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Résumé en francais

Chapitre 1

Dans ce chapitre, je modélise un monopoleur multi-produit qui doit décider de monito
rer ou non les achats de ses clients. Un contrat monitoré ne peut être acheté plus d’une fois
tandis qu’un contrat non-monitoré peut être acheté le nombre de fois désiré. Je trouve que
le monopoleur va toujours offrir aux consommateurs au moins un contrat non-monitoré.

Chapitre 2

J’étudie la composition de l’ensemble des allocations parétiennes dans le contexte d’al
location d’un nombre fini de biens indivisibles entre un même nombre d’agents. Chacun des
agents reçoit un bien et aucune compensation monétaire n’est permise. Ce problème est
typiquement connu comme le problème d’allocation de maisons (hozzse allocation probtem).
Pour analyser la rationalisation d’un sous-ensemble d’allocations, j’introduis le concept de
cycle. Un cycle consiste en une série d’allocations où chaque allocation est liée à la suivante
par la même règle de transition. Avec le concept de cycle, je trouve certaines contraintes
sur la composition d’un sous-ensemble d’allocations pour qu’il soit rationalisable.

Chapitre 3

Thomas et Worrall (1988) étudient le problème de design de contrat entre un travailleur
averse au risque et une firme neutre au risque lorsque qu’ils peuvent briser le contrat à tout
moment. Dans ce chapitre, j’utilise la même approche pour expliquer les fusions. Jutilise

des fonctions d’utilité de type CARA, ce qui permet de dériver explicitement le contrat

optimal. Ensuite, j’ajoute quelques hypothèses pour évaluer les effets d’une fusion entre

cIeux firmes ayant des revenus aléatoires. Pour ce faire, nous effectuons des simulations
numériques. De part les résultats, une fusion est souhaitable seulement lorsque les agents
ont un bas facteur d’escompte.

Mots- C lés Monitoring, Monopoleur multi-produit, Préférences multidimensionnelles,
Biens indivisibles, Cycles, Rationalisabilité, Contraintes auto-excécutoires, Fusionnement,
Contrats optimaux.



111

English summary

Chapter 1

The main purpose of the paper is ta introduce the decision ta monitor sales or nat

in the multiproduct monopoly decision problem. Ta do sa, I intraduce the concept of a

rnonitored contract as contract that consumers can buy only once. On the other hand, a

non-monitored contract cottld be purchased in any quantity. Obviously, ta offer a monitored

contract, the monapoly should 5e able to observe and ta control consumers’ choice. I find

that the rnultiproduct monopoly vi1l aiways offer at least one non-rnonitored contract ta

consurners.

Chapter 2

I study the composition of the Paretian allocation set in the context of a fuite number

of agents and a finite number of indivisible goods. Each agent receives at rnast one good

and no monetary compensation is possible (typically called the house allocation problem).

I introduce the concept of a cycle which is a sequence af allocations where each allocation

is linked to the follawing allocation in the sequence by the same switch of goods between

a subset of agents. I characterize tlie profiles of agent preferences when the Paretian set

lias cycles.

Chapter 3

Tliomas and Worrall (1988) study the problem af designing a contract between risk

averse workers and risk-neutral firms when bath of them could break the contract at any

time. In this paper, 1 use the same approaci ta study mergers. I model a CARA utility

function ta derive explicitly the optimal contract and the value function for bath agents

in the case where only twa states of nature are passible. I use this approach ta explain the

reasan for a firm ta merge with anather one. Because the analytic solution is too difficult

ta derive explicitly with more than twa states af nature, numerical simulations are used ta

illustrate these cases. I find that mergers will occur anly when agents have a law discount

rate.

Keywords : l\’Ionitoring, Multipraduct manopaly, Multidimensional Preferences, In

divisible goads, Cycles, Ratianalisability, Seif-enforcing constraints, merger, Optimal

Contracts.
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Introduct ion

A distinctive Jeature of mzcroeconomzc
theory is that it aims to rnodet economic acti
vity as an interaction of individuat economic
agents pursuing their przvate interests.

IVias-Coleil, Whinston and Green [8].

Les incitations économiques sont à la base des décisions des individus dans la vie de

tous les jours. Que ce soit pour l’achat ou la vente de biens, l’offre de travail ou d’élection,

les individus choisissent l’option qui, en fonction de la situation à laquelle ils font face,

maximise leur bien-être. La modélisation microéconomique des décisions individuelles des

agents constitue donc un outil privilégié pour l’analyse de questions aussi intéressantes

que diversifiées comme le design de contrats d’assurance, les stratégies de mise en marché

ou encore les problèmes d’allocation de biens indivisibles entre individus.

Dans le premier essai de ma thèse, j’étudie le comportement stratégique d’une firme

ayant un pouvoir de monopole sur plusieurs marchés. Plus précisément, l’objectif est de

mieux comprendre comment la firme décide d’effectuer du monitoring ou non. Je définis

le monitoring comme la capacité pour la firme de suivre et de contrôler les achats de ses

biens.

Pour vendre ses produits, la firme multiproduit peut avoir recours à la vente groupée

(bundling) ou à la vente séparée. Par exemple, la plupart des chaînes de restauration rapide

offre la possibilité d’acheter divers biens sous forme de trios. Lorsque les demandes ne sont

pas unitaires1, la firme peut décider d’offrir des contrats qui ne peuvent être achetés plus

d’une fois. Dans ce cas, nous dirons que le contrat est monitoré. Si la firme ne contrôle pas

le nombre de fois que les consommateurs peuvent acheter un contrat donné, alors nous

dirons que ce contrat est non-monitoré.

Jusqu’à maintenant, l’étude du monitoring se faisait au niveau des conséquences de

‘Nous disons qu’une demande est unitaire quand les consommateurs obtiennent un gain d’utilité seule
ment de la première unité de bien consommée. Une laveuse et une sécheuse sont des exemples de biens

pour lesquels les consommateurs ont des demandes unitaires.
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monitorer ou non. La quasi-majorité des articles sur la tarification non-linéaire2 utilisent

implicitement (ou explicitement) l’hypothèse que la firme est capable de suivre et de

restreindre les possibilités d’achat des consommateurs. La possibilité de ne pas monitorer

fut étudiée exclusivement par Katz [5]. Cependant, aucun article ne modélise la prise de

décision de monitorer ou non.

Dans cet essai, je présente un modèle qui incorpore la décision de monitorer ou non

pour un monopoleur multiproduit. Une firme utilise le monitoring si elle offre au moins un

contrat monitoré. Cependant, il est important de souligner que la décision de monitorer

n’impose pas de monitorer tous les contrats. Il est toujours possible pour la firme d’utiliser

des stratégies mixtes lors de la mise en marché des contrats. Un premier résultat est

que, peu importe la fonction de coûts administratifs, la firme va toujours offrir au moins

un contrat non-monitoré. Ce résultat est cohérent avec les observations. Il semble que

l’ensemble des firmes offrent toujours la possibilité aux consommateurs d’acheter un type

de contrat sans contrôle sur la quantité de fois qu’ils achètent ce dit-contrat.

Dans le second essai, le sujet d’étude est la rationalisation d’un ensemble de réalisations

dans le cadre d’allocation de biens indivisibles (House Attocation Probtem). J’entends par

rationalisation d’un ensemble A l’existence d’un profil de préférences individuelles qui a

comme ensemble des optimums de Pareto l’ensemble A. L’allocation de biens indivisibles

est un problème commun dans la vie de tous les jours. On peut penser à la répartition

des chambres parmi des colocataires, les charges de cours entre professeurs ou aux espaces

de bureaux entre collègues de travail. Ce type de problème fut introduit par Shapley et

Scarf [12] et étudié par de nombreux auteurs dont Roth et Postlewaite [11], Svensson [13]

et Elilers [3] .

L’objectif de cet essai est d’introduire le concept de rationalisation dans un cadre

d’allocation de biens indivisibles. Pour ce faire, j’introduis le concept de cycle qui consiste

en une série d’allocations où chaque allocation est liée à la suivante par la même règle de

transition. Un premier résultat découlant de la présence d’un cycle dans l’ensemble des

optimums de Pareto est que tous les individus doivent avoir les mêmes préférences sur les

biens qui se suivent dans le cycle. Deuxièmement, si le cycle est composé d’un nombre

premier d’individus, alors tous ces individus doivent avoir les mêmes préférences sur les

biens qui composent ce cycle. Troisièmement, je trouve que si l’ensemble des allocations

parétiennes contient un nombre minimal de cycles composés des mêmes individus et des

mêmes biens, alors tous ces individus doivent avoir les mêmes préférences sur ces biens.

Comme quatrième résultat important, je trouve des conditions sur le nombre d’allocations

que l’ensemble des optimums de Pareto doit contenir.

2Voir par exemple Goidman, Leland and Sibley [4], Mirman and Sihley [10], McAfee and McMillan [9]
ou Armstrong [1].

3Cette liste n’est pas exhaustive et ne figure qu’à titre de référence.
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Le troisième essai étudie les conséquences d’une fusion dans le cadre d’un modèle d’as

surance avec contraintes auto-exécutoires. Nous disons qu’un contrat est auto-exécutoire

si, pour tous les états de la nature et pour toutes les périodes, les deux agents (l’assureur et

l’assuré) ont un gain à respecter le contrat. Sans contraintes auto-exécutoires, le manque

d’engagement devient un problème. Lorsque les coûts de faire respecter le contrat sont

élevés et que les coûts de changer de contrat est bas, un agent peut avoir intérêt à briser

le contrat suite à la révélation de l’état de la nature alors qu’il était optimal ex-ante. Dans

le but d’éliminer ce type de problème, j’utilise la même approche que celle introduite par

Thomas et Worrall [14].

Dans la première partie de l’essai, je suppose que les individus ont des préférences qui

peuvent être représentées par des fonctions de type CARA (Constant Absotute Risk Aver

sion). Cette modélisation se distancie de celle de Thomas et Worrall [14] et se rapproche de

celle de Kocherlakota [6] en ce sens que les deux agents sont averses au risque. Avec cette

hypothèse, je suis en mesure de solutionner explicitement le contrat optimal en supposant

que les deux individus ont le même coefficient d’aversion au risque. Sans cette hypothèse,

je ne peux expliciter la solution. Puisque nous trouvons le contrat optimal dans toutes les

situations, je peux définir et tracer les frontières des optimums de Pareto selon les valeurs

des paramètres. Les graphiques illustrent clairement que les frontières sont continues mais

non pas dérivables en tout point.4

Dans un deuxième temps, je me suis intéressé aux effets d’une fusion entre deux firmes

ayant des revenus aléatoires en présence de contrats auto-exécutoires. Pour ce faire, j ‘ai

modélisé deux firmes averses au risque qui ont un revenu aléatoire et un agent neutre au

risque (le marché). Une des firmes peut décider de ne pas fusionner ou d’acheter l’autre

firme au prix donné par l’équivalent certain. Dans le cas de la fusion (acquisition) ou de

la situation ex-ante, les deux firmes ont la possibilité de signer des contrats d’assurance

auto-exécutoires. Avec l’aide de simulations numériques, je trouve qu’une fusion peut être

profitable lorsque le taux d’escompte est bas même lorsque les revenus des firmes sont

corrélés.

4Kocherlakota [6] avançait faussement que les frontières des optimums de Pareto étaient continues en
tout point. Ceci fut corrigé par Koeppl [7].



Chapitre 1

Monitoring Costs for a

Multiproduct Monopoly
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1.1 Introduction

Firms combine different methods to seil their products. For example, many fast-food

restaurants offer discount coupons on a specific meal while they allow consumers to buy

any quantities of meals at regular prices. In construction material stores, srnall buyers

face regular prices while big buyers have special discounts on their purchases. Defining

monitoring as the control of consurners’ purchases, these examples suggest that firrns use

monitoring in combination with usual non-rnonitored sales rnethods to maximize their

profit.

The first context where such control on consumer purchasing is studied in the economic

literature is the case of bundiing that offers consumers the possibility to buy a package

in addition to the possibility of buying goods separately. The first complete model that

deals with the ability of a monopoly to offer bundies vas proposed by Adams Yellen

[1]. These authors study a market for two goods where consumers have unit demands for

both products and they find that bundling can be efficiently used to increase firm profits

even though consumers’ utility for each good are unrelated. Some extensions to the Adams

& Yellen’s paper were made by introducing a joint distribution of consumer preferences

over the two goods as in Schmalensee’s [9] model. Monitoring in such a context gives the

monopoly the ability to restrain the set of possibilities available to consumers. For instance,

with monitoring, a monopoly that wants to seli two goods can offer these goods separately

as well as in a bundie, but can force consumers who want to buy both goods to purchase

the bundie. The profitability of such possibilities to restrict the opportunities available to

consumers are analyzed in IVIcAfee, IVicIViillan and Whinston [7]. These authors present

sufficient conditions over the joint distribution on consurners preferences under which

bundling gives more profits than selling goods separately when consumers are monitored.

A second context where monitoring could be interesting to use is the case where firrns

cari practice some form of nonlinear pricing (usually called second-degree price discrimi

nation). Nonlinear pricing exists when a firm in a single market sets different unit prices

for different amounts of goods purchased. Spence [10] presents a model in which a cen

tral planner must maximize the aggregate consumer surplus without having the ability to

identify the consumer’s type but with the ability to monitor consumers, by observing the

quantities they buy. Goidman, Leland and Sibley [3] study explicitly the role of constraints

on the price structure. They find that the price could be either upward or downward dis

continuous in quantity with smooth and well-behaved demand and cost functions. $ince

the 1980’s, many papers deal with the use of nonlinear pricing by a multiproduct mono

poly. lVlirman and Sibley [8] assume that consumers differ by only one taste parameter

while I\’IcAfee and McMillan [6] examine the case where multidimensional consumer pre

ferences can be represented by a single variable. In this last case, the analysis becomes
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identical to Mirman and Sihley’s. The first paper considering multidimensional preferences

in a nonlinear pricing context is Armstrong [2]. Armstrong examines the decision problem

of a monopoly over many goods facing consumers with multidirnensional preferences and

flnds a method to resolve the mechanism design problem for some specific classes of cases.

Except for the paper by Katz [5], which studies the case when purchases are not

observable hy the firrn, ail papers on nonlinear pricing assume that the firrn is able to

monitor purchases. In Katz’s [5] paper, the case of a firm with monopoly power on a single

rnarket which is not able to observe consumer purchases is anaiyzed and a characterization

of the optimal price schedule is obtained.

To my knowiedge, no paper examines the ability of a multiproduct monopoly to decide

to monitor consumers purchases or not. The main purpose of the present paper is to analyze

a model where the decision to monitor or not to monitor is an endogenous decision. To

do so, I first define a contract as a vector specifying a quantity for each good and a price

that will be paid by the consumer in exchange of the specified quantities. Then a contract

will be said to he monitored whenever consumers can buy such a contract only once, while

a non-monitored contract is a contract that consumers can buy without restrictions. In

such a framework, the decision to monitor corresponds to the decision to offer a rnonitored

contract. However, monitoring is lot an ail or nothing decision. Indeed, the monopoly can

actually propose monitored contracts together with non-monitored ones. The main resuit

is that the set of contracts offered by the monopoly wiil aiways contain a non-monitored

contract. This accords with the exampies given above.

The paper is organized as follows. In Section 1.2, I introduce the model. The theorem of

existence and sorne characterization of the optimal strategy of the monopoly are described

in Section 1.3. Section 1.4 contains discussions on the basic assumptions and I conclude

in Section 1.5.

1.2 Model

I consider a situation where a multiproduct monopoly faces N consumers. Let N be

a natural number. The purpose of this section is to introduce the concept of monitored

and non-monitored contracts as well as the assumptions relative to the behavior of the

rnonopoly and of the consumers.

1.2.1 Multiproduct monopoly

A monopoly produces L goods and selis these goods tlirough contracts. I assume that

the firm is risk neutral. The problem of the moiopoly is to determine the number of

contracts as well as the composition of the contracts it wiÏl offer to the consumers. I define

a contract as a vector that specifies a quantity for each good as well as a price that the
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consumer who accepts the contract will pay in exchange for the quantities specified in the

contract. Precisely, a typical contract k is given by (qi, ..., qi, ..., q, P) where q stands for

the quantity of good t that will be sold if the contract is accepted and P is the price paid

whenever the contract is accepted.

I also assume that the price elernent P is greater than or equal to E with c > O. As

we shah see, this assumption is quite innocuous but xviii facilitate some of the arguments

made below.

I begin by describing the kind of contracts that can be proposed by the monopoly.

Monitored and non-monitored contracts

In this paper, I say that a contract k is monitored if consumers cannot buy this

contract more than once. In addition, I assume that consumers can buy only one monitored

contract.

for non-monitored contracts, I assume that these contracts can be bought many tirnes

and in combination with other contracts. To illustrate how monitored and non-monitored

contracts work, consider the following example.

Suppose the monopoly offers txvo monitored contracts k and kb and two non-monitored

contracts k and k. Following the definition of a non-rnonitored contract, the contracts

given by uk3 or + uk for , cr = 1,2, ... can be bought by consumers. following

the definition of monitored contracts, the contracts kC and kb are offered to consurners

but not k + kb or ukb or + ukb since consumers can buy at most one monitored

contracts and do so only once.

In addition to these contracts, it is possible for consumers to buy a combination on

non-monitored contracts and one monitored contract. So the contracts given by k +

k + k + + kb + kb + 5k and kb + + are offered to consumers.

To summarize, if the rnonopoly offers two monitored contracts kc and kb and two

non-monitored contracts k and k, then the fohowing contracts are in effect offered to

consurners for à, u = 1,2,3,

ka, kf’, k, k

uk, ka+uk

k + k + uk, k + Sk + uk

kb+k, kb+uk, kb+ka+Jk

Let K’’ and IQ’ be respectively the set of monitored contracts and the set of

non-monitored contracts. With these sets, it is possibie to construct the contract set

K(Km, I(’) which is the set of contracts which can be bought by consumers. Consi

dering the preceding example, the set of monitored contracts K is given by {ka, kb}, the
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set of non-monitored contracts by {k, k’} and the set of offered contracts by

ka, kb k, k

Ska,uk,ka+uk S,u1,2,...
K(Km K’m)

kb+kakb+Gkkb+ka+Jk

These definitions have three immediate implications that must be noted. first, whe

neyer the set of non-rnonitored contracts is empty, the set of proposed contracts coincide

with the set of monitored contracts, i.e., K = K(I( O). This follows from the definition

of a rnonitored contract. A second implication is that any contract kil e K(Km, Kfl) i

either a monitored contract and belongs to K or an non-monitored contract and belongs

to or a combination of non-monitored contracts and at most one monitored contract.

Thirdly, since the ail elements of a contract are a real number, the sets of monitored

and non-monitored contracts are countable. This implies immediately that the contract

set is also countable. Furtherrnore, if K’T1 1nTrt O, then K(Km, K1m) = O. This means

that inaction is possible for the monopoly.

The next step in the description of the model is to present assumptions relative to the

rnultiproduct monopoly cost structure.

Monopoly’s production and administration costs

Total costs for the monopoly consist of a production cost function which, as usual,

gives the cost associated with the provision of a given quantity of goods to the consumers,

and of an administration cost function which gives the cost to manage the set of proposed

contracts.

The function V 1R
— R+ gives the production cost which only depends on the

total quantity of goods provided to consumers. Let Q (N, K, K7m) be the vector of total

quantity of each good produced. I assume further that the marginal production cost is

constant.1 So the production cost function becomes

V(Q(N,Km71(’1m)) = (c1 * Qt(N,Km,K))

where cj is the marginal cost of good I and Qi (N, J7n, IQm) is the total quantity of good

I produced. I assume also that c1 > O for all t.

Note that I assume that the production costs do not depend directly on the number

as well as the kind of contracts in the set of proposed contracts. Only the total quantity

1This assumption can be relaxed but to keep the presentation simple, I use this assumption.
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of goods matters.

The function A represents the administration cost. I shah define A” as the cost

function to administrate the non-rnonitored contracts while the cost function to manage

the monitored contracts will be denoted by A. I assume that the cost of providing

non-monitored contracts and the cost of providing monitored contracts are (directly) in

dependent. I then assume that administration costs are additive in the non-monitored

contract cost function A’ and the rnonitored contract cost function A

Regarding the non-rnonitored contract cost function, I assume that the cost to provide

one more non-rnonitored contract is constant. This means that

A’ — flTfl

with aTlnl > O and where X denotes the number of elements of the set X.

For the cost to administrate monitored contracts, I assume that the number of consu

mers buying a rnonitored contracts matters. This comes from the fact that, in order to

make such contracts effective, the rnonopoly must follow each consumer to prevent multiple

purchases of these monitored contracts, which imposes a cost to the monopoly.

Let Nm(N, 1rn, I7t) be the number of consumers who choose a monitored contract

proposed in K(Km, Kfl) or a contract in i((Km, Kfl) that is a linear combination of

contracts, one of them being a monitored contract. This number is unknown by the firm

since the firm does not know consumer types. Nevertheless, once the firm determines the

sets of non-monitored and monitored contracts, consumers make their choice and their

action generates the monitored contract cost function. I have mentioned above that the

cost of providing a monitored contract does not relate directly on the set of non-monitored

contracts. \Vith the hast assumption, the monitored contract cost function now depends

indirectly on the set of non-monitored contracts since the latter affects the number of

consumers buying a monitored contract.

Next, once again for simphicity, I assume that the monitored contract cost function is

given by

A(NTT(N,Km7K’m),Km) = Kmam(Nm(N,Km,K7m))

Note that the assumption that the administrative cost is increasing in the number

of consumers buying a monitored contract implies that am(.) is also increasing in N. I

further assume that the unit administrative cost of a non-monitored contract, anm,

strictly smaller than the unit administrative cost of a monitored contract am(.), whatever

the number of consumers buying a monitored contract N.

