
2007-06

McCAUSLAND, William J.
MILLER, Shirley
PELLETIER, Denis

A New Approach to Drawing States in State Space
Models

Département de sciences économiques
Université de Montréal
Faculté des arts et des sciences
C.P. 6128, succursale Centre-Ville
Montréal (Québec) H3C 3J7
Canada
http://www.sceco.umontreal.ca
SCECO-information@UMontreal.CA
Téléphone : (514) 343-6539
Télécopieur : (514) 343-7221

Ce cahier a également été publié par le Centre interuniversitaire de recherche en
économie quantitative (CIREQ) sous le numéro 07-2007.

This working paper was also published by the Center for Interuniversity Research in
Quantitative Economics (CIREQ), under number 07-2007.

ISSN 0709-9231

A New Approach to Drawing States in State
Space Models

William J. McCausland ∗Université de Montréal, CIREQ and CIRANO
Shirley Miller †Université de Montréal

Denis Pelletier ‡North Carolina State University

Current version: June 26, 2007

Abstract

We introduce a new method for drawing state variables in Gaussian state
space models from their conditional distribution given parameters and ob-
servations. Unlike standard methods, our method does not involve Kalman
filtering. We show that for some important cases, our method is computa-
tionally more efficient than standard methods in the literature. We consider
two applications of our method.

Key words: State space models, Stochastic volatility, Count data

1 Introduction

Consider the following Gaussian linear state space model:

yt = Xtβ + Ztαt +Gtut, t = 1, . . . , n, (1)

∗Mailing address: Département de sciences économiques, C.P. 6128, succursale Centre-
ville, Montréal QC H3C 3J7, Canada. e-mail: william.j.mccausland@umontreal.ca. Web site:
www.cirano.qc.ca/∼mccauslw.

†e-mail: shirley.miller.lira@umontreal.ca.
‡Mailing address: Department of Economics, Campus Box 8110, North Carolina State

University, Raleigh, 27695-8110, USA. e-mail: denis_pelletier@ncsu.edu. Web site:
http://www4.ncsu.edu/∼dpellet.

1

αt+1 = Wtβ + Ttαt +Htut, t = 1, . . . , n− 1, (2)

α1 ∼ N(a1, P1), ut ∼ i.i.d. N(0, Iq), (3)

where yt is a p × 1 vector of dependent variables, αt is a m × 1 vector of state
variables, and β is a k × 1 vector of coefficients. The matrices Xt, Zt, Gt, Wt, Tt

and Ht are known. Equation (1) is the measurement equation and equation (2) is
the state equation. Let y ≡ (y′1, . . . , y

′
n)′ and α ≡ (α′

1, . . . , α
′
n)′.

Frühwirth-Schnatter (1994) and Carter and Kohn (1994) introduce a method
for drawing α|y using a recursive approach, for the case p = 1 and q = m +
1. They use the output of the Kalman filter to draw the αt in backwards se-
quence from the conditional distributions αt|αt+1, . . . , αn, y. de Jong and Shep-
hard (1995) (DeJS hereafter) introduce a procedure for drawing disturbances given
y for the case where p ≥ 1 and q is not necessarily equal to m + p. It is easy to
construct a draw of α using the disturbances. The method is also recursive and
also uses the output of the Kalman filter. Durbin and Koopman (2002) (DK here-
after) introduce another approach, which, like that of de Jong and Shepard, uses
the Kalman filter, involves drawing disturbances rather than states, and allows q
to be less than p + m. The approach is not recursive, however. Rather, distur-
bances are drawn from their unconditional distribution and a transformation is
applied to construct a conditional draw. This approach is more efficient than that
of de Jong and Shephard (1995) for large m. Computations after the application
of the Kalman filter are particularly fast - there are no matrix-matrix multiplica-
tions (although there are matrix-vector multiplications) and no matrix inversions.
Furthermore, draws from multivariate normal distributions are diagonal and do
not require a Cholesky decomposition.

In this paper, we introduce a new approach to drawing α|y which does not
involve the application of the Kalman filter. We first compute the precision Ω
and co-vector1 c of the normal distribution α|y. In most cases, this can be done
very quickly because of redundant computations. Then we efficiently compute
conditional variances Σt ≡ Var[αt|αt+1, . . . , αn, y] and matrices that can be used
to compute the conditional means E[αt|αt+1, . . . , αn, y]. Repeated draws of α|y
are generated particularly efficiently. We also show that just as we can easily use
the output of the Kalman filter to compute the likelihood function, we can do the
same using our method.

1If a Gaussian random vector x has mean μ and variance Σ, we will call Σ−1 the precision of
x and Σ−1μ the co-vector of x.

2

We will show that in many cases our method is more computationally efficient
than that of Durbin and Koopman (2002). In its current state, however, our method
works only for the case q = p+m.

In Section 2, we describe our new approach to drawing α|y. In Section 3, we
compare our method with that of Durbin and Koopman (2002), in terms of num-
bers of various kinds of operations. In Section 4, we compare these methods in an
empirical example. We use them to draw stochastic volatility in a Markov chain
developed by Kim, Shephard, and Chib (1998) for posterior simulation in a basic
stochastic volatility model. In Section 5, we compare these methods in a second
empirical example. Here, they are used in an importance sampling application due
to Durbin and Koopman (1997) for approximating the likelihood function in semi-
Gaussian state space models. In our application, the measurement distribution is
Poisson.

2 A New Approach to Drawing States

Instead of specifying the distribution of the time-t innovation in terms of Gt and
Ht, we will give its precision At:

At ≡
[
Var

([
Gt

Ht

]
ut

)]−1

=

[
GtG

′
t GtH

′
t

HtG
′
t HtH

′
t

]−1

,

which we partition as

At =

[
A11,t A12,t

A21,t A22,t

]
,

where A11,t is the leading p×p submatrix ofAt. We letA22,0 ≡ P−1
1 be them×m

precision of α1 and A11,n ≡ (GnG
′
n)−1 be the p × p precision of the time t = n

innovation Gnun.
We recognize that the distribution of residuals is usually more easily specified

in terms of Gt and Ht rather than At. In most cases, however, the At are constant
or take on one of a small number of values, and so the additional computation
required to obtain the At is negligible. In some cases, it may even be more natural
to specify the precision directly. Fully Gaussian state space models may be used
to facilitate estimation in non-linear or non-Gaussian state space models by pro-
viding proposal distributions for MCMC methods or importance distributions for
importance sampling applications. In these cases, precisions in the approximating
Gaussian model may be obtained from Hessian matrices of the log observation

3

density of the non-linear or non-Gaussian model. For an illustration, see Section
5.

