewed as optimal instruments for the linear model.

We now tum to linearly dependent processes. We propose to use a weighting matrix

directly derived from the asymptotic covariance matrix of s(y — X/30) ® X. Let us

denote this asymptotic covariance matrix by J, (s(y — X/30), X). We consider

— X/30),X) — X/30),X)’ (4.18)

where J(s(y — Xt30), X) stands fora consistent estimate of J(s(y — X/30), X) that can

be obtained using kemel-estimators, for example [see Parzen (1957), White (2001), Newey

and West (1987), Andrews (1991)]]. This leads to

D(/3o, = s(y — X/30)’XJ’X’s(y — X/30). (4.19)

J,(s(y — X/30),X) accounts for dependence among signs and explanatory variables.

Hence, by using an estimate of its inverse as weighting matrix, we perform a HAC

correction. Note that the correction depends on

in ail cases, H0(/30) is rejected when the statistic evaluated at /3 = /3 is large:

Ds(/30,S2) > c(X, ),

where cç (X, c) is a critical value which depends on the level a. Since we are looking at

pivotai ftmctions, the critical values can be evaluated to any degree ofprecision by simula

tion. A more elegant solution consists in using the technique of Monte Carlo tests, which
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can be viewed as a finite-sampte version ofthe bootstrap.

4.2. Monte Carlo tests

Monte Carlo tests have been introduced by Dwass (1957) and Bamard (1963) and can be

adapted to any pivotai statistic whose distribution can be simulated. For a general review

and for extensions in the case of the presence of a nuisance parameter, the reader is referred

to Dufour (2006).

Ail the tests presented above are on the same model: given a statistic T, the test rejects

the nuil hypothesis when T is large, i.e. when T c, where c depends on the level ofthe

test. Moreover, the conditional distribution of T given X is free of nuisance parameters.

Ail ingredients are present to apply Monte Carlo test procedures.

We denote by G(x) = P[T > x] the survival function, and by F(x) P[T < x] the

distribution fianction. Let T° be the observed value of T, and , T(N), N indepen

dent repiicates of T. The empirical p-value is given by

NGN(x)+1
pN(X)

N+1
(4.20)

where

GN(x) = 1[0,)(T — x).

Then we have

PN(T°) <Ï = I[(N±1)]
forO < <1,

where I[x] stands for the largest integer less than equal to x; see Dufour (2006). If N is

such that n(N + 1) is an integer, then P[J5N(T(°)) < n] n. The level of the test is exactly

controlled.

In the case of discrete distributions, the method must be adapted to deal with ties.

Indeed, the usual order relation on R is flot appropriate for comparing discrete realiza

tions that have a strictly positive probability to be equal. Different procedures have been

presented in the literature to decide what to do when ties occur. They can be classified

between randomized and nonrandomized procedures, both aiming to exactly controi back
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the level of the test. For a good review of this problem, the reader is referred to Coakley

and Heise (1996).

Here, we use a randomized tie-breaking procedure for evaluating empirical survival

ftrnctions in case of discrete statistics. The latter is based on replacing the usual order

relation by a lexicographic order relation can be used [see Dufour (2006)]. Each repli-

cation is associated with a uniforrn random variable ‘—‘ U(0, 1) to produce

the pairs (T(i), W(i)). The vector (147(0),. ..
, l’V(’)) is independent of (T(°),. . . , T(’)).

(T(), T17t)) ‘s are ordered according to:

> (T, 117(i)) {T > T or = and W())}.

This leads to the following p-value function:

NN(x)+1
PN(X)

N+1

where

= 1 — 1[o)(x — T()) + 10(T() — x)1[o,)(117() — 14/°).

Then

PN(T°) <]
I[(N±1)]

forO < < 1.

The randomized tie-breaking allows one to exactly control the level of the procedure. This

may also increase the power of the test.

Here, we consider testing Ho(/30) in (2.1) under a mediangale assumption on the errors

using a statistic of the form D$(f3, S7,). Take, for example, SF(3). After computing

Sf(/30) from the data, we choose N the number of replicates, such that (N +

1) is an integer, where c is the desired level. Then, we generate N replicates =

$(i)’X(X’X)’X’S(J) where is a realization of a n-vector of independent Bernoulli

random variables, and we compute ]5N{Sf°]. Finally, the Monte Carlo test rejects H0(30)
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with level c if pN[SF°] <cv.

5. Regression sign-based confidence sets

In the previous section, we have shown how to obtain Monte Carlo sign-based joint tests

for which we can exactly control the level, for any given finite number of observations.

In this section, we discuss how to use such tests in order to build confidence sets for /3
with known level. This can be done as follows. For each value e R, perform the

Monte Carlo sign test for H0 (/3e) and get the associated simulated p-value. The confidence

set C_(/3) that contains any /3o with p-value higher than c has, by construction, level

1 — c [see Dufour (2006)]. From this sirnultaneous confidence set for /3, it is possible, by

projection techniques, to derive confidence intervals for the components. More generally,

we can obtain conservative confidence sets for any transformation g(/3) where g can be any

kind ofreal function, including nonlinear ones.

Obviously, obtaining a continuous grid of W is flot realistic. We will instead require

global optimization search algorithms.

5.1. Confidence sets and conservative confidence intervals

Projection techniques yield finite-sample valid confidence intervals and confidence sets for

general functions of the parameter /3.7 The basic idea is the following one. Suppose a

simultaneous confidence set with level 1 — a for /3, C1_(/3), is available. Since

/3 e C1(/3) g(/3) E g(Cia(/3)), (5.1)

we have:

P[/3 e C1(/3)] 1-a .‘ P[g(/3) e g(C1(/3))] > 1-a.

7for examples of use in different settings and for further discussion, the reader is referred to Dufour
(1990, 1997), Abdelkhalek and Dufour (199$), Dufour and Kiviet (1998), Dufour and Jasiak (2001), Dufour
and Taamouti (2005).
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Thus, g(Ci_a(f3)) is a conservative confidence set for g(/3). If g(r3) is scalar, the interval

(in the extended real numbers)

Iq{Gl_Œ(13)J = inf g(13), sup g(/3)
3EC1_3)

has level 1 —

P inf g(/3) g(3) sup g(/3) 1—c. (5.2)

Hence, to obtain valid conseivative confidence intervals for the component /3k of the 3

parameter in the model (2.1) under mediangale Assumption Ai, it is sufficient to solve the

following numerical optimization problems where s.c. stands for “subject to the constraint”.

The optimization probiems are stated here for the statistic 8F:

5.C. PN($F(/3)) ,

s.c. PN(SFCØ)) o,

where PN is computed as proposed in the previous section, using N replicates 3f(i) ofthe

statistic 8F under the nuil hypothesis. This can be done easily in practice with a global

search optimization algorithm, like simulated annealing [see Goffe, Ferrier, and Rogers

(1994), and Press, Teukolsky, Vetterling, and flannery (2002)1. The method allows one to

perforrn tests for general hypotheses and to derive confidence sets. In the case of multiple

tests, an arbitraiy number of hypotheses can be tested without ever loosing control of the

overali level: rejecting at Ieast one true nuli hypothesis will not exceed the specified level

Q.
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Bi

Figure 1. Confidence regions provided by SF-based inference.

5.2. Numerical illustration

This part reports a numerical illustration. We generate the following normal mixture

process, for n = 50,

y = /3o + f3x + ne., t = 1, n, (5.3)

i.i.d. Ç N[0, 11 with probability 0.95
Ut ‘

N[0, 1002] with probability 0.05.

We conduct an exact inference procedure with N=999 replicates. The true process is gener

ated with ,3 = 0. We perform tests of H0 (3*)
$ ,3 = ,3* on a grid for 3*

= (/3,8fl
and retain the associated simulated p-values. As /3 is a 2-vector, we can provide a graph

ical illustration. To each value of the vector /3 is associated the corresponding simulated

p-value. Confidence region with level 1 — c contains ail the values of /3 with p-values big

ger than o Confidence intentais are obtained by projecfing the simuitaneous confidence

region on the axis of/30 or /3i’ see figure 1 and Table 1.

The obtained confidence regions mcrease with the level ard cover other confidence

regions with smaller level. Confidence regions are highly nonellipfic and thus may lead to

different results than an asymptotic inference. Concemmg confidence intervals, sign-based

ones appear to be largely more robust than OLS and White CI and are iess sensitive to

outiiers.

B

95%

I
ProjectDn-bfld 95% 0 i Bi
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Table 1. Confidence intervals.

OLS White 5F
95%CI [-4.57, 0.82] [-4.47, 0.72] [-0.54, 0.23]
9$%CI [-5.10, 1.35] [-4.98, 1.23] [-0.64, 0.26]

t31 95%CI [-2.50, 3.22] [-1.34, 2.06] [-0.42, 0.59]
9$%C1 [-3.07, 3.78] [-1.67, 2.39] [-0.57, 0.64]

6. Asymptotic tlieory

This section is dedicated to asymptotic resuits. We point out that the mediangale Assump

tion Al can 5e seen as too restrictive and exciudes some common processes whereas usual

asymptotic inference stili can be conducted on them. We relax Assumption Al to allow

random X that may flot be independent of ‘u. We show that the finite-sample sign-based

inference remains asymptotically valid. for a fixed number of replicates, when the num

ber of observations goes to infinity, the levet of a test tends to the nominal level. Besides,

we stress the ability of our methods to cover heavy-tailed distributions including infinite

disturbance variance.

6.1. Asymptotic distributions of test statîstics

In this part, we derive asymptotic distributions of the sign-based statistics. We show that

a HAC-corrected version of the sign-based statistic D8 (t3, J,’) in (4.19) ailows one to

obtain an asymptoticaliy pivotai function. The set ofassumptions we make to stabilize the

asymptotic behavior will be needed for further asymptotic resuits. We consider the iinear

model (2.1), with the following assumptions.

Assumption A2 MIXING. {(x, n)}t1,2 is a-mixing ofsize —r/(r — 2) with r > 2.8

Assumption A3 MOMENT CONDITION. E[s(u)xt] = 0, Vt 1,. . . , n, Vn N.

AssumptionA4 BOUNDEDNEss. Xt = (Xit,... ,x)’ andEIxiitjr < \ < J.,

l,...,p, t=1,...,n, VnEN.

8See White (2001) fora definition ofc-mixing.
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Assumption A5 NON-SJNGULAR1TY. J = var[Z 5(Ut)Xt] 1$ unformly positive

definhte.

Assumption A6 CONSISTENT ESTIMATOR 0f J. Q,t(t30) is synnnetric positive definite

unforrnÏy over n and P —

—
Œ

Theorem 6.1 ASYMPTOTIC DISTRIBUTION 0f STATISTIC SHAC. In model (2.1), with

Assumptions A2- A6, we have, under H0,

D3(0, )

Corollary 6.2 In moUd (2.1), suppose the mediangale Assumption Al and boundedness

Assumption A4 are fulfihled. IfX’X/n is positive definite unfornily over n and converges

in probability to a definite positive matrix, then, under H0,

SF(j30)
— x2().

When the mediangale condition holds, J reduces to E(X’X/n), and (X’X/n)’ is a

consistent estirnator of J’.

6.2. Asymptotic validity of Monte Carlo tests

We first state some general resuits on asymptotic validity of Monte Carlo based inference

methods. Then, we apply these resuits to sign-based inference methods.

6.2.1. Generalitïes

Let us consider a parametric or semiparametric model {M, / e }, where the parameter

3 is identified. Let S(/3) be a test statistic for H0CB0). Let c be the rate of convergence.

Under H0(/30), the distribution function of cS(f30) is denoted F1(x) and G7(x) is the

corresponding survival ftrnction. We suppose that F (x) converges aïmost everywhere to a

distribution function F(x). Let G(x) be the corresponding suiwival function. In Theorem

6.3, we show the following: if a series ofconditional survival functions Ô(xX71(w)) given
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X(w) satisfies

dn(xIXn(w)) —* G(x), with probability one,

where G does flot depend on the realization X(w), then G,1(x) can be approximated by

d(xIX(w)). Consequently, dn(xIXn(w)) can be seen as an approximation ofG(x) or

apseudo survival function of cS([30). Note that G(x) can depend on some parameters of

the distribution of X.

Theorem 6.3 GENERIC ASYM PTOTIC VALIDITY. Let S (/) be a test statisticfor testing

H0(/30) : 43 = /3 against H1(/30) : 43 3( in rnodeÏ (2.1). Suppose that, under H0(430),

P[cSn(/30) xX = Gri(Xn) = 1 — f,(xX,) —* G(x) a.e.,

where { c7, } is a sequence ofpositive constants and suppose that d (xjX (w)) is a series

ofsurvivalfunctions such that

d (x IX (w)) —G(x) with probability

Then

<ce] <cv. (6.1)

This theorem can also be stated in a Monte Carlo version. Following Dufour (2006), we

use empirical survival functions and empirical p-values adapted to discrete statistics in a

randomized way, but the replicates are flot drawn from the same distribution as the obsewed

statistic. However, both distribution functions resp. f7, and È7, converge to the same limit

F. Let U(N + 1) = (U(°), . ..
, UtN)) be a vector of N + 1 i.i.d. real variables drawn

from a U[0, 1] distribution, s is the observed statistic, and $7,(N) $4N)) a

vector of N independent replicates drawn from È. Then, the randomized pseudo empirical

survival hinction under the nuil hypothesis is

(N) (x, , S7,(N), U(N+i)) = 1— u(x—c7,S)+

(6.2)
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with u(x) = 1, (x), 6(x) = 1{o}. Note that [[x, n, S(N), U(N + 1)] is in a

sense an approximation ofi!(x). Thus it depends on the number of replicates, N, and the

number of observations, n. The randomized pseudo empirical p-value function is defined

as

(x)
N(x) +1

(6.3)

We can now state the Monte Carlo-based version of Theorem 6.3.

Theorem 6.4 MoNTE CARL0 TEST ASYMPTOTIC VALIDITY. Let SCB0) be a test
(0)stattsttcfor testing H0(t30) : 3 = /3 agatnst H1(/30) : /3 in mode? (2.1) andS the

observed value. Suppose that, tinder H0(/30),

P[cS(/30) > xX] = G(xIX) = 1
— F71(xIX)

—÷
G(x) a.e.,

where {c} is a sequence ofpositive constants. Let be a random variable with condi

tionaïsurvivaïfunction tfl(xlXlL) such that

P[c > xX,] = (xIX) = 1
— È,(xIX) .‘ G(x) a.e.,

n—œ

and (341),... , S”) be a vector of N independent replicates of where (N + 1)c is an

integer Then, the randomized version ofthe Monte Carlo test with Ïeve? c is asymptotically

vaÏid, i.e.

1irnp[)(/3) <cv] <ce. (6.4)

These resuits can be applied to sign-based inference method. However, Theorems 6.3

and 6.4 are much more general. They do not exclusively rely on asymptotic normality: the

limiting distribution may be different from a Gaussian one. Besides, the rate of convergence

may differ from
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6.2.2. Asymptotic vaIÏdity of sign-based inference

In mode! (2.1), suppose that conditions A2- A6 hold and consider the testing problem

H0(/30) = /J9 against H1 (f3) /

Let Ds(/3, J’) be the test statistic as defined in (4.19).

• Observe $Ft0 = Ds(t30, J,1). Draw N replicates of sign vector as if the n observa

tions were independent. The n components ofthe sign vectors are independent and

drawn from a 3(1, .5) distribution.

• Compute (SF(’), . .
, SF(N)), the N pseudo replicates of D5c50, X’X—’)

under the nuli hypothesis. We cal! them “pseudo” rep!icates because they are drawn

as if observations were independent.

• Draw N + 1 independent replicates (W(°),... , W(N)) from a U[ol] distribution and

form the couple (SF(i), !1V(i)).

• Compute N)
using (6.3).

• from Theorem 6.4, the confidence region {j3 € R?j’() c} is asymptotically

conservative with leve! at least 1 — . We reject 7i if f541’1)(/3) < c.

Remark that, contraiy to usual asymptotic tests, this method does flot require the exis

tence of moments nor a density on the {n; t = 1, 2,.
. .} process. Usual Wald-type

inference is based on the asymptotic behavior of estimators and consequently is more re

strictive. More moments existence restrictions are needed, see fitzenberger (1 997b) and

Weiss (1991). Besides, asymptotic variance ofthe LAD estimator involves the conditional

density at zero ofthe disturbance process {lLt; t 1,2, . . .} as unknown nuisance parame

ter. The approximation and estimation of asymptotic covariance matrix constitute a large

issue in asymptotic inference. This usually requires kemel methods. We get around those

problems by adopting the finite-sample sign-based procedure.
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7. Simulation study

In this section, we study the performance of sign-based methods compared to usual as

ymptotic tests based on OLS or LAD estimators with different approximations for their

asymptotic covariance matrices. We consider the sign-based statistics D8(/3, (X’X)1)

and D(/3, J1) when a correction is needed for linear serial dependence. We consider a

set of general DGP’s to illustrate different classical problems one may encounter in prac

tice. Resuits are presented in the way suggested by the theory. First, we investigate the

performance of tests, then, confidence sets.

We use the following linear regression model:

y=x/30+?i, t=1,...,n, (7.1)

where = (1, X2,t, x3,t)’ and t3D are 3 x 1 vectors. We denote the sample size n. We

investigate the behavior of inference and confidence regions for 13 general DGP’s that are

presented in Table 2. for the first 7 ones, {flt, t = 1, 2.
. j is i.i.d. or depends on the

explanatory variables and its past values in a multiplicative heteroskedastic or dependent

and stationary way,

= h(x, nt_y, . . , rl), t = 1, . . . , n (7.2)

In those cases, the error term constitutes a strict conditional mediangale given X (see As

sumption AI). Correspondingly, the levels of sign-based tests and confidence sets are per

fectly controlled. Next, we study the behavior of the sign-based inference (involving a

HAC correction) when inference is only asymptotically valid. In cases 8-10, Xt and Ut are

such that E(uxt) = O and E[sQut)xtj = O for all t. f inally, cases 11 and 12 illustrate

two kinds of second-order nonstationary disturbances. As we noted previously, sign-based

inference does flot require stationary assumptions in contrast with asymptotic tests derived

from CLT.

More precisely, cases 1 and 2 present i.i.d. normal observations without and with con

ditional heteroskedasticity. Case 3 involves outiiers in the error term. This can be seen

as an example of measurement enor in the observed y. Cases 4 and 5 involve other het
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Table 2. Simulated models.

CASE 1: Normal HOM: (X2,t, X3,t, Ut)’
ZU Ar(0, 13), t 1,. .. ,ri

CASE 2: Normal HET: (‘2,1, 3,t, tt)’
rd

N(0, 13)
u1 = min{3,max{0.21, ‘2,tI]} x t, t = 1,... ,ri

CASE 3: Outiier: (‘2,1, ‘3,1)’
z.zd.

V(O, 12),
ii.d. f N[0, 11 with p 0.95

). N[0, 10002] with p = 0.05
x, Ut, independent, t = 1,.. . ,n.

CASE 4: Stat. (X2,t, ‘31)’
z.d.

.Af(0 12), -t J1E1 with
GARCH(1,I): = O.666u1 + 0.333o_1 where

‘
/(0, 1),

Xl, t, independent, t 1,. . . , n.

CASE 5: Stoc. (x2,t, ‘3,t)’ A((0, 12), u1 exp(wt/2)Et with
r i.i.d. i.i.d.Volatihty: Wt = 0.wt_i + y1, where Et -‘ .N(0, 1), y1 X2(3),

x1,u1, independent,t= 1,...,n.

CASE 6: Deb. 2,t 13(1, 0.3), 3,t 1V(0, .012),

design mat.: u1
i.d. f(o, 1), ,, ut independent, t = 1,. . . , n.

CASE 6 BIS: Deb. design matrix 2t
idN(O 1), 3t

+ HET. dist.: Ut = X3tEt, Et
‘t” Af(0, 1), t, Et independent, t = 1,. . . , n.

CASE 7: Cauchy (‘2,t, ‘3,1)’ ‘-.‘ .Af(0, 12),
ii.d.disturbances: ut -‘ C,x, Ut, independent, t 1,.. . ,ri.

CASE 8: AR(1)-HOM, (‘2,t, X3,t,
j41)! V(0, 13), t = 2,. . . , n,

= .5: u1 = pu_y + v’,

(z2,1, X3,1)’ ‘-‘. .Af(0, 12), v insures stationarity.

CASE 9: AR(1)-HET, ‘j,t P’j,t—1 + i4, j = 1,2,
= .5,: u1 = min{3, max[0.21, ‘2,tI]} x

Px = flt = Pt—1 + i4L,

t=2,...,n

14, 14 and v chosen to insure stationarity.

CASE 10: AR(1)-HO]i, (x2,t,x3,t,v)’ J.f(0,I3),t = 2,... ,n,
Ut=puut_l+1,4t,

(‘2,1, ‘3,1)’ .Af(0, 12), v insures stationarity.

CASE Il: Nonstat. (‘2,1, 3,t, Et)’
‘ Af(0, 13), t = 1,. . .

GARCH(1,1): u1 = UtEI, = 0.814_r + 0.814_i.

CASE 12: Exp. Var.: (‘2,1, 3,t, Et)’ N(0, 13), u1 exp(.2t)et.
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eroskedastic schemes with stationary GARCH and stochastic volatility disturbances. Case

6 is a very unbalanced design matrix (where the LAD estimator performs pooriy). Case 6

BIS combines the previous unbalanced scheme in the design matrix with heteroskedastic

disturbances. Case 7 is an exampie ofheavy-taiied errors (Cauchy). Cases 8, 9 and 10 illus

trate the behavior of sign-based inference when the error term involves linear dependence

at different leveis. Finaiiy, cases Il and 12 involve disturbances that are flot second-order

stationaly (nonstationary GARCH and exponentiai variance) but for which the mediangale

assumption hoids. The design matrix is simuiated once for ail the presented cases. Hence,

resuits are conditionai. Cases i-2, 8-10 have been used by fitzenberger (1997b) to study

the performance ofblock bootstrap (MBB).

7.1. Size

We first study tevel distortions. We consider the testing problem:

H0 :t30 = (1,2,3)’againstHi :/3 (1,2,3)’.

We compare exact and asymptotic tests based on SF Ds(/3, (X’X)’) and SHAC

D8(/3, J) where J,’ is estimated by a Bartiett kemei, with various asymptotic tests.

Wald and LR-type tests are considered. We consider Wald tests based on the OLS estimate

with 3 different covariance estimators: the usual under homoskedasticity and independence

(IID), White correction for heteroskedasticity (WH), and Bartiett kemel covariance esti

mator with automatic bandwidth parameter (BT) [Andrews (1991)]. Conceming the LAD

estimator, we study Wald-type tests based on severai covariance estimators: order statistic

estimator (OS), Bartlett kemei covanance estimator with automatic bandwidth parame

ter [Poweil (1984), Buchinsky (1995)] (3T), design matrix bootstrap centering around the

sample estimate (DM3) [Buchinsky (1998)], moving biock bootstrap centering around

the sampie estirnate (A’IBB) [Fitzenberger (1997b)]’°. finaily, we aiso consider the like

lihood ratio statistic (LR) assuming j.i.d. disturbances with an OS estimate of the error

9this assumes j.j.d. residuals; an estimate of the residual density at zero is obtained from a confidence
interval constmcted for the n/2th residual [Buchinsky (199$)].

‘°The block size is 5.
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density [Koenker and Bassett (1982)]. Appendix C contains the formulas ofthe compared

estimators and test statistics.

Wlien errors are i.i.d. and X is fixed, the LM statistic for testing the joint hypothesis

Ho(/30) turns out to be the 8F sign-based statistic. Consequently, the three usual forms

(Wald, LR, LM) of asymptotic tests are compared in our setup.

In Tables 3 and 4, we report the simulated sizes for a conditional test with nominal level

= 5% given X. The number of replicates for the bootstrap and the Monte Carlo sign

based method is the same, i.e. N = 2999. All bootstrapped samples are of size n = 50.

We simulate J’’I = 5000 random samples to evaluate the levels of these tests. for both

sign-based statistics, we also report the asymptotic level whenever processes are stationary.

Table 3 contains models where the mediangale condition Al holds. $izes of tests de

rived from sign-based finite-sampe methods are exactly controlled, whereas asymptotic

tests may greatly overreject or underreject the nuil hypothesis. This remark especially

holds for cases ïnvolving strong heteroskedasticity (cases 4, 6 BIS). The asymptotic ver

sions of sign-based tests suffer from the same underrejection than other asymptotic tests,

suggesting that, for small samples (n 50), the distribution of the test statistic is really

far from its asymptotic limit. Hence, the sign-based method that deals directly with this

distribution has clearly an advantage on asymptotic methods. When the dependence in the

disturbance process is highly nonlinear (Case 6 BIS), the BT method based on a kemel

estimation of the LAD asymptotic covariance matrix is flot reliable anymore.
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Table 3. Linear regression under mediangale errors: empirical sizes ofconditional tests
for H0 /3= (1,2,3)’.

Yt = Xt[i + Uj, SIGN LAD OLS

t = 1, .. , 50. Sf SHAC OS DM3 MBB BI LR IID WH BT

Stationaiy models

*CASE 1: .052 .050 .086 .050 .089 .047 .068 .060 .096 .1 13
p=pT_0,HOM. Q47** .019**

tCASE2: .052 .057 .300 .037 .059 .051 .137 .162 .100 .118
p=p=0,HET. .045** .023**

*CASE 3: .047 .048 .088 .043 .083 .039 .066 .056 .008 .009
Outiier: .044** ]5**

*CASE4: .042 .046 .040 .005 .005 .004 .012 .080 .046 .046
St. GARCH(1,1): .040** .013**

*CASE5: .043 .041 .063 .006 .014 .006 .031 .054 .014 .014
Stochastic Volatility: .045 * * .021 **

*CASE 6: .047 .049 .080 .048 .084 .043 .064 .085 .060 .095
Debalanced: .043** .022**
*CASE6BIS: .044 .042 .687 .020 .044 .152 .307 .421 .171 .173
Deb.+Het.: .040** .018**

4CASE 7: .058 .059 .069 .013 .033 .012 .044 .061 .023 .023
Cauchy: Q49** .021**

Nonstationaiy models

*CASE 11: .054 .057 .003 .000 .001 .000 .002 .060 .016 .016
Nonst. GARCH(1,1):

*CASE 12: .049 .051 .017 .000 .000 .000 .000 .132 .014 .014
Exp. Var.:

*: cases when mediangale condition holds.
*4: sizes using asymptotic critical values based on
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Table 4. Linear regression with serial dependence: empirical sizes ofconditional tests for
H0: /3 = (1,2,3)’.

yj=xj3+ut, SJGN LAD OLS

t = 1, . . . , 50. Sf SHAC] OS DMB MBB BT LR IID WH BT
Serial dependence

aCASE82 .126 .022 .171 .124 .118 .085 .151 .201 .240 212
p = .5, p =0,HOM -

GCASE 9: .218 .026 .440 .131 .097 .108 .308 .407 .328 .276
pE=pX=.5,HET - .017**
CASE 10h1: .521 .012 .553 .516 .339 .355 .551 .649 .677 .534
p = .9, p. = 0, HOM - .003**

cases when mediangale condition fails.
**: sizes using asymptotic critical values based on

In Table 4, we illustrate behaviors when the enor term involves linear serial depen

dence. The Monte carlo SHAC sign-based test does flot control exactly the level but is

stili asymptotically valid, and yields the best results. We underscore its advantages com

pared to other asymptoticallyjustified methods. Whereas the WaId and LR tests overreject

the nuil hypothesis, the latter test seems to better control the level than its asymptotic ver

sion, avoiding underrejection. There exists important differences between usmg critical

values from the asymptotic distribution of SHAC statistic and critical values derived from

the distribution of the SHAC statistic fora fixed number of independent signs. esides, we

underscore the dramatic overrejections of asymptotic Wald tests based on HAC estimation

of the asymptotic covariance matrix when the data set involves a small number of observa

tions. These resuits suggest, in a sense, that when the data suifer from both a small number

of observations and linear dependence, the first probtem to solve is the finite-sampte dis

tortion, which is not what is usually done.

7.2. Power

Then, we illustrate the power of these tests. We are particularly interested in comparing the

sign-based inference to kemel and bootstrap methods. Others methods may not be reliable

even in terms of level. We consider the simultaneous hypothesis H0 as before. The tnie
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process is obtained by fixing j3 and 4I at the tested value, i.e = 1 and /33 3, and letting

vary /2• Simulated power is given by a graph with /39 in abscissa. The power ffinctions

presented here (figures 2, 3) are locatly adjusted for the level, which allows comparisons

between methods. However, we should keep in mmd that only the sign-based methods

Iead to exact confidence tevets without adjustrnent. Other methods may overreject the nuli

hypothesis and do flot control the level ofthe test, or undeneject it, and consequently loose

power.

Sign-based inference has a totally comparable power performance with usual methods

in cases 1, 2, 3, $ with the advantage that the level is exactly controlled for any sample size,

which Ieads to great difference in small samples. In very heteroskedastic cases (4, 5, 11,

12), sign-based inference greatly dominates other methods: levels are exactly controlled

and power functions largely exceed others, even other methods that are size-conected with

Iocally adjusted levels. Any 1-lAC correction bas only an asymptotic justification. In the

presence of linear serial dependence, the Monte Carlo test based on Ds (/3, J1) does not

exactly control the level in theory for a given sample size. However, it is stili asymptotically

valid and seems to lead to good power performance, along with a better size control. Only

for very high autocorrelation (close to unit root process), the sign-based inference is not

adapted anymore.
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7.3. Confidence ïntervals

As the sign-based confidetice regions are by construction of level higher that 1 — ci when

ever inference is exact, a performance indicator for confidence intervats may be the width

ofthose confidence intervats. Thus, we wish to compare the width of confidence intervals

obtained by projecting the sign-based simultaneous cot1fidence regions to those based on

t-statistics on the LAD estimator. We use M — 1000 simulations, and report the means

and the empirical standard deviations of those widths. We only consider the stationary ex

amples. In the nonstationary cases, inference based on t-statistics may flot mean anything.

In Table 5, we report average width of confidence intervals for each /3k and coverage prob

abilities. Spreads of confidence intervals obtained by projection are larger than asymptotic

confidence intervals. This is due to the fact that they are by construction conseivative con

fidence intervals. However, it is not ctear that vatid confidence inteiwals that do not have

this feature can even be built.
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8. Examples

In this section, two illustrative applications of the sign-based inference are presented. One

on financial data, one in growth theoiy. f irst, we considertesting a drift on the Standard and

Poor’s Composite Price Index (S&P) 1928-1987, which is known to involve a large amount

of heteroskedasticity. We consider robust tests on the whole period and on the 1929 Krach

subperiod. In the second illustration, we test for the presence of/3 convergence across the

U.S. States during the 1880-198$ period using the Barro and Sala-i Martin (1991) data set.

Finite-sample sign-based inference is also particularly adapted to regional data sets, which

have by nature fixed sample size.

