Université de Montréal

Trois essais en théorie microéconomique

par
Patrick de Lamirande

Département de sciences économiques
Faculté des arts et des sciences

These présentée a la Faculté des études supérieures
en vue de 'obtention du grade de Philosophiae Doctor (Ph.D.)
en sciences économiques

Septembre, 2006

(©Patrick de Lamirande, 2006




}
&(}2\.\’,\

Z
U‘)

Y
292

”~

s

doay



Université l'"'l

de Montréal

Direction des bibliothéques

AVIS

L’'auteur a autorisé I'Université de Montréal a reproduire et diffuser, en totalité
ou en partie, par quelque moyen que ce soit et sur quelque support que ce
soit, et exclusivement a des fins non lucratives d'enseignement et de
recherche, des copies de ce mémoire ou de cette thése.

L'auteur et les coauteurs le cas échéant conservent la propriété du droit
d'auteur et des droits moraux qui protégent ce document. Ni la thése ou le
mémoire, ni des extraits substantiels de ce document, ne doivent étre
imprimés ou autrement reproduits sans 'autorisation de I'auteur.

Afin de se conformer & la Loi canadienne sur la protection des
renseignements personnels, quelques formulaires secondaires, coordonnées
ou signatures intégrées au texte ont pu étre enlevés de ce document. Bien
que cela ait pu affecter la pagination, il n'y a aucun contenu manquant.

NOTICE

The author of this thesis or dissertation has granted a nonexclusive license
allowing Université de Montréal to reproduce and publish the document, in
part or in whole, and in any format, solely for noncommercial educational and
research purposes.

The author and co-authors if applicable retain copyright ownership and moral
rights in this document. Neither the whole thesis or dissertation, nor
substantial extracts from it, may be printed or otherwise reproduced without
the author’s permission.

In compliance with the Canadian Privacy Act some supporting forms, contact
information or signatures may have been removed from the document. While
this may affect the document page count, it does not represent any loss of
content from the document.



Université de Montréal
Faculté des études supérieures

Cette these intitulée :
Trois essais en théorie microéconomique

présentée par :
Patrick de Lamirande

a été évaluée par un jury composé des personnes suivantes

Michel Poitevin
président-rapporteur

Walter Bossert

directeur de recherche

Lars Ehlers
codirecteur

Yves Sprumont
membre du jury

Licun Xue
examinateur externe

Marie Allard

représentante du doyen



Résumé en francais

Chapitre 1

Dans ce chapitre, je modélise un monopoleur multi-produit qui doit décider de monito-
rer ou non les achats de ses clients. Un contrat monitoré ne peut étre acheté plus d’une fois
tandis qu'un contrat non-monitoré peut étre acheté le nombre de fois désiré. Je trouve que
le monopoleur va toujours offrir aux consommateurs au moins un contrat non-monitoré.

Chapitre 2

Jétudie la composition de I’ensemble des allocations parétiennes dans le contexte d’al-
location d’un nombre fini de biens indivisibles entre un méme nombre d’agents. Chacun des
agents regoit un bien et aucune compensation monétaire n’est permise. Ce probléme est
typiquement connu comme le probléme d’allocation de maisons (house allocation problem).
Pour analyser la rationalisation d’un sous-ensemble d’allocations, j'introduis le concept de
cycle. Un cycle consiste en une série d’allocations out chaque allocation est liée & la suivante
par la méme régle de transition. Avec le concept de cycle, je trouve certaines contraintes
sur la composition d’un sous-ensemble d’allocations pour qu'’il soit rationalisable.

Chapitre 3

Thomas et Worrall (1988) étudient le probleme de design de contrat entre un travailleur
averse au risque et une firme neutre au risque lorsque qu’ils peuvent briser le contrat a tout
moment. Dans ce chapitre, j'utilise la méme approche pour expliquer les fusions. J’utilise
des fonctions d’utilité de type CARA, ce qui permet de dériver explicitement le contrat
optimal. Ensuite, j’ajoute quelques hypothéses pour évaluer les effets d’une fusion entre
deux firmes ayant des revenus aléatoires. Pour ce faire, nous effectuons des simulations
numériques. De part les résultats, une fusion est souhaitable seulement lorsque les agents
ont un bas facteur d’escompte.

Mots-Clés : Monitoring, Monopoleur multi-produit, Préférences multidimensionnelles,
Biens indivisibles, Cycles, Rationalisabilité, Contraintes auto-excécutoires, Fusionnement,
Contrats optimaux.
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English summary

Chapter 1

The main purpose of the paper is to introduce the decision to monitor sales or not
in the multiproduct monopoly decision problem. To do so, I introduce the concept of a
monitored contract as contract that consumers can buy only once. On the other hand, a
non-monitored contract could be purchased in any quantity. Obviously, to offer a monitored
contract, the monopoly should be able to observe and to control consumers’ choice. I find
that the multiproduct monopoly will always offer at least one non-monitored contract to
consumers.

Chapter 2

I study the composition of the Paretian allocation set in the context of a finite number
of agents and a finite number of indivisible goods. Each agent receives at most one good
and no monetary compensation is possible (typically called the house allocation problem).
I introduce the concept of a cycle which is a sequence of allocations where each allocation
is linked to the following allocation in the sequence by the same switch of goods between
a subset of agents. I characterize the profiles of agent preferences when the Paretian set
has cycles.

Chapter 3

Thomas and Worrall (1988) study the problem of designing a contract between risk-
averse workers and risk-neutral firms when both of them could break the contract at any
time. In this paper, I use the same approach to study mergers. I model a CARA utility
function to derive explicitly the optimal contract and the value function for both agents
in the case where only two states of nature are possible. I use this approach to explain the
reason for a firm to merge with another one. Because the analytic solution is too difficult
to derive explicitly with more than two states of nature, numerical simulations are used to
illustrate these cases. I find that mergers will occur only when agents have a low discount
rate.

Keywords : Monitoring, Multiproduct monopoly, Multidimensional Preferences, In-
divisible goods, Cycles, Rationalisability, Self-enforcing constraints, merger, Optimal
Contracts.
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Introduction

A distinctive feature of microeconomic
theory is that it atms to model economic acti-
vity as an interaction of individual economic
agents pursuing their private interests.

Mas-Colell, Whinston and Green [8§].

Les incitations économiques sont a la base des décisions des individus dans la vie de
tous les jours. Que ce soit pour l'achat ou la vente de biens, 'offre de travail ou d’élection,
les individus choisissent I’option qui, en fonction de la situation & laquelle ils font face,
maximise leur bien-&étre. La modélisation microéconomique des décisions individuelles des
agents constitue donc un outil privilégié pour I'analyse de questions aussi intéressantes
que diversifiées comme le design de contrats d’assurance, les stratégies de mise en marché
ou encore les probléemes d’allocation de biens indivisibles entre individus.

Dans le premier essai de ma thése, j’étudie le comportement stratégique d’une firme
ayant un pouvoir de monopole sur plusieurs marchés. Plus précisément, l'objectif est de
mieux comprendre comment la firme décide d’effectuer du monitoring ou non. Je définis
le monitoring comme la capacité pour la firme de suivre et de contréler les achats de ses
biens.

Pour vendre ses produits, la firme multiproduit peut avoir recours a la vente groupée
(bundling) ou a la vente séparée. Par exemple, la plupart des chaines de restauration rapide
offre la possibilité d’acheter divers biens sous forme de trios. Lorsque les demandes ne sont
pas unitaires!, la firme peut décider d’offrir des contrats qui ne peuvent étre achetés plus
d’une fois. Dans ce cas, nous dirons que le contrat est monitoré. Si la firme ne contréle pas
le nombre de fois que les consommateurs peuvent acheter un contrat donné, alors nous
dirons que ce contrat est non-monitoré.

Jusqu’d maintenant, ’étude du monitoring se faisait au niveau des conséquences de

'Nous disons qu'une demande est unitaire quand les consommateurs obtiennent un gain d'utilité seule-
ment de la premiére unité de bien consommeée. Une laveuse et une sécheuse sont des exemples de biens
pour lesquels les consommateurs ont des demandes unitaires.



monitorer ou non. La quasi-majorité des articles sur la tarification non-linéaire? utilisent
implicitement (ou explicitement) I’hypothése que la firme est capable de suivre et de
restreindre les possibilités d’achat des consommateurs. La possibilité de ne pas monitorer
fut étudiée exclusivement par Katz [5]. Cependant, aucun article ne modélise la prise de
décision de monitorer ou non.

Dans cet essai, je présente un modele qui incorpore la décision de monitorer ou non
pour un monopoleur multiproduit. Une firme utilise le monitoring si elle offre au moins un
contrat monitoré. Cependant, il est important de souligner que la décision de monitorer
n'impose pas de monitorer tous les contrats. Il est toujours possible pour la firme d’utiliser
des stratégies mixtes lors de la mise en marché des contrats. Un premier résultat est
que, peu importe la fonction de colits administratifs, la firme va toujours offrir au moins
un contrat non-monitoré. Ce résultat est cohérent avec les observations. Il semble que
I’ensemble des firmes offrent toujours la possibilité aux consommateurs d’acheter un type
de contrat sans controle sur la quantité de fois qu’ils achetent ce dit-contrat.

Dans le second essai, le sujet d’étude est la rationalisation d’'un ensemble de réalisations
dans le cadre d’allocation de biens indivisibles (House Allocation Problem). J'entends par
rationalisation d’un ensemble A l'existence d’un profil de préférences individuelles qui a
comme ensemble des optimums de Pareto 'ensemble A. L’allocation de biens indivisibles
est un probléme commun dans la vie de tous les jours. On peut penser & la répartition
des chambres parmi des colocataires, les charges de cours entre professeurs ou aux espaces
de bureaux entre collegues de travail. Ce type de probleme fut introduit par Shapley et
Scarf [12] et étudié par de nombreux auteurs dont Roth et Postlewaite [11], Svensson [13]
et Ehlers [3].3

L’objectif de cet essai est d'introduire le concept de rationalisation dans un cadre
d’allocation de biens indivisibles. Pour ce faire, j'introduis le concept de cycle qui consiste
en une série d’allocations ol chaque allocation est liée & la suivante par la méme regle de
transition. Un premier résultat découlant de la présence d’un cycle dans ’ensemble des
optimums de Pareto est que tous les individus doivent avoir les mémes préférences sur les
biens qui se suivent dans le cycle. Deuxiemement, si le cycle est composé d’un nombre
premier d’individus, alors tous ces individus doivent avoir les mémes préférences sur les
biens qui composent ce cycle. Troisiemement, je trouve que si ’ensemble des allocations
parétiennes contient un nombre minimal de cycles composés des mémes individus et des
meémes biens, alors tous ces individus doivent avoir les mémes préférences sur ces biens.
Comme quatriéme résultat important, je trouve des conditions sur le nombre d’allocations

que ’ensemble des optimums de Pareto doit contenir.

2Voir par exemple Goldman, Leland and Sibley [4], Mirman and Sibley [10], McAfee and McMillan (9]
ou Armstrong [1].
3Cette liste n’est pas exhaustive et ne figure qu’a titre de référence.



Le troisiéme essai étudie les conséquences d’une fusion dans le cadre d'un modele d’as-
surance avec contraintes auto-exécutoires. Nous disons qu’un contrat est auto-exécutoire
si, pour tous les états de la nature et pour toutes les périodes, les deux agents (I’assureur et
I’assuré) ont un gain & respecter le contrat. Sans contraintes auto-exécutoires, le manque
d’engagement devient un probleme. Lorsque les colits de faire respecter le contrat sont
élevés et que les colits de changer de contrat est bas, un agent peut avoir intérét a briser
le contrat suite & la révélation de 1’état de la nature alors qu'il était optimal ex-ante. Dans
le but d’éliminer ce type de probléme, j'utilise la méme approche que celle introduite par
Thomas et Worrall [14].

Dans la premiere partie de 1’essai, je suppose que les individus ont des préférences qui
peuvent étre représentées par des fonctions de type CARA (Constant Absolute Risk Aver-
sion). Cette modélisation se distancie de celle de Thomas et Worrall [14] et se rapproche de
celle de Kocherlakota [6] en ce sens que les deux agents sont averses au risque. Avec cette
hypothese, je suis en mesure de solutionner explicitement le contrat optimal en supposant
que les deux individus ont le méme coeflicient d’aversion au risque. Sans cette hypothese,
je ne peux expliciter la solution. Puisque nous trouvons le contrat optimal dans toutes les
situations, je peux définir et tracer les frontieres des optimums de Pareto selon les valeurs
des parametres. Les graphiques illustrent clairement que les frontiéres sont continues mais
non pas dérivables en tout point.*

Dans un deuxiéme temps, je me suis intéressé aux effets d’une fusion entre deux firmes
ayant des revenus aléatoires en présence de contrats auto-exécutoires. Pour ce faire, j’ai
modélisé deux firmes averses au risque qui ont un revenu aléatoire et un agent neutre au
risque (le marché). Une des firmes peut décider de ne pas fusionner ou d’acheter I’autre
firme au prix donné par 1’équivalent certain. Dans le cas de la fusion (acquisition) ou de
la situation ex-ante, les deux firmes ont la possibilité de signer des contrats d’assurance
auto-exécutoires. Avec l'aide de simulations numériques, je trouve qu’une fusion peut étre
profitable lorsque le taux d’escompte est bas méme lorsque les revenus des firmes sont

corrélés.

*Kocherlakota [6] avangait faussement que les frontiéres des optimums de Pareto étaient continues en
tout point. Ceci fut corrigé par Koeppl [7].



Chapitre 1

Monitoring Costs for a

Multiproduct Monopoly



1.1 Introduction

Firms combine different methods to sell their products. For example, many fast-food
restaurants offer discount coupons on a specific meal while they allow consumers to buy
any quantities of meals at regular prices. In construction material stores, small buyers
face regular prices while big buyers have special discounts on their purchases. Defining
monitoring as the control of consumers’ purchases, these examples suggest that firms use
monitoring in combination with usual non-monitored sales methods to maximize their
profit.

The first context where such control on consumer purchasing is studied in the economic
literature is the case of bundling that offers consumers the possibility to buy a package
in addition to the possibility of buying goods separately. The first complete model that
deals with the ability of a monopoly to offer bundles was proposed by Adams & Yellen
[1]. These authors study a market for two goods where consumers have unit demands for
both products and they find that bundling can be efficiently used to increase firm profits
even though consumers’ utility for each good are unrelated. Some extensions to the Adams
& Yellen’s paper were made by introducing a joint distribution of consumer preferences
over the two goods as in Schmalensee’s [9] model. Monitoring in such a context gives the
monopoly the ability to restrain the set of possibilities available to consumers. For instance,
with monitoring, a monopoly that wants to sell two goods can offer these goods separately
as well as in a bundle, but can force consumers who want to buy both goods to purchase
the bundle. The profitability of such possibilities to restrict the opportunities available to
consumers are analyzed in McAfee, McMillan and Whinston [7]. These authors present
sufficient conditions over the joint distribution on consumers preferences under which
bundling gives more profits than selling goods separately when consumers are monitored.

A second context where monitoring could be interesting to use is the case where firms
can practice some form of nonlinear pricing (usually called second-degree price discrimi-
nation). Nonlinear pricing exists when a firm in a single market sets different unit prices
for different amounts of goods purchased. Spence [10] presents a model in which a cen-
tral planner must maximize the aggregate consumer surplus without having the ability to
identify the consumer’s type but with the ability to monitor consumers, by observing the
quantities they buy. Goldman, Leland and Sibley [3] study explicitly the role of constraints
on the price structure. They find that the price could be either upward or downward dis-
continuous in quantity with smooth and well-behaved demand and cost functions. Since
the 1980’s, many papers deal with the use of nonlinear pricing by a multiproduct mono-
poly. Mirman and Sibley [8] assume that consumers differ by only one taste parameter
while McAfee and McMillan [6] examine the case where multidimensional consumer pre-

ferences can be represented by a single variable. In this last case, the analysis becomes



identical to Mirman and Sibley’s. The first paper considering multidimensional preferences
in a nonlinear pricing context is Armstrong [2]. Armstrong examines the decision problem
of a monopoly over many goods facing consumers with multidimensional preferences and
finds a method to resolve the mechanism design problem for some specific classes of cases.

Except for the paper by Katz [5], which studies the case when purchases are not
observable by the firm, all papers on nonlinear pricing assume that the firm is able to
monitor purchases. In Katz’s [5] paper, the case of a firm with monopoly power on a single
market which is not able to observe consumer purchases is analyzed and a characterization
of the optimal price schedule is obtained.

To my knowledge, no paper examines the ability of a multiproduct monopoly to decide
to monitor consumers purchases or not. The main purpose of the present paper is to analyze
a model where the decision to monitor or not to monitor is an endogenous decision. To
do so, I first define a contract as a vector specifying a quantity for each good and a price
that will be paid by the consumer in exchange of the specified quantities. Then a contract
will be said to be monitored whenever consumers can buy such a contract only once, while
a non-monitored contract is a contract that consumers can buy without restrictions. In
such a framework, the decision to monitor corresponds to the decision to offer a monitored
contract. However, monitoring is not an all or nothing decision. Indeed, the monopoly can
actually propose monitored contracts together with non-monitored ones. The main result
is that the set of contracts offered by the monopoly will always contain a non-monitored
contract. This accords with the examples given above.

The paper is organized as follows. In Section 1.2, I introduce the model. The theorem of
existence and some characterization of the optimal strategy of the monopoly are described
in Section 1.3. Section 1.4 contains discussions on the basic assumptions and I conclude

in Section 1.5.

1.2 Model

I consider a situation where a multiproduct monopoly faces N consumers. Let N be
a natural number. The purpose of this section is to introduce the concept of monitored
and non-monitored contracts as well as the assumptions relative to the behavior of the

monopoly and of the consumers.

1.2.1 Multiproduct monopoly

A monopoly produces L goods and sells these goods through contracts. I assume that
the firm is risk neutral. The problem of the monopoly is to determine the number of
contracts as well as the composition of the contracts it will offer to the consumers. I define

a contract as a vector that specifies a quantity for each good as well as a price that the



consumer who accepts the contract will pay in exchange for the quantities specified in the
contract. Precisely, a typical contract k is given by (q1,...,q, ..., qr, P) where g; stands for
the quantity of good [ that will be sold if the contract is accepted and P is the price paid
whenever the contract is accepted.

I also assume that the price element P is greater than or equal to € with ¢ > 0. As
we shall see, this assumption is quite innocuous but will facilitate some of the arguments
made below.

I begin by describing the kind of contracts that can be proposed by the monopoly.

Monitored and non-monitored contracts

In this paper, I say that a contract k9 is monitored if consumers cannot buy this
contract more than once. In addition, I assume that consumers can buy only one monitored
contract.

For non-monitored contracts, I assume that these contracts can be bought many times
and in combination with other contracts. To illustrate how monitored and non-monitored
contracts work, consider the following example.

Suppose the monopoly offers two monitored contracts k% and k® and two non-monitored
contracts k* and kP. Following the definition of a non-monitored contract, the contracts
given by 6k%, okP or §k* + okB for 6,0 = 1,2, ... can be bought by consumers. Following
the definition of monitored contracts, the contracts k* and k® are offered to consumers
but not k% + k® or 6k2, ok® or 6k + ok since consumers can buy at most one monitored
contracts and do so only once.

In addition to these contracts, it is possible for consumers to buy a combination on
non-monitored contracts and one monitored contract. So the contracts given by k% 4 0k<,
ke + 8kPB, k® + 6k + 6kP, kb + 6k, kP + 6kP and k® + 6k® + 6kP are offered to consumers.

To summarize, if the monopoly offers two monitored contracts k% and kb and two
non-monitored contracts k* and kP, then the following contracts are in effect offered to

consumers for §,0 =1,2,3, ...

Ko, Kb, k%, kP

Sk, okP, k™ + okf

k% + 6k%, k®+okP, k%4 0k* + okP
kb + 8k%, Kb+ okP, Kb+ 6k + okP

Let K™ and K™ be respectively the set of monitored contracts and the set of
non-monitored contracts. With these sets, it is possible to construct the contract set
K (K™, K™) which is the set of contracts which can be bought by consumers. Consi-

dering the preceding example, the set of monitored contracts K™ is given by {k¢, kb}, the



set of non-monitored contracts by {k%, k#} and the set of offered contracts by :

k® kP, &, kP

Ok, okP 6k* + okP §,0=1,2,...

k% + 6k K + okP K + 6k + okP 6,0 =1,2,...
Kb+ 6k, kP + okP kP 4+ 5k + okP 5,0 =1,2,...

K(K™ K™™) =

These definitions have three immediate implications that must be noted. First, whe-
never the set of non-monitored contracts is empty, the set of proposed contracts coincide
with the set of monitored contracts, i.e., K™ = K (K™, 0). This follows from the definition
of a monitored contract. A second implication is that any contract k* € K(K™, K™™) is
either a monitored contract and belongs to K™ or an non-monitored contract and belongs
to K™ or a combination of non-monitored contracts and at most one monitored contract.

Thirdly, since the all elements of a contract are a real number, the sets of monitored
and non-monitored contracts are countable. This implies immediately that the contract
set is also countable. Furthermore, if K™ = K™ = (), then K (K™, K™™) = (). This means
that inaction is possible for the monopoly.

The next step in the description of the model is to present assumptions relative to the

multiproduct monopoly cost structure.

Monopoly’s production and administration costs

Total costs for the monopoly consist of a production cost function which, as usual,
gives the cost associated with the provision of a given quantity of goods to the consumers,
and of an administration cost function which gives the cost to manage the set of proposed
contracts.

The function V : ]Rﬂ_ — Ry gives the production cost which only depends on the
total quantity of goods provided to consumers. Let @ (N, K™, K™™) be the vector of total
quantity of each good produced. I assume further that the marginal production cost is

constant.! So the production cost function becomes

L
V(Q(N,E™ K™™)) =Y (c*Q (N,E™ K™™))
=1

where c; is the marginal cost of good [ and Q; (N, K™, K™™) is the total quantity of good
! produced. I assume also that ¢; > 0 for all .

Note that I assume that the production costs do not depend directly on the number

as well as the kind of contracts in the set of proposed contracts. Only the total quantity

}This assumption can be relaxed but to keep the presentation simple, I use this assumption.



of goods matters.

The function A represents the administration cost. I shall define A™™ as the cost
function to administrate the non-monitored contracts while the cost function to manage
the monitored contracts will be denoted by A™. I assume that the cost of providing
non-monitored contracts and the cost of providing monitored contracts are (directly) in-
dependent. I then assume that administration costs are additive in the non-monitored
contract cost function A™ and the monitored contract cost function A™.

Regarding the non-monitored contract cost function, I assume that the cost to provide

one more non-monitored contract is constant. This means that

with ¢ > 0 and where | X| denotes the number of elements of the set X.

For the cost to administrate monitored contracts, I assume that the number of consu-
mers buying a monitored contracts matters. This comes from the fact that, in order to
make such contracts effective, the monopoly must follow each consumer to prevent multiple
purchases of these monitored contracts, which imposes a cost to the monopoly.

Let N™(N, K™, K™) be the number of consumers who choose a monitored contract
proposed in K (K™, K™) or a contract in (K™, K™) that is a linear combination of
contracts, one of them being a monitored contract. This number is unknown by the firm
since the firm does not know consumer types. Nevertheless, once the firm determines the
sets of non-monitored and monitored contracts, consumers make their choice and their
action generates the monitored contract cost function. I have mentioned above that the
cost of providing a monitored contract does not relate directly on the set of non-monitored
contracts. With the last assumption, the monitored contract cost function now depends
indirectly on the set of non-monitored contracts since the latter affects the number of
consumers buying a monitored contract.