Clearly α and y are jointly Gaussian and therefore the conditional distribution
of α given y is also Gaussian. We show in Appendix A that the precision Ω and
co-vector c of this conditional distribution are:

Ω ≡

⎡
⎢⎢⎢⎢⎢⎢⎣

Ω11 Ω12 0 . . . 0

Ω21 Ω22 Ω23
. . .

...

0 Ω32
. 0

...
. Ωn−1,n−1 Ωn−1,n

0 . . . 0 Ωn,n−1 Ωnn

⎤
⎥⎥⎥⎥⎥⎥⎦

c ≡

⎡
⎢⎢⎢⎣
c1
c2
...
cn

⎤
⎥⎥⎥⎦ , (4)

where

Ωtt ≡ Z ′
tA11,tZt+Z

′
tA12,tTt+T

′
tA21,tZt+T

′
tA22,tTt+A22,t−1, t = 1, . . . , n−1,

Ωnn ≡ Z ′
nA11,nZn + A22,n−1,

Ωt+1,t ≡ −A21,tZt − A22,tTt, t = 1, . . . , n− 1,

Ωt,t+1 ≡ −Z ′
tA12,t − T ′

tA22,t, t = 1, . . . , n− 1,

c1 ≡ (Z ′
1A11,1 + T ′

1A21,1)(y1 −X1β) − (Z ′
1A12,1 + T ′

1A22,1)(W1β)

+ A22,0(W0β + T0α0),

ct ≡ (Z ′
tA11,t + T ′

tA21,t)(yt −Xtβ) − (Z ′
tA12,t + T ′

tA22,t)(Wtβ)

−A21,t−1(yt−1 −Xt−1β) + A22,t−1(Wt−1β), t = 2, . . . , n− 1,

cn ≡ Z ′
nA11,n(yn −Xnβ) −A21,n−1(yn−1 −Xn−1β) + A22,n−1(Wn−1β).

In general, calculation of the Ωtt and Ωt,t+1 is computationally demanding. How-
ever, in many cases of interest, At, Zt and Tt are constant, or take on one of a
small number of values. In these cases, the computational burden is a constant,
not depending on n. We do need to compute each ct, but provided that the ma-
trix expressions in parantheses can be pre-computed, this involves matrix-vector
multiplications, rather than the matrix-matrix multiplications required for later
computations.

4

As in Frühwirth-Schnatter (1994), Carter and Kohn (1994) and de Jong and
Shephard (1995), we draw the αt in reverse order, each αt from the distribution
αt|αt+1, . . . , αn, y. Standard formulas for conditional Gaussian distributions give

α1:t|αt+1:n, y ∼ N(μ1:t − (Ω1:t,1:t)
−1Ω1:t,t+1:n(αt+1:n − μt+1:n), (Ω1:t,1:t)

−1), (5)

where μ ≡ Ω−1c and μ, α and Ω are partitioned as

μ =

[
μ1:t

μt+1:n

]
α =

[
α1:t

αt+1:n

] [
Ω1:t,1:t Ω1:t,t+1:n

Ωt+1:n,1:t Ωt+1:n,t+1:n

]
,

with μ1:t, α1:t and Ω1:t,1:t having dimensions tm×1, tm×1 and tm× tm, respec-
tively.

Naive computation of the conditional mean and variance of αt givenαt+1, . . . , αn, y
is very inefficient. However, we have the following result that permits us to com-
pute these conditional moments in time n.

Result 2.1 If α|y ∼ N(Ω−1c,Ω−1), then

E[αt|αt+1, . . . , αn, y] = mt − ΣtΩt,t+1αt+1,

Var[αt|αt+1, . . . , αn, y] = Σt,

and
E[α|y] = (μ′

1, . . . , μ
′
n)′,

where
Σ1 = (Ω11)

−1, m1 = Σ1c1,

Σt = (Ωtt − Ωt,t−1Σt−1Ωt−1,t)
−1, mt = Σt(ct − Ωt,t−1mt−1),

μn = mn, μt = mt − ΣtΩt,t+1μt+1.

The result is based on a Levinson-like algorithm, introduced by Vandebril,
Mastronardi, and Van Barel (2007), for solving the equation Bx = y, where B
is an n × n symmetric band diagonal matrix and y is a n × 1 vector. We extend
their result in two ways. First, we modify the algorithm to work with m × m
submatrices of a block band diagonal matrix rather than individual elements of
a band diagonal matrix. Second, we show that the intermediate computations
used to solve the equation Ωμ = c for the mean μ = E[α|y] given the preci-
sion Ω = (Var[α|y])−1 and co-vector c = (Var[α|y])−1E[α|y] can be used to
compute the conditional means E[αt|αt+1, . . . , αn, y] and conditional variances
Var[αt|αt+1, . . . , αn, y]. The proof of the result is in Appendix B.

We can now use the following algorithm to draw α from α|y (MMP method
hereafter).

5

1. Compute Σ1 = (Ω11)
−1, m1 = Σ1c1.

2. For t = 2, . . . , n, compute

Σt = (Ωtt − Ωt,t−1Σt−1Ωt−1,t)
−1, mt = Σt(ct − Ωt,t−1mt−1).

3. Draw αn ∼ N(mn,Σn).

4. For t = n− 1, . . . , 1, draw

αt ∼ N(mt − ΣtΩt,t+1αt+1,Σt).

3 Efficiency Analysis

We compare the computational efficiency of various methods for drawing α|y.
We consider separately the fixed computational cost that is incurred only once, no
matter how many draws are needed, and the marginal computational cost required
to make an additional draw. We do this because there are some applications, such
as Bayesian analysis of state space models using Gibbs sampling, in which only
one draw is needed and other applications, such as importance sampling in non-
Gaussian models, where many draws are needed.

3.1 Pre-computation

All previous methods we are aware of for drawing α|y as a block involve the
Kalman filter. The computations are as follows:

et = yt − [Xtβ] − Ztat, Dt = ZtPtZ
′
t + [GtG

′
t],

Kt = (TtPtZ
′
t + [HtG

′
t])D

−1
t , Lt = Tt −KtZt,

at+1 = [Wtβ] + Ttat +Ktet, Pt+1 = [TtPt]L
′
t + [HtH

′
t] + [HtG

′
t]Kt

Here and elsewhere, we use braces to denote quantities that do not need to be
computed for each observation. These include quantities such as [TtPt] above that
are computed in previous steps, and quantities such as [HtH

′
t] that are usually

either constant or taking values in a small pre-computable set.
Table 3.1 lists the matrix-matrix multiplications, Cholesky decompositions,

and solutions of triangular systems required for an iteration of the Kalman filter,

6

and those required for the computation of Σt and mt using our method. We repre-
sent the solution of triangular systems using notation for the inverse of a triangular
matrix, but no actual matrix inversions are performed. It also gives the number
of scalar multiplications for each operation as a function of p and m. Terms of
less than third order are omitted. All operation counts, here and elsewhere, are
per observation. We ignore matrix-vector multiplications, whose costs are mere
second order monomials in m and p rather than third order. We take the computa-
tional cost of multiplying an M1×M2 matrix by an M2×M3 matrix as M1M2M3

scalar floating-point multiplications in general. If the result is symmetric or if one
of the matrices is triangular, we divide by two. It is possible to multiply matrices
more efficiently than using the direct method, but the dimensions required before
realizing savings are higher than those usually encountered in state space models.
We take the cost of the Cholesky decomposition of an M ×M matrix as M3/6
scalar multiplications, which is the cost using the algorithm in Press, Teukolsky,
Vetterling, and Flannery (1992, p. 97). We take the cost of solving a triangular
system of M equations as M2/2 scalar multiplications.