8.1. Standard and Poor’s drift

We test the presence of a drift on the Standard and Poor’s Composite Pnce Index (SP),

1928-1987. That process is known to involve a large amount of heteroskedasticity and

have been used by Gallant, Hsieh, and Tauchen (1997) and Valéry and Dufour (2004) to

fit a stochastic voJatility model. Here, we are interested in robust testing without modeling

the volatility in the disturbance process. The data set consists in a series of 16,127 daily

observations of $P, then converted in price movements, Yt = 100[log(SPt) — log(SP_i)}

and adjusted for systematic calendar effects. We consider a model involving a constant and

a drift:

yt=a+bt+ut, tz=1,...,16127; (8.3)

and we let the possibility that {Ut}t; 16127 presents a stochastic volatility or any kind

of nonlinear heteroskedasticity of unknown form. White and Breush-Pagan tests for het

eroskedasticity both reject homoskedasticity at 1%.12.

We derive confidence intervals for the two pararneters with the Monte Carlo sign-based

method and we compare them with the ones obtained by Wald techniques applied to LAD

and OLS estimates. Then, we perform a similar experiment on two subperiods, the whole

year 1929 (291 observations) and on the last 90 opened days of 1929, which roughly cor

responds to the 4 last months of 1929 (90 observations), to investigate behaviors ofthe dif

‘2White: 499 (p-value=.000) ; BP: 2781 (p-value.000)
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ferent methods in srnall samples. Due to the financial ci-isis, one may expect data to involve

heavy heteroskedasticity during this period. Let us remind the Wall Street krach occuned

between October 24 (Black Thursday) and October 29 (Black Tuesday). Hence, the second

subsample corresponds to September, October with the krach period, and November and

December with the early beginning ofthe Great Depression. Heteroskedasticity tests reject

homoskedasticity for both subsamples.’3

In Table 6, we report 95% confidence intervals for a and b obtained by various rnethods:

finite-sample sign-based method (for sign-based statistics F8 and SHAC invoiving a HAC

correction); LAD and OLS with different estimates oftheir asymptotic covariance matrices

(order statistic, bootstrap, kernel...). If die mediangale Assumption Al holds, the sign

based confidence interval coverage probabilities are controlted.

first, resuits on the drift are very similar between methods. The absence of a drift

cannot be rejected with 5% level. But resuits conceming the constant differ greatly between

methods and time periods.

In the whoie sample, the conclusions of Wald-tests based on the LAD estimator differ

greatiy depending on the choice of the covariance matrix estimate. Concerning the test ofa

positive constant, Waid tests with bootstrap or with an estimate derived if observations are

i.i.d. (0$ covariance mati-ix) which is totaiiy illusory in that sampie, reject, whereas Wald

test with kemel (so as sign-based tests) cannot reject the nullity of a. This may lead the

practitioner in a perpiex mmd. Which is the correct test?

In ail the considered samples, Wald tests based on OLS seem really unreliabie. Either,

confidence intervals are huge (see OLS resuits on both subperiods) either some bias is

suspected (see OLS resuits on the whole peiiod). Take the constant parameter, on the one

hand, sign-based confidence intervals and LAD confidence intervals are rather deported to

the right, on the other hand, OLS confidence intervals seem to be biased toward zero. This

may due to the presence of some influential observations. Moreover, the OLS estimate for

the whole sample is negative. In settings with arbitrary heteroskedasticity, least squares

methods should be avoided.

131929: White: 24.2, p-values: .000 ; BP: 126, p-values: .000; Sept-Oct-Nov-Dec 1929: White: 11.08,
p-values: .004; BP: 1.76, p-values: .18.
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Table 6. S&P price index: 95 % confidence intervals.

C’onstant parameter (a)
MethoUs

Sign

Whote sample
(16120 obs)

Subsamples
1929 (291 obs..) 1929 (90 obs,)

Sign-based tests seem really adapted for small samples settings. Let us examine the

third colurnn of Table 6. The tightest confidence intervals for the constant parameter is

obtained for sign-based tests based on the SHAC statistic, whereas LAD (and OLS) ones

are larger. Note besides the gain obtained by using SHAC instead of 5F in that setup.

This suggests the presence of autocorrelation in the disturbance process. in such a circum

stance, finite-sample sign-based tests rernains asymptotically valid such as Wald methods.

$F statistics
SHAC statistics

LAD (estimate)
with OS cov. inatrix est.
with DM3 cov. matrix est.
with M33 cov. matrix est. (b =3)
with kernel cov. matrix est. (Bn=10)

OLS
with iid cov matrix est.
with DMB cov. matrix est.
with MBB cov. matrix est. (b 3)

[-.007, .105] [-.226, .522] [-1.464, .491]
[-.007, .106] [-.135, .443] [-.943, .362]

(062) (163) (-.091)
[.033, .092] [-.144, .470] [-1.015, .832]
[.007, .117] [-.139, .464] [-1.004, .822]
[.008, .116] [-.130, .456] [-1.223, 1.040]
[-.019, .143] [-.454, -.780] [-1.265, 1.083]

(-.005) (224) (-.522)
[-.041, .031] [-.276, .724] [-2.006, .962]
[-.054, .045] [-.142, .543] [-1.335, .290]
[-.056, .046] [-.140, .588] [-1.730, .685]

Drtftpararneter (b)
Methods x10 x102 x101
Sign

5f statistics
SHAC statistics

LAD
with OS cov. inatrix est.
with DMB cov. matrix est.
with MB3 cov. matrix est. (b =3)
with kerneÏ cov. matrix est.

OLS
with iid cov. matrix est.
with DM3 cov. mattix est.
with MBB cov. matrix est. (b =3,)

[-.676, .486] [-.342, .344] [-.240, .305]
[-.699, .510] [-.260, .268] [-.204, .224]

(.184) (000) (-.044)
[-.504,.320] [-.182,.182] [-.220,.133]
[-.688, .320] [-.256, .255] [-.281, .194]
[-.681 , .313 ] [-.236, .236] [-.316, .229]
[-.671, -.104] [-.392, .391] [-.303, .215]

(266) (-.183) (010)
[-.119, .651] [-.480, .113] [-.273, .293]
[-.213 ,.745] [-.544, .177] [-.148, .169]
[-.228 , .761 ] [-.523, .156] [-.250, .270]
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However, they are also corrected for the sample size and yield to very different resuits.

8.2. 3-convergence across US. States

With the neoclassical growth model as theoretical background, Barro and Sala-i Martin

(1991) tested 43 convergence between the levels of per capita output across 48 U.S. States

for different time periods between 1880 and 1988. They used nonlinear least squares to

estimate equations of the fonn

(1/T) 1n(yj,/y,t_T) = a
— [ln(yi,t_T)l x [(1 — eT)/T] + x6 + etT (8.4)

1,. , 48, T= 8, 10 or 20,

t = 1900, 1920, 1930, 1940, 1950, 1960, 1970, 1980, 198$.

Their basic equation does not include any other variables but they also consider a spec

ification with regionai dummies (Eq. with reg. duîii.). The basic equation assumes that

the 48 States share a common per capita level ofpersonal income at steady state while the

second specification allows for regional differences in steady state levels. Their regressions

involve 48 observations and are mn for each 20-year or 10-year period between 1880 and

1988. They tended to accept a positive 43 and concluded on a convergence between levels

of per capita personal income across U.S. States.

However, both the NLLS method and the Wald-type tests they performed are only as

ymptotically justifled and can be unreliable for only 4$ observations. This unreliability

is strengthened when the data suffers from heteroskedasticity, departure from normality,

presence of outiiers or observations with possibly high influence.

Therefore, we flrst study whether such problems are present. Regression diagnostics

are summarized in Table 8 in the Appendix B and presented in details in Figures 4-21.

One can notice that departures from a normal standard case are present in most periods.’4

For example, dues pointing to high influentiat observations, heteroskedasficity and non

normality of the residuals exist for the basic equation in the 1880-1900 period. Only, the

‘4Omitted variables, misspecification ofthe mode! can also lead to similar conclusions, we do flot consider
those probtems here, which yields to entirely rethink the growth tbeoiy and the mode!.
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outstanding growth period of 1960-1970 does not seem to show potential data problems.

Similar resuits hold for the equation with regional dummies. This survey highly reduces

the validity of least squares methods and suggests the need of a test, valid in finite samples

and robust to heteroskedasticity ofunknown form.

Hence, we propose to perform finite-sample based sign tests to see whether the conclu

sion of /3-convergence stiil holds. We consider the linear equation:

(1/T) 1n(y,t/y,t_T) = a + 7[lfl(Yi,t_T)] + x + t,T
(8.5)

where x contains regional dummies when included, and compute projection-based CI for

‘y, a, and for /3 = —(1/T) ln(7T + 1) as a bijective transformation of ‘y, in both specifi

cations. We compare projection-based valid 95%-confidence intervals for /3 based on the

sign-based statistic $F with Barro and Sala-i-Martin nonhinear least squares asymptotic

95%-confidence intervals (Table 7).

The resuits we find for the basic regression are close to those of Barro and Sala-i Martin

(1991). We fail to reject /3 0 at 5%-level, for the 1880-1900, 1920-1930, 1980-1988 pe

riods, whereas Barro and Sala-i Martin (1991) fail to reject /3 = O at 5% (asymptotic)-level

for the 1920-1930 and 1980-1988 periods. Our resuits differ only for the 1880-1900 period.

That may be due to the strong heteroskedasticity and departure from normality affecting

least squares methods as we show in Table 8. When regional dunmiies are included, we

fail to reject /3 = O at 5%-level 7 times over 9 whereas Bano and Sala-i Martin (1991)

fail to reject 3 times over 9. Finally, a positive /3 convergence seems to pass both NLLS

based asymptotic tests and finite sarnple-based robust sign tests with the basic specification,

yielding to a strong argument in favor of the theory. However, that is no longer tme for the

specification with regionat dummies, which reduces the idea ofa strictly positive /3 conver

gence with possibly different regional steady state levels. This also may in part be due to

the conservativeness of the projection-based method but there is no evidence that smaller

exact confidence intervals can be constructed.
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Table 7. Regressions for personal income across U.S. States, 1880-198$.

Basic equation Eq. with reg. dinn.
3 SIGN (Sf) NLL$* SIGN (SF) NLLS*

1880-1900: [95%C1] [-.0010,0208] [.0058, .0532] [-.0033,.0251J [.0146, .0302]
(/3NLLS) (010]) (.0224)

1900-1920: [.0092,0313] [.0155, .0281] [-.0081,.0558J [.0086, .0332]
(.0218) (0209)

1920-1930: [-.0301, .0018] [-.0249, -.0049] [-.0460, .0460] [-.0267, .0023]
(-.0149) (-.0122)

1930-1940: [.0043,.02341 [.0082, .0200] [-.0187,.0377] [0027, .0227]
(0141) (0127)

1940-1950: [.0291, .0602] [.03 72, .0490] [.0082, .0620] [0314, .0432]
(0431) (0373)

1950-1960: [.0084, .0352] [.0121, . 0259] [.0007, .0506] [.0100, . 0304]
(0190) (0202)

1960-1970: [.0099,.0377] [0170, .0322] [-.0112,.0431] [0047, .0215]
(0246,) (0131,)

1970-1980: [.0021,0346] [0076, .0320] [-.0227,.0721] [-.0016, .0254]
(0198) (0119)

1980-1988: [-.0552,.0503] [-.0315, .0195] [-.0467,0754] [-.0273, .0173]
(-.0060) (-.0050)

* Barro and Sala-i Martin (1991) NLLS resuits are reported in those two columns.

9. Conclusion

In this paper, we have proposed an entire system of inference for the t3 parameter of a

linear median regression that relies on distribution-free sign-based statistics. We show that

the procedure yields exact tests in finite samples for mediangale processes and remains

asymptotically valid for more general processes including stationary ARIVIA disturbances.

Simulation studies indicate that the proposed tests and confidence sets are more reliable

than usual methods (LS, LAD) even when using the bootstrap. Despite the programming

complexity of sign-based methods, we advocate their use when arbitrary heteroskedasticity

is suspected in the data and the number of available observations is small. Finally we have

presented two practical examples. First, we test the presence of a drift on the Standard

and Poor’s Composite Price Index (S&P), for the whole period 1928-1987 and for various

shorter subsamples. Secondly, we reinvestigate whether a /3 convergence between levels of

Feriod



per capita personal income across U.S. States occurred between 1880 and 1988.
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Appendix

A. Proofs

A.1. Proof of Proposition 2.5

We use the fact that, as {X. t = 1, 2,.
. .} is strongly exogenous, {flt, t =

1, 2,. . .} does flot Granger cause {X, t = 1, 2, . . .}. It follows directiy that

t(St(ut_i, . .. ,nl,x x) = l(sut_i,. . . ,uy,x,. .. ,xj) where t stands for the den

sity ofs = S(Ut).

A.2. Proof of Proposition 3.2

Consider the vector [s(u1), s(n2), . . . , s(u,)]’ (s;, s2,. . . , s,.,)’. from Assumption Ai,

we derive the two foilowing equalities:

P[u1 > OIX] = E(P[’u > .. ,ui,X]) = 1/2,

P{zt > Os_;,. .. ,si,X] = P[ut > Oint_i,... ,u1,X] 1/2,Vt>2.

Further, the joint density of(sy, 2, . .. , s,.,)’ can be written:

t(si, 52, . . . , sjX)
=

t(stist_i, . . . , s, X)

=

> Oju_;, . , n1, X](i_st)/2

{1
— P[u > Oint_y,... ,uy,X}}+2

= fl(1/2)(1_s1)12[1 — (1/2)]](1+st)/2 = (1/2).

Hence, conditional on X, s1, 2, .. . , s,., are distributed like n i.i.d random variables with

distribution:

P[st=1]=P[st=—1]=, t=1,...,n.
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A.3. Proof of Proposition 3.3

Consider model (2.1) with {Ut, t = 1,2,. . .} being a weak conditionai mediangale given

X. Let show that [(ni), (n2), . . . , s(u,)] can have the same foie ifl Proposition 3.2 as

{s(u1), s(u2), . .. , s(n,)] under Assumption Al. from equation (3.10), we have:

(zt, 4) = S(tt) + [1
— S(Ut)2]S(Vt — .5),

hence

P[s(ut, V) = 1I_, ... , u1,Xj = P{s(u) + [1 — s(u)2Js( — .5) = 11n_, . . . ,

As (V1,. . . , ‘Ç) is independent of u1,. ..
,
u) and 4 U(0, 1), it foiiows

P[(ut,Vt) = 1] P[u > 0n_i,. . . ,u1,X] + = 0ut_i,... ,uy,X]. (A.1)

Letp = P[u = OIut_i,. . . , u, X], the weak conditional mediangaie assumption given X

yields:

P[t>0Iut_i,...,ui,X]=P[ut<0Iu_i,...,ui,X1= (A.2)

Substituting (A.2) into (A. 1) yieids

P[(u, V) = 1’u_, . .. ,,X]
= 1

+ = (A.3)

in a simiiar way,

—1In_i,. ..,u1,X] = . (A.4)

The rest is sirniiar to the proof of Proposition 3.2.

A.4. Proof of Proposition 4.1

Let us consider first the case of a single explanatory variable case (p 1) which contains

the basic idea for the proof. The case with p > 1 is just an adaptation of the same ideas

to multidimensional notions. Under modei (2.1) with the mediangaie Assumption AI, the

iocaiiy optimal sign-based test (conditionai on X) of H0 : = O against H1 : /3 O

is well defined. Am ong tests with a given confidence level c, the power function of the
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locally optimal sign-based test has the highest siope around zero. The power function of

a sign-based test conditional on X can be written P,3[s(y) E I’VaiX], where J47 is the

critical region with level c. Hence, we should include in W the sign vectors for which

9P[S(y) = siX],o is as large as possible. An easy way to determine that derivative, is

first to compute a Taylor expansion at order one around zero and then to identify the terms.

Under the mediangale Assumption Al, we have

P[S(y) = sIXI = [P(yj > DIX)] si)/2[P(y <OIX)](l_si)/2 (A.5)

= fl[i
— (A.6)

Assuming the existence of continuous densities at zero, a Taylor expansion at order one

entails:

P{S(y) = six] = + 2f(OiX)xs + o()] (A.7)

=

Ah other terms of the product decomposition are negligible or equivalent to oCB). That

allows us to identify the derivative at 43 0:

Po[S(y) = sjX] = 2_11+1 fj(OIX)xjsj. (A.9)

Therefore, the required test has the form

w= >cc.} , (A.lo)

or equivalently,

W. = {ss(y)’’s(y) > c}, (A.1 1)

where c. and c’ are defined by the significance level.

When the disturbances have a common conditional density at zero, f(0Ix), we find

the results ofBoldin, Simonova, and Tyurin (1997). The locally optimal sign-based test is

given by

= {sis(y)’XX’s(y) > c’}. (A.12)
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The statistic does flot depend on the conditional density evaluated at zero.

When p > 1, we need an extension of the notion of siope around zero for a multidi

mensional parameter. Boldin, Simonova, and Tyurin (1997) propose to restrict to the class

of locally unbiased tests with given level c and to consider the maximal mean curvature.

Thus, a tocally unbiased sign-based test satisfies,

dP(WŒ)
(A.13)

As f(O) = 0, Vi, the behavior ofthe power function around zero is characterized by the

quadratic term of its Taylor expansion

1(d2P(Wa))
= Z[fj(0pX)sj’xj][fj(0IX)sjx]. (A.14)

1j& jn

The locally most powerfiul sign-based test in the sense of the mean curvature maximizes

the mean curvature which is, by definition, proportional to the trace of d2P17)
; see

Boldin, $imonova, and Tiurin (p. 41, 1997), Dubrovin, fomenko, and Novikov (ch. 2, pp.

76-86, 1984) or Gray (ch. 21, pp. 373-380,1998). Taking the trace in expression (A.14),

we find (after some computations) that

tr
(d2 ) =

fi(OX)Jj(OIX)sisjxikxjk. (A.15)
=O 1<_iin k=1

By adding the independent of s quantity x to (A. 15), we find

2

(xkfi(ox)si) = s’(y)’s(y). (A.16)

Hence, the locally optimal sign-biased test in the sense developed by Boldin, Simonova,

and Tyurin (1997) for heteroskedastic signs, is

Wa {s: s’(y)J’s(y) > c}. (A.17)

Another quadratic test statistic convenient for large-sample evaluation is obtained by stan

dardizing by J(’J(:

= {s: s’(y)(’)’’s(y) > c}. (A.18)
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A.5. Proof of Theorem 6.1

This proof follows the usual steps of an asymptotic normality resuit for mixing processes

[see White (2001)]. Consider model (2.1). In the following, St stands for S(flt). Under
—1/2 . , —1/2Assumption A5, V exists for any n. Set Z = ). V xs(’ut), for some ? W

such that ?‘ = 1. The mixing property A2 of (x, u) gets transmitted to Zut; see White

(2001), Theorem 3.49. Hence, ‘‘72s(u) 0 x is -mixing ofsize —r/(r — 2). r> 2.

Assumptions A3 and A4 imply

E[42xs(ut)]=0, Vt=1,...,n, VnN. (A.19)

EIVn_I/2xs(nt)IT <LX <00, Vt = 1,... , n, Vn E N. (A.20)

Note also that

Var ( zut) = Var À’v”2s(u) ® x] = 2À = 1.

(A.21)

The mixing property ofZ7, and equations (A.19)-(A.21) allow one to apply a central limit

theorem [see White (2001), Theorem 5.20] that yields

À’2s(zt) O x (0. 1). (A.22)

Since À is arbitrary with À’À = 1, the Cramér-Wold device entails

112n2 Ê S(Ut) O X (0, In). (A.23)

Finally, Assumption A6 states that Q7, is a consistent estimate ofV’. Hence,

S() O Xt (0, In), (A.24)

and,

n’s’(y — X/30)XQ7,X’s(y — X/30) —* x2()• (A.25)
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A.6. Proof of Corollary 6.2

Let = u(yo, . .. , y, x,. . , x). When the mediangale Assumption Al holds, {sCuj) ®

‘t, t 1,. . . , n} belong to a martingale difference with respect to J. Hence,

V,, Var [= ® x] = E(xtstsx) = E(xx) =
and X”X/n is a consistent estimate ofE(X’X/n). Theorem 6.1 yields SF(/30)

— X2(?).

A.7. Proof of Theorem 6.3

first, we prove the following lemma A.1 which will be needed in the proof of Theorem

6.3.

Lemma A.1 Let (F,,),,EN and F be right continuous distributionfunctions. Suppose that,

F,,(x) —> F(x), Vx e R.

Then, converges unfortnÏy to F in R, i.e.

sup IF,,(x)—F(x)I —* O.
—OO<x<+OO n—.00

Proof: Suppose reversely that there exist r > O, a sequence {nk, k e N} of integers

tending to +œ, and a real sequence {Xk, k e N}, such that for all k, IF,,,, (xk) — F(xk)I

E > O. If {x} is not a convergent sequence, consider instead a convergent subsequence.

This can be done as R U {—oc, +œ} is compact. Cases when Xk —* oc can be excluded

as F,,(+oo) = 1 = F(+oo) and F(—oo) = O = F(—oo) by the definition of distribution

fiinctions. Hence, without loss of generality, we can choose {Xk} —* where —oc <

+00.

Let us consider two sequences {r,} and {r,,} tending to and such that r,, < <r,,.

for sufficiently large k, we face the following cases,

if {‘k} is increasing and Xk <

E <F,,(x) — F(xk) <f,,,,(Ç) — F(r)

- F,,,,() + Fnk(r) - F(r) -
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if {Xk} is increasing and Xk <

F()
— fnk(xk) F()

— Fnk(r)

<F(Ç) — F(r) + F(r)
— Fflk(r,);

if {x!} is decreasing and Xk

E <F(x)
— Fnk(xk) F(r)

—
Fnk()

<F(r) F(r) + f(r)
- Fflk(r) + Fflk() - Fflk();

and if {xk} is decreasing and Xk

E Fflk(xk) — F(xk) <fnk(T) — F()

Fn(r)
- Fflk(r) + Fnk(T) - F(r) + F(r) - F().

In each case, for fixed k, m can be chosen such that r and r are arbitrarily close to .

Then, using right continuity properties of F and F, the right hand member ofeach chain of

inequalities does flot exceed a quantity that tends to zero as k — oc. Thus a contradiction

is obtained. We conclude on the uniform convergence off towards F. $imilar proofs can

be found in Chung (2001) and a similar resuit in Chow and Teicher (1988). Q.E.D.

Let us now return to the proof of the theorem. . can be rewritten as

. (c$(/3) IX71) = [c (c71S(/3o) IX(w)) - G(c3(/3o))]

+[G(cS(/0))
- Gn(cn$n(/30)IXn(w))]

+G (c71S(t3o)1X).

Since G(—oc) = Ô(—oc) = O, G(+oc) = = 1, and d(xjX(w))
G(x) a.e., Lemma Ai entails that the convergence is uniform. Hence

— (cS71(/3o)IX)] — o(1).

The same holds for G,

[G(cS(i30)) - G(c$(/3o)IX)] — o(1).
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Hence

G(cS(/3o)IX) = +o(1). (A.26)

Note that eS is a discrete positive random variable and G, its survival function is

also discrete. It directly follows from properties of survival functions, that for each

E Im(G(Rj), i.e. for each point ofthe image set, we have

P[G(c,1S(/3o)) <cij = o. (A.27)

Considernow the case when c E (0, 1)\Im(G(Rj). c must be between the two values

of a jump of the function G. $ince G,. is bounded and decreasing, there exist a, c2 E

Im(G,.(Rj), such that c1 <c <2 and

P[G(c,.S,1(/30)) <cvi] <P[G(cS71(/3o)) <cv] <P[G,.(c$,.(30)) c].

More precisely, the first inequality is an equality. Indeed,

P[G,.(cS,.(/3o)) <cv] = P{{G,.(c,.$,.(/30)) <ci} U {i <G,.(c71S,.(/30)) <c}]

= P[G,.(c,.S,.(/30)) <cr1] +0,

as {c < G,. (c,.S,.(/30)) <c} isa zero-probability event. Applying (A.27) to c,

P[G,.(c,.S,.(/30)) <cv] = P[G,.(c,.S,.(/30)) <ij = <. (A.2$)

Hence, for c (0, Ï), we have

P{G,.(c,.$,.(/30)) <ce] <ce. (A.29)

Equation (A.29) combined with equation (A.26) allows us to write,

<c’] = P[G,.(c,.S,1(/30)) <ce] +o(Ï) +o(1), (A.30)

that is,

11m P[,.(cS(f30)) <ce] <ce. (A.31)
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AS. Proof of Theorem 6.4

Let U(N + 1) = (U(°), . .
, Ut’)) be a vector of N + 1 i.i.U. random variables drawn

from a U[0, 1] distribution, the observed statistic and S1(N) = , S/), a

vector of N independent replicates drawn from È, (x). Ihe randomized empirical suwival

firnction ofS conditional on X, under the nuli hypothesis, is given by

n, 871(N), U(N + 1)IX] = 1 — s(x
— (A.32)

+ — x)s(U) —

with u(x) = 1[o,00)(x), (x) = 1{o}. The corresponding randomized empirical p—value is

(x)
= N(x)+ 1

(A.33)

Usually, validity of Monte Carlo testing is based on the fact the vector . ,

is exchangeable. Indeed, in that case, the distribution of ranks is ftitIy specified and

yields the validity of empirical p—value [see Dufour (2006)]. In our case, it is clear that

c,S$,”) is flot exchangeable, so that Monte Carlo validity cannot be directly

applied. Nevertheless, we will show that asymptotic exchangeability stiil holds, which will

enable us to conclude. To obtain that the vector .. , c$’) is asymptotically

exchangeable, we show that for any permutation ir : [1, N] — [1, N],

limP[S° > t0,s) t1,... ,S,N) tN]P[S° t0,S) t1,... s(N) > t] = o.

first, let rewrite

> to, $1) > ti . ..

, S) tN] E{P[S° t0, 3’) t1, , 3(N) > tN, X =

Hence, if we use the conditional independence of the signs vectors (replicated and ob

served), we obtain

= P[X=xjflP[$tjIX71=x]

= x) fl = xv).
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As each survival ftinction converges with probability one to G(x), we finally obtain

p[Sjo) > t0, $‘) > t1, . .. , S t, X — x]
.‘ fl G(t)with probability one.

(A.34)

Moreover, it is straightforward to see that for ir: [Ï, N] — [1, N], we have as n —* Oc

P[sO) t(O), s1 ti,. .. , t, X x]
.‘ fl G(t)with probability one.

Note that as GtE) is flot a fiinction of the realization X(w) so that

lim P[S) t0, si’) t1,. 8(N) tN]P[S° 0, s) t1,. 8ir(N)
> t] = 0.

Hence, we can apply an asymptotic version of Proposition 2.2.2 in Dufour (2006) that

validates Monte Carlo testing for general possibly noncontinuous statistics. The proof of

this asymptotic version follows exactly the same steps as the proofs of Lemma 2.2.1 and

Proposition 2.2.2 of Dufour (2006). We just have to replace the exact distributions of

randomized ranks, the empirical survival ftinctions and the empirical p—values by their

asymptotic counterparts and this is sufficient to conclude. Suppose that N, the number of

replicates is such that c(N + Ï) is an integer. Then,

lim (cS,°) <o.
n—œ

B. Detailed analysis of Barro and Sala-i-Martin data set

Ibis appendix contains additional results for the Barro and Sala-i-Martin application. f irst,

a residual analysis which includes outiier detection, heteroskedasticity tests, etc. is sum

rnarized in Table $ and detailed in Table 9 and Figures 4-21. Second, complete sign-based

inference resuits for the model parameters are reported in Tables 10 and 11.
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Table 8. Regressions for personal income across U.S. States, 1880-1988: summary of
regression diagnostics.

Period Heterosked.* Nonnormality** Influent. obs.** Possible outliers**
Basic eq. Eq Reg.

Dum.
1880-1900 yes - yes - yes yes no no
1900-1920 yes yes yes yes yes yes yes (MT) yes
1920-1930

- - - yes - no no
1930-1940 - - yes - yes yes no no
1940-1950 - - - yes yes yes (VT) yes (VT)
1950-1960 - - - yes yes yes yes (MT) yes (MT)
1960-1970 - - - - - no no
1970-1980 - - yes yes yes yes yes (WY) yes (WY)
1980-1988 yes - - yes yes yes yes (WY) yes (WY)

* White and Breush-Pagan tests for heteroskedasticity are performed. If at least one test rejects at
5 hornoskedasticity, a “yes” is reported in the table, else a “-“ is reported, when tests are both
nonconclusive.
** Scatter plots, kemel density, leverage analysis, studendized or standardized residuals > 3, DF
beta and Cooks distance have been performed and lead to suspicions for nonnormality, outiier or
high influential observation presence.

Table 9. Regressions for personal income across U.S. States, 1880-1988: tests for
heteroskedasticity.

Period Basic equation Eq. wîth reg. dum.
p-values White test Breush-Pagan test White test Breush-Pagan test
1880-1900 .018 .652 .249 .830
1900-1920 .023 .043 .069 .050
1920-1930 .723 .398 .435 .557
1930-1940 .673 .633 .537 .601
1940-1950 .243 .943 .513 .272
1950-1960 .595 .223 .740 .221
1960-1970 .205 .247 .236 .441
1970-1980 .641 .675 .777 .264
1980-1988 .058 .022 .080 .226
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Figure 4. Residual analysis: basic equation 1880-1900

j

_____

2 002 .JI5 22 0 .22 .221 33

(a) Scaffer plot (b) Kemel density (e) Leverage analysis

Skewness=-.506 Kurtosis=2.69

Outliers detecfion resuits: No.

Studentized residuals> 3 : O
Standardized residuals> 3 : O
DFbeta>1 t O
Cooks distance> .5 : O

Figure 5. Residual analysis: basic equation 1900-1920

I,

______ ____________

.i .o o

(a) Scatter plot (b) Kemel density (c) Leverage analysis

Skewiiess--1 .322 Kurtosis’6.23

Outliers detection resutts: yes : MT.

Studentized residuals> 3 : MT
Standardized residuals> 3 : MT
Dfbeta>1 : MT
Cookv distance> .5 t MT



Figure 6. Residual analysis: basic equation 19204930
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rh

(a) Scatter plot

Outliers detection resuits: No.

/
/

/
-

—I—

(b) Kemel density

Skewness=-.309 Kurtosis=3.71

Studentized residuals> 3
Standardized residuals> 3
Dfbeta> 1
ookv distance> .5

Figure 7. Residual analysis: basic equation 1930-1940

(a) Scatter plot (b) Kernel density

$kewness=-.495 Kurtosis2.82
(c) Leverage analysis

Outliers detecfion resuits: No.

Studentized residuats> 3
Standardized residuals> 3
Dfbeta> 1
cook distance> .5

:0
:0
:0
:0

F
tr

(e) Leverage analysis

:0
:0
:0
:0
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Figure 8. Residual analysis: basic equation 1940-1950

—

ta) Scaffer plot (b) Kemel density (c) Leverage analysis

Skewness=-.550 Kurtosis=4.21

Outliers detecfion resutts: VT has a certain influence.