Next, once again for simplicity, I assume that the monitored contract cost function is

given by
A™(N™(N, K™, K™),K™) = |K™|a™(N™(N,K™, K"))

Note that the assumption that the administrative cost is increasing in the number
of consumers buying a monitored contract implies that a™(.) is also increasing in N. I
further assume that the unit administrative cost of a non-monitored contract, a™™, is
strictly smaller than the unit administrative cost of a monitored contract a™(.), whatever
the number of consumers buying a monitored contract V.

Accordingly, the larger the number of consumers choosing a monitored contract, the

larger are the costs associated with the management of monitored contracts and therefore
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D
6

Fi1G. 1.1 - Non-Degeneration of the Set of Preferences

I have A™ (Nl,Km) > A™ (NZ,K"‘) whenever N1 > N2,
To sum up, assumptions imply that the administrative cost function of the monopoly

can be written as
A(N™(N,K™ K"), K™ K") = |K"|a™ + |K™|a™ (N™(N, K™, K"™))
with o™ > 0.

1.2.2 Consumers

The utility level attained by consumer i whenever he buys contract k* = (gf,-- -, q}‘l, Ph)
is given by u (Gi, q, ..., q’L‘) — P" where 6 = (61, -+ ,6%) is a vector of preference parame-

ters, i.e. preferences of consumer ¢ with § > L — 1. I shall assume that u is continuous in

g" and in @, increasing and strictly concave in g" and satisfies

li ou (9,‘]1,---,QL)
1111
q—00 8ql

=0 I=1,.,L VYg; >0, j#I, V6e€©

Note that individuals with the preference vector §* have the same utility function. The
set of all preference vector, denoted by ©, is a compact subset of RS. Preference vectors
are 1.i.d according to the continuous probability distribution F'(). I also assume that F(6)
is non-degenerative, i.e., the probability that §° € O for all © C © with Dim[é] < Dim|[©]
is zero. This assumption is commonly used in the economic literature. For instance, if ©
has only one dimension and the distribution is non-degenerative, the probability of getting
a specific @ is equal to zero. Figure 1.1 represents a case where O is of dimension one while
O is of dimension 2.

In this paper, I also assume that consumers could buy nothing if they wanted. In
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this case, I say that the consumer buys the null contract kg = (0,0,0,...,0). Then, the
problem of the consumer is to maximize his utility by choosing a contract in the set Ky
which is the set of contracts offered by the firm K (K™, K™) plus the null contract i.e.
Ko(K™, K™) = K(K™, K") U {ko}.

Let me denote by K* (Gi, K™ K "m) the set of contracts in the set Ky which maximizes
the utility of consumers whose preference vector is #¢. I can immediately ask if there exist
consumers whose I{* (9i, K™ K "m) contains several contracts. To avoid this possibility,
I must add an assumption on utility function. The monotonicity in utility difference will

guarantee that the set of optimal contracts is a singleton for almost all types of consumers.

Definition 1.1 A utility function u (Hi,qh) is Ay-monotone if, for all q',q* such that
¢t # ¢, s € {1, ..., S} such that V&' € O, u (6%, ¢*) —u (6%, %) is strictly monotone in 6:.

The A,-monotonicity says that, for any pair of contracts k!, k2, if there is a 6 such
that k! and k? give the same utility, then an infinitesimal change in 8, increases differently

the utility of each contract. One can say that if a function f is A,-monotone, then

2
i), . 109

8q:00, 9q:00,

In fact, A,-monotonicity is more than that. Take the function f(6,q) = 61(q1 + ¢2)°.
This function has positive cross-derivative if q; and g» are positive but it does not respect
the A,-monotonicity. Take the contracts ¢' = (1,2) and ¢ = (2,1) for example. For all
values of 6, the difference in utility with those contracts will remain 0. If a function is A,-
monotone, then each marginal utility associated with a given good is affected differentially
by a change in a specific preference parameter.

By assuming that the consumer utility functions are A,-monotone, then I obtain the

following result.

Lemma 1.1 The probability of finding a profile 6° € © such that K* (6%, Ko) contains
more than one contract is equal to 0.

Proof. Take two contracts k! and k? belonging to K. Let © be the set of all preference
vectors such that, for all § € ©,k',k* € K* (0, Ko) and let 6" belong to ©.

Following the definition of K* (6’1,1(0), if k1, k% € K* (01, Ko), then :

U (Ol,q%, ...,qi) - Pl=y (Gl,q%, ...,q%) — p?

Following the definition of the A,-monotonicity, there is a s € {1,2,...,S} such that
u (0%, q') — u (€', %) is monotone in 6.

Now, suppose there is an element 62 belonging to © such that 0% # 6}. Because 6> € ©
and by Ay, -monotonicity, there is another preference parametert € {1,2,...,S},t # s such
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that 67 # 0}. If not, 6 can not belong to ©. This means that any change in the parameter

s leads to a change in some other parameter(s) to maintain the equality
U (02,q%, aq},) - Pl =u (92,(1%, aQ%,) - P2

Then, the set © has a dimensionality lower than ©. By the non-degeneration of ©, the
probability of having an agent with a preference vector 8 belonging to © is equal to 0.
Since the contract set is countable, I can conclude that the probability of having prefe-

rences such that there exist more than one optimal contract is 0. m

Note that this assumption of A,-monotonicity does not constrain too much as shown

by following example

Example 1.1 Take the case where the utility function is represented by a square root
function. Now, take two contracts k', k? such that ¢ # q* and suppose that there is
6! € © such that q' and ¢ belong to K* (GI,KO). This means

6} (g1) "> + 6} (a3)"* = 6} (¢2)"/* + 6} (2)"/*

Because gt # q2, there is at least one | = 1,2, ..., L such that qll # ql2. Without loss of
generality, suppose that gk > g2 Then,

0} (o) + 63 (a3)'"* — 01 (1) + 63 (63)"”

increases if 2 increases.
Because the contract set is countable, the probability of having more than one optimal

contract is 0.

Note also that the Cobb-Douglas utility function u (6%,¢") = (q{’)gi (qé‘)ai does not
respect the property of A,-monotonicity since when one quantity equals zero the utility
levels are equal to zero irrespective of the value of 6. However the log transformation of
the Cobb-Douglas utility will respect the A,-monotonicity property.

1.3 Results

The firm’s problem can be described as choosing the number of monitored and non-
monitored contracts and the composition of each of them. I shall denote by 7 (IN) the

maximal profit the monopoly can obtain when it faces N consumers. By assuming that

21f I define the weak A,-monotonicity with adding that q; and g2 must be composed of positive elements,
i.e. g1 > 0 and g2 > 0, then the Cobb-Douglass utility function satisfies the weak A,-monotonicity.
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the firm is risk-neutral, I can write the profit function in the following way :

m(N) = K'rrpjag'(lm E[R(N,K™ K™)—C(N,K™, K™)]
where R (.) and C (.) are respectively total revenues and total costs for the firm when
the chosen monitored and non-monitored contract sets are K™, K™ and the number of
consumers V.

I suppose that the firm is unable to observe consumer preference profiles and consumers
are not allowed to resell the quantity bought from the firm. Let the term Pr (k", K™, K™™)
be the probability that a consumer buys the contract k", ie. Pr(k", K™ K"™) =
Pr (Oi € Olk" € K* (Bi, K™ K "m)). Then, expected revenues can be written as follows

E[R(N,K™ K™™)] =N+ 3 (Ph «Pr (kh, K™, 1(”’”)) .
kheK

In the previous subsection 1.2.1, I define the cost function like the sum of the production

costs and the administration costs, i.e.,
C(N, K™ K"™) =V (Q(N, K™, K" )+ A(N™(N,K™, K"™), K™, K™"™)

By assuming that the production cost is linear in quantities, the production cost func-
tion is given by V (Q) = Z{“:l (¢ * Qi(N, K™, K™)). With the assumption of risk neu-
trality by the firm, the expected value of the production cost, E[V (Q)], is given by

L
E[V(Q)) =) (a*E[Q(N, K™ K"™))

=1

E[Qi(N, K™, K™)] denotes the expected total quantity of good ! produced by the

firm and equals
NS (q,h «Pr (kh,Km,I "m))
kheK (K™ Knm)

In other words, the expected total quantity of good ! is given by the sum (over the
contracts belonging to the contract set K') of the quantity of good ! specified in a contract
times the expected number of consumers buying this contract. It follows that E[V (Q)]

can be written as

E[V(Q)] = N * ZL: > (c, « g+ Pr (kh, K™,k "’"))

=1 khe K(K™ Knm)

As specified in Section 1.2.1, the administrative cost function is the sum of the moni-
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tored contract cost function and the non-monitored contract cost function. The expected

administrative cost function will therefore be given by
E[A(N™(N,K™ K"}, K™ K")] = |K"™|a"™ + |K™| E[a™ (N™(N, K™, K™™))]

Let a (N, K™, K™) be the expected value of a™ (N™(N, K™, K™™)). With this no-
tation, the expected administration cost function becomes :

E[C (N, K™, K™)] = N « Z > (clq,h Pr (k", K™, K"m))
I=1 phe K (K™ Knm)

+ K™ 0™ 4+ |K™| o (N, K™, K™™)

To sum up, the maximal profit the monopoly, 7(V), can be written as

"= . Ve 3 Pe(EhEmEeT) (Ph_Z(c’q‘h)) (B

khe K (Km Knm) =1

~—~

— |[K™™ g™ — |[K™|al} (N, K™, K™™)

Expressed in this way, there could be situations where w(N) does not exist since the
maximization problem has no solution. Indeed, whenever the contract set K contains a
non-monitored contract, K has an infinite number of elements so that the function to
be maximized involves a sum over an infinite number of elements and this sum will not
necessarily give a real number. I must therefore address this problem immediately. We
have already seen that each contract can be expressed as a combination of non-monitored
contracts and no more than one monitored contract. I can then rewrite (1.1) in terms
of non-monitored and monitored contracts instead of the whole set of contracts. However
there are still many possibilities whereby non-monitored contracts and monitored contracts
can be combined to obtain the same k" belonging to K (K™, K™™). The first possibility is
when there are 81, 82 such that, for a given k9 belonging to K™ U {ko}, k” can be written

as

KYo= k94 D B = K9+ ) AR

kieKnm kieKnm

The second possibility is when k" can be expressed as two different combinations of

monitored and non-monitored contracts :

ko= k9 Y B = K+ ) B

kg Knm kreKnm
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with k9, k/ belonging to K™ U {ko}.
If no other structure is added, I could have a problem with double counting. Let me first

define the lexicographic dominance of a vector. I say that a vector 8! is lexicographically
dominated by 2 if

Bt < B}
or ﬁ} = ,Bf and ﬁ% < ﬂ%
or Bi=p% PBi=pF and Bi < pE

Let K§* = K™ U {ko} be the set of monitored contracts and the null contract. I define
W (k", K™, K™™), for any k" belonging to K (K™, K™™), as the set of all pairs of k9 be-
longing to KZ" and 8 € NJX""! such that k" = k9 + > kieknm Bk Let w (K", K™, K™™)
be the pair (k9, B) belonging to W (k*, K™, K™™) such that § is lexicographically domi-
nated by ,5 for all other pairs (k:f,B> in W (kh,Km,K”m). w (kh,Km,K""‘) is unique
because the lexicographic ordering is complete and transitive and if 8 = B, then k9 = k.

Let W (K™ K" = {w (kh,Km,Knm) |kh € K(K™, K™™)} and let ¥(n) = {K C R |
|K| =n}.

With all the definitions introduced, I can write the profit maximization problem like
a double maximization where the first one is made on the number of non-monitored and
monitored contracts and the second on the composition of those contracts. Formally,

7 (N) = max max
Mmiinm KMmeW (nm),K"me¥ (nnm)

N [kgﬂ e W (K™, K""‘)] Pr (kh,Km,K"’n)
k9EKT* BENmMm

Mnm Inm

* P9+ZBJPJ ch* ql+253

— |K™™| ™™ — |[K™| a2 (N, K™, K“m)

where [ [(kg ,B) € W (K™ K ’””)] is an indicator function which takes the value 1 if the
condition is respected and 0 otherwise.

I have once again a summation over an infinite number of elements, but many of them
are irrelevant for the problem. Indeed, since the marginal utility goes to zero when the
quantity goes to infinity, for any 6° belonging to © the utility converges to a level 7 (67)
when quantities go to infinity. The utility function being continuous in %, the function
u (6%) is also continuous in 6%. Accordingly, there is a #* € © maximizing % (6°). Let

Upax be the maximum utility a consumer could obtain when quantities go to infinity.
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Because the utility function is quasilinear in price, the maximum revenue the firm could
earn is given by N7y 4x. For a number 7 of contracts offered, the minimal administration
cost® is given by na™™. This implies that the maximum number of non-monitored and
monitored contracts is equal to N—ZAL,#& since, otherwise, the firm’s profit will be negative
with probability 1. Let B = {8 € NJ""| ST B < Nupax}. It now follows that Problem
(1.2) can be equivalently written as follows :

m(N) = max max
Mmilinm  Kme¥(nm), K" €¥(nm)

Nx S ZI[(ka,g) e'vT/(Km,Knm)] Pr (klh,[\,m,l ,,m>
k9€EKT geB

Mnm L TInm

* P-"+Zﬁij—ch* qlg+2ﬂjq{
j=1 I=1 j=1
— |K™™ @ — | K™ @ (N, K™, K™

The maximization problem is now well defined. I now show that this problem has a

solution.

Proposition 1.1 For any finite number of consumers, there is a solution to the profit
mazimization problem (1.3).

Proof. I proceed in four steps. The first step is finding the contract k* (Gi) which s
the contract (q* (Hi) , P* (Gi)) such that

L

¢ (0) = arg max  u (6',9) = > _cq (1.4)
= 1=1

P (6") = wu(6,q" (6Y)) (1.5)

By the concavity of the utility function and by the assumption that the marginal utility
goes to 0 when the quantity goes to infinity, there is a solution to (1.4) and (1.5). Also,
with the assumption of strict concavity, k* (Hi) is uniquel. I define m* (Hi) the profit given
by the contract k* (6%), i.e.,

¥ (Gi) = P (Gi) - IZ:clq[* (Gi)

Let qlM AX be the mazimum quantity of goods | a consumer of type 6° € © obtained in

3Remember that the cost to offer a monitored contract exceeds the cost to offer a non-monitored
contract.
“k* (6°) is the perfect price discrimination contract.
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k* (67), ice.
MAX * (i
= max 6*) .
aQ prprs g (6")
By the continuity of the utility function in §' and the compactness of ©, qlM AX is upper-
bounded. I can proceed by the same approach with PMAX gnd 7MAX,
pMAX max P* (Gi)
'€
ﬂ_]\/[AX — max ’/T* (91)
e
I then define the set A.
A = {@P) | q€l0,g”¥*] Wi=12,.,L, and Pe[0,PM4X]}

Note that A is a compact set by construction.

As already discussed above, I show in the second step that the firm could only offer a
finite number of monitored and non-monitored contracts. If the number of consumers s
N, then the mazimum profit the firm could obtain without counting the administration cost
A(N™(N,K™ K™), K™ K") is NxMAX [ define n the mazimum number of monitored
and non-monitored contracts the firm could offer with the possibility to make a profit. With
the assumption that a™™ < a™ (N™ (N, K™, K™™)), the mazimum number of monitored

and non-monitored contracts is given by :

NWMAX _ nanm >0

N,n_I\/[AX _ (T] + l)anm <0

Because NwMAX s upper bounded, that means the monopoly will never offer an infinite
number of non-monitored or monitored contracts (n < oo).

The third step consists of proving that

N« > 21 [(kg,ﬂ) e W (K™, K nm)] Pr (kh,Km’Knm)

k9eKF geB

Mnm L MInm

* P9+Zﬁij—ch* qf’-&-Zﬁjq{
j=1 =1 j=1
— K™ @ — K™ QR (N, K™ K™™)

is continuous in q9 and P9 for all k9 belonging to K™ and continuous in ¢’ and P? for
all k7 belonging to K™™.
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The term |K™|a™™ is obviously continuous since it is a constant. The ezpected mo-
nitored contract cost function af (N, K™, K™) is function of the number of consumers
buying a monitored contract. Because I take the expectation and the distribution function
of 6 is non-degenerative, then a (N, K™, K™™) is continuous in ¢* and P>,

I now examine the terms in the summation. To do this let me begin by defining &; as
the vector ({5{ T {6f }2;’;::’;‘1>

Then K™ and K™ be the contract sets with n,, monitored contracts and nn;y, non-
monitored contracts. I define K™, and K™, the monitored and non-monitored contract
sets such that k] =k’ 467 for all k° belonging to K™ and E{ =% +(5{ for all F belonging
to K™,

To prove the continuity of the terms in the summation in (1.6), I must discuss two
cases.

The first case is when, for all &° belonging to K™, for all B belonging to B and for any
sequence {0;} that converges to the zero vector whenever t tends to infinity, the indicator
function I [ (K, 8) € W (B, Kom,) | = 1|(K,8) € W (K7, K)| for all t. In this
case, the sum of the indicator function times the probability becomes a sum of probabilities.

By definition, if the indicator function is equal to 1 for a given pair (k9,[), then
there is no other pair (kf ,Bf ) with k! belonging to K™ and 8 belonging to B such that
k9 + Z;’;’i‘ Biki = kI + Zj;’; ﬁjf ki and such that B¢ is lezicographically dominated by B.

Then, I have to analyze the effect of changes in q9, P9, ¢° and P7 on the probability
Pr (k‘",Km, K"m) evaluated at k9 = Eg, ki = ¥ and K™ = Km, K" = Knm,

Let B =% + 01 BF . By definition, if B € K* (6", K™, K™), then :

u(0,at,.78) - P" 2 max [u(6,,..35) - P]
k"eKy

By Lemma 1.1, the probability that an agent has a preference profile such that there
are two contracts belonging to K* (Oi,K mK "m) is 0. Then,

Pr (kb K™, K™™) =
Pr( w (0,34 .,78) = P" > maxg g, [u(6,T @) — P )

Because u (Hi,'q'h) is continuous in 0 and in G and because the distribution function
of the 8’s is non-degenerative, I can use the Slutsky Theorem® to prove that the probability
is continuous in g9, P for all % belonging to K™ and in @, P for all K belonging to
Knm,

The second case is when there is a pair (Eg, ,B) with &7 belonging to K™ and B belon-

ging to B and a sequence of 8; such that, for all t >, I [(kf,ﬁ) ew (K_mt,K"mt)] #

5See, for instance, Jacod & Protter [4] page 161.
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I [(kg,ﬂ) e W (K™, W)]

To begin with, suppose that, for the pair (Eg, B) , 1 [(E‘q, ,B) ew (K_’", W)] =1 and
1[(%,8) € W (B, K7,)| =0 for attt > £ [ I[(R°,8) € W (B, K7)| = 1, then
this means that, for all pairs (Ef B+ ) with & belonging to K™ and B belonging to B
such that &7 + Z"”"‘ B; F=F4+ ZT’""‘ ,Bf k] B is lezicographically dominated by Bf.

IfI [( t,ﬁ) ew (K™, K™y )] =0 fort > t, this means that there exists a sequence
of pair {(Ef,ﬁz)}t>t- with Ef belonging to K™, and % belonging to B such that If

"""‘ ﬂjk] = kt + ZT’"’" ﬁsz and (% is lexicographically dominated by 5. Note however
that

TInm TInm

tl_l)r& Ef + Z ﬂﬁiﬁz = B+ Z ,BjEJ
j=1 j=1
. TInm — — Tnm —j
tl_lglokt—i—zlﬂjkt = % +z;ﬂjk.
J= J=

Accordingly, I find that E + 7’"’" ﬂ] 7 s equal to k& + ""’" ﬂzk] with % lexi-
cographically dominated by B. This leads a contradiction which zmplzes that there does
not exist a pair (Eg,ﬂ) for which, for all t > &, I [(Eg,ﬂ) ew (W,W)] =1 and
1[(%.8) € W (B, K7e) | = o.

Now, suppose that, for the pair (Eg,ﬂ) and forallt > ¢, 1 [(Eg, ,B) ew (K_m, W)] =
0andI [(7{:_‘(] ﬂ) ew (W Knm )} = 1. This means that there is a pair (—Ef ﬂf) with &
belonging to K™ and B! belonging to B such that &’ + Y17 B; =%+ POy ﬂf ¥ and

Bf lezicographically dominated by B. Without lost of generality, suppose there is only one
such pair. If I [(_k_:f,ﬂ) ew (Wt, Knm )] =1 for all t > ¢, this means Etg "'"" ﬁ]kj
is not equal to E{ -+ 7’"’" ,Bf k] Then, the probability that a consumer has preferences 6
such that either (Ef iy ,B]kJ) or (kt g k’) belongs to K* (6%, K7, ovm,)

is given by
) _ MInm . o
Pr | 6° € O[] + ) _ Bik; € K* (6, K™, K™™,)
i=1

Mnm . .
+Pr (fﬂ c Ok, + Zﬁ]fﬁi € K* (0’,I{mt,1{”mt))

j=1

ji=1 7=1

Mnm . _ Mnm . o
—Pr (9" € 0| (Ei’ +y ﬁﬂ{) and (k{ SN H ) belong to K* (¢, Kmt,'f(_"mt))
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By Lemma 1.1, if ky + ot ﬂjE{ is not equals to E{ + Z;’;’i‘ ﬁjf E{, then the probability
that a consumer has a preference profile such that & + 7;’1‘ Bk, and Etf + ;’;’f BJf E
belongs to K* (Oi,j(—m—t,K"mt) is zero. But by taking the limit of the preceding sum of

probabilities, I obtain

Mnm . o
im0  Pr ({ﬁ € Ok + Y Bk, € K* (6/, K™, K"mt))
j=t

MInm . o
+Pr (9" cOF + 3 BIE e k* (¢, K™, K"mt))

i=1

Inm . _ Tnm . L
—Pr (ei € ©| (Ef +> ,@E{) : (k{ +> 8 k{) € K* (¢, I\’mt,—K”mt))

i=1 =1

T]nm y P — —
= Pr|6ecOF’+> Bk € K (6, K K™™)
ji=1
Nnm . S
+Pr |6 e OfF + Y B/F € k* (¢, K™, K7m)
j=1
. —_— Tlnm — —_— nnm —_— 1 — ———
—Pr(decol |[F+> aF |, &+ 8/F | e k* (6, K™ Kom)
j=1 j=1
. — nnm —_— ¢ — —
= Pr|dco +Y 8% ek (¢, K7 Kom)
j=1

because k° + PRy ﬂjﬁj =kf + > ﬂjfﬁj.
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Then, by introducing the indicator function, I avoid double counting. I therefore have

NMnm .
limg oo T [(Ef, ﬁ) ew (K_mt,K”mt)] Pr (0" c OfF + Bk, € K* (¢, K™, K”mt))

=1

Tam
+1[(R,8) e W (Ky)| Pr | 0" e OK] +_ /K € K (Bi,'I(_mt,K—"ﬁt)>
j=1

= 1[(F.8) e W (R)|Pr |6 o + %Zmﬁjzj € K* (0, K™, k)
j=1

Jj=1

MInm .
+1[(F,8) e W (R)| Px (fﬂ colt’ +Y pIF e Kk~ (ei,'K_m,_Knm))

where 1T [(Ef,ﬂ) ew (Kmt K "mt)] and I [(E{,B) ew (K_’”t,I ”mt)] are equal to one
while I [(Eg,ﬂ) W({m K”m)] is equal to zero and I [(Ef,ﬂ> € W(K_m,I "m)] 18
equal to one.

