LAmil 31¢4S. §

Université de Montréal

ESys.Net
A New .Net Based System-Level Design Environment

par

James Lapalme

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Maitrise présentée a la Faculté des études supérieures
en vue de I’obtention du grade de
Maitre ¢€s sciences (M.Sc.)
en Informatique

Jo Y
® Grade conférs 9N

§;° 3 compter du GG\

g 3\

. - 2004 MAI 0§ 5

Décembre, 2003 /

© James Lapalme, 2003 < AJ:}J
7L v/

Usits go NS

QA

U5y
200Y
N, 008

Université rH'n

de Montréal

Direction des bibliothéques

AVIS

L’auteur a autorisé I'Université de Montréal a reproduire et diffuser, en totalité
ou en partie, par quelque moyen que ce soit et sur quelque support que ce
soit, et exclusivement a des fins non lucratives d'enseignement et de
recherche, des copies de ce mémoire ou de cette thése.

L'auteur et les coauteurs le cas échéant conservent la propriéte du droit
d'auteur et des droits moraux qui protégent ce document. Ni la these ou le
mémoire, ni des extraits substantiels de ce document, ne doivent étre
imprimés ou autrement reproduits sans I'autorisation de I'auteur.

Afin de se conformer a la Loi canadienne sur la protection des
renseignements personnels, quelques formulaires secondaires, coordonnées
ou signatures intégrées au texte ont pu étre enlevés de ce document. Bien
que cela ait pu affecter la pagination, il n'y a aucun contenu manquant.

NOTICE

The author of this thesis or dissertation has granted a nonexclusive license
allowing Université de Montréal to reproduce and publish the document, in
part or in whole, and in any format, solely for noncommercial educational and
research purposes.

The author and co-authors if applicable retain copyright ownership and moral
rights in this document. Neither the whole thesis or dissertation, nor
substantial extracts from it, may be printed or otherwise reproduced without
the author’s permission.

In compliance with the Canadian Privacy Act some supporting forms, contact
information or signatures may have been removed from the document. While
this may affect the document page count, it does not represent any loss of
content from the document.

Unitversité de Montréal
Faculté des études supérieures
Ce mémoire intitulé :

ESys.Net
A New .Net based System-Level Design Environment

présenté par :

James Lapalme

a été évalué par un jury composé des personnes suivantes :

Dr. Houan Sahraoui
président-rapporteur

Dr. Jean-Pierre David

directeur de recherche

Dr. El Mostapha Aboulhamid

codirecteur

Dr. Gabrela Nicolescu
membre du jury

Mémoire accepté le 23 mars 2004

Sommaire

Avec l’arrivée des systemes embarqués qui incorporent un nombre croissant de
composantes logicielles, il devient plus critique que jamais de rétrécir 1’écart qui

existe entre la modélisation de niveau systéme et I’implantation.

Dans ce travail nous illustrons, par le développement d’un nouvel environnement de
modélisation et simulation basé sur le langage de programmation C#, le potentiel
insoupgonné de modélisation maténielle/logicielle du .Net Framework, potentiel qui a

permis de pousser SystemC au-dela de ses limites.

Notre environnement, appelé¢ ESys.Net, utilise les concepts de programmation
avancés de .Net et C# tels que la réflectivité, la programmation par attribut et la
création dynamique de délégués, afin de créer un environnement plus polyvalent que

SystemC.

ESys.Net a pu bénéficier de plusieurs constructions puissantes du génie logiciel en
raison de I'utilisation de .Net comme base. Les résultats expérimentaux que nous
avons recueillis démontrent que ces constructions n'entrainent pas de pénalités

d'exécution significatives.

Mots clés: modélisation, .Net, C#, simulation, systéme-sur-puce, langages de

description, SystemC

1

Abstract

The need to bridge the gap between system level and implementation level modeling
1s becoming critical as embedded systems incorporate more software components.
Through this work we illustrate, by developing a new modeling and simulation
environment, how we can use the .Net Framework through the use of the C#
programming language to model hardware/software systems and alleviate the

different shortcomings of C++ that are hindering the evolution of SystemC.

Our environment, called ESys.Net, uses the advance programming features of .Net
and C# such as reflection, attribute programming and dynamic delegate creation to

produce a flexible solution that is meant to be an evolution of SystemC.

By using .Net as a basis for ESys.Net, we have inherited many powerful software
engineering constructs. The experimental results that we have gathered demonstrate

that these constructs do not incur a significant performance penalty.

Keywords: modelling, simulation, .Net, C#, description languages, system-on-chip,

SystemC

1

Table of Contents

Sommaire i
Abstract ii
Table of Contents iii
Figure List vii
Table List viii
Code Example List ix
Abbreviation List xi
Acknowledgements xiii
Preface xiv
Introduction 1
1.1 HDLS QNA SDLS ..ottt)
1.2 SPeCific GOQIS ..ottt 4
1.3 Outline of this DOCUMENLccoovmnerenireesineeeeeeeteeeeee e 5
Chapter 2 State of the Art 6
2.1 Standalone Languages....................c.ccccomecenmeoeeeoeieeeeeeeeeeeeeeeeeeeeeeeeas 6
211 VHDL[3] 7

212 VETIOZ ..o, 8

v

213 SystemVerilog [54].....cooiiee e 8
2.2 Programming Language-based HDLS................c..cccoouvoumvivconemencvecesnareneae 9
2.2.1 Handel-C and OCAPI [7] ..o 9
222 JHDL [ST28] ... 9
223 SPECC [59] .t 10
224 SystemC [65] ..o 10
2.3 New Challenges in Modeling and Designc..cccovveeecunnvercnernens 1]
2.4 Recent Software FramewWorks...........c.uueeveeeeneeseeeeeieeeeeseeeesesseseeneeseesans 12

