Université de Montréal

Mining Dynamic Databases for

Frequent Closed Itemsets

par

Jun Jing

Département d’informatique et de recherche opérationnelle

Faculté des arts et des sciences

Mémoire présenté a la Faculté des Etudes Supérieures
en vue de I’obtention du grade de
maitrise és sciences M.Sc.

en Informatique
Juillet 2004

© Jun Jing, 2004

Am 1,325 /0

Of
16
J5Y
2004
V.- OY7-

Université f"'!

de Montréal

Direction des bibliothéeques

AVIS

L'auteur a autorisé I'Université de Montréal a reproduire et diffuser, en totalité
ou en partie, par quelque moyen que ce soit et sur quelque support que ce
soit, et exclusivement a des fins non lucratives d’enseignement et de
recherche, des copies de ce mémoire ou de cette thése.

L'auteur et les coauteurs le cas échéant conservent la propriété du droit
d’auteur et des droits moraux qui protégent ce document. Ni la thése ou le
mémoire, ni des extraits substantiels de ce document, ne doivent étre
imprimés ou autrement reproduits sans I'autorisation de I'auteur.

Afin de se conformer & la Loi canadienne sur la protection des
renseignements personnels, quelques formulaires secondaires, coordonnées
ou signatures intégrées au texte ont pu étre enlevés de ce document. Bien
que cela ait pu affecter la pagination, il n'y a aucun contenu manquant.

NOTICE

The author of this thesis or dissertation has granted a nonexclusive license
allowing Université de Montréal to reproduce and publish the document, in
part or in whole, and in any format, solely for noncommercial educational and
research purposes.

The author and co-authors if applicable retain copyright ownership and moral
rights in this document. Neither the whole thesis or dissertation, nor
substantial extracts from it, may be printed or otherwise reproduced without
the author’'s permission.

In compliance with the Canadian Privacy Act some supporting forms, contact
information or signatures may have been removed from the document. While
this may affect the document page count, it does not represent any loss of
content from the document.

Université de Montréal

Faculté des Etudes Supérieures

Ce mémoire intitulé :
Mining Dynamic Databases for

Frequent Closed Itemsets

présenté par:

Jun Jing

a €té évalué par un jury composé des personnes suivantes :
Gena Hahn
Président Rapporteur
Petko Valtchev
Directeur de recherche
Miklés Csiirés

Membre du Jury

Mémoire accepté : 19 octobre 2004

Mining Dynamic Databases for Frequent Closed Itemsets 1

Résumé

La fouille de données, aussi connue sous le nom de la découverte de connaissance dans la
base de données (DDBC), consiste a découvrir des informations cachées et utiles dans des
grandes bases de données. La découverte des régles d'association est une branché importante
de la fouille de données. Elle est utilisée pour identifier des dépendances entre articles dans
une base de données. L'extraction des régles d'association a été prouvée pour étre trés utile

dans le commerce et les champs d’activité qui lui sont proche.

La plupart des algorithmes d’extraction des régles d'association appliquent & des bases de
données statiques seulement. Si la base de données se développe (nouvelles transactions sont
ajoutées), nous devrions re-exécuter ces algorithmes du début pour toutes les transactions
afin de produire le nouvel ensemble des régles d'association parce que l'ajout de nouvelles
transactions peut rendre des itemsets fréquents (itemsets fréquents fermés) invalide ou
générer de nouveaux itemsets fréquents (itemsets fréquents fermés), ce qui influence les
regles d'association. Ces algorithmes n’essayant pas d’exploiter les résultats obtenus de
I’ensemble des transactions. A ce jour, plusieurs algorithmes incrémentaux de mise a jour

progressive ont été développés pour la maintenance des régles d'association.

Dans cette thése, nous traitons les aspects algorithmiques de I’extraction des regles
d'association. Particuliérement, nous nous concentrons sur I'analyse de quelques algorithmes
incrémentaux basés sur les connexions de Galois, comme GALICIA et GALICIA-T. Nous
avons aussi €tudié certains algorithmes de calcul d’itemsets fréquents, comme Apriori
algorithm. En se basant sur ces algorithmes, nous proposons un nouvel algorithme, appelé
l'algorithme de treillis d'iceberg (ILA), qui utilise peu d’opérations pour maintenir a jour la
structure de I’iceberg lors de I’insertion d’une nouvelle transaction dans I’ensemble des
transactions. Ceci devrait étre utile pour I'amélioration de la performance des algorithmes

existants basés sur le treillis de Galois (le treillis de concept).

Mots clés: treillis de Galois (concept), treillis iceberg, algorithme de construction de treillis,

méthodes incrémentales.

Mining Dynamic Databases for Frequent Closed Itemsets I

Abstract
Data Mining, also known as Knowledge Discovery in Databases (KDD), is the discovery of

hidden and meaningful information in a large database. Association rule mining is an
important branch of data mining. It is used to identify relationships within a set of items in a
database (or transaction set). Association rule mining has been proven to be very useful in

the retail communities, marketing and other more diverse fields.

Most association rule mining algorithms apply to static transaction sets only. If the
transaction set evolves (i.e. new transactions are added), one needs to execute these
algorithms from the beginning to generate the new set of association rules, since adding new
transactions may invalidate existing frequent itemsets (or frequent closed itemsets) or
generate new frequent itemsets (or frequent closed itemsets), which will influence the
association rules. These algorithms do not attempt to exploit the results obtained from the
original transaction sets. To date, many incremental updating proposals have been developed

to maintain the association rules.

In this thesis, we deal with the algorithmic aspects of association rule mining. Specifically,
we focus on analyzing some incremental algorithms based on Galois connection, such as

GALICIA, and GALICIA-T. We also study some plain frequent itemsets mining algorithms,
such as Apriori algorithm. Based on these, we propose a new algorithm, called Iceberg
Lattice Algorithm (ZLA), which uses only a few operations to maintain the iceberg structure
when a new transaction is added to transaction set. It should be helpful in improving the

performance of existing algorithms that are based on Galois lattices (concept lattices).

Key words: Galois (concept) lattices, iceberg lattices, lattice constructing algorithms,

incremental methods.

Mining Dynamic Databases for Frequent Closed Itemsets 111
Contents
Résumé [
Abstract I
List of tables \
List of figures VI
Acknowledgments Ul
Chapter I Introduction 1
1.1 What is Data Mining? 1
1.2 Association rule mining ---- 2
1.3 Our contribution 3
1.4 Thesis organization =--=---ceeeeome 3
Chapter II Data Mining 4
2.1 Association rule mining 4
2.1.1 Basic concepts of association rules 5
2.1.2 Basics of concept lattices 6
2.2 Current state of research on association rule mining algorithms 13
2.2.1 Plain frequent itemsets mining algorithms 13
2.2.2 Frequent closed itemsets mining algorithms 14
2.2.3 Incremental FI or FCI mining algorithms 15
2.3 Review of two typical algorithms 16
2.3.1 Apriori algorithm 16
2.3.2 4-Close algorithm 18
Chapter III Review of the GALICIA approach 22
3.1 Lattice updates 22

3.2 GALICIA family

27

Mining Dynamic Databases for Frequent Closed Itemsets v

3.2.1 GALICIA scheme 27

3.2.2 GALICIA-T 28
Chapter IV Maintain iceberg lattices only with FCIs 32
4.1 Incremental iceberg lattices update 32
4.2 Theoretical development 34
Chapter V The incremental method 41
5.1 The description of Iceberg Lattice Algorithm 41
5.2 Discovery of lower covers 44
5.3 Detailed example 47
5.4 Complexity issues 50
Chapter VI Implementation and experiments 53
6.1 Experimental results 53
6.2 CPU time --- ---53
Chapter VII Conclusions and future work e —— 59
7.1 Conclusions 59
7.2 Future work - 60
Appendix 62
1 Proof of the properties 62
2 System architecture 64
3 Class diagram 65
4 Class definitions 67
5 Validation 75

References 81

Mining Dynamic Databases for Frequent Closed Itemsets Vv
List of Tables

Table 2-1: An example of a transaction $et -----==-—-nmmmmemmeeoo 4
Table 3-1: An example of a transaction set with 8 transactions 25
Table 4-1: The meaning of variables in /LA 34
Table 5-1: The trace of Algorithm 5-4 when a new transaction is added 48
Table 5-2: The meaning of variables in complexity issues 51
Table 6-1: Mushroom, Total Cls and FCls with @ =0.1 --- -- ---34
Table 6-2: T25110D 10K, Total CIs and FCls with &=0.005 54
Table A-1: Methods description for class Concept 67
Table A-2: Methods description for class Transaction ---- -- 70
Table A-3: Methods description for class VectorQuickSort 71
Table A-4: Methods description for class COmMMON ----=--mn-mecemceece -72
Table A-5: Methods description for class MainFrame . 74
Table A-6: The results of comparison with Charm algorithm 75
Table A-7: Result from /LA (minsupp=0.07) 76

Mining Dynamic Databases for Frequent Closed Itemsets Vi

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 3-1:
Figure 3-2:
Figure 3-3:

Figure 3-4:
o

Figure 3-5:
Figure 3-6:

Figure 3-7:

Figure 4-1:
Figure 4-2:
Figure 5-1:
Figure 5-2:

Figure 5-3:

List of Figures
The concept lattice from Table 2-1 12
The iceberg lattice L from Table 2-1 (a=0.3) -13
The procedure of Apriori-Gen () 17
The algorithm of Apriori () 17
A-Close frequent closed itemsets discovery for minsupp = 0.3 20
The algorithm of an incremental approach-- - 24
The concept lattice from Table 3-1 R 25
The concept lattice from Table 2-1 - 26

Update of the closed itemsets family upon a new transaction arrival

in GALICIA Algorithm --27
Trie-based update of the closed itemsets upon a new transaction arrival ------- 29
Trie-based update of the closed itemsets: single node processing ------------—--- 30

Left: The trie Family-ClI of the Cls generated from T

Middle: The trie NewCI of the new ClIs related to transaction #3

Right: The trie Family-CI after the intersection of transaction #3 ---------mmn— 30
The iceberg lattice L* with T'= {1,2,4,5,6,7,8,9} & a=0.3 33
The iceberg lattice L”** with T'= {1,2,3,4,5,6,7,8,9} and ¢z=0.3 ~--c-mocerrv 33
The algorithm of Iceberg Lattice Algorithm 41
The algorithm of inserting a new transaction to an iceberg lattice------—---—--- 42

The iceberg lattice L% from Table 2-1 (a=0.3)

before finding hidden concepts 44

Mining Dynamic Databases for Frequent Closed Itemsets Vi

Figure 5-4: The algorithm for generating lower covers 45
Figure 5-5: Illustration of the discovery of hidden concepts 49
Figure 6-1: CPU time for GALICIA-M and ILA

(First type of tests- T25110D10K and minsupp = 50) 55
Figure 6-2: Average CPU time for GALICIA-M and ILA

(Second type of tests - T25110D10K) 55
Figure 6-3: CPU time for GALICL4-M and ILA

(First type of tests- Mushroom and minsupp = 50) 56
Figure 6-4: CPU time for GALICIA-M and ILA

(Second type of tests — MUShroom) -------=seceeemeeeooo 56
Figure A-1: System architecture ---- ----64
Figure A-2: Class diagram 65
Figure A-3: Class diagram for class Concept -—-- 67
Figure A-4: Class diagram for class Transaction 70
Figure A-5: Class diagram for class VectorQuickSort - ---71
Figure A-6: Class diagram for class Common ---- - 72
Figure A-7: Class diagram for class MainFrame 73

Mining Dynamic Databases for Frequent Closed Itemsets VIl

Acknowledgments
Many thanks must go to my director, Professor Petko Valtchev, for his knowledgeable
contribution and guidance throughout the research. It is he who patiently led me into this

area.

I would like to thank my parents, my parents-in-law and my wife for their encouragement
and support of me whenever I encountered difficulty. Special thanks go to my son. He brings

my family much joy.

[would also like to extend gratitude to my classmates and friends, especially Amine, who
has helped me to solve a lot of technical problems. Without them, my work could not have

been finished so soon.

Mining Dynamic Databases for Frequent Closed Itemsets 1

Chapter I Introduction

1.1 What is data mining?

Data mining [PS1991] is the process of discovering hidden and useful information in a large
database. It is a decision-making tool based on Artificial Intelligence and statistical
techniques that consists of analyzing the automatically acquired data, making inferences and
abstracting a potential model for demonstrating the correlations among the elements in
databases. One of the important operations behind data mining is finding trends and

regularities, commonly called patterns, in large databases.

Current technology makes it is easy to collect data, but it tends to be slow and expensive to
carry out the data analysis with traditional database systems since these systems offer little
functionality to support analysis. Before the data mining era, massive amounts of data were
left unexplored or on the verge of being thrown away. However, there may be valuable and
useful information hiding in the huge amount of unanalyzed data and therefore new methods

for digging interesting information out of the data are necessary.

There are many kinds of basic patterns that can be mined, such as associations, causalities,
classifications, clusterings, sequences and so on. Association rule mining finds patterns
where one data item is connected to another one. Causality mining discovers the relationship
between causes and effects. Given a set of cases with class labels, classification builds an
accurate and efficient model (called classifier) to predict future data item for which the class
label is unknown. Clustering is the discovery of fact groups (called clusters) that are not
previously known. Sequence mining discovers frequent sequences of items in large
databases. Sequences are similar to associations, but they focus on an analysis of order
between two data items. In this thesis, we focus on associations. Indeed, discovery of
interesting associations among items is useful to decision making, as it allows us to make

predictions based on the recorded previous observations.

Many data mining approaches apply to static datasets only. If the set is frequently updated (as
with dynamic datasets), a new problem arises since adding new data may invalidate existing

frequent patterns or generate new ones. A simple solution to the update problem is to re-mine

Mining Dynamic Databases for Frequent Closed Itemsets 2

the whole updated datasets. This is clearly inefficient because all frequent patterns mined
from the old datasets are wasted. A more suitable approach consists in incremental data
mining [HSH1998]. It attempts to exploit the results obtained from the original datasets

while analyzing only with small additional effort on the original set.

1.2 Association rule mining

Association rules were introduced in 1993 by Rakesh Agrawal, Tomasz Imielinski, and Arun
Swami [AIS1993]. There are two steps on the process: finding all frequent itemsets and
generating association rules from them. Frequent pattern mining is the core in mining
associations. Many methods have been proposed for this problem. These methods can be
classified into two categories: frequent plain pattern mining [AS1994, HF1995, PCY 1995,
BA1999] and frequent closed pattern mining [PBTL1999-2, PHM2000]. The main challenge
here is that the mining step often generates a large number of frequent itemsets and hence
association rules. The frequent closed pattern mining is a promising solution to the problem

of reducing the number of the generated rules.

Closed patterns or itemsets mining are rooted in the Formal Concept Analysis (FCA)
[GW1999]. FCA provides the theoretical framework for association rule mining. It focuses
on the partially ordered structure, known as Galois lattice [BM1970] or concept lattice
[W1982], which is induced by a binary relation R over a pair of sets T (transactions) and /
(items). In 1982, Wille proposed to regard each element in a lattice as a concept and the
corresponding graph (Hasse diagram) as the relationship between concepts [W1982].
Association mining approaches based on the Galois (concept) lattice construction have been

proposed. [GMA1995, CHNW 1996, VMG2002].

GALICIA is an incremental frequent closed itemsets mining algorithm based on Galois
lattices. It exploits the results obtained from the original datasets when new data are added.
But it is inefficient since it explores the entire set of closed patterns, i.e. the frequent and
infrequent. Actually one needs to limit the set of generated closed patterns to the frequent

ones.

Mining Dynamic Databases for Frequent Closed Itemsets 3

1.3 Our contribution

In this thesis, in order to attack the problem of mining frequent closed itemsets incrementally,
we introduce and implement a new algorithm, ILA (Iceberg Lattice Algorithm). ILA
algorithm is an incremental method based on iceberg lattice construction. Unlike GALICIA,
/LA maintains only the upper most part of a concept lattice. Therefore, it improves the
efficiency of the mining task by reusing the previous results, thus avoiding unnecessary

computation.

1.4 Thesis organization

The organization of the rest of the thesis is organized as follows. Chapter II introduces the
basic concepts of association rule mining and Galois (concept) lattice, describes current state
of research on association mining algorithms and reviews two typical algorithms. Since
Iceberg Lattice Algorithm is an enhanced GALICIA approach, Chapter III reviews the
GALICIA approach. Chapter IV presents the motivation and theoretical foundation of
Iceberg Lattice Algorithm. Chapter V presents Iceberg Lattice Algorithm step by step and
accompanied by a detailed example. We also discuss complexity issues. Chapter VI
implements our algorithm and studies its performance. Chapter VII summarizes the thesis
and discusses possible directions for future work. Appendix presents the proofs of properties

used in this thesis, and the validation of the Iceberg Lattice Algorithm.

Mining Dynamic Databases for Frequent Closed Itemsets 4

Chapter II Data Mining

2.1 Association rules mining

2.1.1 Basic concepts of association rules

LetI={i;, i5,..., i,} be a set of distinct items. A transaction set T is a multi-set of subsets of /

that are identified.

Definition 2-1: We suppose a function TID: T— N, where T'is a transaction set and Nis a set

of natural numbers.

Definition 2-2: A subset X C I with | X| =k is called a k-itemset. The fraction of transactions
that contain X is called the support (or frequency) of X, denoted by supp (X):

e x 1)
i

supp (X)

Definition 2-3: A set of TID is called tid-set.

Example
Assume /= {a, b, ¢, d, e, f, g, h} is a set of distinct items.
A transaction set is as follows:
TID Itemsets
{a, b, c d e f g h}
{a, b c e f}
cdf g h}
le.f & h}
{g}
{e. f h}
{a, b, c d}
{b, ¢, d}
{d}

Table 2-1: An example of a transaction set

[am—

O 0| N N V| K| W] N

Mining Dynamic Databases for Frequent Closed Itemsets 5

(1,{a, b, c d e f g h}) and (8, {b, c, d}) are transactions, 1 and 8 are the TID of these
transactions. The size of {a, b, ¢, d, ¢, f, g, h} is 8,50 {a, b, ¢, d, ¢, [g, h} is an 8-itemset. The
size of {b, ¢, d} is 3, so {b, ¢, d} is a 3-itemset. Since three transactions (#1, #7 and # 8)

.. . 3
contain itemset {b, ¢, d} and the total number of transactions is 9, so supp ({b, c, d}) =§.

Definition 2-4: If the support of an itemset X is above a user-defined minimal threshold

(minsupp), then X is frequent (or large) and X is called a frequent itemset

(FI).