Studentized residuals> 3 t VT
$tandardized residuals> 3 t VT
Dfbeta>1 t O
ooks distance> .5 t O, but max for VT

Figure 9. Residual analysis: basic equation 1950-1960

R
-

/

- I

(a) Scaffer plot (b) Kernel density (c) Leverage analysis

Skewness=-.745 Kurtosis=4.65

Outliers detection resuits: MI has a relative influence.

$tudentized residuats> 3 t MT
Standardized residuals> 3 t MT
DFbeta>1 t O
C’ookv distance> .5 t O, but max for MI
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Figure 10. Residual analysis: basic equation 1960-1970

î.

I
(a) Scatter plot (b) Kemel density (e) Leverage analysis

$kewness=-.518 Kurtosis=3.34

Outliers detection resuits: No.

Studentized residuals> 3 : O
Standardized residuals> 3 t O
Dfbeta>1 : O
Cooks distance> .5 t O

Figure 11. Residual analysis: basic equalion 1970-1980

-

—t

(a) Scatter plot (b) Kemel density (c) Ceverage analysis

Skewness=1 .790 Kurtosis=$.54

Outliers detection resuits: WY has some influence.

Studentized residuals> 3 t WY
Standardized residuals> 3 : WY
Dfbeta> 1 0
Cookv distance> .5 : O, but max for WY
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Figure 12. Residual analysïs: basic equation 1980-1988

/
* j— I —,

(a) Scatter plot (b) Kernel density (c) Leverage analysis
Skewness=-.707 Kurtosis=4. 83

Outliers detection resuits: WY has a high influence.

Stttdentized residuals> 3 : WY
Standardized residuals> 3 : WY
DFbeta>1 t WY
cook distance> .5 t WY



Figure 13. Residual analysis: regional dummies 1880-1900

Outliers detection resuits: No.

Skewness=. 120 Kurtosis=2.72

70

$tudentized residuals> 3
Standardized residuals> 3
Dfbeta> 1
cooks distance> .5

O
O

:0
:0

Figure 14. Residual analysis: regional dummies 1900-1920

(a) Scatter plot (b) Kernel density

Skewness=-1 .103 Kurtosïs=5.73

(c) Leverage analysis

Outliers detection resuits: yes : MT.

Studentized residuals> 3
Standardized residuals> 3
Dfbeta> 1

g

Î’,
‘t

NcnJd€?itg

(a) Scatter plot (b) Kemel dcnsity (c) Leverage analysis

V’.

-,

g
-

-

MT
MT

MT on DFbeta(y) and DFbeta(south)
Cook distance> .5 MT
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Figure 15. Residual analysis: regional dummies 1920-1930

(a) Scatter plot (b) Kemel density

$kewness=-.3 16 Kurtosis=3 .30

(c) Leverage analysis

Outhers detection resuits: No.

Studentized residuats> 3
Standardized residuals> 3
Dfbeta> 1
Jook distance> .5

Figure 16. Residual analysis: regional dummïes 1930-1940

(a) Scatter plot (b) Kemel density

Skewness=.5 $2 Kurtosis=2.92

(c) Leverage analysis

Outliers detection resuits: No.

Studentized residuals> 3
Standardized residuals> 3
DFbeta> 1

:0
:0
:0
:0

L

‘ç
- -

:0
:0
:0
:0

V... .,..

—4——

Cookr di.çtance> .5
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Figure 17. Residual analysis: regional dummies 1940-1950

Outliers detection resuits: VT has some influence.

Studentized residuals> 3
Standardized re,çiduaLç> 3
Dfbeta> 1
Cook distance> .5

VT
o
o

O, but max for UT

Figure 18. Residual analysis: regional dummies 1950-1960

h

(a) Scaffer plot

zz

(b) Kernel density

Skewness=-.975 Kurtosis=4.50

(c) Leverage analysis

Outliers detecfion resuits: MT has some influence on y (and a high influence on dummies).

MT with influence mostly is on a dummy
MI has influence

P

—

NcSMI6*

(b) Kemel density

Skewness.O28 Kurtosis=3.90

.1.

(a) Scatter plot (c) Leverage analysis

Studentized residuals> 3
Standardized residuals> 3
Dfbeta> 1
C’ook distance> .5

MI
MI
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Figure 19. Residual analysis: regional dummies 1960-1970

Outliers detecfion resutts: No.

Studentized residuats> 3
Standardized residuals> 3
DFbeta> 1
C’ookç distance> .5

(a) Scatter plot

f.:.

r

ta) Scaffer plot

P-—
I-—

(b) Kemel density

Skewness=-.093 Kurtosis=2.48

o
:0
:0
:0

(e) Leverage analysis

Figure 20. Residual analysis: Regional Dummies 1970-1980

k

Outliers detection resuits: WY

Stttdentized residuals> 3
Standardized residuals> 3
DFbeta> 1
Cookv distance> .5

(b) Kemel density (c) Leverage analysis

$kewness=l.708 Kurtosis=7.33

has a high influence on West but flot on personal income.

wY
WY

0, WY but on West
0, but max for WY



Figure 21. Residual analysis: regional dummies 1980-198$

t..

(a) Scatter plot (b) Kemel density

Skewness=-1.25 Kurtosis=5.28

Outliers detection resuits: WY with high influence on personal income and West.

74

(e) Leverage analysis

Studentized residuats> 3 $ WY
Standardized residuals> 3 WY
Dfbeta> 1 : WY nearly I for y and West
ookv distance> .5 t O, but max for WY
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Table 10. Regressions for personal income across U.S. States, 1880-1988: preliminaiy
resuits.

Period Basic equation Eq. with reg. dum.

Variable: constant (a) 95% projection-based CI(a)

1880-1900 [-.0147, -.0020] [.0206, .0005]
1900-1920 [-.0205, -.0084] [-.0431, .0095]
1920-1930 [-.0018, .0328] [-.0351, .0589]
1930-1940 [-.0232, -.0042] [-.0443, .0221]
1940-1950 [-.0452, -.0258] [-.0517, -.0070]
1950-1960 [-.0297, -.0080] [-.0435, .00431
1960-1970 [-.0314, .0088] [-.0345, .01 19]
1970-1980 [-.0296, -.0020] [-.0478, .0288]
1980-1988 [-.0414, .0695] [-.0563, .0566]

Variable: ln(y) (-y) 95% projection-based CI(a)

1880-1900 [-.0170, .0010] [-.0197, .0034]
1900-1920 [-.0233, -.0084] [-.0336, .0088]
1920-1930 [-.0018, .0351] [-.0369, .0584]
1930-1940 [-.0209, -.0042] [-.03 14, .0206]
1940-1950 [-.0452, -.0253] [-.0462, .0079]
1950-1960 [-.0297, -.0080] [-.0397, -.0007]
1960-1970 [-.0314, -.0094] [-.0350, .0119]
1970-1980 [-.0292, -.0020] [-.0514, .0255]
1980-1988 [-.0414, .0695] [-.0566, .0566]
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Table 11. Regressions for personal income across U.$. States, 1880-1988: complementary
resuits.

Period Equation with regionat dummies

95% projection-based CI
Variables: midwest south west

1880-1900 [-.0091,-.0069] [-.0109,-.0080] [-.0l10,-.0100]
1900-1920 [-.0130,-.0130] [-.0248,-.0008] [-.0218,-.0014]
1920-1930 [.0022, .0204] [-.0038, .04041 [-.0112, .0476]
1930-1940 [-.0074, -.0073] [-.0345, .0105] [-.0082, -.0010]
1940-1950 [-.0358,-.03$5] [-.0401,-.0124] [-.0264, .0231]
1950-t960 [-.0187,-.0142] [-.0283,-.0074] [-.0152,-.0088]
1960-1970 [-.0178, -.0126] [-.03 19, -.0010] [-.0194, .0177]
1970-1980 [-.0053, -.0015] [-.0379, -.0045] [-.0246, .0129]
1980-1988 [.0036, .0190] [.0122, .0179] [.0026, .0058]
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C. Compared inference methods in simulations

Two sign-based statistics are studied: one adapted for mediangale process, $f =

Ds(/30, (X’X)’), see equation (C.35) and one corrected for serial dependence, $HAC

D8 (/3e, J—1) see equation (C.36).

D8(t30, (X’X)’) = s(y — X/30)’X(X’X)’X’s(y — X/30). (C.35)

D8(t30, J’) s(y — X/30)’XJ’X’s(y
— Xt30). (C.36)

where

j = () (j), (C.37)

with

(i) = fl Z=+1 i(°) forj °
(C.38)

1Zt=_+iVt+i(t3o)VU3o) forj <O,

and V(t30) s(yt — x,B0) x Xt, t 1, . . . , n and k(.) is a real-valued kemel, here

Bartlett kemel is used. The bandwidth parameter B is automatically adjusted [see An

drews (1991)].

Sign-based tests are compared to LR and Wald-type tests based on OLS and LAD

estimators with different covariance matrix estimators.

Wald-type statistics for testing H0 : /3 = t0 are of the form

nC
— /3)&(î3 —

/3e) (C.39)

where b is an estimate ofthe asymptotic covariance matrix for .

The OL$ estimator is computed in GAUSS:

/3OLS = (X’X)’X’y. (C.40)

Both classic i.i.d. and White covariance matrix estirnators are considered. WH asymp

totic covariance matrix estimator is conected for heteroskedasticity but flot for linear de

pendence:

= ( (T(T_ k)
ÛXtX) ( XtX)
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The LAD estimator is computed in GAUSS by the qreg procedure, which uses a minimiza

tion by interior point method:

LAD = argmin Yt — xPI. (C.41)

The following LAD covariance matrix estimators are considered.

The order statistic estirnator (OS) [see Chamberlain (1994), Buchinsky (1995, 1998)] is

valid for i.i.d observations and is used as a benchmark. for i.i.d observations, the LAD

covariance matrix reduces to

D(LAD) = 4f2(0)tEtxxl) =

where f. stands for the density of u. An estimate for JLAD can be constmcted from a

confidence interval for the sampte median, i.e., the n/2-th order statistic. let 91, Y2, - . , Yn

be independent random observations with distribution function F(.) and 9(j), 9(k), the j—th

and the k—th order statistics of y1, 92, . .
, yn. Note that

P[y() <1/21 = C(1/2) (C.42)

entails

P[y() 1/2 Y(k)1 = P[y() 1/21 — P[y(k) <1/2]

= C(1/2).

A symmetric confidence interval with level 1 — c can be constructed as follows. Let j =

int(n/2 — t), k = int(n/2 + t) and X B(n, 1/2), with E[X] = n/2 and var(X) n/4.

Then,

P[1’,1t(/2_t) <1/2 <Yi71t(n/2+l)] P[int(n/2) — t <X <int(n/2) + 1

X—n/2 t
<

-

A central limit theorem,
X n/2

(O 1)



79

entails that

t Zi_cri2T

where Z1_12 is the 1 — a’/2th quantile ofa standard nonnal distribution. Approaching the

width ofthe exact confidence interval by that ofasymptotic confidence interval allows one

to estimate LAD

2 — fl(Yint(n/2+t) — nt(n/2_1))2
LAD 472

1—Œ/2

finally, D(/3LAD) can be estimated by,

n —1

= LAD (
Design matrix bootstrap centering aivund the sample LAD estbnate (DMB) is also con

sidered [see Buchinsky (1995, 1998)]. Let (y, x’), i = 1, . .. , rn be a randomly drawn

sample from the empirical distribution function Let !3LAD be the bootstrap estimate

obtained from a LAD regression of y* on Xt. This process is carried out B tirnes and

yields B bootstrap estimates, t3LAD1, I3LAD2,• ., !3LADB• The design matrix bootstrap

asymptotic covariance matrix estimator is given by,

bDMB =
(LADj - LAD)(LADj -

(C.43)

The rnowng block bootstrap centering around the swnple estimate (MBB) was pro

posed by fitzenberger (1997b). Basically, blocks of fixed size b are bootstrapped in

stead of individual observations, q = T — b + 1 blocks of observations of size b,

B = ((yj, xi),..., (Yi+b, x+b)) are defined. m blocks, drawn from the initial sample,

constitute a bootstrapped sample Z ofsize ru x b. from each Z, j = 1,... , B, a LAD

regression is performed yielding the estimate 73AD. The MBB estimator of the LAD

asymptotic covariance matrix can then be approached thanks to the bootstrap paradigm, by

MBB)
— LAD)(LADj —

(C.44)

Both for OLS and LAD estimators Bartlett kerneÏ covariance matrix estimators with auto

matic bandwidthparameter (BT) are also considered [see Parzen (1957), Newey and West
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(1987), Andrews (1991)] with a methodology similar to the one presented previously for

deriving the SHAC-sign statistic.

finally, the LR statistic [see Koenker and Bassett (1982)] has the following form:

4!(0) [ yj
-

x/3oI - yj
- XLADI] (C.45)

where an OS estimate is used for j(O).
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Chapitre 2

Robust sign-based estimators and generalized confidence

distributions in median regressions under heteroskedasticity

and nonlinear dependence of unknown form
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1. Introduction

The median regression framework is known to be more appropriate than the mean regres

sion when unobserved heterogeneity or departure from normality is suspected in the data

[see Dodge (1997)]. The associated estimators are more robust to outiiers than usual least

squares methods. Tbey are also more efficient whenever the median is a better measure of

location than the mean. This holds for heavy-tailed distributions or distributions possess

ing a mass at zero. The least absolute deviations (LAD) estimator has been widely stud

ied in the literature and many papers have relaxed the distributional assumptions needed

for consistency and asymptotic normality [see Poweil (1984), Weiss (1991), Fitzenberger

(1 997b)]. The advantages of departing from a restrictive parametric framework is however

reduced by the fact that inference is commonly based on asymptotic approximations (LAD

asymptotic normality, Wald-type tests) in conjunction with kernel methods [Poweil (1984)]

or bootstrap procedures [design matrix bootstrap in Buchinsky (1995), block bootstrap in

Fitzenberger (1997b), Bayesian bootstrap in Hahn (1997)1.1

Asymptotic inference may be greatly misleading in small samples. Asymptotic tests

may indeed present important size distortions. This point is well documented in LAD

based regressions [see Dielman and Pfaffenberger (1988a, 19$8b), De Angelis, Hall, and

Young (1993), Buchinsky (1995), Coudin and Dufour (2005a)] and time series [see Dufour

(1981), Campbell and Dufour (1995, 1997)]. Asymptotic failures motivate us to adopt a

different approach in the context of the median regression. In Coudin and Dufour (2005a),

we focused on the testing problem. We developed a system of inference based on a gen

eral class of sign-based statistics, which allows one to conduct simultaneous tests on the

complete vector of parameters with a fiilly controlled level for any sample size and un

der very weak distributional assumptions. Especially, the disturbance process may flot be

second-order stationaiy and may flot possess a density. We assumed that the median of

‘The reader is referred to Buchinsky (1995, 1998), for a review and to Fitzenberger (1997b) fora com
parison between these methods. Other notable research on LAD estimators and their variants: the efficient
weighted LAD ofZhao (2001), the smoothed LAD ofHorowitz (199$), adaptations to allow for endogeneity
[Amemiya (1982), PoweIl (1983), Hong and Tamer (2003)], nonlinear ftinctional forms [Weiss (1991)] and
generalization to quantile regressions [Koenker and Bassett (1978)]. Conceming empirical studies, Buchin
sky (1994) used LAD and quantile estirnators to study inequality and mobitity in the US. labor market, and
Engle and Manganelli (1999) provided an application in Value at Risk issues in finance. For reviews of the
empirical literamre on this topic, see Buchinsky (1998) and Koenker and Hallock (2000).
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the current disturbance conditional on its own past and on the whole explanatory variable

process is zero. The inference rnethod is completely free of nuisance parameter, so Monte

Carlo tests can be built.2 This method does flot require one to estimate the error density at

zero in contrast to tests based on kernel estimates of the LAD asymptotic covariance ma

trix. Valid confidence regions and general tests are then derived by projection techniques

[Dufour (1990, 1997), Dufour and Kiviet (1998), Abdelkhalek and Dufour (1998), Dufour

and Jasiak (2001), Dufour and Taamouti (2005)]. Therefore, the test criteria are rnodified

to cover linear dependence and the resulting inference is asymptotically valid.

The present paper introduces inference tools that can be associated with the previous

system. first, the confidence distribution [Schweder and Hjort (2002)], which is a reinter

pretation offisher fiducial distributions and the corresponding p-value fiinction, yield the

degree of confidence one may have in a certain value ofthe pararneter. Second, the parame

ter value with the highest confidence (i.e. the highest p-value) provides a Hodges-Lehmann

sign-based estimator [Hodges and Lehmann (1963)].

In frequentist econometrics, inference resuits are usually reported using confidence in

tervals and p-values [Neyrnan (1941)]. f isher’s fiducial distributions [f isher (1930), Efron

(199$)] are flot comrnonly used. Fisher introduced the fiducial probability as a frequentist

competitor to Bayesian posterior probabilities. lgnored for a long time, fiducial inference

has recently enjoyed a renewed interest in the statistical literature with the introduction of

confidence distributions and similar inference rnethods [see Hannig (2006) for a review].

The confidence distribution is defined in the one-dirnensional model as a distribution whose

quantiles span ail the possible confidence intervals [Schweder and Hjort (2002)]. The latter

authors introduced it as a Neyrnanian interpretation off isher’s fiducial distribution. This

tool summarizes all the inference resuits on the parameters and gives a graphical represen

tation of them. Confidence distributions are flot cornmonly used in econometrics for two

reasons. f irst, they are only defined in the one-parameter case. Second, they require the

exact distribution ofthe test statistic. The sign transform enables one to constmct statistics

that are pivots with known distribution without imposing parametric restrictions on the sam

pie. Since the sign-based statistics are discrete, only approximate confidence distributions

2See Dwass (1957), Bamard (1963), Dufour (2006).
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are obtained. The confidence distribution is related to the p-values for testing hypotheses of

the form H0CØ0) : /3 = The p-value can be seen as the degree ofconfidence one may

have on the tested value. Our aim is to adapt those notions to a multidimensional parameter

in a median regression context. for this, we shail combine sign-based tests ofsimultaneous

hypothesis with increasing level with projection techniques. For each component, a pro

jected p-value function provides a graphical illustration ofboth the inference summary and

the degree of identification.

Then, we shah derive estimators and study their properties. Hodges and Lehmann

(1963) proposed a general principle to directly derive estimators from test statistics for a

given sample size.3 They suggest to invert a test for H0(/30) /3 /3e, and to choose

the value of /3 which is “least rejected” by the test. In a multidimensional context, this

leads one to select the value of/3 with the highest degree oJconfldence i.e. with the highest

p-value. It is naturat to associate the resulting sign-based estimator with a finite-sample

based inference method. This estimator also inherits some of the attractive properties of

sign-based tests (robustness to mode! specification, gross errors and heteroskedasflcity).

We shail see that this estimator can be computed by minimizing quadratic forms ofthe con

strained signs (with probability one). So it has a classical GMM form [Hansen (1982), and

Honore and Hu (2004) for GMM statistics involving signsj. We show that sign-based es

timators are consistent and asymptotically normal under regularity conditions weaker than

the ones required by the LAD estimator usual theoiy. In particular, asymptotic nonnahity

and consistency hold for heavy-taited disturbances that may flot possess finite variance.

This interesting property is entailed by the sign transformation. Signs of residuals always

possess finite moments so no further restriction on the disturbance moments is required to

complete the proofs. Contrary to usual GMM estimators, sign-based estimators are notjust

asymptoticallyjustified by the analogy principte. They are first Hodges-Lehmann estima-

tors associated with a finite-sample-based statistic.

The class ofestimators so obtained includes some special cases studied in the statistical

literature: Boldin, Simonova, and Tyurin (1997) derived sign-estimators from locahly most

3First applied by Hodges and Lehmann to die Wilcoxon’s signed rank-statistic for estimating a shift or a
tocation, this principle was adapted fora regression context by Jureckova (1971), Jaeckel (1972) and Koul
(1971). The latter authors derived so-called R-estimators from tank or signed-rank statistics.
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powerfi.il test statistics for i.i.d. observations and fixed regressors. In such a context, they

proved consistency and asymptotic normality. More precisely, assuming i.i.d. observa

tions and fixed regressors, they showed a well standardized sign-estimator is asymptotically

equivalent to the LAD estirnator. However, in finite samples and for various setups, LAD

and sign methods exhibit very different features. The simulation studies of bias and root

mean squared error (RMSE) we present show that sign-based estimators are more robust

than the LAD estimator in the presence of heteroskedasticily. We shah therefore compare

both theirfinite-sampte and asymptotic properties. We witt provideconsistency when point

identification is available, asymptotic normatity and a Monte Carlo study of performance.

Instrumental versions of sign-based estimators are presented in Honore and Hu (2004)

and Hong and Tamer (2003). Honore and Hu (2004) derived the so-called median-based

estimator as an instrumental GMM version of the quantile estimator. The authors mo

tivated to use the latter along with other rank-based estimators for their general robust

ness properties. However, the major advantage of signs upon ranks is to easily deal with

heteroskedastic disturbances. In the present paper, we do flot assume i.i.d. disturbances.

We detive various sign-based statistics and associated sign-based estimators depending on

the setup. Many heteroskedastic and possibly dependent schemes are covered and, when

needed, an heteroskedasticity and autocorrelation correction is included in the estimator cri-

tenon function. Restricting on i.i.d. cases, Honore and Hu (2004) observed in simulations

that inference based on rank-based estimators performed better than the median-based one.

In particular, the estimates of the asymptotic standard enors of the median-based estima

tor, that they obtained by kemel, were too small and the associated inference suffered from

overrejection of the null hypothesis. Deriving sign-based estimators as Hodges-Lelmiann

estimators motivates us to definitely combine them to the inference method they come

from. The latter, based on the exact distribution ofthe corresponding sign-based test statis

tics does not depend on any nuisance parameter and does control test levels [see Coudin and

Dufour (2005a)]. Finally, sign-based tests, projection-based confidence regions, projection

based p-values and sign-based estimators constitute a whole system of inference valid for

any given sample size under very weak distributional assumptions.

The paper is organized as follows. Section 2 presents the model, the sign-based sta
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tistics and the Monte Carlo tests. Section 3 is dedicated to confidence distributions and

p-value functions. In section 4, we introduce the sign-based estimators, which are ob

tained by maximizing the p-value function. finite-sample and asymptotic properties of

sign-based estimators are established in section 5. In section 6, we present a simulation

study of bias and RMSE. In section 7, we apply sign-based estimation for deriving robust

estirnates in two cases: first, in a financial setup involving large heteroskedasticity (S.&P.

index); second, in a cross-sectional regional data set where the sample size is necessarily

small (3-convergence of output levels across U.S. States). Section 8 concludes. Appendix

A contains the proofs.

2. Framework

2.1. Model

We consider the framework of Coudin and Dufour (2005a). Let {W = (y, x)

Q —> be a stochastic process defined on a probability space (Q, F, P).

{ W, J} t=1,2,... is an adapted stochastic sequence, i.e., .F is a u-field in Q such that

F8 Ç F for s < t and u(W1, . . , W) C .FL, where u(l’Vy,. . . , W) is the u-algebra

spanned by l’V1,. . . , W. We set W1 = (y, ), where y is the dependent variable and

Xt (Xty, . .. , Xtp)1, ap-vector of explanatory variables. The x1’s may be random or fixed.

We assume that y and xt satisfy a simple linear model of the form:

y=x3+u, trzl,...,fl, (2.1)

or, in vector notation,

y=X/3+u, (2.2)

where y = (y,. . . , y,)’ and u (u1,. . , u are n x 1 real vectors, X = [xi,... , x7,]’ is

an n x p real matrix. 3 e W3 is the vector ofparameters. The ut’s can be heteroskedastic

each one with conditional distribution fimction denoted Ft(.IX):

ntIXFt(.IX), t=1,...,n.
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The traditional form ofa median regression assumes ‘ut’S are i.i.d. with median zero

Med(utxi,. . . , x) = O, t 1,. .. n. (2.3)

Here, we relax the assumption that the n are i.i.d. and consider instead moment conditions

based on residual signs where the sign operator s : R —* {—1, O, 1} defined as

s(a) = 1[o,+)(a) — a E R. (2.4)

For convenience, the notation will be extended to vectors. Let u E R71 and s(u), the n

vector composed by the signs of its components. We assume the following assumption

holds.

Assumption Al SIGN MOMENT CONDITION. E[s(ut)xkt] = O, for k 1 p, t =

1,...,n, andnEN.

Assumption Al is fulfihled if the disturbances are i.i.d. and more generally if the signs

satisfy a martingale difference with respect to the past information F = u(W1,... , I’V):

E[s(ut)IF_i] = 0, Vt > 1. (2.5)

Assumption Al also covers many weakly dependent processes including usual linear de-

pendent processes, such as AR(1) disturbances with normal innovations and mean zero.

This bas been pointed out by fitzenberger (1997b). Next, Assumption Al holds when ‘u

satisfies the strict conditional mediangale condition defined in Coudin and Dufour (2005a):

Assumption A2 STRICT CON DITIONAL MEDIANGALE. Let {‘ut, beau adapted

stochastic sequence where .F = o-(u1, . . . , ‘u,, X). {‘ut}t=l,... 1$ a strict mediangale condi

tional on X with respect to jf

P[u1 <OIX] = P[ui > 0X = 0.5,

P[u <0u, . .. ,‘u, X] = P[’u > Oui,. .. ,u1, X] = 0.5, fort> 1.

Assumption A2 and more generally the moment condition Al are exploited to construct

test statistics.
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2.2. Sïgn-based statistics and Monte Carlo tests

For testing H0(j30) /3 = vs. H1(/30) : /3 4 /3 in mode! (2.1), we consider general

quadratic forrns involving the vector ofthe residual signs for the constrained mode! s(y —

X/30):

Ds(/30, Q7) = s(y — X/30)’Xf2(s(y — X/30), X)X’s(y — X[30) (2.6)

where f2(s(y — X/30), X) is a p x p positive definite weight matrix that may depend

on the constrained signs. In Coudin and Dufour (2005a), we developed distribution-free

Monte Carlo tests under the mediangale Assumption A2. We briefiy summarize it.

If the disturbances satisfy the mediangale Assumption A2, the sign-based statistics sat

isfying equation (2.6) are shown to be pivota! functions under H0(/30). The distribution of

the statistic conditional on the rea!ization of X, is perfectly specified and can be sirnuÏated.

Monte Carlo tests with control!ed levels are constructed in the following way. For testing

H0(/30) : /3 = /30 vs. H1(/30) /3 /3 with !evel n E [0, 1], we denote D = D(/30)

the observed statistics, (Dv,... , D,”)’ an N-vectorofindependentreplicates drawn from

the same distribution as D(/30) and (W(°),. ..
, W(A0)’, a N + 1-vector ofi.i.d. uniform

variables. A Monte Car!o test for Ho(/30) consists in rejecting the nuli hypothesis whenever

the empirical p-value I5DNS (/3e) is sma!ler than n, where

± 1
— D)

—

1{O}(D — D)i[o, )(W() —

(2.7)

This empirica! p-value is we!l adapted to discrete statistics. When two realizations of the

statistic are equal, they are ordered using the auxi!iary continuous uniform variables ivt

(randomized tie-breaking). When the number of replicates N is such that n(N + 1) is an

integer, the level of the Monte Carlo test is equal to n for any sample size n [see Dufour

(2006), Coudin and Dufour (2005a)J. Next, sirnultaneous confidence regions for the entire

parameter /3 are obtained by inverting those simuttaneous tests. The simultaneous confi

dence region Ci_a(/3) with level 1 — n contains ail the values /3 with empirical p-value
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S(/3*) [associated with the test of Ho(t3*) : /3 = /3*] higher than c:

C1(/3) = {/3*IDS(/3*) > }

By construction, this confidence region has level 1 — c for any sampie size. It is then

possible to derive general (and possibiy nonIinear tests and confidence sets by projection

techniques. For example, individuai confidence intervais are obtained in such a way. If D8

is an asyrnptoticaliy pivotai function au previous resuits hold asyrnptoticaiiy. for a detaiied

presentation, see Coudin and Dufour (2005a).

3. Confidence distributions

In the one pararneter model, statisticians have defined the confidence distribution notion

that summarizes a family of confidence intervais; see Schweder and Hjort (2002). By

definition, the quantiles of a confidence distribution span ail the possible confidence in

tervais of a real /3. The confidence distribution is a reinteqretation ofthe Fisher fiduciai

distributions and provides, in a sense, an equivaient to Bayesian posterior probabiiities in

a frequentist setup [see aiso Fisher (1930), Neyman (1941) and Efron (1998)]. This sta

tistical notion is flot coiurnoniy used in the econometric literature, for two reasons. first,

it is oniy defined in the one-parameter case. Second, it requires that the test statistic be a

pivot with known exact distribution. Our aim is to extend that notion (or an equivaient) to

muitidimensionai parameters. The sign transformation enables one to constmct statistics

which are pivots with known distribution without imposing parametric restrictions on the

sampie. Consequently, our setup does not suffer from the second restriction. In that sec

tion, we briefiy recali the initial statisticai concept and apply it to an example in univariate

regression. Then, we address the extension to muitidimensional regressions.

3.1. Confidence distributions in univariate regressions

Schweder and Hjort (2002) defined the confidence distribution for the reai parameter /3 such

a distribution depending on the observations (y, x), whose cumulative distribution function
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evaluated at the true value of /3 has a uniform distribution whatever the true value of t. In

a formalized way, this can be expressed as follows:

Definitïon 3.1 CONFIDENcE DISTRIBUTION. Any distribution with cumulative CD(/3)

and quantilefunction CD—’ (t3). such that

P,[CD’(ct;y;x)]= P,[CD(/3;y;x) a}=c (3.1)

for ail c E (0, 1) andfor ail probabiiity distributions in the statistical model, is called a

confidence distiibt,tion of/3.

(—œ, CD (ct)] constitutes a one-sided stochastic confidence interval with coverage

probability ct,’ atid the realized confidence CDc80; y; x) is the p-value ofthe one-sided hy

pothesis H0 /3 versus H, /3> when the observed data are y, x. The realized

p-value when testing H0 : /3 = versus H, : /3 /3 is 2min{CDC80), 1 — CD(/30)}.

Those relations are stated in Lenmia 2 of Schweder and Hjort (2002), which states:

the confidence of the statemnent “t3 < f30 “is the degree of confidence CD(/30) for the

confidence intervai ( — no, CD—’ (CD(/30))], and is equal to the p-value of a test of

H0 : /3 < /3 v.s. H, : /3 > /3e. Hence, tests and confidence intervals on /3 are contained in

the confidence distribution. Moreover, the values associated with the highest confidence

statement (or equivalently with the highest p-value for testing H0 : /3 /30) may provide

estimators of/3.