The efficiency of our method relative to that of Durbin and Koopman (2002)
depends on various features of the application. In some cases, such as those where
all the elements of Tt and Zt are zero or one, certain matrix multiplications do
not require any scalar multiplications. In others, certain matrices are diagonal,
reducing the number of multiplications by an order. We see that the MMP method
has no third order monomials involving p. The coefficient of the m3 term is 7/6,
compared with 2 for the Kalman filter if TtPt is a general matrix multiplication
and 1 if Tt is diagonal or composed of zeros and ones.

The de Jong and Shephard (1995) simulation smoother requires an additional
Cholesky decomposition of a m×m matrix and several additional matrix-matrix
multiplications.

3.2 Drawing α

Compared with the fixed cost of pre-processing, the marginal computational cost
of an additional draw from α|y is negligible for all three methods we consider. In
particular, no matrix-matrix multiplications, matrix inversions, or Cholesky de-
compositions are required. However, when large numbers of these additional
draws are required, this marginal cost becomes important. It is here that our
method is clearly more efficient than that of Durbin and Koopman (2002).

Using the modified simulation smoothing algorithm in Section 2.3 of Durbin
and Koopman (2002), an additional draw from α|y requires the following compu-

7

Table 1: Scalar multiplications

Method Operation Scalar multiplications
Kalman PtZ

′
t m2p

Zt[PtZ
′
t] mp2/2

Tt[PtZ
′
t] m2p

Dt = ΥtΥ
′
t (Cholesky) p3/6

[TtPtZ
′
t +HtG

′
t](Υ

′
t)

−1Υ−1
t mp2

KtZt m2p
TtPt m3

[TtPt]L
′
t m3

[HtG
′
t]Kt m2p

MMP (Ωtt − Ωt,t−1Σt−1Ωt−1,t) = ΛtΛ
′
t (Cholesky) m3/6

Λ−1
t Ωt,t+1 m3/2

Ωt+1,tΣtΩt,t+1 = [Λ−1
t Ωt,t+1]

′[Λ−1
t Ωt,t+1] m3/2

tations. We define εt ≡ Gtut and ηt ≡ Htut, and assume G′
tHt = 0 and Xtβ = 0,

recognizing that these assumptions can be easily relaxed. The first step is forward
simulation using equations (6) and (7) in that article.

x1 ∼ N(0, P1), v+
t = Ztxt + ε+t xt+1 = Ttxt −Ktv

+
t + η+

t ,

where ε+t ∼ N(0,Ξt) and η+
t ∼ N(0, Qt). The next step is the backwards recur-

sion of equation (5):

rn = 0, rt−1 = [ZtD
−1
t]v+

t + L′
trt,

and the computation of residuals in equation (4):

η̂+
t = Qtrt.

A draw η̃ from the conditional distribution of η given y is given by

η̃ = η̂ − η̂+ + η+,

where η̂ is a pre-computed vector. To construct a draw α̃ from the conditional
distribution of α given y, we use

α̃1 = α̂1 − P1r0 + x1, α̃t+1 = Ttα̃t + η̃t,

8

where α̂1 is pre-computed.
de Jong and Shephard (1995) draw α|y using the following steps, given in

equation (4) of their paper. First εt is drawn from N(0, σ2Ct), where the Cholesky
factor of σ2Ct can be pre-computed. Then rt is computed using the backwards
recursion

rt−1 = [Z ′
tD

−1
t et] + L′

trt − [V ′
tC

−1
t]εt.

Next, αt+1 is computed as

αt+1 = [Wtβ] + Ttαt + Ωtrt + εt.

In our approach, we draw, for each observation, a vector vt ∼ N(0, Im) and
compute

αt = mt − [ΣtΩt,t+1]αt+1 + Λ−1
t vt.

Computing Λ−1
t vt using Λt (which is triangular) requires m(m − 1)/2 multipli-

cations and m floating point divisions. If we are making multiple draws, we can
compute the reciprocals of the diagonal elements of Λt once and convert the divi-
sions into multiplications, which are typically much less costly.

4 Example 1: A Stochastic Volatility Model

Kim, Shephard, and Chib (1998) (KSC hereafter) introduce a Markov chain for
posterior simulation of the parameters and state variables of a stochastic volatility
model. This model features the measurement equation

ỹt = exp(αt/2)εt,

and the state equation

αt+1 = (1 − φ)ᾱ+ φαt + σαηt,

where (εt, ηt) ∼ N(0, I2) and the states are stationary. We let θ ≡ (ᾱ, φ, σα).
KSC linearize the model by taking the log of the square of the measurement

equation:
log ỹ2

t = αt + log ε2t .

Then they define yt ≡ log(ỹ2
t + c) as an approximation to log ỹ2

t . The value of c
is chosen just large enough to avoid problems associated with values of ỹt close
to or equal to zero. Then they approximate the log χ2 distribution of et ≡ ε2t as a

9

mixture of K normals. They tabulate means mk and variances σ2
k, k = 1, . . . , K,

for a mixture with K = 7 components.
KSC then augment the approximate linear model by adding a sequence s ≡

(s1, . . . , sn) of component indicator variables. The conditional distribution of
(θ, α) given y is preserved and the conditional distribution of (θ, α) given s and y
is given by the following linear state space model:

yt = mst
+ αt + σst

εt,

α1 = ᾱ + σα/
√

1 − φ2, αt = (1 − φ)ᾱ + φαt−1 + σαηt.

To simulate the joint posterior distribution of α, θ and s, KSC employ a
Markov Chain whose transition distribution is defined by the following sweep.

1. Draw θ|s, y.

2. Draw α|s, θ, y.

3. Draw s|α, θ, y.

They also describe how to reweight a posterior sample in order to correct for the
approximation of the distribution of yt − αt as a mixture of normals.