Chapter3 Advanced Programming Features with C# and the .Net

Framework 15

3.1 The NET FrameWOrk ... eeeeeeeeereeceeieierieesieeiaessssssessseeseesseesnessssssanns 15
3.1.1 General Presentation of NET Framework [49]...............cccocoeoii. 16
3.2 The CH LANGUAGE.......c..oceeeeeeeieeereeete et saa et es s 17
3.3 Advanced Programming FeQtures...................ccvevernmoericrencerrensseseenenns 18
3.3.1 Introspection and Reflectivity[22] [41] ..o 18
3.3.2 Attribute Programming[50] [41]..........ccoovioii e 21
333 DEIEGALES.oveieiiteeee e, 23
334 Delegates and Reflectivityc.ocooooiiiiiiiiiiicic 25
Chapter 4 ESys.Net 27
4.1 A Simple Example..............ouooooeiaeieeeeeeeeeeeeeetee e 27
4.2 Modules and Module Hierarchiesceeceeecueceueeeeceveeeeeeveerressens 32
421 Module Declarationccoccoveiueiiiieieieeee e, 33
422 Module INStanCingccoevecieriieiiiiiicce e 34
423 Module Hierarchiescocooooiiiiiiieiececcecee 34
424 Module Interfaces.............occooveiiiiioiiiieicc e 35
425 Modules Inner-Workings.............ccoocooveiiiiiioi e 36

4.3 PHOCCSSES «coeeveoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeraeeesaasaaessee e e e eaasaaaaaaa e e s e s nneaeanan 38

43.1 Process Declaration and Registration..................c..coocoocooiiiiiiii il 38
432 Static and Dynamic Process-Event Association....................c............. 39
433 Process Static Senstivity........cccocoioeririiieicerceee e 40
434 Parallel Method Processcccooeviiiieieeieieiccieeceeeeeeeee e 41
435 Process Method.............o.ooeoieiieicieeeceeeee e 42
Fed SUNALS.....oiieeeeeeee ettt st et eanenenens 45
44.1 Signals and Simulation...............ooooioeiiiii, 46
442 INSEANCING........ocviieiieeeceeeee e 46
443 Inner and Outer Signalscccooeiiiiicieiiicieeeeeeeceee 47
444 A Signal’s Logical SCOPEccoooeeiiiiiiiiieieeeeee e, 47
445 Special BInding Caseso.oovevveieieuiiceieicieeeceeeeee e 49
4.5 Ports Qnd INErfaces.............ooeeeeveceeninecnerieenee st saesese e sens 51
4.5.1 The Elimination of Ports............ccocooveiiiieiiieeceeee 52
452 Predefined Interfacescocooeioiiiiniieecce e 53
G0 EVERIS...ooiiiiiieeeer ettt ettt a e st n e st 55
4.6.1 Event OCCUITENCE.ooveviiiiieeiceeeee e 55
46.2 Event Notification [63]............ccooooiiiiiiiieeeeeeeeeeee 56
463 Multiple Simuitaneous Event Notifications [63] [24]cccoo....... 57
4.6.4 Cancelling Event Notifications...................cccoooovovioveieiiecccee 58
4.6.5 Events, Signals and Clocks................ccoooovoiiiiceiiccceeee 58
A7 CRANNECIS ...ttt ettt et 58
4.7.1 Channel Declaration and Instancing........................ccocooiiviiien. 59
472 Channels and Software Interfacescc.coooooiiiiiieciie 60
473 SENSIIVILY ..o 61
474 Channel hierarchies and inner-workingsoccocoeenn 61
475 The IDeltaUpdatable Interfaceccoocooooiiiiiii 61
4.7.6 Unification of the Channel Concept [63] [24]coovooveveeveeiee 62
477 Example [65] [24] ..o 62

Chapter 5 Simulation Kernel 64

5.1 Modeling Dir€ctives.............uccueveenrsenecceeeienneesieessssesenanns

5.2 STNUIALION SEIIANEICS c.c.eeeeeeeeeeeeeeeoreeeeeeeeerereeveeeeseeesarensasssssans
5.2.1 SystemC [64] [63]......ooveoeeeieeeeeeeee e,
522 ESyS.Net ..o

Chapter 6 Comparison and Experimental Results

6.1 Advantages of the Environment...............oecevevenvevccncreenene.
6.1.1 Semantic Simplification..............ccocoooieiiriiricieiene
6.12 Programming Simplificationc.cceeeviiiennnnnn.
6.13 A Simpler Better Framework.................cccoeooveevieenen.n.

6.2 Disadvantages of the Environment.................cocecvvvevererecnnnen.
6.3 Experimental RESUILSc.cooovvercemnenrecinveeienesieeenieraenans

6.4 SUMMATY ..ottt ettt

.....................

.....................

.....................

Chapter 7 Summary and Future Work

70 SUMMATY ...ttt

7.2 Where Do You Go From HEre? ... ueeeeeeeeeeseeeeereeeeeeeeeeeesenns

References

.....................

Vi

65

66
66
68
77

77
77
79
80

85

85

89

92

93

94

95

Annex A Fifo Channel Example

Annex B Simple Bus Example

Annex C My First System Example

vii

Figure List

Figure I : SIimPle CIFCUIL ..ottt 3
Figure 2 : MY FirSE SYSIEM ...ttt ettt e e ene 28
Figure 3 : Full Adder Module Interface Example................couueeeeeeeecreerarernnnne 36
Figure 4 : One Bit Adder EXample...............oueeeeeeereeeiereeeeeeeeeeerneiesnessnsesnns 37
Figure 5 : Process SUD-TYDESococovuieoeeecirieiieieeestrieeeee s s er e ne s 39
Figure 6 : Inner/Outer Signals ...t 48
Figure 7 : ANDILAAer ...t 54
Figure 8 : Event Occurrence..............eoenevcireeeieseeecesceeeeceee e ses e 56
Figure 9 : SystemC’s SCheduler SITUCIUTe..................ooeueeeeeeeeeeeereereeceereeeereereenns 68
Figure 10 : ESys.Net SCRedULEr SIEPS...........eeeeeeeeeceeeeeceeeeeceeseeerrerreseeesenaens 75
Figure 11 : Leveraging of exiSting fEQUUIES............cuveeveeceeveeceerereeeeeeeererervesessens 81
Figure 12 : General view of the appliCQliOn.................cueeeeveeeeeeceeeceeneererene, 87