Schweder and Hjort (2002) also note that, since the cumulative function CD(/3) is an

invertible ftmction of/3 and is uniformly distributed, CD(/3) constitutes a pivot conditional

on x. Reciprocally, whenever a pivot increases with /3 (for example a continuous statistic

T(/3) with cumulative distribution function F that is independent of/3 and free of any nui

sance parameter), F(T(/3)) is uniformly distributed and satisfies conditions for providing

a confidence distribution. Let be such a continuous real statistic increasing with /3 with

a free of nuisance parameter distribution. A test of H0 t /3 /3 is rejected when 73° is

4for continuous distributions, just note that P,[/3 K CD’(a)J = P13{CD(t3) < CD(CD’(a))} =

P{CD(/3) c]} =
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large, with p-value P0 [t3 > Then,

> obs
=

— F0(0b2) CD(0) (3.2)

where F0 () is the sampling distribution of t. Consequently, simulated sampling distri

butions and simulated realized p-values as presented previously yield a way to construct

simulated confidence distributions. The sampling distribution and the confidence distri

bution are fundamentally different theoretical notions. The sampling distribution is the

probability distribution of obtained by repeated samplings whereas the confidence distri

bution is an ex-post object which contains the confidence staternents one can have on the

value of/3 given y, x,

A last remark relates to discrete statistics. Confidence distributions based on discrete sta

tistics cannot lead to a continuous uniform distribution. Approximations must be used.

Schweder and Hjort (2002) proposed halfcotrection. For discrete statistics, they used

CD(0) P0[
> ObS1

+
= obs

(33)

We rather use randomization as in section 2. The discrete statistic is associated with

an auxiliary one U, which is independently, uniformly and continuously distnbuted over

[0, 1]. Lexicographical order is used to order ties.

CD(0) =
> obs

+ > U]P0[
= bobs]

(3.4)

Let us consider a simple example to illustrate those notions. In the model y 3x+nj, i

1,... , n, (ui, x) .Af(0, 12), the Student sign-based statistic

—---- V’S( —xAx
—

U’) t

P)
—

(4)h/2

is a pivotai ffinction and decreases with 3. The confidence distribution of /3 given the

realization y, z can be approximated by

=1- (3.5)

with a Monte Carlo estimate of the sampling distribution of S$T under /3 =

Figure 22 presents a simulated confidence distribution cumulative function for /3, given
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Figure 22. Simulated confidence distribution cumulative function based on SST.

200 realizations of (u1. x) based on 8$T. The Monte Carlo estimate of Ê is obtained

from 9999 repiicates of SST under H0. Testing H0 t /3 .1 at 10% can be done by

reading CD(.1), which equals the p-value of H0, here .88. The test accepts H0. Further,

(—oc, .151 constitutes a one-sided confidence inten’al for /3 with level .95.

Another interesting object is the realized p-value fimction when testing point hypothe

ses H0(t30) t /3 = /3e. The latter is a simple transformation ofthe CD cumulative function:

PSST(/3o) = 2min{bssT(/3O).1 - CDSST(/30)}. (3.6)

Consider now the statistic 8F = S$T2. $F is a pivotai function but flot a monotone fune

tion of /3 contrary to SST. An entire confidence distribution cannot be recovered from 8F

because ofthis lack ofmonotonicity. However, the p-value function can be constructed us

ing equafion (2.7). Figure 23 compares p-value functions based on SST and 8F. Inverting

the p-value function allows one to recover haif of the confidence distribution and conse

quently half ofthe inference results, i.e. the two-sided confidence intervals. For example,

[— .12, .141 constitutes a confidence mterval with level 90% for both statistics. The p-value



0,5
beta

Figure 23. Simulated p-value functions based on SST and SF.

function provides then an interesting suinmaiy on the available inference. Especially, it

gives the confidence degree one can have in the statement =

The spread ofthe p-value fiinction is also related to theparameter identification. When

the p-values are 10w (or high) whatever the value of /3, one may expect the parameter to be

badly idenfified either because there exists a set of observationally equivalent parameters,

then, the p-values are high for a wide set of values; either because there does flot exist

any value satisfying the model and then the p-values are small everywhere. To illustrate

that point, let us consider an example where the first n1 observations satisfy y = 31x +
iid

‘t = 1,... ,‘ni,Qut,xt) Jf(0,12) and the n2 followings, yj = /32x + ‘ui, t = n1 +

1,... ,n1 + n2,(nt,xj) V(o,12), with /3 —1 and /32 = 1. The model y = /3x +

u, 1,... , n1 + fl2, is misspecified. In figure 24, we notice the spread ofthe p-value

function based on SF is large which we can interpret as a lack of identification: the set of

observationally equivalent /3 is not reduced to a point.

The p-value function has an important advantage over the confidence distribution: it is

straightforwardly extendable to multidimensional parameters.
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Simulated p—values functions based on SST and SF with beta badly identified
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Figure 24. Simulated p-value functions based on SST and Sf when the parameter is badly
identifled.

3.2. Simultaneous and projection-based p-value functions in multi

variate regressions

If p > 2, the confidence distribution notion is flot defined anymore. However, simulated

p-values for testing H0 : /3 = can easily be constructed from the 3F statistic and more

generally from any sign-based statistic which satisfles equation (2.6). Simulated p-values

lead to a mapping for which we have a 3-dimensional representation for p = 2. Consider

the model: y = [3’x, + /3212i + ‘ui, i = 1 n. (‘u. 1ii, 12f) ]V(0. 13), /3 = (0,0)’,

y = (y,,. .. , y,)’, u = (u, ‘un)’, X, = (X, x,)’, 12 = (X217. . . and X =
(11,X2). Let Ds(/3, (X’X)) = s’(y — X/3)X(X’X)’X’5(y — X/3). In Figure 25, we

compute the simulated p-value fiinction ji (/3e) for testing H0 : /3 = on a grid ofvalues

of /3e. using N replicates ofthe sign vector. (/3e) allows one to consfruct simultaneous

confidence sets for /3 = (/31, /32) with any level. By construction, the confidence region

C,(/3) defined as

= {/3Ii30) ‘}, (3.7)

has level 1 — c [see Dufour (2006)]. Hence, by construction, C,(/3) corresponds to the

intersection of the horizontal plan at ordinate c with the envelope of (/3e). For higher

bela
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Figure 25. Simulated p-value fimctions based on SF (n = 200, N = 9999).
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dimensions (p > 2), a complete graphical representation is flot available anymore. How

ever, one can consider projection-based p-value ffinctions for each individual component

of the parameter of interest in a similar way than projection-based confidence intervals.

For this, we apply the general strategy of projection on the complete simultaneous p-value

fimction. The projected-based p-value function for the component j31 is given by:

P.P’ (t3) = rnaxj3 [(/3,, /3)]. (3.8)

figure 26 presents projection-based confidence mtenrals for the individual parameters of

the prevÏous 2-dimensional example. [— .22, .21] is a 95% (conservative) confidence inter-

val for /31• [—.38, .021 is a 95% (conservative) confidence interval for /32• Testing /31
= O is

accepted at 5% with p-value 1.0. Testing /32
= o is accepted at 5% with p-value .06.

°10L______ /
-0.5—04—03-02—0.1 0 0.1 0.2 03040.5 —0.5—04-0.3-02-2.1 D 0.1020.3040.5

betal beta2

ta) Projecflon-based pvalues for /31 (b) Projection-based pvalues for 32

figure 26. Projection-based p-values.

4. Sign-estimators

Sign-based estimators complete the above system of inference. Intuition suggests to con

sider values with the highest confidence degree, i.e, with the highest p-values. Estima-

tors obtained by that sort of test inversion constitute multïdimensional extensions of the

Hodges-Lehmann principle.
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4.1. Sign-based estimators as maxima of the p-value function

Hodges and Lehrnann (1963) presented a general principle to derive estimators by test

inversion; see also Johnson, Kotz, and Read (1983). Suppose /i R and T(1u0, W) is a

statistic for testing t = jt against ,u > io based on the observations W. Suppose fiirther

that T(t, l’y) is nondecreasing in the scalar i. Given a known central value 0f T(t0, W),

say m(i) [for example EwT(1i0, 147)], the test rejects u = 110 whenever the observed T is

larger than, say, m(ji0). If that is the case, one is inclined to prefer higher values of u. The

reverse holds when testing the opposite. 1f m(0) does flot depend on [t0 [m(p) = 7fl], an

intuitive estirnator of[t (if it exists) is given by such that T(11*, W) equals m0 (or is very

close tom0). 11* may be seen as the value of11 which is most supportedby the observations.

This principle can be directly extended to multidimensional parameter setups through

p-value functions. Let /3 E W. Consider testing H0 : /3 = versus H1 : /3 = /3 with

the positive statistic T. A test based on T rejects H0 when T(/30) is larger than a certain

critical value that depends on the test level. The estimator of /3 is chosen as the value of

j3 least rejected when the level c of the test increases. This corresponds to the highest p

value. 1f the associated p-value for /3 = /30 is P(/3o) = G(D8C60)I/30), where G(xI/3o) is

the survival function ofDs(/30), i.e. G(x/30) = P[D3(/30) > x], the set

Ml = arg max p(/3) (4.1)

constitutes a set of Hodges-Lehrnann-type estirnators. HL-type estimators maximize the

p-value function. There may not be a unique maximizer. In that case, any maximizer is

consistent with the data.

4.2. Sign-based estimators as solutions of optimization problems

When the distribution of T(/30) and the corresponding p-value function do flot depend on

the tested value /3e, maximizing the p-value is equivalent to minimizing the statistic T(/30).

This point is stated in the following proposition. Let us denote F(xj/30) the distribution of

T(/30) when /3 = /3 and assume this distribution is invariant to /3 (Assumption A3).
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Assumption A3 1NVARIANCE 0f THE DISTRIBUTION FUNCTION.

= F(x) Vx R, V30 e W.

Then, the following proposition holds.

Proposition 4.1 Under Assumption A3, the twofoÏÏowing sets Ml and M2 are equaÏ with

probabiÏity one:

Ml = argrnax p(3). (4.2)

i”v12 = arg min T(/). (4.3)

Maximizing p8) is equivalent (in probability) to minimizing T(t3) if Assumption A3

holds. Under the mediangale Assumption A2, any sign-based statistic D8 does satisfy

Assumption A3. Consequently,

e arg min s’(Y — X/3)XQ(s(Y — Xt3), X)X’s(Y — X/3) (4.4)
j33P

equals (with probability one) a Hodges-Lehmann estimator based on D8(Q, t3). Since

Ds(Qn, 3) is non-negative, problem (4.4) aiways possesses at least one solution. As signs

can only take 3 values, for fixed n, the quadratic function can take a finite number of values,

which entails the existence of the minimum. If the solution is flot unique, one may add a

choice criterion. For example, one can choose the smallest solution in terms of a norm or

use a randomization. Under conditions of point identification, any solution of (4.4) is a

consistent estimator.

The whole argmin set of (4.4) remains informative in models with sets of observation

ally equivalent values of [see Chemozhukov, Tamer, and Hong (2006)]. The identified

feature of those models is a set instead of a point value. Any inference approach relying

on the consistency ofa point estimator (which assumes point identification), gives mislead

ing results, but the estimation of the whole set can be exploited. Let us remind that the

Monte Carlo sign-based inference method [Coudin and Dufour (2005a)] does flot rely on

identification conditions and leads to valid results in any case.
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The sign-based estimators studied by Boldin, Simonova, and Tyurin (1997), are solu

tions of

/3(I) E arg min s’ (Y — X)XX’s(Y — X) = arg min SBc8), (4.5)

and

e arg min s’(Y — X)X(X’X)1X’s(Y — X) = arg min $F(). (4.6)

for heteroskedastic independent disturbances, we introduce weighted versions of sign

based estimators that can be more efficient than the basic ones defined in (4.5) or (4.6).

Weighted sign-based estimators are sign-based analogues to weighted LAD estimator [see

Zhao (2001)]. The weighted LAD estimator is given by

3IVLAD
= argmindy — x/3. (4.7)

/3ERP

The weighted sign-based estimators are solutions of

/3DX
argmin s’(Y — X/3)(’)’’D’s(Y — Xi3) (4.8)

with

d1 O

X

O ... (4

where (d)1 are positive reals. Weighted sign-based estimators that involve optimal

estimating functions in the sense ofGodambe (2001) are solutions of

DX*
argmin s’(Y — X)X*(X*’XlX*’DIs(Y

— X) (4.9)
fleRP

where

J1(OX) O

f(OIX) X

o ... J,1(OIX)

with Jt(OIX), t = 1 n, the conditional disturbance density evaluated at zero. The in

herent problem ofsuch a class of estimators is to provide good approximations off (0X) ‘s.

Densities of normal distributions can be used.
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4.3. Sign-based estimators as GMM estimators

Sign-based estimators have been interpreted in the literature as GMM estimators exploiting

the orthogonality condition between the signs and the explanatory variables [see Honore

and Hu (2004)]. In our opinion, a strictly GMM interpretation hides the link with the

testing theory. That is the reason why we first introduced sign-based estimators as

Hodges-Lehmann estimators. The quadratic form (4.4) refers to quite unusual moment

conditions. The sign transformation evacuates the unknown parameters that affect the error

distribution. It validates nonparametric finite-sample-based inference when mediangale

Assumption holds. However, in settings where only the sign-moment condition Al is

satisfied, the GMM interpretation of sign-based estimators stiil applies and entails useful

extensions.

for autocorrelated disturbances, an estimator based on a HAC sign-based statistic

Ds(t3, J;-’) can be used:

arg min s’(Y - X)X[J(s(Y
- X),X)1’X’s(Y - X), (4.10)

where îr1 accounts for the dependence among the signs and the explanatory variables.

/3 appears twice, first in the constrained signs, second in the weight matrix. In practice,

optimizing (4.10) requires one to invert a new matrix J for each value of /3 whereas

problem (4.6) only requires one inversion of X’X. In practice, this numerical problem

may quickly become cumbersome similarly to continuously updating GMM. We advo

cate to use a two-step method: first, solve (4.6) and obtain ((X’X)’); compute then

J’(s(Y — X73( (X’X)1), X) and finally solve,

2s(J1)
e arg min s’(Y - X/3)X[J(s(Y - X)]’X’s(Y - X/3). (4.11)

The 2-step estimator is not a Hodges-Lehmann estimator anymore. However, it is stili

consistent and share some interesting finite-sample properties with classical sign-based

estimators. The properties of sign-based estimators are studied in the next section.
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5. Some basic properties of sign-based estimators

In this section, both finite and asymptotic properties of sign-based estimators are studied.

We demonstrate consistency when the parameter is identified under weaker assumptions

than the LAD estimator, which validates the use of sign-based estimators even in settings

when the LAD estimator fails to converge. Their finite-sample behavior also presents use

fttl features. They share invariance properties with the LAD estimator and are median

unbiased if the disturbance distribution is symmetric. finally, sign-based estimators are

asymptotically normal.

5.1. Identification and consistency

We show that the sign-based estimators (4.4) and (4.11) are consistent under the following

set of assumptions:

Assumption A4 MIXING. {‘V (yt, is a’-mixing ofsize —77fr — 1) with

r>1.

Assumption A5 BOUNDEDNESS. Xt = (xit,. . . , x)’ and EIxhtiT4 < \ < oc, h =

1,...,p, t=1,...,n, VnN.

Assumption A6 COMPACTNESS. /3 e Int(e), where e is a compact subset 0fR?.

Assumption A7 REGULARITY 0F TE-lE DENSITY.

1. Thete are positive constants fi. andp1 such that, for alîn e N,

P[ft(0(X) > > p1, Vt = 1.. .. ,n, a.s.

2. ftf.IX) is continuous,Jbr ail n E Nfor ail t, a.s.

Assumption A8 POINT IDENTIFICATION CONDITION. V5> 0, T> O such that

1irninf P[Ixi > rf(0 xi,... ,x) > fL] >0.
n—Do fl
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Assumption A9 UNIFORMLY POSITIVE DEFINITE WEIGHT MATRIX. Q(8) is symmet

ric definite positive for ail 3 in e.

Assumption AlO LOCALLY POSITIVE DEFINITE WEIGHT MATRIX NEAR /3e. Q(/3) is

symmetric definite positivefor ail 3 in a neighborhood of/30.

Then, we can state the consistency theorem. The assumptions are interpreted just after.

Theorem 5.1 CONSISTENCY. Under inodel (2.1) with the Assumptions A], A4-A9, any

sign-based estimator ofthe type,

e argmin s’(Y — X/3)Xf2(s(y — X/3),X)X’s(Y — Xj3), (5.12)

or

argmin s’(Y — X/3)X(s(y — X),X)X’s(Y — (5.13)
3eR

where /3 stands for any (first step.) consistent estimator of[3, is consistent. defined in

equation (5.13,) is stili consistent fAssurnption A9 is replaced 1w Assumption A 10.

Let us interpret precisely Assumptions A4-A10 and compare them to the ones required for

LAD and quantile estimator consistency [sec Fitzenberger (1 997b) and Weiss (1991) for the

most general setupsJ. Assumptions on mixing (A4), compactness (A6) and point identifi

cation (A7, AS, A9) are classical. The mixing setup A4 is needed to apply a generic weak

law of large numbers [sec Andrews (1987) and White (2001)]. It was used by Fitzenberger

(1 997b) to show LAD and quantile estimator consistency with stationary linearly dependent

processes. It covers, among other processes, stationary ARMA disturbances with continu

ously distributed innovations. Point identification is provided by Assumptions AS and A7.

Assumption AS is sïmilar to Condition ID in Weiss (1991). Assumption A7 is usual in

the LAD estimator asymptotics.5 It is analogous to Fitzenberger (1997b)’s conditions (ii.b

and c) and Weiss (1991)’s CD condition. It implies that there is enough variation around

zero to identify the median. It restricts the setup for some ‘bounded’ heteroskedasticity

in the disturbance process but flot in the usual (variance-based) way. Indeed, so-called

5Assumption A7 can be slightly relaxed covering error terms with mass point if the objective function
involves randomized signs instead ofusual signs
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dffitsivity, can 5e seen as an alternative measure of dispersion adapted to median

unbiased estimators. It measures the vertical spread of a density rather than its horizontal

spread and is invoived in Cramér-Rao-type lower bound for median-unbiased estimators

[see Sung, Stangenhaus, and David (1990) and So (1994)]. Besides, in Assumptions A9

and Ai0, the weight matrix is supposed to be invertibie for estimators obtained in one

step whereas oniy a local invertibility is needed for two-step sign-estimators. One differ

ence with the LAD asymptotic properties relies on Assumption A5. for sign consistency,

only the second-order moments of Xt have to be finite, which differs from fitzenberger

(1997b) who supposed the existence ofat least third-order moments. And above ail, we do

flot assume the existence ofsecond-order moments on the disturbances ‘Ut. Indeed, the dis

turbances appear in the objective fiinction only through their sign transforms which possess

finite moments up to any order. Consequently, no additional restriction should be imposed

on the disturbance process (in addition to regularity conditions on the density). Those

points will entail a more generai CLT than the one stated for the LAD/quantile estimators

in fitzenberger (1997b) and Weiss (1991).

5.2. Unbiasedness and equÏvariance

Sign-based estimators share some attractive equivariance properties with LAD and quantile

estimators [see Koenker and Bassett (1978)]. It is straightforward to see that the foliowing

proposition holds.

Proposition 5.2 EQUIVARIANCE. 1f73(y, X, u) is a solution of(4.4), then

73().y,X,u) )(y,X,u), V\ E R (5.14)

+ X7,X,u) = (y,X,u) + , V7 E W (5.15)

73(’y,XA,u) A’73(y,X,u), foranynonsingulark x kmatrixA. (5.16)

To prove this property, it is sufficient to write down the different optimization problems.

Equation (5.14) states that is scale invariant: if y is rescaled by a certain factor, is

rescaled by the same one. Equation (5.15) states that /3 is location invariant, while (5.16)
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states a reparameterization invariance with respect to the design matrix: the transformation

on is given by the inverse of the reparameterization scheme.

Moreover, if the disturbance distribution is assumed to be symmetric then sign

estimators are median unbiased.

Proposition 5.3 MEDIAN UNBIASEDNESS. Ifn —u, then anysign-basedestirnatorf3

solution ofminimization problem (4.4) is median unbiased, that is,

Med(73—/30)—_0

where t3 is the true value.

5.3. Asymptotic normality

Sign-based estimators are asymptotically normal. This also holds under weaker assump

tions than the ones needed for LAD estimator asymptotic normality. Sign-based estimators

are specially adapted for heavy-tailed disturbances that may not possess finite variance.

The assumptions we need are the following ones.

Assumption Ail UNIFORMLY BOUNDED DENSITIES. fu < +00 such that ,Vn

N,VÀ e R,

SU!) I.ft(ÀIxy,...,x)I < fu, as.
{te(1 n))

Under the conditions Ai, A4, A5 and Ail, we can define LcB), the derivative ofthe limit

ing objective ffinction at /3:

L(/3) limL(/3). (5.17)

where

L(/3) (5.1$)

The other assumptions are merely used to show asymptotic normality.

Assumption A12 MIXING WITH T > 2. {W = (y, x)}t=12,... is ci-mixing ofsize

— 2) with T > 2.
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Assumption A13 DEFINITE POSITIVENESS 0f L. LC80) ispositive definite unforinÏy

in n.

Assumption A14 DEFINITE POSITIVENESS 0f J. The matrix J =

E[ Z s(ut)xtxs(u5)] 1$ positive definite unforrnly in n and converges to a definite

positive syminetric matrix J.

Then, we have the following resuit.

Theorem 5.4 ASYMPTOTIC NORMALITY. Under the conditions for consistency (A],

A4-A9,), andA]2-A]4, we have:

—

N(0, I) (5.19)

where

$7. = IL7.(130)Q7.L7.(130)]’L7.(t30)Q7.J7.i’2,1L7.(/30) [L(f3o)Q,7L7.(/30)]—’

and

L(0) = E[xjxft(0Ixi,. .. ,x7j]. (5.20)

Remark that when Q = J,’, we have

- t3) - N(0, In). (5.21)

This corresponds to the use of optimal instruments and quasi-efficient estimation. 1(J,’)

lias the same asymptotic covariance matrix as the LAD estimator. Thus, performance differ

ences between the two estimators correspond to finite-sample features. This resuit contra

dicts the generally accepted idea that sign procedures involve a heavy loss of information.

There is no loss induced by the use of signs instead of absolute values.

Note again that we do not require that the disturbance process variance be finite. We

only assume that the second-order moments of X are finite and the mixing property of

{W, t = Ï, .
. .} holds. This differs from usual assumptions for LAD asymptotic normal

ity.6 This difference cornes frorn the fact that absolute values of the disturbance process

6See f itzenberger (1997b) for the derivation of the LAD asymptotics in a similar setup and Koenker
Bassett(1978) or Weiss (1991) fora derivation ofthe LAD asymptotics under sign independence
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are replaced in the objective function by their signs. Since signs possess finite moments at

any order, one sees easily that a CLI can be applied without any further restriction. Conse

quently, asymptotic normality, such as consistency, holds for heavy-tailed disturbances that

may not possess finite variance. This is an important theoretical advantage of sign-based

rather than absolute value-based estimators and, ajortiori, rather than least squares esti

mators. Estimators for which asymptotic normaiity holds on bounded asymptotic variance

assumption (for example OLS) are not accurate in heavy-taii settings because the variance

is not a measure of dispersion adapted to those settings. Estimators, for which the asymp

totic behavior relies on other measures of dispersion, like the diffusivity, heip one out of

trouble.

hie form of the asymptotic covariance matrix simplifies under stronger assumptions.

When the signs are mutually independent conditional on X [mediangaÏe Assumption A2],

both ((X’X)’) and /3(J’) are asymptotically normal with variance

= [L(/0)]-’E [(1/n) xx] {L(/3)]-1

If’u is an i.i.d. process and is independent of X, then fttO) = f(0), and

$fl = 4f(0)2E(xtxt). (5.22)

in the generai case, ft(0) is a nuisance parameter even if condition Ail implies that it can

be bounded.

Ail the features known about the LAD estimator asymptotic behavior apply also for

the SHAC estimator; see Boldin, Simonova, and Tyurin (1997). For exampie, asymptotic

relative efficiency ofthe SHAC (and LAD) estimator with respect to the OLS estimator is

2/7r if the errors are normaliy distributed N(0, o-2), but SHAC (such as LAD) estimator can

have arbitrarily large ARE with respect to OLS when the disturbance generating process is

contaminated by outiiers.

5.4. Asymptotic or projection-based sign-confidence intervals?

In section 4, we introduced sign-based estimators as Hodges-Lehmann estimators asso

ciated with sign-based statistics. By iinldng them with GMM settings, we then derived
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asymptotic normality. We stressed that sign-based estimator asymptotic normality holds

under weaker assumptions than the ones needed for the LAD estimator. Therefore, sign

based estimator asymptotic normaiity enabtes one to construct asymptotic tests and confi

dence intervals. Thus, we have two ways of maidng inference with signs: we can use the

Monte Carlo (finite-sample) based method described in Coudin and Dufour (2005a)- see

subsection 2.2- and the classical asymptotic method. Let us list here the main differences

between them. Monte Carlo inference relies on the pivotality of the sign-based statistic.

Ihe derived tests are valid (with controlled level) for any sampie size if the mediangale

Assumption A2 holds. When only the sign moment condition Al holds, the Monte Carlo

inference remains asymptotically valid. Asymptotic test levels are controlled. Besides, in

simulations, the Monte Carlo inference method appears to perform better in small sam

pies than classical asymptotic methods, even if its use is only asymptoticaHyjustified [see

Coudin and Dufour (2005a)]. Nevertheless, that method lias an important drawback: its

computational complexity. On the contrary, classical asymptotic methods which yield tests

with controlled asymptotic level under the sign moment condition Al may be less time

consuming. The choice between both is mainly a question of computational capacity. We

point out that classical asymptotic inference greatly relies on the way the asymptotic co

variance matrix, that depends on unknown parameters (densities at zero), is treated. 1f the

asymptotic covariance matrix is estimated thanks to a simulation-based method (such as

the bootstrap) then the time argument does not hold anymore. Both methods would be of

the same order of computational complexity.

6. Simulation study

In this section, we compare the performance ofthe sign-based estimators with tlie 0ES and

LAD estimators in terms of asymptotic bias and RMSE.

6.1. Setup

We use estimators derived from the sign-based statistics D8(/3, (X’X)’) and D8(j3, J,’)
when a correction is needed for linear serial dependence. We consider a set of general
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DGP’s to illustrate different classical problems one may encounter in practice. We use the

following linear regression model:

y—x/30+u, (6.1)

where Xt (1, x2,t, X3,t)’ and are 3 x 1 vectors. We denote the sample size n. Monte

Carlo studies are based on M generated random samples. Table 12 presents the cases

considered.

In a flrst group of examptes (A1-A4), we consider classical independent cases with

bounded heterogeneity. In a second one (B5-B$), we look at processes involving large

heteroskedasticity so that some of the estimators we consider may flot be asymptotically

normal neither consistent anymore. finally, the third group (C9-C1 1) is dedicated to au

tocorrelated disturbances. We wonder whether the two-step SHAC sign-based estimator

performs better in small samples than the non-corrected one.

To sum up, cases Al and A2 present i.i.d. normal observations without and with con

ditional heteroskedasticity. Case A3 involves a sort of weak nonlinear dependence in the

error term. Case A4 presents a very debalanced scheme in the design matrix (a case when

the LAD estimator is known to perform badly). Cases B5, 36, 37 and 38 are other cases

of long tailed errors or arbitrary heteroskedasticity and nonlinear dependence. Cases C9

to Cil illustrate different levels of autocorrelation in the error term with and without het

eroskedasticity.
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Table 12. Simulated models.

CASE Ai: Normal HOM: (X2,t,X3,t,Ut)’ ‘V(0, 13), t 1,...

CASE A2: Normal HET: (X2,t, X3,t, îï)’ jV(0, 13)
= rnin{3, max[0.21, x9t1]} x , t = 1

CASE A3: Dep.-HET, Xt = PXj,t_1 + V, j = 1,2,
.5: Ut = min{3,max{0.21, 1x2 tj}} x

(vvvt)fiN(OI3) t=2,...,n
v and v chosen to insure stationarity.

CASE A4: Deb. design mat.: x2,t 8(1,0.3),
tt

.,Af(0, .012),

Ut ‘‘ .Af(0, 1), Xt, u independent, t = 1,. . . , n.

CASE B5: Cauchy dist.: (x2,t, X3,t)’ .Àt(0, 12),

t C,x, u, independent, t 1,. . . , n.

CASE B6: Stoc. Volat.: (x2t, r)’ .A/(0, ‘2), Ut = exp(w/2)et with
i.i.d. i.i.d.

Vit = 0.5w + Vt, where Et ‘rn’-’ A1(0, Ï), Ut X2(3),
Xt, Ut, independent, t = 1,... , n.

CASE B7: Nonstat. (X2,t, X3,t, Et)’
‘‘

N(0, 13), t = 1, . .. , n,
GARCH(l,1): ‘Ut = UtEt, = 0.8u_1 + 0.8u?_i.

CASE B$: Exp. Var.: (X2,t, X3,t, )‘ N(0, 13), ‘Ut exp(.2t)Et.

CASE C9: AR(1)-HOM, (x2, X3,t, v)’ V(0, 13), t 2,. .. , n,
Ut— PUti+V,

(x2,1, x31)’ .Af(0, 12), v insures stationarity.

CASE ClO: AR(1)-HET, x = PZjt_1 + v, j = 1,2,
pu .5, : Ut = min{3,rnax[0.21, 1x2,tlJ} x Ùt,

Px — Ut
— pUt_1 + t”

(v23vjIN(oI3) t=2,...,n
v, v and v chosen to insure stationarity.

CASE Cil: AR(1)-HOM, (x2t, X3t, v)’ Af(0, 13), t 2, .. . , n,
— .9. Ut — P,Ut_i + V,

(x2,1, x3,1)’ ‘-‘. .iV(0, 12), v insures stationarity.
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6.2. Bias and R1’ISE

We give biases and RMSE of each parameter of interest in Table 13 and we report a norm

ofthese three values, n = 50 and S = 1000. These resuits are unconditional on X.

In classical cases (Al -A3), sign-based estimators have roughly the same behavior as the

LAD estimator, in terms ofbias and RMSE. OLS is optimal in case Al. However, there is

no important efficiency loss or bias increase in using signs instead of LAD. Besides, if the

LAD is flot accurate in a particular setup (for example with highly debalanced explanatory

scheme, case A4), the sign-based estimators do flot suifer from the same drawback. In case

A4, the RMSE ofthe sign-based estimator is notably smaller than those ofthe OLS and the

LAD estimates.

For setups with strong heteroskedasticity and nonstationary disturbances (B5-B8), we

see that the sign-based estimators yield better results than both LAD and OLS estimators.

Not far from the (optimal) LAD in case of Cauchy disturbances (B 5), the signs estimators

are the only estimators that stay reliable with nonstationary variance (B6-B8). Indeed, no

assumption on the moments of the error term is needed for sign-based estimators consis

tency. Ah that matters is the behavior of their signs.

When the error term is autocorrelated (C9-C11), results are mixed. When a moderate

linear dependence is present in the data, sign-based estimators give good resuits (C9, C 10).

But when the linear dependence is stronger (Cl 1), that is no longer true. The SHAC sign

based estimator does flot give better results than the non-corrected one in these selected

examples.