KSC use the method of DeJS to implement the draw of α|s, θ, y. This involves
a forward pass using the Kalman filter and a backward pass using the DeJS sim-
ulation smoother. They also use the output of the Kalman filter to evaluate the
density f(y|θ, s), used for drawing θ|s, y.

Application of our method or that of DK to draw α|s, θ, y also yields inter-
mediate quantities that can be used to easily compute f(y|θ, s). Therefore the
DeJS, DK and MMP methods can be used interchangeably for sampling the KSC
Markov chain.

We now compare in detail the computational efficiency of all three methods
by counting computational operations per observation. We count separately the
operations required to compute intermediate quantities, to draw α using the inter-
mediate quantities and to evaluate f(y|θ, s) using the intermediate quantities.

In the DeJS approach, pre-processing involves the application of the Kalman
filter and the computation of D−1

t et. The computations are the following:

a1 = ᾱ, P1 = σ2
α/(1 − φ2),

et = [yt −mst
] − at, Dt = Pt + σ2

st
, Kt = φPtD

−1
t , Lt = (φ−Kt),

10

at+1 = [(1 − φ)ᾱ] + φat +Ktet, Pt+1 = [φPt]Lt + σ2
α,

(D−1
t et).

Table 2 gives numbers of operations per observation, under “DeJS Pre-compute”.
Drawing α|y, θ involves applying the DeJS simulation smoother. Given the

sequences et, D
−1
t , Kt, Lt and D−1

t et, the computations are the following:

Un = 0, rn = 0,

Nt = D−1
t +Kt(KtUt), nt = [D−1

t et] −Ktrt, Ct = σ2
st
− σ4

st
Nt,

ζt =
√
CtN0,1, Vt = σ2

st
(Nt − φ[KtUt]), rt−1 = [D−1

t et] + Ltrt − (Vt/Ct)ζt,

Ut = D−1
t + L2

tUt + Vt[Vt/Ct], αt = [yt −mst
] − σ2

st
nt − ζt.

Numbers of operations per observation are tabulated in Table 2 under “DeJS
Draw”.

Given the sequences et, D
−1
t , Kt, Lt and D−1

t et, we can evaluate f(y|θ, s)
using the following equation:

f(y|θ, s) = (2π)−n/2 exp

[
−1

2

n∑
t=1

logDt + [D−1
t et]et

]
. (6)

Numbers of operations per observation are shown in Table 2 under “DeJS Evalu-
ate”.

We now count operations using the DK method. Pre-computation involves
running the Kalman filter, but only computing the quantities Dt, D

−1
t , Kt, Lt and

Pt. Numbers of operations are shown in Table 2 under “Kalman variances”.
Using the Kalman variances, a draw of α using the DK method involves the

following steps. The first step is to draw α+ and y+ from the joint distribution of
(α1 −μ, . . . , αn −μ, y1 −mst

− μ, . . . , yn −mst
−μ), using forward simulation:

α+
1 = [σ2

h/(1 − φ2)], α+
t = φα+

t−1 + σhN0,1, y+
t = α+

t + σst
N0,1.

The second step is running the Kalman filter forward, only computing et and at+1,
using yt −mst

− μ− y+
t in place of yt:

a1 = 0, et = [yt −mst
] − μ− y+

t − at, at+1 = φat +Ktet.

The fourth step is running the DK backwards smoother, using equation (5) of DK:

rn = 0, rt−1 = D−1
t et + Ltrt.

11

The fifth step is to compute α∗
t using equation (8) of DK:

α∗
1 = σ2

h/(1 − φ2)r0, α∗
t = φα∗

t−1 + σ2
hrt−1.

The final step delivers a draw from α:

αt = α+
t + μ+ α∗

t .

Numbers of operations are shown in Table 2 under “DK draw”.
Computing f(y|α, s) using the Kalman variances involves computing the Kalman

means et and at using yt:

a1 = 0, et = yt − at, at+1 = [(1 − φ)μ] + φat +Ktet,

computing D−1
t et, and computing f(y|θ, s) using (6). Numbers of operations are

shown in Table 2 under “DK evaluate”.
We now turn to the MMP method. We first count the operations required to

compute intermediate quantities. The computations are the following:

ct =

{
[ωα(1 − φ)ᾱ] + [ωst

(yt −mst
)] t = 1, n

[ωα(1 − φ)2ᾱ] + [ωst
(yt −mst

)] 1 < t < n,

Σ1 = (ωα + ωst
)−1, μ1 = Σ1c1,

Σt = {[(1+φ2)ωα]+ωst
−[φ2ω2

α]Σt−1}−1, ψt = [φωα]Σt, μt = Σtct+ψtμt−1.

Numbers of operations are tabulated in Table 2 under “MMP Pre-compute”.
The operations required to draw α given y and s are the following:

αn = μn +
√

ΣtN0,1, αt = μt − ψtαt+1 +
√

ΣtN0,1.

Numbers of operations are tabulated in Table 2 under “MMP Draw”.
We now consider the computation of f(y|θ, s) as a function of θ. The laws of

conditional probability give

f(y|θ) =
f(α|θ)f(y|θ, α)

f(α|y, θ) .

This equation holds for all values of α. Also, f(y|θ, α) does not depend on θ.
Therefore, as a function of θ,

f(y|θ) ∝ f(α|θ)
f(α|y, θ)

∣∣∣∣
α=0

. (7)

12

We have

f(α|θ) ∝ ωn/2
α (1−φ2) exp

{
−ωα

2

[
(1 − φ2)(α1 − ᾱ)2 +

n∑
t=2

(αt − (1 − φ)ᾱ− φαt)
2

]}
,

and therefore

f(α|θ)|α=0 ∝ ωn/2
α (1 − φ2) exp

{
−ωα

2
ᾱ2

[
(1 − φ2) + (n− 1)(1 − φ)2

]}
,

which can be evaluated in constant (not depending on n) time.
Turning to the denominator of (7), we have

f(α|y, θ) = (2π)−T/2|Ω|1/2 exp

[
−1

2
(α− μ)′Ω(α− μ)

]
,

and so

f(α|y, θ)|α=0 ∝ exp

[
−1

2

n∑
t=1

log Σt + μtct

]
,

where μ = E[α|y, s]. We compute μ using the recursion in Result 2.1:

μn = mn, μt = mt + ψtμt+1.

Numbers of operations are shown in Table 2 under “MMP evaluate”.
We profile code for all three methods to see how they perform in practice.