For example: given minsupp = 0.3
supp ({b, ¢, d}) = §> 0.3, s0 {b, ¢, d} is frequent (large), we call {b, ¢, d}a
frequent itemset
supp ({a, b, c, e, f}) = é <0.3,50 {a, b, ¢, e, f} is non-frequent (non-large).

Rakesh Agrawal, Tomasz Imielinski, and Arun Swami proposed Property 2-1 and Property
2-2 in [AIS1993].

Property 2-1: All subsets of a frequent itemset are frequent.
Property 2-2: All supersets of an infrequent itemset are infrequent.

Definition 2-5: An association rule is an expression X=>Y, where X and Y are subsets of /,

and XNY=¢.

The support of a rule X=>Y is defined as supp (X=Y) = supp (XUY). The confidence of this

rule is defined as conf (X=Y) = supp (XUY) Isupp (X).

For example: {b, c}=> {d} is an association rule, supp({b, ct=> {d}) =supp{b, c, d} = %,

conf ({b, c} = {d}) = supp({b, c, d}) / supp({b, c}) = % = % =0.75.

Mining Dynamic Databases for Frequent Closed Itemsets 6

Mining association rules in a given transaction set 7' means generating all assciation rules
that reach a user-defined minimal support (minsupp) and minimal confidence (minconf). This
problem can be divided into two steps.

« Finding all frequent itemsets.

« Generating association rules from frequent itemsets.
The generation of association rules from frequent itemsets is relatively straightforward
[AS1994], since one divides a FI into two complementary parts to make a rule between
premise and conclusion. Therefore the research in the domain has focused on determining

frequent itemsets and their support.

2.1.2 Basics of concept lattices

Concept lattices are used to represent conceptual hierarchies that are inherent in some data.
They form the core of the mathematical theory of Formal Concept Analysis (FCA) [W1982].
Initially FCA was introduced as formalization of the notion of concept, now it is a powerful
theory for data analysis, information retrieval and knowledge discovery [GW1999]. In
Artificial Intelligence, FCA is used as a knowledge representation mechanism. In database
theory, it has been used for class hierarchy design and management [SS1998, WTLI1 997]. In
the Knowledge Discovery in Databases (KDD), FCA has been used as a formal framework
for discovering association rules [STBPL2000]; furthermore, it has been successful in

improving the performance of algorithms that mine association rules [PBTL1999-1].

The basics of ordered structures
Definition 2-6: Consider a set G and a, b, c€ G. A partial order <on G is a reflexive (ae G |
a < a), anti-symmetric (a, b€ G |a <b & b <a => a = b) and transitive (a, b,

ceG|las<b & b<c= a<c)relation.

Definition 2-7: The set G in conjunction with an associated partial ordering relation <gis
called a partially ordered set or poset or partial order and is denoted by

(G, <¢).

Mining Dynamic Databases for Frequent Closed Itemsets 7

Definition 2-8: Let P = (G, <) be a partial order. For a pair of elements, s, pe G, if p <gs,
we shall say that s succeeds (is greater than) p and p precedes s. All common
successors of s and p are called upper bounds of s and p. All common

predecessors of s and p are called lower bounds of s and p.

Definition 2-9: Let P = (G, <) be a partial order and 4 be a subset of G, if there is an element
s€ G such that s is the minimal of all upper bounds of 4, then s is called the
least upper bound of A (LUB); if there is an element pe G which is the

maximal of all lower bounds of 4, then p is called the greatest lower bound

of 4 (GLB).

Definition 2-10:The precedence relation <g in P is the transitive reduction of <g,1.e.s<gpif
s <gp and all ¢ such that s <g t <gp satisfy t =s or t = p. If s < p, s will be
referred to as an immediate predecessor of p and p as an immediate

successor of s.

Usually, P is represented by its covering graph Cov (P) = (G, <g), also called the Hasse
diagram. In this graph, each element s in G is connected to both the set of its immediate
predecessors and of its immediate successors, further referred to as lower covers (Cov') and

upper covers (Cov") respectively.

Definition 2-11: If a subset 4 of G satisfies V s, p €4, s <gp v p <gs, then the set 4 is called

a chain and the elements are said to be pair wise comparable.

Definition 2-12: If a subset 4 of G satisfies V se G, V PEA, s <g p = s€ A, then the set 4 is

called an order ideal.

Definition 2-13: If a subset 4 of G satisfies V s€ G, V pe 4, p <gs = s€ 4, then the set A is

called an order filter.

Mining Dynamic Databases for Frequent Closed Itemsets 8

Definition 2-14: A lattice L= (G, <) is a partial order in which every pair of elements s, p has
an unique greatest lower bound (GLB) and an unique least upper bound
(LUB). LUB and GLB define binary operators on G called, respectively,

Jjoin (s vy p) and meet (s AL p).

Definition 2-15: Given a lattice L= (G, <), all the subsets 4 of the G have a GLB and a LUB,

we call this lattice a complete lattice.

Definition 2-16: A structure with only one of the join and meet operations is called a

semi-lattice.

The existence of a unique GLB for every pair of elements implies a meet semi-lattice
structure and the existence of a unique LUB for every pair of elements implies a join

semi-lattice structure.

Definition 2-17: A formal context is a triplet K = (T, I, R) where T, I are sets and R C T'x [is
a binary relation. The elements of T are called transactions (or objects) and
the elements of [items (or attributes). Each pair (¢, /) R indicates that i is

an item of transaction ¢.

Definition 2-18: T, J are sets, the (f, g) is a Galois connection between 27 and 2/, f275 2!
g: 2'— 27 iff, for all Xe 2" and Ye 2!, f{X) C Ye» g(Y) C X.

Definition 2-19:Let K = (T, I, R) be a formal context, the function f maps a set of
transactions onto a set of items that are common, whereas g is the dual
function for the set of items. fand g are defined by ’.
SJX)=X’={ieI|VteX,tRi}
gV)=Y’={te T|VieY,tRi}

For example: f({1,6})={1,6}"={e f h} and g ({e, f, h}) = {e, £ h}’= {1, 4, 6}.

Mining Dynamic Databases for Frequent Closed Itemsets 9

R.Wille proposed Property 2-3 and Property 2-4 in [W1982].

Property 2-3: (f g) is a Galois connection of the formal context.

Property 2-4: Compound operators f°g (Y) and g°f (X) are Galois closure operators over 2!
and 27 respectively. Hereafter, both f°g (Y) and g°f (X) are expressed by .
fgeM=feM=y
gf 0 =g (fX)=X"

For example: {e, f, h}” =f(g ({e. £ 1})) =/ ({1, 4, 6}) = {e, [, h},
1,4,6)"=g (f({1,4,6})) =g ({e. f h}) = {1, 4, 6}.

X is the closure of X, which is the smallest closed itemset containing X.
For example: X = {a, b},
X’={a, b}”={a, b, c}.

Definition 2-20: An itemset X is closed if X = X,

If an itemset X is closed, adding an arbitrary item i from I-X to X resulting a new itemset X
which is less frequent [PHM2000].

Property 2-5: Suppose X is closed, then V i € I-X, supp (X U{i}) < supp (X).

For example: X={a, b, ¢, ¢, f}, I-X={d, g, h},

Xis aclosed itemset and supp ({a, b, c, e, f}) = %
supp ({a, b, ¢, d, e, f}) =supp ({a, b, c, e, f, g})

=supp ({a, b, c, e, f, h})= —< %

O | —

Every itemset has the same support as its closure. This property has been proven by
[PBTL1999-1]
Property 2-6: supp(X) = supp (X”).

Definition 2-21: If a closed itemset X is frequent, then we call it a frequent closed itemset

Mining Dynamic Databases for Frequent Closed Itemsets 10

(FCI). Namely: FCI={X|Xe ClIs A supp (X) > minsupp}.

For example: given minsupp = 0.3,
{a, b, c} is a closed itemset and supp ({a, b, c}) = g >0.3,s0{a, b, c}isa

frequent closed itemset.

Definition 2-22: A concept c is a pair of sets (X, Y) where Xe2”, Ye 2/,
X=Y’and Y=X". Xis called the extent of concept ¢ and denoted by ext(c),
Y is called the intent of the concept ¢ and denoted by in#(c).

For example: in Table 2-1, {1,2,7}’={a, b, ¢} and {a, b, c}’={1,2,7}, 50 ({1,2,7}, {a, b, c})

is a concept. {1, 2, 7} is its extent and {a, b, ¢} is its intent.

For a concept ¢ = (X, ¥), since X =Y = {X ’}’= X, so the intent of a concept is a closed

itemset.

Definition 2-23: The support of a concept equals to that of its extent, it is defined as follows.
x|

For a concept ¢ = (X, Y), supp (c) =I?|

For example: in Table 2-1, ({1,2,7}, {a, b, c}) is a concept, supp (({1,2,7}, {a, b, ¢})) = g

Definition 2-24: If the support of a concept c¢ is above a user-defined minimal threshold

(minsupp), then c is frequent (or large) and c is called a frequent concept.

Definition 2-25: Let C be the set of concepts derived from a context. The partial order
L =(C, <) is a complete lattice called a concept lattice. The partial order is
defined as follows.

VX, 1), (X, o) € C, (X1, Y1) S (X, Vo) iff Xy S X AT, C V5.

Mining Dynamic Databases for Frequent Closed Itemsets 11

A concept lattice L= (C, <;) is a partial order in which every pair of concepts, c,, ¢z, has a
unique greatest lower bound and a unique least upper bound. The binary operators on C

denoted, respectively, join (c;v. c;) and meet (c; AL c2)[W1982]:

X, 1) v (Xz, Vo) = (XU X517, (Y1 N 1)),

(X], Y]) AL (Xz, Yz) = ({le Xz}, {Y} U Yz}”).

The Hasse diagram of the concept lattice L from Table 2-1 is shown in Figure 2-1. Intents and
extents are indicated in rectangles below the nodes. For example, the join and meet of cys=
({1,2,3}, {c, f}) and cus = ({1,3,7,8,9}, {d}) are cso = ({1,2,3,4,5,6,7,8,9}, ©) and cu)p =
({1,3}, {c, d. f, g, h}) respectively.

Two functions, x andv, are defined on the concept lattice.
Definition 2-26: The functiong: T — L is defined as follows:
u(t)=nlclte ext(c)} = ({t}, {t}").
Given a transaction ¢, this function is used to find a minimal concept c (according to the size
of extent) in L and ext(c) includes the transaction ¢.

For example, within the concept lattice in Figure 2-1, £(2) = ¢y, and 4 (6) = cu13.

Definition 2-27: The functionv: I — L is defined as follows:
v(i)=v{clie€ int(c)} = ({i}’, {i}”).

Given an item i, this function is used to find a maximal concept ¢ (according to the size of

extent) in L and int (c) includes the item i.

For example, within the concept lattice in Figure 2-1, v (d) = cus and v (f) = cy1.

Hereafter, Tc denotes the set of all successors of concept ¢ (the order filter generated by c)

and J¢ denotes the set of all predecessors of concept ¢ (the order ideal generated by c).

The notion and properties of iceberg were introduced in [STBPL2000].

Definition 2-28: Given minsupp ae [0, 1], C%is the set of all e+frequent concepts and the

Mining Dynamic Databases for Frequent Closed Itemsets 12

partial order (C% < p) is called the iceberg concept lattice.

@
*i=g
¥E={1,2,3,4,5,6,7,8,8}
N,
|] g 4
at] ¥ -5} ¥1=fo} ¥i={d}
BE 2300 ¥E{1,3.4.5 ¥E[1,2,3,7.8} ¥E{1.2.7.8,0}
7 g 51 8 o
¥1={f, h} ®l=fe, 1} ®l=fo, f} %I=b, o} /, i, d}
LA ¥ES{1. 2,46} ¥ES{1, 2.3} LA M R X
.3.4.6} \ \ =11, 2, p
\f/ \ . .
13 \\io #I=fa b, c} 38
¥I={e, f, h} ¥I={f. g, h} ¥E={1,2,7} ¥ D, o d)
¥E={1,4,6} ¥E{1.3.4 PIRY
// p \
1 12
¥=fe. f. 9. h} ¥l={a b,c.e,f} ¥l=fo, d. f. g, h} / 3'—{3 b, o, d}
$ESLL 9) ¥E. 2} ¥EY1, 3} / $Es{1, 7}

xl-{a. b.o.d. e, f, g.h}
¥E={1}

Figure 2-1: The concept lattice from Table 2-1

Property 2-7: L is an upper-semi-lattice (or Join-semi-lattice) of L.
The set of all a~infrequent concepts in L forms a sub-semi-lattice (join-semi-lattice) of L.
For example, given a minsupp o= 0.3, the iceberg lattice from Table 2-1 is shown in Figure

2-2. The support of every concept in Figure 2-2 is greater than 0.3.

Mining Dynamic Databases for Frequent Closed Itemsets 13

(T
®i=g '

¥E<{1.2,3.4.6,6,7, 8,0}
s
.-"/ \ \

22 21" 23
‘ I={f} * I={g} ! I={o} | ¥ I={d}
tEﬂ(l 2.3.4, 0} ¥ E={1, 3. 4. 5} ¥E¢{1 2,3.7.8} ¥E={1.3,7.8,9}

28
‘!-{e f} g]:{f h} "‘{0 1} *"{5-0} ¥ i=fc, d}
WE={1,2, 47 E={1,3, 4,0} ®E={1, 2.3} / !E={|.2\.\7\.8} wE={1, 3.7, 8}
~
\ . /

N

30 36 31 32
Wi=fe, f, h} ¥Intt. 9. b} ¥i=fa, b, c} %i=pb, o, d}
¥E={1.4,0} WE={1,3, 4} ¥E<{1,2.7} %E<{1,7.8}

Figure 2-2: The iceberg lattice L% from Table 2-1 («=0.3)

2.2 Current state of research on association mining algorithms
Many algorithms for association rule mining have been designed, we can classify them into

several categories.

2.2.1 Plain frequent itemsets mining algorithms

In 1993, Rakesh Agrawal, Tomasz Imielinski, and Arun Swami proposed the notion of an
association rule and a corresponding algorithm, called Apriori, to discover all significant
association rules between itemsets in a large transaction set [AIS1993]. Apriori is a famous
algorithm and enumerates every single frequent itemset. It uses the downward closure
property of itemsets support to prune the search space - all subsets of a frequent itemset must
be frequent. Only the frequent 4- itemsets are used to construct candidate (k+1)-itemsets. A
pass is executed over the transaction set to find the (k+1)-frequent itemsets from the

(k+1)-candidates.

Many variants of Apriori achieve improved performance by reducing the number of

candidates. Some algorithms reduce the number of transactions to be scanned [AS1994,

Mining Dynamic Databases for Frequent Closed Itemsets 14

HF1995, PCY1995] and some reduce the number of transaction set scans [BMUT1997,
SON1995, T1996].

FP-growth is anther well-known algorithm which finds complete frequent itemsets
[HPY2000]. 1t first constructs a compressed data structure, Jrequent-pattern tree (FP-tree),
to hold the entire transaction set in memory and then recursively builds conditional FP-trees
to mine frequent patterns. FP-tree is an extended prefix-tree structure and all transactions
with the same prefix share the portion of a path from the root. FP-growth algorithm avoids
the problem inherent to candidate generate-and-test approach, thus its performance is
reported to be better than that of Apriori. However, the number of conditional FP-trees is in
the same order of magnitude as number of frequent itemsets. The algorithm is not scalable to

sparse and very large transaction sets.

2.2.2 Frequent closed itemsets mining algorithms

Frequent itemsets mining often generates a large number of frequent itemsets and rules. This
process reduces the efficiency of mining since one has to filter a large number of mined rules
to get useful ones. A-close algorithm is an important alternative that was proposed by
N.Pasquier, Y.Bastide, R.Taouil, and L.Lakhal [PBTL1999-2]. 1t uses closure operators to

calculate the frequent closed itemsets and their corresponding rules.

As a continued study on FP-growth, [PHM2000] proposed CLOSET. 1t is another efficient
algorithm for mining frequent closed itemsets based on FP-tree. The special features of this
particular algorithm are the three techniques developed for the purpose of complexity
reduction. First, CLOSET applies an extended frequent-pattern tree to mine closed itemsets
without candidate generation. Secondly, to quickly identify frequent closed itemsets, it
develops a single prefix path compression technique. Finally, this scheme explores a

partition-based projection mechanism for patterns on subsets of items.

CHARM [ZH2002] is another efficient algorithm for mining all frequent closed itemsets.
This algorithm implements a hybrid search technique, called dual itemset-tidset search tree

(IT-tree) which enables it to skips many levels of the IT-tree to locate the frequent closed

Mining Dynamic Databases for Frequent Closed Itemsets 15

itemsets quickly. A fast hashtable-based approach is also used in order to remove non-closed

sets found during computation.

In a sparse transaction set, the majority of frequent itemsets are closed itemsets. The
performance of 4-Close is therefore close to that of Apriori. The advantage of CLOSET over
A-Close is essentially the same as that of FP-Growth over Apriori [PHM2000]. In this kind
of transaction set, CHARM also outperforms Apriori due to the fast hash-table and the dual
itemset-tidset search tree. If the minsupp is small and the TID sets for frequent itemsets are
small, CHARM will be efficient. However, its performance is inferior than that of CLOSET
since CLOSET employs the closure mechanism on a more elaborate scale. The benefit of
CLOSET becomes even more significant on dense transaction sets, since CLOSET only scans
the transaction sets twice and the mining process is confined to the frequent pattern tree after
that. Also, regardless of how many times the transaction sets are being iterated, the frequent
pattern tree maintains the same shape with respect to the constant minsupp. Hence, the
runtime of CLOSET over real transaction sets increases at a much slower rate than that of the

sizes of transaction sets [PHM2000].

A recent algorithm T/TANIC [STBPL2000] is another algorithm based on Galois
connections for mining frequent closed itemsets. It is inspired by the Apriori algorithm, as
well as adopts a more powerful pruning strategy. This strategy determines the support of all
k-itemsets that remain at the & iteration, and computes the closure of all (k-1) -itemsets after

the (k-1)" iteration.

2.2.3 Incremental FI or FCI mining algorithms

The most important problem with association mining is the huge number of frequent itemsets
and association rules that can be generated from a large transaction set. The methods based
on the frequent closed itemsets are a promising solution to the problem of reducing the
number of association rules. However, confronting a dynamic transaction set, another
problem arises since the transaction set is frequently updated. Adding new transactions may

invalidate existing frequent patterns or generate new ones, thus one needs to re-execute the

Mining Dynamic Databases for Frequent Closed Itemsets 16

algorithms from the beginning. So far, a few incremental algorithms for association mining

have been proposed [GMA1995, CHNW1996, STBPL2000, VMG2002].