To conclude, sign-based estimators are robust estimators much less sensitive than the

LAD estimator to various debalanced schemes in the explanatoiy variables and to het

eroskedasticity. They are particularly adequate when an amount an heteroskedasticity or

nonlinear dependence is suspected in the error tenn, even if the error term fails to be sta

tionary. f inally, the FlAC correction does not seem to increase the performance of the es

timator. Nevertheless, it does for tests. We show in Coudin and Dufour (2005a) that using

a HAC-corrected statistic allows for the asymptotic validity of the Monte Carlo inference

method and improves the test performance in small samples.
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Table 13. Simulated bias and RM$E.

OLS LAD SF 2SSHAC
n = 50, S 1000 Bias RMSE Bias RMSE Bias RMSE Bias RMSE
CaseAl: t0 .003 .142 .002 .179 .002 .179 .004 .178

p. 0, /3 .003 .149 .006 .184 .004 .182 .004 .182
HOM fi2 -.002 .149 -.007 .186 -.006 .185 -.007 .183

I/3 .004 .254 .009 .316 .007 .315 .009 .313
Case A2: /3 -.003 .136 .000 .090 -.000 .0$9 -.000 .089

0, fi -.0135 .230 -.006 .218 -.010 .218 -.010 .218
HET fi2 .002 .142 -.001 .095 -.001 .092 -.001 .092

1113H .014 .303 .007 .254 .010 .253 .010 .253
CaseA3: fi0 .022 .167 .018 .108 .025 .107 .023 .107

= 0, p = .5, fi1 -1.00 .228 .005 .215 .003 .214 .002 .215
HET fi2 .001 .150 .005 .105 .007 .104 .007 .105

IIflH .022 .320 .019 .263 .026 .261 .024 .262
CaseA4: fi0 -.001 .174 .007 .2102 .010 .2181 .008 .2171
x2’B(1,.3), fi1 -.016 .313 -.011 .375 -.021 .396 -.021 .394
z3 N(0, .012) fi2 -.100 14.6 .077 18.4 .014 7.41 .049 7.40

I/3R .101 14.6 .078 18.5 .027 7.42 .054 7.41
Case B5: fi0 16.0 505 .001 .251 .004 .248 .003 .248
Z2,Z3 fif(0,12), fi1 -3.31 119 .015 .264 .020 .265 .020 .265
u C fi2 -2.191 630 .000 .256 .003 .258 .001 .258

I3U 26.0 817 .015 .445 .021 .445 .020 .445
Case B6: fi0 -.908 29.6 -1.02 27.4 .071 2.28 .083 2.28
Stoch. Volat. fi1 2.00 37.6 3.21 68.4 .058 2.38 .069 2.39

fi2 1.64 59.3 2.59 91.8 -.101 2.30 -.089 2.29
IiH 2.73 76.2 4.25 118 .136 4.02 .139 4.02

CaseB7: fi0 -127 3289 -.010 7.85 -.008 3.16 -.028 3.17
GARCH(1,1) fi1 -81.4 237 .130 11.2 -.086 3.80 -.086 3.823

fi2 -31.0 1484 -.314 12.0 -.021 3.606 -.009 3.630
I/31j 154 4312 .340 18.2 .089 6.12 .091 6.15

Case B8: fi0 < —10’ > 10l < —i0 > 10’ .312 5.67 .307 5.67
ut = exp (t)c fi1 > 1010 > 10’ > i0 > 1010 .782 5.40 .863 5.46

fi2 < > l0 < > 10’° .696 5.52 .696 5.55
Jfl > 1010 > 1010 > 1010 > 1010 1.09 9.58 1.15 9.63

Case C9: fi0 .005 .279 .001 .308 .003 .309 .004 .311
pf=.5,p=O, fi1 -.002 .163 -.005 .201 -.004 .200 -.005 .199
HOM fi2 .001 .165 -.004 .204 .003 .198 .002 .198

lIfiil .006 .363 .007 .420 .006 .418 .006 .419
CaseClO: fi0 -.013 .284 -.010 .315 -.015 .314 -.014 .314

fi1 -.009 .182 -.009 .220 -.011 .218 -.011 .219
HET fi2 .008 .189 .011 .222 .007 .215 .007 .215

IflH .018 .387 .018 .444 .020 .439 .019 .439
CaseCli: fi0 .070 1.23 -.026 .308 .058 1.26 .053 1.27

= .9, p 0, fi1 -.000 .268 .005 .214 -.005 .351 -.008 .354
HOM fi2 .001 .273 -.004 .210 .002 .361 -.001 .361

11f!) .070 1.29 .027 .430 .059 1.36 .054 1.37

*
.

stands for the euclidian norm.
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7. Illustrations

in this section, we go back to the two illustrations presented in Coudin and Dufour (2005a)

where sign-based tests were derived, with now estimation in mmd. The first application

is dedicated to estimate a drift on the Standard and Poor’s Composite Price Index (S&P),

1928-1987. In the second one, we search a robust estimate of the rate of 3 convergence

between output levels across U.S. States during the 1880-1988 period using Barro and

Sala-i Martin (1991) data.

7.1. Drift estimation wïth stochastïc volatïlity in the error term

We estimate a constant and drift on the Standard and Poor’s Composite Price Index (S?),

1 928-1987. That process is known to involve a large amount of heteroskedasticity and have

been used by Gallant, Hsieh, and Tauchen (1997) and Valéry and Dufour (2004) to fit a

stochastic volatility model. Here, we are interested in robust estimation without modeling

the volatility in the disturbance process. The data set consists in a series of 16,127 daily

observations of $P, then converted in price movements, y, = 1O0[1og(SP) — log(SPt_i)]

and adjusted for systematic calendar effects. We consider a model involving a constant and

a drift,

Yt = a + bt + Ut, t = 1, . . . , 16127, (7.2)

and we allow that {flt}ti 16127 exhibits stochastic volatility or nonlinear heteroskedas

ticity of unknown form. White and Breush-Pagan tests for heteroskedasticity both reject

homoskedasticity at i%.

We compute both the basic SF sign-based estimator and the SHAC version with the

two-step method. They are compared with the LAD and OLS estimates. Then, we redo

a similar experiment on two subperiods: on the year 1929 (291 observations) and the last

90 days of 1929, which roughly corresponds to the four last months of 1929 (90 observa

tions). Due to the financial crisis, one may expect data to involve an extreme amount of

heteroskedasticity in that period of time. We wonder at which point that heteroskedasticy

7See Coudin and Dufour (2005a): White: 499 (p-value.000) ; BP: 2781 Q-value=.000).
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can bias the subsample estimates. The Wail Street krach occurred between October, 24th

(Black Thursday) and October, 29th (Black Tuesday). Hence, the second subsample corre

sponds to the period just before the krach (September), the krach period (October) and the

early beginning of the Great Depression (November and December). Heteroskedasticity

tests reject homoskedasticity for both subsamples.8

In Table 14, we report estimates and recali the 95% confidence intervals for u and b

obtained by the finite-sample sign-based method (8F and SHAC);9 and by moving block

bootstrap (LAD and OLS). The entire set ofsign-based estimators is reported, i.e., ail the

minimizers ofthe sign objective fiinction.

Table ]4. Constant and drifi estimates.

WhoÏe sample Subsamples

Constantparameter (u) (16120 obs) 1929 (291 obs) 1929 (90 obs)

Set ofbasic sign-based .062 (.160, .163)* (-.091, .142)
estitnators (5f) [-. 007, . 105]** [-.226, .521] [-1.453, .491J

Setof2-stepsign-based .062 (.160, .163) (-.091, .142)
estimators (SHAC) [-.007, 106] [-.135, .443] [-1.030, .362]

LAD .062 .163 -.091
[008, .116] [-.130, .456] [-1.223, 1.040]

OLS -.005 .224 -.522
[-.056, .046] [-.140, .588] [-1.730, .685]

Drifipararneter (b) x iO X 10 X 10_1

Set ofbasic sign-based (-.184,-.178) (-.003, .000) ( -.097, -.044)
estimators (SF) [-.676, .486] [-.330, .342] [-.240, .305]

Set of2-step sign-based (-.184,-.178) (-.003, .000) (-.097, -.044)
estimators (SHAC) [-.699, .510] [-.260, .262] [-.204, .224]

LAD -.184 .000 -.044
[-.681,313] [-.236,236] [-.316,229]

OLS .266 -.183 .010
[-.228, .76]] [-.523, .156] [-.250, .2 70]

* Interval of admissible estimators (minimizers ofthe sigri objective function).
** 95% confidence intervals.

First, we note that the OLS estimates are importantiy biased and are greatiy unreliable

81929: White: 24.2, p-values: .000 ; 3P: 126, p-values: .000; Sept-Oct-Nov-Dec 1929: White: 11.08,
p-values: .004; BP: 1.76, p-values: .18.

9see Coudin and Dufour (2005a)



114

in the presence of heteroskedasticity. Hence, they are just reported for comparison sake.

Presenting the entire sets of sign-based estimators enables us to compare them with the

LAD estimator. In this example, LAD and sign-based estimators yield veiy similar esti

mates. The value of the LAD estimator is indeed just at the limit of the sets of sign-based

estimators. This does flot mean that the LAD estimator is included in the set of sign-based

estimators, but, there is a sign-based estimator giving the same value as the LAD estimate

for a certain individual component (the second component may differs). One easy way to

check this is to compare the two objective firnctions evaluated at the two estimates. for

example, in the 90 observation sample, the sign objective function evaluated at the basic

sign-estimators is 4.75 x 1O, and at the LAD estimate 5.10 x 10_2; the LAD objective

function evaluated at the LAD estimate is 210.4 and at one of the sign-based estirnates

210.5. Both are close but different.

Finally, two-step sign-based estimators and basic sign-based estimators yield the same

estimates. OnIy confidence intervals differ. Indeed, both methods are expected to give

different results especially in the presence of linear dependence.

7.2. A robust sign-based estimate of 43 convergence across US States.

One field suffering from both a small number of observations and possibty very heteroge

neous data is cross-sectional regional data sets. Least squares methods may be misleading

because a few outlying observations may drastically influence the estimates. Robust meth

ods are greatly needed in such cases. Sign-based estimators are robust (in a statistical sense)

and are naturally associated with a finite-sample inference. In the following, we examine

sign-based estimates ofthe rate of/3 convergence between output levels across U.S. States

between 1880 and 1988 using Barro and Sala-i Martin (1991) data.

In the neoclassical growth model, Barro and Sala-i Martin (1991) estimate the rate of

j3 convergence between levels of per capita output across the U.S. States for different time

periods between 1880 and 1988. They use nonlinear least squares to estimate equations of

the form

(1/T) lfl(Yi,t/Yi,t_T) = a
— {1n(y,t_T)] x [(1 —

e_T)/Tj + x +
t,T (73)
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i=Ï,...,48,T==8,lOor2O,

t = 1900, 1920, 1930, 1940, 1950, 1960, 1970, 1980, 1988.

Their basic equation does flot include other explanatory variables but they also consider

a specification with regional dummies. The basic equation moUd assumes that 48 States

share a common per capita level of personal income at steady state while the second

specification allows for regional differences in steady state levels. Their regressions

involve 4$ observations and are mn for each 20-year or 10-year period between 1880 and

1988.

Their resuits suggest a /3 convergence at a rate somewhat above 2% a year but their

estimates are flot stable across subperiods, and vary greatly from -.0 149 to .043 1 (for the

basic equation). This instability is expected because of the succession of troubles and

growth periods in the last century. However, they may also be due to particular observations

behaving like outiiers and influéncing the least squares estirnates.’° These two effects are

probably combined. We wonder which part of that variability is really due to business

cycles and which part is only due to the nonrobustness of least squares methods. further,

we would like to have a stable estimate of the rate of convergence at steady state. For this,

we use robust sign-based estimation with Ds(/3, (X’X)’). We consider the following

linear equation:

(1/T) lfl(yi,t/Yi,t_T) = a + 7[lnQ j,t_T)] + xS + t,T
(74)

i=Ï,...,48,T=r8,10or20,

t 1900, 1920, 1930, 1940, 1950, 1960, 1970, 1980, 1988.

where x account for regional dummies when included, and we compute Hodges-Lehmann

estimate for /3 —(1/T) lnQyT + 1) for both specifications. We also provide 95%-level

projection-based CI, asymptotic CI and projection-based p-value functions for the parame

ter of interest. Results are presented in Table 15 where Barro and Sala-i Martin (1991)

survey ofpotential data problem is performed and regression diagnostics are summarized in Tabte 16
in the Appendix BI. It suggests the presence ofhighly influential observations in alt the periods but one.
Outiiers are clearly identified in periods 1900-1920, 1940-1950, 1950-1960, 1970-1980 and 1980-1988.
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NLLS results are reported.

Sign estimates are more stable than least squares ones. They vary between

[—.0147, .03641 whereas least squares estimates vary between [—.0149, .0431j. This sug

gests that at least 12 of the least squares estimates variability between sub-periods are

only due to the nonrobustness of least squares methods. In ail cases but two, sign-based

estimates are lower (in absolute values) than the NLLS ones. Consequently, we incline to

a lower value of the stable rate of convergence.

In graphics 2$(a)-30(f) [see Appendix B.2], projection-based p-value functions and op

timal concentrated sign-statistics are presented for each basic equation over the period

1880-1988. The optimal concentrated sign-based statistic reports the minimal value of D8

for a given /3 (letting a varying). The projection-based p-value function is the maximal

simulated p-value for a given /3 over admissible values of a. Those functions enable us

to perform tests on /3. 95%7 projection based confidence intervals for /3 presented in Table

15 are obtained by cutting the p-value function with the p .05 une. The sign estimate

reaches the highest p-value. Remark that contrary to asymptotic methods, the estimator is

not at the middle point ofany confidence interval. Besides, the p-value fiinction gives some

hint on the degree of precision. The /3 parameter seems precisely estimated in the period

30-40 [see graphic 29(b)], whereas in the period 80-88, the same parameter is less precisely

estimated and the p-value function Ieads to a wider confidence intervats [sec graphic 30(f)].

8. Conclusion

In this paper, we introduce inference tools that can be associated with the Monte Carlo

based system presented in Coudin and Dufour (2005a): the p-value function (and its in

dividual projected versions) which gives a visual summary of all the inference available

on a particular parameter, and Hodges-Lehmann-type sign-based estimators. The p-value

function associates to each value ofthe parameter the degree of confidence one may have

in that particular value. It extends the confidence distribution concept to multidirnensional

parameters and relies on a reinterpretation of the Fisher fiducial distributions. The para-
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Table 15. Regressions for personal income across U.S. States, 1880-1988.

Petiod Basic equation Equation with regional du,nmies

SIGN NLLS * ** SIGN NLLS * **

1880-1900 .0012 .0101 .0016 .0224
[-.0068, .0123]* [.0058, .0532]** [-.0123, .0211] [.0146, .0302]

1900-1920 .0184 .0218 .0163 .0209
[0092, .0313] [.0155, .0281] [-.0088, .1063] [.0086, .0332]

1920-1930 -.0147 -.0149 -.0002 -.0122
[-.0301, .0018] [-.0249, -.0049] [-.0463, .0389] [-.0267, .0023]

1930-1940 .0130 .0141 .0152 .0127
[.0043, .0234] [.0082, .0200] [-.0189, .0582] [0027, .0227]

1940-1950 .0364 .0431 .0174 .0373
[029], .06027 [0372, .0490J [.0083, .0620] [0314, .04327

1950-1960 .0195 .0190 .0140 .0202
[.0084, .0352] [0121, .0259] [-.0044, .0510] [0100, .0304]

1960-1970 .0289 .0246 .0230 .0131
[0099, .0377] [.0170, .0322] [-.0112, .0431] [.0047, .0215]

1970-1980 .0181 .0198 .0172 .0119
[0021, .0346] [-.0315, .0195] [-.0131, .0739] [-.0273, .0173]

1980-1988 -.0081 -.0060 -.0059 -.0050
[-.0552, .0503/ (013Q) /-.0472, .13447 (0114)

* Projection-based 95% CI.
** Asymptotic 95% CI.

Colurnns 2 and 4 are taken from Barro and Sala-i Martin (1991).
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meter values the less rejected by tests (given the sample realization and the sample size)

constitute Hodges-Lehmann sign-based estimators. Those estimators are associated with

the highest p-value. Hence, they are derived without referring to asymptotic conditions

through the analogy principle. However, they tum out to be equivalent (in probability) to

usual GMM estimators based on signs. We then present general properties of sign-based

estimators (invariance, median unbiasedness) and the conditions under which consistency

and asymptotic normality hold. In particular, we show that sign-based estimators do require

less assumptions on moment existence of the disturbances than usual LAD asymptotic the

oiy. Simulation studies indicate that the proposed estimators are acdurate in classical setups

and more reliable than usual methods (LS, LAD) when arbitrary heterogeneity or nonhinear

dependence is present in the error term even in cases that may cause LAD or OLS consis

tency failure. Despite the programrning complexity of sign-based methods, we recommend

combining sign-based estimators to the Monte Carlo sign-based method of inference when

an amount ofheteroskedasticity is suspected in the data and when the number ofavailable

observations is small. We present two illustrative applications of such cases. In the first

one, we estimate a drift parameter on the Standard and Poor’s Composite Price Index, using

the 1928-1987 period and various shorter subperiods. In the second one, we provide robust

estimates for the / convergence between the levels of per capita personal income across

U.S. States occurred between 1880 and 1988.



119

Appendix

A. Proofs

A.1. Proof of Proposition 4.1

We show that the sets Pi’Il and !v12 are equal with probability one. First, we show that if

e M2 then it belongs to Ml. Second, we show that if does flot belong to M2, neither

it belongs to i’Il.

If 73 e M2 then,

Ds(/3), Vj3 e W, (A.1)

hence

(D8(73)) <(Ds(/3)) = Ï, VI3 E W (A.2)

and 73 maximizes the p-value. Conversely, if 73 does flot belong to Ml, there is a non

negligible Borel set, say A, such that Ds(/3) < on A for some /3. Then, as P’(x) is

an increasing ftinction and A is non negligible,

(D8(/3)) <(D(73)), (A.3)

hence,

>

The latter expression can be written in terms of p-values:

p(/3) > p(73), (A.4)

and 73 does flot belong to M2.

A.2. Proof of Theorem 5.1

We consider the stochastic process W {W = (y, x) : f2 W+l}t12 defined on

the probability space (Q, F, P). We denote

qt(W, /3) = (qti(Wt, f3),. . , qt(W, /3))’
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= (s(’yt — /3)xtj,. .. , s(y
— X/3)Xt)’, t 1, . . . , n.

The proofofconsistency foilows four classical steps. first, Z q,(I’Vt, /3) — E[q(I’V, /3)]

is shown to converge in probability to zero for ail /3 e e (pointwise convergence). Second,

that convergence is extended to a weak uniform convergence. Third, we adapt to our setup

the consistency theorem of extremum estimators ofNewey and Mcfadden (1994). Fourth,

consistency is entailed by the optîmum uniqueness that resuits from the identification

conditions.

Poinbvise convergence. The mixing property A4 on W is exported to {qk( W, /3), k =

1,... ,P}t=1,2,.... Hence, V/3 e e, Vk 1,... ,p, {qk(Wt,,8)} is an a—mixing process

ofsize r/(1 — r). Moreover, condition A5 entails Eqk(Wt,/3)I < oc for some > 0,

for ail t e N, k = l,...,p. Hence, we can apply Corollary 3.4$ of White (2001) to

{qtk(Wt,,B)}t=1,2,.... ItfollowsV/3 ce,

—qtk(W,/3)—E[qtk(Wt,/3)]O k=1,...,p,

Uniform Convergence. We check conditions Ai, A6, Bi, B2 ofAndrews (19$7)’s generic

weak law of large numbers (GWLLN). Ai and Bi are our conditions A6 and A4. Then,

Andrews defines

= sup qk(W,6),

ieB(/3,p)

ClLik(Wi,/3,P) = inf qk(W,/3),
fié B(fi,p)

where B(/3, p) is the open bail around /3 of radius p. His condition B2 requires that

qj/(W, /3, p), qLtk( W, /3, p) and qk(Wt) are random variables; q((., /3, p), QLtk(., /3, p) are

measurable functions from (P, P, F) to (R, B), Vt, /3 e e, p, where B is the Bord a

algebra on R and finalty, that sup Eqtk(Wt) < oc with > r. Those points are derived

from the mixing condition A4 and condition A5 which insures measurability and provides

bounded arguments.

The last condition (A6) to check requires the following: Let i be a u-finite measure that

dominates each one of the marginal distributions of W, t = 1, 2.... Let p(w) be the

density of W w.r.t. jt, qjé(14”t, /3)p(I17) is continuous in /3 at /3 = /3* uniformly in t a.e.
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w.r.t. ,u, for each /3 e e, qk(W, ) is measurable w.r.t. the Borel measure for each t

and each /3 E e, and f supt>Q,ee Iqtk(W, /3)pt(w)d,u(w) < œ. As ‘ut is continuously

distributed uniformly in t [Assumption A7 (2)], we have P[u = xj31 = O, V/3, unifomily

in t. Then, tk is continuous in /3 everywhere except on a Pt-negligeable set. Finally, since

q is L1-bounded and uniformly integrable, condition A6 hoids.

The generic law of large numbers (GWLLN) implies:

(a) E[q(W, /3)] is continuous on O uniformly over n 1,

(b) sup q(W, /3) - Eqt(1, /3) ,‘ O

as n — 00 in probability under P.

The Consistency Theorem consists in an extension of Theorem 2.1 of Newey and Mc

Fadden (1994) on extremum estimators. The steps of the proof are the same but the limit

problem slightly differs. For simplicity, the tme value is taken to 5e 0. First, the generic

law of large numbers entails that

lim
— X/3)Xtk] is continuous on O, k = 1, .

..
,p. (A.5)

noo n

Let us defitie

QEk(/3) = E[xks(nt -x/3)], k = 1,...,p.

We consider {/3R}fl>1 a sequence of minimizers of the objective fttnction of the non

weighted sign-based estimator

2

(xtst’ut -

Then for ail e > O, 6> 0 and n N0, we have:

<[Qk(O)]2 + e/3] >1-6. (A.6)
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Uniform weak convergence of Q to Q at /37 implies:

[qEk(/3)]2
< {QkCB)]2+e/3p k = 1,...,p, with probability approaching one as n —* oc,

(A.7)

hence,

[QEk(/3)}2
< + e/3, with probability approaching one as n —* oc.

(A.8)

With the sarne argument, at = O

< {Q(O)] + E/3, with probability approaching one as n — oc. (A.9)

Using (A.8), (A.6) and (A.9) in turn, this entails

[qEk(/3)]2 <[Q(O)]2 + , with probability approaching one as n —* oc.

(A.1O)

This holds for any , with probability approaching one. Let N be any open subset of e
containing O. As e n NC is compact and lirn7, Zk[QC6)]2 is continuous (A.5),

3* e e n NC such that sup lim [QEk()j2
= lim

n
k k

Provided that O is the unique minimizer, we have:

lim [QEk(8*)j2
> lim Z{Q(O)]2, with probability one.

Hence, setting

f = {1in[Qkt*)]2}

it follows that, with probability close to one,

11m
[QEk()]2 <‘ H Z[qEk(*)]2 + 11m ZQEk(0)]2] <

Hence, /3 e N. As this holds for any open subset N of e we conclude on the convergence

Of/3n to O.
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For identification, the uniqueness ofthe minimizer ofthe sign-objective function is insured

by the set of identification conditions Ai, A8, A7, A9. These conditions and consequently

the proof, are close to those ofWeiss (1991) and Fitzenberger (1997b) for the LAD and

quantile estimators. We wish to show that the limit problem does flot admit another solu

tion. When 2(t3) defines a norrn for each t3 (condition A9), this assertion is equivalent

to

[] (A.11)

and

lim E =O=O, (A.12)n—* fl

Let A() E{ Z 8(Ut — x XtIXI,. .. , x,j. Then,

E[A()] E S(Ut — X)Xt] E {E [ S(U
— X)Xt)Xi, . . . , xu] }.

Note that

1 xl6 X6

E[s(u—xx, . . ,x] = 2
— f J(uIxi,. .. n)d] = _2f ft(uIxi, . .

. ,x)d’uj

Hence A(6) can be developed for r> O as

A(S) = { IuXI>T} [I{>o} f —ft(nIxi ,....x)du

+I{x<O} f fttulxi, .. . , x)d
x5

rx6

+I{IxI<r} I{x>Q}] —ft(uxi, . ..
o

r0

+I{x<0}J ft(Ixi,. ..
Then,

E[A()] = E{Zx6 [I{iXJ>T} (If>o}f —ft(xi ,...,x)du

+I{5<O}f f(utxi,...,x)du
s
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r S

+I{Ix5f<T}(I{x5>O}] —Jt(xi,. . . , x)du
o

+ I{x5<O}J Jt(x1,...,x)du)

Remark that each term in this sum is negative. Hence, s(E[A(6)]) < O and E[A(6)]

—E[A(6)], and

= E XI{IsI>T} (I{’S>O} jtL(xi . .. ,x)du

_1{xS<O}f ft(I’i,. ..,x)du

2
+E [ X6I{Ix;sI<r} (I{S>o} f Jt(xy, . ..

1{xS<O}

f
f(uxi,. .. , Xfl)dU)]

z6

> E I’3j>T} (xI{S>o} f’ ft(uxi, . .. , x)du

—XI{15<O} f ft(nIxi, .. . (A.13)
J

E ‘{IxSI>r} [xI{XS>o} f’ft(xi. . ,x)du

— x6I{xS<o}J ft(xi,... ,x)du [fttOxi,...,x) > JL]Pj(A.14)
J

PIE > f} (A.15)

> TplJLdP[)XI > J(Ojxy,. .. ,x) > JL)j. (A.16)

To obtain inequation (A. 13), just remark that each term is positive. For the inequation

(A.14) we use condition A7. For inequation (A.15) we minorate Ix5I by T and each inte

grals by fLdl where d1 = min(T, d/2). Condition A8 enables us to conclude, by taking the
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limit,

lim IE[A()] 2-rpifjd x 11m inf P{Ix6j > rIf(OIx1,. . ,x,) > fL] > O, V5 >(G.17)
n—œ

hence, we conclude on the uniqueness of the minimum, which was the last step to insure

consistency of the sign-based estimators. LI

A.3. Proof of Proposition 5.3

Consider t(y, X, t) a solution ofproblem (4.4), let j3 be the tme value of the parameter

and suppose that n —u. Equation (5.14) implies that

(u,X,u) —j(—u,X,u).

Hence, conditional on X, we have

u ‘-‘s —u (u,X,u) —73(—u,X,u) = Med((u,X,u)) = O. (A.18)

Moreover, equation (5.15) implies that

(y,X,u) =

= (u,X,u)+0. (A.19)

f inally, (A. 18) and (A. 19) imply

MedB(y, X, u)
— t30) O.

A.4. Proof of Theorem 5.4

We prove Theorem 5.4 on asymptotic normality. We consider the sign-based estimator

(f2) where !2 stands for any p x p positive definite matrix. We apply Theorem

7.2 of Newey and Mcfadden (1994), which allows to deal with noncontinuous and

nondifferentiable objective functions for finite n. Thus, we stand out from usual proofs

of asymptotic normality for the LAD or the quantile estimators, for which the objective

fiinction is at least continuous. In our case, only the limit objective function is continuous

(see the consistency proof). The proof is separated in two parts. First, we show that L(t3)
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as deflned in equation (5.17) is the derivative of1im Z E[s(u — x(j3 —

Then, we check the conditions for applying Theorem 7.2 of Newey-Mcfadden.

The consistency proof (generic law of large numbers) implies that

n
- x - (A.20)

is continuous on 9 uniformly over n. Moreover condition A5 specifies that X is L2

bounded. As the Jt(\Ixy,. . .
, x,) are bounded by Ju unifonnly over n and ) (condition

Ail), dominated convergence allows us to write that

(A.21)

And, these conditions imply that

= E[xxf (x - (A.22)

converges uniformly in /3 to L(/3). Uniform convergence entaiis that 1im L0 E [s (u —

xC6 — /30))Xt] is differentiable with derivative L(t3).

We now apply Theorem 7.2 of Newey and Mcfadden (1994) which presents asymptotic

normality of a minimum distance consistent estimator with nonsmooth objective function

and weight matrix Q7. - Q symmetric positive definite. Thus, under conditions for con

sistency (Ai, A4-A9), we have to check that the following conditions hold:

(i) zero is attained at the limit by 3;

(ii) the limiting objective function is differentiable at /3 with derivative LC60) such that

L(/30)QL(/30)’ is nonsinguiar;

(iii) ,B is an interior point of 9;

(iv) /Q7.(/3) Ar(O, J)

(y) for any —* O, sup IIQ,7(/3)-Q7.(/3o)-EQ(/3)U/(1+/II/3—/3oII) - O
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Condition (i) IS fulfihled by the moment condition AI. Condition (ii) is fulfihled by the

first part of our proof and condition A13. Then, Condition (iii) is implied by A6. Using

the mixing specification A12 and conditions Ai, A5, AlO and A14, we

apply a White-Domowitz central limit theorem [see White (2001), Theorem 5.20]. This

fuffihis condition (iv) ofTheorem 7.2 in Newey and McFadden (1994):

N(O, L?) (A.23)

where J7 = var s(u)xi]. finally, condition (y) can be viewed as a stochastic

equicontinuity condition and is easily derived from the uniform convergence [see McFad

den remarks on condition (y)]. Hence, (S’2) is asymptotically normal

) t(Ç)

The asymptotic covariance matrix $ is given by the limit of

=

When choosing = a consistent estimator of J;’, $, can be simplified:

) q((JJ)

with

o — ti (4 r (fl 11
-)n V-nV-o)-’n 17iJJ0)j

When the mediangate Assumption (A2) hotds, we find usual resutts on sign-based estima

tors. /3(I) and {(X’X)’] are asymptotically normal with asymptotic covariance matrix

= 1im [ZE(xtxft(0Ix))]’.
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B. Detailed empirical resuits

This appendix contains additional resuits for the Bano and Sala-i-Martin application. First,

a residual analysis which includes outiier detection, heteroskedasticity tests, etc. is sum

marized in Table 16. Second, graphics of concentrated sign-based statistics and projected

p-values for the /3 parameter are presented in figures 27-29.

B.1. Regression diagnostics

Table 16. Summaiy of regression diagnostics.

Period Heterosked.t Nonnormality* * Influent. obs. * * Possible outtiers* *

Basic eq. Eq Reg. Dum.
1880-1900 yes - yes - yes yes no no
1900-1920 yes yes yes yes yes yes yes (MT) yes
1920-1930 - - - - yes - no no
1930-1940 - - yes - yes yes no no
1940-1950 - - - - yes yes yes (VT) yes (VT)
1950-1960 - - - yes yes yes yes (MT) yes (MT)
1960-1970 - - - - - - no no
1970-1980 - - yes yes yes yes yes (WY) yes (WY)
1980-1988 yes - - yes yes yes yes (WY) yes (WY)

* White and Breush-Pagan tests for heteroskedasticity are performed. If at least one test rejects at
5% homoskedasticity, a “yes’ is reported in the table, else a -‘ is reported, when tests are both
nonconclusive.