Then, (1.6) is continuous in q¢ and P9 for all k9 belonging to K™ and in ¢ and P’
for all k7 belonging to K™™.

For the fourth step, let @ (n™™,n™) be the mazimum profit obtained when the optimal

nm

contract must be composed of n™™ non-monitored contracts and n™ monitored contracts.

(N, n"",n™) = max
7r( 7 7 ) Kme¥(nm), K" e¥ (nnm)
Tnm
N Z Z [ (k9,B) € W(.Km K nm)] Pr kg'f‘Zﬂjkj,I{m,Knm
k9eKg* pe B j=1

Mnm Tnm

* | P9+ Zﬂ]P] Zc, * (qlg + Zﬂ]q{))
7=1
— K™ @ — | K™ QR (N, K™, K

In the previous step, I prove that the function (1.6) is continuous in ¢° and P* for all
k* belonging to K™ or to K™. Moreover, non-monitored and monitored contracts must
belong to A. Then, I use the theorem of the mazimum to prove that # (N,n™™,n™) exists.
Since n is finite, then the number of combinations of (n™™,n™) with "™ +n™ < n is

also finite. Consequently, there is a mazimal element in the set

{7 (N, "™ 0™) | " 4+q™ <n}
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I can now examine if the maximal profit (V) is strictly positive for any N. This could
not necessarily be the case since I have assumed above that the monitoring cost function
is increasing in N. It could for instance happen that the profit is strictly positive when
there are 10 consumers but equal to zero with 11 consumers. However, as shown by the
following result, I can state under certain conditions that profits will stay strictly positive

when the number of consumers exceeds a critical level.

Proposition 1.2 Suppose that 31 € {1,2,..., L} such that, for all g* with ql" =0,

) bl gi, h
Pr<9’e@ | th)>cl>>0
dq

There is a N such that YN > N, the profit is strictly positive.

Proof. Suppose that K™ = ( and K™ has only one element which mazimizes :

S Pr (k",(a,l "’”) * (Ph - i (Cl * ‘th>>

kheK(0,Kmm) =1

By assumption, I know that this term is positive. Then, I can set N such that

L

N x Z Pr (k",@,K”m) * (P" - Z (cl * qf)) —-a™ < 0

k"EK(@,K"m) =1

(W-i- 1) * Z Pr (kh,(D,K’"”) * (P" - i (Cl *qf)) —-a" > 0

kheK(0,K™™) I=1

The condition for a strictly positive maximal profit is not a strong one. It says that
if there is a positive probability to finding a consumer with a marginal utility over at
least one good that is higher than the marginal cost to produce this good, then the firm
makes profit when the number of consumers is high enough. The intuition for the proof is
simple. When the number of consumers increases, the administrative cost to provide one
non-monitored contract, which is constant with respect to IV, becomes negligible. It will
then become possible to make strictly positive profits whenever the number of consumers
becomes sufficiently large.

Let me now study if the maximal profit increases when the number of consumers
increases. The following result shows that this will depend on the form of the monitored

contract cost function.
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Proposition 1.3 If af (N, K™, K™™) is concave in N, then the profit function is non-
decreasing in N . If there exists an N for which the profit is positive, then the profit function
18 increasing for all N > N.

Proof. Let W(N ) and W"(N ) be the optimal monitored and non-monitored contract
set when the number of consumers is N and let K = K (f(\r”(N), W(N)) By definition,

kheK !

L
T(N+1) > (N+1) > Pr (kh, RTn(N),I’{an(N)) (Ph = (c, * q,h)>
=1
— [K"™ @™ ~ |K™ o (N + 1L, K™ (N), K*(N))

where the right hand side is the profit when the number of consumers is N + 1 and the
contract sets are K™(N) and W(N)

T(N+1) > (N+1)| Y Pr (khj(?l(N),ﬁr’n(N)) (Ph—i (c,*qlh)>]

|K™| a2 (N +1,K™(N), I?Tw’n(N))

K" g™ _ (N + 1
[T 0™ — (N + 1) -

By the concavity of alg (N,E;‘(N),I "m(N)) in N, then

a2 (N,f{‘?l(N),W(N)) al? (N + 1,1?7n(N),I’(Ff/n(N))
N 2 N+1

and therefore

T(N+1) > (N+1) {Z Pr (kh,ﬁ‘(N),W(N)) (P”—i (cl*qlh)>]

kheK =1

ap (N, K7(N), K7 (N))

N
L
T(N+1) > N ZPr(kh,f(Tn(N),I’(an(N)) (Ph—Z(c,*qf))
kheK =1
m (N, K™(N), K" (N
_lKnmlanm_NaE( (V), KF())

N

with a strict inequality if 7 (N) > 0. Note that the .right hand side of this inequality is
simply w(N) so that the results follow. m
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Without any assumptions on the concavity of the monitored contract cost function, it
is impossible to obtain any conclusions about the evolution of the maximal profit 7(NV)
with respect to the number of consumers. It could happen that the increase in the cost
of monitoring contracts is more important than the increase in the revenue minus the
production cost. In this case, the profit will decrease.

The second interesting question regards the composition of the optimal contract set.
The first result found is that the monopolist will always offer at least one non-monitored

contract. The following proposition demonstrates this result.

Proposition 1.4 Suppose K™ and K™™ are the optimal monitored and non-monitored
contract set. Then, there is at least one non-monitored contract, i.e. Knm # 0.
Proof. Suppose that K™ = (). By definition, K (f(”", 0) = K™. In this case the profit

function is :

L

Ny !Pr (kh,Km,K"m) (Ph -y (cm{‘)) — o (N,T(Tn,o))]

First, I know that the number of monitored contracts if finite. If not, the fixred cost will

be infinite. consequently, for each monitored contract k" belonging to f{T",

Pr (k:h, Km,Km") (Ph - i (c,qf)) —am (N,i{‘%, (2)) >0 (1.7)

=1

If there is a contract in which this condition is not respected, I could drop this contract
out without decreasing the profit.
I define k € K™ as the monitored contract mazimizing (Ph — ZlL:1 (Cl * qlh)) Let

K™ = Km\ {k} and K" = {k}. The profit with K™ and K™ is given by :

Ny ZI[(W,ﬂ)eW(R‘iW)] Pr(kh,K_m,W)
k9eKy BeB

Tnm L nm

Pg+Zﬁij—ch* qlg-l—Zﬁquj
j=1 =1 i=1
_ o™ K7 (N, T K

By assumption, a'g () > a™™. Hence, the administration cost of offering K™ and
K™ is lower than the cost of offering K™ and 0 respectively as the monitored and non-
monitored contract sets. Then, if the first term with the contract sets K™ and K™™ is not
smaller than with K™ and 0, the point is proven.

Consumers who buy a contract under the contract set K (1:_(7",(0) can do three things



under the contract set K(K™, K™™) : they can continue to buy the same contract, they can
stop buying or the can change their choice for a new contract. By construction, K (Er”, 0) c
K(K™, K™™), Consumers who buy a contract under K (Er",@) will never choose not to
buy a contract when they face the contract set K(K™, K" because they decide to buy a
contract belonging to K* (9, I,(TI, 0) and this contract is still available in K (K™, K™m).

Then, consumers must choose between a contract belonging to K* (G,ﬁ, 0) or ano-
ther contract. It is sure with probability equal to 1 that consumers will not switch to another
contract k" € f{\’/”\ {E} If they do, this means K* (6, f{\’/n, (Z)) contains two contracts but

the probability that K* (0, f(\"/‘, @) has two contracts is 0.5
Consumers really only have two possibilities : keep buying the contract they buy with
the contract set I (ffr”, 0) or buy a contract & which is a combination of the non-monitored

contract and of at most one monitored contract.

E=k'+Bk k'eK,Be{1,2,.}

But P — ZlL=1 (cxq) > P — ZtL=1 (c; * q) which means that the first term of (1.7) is
greater with K than with K. m

This result is very interesting. It says that every firm will offer at least one non-
monitored contract, which is what happens in the real economy. Many stores offer some
special discounts to big buyers and offer to others the possibility of buying without being
monitored. The stores open an account for big buyers and offer a discount depending of
the total purchases.

Which form of administration cost function is more likely to occur? The intuition
says that concavity for the monitored contract cost function is a realistic assumption. The
biggest cost of implementing monitoring structure is more a form of fixed cost. Some ob-
servations strengthen this intuition. Convenience stores almost always offer non-monitored
contracts and supermarkets offer discounts on a specific quantity of goods. Also, if there
is an important fixed cost to implement monitoring, only big surface selling stores will use
monitored contracts. On the other hand, one can argue that it becomes more complicated
to keep track of consumers as their number increases. Nevertheless, some technological

implements can contribute to diminishing the monitored contract costs.

1.4 Remarks on assumptions

To develop the model, T use strong assumptions on the utility function, the production

cost function and the monitoring cost function. I impose those assumptions to simplify

6See the proof of Proposition 1.



26

the presentation of proofs. Many of these assumptions could be relaxed to more general
functions, however.

Regarding the utility function and the production cost function, I need assumptions
which would guarantee the existence of a solution to the profit maximization problem. To
have a solution, it must be the case that, there is a § such that, for all ¢ > G, for all @ > ¢
and for all §* € ©,

dv (Qla ) QL) > du (ei, g1y ..oy QL)
dQ dqi

In other words, the marginal utility at § must be lower than the marginal cost to provide

Vi=1,2,..,L

at least §g. For consumers, the assumption of strict concavity in ¢ is not necessary. The
concavity is enough to have existence.

The assumptions about the monitoring cost function are more problematic to discuss.
In fact, it is very difficult to specify the form of this function. It makes sense to have
a monitoring cost function increasing in the number of base contracts but the linearity
doesn’t look too realistic. But I do not need the linearity to prove its existence. I simply
need the assumption specifying an increase of the monitoring cost when the number of

base contracts increases.

A(N™(N, K™, K™™) K™ K™™) > A (Nm(N,f(T", Krm), Km, K"m)

(Mams Mm) 2 (Mnms m)
(Tms Mm) # (Tam m)

where 7, is the number of non-monitored contracts and 7,, is the number of monitored
contracts. Without this assumption, I am not able to upper-bound the number of base
contracts. In this case the number of contracts could be infinite and it is impossible to

guarantee a solution to the profit maximization problem.

1.5 Conclusion

In this paper, I try to model the firm’s decision when it involves monitoring. I find some
sufficient conditions to get an existence proposition. It appears that the main assumptions
to guarantee a solution are more about consumer preferences and the production function
than about the monitoring cost function. I also find some results on the characterization
of the optimal contract set under specific assumptions.

Another issue involves the definition of monitoring. I define monitoring as the capacity
to constrain consumers to buy no more than one contract, when in fact, other definitions

could also be used. For example, I could assume that a monitored contract could be bought
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with or without another monitored contract. But using alternative definitions complicates
the presentation of the results without providing additional insights on the problem of
monitoring.

In my opinion, future work on monitoring should study the uniqueness of the monopoly
solution problem. Uniqueness is not guaranteed under the assumptions introduced in this
paper and it seems that stronger assumptions on the utility function would have to be
made in order to obtain it. Another way to extend the present study of monitoring is by
developing the characterization of the optimal contract set. Also, the approach proposed
in this paper could be taken in the context of a regulated monopoly context in order to
examine whether the use of monitored contracts could increase welfare.

Finally, introducing monitoring in a duopoly, oligopoly or perfectly competitive fra-
mework seems to be the natural next step. But it seems to me that this step will be very
difficult to take. The multidimensional preference profiles and good vectors complicate the
analysis of the stability of any optimal strategies. Furthermore, firms will not compete

only on quantities and on price, but also on the number of contracts and on their nature.
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2.1 Introduction

The house allocation problem consists of the assignment of indivisible goods to a set
of agents who can receive only one object in the final allocation. Such problems are very
common : allocation of rooms between roommates, lectures between professors, offices
between colleagues, etc.

This class of problems was introduced by Shapley and Scarf [8]. In their model, agents
own all goods collectively. While Shapley and Scarf prove the existence of a competitive
equilibrium, Roth and Postlewaite (7] show that this competitive equilibrium is unique
when preferences are strict over the set of goods. Roth [6] proves that this unique solu-
tion can be implemented by a strategy-proof allocation mechanism. Furthermore, there is
a unique strategy-proof, individually rational and Pareto optimal allocation mechanism
leading to the unique core allocation (Ma [5]). Abdulkadiroglu and Sénmez [1] show the
equivalence between the competitive allocation from random endowments and the random
serial dictatorship while Svensson [9] proves that all mechanisms that are strategy-proof,
nonbossy and neutral must be serially dictatorial. Abdulkadiroglu and Sénmez [2] mo-
del the case where there exists at the same time tenants and new comers on the same
market. They introduce the top trading mechanism in this set-up and show that it is Pa-
reto efficient, individually rational and strategy-proof. Ehlers [4] introduces the possibility
of having weak preferences over the set of goods and shows some restrictions on agent
preferences with which efficiency and coalitional strategy-proofness are compatible.!

The purpose of this paper is to look at rationalizability in the context of the house
allocation problem. In other word, I am interested in answering the following question :
is it possible to say if, for a given set of allocations, there is a preference profile which
supports this set as a Paretian allocation set 7 In existing papers on the house allocation
problem, only the paper by Ben-Shoham, Serrano and Volij [3] mentions explicitly the
composition of the Paretian allocation set. They show that for any two allocations in the
Paretian set, there exists a sequence of allocations belonging to the Paretian set such that
they are pairwise connected, i.e. there are only two agents switching their goods and all
others stay with the same good. This means that a set with two allocations that are not
pairwise connected cannot be rationalized.

To go further on rationalizability, I need to introduce the concept of a cycle. A cycle
is a subset of allocations in which a subset of agents switch their goods according to a
specific scheme. The presence of cycles in a given set of allocations which is presumingly a
Paretian set gives us information on the potential preference profiles which would support
this set as a Paretian allocation set. With the concept of a cycle, I derive some conditions

regarding the number of allocations that have to belong to an allocation set in order for it

!This list of papers treating of the house allocation problem is not exhaustive.
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to be a Paretian allocation set. Also, by using cycles, I am able to say if some allocations
must belong to the set of Paretian allocations.

The paper is organized as follows. In Section 2.2, I present the house allocation problem
and I define the concept of a cycle. Section 2.3 talks about the properties of the cycle and
Section 2.4 presents the implication of the presence of cycles in the Paretian allocation

set. Section 2.5 concludes.

2.2 Definitions and Notations

Let N ={1,2,...,|N|} denote the set of agents with |[N| > 2. The set of goods is X =
{x1,2, ..., 7y } Where all goods are different. I define an allocation a = (ax, ..., a4, ..., ajn))
where aj, € X is the good allocated to agent h with a; # a; for ¢ # j. For any set of agents
I C N and for any set of goods Y C X with [I| = |Y]|, A({,Y) denotes the set of all
possible allocations of goods in Y to agents in I.

Agent h’s preferences are represented by a binary relation P, which is complete, tran-
sitive and antisymmetric (strict preference). Given z1,z2 € X, z1 Pj, 2 means that agent
h strictly prefers z; to z2. Also, Py|y = P,|y means agents h and g have the same prefe-
rences over the set Y. I define a profile as P = (Pl, B N|) and the domain of all possible
profiles is denoted by P (N, X).

Definition 2.1 An allocation a is Pareto optimal for a given profile P if #b € A(N, X)
such that

by P ap for at least one h € N

by P, ap or b, = ag vVk=1,2,..,n

I denote by PO (P) the set of all Paretian allocations when the profile is P. Then,
PO (P) must be an element of A (N, X) which is the set of all non-empty subsets of
A (N, X). It is important to note here that, for all preference profiles P, the set PO (P) is
never empty. This means that, for every preference profile P, there is at least one allocation
which is not Pareto dominated by another allocation.

I say that a set T is rationalizable if there is a preference profile P such that the
Paretian allocation set for P is T, i.e. T'= PO (P).

The interesting question is : under which conditions can a set T be rationalizable 7 If
there are few goods, it could be possible to infer directly if there exists a profile supporting
the set. But when the number is higher than 4, the direct inference is quite complicated.?
Consequently, another way must be found to solve the problem.

Before doing so, I must define some concepts. The first concept I introduce is the cycle.

2The numbers of preference profiles with 4 goods is given by (4!)* = 331776.
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Definition 2.2 Let the set I be a subset of N and Y be a subset of X with |Y| = |I|. Let
1= (il,ig, ...,i|]|) with 11,12, o) € I andy = (yl,yg,...,y|1|) with Y1, Y2, Y1) € Y. I
say that a set T C A(N, X) has a cycle C (i,y) if 3S = {al,a2, ...,a'”} C T such that

1 _ 1 _ 1 _
a;, = Y, 4, =Y, ailll = ym
2 _ 2 _ 2 _
ail = Y2, aiz = Y3, ‘e aim =11
-1 _ -1 _ -1 _
a;, = Y- G, =Yp e Gy = Y-2
J o= =
i Y|l ia — Yy e i Yr-1

For example, if the set T has the cycle C ((1,2,3),(21,%2,23)), this means there are

1

three allocations a!,a? and a3 in T such that

1 1 1

a; = IT1, Q9 =1T2, Qa3=21I3
2 2 2

a; = T2, a9 = I3, a3 = T1
3 3 3

a; = I3, ag = I, az = T2

It is important to underline that ¢ and y respectively are vectors and not subsets of
N and Y respectively. To illustrate the importance of this distinction, consider the two
following sets :

Ty = {(z1,20,23), (x2,23,21), (3,21, 22)}

T2 = {(32,(31,333),(1:1,:33,1:2),(1;3,"32,1'1)}

The set T} has the cycle C ((1, 2, 3), (z1, 2, z3)) and T3 the cycle C ((1, 2, 3), (z1, 3, z2)).
But those two cycles are different. For this reason, vectors must be used to define a cycle.

Also, it should be noted that it is possible to write the same cycle in many ways.
Lemma 2.1 gives the number of ways to write the same cycle. Before presenting Lemma
2.1, I need the modulo operator. Let N be the natural number set. For a,b € N, modgb is

the remainder of the division of b by a.
Lemma 2.1 Any cycle of |I| elements can be written in (|I| — |Ryy|)|I|* ways where
Ry={re{l,2,..,[I|-1} | 3Fge€{L,2,..,|I|-1} with modrq =0}

Proof. Suppose the set T" has a cycle C(i,y) with i = (1,2, ...,|I|) and y = (21,2, ...7|1 ).
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Then, the set T contains |I| allocations such that :

1 1 _ 1 _
a1 =1, Q9 =1Tg,... a;Il —II)|1|
2 2 2
a; = T2, Qa5 = T3,... am =TI
ol = 1l _ -
1 = T|1,82 = TI1,-.. || —:I:m_l

I can write this cycle by using ¢’ = (x2, 3, ..., Z|7, z1). Then, all cycles C(i,y’) with
v’ which has its components switching neighbor to neighbor relative to y give the same
cycle. This gives |I| different ways to write the same cycle. I can do the same thing by
switching elements of ¢ and I find also |I| ways to write the cycle.

Now, consider the number p which is a positive integer strictly lower than |I|. Suppose
p does not belong to R, i.e. there are no pairs of positive integers ¢, s which are strictly
lower such that pg = s|I|. Let i’ = (1,p+ 1,mod|; (2p) + 1,...,modf (|| — 1)p) + 1)
and y’ = (ml,x,,+1,:vmod|”(2p)+1,...,zmodm((|1|_1)p+1)) and consider the cycle C(i",y").
Since p does not belong to R, this means all components of i and y” are different. So, the
cycle C(i",4y") is the same as C(i,y). This is true for all p’s which are positive integers
strictly lower than |I| and do not belong to R.

Finally, I obtain (|I| — Rjp) |I|*. =

The following example illustrates this fact.

Example 2.1 Suppose I have the set T = {(z1,z2,x3), (z2,23,21), (T3,21,22)}. Then,
by Lemma 2.1, there are 18 ways to write the cycle :

C((1,2,3),(z1,z2,23)) C((1,2,3),(z2,2z3,21)) C((1,2,3),(z3,z1,22))
C((2,3,1),(z1,z2,23)) C((2,3,1),(z2,2z3,21)) C((2,3,1),(z3,21,22))
C((3,1,2),(z1,z2,23)) C((3,1,2),(z2,2z3,21)) C((3,1,2),(x3,z1,22))
C((3,2,1),(z3,z2,21)) C((3,2,1),(z2,z1,23)) C((3,2,1),(z1,z3,22))
C((2,1,3),(z3,z2,21)) C((2,1,3),(z2,21,23)) C((2,1,3),(z1,23,22))
C((1,3,2),(z3,z2,21)) C((1,3,2),(z2,21,23)) C((1,3,2),(z1,z3,12))

It must be noted that |I| — |R;| is always higher or equal to 2 when |I] is higher or
equal to 3. The number 1 and |I| — 1 never belong to Ry
To simplify the presentation, I propose using the lexicographic ordering to have a

unique notation for a given cycle.

Definition 2.3 For two vectors v and w of | components, I say that v is lexicographically
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dominated by w if

wp >V or

w] =V, W2 > V2 Or

w1 = V1, W2 = V2, .., W > VY

The first step is to choose from all possible ways of writing a given cycle the ways for
which the vector 7 is lexicographically dominated by (or equal to) the others. Secondly,
from those variants, I choose the one for which the component subscripts of y are lexico-
graphically dominated by the other vector y.

Let’s apply this process to the cycle in Example 2.1. The first step tells us to se-
lect the vector 7 which is lexicographically dominated by the others. This vector is
(1,2,3). Then, from the different ways to write the cycle with ¢ = (1,2,3), which
are C ((1,2,3), (z1,z2,23)), C((1,2,3),(z2,23,21)) and C((1,2,3),(z3,z1,T2)) , I must
choose the one which has the vector y whose component subscripts are lexicographically
dominated by the component subscripts of the other y’s. I find that the unique solution
is C((1,2,3),(z1,z2,23)).

Consider another example.

Example 2.2 Suppose the set T is composed of the following allocations.

al = (1‘1,1134,1’2,1133)
a? = (z3, z2, 71, T4)
a® = (4,1, 3, 72)
(14 = ($Q,$3,$4,$1)
Then, the set T has the cycle C(i,y) with ¢ = (1,3,2,4) and the vector y =

(z1, T2, T4, T3).

Now, I can answer an interesting question : how many different cycles could set T
have for a given vector of agents ¢ and a given subset of goods Y ? There are |I|! different
vectors 7 and |I|! different possible vectors y. There are (| )2 possibilities. But, I have
already shown that there are (|I| — [R;y|)|I]* ways to write the same cycle. So there are
I_(I—lll_:é—?z!?[ different cycles for a given subset of agents I and a subset of goods Y.