[VMG2002] proposed an incremental algorithm for mining frequent closed itemsets based
on lattice construction (GALICIA). The difference between it and other FCI-based techniques
is: it avoids reconstructing the frequent closed itemsets completely when transactions are
added to the transaction set and / or the minsupp is changed. However, as mentioned earlier,

it is inefficient since one needs filter frequent closed itemsets from closed itemsets.

2.3 Review of two typical algorithms
In this section, we review two best-known association rule algorithms: Apriori, a plain
frequent itemsets mining algorithm, and A-Close, a frequent closed itemsets mining

algorithm.

2.3.1 Apriori algorithm

Apriori algorithm uses Property 2-1 and Property 2-2. It performs a number of iterations. In
each iteration (i), it first constructs a set of candidate itemsets based on frequent itemsets
obtained from the preceding iteration (i-1); then scans the transaction set to filter the frequent

i-itemsets.

The procedures used in the Apriori algorithm are shown in Figure 2-3 and Figure 2- 4 (C,

represents the set of candidate k-itemsets, FI; represents the set of frequent k-itemsets).

Aprior_Gen() is a sub-function of the algorithm. It generates the candidate itemsets by
Joining the frequent itemsets of the previous pass that have the same items except for the last

one, and then generated candidates that contain an infrequent subset are dropped.

Apriori () is the main procedure of the Apriori algorithm. It has three main steps. First, it
considers the itemsets with only one item (lines 2-3) and calculates frequent /-itemsets.

Secondly, it executes an iterative process, calling Aprior Gen(), to get the frequent itemsets

Mining Dynamic Databases for Frequent Closed Itemsets 17

(lines 4-9). This iterative process terminates when no new frequent itemsets can be found.

Finally, all frequent itemsets are accumulated (line 10).

procedure: Aprior_Gen (input: a set of all frequent (k-1)- itemsets FIj_;;
output: the set of all k-itemsets candidate Cp)
[i=item i // beginning of join step

Insert (Cy I) // insert [;into C;

I:

2

3

4

5: foreach pandge FIy.,do
6 if p.I/=q.I;and ... and p.Ji> = q.I;; and p.J <q.I;.
7 then insert (Cy (p.I), p.Io, .. p.Ik.1, q.111))

8 for ceCy do //beginning of pruning step

9 for all (k-1)-subsets s of ¢ do

10: if (s¢ Fl_;)

11: then delete ¢ from C;

Figure 2-3: The procedure of Apriori-Gen ()

1: procedure Apriori (input: I, T, ¢; output: FIs)

2: forall i€l do

3: FI; <{large 1-itemsets} // generate FI, by traversing transaction set and counting the
// support for elements in /

4. for (k=2; Fli.j# @, k++) do

5: begin

6: Ci= Apriori-Gen(Fl;.));

7: count_supp (T, Cy,) // calculate the support of Cyin T

8: FIi={ce Ci|supp(c) = a}

9: end

10: Fis = Ul to kFIk

Figure 2-4: The algorithm of Apriori ()

Mining Dynamic Databases for Frequent Closed Itemsets 18

For example, according to the transaction set in Table2-1, FI, ={{a, b}, {a, c}, {b, c}, {b, d},
{c.d}, {c./}, {e f}, {e b}, {1 g}, {f, b}, {g h}}, after the joining step in Apriori-Gen (), C3
willbe {{a, b, c}, {b, ¢, d}, {c, d, f}, {e, £, h}, {f, g h}}. The prune step will delete {c, d, f}
because itemset {d, f} is not in FI,, so Csis left with {{a, b, ¢}, {b, c, dy, {e f h}, {f g h}}.

After calculating their supports by traversing the transaction set, we get FI;= {{a, b, c}, {bc

d}, {e. S h}, {1 & h}}.

According to the experimental results, Apriori outperforms other plain frequent itemset
mining algorithms [AIS1993]. Since its introduction, two enhanced versions of Apriori
algorithms were developed: Apriori-TID [AIS1994] and Apriori-Hybrid [A1S1994]. The
main difference between Apriori and Apriori-TID is that Apriori scans the entire transaction
set in each pass to count the support in order to discover frequent itemsets. Apriori-TID does
not use the transaction set for counting support after the first pass. It employs an encoding of
the candidate itemsets used in the previous pass. Apriori-Hybrid algorithm is a combination
of Apriori and Apriori-TID. As mentioned in [AIS1994], Apriori has better performance in
earlier passes; Apriori-TID has better performance in later passes. Apriori-Hybrid technique
uses Apriori in the initial passes, and switches to Apriori-TID for the later passes if necessary.

Apriori-Hybrid technique improves the performance greatly.

2.3.2 A-Close algorithm
A-Close is a non-incremental algorithm for mining frequent closed itemsets which is inspired

by Apriori algorithm.

The A-Close algorithm contains several main procedures. The first is the AC-Generator
function, which is based on the properties of closed itemsets. It determines a set of generators.
Here the generator is defined as follows: an itemset p is a generator of a closed itemset ¢ ifit
is the smallest itemset that will determine c; using the Galois closure operator: p” = c;.
[W1982]. In this procedure, it applies Apriori-Gen () to the i-generator set to obtain the
(i+1)-generator candidate set. It joins two i-generators with the same first i-/ items to

produce a new potential (i+7)-generator, after getting (i+])-generator candidates, their

Mining Dynamic Databases for Frequent Closed Itemsets 19

supports are calculated, then the infrequent (i+/)-generators and (i+/)-generators that have

the same closure as one of their i-subsets are discarded.

The second is the AC-Closure function. Once all frequent generators are found, they will help
us to get all frequent closed itemsets by using Galois closure operators ”. In order to reduce
the cost of the closure computation, A-Close algorithm adopts an optimized pruning strategy
by locating a (i+/)-generator that was pruned because it had the same closure as one of its
i-subsets to start the first iteration. All iterations before i'", the generators are closed, so it is
unnecessary to carry out the closure computation for them, and then we just perform the
closure computation for generators of size greater or equal to i. For this purpose, the
algorithm uses the level variable to indicate the first iteration for which a generator was

pruned by this pruning strategy [PBTL1999-2].

A-Close algorithm finds the candidate generators during iterations. It is necessary to traverse
the transaction set to calculate the support for the candidate generators. If a generator is not
closed, it will require one more pass to determine its closure; if all generators are closed, this

pass is not needed.

For example, from transaction set in Table 2-1, A-Close algorithm discovers the FCIs as
follows with minsupp = 0.3. First, the algorithm discovers the set of / -generators, Gy and the
support for each element, no generator is deleted, because all are frequent. Then 2-genetators
in G, are determined by applying the AC-Generators function to Gy, all infrequent
2-generators are pruned (all infrequent 2-generators are not shown due to the limitation of the
space), meanwhile, {a, b}, {a, c}, {e, f} and {f, h} are pruned since supp({a, b}) =supp({a}),
supp({a, c})= supp({a}) , supp({e, f}) = supp({e}) and supp({f; h}) = supp({h}). The level
variable is set to 2. Calling AC-Generators function with G, to produce Gs, we get {b, c, d}
and {c, d, f}, but {b, ¢, d} is pruned since supp({b, ¢, d }) = supp({b, d}) and {c, d, f} is
pruned since {c, f}& G,. At last, since the level variable is 2, so the candidate generators G’
includes the generators from G, and G-, the closure function AC-Closure is applied to G’ to
discover the closures of all generators in G’ and duplicate closures are removed from G’, we

get all frequent closed itemsets. Figure 2-5 illustrates the whole process.

Mining Dynamic Databases for Frequent Closed Itemsets

G| Gl
Support_count Generator Support Pruning Generator Support
(@ 3 infrequent (a} 3
B 2 generators (b} 4
{c} 5 {c} 5
{d} 5 {d} 5
{e} 4 {e} 4
7 5 0 5
{g} 4 g} 4
{h} 4 {h} 4
G, (all frequent 2-generators) Gy
AC-Generator {a,b} 3 Pruning {b.c} 4
{a,c} 3 {b,d} 3
{b,c} 4 {c,d} 4
{b.d} 3 {ef} 3
{c.d} 4 {eh1} 3
{ef} 3 {1g} 3
{ef} 4 {g.h} 3
{eh} 3
e} 3
{fh} 4
{g.h} 3
G3 G3
AC-Generator {b,c,d} 3 Pruning
{c.d.f} 2
G’ FCis
Generator | closure | support Pruning Closure support
AC-Closure {a} {a,b,c} 3 {a,b,c} 3
{6} {a,b,c} 3 {c} 5
{c} {c} 5 {d} 5
{d} {d} 5 {ef} 4
{e} {e} 4 i} 5
i i 5 {g} 4
{g} {g} 4 {1h} 4
{h} {£h} 4 {b.c} 4
{b,c} {b,c} 4 {b,c,d} 3
{b,d} {b,c,d} 3 {c.d} 4
{c.d} {c,d} 4 {¢.f} 3
{cf) {c/f} 3 {efh} 3
{e.h} tefh} 3 {fg.h} 3
{rg} {fg.h} 3
{g.h} {181} 3

Figure 2-5: 4-Close frequent closed itemsets discovery for minsupp = 0.3

Mining Dynamic Databases for Frequent Closed Itemsets 21

After studying above algorithms, in this thesis, we explore the problems of mining frequent
closed itemsets. We attack these problems by implementing our proposed algorithm — /LA
(Iceberg Lattice Algorithm). /LA algorithm takes advantage of incremental methods and
maintains only the upper most part of a concept lattice. As a critical feature, ILA algorithm
improves the efficiency of frequent closed itemsets mining by avoiding useless computation
and taking advantage of the previous iceberg structure. Namely, we improve ILA by (1) only
scanning the transaction sets once and (2) only storing current frequent closed itemsets when

a new transaction is added.

Mining Dynamic Databases for Frequent Closed Itemsets 22

Chapter III Review of the GALICIA approach
GALICIA is a family of algorithms that generate frequent closed itemsets incrementally. Its

aim is to construct new closed itemsets based on current family of closed itemsets by looking
on the new transaction t;+;. The incremental construction of the concept lattice may help

design the effective methods for frequent closed itemsets mining.

3.1 Lattice updates

Incremental methods construct the concept lattice L starting from the initial lattice Ly= ({2,
I}, &). When adding a new transaction #;.;, we incorporate it into the concept lattice L;. Each
incorporation causes a series of structural updates. The basic approach was defined for
concept lattices [GMA1995] and was improved upon later [VM2001]. It is based on the
fundamental property of the Galois connection established by fand gon (7, I): both families
of closed subsets are themselves closed under set intersection [BM1970]. So when inserting a
new transaction #;+;, we should insert into L; all new concepts whose intent is the intersection
of {ti+;}” and the intent of an existing concept where the intersection is not an already

existing intent.

We now define a mapping y that links the concept lattices L; and L;+,. The mapping Y sends
every ¢ from L;;; to the concept from L; whose extents correspond to the extent of ¢ modulo
Livg.
Definition 3-1: The mappings y: C;+;— C; are established as follow.

Y (X, Y) = (X}, X;’), where X)= X- { t;+)}.

All concepts in Z; can be classified into three categories (hereafter C; and C;.; denote the sets

of concepts in L; and L;;, respectively).

Genitor concepts (G (#;+;)) -- generate new concepts by intersecting with new transaction ¢4,
and help calculate the respective new intents and extents.

Definition 3-2: The sets of genitor concepts in L;+; and in L; are

G'(tis1) = {c=X Dt e X; XU{tir})=XU{ tis1}},

Mining Dynamic Databases for Frequent Closed Itemsets 23

Gtir)={c=X N|YZ {11}, Y=(Y N { t;11}°)"} respectively.
Modified concepts (M (ti+,)) -- their intents are included in the new transaction’s itemsets, so
their intents will remain stable, only the TID of new
transaction ¢+, is integrated into their extents.
Definition 3-3: The sets of modified concepts in L;+;and in L, are
M'(tin) = {c= (X, ¥) | ce C"; tiss € X; (X- {tie1}) =1},
M (tix1)= {c= (X V)| ce C,T e € M'(4+/), c =y (e)} respectively.

Old concepts (O (t;+/)) -- remain completely unchanged when adding a new transaction #;4;.

Definition 3-4: The set of new concepts in L;; is

N'(tun)={{c=(X, V)| c€ Cis; ti1 € X; (X- {tie1})” =X - {tiss}}.

The incremental algorithms focus on a substructure of L;+; that contains all concepts with #;,,
in their respective extents, i.e. both new concepts, N'(ti+1) and M'(t;+). We regard this
structure as an order filter, which is generated by the transaction-concept of #; in L,
denoted by u (t;+/). The order filter Tx (#+,) induces a complete sub-lattice of L;.;. The
choice of a pivotal structure is determined by the isomorphic structure in L; which is
composed of G (#;+;) and M(t;+;). Thus when N'(t;.,) is integrated into L;, the desired links

can be inferred from the structure isomorphic to Tz (#+,) within L.

In order to generalize the intersections of the description of t;,; and the entire set C, we define

a mapping that links L to the lattice of the power-set of all attributes, 2".

Definition 3-5: The function Q: C — 2' computes: gl =Y {ti} .
The function Q induces an equivalence relation on the set C, and the class of a concept c is
denoted by [c]o. The set of equivalence classes Cjp is considered together with the following

order relation

[alo<gledo = Q(c2) SO (c),

Mining Dynamic Databases for Frequent Closed Itemsets 24

Since the intents of concepts in T (#;+/) are all subsets of {t;+;}” which are closed in K™, the
resulting partially ordered structure, Lo, is isomorphic to T (#;+/) and is a complete lattice.
The following algorithm (see Figure 3-1) is a generic scheme for the incremental task. It
detects the three categories of concepts with the creation of the new concepts and their

subsequent integration into the existing lattice structure [VM2001].

This algorithm takes a lattice and a new transaction as arguments and outputs the updated
lattice using the same data structure. It includes three main computation steps. The first step
is a traversal of the set L with a simultaneous calculation of the intersections between the
respective concepts and the itemset of the new transaction ¢, (i.e. {f;+;}"), the partitioning of
L into classes with respect to @ (line 3-4), and the detection of class maximal concept for
every class []Jo with the subsequent identification of the status of the maximal element (lines
5-6). Secondly, it deals with modified concepts (lines 7-8). It updates their extents and
increases the corresponding supports. Finally, it deals with the genitors (lines 10-14). It

includes the creation of a new concept and the order update in the lattice [VHM2003].

1: procedure add-transaction (In / Out: L a lattice, #;+; a new transaction)

2

3:forall cin L do

4: putcinits classin Ly w.rt. Q(c)

5: forall[]Jp in Ly do

6: find e = max ([]g)

7: ifint (e) C { ti+;}’ then

8: add (ext (e), ti+1) {eis modified concept}

9: else

10: int <= int (e) N { ti+;}’ {e is old or potential genitor}

11: if (not (int’, int) € L) then

12: { e «<~New-Concept (ext (e) Ut;+,, int) {e is genitor}
13: Update -Order (e, e)
14: add(L, e)}

Figure 3-1: The algorithm of an incremental approach

Mining Dynamic Databases for Frequent Closed Itemsets

For example: we take the third transaction out from Table 2-1, we get Table 3-1:

TID Itemsets
1 {a,b,c d e f g h}
2 {a, b, c e f}
4 {e.f & h}
5 {8}
6 {e, 1, h}
7 {a, b, c d}
8 {b, ¢, d}
9 {d}

Table 3-1: An example of transaction set with 8 transactions

Following the above algorithm, we get concept lattice Ly as Figure 3-2.

o
gy i Lt
///' ¥C-{1,2,4,5,8,70,9
-~ Y -
-~ \, -
— / N ™S
-~ S ~
7 N\ Ry
- e _ __
{ {3 ‘8 4
¥1-{e, 1} ¥I1-{y’ ; ¥-{u.o} , ¥
¥C~{t, 2.4, 6 ¥C={1, 4, 5} {1 2,7, 0} | ¥C-{1,7,0, 0}
T._ o L235th W) _T 8 A LU 2
\'\ \\
1 N / N
113 \115
¥i-fe, 1. h} | A m—[a b, o] b= '
— ¥i-{, ¢, J}
ME-[1,4, e \/ ¥E={1, 2.7} el 7. 03
/)"\ \ __
~-
// \\.
11 116' ‘18
¥I=33,b,¢, e, f}| #i=e, 1 g, 1} ~~ %kt c.a |
$E, 2 | ¥E-{1, 4 7 wepn |
N - T
~ e
~ -
~ ~
™~ o
17)
#1=3,b,0,4,e,7,q,h}
¥ E-{1}

Figure 3-2: The concept lattice from Table 3-1

Mining Dynamic Databases for Frequent Closed Itemsets

When adding a new transaction 3 = {c, d, £ g, h} to Table 3-1, transaction set 7" is the same

as Table 2-1. When inserting the transaction 3 to Lg, three categories of concepts are:
1. Old concepts = {cy14, cs18}

2. Modified concepts = {cyo, Cus, ci3}

3. Genitor concepts = {cus, Cs6, C15, C13, C#11, Ci16, C17}

The new concepts = {cu1, cu2, Cus, Ca7, Ca9, Ca10, Cit12}

Integrating new concepts into Ls, we can get new concept lattice Lo as Figure 3-3.

9
¥i=f
¥E<{1,2,3,4,5,6,7,8,0}

T ®i=ig} m-{o} m =1}
®E={1, 2,3, 4,8} $E{1.3,4.5) m-:cn 2,3,7.8} ®E={1,3,7.8,0}
\\ \‘\~
\ I Y /
. 6 \
$1={f, h} Wi, 1} m-{c 1 m- m-{c. a4
$E{1,3,4,6} ¥E={1.2, 4,6} /¥E={1 2,3} $EQ, 2 7.8 $E={1,3.7. 8}
10 / \

13

¥i={a, b, c} /
¥E=[1,2,7}

%i=fe. f. b} %i=if, g, h}
%E(1, 4, 8 WE=l1, 3, 4}
\
161 11 12 (187

¥l=fe, f, g, h}
¥E={1, 4}

¥I={a,b,c,e, }
¥E={1,2}

%=, d. f. g, h}
WE{1, 3}

/ ‘|={z' b, ¢, d}
_ ¥E=[1,7}

7
¥, b,o.d, e f,g.h}
¥E}

Figure 3-3: The concept lattice from Table 2-1

Mining Dynamic Databases for Frequent Closed Itemsets 27

3.2 GALICIA family

3.2.1 GALICIA scheme

There are several differences between lattice update and closed itemsets update. Here, closed
itemsets is a set of intents of concepts, and there is no order between the elements. When one
updates closed itemsets, only the intents and supports are used. Lattice update should
consider the ordered link among the concepts. The algorithm in Figure 3-4 can help us

understand the characteristic of this approach [VM2001].