We use data on the French Franc exchange rate from January 6, 1994 to January
15, 1999. We construct the series rt ≡ logPt − logPt−1, where Pt is the noon
rate for the French Franc in U.S. dollars. Our data source is the web site of the
Federal Reserve Bank of New York. We simulated 50000 periods of the KSC
chain for each of the three methods. Table 4 gives the computational cost of pre-
computing intermediate quantities, drawing α and evaluating f(y|θ, s), for each
of the three methods. We normalize the cost of DeJS pre-computation to unity. In
our implementation, each iteration of the KSC chain transition requires two pre-
computations, two evaluations and one draw. The total time required to draw the
chain using the DK method was 13.5% more than that required using the DeJS
method. Using the MMP method, the total time was 17.3% less.

5 Example 2: A Semi-Gaussian State Space Model

Durbin and Koopman (1997) show how to compute an arbitrarily accurate eval-
uation of the likelihood function for a semi-Gaussian state space model in which

13

Table 2: Computational costs per observation
Algorithm +/− × ÷ log

√
N0,1

1 Kalman variances (Dt, D
−1
t , Kt, Lt, Pt) 3 3 1

2 Kalman means (et, at) 3 2
3 D−1

t et 1
4 f(y|θ, s) using D−1

t , et, D
−1
t et 2 1 1

5 DeJS pre-compute (1,2,3) 6 6 1
6 DeJS draw (Nt, nt, Ct, Vt, rt−1, Ut, αt) 10 13 1 1 1
7 DeJS evaluate (4) 2 1 1
8 DK pre-compute (1) 3 3 1
9 DK draw (α+

t , y
+
t , et, at, rt−1, α

∗
t , αt) 10 9 2

10 DK evaluate (2,3,4) 5 4 1
11 MMP pre-compute (ct,Σt, ψt, mt) 4 4 1
12 MMP draw 2 2 1 1
13 MMP evaluate 3 2 1

Table 3: Time costs relative to DeJS pre-compute
DeJS DK MMP

pre-compute 1.000 0.679 0.843
draw 1.114 1.492 0.428
evaluate 0.149 0.398 0.252

14

the state evolves according to equation (2), but the conditional distribution of ob-
servations given states is given by a general distribution with density (or mass)
function p(y|α). To simplify, we suppress notation for the dependence on θ, the
vector of parameters.

The approach is as follows. The first step is to construct a fully Gaussian state
space model with the same state dynamics as the semi-Gaussian model but with a
Gaussian measurement equation of the following form:

yt = μt + Ztαt + εt, (8)

where the εt are independent N(0,Ξt) and independent of the state equation in-
novations. The Zt are matrices such that the distribution of y given α depends
only on the Ztαt. They choose μt and Ξt such that the implied conditional density
g(y|α) approximates p(y|α) as a function of α near the mode of p(α|y). The next
step is to draw a sample of size N from the conditional distribution of α given y
for the fully Gaussian state space model. The final step is to use this sample as an
importance sample to approximate the likelihood for the semi-Gaussian model.

The Gaussian measurement density g(y|α) is chosen such that log g(y|α) is a
quadratic approximation of log p(y|α), as a function of α, at the mode α̂ of the
density p(α|y). Durbin and Koopman (1997) find this density by iterating the
following steps until convergence to obtain μt and Ξt:

1. Using the current values of the μt and Ξt, compute α̂ = Eg[α|y], where
Eg denotes expectation with respect to the Gaussian density g(α|y). Durbin
and Koopman (1997) use routine Kalman filtering and smoothing with the
fully Gaussian state space model to find α̂.

2. Using the current α̂, compute the μt and Ξt such that log p(y|α) and log g(y|α)
have the same gradient and Hessian (with respect to α) at α̂. Durbin and
Koopman (1997) show that μt and Ξt solve the following two equations:

∂ log p(yt|α̂t)

∂(Ztαt)
− Ξ−1

t (yt − Ztα̂t − μt) = 0, (9)

∂2 log p(yt|α̂t)

∂(Ztαt)∂(Ztαt)′
+ Ξ−1

t = 0. (10)

It is interesting to note that this delivers the specification of the measurement
equation error of the fully Gaussian model directly in terms of the precision Ξ−1

t

rather than the variance Ξt directly.

15

The likelihood function L(θ) we wish to evaluate is

L(θ) = p(y) =

∫
p(y, α)dα =

∫
p(y|α)p(α)dα. (11)

Durbin and Koopman (1997) employ importance sampling to efficiently and ac-
curately approximate the above integrals. The likelihood for the approximating
Gaussian model is

Lg(θ) = g(y) =
g(y, α)

g(α|y) =
g(y|α)p(α)

g(α|y) . (12)

Substituting for p(α) from (12) into (11) gives

L(θ) = Lg(θ)

∫
p(y|α)

g(y|α)
g(α|y)dα = Lg(θ)Eg[w(α)], (13)

where

w(α) ≡ p(y|α)

g(y|α)
.

One can generate a random sample α(1), . . . , α(N) from the density g(α|y) using
any of the methods for drawing states in fully Gaussian models. An unbiased
Monte Carlo estimate of L(θ) is

L̂1(θ) = Lg(θ)w̄, (14)

where w̄ = N−1
∑N

i=1w(α(i)).
It is usually more convenient to work with the log-likelihood, and we can write

log L̂1(θ) = logLg(θ) + log w̄. (15)

However, E[log w̄] �= logEg[w(α(i)], so (15) is a biased estimator of logL(θ).
Durbin and Koopman (1997) propose an approximately unbiased estimator of

logL(θ) given by

log L̂2(θ) = logLg(θ) + log w̄ +
s2

w

2Nw̄2
, (16)

where s2
w is an estimator of the variance of the w(α(i)) given by

s2
w =

1

N − 1

N∑
i=1

(w(α(i)) − w̄)2.

16

5.1 Modifications to the Algorithm for Approximating L(θ)

We propose here three modifications of the Durbin and Koopman (1997) method
for approximating L(θ). The modified method does not involve Kalman filtering.

First, we use the MMP algorithm to draw α from its conditional distribution
given y.

Second, we compute Lg(θ) as the extreme right hand side of equation (12).
The equation holds for any value of α; convenient choices which simplify compu-
tations include the prior mean and the posterior mean. See our stochastic volatility
example for an example.

Finally, in the rest of this section we present a method for computing the μt and
Ξt of the fully Gaussian state space model. It is based on a multivariate normal
approximation of p(α|y) at its mode α̂ and the application of Result 2.1. It is
computationally more efficient than Kalman filtering and smoothing.

We first compute α̂ by iterating the following steps until convergence.

1. Using the current value of α̂, find the precision ¯̄H and co-vector ¯̄c of a Gaus-
sian approximation to p(α|y) based on a second-order Taylor expansion of
log p(α) + log p(y|α) around the point α̂.