Accordingly, the larger the number of consumers choosing a monitored contract, the

harger are the costs associated with the management of monitored contracts and therefore
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FIG. 1.1 — NomDegeneration of the Set of Preferences

I have Atm (Nl,Km) > Atm (N2,Km) whenever N’ > N2.

To surn up, a.ssumptions imply that the administrative cost function of the monopoly

can be rrjtten as

A(Nm(N,Km,Im),Km,Km) = K ahtm + Km atm (Nrn(N,K,Khirn))

with ahitm > O.

1.2.2 Consumers

The utility level attained by consumer i whenever lie buys contract k’ = (qÇt...
, q’, P”)

is given by u (6’, q, ..., q)
— Ph where O’ = (6f,... ,

9) is a vector of preference parame

ters, i.e. preferences of consumer i with S > L — 1. I shah assume that u is continuous in

q1’ and in 6, increasing and strictly concave in q’ and satisfies

lim
q)0

t=1,...,L VqO,jt, VOeO
qt—*oo

Note that individuals with the preference vector 6’ have the same utility function. The

set of ail preference vector, denoted by e, is a compact subset of R9. Preference vectors

are i.i.d according to the continuous probabiiity distribution F(6). I also assume that f(O)

is non-degenerative, i.e., the probability that O’ e e for ail e C e with Dirn[O] < Dim[]

is zero. This assumption is commoniy used in the economic literature. For instance, if e
lias only one dimension and the distribution is non-degenerative, the probabihty of getting

a specific is equal to zero. Figure 1.1 represents a case where e is of dimension one whiie

e is of dimension 2.

In this paper, I also assume that consumers could buy nothing if they wanted. In

O’
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this case, I say that the consumer buys the nuil contract k0 = (O, O, O, ..., O). Then, the

problem of the consumer is to maximize his utility by choosing a contract in the set K0

which is the set of contracts offered by the firm K(Km, plus the nuil contract i.e.

Ko(Km,K’m) = K(Km,K”m) U {ko}.

Let me denote by K (6i, 1cm, the set of contracts in the set which maxirnizes

the utility of consumers whose preference vector is O. I can immediately ask if there exist

consumers whose K* (&i, 1(fl, K7m) contains several contracts. To avoid this possibility,

I must add an assumption on utility function. The monotonicity in utility difference tvill

guarantee that the set of optimal contracts is a singleton for almost ail types of consumers.

Definition 1.1 A utitity function (8f, q”) is -monotone if, foT alt q’, q2 suck that

q’ q2, s E {1, ..., S} such tit VO’ E e, u (O, q’) — u (Oi, q2) is strictty monotone in O.

The -monotonicity says that, for any pair of contracts k’, k2, if there is a such

that k’ and k2 give the same utility, then an infinitesimal change in increases differently

the utility of each contract. One can say that if a function f is An-monotone, then

02f(O, q)
>

32f(&, q)

8qt808

In fact, ,,-monotonicity is more than that. Take the function f(&, q) = &,(q, + q)2.

This function has positive cross-derivative if q and q are positive but it does not respect

the Z\,,-monotonicity. Take the contracts q1 (1, 2) and q2 (2, 1) for example. For ah

values of O, the difference in utility with those contracts will remain O. If a function is
,,_

monotone, then each marginal utility associated with a given good is affected differentially

by a change in a specific preference parameter.

By assuming that the consumer utility functions are -monotone, then I obtain the

foliowing result.

Lemma 1.1 The probabitity of finding a profite O E e such that Kt (oi, Ko) contains

more than one contract is equat to O.

Proof. Take two contracts k’ and k2 betonging to K. Let be the set of alt preference

uectors such that, for att E ,k’, k2 E K* (, Ko) and tet 0’ betong to .
Fottowing the definition of Kt (O’,Ko), if k’,k2 E Kt (0’,Ko), then

(1’ 1 1 D’ — (j1 2 2\ j2uJ i —ui ,q,,...,qL)

Fottowing the definition of the /-monotonicity, there is a s E {1, 2, ..., S} such that

u (0,q’) — u (0,q) is monotone in O.

Now, suppose there is an eÏement 02 betonging b such that 0 O. Because 02 E e
and by L-monotonicity, there is another preference parameter t E {1, 2, ..., S},t s such
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that 0 6 If not g2 cari not betong to . This means that any change in the parameter

s teads to a change in some other parameter(s) to maintain the equatity

21 1 1 99 2 9
u(0 ,ql,...,qL) —P =u(0,q,...,qL) —P

Then, the set e has a dimensionatity 1OWCT than e. By the non-degeneration of e, the

pro babitity of having an agent with a preference vector betonging to is equat to O.

Since the contract set is countabte, I cari conctude that the pro babitity of having prefe

rences such that theTe exist more than one optimat contTact is O. B

Note that this assumption of -monotonicity does not constrain too much as shown

by following example

Example 1.1 Take the case where the utitity function is represented by a square Toot

function. Now, take two contracts k’, k2 such that q’ q2 and suppose that there is

o’ e such that q’ and q2 betong to K* (o’, Ko). This means

0 (q)’2 + & (q)’12 = &f (q)l/2 + O (q)’12

Because q’ q2, there is at teast one t = 1,2, ..., L such that q q. Without toss of

generatity, suppose that q > q Then,

& (q)’2 + O (q)’/2
— 0 (q)’2 + O (q2

increases if 2 increases.

Because the contract set is countabte, the probabitity of having more than one optimal

contract is O.

Note also that the Cobb-Douglas utility function u (O’, q”) =
(q)Ol (q)O2 does not

respect the property of -rnonotonicity since when one quantity equals zero the utility

levels are equal to zero irrespective of the value of O’. However the log transformation of

the Cobb-Douglas utility will respect the A-rnonotonicity property.2

1.3 Resuits

The firrn’s problem can be described as choosing the number of rnonitored and non

monitored contracts and the composition of each of them. I shah denote by n (N) the

maximal profit the monopoly can obtain when it faces N consumers. By assuming that

21f I define the weak -rnonotonicity with adding that q; and q must be composed of positive elements,

i.e. q; » O and q > O, then the Cobb-Douglass utility function satisfies the weak -monotonicity.
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the firm is risk-neutral, I cari write the profit function in the following way

ir (N)
= K”,Km

E[R (N, Ktm, Ktm) — C (N, Ktm, K7m)]

where R (.) and C (.) are respectively total revenues and total costs for the firm when

the chosen rnonitored and non-monitored contract sets are Krn and the number of

consumers N.

I suppose that the firm is unable to observe consumer preference profiles and consurners

are not allowed to resell the quantity bought from the firm. Let the term Pr (kh, Ktm, Kflm)

be the probability that a consumer buys the contract kIl, i.e. Pr (k”, jrn, Kam) =

Pr (i E e k” E K* (&i Ktm Knm)) Then, expected revenues cari be written as follows

E[R (N, Ktm, Ktm)] = N * (P” * Pr (e’, Ktm, Im)).

kh EK

In the previous subsection 1.2.1, I define the cost function like the sum of the production

costs and the administration costs, i.e.,

C(N, Ktm, K’’) = V (Q(N, Ktm, KTttm)) + A (N”(N, Ktm, K”), Ktm, K’tm)

By assurning that the production cost is linear in quantities, the production cost func

tion is given by V (Q) = Z[Z1 (ct * Q1(N, Ktm, K’”’)). With the assumption of risk neu

trality by the firm, the expected value of the prodttction cost, E[V (Q)], is given by

E[V (Q)] = (c * E[Qt(N, Ktm, Ktm)])

E[Qt(N, Ktm, K”tm)] denotes the expected total quantity of good t produced by the

firm and equals

N (qÇ*Pr(kh1,Ktm,Knm))

khEK(I(m,Knm)

In other words, the expected total quantity of good t is given by the sum (over the

contracts belonging to the contract set K) of the quantity of good t specified in a contract

tirnes the expected number of consumers buying this contract. It follows that E[V (Q)]
can be written as

E[V (Q)] = N * (ci * q’ * Pr (, Ktm, Im))

t1

As specified in Section 1.2.1, the administrative cost function is the sum of the mon-
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tored contract cost function and the non-monitored contract cost function. The expected

administrative cost function will therefore be given by

E[A (Nm(N, Im, K), Ktm, Km)1 IKI aTttm + imi E[am (Ntm(N, Im, Inh1))1

Let a (N, Ktm, Km) be the expected value of atm (Nm(N, IQ’, Km)). With this no

tation, the expected administration cost function becomes

E[G(N,Ktm,KT1m)] N * (ctqPr (kh,Im,Im))

1=1 khEK(Km,Knm)

+ K7I atm + Ktmi a (N, Ktm, K’2T’)

To sum up, the maximal profit the rnonopoly, rr(N), can 5e written as

(N)
=

N * pr (, i, im) (ph — (c1))
khK(Km,Krn) t=1 (1.1)

— a1m
— iKtmi a (N, Ktm, K’)

Expressed in this way, there could 5e situations where -ir(N) does not exist since the

maximization problem lias no solution. Indeed, whenever the contract set K contains a

non-monitored contract, K lias an infinite number of elements so that the function to

be rnaxirnized involves a sum over an infinite number of elements and this sum will not

necessarily give a real number. I must therefore address this problem imrnediately. We

have already seen that each contract can be expressed as a combination of non-monitored

contracts and no more than one rnonitored contract. I can then rewrite (1.1) in terrns

of non-monitored and monitored contracts instead of the whole set of contracts. However

there are stili rnany possibilities whereby non-rnonitored contracts and monitored contracts

can 5e cornbined to obtain the saine kh belonging to K(Km, Km). The first possibility is

when there are suci that, for a given k9 belonging to Ktm U {k0}, kh can be written

as

kIl = k9+ /3k =

kKm

The second possibility is when kIl can be expressed as two different combinations of

rnonitored and non-monitored contracts

kIl = k9+ j3k = IJ+
kJeK’”
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with k, k belonging to Ktm u {ko}.

If no other structure is added, I could have a problem with double counting. Let me first

define the lexicographic dominance of a vector. I say that a vector fi’ is lexicographically

dominated by fi2 if

fi <fi?
or fi=fi? and /3<i3?

or fi = fi? fi = i? and fi <fi

Let K = K7 U {ko} be the set of rnonitored contracts and the nuli contract. I define

W (kb, Ktm, for any kil belonging to K(Km, as the set of ah pairs of k’ be

longing to K and fi N1’ such that kil = k + ZkigKm Let w (kil, Ktm, Knitm)

be the pair (k9, fi) belonging to W (kil, Ktm, Knm) such that fi is lexicographically domi

nated by for ail other pairs (kf,) in W (kh,Km,Knm). (kil, Km, Knm) is unique

because the lexicographic ordering is complete and transitive and if fi = , then k = kf.

Let W (Ktm, K”tm) {w (k’t, Ktm, K”) kil E K(Ktm, K’m’)} and let () = { C R I
I17]}.

With ah the definitions introduced, I can write the profit maximization problem like

a double maximization where the first one is made on the number of non-monitored and

monitored contracts and the second on the composition of those contracts. Formaily,

n (N) = max max
77m ,Tlnm K’ ‘P(T1m ) ,K’m ‘P(’inm)

N I [(ko, fi) E W (KT, Knm)j Pr (kil,

k!EK /3gNflm

/ / . .. (1.2)
f l]nm L f llnm

* (P9+fiiP—ci* {q+fijq1
1=1 \ j=1

—
i”m — K”’ a (N, K771, K71tm)

where I [, fi) E W (Ktm, 1(nimn)] is an indicator function which takes the value 1 if the

condition is respected and O otherwise.

I have once again a summation over an infinite number of elements, but many of them

are irreievant for the problem. Indeed, since the marginal utihity goes to zero when the

quantity goes to infinity, for any ‘ beionging to O the utihity converges to a level (Oi)

when quantities go to infinity. The utihity function being continuous in O, the function

(6) is also continuous in 6’. Accordingly, there is a 0’ e e maxirnizing (0’). Let

UMAX be the maximum utihity a consumer couhd obtain when quantities go to infinity.
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Because the utility function is quasilinear in price, the maximum revenue the firrn could

earn is given by NMAX. for a number 77 of contracts offered, the minimal administration

cost3 is given by 77a7m. This implies that the maximum number of non-monitored and

monitored contracts is equal to NX since, otherwise, the firm’s profit will be negative

with probability 1. Let B {t3 E N”I Z7’î < Nï’.r4x }• It now follows that Problem

(1.2) can be equivalently written as follows

n (N) = max max
71m ,T1rm KmEP(71m),KmEIi(71um)

N * I [(9, ) W (Ktm, K7im)] Pr (kft, Ktm, Ktm)

kEK /3eB
(1.3)

?7rini L TInm

* P+t3jP—ct* q+/3jq
j=1 1=1 j=1

— K’ a’ — K77 a’ (N, Ktm, K’m)

The maximization problem is now well defined. I now show that this problem lias a

solution.

Proposition 1.1 For any finite number of consumers, there is a sotution to the profit

rnaxirnization probtem (1.3).

Proof. I proceed in four steps. The first step is finding the contract k* (9’) which is

the contract (q* (yi) , p* (oi)) such that

q* (gi)
= argrnax u (9,q) — ciqt (1.4)

p* (9) = u (9 q* (9’)) (1.5)

By the concavity of the utitity function and by the assumption that the marginal utility

goes to O when the quantity goes to inftnity, there is a solution to (1.4) amI (1.5). Atso,

with the assumption of strict concavity, k* (O’) is unique4. I define n* (O’) the profit given

by the contract k* (Oi), i.e.,

n* (gi) = p* (gi)
— ctq (ei)

Let q[IA’ be the maximum quantity of goods t a consumer of type O’ E e obtained in

3Remember that the cost to offer a rnonitored contract exceeds the cost to offer a non-monitored
contract.

4k* () is the perfect price discrimination contract.
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k* (), i.e.

qfVIAX
_ max q (0i)

By the continuity of the utitity function in & and the compactness of e, q(VIAX is upper

bounded. I can proceed by the sanie approach with pMAX and MAX

pMAX
= max

p* (0i)

EO

= max ir (&i)

E e

I then define the set L.

= {(q, P) qt e [o, q(X] VI = 1,2, ..., L, and P e [o, pMAx]}

Note that L is a compact set by construction.

As atready discussed above, I show in the second step that the flrm couÏd onty offer a

finite number of monitored and non-monitored contracts. If the number of consumers is

N, then the maximum profit the firm coutd obtain without counting the administration cost

A (Nm(N, K, frflm), K, K’’) is I ij the maximum number ofmonitored

and non-monitored contracts the fin coutd offen with the possibitity to make a profit. With

the assumption that anm < am (T (N, 1cm, I(nm)), the maximum number of monitored

and non-monitored contracts is given by

NM — îa?m > o

— ( + 1) a <O

Because N7rMAX is upper bounded, that means the monopoty witt neyer offen an infinite

number of non-monitored or monitored contnacts (i < oc).

The third step consists of proving that

N * i [(k9, ) e W (Krn, K71m)] p (kh Im, Kj

k9EK{ f3EB

Inrn L ‘hrn

* + —
cj * (q +

1.6

t; \ j=i

— IK’m &m
— K a (N, Ktm, KT’)

is continnous in q9 and pg for alt k belonging to Ktm and continuous in q and P3 for

alt k betonging to K’’m.
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The term I7Lm a is obviousty continuons since it is a constant. The expected mo

nitored contract cost function j (N, K”, K”) is function of the number of consumers

buying a monitored contract. Because I take the expectation and the distribution function

of O’ is non-degenerative, then a (N, Km, K””’) is continuons 3 qZ and pz

I now examine the terms in the summation. To do this tet me begin by defining t as
fJxiim J9 Tlnm+TIme vec OT tJj=1’1 t g=m+1

Then and be the contract sets with ii,,, monitored contracts and 7],,, non

monitored contracts. I define and Kmt the monitored ami non-monitored contract

sets such that =
+ 5’ fo att

‘
betonging to J and = + c5 for alt ? betonging

to K”.

To prove the continuity of the terms in the summation in (1.6), I must discuss two

cases.

The ftrst case is when, for att betonging to J, for alt /3 betonging to Ê and for any

sequence {St} that converges to the zero vector whenever t tends to infinity, the indicator

function i [(,) e w (t,K71mt)] = i [(,) e w (,K7im)] for att t. In this

case, the sum of the indicator function times the pro babitity becomes a sum of pro babitities.

By definition, if the indicator function is equat to 1 for a given pair (k9, /3), then

there is no other pair (kf, j3f) with k1 betonging to k and /3 betonging to B such that

k + L’ /3k3 = k1 + /3tki and such that /31 is lexicographicatty dominated by /3.

Then, I have to anatyze the effect of changes in q9, p, q and P on the probability

P (k” 1m Inrn) evaluated at k9 = ]‘, k = and K =
j(fl?fl =

Let 7” ]‘ + /3i. By definition, if!’ ê K (&J, Knim), then:

u(O,,...,)_P”rnax
k K0

By Lemma 1.1, the probabitity that an agent has a preference profite such that there

are two contracts betonging to ir” (o’, Im, K”m)is o. Then,

Pr (kh, K”’, K”’”) =

Pr ( u (O,, ...,‘f) —
> maxz0 [u (O,, Z) — z] )

Because n (O,’) is continuons in O ami in j’ and because the distribution fnnction

of the O ‘s is non-degenerative, I can use the Slutsky Theorem5 to prove that the probabitity

is continuons in j9,9 for alt ]? betonging to K” ami in ji,3 for alt betonging to

The second case is when there is a pair (, /3) with betonging to J ami /3 belon

ging to Ê and a sequence of snch that, for att t > i, I [(kv, /3) ê W K”m)] #

5See, for instance, Jacod & Protter [4] page f61.
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I e W (J,Knm)]

To begin with, suppose that, foT the pair (9, /3), I
[(r,

i3) e W (J, J)] = 1 an

i [(g, ) e W (i, Knrnt)] = O foT ait t> E. ij I
[(r’, /3) e W (i,)] = 1, then

this means that, for alt pairs (, t3f) with ] betonging to Ï? and 13f betonging to Ê

such that
g

+
=

+ /3 is texicographicatty dominated by 13f•

If I [(,t3) e W = fo t> t, this mearis that there exists a sequence

of pair {(, /3Z)}t>î with betonging to it and /3Z betonging to Ê such that ]‘ +

Zi /3] = + ZL /3 and 3z is texicographicatty dominated by /3. Note however

that

Y)nm ‘mm
=

j=1

7]alm ‘1,im

11m + /3zkJ = +

j=1 j=1

Accordingty, I find that 7i’ + /3! is equat to
Z

+ ZÏ with /3z texi

cographicatty dominated by t3. This teads a contradiction which impties that there does

not exist a pair (9,/3) for which, for alt t > E, I e W ()] = 1 and

I[(/3) eW(J)]—o
Now, suppose that, for the pair (°,t3) andforattt> E, I t(9) e W t,KT’)] =

O andl [(/3) e W (Jt,Kflmt)] = 1. This means that there is apair (],/3f) with!

betonging to 7 and 13f betonging to Ê such that
‘

+ Z /3 =
+ zji; and

/3f texicographicatty dominated by 3. Without tost of generatity, suppose there is onty one

such pair. If I e w = 1 for alt t> E, this means +

is not equat to + /3fl. Then, the probabitity that a consumer has preferences O

such that either ( + or (7 + betongs to I(. (&,i,7?)
is given by

pr ( E eI+t3 E K(i))

+Pr e ej[ +/3 E K*

T/nrjj

-Pr
(oi e e (+t3) and (+/3) betong to i*
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By Lemma 1.1, if + /3] is not equats to +Z t3Çk, then the probabitity

that a consumer has a preference profite such that + 7L /33k and +

betongs to K is zero. But by taking the timit of the preceding sum of

probabitities, I obtain

7 T/n ni

1im Pr (& e + e K* (O,I,J)
i=1

‘in in

+Pr & e e K* (ijIçnm)

i=1

iii ‘in in

= Pr e eI° + e K (0i))

t
+Pr (9 e eIi + e K* (6ijj)

i=1

‘mm ‘mm

eK*(OiKnim))

‘mm

Pr O e + K (6ij)

i=

because i + = k +
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Then, by introducing the indicator function, I avoid double counting. I therefore have

‘irnt I [(,) e W Pr O e K*

TInm

+1 [({ ) e W ()] Pr e + e K* (Oj,t, Kmnit))

I [(r, ) e W (r)] Pr (0 e + e K (gi , Knm))

+1 [(,) e W()] Pr e e K* (OiKnm))

where i [(, ) e W (it, Knmt)] and I [(n, i3) e W (i’ K7mt)] are equat to one

white i [(p, t3) W (J, Knm)] is equat to zeo and i [(r, /3) e W (], Jn)] j

equat to one.

Then, (1.6) is continuous in q9 and p foT alt k’ betonging to Ktm and in q1 and P

for alt k betonging to K’.

For’ tire fourtir step, let (77nm 77m) be tire maximum profit obtained when tire optimal

contract must be composed of non-monitored COntTaCtS and 77m monitored contracts.

= max

7)nm

N* ZI[(k9,/3) e W(Kfh,KnTn)]Pr
j=1

/ L /

1=; \ J=i— IKm a’tm — iKm a (N, Ktm, K’m)

In tire previous step, I proue tiraI tire function (1.6) is continuons in qZ and Z for alt

kZ belonging to Km or to K. Moreover, non-monitored and monitored contracts must

betong to z. Tiren, I use tire theorem of tire maximum to proue tirat (N, 77nm, 77m) exists.