I have to emphasize that the definition of a cycle is independent of what other agents
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get. For example, consider the two following sets :

Tl = {(1171, x2,T3, $4,.’E5) ) (:Ela Z2,T4,Ts5, :1:3) y (1131, T2,T5,T3, :E4)}

T, = {(z2,z1,z3,24,25), (T2, 21, T4, T5, T3) , (%1, T2, T5, T3, T4) }

These sets have the same cycle C ((3,4,5), (z3,z4,5)) even if they do not have the
same allocations.
Let S (7,y) be the set of all allocations a® such that :

s __ s _ s _

a;, =Y, G, =Y2, . aiIII = ym or
s _ s _ s  _

aiz = Y2, a/ia = Y3, veny aim =Y or
L — s __ 8 —

a’i|!| - yl”’ a‘il =1 veey ail” - y|1|—1

Definition 2.4 Suppose that the set T C A (X, N) has a cycle C (i,y). An allocation a® €
T is a cycle allocation for C (i,y) if a® belongs to S (i,y). The set of all cycle allocations
for C (i,y) is denoted St (i,7y).

Then, two sets could have the same cycle while they do not have the same cycle
allocations.

Also, it is possible that a Paretian set contains more than one cycle. In particular, it
could happen that the Paretian set PO (P) has two cycles : C (i,y) and C (i, y)withIC I
and Y C Y. To examine this case, I define the concept of subcycle.

Definition 2.5 Suppose that the set T C A(X,N) has a cycle C (i,y) where i =
(il,z'Q,...,i|1|) and y = (yl,yg,..‘,ym). I say that C (i%,y°) is a subcycle of C (i,y) if i* =

(zlz2zl) with 5,4, ..,i% € I° C I, y° = (yf,yg,...,yl““[s|) with Y3, Y3 - Yipe| €
Y CY and C (3% y®) is a cycle for St (3,y).

Consider the next example to illustrate a subcycle.

Example 2.3 Suppose that the set T has a cycle C((1,2,3,4),(z1,z2,23,24)). Then,
St (i,y) is the set of allocations a® belonging to T such that

a; = z, ay3=2z2, a3 =23, Qaj==T4 OF

al = z3, ay=ux3, az=2=o4, a3=7T1 OF
S s __ s __ $ __

a = T3, Qa9 =1T4, 4az=21, a4=Tz OT

8§ 8
a; = T4, a9 = T1, a3 = T2, ay = T3



Then, this cycle contains 4 different subcycles : C ((1,3),(z1,23)), C((1,3), (z2,z4)),
Cc ((2’ 4) ) (m19m3)) and C ((214) ) ("1:27"134))

To know if the cycle C(7,y) has subcycles, I study the set R|;;. The next lemma tells
us the condition necessary for |I| to have subcycles.

Lemma 2.2 If Ry # {|I]}, then C(i,y) has subcycles.

Proof. Without lost of generality (WLOG), let’s take the cycle C(i,y) with i =
(1,2,..,I]) and y = (21, z2, ...7)1)).

Consider p which belongs to Ry and suppose p is not equal to |I|. If p belongs to R,
this means there is a positive integer g strictly lower than |I| such that mod;pq = 0.

Now, let’s take i’ = (1,p + 1,mod|;(2p) + 1,...,mod|;|((g — 1)p) + 1) and y' =
(xl,:cp+1,mmodm(2p)+1,...,mmodm((q_l)p)ﬂ). Since p is not equal to |I| and ¢ is strictly
lower then |I|, the set I’ is not equal to I. I obtain the cycle C(¢',y') which is a subcycle
of C(i,y). m

The following example illustrates the result of Lemma 2.2.

Example 2.4 Suppose a set T' has the cycle C(i,y) with ¢ = (1,2,3,4,5,6) and y =

1

(1, 2,3, 24,Z5,%6). This means there are 6 allocations a ,...,ad belonging to T such

that :

1 1 1
a; =1, Qay=1T2, a3z = I3, ay = T4, g = T5, ag = 6

2 2 2 2 2 2
al = I, a2 = I3, a,3 = T4, a4 = Ts, a5 = TG, aﬁ =T

6 6 6 6 6 6
a; = Te, ay = I1, az = T2, ay = I3, ag = T4, ag = Ty

Then set Rg is given by {2,3,4,6}. Take p = 3. Then, cycle C(¢,y') with ¢ = (1,4)
and y' = (z1,z4) is a subcyle of C(4,y).

The last definition concerning cycles is the following :

Definition 2.6 I say that T C A(X,N) has a complete cycle C.(I,Y) with I C N
and Y C X where |Y| = |I| if for all ¢ = (il,ig,...,i|1|) with iy1,42,..,47 € I and y =
(yl,yg,...,y|1|) with y1,y2, ...,y € Y, T contains the cycle C (i,y).

In other words, there is a complete cycle C. (I,Y) when a set of goods are allocated
in all possible combination to a set of agents, i.e., there is a complete cycle if 35 =
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{al,a2, all=1 g I“} C T such that

1 _ 1_ 1 _ 1 _ 1 _

a; = Y, @ =Y2, o G =Y1-20 Gy TYI-1 Gy = Y|
2 _ 2 _ 2 _ 2 _ 2 _

a; = Y, G =Y2, . G =Y|1-20 Ay =Y Gy T Y|I|-1

]

3 _ 3 _ 3 _ 3 _ 3 _

a; = Y, 0 =Y2, - O =Yjr-1 Gy = Y|I-2, Gy = Y|I
4 4 4 _ 4 _ 4 _

a; = W, a’j = Y2, e Gy = yl][—l’ a, = y|]|1 a, = y|I|—2
5 _ 5 _ 5 _ 5 _ 5 _

a, = Y, a4 =Y2, - G =Y Qy T Y5-20 Ay T Y|1|-1
6 _ 6 _ 6 _ 6 _ 6 _

a; = Y1, G =Y2y - G =Yy Gy T YI-10 Gy = Y|1)-2

e _ 17 _ 1 _ e _ 1y _

a; = y|[|s aj - y[[|—1, e G =Y, Q) =Y2, 4, = UY1

with ¢, 7,t,u,v € I.

For the definition of a complete cycle, the arguments in the function C. (-) are sets. A
complete cycle contains all possible allocations of goods in Y between agents in I. In this
case, it is not necessary to mention a specific order of agents or goods.

It must be noted that if a set has a cycle, this does not imply that the set has a

complete cycle. This point is discussed in the next section.

2.3 Properties of cycles and complete cycles

The presence of a cycle C (4,y) in a Paretian set PO (P) gives information about the
preferences of agents. The first insight given by a cycle is about pairs of goods which are

neighbors in the vector y.

Proposition 2.1 Let the set I be a subset of N and Y a subset of X with |Y| = |I|. Let
i= (il,iz, ...,im) with 11, t2, st € I andy= (yl,yg, ...,y|]|) with y1, Y2, Y| € Y. If
PO (P) has a cycle C (i,y), then Vk,l € I

Pk|y|1|,y1 = Pllym,yl

and Pk‘yh Whel = Pl|yh,yh+1
Vh=1,2,3,..,}I] — 1.

Proof. WLOG, suppose that i = (1,2,..,|I|) and y = (z1,z2,...z);). Consider
T, Tpe1 where h = 1,2,...,|I| — 1. Suppose that agent 1 prefers ;4 to z,. Because
PO(P) has the cycle C(i,y), there is an allocation belonging to PO(P) such that zj41
is allocated to agent 2 and z; to agent 1. Since this allocation belongs to PO(P), then
agent 2 must also prefer z;41 to zp. Again, because PO(P) has the cycle C(i,y), there
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is an allocation belonging to PO(P) such that z;4; is allocated to agent 3 and z, to
agent 2. Since this allocation belongs to PO(P), then agent 3 must prefer x4 to zp. If
I continue for all agents belonging to I, I find that all agents belonging to I must have
similar preferences for all pairs zj,zp41 with A = 1,2,...,|I| — 1 and for the pair z1, 2.
(]

With this proposition, I get information on the profile P by using the presence of a
cycle in the Paretian set. However, I only have information on preferences over each pair
(Yn,yn+1) and the pair (yl I|,y1), so I cannot make a conclusion about the preferences
over all pairs of goods belonging to the set Y. The following example demonstrates the
problem.

Example 2.5 Suppose the cycle C ((1,2,3,4),(z1,x2,23,24)) belongs to the Paretian set
PO (P). Then the following profile supports the cycle.

P P, P P
I1 r3 1 T3
T3 I1 r3 I
T2 I I T2

T4 T4 T4 T4

Then when the good x1 is allocated to someone who belongs to {1,3}, the good z3 is
allocated to the other agent in that set. The cycle does not contain an allocation where the
good z1 is allocated to someone in {1,3} and the good 3 to someone in {2,4}. This means
that agents in {1,3} could have different preferences over the set {x1,z3} than agents in
{2,4}. The same 1is true for the set of goods {z2,z4}.

To analyze preferences over a pair of goods which are not neighbors to each other in
the vector y, I use the concept of subcycle. In Section 2.2, I showed that a subcycle is a

cycle. So, if a cycle has subcycles, Proposition 2.1 can be used to infer agents’ preferences.

Proposition 2.2 Let the set I be a subset of N andY a subset of X with [Y| = |I|. Leti =
(il,ig, ...,i|1) with 11,42, ...,%7 € I andy = (yl,yg, ...,y[”) with y1,y2, ..,y € Y. Suppose
PO (P) has a cycle C (i,y). Let q(r) be the smallest integer such that mod);(q(r)r) = 0 for
T belonging to Ry and not equal to |I|. Then, for all pairs ya,Yo+r witha =1,2,...,|I|-r,

-F)ill{yn;ya-i-r} = B[mod”l(ﬁr)]+lI{yn’yo"'r} /B = 1727"'1q(r) -1
‘Pi2|{ymya+r} = B[mad” (ﬁr)]+2|{y°”y°+7'} /B = 1, 2’ ceey Q(T) -1
Pi"l{yavya+r} - Pi[modlll(ﬁr)]'*'r|{y°’y°‘+r} ﬁ - 1’ 2’ o Q("') -1



38

Proof. WLOG, suppose that i = (1,2,...,|I|) and y = (z1,2,...7j7). Let g(r) be
the smallest integer such that, for r € Ry, mod|;(q(r)r) = 0. If r belongs to R
and is not equal to |I|, then for every v = 1,2,...,7 and every 8 = 1,2,...,q(r) — 1,
the cycle C(i%,y®) with i° = (v,v + r,v + mod|;(2r),...,7 + mod;((g — 1)r)) and
Yy = (.’L‘g, TB4rs Th+mody)(2r) - mﬁ+mod|[|((q—1)7‘)) is a subcyle of C(, y). Because C(i°, y*)
is a subcycle of C(i,y), PO(P) must have the cycle C(:%,y*). I can then apply Proposition
21. m

Let’s apply this proposition to the following example.

Example 2.6 Suppose PO(P) has a cycle C(i,y) with i = (1,2,3,4,5,6) and y =

1 .2 .3 ,4 .5 6

(1, 2,3, %4,Z5,26). Then, this means there are siz allocations a*,a*,a”,a%,a,a” €

PO(P) such that

a% = 1, a% = T, afl; = T¢
a% = 9, a% = I3, a% = I1
a"f = T3, a% = T4, a%:zg
a‘11 = I4, a% =I5, ... a‘é = I3
a‘rl’ = Ty, ag — TG, ag = T4
a(lj = g, ag =2z, .. ag =I5

Then, if [ taker =3 and g =2, I get

1 1
a; = 1, ay = T4

4 4
a; = T4, QA4 =121

I obtain that agents 1 and 4 have same preferences over the {x1,z4}. I can continue this
way and I find that

1. Agents in {1,2,3,4,5,6} have the same preferences over sets {z1,z2}, {z2,z3},
{z3,z4}, {T4,25}, {T5,26} and {z1,26}.

2. Agents in {1,3,5} have the same preferences over sets {x1,z3}, {z2,z4}, {z3, 25},
{z4,76}, {z1,25} and {z2,z6}.

3. Agents in {2,4,6} have the same preferences over sets {z1,z3}, {z2,z4}, {z3,25},
{z4,z6}, {z1,25} and {z2,x6}.

4. Agents in {1,4} have the same preferences over sets {z1,z4}, {z2,z5} and {z3,z¢}.

5. Agents in {2,5} have the same preferences over sets {z1,z4}, {Z2, 25} and {z3,zs}.

6. Agents in {3,6} have the same preferences over sets {x1,z4}, {2, 25} and {z3,z6}.
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This result gives additional information about the profile P since it provides informa-
tion on preferences over pairs of goods which are not neighbors in the cycle. Subcycles
can be analysed on their own since they are themselves distinct cycles, but they could
be supported by different preference profiles across agents than the larger cycle. However,
by using subcycles, I can only show that agents which are neighbors in a subcycle have
the same preferences over all pairs of goods which are neighbor in this subcycle and it is
possible that two distinct subsets of agents in the cycle hold different preferences over the
same subset of goods.

While Proposition 2.2 gives us information about preferences over pairs of goods that

are neighbors in a subcycle, Proposition 2.3 deals with the other pairs.

Proposition 2.3 Let the set I be a subset of N andY a subset of X with |Y| = |I|. Let
i = (il,ig,...,im) with i1,42,...,97 € I and y = (yl,yg,...,y”) with y1,y2,-, Y € Y.
Suppose that PO (P) has a cycle C (i,y). For all pairs of goods ya,ys € Y with § > a
such that (8 — o) does not belong to Ry,

Pk|{y°’yﬁ} - PI'{ya,yﬂ} Vk,lel

Proof. WLOG, suppose that i = (1,2,...,|I[) and y = (1, %2, ...7|y)). Now, take zq
and zg witha=1,2,...,[I| -1 and 8 =a+1,...,|I| and let § = § — a. By assumption, §
does not belong to the set Ry

Suppose that z, Py x3. Because PO(P) has the cycle C(i,y), there is an allocation
belonging to PO(P) such that z, is allocated to agent 6 + 1 and zg to agent 1. Since
this allocation belongs to PO(P), then agent § 4+ 1 must prefer z, to Tg. Again, because
PO(P) has the cycle C(i,y), there is an allocation belonging to PO(P) such that z is
allocated to agent mod; (26) + 1 and x5 to agent 6 + 1. Since this allocation belongs to
PO(P), then agent mod (26) + 1 must prefer z, to zg.

I can continue until I show that
to Py xz =104 1,mod(20) +1,...,modp ((|I| = 1)6) + 1

Since there is no positive integer ¢ < |I| such that mod|;(dg) = 0, then the set
{1,6+1,mod; (26)+1, ..., mody ((|I| — 1)d) +1} has |I| elements. So all agents belonging
to I have the same preferences over the set {zq,z3}. ®

It must be noted that if |I| is a prime number, all pairs of goods are treated by
Proposition 2.3 since Ry, = {|I|}. In this case, all agents in I have the same preferences

over the set Y.

Corollary 2.1 Let the set I be a subset of N and'Y be a subset of X with |Y| = |I|. Let
1= (il,’iz,...,’é”) with i1, 19, ol € I andy = (yl,yz,...,ym) with y1,y2, oYl € Y. If
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PO (P) has a cycle C (i,y) and |I| is a prime number, then Vk,l € I,
Pily = By

Proof. I apply Proposition 2.3 for all pairs of goods y,ypr €Y. m

This result is very strong. With only one cycle, I can conclude that a subset of agents
have the same preferences over a subset of goods. Unfortunately, as I have showed above,
I can not extend this result to any number of individuals in 1.

Another case can lead to the conclusion that agents in a subset of N have the same

preferences over a subset of goods.

Proposition 2.4 Let the set I be a subset of N and Y be a subset of X with |Y| = |I|.
Leti = (z'l,z'z, ""iIII) with i1,%2,...,%7 € I andy = (yl,yz, ...,y|1|) with Y1,y2, . Y1 €Y.
If PO (P) has a complete cycle C.(I,Y), the agents in I have the same preferences over
Y.

Proof. Suppose the opposite is true, i.e. there exists 4,7 € I and z’,z" € y such that

' P "

" P; o

This means the good z’ will never be allocated to 7 when the good z” is allocated to
1. That contradicts the existence of a complete cycle. m

The presence of a complete cycle gives us more information about agent preferences.
In fact, a cycle could give the same information if the number of elements in that cycle is a
prime number. Unless it has this characteristic, a cycle by itself does not give information
on preferences over all goods. But, if a single cycle cannot give the same information than

a complete cycle, many cycles can provide it.

Proposition 2.5 Let the set I be a subset of N and Y a subset of X with |Y| = |I.
Let i = (il,ig,...,i|1|) with 41,%2,...,% € I and y = (yl,yz,...,ym) with Y1,Y2, .-, Y1 €
Y. Let o be the lowest prime number except 1 such that mody|I| = 0. If PO (P) has
[(%l - 1) * (JI] —2)! + 1] cycles with same ¢ and same Y, then the agents in I have the
same preferences over Y.

Proof. Suppose |I| is prime. By Corollary 2.1, if PO(P) has a cycle C(i,y), then all
agents have the same preferences over the set Y.

Now, suppose |I| is not a prime number and let a be the smallest prime number such
that mod,(|I]) = 0.

Suppose z1,z2 € Y. Let I' and I? be two non-empty subsets of I such that all agents
belonging to I' prefer goods z; to z2 and all agents belonging to I2 prefer goods z to z1.
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Suppose PO(P) has 7 cycles C(i,y!) for t = 1,2,...,7. By convention, y¢ = z; for all
t. For all cycles C(i,y"), I define 8* the positions of z3 in the vector y* so that yj = w2,
and let 8t = B¢ — 1.

By Proposition 2.3, if there is a ¢t such that §* does not belong to R 1), then all agents
must have the same preferences. Suppose ¢ belongs to Ry for all t. Let the set II be equal
to {a, 2a, ..., |I| — a} which is a subset of Ry

The maximum number such that all §* belong to II is (%l - 1) (It =20 If 7 =

(% - 1> (|[I| = 2)!, then there is at least one cycle C(i,y!) with §* = a. By Proposition
2.2, then agents belonging to the same set j,j + a,1 + 2a,..,5+ (|I| —a) for j = 1,2,...,c
have the same preferences. But, agents in different subsets could have different preferences.
If I add another cycle C(i,3%), then 6° does not belong to II. If §° does not
belong to Rjy, by Proposition 2.3, all agents must have the same preferences over
{z1,z2}. If §° belongs to Ry, by Proposition 2.1, for h = 1,2, ..., 69, agents belonging to
hyh+ 89,1 4+ mod)f (26%),....h + (|I| - 6%) have the same preferences. Since §° does not be-
long to I, then h and h48° does not belong to the same set 7, 5 + &, 1 + 2@, ..., j + (|I| — @)
for § = 1,2,...,c. So the two sets which contain agent h and h + §° must have the same
preferences. I can continue to conclude that all agents must have the same preferences. m
To illustrate the idea of this proof, consider the following example. Suppose |X| =
|N| = 6 and suppose T has the following cycles :
~ the 6 cycles given by C((1,2,3,4,5,6), (21,., Z2,+, Z3,+))
~ the 6 cycles given by C((1,2,3,4,5,6),(Z1,+,Z2,+, Z4,))
— the 6 cycles given by C ((1,2,3,4,5,6), (21, T2, T5,4))
1,2,3,4,5,6), (z1, T2, + T6,.))
— the 6 cycles given by C ( )
( )
( )

~ the 6 cycles given by C ((1,2,3,4,5,6), (T1,., T4y, T2,

( )
( )
( )
(1,2,3,4,5,6), T1,0,L3,8, T2,
( )
the 6 cycles given by C((1,2,3,4,5,6), (z1,.,Z5,+,Z2,
— the 6 cycles given by C((1,2,3,4,5,6), (1,s, e, s, T2,+))

If T has only these cycles, this means agents 1, 3 and 5 could have different preferences

(
(
— the 6 cycles given by C (
(
(
(

over z1,Z7 than agents 2, 4 and 6. To have all agents with the same preferences, I must

add at least one more cycle.

2.4 Cycles and Paretian sets

An interesting question concerning the composition of the Paretian set is what happens
to the remaining agents. If the Paretian set has a cycle C (¢,y), it is interesting to know
if there is an allocation in A(N\,X\Y) such that agents outside the cycle get the
same goods in all allocations which can constitute the cycle. In other words, if I define
Ye = X\Y, I¢ = N\, the question is : “Is there a z € A(I°,Y®) such that the set
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composed by all allocations belonging to PO(P) where agents in I¢ get z has the cycle
C (i,y) 7" The answer is : I cannot guarantee the existence of such an element. Take the

following example :

Example 2.7 Suppose the preferences for 6 agents are given by

P P, P P P P
T T I Z1 6 e
T3 T3 T3 x3 D] T4
) x4 T9 x4 s s
Ty T2 Ty Ts T 1
Ts5 Ts5 T4 T2 T3 T3

Ze6 Z6 Te6 Te T4 Y2
Then
($1,$2,$3,$4,$5,$6) € PO P

P
p

($21 I3,T4,T1,Ts5, (IJG) ¢ PO

(P)
(P)
(3:3)1'47:1:1’372’2:5)2‘6) € PO( )
($4,$1,IL‘2,(L'3,.’135,1'6) € PO(P)
and

T1,T2, T3, T4, 26, T5) € PO(P)
€ PO(P)
¢ PO(P)
€ PO(P)

2 5
3

(

(2, x3, T4, T1, T6, T
(z3, 24, 21, T2, T6, T3
(

)
)
)
T4, T1, T2, T3, T6, T5)

I obtain a cycle C (i,y) with i = (1,2,3,4) and y = (x1,%2,%3,%4). But the subset of
PO(P) in which allocations give x5 to agent 5 and x¢ to agent 6 does not contain the cycle
C (i,y). This is also true for the subset of PO(P) in which allocations give zg to agent 5

and x5 to agent 6.

Example 2.7 shows that the existence of such elements is not guaranteed. Nevertheless
if it exists and the agents in I have the same preferences over the set Y, the Paretian set

contains a complete cycle C. (I,Y).

Proposition 2.6 Let the set I be a subset of N and Y a subset of X with |Y| = |I|. Let
1= (il,ig,...,im) with 41,12,...,4 € [ and y = (yl,yg,...,ym) with y1,y2, -y € Y.
Suppose that all agents in I have the same preferences over the set Y. If the subset of
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PO (P) composed of allocations in which agents belonging to I¢ get z € A (I¢,Y®) has the
cycle C (i,y), then PO (P) has a complete cycle C.(I,Y) in which I¢ get z.

Proof. WLOG, suppose that Y = {z1,2,...,z7-1, %1} Let the set Y be equal
to X\Y = {zi7+1, %1142 - TN-1. TN b 1{1,2,..,[I| = 1,|I|} and I¢ = N\I. By
construction, I¢ = {|I| + 1,|I| + 2,...,|N| — 1, |N}}.

Now suppose that a ¢ PO (P) where agents in I get goods in the allocation a; €
A(I,Y) and agents in I¢ get goods in z. This means there exists an allocation b € A (X, I)
such that

b; P, a; for at least one 1

bijaj or bj=aj j=1,2,...,|N|

Figure 2.1 illustrates the allocation a.

21 U1
9 Yg
Zh Yn
43 Yk

F1G. 2.1 - Allocation z and the cycle C (7, y)

There are three possible cases for the allocation b. The first case consists of a reallo-

cation between agents in I€.

21 U1
B .
: 1 -

.

Fi1G. 2.2 - Allocation z : first case

But this kind of reallocation can not Pareto dominate the allocation a because there
exists an allocation @ belonging to the Paretian set in which agents belonging to I€ get z.