Scatter plots, kemel density, leverage analysis, studendized or standardized residuals > 3, DF
beta and Cooks distance have been performed and lead to suspicions for nonnormality, outiier or
high influential observation presence.

B.2. Concentrated statistics and projected p-values
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Chapitre 3

fmite and large-sample distribution-free inference

in median regressions with instrumental variables
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1. Introduction

Instrumental Variable (IV) regression resuits greatly rely on the quality of the instruments

used. When the latter are weakly correlated with the endogenous variable, usual estima-

tors are biased and asymptotic approxhnations are flot anymore valid; see Bound, Jaeger,

and Baker (1995), Staiger and Stock (1997), Dufour (1997, 2003), Wang and Zivot (1998),

Stock and Wright (2000). Inference relying on estimator asymptotic behavior such as Wald

tests may be greatly misleading. One approach to circumvent the probiem of weak instru

ments is to dissociate testing from estimation and to investigate alternative test procedures.

Contrary to Wald tests, tests based on the Anderson-Rubin (AR) statistic have correct size

for norrnalty distributed disturbances without requiring the parameter to be identified. AR

tests are valid in the presence of weak instruments; see Anderson and Rubin (1949), Du-

four (1997), Nelson, Startz, and Zivot (199$). However, the AR procedure relies on a

Gaussian assumption or at least on sorne asymptotic justification. In small samples with

non-Gaussian disturbances, AR tests (such as any asymptotic test) may be affected by size

distortions. fully exact inference procedures in models where some regressors are endoge

nous have been less sflidied. In a regression setup, we propose to use the residual signs to

conduct nonparametric vaiid tests with controiied level for any sample size.

We consider here a possibly nonlinear equation which involves endogenous regressors.

A set of exogenous variables is available and no parametric assumption is imposed on

the disturbance process. 11e latter is oniy assumed to have median zero conditional on

the exogenous variables (hereafter, the instruments) and its own past. Without any fur

ther restriction, we notice that the sign vector distribution of the constrained residuals is

a pivotai function. Its distribution does not depend on nuisance parameters and can easily

be simulated. Basically, we use Monte Carlo test techniques [see Dwass (1957), Barnard

(1963) and Dufour (2006)] to construct joint sign-based tests that control the ievel for any

sample size. The validity of these tests does not depend on identification assumptions nor

on any pararnetric approximation. In the presence of weak instruments or identification

failures, sign-based test ievels stili equai their nominai size. Then, a complete system of

finite-sample inference - as wetl as asymptotic extensions - can be applied [see Coudin and
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Dufour (2005a)]. Simultaneous confidence sets for the whole parameter are obtained by

test inversion. Next, confidence sets and tests of generat hypotheses are built using pro

jection techniques [see Dufour and Kiviet (1998), Dufour and Jasiak (2001), Dufour and

Taamouti (2005)]. Finally, Hodges-Lehmann estimators are provided in identified cases

[Hodges and Lehmann (1963), Coudin and Dufour (2005b)]. They correspond to the pa

rameter value least rejected by the tests. As entailed by the results in Dufour (1997), the

derived confidence regions may have a non-zero probability of being unbounded in the

presence of identification failures.

Nonparametric approaches investigated up to now in the literature have been based on

rank and permutation tests. A rank-version of the AR test was introduced by Andrews

and Marmer (2005). It dominates the usual AR in terms of size and power for asynnnet

ric and thick taiT error distributions. It yields exact tests if the exogenous regressors are

independent of instruments and errors. Besides, Bekker and Lawford (2005) proposed

exact inference based on permutation tests. Both methods are especially adapted to cross

sectional data, since the errors are assumed to be independent and identically distributed

(i.i.d.). By contrast, sign-based methods are known to be the only way of producing in

ference procedures that are proved to be valid under heteroskedasticity of unknown form

for a given sample size; see Lehmann and Stem (1949) and Coudin and Dufour (2005a).

Sign-based methods provide valid resuits under very few assumptions. Especially, they

allow for general forms of nonlinear dependence in the data. For example, the shape of the

error distribution may depend on the instruments provided a sign invariance condition is

satisfied. Our approach, which can be applied in time series and in cross-section contexts,

extends that part of the literature.

Other test procedures, which are valid in the presence of weak instruments, are para

metric or asymptoticallyjustified. A first approach exploits AR-type statistics; see Dufour

(1997), Dufour and Jasiak (2001) and Stock and Wright (2000). More recently, Dufour and

Taamouti (2005) extended the AR procedure to construct a whole system of inference on

the structural parameters. They derived closed-form solutions for the simultaneous confi

dence regions and for projection-based confidence intervals in special cases. The second

approach, followed by Kleibergen (2002, 2005, forthcoming), considered a score-type sta
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tistic in the limited information simultaneous equation model (LISEM). The so-called K

statistic, which is asymptotically a pivotai function, does not depend on the number of

instruments, in contrast with AR tests which loose power when many instruments are in

volved in the model. In a Gaussian context, Bekker and Kleibergen (2001) investigated the

K statistic properties in finite samptes. They derived a conservative inference by bound

ing its behavior. Finally, the conditional approach proposed by Moreira (2003) relies on

similar tests; see aiso Moreira (2001), Moreira and Poi (2003), Cruz and Moreira (2005),

Andrews, Moreira, and Stock (2004, 2006). Under the nuil hypothesis, the size of similar

tests does not depend on unknown parameters (especially the endogenous explanatory vari

ables and the instruments). Consequently, a similar test remains valid in the presence of

weak instruments. Moreira showed that similar tests can be constructed from non-similar

ones by associating a critical value function of those unknown parameters. The conditional

likelihood ratio test (CLR) so derived exhibits the best properties. Heteroskedastic and

autocorrelation corrected versions of the K and the LR statistics are proposed by Kleiber

gen (forthcoming). See also Andrews and Stock (2005) for a complete review of the IV

literature.

The sign-based approach is in the spirit of Anderson and Rubin.’ Basically, test statis

tics are obtained by regressing the signs ofthe constrained residuals on auxiliary regressors

(the instruments) with the particularity that tests are performed using the exact distribution

ofthose statistics. Like the AR procedure, a sign-based test may suifer from underrejection

when many instruments are involved. This well-known drawback of AR-type procedures is

corrected by considering “optimal” instruments which maximize test power. Two optimal

ity concepts are considered: the first one leads to locally optimal tests in the neighborhood

of the tested value; the second one to point-optimal tests against a particular alternative.

Approximate optimal instruments are constmcted by split-sample methods; see Angrist

and Krueger (1995), Dufour and Jasiak (2001), Dufour and Taamouti (2005).

Other works on median (and quantile) regression with endogenous regressors have fo

cussed on estimation. The starting point was the two-stage-least-absolute-deviation esti

mator (2SLAD) introduced by Amemiya (1982), which is an adaptation of 2SLS to the

lit is atso related to Moreira’s approach since the derived tests are similar.
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least absolute value (LAV) regression [see also Poweil (1983) for the asymptotic proper

ties]. In a first stage, the endogenous variable is regressed by ordinary least squares on

the instruments. The second stage consists in a LAV regression which involves the fitted

values of the endogenous variable. Chen and Portnoy (1996) extended the idea of two

step-estimation to other quantiles. Two robust IV quantile estimators based on GMM for

mutations are due to Honore and Hu (2004). The first one involves signs ofthe residuals and

the second one their ranks. In a linear median regression model, Hong and Tamer (2003)

proposed a minimum distance kernel-based estimator that can be used both in a point iden

tified setup or when there exists a set of observationally equivalent pararneters. Besides,

control function approaches were used by Lee (2003) in a partially linear quantile regres

sion, by Chemozhukov and Hansen (2004) with a double simultaneous optimization,2 and

by Sakata (2001) who proposed a general approach also based on a double optimization

of the ratio between the error dispersion controlled by the instruments and the dispersion

without control. Here, we propose to associate a Hodges-Lehmann-type estimator to the

finite-sample-based inference resuits when the parameter is identified. The estimate (or the

set of estimates) is the (set of) value(s) least rejected by sign-based tests, or equivalently

the one(s) leading to the highest p-value [sec Hodges and Lehmann (1963) and Coudin and

Dufour (2005b)].

The paper is organized as follows. The model and notations are presented in section

2. In section 3, general resutts on the finite-sample sign-based inference are stated: the

distribution of the constrained signs is derived under the sign invariance assumption. Then,

simultaneous tests with controlled level are constructed by Monte Carlo test techniques.

further, confidence sets and general tests are bulit using projection techniques. In sections

4 and 5, we go further in details and choose the form of the sign-based test statistics on

the basis ofpower properties. Pointwise and local optimality concepts are both considered

for choosing the instruments. We also follow two different approaches for determining the

form ofthe sign-based statistic. First, we study a classical GMM statistic that is a quadratic

form of the residual signs with a certain weight matrix. We also consider a Tippett-type

2Their estimate of the parameter suffering from endogeneity both satisfies the regression criterion mm
imization and minimizes the instrumental regressors parameters norm. They also obtain vatid confidence
regions by test inversion.
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combination [Tippett (1931)], which relies on the minimum of the p-values corresponding

to each sign-based moment equation tested separately. Section 6 is dedicated to asymptotic

properties ofthe proposed test procedures under assumptions weaker than the ones required

for finite-sample validity. Section 7 presents IV sign-based estimators when identification

hotUs. The power perfonnances of the sign-based methods are compared to other usual

methods in the simulation studies of section 6. Finally, an illustrative application to the

reaims to schooling [Angrist and Krueger (1991)] is provided in section 8. We conclude in

section 9. Appendix A contains the proofs.

2. Framework

In this section, we extend the linear median regression framework used in Coudin and

Dufour (2005a) and Coudin and Dufour (2005b) to a nonlinear and instrumental setup. Let

{ W (y, x, z) : Q — R}1 be a stochastic process defined on a probability

space (Q, F, P), and {W, F}1
,.,

an adapted stochastic sequence where Y is a u-fieId

in Q such that F F for s < t and u(Wi, . ..
,
W,) C .‘F. y is the real dependent

variable, which can take continuous or discrete values, x = (Xti,. . . , x,)’ is a p-vector

of explanatory variables (possibly endogenous) and Zt (Ztl, . .. , z,k)’ is a k-vector of

exogenous variables. We further assume that yt, X, and the parameter of interest, e R”,

are related through a nonlinear fiinction f : l+P+q
— R up to an enor terrn ut:

f (yt, x, ) = t, t = 1, . . . , n.

For convenience, we will use the following matrix notation

f(y,X,O)=u (2.1)

where y = (yi,. . . ,
y,)’ and n (ni,. . . , n,,)’ are real n-vectors, X = (x1, . .. , x,)’ is a

n X p real matrix.

We denote Z = (z1,. . . ,
z,)’ the n x k real matrix of instruments. The terminology

of instruments is very general. It covers exogenous random variables but the instruments

may also depend on the parameter O such as a score vector in a nonlinear model. In such
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a case, we shah denote Z0 := (zi(8),. . . , z.(O))’. Instruments may be strongly or weakly

correlated wïth the endogenous regressors, but they have to be valid in the following sense.

Assumptîon Al Z-CONDITIONAL MEDIANGALE. Let {lit, Fj t=1,2,... be an adapted

stochastic sequence andFt o(ui,. .. , ut, Z). We assume that

P[ui > OZ] = P{ui <OZ] 1/2,

P{ut>OZ,ut_i,...,ui]=P[ut<OIZ,ut_i,...,ui]=1/2,fort>1.

Assumption Al is an adaptation ofthe mediangale concept defined in Coudin and Dufour

(2005a) to an instrumental setup. We condition on Z instead of X since some explanatory

variables are endogenous. {Ut}t=i are not supposed to be i.i.d.. The past values of ut

may have an influence on the form ofthe distribution ofthe current u, provided they do flot

affect its probability of being positive or negative. This flexible setup covers the standard

limited information simultaneous equations model (LISEM) [see Hausman (1983)1:

Yt = X + ut,

Xt zH + Vt,

tU d
I Pf(O,), fort= 1,...,n,
\Vt]

(ut, v) independent ofz, for t = 1,. .. , n,

where Yt is a scalar dependent variable, Xt is a p-vector of explanatory and possibly endoge

nous variables, Zt is a k-vector of exogenous variables, ut is the error term of the structural

equation, and Vt is the p-vector ofdisturbances ofthe instrumental equation. is a p-vector

of structural parameters and H is the k x p matrix of the reduced form parameters. In a

standard LISEM, (lit, v) are i.i.d. normally distributed and independent ofz.

Model (2.1) with the Assumption Al is much more general. Parametric assumptions

on the error term distribution are relaxed. The normahity restriction is flot required neither

in finite samples nor asyrnptotically. Assumption Al allows for heteroskedasticity of un

known form. Only the median is assumed to be zero (conditional on Z). This leads to three

important special cases.
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First, the independence assumption between the observations is relaxed. Past realiza

tions of u can have an influence on the shape of the current lit distribution. For example,

t, t = 1,. . . , n, can satisf’ the following assumptions:

lii = JlCi,

Ut = Jt(Ui, , u_1)t , for t 2, . . . , n

. are independent with median zero,

ai and {Jt(lii,... , ut_i)}t= are non-zero with probability one. (2.2)

This includes in a time series context ARCH(q) with non-Gaussian noise r, where

= + 0iU_i + + qliq. (2.3)

Second, the instruments may have an influence on the shape ofthe current t distribu

tion, provided the probability of being positive or negative is flot affected. In finite samples,

an instrument affecting the shape of the disturbance distribution, may be the cause of as

ymptotic test great distortions. Examples can be found in section 8. in such a case, one can

exploit Assumption Al that allows for some nonlinear dependence between Z and u, for

any sample size. A large spectrum ofheteroskedastic pattems is covered, such as:

ut(Z) 5t, t = 1, . . . , n, (2.4)

where ri,. . . ,r are i.i.d. conditional on Z. This can be useful when the instrument choice

is limited by data availability.

A third interesting case arises when the endogenous variables affect the shape of the

structural error distribution. The usual linear specification simplifies calculus and interpre

tation. However, if the relation is not well captured by linear modeling, the shape of the

structural error distribution may be affected. in such a case, asymptotic tests are invalid

even in a large sample.

When t and Zt are only asymptotically uncorrelated, Assumption Al may flot hold

(e.g. due to feedback on the error signs). However, we will see below that sign-based tests

are stiil asymptotically valid.
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3. Fïnite-sample inference with possibly weak instru

ments

Assumption Al is the comerstone of the validity of sign-based inference methods. If the

disturbances satisfy a conditional mediangale condition, their signs have a known joint dis

tribution that does flot depend on any nuisance parameter (conditional on the instruments).

This property holds for any sample size, without imposing additional distributional assump

tions. The sign pivotality property was stated in Coudin and Dufour (2005a) for classical

median regressions. It was exploited to constmct sign-based simultaneous tests with con

trolled level for any sample size by Monte Carlo test techniques. In that section, we extend

that resuit to nonlinear and possibly instrumental regressions. Then, we follow the same

strategy and conduct simultaneous tests. More generally, the whole finite-sample based

inference system presented in Coudin and Dufour (2005a, 2005b) applies here. Simulta

neous confidence regions with controlled level are constructed by inverting simultaneous

tests; and more general confidence sets or tests, by projecting the simultaneous confidence

regions. We rapidly present the leading ideas and principles of finite-sample based in

ference system. For a detailed presentation, the reader is referred to Coudin and Dufour

(2005a, 2005b).

3.1. Pivotality

Let us begin with some notations. We define the sign operator s R — {—1, 0, 1} as

f 1, ifa e A
s(a) = 1[o+œ)(a) —

1f _oo,oi ta), where 1A(a) = (3.1)
j 0, ifa A.

for convenience, the notation will be extended to vectors. Let u E R’ and s(u), the n

vector composed by the signs of its components. This enables us to formally state the

following proposition:

Proposition 3.1 SIGN DISTRIBUTION. Under ,nodeÏ (2.1), suppose the errors

(ui, . .. , u,) satisfyAssurnptionAl conditionalon Z8. Then tue variables s(’u1),..., s(u)
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are j. j. U. conditionaÏ on Z9 according to the distribution

Po[s(ut) = 1Zo] Po[s(ut) = —hz9] = 1/2, t 1, ... , n. (3.2)

The proofs of the theorems and propositions appear in the Appendix.

From the latter proposition, it follows that the vector of constrained signs

s(f(y,X,9)) : (s(f(yi,x1,0)), ... , s(f(y,x,O)))’ (3.3)

has a nuisance-parameter-free distribution (conditional on Z), i.e. it is a pivotai function.

When the disturbance process satisfies Assumption AI, the error signs are mutuaiiy inde

pendent according to a known distribution.

furthermore, any real-valued function of the form

Te(y,0) =T(s(f(y,X,0)), Ze,0) (3.4)

lias a distribution which does not depend on unknown nuisance pararneters. Its conditional

distribution given Ze can 5e analytically derived or simuiated because the joint distribution

of s(f(y, X, O)) is completety specffied by Proposition 3.1. Consequently, we can construct

conditional tests for which size is fully controlled.

Consider the problem oftesting

Ho(8o) : O = 8 vs H1(00) : O 4 00.

Under H0,

T(s(f(y,X,8o)),Z90,Oo) T(S,Z90,8o) (3.5)

where S,, = (si, . .. , s,,)’ and s1, . . . , s,, are i.i.d. Bernoulli random variables conditional

on Z90 that equal 1 with probability 1/2 and —1 with probability 1/2. A test with level ci

rejects the nuil hypothesis when

T(s(f(y,X,0o)),Z90,Oo) > c(Zo0,ci,0o) (3.6)

where cT(Z90, ci, Oj) is the (1 — ci)-quantile of the distribution of T($,,, Z90, O) conditional

on Z90.
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This property is an extension of the one stated in Coudin and Dufour (2005a); see

also Dufour (1981), Campbell and Dufour (1991, 1995) and Wright (2000). Here,

T(s(f(y, X, 6o)), Z00, 9) and Z00 depend on the tested value o. This property can be

adapted to error distributions with a mass at zero by randomly breaking the zeros in a way

similar to Coudin and Dufour (2005a).

furthermore, the sign pivotality result allows one to construct nonparametnc tests

through Monte Carlo test techniques.

3.2. Monte Carlo tests

Under II(O) and Assumption AI, the conditional distribution of T00 (s(f(y, X, 8e)), Z00)

given Z00 is free of nuisance parameters with a known distribution that can be simulated.

Those two features are sufficient to apply Monte Carlo test procedures.4 Given T00, the

test proposed in section 2 rejects H0(&0) when T00 c, with e depending on the level.

The general idea of Monte Carlo tests is to order the observed statistic with N simulated

ones. The Monte Carlo test rejects H0(Oo) when the observed statistic is larger than at least

(1— ct) x N simulated replicates. As the distribution of T00 is discrete, we need a cnterion to

order two equal realizations. We shail use the randomized tie-brealdng presented in Dufour

(2006) and Coudin and Dufour (2005a).

The Monte Carlo test for Hot9o) can equivalently be conducted with empirical p-values.

Let be the “observed” statistic, (T4, . .. , T4) be a N-vector of independent repli

cates drawn from the same distribution as 1’g, and (W(°),. . .
, W(”)) be a N + 1-vector of

i.i.d. real uniform variables. A Monte Carlo test with level ct consists in rejecting the nuil

hypothesis whenever the empincal p-value, denoted tT4), is smaller than ct with

— NÔy(x)+1
37PNtx)_

N+1 ‘ t.)

3A similar property is stated in Chernozhukov, Hansen, and Jansson (2006) independentty from the pre
vious cited works. They use it to compute finite-sample critical values for tests based on a particular GMM
statistic, see equation 5.17. They do flot use Monte-Carlo version ofthose tests and restrict on conditionally
independent observations.

4See Dwass (1957), Barnard(1963) and Dufour (2006)
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where

G(x) = 1 — 1[O,œ)(X — T4) + 1[O](T4
— X)1[O,œ)(W w(°))

is the simulated suiwival function. If N is such that c(N + 1) is an integer

F[(T400) <ct] = cifor0 < <1.

The Monte Carlo test so obtained has size c for any given sample size T. No identification

condition is needed to conduct tests with fiilly controlled level. The instruments may be

poorly informative, the test levels are aiways controlled provided that the instruments are

exogenous in the sense ofAssumption Al. We shah see later on that Assumption Al can

5e slightly relaxed while maintaining the test levels asymptoticaÏly controlled.

Those basic joint tests constitute the matrix fora whole nonparametric inference system

where simultaneous confidence regions are obtained by test inversion and tests of general

hypothesis by projection techniques.

3.3. Confidence sets, projection-based confidence intervals and confi

dence distributions

We use the simultaneous sign-based tests to build confidence sets for 0 with given level.

These are obtained in the following way: Monte Carlo sign-based tests for H0(00) are

performed for any value of Oo e R (or more reasonably for a grid of values) yielding a

p-value (I). This associated p-value refiects the degree of confidence one may have

in the hypothesis O = 0 given the realization T0) [see Coudin and Dufour (2005b)j. The

simultaneous confidence region with level 1 — ct is composed by the values of Oo with p

value higher than c. Next, from this simultaneous confidence set for O, it is possible to

derive confidence intervals for the individual components and to perform tests for general

nonlinear hypotheses using projection techniques.5 In Coudin and Dufour (20055), we

5For examples in different seuings and for further discussion on projection techniques, the reader is re
ferred to Coudin and Dufour (2005a), Dufour (1990), Dufour (1997), Wang and Zivot (1998), Dufour and
Jasiak (2001), Dufour and Taamouti (2005).
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directly applied projection techniques on the simulated p-value function. The projected

p-value function associated with the individual component 6k gives a graphical summary

ofthe inference resuits on

The functions involved here are highly nonlinear and no closed-form analytical so

lutions can easily be obtained. Practicai implementation requires to solve optimization

problems under nonlinear constraints. Search programs such as simulated annealing are

used [see Goffe, ferrier, and Rogers (1994) and Press, Teukolsky, Vetterling, and flannery

(2002)].

3.4. Simplifications: restrictions on the parameter space

This approach requires in theory to evaluate the sign-based statistic for any value of the pa

rameter in the parameter space. When the size of the parameter space increases, the search

programs rapidiy become computationally intensive especially when projection techniques

are used. So, any additional piece of information that helps to reduce the size of the para

meter space is welcome and must be included as a constraint in the program. First of ail,

restrictions implied by the economic theory or by the relevance of the model have to be

taken into account. If the undertying economic model specifies that a certain coefficient

must be iess than one (such as an elasticity for example), there is no use to investigate what

happens outside.

More generally, a conditional approach is also possible. If one accepts to fix some of

the parameter components in a certain subspace, say ec, the approach presented above

gives resuits conditional on 6 belonging to ec.

An alternative approach consists in restricting the parameter space to a consistent set

estimator. Such confidence-set restricted Monte-Carlo tests are asymptotically valid under

some general regularity conditions; see Dufour (2006).

The two following sections are dedicated to the construction of efficient test statistics

which satisfy the general form To(s(J(y, X, O)), Zo) so that the finite-sample inference

system can be applied. We consider two approaches. First, we establish the general form

of point-optimal tests versus a specified alternative. This theoretical resuit yields a power
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frontier for sign-based procedures. However, methods that combine various point-optimal

tests to approach the power envelope are flot easily tractable in practice. Hence, we tum to

a more classical approach and derive locally optimal instruments. We study statistics that

involve signs in a quadratic form and a Tippett-type combination although other (less usual)

statistics could also be envisaged (e.g. linear plus quadratic forms or polynomials at various

orders involving signs). The class ofquadratic 1V-type sign-based statistics provides good

competitors when the final aim is estimation.

4. Point-optimal tests

Point-optimal tests are usually derived for parametric models since they rely on the like

lihood ratio that follows from the classical Neyman-Pearson lemma. Here, they can 5e

constrncted for nonparametric models thanks to the sign transformation. In this section, we

present point-optimal tests for signs in a general context and then, in a regression context.

4.1. General point-optimal sign-based resuit

Point-optimal tests based on signs are derived for a very general nonparametric framework

in which signs are independent and heterogeneously distributed according to Bernoulli

distributions with parameters (pi, ...,p).

P[s1 = 1] =Pt, P[s = —1] = 1 —pi, t = 1,...,n. (4.8)

Let us consider the problem of testing

H0: (Pi, ...,Pn)’ = (P01, ...,pon)’, (4.9)

against

H1: (pi,..,Pn)’ = (Pn,...,Pin)’. (4.10)

Proposition 4.1 POINT-OPTIMAL SIGN-BASED TEST. When testing H0 versus H1, the

rnost powerful test based on signs rejects H0 when

stin
(utt1 _Pot))

> c(,Hy)
\poi(l

— Pli)
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with c(a, H1) depending on the level.

The proof is a direct application of the Neyman-Pearson lemma [see for example

Gouriéroux and Monfort (1995b)]. Point-optimal tests are often derived in parametric se

tups because they rely on the form ofthe likelihood function under the nuiT hypothesis and

under the alternative. Here, the point-optimal test can be derived in a nonparametric setup

thanks to the sign transformation. The main strength of the sign transformation is indeed

to get rid of the distributional characteristics of the underlying process. However, one has

to choose the alternative hypothesis to specify {pit}t=i

4.2. Point-optimal sign-based tests in a regression framework

We now go back to the regression ftamework ofmodel (2.1) with Assumption Al. Consider

testing H0 : O = 00 against H1: O = 01, Proposition 4.1 yields the following corollaiy.

Corollary4.2 POINT-OPTIMAL SIGN-BASED TEST IN A REGRESSION CONTEXT. In

model (2.1), let {W = (Yt, x, Z)}ti be a i.i.d. process and {Ut}t1 have a

common distribution function G conditional on Z that does flot depend on 0. Suppose

further that the mediangale Assumption Al holds. Then the most powerful sign-based test

ofH0 : 0 = 90 versus H1 : 0 91 in the sense ofNeyman-Fearson rejects H0 when

n

S(u) lu (—( t))
> c(, 0) (4.11)

where(hy,...,hîi)’=(f(yi,xi,0i)—f(yi,xi,0o),...,f(yn,xn,0i)—f(y,xn,0o))’,and

c(c, 0) depends on the level.

The point-optimal sign-based test is a linear form of the signs with weights depending on

the error distribution and the chosen alternative hypothesis. When the distribution function

G is logistic, the statistic simplifies and the optimal weights turn out to be {h}=1

Point-optimal sign-based tests are theoretically interesting objects because they bound

what can be done with signs and combining them allows one to approach the power enve

lope. However, a point-optimal test requires first to specify the alternative hypothesis and

then to compute the optimal weights {pit}t=i n that depend on the enor distribution. In
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a parametric setup, this can be done analytically. But in a nonparametric setup (as here),

the error distribution is flot fixed and {pit}t=i 71 are flot straightforward to choose. Point-

optimal statistic can be approached if one “guesses’ the behavior of the error term under

the alternative hypothesis. Ibis can be done by spiit-sample techniques. A first part ofthe

sample is used to approach the error distribution, the other part, to construct the statistic;

see Dufour and Taamouti (2006) for an example of use.

However, approaching point-optimal tests and power envelope quickly become com

putationally intensive, for this reason, we turn in the next section to another optimality

concept that does not require to specify the alternative hypothesis and stili provides “b

cally” optimal tests. The so-called localiy optimal test statistics tum to be quadratic forms

of the constrained signs and of optimal instruments. We also study other combinations

(than quadratic) of sign-based moment equations that may present power in weak identi

lied cases.

5. IV sign-based statistics

The easiest way to introduce 1V sign-based statistics is to refer to a GMM setup. $igns and

instruments that satisfy the mediangale Assumption Al also satisfy usual moment condi

tions. GMM statistics exploiting the orthogonality between the error signs and the instru

ments can be constmcted using the anabogy principle. More generally, we folbow the idea

of auxiliary regressions [Anderson and Rubin (1949) and Dufour (2003)] to circumvent

the problem ofendogeneity; see also the artificial regressions of Davidson and McKinnon

(2001). We consider regressions ofthe constrained signs on “auxiliary1’ instruments (when

present in the model their coefficient must be zero). We consider two approaches. IV sign

based statistics correspond either to F-type statistics for testing that the parameter vector

in the previous multivariate regression is zero (denoted GMM-type), either to Tippett-type

combination ofunivariate regressions involving one “auxiliary” regressor at once (denoted

Tippett-type). The proposed sign-based statistics are pivotai functions and exact sign-based

tests can be built for any sample size regardless of the strength of the instruments. Then,

we focus on IV sign-based statistics that yield to the best (local) power considerations and
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on the corresponding optimal instruments.

5.1. Sign-based moment equations

In a usual LISEM model (with valid instruments), the estimating equations correspond to

the orthogonality conditions between Zt and n.

E[(yt—xt0)zt]=0, forjr=1,...,k, t=1,...,n. (5.12)

Under Assumption Ai, Proposition 3.1 entails that the error signs are i.i.d. conditional on Z

and centered. Consequently, in model(2.1), the following “sign-based” moment conditions

(where the residuals are replaced by their signs) hold:

= 0, forj = 1,... ,k, t = 1,... ,n. (5.13)

More generally, Assumption Al entails

E{s(f(yt,xt,0))gj(zt(0),0)} =0, forj= 1,...,J, t= 1,...,n. (5.14)

where {j}j=i .j are measurable functions of the instruments and 0.6 If necessary, we

shah redefine instruments as jt(O) = g (z(0), 0), t = 1, . . . , n, j 1,. . . , J but the

fol towing applies without any further modification.

In those sign-based moment equations, the parameter ofinterest is not present in an explicit

form but is implicitly involved through a robust transformation by the sign operator. The

sign operator gets rid ofany nuisance parameter affecting the distribution ofthe error term

and enables one to conduct ftlly robust tests against heteroskedasticity of unknown form

for any sample size.

The analogy principle entails the following sample-based moment equations:

s(f(yt,xt,0))zjt=0, j=1,...,k. (5.15)

6Hong and Tamer (2003) proposed for example to use kernel functions.
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5.2. Combinïng sïgn-based moment equations: GMM or multiple

tests

These new orthogonality conditions can be exploited for constructing GMM-type statistics.

for testing H0(0) : O = versus H1(Oo) : O $ 0o in model (2.1), we shah consider test

statistics ofthe following form:

D(00,Z,Q) s(f(y,X,Oo))’Zo0Q(s(f(y,X,Oo)),Zo0)Z0s(f(y,X,Oo)) (5.16)

where Q7 (s(J(y, X, Oo)), Z00) is a k x k positive definite weight matrix that may depend

on the constrained signs s(f(y, X, Oo)) under IIo(Oo).

The statistic associated with $27, = (Z0Z00)’ is given by: ‘

D8(60, Z00, (Z0Z00)1) = s(f(y,X,Oo))’P(Z90)s(f(ij,X,Oo)) (5.17)

where Pz00 = Z00 (Z0 Z00)’Z0. That is the squared norm ofthe fitted values from the re

gression of s(J(y, X, Oo)) on Z00. In other words, D (8e, Z00, (Z0 Z00) 1) is a monotonie

transformation of the fisher statistic for testing y = O in the artificial regression model

s(f(y,X,Oo)) = Z007+v.