Figure 13 :

ESys.Net versus SystemC performance..................weceeeeveeeeeceereenenne. 88

viil

Table List
Tablel: Metadata Classes - - 19
Table II : Interfaces - - 54
Table 1II : Event non-determinism o _ 57
Table1V: Attributes and their role in ESys.Net - 65

Table V: Summary of the Advantages and Disadvantages over SystemC 89

ix

Code Example List

Code example 1:
Code example 2:
Code example 3:
Code example 4:
Code example 5:
Code example 6:
Code example 7:
Code example 8:
Code example 9:

Code example 10:
Code example 11:
Code example 12:
Code example 13:
Code example 14:
Code example 15:
Code example 16:
Code example 17:
Code example 18:
Code example 19:
Code example 20:
Code example 21:
Code example 22:
Code example 23:
Code example 24:

TYpe INIPOSPECLIONooceereeienirenereneeeeeieeeeeee e eeree st et ee e asassnean 20
Value Modification with reflection.................uueveeveeerveeeeerennenne 21
Attribute programming example................coccuveeeveennveiincresesrennnns 22
Simple delegate example....................ccoueueeeeecunvieviecerrinceierrennns 24
Delegate example.............c...cccoovuvueieirerenieneneresensenieensseneennas 24
Event keyword example.ccooeeeeeconnnsineneinceneenn. 25
Delegates and reflection...................ccovcereimveieveneennceeereceeeeenns 26
ModuleA BIueprint................cecvceeveireniieeececeeeees et eseeaes 29
ModuleB bIUeprint...............ccccoeevernievennieiireecirreceeeeecre e sneaas 29
MyModule blueprintccoouvoemvmnenieieceeiereeeeeeereeeeeeens 30
MYFIPSESYSIEN ...ttt aens 31
MPAPPD. ..ottt 32
General module declaration.................ccccuvveecencnveeecererennannn. 34
Module instantiQtion...................c.cccccovvevmneeimecerienieieeeeeeinenen, 34
Module hierarchyccccocccvvinoninnineniieeeeeneeeeenes 35
FIFO declaration.....................ccovvevveeoneeieiiecenieeeee e, 36
Adder implementalion..................cccoeceenecninnerceerseieienen, 37
Process method and Parallel method declaration...................... 39
SIQLIC SENSHIVILY.....c.ooeeverseeereeieerieiieieeite ettt eee e eraeasens 40
Static Sensitivity with multiple events namesc....... 41
PMethod Dynamic Sensitivity..........cceeceeeceveeeecerereieeeeeesseeenenn 42
Process Method dynamic Sensitivity...............coceeveeeveerenevsvenenns 43
Triggering on a single even............c..ccoeeceeeemnceeneceeceeereeenne. 44

Triggering after a specific amount of time.............cceeeeveeeenn. 44

Code example 25:
Code example 26:
Code example 27:
Code example 28:
Code example 29:
Code example 30:
Code example 31:
Code example 32:
Code example 33:
Code example 34:
Code example 35:
Code example 36:
Code example 37:
Code example 38:
Code example 39:
Code example 40:
Code example 41:
Code example 42:
Code example 43:
Code example 44:
Code example 45:
Code example 46:
Code example 47:
Code example 48:
Code example 49:
Code example 50:

Triggering With Zero time..............cocecceeceenemsensenecenninreeeneennans 44
Triggering on one event in a list of eVents.............eueecereeeenn... 44
Triggering on all events in a list of eVents............eueeeeeenn.... 45
Triggering on an event in a list of events with timeout 45
Triggering on all Events in a list of events with timeout............ 45
Signal INSIANCING..........cueeeeieiricerirceeeee e eerete e seeaenenees 47
Inner/Quter SIGNALS.............ccevmeceerecneiiininieeneeeeneeceseeestesnns 49
Special signal Binding cases................ccuvevvevrcereeeseeieecnerenns 51
Boolean software interfacesc.cweeveesceeveverineesenenenas 53
Event instantiQlion.................c.oceeveeveienciiinccinneeieeeseeeceeeneans 55
Event nOtIfiCAtionsevcevenceesineeecersecsieseesesesaeesve e 57
Channel declaration..................uveooevcreveecenveeieeeecseecreeeenen, 59
Channel inStARLIQLIONccccoveeeeeerreeereeeeeieeeeeeeeee e se s 60
.Il‘)elta Updatable interface..................ccocovveoevcenneanvnenennnrane. 61
RequestUpdate method.....................cccooueeeeeuvercneeceeeeeireenennn, 62
Model Discovery and Registration..................eeeeeeeeeeeeeenenen. 70
Process dicovery and verification...................eeeeeeeveecreenenne. 70
Algorithm part for process methods.................cuueeeeeveereenennn.. 71
Algorithm part for parallel methods.....................ueeveeeeennnn. 72
Algorithm part for callback hooking....................eceecvecrevnnenn... 73
T00l hOOKING...........c.oooueeeveiiiiiieeeeee e, 76
Metadata (Priority)........ooccoeveeeieeeeeeeeeceeseeeeeeeev e 79
Signal Discovery method...............c.cccooueveeveeceeeneceereereernennn. 83
Printing method.................c.cccooveevinininieeeeeeeeeeeeeee e, 84
TOOl ROOKING............ocoeiiiirciieseeste e 84
Context SWitCh VErifiCQlion............eevecueeeeeeeeeeeeeeereeiervereseenens 87