1:Procedure Update-Closed (In: t;+; a new transaction, Family-ClI a set of closed itemsets)
2:Local: New-ClI a set of closed itemsets

3: New-CID; Ine— { tis1}’

4: for all e in Family-CI do

5:1f e. itemset C I,

6: then e. supp++; //e is modified

7: else

8: Y ¢ e. itemset N I;

9: ey¢—Lookup(Family-CI,Y) /leis old or potential genitor

10: if e=NULL

11: then ey¢lookup(New-CI,Y) /l e is a potential genitor
12: if e~NULL

13: then {node < new-node(Y, e.supp++);

14: New-Cl<—New-CI U{node}}

15: else

16: ey. supp <—max(e.supp++, ey. supp)

17: Family-Cl«—Family-CI UNew-CI

Figure 3-4: Update of the closed itemsets family upon a new transaction arrival in
GALICIA algorithm

Every closed itemset is examined in order to establish its specific category (modified, old or

genitor). Modified closed itemsets simply get their support increased (line 6). Old ones

Mining Dynamic Databases for Frequent Closed Itemsets 28

remain unchanged (line 8-9). Actually, every new closed itemset is stored together with the
maximal support already reached for it, i.e. since multiple closed itemsets can generate the
same closed itemset with different support, the current support is the maximal support of the
new closed itemset, but not yet confirmed that it is the maximum support for this closed
itemset, thus each time the closed itemset is generated (line 11- 16), the support is tentatively
updated. Furthermore, the storage of new closed itemsets is organized separately (New-CI),
so that unnecessary tests can be avoided. This computation yields the correct support at the
end of closed itemsets traversal. Genitors are closed itemsets with maximum support of all
closed itemsets that generated new closed itemsets. This fact is strongly reinforced by an
implementation that utilizes trie structures to reduce redundancy in both the storage and the

update of the closed itemsets.

3.2.2 GALICIA-T

GALICIA-T is a version of GALICIA based on tries [K1998). In general, the trie data
structure is used to store sets of words over a finite alphabet. It is a tree structure in which
letters can be assigned to edges. Each word corresponds to a unique path in the tree. All
nodes can be classified into two categories. One category compiles the terminal nodes that
correspond to the end of words. The other category compiles inner nodes that correspond to
prefixes. Trie offers high efficiency storage. All prefixes common to two or more words are
represented only once in the trie. As a consequence, a trie reduces the storage space and

manipulation cost. We can regard an item as a letter and an itemset as a word.

In GALICIA-T, one can implement two tries to represent the closed itemsets where one trie
for the current closed itemsets family(Family-CI), and the other for the new closed itemsets
(New-CI). A node denotes a record with item, terminal, successors, support and depth fields.
Item provides the item in node and represents transactions and individual closed itemset.
Successors is a sorted, indexed and extendable collection for lookup, order-sensitive
traversal and insertion of a new member. Terminal indicates whether the node is terminal, i.e.
whether Y,,,,, the current intersection between a closed itemset and I,, represents a closed
itemset. Support records current node support. Depth is the length of the path from the root

to node. The new transaction with its itemsets 7, is denoted by 4.

Mining Dynamic Databases for Frequent Closed Itemsets 29

The algorithm in Figure 3-5 describes the main steps of an update with a single new
transaction #;+;. First, it creates a new trie to store the new closed itemsets, secondly, it sorts
the {#:+,}’, thirdly, it traverses the trie and generates new closed itemsets, finally it merges

both tries.

[u—

: procedure Update-Closed-Trie (In: t;+; a new transaction)
: Global: Family-CI a trie of itemsets;

: Local: New-ClI a trie of itemsets

: Traversal-Intersect (I,, NULL, root (Family-CI))

2
3
4
5: New-Cl— new-trie (); I,<— sort ({ti+;}’)
6
7. Merge (Family-CI, New-CI)

Figure 3-5: Trie-based update of the closed itemsets upon a new transaction arrival

The algorithm in Figure 3-6 is a recursive procedure that describes the simultaneous traversal
(with detection of common elements) of two sequences of items. Each trie traversal starts
from the root and goes to a terminal node. If the currently generated intersection (Y,,,) is a
new closed itemset, then we insert it into the New-CI trie; if it is already in the basic
Family-CI trie, then we update the current node support. If the length of the current
intersection, | Y|, equals the depth of the current node, the second case occurs. It means that
the current closed itemset of the trie is a modified element of L. An intersection is finished
whenever a terminal node is reached. The resulting intersection is tested for being new (line
7), if it is the case, it is added to the New-ClI trie (line 9), else it is an existing itemset, so it
corresponds to a modified. To know whether the itemset that is currently examined is the
modified or it is just an old from the same equivalent class, one tests the equality of the size
of the intersection to the size of the current itemset, i.e. the depth of the node in the graph of

the trie. If the node has successors, the intersection goes on.

Figure 3-7 depicts the result of the entire trie traversal. On the left, the state of Family-CI
before the insertion of transaction 3 is shown. On the middle, the New-CI is shown, and on

the right, the situation of Family-CI after insertion of transaction 3 is shown [VMGM2002].

Mining Dynamic Databases for Frequent Closed Itemsets 30

1: procedure Traversal-Intersect (In: I,, Y,,, item-lists, node a trie node)
2: Global: Family-CI, New-CI tries of item-lists
3:
4:if (I,#NULL) and (/,.item = node.item)
: then add (Y., I,.item)
:if node.terminal

5
6
7: then n < lookup(Family-CI, Y,,,)
8
9

if n=NULL
then update-insert(New-Cl, Y.y, node.supp++)
10: else
11: if node.depth=|Y_,,|
12: then n.supp++
13: if (not node.terminal) or (/,#NULL)
14: then
15: for all n in node.successors do
16 while (/,#NULL) and (/,.item <n.item) do
17: 1, < I,.next
18: Traversal-Intersect (I, Ycupr, 0)

Figure 3-6: Trie-based update of the closed itemsets: single node processing

Figure 3-7: Left: The trie Family-CI of the closed itemsets generated from T.

Middle: The trie NewClI of the new closed itemsets related to transaction #3.

Right: The trie Family-CI after the intersection of transaction #3.

Mining Dynamic Databases for Frequent Closed Itemsets 31

The following table illustrates the advancement of this algorithm on one branch of the trie,

{a, b,c d e f g h},upon the insertion of the item list {c, d, /g h}.

node.item I, Y curr terminal support
a {c.d f g h} NULL N -
b {c.d f g h} NULL N -
c {c.d f g h} {c} Y 4
d {d f g h} {c, d} Y 3
h (hy {cdfgh Y 2

The first column is the items in a node, the second one is the value of I, (available part of
{ti+1}’), the third column represents the current result of the intersection, and the fourth one
indicates whether a node is terminal, i.e. whether the value of Y...» represents a closed itemset,

the fifth column records, whenever reaching a terminal node, the value of the support.

Incrementality is a major breakthrough in data mining methods and GALICIA is one of the
first algorithms to adopt this method. The experimental results indicated its advantages for
small minsupp cases. However, the efficiency of the algorithm is hindered by the
requirement to preserve all closed itemsets. One solution of solving the dilemma is by
maintaining only crucial parts of the closed itemsets (e.g. the frequent closed itemsets) and
work on each particular set separately. So in our algorithm (/LA4), we store only the part

above the threshold in closed itemsets, which improves the performance.

Mining Dynamic Databases for Frequent Closed Itemsets 32

Chapter IV Maintain iceberg lattice only with FCIs

4.1 Incremental iceberg lattice update

The algorithms mentioned in section 3.2 can be used to compute frequent closed itemsets.
There are two steps in the process: the first step finds closed itemsets from transaction sets;
the second step filter the frequent ones with a defined minsupp «. The concept lattice L
contains all closed itemsets. In previously mentioned algorithms, during the process of
updating concept lattice L, we ignored the value of minsupp o Once given a minsupp, we can
divide L into two parts. An upper part, denoted as L= (C% <), where all concepts have
supports greater than or equal to minsupp a. We call it an iceberg lattice. For example, Figure
4-1 is an iceberg lattice L** from the complete concept lattice with o= 0.3; similarly, a lower
part, denoted as Lo= (Cq, <x). In this way, we should be able to maintain (store and update)

all closed itemsets, even if some closed itemsets are infrequent.

However, there are two disadvantages in these algorithms. One is that we must travel through
all closed itemsets when adding a new transaction #;4;. Also we must calculate the support for
every closed itemset to find frequent one. These two procedures increase the computational
cost. Now, we will propose a novel algorithm that only executes a few operations to maintain
an existing iceberg lattice without excessive computations. These operations are based on the

current iceberg lattice structure.

Given a context K, iceberg lattice L“is the part above the threshold zof the complete concept
lattice L of K. After adding a new transaction #+, to K, an incremental algorithm executes the
same operations as with a complete lattice (add-transaction (), see section 3.1) to maintain
the structural integrity of an iceberg lattice L% [VMG2002]. However, there are some
additional tasks, such as eliminating all concepts which become infrequent in L* (L* is
constructed with the transaction set in K+ #,) and adding some concepts which are not
frequent in L, but when adding a new transaction #; to their extents (e. g., modified
concepts), they become frequent in L*, or new frequent concepts in L* which are produced by
non-frequent genitors in L. So the maintenance of an iceberg lattice includes not only

creating new frequent concepts, but also deleting some old ones.

Mining Dynamic Databases for Frequent Closed Itemsets 33

¥=
¥E={1,2,4,5,6,7,8, 9]

(25 122) (23! ‘27

¥l=fe, 1} %i=gg} ¥I1={d} ¥i=p. c}
¥E={1,2, 4,86} ¥E{1, 4,5} ¥E={1,7.8,9}

¥E{1,2,7,8}

o (32 (31)
={e, f, ¥1=p,c, d} = |
$E={1. 4, 6} ¥E={1,7,8} :Ls{?i bl; c7}}

Figure 4-1: The iceberg lattice L* with T'= {1,2,4,5,6,7,8,9} & ar=0.3

For example, Figure 4-1 is the iceberg lattice L, after adding the new transaction 3, the new
iceberg lattice L** is as Figure 4-2 and the respective concept categories are as follows.
Old concepts = {cu3;}

Modified concepts = {cu, cur3}

Genitor concepts = {cy2s, 427, Ci30, C32}

0.3+
The new concepts in L™ "= {cy0, cu21, Ciz6, Cii2s}

1}
¥ 1=
¥E=[1,2,3,45,8,7,86, 0}

_

20 22
¥ =11} | ¥ I={g} W i={c} ¥ I={d} |
¥E={1,2,3, 4.8} ¥E={1.3.4, 6}' $E={1.2,3,7, a} ¥E={1.3.7.8,9}
26" 26
¥ I={e, 1} ¥ l={f, h} | ‘h{o 1} ¥I={b o} %I-(c. d} |
3!:-{1.2V WE={1,3, 4,6} WE={1,2, 3}. :Ecu.z.?\/ ¥E={1.3,7,8} |
30 \29 31 32
%i={e, f, h} Wi=if. g. h} | Mi=fa, b, o} ¥=p, o, d} |
®E={1, 4,0} wE{1, 3, 43 | $E={1,2,7}| ®E<{1, 7, 8}

Figure 4-2: The iceberg lattice L% with T= {1,2,3,4,5,6,7,8,9} and =0.3

Mining Dynamic Databases for Frequent Closed Itemsets 34

4.2 Theoretical development

Our objective is to produce and maintain an iceberg lattice that only includes frequent closed
itemsets. When adding a new transaction #;+;, we should consider every element in iceberg
lattice L% In this section, we present a new incremental method to maintain the integrity of

the iceberg lattice.

Variable Stands for
c A concept in L
T A transaction set
|7 The number of transactions in T
|7 The number of transactions in T+ ¢4,
o Minsupp
L Complete concept lattice constructed with transaction set 7
L* Iceberg lattice constructed with transaction set T and threshold
support
L, The “lower” part of the lattice with transaction set 7 and threshold
support @
tiv) New transaction or the TID of new transaction
{tiss}’ The itemsets of new transaction f;4;
L Complete concept lattice constructed with transaction set 7+ ;..
L Iceberg lattice constructed with transaction set 7+ ¢;,; and
threshold support o
Ly The “lower” part of the lattice with transaction set 7+ #,.; and
threshold support o

Table 4-1: The meaning of variables in /LA

According to the category of a concept, we must consider the outcome of each case and

subsequently prove the result.

Mining Dynamic Databases for Frequent Closed Itemsets 35

Let ¢ be a concept in iceberg lattice (L% and #; is a new transaction. If ¢ is a modified
concept, then e = (ext(c)U 1+, int (c)) is still a frequent closed itemset, it will be in the new
iceberg lattice (L*").

Property 4-1: Vce L% ifint(c) C {ti+s} then e = (ext(c) U i1y, int (c))e L**

For example, in Figure 4-1, when add the new transaction 3 = {c, d, /& h}, caxr and cyp3 are
modified concepts, i.e. int(cu) C {c, d, /& h} and int(cus) C {c, d, f, g, h}, 50 cy2z and cup3

are in Figure 4-2.

Let ¢ be a concept in iceberg lattice (L) and ¢4, is a new transaction. If ¢ is a genitor, then
new generated concept e = (ext(c) U t+y, int (¢) M {ti+;}”) will be a new frequent closed
itemset, it will be in L%", but ¢ may no longer be a frequent closed itemset.

Property 4-2: Vce L if cis genitor, then e = (ext(c) U tisg, int(c) N{tiv;})e L™

For example, in Figure 4-1, when add the new transaction 3 = {c, d, [/ & h}, cus, cuar, cap and
cy32 are genitors, the new concepts they generate, cyo, cs21, cuxg and Cuzg, are in Figure 4-2.

After checking the genitors themselves, they all keep frequent and go into Figure 4-2.

If ¢ is an old concept, we should check if ¢ is still a frequent closed itemset.

In the general GALICIA algorithm, when adding a new transaction ¢+, one should update the
complete concept lattice L. Although some modified concepts are not frequent in L, they may
become frequent in L*. Furthermore, some genitors that are non-frequent in L may generate
new frequent closed itemsets in L*. According to Property 4-1 and 4-2, it is relatively
obvious to find concepts in L** that has a counterpart in L% Therefore, the main challenge in
ILA4 would be to discover the concepts that are in L*" without having a counterpart in L*
(such as new frequent concepts in L** that are produced by the modified concepts in L, or
the new generated concepts whose genitors are in L,). These concepts are called hidden
concepts and denoted by H'(#;+)).

Definition 4-1: H'(1)) ={(X, Y) € Tu (tie1) | | X |2 @* | T'|, | X- { tiu)}| < a* | T }.

Mining Dynamic Databases for Frequent Closed Itemsets 36

From the definition 4-1, we observe that all hidden concepts (X, Y) are frequent within
transaction set 7", they are in L**, but the concepts (X- { ti+/}, (X- { t:i+1})”) are not frequent

within transaction set T, they are in L,

For example, in Figure 4-2, the hidden concepts discovered after adding the new transaction
3 ={c d f g h} to Figure 4-1 are H'(3) = {cua, Ci20}, Since cuzq and cuyg are generated by

canand cy6 in Figure 3-2 those are not in Figure 4-1.

From the definition 4-1, the property hereafter follows trivially.
Property 4-3: (X, Y)e H'(tu) iff a* |T|+ a < | X|<a*|T|+1

Before we apply Property 4-3, we need to introduce another trivial property. We already
know that it is obvious that within the range [@* | T|+ @, a* | T'| + 1], there can be at most
one integer, thus we can formulate following property.

Property 4-4: Vne N,V ae [0.1], |[a* n+a, a* n+1] "N | <]

From the property 4-4, we can observe that the cardinalities of all hidden concepts are equal
and there is no order among the elements of H'(f;+/) in L*". Suppose there is an order
between ¢ & ¢; € H'(tj+1), then ext (¢|) C ext (c2). Since |ext (c1)| = ext (¢c2)|, then ext (c;) =
ext (¢c2), it indicates that ¢, and ¢, are not closed itemsets, which is a contradiction. Moreover,
the successors of a hidden concept are frequent concepts which the extents contain #.,. As
such, the main objective of ILA is equivalent to computing H'(#+;) and linking its elements
to their respective successors. These successors, called visible concepts and denoted by
V*(ti+1), are in an upper-set which consists of frequent concepts containing #;+;.

Definition 4-2: V(£)={(X, Y) € Tu (t;+)) | | X|z2a*|TH1}

For example, in Figure 4-1, the visible concepts = {cuq, cs21 Caio, Ci26, C#22, C#28, CH23 } -

For each visible concept (X, Y), its counterpart in L, (X- {t;+/}, (X {t;+;})”") must be frequent,

1.e. (X- {tie1}, (X- {t;i+1})”) must be in L For example, the counterparts of cyq and cup; in

Mining Dynamic Databases for Frequent Closed Itemsets 37

Figure 4-2 are cys and cyp; in Figure 4-1 respectively. Property 4-5 shows us that all
immediate successors of a hidden concept are visible concepts.

Property 4-5: Vc € H'(t4/), Ve eL”, if ¢ <" ¢ then ce V(1))

For example, in Figure 4-2, cy4 and cuy9 are hidden concepts, the immediate successors of
Ci24 are o and cyyy, the immediate successors of ¢y are cuyy and cu6, and all of these 4

concepts, cuz0, 21, Ci22 and cus, are visible concepts.

Thus, in order to discover hidden concepts, we may examine visible concepts in V*(¢;4) and

generate their immediate predecessors in H'(;).

We can prove that for each comparable pair of concepts ¢/, c;in Tu (44) (ie., ¢; < C2), there
is an attribute (item) i in {£;4,}” (even in int(c,) -int(c;)), such that ¢, is the meet of ¢, and the
attribute-concept of i, v (i).

Property 4-6: V¢, c;e Tu (ti+1), ifc; < co then Vi € int(cy)-int (cz)|c;=v(i)acs.