Another way to approach the problem of building sign-based statistics is then to con

sider regressions of the constrained signs on appropnately chosen “instruments”:

s(f (y, X, On)) = Z907+v. (5.1$)

Testing H0(00) is equivalent to test y O in (5.18) where (9) are related to X but ex

cluded from the structural mode!. (O) are called “auxlliary regressors”: when present in

the model, their coefficient must be zero. Remark that the unilateral point-optimal test pre

sented in Proposition 4.1 can also be viewed as a t-test obtained by regressing the signs on

some appropriate auxiliary instruments (precisely the scores under the alternative). Thus,

the set of test-statistics based on auxiliary instruments is very general and includes point-

optimal Neyman-Pearson-type statistics among the related t-statistics.

7This is the GMM statistic studied by Chernozhukov, Hansen, and Jansson (2006) in their conditionatly
independent setting.
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Fisher and GMM-type statistics are quadratic forms of the moment equations. Other

types ofcombination of sign-based moment equations can be exploited. We can for exam

pie follow Tippett (1931) and consider

DsTiP(oo Z00) = ‘nri(p1, ,Pk) (5.19)

where Pi, p are the (empirical) p-values associated with testing “y = O in the univariate

regression involving one instrument (here z00) at once:

s(f(y,X,o))=yzo0, i=1,...,k. (5.20)

The idea behind is the following. Statistics based on a quadratic combination of moment

equations are specifically adapted for test and estimation when the parameter is well iden

tified because they rely a local optimality concept. However, in weakly identified cases,

there is no gain to restrict on statistics that provide power in the vecinity of the true value

parameter because those values may be obsewationafly equivalent (due to the iack ofiden

tification). In such cases, other combinations ofthe moment equations such as the Tippeil

combination may provide better overail properties.

5.3. Artificial regressions

The use of artificial regressions such as (5.18) and (5.20) to circumvent endogeneity lias

been first proposed by Anderson and Rubin (1949) [see also Dufour (2003), Davidson

and McKinnon (2001) who presented artificial regressions in general nonlinear models].

In the linear Gaussian model, they proposed an exact test of ‘y = O based on a fisher-type

statistic. The derived inference is valid and robust to possibly weak instrument settings [see

aiso Dufour (1997), Staiger and Stock (1997), Dufour and Taamouti (2005)]. However, the

procedure power depends on the choice of the instruments. In the LISEM model with

exact identification and Gaussian disturbances the AR procedure is optimal, but it may

suffer from underrejection when a large number of instruments is involved in the model.

With “many instruments”, asymptoticallyjustified methods sucli as Kleibergen’s K statistic

or Moreira’s LM statistic may provide better asymptotic power. However, those statistics
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are no longer pivots in finite sampies and a relying inference without other adjtistment may

suifer from size distortion even in a Gaussian context.8

Here, our objective is double. We propose test statistics that are first pivotai functions

for any sample size, under the nuli hypothesis and with known distribution, in order to

conduct exact inference (i.e. that satisfy Assumption Ai) and that are based on an “optimalT’

choice of instruments.

5.4. Locally optimal instruments

In case of overidentification, instruments can be selected to improve power considera

tion. When testing II(6o) with level c, the power function of the sign-based statistics

T(s(f(y,X,&o)),Z00) is:

/3(8) = Po[T(s(f(y,X,9o)),Z90) > c(Zo0,o)]. (5.21)

We searcli for instruments that “maximize” the power fiinction iocally around 9 in a just

identified setup.9 Around 9, sign-based test power functions follow the behavior of their

second derivatives W.T.L 9, which tum to be quadratic forms of the sign vector. Conse

quently, we derive the optimal instruments from the weights invoived in the latter quadratic

forms and derive locally optimal sign-based test statistics. This resuit is stated in the foliow

ing proposition. Localiy optimal instruments are denved in a setup with i.i.d. observations.

In the sequel, ail resuits are conditionai on the avaiiabie set of instruments.

Proposition 5.1 LOCALLY OPTIMAL INSTRUMENTS. Consider the problem of testing

H0 : 0 9, in model (2.1) versus a sequence of alternatives H : O = such that

—* 0o and assume that:
6,0o

a) (y, x, Zt), t = 1,. .. , n are identically andcontinttousÏy distributed,

b) J is continuousÏy d(ferentiabÏe in 9, with continuous derivative H (O) =

andH(O)’ = (H0(O)’,. . . ,Hn(O)’)’fort = 1,...

8The K statistic distribution depends on nuisance parameters in finite samples. In a Gaussian context,
Bekker and Kleibergen (2001) derived bounding distributions and conservative tests.

9Another alternative is to compute instruments maximizing the power function against a specified alter
native. This strategy has been followed by Dufour and Taamouti (2002) who derived point-optimal AR tests
in a Gaussian context.
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c) V(eo) such that

sup E
]

sup IE[Ht()}II Vt Ï,...
QeV(Oo) t OcV(00)

d) Ut lias con tinuous distribution function G which is continuously differentiable at zero

with derivative G’ also continuously dlifferentiable at zero and G” (O) = O, for t =

Ï,...

e) setting P [Ut — (H() — — O) <x] = G(x),

_____

— G(O)) —* O and (G(O) — G’(O)) —* O,

forallsuchthatIIOo—I IiO0—eii.

Then, a locaÏly optimal set ofinstntments is given by

Z*(Oo) = (5.22)

and a locally optimal GliMsign-based statistic is

D(O0) = s(f(y, x, 00))’EH(9o) [EH(80)’EH(e0)]’EH(60)’s(f(y, x, do)). (5.23)

The regularity conditions b,c and d insure continuity, differentiability and integrabffity

of f and of its derivatives. Condition d states that the errors possess a mode at zero.

further, condition e sets the speed of convergence of the distribution functions G0 towards

G. Further, if t — [H() — EH()](6,. — O) has a symmetric distribution for any value

oft90 then condition e holds.

If the matrix H(o) is exogenous it can directly be used. If not, we need an exogenous

estimate to ensure inference validity for a given n. This is feasible by spiitting the sample

into two parts.

5.5. Quasi-optimal instruments and spiit-sample

When observations are independent, one may resort to spiit-sample techniques.’0 The

principle is the following. The sample is divided into two parts: (Y(i), X(i), Z(i)) and

‘°The spiit-sample technique was used by Dufour and Taamouti (2002) in a quite similar context to ours.
They search an exogenous estimate ofthe point-optimal matrix of instruments, which, in a Gaussian context,
allow them to construct exact inference based on generalized AR statistics, [see also Angrist and Krueger
(1995), Dufour and Jasiak (2001) for other uses and a discussion on the optimal split ofthe sample].
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(Yf2), X(2), Z(2)). The first part is used to estirnate

Oj(Y1 X1 O) /

=h(Z(i),Oo)+e, ( . )
ooo

yielding an estimate ïi. This first stage regression may be linear or not, parametric or flot

depending on the structural model. A sign-based estimation can also be used.

Then, quasi-optimal instruments are constructed for the second part of the sample,

Z(2) î(Z(2)) and used as auxiliary regressors in the second step regression:

s(f(Y(2),X(2),Oo)) = 7(2) +V(2). (5.25)

A test of H0 (Os) is thus based on a GMM sign-based statistic

SSS(00) = s(f(Y(2), X(2), Oo))’(2) [2)(2)] 2)s(f(Y(2), X(2), On)). (5.26)

The latter statistic does not depend on nuisance parameters under the nuli hypothesis be

cause Z(2) is exogenous. Consequently, Monte Carlo tests can be used. This point also

validates the use of simulation-based statistics such as a Tippett-type statistic

T$S(Oo)=min{pi,...,p} (5.27)

where Pi. . . , pi,, are the empirical p-values for testing y = O in the univariate regressions

ofthe form

s(f(Y(2), X(2), Oo)) 7jî(2), j = Ï, . .
.
,p. (5.28)

6. Asymptotic properties

A drawback of the mediangale Assumption Al is the exclusion of linearly dependent

processes even though usuai asymptotic inference can stili be conducted on them. In

Coudin and Dufour (2005a), we pointed out that heteroskedasticity and autocorrelation

corrected sign-based statistics are asymptotically pivotai functions when signs and expiana

tory variables are uncorrelated. We also showed that Monte Carlo testing method remained

asymptotically valid under weaker distributional assumptions than usual asymptotic Wald
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tests. In particular, heavy-tailed distributions including infinite variance disturbances were

covered. in this section, we show these resuits apply to IV sign-based statistics without any

major modification. We established them for a general nonlinear instrumental regression.

A sign HAC-statistic with a weight matrix directly derived from the asymptotic covariance

matrix ofthe signs and the instruments, say D8(, Z, J;’(Z)), tums out to be asymptot

ically r2 (k) distributed under H0 where k is the number of instruments used.

6.1. Asymptotic behavior of IV GMM sign-statïstics

We consider model (2.1) with the following assumptions.

Assumption A2 MIXING. {(x, z(Oo), Ut)}t=1,2 is ct-mixing ofsize —r/(r — 2) with

r > 2.11

Assumption A3 MOMENT CONDITEON. E[s(n)zt(O)] = O, Vt 1,. .. , n, Vn E N.

Assumption A4 BOUNDEDNESS. zt(Oo) = (z(O), . .. , zt(Oo))’ and EIzh(9o)IT <

Assumption A5 NON-SINGULARITY. J0° var [ s(ut)z(60)] is unormÏy

positive definite.

Assumption A6 CONSISTENT ESTIMATOR 0f J7°. (2o is symmetric positive definite

unforn7Iy overn andf2° — (J7°)’ .1+ O.

Then we have the following asymptotic distribution.

Theorem 6.1 ASYMPTOTIC DISTRIBUTION 0f STATISTIC SHAC. in rnodeÏ (2.1), with

Assumptions A2- A 6, we have, under H0,

D3(00, Z00, f2°°)
—

White (2001) for a definition of o mixing.
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Corollary 6.2 In mode? (2.1), with the mediangaÏe Assumption Al and Assumption A4.

If Z’Z/n is positive definite unformly over n and converges in probability to a definite

positive ,natrix, we have ztnder H0,

D3(90, z, (Z’Z)’)

Theorem 6.1 holds for spiit-sample statistics with n2 —* œ and when Z depends on 9 (with

Z evaluated at 9e). The proofs are adaptations ofTheorem 6.6 and Corollary 6.7 in Coudin

and Dufour (2005a).

The 2(k) distribution is familiar in instrumental and weak instruments settings. The

statistic k x AR is asymptotically 12(k) distributed [see Anderson and Rubin (1949),

Staiger and Stock (1997), Dufour and Jasiak (2001), Dufour and Taamouti (2005)]. This

distribution also bounds the LR and LM statistics [see Wang and Zivot (1998)]. How

ever, the 2(k) distribution is directly related to the number ofinstniments and the use of

many instruments (k large) may entail a power loss. This pleads for the K-statistic favor

[see Kleibergen (2002)] in setups with normally distributed disturbances or for any statistic

whose distribution does not depend of the number of instruments used. When the setup

involves more general processes like non-normal ofheteroskedastic errors, there is no rea

son why the power of a K test would be higher than the one of a sign-based test in finite

samples. Nevertheless, if one is concerned about the ??many instruments” curse, let us un

derline that sign-based statistics with quasi-optimal instruments are asymptotically x2 (p)

distributed as the K-statistic, witt1 the advantage of atso providing exact inference in finite

samples. Only the combination of a j oint testing approach with valid instruments entails

exact inference for any sample size.

6.2. Asymptotic validfty of Monte Carlo tests

Let a test statistic 5e asymptotically free of nuisance parameters under H0, with asymptotic

distribution F. Monte Carlo tests that rely on replicates possessing the sanie asymptotic

distribution F will asymptotically control the level. This resuit entails that Monte Carlo

tests presented in the previous sections “do at least as well as” asymptotic methods when

the mediangale Assumption Al is relaxed and replaced by a classical moment condition
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(Assurnptïon A3); see Coudin and Dufour (2005a). Moreover, those Monte Carlo tests

present two considerable advantages over classical asymptotic methods. First, if median

gale Assumption Al holds, one is sure that the level of Monte Carlo tests is controlled

for any sample size. The second advantage cornes from the fact that Monte Carlo tests are

constructed with replicates based on the same sarnple size. This differs to a classical Monte

Carlo test with replicates constructed from the asymptotic distribution. Simulation studies

suggest that such Monte Carlo tests perform an implicit sample-size correction [Coudin

and Dufour (2005a)]. Indeed, for a given sample size, the distribution of the sign statistic

may be doser to the one of the replicates than to the (common) asymptotic distribution.

Although the use of such Monte Carlo tests is asymptotically justified, they can be more

reliable in small sarnples than tests based on asymptotic critical values. Under Assumptions

A2- A6, testing

Ho(60) : 8 = 8 versus H1(80) 8 80,

with the statistic D8 (O, Z00, J’(Ze0)) is conducted in the following way:

(0) “11. Observe D8 = D8(00, Z90, J, (Z00)). Draw N rephcates ofthe sign vector as if

the ‘n observations were independent. The n components of the replicates are thus

independent and drawn from a 3(1, .5) distribution.

(1) (2) (N)2. Constmct (D8 D8 ,. . . , D8 ), the N pseudo rephcates of

D8 (8e, Z00, (Z0 Z80) ‘) under the nuli hypothesis. We call them pseudo replicates

because they are drawn as if observations were independent.

3. Draw N + 1 independent replicates (W(°),. .. , W(’’0) from a U[o,i] distribution and

form the couple (D, w()).

4. Compute ..N)(8 using (3.7).

5. The confidence region {8 e RPf(O) n} level is at least 1 — n. We reject ifj if

J3n (8e) <n.

In contrast with Wald-type tests based on LIML or GMM estimators which require identi

fication, those asymptotic resuits lead to valid inference whatever the informative power of
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the instruments is and for any degree of identification. f inally, moments and density on the

‘u process may flot exist.

7. IV sign-based estimators

In the previous sections, we have presented simultaneous tests, confidence sets and more

general tests based on signs. Estimation is the last step to a complete the inference system.

IV sign-based estimators are obtained in a way similar to the one used for the sign-based

estimators studied in Coudin and Dufour (2005b) in a linear regression without instrument.

The estimators maximize the p-value function of the parameter given the form of the IV

sign-based statistic and the sample size. They present the highest confidence degree based

on the chosen IV GMM sign-based statistic. They also tum out (with probability one)

to minimize the quadratic function of the signs that is given by the sign-based statistic.

Here, we introduce 1V sign-based estimators for a general nonlinear possibly instrumental

regression. We show, for those general models, that they are consistent with asymptotic

normal distribution.12

7.1. IV sign-based estimators under point identification

When O is identified, we can define an IV sign-based estimator as any solution (Q) of

the problem

min s(f(y, X, 8))’Z0Q (s (f(y, X, 8)) , Z0) Z,s(f(y, X, 0)). (7.29)
OEIRP

IV sign-based estimators are analogues of sign-based estimators studied in Coudin and

Dufour (2005b). These constitute Hodges-Lehmann-type estimators in the sense that they

are associated with the highest degree of confidence one may have in a value of O given

the realization ofthe sample and the choice of the sign-based test statistic Ds(Zo, f2, 0)

[Hodges and Lehmann (1963)]. The reader is referred to Coudin and Dufour (2005b) for a

detailed presentation. IV-sign based estimators can also be interpreted as GMM estimators

‘2Estimators based on the Tippett-sign statistic could be defined as solutions of a double optimization
problem: maximization of the minimal p-value (a sort of Rawis criteda between the moment equations).
That question is flot addressed in the present paper.
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exploiting the orthogonality between error signs and instruments. See Honore and Hu

(2004) for a presentation in an instrumental linear regression with i.i.U. disturbances

and Coudin and Dufour (2005b) for equivalence (with probability one) between both

definitions.

For practical use, we also introduce a two-step estimator ‘(Q) as any solution ofthe

problem

min s(f(y, X, O))’Z0S2 (s(J( X, ç)), Z )Zs(J(y, X, 9)), (7.30)
OERP

where , is a first stage consistent estimator.

In the following, we show that the IV sign-based estimators defined in equations (7.29)

and (7.3 0) are consistent and asymptotically normal if the parameter is identified.

7.2. Consistency

We first prove the consistency of IV sign-based estimators when the auxiliary regressors

are integrable and continuous functions of the parameter O and of some 1-vector process

Vt, t = 1, 2,. . . , on which the mixing conditions are imposed. Let h : e x R1 + Rk, Vt,

z1(O) h1(8,v1), t = 1 (7.31)

We assume that the following conditions hold.

Assumption A7 MIXING. {W’ = (yt, X, is ci-mixing ofsize —r/(r — 1) with

r>1.

Assumption A8 CONTINUITY 0f F. ftyt, x1, O) is ineasurable, a.e. continuous in O with

P[f(y1,x1,O) = 0] = 0, VO e e.

Assumption A9 BOUNDEDNESS AND CONTINUITY.

a) z1(O) (z11(O), . . . , zt(O))’ and Ezht(O)I’ < L\ < oo, h = 1,. . . , k, t =

1,... ,n, e N, VO e e.
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b) Zht(8) is a.e. continuous in O, Vt.

c) P[zht(O) D] = D, VO e e, Vt.

Assumption AlO COMPACTNESS. O E Int(e), where e is a compact subset ofR?.

Assumption Ail POINT IDENTIFICATION.

limE[Zs(f(YtxtO))®zt(O)] =0o=Oo

Assumption A12 UNIFORMLY POSITIVE DEFINITE WEIGHT MATRIX. f2(O) is sym

metric positive definitefor ail O in e.

Assumption A13 LOCALLY POSITIVE DEFINITE WEIGKT MATRIX NEAR Oo. f2,(O) is

symmetric positive definitefor ail O in a neighborhood of9o.

The mixing condition (Assumption A7) is imposed on a underlying process, {Vt}t1,2

because the instruments are fimctions of the parameter. Assumptions A8 and A9 contain

the regularity conditions required on the firnctions f and h. Remark in particular that the

sets of zeros are assumed to be negligible. Assumption AlO is the classical compactness

condition. Assumptions Ail, A12 and A13 are classical and reqttired for identification.

Then we have the foilowing property.

Theorem 7.1 CONSI$TENCY. Undermodei(2.1) with theAssumptionsA3 andA7-A]2,

any JVsign-based estimator defined by (7.29) is consistent.

When Assumption AU is replaced by Assumption A13, the two-step estimators Uefined in

(7.30) are consistent. Consistency is established without requiring second-order moment

existence of the disturbances Ut. Indeed, the disturbances appear in the objective ftmction

only through their sign transforms which possess finite moments at any order. Conse

quently no additional restriction should be imposed on the disturbance process. Those

points also entail a more general CLI than usual.
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7.3. Asymptotic normality

Asymptotic normality requires some additional assumptions.

Assumption A14 UNIFORMLY BOUNDED DENSITIES. gu < +00 stich that , Vn e
N,V) e R,

sup Igtxi,...,x)I <gu, a.s.
1<t<n

Assumptïon A15 DIFFERENTIABILITY 0F f. f is a.e. continuousÏy dfferentiable in O

andEIoI <+oo, vo e e.

Assumption A16 MIXING WITH r > 2. {W = tyt, x, V)}t=1,2 is Œ-mixing ofsize

—r/(r — 2) with r > 2.

Assumption A17 DIFFERENTIA3ILITY 0F h. Zt = h(O, Ut) and h is a.e. confinuousÏy

dfferentiable in O and El II <+00, Vo E e, Vt = 1,. . . , n, Vn e N.

Assumption A18 DEFINITE POSITIVENESS 0F J(O0). J(O0) is k x k and unjforrnÏy

positive definite in n and converges to a definite positive symmetric inatrix J, where,

J(O) =var

Assumptïon A19 DEFINITION 0F L. L(O0) is ap x k inatrixdeflnedas:

L(&) =
[Ï1tvt)aJ(;to)gt(f(yt,xt,o)Iz; .

.

+-E [stJtYtxtO))].

L(O0)f2L(O0) is nonsingular unjformly in n.

Assumption A 16 is the classical mixing condition required in asymptotic normality proofs.

Assumptions A15, A17 and A19 are regularity conditions for nonlinear setups. Assumption

A14 is usual in the LAD and quantile theory: bounded variance conditions (horizontal

spread) are replaced by bounded vertical spreads. Assumption Al 8 is classical. We see

in Assumption A19 that L(O) has a second term induced by the fact that the instruments

depend on the parameter. Then, we have the following theorem.
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Theorem 7.2 ASYMPTOTIC NORMALITY. Under the conditions for consistency and

Assumptions A14-A]9 we have:

—

6) - N(O, I) (7.32)

where

= [Lfl(6O)PflL?l(6O)’]’Lfl(OO)flJflflflLfl(6Q)’[Lfl(6O)2flLfl(6O)’]’.

When P = j_1

—

9) - N(0, In). (7.33)

Theorem 7.2 holds in particular for classical instrumental setups when the instruments Z

do net depend on 6. In such a case, L(6) simplifies to

= ZE
[z8ftO)gt(J(yt,xt,e)Izy,.

(7.34)

This resuit extends the classical sign-based estimator asymptotic normality established in

Coudin and Dufour (2005b) for nonlinear and instrumental regressions. Note again the

existence of the second-order moment disturbances is not required. The sign asymptotic

normality holds for heavy-tail distributions whereas usual estimators, such as the 2SL$

estimator, do flot. The dispersion measure adapted to sign-based estimators do not refer to

the error variance but to the (inverse ofthe) error density evaluated at zero. This alternative

dispersion measure, called the “diffusivity”, is involved in Cramér-Rao type lower bound

for median-unbiased estimators; see Coudin and Dufour (2005b), Sung, Stangenhaus, and

David (1990) and So (1994).

The properties of consistency and asymptotic normality entireÏy rely on the identifi

cation assumption whereas the sign-based inference presented previously does not. This

provides the occasion to recali the main message of the weak IV literature: when some

identification failcire or the presence ofweak instruments are suspected, tests based on the

asymptotic behavior of estimators should be avoided. Inference should be based on test

statistics that are robust to identification failure such as IV sign-based statistics. The next

section illustrates by a simulation study, how important it can be to use the exact distribu

tion of such robust statistics.
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8. Simulation study

In this section, we present simulation studies comparing the performance of sign-based

methods with usual instrument-based techniques. We consider the basic sign-based statis

tic D8(O, Z, (Z’Z)’) (denoted BS) and a spiit-sample based one that aims to overcome

possibly power loss when “many instruments” are used (SSS). We compare tests based on

those two statistics with Wald tests based on the 2SLS estimator and the 2SLAD estirnator

(both estimators are unreliable in the presence of weak instruments), and with some tests

that are “robust to weak instruments”. Those robust tests rely on the Anderson-Rubin sta

tistic (AR) [Anderson and Rubin (1949)], the Anderson-Rubin statistic with spiit-sample

(SSAR) [Dufour and Jasiak (2001)], the score statistic proposed by Kleibergen (2002) (K)

and the score statistic corrected for heteroskedasticity (KLM) [Kleibergen (forthcoming)].

We use the following linear model taken from Kleibergen (2002) with different numbers of

instruments, degrees of identification and various disturbance behaviors:

y=Y9+E

Y=XH+V,

where n is the number of observations, y, Y n x 1, X n X k, X .Af(0, ‘k 0 In),

H k x 1, 6 0. In H (in,... ,frk)’, four different values of in1 are considered: 1

(strong valid instrument), 0.5 (instrument of mild strength), 0.1 (weak instrument), and O

(no identification). Other components of H are set to zero. The number of instruments k

altematively equals 1, 5 or 10 in view of studying the effect of including irrelevant instru

ments.

We wonder what the test performances are for various schemes ofdisturbances. There

fore, we do flot restrict on i.i.d. normal disturbances. We also study heavy-tailed distur

bances and heteroskedastic schemes. We use the four following data generating processes:
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Case 1: i.i.d. normal disturbances:

fi .99
(e,V) At(O,2®I),2= I

1

Case 2: Z.i.d. Cauchy disturbances:

(e’, V’) C and (Et, )‘ = ‘)‘, with
= ( 1 .99

.99 1

Case 3: some instruments affect the shape ofthe structural error e:

(e’,V) J(O,®I),e1 =x1e,t= i,...,T.

Case 4: the endogenous variable affects the shape of e:

(e’,V) A/(O,®I), Et = 2e,t = 1,...,T.

Cases 1 and 2 illustrate the effect of a departure from normality on the different tests:

homoskedastic disturbances, which are normally distributed in case 1 and Cauchy distnb

uted in case 2. In normal cases, with one instrument, the K statistic which equals the AR

is optimal. We wonder what happens when normality is relaxed and especially when the

disturbances possess heavy tails. The next DGPs (cases 3 and 4) illustrate heteroskedas

ticity. in case 3, the instruments affect the variance of the structural error. In case 4, the

endogenous variable affects the variance of the structural error. We illustrate how the clas

sical tests (K, AR) fail in the presence of heteroskedasticity and we focus on comparing

sign-based tests to the KLM tests that are corrected for heteroscedasticity. Remark that for

the four cases, the mediangale Assumption Al holds and sign-based methods do exactly

control levels for any sample size.

8.1. Size

We first investigate level distortions. We consider the testing problem: H0 : 0 =

O against H, : 0 0, and report empirical rejection frequencies for tests of level .05.
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Empirical sizes are computed using 10000 simulations. Bootstrap and Monte Carlo meth

ods are both based on 2999 replicates. For spiit-sample statistics (SSAR and SSS), 15

observations are used for the first stage and 35 for the second stage.

Sign-based tests (BS, SSS) are the only ones that have perfectly controlled levels in

the four presented cases. Empirical sizes of sign-based tests equal the nominal size. In

contrast, empirical sizes ofWald tests (2SLAD, 2SLS) greatly suifer from the small number

ofobsewations, the weakness ofthe instruments and the presence ofinelevant instruments.

The empirical sizes of the AR, SSAR and K tests are smaller than the Wald-type test ones

in homoskedastic setups because their asymptotic levels equal the nominal one whatever

the strength and the number of instruments. However, they are affected by finite-sample

distortions and loose their relevance in heteroskedastic setups. Finally, tests based on the

KLM statistic involving a White-type correction for heteroskedasticity have empirical sizes

close to the nominal one for setup 3, but this is no longer true when endogeneity affects the

variance ofthe structural enor (setup 4).

Simulations confirm the theoty. Sign-based tests allow to control test tevels for a very

wide range of setups and for any sample size. They are the only ones that are robust to

heteroskedasticity of unknown fonn.
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Table 17. Empirical sizes: n50.

Case 1: i.i.d. normal distribution
nb inst. k=1 k=5 k=10
In 1 .5 .1 0 1 .5 .1 0 1 .5 .1 0
W2SLS .087 .123 .375 .911 .315 .708 .994 1.00 .548 .939 1.00 1.00
W2SLAD .028 .019 .001 .000 .161 .352 .691 .715 .296 .595 .873 .889
AR .059 .059 .059 .059 .067 .067 .067 .067 .088 .088 .088 .082
SSAR .116 .116 .116 .116 .095 .096 .097 .097 .085 .086 .084 .084
K .059 .059 .059 .059 .057 .057 .056 .070 .060 .060 .060 .088
KLM .048 .048 .048 .048 .024 .024 .024 .036 .016 .016 .016 .032
BS .050 .050 .050 .050 .045 .045 .045 .045 .056 .056 .056 .056
SSS .052 .052 .052 .052 .049 .048 .047 .047 .052 .050 .051 .051

Case 2: z.i.d. Cauchy distribution
ir 1 .5 .1 0 1 .5 .1 0 1 .5 .1 0
W2SLS .477 .607 .822 .937 .987 .998 1.00 1.00 1.00 1.00 1.00 1.00
W2SLAD .001 .001 .000 .000 .037 .037 .038 .036 .045 .047 .048 .047
AR .061 .061 .061 .061 .063 .063 .063 .063 .081 .081 .081 .081
SSAR .121 .121 .121 .121 .103 .103 .102 .102 .080 .082 .081 .081
K .061 .061 .061 .061 .054 .054 .055 .066 .066 .067 .067 .077
KLM .019 .019 .019 .019 .034 .034 .034 .032 .027 .028 .028 .029
BS .051 .051 .051 .051 .053 .053 .053 .053 .056 .056 .056 .056
SSS .050 .050 .050 .050 .047 .047 .047 .047 .056 .053 .056 .055

Case 3 : instruments affect the shape oferror distribution
in 1 .5 .1 0 1 .5 .1 0 1 .5 .1 0
W2SLS .101 .129 .203 .213 .140 .256 .475 .493 .160 .328 .674 .700
W2SLAD .021 .015 .004 .003 .048 .039 .017 .016 .088 .081 .047 .044
AR .417 .417 .417 .417 .249 .249 .249 .249 .223 .223 .223 .223
SSAR .510 .510 .510 .510 .280 .215 .184 .179 .179 .131 .111 .111
K .417 .417 .417 .417 .329 .263 .159 .153 .357 .259 .129 .120
KLM .029 .029 .029 .029 .026 .034 .040 .040 .032 .038 .043 .042
BS .053 .053 .053 .053 .048 .048 .048 .048 .057 .057 .057 .057
SSS .053 .053 .053 .053 .055 .051 .052 .050 .051 .051 .053 .054

Case 4: endogeneity affects the shape of error distribution
in
W2SLS
W2SLAD
AR
SSAR
K
KLM
BS
sss

1 .5 .1
.744 .519 .234
.012 .006 .001
.526 .220 .068
.527 .269 .128
.526 .220 .068
.321 .126 .032
.051 .051 .051
.050 .050 .050

O
.216
.001
.061
.121
.061
.028
.051
.050

1 .5
.898 .849
.030 .028
.300 .128
.282 .135
.406 .128
.207 .077
.044 .044
.049 .052

.1 0
.821 .822
.027 .026
.072 .069
.097 .096
.068 .068
.040 .039
.044 .044
.051 .051

1 .5 .1 0
.923 .967 .972 .972
.056 .059 .062 .064
.323 .162 .084 .080
.221 .108 .081 .079
.497 .169 .081 .082
.055 .068 .044 .041
.054 .054 .054 .054
.049 .051 .050 .050
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8.2. Power

Then, we compare the power of these tests. Tests of H0 : O = O are performed on data

obtained by letting valy 9. Simulated power is given by a graph with O in abscissa; see

Figures 30, 31, 32, 33. The power ftinctions presented here are locally adjusted for the level

when needed, which allows comparisons between methods. However, we should keep in

mmd that only sign-based tests do exactly control the level for any sample size. Ail resuits

conceming homoskedastic or heteroskedastic setups with a given number of instruments

and for various instrument strength are contained in a single figure. In figures 30 and 31,

errors are homoskedastic, either normal (first column), either Cauchy (second column).

The number of instruments equals one for f igure 30, and five for Figure 31. Therefore,

comparing both columns illustrates which effect a departure from normality (here Cauchy

disturbances) entails on the test powers. The effect of heteroskedasticity is then illustrated

by figures 32 (model with one instrument) and 33 (mode! with five instruments). We

are particularly interested in comparing the sign-based method to the KLM method (and

2SLAD, 2$LS for strong instruments) which is corrected for heteroskedasticity since the

K and the AR methods are not.