2. Using the current values of ¯̄H and ¯̄c, compute μ̂ = ¯̄H−1¯̄c, the mean of the
Gaussian approximation, using Result 2.1.

We then use equations (9) and (10) to compute the μt and Ξt.
We compute the precision ¯̄H as H̄ + H̃, and the co-vector ¯̄c as c̄ + c̃, where

H̄ and c̄ are the precision and co-vector of the marginal distribution of α (detailed
formulations are provided for our example in the next section), and H̃ and c̃ are the
precision and co-vector for a Gaussian density approximating p(y|α) as a function
of α up to a multiplicative constant. Since H̃ is block-diagonal and H̄ is block-
band-diagonal, ¯̄H is also block-band-diagonal.

We compute H̃ and c̃ as follows. Let a(αt) ≡ −2 log[p(yt|αt)]. We approxi-
mate a(αt) by ã(αt), consisting of the first three terms of the Taylor expansion of
a(αt) around α̂t:

a(αt) ≈ ã(αt) = a(α̂t) +
∂a(α̂t)

∂αt
(αt − α̂t) +

1

2
(αt − α̂t)

′∂
2a(α̂t)

∂αt∂α′
t

(αt − α̂t).

If we complete the square, we obtain

ã(αt) = (αt − h−1
t ct)

′ht(αt − h−1
t ct) + k,

17

where

ht =
1

2

∂2a(α̂t)

∂αt∂α
′
t

,

ct = htα̂t − 1

2

∂a(α̂t)

∂αt

,

and k is an unimportant term not depending on αt. Note that ht and ct are the
precision and co-vector of a multivariate normal distribution with density propor-
tional to exp[−1

2
ã(αt)].

Since log p(y|α) is additively separable in the elements of α, it means that
it is reasonably well approximated, as a function of α, by

∏n
t=1 exp[−1

2
ã(αt)],

which is proportional to a multivariate normal distribution with precision H̃ and
co-vector c̃, given by

H̃ ≡

⎡
⎢⎢⎢⎣
h1 0 · · · 0
0 h2 · · · 0
...

...
. . .

...
0 0 · · · hn

⎤
⎥⎥⎥⎦ and c̃ ≡

⎡
⎢⎣
c1
...
cn

⎤
⎥⎦ .

5.2 A Multivariate Poisson Model with Time-Varying Intensi-
ties

As an example of a semi-Gaussian state space model, let us consider a case where
yt ≡ (yt1, . . . , ytp) is a process describing multivariate count data. To model yt,
we assume that conditionally on some time varying and stochastic count intensity
vector λt ≡ (λt1, . . . , λtp), they are independent Poisson. Thus the conditional
distribution of yt given λt is given by

p(yt1, . . . , ytp|λt1, . . . , λtp) =

p∏
i=1

exp(−λti)λ
yti

ti

yti!
, (17)

The latent count intensities λt1, . . . , λtp are assumed to follow

λti = exp

(
m∑

j=1

zijαtj

)
, i = 1, . . . , n, (18)

αt+1,j = (1 − φj)ᾱj + φjαtj + ηtj , j = 1, . . . , m, (19)

18

where the ηtj are independentN(0, Qj). Denote byQ the diagonal matrix with the
Qj’s on the diagonal: Q = diag(Q1, . . . , Qm). We assume that given the process
{ηt}, the yt are conditionally independent, with conditional probability mass func-
tion given by (17). The parameters of the model are θ ≡ (ᾱj , φj, Qj, γ, zij)i∈{1,...,p},j∈{1,...,m}.

We now turn to the problem of estimating the likelihood L(θ) of this particular
semi-Gaussian model using the approach of Durbin and Koopman (1997). We
first need to determine the matrix Zt in the measurement equation (8) of the fully
Gaussian model. For cases like this one where the measurement distribution is in
the exponential family, they provide a choice for Zt, which in our case is Zt ≡
(zij)i=1,...,p;j=1,...,m. See Section 4.1 and especially equation (24) in Durbin and
Koopman (1997) for details. Also, for this example, the precision H̄ and co-vector
c̄, are given by

H̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

H̄11 H̄12 0 · · · 0 0
H̄21 H̄22 H̄23 · · · 0 0
0 H̄32 H̄33 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · H̄n−1,n−1 H̄n−1,n

0 0 0 · · · H̄n,n−1 H̄nn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, c̄ =

⎡
⎢⎢⎢⎢⎢⎣

c̄1
c̄2
...

c̄n−1

c̄n

⎤
⎥⎥⎥⎥⎥⎦

where

H̄11 = H̄nn = Q−1,

H̄jj =

⎡
⎢⎣

(1 + φ2
1)/Q1 · · · 0
...

. . .
...

0 · · · (1 + φ2
m)/Qm

⎤
⎥⎦ , j = 2, . . . , n− 1,

H̄j,j+1 = H̄j+1,j =

⎡
⎢⎣

−φ1/Q1 · · · 0
...

. . .
...

0 · · · −φm/Qm

⎤
⎥⎦ , j = 1, . . . , n− 1,

c̄1 = c̄n =

⎡
⎢⎣

ᾱ1(1 − φ1)/Q1
...

ᾱm(1 − φm)/Qm

⎤
⎥⎦ ,

c̄j =

⎡
⎢⎣

ᾱ1(1 − φ1)
2/Q1

...
ᾱm(1 − φm)2/Qm

⎤
⎥⎦ , j = 2, . . . , n− 1.

19

We compare the computational efficiency of all three methods for estimating
the likelihood for this semi-Gaussian state space model. We do so by counting
computational operations and profiling code.

Since a large number of draws from g(α|y) is required for a good approx-
imation of L(θ), we focus on the marginal computational cost of an additional
draw. We will see that for a typical number of draws, the computational overhead
associated with the first draw is small.

In the DeJS approach, one additional draw αt requires the following compu-
tations per observation [see equation (5) of their paper]:

nt = [D−1
t et] −K ′

trt, εt = [C
1/2
t]N(0, Ip), ξt = Γtnt + εt,

Zαt = [yt − μt] − ξt, rt−1 = [Z ′D−1
t et] + L′

trt − [V ′
tC

−1
t]εt.

In the DK approach, one additional draw requires the following computations
per observation. (Here we do not simulate α but rather the Zαt, which we obtain
more easily by simulating the disturbances εt according to Section 2.3 of Durbin
and Koopman (2002).) There is a forward pass to simulate v+

t :

v+
t = μt + Zx+

t + ε+t , x+
t+1 = Ttx

+
t + η+

t −Ktv
+
t ,

where ε+t ∼ N(0,Ξt) and η+
t ∼ N(0, Q). This is followed by a backward pass

[see equations (4) and (5) and Algorithm 1 of their paper]:

ε̂+t = Ξt(D
−1
t vt −K ′

trt), rt−1 = [Z ′D−1
t]v+

t + L′
trt,

ε̃t = ε̂t − ε̂+t + ε+t , Zαt = [yt − μt] − ε̃t,

where ε̂t is pre-computed.
In the MMP approach, one additional draw requires the following computa-

tions per observation2:

αt = mt − [ΣtΩt,t+1]αt+1 + [Σ
1/2
t]N(0, Im).