Since 77 Z5 finite, tiren tire number of combinations of (77nm, 77m) witir 77nm + 77tm <77

atso finite. Consequently, tirere is a maximal etement in tire set

{*(N,77m,77tm) I 77flm+rlîfl<771
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I can now examine if the maximal profit ir(N) is strictly positive for any N. This could

not necessarily be the case since I have assumed above that the monitoring cost function

is increasing in N. It could for instance happen that the profit is strictly positive when

there are 10 consumers but equal to zero with 11 consumers. However, as shown by the

following resuit, I can state under certain conditions that profits vlll stay strictly positive

when the number of consumers exceeds a critical level.

Proposition 1.2 Suppose that t E {1, 2, ..., L} such that, foT alt qh with q1 = 0,

/ 8u(Oi,qul) N
Pr(Oee I h >ctl >0

)

There is a N such that VN > N, the profit is strictty positive.

Proof. Suppose that K = 0 aiid K” has onty one etement which maximizes

Pr(kut,ø,Knm) *
(Pu1_(ct*q))

kIEK(ø,Km) 1=1

By assumption, I know that this ter’m is positive. Then, I can set N such that

N * Pr (k1t, O, Knm) * (Ph — ( * q)) — a”tm <

khEK(O,Krm) 1=1

(N+ 1) * Pr (kht,o,Knm) * (Ph — (ci *)) —a” > o
k)EK(O,Km) 1=1

The condition for a strictly positive maximal profit is not a strong one. It says that

if there is a positive probability to finding a consumer with a marginal utility over at

least one good that is higher than the marginal cost to produce this good, then the firm

makes profit when the number of consumers is high enough. The intuition for the proof is

simple. When the number of consumers increases, the administrative cost to provide one

non-monitored contract, which is constant with respect to N, becomes negligible. It will

then become possible to make strictly positive profits whenever the number of consumers

becomes sufficiently large.

Let me now study if the maximal profit increases when the number of consumers

increases. The following result shows that this will depend on the form of the monitored

contract cost function.
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Proposition 1.3 If a (N, Ktm, Ktm) is concave in N, then the profit function is non

decreasing in N. If there exists an for which the profit is positive, then the pTofit function

is increasing for ail N N.

Froof. Let Km(N) and K?m(N) be the optimat monitored and non-rnonitored contract

set when the number of consumers is N and tet K — K (Km(N), KhlTn(N)). By definition,

n(N+1) > (N+1) Pr(kh,(N),(N)) (Ph_(ci*q))

t1

— IKm a”tm
— ImIa (N + 1, (N), (N))

where the right hand side is the profit when the number of consurners is N + 1 and the

contract sets are Km(N) and Kntm(N).

n(N+1) (N+1) [ Pr(kh,(N),(N)) (Ph_(ct*q1))]

khEk tzrl

Km a (N + 1,(N), (N))
—I(”ma”m—(N+1)

N+1

By the concavity ofa (N,Ï(N),ï(N)) in N, then

a (N, (N), (N)) a (N + 1,(N), (N))

and therefore

n(N+ 1) (N+ 1) [ Pr (k”,(N),(N)) - (ct
IhEk 1=1

a (N,ï(N),(N))
— i”” a”” — (N + 1)

N

n(N+ 1) > N [ Pr (kh1,(N),m(N)) (Ph - (ct *

khEK 11

a (N,i(N),Y(N))
— i”m a”tm — N

with a strict inequality if n (N) > O. Note that the .right hand side of this inequatity is

simpÏy n(N) so that the resutts foltow. •
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Without any assumptions on tire concavity of tire monitored contract cost function, it

is impossible to obtain any conclusions about tire evolution of tire maximal profit ir(N)

with respect to tire number of consumers. It could irappen that the increase in the cost

of monitoring contracts is more important than tire increase in tire revenue minus tire

production cost. In this case, the profit will decrease.

Tire second interesting question regards the composition of tire optimal contract set.

The first resuit found is that the monopolist will aiways offer at least one non-monitored

contract. Tire following proposition demonstrates this resuit.

Proposition 1.4 Suppose K’ and K” are the optirnat monitored and non-monitored

contract set. Then, there is at teast one non-monitored contract, i.e. K’”1 0.
Froof. Suppose that Km 0. By definition, K (Km, o) im. In this case the profit

function is

N [Pr (kIL, Ktm, Knm) (ph — (ct)) — a (N,, o)]
khE ti

First, I know that the number of monitored contracts if finite. If not, the fixed cost witt

be infinite. consequentty, foT each monitored contract kh betonging to Km,

pr (kh,Im,Im) (P11

—

(ciqil))
— a (N,,O) >0 (1.7)

If there is a contract in winch tins condition is not respected, I coutd drop tins contract

out without decreasing the profit.

I define Ktm as the monitored contract maximizing (ph
— zf (ci * q)). Let

= {} andi
= {}. The profit with k andi 9Vfl by

N i [t e W (J,J?)] Pr (k1,T,KtLm)

kEI[ /3EB

t TJnm L

f P9+3jPi—Zct* f q’+/3q
ji 1=1 \ j=1

— a”tm — Ja (N, 7, K””)

By assumption, a’ (.) > a’’”. Hence, the administration cost of offering i and
Km is tower tian tire cost of offering K’” and O respectivety as tire monitored and non

monitored contract sets. Tien, if tire first term witi tire contract sets J and is not

smatter tian witi Ktm and 0, the point is proven.

Consumers wio buy a contract under tire contract set K(Km, 0) can do three things



25

under the contract set K(Km, I(’”) : they can continue to buy the same contract, they can

stop buying OT the can change their choice fora new contract. By construction, K(Km, 0) c
K(i,7). Consumers who buy a contract undeT K(Km, 0) will neyer choose not to

buy a contract when they face the contract set K(J?,I) because they decide to buy a

contract betonging to i (o,Im,0) and this contract is stiti avaitabte in K(,Knm).

Then, consumers must choose between a contract betonging to i (o, im, o) OT ano

ther contract. It is sure with probabitity equat to 1 that consumers witt not switch to another

contTact kh Km\ {}. If they do, this means (o, I771, o) contains two contracts but

the probabitity that i (o, Im, o) has two contracts is 0.6

Consumers reatty onty have two possibilities keep buying the contract they buy with

the contract set K(Km, O) or buy a contract k which is a combination of the non-monitoTed

contract and of at most one monitored contract.

=kh+ kheK,e{1,2,...}

But P
—

(c * >
—

(c * ) which means that the first term of (1.7) is

greater with than with K. •

This resuit is very interesting. It says that every firm will offer at least one non

monitored contract, which is what happens in the real econorny. Many stores offer some

special discounts to big buyers and offer to others the possibility of buying without being

monitored. The stores open an account for big buyers and offer a discount depending of

the total purchases.

Which form of administration cost function is more likely to occur? The intuition

says that concavity for the monitored contract cost function is a realistic assumption. The

biggest cost of implementing monitoring structure is more a form of fixed cost. Sorne ob

servations strengthen this intuition. Convenience stores almost aiways offer non-monitored

contracts and superrnarkets offer discounts on a specific quantity of goods. Also, if there

is an important flxed cost to implernent monitoring, only big surface selling stores will use

monitored contracts. On the other hand, one can argue that it becomes more complicated

to keep track of consumers as their number increases. Nevertheless, sorne technological

implements can contribute to diminishing the monitored contract costs.

1.4 Remarks on assumptions

To develop the model, I use strong assumptions on the utility function, the production

cost function and the monitoring cost function. I impose those assumptions to sirnplify

6See the proof of Proposition 1.
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the presentation of proofs. IVlany of these assumptions could be relaxed to more general

functions, however.

Regarding the utility function and the production cost function, I need assumptions

which would guarantee the existence of a solution to the profit maximization problem. To

have a solution, it must be the case that, there is a 4 snch that, for ail q 4, for ail Q q

and for ail 9 E e,

dv(Ql,...,QL)
>

du(9i,q,...,q)
Vl=1,2,...,L

dQ1 dq1

In other words, the marginai utihty at 4 must be iower than the marginal cost to provide

at least 4. For consumers, the assnmption of strict concavity in q is not necessary. The

concavity is enough to have existence.

The assumptions about the monitoring cost function are more problematic to discuss.

In fact, it is very difficuit to specify the form of this fuuction. It makes sense to have

a monitoring cost function iucreasing in the number of base contracts but the linearity

doesn’t look too realistic. But I do not need the linearity to prove its existence. I simply

need the assumption specifying an increase of the monitoring cost when the number of

base contracts increases.

A (Nm(N, Ktm, Krn), Ktm, K) > A (Nm(N, ),,)
if (Tjnm,7]rn) (5,ij)

(77nm,7]m) (7nm,’]m)

where is the number of non-monitored contracts and iy is the uumber of monitored

contracts. Without this assumption, I am not able to upper-bound the number of base

contracts. In this case the uumber of contracts could be infinite and it is impossible to

guarantee a solution to the profit maximization problem.

1.5 Conclusion

In this paper, I try to model the firm’s decision when it involves monitoring. I find some

sufficient conditions to get an existence proposition. It appears that the main assumptions

to gnarantee a solution are more about consumer preferences and the production function

than about the monitoring cost function. I also find some results on the characterization

of the optimal coutract set under specific assumptious.

Another issue involves the definitiou of monitoring. I define monitoring as the capacity

to constraiu consumers to buy no more than one contract, when in fact, other definitions

could also be used. For example, I could assume that a monitored contract could be bought
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with or without another monitored contract. But using alternative definitions complicates

the presentation of the resuits without providing additional insights on the problem of

monitoring.

In my opinion, future work on monitoring should study the uniqueness of the monopoly

solution problem. Uniqueness is not guaranteed under the assumptions introduced in this

paper and it seems that stronger assumptions on the utility function would have to be

made in order to obtain it. Another way to extend the present study of monitoring is by

developing the characterization of the optimal contract set. Also, the approach proposed

in this paper could be taken in the context of a regulated monopoly context in order to

examine whether the use of rnonitored contracts could increase welfare.

Finally, introducing monitoring in a duopoly, oligopoly or perfectly competitive fra

mework seems to be the natural next step. But it seems to me that this step will be very

difficuit to take. The multidirnensional preference profiles and good vectors complicate the

analysis of the stability of any optimal strategies. Furthermore, firrns will not compete

only on quantities and on price, but also on the number of contracts and on their nature.
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2.1 Introduction

The house allocation problem consists of the assignrnent of indivisible goods to a set

of agents who can receive only one object in the final allocation. Such problems are very

common : allocation of rooms between roommates, lectures between professors, offices

between colleagues, etc.

This class of problems xvas introduced by Shapley and Scarf [8]. In their model, agents

own ail goods collectively. Whule Shapley and $carf prove the existence of a competitive

equilibrium, Roth and Postlewaite [Z] show that this competitive equilibrium is unique

when preferences are strict over the set of goods. Roth [6] proves that this unique solu

tion can be implernented by a strategy-proof allocation rnechanisrn. Furthermore, there is

a unique strategy-proof, individually rational and Pareto optimal allocation mechanism

leading to the unique core allocation (Ma [5]). Abdulkadirolu and $t5nrnez [1] show the

equivalence between the competitive allocation from random endowments and the random

serial dictatorship while Svensson [9] proves that all mechanisms that are strategy-proof,

nonbossy and neutral must be serially dictatorial. Abdulkadiroglu and Sônmez [2] mo

del the case where there exists at the sarne time tenants and new corners on the same

rnarket. They introduce the top trading mechanism in this set-up and show that it is Pa

reto efficient, individually rational and strategy-proof. Ehlers [4] introduces the possibility

of having weak preferences over the set of goods and shows some restrictions on agent

preferences with which efficiency and coalitional strategy-proofness are compatible.’

The purpose of this paper is to look at rationalizability in the context of the house

allocation problem. In other word, I am interested in answering the following question

is it possible to say if, for a given set of allocations, there is a preference profile which

supports this set as a Paretian allocation set? In existing papers on the house allocation

problem, only the paper by Ben-Shoham, Serrano and Volij [3] mentions explicitly the

composition of the Paretian allocation set. They show that for any two allocations in the

Paretian set, there exists a sequence of allocations belonging to the Paretian set such that

they are pairwise connected, i.e. there are only two agents switching their goods and ail

others stay with the same good. This means that a set with two allocations that are not

pairwise connected cannot be rationalized.

To go further on rationalizability, I need to introduce the concept of a cycle. A cycle

is a subset of allocations in which a subset of agents switch their goods according to a

specific scheme. The presence of cycles in a given set of allocations which is presumingly a

Paretian set gives us information on the potential preference profiles which would support

this set as a Paretian allocation set. With the concept of a cycle, I derive sorne conditions

regarding the number of allocations that have to belong to an allocation set in order for it

‘This list of papers treating of the house allocation problem is not exhaustive.
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to be a Paretian allocation set. Also, by using cycles, I am able to say if sorne allocations

must belong to the set of Paretian allocations.

The paper is organized as follows. In Section 2.2, I present the house allocation problem

and I define the concept of a cycle. Section 2.3 talks about the properties of the cycle and

Section 2.4 presents the implication of the presence of cycles in the Paretian allocation

set. Section 2.5 concludes.

2.2 Definitions and Notations

Let N = {1, 2, ..., INI} denote the set of agents with NI 2. The set of goods is X =

{ x, X2, ..., xNI} where ah goods are different. I define an allocation a (ai, ..., a,
..., aNI)

where ah e X is the good allocated to agent h with a a for j j. for any set of agents

I C N and for any set of goods Y C X with I = YI, A(I,Y) denotes the set of ah

possible allocations of goods in Y to agents in I.

Agent h’s preferences are represented by a binary relation P11 which is complete, tran

sitive and antisymmetric (strict preference). Given xi, X2 E X, xi P, X means that agent

h strictly prefers xi to x2. Also, PhIy Pgy means agents h and g have the same prefe

rences over the set Y. I define a profile as P = (P1,
..., PN) and the domain of ah possible

profiles is denoted by P (N, X).

Definition 2.1 An allocation a is Pareto optimal for a given profite P if b E A (N, X)

such that

bh P,, ah for at teast one h e N

bk Pk ak OT bk = ak Vk = 1, 2, ..., n

I denote by P0 (P) the set of ahi Paretian allocations when the profile is P. Then,

P0 (P) must be an elernent of A (N, X) which is the set of ail non-empty subsets of

A (N, X). It is important to note here that, for all preference profiles P, the set P0 (P) is

neyer empty. This means that, for every preference profile P, there is at least one allocation

which is not Pareto dominated by another allocation.

I say that a set T is rationahizable if there is a preference profile P such that the

Paretian allocation set for P is T, i.e. T P0 (P).

The interesting question is : under which conditions can a set T be rationahzable? If

there are few goods, it could be possible to infer directly if there exists a profile supporting

the set. But when the number is higher than 4, the direct inference is quite complicated.2

Consequently, another way must 5e found to solve the problem.

Before doing so, I must define some concepts. The first concept I introduce is the cycle.

2The numbers of preference profiles tvith 4 goods is given by (4!) = 331776.
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Definition 2.2 Let the set I 6e o snbset of N and Y 6e o. subset of X with IYI I. Let

j = (i1,i2,...,i11) with i1,i2 ,...,ij1 e I and y (yi,y2 yj) wzth E Y. I

say that a set T Ç A (N, X) lias a cycte C(i, y) if $ = {a’, a2, ..., aI’I} T such that

a1 y;, a = Y2, •.. a111 = yj

ai1 = Y2, a12 = •.. Yi

‘H’ ‘H’ ‘H—’
= Yi—i, a22 ‘i’ a11 = YI—2

= a = y, ... a
= YIH,

For example, if the set T has the cycle 0 ((1,2,3), (x;, X2, x3)), this means there are

three allocations a1, a2 and a3 in T such that

al = X1, a=x2, a=x

2 2
= X2, a2 = s3, a = x1

X3, a 1, a = X2

It is important to underline that i and y respectively are vectors and not subsets of

N and Y respectively. To illustrate the importance of this distinction, consider the two

following sets

T1 f(x,,x2,x3) , (z2,x,x,) , (x3,si,x2)}

T2 = {(x2,x,,x3) , (s1,x,x) , (x3,x2,xl)}

The set T, has the cycle C ((1,2,3), (xi, x2, 53)) and T2 the cycle C ((1,2,3), (xi, x3, x2)).

But those two cycles are different. For this reason, vectors must be used to define a cycle.

Also, it should be noted that it is possible to write the sanie cycle in rnany ways.

Lemma 2.1 gives the number of ways to write the sanie cycle. Before presenting Lemma

2.1, I need the modulo operator. Let N he the natural number set. for a, b E N, Tflodab S

the remainder of the division of b by a.

Lemma 2.1 Any cycle of I eternents cari 6e written in (III — R,)I2 ways where

= {r e {1,2,...,II — 1} E {1,2,...,II — 1} with mod1j1rq = O}

Proof. Suppose the set T bas a cycle C(i, y) with i = (1,2, ..., I) and y = (x1,x2, ...x111).
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Then, the set T contains I allocations such that

2

a= x2,
...

a11 = X11

a1=x2, a=x1

III IIa1 = a2 xi,... a1 xIH1

I can write this cycle by using y’ = (x2, x3, ..., x11, xi). Then, ail cycles C(i, y’) with

y’ which lias its components switching neighbor to neighbor relative to y give the same

cycle. This gives III different ways to write the same cycle. I can do the sanie thing by

switching elements of i and I find also II ways to write the cycle.

Now, consider the number p which is a positive integer strictly lower than II. Suppose

p does not belong to R, i.e. there are no pairs of positive integers q, s which are strictly

lower such that pq = slIl. Let j” = (1, p + 1, mod1j1 (2p) + 1, ..., mod11j ((III
—

l)p) + 1)

and y” = (xi, xp+i, XrnodIII(2p)+i, ..., Xmodiii((IIl_1)p+i)) and consider the cycle C(i”, y”).

Since p does not belong to R, this means ail components of i” and y” are different. So, the

cycle C(i”, y”) is the sanie as C(i, y). This is true for ah p’s which are positive integers

strictly lower than III and do not belong to R.

Finally, I obtain (III — R111) 112.

The following example illustrates this fact.

Example 2.1 Suppose Ihave the setT = {(xl,x2,x3),(x2,x3,xl),(x3,xi,x2)}. Then,

by Lemma 2.1, there are 18 ways to write the cycte

C ((1,2,3), (xi, X2, x3)) C ((1, 2,3), (X2, x3, xi)) C ((1, 2,3), (x3, X2))

C((2,3,l),(xi,x2,x3)) C((2,3,1),(x2,x3,xi)) C((2,3,1),(x3,xi,x2))

C((3,1,2),(xi,x2,x3)) C((3,1,2),(x2,xS,xi)) C((3,1,2),(x3,xl,x2))

C((3,2,1),(x3,x2,xj)) C((3,2,1),(x2,xl,x3)) C((3,2,1),(xi,x3,x2))

C((2,1,3),(x3,x2,xi)) C((2,1,3),(x2,xl,x3)) C((2,1,3),(xi,x3,x2))

C((1,3,2),(x3,x2,xi)) C((1,3,2),(x2,xi,x3)) C((1,3,2),(xi,x3,x2))

It must 5e noted that Il
— lR1iil is always higher or equal to 2 when III is higher or

equal to 3. The number 1 and III — 1 neyer belong to R111.

To simplify the presentation, I propose using the lexicographic ordering to have a

unique notation for a given cycle.

Definition 2.3 For two vectors u and w of t cornponents, I say that y is texicographicatty



33

dominated by w if

w1>v1 or

W1V,W2>V2 O’

W; = V, W V2, •••, W1 > Vj

The first step is to choose from ail possible ways of writing a given cycle the ways for

which the vector j is lexicographicaily dominated by (or equai to) the others. Secondiy,

from those variants, I choose the one for which the component subscripts of y are lexico

graphically dominated by the other vector y.

Let’s apply this process to the cycle in Exampie 2.1. The first step tells us to se

lect the vector i which is lexicographically dominated by the others. This vector is

(1,2,3). Then, from the different ways to write the cycie with i (1,2,3), which

are C((1,2,3),(x;,x2,x3)), C((1,2,3),(x2,x3,xi)) and G((1,2,3),(x3,xi,x2)) , I must

choose the one which has the vector y whose component subscripts are lexicographicaily

dominated by the component subscripts of the other y’s. I find that the unique soiution

is C((1,2,3),(xl,x2,x3)).

Consider another example.

Example 2.2 Suppose the set T is composed of the fottowing allocations.

= (Xl,x4,x2,x3)

= (x3,x2,x;,x4)

= (x4,x;,x3,x2)

a4 =

Then, the set T has the cycte C (i, y) with i = (1, 3, 2, 4) and the vector y =

(xi, X2, X4, X3).

Now, I can answer an interesting question how many different cycies could set T

have for a given vector of agents i and a given subset of goods Y? There are I! different

vectors i and II! different possible vectors y. There are (III!)2 possibilities. 3ut, I have

aiready shown that there are (III — RtiiI)I2 ways to write the same cycle. So there are

different cycles for a given subset of agents I and a subset of goods Y.

I have to ernphasize that the definition of a cycle is independent of what other agents
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get. for example, consider the two following sets

T = {(xi, X2, X3, X4, x5) , (x;, x2, X4, X5, X3) , (Xi, X2, X5, X3, X4)}

T2 = {(x2, X1, X3, X4, X5) , (x2, X;, X4, X5, X3) , (xi, X2, X5, X3, X4)}

These sets have the sarne cycle C ((3, 4, 5), (x3, X4, x5)) even if they do not have the

same allocations.