For example, in Figure 4-2, int(cu9) - int (cu6) ={ 8}, 0= V(g) A Cz6 = Ciza A Cizg

In order to find the lower covers cov' (c) of a concept ¢ in V*(#;+,), one should examine the set
of its meets with appropriate attribute-concepts. The primitive operator of such an attribute i
1s denoted by Ai: Ajc= V(i) A c. We should now be able to calculate the extent and intent of
Aic. The former is ext (Aic) = ext (¢) Mext (v(i)), which equals to ext (c¢) N {i}’; and the
latter, the intent of A; ¢, is more expensive to obtain in the general. In order to avoid this
costly calculation, we derive the following property.

Property 4-7: Vc;, c2€ V'(tis1), .t ¢; < cs, int (cr)-int(c;) ={i€ {tim1} |Anic2=¢c;}
For example, in Figure 4-2, cy3, cuog are visible concepts and cyg is a predecessor of g3, the
intent difference between cy)s and cy03 is ¢ which belongs to {t;+;} ’, and cus is the meet of cyp3

and the attribute-concept of ¢, cy2;.

Property 4- 7 indicates that if ¢; precedes c;, then the attributes in the difference of their

intents are exactly those of that ¢; = v (i) A ca.

Mining Dynamic Databases for Frequent Closed Itemsets 38

We can obtain the intent of the concept Aic; by adding all the attributes j to int (c,), such that
ext (cz) N{i}’ = ext (cz) M {i}’. Given a concept, since this procedure fits all of its immediate
predecessors, we can find several subsets of attributes that lead to generate valid intents. On
the other hand, the attributes that are not in those subsets will generate only partial intents
since the corresponding concept A; ¢z is not an immediate predecessor. Furthermore, the set
of attributes that generate hidden lower covers for a given concept ¢ is denoted by geny(c). So

the main problem in /LA is to determine the attributes in gen;(c).

So far we do not have a direct way to determine this attribute set. However, what we can do is
to conduct some tests using a set of candidate attributes. In each test, we compare the size of
intersection ext (cz) N {i}’ to a constant value that is calculated based on the minsupp & and
|T'| (see Property 4-3). Because the computation of acquiring the intersection of extent is an
expensive task, we should reduce the number of candidates, primarily by eliminating those

attributes for which A; ¢; is certainly not a hidden concept.

When we are calculating the lower covers aic for a given concept ¢ in V¥(t;+;) with an
attribute 7 in {£;4,}’- in#(c), the resulting concepts, which is a predecessor of c, will fall into
one and only one of these three cases (i.e., orthogonal): (i) A;ce V'(#+)) (a visible concept),
(i1) Aice H'(t;+/) (a hidden concept) and (jii) Aic €L, (non frequent concept). In order to
avoid generating non immediate predecessors in H(ti+1), we should find the hidden
concepts using the visible concepts that are their actual upper covers. For cases (ii) and (#ii),

it is difficult to avoid those without intersection computation, thus we only consider the case

().

We now design a method to prevent the concepts in V*(#;+;) from producing their known
predecessors in the same set V'(#;+,). A mechanism of intent propagation from concepts in
lenVi () tocis adopted, namely, with a bottom-up and breadth-first traversal of V*(#;4 1)
This traversal helps to proliferate the cumulated intents of all predecessors using a simple
lookup of the known lower covers. It also requires us to add an additional field to the data

structure representing a concept to record the set 7 (c).

Mining Dynamic Databases for Frequent Closed Itemsets 39

Definition 4-3: T (c)=\Uce Lenv'(tirr) int(c)

Given a visible concept ¢, from definition 4-3, we know that T (c¢) is the union of intents that
come from all predecessors of c and these predecessors belong to V*(ti+;). The T (c) prevents
¢ from generating its predecessors that are already in V*(#;+,) because the generated concepts
have support greater than |T1* ¢, therefore it is impossible for them to be in H'(t;+)). For
example, in Figure 4-2, T (cu20) = {f, h}. T (ci20) prevents cupo from generating cy, because

cie 15 a predecessor of cyypand in V+(3).

In fact, we can obtain the T"(c) for any visible concept before computing a hidden candidate,
but we prefer to compute it during the traversal of V*(7, 1) for the sake of efficiency. If a
hidden concept which is a non-immediate predecessor of ¢ has been found by a visible
predecessor of ¢, the attributes of this hidden concept can be used to extend the T (¢). For
example, in Figure 4-2, before calculating T (cy0), the visible predecessor of cyo has

generated a hidden concept, cu9 so the attributes of cuyg can be combined to T (cu20), now T

(cw20) = {1, g h}.

Given a concept c, we define an additional set, denoted by 7*, as follows.
Definition 4-4: T": V*(1,)— 2/,
T'(c) = {i | ic int (¢), ee bc N V*(i2)) + cov (€) N H(tir1)- cov' (¢) MH'(111))}

Definition 4-4 tells us that the set 7" '(c) keeps track of all the attributes of visible predecessors
of ¢ and attributes of hidden concepts generated by visible predecessors of ¢ except those
attributes that generate immediate hidden concepts of ¢. For example, in Figure 4-2, the
visible predecessors of cyyg is cuz, and cuye generated a hidden concept Cc#9, In fact,

COVI(C#zo)ﬂH+(3) =, s0 T"(c#zo) is {f, g h} which is the union of int(cus) and int(cyo).

For a given visible concept c, T"(c) represents the maximal set of attributes that can be
reduced from {#;+,}’. We can compute T"(c) from the values of 7" on immediate visible

predecessors of ¢ and the sets of hidden concept generating attributes for the same concepts.

Mining Dynamic Databases for Frequent Closed Itemsets 40

Property 4-8: T"(c) =y eewvl(c)n V' (tiel) (T’(e) Uh(e))
Here, h(e) represents the hidden concepts that are immediate predecessors of e. For example,
in Figure 4-2, c46 does not have any visible predecessor, so Th(C#ZG) =, however, ciohas a

visible predecessor cu¢ which generated the hidden concept cug, SO yid (co0)=T h (cue) U

h(cwme) = {f g h}.

For each visible concept ¢, we defined a set of attributes, called the domain of ¢ and denoted
by domain(c), is {t;+1}’- T"(c), which should be examined for generating the hidden concepts.
Definition 4-4: Vce V'(ti.)), domain(c) = {t:+,}- T'(c).

For example, in Figure 4-2, add transaction 3 = {c, d, f, g, h}, domain(cs:) = {c,d [g h}-
T'(cno) = {c. d, [8. b}~ {f, & hy={c, d}.

In this chapter, we proposed a new method to implement incremental iceberg update and
described related theories while deduced the proofs for these theories. In this method, the
most difficult and expensive step is discovering the hidden concepts for visible concepts. In
order to improve the efficiency, we applied some mechanisms, such as a bottom-up and
breadth-first traversal of V*(#+,), to minimize the candidate attributes. In the next chapter,

we will apply these theories to our incremental update algorithm.

Mining Dynamic Databases for Frequent Closed Itemsets 41

Chapter V The incremental method
When a new transaction is being inserted into the context, the new method described in
Chapter IV can be transformed into an algorithmic procedure, named Iceberg Lattice

Algorithm (ILA4), which incrementally updates an iceberg lattice.

5.1 The description of Iceberg Lattice Algorithm

Iceberg Lattice Algorithm (see Figure 5-1) maintains the structure of an iceberg lattice. It has
two main parts. In the first part, /L4 calls the procedure Add_Transaction_IceBg ()(line 3)
to insert a new transaction #;4, to an iceberg lattice L* where the iceberg lattice is regarded as
an complete lattice. This procedure, showed in Figure 5-2, is a modification of algorithm 1
(Add_Object () in [VRM2003]) which updates the lattice incrementally. In this part, all
concepts in L” will be checked, every modified concept will be updated (adds ¢+, to its extent
and intent keeps unchanged); every genitor will generate a new concept (its extent is the
combination of genitor’s extent with t;,; and its intent is the intersection between genitor’s
intent and {t;+,}) and the old concepts will be unaffected. The second part (line 4-10) is

more important, complicated and expensive one in ILA. It accomplishes the core task of ILA.

[

: procedure Update_Iceberg Lattice (In: L* an iceberg lattice, T an indexed set of
2: transactions, #;+; a new transaction)

3: Add_Transaction_IceBg (L%, 1))

4: forall cin L%do

5: ifs(c)< @ then

6: Drop (L%, ¢

~J

: Sort (V'(#i+1)) //in descending order of the Intent size
8: H'(ti+1) < Find_Lower_Covers (V*(t;s]), T, tir1)

9: L% ¢<add (L%, H'(1i+)))

10: return L**

Figure 5-1: The algorithm of Iceberg Lattice Algorithm
At the beginning, it filters out and drops all infrequent old concepts and genitors in L (lines

4-6), then it sorts concepts in V'(;1) according to the descending order of intent size (line 7)

Mining Dynamic Databases for Frequent Closed Itemsets 42

and calls Find_Lower_Covers () to compute immediate predecessors of visible concepts, i.e.
discover hidden concepts in H'(#,+,) (line 8). The purpose of sorting the concepts in V'(;+))
is to ensure the application of the bottom-up and breadth-first traversal mechanisms in
finding hidden concepts. Finally, the new discovered hidden concepts are integrated into L“

to form L*" (lines 9-10).

1: procedure Add_Transaction_IceBg (In/ Out: L % an iceberg lattice, #;+; a new
transaction)

2:

3:forallcin L *do

4: putcinitsclassin L% w.rt. Q(c) // create index according to int(c) N {ti+;}’

5:forall[]pin L% do

6: find c = max ([lg)

7. ifint (c) c{ti+;}’ then {

8: Add(ext(c),?) /" ¢ is modified concept

9: Add (V'(tis)), ©)}

10: else

11: int «int (c) N {t;+)}’ /1 ¢ is old or potential genitor

12: if (not (int’, int) € L %) then {

13: e «—New_Concept (ext (c) Ut, int) // c is genitor
14: Update Order (c, e)

15: Add (L%, e)

16: Add (V'(ti+)), €)}
Figure 5-2: The algorithm of inserting a new transaction to an iceberg lattice

The procedure, Add_Transaction_IceBg (), takes an iceberg lattice L% and a new transaction
i+ as arguments and outputs an updated iceberg lattice L which is between L%and L%* (L%

contains all concepts in L*" except all hidden concepts, Figure 5-3 is an example). Here, we
use the same data structure to represent both the initial and the resulting lattices. There are

three main computation steps within this procedure. The first one is a traversal of the set L%

Mining Dynamic Databases for Frequent Closed Itemsets 43

with a simultaneous calculation of the intersection between the intent of the respective
concept and the itemset of the new transaction #,, i.e. {ti+1}’. It then partitions L% into
classes with respect to Q (lines 3-4) and finally detects the class maximal concept for every
class []q with the subsequent identification of the status of the maximal elements (lines 5-6).
The second step deals with modified concepts (lines 7-9). It updates their extent (adds ¢+, to
the extent), increases the corresponding supports and adds the modified concepts to visible
concept set (i.e., V'(t;+))) for computing their lower covers. The final step deals with the
genitors (lines 11-16). It includes the creation of a new concept, where its extent is the
combination of genitor’s extent with t;; and its intent is the intersection between genitor’s
intent and {t;+,}’, the insertion of generated concept to iceberg lattice, the order update in

iceberg lattice and the insertion of generated concept to visible concept set.

For example, given minsupp a =0.3, when we have finished dealing with transactions in
Table 3-1, we have obtained iceberg lattice L*showed in Figure 4-1, it includes 8 concepts,
cuso=({1,4,6}, {e £ h}), caa1 = ({1,2,7}, {a, b, c}), cios = ({1,2,4,6}, {e, /1), cua = ({1,4,5},
1&g} cwr = ({1,2,7,8}, {b, c}), cuna=({1,7.8}, {b, ¢, d}), cao3 = ({1,7,8,9}, {d}) and cx10= ({1,
2,4,5,6,7,8,9}, 2).

Consider now the insertion of the transaction 3 = {¢, d, f; g h} into L” with the procedure
Add_Transaction_IceBg (). The content of L%g after performing the first step (line 3-4) is
shown in the following list, together with the indication of class maximum and its respective
status (mod for modified and gen for genitor) using the format (Q(c), [1o, Max([]p), Status):

({8}, cun, cu22, mod), ({d}, cias, cuzs, mod), ({f, h}, cuso, caso, gen), ({c}, {cwi, cuar}, cans, gen),

({1}, cs, cuas, gen), ({c, d}, cusa, cusz, gen). For modified concepts, add ¢+, to their respective
extent, we get cyr = ({1,3,4,5}, {g}), cao3 = ({1,3,7,8,9}, {d}) and cy19 = ({1,2,3,4,5,6,7,8,9},
). Consequently, the new concepts created at the end of the traversal of Oclasses are cupg =

(11,3,4,6}, {f h}), cuz1 = ({1,2,3,7,8}, {c}), cuao = ({1,2,3,4,6}, {f}) and cuas = ({1,3,7,8}, {c,
d}). After finishing this step, we get the Figure 5-3. Now, the visible concept set is V'(3) =

{cum, cus, curo, Cae, Caa1, Cino, Cing} .

Mining Dynamic Databases for Frequent Closed Itemsets 44

5.2 Discovery of lower covers

In Figure 5-1, we call the procedure Find_Lower_Covers () (Figure 5-4). The purpose of this
procedure is to generate the lower covers of visible concepts (V'(#;+ 1)) using the respective
domain. This algorithm deploys a bottom-up, width-first traversal mechanism of the iceberg
LY.

49

¥ =0
¥E={1,2,3,4,6,6,7,8,8}

T

new concept (5>, hodified 2% new concept 23 nodified

itl 1} %l=fg} ®l=(c} %1=id}
/*E@{‘l 2,3,4,6} ¥E={1,3, 4,5} *E={1 20307 ¥E={1 3, ? 8.9}
.Y
\ \ N

genlt new concept new concept
¥l={e f} g[_{f_ h} %l={b c} ¥i=fe. d}
¥ E={1, 2._4. 8} ®E={1, 3, 4,6} ¥E={1, 2._?. 8} ¥E{1,3.7,8}
| 1
) i
30 genitor /" 31 old 32 genltor ’
¥l=fe,f.h} | . - 7 %Ii=fa, b, c} $i=p.c.d} |,
¥E{1.4,8}| ¥E=[1,2,7} ¥E={1,7.8}

Figure 5-3: The iceberg lattice L* from Table 2-1 (a=0.3)

before finding hidden concepts

The first step sorts the concepts in V*(#4/) according to the descending order of intent size
(line 9) and it ensures that the concepts are tested in an order that represents a linear extension
of the lattice order. Secondly, in the main process, each concept ¢ in V+(t;i+1) 1s checked to
generate its hidden concepts. This process includes the computation of the frequent extent
intersections Extent that are stored together with the generating-attributes Candidates in the
hidden concept candidate set. Finally, at the end of the processing of ¢, (Extent, Candidates)
in candidate set are used to generate the effective hidden concepts that will be added to the

global hidden concept set H'(#,4,).

Mining Dynamic Databases for Frequent Closed Itemsets

45

e AU Y

wwNNNNNN[\)NNND—iD—b—‘HU—dD—‘D—lD—ID—‘P—
TR R FDILE LN SO0 0NN~ O

Procedure Find_Lower_Covers (In/Out: V'(t;+;), T an indexed set of
transactions, #;+; the new transaction)

local: Hidden: set of concepts

local: T", Domain, h: set of attributes
local: Extent: set of transactions
local: Candidate: set of pair (X, Y)

Hidden « &
Sort (V'(ti+1)) {in descending order of the Intent size}
: forall ¢ in V¥(#4,) do
Candidate < &, T" « Int (¢); h « &
forall e € Cov'(c) do
T"e—T'yu T"(e) U h (e)
Domain < {t;s;}’- T"
while not Domain = & do
I < extract_first (Domain); Extent <— Ext (c) N {i}’
if a*| T|+a<|Extent |< a*| T |+1 then
k¢~ Look_Up (Extent, Hidden)
if k # NULL then
Cov'(c) Covl(c) U {k}; h < kU Int(k); Domain < Domain —Int (k)
else
can < Look_Up (Extent, Candidate)
if can# NULL then
can.Y «—can.Y U {i}
else
can < (Extent, (Int (c) U {i})); Candidate < Candidate U {can}
he—hou{i}
for all can € Candidate do
e ¢~ New_Concept (can.X, can.Y); Cov'(c) « Covl(c) Uie}
Hiddens <« Hiddens L { e }
: T'(c) « T"; geny(c) < h

Figure 5-4: The algorithm for generating lower covers

Mining Dynamic Databases for Frequent Closed Itemsets 46

For a visible concept ¢ in V'(#4/), now we explain the process of discovering its hidden
concepts in detail. The initialization step (line 11) sets the initial value of T" as in¢ (c), then
the set 7" is found by applying the propagation mechanism of intents. It makes good use of
the T" values of the predecessors of ¢ (lines 12-13), this step adds all attributes of visible
predecessors of ¢ and their hidden concepts to 7", So far, the T" represents the maximal set of
attributes that can be removed from {t;+,} and the domain (¢) (potential generating attributes)
is determined (line 14). The next step is to discover the hidden concepts of ¢ one by one with
every attribute i extracted from domain (c) if domain (c) is not empty (lines 15-27). Once the
extent of Aic is computed (line 16) and it is proven to be frequent (line 17), the algorithm will
check whether the extent of A;c existed in hidden set (line 18), if it is found in hidden set (line
19), it means that this extent has already been generated by another concept, then the
corresponding concept e is simply added to the hidden predecessors set of ¢ (line 20).
Furthermore, the intent of e is used to update both the set of generating-attributes gen,(c) and
the domain(c) (line 20). When the extent of A;c is not generated by another concept (i.e., the
extent of Aic is not in hidden set), the algorithm will check whether this extent existed in the
candidate set discovered by c (line 22). If it existed, it means ¢ has generated a candidate
hidden concept which has the same extent, we will update the intent of the candidate found
by adding i to its intent (line 24), if not, we create a new candidate with the pair of (ext (Aic),
int (c)w{i}) and add it to candidate set of ¢ (line 26). On the next step, new hidden concepts
are created based on the elements in candidate set (line 29). These new hidden concepts are
then linked to their upper cover (line 29) and added to the hidden concept set (line 30). At the
end of the algorithm, all attributes of the hidden predecessors of ¢ are used to update T"(c)
and gen(c) (line 30), these two attribute sets will be used to discover hidden concepts for the

successors of ¢.