X1

Abbreviation List

CAD
CIL
CLI
CLS
CTS
ECMA
EDA
EDIF
FIFO
FPGA
HDL
IC
IEEE

ISO

NOC
oor
OSCI
PCB
RTL
SCV
SDL
STOC
UCl
VES
VHDL
XML

Computer Assisted Design

Common Intermediate Language

Common Language Infrastructure

Common Language Specification

Common Type System

European Computer Manufacturers Association
Electronic Design Automation

Electronic Design Interchange Format

First In, First Out

Field-Programmable Gate Arrays

Hardware Description Language

Integrated Circuit

Institute of Electrical and Electronics Engineers
Intellectual Property

International Organization for Standardization
Java Virtual Machine

Network On Chip

Object-Oriented Programming

Open SystemC Initiative

Printed Circuit Board

Register Transfer Level

SystemC Verification Library

System Description Language

SpecC Technology Open Consortium
University of California Irvin

Virtual Execution system

Very High Speed Integration circuit Hardware Description Language
Extensible Markup Language

Xil

| would like to dedicate this to my mother and father

who have always pushed me to better myself,

and to Zachary and Marie-Josée, the two loves of my life,
without whom this would have no meaning

Xiil

Acknowledgements

Above all, T would like to thank El Mostapha Aboulhamid, the initiator of the
ESys.Net project, without whom there would be no ESys.Net. Thank you for

believing in me and being very patient, your wisdom was invaluable.
I would like to thank Jean-Pierre David for his help and support.

I wish to express my gratitude to Luc for helping me with the design and for putting
up with my endless babbling.

Also, 1 would like to thank my Mom, Bruce, Irene, Dan, Marie-Josée, Steven and

Gabriela for their important contributions.

1 especially would like to thank Marie-Josée, my soul mate, for her constant support

and patience.] would not have made it without you.

James Lapalme

XIV

Preface

The need to bridge the gap between system level modeling and implementation
modeling is becoming pressing as embedded systems incorporate more software
components. Maybe a change of paradigm is needed for hardware and system

modeling?

Most current hardware description languages have two significant advantages over
generic programming language: syntactic brevity for hardware semantics and better
constructs for model verification. However even these advantages are melting away
with the emergence of languages like Asml. Even SystemC, a C++ based solution,
has been able to incorporate fairly simple syntactic constructs -through the use of
macro- to provide hardware semantics. Assertion based verification capabilities have
usually only been supported by hardware description languages and specialized
verification languages but generic programming languages are beginning to

incorporate those capabilities such as Eiffel and Asml.

The major limiting factor of using generic programming languages for hardware
modeling is that hardware semantics are not directly present. But what if we could
add the missing metadata? What could we do if we had the power of certain high
level programming languages: the reflective capabilities of Java, the polymorphism of
Ruby, the elegance of ML, or the simple power of Perl? Would all of this change the
way we think of system modeling and hardware modeling? The .Net Framework
currently makes interoperability between languages almost seamless. It also permits

the integration of custom metadata.

This thesis presents a new environment called Esys.Net that we have created for

system-level modeling and simulation. We developed this solution in response to our

XV

frustrations with SystemC, frustrations caused by (i) the complexities of SystemC’s
underlying implementation language (C++) (ii) its overly complex library (iii) its
complex design that makes custom modifications verify difficult (iv) and especially
its lake of third-party tool integration capabilities. When we first started developing
ESys.Net, our main objective was simply to port SystemC to the .Net Framework in
order to eliminate certain of SystemC’s downfalls. However, as the project advanced,
we rapidly discovered the full potential of the .Net Framework and the C#
programming and decided to re-engineer SystemC in order to take full advantage of
the underlying technologies. We added many new features to the overall design of the

new environment in order to create a solution meant to be an evolution of SystemC.

Introduction

For many years now, the ever growing gap between the available computing power
offered by hardware platforms and that used by the software applications running on
these platforms has been tolerated because of the need for platform independent
software, independence required because of the difference in life expectancy between
hardware and software products. Today, with the emergence of embedded systems, it
is imperative that these new systems take full advantage of the computing power
available on the underlying hardware platform and that a perfect balance may be

reached between software and hardware.

A major hurdle limiting the production of better systems, especially embedded ones,
is the existence of an annual 30% gap between the growth of chip complexity and
human design productivity [27] . To overcome this design crisis, it is clear that
sophisticated CAD tools and new design methodologies are necessary to help
designers model, simulate, partition and verify complex hardware/software systems.
Over the past several years, many researchers have looked towards the creation of
better design environments integrating powerful tools for system modeling,

simulation, partitioning and verification [44] .

1.1 HDLs and SDLs

Before Moore’s law [48] pushed the elaboration of hardware systems by a single
individual out of the realm of reality, systems were developed in an almost artistic
way by electronic engineers. When systems became overly complex, tools were
created to help teams communicate various aspects of a hardware design [47] . The
first tools available were called Hardware Description Languages (HDLs) and were a

spin-off of programming languages. A good overview of an HDL is [67] :

“In electronics, a hardware description language or HDL is
a standard text-based format for describing either the
behaviour or the structure, or both, of an electronic circuit.
Most HDLs are restricted to describing digital circuits, but
there are exceptions. HDLs have two purposes. First, they are
used to write a model for the expected behaviour of a circuit
before that circuit is designed and built. The model is fed into
a computer program, called a simulator, that allows the
designer to verify that his solution behaves correctly. Second,
they are used to write a detailed description of a circuit that is
fed into another computer program called a logic compiler.
The output of the compiler is used to configure a
programmable logic device that has the desired function.
Often, the HDL code that has been simulated in the first step
is re-used and compiled in the second step.”

The basic difference between an HDL and a traditional imperative programming

language is the presence of a certain number of modeling semantics:

Parallel processing elements (e.g. process)
Timing constraint elements (e.g. clock, time)
Structural decomposition elements (e.g. modules)
Interconnection elements (e.g. signals)

Ports

There exists no formal document that describes the modeling semantics of an HDL

but current examples support the above modeling elements even though there syntax

or name may differ. Figure 1 illustrates some of the above concepts on a circuit

schematic.