Let S (i, y) be the set of ail allocations a5 such that

a1 = y, a = y, ..., a111 = YI or

a2 Y2, a3 = ..., a111 = Yi or

y’, a1 = Yi, •.., a111
= YIJ—i

Definition 2.4 Suppose that the set T Ç A (X, N) lias a cycte C (i, y). An allocation ac

T is a cycle attocation for C (i, y) if aC betongs to S (i, y). The set of alt cycte attocations

for C (i, y) is denoted $T (i, y).

Then, two sets could have the sanie cycle while they do not have the sanie cycle

allocations.

Also, it is possible that a Paretian set contains more than one cycle. In particular, it

could happen that the Paretian set P0 (P) has two cycles C (j, y) and C (i, y) with I C I

and Y C Y. To examine this case, I define the concept of subcycle.

Definition 2.5 Suppose that the set T C A(X,N) lias a cycle C(i,y) where j

(ii, i2, ..., ii) and y = (y;, Y2, ..., yji). I say that C (i5, y5) is a subcycle of C (i, y) if i8 =

i, ..., jj) with i, i, ..., i i c I, y5 = (y, y, ..., y) with y, y, ..., y1
ys C Y and C (i8, y8) is a cycle for ST (i, y).

Consider the next example to illustrate a subcycle.

Example 2.3 Suppose that the set T lias a cycle C((l,2,3,4),(xi,x2,x3,x4)). Then,

ST (i, y) is the set of allocations a5 belonging to T sucli that

a X;, a = x2, a X3, aj = X4 or

a = X2, a = x3, a = X4, a = x or

a = x3, a = X4, a = X;, aj = x2 or

8 8 s_a1 = X4, a2 = X;, a
— x2, a4 —
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Then, this cycle contains different subcyctes C ((1,3), (xi, x3)), C ((1,3), (x2, x4)),

C ((2,4), (xi, x3)) and C ((2,4), (X2, X4))

To know if the cycle C(i, y) lias subcycles, I study the set The next lemma telis

us the condition necessary for III to have subcycles.

Lemma 2.2 If R1 {II}, then C(i,y) lias subcyctes.

Proof. Without lost of generality (WLOG), let’s take the cycle C(i, y) with i =

(1,2,...,II) andy= (Xi,X2,...Xp).

Consider p which belongs to R1 and suppose p is not equal to I. If p belongs to

this means there is a positive integer q strictly lower than I such that mod111pq = O.

Now, let’s take j’ = (1,p + 1,modp(2p) + 1,...,modjj((q
— l)p) + 1) and y’ =

(Xi, Xp;, Xmod1i1(2p)+i, ..., Xmodjjj((q_i)p)+1). Since p is not equal to I and q is strictly

lower then IJ, the set I’ is not equal to I. I obtain the cycle C(i’, y’) which is a subcycle

ofC(i,y). •

The following example illustrates the resuit of Lemma 2.2.

Example 2.4 Suppose a set T lias the cycle C(i,y) with i (1,2,3,4,5,6) and y

(Xi, X2, X3, X4, X5, x6). This means there are 6 allocations a1, ..., a6 belonging to T snch

that

a=Xi, a=x2, a=x3, a=X4, a=X5, a=x6

a=X2, a=x3, a=x4, a=x5, a=X6, a=xi

a = X6, a = x, a = X2, ct = X3, a = X4, a = X5

Then set R is given by {2,3,4,6}. Take p = 3. Then, cycle C(i’,y’) with i’ (1,4)

and y’ = (Xi,x4) is a subcyle ofC(i,y).

The last definition concerning cycles is the following

Defiriition 2.6 I say that T C A (X, N) lias a complete cycle C (I, Y) with I C N

and Y C X uhere IY = I if for all i = (i1,i2,...,i11) with ii,i2,•.,I1 I and y =

(yi, y2, ..., yi1) with Yi, y2, ..., yj e Y, T contains the cycle C (i, y).

In other words, there is a complete cycle C (I, Y) when a set of goods are allocated

in ah possible combination to a set of agents, i.e., there is a complete cycle if S
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{ a1, a2, I!—1, aIJ!} C T sucli that

= y, a Y2, •.. a
= YIJ—2 a = a = YI

2 9 2
a yi, a = Y2, ... a, = YI—2 u = YI’H 1v YIH-i

‘4 y, ‘4= Y2, ... ‘4= YiHi ‘4= YII—2, ‘4 YII

‘4 = yi, ‘4= Y2, ‘4= YIHi, ‘4= ‘4= YII—2

‘4 = y, ‘4= Y2, ... 4= I’H ‘4= YI—2, ‘4=
‘4 = y, ‘4= Y2, ... 4= ‘4= 4= Yi—2

IJ! Il! ‘il= YIIl, a = YI—i ... a, = y3, a = Y2, a, = yi

with i,j,t,n,v e I.

for the definition of a complete cycle, the arguments in the function C (.) are sets. A

complete cycle contains all possible allocations of goods in Y between agents in I. In this

case, it is not necessary to mention a specific order of agents or goods.

It must be noted that if a set has a cycle, this does not imply that the set has a

complete cycle. This point is discussed in the next section.

2.3 Properties of cycles and complete cycles

The presence of a cycle C (i, y) in a Paretian set P0 (P) gives information about the

preferences of agents. The first insight given by a cycle is about pairs of goods which are

neighbors in the vector y.

Proposition 2.1 Let the set I be a subset of N and Y a subset of X with IY = II. Let

= (ii, 2, ..., ‘) iDth ii, j2, ..., i e I and Y = (Y’, Y2, ..., ‘) WZth Yi, Y2, ..., yij e Y. If

P0 (P) lias a cycle C (i, y), then Vk, t E I

kyji1,yi = Pty1i1,yy

and Pkyh,y1+1 = PtIyj1,y1,y

Vii = 1,2,3,..., I — 1.

Proof. WLOG, suppose that j = (1,2, ..., I) and y = (x;, x2, ...x1j). Consider

x, xjy where h = 1, 2, ..., I — 1. Suppose that agent 1 prefers to x1,. Because

P0(P) lias the cycle C(i, y), there is an allocation belonging to P0(P) such that xh+,

is allocated to agent 2 and x to agent 1. Since this allocation belongs to P0(P), then

agent 2 must also prefer to x/L. Again, because P0(P) lias the cycle C(i,y), there
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is an allocation belonging to P0(P) such that Xi is allocated to agent 3 and x1, to

agent 2. Since this allocation belongs to P0(P), then agent 3 must prefer x1+1 to x1. If

I continue for ail agents belonging to I, I find that ail agents belonging to I must have

similar preferences for ail pairs xh+i with h = 1,2, ,.., — 1 and for the pair Xi,

With this proposition, I get information on the profile P by using the presence of a

cycle in the Paretian set. However, I only have information on preferences over each pair

tyi,yï,+i) and the pair (YiI,yi), so I cannot make a conclusion about the preferences

over ail pairs of goods belonging to the set Y. The following example demonstrates the

problem.

Example 2.5 Suppose the cycte C ((1,2,3,4), (X1, X2, X3, x4)) betongs to the Paretian set

P0 (P). Then the fottowing profile supports the cycte.

P1 P2 P3P4

Xi X3 Xi X3

X3 Xi X3 Xi

X2 X2 X2 X2

X4 X4 X4 X4

Then when the good xi is attocated to someone who betongs to {1, 3}, the good X3 is

attocated to the other agent in that set. The cycle does not contain an allocation where the

good xi is allocated to someone in {1, 3} and the good x3 to someone in {2, 4}. This means

that agents in {1, 3} could have different preferences over the set {xi, x3} than agents in

{ 2, 4}. The sarne is true for the set of goods {X2, x4}.

To analyze preferences over a pair of goods which are not neighbors to each other in

the vector y, I use the concept of subcycle. In Section 2.2, I showed that a subcycle is a

cycle. So, if a cycle has subcycles, Proposition 2.1 can be used to infer agents’ preferences.

Proposition 2.2 Let the set I be a subset of N and Y a subset of X with YI = I. Let i =

(ii, i2, ..., ip) with j1, i2, ..., iji E I and y = (Yi, y2,
••, YII) with Y;, Y2, .•, Yij E Y. Suppose

P0 (P) has a cycle C (i, y). Let q(r) be the smallest integer such that rnod1(q(r)r) O for

r belonging to and not equal to I. Then, for alt pairs y, Y€+ with ci = 1,2, ..., I —r,

PiyI{yy+} = PZ[d()]+l{YYa+} /3 = 1,2,...,q(r) —1

=
/3 = 1,2,..,,q(r) —1

P = P /3=19 q(r—1
2 {yc,y+r} ‘{mod1i1(!3r)]+r {Y,Yc+r} ‘ ‘ ..., \
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Proof. WLOG, suppose that i = (1, 2, ..., I) and y = (xi, X2, Let q(T) 5e

the srnallest integer such that, for r E rnodjj(q(r)r) = O. If r belongs to

and is not equal to I, then for every y = 1,2, ..., r and every = 1,2, ..., q(r) — 1,

the cycle C(i8,y8) with i8 = + r,7 + inod1j(2r),
..., + modj1((q — 1)r)) and

y8 = (xt3, X+mod1i1(2,.), ..., X+mod1i1((q_i)r)) is a subcyle of C(i, y). Because C(i8, y8)

is a subcycle of C(i, y), PO(P) must have the cycle C(i8, y8). I can then apply Proposition

2.1. •

Let’s apply this proposition to the following example.

Example 2.6 Suppose PO(P) lias a cycte C(i,y) with j = (1,2,3,4,5,6) and y =

(x1, x2, x3, X4, x5, x6). Then, this means there are six attocations a1, a2, a3, a4, a5, a6 E

PO(P) such that

al = xi, a = X2, a

a=x2, a=x3, ... a=rxi

a=x3, a=zx4, ... a=x2

a=x4, a=x5, ... a=x3

a=x5, c4=x6, ... c4=zxi

a=x6, a=x1, ...

Then, if I take r 3 and q = 2, I get

al=xi, aj.=x4

a=x4, a=rx1

I obtain that agents 1 and 4 have sanie preferences over the {xi,x4}. I cari continue this

way and I find that

1. Agents in {1, 2,3,4, 5, 6} have the sanie preferences over sets {Xi, x2}, {X2, X3},

{x3,x4}, {X4,X5}, {X5,x6} and {x;,x6}.

2. Agents in {1, 3, 5} have the sanie preferences over sets {xi, X3}, {x2, x4}, {x3, x5},

{X4,X6}, {X1,X5} and {x2,x6}.

3. Agents in {2, 4, 6} have the sanie preferences over sets {xi, X3}, {x2, x4}, {x3, x5},

{x4,x6}, {x1,x5} and{x2,x6}.

4. Agents in {1,4} have the sanie preferences over sets {xl,X4}, {X2,X5} and {x3,x6}.

5. Agents in {2,5} have the sanie preferences over sets {X1,X4}, {X2,X5} and {x3,x6}.

6. Agents in {3,6} have the same preferences over sets {X;,x4}, {X2,x5} and {x3,x6}.
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This resuit gives additional information about the profile P since it provides informa

tion on preferences over pairs of goods which are not neighbors in the cycle. Subcycles

can be analysed on their own since they are themselves distinct cycles, but they could

be supported by different preference profiles across agents than the larger cycle. However,

by using subcycles, I can only show that agents which are neighbors in a subcycle have

the same preferences over ail pairs of goods which are neighbor in this subcycle and it is

possible that two distinct subsets of agents in the cycle hold different preferences over the

same subset of goods.

While Proposition 2.2 gives us information about preferences over pairs of goods that

are neighbors in a subcycle, Proposition 2.3 deals with the other pairs.

Proposition 2.3 Let the set I be a subset of N and Y a subset oJX with IYI = II. Let

i (i1,i2,...,i1) with E I and y = (y1,y2 y111) with Y;,Y2,•••,YI E Y.

Suppose that P0 (P) has a cycle C (i, y). For att pairs of goods yçj, yj3 E Y with > n

such that (3 — n) does not betong to

= Pt{} Vk,t e I

Proof. WLOG, suppose that j = (1,2 II) and y = (x;,x2,...xI). Now, take xa

andx witha= 1,2,...,II—l andl andlet=/3—n. Byassumption, c5

does not belong to the set

Suppose that xa P1 x. Because P0(P) Fias the cycle C(i, y), there is an allocation

belonging to P0(P) such that x is allocated to agent + 1 and xp to agent 1. Since

this allocation belongs to P0(P), then agent + 1 must prefer xa to x. Again, because

P0(P) has the cycle C(i,y), there is an allocation belonging to P0(P) such that x is

allocated to agent rnodj1 (2e) + 1 and x to agent + 1. Since this allocation belongs to

P0(P), then agent modj (2e) + 1 must prefer x to

I can continue until I show that

x P7 x y = 1, + 1, rnodj (2h) + 1, ..., modj1 ((II — 1)) + 1

Since there is no positive integer q < I such that rnod11 (q) = O, then the set

{1,+1,rnodj (2)+1, ...,rnodj1 ((II — 1)c)+1} has I elements. So all agents belonging

to I have the same preferences over the set {x, x,}. •

It must be noted that if I is a prime number, all pairs of goods are treated by

Proposition 2.3 since = {I}. In this case, all agents in I have the same preferences

over the set Y.

Corollary 2.1 Let the set I be a subset of N and Y be a subset of X with YI = I. Let

i = (i1,i2,...,i11) with E I and y = (y1,y2,...,yI) with E Y. If
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P0 (P) lias a cycle C (i, y) amI I is a prime number, then Vk, t E I,

Py = Pty

Proof. I apply Proposition 2.3 for ail pairs of goods yh, y’ E Y. •

This resuit is very strong. With only one cycle, I can conclude that a subset of agents

have the same preferences over a subset of goods. Unfortunately, as I have showed above,

I can not extend this result to any number of individuals in I.

Another case cari lead to the conclusion that agents in a subset of N have the same

preferences over a subset of goods.

Proposition 2.4 Let the set I be a subset of N and Y be a subset of X with IY II.
Leti = (i1,i2,...,i11) withi1,i2,...,ij E I andy = (yi,y2,...,yi) withy1,y,...,yJ E Y.

If P0 (P) lias a complete cycle C (I, Y), the agents in I have the same preferences over

Y.

Proof. Suppose the opposite is true, i.e. there exists i, j E I and x’, x” E y such that

X’ P X”

X” Pj X’

This means the good x’ will neyer be allocated to j when the good x” is allocated to

j. That contradicts the existence of a complete cycle. •

The presence of a complete cycie gives us more information about agent preferences.

In fact, a cycle could give the sarne information if the number of elements in that cycle is a

prime number. Unless it has this characteristic, a cycle by itself does not give information

on preferences over ail goods. But, if a single cycle cannot give the same information than

a complete cycle, rnany cycles can provide it.

Proposition 2.5 Let the set I be a subset of N and Y a subset of X with Y = I.
Let j = (i1,i2,...,i1) with i;,i2,...,ijj E I and y (y1,y2,...,y1I) with yr,y2,...,y1I E

Y. Let ci be the towest prime number except 1 such that modaII = 0. If P0 (P) lias

— i) * (II — 2)! + i] cycles wzth same i and same Y, then the agents in I have the

same prefere’nces over Y.

Proof. Suppose I is prime. By Corollary 2.1, if P0(P) has a cycle C(i, y), then ail

agents have the same preferences over the set Y.

Now, suppose I is not a prime number and let ci be the smallest prime number such

that mod(III) = 0.

Suppose x1, x2 E Y. Let I and 12 be two non-empty subsets of I such that ail agents

belonging to I’ prefer goods x to X2 and ail agents belonging to 12 prefer goods x2 to x1.
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Suppose PO(P) has T cycles C(i, yt) for t = 1, 2, ..., T. By convention, y = xi for ah

t. for ail cycles C(i, yt), I define /3t the positions of x2 in the vector yt 50 that y = X2,

and let =
— 1.

By Proposition 2.3, if there is a t such that 5 does not belong to R111, then ail agents

must have the same preferences. Suppose t5t belongs to R111 for all t. Let the set H be equal

to {ci, 2ci, ..., — ci} which is a subset of R111.

The maximum number such that ail beiong to H is (Jt
— i) (JI — 2)!. If T

( — i) (II — 2)!, then there is at least one cycle C(i,yt) with = ci. By Proposition

2.2, then agents belonging to the same set j, j + ci, 1 + 2ci,
..., j + (I — ci) for j 1,2, ..., ci

have the sarne preferences. But, agents in different subsets couid have different preferences.

If I add another cycle C(i,y°), then does not belong to H. If 6 does not

belong to R111, by Proposition 2.3, all agents must have the sarne preferences

{xl,x2}. If ° belongs to R111, by Proposition 2.1, for h = agents belonging to

h, h + 5°, 1 + moU111 (2°), ..., h + (I
— ) have the same preferences. Since 5 does not be

long to H, then h and h+5° does not belong to the sarne set j, j + ci, 1 + 2ci,
..., j + — ci)

for j = 1, 2, ..., ci. So the two sets which contain agent h and h + ° must have the same

preferences. I can continue to conclude that all agents must have the sarne preferences. •

To illustrate the idea of this proof, consider the foilowing example. Suppose X =

I = 6 and suppose T has the fohiowing cycles

— the 6 cycies given by C((1,2,3,4,5,6),(xi,.,x2,.,x3,.))

— the 6 cycles given by C ((1,2,3,4,5,6), (Xi,., X2, ., x4,.))

— the 6 cycles given by C ((1,2,3,4,5,6), (x1,., X2, .,

— the 6 cycles given by C ((1,2,3,4,5,6), (xi,., X2, ., x6,.))

— the 6 cycles given by C((1,2,3,4,5,6),(xi,.,x3,.,x2,.))

— the 6 cycles given by C((1,2,3,4,5,6),(xi,.,x4,.,x2,.))

— the 6 cycles given by C((1,2,3,4,5,6),(xi,.,x5,.,x2,.))

— the 6 cycles given by C((1,2,3,4,5,6),(xi,.,x6,.,x2,.))

If T has only these cycles, this means agents 1, 3 and 5 could have different preferences

over x, X2 than agents 2, 4 and 6. To have ah agents with the sarne preferences, I must

add at least one more cycle.

2.4 Cycles and Paretian sets

An interesting question concerning the composition of the Paretian set is what happens

to the remaining agents. If the Paretian set has a cycle C (i, y), it is interesting to know

if there is an allocation in A (N\I, X\Y) such that agents outside the cycle get the

same goods in ah allocations which can constitute the cycle. In other words, if I define

YC = X\Y, I = N\I, the question is : “Is there a z e A (Ic, YC) such that the set
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cornposed by ail allocations belonging to PO(P) where agents in I get z has the cycle

C (i, y) ?“ The answer is : I cannot guarantee the existence of such an elernent. Take the

following example

Example 2.7 Suppose the preferences for 6 agents are given by

P1 P2 P3 P4 P5 P6

X Xi Xi Xi X6 X6

X3 X3 X3 X3 X2 X4

X2 X4 X2 X4 X5 X5

X4 X2 X5 X5 X1 X1

X5 X5 X4 X2 X3 X3

X6 X6 X6 X6 X4 Y2

Then

(x;,X2,X3,x4,X5,X6) E PO(P)

(X2,X3,X4,Xl,X5,X6) PO(P)

(X3,X4,Xi,X2,X5,x6) E PO(P)

(X4, Xi, X, X3, X5, X6) e PO(P)

and

(xi,X2,x3,x4,x6,x5) E PO(P)

(x2,x3,X4,xl,xC,xS) e PO(P)

(x3,x4,x;,x2,x6,x5) PO(P)

(X4,Xi,X2,X3,X6,X5) E PO(P)

I obtain a cycte C(i,y) with i (1,2,3,4) and y txi,x2,x3,x4). But the subset of

PO(P) in which attocations give X5 to agent 5 and X6 to agent 6 does not contain the cycle

C (i, y). This is atso true for the subset of PO(P) in which allocations give X6 to agent 5

and X5 to agent 6.

Example 2.7 shows that the existence of such elernents is not guaranteed. Nevertheless

if it exists and the agents in I have the same preferences over the set Y, the Paretian set

contains a complete cycle C (I, Y).

Proposition 2.6 Let the set I be a subset of N and Y a subset of X with Y = III. Let

i = (ii, i2 i11) with ii, i2, ..., i1 E I and y = (yi, y2, ..., yi1) with yi, Y2, ...,
E Y.

Suppose that alt agents in I have the same preferences over the set Y. If the subset of
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P0 (P) composed of allocations in which agents betonging to I get z E A (Ic, YC) has the

cycte G (j, y), then P0 (P) has a comptete cycte C (I, Y) in which I get z.

Proof. WLOG, suppose that Y {x1,x2, Let the set YC be equal

to X\Y = I{l,2,...,I—1jII} and I = N\I. By

construction, I {I + 1, I + 2, ..., NJ — 1, N}.

Now suppose that a P0 (P) where agents in I get goods in the allocation a E

A (I, Y) and agents in I get goods in z. This means there exists an allocation b e A (X, I)

such that

b P a for at least one i

b Pj a or b = a j = 1, 2, ...,

Figure 2.1 illustrates the allocation a.

yi

y9

zh YIL

FIG. 2.1 — Allocation z and the cycle G (i, y)

There are three possible cases for the allocation b. The first case consists of a reallo

cation between agents in I.

[]
FIG. 2.2 — Allocation z first case

But this kind of reallocation can not Pareto dominate the allocation a because there

exists an allocation belonging to the Paretian set in which agents belonging to I get z.

If a reallocation between agents in I dorninates a, then the allocation should not belong

to P0 (P).
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The second case is a reallocation between agents in I.