In order to illustrate the hidden concept computation, let us observe cuand cuy, when insert
the transaction 3 ={c, d, f, g, h}. According to lines 10-14 in Figure 5-3, domain (ci6) = {c, d,
/. & h}-{f h}={c, d, g}. The intersection between ext (cx) and {c}’ is {1,3}, it leads to an
infrequent extent (J{1,3}|<3). It is the same situation between ex: (c#26) and {d}’. The
intersection between ext (cx26) and {g}’ is {1,3,4} and it is frequent (|{1,3,4}| =3). However,

Mining Dynamic Databases for Frequent Closed Itemsets 47

before dealing with cu6 both the H'(3) and candidate set are empty, the intersection {1,3,4}
is neither in H'(3) nor in candidate (line 25), ({1,3,4}, {f, g h}) is then added to Candidate
set (line 26). Now, the domain (cuy) is empty, a new hidden concept cy9 is created from the
candidate element ({1,3,4}, {f; g, #}) (line 29) and add it to H'(3) (line 30). Now 7" (cwme)=1{f,
h}, geni(cue)={g}. For cyz, domain (cun) = {c, d.f, g, h}- {g}={c, d, f, h}. The intersection
between ext (cs22) and {c}’ is {1,3} and it leads to an infrequent extent (|{1,3}|<3). It is the
same situation between ext (cs2) and {d}’. The intersection between ext (c#22) and {f}’ is
{1,3,4}, it is frequent (|{1,3,4}| =3). However, cs (generated by cus) in H'(3) has the
resulting extent. So cuy9is added to the hidden predecessors set of ¢y, and A(cpn) = int(cuyg) =
{, & h}(line 20). Now, update domain (cu3), since A is in both int (c#29) and domain (cuy»), it
is eliminated from domain (cu,), so the domain (c#22) 1s empty, we have finished the process

of Cy22.

5.3 Detailed example
In order to demonstrate the iceberg lattice algorithm, let us take a detail example of context

given in section 2.2.

The first part of the algorithm in Figure 5-1 is performed (insertion of the transaction #3, see
section 5.1). The result showed in Figure 5-3. The second part starts by dropping out
infrequent concepts that could be old concepts or genitors. In this example, all old concepts
and genitors are still frequent. In the next step, we deal only with the visible concepts in
V+(3)= {cun2, cus, cue, Ci21,s Ca20, Cazs, Ci19} They are first sorted according to their intent size
and then their frequent immediate predecessors are calculated. Sorting V'(3) in descending
order of the intent size, we get the following concept order {cu, cus, Ci21, Ci22, Ci3, a0,
Cu9}.

Table 5-1 displays the execution of the algorithm in Figure 5-3 on all visible concepts with
their corresponding domain. For each row, the table should be read as follows: the first
column displays each domain attribute i, the second column provides the value of the extent
of Ajc, the third one is the status of the intersection result (fre for frequent, unfre for

infrequent), the fourth column presents the set gen(c), the fifth one indicates the evolution of

Mining Dynamic Databases for Frequent Closed Itemsets 48
Attribute | Extent Status | geny(c) | Domain(c) Candidates Hidden
(item) concepts
(H'(3))
Process of concept cys
{c} {1,3} unfre g {d, g} 17} 17}
{d} {1,3) unfre 17 {g} a 17
{g} {1,3,4} fre {g} g ({1,34}, { & h}) C429
Process of concept cu)g
{f {1,3} unfre 17/ {g, h} 17 Ci29
{g} {1,3} unfre 17 {h} ag Ci29
{h} {1,3} unfre a a 1Z Ci29
Process of concept cuy)
i 1,2,3} fre ik {g h} ({1,23}, {e. /1) Cy29
{g} {1,3} unfre a {h} ({1,2,3}, {e. /) Ci29
{h} {1,3} unfre o a ({1,2,3}, {c. /) C#29, Cu24
Process of concept cu;,
{c} {1,3} unfre 'z {d [h} 2 €429, Ci24
{d} {1,3} unfre 12 {f h} a C#29, Ci24
{t {1,3.4} fre {f. h} 1z a C#29, C24
{h} Cancelled by line 20 of algorithm 5-3 (Domain <— Domain ~Int (e))
Process of concept cup3
{} {1,3} unfre 1Z {g h} g C#29, Cu24
{g} {1,3} unfre ag {h} a Cx29, Ci2a
{h} {1,3} unfre g 17 17 C#29, C24
Process of concept cyy
{c} {1,2,3} fre {f} {d} a Cu29, Ci24
{d} {1,3} unfre {/} a g Cu29, Ci24

Since the Domain of cy19is empty, so it does not generate any hidden concept.

Table 5-1: The trace of Algorithm 5-4 when a new transaction is added

Mining Dynamic Databases for Frequent Closed Itemsets 49

the domain variable, the sixth column records and updates the candidate set, the last column
shows the content of the hidden concepts set (H'(3)). In section 5.2, we have described how

to deal with cuy6 and cyy; in detail.

Figure 5-5 illustrates the main process of the Table 5-1.

m visible concept

¥
¥E={1,2,3,4.6,6,7,8,9)

(0. Vvisible concept gz visible concept oo yigible concept 33 visible concept

% ={f} ¥ I={g} ®l=fc} ¥1={d}
ME{,2.3.4, s} ¥E{1,3.4.5} ¥E<{1,2.3,7.8} $E={1,3.7.8.9}
! ~
-~ f -
- . -~
}H / . -
6 visible concept @ 7 287 Visible concept
¥i=fc, f}
l-{e f I={f, b} ! $E={1,2,3} ¥, o} AL
¥E{1,2, 4,6} $E{1,3, 4, 5‘} ! hidden concept ¥E={1,2.7,8} j ¥E=]1,3, {8}
\ ! \
N
v{ hidden concept !
30 a=03
¥ 1={f, g, h} 131 32
*i=le, f. h} $E={1.3,4 ¥i=fa, b, c} | ¥i=h, ¢, d} 4 -
%¥E={1.4,8} : = ¥E={1,2,7} ¥E={1,7,8} o -
— \
;;;;;; - 3
————————————————— ¥i={o, d, f, g, h}
¥E={1.3}

Figure 5-5: Illustration of the discovery of hidden concepts

During the process of concept cy26, we found the hidden concept cuo= ({1, 3, 4}, {f & h}).
While dealing with the concept cy,,, we found that cayo was a hidden predecessor of cy,. We
found the hidden concept cis = ({1, 2, 3}, {c, f}) during the process of concept cy;.
Similarly, we found that c44 was a hidden predecessor of cuy. There was no hidden concept
to be found during the process of concepts cusg and cups. cung only generated a infrequent
concept (cy33 in Figure 5-5). The domain of cy9is empty, so it is impossible to generate any

hidden concept. Finally, the hidden concepts discovered at the end of the algorithm 5-1 are
H'(3) = {cus, cia}.

Mining Dynamic Databases for Frequent Closed Itemsets 50

The new iceberg lattice L** obtained from L%and the transaction #3 is showed as in Figure
4-2, all concepts are: cy0=({1,4,6}, {e, f h}), cs31= ({1,2,7}, {a, b, c}), cias = ({1,2,4,6}, {e,
), ez = ({1,3,4,5}, {g}), cmr = ({1,2,7,8}, {b, ¢}), cuzn = ({1,7,8}, {b, ¢, d}), can3 =
({1,3,7,8,9}, {d}), e = ({1,3,4,6}, {f, h}), cmr = ({1,2,3,7,8}, {c}), emo=({1,2,3,4,6}, {1}),

C#28 = ({1:337’8}, {C, d}), C#r9 = ({19394}’ {f; & h})’ Ca = ({1’2:3}, {C, f})a C#i9 =
({1,2,3,4,5,6,7,8,9}, &)}.

5.4 Complexity issues

There are a lot of factors that influence the global complexity of Iceberg Lattice Algorithm.

In this section, we will make some explanation.

(1) The number of transactions in a transaction set | T'|

The number of transactions in a transaction set represents the size of DB. This is trivial.

(2) minsupp
Given a transaction set, as the minsupp value decreases, more closed itemsets become

frequent, hence more concepts are in iceberg lattice, obviously, it will increases the

global complexity of the algorithm.

(3) The total number of items which represent |/ |

It is trivial that more items will increase the complexity in computation of domain and

candidate hidden concepts.

(4) Maximal number of lower covers of a concept in L**

This represents the complexity of discovering the hidden concepts.

The basic notations are summarized in table 5-2.We can assess the complexity of Algorithm
5-4 as follows. First, with respect to the concept intent sizes, we sort the set V*(ti+) in

descending order (line 9), in this step, we just need to compare the intents size, so it can be

Mining Dynamic Databases for Frequent Closed Itemsets 51

accomplished in a linear time, i.e. O (/). Now we consider the cost of traversal of the set
V*(ti+1) (lines 10). We know that the worst case is when all concepts in L% are also in

V¥(ti+1), so it takes O (1) concept examinations to discover hidden concepts.

Variable Stands for

m The number of attributes | / |

! The number of concepts in L**

k The number of transactions, T |

A(D The different number of L** and L?
| L%~ L9
Maximal number of lower covers of a
d(L’h concept in L% max (lCovl(c)|)| ceL™

Table 5-2: The meaning of variables in complexity issues

The cost for discovering hidden concepts can be further divided into three additional parts:
domain computation (line 11-14), candidates-related computation (line 15-27) and finding

the new hidden concepts (line 28-30).

Maximal number of lower covers of a concept in L% is d(L®), the algorithm will perform
O(d(L*")) concept examinations (line 12) to compute the domain for the concept (line 1 1-14)
and each examination computes the union of attribute sets (line 13) which can be done in
O(m). In the worst case, every attribute in J will form a lower cover of a concept and we
conclude that O(d(L*") has the upper bound O(m), hence the computation of the domain

costs O(m?).

The candidates-related computation (line 15-27) has four additional components. The first
one is the traversal of domain (line 15). In the worst case, we know that all attributes in 7 are
in domain, so this step costs O(m). Second, the computation of extent intersection (line 16)
will costs O(k), since the maximum values of both extent of concept and {t;4+,}’ are k. Third,
when all new concepts (i.e., the difference between L% and L%) are hidden concepts and the

TID of every transaction has been the extent of a hidden concept, then the discovery of

Mining Dynamic Databases for Frequent Closed Itemsets 52

hidden concept set (H'(#+,)) (line 18) can be executed in O(A()k). Finally, the discovery of
hidden concept candidates (line 22) will also costs O(mk) since in the worst case, the TID of
every transaction has been the extent of a candidate hidden concept and every attribute in 7
will generate a candidate hidden concept. However, we can apply trie-based structure to the
sets of extents (hidden concepts and candidate), regardless of the scale of the trie, this
structure provides us a very efficient discovery which costs linear in the number of
transactions. Thus the cost of the lookup operations go back to O(k) and the
candidates-related cost will be O(mk).

Given a concept ¢, we know that the number of new hidden concepts generated by c is
limited by attribute number, so the creation of the hidden concepts (line 29) can be executed
in constant time and dealing with new hidden concepts (line 30) costs O(m). In accordance
with the analysis above, the total complexity of the Algorithm 5-4 is bounded by
O(m(m+k)l).

In order to update the iceberg lattice, the Algorithm 5-1 (see Figure 5-1) performs two
traversals. For the first traversal, the algorithm Add Transaction IceBg() is called, its
complexity is O(A(l)k2+l(k+m)) (see [VRM2003]). During the second traversal, to guarantee
the integrity of the iceberg lattice, i.e. eliminating infrequent concepts and discovering the
hidden concepts, the algorithm performs additional steps. Line 4-6 is the first step that
eliminates the infrequent concepts. It can be done in O(/m) since the algorithm checks the
support of each concept (maximum number of concepts is / when all concepts in L*" are
checked). If needed, infrequent concepts are removed. In the second step, the Algorithm5-4
is used to find the potential hidden concepts in H'(#;+/). As described earlier, its complexity is
O(m(m + k)I). Consequently, the global complexity of reconstructing an iceberg for a single

insertion is O(A(l)k2+m(k+m)l). The time complexity of ILA is the same as that of GALICIA.

Mining Dynamic Databases for Frequent Closed Itemsets 53

Chapter VI Implementation and experiments
In this chapter, we will describe some issues about implementations and experiments of

Iceberg Lattice Algorithm.

6.1 Experimental results

We conducted a set of tests to compare the running performance between ILA4 and GALICIA
series algorithms. The reasons that we chose GALICIA algorithms to compare with ILA are:
(1) both algorithms are based on concept lattice theory, (2) both algorithms compute frequent
closed itemsets, and (3) IL4 is an enhanced version of the basic GALICIA algorithm. The
experiments were performed on a 1.3 GHz AMD TB processor with 1.2 GB main memory,
running Windows 2000. Both algorithms were tested in JBuilder 5 environment, and a Java

implementation is used.

Two synthetic transaction sets, namely Mushroom and T25110D10 [UCI] were used in the
experiments. Mushroom is a strongly correlated transaction set and had 8,124 transactions
over 119 items. This transaction set generated 227,699 closed itemsets, 3630 of them had
support larger than 0.1. The second transaction set, T25110D10K, is relatively sparse. It
includes 10,000 transactions over 1,000 items where each transaction has 25 items on
average, and the average size of maximal potentially frequent itemsets is 10. This transaction
set generated 3,530,786 closed itemsets, 23,852 of them were of support larger than 0.005.
Table 6-1 and Table 6-2 display the detailed results when increasing subsets of the entire
transaction sets respectively. The fourth column of these two tables illustrates approximate
multiple between the number of closed itemsets (CIs) and the number of frequent closed

itemsets (FCIs).

6.2 CPU time

In these experiments, we carried out two types of tests to evaluate the performance of
GALICIA-M and ILA. In the first type, we regarded two algorithms as being procedures of a
batch process and focused on the CPU time for processing the whole transaction set. In the

second type, we focused on the CPU time for processing transactions incrementally. In order

Mining Dynamic Databases for Frequent Closed Itemsets 54

to provide a better view about the trends that lay behind each algorithm, we recorded the
results for transaction sets of variable size. Thus, both transaction sets have been divided into
increments of fixed size, 2,000 transactions for both of T25110D10K and Mushroom. For
each increment, the tests have been carried out with a fixed absolute support threshold for

ILA (50 for T25110D10K and Mushroom).

Size of Number of Cls Number of FClIs NumberofCls
Transaction Set (minsupp =0.1) NumberofFCls
2,000 57,586 1,519 ~ 40
4,000 101,772 2,021 ~50
6,000 150,137 2,935 ~50
8,124 227,699 3,630 ~60

Table 6-1: Mushroom, total CIs and FCIs with az=0.1

Size of Transaction Number of Cis Number of FCls NumberofCls
Set (minsupp = 0.005) NumberofFCls
2,000 281,209 544 ~550
4,000 626,114 2,275 ~300
6,000 1,562,211 6,977 ~250
8,000 2,479,770 14,701 ~200
10,000 3,530,786 23,852 ~150

Table 6-2: T25110D10K, total CIs and FCIs with a=0.005

Two types of comparisons have been carried out. The first type (see Figure 6-1 and Figure
6-3) focused on comparing the performance of both algorithms as batch procedures.
Referring to Table 6-1 and Table 6-2, we know that the number of closed itensets is greater
than that of frequent closed itemsets when the minsupp is not 0, the results of the tests clearly
showed the advantage of ILA over GALICIA-M, especially when the transaction set is

growing large.

Mining Dynamic Databases for Frequent Closed Itemsets

55

Time in Second

Time in seconds

GALICIA-M vs ILA (T25110D10K)

10000
1000
100 |
10
1 i i 1 L
2000 4000 6000 8000 10000
Number of Transactions
| —8— GALICIA-M (Total Time) m GALICIA -M(Time per 2K)
I:A—ILA (Total Time) ® [LA(Time per 2K)
Figure 6-1: CPU time for GALICIA-M and ILA
(First type of tests - T25110D10K and minsupp=50)
GALICIA-M vs ILA Time per transaction (T25110D10K) '
100 |
10 |
1t |
0.1 [S0 1]
O' 01 1 i s 1

2000 4000 6000 8000 10000

Number of transactions

—&— GALICIA-M Time/Transaction ® ILA Time/Transaction

Figure 6-2: Average CPU time for GALICIA-M and ILA
(Second type of tests - T25110D10K)

Mining Dynamic Databases for Frequent Closed Itemsets

56

GALICIA-M vs ILA (MUSHROOM)

10000

e 1000

[~

2

= 100

o

E 10

)

1 1 | 1
2000 4000 6000 8124
Number of transactions
i—’— GALICIA-M (Total Time) = ILA (Total Time)
Figure 6-3: CPU time for GALICIA-M and ILA
(First type of tests - Mushroom and minsupp=50)
GALICIA-M vs ILA Time per transaction (MUSHROOM)
100

3

s 10

2
£ 1

g
= 0.1

0. 01 ' ‘ '

2000 4000 6000 8124

Number of transactions

——o— GALICIA-M Time/Transaction
@ ILA Time/Transaction

Figure 6-4: Average CPU time for GALICIA-M and ILA

(Second type of tests — Mushroom)

Mining Dynamic Databases for Frequent Closed Itemsets 57

Figure 6-2 and Figure 6-4 showed the response time of the GALICIA-M and ILA for the
second type of tests. In these tests, we took into account the average CPU time for integrating
a new transaction each time. These diagrams show that the average CPU time of /L4 is lower
than that of GALICIA-M. As we have mentioned, the number of closed itemsets is always
greater than that of frequent closed itemsets when the minsupp is not 0. When adding a new
transaction, the execution time spent to traverse the complete lattice (includind all closed
itemsets) is longer than the time to traverse an iceberg lattice. Especially on T25110D10K
due to the fact that it is a sparse dataset, the same number of transactions and the same
minsupp will produce less frequent closed itemsets. Taken as a whole, these experimental
results indicate that the benefits of techniques in ILA are more obvious with sparse

transaction sets than with dense ones.

However, the improvement of the CPU time showed from Figure 6-1 to Figure 6-4 is not as
dramatic as the proportion between the number of closed itemsets and frequent closed
itemsets. The key reason is that we must find the lower covers for visible concepts. This is an
expensive task. For example, in T25110D10K, when the transaction number is increased
from 6000 to 8000, the number of frequent closed itemsets increases from 6,977 to 14,701,

Le. 7,724 new frequent closed itemsets must be found. Assume that 90% of them are
generated by genitors, so 10% of them (about 700) are hidden concepts; furthermore, in order
to get these hidden concepts, we estimate that we need to traverse 500 visible concepts for
inserting one transaction and 1,000,000 for 2000 transactions. In T25110D10K, each
transaction has on average 25 items, assume 15 items can be removed from the domain of
each visible concept, hence at least 10,000,000 intersection calculations are required to find

these hidden concepts.