The computational costs per observation for an additional draw of αt are summa-
rized in Table 4.

We profile code for all three methods to see how they perform in practice. We
use data on the number of transactions over consecutive two minute intervals for
four different stocks in the same industry. For one business day (November 6,

2Adding p × m multiplications for each of the Zαt, which are required to evaluate p(y|α).

20

Table 4: Computational costs per observation per additional draw of αt

Algorithm +/− × N0,1

DeJS 3p+ 2m (3p2 + p)/2 + 2mp+m2 p
DK 6p+ 3m (5p2 + p)/2 + 4mp+ 2m+m2 p+m
MMP 2m (3m2 +m)/2 + pm m

2003), we look at all the transactions for four different gold-mining companies:
Agnico-Eagle Mines Limited, Barrick Gold Corporation, Gold Fields Limited and
Goldcorp Inc. We use all the transactions recorded during normal trading hours
on the New York Stock Exchange Trade and Quote database. This gives 195
observations for each series. The data are plotted in Figure 1.

We take the number of factors to be equal to the number of observed series.
That is, m = p = 4. To ensure identification, we impose zii = 1 and zij = 0 for
j > i.

For all three methods, we compute α̂ using the fast method presented in Sec-
tion 5.1. This puts all methods for drawing states on an equal footing. We point
out, though, that this gives a small advantage to the estimation of L(θ) using ei-
ther the DeJS or DK methods, relative to the case where the Kalman filter and
simulation smoother are used to compute α̂.

For various values of the size N of the importance sample, Table 5.2 gives the
ratio of the time cost in 100ths of seconds of (i) generating N draws of α(i) and (ii)
the total cost of evaluating the log-likelihood once, which consists of the former
plus some overhead, including the computation of μt, Ξt, α̂ and the w(α(i)). For
the latter, we report costs for two different approximations of α̂: one using a single
iteration of steps 1 and 2 in Section 5.1, the other using five iterations. All times
are averaged over 100 replications3.

First, we see that the cost of evaluating the log-likelihood over and above the
cost of drawing the states is around 0.1 second (one iteration for α̂) or 0.3 second
(five iterations) and that it is the major cost for small number of draws. Second,
except for the case N = 1, DeJS is computationally more efficient than DK, by a
factor of about 2 with N > 50. Third, MMP is much more computationally effi-

3The simulations were performed on an AMD Athlon(tm) 64 X2 5600+ cpu with Matlab
R2006a. Note that the reported time costs are in the case where matrix multiplications involv-
ing triangular matrices are performed with Matlab’s built-in matrix product, which does not take
advantage of the triangular structure. We tried dynamically loading a function written in C for
triangular matrix multiplication, but the additional overhead exceeded the savings.

21

cient than DeJS and DK for any number of draws, with the efficiency increasing
with N . As a point of reference, Durbin and Koopman (1997) consider N = 200
(combined with antithetic and control variables) as an acceptable value in an em-
pirical example they consider.

0 50 100 150 200
0

10

20

30

40
Barrick Gold

0 50 100 150 200
0

10

20

30
Agnico−Eagle

0 50 100 150 200
0

10

20

30

40

50
Gold Fields

0 50 100 150 200
0

10

20

30

40
Goldcorp

Figure 1: Transactions data

6 Conclusion

In this paper we introduce a new method for drawing state variables in Gaussian
state space models from their conditional distribution given parameters and ob-
servations. Unlike standard methods, such as de Jong and Shephard (1995) and
Durbin and Koopman (2002), our method does not involve Kalman filtering. It is
instead based on a Levinson-like algorithm, introduced by Vandebril, Mastronardi,
and Van Barel (2007), for solving the equation Bx = y, where B is an n×n sym-
metric band diagonal matrix and y is a n× 1 vector. We extend their result in two
ways. First, we modify the algorithm to work with m×m submatrices of a block
band diagonal matrix rather than individual elements of a band diagonal matrix.
Second, we show that the intermediate computations used to solve the equation
Ωμ = c for the mean μ = E[α|y] given the precision Ω = (Var[α|y])−1 and

22

Table 5: Time cost of drawing α(i) and the total cost of evaluating the likelihood,
as a function of the number of draws N . For the total time cost, numbers are
reported when performing one and five iterations to obtain α̂. Figures are in 100ths
of seconds.

Method N = 1 N = 10 N = 50 N = 150
DeJS α draw 9.7 22.0 78.3 215.1

total (19.2–38.7) (31.9–51.7) (89.6–108.9) (229.2–253.6)
DK α draw 7.1 34.6 156.6 462.9

total (16.7–36.6) (45.1–64.9) (168.1–185.7) (477.8–491.0)
MMP α draw 4.6 10.0 34.9 103.5

total (14.6–33.9) (20.3–40.4) (46.5–65.5) (118.2–136.3)

co-vector c = (var[α|y])−1E[α|y] can be used to compute the conditional means
E[αt|αt+1, . . . , αn, y] and conditional variances Var[αt|αt+1, . . . , αn, y].

We show that for some important cases, our method is computationally more
efficient than standard methods in the literature. These methods use Kalman fil-
tering, which involves solving systems of p equations in p unknowns, requiring
O(p3) scalar multiplications. If the At can be pre-computed, or take on only a
constant number of values, our method requires no operations of higher order
than p2, in p. If the Zt and Tt can also be pre-computed, or take on only a constant
number of values, the order drops to p.

Our method is also particularly efficient for applications in which several
draws of α are required for each value of the parameters of the model.

We consider two applications of our methods. The first is posterior simulation
of the parameters and state variables of a stochastic volatility model. The second is
evaluation of the log-likelihood of a multivariate Poisson model with latent count
intensities.

A Derivation of Ω and c

In this appendix, we derive the expression (4) for the precision and co-vector of
the conditional distribution of the state variable α given the dependent variable y.

23

We can express the joint density of y and α as follows:

f(y, α) ∝ exp

[
−1

2
g(y, α)

]
,

where

g(y, α) = (α1 − a1)
′P−1

1 (α1 − a1) (20)

+
n−1∑
t=1

[
yt −Xtβ − Ztαt

αt+1 −Wtβ − Ttαt

]′ [
GtG

′
t GtH

′
t

HtG
′
t HtH

′
t

]−1 [
yt −Xtβ − Ztαt

αt+1 −Wtβ − Ttαt

]

+ (yn −Xnβ − Znαn)′(GnG
′
n)−1(yn −Xnβ − Znαn).