If a reallocation between agents in /¢ dominates a, then the allocation a should not belong

to PO (P).
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The second case is a reallocation between agents in I.

21 n
Zg (; yg D
Zh C Yn

2k Yk

F1G. 2.3 - Allocation z : second case

Again, it is not possible for this new allocation to dominate the allocation a. I assume
that all agents in I have the same preferences over goods in Y. Then no reallocation
between agents in I could Pareto dominate the allocation a.

Finally, the last possibility is a reallocation between agents in both sets.
21 Y1
W n
QU
W )

Yk
F1G6. 2.4 — Allocation z : third case a

Because the agents in I have the same preferences, y; is preferred to y; by all agents
in I.

Suppose the agent who gets y; in the new allocation is agent . Because of the cycle,
there is an allocation in this cycle such that a gets good yi. Then this allocation could
not be in the Paretian set because this allocation will be dominated.

(T
C?’TJ :

Zk ®

-

Fi1G. 2.5 — Allocation z : third case b
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This means that the allocation where o gets y;, is Pareto dominated and contradicts
the existence of a cycle C' (Y, I) in the set S. m

To illustrate the proposition consider the case where the Paretian set PO(P) contains
the allocations (z1, z2, z3, 4, T5), (Z2, T3, 21,24, T5) and (z3, 1, T2, T4, T5). Then, PO(P)
has the cycle C'((1, 2, 3), (21, z2, z3)). By Proposition 6, the allocations (z1, z3, 2, 24, Ts5),
(z2, 1,3, T4, x5) and (z3, T2, Z1, T4, Ts5) must also belong to PO(P). Then, PO(P) has a
complete cycle C. ({1, 2,3}, {z1, 22, z3}).

Before presenting some constraints on the number of allocations in the Paretian set, I

need the following proposition.

Proposition 2.7 Let the set I be a subset of N and Y be a subset of X with |Y| = |I|.
Let i = (il,ig, ...,i|1|) with i1, 13, ...,i|]| elandy= (yl,yg, ...,y1|) with y1, Y2, Y € Y.
Suppose PO(P) has a cycle C(i,y). Let § be an agent belonging to I and z, an element of
Y. If all agents belonging to I\{8} have the same preferences over the set Y\ {z}, then

agents belonging to I have same preferences over Y\ {z,}.

Proof. For all pairs of goods belonging to Y\ {z,}, I can apply Proposition 2.2 or Pro-
position 2.3 to find that there is at least one agent belonging to I'\{d} with the same
preferences as §. Because all agents belonging to I\ {d} have the same preferences over
Y\ {z,}, then all agents belonging to I have the same preferences over Y\ {z,}. =

The next proposition describes the restrictions on the number of allocations PO(P)

must contain.

Proposition 2.8 If |[N| > 3 and PO (P) # A(N,X), then |PO(P)| < (|N|-1) *
(IN| = 1)t VP. If |[PO (P)] = (IN]| — 1) * (|N| — 1)!, then there exist an agent i and a good
z; belonging to X such that there is no allocation a® belonging to PO (P) with a? = g
and the preference profile is given by

1. Pg|y=Ph|y Vg,hEN Y=X\{.'L‘[}

2. Pg|X=Ph|X Vg,hEN\{i}

8. Pyliz;zn} # Pil{wi,on) Vg € N\ {i} for some z;, € X\ {z;}

Proof. Let ¥ = A\ PO (P). By assumption, |¥| < (n — 1)L
Step 1 : Consider the good z;. Suppose that agent 1 gets good z; the least often in
the allocations belonging to ¥. Then, the number of allocations in ¥ where agent 1 gets

z1 is less than

(N =1)!
IV
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which is strictly lower than (|N| — 2)!. This means there is at least one cycle C(i,y) with
i =(2,3,..,|N|) and Y = ({z2,23,...,zy|} since there are exactly (|N|—2)! of such
cycles.

Now take z2. Again WLOG, suppose that zo is the good which is the least assigned
to agent 2 in the set ¥ when good z; is assigned to agent 1. The number of allocations in
this case is less than

(IN] —2)!

(IN[=1)
which is strictly lower than (|N| — 3)!. This means there is at least one cycle C(i,y) with
i=(3,..,|N|) and Y = ({3, ...,z)n|} since there are exactly (|N| — 3)! of such cycles.

I can continue until |N| —¢—1 is a prime number. Let z4 belong to {z;, zt41, ..., z|N|}
and suppose that agent a gets good z, the most often in the allocations belonging to
PO(P) when z; is allocated to agent 1, z2 to agent 2, ..., x;—1 to agent ¢t — 1. Then, by
Corollary 2.1, all agents who belong to {¢,t + 1,...,|N|}\{a} have the same preferences
over the set {zy, z411, ---,$|N|} N A{za}-

Step 2 : Now, consider the general case where agents in {s,s+ 1...,|N|}\ 3 have
the same preferences over {ms,ms+1,xs+2,...,m|N|}\{:cﬁ}. But there is at least one
cycle C(i,y) with i = (s,s+1,..,|N|) and ¥ = {2, Ts41,Ts42,...,%|n(}. By Pro-
position 2.7, all agents belonging to I must have the same preferences over the set
{zs, 2541, Ts12, . TN } \ {28}

Step 8 : 1 can use the same approach with the two remaining x,. Doing so, I find
that all agents belonging to {s,s+1,...,|N|} have the same preferences over the set
{l‘s,CL‘s+1,IIJS+2, ...,IL‘|N }

I use this approach until I find that all agents belonging to {2, 3, ...,|/N|} have the same
preferences over the set {z2, z3, ...,:1:|N|}.

Step 4 : If |¥| is strictly lower than (|N| — 1)!, this means there is at least one cycle
C(i,y) with i = (1,2,...,|N|) and Y = {xl,wg,...,ww;}. Then, by Proposition 2.7, all
agents have the same preferences over the set {.’l:2,.’l:3...,:1,‘] N;}. Now, if steps 1 to 3 are
done once again with 2 and z3 instead of z1, it can be seen that all agents must have the
same preferences over the set {xl, T2, T3..., T N|}-

Step 5 : Now suppose that |¥| is equal to (|N| — 1)!. Suppose that there are two
allocations a! and a? belonging to ¥ such that all agents get different goods, there is no
a € {1,2,...,|N|} such that al, = a2.

Let the vector i be the cycle of goods from a! to a®. In other words, the good allocated to
agent i, in the allocation a! goes to agent i,.1. Since there are two allocations composing
the same cycle C(z,y) and there are (|N| —1)! allocations, this means there is at least one

cycle and I obtain that all agents must have the same preferences.
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The only way to avoid the possibility of having a cycle of N elements in the set PO(P)
is for all allocations belonging to ¥, there is a good which is never allocated to an agent.

Suppose this good is z, and the agent never getting z, in PO(P) is §. Since all
allocations belong to PO(P), all agents have the same preferences over the set X\ {z}
and all agents belonging to I'\{d} have the same preferences over the set X.

If all agents have the same preferences, then PO(P) must contain all allocations. So,
this means there is at least one good belonging to X\ {z} for which agent § and other
agents must have different preferences. m

I can use cycles to describe the rationalizability conditions of a set further. For example,
I can use the same approach to say that if |PO (P)| < (|N| —1) (|N| — 1), then

1. |PO(P)| = (IN| = 2) (IN| = 1)! + (|N| - 2)! or
2. |PO(P)| < (IN| - 2) (IN] - 1)!

2.5 Conclusion

The rationalizability in the context of house allocation is hard to provide. Except
in cases where there are only a few allocations (1, 2 or 3) or for the set of all possible
allocations, it is very difficult to conclude.

The use of cycles can help to analyze the rationalizability of an allocation set. While
Proposition 2.8 studies the number of elements necessary for an allocation set to be ratio-
nalizable, Proposition 2.6 presents a case where the fact that a set contains a cycle implies
that it must contain some specific allocations too. Proposition 2.8 could be extended to
include more conditions, but to devise a complete statement of all cases promises to be
very long and complicated. From my point of view, the most interesting avenue for the use
of cycles is to employ them like I do in Proposition 2.6. In short, cycles can be useful to
study directly the rationalizability of an allocation set, since by using cycles it is possible
to say if a given allocation set is missing some allocations to be rationalizable.
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Chapitre 3

Self-enforcing contracts, value
functions and CARA utility
functions with an application to

mergers



3.1 Introduction

Why do firms merge ? Two strands of the economic literature try to answer this ques-
tion. Since the beginning of the 80’s, Industrial Organization economists have tried to find
a simple model to explain why firms merge. In their paper, Salant et al [17] show that
under a quantity-competition framework, unless synergies are important or a majority of
firms are involved (more than 80 percent of firms), merged firms (insiders) lose while other
firms (outsiders) gain.! Deneckere and Davidson [3] state clearly the problem.

The incentive to merge in noncooperative oligopoly models depends on the in-
teraction of two basic forces. First, a merger allows coalition partners to absorb
a negative externality. (...) Second, the merger elicits a spiral of responses from
rival firms. (...} In quantity-setting games, (...) the response of other industry
members tends to hurt coalition partners because in these games reaction func-

tions are typically downward sloping.?

Some authors have proposed alternative approaches. Kamien and Zang [11] present a
three-stage model. The first stage is the acquisition phase where firms bid to acquire other
firms. In the second stage, merged firms (the parent firm) decide how many divisions (old
independent firms) will produce a strictly positive quantity of goods. In the last stage,
divisions of every parent firm compete in a Cournot game. This approach differs from
the Salant et al [17] model. Implicitly, Salant et al [17] assume that all firms involved
in a merger act post-merger as a unique entity. With their model, Kamien and Zang
[11] find that 50 percent of market firms must be involved in the merger to gain from
the merger. Creane and Davidson [2]® continue in the same way and propose a model in
which the parent firm can use a different strategy with their divisions. They show that the
merger could be beneficial if the parent firm uses a structure in which divisions announce
sequentially the quantity they will produce. This Stackelberg game, which is played by
divisions in combination with a Cournot game with the other firms, leave insiders with
a gain and outsiders with a loss. Moreover, they find that only a small number of firms
must be involved in the merger. They argue that other kind of strategies can be used to
increase the market power of the merging firm. As such, they provide an answer to the
merger paradox.?

Finance Economists have also studied mergers. They use financial incentives to study
conditions under which a merger could be beneficial to insiders.> While some authors look

!Deneckere and Davidson [3] work on a price competition model. They find that both insiders and
outsiders gain but outsiders do better than insiders.

2Deneckere and Davidson [3], page 484.

%Huck, Konrad and Miiller [9] present similar models with same results.

4Pepall, Richards and Norman [16] define the merger paradox as the difficulty to construct a simple
economic model which leaves insiders with a gain even if they do not merge in a monopoly.

SHubbard [8] gives a survey of the literature on financial constraints.



6 one of the most important approach relates to the opti-

at the management incentives,
mality of using internal financing versus external financing. In a frictionless capital market
framework, Modiglani and Miller [15] show that the capital structure (internal or external
financing) of firms does not affect a firm market value. But some economists argue that
the equivalence between internal versus external financing does not hold. Alchian [1] and
Williamson [20] were the first to argue that headquarters are able to monitor produc-
tion and effort more effectively than outsiders. Then, mergers could be beneficial if this
problem of monitoring leads to an ineflicient allocation of capital for pre-merger firms.
Gertner et al [7] present a model in which headquarters can use the surplus of external
capital from given project for financing another project. They argue that this internal
capital market increases monitoring incentives, decreases entrepreneurial incentives and
redeploys financial assets more efficiently. Stein [18] uses another approach. He supposes
that the headquarter is able to enact a winner-picking process which consists of the al-
location of the constrained capital to the division which provides a better return. Stein
[18] supposes that the headquarters have a better knowledge than outsider investors to
allocate more effectively. Consequently, the headquarter is able to reallocate capital as the
state of nature is revealed and can reassign capital to the good project from the bad one.

Besides the question of the difference between internal and external capital, the im-
perfection of the financial market could explain why firms merge. The risk is transferred
to the financial market and risk-averse shareholders gain from a decrease in the net reve-
nue variance. When the financial market is not perfect, shareholders can be better off by
merging their firm with another. If firms have negatively correlated revenues, the merger
will decrease the firm’s revenue variance by using an internal financial market. However, if
firms have positively correlated revenues, it could happen that the increase in the revenue
variance will decrease the effect of the financial market imperfection and leave the merged
firm with a net gain.

This paper studies this question. In their paper, Inderst and Miiller [10] present a model
in which a firm must decide to centralize or decentralize borrowing. With the first option,
investors and firms can sign a financial contract which is more efficient than contracts
signed when borrowing is decentralized. Implicitly, Inderst and Miiller [10] assume that
the cost to enforce a contract is quite low. So, the agent must respect the contract in
any period. When the cost of enforcing a contract is important and the mobility cost for
an agent to quit the contract is quite low, the lack of a binding commitment becomes a
problem. Indeed, one agent could have the incentive to break the ex-ante optimal contract
after the state of nature is revealed. This problem of commitment in risk-sharing contracts
can lead to inefliciencies. To avoid this problem, long term contracts must be self-enforcing,

which means that no agent could gain by breaking the contract in all possible contingencies.

5For example, see McNeil, Niehaus and Powers [14].
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I use this approach to study in which condition a merger could be beneficial for sha-
reholders. Particularly, I want to study the effects of self-enforcing constraints on the
efficiency of mergers. A self-enforcing contract is such that, in all possible states of nature,
the firm and the borrower must have an incentive to respect the contract. This approach
was first introduced by Thomas and Worrall {19]. In their model, agents agree on signing
an insurance contract at time 0. Then, at the beginning of each subsequent period, the
state of nature is revealed to both agents. Each agent must decide whether to respect the
contract or not. If both of them decide to respect the contract, then the transfer of wealth
occurs along the terms specified in the contract. If one decides to break the contract, then
no wealth is transferred and it is not possible for the agent to sign another contract in the
future. If a given contract, which can be viewed as a series of transfers, is such that in any
state of nature and for any period, each agent gains more in respecting the contract than
in breaking it, then this contract is said to be self-enforcing.

Since general results are hard to provide, I study the case where utility functions exhibit
constant relative risk aversion (CARA). I begin by explicitly solving the self-enforcing
contract problem when agents have CARA utility functions and there are two states of
nature. From the optimal solution, I am able to draw the Pareto frontier in the context
where first-best contracts are feasible and when there is no such feasible contract. Second,
I look at the effects of a change in the distribution of the random revenue on the optimal
contract. I show that an increase in the variance leads to an increase of the range of the
discount factor for which the optimal contract is non trivial. Finally, I find that a merger
may or may not be beneficial for merged firms depending on the discount rate and the
correlation between firm’s revenues.

The paper is divided as follows. In Section 3.2, I present the model which is then solved
explicitly with CARA utility functions in Section 3.3. I analyze the effect of a change in
the variance of revenues in Section 3.4. In Section 3.5, I study the benefit of a merger in

the self-enforcing context. Section 3.6 provides concluding remarks.

3.2 Model

The problem is to design an insurance contract between two infinitely-lived risk-averse
agents. I suppose that the state of the economy is 4..d. over the finite set S = {1, 2, ...,|S|}.
The revenue of agent 1 can take values yj, ..., ys while agent 2 has a constant revenue w.
By convention, y, > ys—1. I denote by y* the realization of agent 1’s revenue in period t.

The utility functions for agents 1 and 2 are respectively u(c}) and v(c?) where c: is
the consumption of agent ¢ in period t. I suppose that the utility functions are twice

continuously differentiable and strictly concave. Total consumption must satisfy ¢} +c? <

y' + w for any y* € {y1,¥2,.., Y15/}
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Let hy = (s1, S92, 83, .-, St—1) be the history of realized states of the world at period ¢.
The insurance contract § consists of a series of transfers which in any given period depend
on the history and the current state of the world. Let b; (h, s) be the transfer from agent
1 to agent 2 in period ¢ when the history is h; and the state of nature at period ¢ is s. The
transfer could be positive or negative. Consumption in period ¢ can then be expressed as
function of the revenue and the transfer (c} = ys — b; (ht,s) and ¢? = W + by (hy, 5)).

Now, let E! be the operator expectation over s conditional on h; 1 and let 8 be the
discount rate. I define U (§;h¢) and V (é;h;) as the expected net gain for all periods
t,t+1,t+ 2,... for agents 1 and 2 respectively,

U(6;hy) = EL

ZﬁT—t [u(ys — br (hr,8)) —u (yS)]]

T=t

oo

V (6;h) = E} !Z BTt [ (@ + by (hr,5)) — v (w)]]
T=t

An optimal contract is a contract d such that agent 1 maximizes his expected utility

when agent 2 obtains a given level of expected utility. This optimal contract is the solution

which maximizes :
U@ h) = Eglu(ys —bi(h,s)) —u(ys) +BU (6, ha)] (3.1)
subject to
V(§,h) = Elw@+bi(h,s)—v@)+pV(§h)] > V

where V is the reservation value of agent 2.

The solution to the maximization problem (3.1) is first-best. This contract is such that
u' (c}) /v’ (c?) is constant for all periods ¢ and for all states of nature s.

The first-best contract introduces a potentially large transfer from one agent to the
other. In some circumstances, it is conceivable that an agent would prefer reneging on
the contract rather than making a transfer to the other agent. If contract enforcement is
costly, nothing can prevent an agent from doing so.

I now study this case explicitly. I suppose that each agent can leave the contract at
any moment. If an agent leaves the contract, I assume the he remains in autarky forever
thereafter. For the contract to hold, each agent must have incentives to respect the contract
in every period and for every history. To take this into account, I must add self-enforcing
constraints to the problem. The optimal self-enforcing contract is derived by solving

MAX U (5 h) (3.2)
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subject to

V (6, h1) VvV
u(ys = br (hry8)) —u(ys) + BU (6,hr41) > 0O 7=12,.. Vs€§, Vh,
v(W+ by (hry8)) —v (@) + BV (0,hry1) 2 0 7=1,2,... Vs€S, Vh,

A\ Y

The additional constraints state that, in any period and state, each agent must have
a non-negative surplus from the relationship.

There always exists a self-enforcing contract. The contract where no transfer is made in
any period is trivially self-enforcing. I call this contract the trivial self-enforcing contract
(TSEC). A contract which is self-enforcing and is not the TSEC is called a non-trivial
self-enforcing contract.

Let by (bs—1, St—1, St) be the first-best transfer at period ¢ in state s; when the transfer
at period t — 1 was b;_; and the state of nature was s;—1. In other words, by (bt-1, St—1,8t)

is such that -
W (g1 = by_y) u/ (ys — b (bt—l,St—l,St))

v (W+b—y) v (W+Et (bt—1,8t—1,3t))

Thomas and Worrall [19] show that the optimal contract has the following characteri-

zation.

1. For any state of nature s, there exists a non-empty interval [Qs_, Q such that b; (he, s)

belongs to this interval.

2. For any history h; and state of nature s,

|

if bs > by (br-1,81-1, 5¢)
b (heys) = by (be—1, -1, 8)  if by (be—1, 511, 8¢) € [bs, bs] (3.3)
if by < by (by—1, St—-1, 5¢)

&

The optimal contract is as close as possible to the first-best contract subject to self-

enforcing constraints which implicitly define the set of b, and bs.

3.3 CARA utility functions

To be able to solve explicitly (3.2), I use a specific form of utility functions and add

some constraints to the problem structure. In this section, I use a constant absolute risk
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aversion (CARA) utility function, i.e.

_e—r(c} (he ,s))

_e_‘I(C?(hhs))

u(ct (hs,8))
v (¢} (hy, )

where r and ¢ are respectively the risk aversion parameter of agent 1 and agent 2. With
this assumption about the form of the utility function, the problem becomes :

MAX E! [—e*’(y‘-bﬂ"”)) +e ™V 4+ BU (5, hg)] (3.4)
subject to
E! [_e—tI(EHn(hhS)) +e 9 4+ BV (6, h2)] >V
—e "Ws=br(hr8)) 4 o=V L BETIU (8,hr11)] > 0 T=1,2,.. Vs€§, Vh,
—e 4@ tr(hrs)) 4 o=@ L BETV (§,hr1)] = 0 T=1,2,... Vs€S, Vh,

It is possible to characterize first-best contracts using simple manipulations. To do so, 1
must differentiate (3.4) without the self-enforcing constraints with respect to two different
states of nature at two different periods.

L)
o' (W + bg (he, 5)) u' (W + b; (hr, 2))
re—TWs—be(he,s) re—T(z—br(hr,2))
qe—1@+bi(hes))  ge—a(@+b:(hr,2))
T(ys _bt (htas)) —Q(w-f-bt (ht,S)) = T(yz _bT (h'T)z)) _q(m—*_b‘r (h"r’z))

u' (ys — by (he, 5)) _ u' (y: = br (hr, 2))
)

And I obtain :

.
(r+q)

br (hr,2) = by (he, s) + (v —vs) (3.5)
This gives the relation between each possible transfer in each possible state of nature
and at every period. Equation (3.5) tells us that the optimal transfer at a specific period
in a specific state of nature is linear in the revenues of both agents. Here, there are optimal
contracts for special cases.
— If agent 2 has a random revenue wg, then the first-best contract is characterized by
br (hr,2) = bt (he, 8) + 7y (W= — Ys) + gy (ws — wa).
— If agent 1 and agent 2 have the same risk-aversion coefficient (r = q), then b, (h,, 2) =
b (hey 8) + 5(y= — vs)-
— If agent 2 is risk neutral (g = 0), then b, (hr, z) = by (ht, s) + Yy, — ys.

Throughout the rest of the paper, unless I explicitly suppose something else, I assume
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that agents have the same risk-aversion coefficient (¢ = r). This facilitates the explicit
characterization of the optimal contract.”

Also, to be able to explicitly solve the problem, I constrain the number of states of
nature to two. With more states, the problem rapidly becomes intractable.

3.3.1 Conditions for a non-trivial solution

Let’s say that a contract ¢’ is stationary if the transfer in state 1 is b} and the transfer
in state 2 is b5, no matter what the history is. The next two lemmas are derived from
Propositions 4.1 and 4.2 of Kocherlakota [12].

Lemma 3.1 If the optimal contract §* is first-best, then §* is stationary.

Proof. If a contract is first-best, then the transition of transfers between states of nature
at any period is given by (3.3). Then, the transfer at period ¢ is by (h¢, 1) = b7 if the state
of nature is 1 for any history h; and by (hy, 2) = b3 if the state of nature is 2 for any history
ht. |

Lemma 3.2 If there are only two states of nature, then the optimal contract 6* for (3.4)

monotonically converges to a stationary contract §'.

Proof. Let the optimal contract be §*. By definition, the contract §* gives the appropriate
transfer for any state of nature at period 1. Suppose that transfers at period 1 are given
by b3 (h1,1) and b7 (hq,2).

Without loss of generality, lets assume the state of nature at period 1 is 1. By (3.3),
b3 (h1,1) belongs to [b_l,m and, if the state of nature is the same at period ¢ and ¢t + 1,
then transfers in these periods must be the same (i.e. b} (h¢,s) = b, (ht41,5)). Then,
until the state of nature becomes 2, the transfer stays b} (h1,1).