L.
Fia. 2.3 — Allocation z : second case

Again, it is not possible for this new allocation to dominate the allocation a. I assume

that ail agents in I have the sarne preferences over goods in Y. Then no reallocation

between agents in I could Pareto dominate the allocation a.

finally, the last possibility is a reallocation between agents in both sets.

Fia. 2.4 — Allocation z : third case a

Because the agents in I have the same preferences, Yi is preferred to yj by all agents

in I.

Suppose the agent who gets y in the new allocation is agent c. Because of the cycle,

there is an allocation in this cycle such that c gets good yk. Then this allocation could

not be in the Paretian set because this allocation will be dominated.

FIG. 2.5 — Allocation z third case b
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This means that the allocation wliere û gets y is Pareto dorninated and contradicts

the existence of a cycle C (Y, I) in the set S. •

To illustrate the proposition consider the case where the Paretian set PO(P) contains

the allocations (xi, X2, X3, X4, x5), (x2, X3, xi, X4, x5) and (x3, Xi, x2, X4, x5). Then, P0(P)

has the cycle C ((1,2,3), (xi, X2, x3)). By Proposition 6, the allocations (xi, X3, X2, X4, x5),

(x2, xi, X3, X4, x5) and (x3, x2, x1, X4, x5) must also belong to PO(P). Then, P0(P) has a

complete cycle C({1,2,3},{xi,x2,x3}).

Before presenting some constraints on the number of allocations in the Paretian set, I

need the following proposition.

Proposition 2.7 Let the set I be a subset of N and Y be a subset of X with YI II.
Let i = (j1, i2, ..., ij) with i1, i2, ..., i1 E I and y (yi, Y2,

..., y’) with yi, Y2, ..., yi E Y.

Suppose P0(P) lias a cycte C(i,y). Let be an agent betonging to I and x an etement of

Y. If alt agents betonging to I\{} have the same preferences over the set Y\{x7}, then

agents betonging to I have same preferences over Y\{x}.

Proof. For ah pairs of goods belonging to Y\{x7}, I can apply Proposition 2.2 or Pro

position 2.3 to find that there is at least one agent belonging to I\{5} with the same

preferences as . Because all agents belonging to I\{5’} have the sarne preferences over

Y’\{x7}, then ail agents belonging to I have the sarne preferences over Y\{x7}. •

The next proposition describes the restrictions on the number of aliocations P0(P)

must contain.

Proposition 2.8 If NI > 3 and P0(P) A(N,X), then P0(P)I (INI —1) *

(INI — 1)! VP. If P0 ()I = (INI — 1) * (INI — 1)!, then there exist an agent i and a good

x1 betonging to X such that there is no attocation al’l betonging to P0 (P) with a

and the pTefeTence profite is given by

1. PgiyPiiiy Vg,hEN Yr=X\{xt}

2. PgIx=rPijx Vg,hEN\{i}

3. Pgx1,x # PiI{xt,x} Vg E N\ {i} for some Xk E X\ {x1}

Proof. Let ‘I’ = A\P0 (P). By assumption, ‘I’ < (n — 1)!.

Step Ï : Consider the good xl. Suppose that agent 1 gets good xl the least often in

the allocations beionging to II. Then, the number of allocations in Ii where agent 1 gets

Xi 1S less than

(INI — 1)!

NI
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which is strictly lower than (INI — 2)!. This means there is at least one cycle C(i, y) with

j = (2,3,...,INI) and Y ({x2,x3,...,xNj since there are exactly (INI —2)! of such

cycles.

Now take x2. Again WLOG, suppose that x2 is the good which is the least assigned

to agent 2 in the set ‘I’ when good x1 is assigned to agent 1. The number of allocations in

this case is less than

(INI — 2)!

(INI
—

1)

which is strictly lower than (INI — 3)!. This means there is at least one cycle C(i, y) with

i = (3, ..., NI) and Y ({X3, ..., X } since there are exactly (INI — 3)! of such cycles.

I can continue until NI —t—1 isa prime number. Let x belong to {Xt,X+i, ,..,xINI}
and suppose that agent a gets good xa the rnost often in the allocations belonging to

POt?) when Xy is allocated to agent 1, X2 to agent 2, ..., Xi to agent t — 1. Then, by

Corollary 2.1, all agents who belong to {t, t + 1, ..., Nu \{c} have the same preferences

over the set {Xt,Xt+i,...,XN}\{Xa}.

Step : Now, consider the general case where agents in {s, s + 1..., INI}\ have

the same preferences over {x, xi, Xs+2, ...,
XT} \ {x,}. But there is at least one

cycle C(i,y) with i = (s,s + 1,..., NI) and Y {x8,x3+i,x5+2, ...,XIN}. By Pro

position 2.7, ah agents belonging to I must have the same preferences over the set

{xj,xs+i,Xs+2,...,xN}\{X}.

$tep 3 : I can use the same approach with the two remaining xQ. Doing so, I find

that ail agents belonging to {s, s + 1, ..., INI} have the same preferences over the set

{xs,Xs+1,xs+2,...,xIN}.

I use this approach until I find that ail agents belonging to {2, 3, ..., N} have the same

preferences over the set

Step . : If ‘J is strictiy iower than (INI — 1)!, this means there is at ieast one cycle

C(i, y) with j (1,2, ..., NI) and Y = {xi, x2, ..., XIN }. Then, by Proposition 2.7, ah

agents have the same preferences over the set {x2, X3..., XN}. Now, if steps 1 to 3 are

done once again with x2 and X3 instead of xi, it can be seen that ahi agents must have the

same preferences over the set {Xi,X2,X3...,XN}.

$tep 5 Now suppose that is equal to (INI — 1)!. Suppose that there are two

allocations ai and a2 belonging to ‘I’ such that ail agents get different goods, there is no
i 9

ci e {1, 2, INI} such that aa

Let the vector j be the cycle of goods from a1 to a2. In other words, the good ahiocated to

agent c. the allocation ai goes to agent i1. Since there are two allocations composing

the same cycle C(i, y) and there are (INI — 1)! allocations, this means there is at ieast one

cycle and I obtain that all agents must have the same preferences.
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The only way to avoid the possibility of having a cycle of N elements in the set P0(P)

is for ail allocations belonging to IIi, there is a good which is neyer allocated to an agent.

Suppose this good is x7 and the agent neyer getting x7 in P0(P) is 6. Since ail

allocations belong to P0(P), all agents have the same preferences over the set X\ {x7}

and ail agents belonging to I\{6} have the same preferences over the set X.

If ah agents have the same preferences, then P0(P) must contain ail allocations. So,

this means there is at least one good belonging to X\ {x7} for which agent 6 and other

agents must have different preferences. •

I can use cycles to describe the rationalizability conditions of a set further. For example,

I can use the same approaci to say that if P0 (P) < (NI — 1) (IN — 1)!, then

1.P0 (P) = (IN -2) (NI - 1)! + tINI - 2)! or

2. P0 (P) tIN -2) (NI - 1)!

2.5 Conclusion

The rationalizability in the context of house allocation is hard to provide. Except

in cases where there are only a few allocations (1, 2 or 3) or for the set of ail possible

allocations, it is very difficult to conclude.

The use of cycles can help to analyze the rationahizabihty of an allocation set. While

Proposition 2,8 studies the number of elements necessary for an allocation set to be ratio

nalizable, Proposition 2.6 presents a case where the fact that a set contains a cycle implies

that it must contain some specific allocations too. Proposition 2.8 could be extended to

include more conditions, but to devise a complete statement of all cases promises to be

very long and complicated. from rny point of view, the most interesting avenue for the use

of cycles is to employ them hike I do in Proposition 2.6. In short, cycles can be useful to

study directly the rationahizabihity of an allocation set, since by using cycles it is possible

to say if a given allocation set is missing sorne allocations to be rationalizable.
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3.1 Introduction

Why do firms merge? Two strands of the economic literature try to answer this ques

tion. Since the beginning of the 80’s, Industrial Organization economists have tried to find

a simple model to explain why firms merge. In their paper, Salant et aÏ [171 show that

under a quantity-cornpetition framework, unless synergies are important or a rnajority of

firms are involved (more than 80 percent of firms), merged firms (insiders) lose while other

firms (outsiders) gain.1 Deneckere and Davidson [3] state clearly the problem.

The incentive to merge in noncooperative oligopoly models depends on the in

teraction of two basic forces. First, a merger allows coalition partners to absorb

a negative externality. (...) Second, the merger elicits a spiral of responses from

rival firms. (...) In quantity-setting games, (...) the response of other industry

members tends to hurt coalition partners because in these games reaction func

tions are typically dowuward sloping.2

Sorne authors have proposed alternative approaches. Kamien and Zang [11] present a

three-stage model. The first stage is the acquisition phase where firms bid to acquire other

firms. In the second stage, merged firms (the parent firm) decide how many divisions (old

independent firrns) will produce a strictly positive quantity of goods. In the last stage,

divisions of every parent firm compete in a Cournot game. This approach differs from

the Salant et aÏ [17] model, Implicitly, Salant et aÏ [17] assume that ail firms involved

in a merger act post-merger as a unique entity. With their model, Kamien and Zang

[111 find that 50 percent of market firms must be involved in the merger to gain from

the merger. Creane and Davidson [2] continue in the same way and propose a model in

which the parent firm can use a different strategy with their divisions. They show that the

merger could be beneficial if the parent firm uses a structure in which divisions announce

sequentially the quantity they will produce. This Stackelberg game, which is played by

divisions in combination with a Cournot game with the other firms, leave insiders with

a gain and outsiders with a loss. I\’Ioreover, they find that only a small number of firms

must be involved in the merger. They argue that other kind of strategies can be used to

increase the market power of the merging firm. As such, they provide an answer to the

merger paradox.4

Finance Economists have also studied mergers. They use financial incentives to study

conditions under which a merger could be beneficial to insiders.5 While some authors look

1Deneckere and Davidson [3] work on a price competition model. They find that both insiders and
outsiders gain but outsiders do better thaa insiders.

2Deneckere and Davidson [3], page 484.
3Huck, Konrad and Mûller [9] present similar models with same resuits.
4Pepall, Richards and Norman [16] define the merger paradox as the difficulty to construct a simple

ecoaomic model which leaves insiders with a gain even if they do not merge in a rnonopoly.
5Hubbard [8] gives a survey of the literature on financial constraints.
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at the management incentives,6 one of the most important approach relates to the opti

mality of using internai financing versus external financing. In a frictionless capital market

framework, l\’Iodiglani and IViiller [15] show that the capital structure (internai or external

financing) of firms does not affect a firrn market value. But some economists argue that

the equivalence between internai versus external financing does not hold. Aichian [1] and

Williamson [20] were the first to argue that headquarters are able to monitor produc

tion and effort more effectively than outsiders. Then, mergers could 5e beneficial if this

problem of monitoring leads to an inefficient allocation of capital for pre-merger firrns.

Gertner et al [7] present a model in which headquarters can use the surplus of external

capital from given project for financing another project. They argue that this internai

capital market increases monitoring incentives, decreases entrepreneurial incentives and

redeploys financial assets more efficiently. Stem [18] uses another approach. He supposes

that the headquarter is able to enact a winner-picking process which consists of the al

location of the constrained capital to the division which provides a better return. Stem

[18] supposes that the headquarters have a better knowledge than outsider investors to

allocate more effectively. Consequently, the headquarter is able to reallocate capital as the

state of nature is revealed and can reassign capital to the good project from the bad one.

Besides the question of the difference between internal and external capital, the im

perfection of the financial market could explain why firrns Inerge. The risk is transferred

to the financial market and risk-averse shareholders gain from a decrease in the net reve

nue variance. When the financial market is not perfect, shareholders can 5e better off by

merging their firm with another. If firms have negatively correlated revenues, the merger

will decrease the firm’s revenue variance by using an internai financial market. However, if

firms have positively correlated revenues, h could happen that the increase in the revenue

variance will decrease the effect of the financiai market imperfection and leave the merged

firm with a net gain.

This paper studies this question. In their paper, Inderst and Miiller [10] present a model

in which a firrn must decide to centralize or decentralize borrowing. With the first option,

investors and firms can sign a financial contract which is more efficient than contracts

signed when borrowing is decentralized. Implicitly, Inderst and Mûller [10] assume that

the cost to enforce a contract is quite low. So, the agent must respect the contract in

any period. When the cost of enforcing a contract is important and the mobility cost for

an agent to quit the contract is quite low, the lack of a binding cornmitrnent becornes a

problem. Indeed, one agent could have the incentive to break the ex-ante optimal contract

after the state of nature is revealed. This problem of commitment in risk-sharing contracts

cari lead to inefficiencies. To avoid this problem, long term contracts must 5e seif-enforcing,

which means that no agent could gain by breaking the contract in ail possible contingencies.

6For example, see McNeil, Niehaus and Powers [14].
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I use this approacli to study in which condition a merger could 5e beneficial for sha

reholders. Particularly, I want to study the effects of seif-enforcing constraints on the

efficiency of mergers. A seif-enforcing contract is such that, in ail possible states of nature,

the firm and the borrower must have an incentive to respect the contract. This approaci

was first introduced by Thomas and Worrall [19]. In their model, agents agree on signing

an insurance contract at tirne O. Then, at the beginning of each subsequent period, the

state of nature is revealed to both agents. Each agent must decide whether to respect the

contract or not. If both of them decide to respect the contract, then the transfer of wealth

occurs along the terms specified in the contract. If one decides to break the contract, then

no wealth is transferred and it is not possible for the agent to sign another contract in the

future. If a given contract, which can be viewed as a series of transfers, is such that in any

state of nature and for any period, each agent gains more in respecting the contract than

in breaking it, then this contract is said to be seif-enforcing.

Since general results are liard to provide, I study the case where utility functions exhibit

constant relative risk aversion (CARA). I begin by explicitly solving the self-enforcing

contract problem when agents have CARA utility functions and there are two states of

nature. From the optimal solution, I am able to draw the Pareto frontier in the context

wliere first-best contracts are feasible and when there is no sucli feasible contract. Second,

I look at the effects of a change in the distribution of the random revenue on the optimal

contract. I show that an increase in the variance leads to an increase of the range of the

discount factor for which the optimal contract is non trivial. Finaliy, I find that a merger

may or may not be beneficial for merged firms depending on the discount rate and the

correlation between firm’s revenues.

The paper is divided as follows. In Section 3.2, I present the model which is then solved

explicitiy with CARA utility functions in Section 3.3. I analyze the effect of a change in

the variance of revenues in Section 3.4. In Section 3.5, I study the benefit of a merger in

the self-enforcing context. Section 3.6 provides concluding remarks.

3.2 Model

The problem is to design an insurance contract between two infinitely-lived risk-averse

agents. I suppose that the state of the economy is i.i.d. over the finite set S = {1, 2,
..., I$I}.

The revenue of agent 1 can take values y, ..., ys while agent 2 lias a constant revenue iiJ.

By convention, v > Ys—1. I denote 5 the realization of agent l’s revenue in period t.

The utility functions for agents 1 and 2 are respectively u(c) and v(c) where c is

the consumption of agent i in period t. I suppose that the utility fiinctions are twice

continuously differentiable and strictly concave. Total consumption must satisfy c + c?

yt+foranyyt E{yy,y2,...,ys}.
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Let h = (s;, 2, 53,
..., St—;) 5e the history of realized states of the world at period t.

The insurance contract consists of a series of transfers which in any given period depend

on the history and the current state of the world. Let b (ht, s) be the transfer from agent

1 to agent 2 in period t when the history is h and the state of nature at period t is s. The

transfer could be positive or negative. Consumption in period t can then be expressed as

function of the revenue and the transfer (c g5 — b (ht, s) and c Iii + b (ht, s)).

Now, let E be the operator expectation over s conditionaÏ on h1 anti let be the

discount rate. I define U (; h) and V (; h) as the expecteci net gain for ail periods

t, t + 1, t + 2, ... for agents 1 and 2 respectiveiy,

U (; h) = E [z fiT_t [u (ys — bT (hT, s))
— (Ys)1]

V (; h) = E [ fiT-t [u (w + bT (ht, s)) - y

An optimal contract is a contract such that agent 1 maximizes Sis expected utility

when agent 2 obtains a given level of expected utility. This optimal contract is the solution

which maximizes

U(6,h1) = E [u(ys —b1 (hi,s)) —u(g8) +fiU(,h2)] (3.1)

subject to

V(,h1) = E [v(+bi (hi,s)) —v() +fiV(S,h2)1 V

where V is the reservation value of agent 2.

The solution to the maximization problem (3.1) is first-best, This contract is such that

‘til (ci) /v’ (c) is constant for ail periods t and for ail states of nature s.

The first-best contract introduces a potentiaily large transfer from one agent to the

other. In sorne circurnstances, it is conceivable that an agent would prefer reneging on

the contract rather than making a transfer to the other agent. If contract enforcernent is

costly, nothing can prevent an agent from doing so.

I now study this case explicitly. I suppose that each agent can leave the contract at

any moment. If an agent leaves the contract, I assume the he remains in autarky forever

thereafter. For the contract to hold, each agent must have incentives to respect the contract

in every period and for every history. To take this into account, I must add self-enforcing

constraints to the problem. The optimal seif-enforcing contract is derived by solving

MAX U(d,h1) (3.2)
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subject to

V(,h1) > V
u(ys—br(hr,s))—u(ys)+t3U(,hr+i) > O T=l,2,... VsE$, Vhr

y ( + b (hi, s)) — y (J) + /3V (, h+1) O r 1,2, ... Vs S, VhT

The additional constraints state that, in any period and state, each agent must have

a non-negative surplus from the relationship.

There aiways exists a seif-enforcing contract. The contract where no transfer is made in

any period is trivially seif-enforcing. I cali this contract the trivial seif-enforcing contract

(T$EC). A contract which is seif-enforcing and is not the TSEC is called a non-trivial

seif-enforcing contract.

Let b (bt_i, 5t—i, St) be the first-best transfer at period t in state s when the transfer

at period t — 1 was bi_1 and the state of nature was In other words, 7 (b4,

is such that

u’ (yt_l
— bi_1) — U (Ys —b (bt_;,st_1,st))

v’(+bt_i)
— y’

Thomas and Worrall [19] show that the optimal contract has the following characteri

zat ion.

1. For any state of natures, there exists a non-ernpty interval [b8, such that b (hi, s)

belongs to this interval.

if b8 > (bt_i, st—i, s/3

E (3.3)

if <7; (bi, st—i, st)

The optimal contract is as close as possible to the first-best contract subject to self

enforcing constraints which irnplicitly define the set of b8 and .

3.3 CARA utility functions

To be able to solve explicitly (3.2), I use a specific form of utility functions and add

some constraints to the problem structure. In this section, I use a constant absolute risk

2. For any history h and state of nature s,

b5

b8
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aversion (CARA) utility function, i.e.

u (c (hi, s)) = _e1t,8))

y (c (hi, s))
= _q(c(hts))

where r and q are respectively the risk aversion parameter of agent 1 and agent 2. With

this assumption about the form of the utility function, the problem becomes

/IAX E [_e_T1_b11 + + U (, h2)] (3.4)

subject to

E t_e b1 (hi ,s)) + + v (, h9)] > y
_e_T_,8b + eTYS + E[U (, h1)] > O T = 1,2, Vs E S, Vh

_e+h1 +e + E[V (, hr+i)] > O T 1,2, ... Vs e S, Vhr

It is possible to characterize first-best contracts using simple manipulations. To do so, I

must differentiate (3.4) without the self-enforcing constraints with respect to two different

states of nature at two different periods.

u’ (y — b (ht, s)) — ri’ (Yz — b (hr, z))

u’(U+b(ht,s)) —

reT(Ys_bt (‘rut s))

qe—(t (ht s))

r(y5 —bt(ht,s)) —q(+bt(ht,s)) = T(Yz —bT(hT,z)) _q(LT+br(h,z))

And I obtain

br(hr,z) = b1(h,s) +
(r+q)

(3.5)

This gives the relation between each possible transfer in each possible state of nature

and at every period. Equation (3.5) tells us that the optimal transfer at a specific period

in a specific state of nature is linear in tire revenues of both agents. Here, there are optimal

contracts for special cases.

— If agent 2 has a random revenue w8, then the first-best contract is characterized by

br(hr,z) b(ht,5) + Ys) + ws —wz).

— If agent 1 and agent 2 have tire sarne risk-aversion coefficient (r = q), then bT (hr, z) =

bt(ht,s) + (y —y).

— If agent 2 is risk neutral (q = O), then br (ht, z) = b (h1, s) + Yz — Ys.

Throughout tire rest of the paper, unless I explicitly suppose something else, I assume
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that agents have the sarne risk-aversion coefficient (q = r). This facilitates the explicit

characterization of the optimal contract.7

Also, to be able to explicitly solve the problem, I constrain the number of states of

nature to two. With more states, the problem rapidly becomes intractable.

3.3.1 Conditions for a non-trivial solution

Let’s say that a contract ‘ is stationary if the transfer in state 1 is b and the transfer

in state 2 is b,, no matter what the history is. The next two lemmas are derived from

Propositions 4.1 and 4,2 of Kocherlakota [12].

Lemma 3.1 If the optimal contract S is first-best, then 5’ is stationary.

Proof. If a contract is first-best, then the transition of transfers between states of nature

at any period is given by (3.3). Then, the transfer at period t is b1 (hi, 1) = b if the state

of nature is 1 for any history ht and b1 (hi, 2) = b if the state of nature is 2 for any history

h. •

Lemma 3.2 If there are onty two states of nature, then the optimal contract * for (3.)

monotonicatty converges to a stationary contract 5’.