In Table 6-2, after processing 10,000 transactions, the total number of frequent closed
itemsets is 23,852. Suppose we add a new transaction (10001* transaction), according to our
estimation, it will generate six new frequent closed itemsets, genitors generate four of them
and two of them are hidden concepts. In order to get these two hidden concepts, we should

check all visible concepts. In this case, we estimate that 10% of frequent closed itemsets are

Mining Dynamic Databases for Frequent Closed Itemsets 58

visible concepts, namely, about 2400 concepts must be traversed to discover these two

hidden concepts.

The efficiency of the GALICIA series approach is clearly obstructed by the necessity of
maintaing the whole set of frequent closed itemsets [VMGM2002]. In IL4, although
traversing iceberg can help save execution time and improve the performance, it does not
make our algorithm more efficient and scalable since the total execution time still remains
high. When mining dynamic transaction sets with IL4, the execution time is taken in
different mining steps, such as: (i) adding a new transaction to the iceberg, (ii) removing
infrequent closed itemsets from the iceberg and (iii) finding frequent lower covers for visible

concepts, i.e. discovering the hidden concepts.

Maintaining iceberg lattice indicates that it obviously improves the performance of step (i)
which add a new transaction to the iceberg. In this step, we update modified concepts and
generate new concepts. Unfortunately, step (ii) - removing infrequent closed itemsets, and
especially step (iii) — discovering hidden concepts, are still very expensive. The main issue

now is to establish a proper trade-off of the cost between the different steps.

Mining Dynamic Databases for Frequent Closed Itemsets 59

Chapter VII Conclusions and future work
In this chapter, we summarize our thesis and introduce trends for future work on incremental

algorithms.

7.1 Conclusions

The objective of this thesis is to propose an efficient, incremental method for mining frequent
closed itemsets in dynamic transaction sets. /L4 (Iceberg Lattice Algorithm) is an enhanced
application of the GALICIA approach. When given a minsupp, it only needs to maintain the
upper most part of the closed itemsets, i.e. frequent closed itemsets. Furthermore, it traverses

only iceberg when a new transaction is added.

We observed that it is easy to obtain new concepts in a new iceberg lattice that have a
counterpart in a previous iceberg. Therefore, the main problem with maintaining an iceberg
in lattice-based incremental algorithms is that we should discover the new concepts without
having a counterpart in previous iceberg that we called hidden concepts. The main challenge
then becomes the question of computing hidden concepts efficiently. After studying the
features of hidden concepts, we found that every hidden concept must be covered by one or
more concepts (we called them visible concepts) from above, i.e. every hidden concept must
be an immediate successor of a visible concept. Furthermore, we presented and proved useful
properties for both visible concepts and hidden concepts. Based on these characteristics, we
proposed a new method to maintain an iceberg lattice. Namely, by generating all lower
covers of visible concepts. In order to improve the efficiency of discovering lower covers, we
applied the mechanism of bottom-up and breadth-first traversal of visible concepts. To take
advantage of this new approach, we transformed it into an algorithmic procedure, Iceberg
Lattice Algorithm (/LA). Furthermore, we implemented the algorithm and conducted a set of
tests to compare its performance with GALICIA algorithm.

ILA is an effective and useful tool intended for mining transaction sets. It overcomes the
weaknesses that existed in non-incremental algorithms, such as level-wise algorithms and
those that are based on concept connection. These algorithms either traverse the transaction

set repeatedly in order to obtain the frequent closed itemsets, or find closed itemsets from

Mining Dynamic Databases for Frequent Closed Itemsets 60

transaction sets first, then calculate the frequent closed itemsets based on a defined minsupp.
The major drawback in these algorithms is that whenever a new transaction is added, they
cannot use the previous result and must completely re-establish the result for the new
transaction set. Also, in the GALICIA approach, since the complete concept lattice contains
all closed itemsets, we have to maintain (store and update) all closed itemsets, even if some
are not frequent. /L4 is an incremental algorithm that constructs an iceberg lattice that only
includes the frequent closed itemsets, and finds new set of frequent closed itemsets based on

the previous frequent closed itemsets, thus successfully avoiding any excessive computation.

7.2 Future work
Our experiments show that some concepts oscillate between the iceberg and the infrequent
part of the lattice, because when adding successive transactions, these concepts may become

repeatedly frequent then infrequent, then again frequent and so on.

An interesting extension of our work could be the definition of a lattice zone below the
iceberg lattice where those concepts lay. The optional size of the zone (in depth of the graph
of the corresponding partially ordered set) and the way it will be maintained are two concrete
questions to be answered. The first one will be answered by experimental studies and the

second one by some theoretical investigation.

Beside further research in the theoretical aspect, we discuss some practical applications. A
variation of iceberg lattice is the most lower part of complete lattice (i.e. sub-semi-lattice).
This can be a further topic for data mining. This type of lattice can be used in information

retrieval in library browsing.

In the application of information retrieval in library browsing, we regard the ID of a book or
document as a TID, and the title, author, subject, index term, etc as items. We can establish a
binary relationship between TID collection and items. Then we can construct a

sub-semi-lattice to retrieve a list of document according to the quarry terms. If more query

Mining Dynamic Databases for Frequent Closed Itemsets 61

terms are selected (the intent of concept is greater), i.e. the request is more precise, fewer

documents are retrieved (the extent of the concept is lesser).

Mining Dynamic Databases for Frequent Closed Itemsets 62

Appendix
1 Proof of the properties
Property 4-1: Vce L% if int(c) C {ti+;}’ then e = (ext(c) U ti+1, int (¢))e L%
Proof: ce L¥=> |ext(c)| = minsupp*|T|=>|ext(c)|*+1= minsupp*|T}+1,
int(c) C {ti+1}’ = e = (ext(c)U ti+y, int (c))
= lext(e)| = lext(c)[+1
=lext(e)| = minsupp*|T1+1,
minsupp< 1= |ext(e)|= minsupp*|T\+ minsupp

| ext(e) |

2 minsupp
(T]+

=ec L* .

Property 4-2: Vce L€ if ¢ is genitor, then e = (ext(c)U ti+s, int(c) N{tir;})e L%

Proof is the same as property 4-1.

Property 4-3: (X, Y)e H'(ti)) iff a* | T|+ a< | X< a* | T|+1

Proof is trivial.

Property 4-5: Vc € H'(ti+), Ve eL”, if ¢ <" ¢ then ce V'(t:+))
Proof: ce H'(ti)) = | ext(c)]> a* (|T}+1),
c < c=|ext(c)| > | ext(c)[+1=a* (IM+D+H1za* |11+
ce H'(ti)) &c<'c=tius€ ext(c) = ceTu(tin)

according to the definition of V*(t;+,), we get the property 4-5.

Property 4-6: V¢, c;€ Tu(tis)), ifc;< ¢y then Vi€ int(c))-int(c2)|c;=v(i)ncs.
Proof: cj,c26 Tu(ti)) & i€ int(c))-int (c;)= i€ {tm;}’ & v(i)e Tu(tir)
Assume c; is not the smallest intent that includes both int (¢;) and i,
1e. int(cy) # (int (c2) U {i})”, then ¢, is not closed concept, which is a

contradiction.

Mining Dynamic Databases for Frequent Closed Itemsets 63

Property 4-7: Ve, c2€ V' (tiv), 5. tc; < cy, int (¢;) - int (¢z) = {ae {tis;} ' |nic2=c)}
From Property 4-6, we know int (c;) - int (c;) C {i € {ti+1} | Aic2=c;. now, we just need
toprove Aic;=c; = i€ int(cy)-int(cy).
Proof: c;<c, = ext(c;) Cext(cy)
IfAic2=c;=int(c;))=int (c;) Vint (v(i)) & ext(c;)=ext(c;) Next(v(i)),
Assume i€ int(c;)-int(c;)= a€ int(c¢;) & i€ int(cz)
=ext(v(i)Dext(c)

= ext (cj) = ext (c3), a contradiction.

Mining Dynamic Databases for Frequent Closed Itemsets 64

2 System architecture

File with suffix File with suffix
Txt Dat

h 4 Y

Txt Data File Dat Data File
Connector Connector
parameter:minsupp

mainFrameWork k—

Result Display

Figure A-1: System architecture

The system consists of three main parts. The first is a connector that connects the transaction
set to the corresponding processor according to the transaction set formation (i.e., the suffix
name of the data file). The second part is the core of the processor. It reads and processes the
transaction one by one, according to the parameter minsupp to incrementally maintain the

iceberg lattice. The third part is a display tool, which shows the result on the screen.

Mining Dynamic Databases for Frequent Closed Itemsets 65

3 Class diagram
We define the following classes. They are Concept, Transaction, VectorQuickSort, Common

and MainFrame. Figure A-2 is the Class Diagram.

Class:mainFrame

Attribute

Service

. |
| |
v v v

™) 4) ' ™
Class:Concept Class:Common Class:Transaction
Attribute Attribute Attribute
— < — — — —
Service Service Service
. » . J \. »

Class:VectorQuickSort

Attribute

L ey

|
Y

Service

Figure A-2: Class diagram

Class Concept has two private data members: Extent and Intent. They belong to basic data
type String. This class is used to implement check status of concepts when a new transaction
is being inserted; it will also find gen,(c), T"(c) and domain(c) as well as finding the lower

cover of chosen concept in V*(#;4).

Mining Dynamic Databases for Frequent Closed Itemsets 66

Class Transaction operates on the transaction set. We have two file types, .zxt and .dat.
Meanwhile we also use it to establish and maintain /77 (Item_Transaction_Table) and TIT

(Transaction_Item_Table).

Class VectorQuickSort processes the vector, primarily for sorting the elements in vector

according a certain field.

Class Common updates iceberg lattice with new generated frequent closed itemsets.
Furthermore, it will perform vector operations, i.e. combine two vectors or judge if two

vectors are the same and so on.

Class MainFrame sorts concepts in iceberg lattice. It also extracts transaction one by one

from the transaction set.

Mining Dynamic Databases for Frequent Closed Itemsets

67

4 Class definitions

Class Concept

I - 1
prjicebergiattic |

=

Concept

| priceberglattic |

l

3 Extent . String
-"'l} Intent * String

‘ * check_history() : void
% checkbeforeCombination(void
- combinePartOfExtentorintent) String
| | © concept) void
S concept(: void
> ContainRelationship(boolean
* createConcept) Concept
A FindDCofChosenConcept() . String
> findLowerNeighbors{ : void
> FindTCCofChosenConcept(. String
> FindTCofChosenConcept(. String
% getConcept_Status(* void
® getConceptExtent() . String
> getConceptintent(: String
% getSupportNumg : int
| | % isSameString(- boolean
* setConceptExtent(- void
% setConceptintent(- void
% updateConcept(: Concept
M equalsQ boolean
i~ fetechAllTransactionttems(: String
i findDifferenceOfStrings(: String
3™ getPublicSetString(- String
| | i¥ getSizeQfElement(' String
_‘} getTransaction_Set(String
M isSamelength(- boolean

| Y A
[HashMap][stringTokenizer || vector |

Figure A-3: Class diagram for class Concept

Attributes: Extent: String Intent: String

Methods Description

public Concept(String Extent, String Intent)

Constructor

public String
combinePartOfExtentorIntent(String Str),
String Stry)

Combine str; to str,, no repeat

public boolean ContainRelationship(String
str)

Judge if contain all elements in str

Mining Dynamic Databases for Frequent Closed Itemsets 68

public prjiceberglattic.Concept
createConcept(String TID Set,String
Item_Set)

Create a new concept with TID Set and

Item_Set as concept’s Extent and Intent

private boolean equals(Concept

CompareObyj)

Judge if two concepts are the same, if they
have the same Extent and Intent, they are

equal

private String
findDifferenceOfStrings(String Stry,String
Stl’z)

Calculate the difference between str; and str,

public void findLowerCovers(Concept
tmpConceptOfNewTransaction,
Vector Vplus, Transaction TransObj,

Vector Hplus, double mini_Support)

Find the lower covers of a concept

public void getConcept_Status(Concept
ConObj, Concept newConcept, Vector
iceBergLatticObj, Vector
NewFCIObj,Transaction TransObj, double
mini_Support,HashMap

newTransaction,Vector Vplus)

Judge the status of a concept when add a new
transaction and execute different operations

according to their different status

public String getConceptExtent(Concept
ConObj)

Get the Extent of a concept

public String getConceptIntent(Concept
ConObj)

Get the Intent of a concept

private String getPublicSetString(String
Str1,String Str2)

Calculate the intersection of Str; and Str;

private String
getTransaction_Set(Transaction

TransObj,String ItemID)

Get a collection of TID from
Item_Transaction_Table those transaction

include this item

public Concept updateConcept(Concept
Ob;,String NewExtent)

Combine NewExtent to a concept’s Extent, no

repeat.

Mining Dynamic Databases for Frequent Closed Itemsets

69

public int getSupportNum(Concept conObj)

Calculate the length of extent of a concept

public void setConceptExtent(String

newExtent)

Update the Extent of concept with newExtent

public void setConceptIntent(String

newlIntent)

Update the Intent of concept with newIntent

private boolean isSameLength(String
Str1,String Str2)

Judge if the length of two strings are the same

public boolean isSameString(String

Str),String Str;)

Judge if two strings are the same

public void
checkbeforeCombination(Vector

tartgetVector, Concept insertConcept)

If the intent or extent of insertConcept is not
exist in tartgetVector, then add insertConcept
to insertConcept, otherwise combine their

intent or extent

public String
FindTHCofChosenConcept(Concept
elementOfVplus, Vector Hplus)

Find T" (c) for concept c

public String
FindDCofChosenConcept(Concept
masterConcept, Concept c,Vector

Vplus,Vector Hplus)

Find domain(c) for concept ¢

private String getSizeOfElement(String

Element)

Calculate the length of a string

Table A-1: Methods description for class Concept

Mining Dynamic Databases for Frequent Closed Itemsets 70

Class Transaction

| jicebergiattic
— i —
[uﬂ| ‘ Transaction | priceberglattic |
: = i || Conlcept I mamllframel |
IR gelALL RelativedTransactionltemwithChosenExtList(: Vector [——"—=—=_ __ _ __ | |
|| % ProcessedTransactionNumber(: int ' -
|| ® Transactiong : void | javalang
|| ® Transaction0 : veid s
> updateTransaction() : void ————— i Ii -1 |
Il @ Iltem_Transaction_Table : Vector |
& Transaction_ltem_Table : Vector § il

| Hashmap || StringTokenizer |

Figure A-4 Class diagram for class Transaction

Attributes: Transaction_Item_Table: Vector Item_Transaction Table: Vector

Methods Description
public Transaction(); Constructor
public Transaction(java.lang.String Constructor

Transaction_Line);

public java.util. Vector getltem Transaction_Table();

Return current item transaction table

public java.util.Vector getTransaction Item Table();

Return current transaction item table

public int ProcessedTransactionNumber();

Record the number of transaction

which have been processed

public Vector
getALLRelativedTransactionltemWithChosenExtList
(String ExtList);

find the intersection of intent for

several transactions

public void updateTransaction(String

Transaction_Line)

Update Transaction Item_Table and

Item Transaction_Table

Table A-2: Methods description for class Transaction

Mining Dynamic Databases for Frequent Closed Itemsets 71

Class VectorQuickSort

oy

priiceberglattic

priicebergiattic ‘

% gsorto : void

— —-—-+ Concept | _’

=
| WectorQuickSort
Jarva.lang ‘
[| s exchangeo : void]
: =2 partitionO : Int ::::::::—___‘Iw' .
i [mteger || string | J
| ; Janwa_util _l
| e —— e e e
I BB i A A
: ' | [Hashmap || wector |

=

Figure A-5 Class diagram for class VectorQuickSort

Attributes: a Vector

Methods Description

private static void exchange(Vector a, int

m, int n);

exchange the position of m and n

public static void gsort(Vector a, int 1, int

r, String compareField);

Quick Sort the vector according to a field

Table A-3: Methods description for class VectorQuickSort

Mining Dynamic Databases for Frequent Closed Itemsets 72

Class Common

javalang

prjiceberglattic

Common

> Common(: void

% updatelceBerglLattice{ : void
A Combine(: void

> equalsOffwoConcepts() : boolean for — — L . _

prjiceberglattic

Figure A- 6: Class diagram for class Common

Attributes:

Methods Description

public Common();

Constructor

public static void updatelceBergLattice(Vector
iceBergLatticObj,Vector NewFCIObj);

Update Iceberg Lattice with new

Frequent Closed Itemsets

private static void Combine(Vector vObjl1,

Vector vObj2);

Combine two vectors, no repeat

public static boolean

equalsOfTwoConcepts(Concept a, Concept b);

Judge if two concepts are the same

Table A-4: Methods description for class Common

Mining Dynamic Databases for Frequent Closed Itemsets 73

Class MainFrame

e e Tedelt |
T ford b I i =——
Tt Yroge! ragden f ez

== el rageen ——

pim (g o

] T et B F—

=T e ot

—— b Fisitaxer FieChocse T ==
Lmen| o L[et ey e
T Moz Ny i
T Mend 16 Merckn

1
gmum = 'I | Il |
[e e 1 | |

—E T piead IW”‘H“FMIWIUIMIMI

l:'ﬂllm *ﬂ_m Dewdien | Prel | Side ’bmmw — L - | B Rl

3
Yitel Lael prndead
uezsaigei Ty e Lte ; _—

IE‘ [T 1) 1
: Tyites Lae ! |
:

|
i
o
|

]
|
|
| i |

1 I
| ooy [| Tetzepen|

E'....-__._.l

Tpies Ll P]
Tites Lo

B ien Ll

b ool s ToFied
b S Tre Teied
T stsfg bckan e =

VTl TeSelt =

Tt Wt jmb

bt e =
ety Lol r
ottt el i = =

] t
Iifv_w_llgﬂ'ﬂ-llwlmn:mllwu |

|
|
|
& Tndstopes Tethen | j ; : |
[roomiiord | (oo [e o]

|| % o e ater’eformers) vee i ey
S pmdpint adePekmed) wd ||

Srarfnese) o L I 1
Mrcessteiokert) od E] il | |
PRt]] | | | |
- Bt xFataned)] | I | I |
P Fielhsxen sdsetymee) v === I lI | i (! ;|
becnem o R SN | S NN SN | 0, MO O |
s | T EET P) B0 O B D Y Y B 2)
emrgrarg by |
g v L8
500024 o . LY
| sotatentar) e | —

e 1
| ==t L]
Lo ey | sttt | v

Figure A-7: Class diagram for class MainFrame

Mining Dynamic Databases for Frequent Closed Itemsets 74

Attributes:
Methods Description

void jBStart_actionPerformed(ActionEvent €) | Action Event

public Vector getDataFromTestFile(String get transaction one by one from data set (.
filePath) Txt file)
public Vector get transaction one by one from IBM data

getDataFromTestFile_IBM(String filePath) set (.dat file)

public Vector sortlcebergLattic(Vector sort Iceberg Lattice
iceBergLattic)

Table A-5: Methods description for class MainFrame

Mining Dynamic Databases for Frequent Closed Itemsets 75

5 Validation
After implementing the Iceberg Lattice Algorithm, we validated it by comparing the result
with other validated algorithm. During this process, we adopt the CHARM algorithm —

another algorithm for calculating the frequent closed itemsets from a transaction set.