Suppose that the state of nature stays 1 for period 1 to period ¢ — 1 and becomes 2 at
period t. Then b} (h¢, 2) must be equal

to by if by > by (b} (he-1,1),2);

~ or to by (bf_y (he-1,1),2) if b (b}_1 (he-1,1),2) € [ba, ba) ;

— or to by if by < by (b5_1 (Re-1,1),2).

In case 2, this means that the contract is first-best and by Lemma 3.1, the contract is
stable.

Suppose case 1, i.e. the transfer in state 2 is the lowest possible (bg). If I stay in state
2, then the transfer stays by. If I return to state 1 at period 7 > t, then b} (h,, 1) must be
equal :

— t0 by if by > by (be, 1) ;

"With different risk-aversion coefficients, I obtain a system of polynomial equations of different degrees.
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- or to ET (b_g, 1) ifgr (b_g,l) € [?l’m ;

~ or to by if by < by (bo, 1).

In case 2, this means the contract becomes stable after period T with ET (@ , 1) in state
1 and bs.

In case 3, this means the contract become stable after period 7 with b1 in state 1 and
be

Case 1 is impossible. I have supposed that by > by (bf_l (hi-1,1) ,2). Then, by (b_g, 1) >
bi_1 (ht-1,1) > b1,

By the structure of the process, the probability that the history h, contains state 1
and state 2 while 7 goes to infinity is equal to one. m

These results hold for any concave utility function. This comes from the fact that
transfers in each state must belong to a closed interval. Consequently, if the first best
contract transition given by Et (b’{_1 (ht-1,8), z) belongs to the interval, then there is a
first-best self-enforcing contract. By definition, any first-best contract is stationary since
transfers do not depend on the history but only on the actual state of nature. For any no
first-best self-enforcing contract, boundaries constrain the value of transfers. In the two
state case, the non-trivial self-enforcing contract (NTSEC) converges monotonically to a
stationary contract where the transfer is upper bounded in state 1 or lower bounded in
state 2.

In the case where the number of states of nature is higher than 2, the NTSEC does
not converge to a stationary contract. The reason is transfers in intermediate states of
nature (state 2,3,...,5 — 1), it could be optimal to have history-dependent transfers. For
example, in the 3-state case, transfer in state 2 could take different values depending of the
history. But, if I define partial history-dependent stationarity, which says that transfers in
any state depend only of the part of the history in which state 1 and S was realized, I can
obtain a lemma similar to Lemma 3.2 using partial history-dependent stationarity for any
number of states of nature.

Now, I am able to study the existence of a NTSEC. To prove the existence of such
contract, I can only look for the existence of a stationary contract which satisfies the self-
enforcing constraints. By Lemma 3.2, if there is a NTSEC 6*, then this contract converges
monotonically to a stationary contract é’. The contract §' which must be self-enforcing
since a self-enforcing contract must be self-enforcing in any state of nature and at any
period. Consequently, looking for the existence of a stationary self-enforcing contract is

enough to prove the existence of a NTSEC.

Proposition 3.1 Let p be the probability of being in the state of nature 1 and y2 > 1.

If erlvz—v1) > [1 + Eﬁi@fm], then there are some values of V for which the solution to

(3.4) is not the TSEC.
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Proof. By Lemma, 3.2, each optimal contract §* converges to a stable contract §’. Then,
if &' is not self-enforcing, neither is 6*.

Take §’ and assume that this contract gives at any period b} if the state of nature is 1
and b, otherwise. Let U’ and V' be the gain in utility of agent 1 and 2 respectively with
the contract ¢’. Suppose that &' is self-enforcing. Then,

—eTTY) L L BE U] > 0
—e T2 t) 4 =2 L BE[U'] 2 0
—eT ) L T L BE (V] 2 0
—e @) 4 T L BE[VI] > 0

I have supposed that y» > y1. This means that agent 1 is relatively more rich in state
2 than in state 1. Then, the optimal transfer must be negative in state 1 and positive in
state 2.

If I take a look at the participation constraints, I see that only two constraints are

really constraining.

_e—r(yz—b’g) +e V2 4 ,BEs [U’] > 0
_e—r(ﬁ+b’l) +6~TE+,BES [Vl] > 0

The other two are not because in those cases, the agent receives some amount. Then,
they do not want to break the contract. By definition, U’ and V' are stable. I can compute
their value by using the Bellman equation.

U = p (_e—r(yl—b'l) + e—ry1> +(1-p) (_e—‘r‘(’yg—b’z) +e—ry2) + BU’

U = 1—}5 [p (_e—r(yx—bi) + e—ry1> +(1-p) (_e_"'(y2—b,2) + e—wz)]
and
v = [p (—e + 1) +(1=p) (—e% 4 1)] + BV
vV = 1% [p <—e_rb,1 + 1) +(1—p) (—e_rbé‘ + 1)]
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I replace U’ and V' in the preceding constraints. Now, I must isolate b} in the first

v

I\

constraint.
—e 7Tt e 4 [ ( et 4 e"yl) +(1-p) (—e rlva=be) e—m)] >
'B_pﬂ ( e~Tv—b) 4 e-Tyx) + %ﬂ ( T(y2=b3) 4 e—Tyz)
Bp (_e—r(yl—b'l) + e—ry1) (1 - Bp) ( —r(y2—bh) + e_Tyz)
Bp (_er(yz—m)erb’l + er(yz—yl)) (1-Bp) ( et 4 1)

v

And I obtain :
& <_e7‘(yz ~y1) grb} + e?‘(yz—yl)) +1 > Tt
1-Pp

Graphically, this condition is represented by Figure 3.1.

(Bp)ertva—v1)

45°

1-8p ]
Bpyewa—i T 1 e

—

F1G. 3.1 — First Constraint

I can proceed in the same way with the second constraint.

—e“”"1+1+ﬂ[1—§—5 (—e‘f"'1+1)+(;+g)(—e"”'2+1)- > 0
_rb1+ﬂ[ ( —rb’>+( —p) (_e_rbg); > _ﬁ
i () B2 ()] 2 -2

(1—ﬂ+ﬂp( ) + (8- ﬂp )(-e%) > -1
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And I obtain :

1-8+pBp (_e_rb'1> Lt > et
B—Bp B—Bp
ﬂ - ﬂp . S erb’2
1= (1-B+Bp) (™)
Now, I can graph this condition (See Figure 3.2)
o7t
1]
B+ B
45°
1 ’
per L e’

F1G. 3.2 — Second constraint

I know that the frontier must have the point (1, 1) since the TSEC is self-enforcing. If

I combine the two constraints, I obtain Figure 3.3.

erb'z

45°

1 erbll
F1G. 3.3 — Both Constraints

The grey and hatched region is the set of all contracts like §’. To know if there exists

such contracts, I must analyze the slope of the two constraints at the point (1,1). Lets
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begin with the first constraint.

d(e"'b/z) _ ﬂper(lﬂ_yl)
d(et) 1-Bp
For the second one, I obtain :
de™) _ d ( B 6p )
d(em1) d(e™) \1—-(1—-B+Bp)e™
d(e2) B—Bp b,
7 = - 1- + 1
4 T Tioa-prpmerp PO

If I evaluate this slope at (1,1), I obtain

d(e™?) (1- B+ Bp)

dee)y —  B-Pp

In order for self-enforcing contracts other than the TSEC to exist, the slope of the
second constraint must be larger than the slope of the first constraint.

(1-B+Bp) o _Bpertnw

B—Bp —  1-Pp
(1-Bp)(1 -5+ Bp) < erlv2—u)
Bp (B — Bp) -
_:_B_ m(ya—y1)
Yoo S €

Then, the slope of the first constraint is lower than the slope of the second if e"¥2—¥1) >

_1-8
L gapn ™

For the moment, I do not know if the optimal contract is first-best. Proposition 3.1
tells us only under which conditions a non-trivial solution to (3.4) exists. Proposition 3.2

gives the condition to have a self-enforcing first-best contract.

Proposition 3.2 Let p be the probability of being in the state of nature 1 and y2 > y1. If
2 —
erlv2—v1) > [1 -+ Eﬂpl*z—ﬁ)] , then there is some value of V such that the optimal contract

1-p
is first-best.

Proof. Suppose that the optimal first-best contract is b{b,bgb and let U and V/°
be the gain in utility for agent 1 and 2 with the contract 6/°. The first-best contract is
self-enforcing if it fulfills the self-enforcing constraints. In the proof of Proposition (3.1), I
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state that only two self-enforcing constraints are relevant.

—e—T(y2=b5") +e ™2 4 BE, [Ufb]

v
o

I\
o

_e @) 4 o BE, [Vfb]
By (3.5), I know that the first-best contract is given by the following relation :

b b
erb{ =e 5(y2—y1) erb{

Let A be the NTSEC that fulfills both self-enforcing constraints with equality. Then,
some first-best contracts are self-enforcing if A is on the left side of the first-best contract
line. To proceed, I must find the solutions to the equations for the constraints. Since the
TSEC satisfies the constraints, I must focus on the other solution (point A). Let (b{,b4')
be the values of the transfers at point A and let U# and V# be the gain in utility of agent
1 and 2 with the contract 6#. Then, point A represents the non-trivial solution of

Il
o o

_e—r(y2—bzA) +e Ty 4 5Es [UA]
_e—r(@+b{) +e ™ 4 BE, [VA]

In the previous proof, I have found that those equations can be written as :

Bp
1-fBp

(-g@rmkw?+eﬂwwn)+1 — s

B~ Bp erb;
1-(1-8+8p) ()

By solving this system of equations, I find that the non-trivial solution is :

1-8p

1-Bp
ﬂper(y2“y1) - (ﬂ - ,Bp) - (

A r(y2—y1)
o = (ﬂ”—i—y—> (8= Bp)+ (8 — Bp)

1-Bp
ﬂpe"(y'z—yl)) ('B B 5P)

A
erb1

1+
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)
If I calculate the slope of the line which connects point A to the origin, %, I find :
e 2

e Lt ity — (8- Bp) — (Gt ) (B - o)

et (g&l%_;ﬂl) (8= Bp)+ (B - Bp)
o 1_py G- Bes M (5 Bp) — (B - fp)
- Bperlew) (2252552 ) (8- Bp) + (8 - Bp)
_ _1-Pp gal(—yfa,,ll‘ _1

Bpertuzn) \ (2220 (5 — Bp) + (8 - Bp)

_ 1-8p ( 1 1)
- ﬂper(y2—y1) 8- Bp

Now, I must compare this result with the slope of the line of first-best contracts. If

the slope of the first-best contract line is lower than the slope I find above, then some
first-best contracts are self-enforcing.

b
bl N erbft

b A
erbg erbg

v

1 1—8p 1 ]
5 W2—u1) Bperz—v) \ B —fBp

ezlv2-v1) > 1-fp (1—ﬂ+ﬂp)
-~ Bp B—Bp
ezlva—u1) > 1-8+Bp—Bp+ B2 — 2p?
- Bp (B — Bp)
5(y2—v1) Lﬂ_
: = Bp (B — Bp)

Then, if e"v2-v1) > [1 + Wlﬂ——ﬁﬁﬁjr’ there exist some values of V such that the optimal
contract is first-best. m

The idea of the proof is the following : the first-best relation given by (3.5) must be
compared with the non-trivial contract solving the two self-enforcing constraints. Precisely,

rof® o
I must compare ratios £ —ﬂ- and £ ﬂ- where b!® is the transfer in state s under a first best

contract 8 and b2 is the transfer in state s when the contract is the non-trivial one solving
self-enforcing constraints. Figure 3.4 illustrates the idea.
From the two preceding propositions, if yo —y; increases, then the optimal contract will

2
P r(y2—y1) 1-8 r{y2—y1) > 1-8
become non-trivial once e"\¥27¥1) > [1 + ﬂp(ﬁ—ﬁp)] and when e"\¥27¥% [1 + B ﬂp)] )

rb‘“’
8Mathematically, I find that the ratio eT,,l!Ta' is constant for any first-best contract.
e 2
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fo fb
e'f‘b’2 e"'bz = e% yZ_yl)erbl

45°

1 erb,l
F1G. 3.4 - First-Best Contracts and Constraints

then the optimal contract will become first best. Those results can be viewed as the dual
solution from Proposition 4 of Thomas and Worrall [19] which says that there is a discount
factor 8* such that, for all 8 > %, some optimal contracts are first-best and there is a
B. < B* such that for all 8 € [B., 8*), the optimal contract is non-trivial but not first-best.?

I prove Proposition 3.2 by finding the condition such that a first-best contract satisfies
all self-enforcing constraints. But, what can I say about the optimal contract ? Kocherla-
kota [12] proves that, when some optimal contracts are first-best, then the expected utility
converges to a utility level given by a self-enforcing first-best contract.!® I can rewrite this

proposition in a equivalent way in term of contracts

Proposition 3.3 Suppose that some first-best contract is optimal. Then, all optimal

contracts converge to a first-best contract.

Proof. See Proposition 4.1 of Kocherlakota. m
I say that a contract § is first-best convergent if it converges to a first-best contract.

This definition will be very useful in Section 3.5.

3.3.2 Pareto Frontier

In the previous section, I derive the condition to have a NTSEC. Here, I want to show
how the self-enforcing constraints affect the optimality of the contract. To do so, I use the
Pareto frontier in either case where a first-best contract is or is not self-enforcing and I
compare with the Pareto frontier when there is no self-enforcing constraint. I first begin

with the Pareto frontier when there is no self-enforcing constraint.

*It is possible to write conditions to have a NTSEC or a first-best self-enforcing contract with beta on
the left side but conditions become a bit messy
19See Proposition 4.1 of Kocherlakota [12].
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Proposition 3.4 Without self-enforcing constraints, the Pareto frontier is given by :

[ 2

E; [e‘gy’
1-(1-p8)e™V

UV (V) = —— |E,[e7™] -

. _ 1 Es e—gys
with V € |0, =By 1-— A PSET) .

Proof. First, with the assumption of constant revenues for agent 2, I can rewrite the

participation constraint. By Proposition 4.1 of Kocherlakota [12], I have that V' (§, hs) = V.
Then,

E, [_e—r(fu‘s+b£") e 1 BV] v

v

—rbf® WY/
E, [—e d +1] > (1-8)eTV
—rbf? TUY/
Es[e “] = 1-(1-p8)e™V
I know from (3.5) that the relation between transfers is given by :
fo_ o, L
by =by + §(y2 - 1)
By introducing this result into the participation constraint for agent 2, I obtain :
p (e_rb{b) +(1-p) (e_rb£b> = 1-(1-8)"V
fb S
P (e——rb{b) n (1 _ P) (e—r(b1 +%(y2—y1))) - 1- (1 _ ,3) Y

i 1-(1-p8)e™V
p+(1-p) (eg(yl—y2)>

And e is given by :

e—rbgb _ 1-— (1 - ﬁ) erﬁv

o (é(yz—m)) +(1-p)

Then, I am able to define the Pareto frontier explicitly by introducing b{b and béb in
the utility function of agent 1.
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vt = E, [“e_r(ys_bgb) +eTY 4 ﬁUfb]

1
yft = 1__5 [Es [e—rys] _ pe—r(yl—b{”) —(1-p) e—T(yz—bgb)]
2
E, [6_5%]
1
o - E —-rys] _ _
v 1-8 s e 1—(1—B)e™V

The maximum value for V is reached when Uf? = 0.

- 12
1 E; e"gy’

- —TYs| __ P
0 Es [6 ] 1_ (1 — ﬁ) eTEVMAX

E e_"'ys — =
ol ] 1-(1-pB)e™Vmax
— 1 Es [e_gys]
|4 = —
MAX (1 Be@ E, [e7vs]
|
Figure 3.5 represents the unconstrained Pareto frontier when there are no self-enforcing

constraints.

usb

E, [e_ry’]—Es [e~£ys]2

Vv

_ry.12
Ea e JlYs

1
=p)e™ {1 REAGED

F1G. 3.5 - Unconstrained Pareto Frontier



67

Without self-enforcing constraints, this Pareto frontier is attainable everywhere. This
is not the case when I add self-enforcing constraints. With self-enforcing constraints, as
shown above, there are two possibilities : either some first-best contracts are self-enforcing
or no first-best contract is. In the following proposition, I present the Pareto frontier if

there is no self-enforcing first-best contracts.

Proposition 3.5 Suppose that |1 + T— > ervz=v) > |14 T—L and let
*(1-p)

—p
i _ - _@L _
€ = 1-B+pBp+ Bper (=) (1- 8+ Bp)
A ,3 e’ y2—y1)
e = (ﬁ) (B—Bp)+ (B —Bp)
a _ (A=-pe™ s
ve = 1—,B+,Bp(1 e 2)
1—p)e ™ "y
yMAX ( 1 — ot
T p 5757 )
Then,
-if Ve [0 VA] then the optimal contract is given by :
- by (heys) = zf the state of nature s is 1.
- by (he,8) = (1 £) if the history is hy = (2,2, ...,2).

—(1-p)BleT®V
- b (hey 8) = b2 otherwzse

-ifVe [VA, yMAX ] , then the optimal contract is given by :
— by (he, s) = b4 if the state of nature s is 2.

— b (he,8) = p(1-B+Bp) if the history is hy =
t (b, ) p(1-B+80)+(1—p) (1-e "% ) ~(1-pB) (1—B+Bp)werdsV f v
1).

(L1,
- b ( ) bf otherwise.

And

-ifVe [0, VA], then the Pareto frontier is given by :

p (_e_r(yl_biq) -+ e_"'yl)

SE (77
UV = TEr A=)

+(1— Yxe “2<1_ 1-p )
(1-B8+Bp) l—p—eTx(1-B+Bp)*V
-ifVe [VA, yMAX ], then the Pareto frontier is given by :

s _ peY _p(l—ﬁ+ﬂp))
v = 1—ﬁp<1 v
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where ¥ = p (1 — B+ Bp) + (1 - p) (1—6‘”’5‘) —(1=pB)(1—B+Bp) V.

Proof. By Proposition 3.1 and 3.2, I already know that there is no first-best self-
enforcing contract. By Lemma 3.2, the optimal contract converges monotonically to the
contract given by the non-trivial solution of the following 2 self-enforcing constraints :

Br (__er(yz—yl)erb'l + er(yz—y1)> +1 = et

1-Bp
ﬁ — ﬂp _ erb'2
1—(1-8+B8p) (e™™)

which is
rbf 1-PBp
et = 1—ﬂ+ﬁp+ﬁ—pm(1—ﬂ+ﬂp)
A e”(yz—yl)
et = (%) (B —Bp)+ (8- Bp)
Graphically,
rb! erb;b — e%(UZ_yl)erb{b
e’V
A
i
45°

1 erbll
F1G. 3.6 — Stationary contract

Let V4 be the utility for agent 2 at point A. Then,

VA= p (=eT @) £ T4 gV A) 4 (1= p) (T 4 e 4 pVA)

But, the stationary contract satisfies the relevant participation constraint with equality.

Then : o B
_6—7‘(w+b1 ) +e T 4 ﬁVA =0



69

Then, I have :
VA — (1 _p) (_6—r(ﬁ+b§q) +e—r'1E+IBVA)

e (1 - p) (1 - e‘rb5‘>
1-B(1-p)

Then, if V = VA, the optimal contract is the contract represented by point A. If
V # VA4, then the optimal contract is different than the contract represented by point A,
but must monotonically converge to the A-contract. In the proof of Lemma 3.2, I have
seen that a contract can only differ from a stable contract at the beginning and until the
state of nature switches. In other words, the transfer in state 1 at period ¢ can be different
from b{1 if state 2 is not yet realized in the t first periods and the transfer in state 2 at
period t can be different from bg‘ if state 1 is not yet realized in the t first periods.

This results in two types of contracts :

VA

Type e The transfer at period t is b’l4 if the state of nature is 1.
1:

o The transfer at period ¢ is b3 < b4 if the state of nature is 2 at period
t and the state of nature was not realized in the first ¢ — 1 periods.

e The transfer at period ¢ is b4 if the state of nature is 2 at period ¢
and the state of nature was realized in the first ¢ — 1 periods.

Type e The transfer at period ¢ is bg‘ if the state of nature is 2.
2:

e The transfer at period ¢ is b} > b{* if the state of nature is 1 at period
t and the state of nature was not realized in the first ¢ — 1 periods.

e The transfer at period ¢ is bf if the state of nature is 1 at period ¢
and the state of nature was realized in the first ¢t — 1 periods.

The type 1 contract gives more utility to agent 1 and less to agent 2 and the opposite
is true for type 2 contract. Then, when V < V4, the optimal contract is type 1 and when
V > VA4, the optimal contract is type 2.

Now, I must calculate the transfer in the first ¢ periods in term of V. Let’s begin with
the case where V < VA, Then,

V =»p (_e—r(m+bf) +e T 4 ﬂVA) + (1 = p) (—e~ (@) 4 =TT L GT)
But, I find b{‘ by using the self-enforcing constraint :

_e——r(ﬁ+b’1“) + e—rﬁ + ,BVA -0
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I obtain :

Vo= (1=p) (-7 47 4 V)
Vo= (1-p)(—e7@) 4 e_"w) +(1-p) BV

1-1-p)B)V = (1-p) (_e— (@+b3) 4 e—rw)

1-(=-p)B\o _ ([ —rw+by) , T

(Fa=22)7 = (e
1- (1 - P) ﬂ oY —rb}
( = )e Vo= (1-e)
And
e_rb§ = 1— 1 _(il__pf)))ﬂerﬁv
erb; — (]. — p)

l-p)-[-(1-pBle™V

If V=0, then b5 = 0. If V = V4, then :

ot = (1-p)
T_we‘rm(lﬁp)(l—e—rbé)
(I-p)—-[1-(1-p)Ble 1-A(1=p)
erba — (1 - ,0) .
(1=p) = (1-p) (1-e%)
erb; _ erbz“‘

Now, I examine the case where V > V4,
V = p (_e—r(m+b;) +e T 4 ﬂ7> +(1—p) (_e—r(w+bg‘) +e T +ﬁVA)
1-80)V = p <_e—r(m+b;) + e—rm) +(1-p) (_e—r(w+b§) Le ™ g ﬁVA)
(1-Bp)e™V = p (_6_TbI + 1) +(1-p) (—6_”’5‘ +1+ ﬂeTﬁVA)
Then :
(1= Bp) eV — (1 - p) (_e—rb;‘ 14+ ﬁeerA) = p (_e—rbgb n 1)

1 Bp) s (1— _ )
1- (—;ﬂ—p)e“”v + % (—e ™ +148eTVA) = e
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(1-p) (—e*r('—"'HZA)-{—e—’W

Moreover, I have already found that V4 = T=A0=p) . Hence,
_ _ o—r(w+bd) —rw
- 1_(1—5P)erw+(1—/?) _e—rbg‘+l+5erm(l p)( © e )
p P 1-8(1-p)
—rb
- 1-80) s (L=p) [ oo (1= p) (e +1)
e Tblb — 1_(____eer+_____ —e Tbj +1+ﬂ
p p 1-8(1-p)

—rb‘l’b _ _ (1 - Bp) Ty (1 — p) _ —7‘b§1
° - o ¢ T oi-B+Bn (1 ‘ )
e,.b-ivb P (1 - /3 + ﬂp)

p(L=B+Bp)+(1=p) (1—eT) = (1= pB) (1= B+ Bp)+ sV

Let VMAX be the maximal value for V. Then, VMAX ig reached when b} = 0. To have
b = 0, I must have :

(1—Bp)(1 =B+ Bp)ePVMAX — (1_p) (1 _ e—rb;)

MAX _ (l-pe™ g
VI = g )

The previous part of the proof gives the optimal contract relative to the value of V.
Then, if I replace those values in the utility function of agent 1, I obtain the Pareto frontier
equation. Let’s begin with the case where V € [O, VA]. In this case, the utility function of
agent 1 is given by :

UOP (V) = p (~e W) e 4 BUA) 4+ (1 - p) (—eTHeME 4 e + BUOF (V)
With
UA =p (_e—r(yl—b{‘) +e TV 4 ,BUA) + (1 _ p) (_e—ryzerbg" + e TY2 +ﬂUA)
Because —e~"(W2=b%) 4 ¢=7v2 4 BUA = 0 by the self-enforcing constrain, I obtain :

|



Then,
OP (/) _— P _e~Tn-b) 4 i
U°P (V) (l—pﬂ)( e 0 4 emm)
+(1—p) (—e"yze”’5 +e ™ 4 U9F (V))
(1-B+Bp)U°F (V) = (—1—{—[@ (—e”r(yl"’f‘) + e‘”“) +(1-p) (—e—”ﬁe”’5 + e"yz)
OP (V) — P _eTm=b) | omru
rO) = arrea T ™)
(1 - p) ~ryp b} —7rYy2
(1-B+Bp) <_e crre )
If I substitute e™ = l_p,erml(zf RV RYVA I obtain :
—e~Tn—bf) 4 -y -
UOP(V)zp(e 1-91) + ¢ 1)+(1_p)*e yz(l_ 1-p _)
(1-B+Bp)(1-pB) = (1-B+Pp) l—p-e?(1-B+p6p)V

UOP (V) = p(-ertn=t) g emrm) L (A-p e ( ~eTx(1-f+Bp)+V )
(1-=8+Bp)(1—pB) (1-8+8p) \1—p—e™(1-B+8p)V

Now, for the case where V € [VA, yMAX ] In this case, the utility function for agent
1 is given by :

UOF (V) = p (—e7 070 + &7 4 GUOF (V) )4 (1 = p) (—e 70 4) e 1 i (V4))

I already know that —e w2 =b8) 4 eTy2 4 BU4 = 0. Then,

Ut (v) = 1_pﬂp (_e—r(yl—b;)Jre-ryl)

uor V) = 1-4, _pﬁpe””“

1- p(1—B+6p)
p(L=F+8p)+ (1= p) (1= = (1= pB) (1 = B+ Bp) ™V

Since the unconstrained Pareto frontier represents the maximum agent’s utilities under
all first-best contracts, then the Pareto frontier when no first-best contract is self-enforcing
is strictly lower. Another important point to underline is the discontinuity of the Pareto
frontier. Kocherlakota {12] says that the Pareto frontier is differentiable everywhere. In
fact, as corrected by Koepp! [13], the Pareto frontier is not differentiable everywhere

(Proposition 3.1). If I examine the Pareto frontier where a non-trivial solution exists, I
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find that the Pareto frontier is continuous but not differentiable everywhere!!l. The problem

of differentiability occurs at the intersection of 2 segments.