Module > ’/._,--.\\ ;
! dXx /
Process > \ |
! Az
—3 ! ! [] it
\ N H
Y L) TT
\\ / T\Jx"’ / ! \\‘-\
Signal —— | > e i y ‘_-\3.
Pot ———= |l

Figure 1 : Simple circuit

Because of the advances in electronic component interconnections, the concept of
HDLs has been extended in recent years with the semantics of communication
‘channels that permit the modeling and abstraction of complex communication

mediums. These new tools are called System-Level Description Languages (SDLs)
[59].

The industry and academics have for several years tried to create better HDLs and
SDLs to aid with the never ending design crisis. One method that has been explored
for the creation of these tools (HDLs and SDLs) is a library-based approach which
consists of taking an existing programming language and adding to it the missing
constructs and semantics for hardware and system design [7] . A second approach is a

standalone one consisting of the simple creation of a new language.

Despite all these efforts, system designers still need new modeling and simulation
solutions. This is mainly due to a mandatory set of requirements for an efficient
modeling and simulation framework which are still not provided by a single existing

environment:

s Easier software components specification and their integration into an overall
Hardware/software system specification [66] ;

= (Clean programming features to enable less error-prone models, easier
specification for complex systems and reuse of such specification for further
designs [62] ;

* Introspection features for easier debugging and analysis of complex systems
[36][22] .

* Possibility of annotating models for different purposes, e.g. directing synthesis
or hooking to verification tools, creating user friendly HDL syntax [50] ;

* Translation to a standard intermediate format to enable the design of CAD
tools independently of the used description languages [40] ;

* Integration to distributed web-based design environment and easy system
documentation to facilitate cooperation between different design groups and
to allow remote processing [14] ;

* Multi-platform and multi-language features for describing and designing the
overall embedded systems composed of heterogeneous components [34] ;

= Easier memory management to accelerate the specification process and to

eliminate an important source of errors [54] .

1.2 Specific Goals

The SystemC [65] modeling environment has been gaining momentum for the past
several years and has become a de facto standard for systems-level modeling.
However, because its underlying implementation is based on C++, its evolution is
rapidly slowing down. We believe that SystemC will have grave difficulties in
keeping up with new environments, which will incorporate many advance system-
level modeling features for operating system and hardware/software system modeling
[44] [4] [3] . The existence of an environment such as SystemC is very important
because it is one of the few good modeling and simulation environments that is “free”
and “open source”. Most current environments are products developed and sold by

big corporation that are demanding high licensing fees.

The objective of this thesis is to propose an environment for system-level design that
(1) provides most of the concepts present in high-level modeling and simulation
solutions, (2) respects all the requirements enumerated above and (3) preserves
comparative performances with existing environments, by using C# and the .Net

Framework.

The mission of our environment is to use the proven environment of SystemC as a
basis for a new solution that will also be “free” and “open source”. Our environment
brings to the hardware/software modeling community a new solution that has all the
benefits of SystemC without having most of its drawbacks. We hope that our solution

will offer designers a good alternative to expensive proprietary solutions.

1.3 Outline of this Document

Chapter 2 gives an overview of the different environments available for the modeling
and simulation of hardware/software systems. It presents a brief introduction of the
new challenges facing system designers today and in the future. It also presents

current software frameworks that might help in solving these new problems.

Chapter 3 presents the .Net Framework and the C# programming languages. It then
goes on to explain the advanced programming features that these two technologies
support which have permitted us to create a new system-level design environment
called ESys.Net.

Chapter 4 highlights the various elements that make up the ESys.Net framework.
They are presented individually, their semantics explained and their uses illustrated.
Many code examples are given to help the reader understand the subtleties of the

environment.

Chapter 5 is entirely dedicated to our simulation kernel, since the major design
differences between SystemC and ESys.Net are in the simulation kernel. This chapter

gives descriptions and compares the design of both environments.

Chapter 6 discusses the advantages and disadvantages of the ESys.Net environment;

some experimental results are presented also.

Finally, chapter 7 summarizes the project and suggests directions for further research.

Chapter 2 State of the Art

The complexity of reality surpasses greatly our capability of synthesis and analysis.
To cope with this inadequacy, we simplify things in order to create models that we
can manipulate and understand. Hardware system design and the new area of
hardware/software system codesign are domains that we definitely cannot cope with
without simplification and abstraction. These domains are plagued by an ever

growing complexity fed by technological advancements and new consumer needs.

To simplify and model these complex systems, hardware description languages have
been used for about 40 years now [12] [6] . They became widely used with the
adoption of VHDL as an IEEE standard in 1987. There are two classes of HDLs.
Standalone HDLs have their own syntax, compilers and analyzers, whereas HDLs
that are in fact libraries are based on existing programming languages such as C++, C
or Java. Each approach has pros and cons as we will illustrate in the following
sections. We will show how recent developments in the software domain, by the
introduction of new frameworks, can help in the domain of hardware/software co-
design. These languages permit the description of systems in a clear and standard

way, permitting the easy exchange of information between people.

2.1 Standalone Languages

This first class of HDLs is composed of languages that were developed from scratch
for the sole purpose of hardware and hardware/software systems modeling. The vast

majority of these were developed by the industry for the industry.