Validation was conducted on one transaction set (T25110D10K-300) using a different
minsupp. T25110D10K-300 has 300 transactions. It was extracted from data set
T25110D10K [UCI]. The formation of transaction is as following:

the number of items in item; item , . item
this transaction (n)

For example, following is a transaction:
7 267 348 389 456 523 624 657
7 means that there are 7 items in this transaction,

267, 348, 389, 456, 523, 624 and 657 are 7 items in this transaction.

Table A-6 shows the comparing result:

Algorithm Transaction set Minsupp Number of FClIs note
0.01 3781
ILA 0.03 454
T25110D10K-300 0.05 122
0.07 20
0.10 0
Support Number of FCIs | In CHARM:
3 3781 Support
CHARM | T25110D10K-300 9 454 = minsupp
15 122 *transaction number
21 20
30 0

Table A-6: The results of comparison with CHARM algorithm

Mining Dynamic Databases for Frequent Closed Itemsets 76

In addition to comparing the number of frequent closed itemsets in the results, we also

compared the extent and intent for every concept.

In order to explain the validation result visually, we give the results obtained from two
algorithms under the same minsupp (in ILA minsupp = 0.07, in CHARM algorithm,
Support=21).

Result from /LA (Minsupp =0.07, the total number of frequent closed itemsets is 20)

No. Extent Intent Support

1 0427395106113 119128 1301331045 36 172 28
76269 551221 148 163 182 228 255 265 270
292 296

2 11274271 7795110129 131 136 1425 17 549 25
141 151 156 172 179 216 229 237 261 281 286
294

3 536469597104 121 129 135153 15692 62 3 751 23
60 28 169 189 196 210 227 233 285

4 [54271151142533619593 15615011099 60 23
88 60 163 180 197 224 229 264 290

5 19416580120 138 148 180 190 192 202 210 322 27
220 228 235238 262 265 277 287 297 127 102
956749 31

6 |723144861 758283889798 145155157 233 25
166 173 183 185 205 238 239 243 257 260 299

7 1626244976 899396 121 123 131 135 142 799 21
145146 170 171 186 244 245 274

8 64573787998 101106 153 155165167 168 432 24
172 177 197 204 221 240 250 263 274 282 288

9 14456606572 7887 105123156 157165170 152 24

Mining Dynamic Databases for Frequent Closed Itemsets

77

190 194 198 200 231 255 256 267 275 277 285

10 0427395125138 144 159 182 199 201 207 578 25
212222224 228 242 252 101 28 38 60 258 274
296

11 142060101 105110117 130131 142 151 152 852 25
167 194 206 208 227 233 247 249 251 256 272
273 279

12 112142046 67 81 86 106 112 117 132 135 147 500 22
173 191 222 228 234 252 257 285 290

13 |11517082868992110116 139 153 157 163 27 22
180 187 205 230 235 244 250 270 286

14 |354854555660105117127 137156 171 192 785 24
196 211 216 225 248 260 271 279 283 287 298

15 (1821456978 81 8591 109 132 142 153 177 113 23
226 235 243 252 259 263 269 280 285 295

16 3363767799140 151 157 159 161 167 185 866 23
197 198 203 218 241 244 249 273 282 292 293

17 |82325878897124 136 143 165167 174 178 293 21
199 210 217 231 246 267 275 285

18 111202759899096 103 141 149 175 183 213 745 22
219 238 240 243 246 261 282 284 286

19 [81728505772749194 115145161163 181 974 22
217 236 247 249 259 263 288 292

20 |41332607894102112317133 134139152 80 22

162 179 187 223 235 282 289 297

Table A-7: Result from ILA (minsupp=0.07)

Mining Dynamic Databases for Frequent Closed Itemsets

78

Result from CHARM algorithm

(support=21, the total number of frequent closed itemsets is 2 0)
- <listeFCIs>
- <fei>
<intent>799</intent>
<extent>7 25 27 50 77 90 94 97 122 124 132 136 143 146 147 171 172 187 245 246 275</extent>
<support>21</support>
</fci>
- <fci>
<intent>60</intent>
<extent>6 1526 3443 61 6272899496 100 111 151 152 157 164 181 198 225 230 265 291</extent>
<support>23</support>
</fei>
- <fci>
<intent>751</intent>
<extent>4 6 29 3747 61 63 93 96 98 105 122 130 136 154 157 170 190 197 211 228 234 286</extent>
<support>23</support>
</fei>
- <fei>
<intent>80</intent>
<extent>4 5 14 18 33 61 79 95 103 113 134 135 140 153 163 180 188 224 236 283 290 298</extent>
<support>22</support>
</fei>
- <fci>
<intent>500</intent>
<extent>13 152147 68 82 87 107 113 118 133 136 148 174 192 223 229 235 253 258 286 291</extent>
<support>22</support>
</fci>
- <fci>
<intent>974</intent>
<extent>9 18 29 51 58 73 7592 95 116 146 162 164 182 218 237 248 250 260 264 289 293</extent>
<support>22</support>
</fci>
- <fci>
<intent>293</intent>
<extent>9 24 26 88 89 98 125 137 144 166 168 175 179 200 211 218 232 247 268 276 286</extent>
<support>21</support>
</fci>
- <fci>

<intent>27</intent>

Mining Dynamic Databases for Frequent Closed Itemsets 79

<extent>12 52 71 83 879093 111 117 140 154 158 164 181 188 206 231 236 245 251 271 287</extent>
<support>22</support>
</fci>
- <fci>
<intent>172</intent>
<extent>1 3 6 13 22 3743 56 70 74 77 96 105 107 114 120 129 131 134 149 164 183 229 256 266 271 293 297</extent>
<support>28</support>
</fci>
- <fei>
<intent>549</intent>
<extent>12 15 18262843 7278 96 111 130 132 137 142 152 157 173 180 217 230 238 262 282 287 295</extent>
<support>25</support>
</fci>
- <fci>
<intent>233</intent>
<extent>8 15 24 49 62 76 83 84 89 98 99 146 156 158 167 174 184 186 206 239 240 244 258 261 300</extent>
<support>25</support>
</fei>
- <fci>
<intent>745</intent>
<extent>12 21 28 60 90 91 97 104 142 150 176 184 214 220 239 241 244 247 262 283 285 287</extent>
<support>22</support>
</fei>
- <fci>
<intent>1 13</intent>
<extent>19 2246 70 79 82 86 92 110 133 143 154 178 227 236 244 253 260 264 270 281 286 296</extent>
<support>23</support>
</fei>
- <fci>
<intent>432</intent>
<extent>7 46 74 79 80 99 102 107 154 156 166 168 169 173 178 198 205 222 241 251 264 275 283 289</extent>
<support>24</support>
</fci>
- <fci>
<intent>152</intent>
<extent>45 57 61 66 73 79 88 106 124 157 158 166 171 191 195 199 201 232 256 257 268 276 278 286</extent>
<support>24</support>
</fei>
- <fci>
<intent>578</intent>

<extent>1 29 39 43 61 74 96 102 126 139 145 160 183 200 202 208 213 223 225 229 243 253 259 275 297</extent>

Mining Dynamic Databases for Frequent Closed Itemsets 80

<support>25</support>
</fer>
- <fci>
<intent>785</intent>
<extent>36 49 55 56 57 61 106 118 128 138 157 172 193 197 212 217 226 249 261 272 280 284 288 299</extent>
<support>24</support>
</fei>
- <fei>
<intent>866</intent>
<extent>34 64 77 78 100 141 152 158 160 162 168 186 198 199 204 219 242 245 250 274 283 293 294</extent>
<support>23</support>
</fei>
- <fei>
<intent>852</intent>
<extent>152161102 106 111 118 131 132 143 152 153 168 195 207 209 228 234 248 250 252 257 273 274 280</extent>
<support>25</support>
</fei>
- <fci>
<intent>322</intent>
<extent>10 3242 50 66 68 81 96 103 121 128 139 149 181 191 193 203 211 221 229 236 239 263 266 278 288
298</extent>
<support>27</support>
</fei>

<nombreFCls>20</nombreFCls>

</listeFCls>

Mining Dynamic Databases for Frequent Closed Itemsets 81

Reference
[AIS1993] Rakesh Agrawal, Tomasz Imielinski, and Arun Swami
Mining association rules between sets of items in large databases. 1993.

In Proceedings of the 1993 International Conference on Management of Data

(SIGMOD 93), pages 207-216.

[AIS1994] Rakesh Agrawal, Tomasz Imielinski and Ramakrishnan Srikant
Fast algorithms for mining association rules in large databases. 1994.

In Proceedings of the 20™ International Conference on Very Large
Databases (VLDB’94), Santiago, Chile, pages 487-499.

[AS1995]Rakesh Agrawal and Ramakrishnan Srikant
Mining sequential patterns. 1995
In Philip S. Yu and Arbee L. P. Chen, editors,
In Proceeding of the 11" International conference on Data Engineering, ICDE
pages 3—14. IEEE Press, Pages: 6-10.

[ATA1999] N.Ayan, A.Tansel and M.Arkun
An efficient algorithm to update large itemsets with early pruning. 1999.
In Proceedings of the Fifth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD 99), San Diego, CA, pages
287-291.

[B1998] R.J. Bayardo
Efficient mining long patterns from databases. 1998.

In Proceedings of ACM International Conference on Management of Data
(SIGMOD), Seattle, Washington, USA, pages 85-93.

[BA1999] R.J. Bayardo and R. Agrawal

Mining the most interesting rules. 1999.

Mining Dynamic Databases for Frequent Closed Itemsets 82

In Proceedings of the 5" International Conference on Knowledge Discovery and
Data Ming (KDD’99)

[BCG2001] D. Burdick, M. Calimlim and J. Gehrke
MAF]IA:a maximal frequent itemsets algorithm for transactional database. 2001.

17th International. Conference On Data Engineering, Heidelberg, Germany,
page 0443,

[BM1970] M. Barbut and B. Monjardet
Ordre et Classification: Algébre et combinatoire 1970

Paris. Hachette.

[CHNW1996] DW.Cheung, J.Han, VT .Ng and CY.Wong
Maintenance of Discovered Association Rules in Large Databases: An
Incremental Updating Technique.1996.
In Proceedings, ICDE-96, New Orleans, LA, USA, pages 106-114.

[DP1990] B.A.Davey and H.A. Priestley
Introduction to lattices and order.1990.
Cambridge Mathematical Textbooks. Published by Cambridge University Press,
Cambridge, viii+248 pages ISBN: 0-521-36584-8; 0-521-36766-2.

[G1997] Robert Groth
Data Mining — A Hands-On Approach for Business Professionals.1997.
Data Warehousing Institute Series, Paperback Prentice Hall PTR.

[GMA1995] R.Godin, R.Missaoui, and H.Alaoui
Incremental concept formation algorithms based on Galois (concept) lattices.
1995. Computational Intelligence (1995), 11(2), pages 246-267.

83

Mining Dynamic Databases for Frequent Closed Itemsets

[GW1999] B. Ganter and R. Wille
Formal Concept Analysis, Mathematical Foundations. 1999

Published by Springer Verlag, Berlin.

[GZ2001] K.Gouda and MJ.Zaki
Efficiently Mining Maximal Frequent Itemsets.2001.
In Proceedings of the 2001 IEEE International Conference on Data Mining.

Pages 163-170.

[HGN2000] J.Hipp, U.Guntzer, and G.Nakharizadeh
Algorithms for Association Rule Mining- A general Survey and

Comparison.2000.
ACM SIGKDD Explorations. Volume 2, Issue 1,page 58-64.

[HPY2000] J.Han,J. Peiand Y.Yin
Mining frequent patterns without candidate generation.2000.
In proceedings of the ACM SIGMOD International Conference.

Management of Data (SIGMOD’00), Dallas TX, USA, pages 21-30.

[HSH1998] M. Harries,C. Sammut and K. Horn
Extracting hidden context. 1998.
Machine Learning, 36(2), 1998, pages:101-126.

[K1998] D.E.Knuth
The Art of Computer Programming, 1998.

Vol.3, Sorting and Searching.

[M1997] H.Mannila
Methods and problems in data mining. 1997.
In proceedings of the 6 International Conference on Database Theory, Delphi,

Greece, Pages 41-55.

Mining Dynamic Databases for Frequent Closed Itemsets 84

[MT1996] H.Mannila and H.Toivonen
On an algorithm for finding all interesting sentences.1996.
In Cybernetics and Systems, Volume II, The 13™ European Meeting on
Cybernetics and Systems Research, Vienna, Austria, pages 973-978.

[PBTL1998] N.Pasquier Y.Bastide, R.Taouil and L.Lakhal
Pruning closed itemsets lattices for association rules.1998.
Proceedings of the BDA French Conference on Advanced Databases,
pages 177-196.

[PBTL1999-1] N.Pasquier Y.Bastide, R.Taouil and L.Lakhal
Efficient Mining of Association Rules Using Closed Itemsets lattices.1999.
Information systems, 24(1): pages 25-46.

[PBTL1999-2] N.Pasquier, Y.Bastide, R.Taouil, and L.Lakhal.
Discovering frequent closed itemsets for association rules.1999.
In Proceedings of the 7™ International Conference on Database Theory,

pages 398-416.

[PHM2000] J. Pei, J. Han and R. Mao
Closet: An efficient algorithm for mining frequent closed itemsets.2000.
In ACM SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discovery, pages 21-30.

[PS1991] G. Piatetsky-Shapiro
"Discovery of strong rules in databases,"
In G. Piatetsky-Shapiro and W. J. Frawley, eds,
“Knowledge Discovery in Databases”.
Menlo Park, CA: AAAIMIT, 1991, pages: 229-238.

Mining Dynamic Databases for Frequent Closed Itemsets 85

[SS1998] Ingo Schmitt and Gunter Saake
Merging inheritance hierarchies for database integration. 1998
In Proceedings of the 3™ International Conference on Cooperative Information

Systems, New York City, New York, USA, pages 122-131.

[STBPL2000] Gerd Stumme, Rafic Taouil, Yves Bastide, Nicolas Pasquier, and Lotfi Lakhal
Fast computation of concept lattices using data mining technics. 2000.
In Proceedings of the 7™ International Workshop on Knowledge
Representation Meets Databases, Berlin, pages 21-22.

[SW2000] G. Stumme and R. Wille
Terminologische Merkmalslogik in der Formalen Begriffsanalyse 2000
Begriffliche Wissensverarbeitung. Methoden und Anwendungen,
Springer, Berlin-Heidelberg-New York, pages 99-124.

[T1996] H.Toivonen
Sampling large database for association rules.1996.
In Proceedings of the 22" international Conference on Very Large Data Bases

Mumbai (Bombay), India, Pages: 134 — 145.

[TBAR1997] S.Thomas, S.Bodagala, K.Alsabti, and S.Ranka
An efficient algorithm for the incremental updation of association
rules in large database. 1997.
In Proceedings of the 3" International Conference on Knowledge
Discovery and Data Mining (KDD 97), New Port Beach, CA, pages 263-266.

[UCT] S. D. Bay. The UCI KDD Archive [http://kdd.icn.uci .edu].
Irvine, CA: University of California,
Department of Information and Computer Science.
1:http://www.almaden.ibm.com/cs/quest/syndata.html
2:ftp://ftp.ics.uci.edu/pub/machine-learning-databases/mushroom/agaricus-lepiota.data

Mining Dynamic Databases for Frequent Closed Itemsets 86

[VM2001] P.Valtchev and R.Missaoui
Building concept (Galois) lattices from parts: generalizing the incremental
methods. 2001. In Proceedings, ICCS 2001, Stanford (CA), volume 2120 of
Lecture Notes in Computer Science, pages 290-303.

[VMG2002] P.Valtchev, R.Missaoui and R.Godin
A Framework for Incremental Generation of Frequent Closed Itemsets. 2002.
In Proceedings of the 1st International Workshop on Data Mining and Discrete

Mathematics, Washington (DC), pages 75-86.

[VMGM2002] P.Valtchev, R.Missaoui, R.Godin, and M.Meridji
Generating Frequent Itemsets Incrementally: Two Novel Approaches Based
on Galois Lattice Theory. 2002.
Journal of Experimental & Theoretical Artificial Intelligence, 134 (2-3):
pages 115-142.

[VML2002] P.Valtchev, R.Missaoui and P.Lebrun

A partition-based approach towards constructing Galois (concept) lattices.
2002.
Discrete Mathematics, 256 (3): pages 801-829.

[VRM2003] P.Valtchev, M.Hacene.Rouane and R.Missaoui
A generic scheme for the design of efficient on-line algorithm for lattice. 2003.
In Proceedings of the 11th Intl. Conference on Conceptual Structures (ICCS'03),
Dresde (DE), Springer Verlag (LNAI), pages 282-295.

[W1982] R.Wille
Restructuring lattice theory: an approach based on hierarchies of concepts. 1982

In: L.Rival (ed.). Ordered sets. Reidel, Dordrecht-Boston, pages 445-470

Mining Dynamic Databases for Frequent Closed Itemsets 87

[WTL1997] K.Waiyamai, R.. Taouil and L.Lakhal
Towards an object database approach for managing concept lattices. 1997.
In Proceedings of the 16" International Conference on Conceptual Modeling.

Springer, Heidelberg, pages 299-312.

[Z2000] MJ.Zaki
Generating Non-Redundant Association Rules. 2000.
In Proceedings, KDD-00, Boston, MA, USA, pages 34-43.

[ZH2002] Mohammed J. Zaki and Ching-Jui Hsiao
CHARM: An Efficient Algorithm for Closed Itemsets Mining. 2002.
In Proceedings of the 2" SIAM International Conference on Data Mining
(ICDM’02), Arlinton, VA, pages 457-473.