This problem of discontinuity occurs also when some first-best contracts are self-

enforcing. The next proposition shows the Pareto frontier in this case.

Proposition 3.6 Suppose that e"(¥2-v1) > [1 + p*(l ) ] and let

VMAX

Then,

1—B+Bp+ (B~ Bp)es )
B—Bp+(1—B+pBp)ertv—v1)
(8 - Bp) (1 - e5r-w))
er® (1 — (8- Bp) (1 - e%(yl—y2)>>
Bpe~Tyrt(1-BpeTT¥2
Bpe~mvi + (1 = Bp) e Witv2)
5pe—ry1+(1—ﬂp)e“”’2
Bpe= Wity2) 4 (1 — Bp)e—Tv2
p (1 - eg(y“y”) (,3 (1-p)e™™ — (1 - Bp) eé(y‘*"”))
e (1—B)(Bpe™v2 + (1 — Bp) e¥1)

(1 - p) e—rw _ e—rbzc
i —grE )

-ifVe [O, VB], the optimal contract is given by :

= bt (ht, S) = blB
= bt (h’tas) =

if the state of nature s is 1.
(1 p) if the history hy = (2,2,...,2).

—p)—[1—(1-p)Bler®V

- by (he,s) = b2 otherwzse
-if Ve [VB, VC], the optimal contract is given by :

- bt (ht’ 1) =
- bt (ht72) ==

p+(1-p)e¥1-v2)
1-(1-B)er®V

pes(y2_y1)+gl—p)
1-(1-B)e®V  *

-ifVe [VC, VMAX], the optimal contract is given by :
~ by (hs,8) = b if the state of nature s is 2.

- bt(h'ta's) =
- )

(1,1,..
- by (he,s) =
And

p(lbﬁ+ﬁp) —— if the history hy =
p(1-B+Bp)+(1—p) (1-~"F ) ~(1-pB) (1 B+Bp)*er™sV

C otherwise.

1 The continuity is quite obvious because each segment is continuous and at intersection of two segments,
the contract is defined evenly on both segments.
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-ifVe [0, VB], then the Pareto frontier is given by :
yor (V) _ (L—p)e™ (erbf _ (1-p) __)
1-B+p (l-p)-[1-Q1-p)ple™V
(p (_e—r(yl—bf) + e—ry1> +(1-p) <_e—7‘yzerbgB 4+ e—ryz))
1-5

-if Ve [VB, VC] , then the Pareto frontier is given by :

+

.12
E, [e‘iys

1-(1-p)e™V

Ust = T3 i 3 E, [e—rys] —

-ifVe [VC, VMAX] , then the Pareto frontier is given by :

USE V) = 1103__2; (1 _p(l —3'1‘,3!7))

where y = p(1— B+ Bp) + (L - p) (1—6‘”’20) —(1-pB)(1—B+Bp)xe™+V.

2 —
Proof. Since e"¥27¥1) > [1 + Eﬁﬁ%] , then there exists some V’s such that the

optimal contract is first-best. Let’s find the set of those V's.
The first step is defining the transfer in a first-best contract in terms of V.

<l
!

o (_e—r(m+b{”) LT 4 ﬂV) +(1=p) <_e—r(m+b£b) LU ,BV)
(1-B8)e™V = p (1 - e‘rb{b) +(1-p) (1 - e'rbéb)

1-(1-B)e™V = pe™ +(1-p)e ™
By (3.5), e = e emF Wy, Consequently

1-(1-B8)e™V = pe"b{b +(1-p) e~ o5 (y2—w1)

1-(1-8)e®V
And
efr _ PR 4 (1 p)
1—(1-p8)eTV

Let VB be the minimal utility of agent 2 when the contract is first best and self-
enforcing. This contract is the first-best contract satisfying the self-enforcing constraint of



agent 2. Let b and bJ be the transfers of the first-best contract for V5. Then, I find that

L 1-B+Bp+ (8- (y1—72)

Bp)e

et = f-Pp+(1-B+Pp)e
(B - Bp) (1 —esln— yz))

e (1- (8- ) (1 - c30a—))

(
2
Z(y2—v1)

VB

Now, for the maximal V, denoted V', given an optimal first-best contract, I must use
the self-enforcing constraint of agent 1. Let b¢ and b§ be the transfers of the first-best
contract for V¢ which is given by

ﬁpe_ry1+(l~ﬁp)e_ry2

rb¢
el =
Bpe= + (1 — Bp) e Witv2)
ot Bpe~Tyi+(1—PpleTTv2
BpeT Wrty) 4 (1 — Bp)eTv2
o p (1 - e%(m—yz)) (5 (1-p)e™ — (1—fp)es y1+y2))

e™ (1 - B) (Bpe™2 + (1 — Bp)e™)

IfV e [VB , VC], then the optimal contract is given by the first-best contract given
by :

oft . pH(1—p)eiT)
1-(1-p8)e?V

ot peE 4 (1-p)
- (1-p) eV

Now, I study the case when V < V8. Equivalent to the proof of Proposition 3.5, the
optimal contract in this case is given by :

— The transfer at period ¢ is b if the state of nature is 1.

— The transfer at period t is b5 < b¥ if the state of nature is 2 at period ¢ and the
other possible state of nature has not been realized at any moment during the first
t — 1 periods.

— The transfer at period t is b2 if the state of nature is 2 at period ¢ and the other
possible state of nature was realized at some point during the first ¢ — 1 periods.

To find b3, I must solve

V =p (_e—r(ﬁ-i-bl ) e T 4 ﬂVB) + (1 - p) ( —r(w+b3) + e~ "W + ‘3‘/)
But, I have found that b{3 by using the self-enforcing constraint :

—r(w+bB) + e 7Y + ﬁVB —
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I obtain :

erb; _ (1 - ,0) _
(1-p)~[1—=(1-p)Ble™V

When V > VC, the optimal contract in this case is given by :

— The transfer at period ¢ is b§ if the state of nature is 2.

— The transfer at period ¢ is b7 > b{ if the state of nature is 1 at period ¢ and the
state of nature has not been realized at any moment during the first ¢ — 1 periods.

— The transfer at period £ is bf if the state of nature is 1 at period ¢t and the state of
nature was realized at some point during the first ¢ — 1 periods.

To find b7, I must isolate it in :

V = p (_e—r(ﬁ-*-bi‘) + e—rﬁ n ﬂV) + (1 _ P) (_e—r(w+bg) + e—rﬁ 4+ ﬂVC')
With some manipulations...
(1 _ ,Bp)v = p (_e—r(wﬁ-bi) + e—rﬁ) + (1 _ p) (_e—r(w-*-bzc) + e—rﬁ + ﬂVC>

(1-Bp)e™V = p (—e—rb; + 1) +(1—-p) (—e‘rbg +1+ ,BermVC)

(1-8p)e™V —(1-p) (—e‘rb‘f" +1+ ﬂeerA) = p (—e_rbib + 1)

1— . — — s

1— ( ﬂp)erwv_}_ (1 p) (_e—rbz“‘ 41 +,B€TwVA) — e"Tblb
p p

(1-p) (_E—T(U+bg)+e—rw)
1-6(1-p)

By the self-enforcing constraint of agent 2, I have Ve =

(1-p) (_e—r(m+b§‘) + e—rm)

ot _ 1 (=B8p) mr, L=p) [ _ug D
e =1 D eV + p e +1+4 fe T—F0=7)
—rbfb _ (1 - :Bp) WY/ (1 N ,0) —rbg (1 B ,0) (-—e_rb2c + 1)
e = 1——p—e V+ 5 —e +1+p8 =60 =7
-rb3t _ (]' — .BP) Ty (1 - p) _-Tb§
° - o T o-B+Bn (1 ° )
bt p(1—B+Bp)

p(1—B+Bp)+(1—p) (1—e) = (1-pB) (1= B+ Bp) e xV
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Let VMAX be the maximal value for V. Then, VM4X is reached when b} = 0. To have
b = 0, I must have :

(1—Bp)(1 =B+ Bp)e®VMAX = (1-p) (1 - e—rbzc)

1—p)e ™ _C
VMAX — ( 1 —e Tb2
(l—ﬂp)(1—5+ﬁp)( )

I have already found that the Pareto frontier is composed of three parts. Let’s begin

with the second one, when the optimal contract is first-best. By Proposition 3.4, I know
that the Pareto frontier is given by :

vt = ﬁ By 7] -

Then, when V € [VB, VC], the Pareto frontier is given by this relation.
For the first case, i.e. when V € [O, VB], I can use the same approach from the
preceding proof.

UoP (V) =p (_e-rwl—bf) e 4 ﬂUB> +(1=p) (—eTmem + 7 4 BUOF (V)
With
UB=p (-e‘r(yl"’f) +eTV 4 ﬁUB) +(1-p) (—e"y?e”’i3 +eTTV 4 ,BUB>
If I compute UPP — U8, 1 find that
UOP (V) -UB = (1-p) (_e—ry2 (erb; _ erbg') + B (U°P — UB) (V))

UoP (V) -UB = (A-pe™ (erbf ~ erbs)

1-B+p
Then,
op oy _ (1=p)eT™ B e
v W) = (eF - )
(p (_e_r(yl_blB) + e"ryl) + (]_ — p) (_e_"'y2e7'b23 + e—T‘yz))
+
1-8
: b3 (1~p) .
And if I replace e™2 by -7 A= (=)Ao =V" I find that :
7 l—p)e™ ([ 45 (1-p)
UoP (V) = (————(erz— ——
¥) 1-f+p (l-p)—[1=(1=p)pfle™V

(p (—e‘“”l"’f) + e‘”“) +(1-p) (—e””ﬂer”z‘3 + e‘”ﬂ))
1-8

+
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Now, for the case where V € [VC, yMAX ] In this case, the utility function of agent 1
is given by :

UOP(V)=p(—e*W“ﬁ)+e“W1+ﬁU0P(VD+{1—p)C%r”m‘§)+e‘wz+ﬂf(vcn
I already know that —eTW2mbE) 4 vz BUC = 0. Then,

UOP (V) — - _pﬁp (_e—r(yl—bi‘) + e—ryl)
UOP (V) = —1 _pﬂpe_ryl

p(1—B+Bp)

1-—
p(L=F+8p)+(1-p) (1= e) = (1= pB) (1= B+ Bp) ™V

Of course, the Pareto frontier in each case is dominated by the Pareto frontier in the

case without self-enforcing constraints.!? Figures 3.7 and 3.8 illustrate this fact.

<l

FiG. 3.7 — Pareto Frontier with no self-enforcing first-best contracts

At the opposite of the case where no first-best contracts are self-enforcing, a part of
the unconstrained Pareto frontier may be reached when some first-best contracts are self-
enforcing. This comes from the fact that, if a first-best contract is self-enforcing, then
self-enforcing constraints do not apply and the problem is similar to the one without

12The Pareto frontier in case where some first-best contracts are self-enforcing is weakly dominated while
the Pareto frontier in the other case is dominated everywhere.
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<l

Fi1G. 3.8 — Pareto Frontier with self-enforcing first-best contracts

self-enforcing constraints.

If I take a look at Figure 3.8, I see that the Pareto frontier reaches the unconstrained
Pareto frontier at the middle. At the extremities, self-enforcing constraints apply and no
first-best contracts are possible. The gain to respect the contract is not high enough to
compensate agents to accept a net transfer to the other. In extremities, a NTSEC exists
but it cannot be first-best.

3.4 Variance

Thomas and Worrall [19] show that there exist 2 thresholds 8, and * with 0 < B, <
B* < 1 such that for any 8 € [0, 5.] the optimal contract is the TSEC; for any 8 € (8, 8%)
the optimal contract is NTSEC but this contract is not first-best ; and for 4 € [5*, 1) some
first-best contracts are self-enforcing. I now examine the effect of the variance on these
thresholds.

To do so, I constrain our analysis to the case where agent 2 is risk-neutral. In this case,

the problem can be written as
MAX U/(6,h1) (3.6)
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subject to

V (6, h1) Vv
u(ys — br (hry8)) —u(ys) + BU (8, hr41) > O T=12,... Vse€S, Vh,
by (hry8) + BV (8,hr41) = O r=12,.. Vse€§, Vh,

v

Let F(F}) be the set of all distribution functions for which the number of states of
nature is equal to the number of states of nature of F; and the revenue in state s is given
by (ys)1+7 ((ys)1 — y) for y = E5[(ys)1] and for all v > 0. Note that for all distributions of
revenue Fy € F(Fy), the expected revenue is equal to the expected revenue of Fi, in other
words E;[(ys)2] = Es[(ys)1]. Distribution F is a mean-preserving spread of distribution
.

Proposition 3.7 Suppose I have two distributions of revenue, F1 and Fy € F(Fy). Let
7 be the expected value of the revenue under Fy. Let (B.)1 and 7 be respectively the
threshold to have a NTSEC and the threshold to have a first-best self-enforcing contract
with the distribution of revenues Fy and let (B«)2 and 5 be the thresholds with Fy. Then
a) (B)1 > (Be)2;
b) By > Bs3.

Proof. a) : Let # > (B«)1 and J; be the optimal contract. Then I have for t = 1,2, ...,
Vs € S and Vhy,

u ((ys)1 = by (he,)) —u((ys)1) + BE;

> B u (Yl by (he,y8)) — u(y{)]] > 0

T=1

By strict concavity of u, then

U ((yS)Z - bt1 (ht, 3)) —u((ys)2) + ﬂE;

S8 (0 — b ry ) — <y5>]} ~o

T=1

Let 62 be the contract such that b2 (hr,s) = b (h,, s) + € with e > 0. By continuity, I
T T

know there exists an € such that

u ((ys)2 — b7 (he, 8)) = u((ys)2) + BU (6%, hey1) > 0
b? (heys) + BV (6%, her1) > 0

Then, I can find a NTSEC for every 8 > (B.)1. Since u and v are strictly increasing,
then (8.)1 > (Bi)2.

b) Now, let &; be the optimal first-best contract when the distribution of revenue is F}
and 8 = f}. Since d; is first-best, then transfers are independent of the history. Let bl be
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the transfer in state s. By definition, if §; is a first-best contract, the ratios of marginal

utilities for agent 1 and agent 2 for each state must be equal.

u ((g1)2 —b1) o ((y2)2—b3) o' ((ys)2—bg)
v/ ("117+b%) Y (E+b§) Y (E-{—bé)

If agent 2 is risk-neutral, then the first-best contract leaves agent 1 with a constant

stream of net revenue,
(ys)1 — by = (o)1 — by Vs,0 €S (3.7)

Let b; be the expected value of the transfers under the distribution Fy. Consider the
contract 62 where b2 = (1 + )bl
If I examine agent 2’s self-enforcing constraints with the contract 62, I have that Vs € S,

i ﬂr—tbgjl

T=t

b2 + BE!

If I replace bg with their values, I find

[e e}

DAL+ )b

T=t
)

1+7) (bi + BE:
T=t

(1+ )b} + BE;

Since 4 is self-enforcing, then .

(1+9) (bi + BE:

iﬁ*"biD >0

T=t

If I examine agent 1’s self-enforcing constraints under the distribution F3, I have that
Vs €S,

u ((%)2 - bg) —u((ys)2) + ﬁEﬁ

S 7 u (45— 1) — u <yg>]]

T=t

If I replace (ys)2 and b2 by their values, I find

w ((ys)r + 7 ((¥s)1 — ) — @ +7bE) — u((ys)r +7 (¥s)1 — v))

o0

+BEL > B fu (v +v (] —y) = (L+7b;) —w (] +7 (51 — )]

T=t
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w((1+7)((ys)1 — b3) — v) — uw (1 +7)(ys)1 — )

+BEL | B [u (L + 7] = b5) —vw) —u (1 +7)y] — )]

T=t

Because the self-enforcing constraints for agent 1 matter only when transfers are posi-
tive, which is the case when revenues are high, I concentrate my attention on those cases.
Since (1+7)((ys)1 — b3) — 7y < (ys)1 — by when (ys)1 <y and (1 +7)((ys)1 — bs) — vy >
(ys)1 — b} when (ys)1 > y, then, by the strictly concavity of u and since 6; is self-enforcing,
I have that

w ((1+7)((ys)1 — b3) = 1) — (1 +7)(¥s)1 — 7Y)

o0

+BEL [ B [u (T 4+ —by) —vy) —u((L+7)¥i —w)]| >0

T=t

By the same argument I use in a), there exists a € > 0 such that the contract d with
b¢ = b2 + ¢, which is first-best, respects the self-enforcing constraint with strict inequality.
]

When the variance increases, the gain for agent 1 to sign a contract increases since
agent 1 is risk-averse. Then, the incentive is bigger for agent 1 to sign a contract. Without
the assumption about the type of change in agent 1’s revenue, an increase in the variance
does not necessarily result in a lower threshold.!® It could be that the increase in the
tails are so large that they cannot be compensated by other states of nature. Take the
following example : Suppose that there are two revenue distributions F; and F». Let p; be
the probability to get y under the distribution function F;. Suppose F is characterized by
pt = ply = 0.5. Suppose also that p? = p%y = 0.495, p§ = 0.009925 and p3e = 0.000075.
It is easy to show that the expected revenue is the same under F; and F» but the variance
under F, is higher. The gain to break the contract when the revenue is 1000 could be
positive for any possible contract and then, it is possible that, for a given discount factor
B, there is a NTSEC for F; but not for Fs.

3.5 Merger

The question of mergers in the context of self-enforcing constraints is interesting. It
has often been argued that conglomerates serve the purpose of providing insurance to
shareholders. With the sophistication of financial markets, many have raised doubts about
the ability of mergers for providing insurance beyond that which shareholders can get

131t is possible to get this kind of result for the case where agent 2 has a random revenue but the
condition over the increase in the variance does not stay the same. To obtain a result in the case of random
revenue for both agents, I must define some conditions on revenues of both agents.
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by themselves. This is certainly true in the presence of perfect financial markets. When
these markets are imperfect, however, conglomerates may play a role. A merger could
potentially provide better insurance than imperfect financial markets. I examine this logic
when financial imperfections are caused by commitment problems, meaning that financial
contracts must be self-enforcing.

In the previous section, I show that an increase in the variance decreases the thre-
shold beyond which it is possible to sign a NTSEC. Proposition 3.7 gives the possibility
to discuss mergers of firms with perfectly correlated revenues. If two firms have perfectly
correlated revenues, then the merged firm will have the same number of states of nature.
By Proposition 3.7, if firm revenues are negatively correlated, then the merger decreases
the variance and thresholds increase. But, since the merged firm has smoother post-merger
revenue, the final effect is quite difficult to predict. In the case of perfect positive correla-
tion, the merger increases the range of s for which there exists a NTSEC. On the other
hand, the variance of the revenues increases at the same time. Consequently, the ultimate
impact of the merger on agent 1’ utility is difficult to see. To get an idea about the possible
outcomes, I use a numerical example.

I use a CARA function to model a risk-averse agent’s utility and I suppose there are
two symmetric risk-averse firms with random revenues. They have the possibility of signing
a self-enforcing contract with a risk-neutral agent (the market). There are two states of
nature with equal probability (%) In the bad state, firms get $1 each and they get $3 in
the good state. Let the risk-aversion coefficient for both firms r equal to 1. Firm 1 has
to choose between two possibilities : either stand alone to get financing, or to merge with

another firm and then get financing.

3.5.1 Stand-alone case

Both firms are symmetric and thus I study the stand alone problem for one firm, say
firm 1. Let z1 and o be firm 1’s revenue in states 1 and 2 respectively and b; and by the
transfers. I assume that there are many risk-neutral agents. Consequently, the reservation

value for them is 0 and I can write the stand-alone problem as follows :

MAX E! [—e~r<ws-bl(h1»8>) e T 4+ BU (6, hg)] (3.8)
subject to
El[by (h1,s)+ BV (6,h2)] > 0
—e "(@sbrhr) 4 oo 4 BETIU (6,hr41)] = 0 T=1,2,.. s=12 Vh,

by (hr, ) + BET[V (8,hrs1)] = O 1,2,.. s=1,2 Vh,

\]
Il
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Let Usa be the expected utility for firm 1 in the stand-alone situation. I define the per
period certainty equivalent (CEg4) as the amount of money for which firm 1 is indifferent
between this amount and its net revenue with the self-enforcing contract. In other words,

the certainty equivalent in the stand-alone case is such that
_e—T‘CESA — (1 _ /B) USA

Table I gives Uga for different values of 5. The thresholds to have a NTSEC and
to have a self-enforcing first-best contract are approximately f. = 0.52 and 8* = 0.76
respectively.