2.1.1 VHDL[31]

The development of VHDL was initiated in 1981 by the United States Department of
Defence to address the hardware life cycle crisis [16] . VHDL was meant (i) to
provide a unified notation for describing electronic systems at various levels of
abstraction, (ii) to be both machine and human readable, (iii) to support the
communication of design data, (iv) to aid the maintenance, modification and
procurement of hardware, and finally (v) to support the development, verification,
synthesis and testing of hardware designs through a tool agnostic description. VHDL
was a purely hardware description language. Early on designers noticed the absence
of software and system primitives such as FIFOs, and system synchronization
mechanisms such as semaphores, locks and shared variables, as well as object
oriented paradigms which would help with design reuse. Also, VHDL was verbose
and not well adapted to describe components which are lower than the gate level.
Gate libraries were generally described using in-house scripts. Test benches were also
generated using special scripts even though VHDL had many useful constructs to
describe test benches. In fact, in some aspects, it is much richer than Verilog or more
recent languages such as SystemC in developing gate level and register transfer level
(RTL) test benches. Except for basic assertion based verification, VHDL did not
provide any other verification capabilities. Some features were very specific to
VHDL, such as the possibility of having metadata-like attributes. Metadata is very
useful for tools that interpret a model either for simulation, verification, test coverage,
test generation, or synthesis. It also has the notion of the separation between the
interface of a component (described by an entity) and its functionality which is
described by one or more architectures. This separation is unique to VHDL; the
community had to wait for recent object-oriented hardware description languages to
find similar capabilities. This separation between the interface and the behaviour was
very useful in design space exploration and to some extent in design reuse. Another
unique feature of VHDL is the concept of resolution functions which allow very well
defined protocols to modify a signal by concurrent processes; this allowed the

description of very high level modeling of interaction between subsystems. In total,

fifteen different IEEE standards around VHDL have been adopted such as VHDL-
AMS [30] for analog design.

2.1.2 Verilog

Verilog was the main competitor of VHDL until the announcement of SystemC in
1999. Even though it appeared in 1985 it became an IEEE standard only in 1995[32] .
It is a less verbose language than VHDL but comes with some limitations such as a
narrow data type set, a resolution function restricted to “wired or” and “wired and”
and no separation between interfaces and behaviour. However, it has better
performances and a well defined foreign interface to hook to other languages.

Currently, VHDL and Verilog are converging more and more in capability [4] .

21.3 SystemVerilog [54]

SystemVerilog, which was adopted as a standard by Accellera in June 2002, is an
extension of Verlog. It can be seen as a stack of components aimed at verification,
design and system modeling. For verification, it provides facilities both for test bench
generation as well as assertions. For the design aspect, it provides many
enhancements to Verilog, such as provision for communication interfaces and an
enriched data type set similar to the C programming language. Since SystemVerilog
is a new product and very few case studies have been published, simulation
performance remains to be seen. Many companies donated different technologies to
this environment. The white paper by S. Bailey [3] provides an excellent comparison
between VHDL, Verilog and SystemVerilog. In that report we note that features
available in VHDL but not in Verilog or vice-versa have been added to
SystemVerilog, such as named events, partially strong typing, records and structures,
hierarchy, reactive processes, interface abstraction, assertions and foreign interfaces,
and system level primitives and mechanisms such as mailboxes, semaphores,
dynamic process creation, etc. Some capabilities of VHDL have been omitted or
only partially implemented such as operator overloading, general resolution

functions, full-fledged attributes, configurations and binding.

2.2 Programming Language-based HDLs

The second class of HDLs is based on an existing language such as C++, C or Java.
Existing programming languages are usually missing basic hardware description
semantics such as concurrent behaviour, timing elements, communications elements
etc.; so this second class of HDLs is usually implemented by either providing a
framework which adds the necessary missing hardware semantics to the base
programming languages or extends the languages with additional syntactic and
semantic constructs — a superset approach. These are, with some exceptions, open
source environments and commercial tools that are either less evolved or targeted to a
specific niche; however, they are very useful in an academic environment. In the

following sections we will describe the characteristics of some illustrative examples.

2.2.1 Handel-C and OCAPI [7]

Some articles have illustrated the advantages of using HDLs based on existing
programming languages [8]. OCAPI is based on C++ and is very efficient at system
level exploration while Handel-C is C-based and can generate efficient designs
translating them to EDIF or VHDL for implementation on FPGAs. The strength of
both environments and their seamless integrations can provide a very strong design

flow from system level to FPGA implementation.

2.2.2 JHDL [5] [28]

JHDL is an object-oriented environment, it uses exclusively object-oriented
constructs of Java for RTL hardware modeling, simulation and efficient
implementation on FPGAs. The environment permits the description of synchronous
digital logic circuit components and connections such as: static cells, Boolean gates,
registers, “parameterizable” modules etc. JHDL was developed as an exploratory
attempt to identify the key features and functionalities that a good FPGA tool needs.
It has been also recently used for Intellectual Property blocks (IP) delivery through

the internet.

10

2.2.3 SpecC [59]

SpecC was developed by the University of California, Irvine (UCI), and first
appeared in 1997. In 1999, the SpecC Technology Open Consortium (STOC) was
founded. As a result, the SpecC language was refined and extended, leading to its
second generation, SpecC 2.0 which was approved by the STOC in December 2002.
The SpecC language is a superset of the ANSI-C programming language. It is a
formal notation intended for the specification and design of digital embedded
systems. SpecC extends C with concepts essential for embedded systems design such
as: behavioural and structural hierarchy, concurrency, communication,
synchronization, state transitions, exception handling and timing. SpecC is one of the
few existing environments that supporting explicit behavioural hierarchies. It focuses
on an IP co-design methodology for modeling and design at the system level.
SystemC channel and communication abstractions were inspired from the pioneer

work done in SpecC.

2.2.4 SystemC [65]

SystemC, announced in September 1999 by OSCI (The Open SystemC Initiative),
was met with much enthusiasm by both industry and academia. It was the first open
source library approach environment based on C++. It is currently very popular for
hardware-software system-level design. It provides all the basic concepts used by
HDLs (e.g. modules, ports, signals, timing, etc.) and more abstract concepts
(interfaces, communication channels, events, etc.). However, most of the features for
software modeling are still missing in SystemC: dynamic process creation, process
control (suspend, resume, kill, etc.), pre-emption, software specific communication
primitives (monitors, semaphore, etc.). Many companies used SystemC to model in a
very efficient way the system aspects of their design. As illustrated in a survey done
by Doulos [17] the use of SystemC is mainly performance modeling, architecture
exploration, and transaction level modeling and hardware-software co-simulation.
The survey also shows that (i) standard HDLs continue to be used for hardware
modeling and synthesis, (ii) a minority of users use SystemC for RTL synthesis and

(111) many companies are interested in operating systems and software scheduling

11

which are not currently available in SystemC 2.0. Given that SystemC 2.0 is in fact a
C++ library it lends itself to the development of very sophisticated test benches and
as shown in [13], SystemC surpasses largely specialized languages such as the E
language or Vera which are meant for verification and test bench development.
SystemC was a good catalyst for new contributions, i.e. transaction level modeling to
deal with the increased complexity of models, software engineering methodologies
for interoperability design reuse [10] , simulation of network topologies [43] , and
functional verification [23] . Finally, it is the first open source HDL for which a
language reference manual has been completed in order to submit it for an IEEE
standard approval. In 2003 the OSCI announced the SystemC Verification Library
(SCV) which added some verification and introspection capabilities to the existing

environment [18] .