Proof. Let the optimal contract be . By definition, the contract Y gives the appropriate

transfer for any state of nature at period 1. Suppose that transfers at period 1 are given

by b(h1,1) and b(hi,2).

Without loss of generality, lets assume the state of nature at period 1 is 1. By (3.3),

b (h1, 1) belongs to [b1,ï] and, if the state of nature is the sarne at period t and t + 1,

then transfers in these periods must be the same (i.e. b (hi, s) b’+1 (ht+i, s)). Then,

until the state of nature becomes 2, the transfer stays b (h1, 1).

Suppose that the state of nature stays 1 for period 1 to period t — 1 and becomes 2 at

period t. Then b (hi, 2) must be equal

— tob2 if b2 >; (b_1 (ht_1,1),2)

- or to b (bi_1 (ht_i, 1), 2) if b (b_1 (ht_i, 1), 2) e [b2,;

—ortoif<bt(b’_1(ht_i,1),2).

In case 2, this means that the contract is first-best and by Lemma 3.1, the contract is

stable.

Suppose case 1, i.e. the transfer in state 2 is the lowest possible (b2). If I stay in state

2, then the transfer stays b2. If I return to state 1 at period r > t, then b (hr, 1) must be

equal:

tobiifbi>b(b2,1);

7With different risk-aversion coefficients, I obt.ain a system of polynomial equations of different degrees.
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— or to
-

(b2, i) if- (b2, 1) [i,T]
— ortoTifI<r(b2,1).

In case 2, this means the contract becomes stable after period T with b (b2, 1) in state

1 and b2.

In case 3, this means the contract become stable after period T with in state 1 and

Case 1 is impossible. I have supposed that b2> b (b (h_, 1), 2). Then, (b2, 1) >

b_1 (hi_1, 1) > b1.

By the structure of the process, the probability that the history hr contains state 1

and state 2 while T goes to infinity is equal to one. u

These resuits hold for any concave utility function. This cornes from the fact that

transfers in each state must belong to a closed interval. Consequently, if the first best

contract transition given by b (b_1 (hi_1, s) , z) belongs to the interval, then there is a

first-best seif-enforcing contract. By definition, any first-best contract is stationary since

transfers do not depend on the history but only on the actual state of nature, for any no

first-best seif-enforcing contract, boundaries constrain the value of transfers. In the two

state case, the non-trivial self-enforcing contract (NTSEC) converges rnonotonically to a

stationary contract where the transfer is upper bounded in state 1 or lower bounded in

state 2.

In the case where the number of states of nature is higher than 2, the NTSEC does

not converge to a stationary contract. The reason is transfers in intermediate states of

nature (state 2,3, ..., S — 1), it could be optimal to have history-dependent transfers. for

example, in the 3-state case, transfer in state 2 could take different values depending of the

history. But, if I define partial history-dependent stationarity, which says that transfers in

any state depend only of the part of the history in which state 1 and S was realized, I can

obtain a lemma similar to Lemma 3.2 using partial history-dependent stationarity for any

number of states of nature.

Now, I am able to study the existence of a NTSEC. To prove the existence of such

contract, I can only look for the existence of a stationary contract which satisfies the self

enforcing constraints. By Lemma 3.2, if there is a NTSEC 5, then this contract converges

monotonically to a stationary contract ‘. The contract ‘ which must be self-enforcing

since a self-enforcing contract must be self-enforcing in any state of nature and at any

period. Consequently, looking for the existence of a stationary self-enforcing contract is

enough to prove the existence of a NTSEC.

Proposition 3.1 Let p be the probabitity of being in the state of nature 1 amI Y2 > yi.

If er(V2Y1) [i + 2(f_p)], then there are some values of V foT which the solution to

(3.) is not the T$EG.
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Proof. By Lemma 3.2, each optimal contract 6 converges to a stable contract 6’. Then,

if 6’ is not self-enforcing, neither is 6.

Take 6’ and assume that this contract gives at any period b if the state of nature is 1

and b otherwise. Let U’ and V’ 5e the gain in utility of agent 1 and 2 respectively with

the contract 6’. Suppose that 6’ is seif-enforcing. Then,

_e_T1_ + e’ + /3E8 [U’] > o
_e(y2) + eT2 + /3E3 [U’] > O

_e_T + e + /3E5 [V’] o
_e_T + e_T + /3E8 [V’] > o

I have supposed that Y2 > y. This means that agent 1 is relatively more rich in state

2 than in state 1. Then, the optimal transfer must 5e negative in state 1 and positive in

state 2.

If I take a look at the participation constraints, I see that only two constraints are

really constraining.

_eT2_ + e2 + /3E8 [U’] > O

_e_T + e’ + /3E5 [V’] > o

The other two are not because in those cases, the agent receives some amount. Then,

they do not want to break the contract. By definition, U’ and V’ are stable. I cari compute

their value by using the Bellrnan equation.

U’ = p (_e’ + e_r91) + (1
—

p) (_e_T 2) + e_T92) + /3U’

U’ [p (_e’ + e_TY1) + (1
—

p) (_e y2) + e_792)]

and

= [p (_e + i) + (1
—

p) (_e_Tbl + i)] + /3V’

V’
= 1 /3 [ (_e_T + i) + (1

—

p) (_e + i)]
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I replace U’ and V’ in the preceding constraints. Now, I must isolate b in the first

constraint,

eT(y2) + eVY2 + [p (_e_T1_ + e”) + (1
—

p) (_e_T(92_ + e_2)]

(_eT + e_Tvi) + (—e
Y2) + e2)

p (—e Yi_) + e_’) + (1
—

p) (_e_T 2) + e_TY2)

flp (_eT 2Y1)e + e 2_Y1)) + (1
—

p) (_eT + i)

And I obtain

(_eT2_Y1)eT + eJ 2_Y1)) + 1 eT

1— 43p

Graphically, this condition is represented by Figure 3.1.

I can proceed in the same way with the second constraint.

+ 1 +
[1

(_e_T + 1) + (_e + 1)1
+ (_e)

+ (_e)]
-e + P (_eT) + (_e)]

(1- + p) (_eT) + ( - p) (eT)

>0

>0

>0

>0

eTb2

(3p)e’(Y2 Y1)

1

1

FIG. 3.1 — First Constraint

>0

1
> —__-

1-/3

1
> —__- 1-

—1
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And I obtain

1

/3—/3p \‘ ) /3—13p
3

— f3p
1— (1—+p) (e_)

> e

< e

Now, I can graph this condition (See Figure 3.2)

FIG. 3.2 — Second constraint

I know that the frontier must have the point (1, 1) since the TSEC is seif-enforcing. If

I combine the two constraints, I obtain figure 3.3.

eTb2

1

The grey and hatched region is the set of ail contracts like 5’. To know if there exists

such contracts, I must anaiyze the slope of the two constraints at the point (1, 1). Lets

eTb2

1

1 e’’

1 eTh3

FIG. 3.3 — Both Constraints
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begin with the first constraint.

d(eTl) t3pel(Y2Y1)

d(e) =
—

l—/p

For the second one, I obtain

d(erbi)
— d f____________

d(eTbi) — d(eTbl) 1
—

(1 — + p) -rbÇ

d(erbi) = —

—

2 l — + p)
d(ei) [1 — (1 — + p) ei]

If I evaluate this siope at (1, 1), I obtain

d(erbl) (l—+p)

d(eî)
—

J3/3p

In order for seif-enforcing contracts other than the TSEC to exist, the siope of the

second constraint must be larger than the siope of the first constraint.

(1 — + p)
>

peT(Y2Y1)

—

(1 — p) (1 — + /3p)
< e21)

p(t3—p) —

1+ — <
/3p(/3—/3p) —

Then, the siope of the first constraint is lower than the siope of the second if eT(Y2_Y1) >

1+ 1-/3

For the moment, I do not know if the optimal contract is first-best. Proposition 3.1

telis us only under which conditions a non-trivial solution to (3.4) exists. Proposition 3.2

gives the condition to have a seif-enforcing first-best contract.

Proposition 3.2 Let p be the probabitity of being in the state of nature 1 and 112 > yi• If

eT(y2_y1) [i + then there is some vatue of V such that the optimal contract

is first-best.

fb Jb fb fbProof. Suppose that the optimal first-best contract is b , b2 and let U and V

be the gain in utility for agent 1 and 2 with the contract 5fb• The first-best contract is

seif-enforcing if it fulfiils the seif-enforcing constraints. In the proof of Proposition (3.1), I
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state that only two seif-enforcing constraints are relevant.

_eY2 + eT2 + /3E8 [ufb] > o

_e_T + e_T + /3E8 [Vfb] o

By (3.5), I know that the first-best contract is given by the following relation

fb fb
eT)2 _ c(Y2_Y1)eTb1

Let A 5e the NTSEC that fulfihis both seif-enforcing constraints with equality. Then,

sorne first-best contracts are self-enforcing if A is on the left side of the first-best contract

une. To proceed, I must find the solutions to the equations for the constraints. $ince the

TSEC satisfies the constraints, I must focus on the other solution (point A). Let (b, b)

5e the values of the transfers at point A and let UA and VA be the gain in utility of agent

1 and 2 with the contract YA. Then, point A represents the non-trivial solution of

_e_T12_ + e’2 + /3E8 [UA] = O

—e + e_T + /3E8 [VA] = O

In the previous proof, I have found that those equations eau be written as

(_eTt92_Y1)eT + er 2_Y1)) + 1 = eT

1—

= eT

1-(1 -/3+/3p) (eT)

By solving this system of equations, I find that the non-trivial solution is

A //3peT(92_1)
\

e2 =
1- /3 ) - /3v) + (/3 - /3p)

eT
— 1

+ /3pe+Y2-Y1)
- - /3p)

- (/3pYJi)) -
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If I calculate the siope of the une which connects point A to the origin, , I find

erbi — 1+
pcY2Y1) - ( - fin)

-
(pe21)) (fi - fin)

eT — (Pe2u)) (fi - fin) + (fi - fin)

— 1-
pe;)

+1-
pe2Y1)

(fi - fie) - (fi - fin)
— fiper(Y2_Y1) (nPe2Y1)) (fi - fin) + (fi - fin)

7 /3pel’(Y2Y1)

1—fip +

— fiper(Y2Y1) (Pe21)) (fi - fin) + (fi - fin) -

— 1—fip f 1

— fineT(Y2_Y1) fi
— fin —

Now, I must compare this resut with the siope of the une of first-best contracts. If

the siope of the first-best contract une is lower than the siope I find above, then some

flrst-best contracts are seif-enforcing.

eTbf’ eT

eTb —

1
>

1—fip f 1
1

eY2h1) — fiper(Y2_Y1) ‘\fi — fin —

e21) >
1—fin (1—fi+fin

- fin fi-fin

e21)
1

— fi + fin — fin + fi2n — fi2n2
- fin(fi-fin)

e2 > 1 +
—

- fip(fi-fin)

Then, if er(Y2_y1) [i + ([3/)]

2
there exist some values of V such that the optimal

contract is first-best. •

The idea of the proof is the following : the first-best relation given by (3.5) must be

compared with the non-trivial contract solving the two seif-enforcing constraints. Precisely,
b- b

I must compare ratios -b and where b is the transfer in state s under a first best

contract 8 and b is the transfer in state s when the contract is the non-trivial one solving

self-enforcing constraints. figure 3.4 illustrates the idea.

from the two preceding propositions, if Y2 — Yi increases, then the optimal contract will

become non-trivial once eTtY2_Y1) > [i + and when er(Y2Y1) [i +

b b

8Mathematically, I find that the ratio -—-- is constant for any first-best contract.
J 2
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e1

1

FIG. 3.4 — First-Best Contracts and Constraints

then the optimal contract will become first best. Those resuits can be viewed as the dual

solution from Proposition 4 of Thomas and Worrall [19] which says that there is a discount

factor 3* such that, for ail /3 > /3, some optimal contracts are first-best and there is a

/3 < /3 such that for ail /3 e [/3*,
/3*), the optimal contract is non-trivial but not first-best.9

I prove Proposition 3.2 by finding the condition such that a first-best contract satisfies

ail seif-enforcing constraints. But, what can I say about the optimal contract? Kocherla

kota [12] proves that, when some optimal contracts are first-best, then the expected utility

converges to a utility level given by a seif-enforcing first-best contract.10 I can rewrite this

proposition in a equivalent way in term of contracts

Proposition 3.3 Suppose that some first-best contract is optimal. Then, att optimat

contracts converge to a flrst-best contract.

Proof. $ee Proposition 4,1 of Kocherlakota. •

I say that a contract à is first-best convergent if it converges to a first-best contract.

This definition will be very useful in Section 3.5.

3.3.2 Pareto Frontier

In the previous section, I derive the condition to have a NTSEC. Here, I want to show

how the self-enforcing constraints affect the optimality of the contract. To do so, I use the

Pareto frontier in either case where a first-best contract is or is not seif-enforcing and I

compare with the Pareto frontier when there is no seif-enforcing constraint. I first begin

with the Pareto frontier when there is no self-enforcing constraint.

91t is possible to write conditions to have a NTSEC or a first-best seif-enforcing contract with beta on
the left side but conditions becorne a bit messy

‘°See Proposition 4.1 of Kocherlakota [12].

1
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/ 2
— f Es[e’3]

wzth V e O,
(1—t3)e

\1
— E[eYs]

Proof. First, with the assumption of constant revenues for agent 2, I can rewrite the

participation constraint. By Proposition 4.1 of Kocherlakota [12], I have that V (, h) = V.
Then,

E8 + e_T + /3V] > V

E8 + i] > (1 — /3) eTV

E8 [e_T] = 1 — (1
— /3) eV

I know from (3.5) that the relation between transfers is given hy

fb fb 1
b2 =b1 +(y2y1)

By introducing this resuit into the participation

p (e_T) + (1
—

p) (e_T)

p (e_T) + (1
— p)

(e_T(2_Y1)))

And is given by:

e_T
= 1— (1 _/3)eTV

p (e2_Y1)) + (1
—

p)

Then, I am able to define the Pareto frontier explicitly by introducing b and b in

the utility function of agent 1.

Proposition 3.4 Without setf-enforcing constraints, the Pareto fTontier is given by

— —

E8
UU(V) [e rY]1

constraint for agent 2, I obtain

=

= 1—(1—/3)JV

1— (1 —/3)e’V

p + (1
—

p) (e;_22))
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= Es [_e_s_) + es + /3ufb]

=
‘ [E8 [e] — pe1

— (1
—

p) e_2]

= 1

The maximum value for V is reached when Ub = O.

1
E8 [es]2

O = E8 [e_] — —

1—3 l_(1_/3)eTVMAx

—

E8 [e]2
E8[e ry] = ——

1 — (1
— ) eTwVJAx

— 1 ( E8
VMAX

= (1 — )e — E8 [e_TYS]

figure 3.5 represents the unconstrained Pareto frontier when there are no seif-enforcing

constraints.

b

1
V

(1_/3)er

Fic. 3.5 — Unconstrained Pareto Frontier



67

Without seif-enforcing constraints, this Pareto frontier is attainable everywhere. This

is not the case when I add seif-enforcing constraints. With seif-enforcing constraints, as

shown above, there are two possibilities either sorne first-best contracts are seif-enforcing

or no first-best contract is. In the following proposition, I present the Pareto frontier if

there is no seif-enforcing first-best contracts.

Proposition 3.5 Suppose that [ï + > (Yy) [ï + and let

eT
=

A /pe121)
\

eTb2 = ) ( - p) + (3 - p)

(1 —ru

VA =
—

p) e ( — e_T
1—fl+3p \

VMAX
= (1

—

p) e_T

fi —

(i-p)(1-+p)

Then,

- if V e [o, VA], then the optimal contract is given by

— b (ht, s) = b if the state of nature s is 1.

- b (ht, s)
=

if the history is h (2,2, ..., 2).

— b (ht, s) b otherwise.

- if V e [V”, VMA)’], then the optimal contract is given by

— b (hi, s) b if the state of nature s is 2.

- b (ht, s) = (1—+)
— if the history is h

p(1—+p)+(l—p) (i_e_rh ) —(1—p)(1—+Pp)*e*V

(i,i,...,i).

— b (ht, s) = b’ otherwise.

And

- if V e [o, VA], then the Pareto frontier is given by

p (_eT(Y1) + eT’
U8E C) (1- + /3p) (1- p/3)

+(1_p)*TY2 (1—
(i-+p) i_p_eT*(1_+p)*V

- if V e [VA, VMx], then the Pareto frontier is given by

usE(V) = peu’ ( —

p(i —/3+3p)

1—13p\ 7
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wheTe = p (1 — /3 + /3p) + (1
—

p) (i — e_T)
— (1

— p/3) (1 — /3 + /3p) * eV.

Proof. By Proposition 3.1 and 3.2, I already know that there is no first-best self

enforcing contract. By Lemma 3.2, the optimal contract converges monotonically to the

contract given by the non-trivial solution of the following 2 seif-enforcing constraints

which is

Graphically,

(_eY2_Y1)e’ + er(Y2_Y1)) + 1 = eT

1—

eT

eTb2

1

/3 — /3p = eT

1— (1 —/3+/3p) (e_T)

= 1-/3+/3P+/3)(1-/3+/3P)

7/3 eT(Y2_Y1)

=
P1_/3p

) (/3/3P)+(/3/3P)

FIG. 3.6 — Stationary contract

Let VA be the utility for agent 2 at point A. Then,

VA
=

(_e_T +b) + e + /3VA) + (1
—

p) ( —eT
+b) + e_T +

But, the stationary contract satisfies the relevant participation constraint with equality.

Then

=

1 eT

+ e_r + /3VA =
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Then, I have

VA = (1
—

p) (_e+ + e” + 5VA)

e (1
—

p) (i — e)

l-(l-p)

Then, if V = VA, the optimal contract is the contract represented by point A. If

V $ VA, then the optimal contract is different than the contract represented by point A,

but must monotonically converge to the A-contract. In the proof of Lemma 3.2, I have
seen that a contract can only differ from a stable contract at the beginning and until the

state of nature switches. In other words, the transfer in state 1 at period t can be different
from b’ if state 2 is not yet realized in the t first periods and the transfer in state 2 at
period t can be different from b if state 1 is not yet realized in the t first periods.

This results in two types of contracts

Type • The transfer at period t is bj4 if the state of nature is 1.
1:

• The transfer at period t is b < b if the state of nature is 2 at period
t and the state of nature was not realized in the first t — 1 periods.

• The transfer at period t is b if the state of nature is 2 at period t
and the state of nature was realized in the first t — 1 periods.

Type • The transfer at period t is b4 if the state of nature is 2.

2:

• The transfer at period t is b b’ if the state of nature is 1 at period
t and the state of nature was not reahzed in the first t — 1 periods.

• The transfer at period t is b if the state of nature is 1 at period t
and the state of nature was realized in the first t — 1 periods.

The type 1 contract gives more utility to agent 1 and less to agent 2 and the opposite
is true for type 2 contract. Then, when V < VA, the optimal contract is type 1 and when

V VA, the optimal contract is type 2.
Now, I must calculate the transfer in the first t periods in term of V. Let’s begin with

the case where V VA. Then,

V = p (_e_+) + e + flVj + (1
— ) (_e(i) + e + sV)

But, I find b by using the self-enforcing constraint

+ e + 5VA = o
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I obtain

And

(1—(1—p)/3)V

(‘t’)vt’-p)
1 —(1 —p)3N

(r_p)
)eV

V = t’ —
p) (_e_T + e_T + V)

V = t — p) (_e + e) + t’ — p) V

= t, — p) (_e +

= + e)

= (e)

e’ = 1
— — — o)

eV
t’-p)

eT = (1—e) —
t1-p)-[1-t1-p)/]eV

If V = 0, then b = 0. If V = VA, then

tl—p)

(1-p)
- E’- t’ -p)fl]e

e’
=

(1-p)-t,-p)(,_e)

= eT

Now, I examine the case where V> VA.