Let us now examine the resuits. In a model with one instrument (Figure 30), the K

statistic and the AR statistic are equal. The AR statistic is best for the i.j.d. normal case

I but the sign-based power curve is flot far from that optima! power curve (first column

of figure 30). With Cauchy distributions (case 2, colunm 2 in figure3o), the sign-based

power curve is far above ah the others. This holds regardless of instrument strength. The

power curves ofWald tests based on the 2SLS and the 2SLAD estimators are also reported

when the instruments are strong. In case 1, these methods are biased; in case 2, they do not

present power anymore.

The AR procedure and the sign-based procedure loose power as the number of (irrele

vant) instruments included in the model increases. Figure 31 illustrates the power curves

when the model involves five instruments. For the i.i.d. normal case (case 1, column 1 in

Figure3 1), the K statistic, which now differs from the AR statistic, does flot encounter this

loss ofpower and leads to the highest power curve whereas both the sign-based power curve
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and the AR-based one stand lower. However, as soon as we tum to the Caucliy setup (case

2, colunm 2 in Figure3 1), the sign-based statistic yields again the highest power. This holds

regardless of instrument strength. The two methods involving a spiit-sample (SSAR and

SSS) do not present good resuits because ofthe limited number of observations. Here, the

sample size is 50. First step regressions involve only 15 observations and second step re

gressions 35 observations. However, the corresponding power curves generaliy follow the

same tendencies as the power curies of the corresponding statistic without spiit-sample.

Resuits are very clear in Figures 32 and 33 (heteroskedastic setups: case 3 and 4).

Sign-based methods exhibit there more power than ail the other studied methods which

are robust to weak instruments (AR, K) included methods corrected for heteroskedasticity

(KLM). In the presence of strong instruments, Wald tests based on 2$LAD and 2$LS have

higher power than sign-based methods. However, the Wald tests are clearly biased and they

are no longer valid as soon as the strength of the instruments decreases.

In conclusion, sign-based tests present good power properties for a wide range of

processes. They are flot far from the optimal AR test in i.i.d. normal case and they pro-

vide more power than other studied methods in setups involving heavy-tailed distributions,

heteroskedasticity or nonlinear dependence. They still provide power under some general

endogeneity schemes, especially when the endogeneity affects the shape of the structural

error distribution without affecting its sign.
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9. Application: schooling returns

In this section, we apply the method proposed above to study the effect of education on

eamings [Angrist and Krueger (1991), Angrist and Krueger (1995), Bound, Jaeger, and

Baker (1995), Staiger and Stock (1997), Dufour and Jasiak (2001), Kleibergen (2002, 2005,

forthcoming), etc.].13 Angrist and Krueger (1991) consider an earning equation where

the Iog weeldy wage (Yt) is explained by the year number of schooling (it) and other

covariates (such as the year ofbirth, age, age squared, race, metropolitan statistical area...).

Ihey propose several specifications depending on the included covariates. Purifier, they

use the interactions between the quarter of birth and the year of birth as instruments for

correcting the education endogeneity. However, the relation between the instruments and

the endogenous variable is apparently weak.

We restrict here on the Angrist and Krueger(1991)’s model specification with dummies

for the year ofbirth as explanatory variables. The data set cornes from the 1980 census 5%

public-use sample and is composed of n = 329500 men boni 1930-39.

0Xi + kdkj + €, j = 1,... ,n, (9.1)

where dk are dummies for the year ofbirth. Further, the 30 interactions between the quar

ter and the year of birth constitute the available excluded” instruments to correct for the

schooling endogeneity. F-statistic for instrument relevance equals 1.573 (with asymptotic

p-val= .024), which is low enough to suspect the presence ofweak instruments.

We apply spiit-sample sign-based inference method and compute valid confidence in

tervals for the education parameter. More precisely, the sample is divided into two parts (1)

and (2). With the first part ofthe sample, we choose the form of quasi-optimal instruments:

the year nurnber of schooling is regressed on instruments by OLS. With the second subsam

pie, we construct sign-based statistic using a fitted education. The spiit-sample sign-based

statistics rely on the 11 following moment equations:

E[s(y2 —
— kdkj) x = 0, for j = 1,... ,n2, j 1,..., 11; (9.2)

‘3Other questions raised by these data include, for example, the impossibitity ofa punctual nonparametric
identification with discrete instruments [Chesher (2003)1 and the probtem of many instruments [Hansen,
Hausman, and Newey (2005)].
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_(2) _(2)where zfi = djj, = 1,..., 10 and z1 is the fifted education. We follow Dufour and

Jasiak (2001), and use 10% ofthe sample for the first stage and 90% for the second one.

Two spiit-sample sign-based statistics are considered. The first one combines moment

equations in a classical quadratic GMM form ($$S90). In the second one (TSS9O), moment

equations are combined following Tippett (1931). Then, Bonferroni-type induced tests are

performed using = t/p. The idea behind is that quadratic combination oforthogonality

conditions refers to some local optimality around the true value of the parameter. In a badly

identified setup such as here, othertype ofcombinations likethe Tippett’s one, may provide

befter overail properties and smaller confidence intervals.

Table 1$ contains 95%—confidence intervals obtained with SSS9O and TSS9O but

also the Anderson and Rubin statistic (AR), Kleibergen score statistic (K) and Wald (non

reliable) CI based on the OLS and the 2SL$ estimators. We also report in Table 19 0ES,

25ES, LIME, SSIV and sign estimates for the retum to education.14

Projection sign-based confidence intervals obtained using the SSS9O and the TSS9O

statistics have smaller spreads than the asymptotic ones based on the AR and K statistics

and they are theoretically valid. Moreover, they tend to accept smaller values of the return

to education. Table 19 on estimates confirms that point. Sign-based estimates that are very

close to 2SLAD estimates, suggest a retum to schooling around 4% which is smaller than

usually admitted. Such a figure is in adequation with a positive ability bias as expected by

the theoiy.

Then we redo the same experiment on subsamples of 10000 and 2000 observations

drawn from the initial sample. We wonder what happens when the sample size gets smaller.

Confidence intervals resuits are reported in Table 20 and estimates in Table 21. We only

consider procedures that are robust to weak instruments: K, AR, SSS9O (with 999 repli

cates) and TSS9O (with $79 replicates).

‘4The CI are smaller than those found by Chemozhukov, Hansen, and Jansson (2006) who exploited a
GMM statistic based on the 40 moment equations and included in their model more explanatory variables.
We use simulated annealing with different starting points. They used a MCMC algorithm with different
starting points.
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Table 1$. Confidence intervals for schooling returns.

CI 95% 90% 80%

Wald OLS [.070, .072] [.07 1, .072] [.07 1, .07 1]

Wa1d2SLS [.058, .120] [.063, .115] [.069, .110]

Wald 2SLAD* [-.002, .079] [.004, .073] [.0 12, .065]

AR [.014, .180] [.022, .169] [.033, .157]

K [.054, .133] [.060, .126] [.068, .119]

TSS9O [.034, .045] [.036, .044] [.037, .043]

SSS9O [.035, .045] [.036, .04 1] [.038, .039]
* W2SLAD CI are obtained by design matrix bootstrap, with 99 replicates [Buchinsky (1998)1.

Table 19. Estimates for schooling retums.

OLS 2SLS LAD 2SLAD

.071 .089 .066 .039

LIML SSIV9O S$S90

/3 .093 .018 .039
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Table 20. Confidence intervals for schooling returns: subsamples n=10000 and n=2000.

CI 95% 90% 80%
n1 0000

K [4,1] [-1,.222]u[.239,l] [-1,

AR [-1,1] [-.636,664] {-.291,.395]

TSS9O [-.190,.109J [-.110,.083J [-.034,.049]

SSS9O [-1,1] [-1,1] [-1,.236J
n=2000

K [-1,1] [-1,.073]u[.106,1] [-.563, .016]u[.160,.541]*

AR [—1,1] [—1,1] [—1,.154]U[.562,1]

T$S90 [-.392,.135J [-.216,.075J [-. 130,.043J

SSS9O [—1,1] [—1,1] [—1,1]
CIs can be teduced by combining with a J test [Kleibergen (forthcoming)j.

n2000

Table 21. Estimates for schooling retums: subsamples ri=10000 and n=2000.

n10000

/o OLS 2SLS LAD 2SLAD LIML SSIV9O SSS9O

.072 .076 .065 .022 .067 -.012 .022

/3 OLS

.071

2SLS

.014

LAD

.067

2SLAD

.022

LIME SSIV9O

-.119 -.013

SSS9O

.023
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The Mincer equation (9.1) sets that the education coefficient has an elasticity forrn.

Consequently, this parameter is constrained in the programs to rely between -1 and 1. Then,

a confidence interval of [—1, 1] may refer to an (unconditional) “unbounded” confidence

interval. Such a confidence interval indicates a badly identified setup and is in accord

with the fact that valid confidence intervals have positive probability to be unbounded in

nonidentified setups [Dufour (1997)].

The CI spread based on SSS9O and AR statistics increases as the number of observa

tions decreases. 90%-CI based on the AR statistic is bounded for n = 10000 whereas for

n = 2000, the 90%-CI is [—1, 1]. The same occurs with 95%-CI based on the SSS9O sta

tistic. The behavior of the K statistic is less clear. As it is a quadratic form of the score

of the concentrated log-likelihood, it basically contains information on a siope. Its use is

localtyjustified around the LIML estimator but may fol low a somewhat odd behavior out

side that neighborhood. The Tippett-sign-based statistic provides the smaller CIs for both

subsamples, which indicates that quadratic combinations of orthogonality conditions are

not optimal in small subsamples.

Concerning estimates (Table 21), our findings are similar to the whole sample ones.

Sign-based estimates are very close to 2SLAD estimates and suggest returns to schooling

around 2% in both subsamples which is in adequation with the theoretically expected ability

bias.

10. Conclusion

In this paper, we presented a finite-sample sign-based inference system for the parameter

of a structural possibly nonlinear model. We introduced a condition of instrument validity

with respect to the signs of the structural error. We showed that, under the instruments

validity, the distribution ofthe structural error sign vector is known and does flot depend on

any nuisance parameter. This allowed us to conduct a Monte Carlo-based inference using

on the exact distribution of IV sign-based statistics. The derived joint tests are exact for

any sampie size and are robust to identification failures. Tests of more general hypothesis

and confidence sets are then constructed using projection techniques. Our approach is in
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the spirit of Anderson and Rubin (1949). The IV sign-based statistics we studied can be

constructed from auxiÏiary regressions of the constrained signs on auxiliary instruments.

We also considered the problem of approaching the optimal set of instruments to include in

the model in case of overidentification using two different optimality concepts (point and

local optimality). Finally, 1V sign-based estimators are presented. They tum to be consis

tent and asymptotically normal when identification holds under weaker assumptions than

the ones required in the 2SLAD asymptotic theory. Besides, they can directly be associated

with previous sign-based inference, which avoids one to use complicated methods such as

the bootstrap. By construction, the level of IV sign-based tests is controlled and simula

tions indicate that those tests perform better than usual ones (including methods that are

robust to weak instruments or identification failures) in finite samples, when the data are

heterogenous, heteroskedastic or when endogenous variables affect the structural error dis

tribution without affecting its sign. finally, sign-based inference is applied to the Angrist

and Krueger’s retums to schooling problem. Sign-based estimate of the return to school

ing is around 4% and projection-based confidence intervats, besides being more robust, are

more precise than those based on the AR or the K statistics. In small samples, it seems that

Tippett-type combination of orthogonality conditions provides better properties than usual

quadratic combination and leads to more precise confidence intervals.
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Appendix

A. Proofs

A.1. Proof of Proposition 3.1

Consider the vector [s(u1), s(u2),. , s(u,)]’ (si, 82, ,s)’. From Assumption Ai,

we derive the two following equalities:

P(nt > OZ) E{P(n > Oint_1, . , u1, Z))] = 1/2,

P(u > O1st_,... , Sy, Z) = P(u > Oint_i, . .. , u1, Z) 1/2, Vt = 2,... , n.

Further, the joint density of (Si, s2,.. , s,)’ can be written:

1(si,s2,...,sjZ) = flt(stjst_i,...,si,Z)

=

P(u > Oint_i, . .. , ni,

X {1 — P(u > Oint_i, , U1,

= ll(1/2(1_8t)/21 — (l/2)](1+8t)12 = (1/2)

Hence, conditional on Z, s1, 2, . . . , s, are distributed like n i.i.d random variables with

distribution:

t=1,...,n.

A.2. Proof of Proposition 4.1

This is a direct application ofNeyman-Pearson lemma. The likelihood function of S under

H0is

T ( — FT (1+s,)/2 (1—st)/2
5n)

— IIPot Pot
t=i

and under H1,

r ,‘ — •II (1+s)/2 (i—st)/2
• , 8n)

— IlPit Pit
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Hence, after some computations, the loglikelihood ratio becomes

in (pi) = (1/2) [in(‘) + stin
(Pi o)],

(A.1)

and yields the optimal test against H1. The most powerful test based on $ rejects H0 when

Zstin
(t’ —Pot)

> c(,Hi)
\Pot(1 —Pit)]

where c(ci, H1) c — ZL1(1/2) [in (“1)] with c derived from Neyman-Pearson

condition. LI

A.3. Proof of Corollary 4.2

In the regression framework, (Poi,. .. , and (pli, ... ,Pin) are known. As Assumption

Al holds under H0, we have Pot = .5, and under H1, we can write for t = Ï,... , n.,

pu PH,[f(yt,xt,&o) >0] = Pni[f(yt,xt,6) > ftyt,xt,91)—f(yt,xt,Oo)] =

where h ftyt, Xt, — f(yt, Xt, Or). Hence, the point-optimal sign-based test of H0

against H1 rejects H0 when

t)hlC G(h))
>c(,6i), (A.2)

where(hi li)’ = (f(y1,x1,81)—f(yy,xï,80) ,f(yn,xn,Oi)—J(yn,xn,Oo))’and

c(a, ) depending on the level.

A.4. Proof of Proposïtion 5.1

First, we prove the following lemma.

Lemma A.1 Let {G} be a sequence ofrealfunctions tending unformÏy towards G on

a compact set K C R and O int(K). Supposefurther that G and G are djfferentiable

with continuous derivative on Kfor ail n andsatisfy n(G(0) — G(0)) —* O and G,(0) —

G’(O) —* 0. Then,

SU jGn(y) — G(y)II = o(Ï/n).
yeB(0,)
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Proof of Lemma A.1. Taylor expansions gives

G(x) = G(0) + xG,(0) + o(xI),Vx é 3(0, 1/n) Ci K, (A.3)

and

G(x) — G(0) + xG’(O) + o(jx),Vx e 3(0, 1/n) n K. (A.4)

We can write

G,1(x)
— G(x)I = G(0) — G(0) + x(G(0) — G’(O)) + o(1/’n)I. (A.5)

Hence,

IG(x) - G(x)I IG(0) - G(0)I + IG(0) - G’(O)I + o(1/n) (A.6)

by majoring xi by 1/n. That entails

IG,,(x) — G(x)i = o(1/n).E (A.7)

Let us now cons ider the problem of testing H0 : 8 = 8 against alternatives of the general

form H1 : 0 81. The power function ofa sign-based test T conditional on Z is

= Fol [T(s(f(y,x, Os)), Z) > 1— cT(Z,c)iZ] = P01[$ e WaIZI (A.$)

where $ is the random variable of the constrained signs and j47 the critical region of the

test with level c. In the sequel, we omit to write that ail resuits are conditionai on Z. To

identify the instruments which maximize the power function in the neighborhood of 0, we

first derive the sign distribution under H1. The independence assumption impiies that the

sign distribution is the product of terms of the form

s] P01[f(yt,xt,0o) 0]Fe,[f(yt,xt,0o) <0]. (A.9)

As J is continuousiy differentiable, the mean value theorem entails

f(yt,xt,0i) f(yt,xt,0o) + (0 —0e), t 1,...,n, (A.l0)
o=t

where t = Pt0o + (1
— pt)Oi with p = p(y, Xt, 0, 0) e [0,1], t = 1,..., n. Let Us

denote

H()
8f(yt,xt,&)

, t = 1,...,n. (Ail)
O=t
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We can rewrite

f(y,xt,&o) = f(yt,xt,9i) [H() — — O) —

—
On). (A.12)

This yields, using equation (A.9)

= s) = P91 [flt — (H() —
— o) > EH()(O1

—

x P [Ut — (H() —
— Oo) EH()(O1 —

As the observations are i.i.d., we will not write the subscript t. Let us denote

G(x) = Po,ju — (H() —
— O) (A.13)

where the real random variable tt G. Equation (A. 13) can alternatively be written

Pojs sj
— G (EH()(O

— Oo))] a + (A.l4)

where again s stands for a real random variable and flot for a vector.

Let us now examine

R = G(EH()’(O
— Oo)) — G(EH()’(O

—
(A.15)

+ G(EH()’(O
—

— G(O) — G’(O)EH()’(O
— O)

— G”(O)(9 —
— Oo). (A.16)

When 9, — 8, we want to show that R is o(119o — 9I)2). For this, we denote:

A = G(EH()’(6 — 8e)) — G(EH(L)’(0 —

B = G(EH()’(0 — — G(O) — G’(O)EH()”(0 — 9)

— G”(O)(9 —
— 0e).

We first consider B. We easily have

IIBII = — 00112) (A.17)

using a Taylor expansion of G in the vicinity of zero, because EH() is uniformly

bounded by M1 around Oo (condition c). Let us consider now A. We can major hAll by

hAll < M11107, — 0 sup IIG(y)
— G(y)Ih. (A.l$)

yEB(0,A’Ii I I0o0’ II)
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Moreover, as are increasing continuous functions that converge everywhere to

G, a Dini-type theorem implies the convergence is uniform. Hence, Lemma A.1 applies.

finally

sup IIG(y) — G(y)I o(II6 — OojI). (A.19)
yeB(O,AijIIOo—8,fl)

Finally

hAll O(
—

0j2). (A.20)

Consequently, inequalities (A.20) and (A. 17) with condition d entail:

P0[s = si — — G’(O)(EH(6)’(O — On)) + O(0n
— °U2)]. (A.21)

As (Si, . . .
, s,) are i.i.d., it follows

P0j$= (si,. ..,s)]
= ()fl_ () ‘Êst[G’(o)(EH )‘(0, -0e))]

- () sst[G’(0)(0 - 00)(EH(0)’)(EH1(0))(0
-

0g)]

+ o(ll0—0oH2)]. (A.22)

The remainder follows the proof of Proposition 4.1 in Coudin and Dufour (2005a) and

Boldin, Simonova, and Tyurin (1997). We consider sign-based tests that maximize the

mean curvature around 0o• It is trivial to see that the locally optimal test with critical region

14c. is locally unbiased (assuming the opposite goes to a contradiction), i.e.

dPo[WŒJ
= O. (A.23)

O=O

The behavior of tue power function around zero is then totally defined by the quadratic

term of its Taylor expansion which can be identified thanks to equation (A.22). The mean

curvature is by definition proportional to the trace of d2PoW] at 0 = Oo [see Boldin, Si

monova, and Tyurin (1997), p. 41, Dubrovin, fomenko, and Novikov (1984), Chapter 2,

pp. 76-$6 or Gray (1998), Chapter 21, pp. 373-380]. Taking the trace in the expression of

equation (A.22), we find (afler some computations) it is proportional to

G’(O)2sstEH(00)EHt(90)’. (A.24)
1t 1<n
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By adding the quantity L1 (EH(O)EH(O)’) to (A.24), we find ttie locally optimal

sign-based test in the sense proposed by Boldin, Simonova, and Tyurin (1997) is

w = {s : s’(y) [EH(80)EH(80)]’s(y) > c’} . (A.25)

Standardizing by EH(00)’EH(80) then leads to

W = {s : s’(y)EH(80)[EH(9o)’EH(Oo)]’EH(Oo)’s(y) > c} . (A.26)

A.5. Proof of Theorem 7.1 (Consïstency)

Consistency of 1V sign-estimators is an extension of consistency ofclassical sign estimators

[Theorem 5.9 in Coudin and Dufour (2005b)]. Both proofs follow the same classical 4

steps (pointwise convergence, weak uniform convergence, consistency and identification).

Here, we indicate only points that differ. The stochastic process considered here is IV’ =

{ W’ = (Yt, X, V)}t=;2 : Q .‘ RP+t , and we denote

qt(wt, 8) = s(J(yt, Xt, 8)) ® h(vt, 8), t = 1, .. ,ri, (A.27)

which satisfies the same mixing condition. Similarly to Theorem 5.9 in Coudin and Dufour

(2005b), pointwise convergence for any O is implied by assumptions A7, A9 (boundedness

point) and Corollary 3.48 ofWhite (2001).

Uniform convergence and continuity oftbe limiting function are implied by the generic Iaw

of large number ofAndrews (1987). Andrew’s conditions BI, B2 and Al are fulfilled by

assumptions A7, A8, A9 and AlO. Furthermore, we use bis comment 3 to conclude on the

weak continuity condition (A6). Condition A6(a) allows qt(w, O) to have isolated disconti

nuities provided qt(w, O)p,(w) is continuous in 8 uniformly in t a.e.[i], where ,u is a u-finite

measure, that dominates each of the marginal distribution of W, t = 1, 2... and p, (w) is

the density ofW w.r.t. ,u. Condition A6(b) states that f Supt>iIqt(’w. O)p(w)d,i(w) <00.

Here, we consider i = P, qt(w, O)p,(w) is continuous in 8 a.e. w.r.t. P, as Pt does flot de-

pend on O and q, is a continuous function everywhere except at {f(y,, Xt, 8) = 0} which is

a P-negligible set: P[{w : J(y,, Xt, 8) = 0}] = O (no tie assumption As). furthermore, q,

is L1-bounded and uniformly integrable. Then, condition A6 is fulfihled. The consistency
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part applies without further modifications. finally, the identification conditions Ail and

A12 allow to conclude on consistency.

A.6. Proof of Theorem 7.2 (Asymptotic Normality)

If Zt = h(9, ‘Ut), Assumptions A9, A17, A14 and A15 ailow to differentiate beiow the

integral.

E[ht(O,vt)s(f(yt,xt,9))] = E [ht(o,vt)t9)gt(f(yt,xt,o)Izl,...

+E [;Vt)]
s(J(yt, Xt, 9)). (A.28)

By uniform convergence (shown in the consistency part), it follows that the limiting objec

tive ffinction, 1im E [Zt (9)s (f (it, xt, 9))], is differentiable with derivative L (6):

L(6) = lim ZE [ht(8,vt) tO)g(J(yx9)Iz1 .. , z)]

4E [8(f(YtxtO].

Theorem 7.2 in Newey and Mcfadden (1994) may then be applied. Their condition (i),

which states that O is attained at the limit by 90, is fulfitted by the moment condition A3.

Their condition (ii) states that the limit objective ftinction is differentiable at 9 and positive

definite. Ibis is fulfihled by the first part of our proof and condition A19. Then, their

condition (iii) (interior) is implied by AI 0. Using the mixing specification A 16 of {w} and

conditions A3, A9, Al3 and A18, we apply a White-Domowitz central limit theorem [see

White (2001), Theorem 5.20]. This fulfiuls condition (iv) ofTheorem 7.2 in Newey and

McFadden (1994). Finally, condition y (stochastic equicontinuity) is implied by uniform

convergence (see the consistency part) which completes the proof.
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Conclusion générale
Nous avons développé dans cette thèse, un système d’inférence exacte pour des modèles

semi-paramétriques de régression et des modèles structurels avec instruments. Ce système,

qui s’appuie sur des transformations par les signes et la technique des tests de Monte

Carlo, donne des résultats valides, quelle que soit la taille de l’échantillon, pour des

erreurs hétéroscédastiques de forme très générale. L’inférence reste par ailleurs asymp

totiquement valide en présence de dépendance linéaire. La thèse se compose de trois essais.

Dans le premier essai, nous avons étudié des statistiques de signes pivotales, et nous

avons construit des tests simultanés pour le vecteur de paramètres d’une régression linéaire

sur la médiane. En échantillon fini, le niveau de ces tests égale le niveau nominal si les

signes des erreurs satisfont une certaine condition d’invariance (« mediangale »). Les tests

restent asymptotiquement valides en présence de processus plus généraux comme, par

exemple, des ARMA stationnaires. Nous avons ensuite utilisé les méthodes d’inversion

et de projection pour construire des régions de confiance et des tests d’une hypothèse

générale possiblement non linéaire. Les études par simulation suggèrent que, dans des

échantillons de petite taille, les tests et les régions de confiance que nous proposons

sont plus fiables que les méthodes habituelles (moindres carrés, LAD) dès lors que tes

données sont hétérogènes. Ceci reste vrai même quand ces méthodes habituelles sont

corrigées par un « bootstrap ». La procédure proposée s’avère aussi préférable à une

version asymptotique lorsqu’elle n’est qu’asymptotiquernent justifiée. Prenons l’exemple

de données peu nombreuses et linéairement dépendantes. L’approche à distance finie

n’est alors qu’asymptotiquement justifiée. Pourtant, elle permet de prendre en compte

la distortion due à la petite taille de l’échantillon, ce que ne font pas les approches

asymptotiques habituelles. Nous avons présenté deux exemples d’application. Le premier

teste la théorie de convergence / entre les niveaux de production des états américains entre

18$O et 1988. Le second teste la présence d’une tendance dans l’indice « Standard and

Poor’s Composite Price » entre 1928 et 1987, ainsi que pour diverses sous périodes.
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Dans le deuxième essai, nous avons developpé plusieurs outils d’inférence à distance

finie facilement utilisables dans le système précédent. La fonction p-value (ainsi que ses

versions individuelles qui s’ obtiennent par projection) résume graphiquement l’inférence

disponible sur un paramètre. Elle mesure le degré de confiance que l’on peut avoir dans

une valeur donnée du paramètre et permet facilement d’étendre les notions de distribution

de confiance à un vecteur de paramètres. fonction p-value et distribution de confiance

s’appuient sur une réinterprétation des distributions fiducielles de f isher. Elles fournissent,

en un sens, un équivalent fréquentiste aux distributions aposteriori bayésiennes. Des tests,

nous sommes ensuite passés à l’estimation. Nous avons introduit un estimateur de signe

grâce au principe de Hodges-Lehmann. 11 s’agit de la valeur du paramètre associée à la plus

grande p-value; ou encore la valeur la moins rejetée quand le niveau des tests augmente;

autrement dit, la valeur ayant le plus fort degré de confiance. Cet estimateur ne s’appuie

pas sur des considérations asymptotiques contrairement au principe d’analogie. Toutefois,

maximiser la p-value équivaut parfois (en probabilité) à une méthode des moments

classique dans laquelle les conditions de moments font intervenir les signes. Nous avons

étudié les propriétés de ces estimateurs. Ils présentent plusieurs formes d’invariance et

sont sans biais pour la médiane lorsque les erreurs sont symétriques. Les conditions de

convergence et de normalité asymptotique des estimateurs de signes sont aussi plus faibles

que celles requises par l’estimateur LAD. En particulier, la variance des erreurs peut ne

pas être finie. D’après nos simulations, les estimateurs de signes ont de bonnes propriétés

dans les cas habituels et sont plus fiables que les méthodes de moindres carrés ou que le

LAD quand les données sont très hétérogènes. Malgré le fait qu’ils font intervenir des

méthodes numériques, nous conseillons de combiner les estimateurs de signe à la méthode

d’inférence présentée dans le premier essai lorsque les données sont peu nombreuses ou

lorsqu’elles semblent très hétérogènes.

Le troisième essai a porté sur les modèles structurels et les modèles non-linéaires

en présence d’instruments. Nous avons développé une procédure d’inférence exacte qui

est aussi robuste au degré d’identification du paramètre structurel. Celle-ci s’appuie sur
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une condition de validité des instruments vis-à-vis des signes de l’erreur structurelle. La

distribution des signes est alors pivotale et facilement simulable, et l’on peut construire des

tests de Monte Carlo et des régions de confiance par inversion. Notre approche est dans

l’esprit d’Anderson et Rubin [Anderson et Rubin (1949)]. Les statistiques IV que nous

étudions se déduisent de régressions artificielles des signes des résidus sur des instruments

dits « auxiliaires ». Ces instruments n’entrent pas dans la spécification économique du

modèle, ils ne servent qu’à calculer la statistique. Les statistiques IV correspondent aussi

à des combinaisons de conditions d’orthogonalité qui font intervenir les signes. Nous

avons considéré deux types de combinaisons la forme quadratique habituelle de laquelle

découlent des statistiques de type GMM ou fisher et qui permet d’associer un estimateur,

ainsi qu’une approche de type Tippett qui combine les p-values de chaque condition

d’orthogonalité testée séparement. Cette dernière approche semble donner de meilleurs

résultats que la précédente en cas de faible identification du paramètre. Les tests issus de

ces statistiques sont exacts et robustes aux problèmes d’identification. Nous nous sommes

aussi demandé quels instruments inclure dans le modèle en cas de suridentification.

Nous avons présenté deux concepts d’optimalité des instruments selon les propriétés de

puissance des tests qui leur sont associés. Enfin, nous avons présenté des estimateurs.

Ceux-ci, comme tout estimateur, ne doivent être utilisés que lorsque le paramètre est

identifié. Ils sont convergents et asymptotiquement normaux sous des conditions plus

faibles que celles requises dans la théorie des doubles moindres carrés et de l’estimateur

« Two-$tage Least Absolute Deviations, TSLAD ». Ces propriétés restent, entre autres,

valables si les erreurs présentent des queues de distributions épaisses. Les simulations

suggèrent que les tests de signes sont plus performants que les tests usuels (y compris

ceux qui sont robustes à la présence d’instruments faibles ou à un manque d’identification)

en échantillon fini, quand les données sont hétérogènes, hétéroscédastiques ou lorsque

la variable endogène influe sur la distribution de l’erreur structurelle sans en affecter le

signe. Enfin, comme exemple d’application, nous sommes revenus sur le problème des

rendements de l’éducation de Angrist et Krueger (1991).

Cette thèse a fourni l’occasion d’insister sur l’intérêt des approches à distance finie
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dans divers modèles économétriques. La transformation par les signes permet d’étendre ces

approches à des modèles non ou semi-paramétriques sous des hypothèses distributionnelles

très générales.

Plusieurs extensions à ce travail sont envisageables. Les méthodes proposées sont tout

d’abord aisémment adaptables à d’autres quantiles que la médiane [voir Koenker et Bassett

(1978) qui introduisent les régressions quantile]. La théorie ne changera pas ou très peu. En

revanche, le champ d’application pratique en sera fortement étendu. Ensuite, le lien entre

p-value et identification pourrait être exploité pour construire des tests de spécification. En

fin, les statistiques de signes étudiées sont souvent des formes quadratiques associées aux

tests localement optimaux. Développer d’autres classes de statistiques de signes constitue

une extension prometteuse à ce travail, ce que suggère les performances des tests obtenus à

partir de la statistique de type Tippett. Il pourrait s’avérer ainsi judicieux de combiner des

statistiques de test point-optimal en ayant recours à des inégalités de type Bonfenoni ou à

des méthodes adaptatives. De telles approches pourraient permettre des gains supplémen

taires en puissance selon les cas étudiés.