2.3 New Challenges in Modeling and Design

Needs have evolved from simply describing hardware at the RTL level to including
communicating subsystems, abstracting communication and buses, and dealing with

low power and interconnects.

Hardware/software systems are becoming a reality and complexity is increasing at an
exponential rate. This rapid growth has pushed many to use third-party IP. Using high
quality third-party IPs permits the reduction of design time while improving overall
quality and facilitating the design of heterogeneous systems. However, IP reuse also

brings different challenges such as:

* Finding effective ways of delivering IPs to customers

* Insuring a sufficient visibility of the IP so that customers may validate custom
models and simulate the complete system containing in-house and IP
components

* Providing the above features while protecting the intellectual property of the

vendor.

Another important revolution in the domain of integrated circuits is the integration of

non-microelectronic elements on a chip such as micro-optical and micro-mechanical

12

components. These complex and heterogeneous systems also produce different
problems to solve at the modeling and simulation level. We should be able to model
and simulate systems expressed using different languages, paradigms, and concems
as well as components described at different levels of abstraction and protection. If
we examine the recent modeling and design environments illustrated by SystemC and
SystemVerilog, we notice that the concemns are: performance of simulation, ease of
programming and debugging. There are also software issues such as operating
systems primitives, multithreading, provision for foreign interfaces and increased
levels of abstraction, as well as verification needs for the integration of components
and the interaction between them. Other concerns which are increasing in importance
are power dissipation and the problems related to the shrinking technology going into
the nanotechnology.

Through the long history of HDLs we notice the influence of parallel and simulation
languages developed in the software domain on the development of HDLs. Verilog
was a simile combination of an earlier HDL and Occam parallel-processing language.
VHDL was also largely influenced by ADA and Verilog by C syntax. We think we
should go a step further to where the hardware modeling will become only one aspect
within a general software framework environment. The large success of existing
HDLs was the possibility to go from an RTL description to a gate level
implementation in a very efficient way. Up until now there have been no convincing
success stories accomplished at higher levels of abstraction. Behavioural synthesis is
still not adopted by the industry, and commercial tools at that level of abstraction
have not been very successful. One success story may be the current transaction level
modeling enabled by the introduction of SystemC. The focus seems to be on the
combination of modeling and verification on one hand, and development reuse,

delivery and integrations of third party IPs.

2.4 Recent Software Frameworks

Even the most recent modeling and design environments such as SystemC and
SystemVerilog have many shortcomings. These are monolingual environments with

limited capabilities of accessing models written in other languages. The error prone

13

programming and the lack of type-safe features in C++ hamper the development of
SystemC. SystemVerilog will not be an open source environment which will be a

hurdle to universities in developing and experimenting with CAD/EDA frameworks.

The .NET framework was announced in 2000, one year after the introduction of
SystemC. In our opinion, it contains features that would have greatly influenced the
language choice for implementing SystemC. Java was not chosen due to its lack of
performance compared to C++, the absence of operator overloading and generic
classes, etc. If we look at the C# programming language [19] introduced with NET,
we note that all these shortcomings have been removed. An excellent comparison of
C#, C++ and Java is given in [2] . It shows how C# takes advantage of the strengths
of Java and C++ and blends them in a very powerful and elegant language. The
performance of C# is also confirmed by different publications [42] . Many features
planned for implementation in SystemC or SystemVerilog are already implemented in
an efficient way in C#, such as automatic garbage collection, safe pointers, software

multithreading, mailboxes, semaphores, monitors, etc.

In contrast to the JAVA environment and its virtual machine aimed only at JAVA,
NET is a multilingual environment [39] [26] , a necessity in the domain of
hardware/software modeling and design. It could be very beneficial to explore the
capabilities of recent frameworks such as .NET in modeling, verifying and designing
hardware/software systems. These frameworks bring many features to be adapted for
hardware/software modeling and design such as: safe simulation of models, including
models created by an unknown or semi-trusted third party, a consistent object-
oriented programming environment whether the model is local or remote [39] [56] ,
increased reuse and multilingual support, and the existence of a published
intermediate format that renders lower level tools independent of higher level
modeling languages. As we can see, all these features can be applied to development
and delivery of IPs, the modeling and simulation of heterogeneous systems as well as

the development or integration of modeling, synthesis and verification tools.

We should also benefit from the characteristics of recent software frameworks that

are nonexistent in SystemC or SystemVerilog, such as the ability to document a

14

model using metadata [50] , which can be accessed by reflection either to specify the
simulation verification or synthesis semantics, the use of reflection to explore a model
for verification, test coverage or refinement, and self-contained documentation using
standards such as XML.

Chapter 3 Advanced Programming

Features with C# and the .Net Framework

With time HDLs are beginning to integrate many features that we have come to
expect of high level programming languages making them much more similar to
software programming languages than hardware modeling languages. By using new
software development tools and leveraging advanced programming features,
improved library-approach HDLs and SDLs can be developed. This section presents
two new software development tools, the .Net Framework and the C# programming
language. The advanced programming features, supported by these two technologies,
which have had the greatest impact on the development of ESys.Net, are also

presented.