V p (__r +e + V) + ( — p) (__r(+b) + e +

(— p) V = p (_e + e) + t — p) (_e + e_T + Vj

(1 — p) JV = p (_eT +i) + t1
—

p) (_e_T + + eTVA)

Then

— p) eTV
—

t1
—

p) (_e + + eVA)
= p (_e’ +)

— (1
_eTV +

t — P)
(_e + + eVA) =

e(1—p) (1_e)
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(l—p) (_e_r+e_rj

IVioreover, I have already found that V” l/3(l) Hence,

(1
— p) —— (1

— ) t A — ) (_e() + e)

= 1 — eV + _e_Tb2 + 1 + eTw

p p l—/3(l—p)

eT = 1
(1

_

t_e + 1
— ) (_b + i)

p p

e_T = 1—
(1— /3P)rïiYV+ (l—P) (i — e_T)

p p(l-/3+/3p)

eT —

p(l —3+/3p)

— p(l_+p)+(l_p)(l_e) _(l_p)(l_+p)*eTd*V

Let VMAX be the maximal value for V. Then, VMAX is reached when b = O. To have
= O, I must have

(1
—

flp) (1 — + p) eVMAX = (1
— ) (i — e_T)

“ —“w

VMX = —

p) e
(1 — e_T

(l-/3p)(l-+3p)

The previous part of the proof gives the optimal contract relative to the value of V.
Then, if I replace those values in the utility function of agent 1, I obtain the Pareto frontier
equation. Let’s begin with the case where V [o, VA]. In this case, the utility function of
agent 1 is given by

U° (V) = p (_e”’ + e”91 + AU”) + (1
—

p) (_e_2ebi + eY2 + u° (V))

With

UA
= (_eT1 + e”” + PUA) + (1

—
p) (_e_TY2e’ + e”2 + AU”)

Because _eT(12) + e”2 + /3UA = O by the self-enforcing constrain, I obtain

UA
= (_e”’ + e”’ + Uj

UA

= (1
(_e1 + eT)
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Then,

(V)
(1 )

(_e_T1_ + e_T)

+ (1
—

p) (_e_2ei + e_ry2 + (V))

(1 — + flp) (V) (_eT + e_TY1) + (1
—

p) (_e_2eTbi + e_TY2)

u°’3 (V) p
+ e’

(l-+p)(l-p)

+
(1

— (_e_Ty2ei + eT2
(l-+p)

If I substitute ei =
—, I obtain:

1—p—c(1—/3+/3p)V

V
—

p + e-)

+
(1

—

* eT2 f — 1
—

p

‘ (l-fl+p)(l-p) (l-+p) 1_p_eT(1_+p)V

(V)
— + e_TY1)

+
(1 — * eT2 ( _eT * (1 — + p) * V

— (l-+p)(l-p) (l-+p) 1-p-e(1-+p)V

Now, for the case where V e [VA, VM]. In this case, the utility function for agent
1 is given by

U° (V) = p (_e_T1_ + eT’ + (V))+(i — p) (_e_T2_ + eT2 + j (VA))

I already know that _e_T(Y2_) + e2 + = O. Then,

(V) = + e_T)

1 —

UOP (V) =

1
—

t_ p(l-+p)

p (1- + p) + (1- p) (i_ eT) - (1- p) (1- + p) eV

Since the unconstrained Pareto frontier represents the maximum agent’s utilities under

ail first-best contracts, then the Pareto frontier when no first-best contract is seif-enforcing

is strictiy lower. Another important point to underhne is the discontinuity of the Pareto

frontier. Kocheriakota [12] says that the Pareto frontier is differentiable everywhere. In

fact, as corrected by Koeppl [13], the Pareto frontier is not differentiable everywhere

(Proposition 3.1). If I examine the Pareto frontier where a non-triviai solution exists, I
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find that the Pareto frontier is continuous but not differentiable everywhere”. The problem

of differentiability occurs at the intersection of 2 segments.

This problem of discontinuity occurs also when sorne first-best contracts are self

enforcing. The next proposition shows the Pareto frontier in this case.

Proposition 3.6 Suppose that eT(Y2_y1) [i + 2p*(_p)] and tet

e 1 — + p + ( — p) e12)

e =
— p + (1 — + p) e21)

( - p) (1— e1_Y2))

= eT (1
— ( —

p) (i — e12)))

rb0

_______________________________

e’ =

f3peTYl + (1 — /p) eY1+Y2)

rbc
/3pe_TY1+(1_)2

e 2 =

pe(Y12) + (1 — /3p) eT92

p (i — e€(12)) ( (1
—

p) eT2 — (1
— p) e1+Y2))

= eT (1
— ) (peTY2 + (1 — p)

eTY1)

fi , —Tu

VMAX P) e fi — e_T)

(l-l3p)(l-+/3p) \

Then,

- if V e [o, VB], the optimal contract is given by

— b (ht, s) = b1B if the state of nature s is 1.

- bt (ht, s)
= ()[1)1V

if the history ht = (2,2,..., 2).

— b (ht, s) = b otherwise.

- if V e [VB, Vc’], the optimat contract is given by

J ( i\ — p+(_p)e12)
—

U ‘J
—

1—(1—/3)e’V

b Ïi 2’
— pea21)+(1_p)

— t t J
—

- if V [Vc’, VMAX], the optimal contract is given by

— b (ht, s) b if the state of nature s is 2.

- b (ht, s) (1_g+P)
— if the history ht =

p(1—+p)+(l—p) (1_eb2 ) _(1_p)(1_+p)*eru*V

(1,1,...,1).

— b (ht, s) = b othermise.

And

continriity is quite obvious because each segment is continuous and at intersection of two segments,
the contract is defined evenly on both segments.
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- if V e [o, VB], then he Pareto frontier is given by

UP (V)
= (1

—

p) eT’2
(eT

— (1
—

o)

1-+p (1_p)_[1_(1_p)]eTV

+
( (_e_’r(Y1_) + ev;) + (1

— ) (_e_TY2eT + e_T92))

1—/3

- if V [V’, Vc], then the Pareto frontieT is given by

E8
U = E8 [e_TYS] — L

1—,B 1_(1_,8)eTV

- if V e [Vc, VM], then the Pareto frontier is given by

usEC) = peT11’ p(1—13+13p)

‘—/3p\ 7

where = p(l —+p)+(l _p)(1 — e’) —(1 —p)(l _+p)*eT*V.

Proof. Since er(y2_y1) [i + 2p*(_p)]

2
then there exists sorne V’s such that the

optimal contract is first-best. Let’s find the set of those Vs.
The first step is defining the transfer in a first-best contract in terms of V.

V p (_e_Tt + e_T + 13V) + (1
—

p) (_e + e_T + V)

(1
— ) eV p (i — e) + (1

—

p) (i — e_T)

1 — (1
— ) eTV = pe_T + (1

—

p) e_T

By (3.5), e_Tbe_2_Y1). Consequently

1 — (1
— ) eTV = pe + (1

—

p) eTe_2_y1)

p + (1
—

p) e12)
— eT

1—(1—/3)eV —

And

— pe21) + (1 p)

— 1_(1_/3)eTV

Let V3 be the minimal utility of agent 2 when the contract is first best and self

enforcing. This contract is the first-best contract satisfying the seif-enforcing constraint of
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agent 2. Let b and b be the transfers of the first-best contract for VB. Then, I find that

e = 1
— fi + fin + (fi — fip)

e = fi — fin + (1
— fi + fip) e21)

(fi - fin) (i_ e1Y2))

VB=
eT (i_ (fi — 3n) (i — e1_Y2)))

Now, for the maximal V, denoted V°, given an optimal first-best contract, I must use

the seif-enforcing constraint of agent 1. Let b and b be the transfers of the first-best
contract for Vc which is given by

er

fipe_TY1+(1_)’2

fipeY1 + (1
— fin) e1+Y2)

eT
= fine_TY1+(1_nP)e2

fipe12) + (1
— fin) eT2

—

p (i — e 1_Y2)) (fi (1
—

p) e2 — (1
—

fip) e12))

— eT (1
—

fi) (fipeTY2 + (1
— fin) eTY1)

Jf V [r3 V0], then the optimal contract is given by the first-best contract given

by:

b
— p + (1

— p) e12)

e
— 1_(1_fi)eTV

rb
— pe€211) + (1

— n)
e

— 1—(1—fi)eV

Now, I study the case when V < V3 Equivalent to the proof of Proposition 3.5, the

optimal contract in this case is given by
— The transfer at period t is b if the state of nature is 1.

The transfer at period t is b < b if the state of nature is 2 at period t and the

other possible state of nature has not been realized at any moment during the first
t — 1 periods.

— The transfer at period t is b if the state of nature is 2 at period t and the other
possible state of nature vas realized at some point during the first t — 1 periods.

To find b, I must solve

V = n ( —eT +b) + e + fiVB) + (1
— n) (_e7(i) + e_T + fiV)

But, I have found that b by using the seif-enforcing constraint

_e_T + e_T + fiVB = O
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I obtain

eT
—

(1—r)

— (l_p)_{1_(l_p)]eTV

When V > Vc’, the optimal contract in this case is given by
— The transfer at period t is b if the state of nature is 2.
— The transfer at period t is b b if the state of nature is 1 at period t and the

state of nature has not been realized at any moment during the first t — 1 periods.
— The transfer at period t is b if the state of nature is 1 at period t and the state of

nature was realized at some point during the first t — 1 periods.
To find b, I must isolate it in

y =
(_r(+bl) + e + + (1

—

p) (_et + e_T + VC)

With sorne manipulations...

(1 — p)V p (_e_Tt + e) + (1
—

p) (_e’+ + e + V0)

(1
— p) eV = (e + i) + (1

—
p) (_e + 1 + eTVC)

(1 — p) eV — (1
—

p) (_e_T + 1 + evA)
= p + i)

1
— (1 eV + (_e + 1 + eV’) =

(l—p) (_e_r+e_j

By the seif-enforcing constraint of agent 2, I have VC’
=

(1 — ) —— (1
— ) t _(1

—

p) (_e_T() + ej
= 1 — P eV + I e2 + 1 + eTW

p p l—i3(l—p)

= 1—
(1 e’V+ + 1

—
+ i)

p P l—/3tl—p)

=
— t’

— 4e’V +
(1

— (1 —

p

p(l-+/3p)

p(l -+p) + (l-p) (1 _e_TW) -(1 -p)(l -+p) *e*V
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Let VMAX be the maximal value for V. Then, VMAx is reached when b = O. To have
= O, I must have

(1
—

p) (1 — + p) eTVMAX = (1
—

p) (i — e_T)

(1 ‘ —Tu

VMAX =
— p e

(i —

(l-p)(l-+p)

I have already found that the Pareto frontier is composed of three parts. Let’s begin
with the second one, when the optimal contract is first-best. By Proposition 3.4, I know
that the Pareto frontier is given by

Then, when V e [V3, Vc], the Pareto frontier is given by this relation.
For the first case, i.e. when V e [o, V3], I can use the same approach from the

preceding proof.

U° (V) = p (_eY’_ + eT9’ + U3) + (1
—

p) ( e_TY2eT + eT2 + (V))

With

u3 = p (_ev’ +
_ry1 + PUB) + (1

—

p) (_e_TY2e1f + eT2 + U3)

If I compute U° — U3, I find that

U° (V) — U3 = (1
—

p) (_e_TY2 (eT
— e) + (U° — u3) (V))

‘ Ty

(V) — UB = — Pi e
(eTbf

— e)

Then,

fi \ Ty

UOP (V) = ‘S’ —

,Û) e
(eT14 — eT)

1—!3+p

+
(p (_e(v’) + eu’) + (1

—

p) (_e_TY2e + e_Tv2))

And if I replace eT by
(1 p) [1 p)]ruV’

I find that

(V
= (1

—

eT’2
(eT

— (1
—

/ l-fl+p (1_p)_[1_(1_p)/]eTV

(p
(_e_T(1_) + eri) + (1

—

p) (_e_2eT + eTY2))

1 E8

— T—-
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Now, for the case where V e [V0, VM]. In this case, the utility function of agent 1
is given by

U° (V) = p + eT’ + U° (V))+(i
—

p) (_e_T2_ + eT2 + f (VO))

I already know that _c_T(Y2) + e_Ty2 + U0 = O. Then,

U°’ (V)

U0F’ (V)
= 1

(_e_T1_ + e_rYi)

= P
1—

(1 p(l-+/3p)

p (1- + p) + (1- p) (i_ eT)
- (1- p) (1- + p) eV

0f course, the Pareto frontier in each case is dorninated by the Pareto frontier in the

case without seif-enforcing constraintsJ2 Figures 3.7 and 3.8 illustrate this fact.

U

UOP (Q)

FIG. 3,7 — Pareto Frontier with no seif-enforcing first-best contracts

At the opposite of the case where no first-best contracts are seif-enforcing, a part of

the unconstrained Pareto frontier may be reached when sorne first-best contracts are self

enforcing. This cornes from the fact that, if a first-best contract is seif-enforcing, then

seif-enforcing constraints do not apply and the problem is sirnilar to the one without

‘2The Pareto frontier in case where sorne first-best contracts are seif-enforcing is weakly dorninated while

the Pareto frontier in the other case is dorninated everywhere.

USE

VA VMA V
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U

U°’’ (O)

fio. 3.8 — Pareto frontier with seif-enforcing first-best contracts

seif-enforcing constraints.

If I take a look at Figure 3.8, I see that the Pareto frontier reaches the unconstrained

Pareto frontier at the middle. At the extremities, seif-enforcing constraints apply and no

first-best contracts are possible. The gain to respect the contract is not high enough to

compensate agents to accept a net transfer to the other. In extremities, a NT$EC exists

but it cannot be first-hest.

3.4 Variance

Thomas and Worrall [19] show that there exist 2 thresholds fi and fi with O < fi <

fi < 1 such that for any fi E [O, .&] the optimal contract is the TSEC ; for any fi E (fit, fit)
the optimal contract is NTSEC but this contract is not first-best ; and for fi E [fi*, 1) some

first-best contracts are seif-enforcing. I now examine the effect of the variance on these

thresholds.

To do so, I constrain our analysis to the case where agent 2 is risk-neutral. In this case,

the problem can be written as

USE

V3 VcVM

Ii1AX U(,h1) (3.6)
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subject to

V(5,hi) V

u(y3 —bT (h,s)) —u(y8) +13U(i5,hr+i) > 0 T 1,2,... Vs E S, Vhr

b (hi, s) + 43V (, hr+;) O T = 1,2, ... Vs e S, Vh

Let IF(F1) 5e the set of ail distribution functions for which the number of states of

nature is equai to the number of states of nature of F1 and the revenue in state s is given

by (ys)i +7 ((y8)i
—

y) for y = E8[(y8)1j and for ail > 0. Note that for ail distributions of

revenue F2 e I’(F1), the expected revenue is equai to the expected revenue of F1, in other

words E5[(y)2] = E8[(y8)1]. Distribution F2 is a mean-preserving spread of distribution

F1.

Proposition 3.7 Suppose I have two distributions of revenue, F1 and F2 e IF(F1). Let

be the expected value of the revenue under F1. Let (43*)i and 43 be respectivety the

threshold to have a NTSEC and the threshotd to have a first-best setf-enforcing contract

with the distribution of revenues F1 and tet (43*)2 and 43 be the threshotds with F2. Then

a) (43*)i> (43*)2;

b) 43>43.

Proof. a) Let 43 > (43)i and c; be the optimai contract. Then I have for t = 1,2,

Vs e S and Vh,

u ((ys)i - b (ht,s)) - u((ys)1) +43E [43T [u(yf - br (hr,s)) - u(f)]]

By strict concavity of u, then

u ((Ys)2 - b (hi, s)) - u ((Ys)2) + 43E [ 43rt [u (y - b (h, s)) - u ()]] >0

Let 2 5e the contract sucS that (ht, s) = b (hr, s) + e with e> 0. By continuity, I

know there exists an e sucS that

u((y8)2 —b (h,s)) —u((y8)2) +43U(2,Ïit+i) > O

> o

Then, I can find a NTSEC for every 43 > (/L);. Since u and y are strictiy increasing,

then t43)i> (43*)2.

b) Now, let i be the optimal first-best contract when the distribution of revenue is F1

and 43 43. Since is first-best, then transfers are independent of the history. Let b 5e
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the transfer in state s. By definition, if is a first-best contract, the ratios of marginal

utilities for agent 1 and agent 2 for each state must be equal.

_______

- u’((y2)2-b) - - u’((ys)2-b)

y’ (i + bfl — y’ ( + b) — — y’ ( + b)

If agent 2 is risk-neutral, then the first-best contract leaves agent 1 with a constant

stream of net revenue,

(y8)i—b=(y)i—b Vs,E$ (3.7)

Let be the expected value of the transfers under the distribution F1. Consider the

contract 2 where b = (1 + 7)b.

If I examine agent 2’s self-enforcing constraints with the contract 2, have that Vs E S,

b+E [flrtb2]

If I replace b with their values, I find

(1 +)b +E [Tt(i +7)b]

(1+) (b+E [Tt])

Since i is self-enforcing, then

(1+7) (b + [rtb1]) >

If I examine agent l’s self-enforcing constraints under the distribution F2, I have that

Vs E S,

u ((ys)2 b) - u ((Ys)2) + [ /3Tt [u (g - b) - u ()]]

If I replace (ys)2 and b by their values, I find

u((ys)i +(()‘ _y) (1 +7)b) _u((Ys)i ±7((ys)i - Y))

W-t [u (y + (y
- Y) -

(1+ 7)b) - u (y + (Y - Y))]]
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u((1 +7)((ys)i -bi) -7y) -u((1 +7)(y), -7y)

+E [ ((1 + 7)(y - b)
- 7y) - u ((1 + )yf

- 7V)]]

Because the seif-enforcing constraints for agent 1 inatter only when transfers are posi

tive, which is the case when revenues are high, I concentrate my attention on those cases.

Since (1 + 7)((y)i — b) — y < (ys)i — b when (y8)’ <y and (1 + )((y) — b) —

(y) = b when (y8), > y, then, by the strictly concavity of u and since is seif-enforcing.

I have that

u((1+7)((y)i -b) -y) -u((l+7)(y) 7y)

+E W-t [u ((1 + 7)(y - b)
- 7y) - u (t’ + )f - 7Y)]] >0

By the sanie argument I use in a), there exists a e > O such that the contract with

b + e, which is first-best, respects the seif-enforcing constraint with strict inequality.

When the variance increases, the gain for agent 1 to sign a contract increases since

agent 1 is risk-averse. Then, the incentive is bigger for agent 1 to sign a contract. Without

the assumption about the type of change in agent l’s revenue, an increase in the variance

does not necessarily resuit in a lower threshold.13 It could be that the increase in the

tails are so large that they cannot be cornpensated by other states of nature. Take the

following example t Suppose that there are two revenue distributions f, and F2. Let be

the probability to get y under the distribution function F. Suppose F, is characterized by
1 1 9 2 rp5 = p,0 = 0.5. Suppose also that p = Pio = 0.495, p = 0.00992a and Pooo 0.000075.

It is easy to show that the expected revenue is the saine under F, and F2 but the variance

under F2 is higher. The gain to break the contract when the revenue is 1000 could be

positive for any possible contract and then, it is possible that, for a given discount factor

, there is a NTSEC for F, but not for F2.

3.5 Merger

The question of mergers in the context of self-enforcing constraints is interesting. It

bas often been argued that conglomerates serve the purpose of providing insurance to

shareholders. With the sophistication of financial rnarkets, rnany have raised doubts about

the ability of mergers for providing insurance beyoncl that which shareholders can get

‘31t is possible to get this kind of resuit for the case where agent 2 bas a random revenue but the

condition over the increase in the variance does flot stay the same. To obtain a resuit in the case of random

revenue for both agents, I must define some conditions on revenues of both agents.
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by themseives. This is certainiy true in the presence of perfect financiai markets. Wheu

these rnarkets are imperfect, however, congiomerates may play a foie. A merger could

potentially provide better insurance than imperfect financiai markets. I examine this logic

when financial imperfections are caused by commitment problems, meaning that financial

contracts must he seif-enforcing.

In the previous section, I show that an increase in the variance decreases tlie thre

shoÏd beyond whicli it is possible to sign a NTSEC. Proposition 3.7 gives the possibiÏity

to discuss mergers of firms with perfectly correiated revenues. If two firms have perfectiy

correiated revenues, then the merged firm xviii have the sarne number of states of nature.

By Proposition 3.7, if firm revenues are negatively correlated, then the merger decreases

the variance and thresholds increase. But, since the merged firm lias smoother post-merger

revenue, the finai effect is quite difficuit to predict. In the case of perfect positive correia

tion, the merger increases the range of /3’s for which there exists a NTSEC. On the other

hand, the variance of the revenues increases at the same time. Consequently, the ultirnate

impact of the merger on agent 1’ utility is difficuit to see. To get an idea about the possible

outcornes, I use a numerical example.

I use a CARA function to rnodei a risk-averse agent’s utihty and I suppose there are

txvo symmetric risk-averse firms xvith random revenues. They have the possibility of signing

a seif-enforcing contract with a risk-neutral agent (the market). There are two states of

nature with equal probabihty (i). In the bad state, firrns get $1 each and they get $3 in

the good state. Let the risk-aversion coefficient for botli firrns r equai to 1. Firm 1 lias

to choose between two possibilities either stand alone to get financing, or to merge with

another firm and then get financing.

3.5.1 Stand-alolle case

Both firms are symmetric and thus I study the stand alone probiem for one firm, say

firm 1. Let x and x2 be firm l’s revenue in states 1 and 2 respectiveiy and b1 and b2 the

transfers. I assume that there are rnany risk-neutrai agents. Conseqiientiy, the reservation

value for them is O and I can write the stand-aione problem as follows

MAX E [_e_ _b11 + eT + U (, h2)] (3.8)

subject to

O

+e + E[U (, h)] > O T = 1,2,... s 1,2 Vh

br(hr,5)+E[V(,hr+i)] O T= 1,2,... 5=1,2 Vh
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Let USA be the expected utility for firm 1 in the stand-alone situation. I define the per

period certainty equivalent (CESA) as the amount of money for which firrn 1 is indifferent

between this arnount and its net revenue with the seif-enforcing contract. In other words,

the certainty equivalent in the stand-alone case is such that

= (1
— ) USA

Table I gives USA for different values of j3. The thresholds to have a NTSEC and

to have a seif-enforcing first-best contract are approximately = 0.52 and “ 0.76

respectively.