We then expand the time t term of (20) and organize terms, obtaining

(yt −Xtβ)′A11,t(yt −Xtβ) − (yt −Xtβ)′A12,t(Wtβ) (21)

−(Wtβ)′A21,t(yt −Xtβ)′ + (Wtβ)′A22,t(Wtβ)

− [(yt −Xtβ)′(A11,tZt + A12,tTt) − (Wtβ)′(A21,tZt + A22,tTt)]αt

− α′
t[(Z

′
tA11,t + T ′

tA21,t)(yt −Xtβ) − (Z ′
tA12,t + T ′

tA22,t)(Wtβ)]

+ α′
t[Z

′
tA11,tZt + Z ′

tA12,tTt + T ′
tA21,tZt + T ′

tA22,tTt]αt

− [−(yt −Xtβ)′A12,t + (Wtβ)′A22,t]αt+1

− α′
t+1[−A21,t(yt −Xtβ) + A22,t(Wtβ)]

+ α′
t+1A22,tαt+1

+ α′
t[−Z ′

tA12,t − T ′
tA22,t]αt+1

+ α′
t+1[−A21,tZt − A22,tTt]αt

The conditional density f(α|y) must be proportional to f(y, α) as a function
α. We can write this as

f(α|y) ∝ exp

[
−1

2
(α− Ω−1c)′Ω(α− Ω−1c)

]
,

where Ω is the conditional precision of α and c is the conditional co-vector. That
is, Ω = Σ−1 and c = Σ−1μ, where μ and Σ are the conditional mean and variance.

Equating (α − Ω−1c)′Ω(α − Ω−1c) with expression (20) and matching terms
of the form α′

tA and αtBαs, with the help of (21), yields (4).

24

B Proof of Result 2.1

Suppose α|y ∼ N(Ω−1c,Ω−1) and define

Σ1 = (Ω11)
−1, m1 = Σ1c1,

Σt = (Ωtt − Ωt,t−1Σt−1Ωt−1,t)
−1, mt = Σt(ct − Ωt,t−1mt−1).

Now let μn ≡ mn and for t = n − 1, . . . , 1, let μt = mt − ΣtΩt,t+1μt+1. Let
μ = (μ′

1, . . . , μ
′
n)′.

We first show that Ωμ = c, which means that μ = E[α|y]:
Ω11μ1 + Ω12μ2 = Ω11(m1 − Σ1Ω12μ2) + Ω12μ2

= Ω11((Ω11)
−1c1 − (Ω11)

−1Ω12μ2) + Ω12μ2 = c1.

For t = 2, . . . , n− 1,

Ωt,t−1μt−1 + Ωttμt + Ωt,t+1μt+1

= Ωt,t−1(mt−1 − Σt−1Ωt−1,tμt) + Ωttμt + Ωt,t+1μt+1

= Ωt,t−1mt−1 + (Ωtt − Ωt,t−1Σt−1Ωt−1,t)μt + Ωt,t+1μt+1

= Ωt,t−1mt−1 + Σ−1
t μt + Ωt,t+1μt+1

= Ωt,t−1mt−1 + Σ−1
t (mt − ΣtΩt,t+1μt+1) + Ωt,t+1μt+1

= Ωt,t−1mt−1 + (ct − Ωt,t−1mt−1) = ct.

Ωn,n−1μn−1 + Ωnnμn = Ωn,n−1(mn−1 − Σn−1Ωn−1,nμn) + Ωnnμn

= Ωn,n−1mn−1 + Σ−1
n μn

= Ωn,n−1mn−1 + Σ−1
n mn

= Ωn,n−1mn−1 + (cn − Ωn,n−1)mn−1 = cn.

We will now prove that E[αt|αt+1, . . . , αn, y] = mt − ΣtΩt,t+1αt+1 and that
Var[αt|αt+1, . . . , αn, y] = Σt. We begin with (5) and note that the only non-zero
elements of Ω1:t,t+1:n come from Ωt,t+1. We can therefore write the univariate
conditional distribution αt|αt+1:n as

αt|αt+1:n ∼ N(μt − ((Ω1:t,1:t)
−1)ttΩt,t+1(αt+1 − μt+1), ((Ω1:t,1:t)

−1)tt).

The following inductive proof establishes the result Var[αt|αt+1, . . . , αn, y] = Σt:

(Ω11)
−1 = Σ1

25

((Ω1:t,1:t)
−1)tt = (Ωtt − Ωt,1:t−1(Ω1:t−1,1:t−1)

−1Ω1:t−1,t)
−1

= (Ωtt − Ωt,t−1Σt−1Ωt−1,t)
−1 = Σt.

As for the conditional mean,

E[αt|αt+1, . . . , αn, y] =

{
μt − ΣtΩt,t+1(αt+1 − μt+1) t = 1, . . . , n− 1

μn t = n.

By the definition of μt, mt = μt + ΣtΩt,t+1μt+1, so we obtain

E[αt|αt+1, . . . , αn, y] =

{
mt − ΣtΩt,t+1αt+1 t = 1, . . . , n− 1

mn t = n.

References

Carter, C. K., and Kohn, R. (1994). ‘On Gibbs Sampling for State Space Models’,
Biometrika, 81(3): 541–553.

de Jong, P., and Shephard, N. (1995). ‘The Simulation Smoother for Time Series
Models’, Biometrika, 82(1): 339–350.

Durbin, J., and Koopman, S. J. (1997). ‘Monte Carlo maximum likelihood estima-
tion for non-Gaussian state space models’, Biometrika, 84(3): 669–684.

(2002). ‘A Simple and Efficient Simulation Smoother for State Space
Time Series Analysis’, Biometrika, 89(3): 603–615.

Frühwirth-Schnatter, S. (1994). ‘Data augmentation and Dynamic Linear Mod-
els’, Journal of Time Series Analysis, 15: 183–202.

Kim, S., Shephard, N., and Chib, S. (1998). ‘Stochastic Volatility: Likelihood
Inference and Comparison with ARCH Models’, Review of Economic Studies,
65(3): 361–393.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Nu-
merical recipes in C. Cambridge University Press, Cambridge, second edn.,
The art of scientific computing.

26

Vandebril, R., Mastronardi, N., and Van Barel, M. (2007). ‘A Levinson-like al-
gorithm for symmetric strongly nonsingular higher order semiseparable plus
band matrices’, Journal of Computational and Applied Mathematics, 198(1):
74–97.

27