TAB. I: Utility of firm 1 in the stand-alone case

B Usa CEsa B Usa CEsa
0.20 -0.261042 1.5662 0.60 -0.460352 1.6921
0.22 -0.267735 1.5662 0.62 -0.466551 1.7300
0.24 -0.274781 1.5662 0.64 -0.475109 1.7659
0.26 -0.282207 1.5662 0.66 -0.486559 1.7992
0.28 -0.290046 1.5662 0.68 -0.501567 1.8295
0.30 -0.298333 1.5662 0.70 -0.520951 1.8561
0.32 -0.307108 1.5662 0.72 -0.545875 1.8783
0.34 -0.316414 1.5662 0.74 -0.577699 1.8958
0.36 -0.326302 1.5662 || 0.76 || -0.618338 | 1.9078
0.38 -0.336828 1.5662 0.78 -0.669118 1.9159
0.40 -0.348055 1.5662 0.80 -0.730235 1.9238
0.42 -0.360057 1.5662 0.82 -0.805026 1.9317
0.44 -0.372917 1.5662 0.84 -0.898617 1.9395
0.46 -0.386728 1.5662 0.86 -1.019065 1.9472
0.48 -0.401602 1.5662 0.88 -1.179796 1.9549
0.50 -0.417667 1.5662 0.90 -1.404976 1.9626
0.52 || -0.435069 | 1.5662 || 0.92 -1.742939 1.9702
0.54 -0.451988 1.5706 0.94 -2.306465 1.9777
0.56 -0.453389 1.6120 || 0.96 -3.433892 1.9852
0.58 -0.456081 1.6526 0.98 -6.816911 1.9926

Figure 3.9 graphs the certainty equivalent as a function of 3. Note that there are
two breakpoints. The first breakpoint is when § reaches 0.52. For all § lower than or

equal to 0.52, there is no NTSEC. Agent 1 is unable to sign a contract which is non-
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trivial. Consequently, the per period utility remains unchanged while S increases but
the certainty equivalent for the stand-alone case does not change with the value of p.1
For greater values, some non-trivial contracts become self-enforcing, so the value for the
certainty equivalent increases. The other breakpoint arrives at 8 = 0.76. At this point, the

optimal self-enforcing contract converges to a first-best contract.

2
CEsa 2.00
1.95

1.90
1.85
1.80
1.75
1.70
1.65
1.60

.55 ' 0.52 L 0.76
1.50 : :

Fic. 3.9 — Certainty Equivalent

3.5.2 Merger case

The second possibility for firm 1 is to buy firm 2 by paying CEs4 in each period, and
signing a self-enforcing contract considering that it gets the aggregate revenue. Since I

have two states of nature for each firm, the merged firm will face four states of nature.

TaB. II: States of nature

state 1 | state 2 | state 3 | state 4

firm 1 revenue 1 3 1 3

firm 2 revenue 1 1 3 3

10Jsa changes since it’s the weighted sum of present and future gains in utility.



86

To study the effect of correlation between firm revenues on the profitability of the

merger, I need to define the coefficient of correlation p which is given by

_ COV(X,Y)
- oxXoy

where ox and oy are the standard error of revenues for firm 1 and firm 2 respectively.
Table III gives the probability of each state of nature for different coefficients of cor-

relation.

TAB. III: Coefficient of correlation and states of nature

p state 1 | state 2 | state 3 | state 4
-1 0 0.5 0.5 0
-0.8 0.05 0.45 0.45 0.05
-0.5 || 0.125 | 0.375 | 0.375 | 0.125
-0.2 0.2 0.3 0.3 0.2
0 0.25 0.25 0.25 0.25
0.2 0.3 0.2 0.2 0.3
0.5 | 0375 | 0.125 | 0.125 | 0.375
0.8 0.45 0.05 0.05 0.45

1 0.5 0 0 0.5

Since there are two states of nature for each firm and they have symmetric payoffs,
the merged firm faces three different states of nature. Let 21 = 2, 22 = 4 and z3 = 6 be
the revenues in each state. Using this approach allows for a simple model in which I can
analyze the effect of correlation between firm revenues.

Let b; (ht, s)) be the transfer for period ¢ in state s.15 I suppose that the per period cost
of acquiring firm 2 is its certainty equivalent (CEs4). Then, the problem of the merged
firm!® is

MAX E! [—e—T(Zs-bl("I’S”—CESA) + e T(5=CEsa) 4 gU (4, hg)] (3.9)

15Because there are more than 2 states of nature, the stationary contract is dependent on the history.

16With CARA utility functions, the payment of CEsa does not affect the resolution of the problem.
It is possible to isolate e"“Fs4 in the objective function and in the firm self-enforcing constraints. Then,
e"CFsa affects only the utility but not the optimal contract itself.
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subject to
El[by (hy,s)) + BV (6,h2)] > V
and 7=1,2,..,s =1,2,3 and Vh.,

_e_r(zs“bT(hT:s))_CESA) + e_r(zs_CESA) + ﬁE;[U (6’ hT+1)]
br (hr,8)) + BE[V (8, hri1)]

N2\
o o

The expected utility of the merged firm is given by Upy.

TaB. IV: Net gain of utility from the merger (positive value
in bold)

[ 8 [p=-1]p=-08]p=—05]p=-02] p=0 [p=02][p=05]p=08] p=1 |
020 [ o.151 [ o0.121 0.076 0.030 0 -0.030 | -0.076 | -0.121 | -0.151
022 || 0.155 | 0.124 | o0.078 | 0.031 0.031 | -0.078 | -0.124 | -0.155
024 | o0.159 | 0.128 0.080 | 0.032 -0.032 | -0.080 | -0.128 | -0.158
0.26 | 0.164 | 0.131 0.082 0.033 .0.033 | -0.082 | -0.125 | -0.143
028 || 0.168 | 0.135 0.084 | 0.034 -0.034 | -0.084 | -0.111 | -0.127
030 || 0.173 | 0.138 0.087 | 0.035 -0.035 | -0.073 | -0.097 | -0.110
032 [ 0.178 | o0.143 0.089 | 0.036 -0.034 | -0.060 | -0.081 | -0.093
034 || 0.184 | 0.147 | 0.092 0.037 0 -0.023 | -0.046 | -0.065 | -0.076
0.36 || 0.189 | 0.151 0.095 0.038 | 0.006 | -0.012 | -0.032 | -0.048 | -0.058
038 || 0.195 | 0.156 0.098 [ 0.039 | 0.016 | 0.001 | -0.017 | -0.031 | -0.039
040 | 0.202 | o0.162 0.101 0.045 | 0.027 | 0.014 | -0.001 | -0.014 | -0.021
042 | 0.209 | 0.167 | 0.104 | 0.055 | 0.040 | 0.029 | 0.015 | 0.005 | -0.002
044 | 0.216 | 0.173 0.108 | 0.066 | 0.053 | 0.044 | 0.032 | 0.023 | 0.018
046 | 0.224 | o0.180 | o0.112 0.079 | 0.067 | 0.059 | 0.049 | 0.038 | 0.037
048 | 0.233 | 0.186 0.117 | 0.092 | 0.083 | 0.076 | 0.068 | 0.055 | 0.056
050 | 0.242 | 0.194 | 0.127 | 0.107 | 0.099 | 0.093 | 0.078 | 0.072 | 0.075
052 | o0.252 | 0.202 0.139 | 0.122 | 0.116 | 0.111 | 0.092 | 0.088 | 0.094
054 || 0.261 | 0.208 | 0.149 0.136 | 0.131| 0.116 | 0.102 | 0.101 | 0.109
056 | 0.245 | 0.187 | 0.132 0.121 | 0.117 | 0.094 | 0.080 | 0.082 | 0.093
058 | 0.228 | 0.166 0.115 0.106 | 0.087 | 0.070 | 0.057 | 0.061 | 0.075
0.60 | 0.212 | 0.143 0.098 | 0.092 | 0.062 | 0.044 | 0.029 | 0.037 | 0.055
062 || 0.195 | o0.120 | 0.082 0.061 | 0.034 | 0.015 | 0.001 | 0.045 | 0.035
064 | 0.178 | 0.096 0.067 | 0.034 | 0.004 | -0.019 | -0.031 | 0.024 | 0.015
0.66 | 0.161 | 0.071 0.053 | 0.004 | -0.029 | -0.053 | 0.012 | 0.005 | -0.004
068 || 0.145 | 0.051 0.040 | -0.029 | -0.066 | -0.091 | 0.001 | -0.014 | -0.023

Continued on next page
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B p=-1|p=-08}p=-05|p=-02| p=0 | p=02|p=05|p=08]| p=
0.70 || 0.130 0.034 0.031 -0.063 -0.104 | 0.001 | -0.016 | -0.031 | -0.039
0.72 | 0.118 0.021 -0.011 -0.100 0 -0.014 | -0.031 | -0.044 | -0.052
0.74 || 0.109 0.013 -0.037 -0.138 -0.012 | -0.025 | -0.041 | -0.054 | -0.062
0.76 | 0.104 0.012 -0.063 -0.003 -0.018 | -0.031 | -0.046 | -0.058 | -0.065
0.78 || 0.104 0.016 -0.090 -0.006 -0.020 | -0.032 | -0.046 | -0.058 | -0.065
0.80 || 0.103 0.021 -0.123 -0.008 -0.022 | -0.033 | -0.047 | -0.058 | -0.063
0.82 || 0.103 0.027 -0.165 -0.011 -0.024 | -0.035 | -0.047 | -0.057 | -0.062
0.84 || 0.102 0.034 0.013 -0.014 -0.026 | -0.036 | -0.047 | -0.057 | -0.061
0.86 || 0.102 -0.010 0.009 -0.017 -0.028 | -0.038 | -0.048 | -0.056 | -0.061
0.88 || 0.102 -0.050 0.004 -0.020 -0.031 | -0.039 { -0.049 | -0.056 | -0.060
0.90 | 0.101 -0.107 -0.002 -0.024 -0.034 | -0.041 | -0.049 | -0.085 | -0.057
0.92 || o0.101 0.033 -0.009 -0.029 -0.037 | -0.043 | -0.050 | -0.055 | -0.058
0.94 | o0.101 0.023 -0.017 -0.034 -0.041 | -0.046 | -0.051 | -0.055 | -0.057
0.96 || 0.100 0.008 -0.027 -0.040 -0.045 | -0.048 | -0.052 | -0.055 | -0.056
0.98 || 0.100 -0.015 -0.039 -0.046 -0.049 | -0.051 | -0.053 | -0.054 | -0.055

Table V gives the value of the thresholds for each value of p. In the previous section, I

find that the thresholds B, and 8* must decrease (increase) while variance increases (de-

creases). Since the variance increases with the correlation coefficient, I have that thresholds

decrease with p. These findings confirm the results of Proposition 3.7.

TAB. V: Thresholds for NTSEC

|ﬁ "p=—0.8 p=—-0.5 p=—0.2|p=0|p=0.2|p=0.5|p=0.8‘p=1“ stand-alone

B

0.68

0.48

0.40

0.36

0.32

0.30

0.26

0.26

0.52

ﬁ*

0.92

0.82

0.76

0.72

0.69

0.65

0.60

0.59

0.76

3.5.3 Results

Figures 3.10 and 3.11 show the differences in utility levels between the merger case

with different correlations and the stand-alone case.

To analyze the effect of a merger, consider four cases : the perfect negative correlation

case (p = —1), the negative (non perfect) correlation case (p = —0.5), the no correlation

case (p = 0) and the positive (non perfect) correlation case (p = 0.8).

Case 1 : The case of perfect negative correlation is represented by p = —1. This situation
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could arise when one firm has contracyclical revenues relative to the other one. Figure
3.12 shows the certainty equivalent in the stand-alone case CEg4 and in the merger
case CEpy with p = —1.

25

23
22
241

— CEga

1.9
1.8
1.7
1.6
1.5

0.2 04

FI1G. 3.12 — Certainty Equivalent for the stand-alone case and the merger case with p = —1

Note that the certainty equivalent in both cases have the same form but inverse.
This particularity comes from the fact that, in the perfect negative correlation case,
the firm revenue is constant for any given 5. Consequently, there is no gain to sign
a self-enforcing contract. However, CE)s is decreasing since firm 1 must pay CEg4
to firm 2. Since CEs4 depends on the value of 3, the certainty equivalent for the
merger case is decreasing with 8 but always greater than the certainty equivalent of
the stand-alone case.

Case 2 : When revenues are negatively, but not perfectly, correlated (p = —0.5), the
benefit associated with a merger can be positive or negative depending on the value
of 3.
If B is lower than 0.48, there is no NTSEC for either the merged firm or the stand-
alone firm, as there is for the stand-alone firm. But, the merged firm has a smoother
revenue stream which leaves the firm with a gain by merging (see Figure 3.13). When
B is between 0.48 and 0.52, it becomes possible for the merged firm to sign a NTSEC.
The relative gain in utility becomes more important. At 8 = 0.52, it is possible for
the stand-alone firm to sign a NTSEC. So the gain resulting from merging decreases
and becomes negative at S = 0.72. For 8 > 0.82, it becomes possible for the merged

firm to sign a first-best convergent contract. So the gain increases again with 8 but
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-0.5

there is a threshold for which the gain cannot overcome the first-best convergent
contract gain in the stand-alone case. After a small range of values for § (between
0.84 and 0.88) for which the merged firm gains, the net gain decreases and becomes

negative.

What happens when § is close to 1 is another interesting case to study. When
B is high enough, the merged firm and the stand-alone firm can sign a first-best
convergent contract. Then, why does the merger appear non-profitable for 8 close
to 17 First, by Proposition 3.3, if § > (%, then the optimal contract converges
monotonically to a first-best contract. Since I use the assumption that the reservation
utility level for the market is equal to zero, the optimal contract, in both cases,
converges to the first-best contract satisfying the self-enforcing constraints of the
market. Let’s suppose that §54 and §™ are those first-best contracts. Then,

B
1-5
P g M = o0
1 1_ﬂ sl¥s

b4 + EfbpS4 = 0

where b54 and bM are respectively the transfer in state s for the stand-alone case
and the merged case. I have already found (Equation (3.5)) that b = b} +yJ —y}, for
i = SA, M. If I introduce these equations into the market self-enforcing constraints,
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Ifind :
b4 4 %Es[bf*‘ 410000 —z;] = 0
bM 4 %Es[bf" 420000 —25] = 0
and
b4 + Tf_ﬂ (674 4+ 10000 — 20000])) = 0

M + % (74 + 20000 — 40000])) = 0

I obtain that b{w = beA. This means that, once we subtract the CEgy4, the merged
entity obtains the same level of utility than the stand-alone firm. Consequently, the
optimal contracts of the merger case and the stand-alone case converge to first-best
contracts that give the same level of utility.

Second, I know that optimal contracts are not first-best. They converge to some first-
best contracts, but before state 1 is realized (see Section 3.3), transfers do not satisfy
(3.5). Until then, the stand-alone firm gain more than the merged firm. Because of
the concavity of CARA utility functions, the expected gain for being in the good
state (state 2 for the stand-alone case and state 3 for the merger case) is higher in
the stand-alone situation. It is therefore better for the firm to stand alone than to

merge. This result applies to all cases where the correlation coefficient is not —1.17

Case 3 : The independent case (p = 0) characterizes firms involved in different markets
which are neither complements nor substitutes. In this case, there is no gain from
merging when f is lower than 0.36. At this point, the merged firm can sign a NTSEC
which leaves the firm better off. As for other cases, when [ reaches 0.52, the gain from
merging decreases. When [ reaches 0.66, the net gain to merge becomes negative
and remains negative while 8 increase. At § = 0.72, the merged firm can sign a
first-best contract and the gain from merging increases but it is counterbalanced by

the stand-alone contracting gain (see Figure 3.14).

Case 4 : The case where firms produce complements is represented by a positive corre-
lation. With positive correlation (p = 0.8), the net gain from merging is negative
for 8 < 0.26 (see Figure 3.15). At f = 0.26, the merged firm signs a NTSEC and
the gain starts to increase. For 8 between 0.52 and 0.60, the gain diminishes as the
stand-alone firm signs a NTSEC. For § > 0.60, the merged firm can sign a first-best

contract. Consequently, the gain from the optimal first-best contract increases but

"When the correlation coefficient goes to -1, then the value of 8 such that to stand alone is better
increases. For example, when p = —0.9, to stand alone is better when § is higher than 0.99.
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F1G. 3.14 - Certainty Equivalent for the stand-alone case and the merger case with p =0

the benefit to sign a contract for the stand-alone firm becomes more important, so
the merger leaves more profits. Even with positively correlated revenues, there is
an interval of 8 (in this case between 0.42 and 0.66) for which a merger could be
profitable for the merged firm.

I can use the analysis I have from these different cases to draw general conclusions
for the question of merger in a self-enforcing environment. If revenues are nearly per-
fectly negatively correlated, then the merger allows the new owner to smooth its revenues
across time without any contract. This situation leads to the agent always being better
off merging.

What is interesting is the influence of the correlation on the gain of a merger. When
revenues are negatively correlated, the merger creates a kind of internal insurance market.
The smoother revenue schedule leads to a gain in utility by decreasing the variance of
revenues but decreases the possible gain from signing an insurance contract with the
market. If beta is high but not too close of 1, then the merger could be beneficial. Take
the case where p = —0.8. The merger option leaves the merged firm with gain when 3 is
greater than 0.92 but smaller than 0.98. For all p > —1, then there exists a B < 1 such
that for all 8 € [8,1), then to stand alone is better for shareholders.

With no correlation, the new owner has the possibility of signing a contract in the case
where £ is small. Since the variance has increased, the possibility to sign a NTSEC has
increased. But, the agent may do better in the stand-alone case depending of the value of
B. As p goes to 1 (positive correlation), the threshold for having a self-enforcing contract
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F1G. 3.15 — Certainty Equivalent for the stand-alone case and the merger case with p = 0.8

decreases but it is possible that the gain from the contract cannot compensate the cost
stemming from the increase of variance. So in the end, the agent is worse over for the

majority of values of £.

3.6 Conclusion

In the first part of the paper, I explicitly solve the contract design problem with self-
enforcing constraints. To obtain this solution, I must impose additional constraints on
the model. The most important one is on the number of states of nature. The two states
of nature problem is relatively easy to solve since there are only two transfers in the
stationary contract. With three states, the number of transfers increases to four, and with
four states, the number of transfers in the stationary contract is eight. The number of
transfers in the stationary contract increases more quickly than the number of states of
nature.

In the second part, I find that variance affects the nature of the contract. If the va-
riance increases, then the potential benefits with respect to the contract increases and the
threshold to have a NTSEC decreases.

The most interesting finding is the effect of self-enforcing constraints on the effects of
a merger. I find that, even with a very high positive correlation between firms’ revenues,
there is some discount value for which firms could gain by a merger. The most important

parameter in the merger decision seems to be the discount factor. If owners are not really
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patient, then a merger could lead to an increase in utility. This could explain in part

why firms in the same market merge together while their revenues are highly positively

correlated.

One of the possible avenues for future research would be to test the sensibility of these

results to a change in the risk-aversion coefficient. My guess is that it will not change the

scheme of the results but the level of thresholds.
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Conclusion

Dans cette theése, j'ai étudié trois problématiques reliées & la théorie microéconomique.
J’ai abordé un probléme de stratégie optimale pour une firme multiproduit, la question
de rationalisation dans le cadre d’allocation de biens indivisibles et le design de contrats
d’assurance en présence de contraintes auto-exécutoires.

Dans le premier chapitre, j’ai modélisé un monopoleur multiproduit ayant comme
stratégies possibles le fait de monitorer ou non. Tout d’abord, avec des hypothéses rela-
tivement standard utilisées dans la littérature en organisation industrielle!®, je réussis a
démonter ’existence d’une solution. Cependant, la question de I'unicité de cette solution
n’est étudiée pas en profondeur. Il semble que la solution est unique pour presque toutes
les fonctions et pour presque tout nombre de consommateurs. Le second résultat impor-
tant est la présence d’au moins un contrat non-monitoré dans '’ensemble des contrats
optimaux. Ce résultat tient pour n’importe quelle forme fonctionnelle de la fonction de
coits d’administration.

Dans de prochains travaux sur le sujet, 'impact sur le bien-étre des consommateurs
devrait étre étudié. Ce point peut devenir trés intéressant dans le cadre de monopoleur
étatique ou régulé. Pour le moment, il me semble que I'impact est trés difficile & prévoir.
Une autre extension possible devrait se faire au niveau d’un marché oligopolistique. Ce-
pendant, 1’étude de la question du monitoring pour des firmes en compétition semble tres
complexe puisque la multidimensionnalité des préférences, le nombre, le type de contrats et
la composition des contrats rendent le probléme trés complexe. L'utilisation de simulations
numériques pourrait rendre cette étude possible.

Pour le second chapitre, j’ai analysé la rationalisation des préférences des agents dans le
cadre d’allocations de biens indivisibles. Puisque le nombre de sous-ensembles d’allocations
et le nombre de profils de préférence est trop grand lorsque le nombre de biens est supérieur
4 3, j’ai utilisé la notion de cycle pour étudier la question. Dans un premier temps, je trouve
que Dexistence d’un cycle dans I’ensemble des optimums de Pareto nous informe sur les
préférences des agents qui composent le cycle. Ces derniers, pour chaque pair de biens
qui sont des voisins immédiats dans le cycle, ont les mémes préférences. De plus, si le

nombre d’agents qui composent le cycle est un nombre premier, alors tous les agents de ce

1875 seule hypothése nouvelle que j'introduis est le concept de Ay -monotonicity.
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cycle ont les mémes préférences sur ’ensemble des biens du cycle. Dans un second temps,
je détermine le nombre minimal de cycles qui implique la présence d’un cycle complet.
Ce résultat peut étre utile pour déterminer la présence nécessaire d’allocations dans un
cycle. Dans un troisiéme temps, je trouve des contraintes sur le nombre d’allocations que
I’ensemble des optimums de Pareto doit contenir.

Le troisiéme chapitre traite principalement de la question des fusions en présence de
contraintes auto-exécutoires. Dans la premiére partie, j'utilise des fonctions d’utilité de
type CARA pour solutionner explicitement le contrat optimal. Je peux également tracer
les frontieres de Pareto dans les différents cas ol un contrat de type first best peut étre
auto-excécutoire ou non. La seconde partie s’attarde & I'impact d’une augmentation de
la. variance sur le contract optimal. Plus précisément, j’étudie le comportement des seuils
pour avoir un contrat non-trivial, de type first best ou non, suite & un changement dans
les revenus de la firme. Suite & un certain type de changement dans la distribution de
revenus qui augmentent la variance, les seuils diminuent alors qu’il n’est pas possible de
conclure pour d’autres types de changement. Finalement, la troisiéme partie s’intéresse a
la question des fusionnements dans le contexte de contrats auto-excécutoires. Je trouve
que les fusions peuvent augmenter le bien-étre méme lorsque les revenus des firmes sont
positivement corrélés. Ce résultat provient du fait que I'augmentation de la variance fait
en sorte qu'il devient possible pour la firme fusionnée, sous certaines valeurs de (3, de
signer un contrat non-trivial alors qu’il est impossible pour la firme non-fusionnée de le
faire. Cependant, pour qu’une fusion soit bénéfique, il faut que le taux d’escompte soit

relativement bas.
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