TA3. I: Utility of firm 1 in the stand-alone case

USA CESA 3 USA CESA

0.20 -0.261042 1.5662 0.60 -0.460352 1.6921

0.22 -0.267735 1.5662 0.62 -0.466551 1.7300

0.24 -0.274781 1.5662 0.64 -0.475109 1.7659

0.26 -0.282207 1.5662 0.66 -0.486559 1.7992

0.2$ -0.290046 1.5662 0.6$ -0.501567 1.8295

0.30 -0.298333 1.5662 0.70 -0.520951 1.8561

0.32 -0.307108 1.5662 0.72 -0.545875 1.8783

0.34 -0.316414 1.5662 0.74 -0.577699 1,8958

0.36 -0.326302 1.5662 0.76 -0.618338 1.9078

0.38 -0.336828 1.5662 0.78 -0.669118 1.9159

0.40 -0.348055 1.5662 0.80 -0.730235 1.9238

0.42 -0.360057 1.5662 0.82 -0.805026 1.9317

0.44 -0.372917 1.5662 0.84 -0.898617 1.9395

0.46 -0.386728 1.5662 0.86 -1.019065 1.9472

0.4$ -0.401602 1.5662 0.88 -1.179796 1.9549

0.50 -0.417667 1.5662 0.90 -1.404976 1.9626

0.52 -0.435069 1.5662 0.92 -1.742939 1.9702

0.54 -0.451988 1.5706 0.94 -2.306465 1.9777

0.56 -0.453389 1.6120 0.96 -3.433892 1.9852

0.58 -0.456081 1.6526 0.98 -6.816911 1.9926

Figure 3.9 graphs the certainty equivalent as a function of /3. Note that there are

two breakpoints. The first breakpoint is when /3 reaches 0.52. For ail /3 lower than or

equal to 0.52, there is no NTSEC. Agent 1 is unable to sign a contract which is non-
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2.00

1.95

1.90

1.85

l.80

1.75

1.70

1.65

1.60

1.55

1.50

state 1 state 2 state 3 state 4

firrn 1 revenue 1 3 1 3

firm 2 revenue 1 1 3 3

trivial. Consequently, the per period utilit remains unchanged while increases but

the certainty equivalent for the stancl-alone case does not change with the value of 3•14

For greater values, sorne non-trivial contracts become seif-enforcing, so the value for the

certainty equivalent increases. The other breakpoint arrives at 0.76. At this point, the

optimal self-enforcing contract converges to a first-hest contract.

CESA

3.5.2 Merger case

The second possibility for firm 1 is to buy firm 2 by paying CESA in each period, and

signing a seif-enforcing contract considering that it gets the aggregate revenue. Since I

have two states of nature for each firrn, the merged firm will face four states of nature.

TAB. II: States of nature

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

FIG. 3.9 — Certainty Equivalent

14U5A changes since it’s the weight:ed sum of present and future gains in utility.
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To study the effect of correlation between firrn revenues on the profitability of the

merger, I need to define the coefficient of correlation p which is given by

COV(X, Y)

JxJY

where ox and Jy are the standard error of revenues for firm 1 and firrn 2 respectively.

Table III gives the probability of each state of nature for different coefficients of cor-

relation.

TAB. III: Coefficient of correlation and states of nature

p state 1 state 2 state 3 state 4

-1 0 0.5 0.5 0

-:j- 0.05 0.45 0.45 0.05

-0.5 0.125 0.375 0.375 0.125

-0.2 0.2 0.3 0.3 0.2

0 0.25 0.25 0.25 0.25

0.2 0.3 0.2 0.2 0.3

0.5 0.375 0.125 0.125 0.375

0.8 0.45 0.05 0.05 0.45

1 0.5 0 0 0.5

Since there are two states of nature for each firrn and they have syrninetric payoffs,

the merged firm faces three different states of nature. Let z = 2, z2 = 4 and Z3 = 6 be

the revenues in each state. Using this approach allows for a simple moclel in which I can

analyze the effect of correlation between firm revenues.

Let bt (hi, s)) be the transfer for period t in state •15 suppose that the per period cost

of acquiring firm 2 is its certainty equivalent (CESA). Then, the problem of the merged

firm’6 is

E [_e_T bl 11. -CEsA) + e_ _GE4) + U (, 112)] (3.9)

‘5Because tbere are more than 2 states of nature, the stationary contract is depenclent on the history.
16With CARA utility functions, the payrnent 0f CE54 does flot affect the resolution of the problem.

It is possible to isolate ercE in the objective function and in t.he firm seif-enforcing constraints. Then,
eCE affects only the utility but. flot the optimal contract itself.
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subject to

and T 1,2, ..., s = 1,2,3 and VhT,

E [b; (h1, s)) +/3V (, h V

_e_T_bT,8_Ci + + 13E[U (, h1)] O

bT (hi, s)) + /3E[V (c, hT+l)] O

The expected utility of the merged firin is given by U11.

TAB. IV: Net gain of utility from the merger (positive value

in bold)

p=—i [p=_o.8 p=—O.5 p=—O.2 p=O p=O.2 p=O.5 p=O.8 p=l

0.20 0.151 0.121 0.076 0.030 0 -0.030 -0.076 -0.121 -0.151

0.22 0.155 0.124 0.078 0.031 0 -0.031 -0.078 -0.121 -0.155

0.24 0.159 0.128 0.080 0.032 O -0.032 -0.080 -0.128 -0.158

0.26 0.164 0.131 0.082 0.033 0 -0.033 -0.082 -0.125 -0.143

0.28 0.168 0.135 0.084 0.034 0 -0.034 -0.084 -0.111 -0.127

0.30 0.173 0.138 0.087 0.035 0 -0.035 -0.073 -0.097 -0.110

0.32 0.178 0.143 0.089 0.036 0 -0.034 -0.060 -0.081 -0.093

0.34 0.184 0.147 0.092 0.037 0 -0.023 -0.046 -0.065 -0.076

0.36 0.189 0.151 0.095 0.038 0.006 -0.012 -0.032 -0.048 -0.058

0.38 0.195 0.156 0.098 0.039 0.016 0.001 -0.017 -0.031 -0.039

OE40 0.202 0.162 0.101 0.045 0.027 0.014 -0.001 -0.014 -0.021

0.42 0.209 0.167 0.104 0.055 0.040 0.029 0.015 0.005 -0.002

0.44 0.216 0.173 0.108 0.066 0.053 0.044 0.032 0.023 0.018

0.46 0.224 0.180 0.112 0.079 0.067 0.059 0.049 0.038 0.037

0.48 0.233 0.186 0.117 0.092 0.083 0.076 0.068 0.055 0.056

0.50 0.242 0.194 0.127 0.107 0.099 0.093 0.078 0.072 0.075

0.52 0.252 0.202 0.139 0.122 0.116 0.111 0.092 0.088 0.094

0.54 0.261 0.208 0.149 0.136 0.131 0.116 0.102 0.101 0.109

0.56 0.245 0.187 0.132 0.121 0.117 0.094 0.080 0.082 0.093

0.58 0.228 0.166 0.115 0.106 0.087 0.070 0.057 0.061 0.075

0.60 0.212 0.143 0.098 0.092 0.062 0.044 0.029 0.037 0.055

0.62 0.195 0.120 0.082 0.061 0.034 0.015 0.001 0.045 0.035

0.64 0.178 0.096 0.067 0.034 0.004 -0.019 -0.031 0.024 0.015

0.66 0.161 0.071 0.053 0.004 -0.029 -0.053 0.012 0.005 -0.004

0.68 0.145 0.051 0.040 -0.029 -0.066 -0.091 0.001 -0.014 -0.023

Continued on next page
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/3 p=—l p—0.8 p=—O,5 p=—O.2 p=O p=O.2 p=O.5 p=O.8 p=l

0.70 0.130 0.034 0.031 -0.063 -0.104 0.001 -0.016 -0.031 -0.039

0.72 0.118 0.021 -0.011 -0.100 0 -0.014 -0.031 -0.044 -0.052

0.74 0.109 0.013 -0.037 -0.138 -0.012 -0.025 -0.041 -0.054 -0.062

0.76 0.104 0.012 -0.063 -0.003 -0.018 -0.031 -0.046 -0.05$ -0.065

0.78 0.104 0.016 -0.090 -0.006 -0.020 -0.032 -0.016 -0.058 -0.065

0.80 0.103 0.021 -0.123 -0.008 -0.022 -0.033 -0.047 -0.058 -0.063

0.82 0.103 0.027 -0.165 -0.011 -0.024 -0.035 -0.047 -0.057 -0.062

0.84 0.102 0.034 0.013 -0.014 -0.026 -0.036 -0.047 -0.057 -0.061

0.86 0.102 -0.010 0.009 -0.017 -0.028 -0.038 -0.048 -0.056 -0.061

0.88 0.102 -0.050 0.004 -0.020 -0.031 -0.039 -0.049 -0.056 -0.060

0.90 0.101 -0.107 -0.002 -0.024 -0.034 -0.041 -0.049 -0.055 -0.057

0.92 0.101 0.033 -0.009 -0.029 -0.037 -0.043 -0.050 -0.055 -0.058

0.94 0.101 0.023 -0.017 -0.034 -0.041 -0.016 -0.051 -0.055 -0.057

0.96 0.100 0.008 -0.027 -0.040 -0.045 -0.048 -0.052 -0.055 -0.056

0.98 0.100 -0.015 -0.039 -0.046 -0.049 -0.051 -0.053 -0.054 -0.055

Table V gives the value of the thresholds for each value of p. In the previous section, I

find that the thresholds /3* and /3* must decrease (increase) while variance increases (de

creases). Since the variance increases with the correlation coefficient, I have that thresholds

decrease with p. These findings confirm the resuits of Proposition 3.7.

TAu. V: Thresholds for NTSEC

/3 p=—O.8 p=—O.S p=—O.2 pO p=O.2 p=O.5 p=O.8 pl stand-a1on

fl 0.68 0.48 0.40 0.36 0.32 0.30 0.26 0.26 0.52

/3 0.92 0.82 0.76 0.72 0.69 0.65 0.60 0.59 0.76

3.5.3 Resuits

Figures 3.10 and 3.11 show the differences in utility levels between the merger case

with different correlations and the stand-alone case.

To analyze the effect of a merger, consider four cases : the perfect negative correlation

case (p = —1), the negative (non perfect) correlation case (p = —0.5), the flO correlation

case (p = 0) and the positive (non perfect) correlation case (p = 0.8).

Case 1 The case of perfect negative correlation is represented by p = —1. This situation
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could arise when one firm has contracyclical revenues relative to the other one. Figure

3.12 shows the certainty equivalent in the stand-alone case CESA and in the merger

case CEM with p = —1.

2.5

$ 2.4

2.3

2.1
— CESA

19
CEM

1.8

1.7

1.6

1.5

FIG. 3.12 — Certainty Equivalent for the stand-alone case and the merger case with p = —1

Note that the certainty equivalent in both cases have the sarne forrn but inverse.

This particularity cornes from the fact that, in the perfect negative correlation case,

the firm revenue is constant for any given 3. Consequently, there is no gain to sign

a seif-enforcing contract. However, GEAI is decreasing since firrn 1 must pay CESA

to firrn 2. $ince CESA depends on the value of , the certainty equivalent for the

merger case is decreasing with but aiways greater than the certainty equivalent of

the stand-alone case.

Case 2 When revenues are negatively, but not perfectly, correlated (p —0.5), the

benefit associated with a rnerger can 5e positive or negative depending on the value

of 3.

If /3 is lower than 0,48, there is no NTSEC for either the merged firrn or the stand

alone firrn, as there is for the stand-alone firm. But, the merged firrn lias a srnoother

revenue stream which leaves the firrn with a gain hy merging (see figure 3.13). When

/3 is between 0.48 and 0.52, it becornes possible for the merged firm to sign a NT$EC.

The relative gain in utility becornes more important .At /3 0.52, it is possible for

the stand-alone firm to sign a NTSEC. So the gain resulting frorn merging decreases

and becomes negative at /3 = 0.72. For /3 > 0.82, it becomes possible for the merged

firm to sign a first-best convergent contract. So the gain increases again with /3 but

0.52 0.76
0.2 0.4 0.6 0.8

/3
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2.1 I I
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FIG. 3.13 — Certainty Equivalent for the stand-alone case and the merger case with p

—0.5

there is a threshold for which the gain cannot overcome the first-best convergent

contract gain in the stand-alone case. After a small range of vaines for /3 (between

0.84 and 0.88) for which the rnerged firrn gains, the net gain decreases and becomes

negative.

What happens when /3 is close to 1 is another interesting case to study. When

/3 is high enougli, the rnerged Hrrn and the stand-alone firm cari sigu a first-best

convergent contract. Then, why does the merger appear non-profitable for /3 close

to 1? First, by Proposition 3.3, if ‘3 > /3, then the optimal contract converges

monotonically to a first-best contract. Since I use tire assumption that tire reservation

utility level for the rnarket is equal to zero, tire optimal contract, in both cases,

converges to the first-best contract satisfying the seif-enforcing constraints of tire

market. Let’s suppose that and are those first-best contracts. Then,

bSA +
1

Q

+
1

‘313E[b’j = O

where b’1 and b” are respectively tire transfer in state s for tire stand-alone case

and tire rnerged case. I have already found (Equation (3.5)) that b = b + y — y for

j = SA, ili. If I introduce these equations into the market seif-enforcing constraints,
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I find:

bSA+ E8[b+10000—x] = O

+ + 20000
— zsl =

and

+
1

(b + 10000
— 200001) = o

+ (b + 20000 — 40000]) = o

I obtain that b’ = 2bA. This means that, once we subtract the CESA, the rnerged

entity obtains the same level of utility than the stand-alone firm. Consequently, the

optimal contracts of the merger case and the stand-alone case converge to first-best

contracts that give the same level of utility.

Second, I know that optimal contracts are not first-best. They converge to some first

best contracts, but before state 1 is realized (see Section 3.3), transfers do not satisfy

(3.5). Until then, the stand-alone firm gain more than the merged firm. Because of

the concavity of CARA utility functions, the expected gain for being in the good

state (state 2 for the stand-alone case and state 3 for the merger case) is higher in

the stand-alone situation. It is therefore better for the firm to stand alone than to

merge. This resuit applies to ah ca.ses where the correlation coefficient is not _1.17

Case 3 The independent case (p = 0) characterizes firms involved in different rnarkets

which are neither complernents nor substitutes. In this case, there is no gain from

merging when fi is lower than 0.36. At this point, the rnerged firm can sign a NTSEC

which leaves the firm better off. As for other cases, when fi reaches 0.52, the gain from

merging decreases. When fi reaches 0.66, the net gain to merge becornes negative

and remains negative while fi increase. At fi = 0.72, the rnerged flrm can sign a

first-best contract and the gain from merging increases but it is counterbalanced by

the stand-alone contracting gain (sec Figure 3.14).

Case 4 : The case where firms produce complements is represented by a positive corre

lation. With positive correlation (p 0,8), the net gain from merging is negative

for fi < 0.26 (sec figure 3.15). At fi 0.26, the rnerged firm signs a NT$EC and

the gain starts to increase. For fi between 0.52 and 0.60, the gain diminishes as the

stand-alone firm signs a NTSEC. For fi > 0.60, the merged firrn can sign a first-best

contract. Consequently, the gain from the optimal first-best contract increases but

‘7When the correlation coefficient goes to -1, then the value of /3 such that to stand alone is better

increases. For example, when p = —0.9, to stand alone is better when fi is higher than 0.99.
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FIG. 3.14 — Certainty Equivaient for the stand-alone case and the merger case with p = O

the benefit to sign a contract for the stand-alone firrn becomes more important, so

the merger leaves more profits. Even with positively correlated revenues, there is

an interval of (in this case hetween 0.42 and 0.66) for which a merger could be

profitable for the merged firrn.

I can use the analysis I have from these different cases to draw general conclusions

for the question of merger in a seif-enforcing environment. If revenues are nearly per

fectly negatively correlated, then the merger allows the new owner to smooth its revenues

across time without any contract. This situation leads to the agent aiways being better

off merging.

What is interesting is the influence of the correlation on the gain of a merger. When

revenues are negativeiy correlateci, the merger creates a kind of internai insurance market.

The smoother revenue schedule leads to a gain in utility by decreasing the variance of

revenues but decreases the possible gain from signing an insurance contract with the

market. If beta is high but not too close of 1, then the merger could be beneficial. Take

the case where p = —0.8. The merger option leaves the rnerged firm with gain when /3 is

greater than 0.92 but srnaller than 0.98. For ail p > —1, then there exists a < 1 such

that for ail /3 [, 1), then to stand alone is better for shareholders.

With no correlation, the new owner lias the possibility of signing a contract in the case

where /3 is small. Since the variance has increased, the possibility to sign a NT$EC lias

increased. But, the agent may do better in the stand-alone ca.se depending of the value of

/3. As p goes to 1 (positive correlation), the thresliold for having a self-enforcing contract
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decreases but it is possible that the gain from the contract cannot compensate the cost

stemming from the increase of variance. So in the end, the agent is worse over for the

majority of values of /3.

3.6 Conclusion

In the first part of the paper, I explicitly solve the contract design problem with self

enforcing constraints. To obtain this solution, I must impose additional constraints on

the model. The most important one is on the number of states of nature. The two states

of nature problem is relatively easy to solve since there are only two transfers in the

stationary contract. With three states, the number of transfers increases to four, and with

four states, the number of transfers in the stationary contract is eight. The number of

transfers in the stationary contract increases more cuickly than the number of states of

nature.

In the second part, I find that variance affects the nature of the contract. If the va

riance increases, then the potential benefits with respect to the coutract increases and the

threshold to have a NTSEC decreases.

The most interesting finding is the effect of seif-enforcing constraints on the effects of

a merger. I find that, even with a very high positive correlation between firms’ revenues,

there is some discount value for which firms could gain by a merger. The most important

pararneter in the merger decision seems to be the discount factor. If owners are not really

— CESA

CEM

.26
0.4 0.5206 0.76

0.8 1

FIG. 3.15 — Certainty Equivalent for the stand-alone case and the merger case with p = 0.8
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patient, then a merger could iead to an increase in utility. This could explain in part

why firrns in the same market merge together while their revenues are highly positively

correlated.

Que of the possible avenues for future research would be to test the sensibility of these

resuits to a change in the risk-aversion coefficient. My guess is that it vii1 not change the

scherne of the resuits but the level of thresholds.
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Conclusion

Dans cette thèse, j’ai étudié trois problématiques reliées à la théorie microéconomique.

J’ai abordé un problème de stratégie optimale pour une firme multiproduit, la question

de rationalisation dans le cadre d’allocation de biens indivisibles et le design de contrats

d’assurance en présence de contraintes auto-exécutoires.

Dans le premier chapitre, j’ai modélisé un monopoleur multiproduit ayant comme

stratégies possibles le fait de monitorer ou non. Tout d’abord, avec des hypothèses rela

tivement standard utilisées dans la littérature en organisation industrielle’8, je réussis à

démonter l’existence d’une solution. Cependant, la question de l’unicité de cette solution

n’est étudiée pas en profondeur. Il semble que la solution est unique pour presque toutes

les fonctions et pour presque tout nonibre de consommateurs. Le second résultat impor

tant est la présence d’au moins un contrat non-monitoré dans l’ensemble des contrats

optimaux. Ce résultat tient pour n’importe quelle forme fonctionnelle de la fonction de

coûts d’administration.

Dans de prochains travaux sur le sujet, l’impact sur le bien-être des consommateurs

devrait être étudié. Ce point peut devenir très intéressant dans le cadre de monopoleur

étatique ou régulé. Pour le moment, il me semble que l’impact est très difficile à prévoir.

Une autre extension possible devrait se faire ati niveau d’un n,arché oligopolistique. Ce

pendant, l’étude de la question du monitoring pour des firmes en compétition semble très

complexe puisque la multidirnensionnalité des préférences, le nombre, le type de contrats et

la composition des contrats rendent le problème très complexe. L’utilisation de simulations

numériques pourrait rendre cette étude possible.

Pour le second chapitre, j ‘ai analysé la rationalisation des préférences des agents dans le

cadre d’allocations de biens indivisibles. Puisque le nombre de sous-ensen,bles d’allocations

et le nombre de profils de préférence est trop grand lorsque le nombre de biens est supérieur

à 3, j’ai utilisé la notion de cycle pour étudier la question. Dans un premier temps, je trouve

que l’existence d’un cycle dans l’ensemble des optimums de Pareto nous informe sur les

préférences des agents qui composent le cycle. Ces derniers, pour chaque pair de biens

qui sont des voisins immédiats dans le cycle, ont les mêmes préférences. De plus, si le

nombre d’agents qui composent le cycle est un nombre premier, alors tous les agents de ce

‘8La seule hypothèse nouvelle que j’introduis est le concept de -monotonicity.



98

cycle ont les mêmes préférences sur l’ensemble des biens du cycle. Dans un second temps,

je détermine le nombre minimal de cycles qui implique la présence d’un cycle complet.

Ce résultat peut être utile pour déterminer la présence nécessaire d’allocations dans un

cycle. Dans un troisième temps, je trouve des contraintes sur le nombre d’allocations que

l’ensemble des optimums de Pareto doit contenir.

Le troisième chapitre traite principalement de la question des fusions en présence de

contraintes auto-exécutoires. Dans la première partie, j’utilise des fonctions d’utilité de

type CARA pour solutionner explicitement le contrat optimal. Je peux également tracer

les frontières de Pareto dans les différents cas où un contrat de type first best peut être

auto-excécutoire ou non. La seconde partie s’attarde à l’impact d’une augmentation de

la variance sur le contract optimal. Plus précisément, j’étudie le comportement des seuils

pour avoir un contrat non-trivial, de type first best ou non, suite à un changement dans

les revenus de la firme. Suite à un certain type de changement dans la distribution de

revenus qui augmentent la variance, les seuils diminuent alors qu’il n’est pas possible de

conclure pour d’autres types de changement. finalement, la troisième partie s’intéresse à

la question des fusionnements dans le contexte de contrats auto-excécutoires. Je trouve

que les fusions peuvent augmenter le bien-être même lorsque les revenus des firmes sont

positivement corrélés. Ce résultat provient du fait que l’augmentation de la variance fait

en sorte qu’il devient possible pour la firme fusionnée, sous certaines valeurs de /3, de

signer un contrat non-trivial alors qu’il est impossible pour la firme non-fusionnée de le

faire. Cependant, pour qu’une fusion soit bénéfique, il faut que le taux d’escompte soit

relativement bas.
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