3.1 The .NET Framework

Virtual machines, intermediate languages and language independent execution
platforms are not new. They were present with UNCOL in the 1950’s to the JVM in
the 1990°s. Researchers have been fascinated with these concepts because they permit

an alternative path to native compilers that have several benefits [45] :

= Portability: To implement n languages on m platforms, only » + m translators
are needed instead of n * m translators.

* Compactness: Source code is usually much more compact when translated to
an intermediate format.

* Efficiency: By delaying the commitment to a specific native platform as much
as possible, we can make optimal use of the knowledge of the underlying

machine, or even adapt to the dynamic behaviour of the program.

16

= Security: High-level intermediate code is more amenable to deployment and
runtime enforcement of security and typing constraints than low level binaries

= Interoperability: By sharing a common type system and high-level execution
environment, interoperability between different languages becomes easier
than binary interoperability. Easy interoperability is a prerequisite for multi-
language library design and software component reuse.

= Flexibility: Combining high-level intermediate code with metadata enables the
construction of (type safe) meta-programming concepts such as reflection,

dynamic code generation etc.

The .NET core represented by the CLI (Common Language Infrastructure) is a new
virtual machine execution platform which was standardized in December 2001 by
ECMA and in April 2003 by ISO [20] .

3.1.1 General Presentation of .NET Framework [49]

The NET Framework is a new platform that simplifies component-based application
development for the highly distributed Internet environment. What sets the NET
framework apart from its rivals (such as the Java platform) is that its core, the CLI,
was designed from the ground up to be a multi-language environment [26] [45] . At
the center of the Common Language Infrastructure (CLI) is a unified type system, the
Common Type System (CTS), and a Common Intermediate Language (CIL), which
supports high-level notions (e.g. classes) and which is platform and programming
language independent. The CTS establishes a framework enabling cross-language

integration, type safety, and high performance code execution.
The CLI has four main components:

The Common Type System. The Common Type System (CTS) provides a rich type
system that supports the types and operations found in many programming language
families. It is intended to support the complete implementation of a wide range of

programming languages

Metadata. The CLI uses metadata to describe and reference the types defined by the

Common Type System. Metadata is stored (“persisted”) in a way that is independent

17

of any particular programming language. Thus, metadata provides a common
interchange mechanism for use between tools that manipulate programs (compilers,
debuggers, etc.). Metadata is also used to augment the CIL representation of a source

code.

The Common Language Specification. The Common Language Specification
(CLS) is an agreement between language designers and framework (class library)
designers. It specifies a subset of the CTS Type System and a set of usage
conventions. Languages provide their users the greatest ability to access frameworks
by implementing at least those parts of the CTS that are part of the CLS. Similarly,
frameworks will be most widely used if their publicly exposed aspects (classes,
interfaces, methods, fields, etc.) use only types that are part of the CLS and adhere to

the CLS conventions.

The Virtual Execution System. The Virtual Execution System (VES) implements
and enforces the CTS model. The VES is responsible for loading and running
programs written in CIL. It provides the services needed to execute managed code
and data, ie. automatic memory management (Garbage Collection), thread
management, metadata management etc. The VES also manages the connection at
runtime of separately generated code modules through the use of metadata (late
binding).

The CLI also gives the specification number of class libraries providing important
functionalities such as thread interaction and reflection. It also provides XML [21]

data manipulation, text management, collection functionality, web connectivity, etc.

Alongside the CLI core, .NET Framework presents a set of classes that add
supplementary features such as web services, native and web forms, transaction,

scalability and remote services, etc.

3.2 The C# Language

The C# language is a simple, modern, general-purpose object-oriented programming

language that has become an ECMA and ISO standard [19] . It was intended for

18

developing software components suitable for deployment in distributed environments.
Although most C# implementation (Microsoft , Xixiam , DotGNU [46] [15] [55])
used the CLI standard for its library and runtime support, other implementations of
C# need not, provided they support an alternate way of getting at the minimum CLI
features required by this C# standard.

In order to give the optimum blend of simplicity, expressiveness, and performance,
C# supports many software engineering principles such as strong type checking, array
bounds checking, detection of attempts to use uninitialized variables, and automatic

garbage collection [2] .

C# is intended for writing applications for both hosted and embedded systems ranging
from the very large that use sophisticated operating systems, down to the very small
having dedicated functions. Although C# applications are intended to be economical
with regards to memory and processing power requirements, the language was not

intended to compete directly on performance and size with C or assembly language.

3.3 Advanced Programming Features

Since the C# language relies on a runtime with the CLI’s features; it inherits
interesting characteristics such as a unified type system, thread and synchronization
support, and automatic memory management just to name a few. It is sometimes hard
to separate the C# language and the CLI because they are quite symbiotic so .Net/C#

or CLI/C# will sometimes be used throughout this document.

There are three advanced programming features that Net/C# support that have
considerable impact on software design: reflectivity, attribute programming and

events/delegates.

3.3.1 Introspection and Reflectivity[22] [41]

A program that can explicitly see, understand and modify its own structure is said to
have introspective capabilities. Reflectivity is a property that a program may possess
that permits its structure to be accessible to itself. The information that is accessible

through introspection is called meta-information or meta-data. Meta-data permits the

19

creation of simple but powerful tools that help the design and development of
software such as debuggers, class browsers, object inspectors and interpreters. There
exist many languages such as Java and C# that are said to be reflective because they
provide meta-information to programs written with them. Most reflective languages
implement the reflection property by the means of a supporting run-time like the Java
JVM or the .Net CLR, in this way separating the meta-information from the base

program.

These concepts are illustrated in the reflection capabilities of the C# programming
language where it is possible to query the CLI to know the structure of an object. To
such a query, the CLI returns an object that is an instance of a metaclass named Type
that fully describes the type. Table I gives a list of the basic classes that make

metadata accessible to a program.

Table1: Metadata Classes

Class Description

Type Represents type declarations: class types, interface types, array
types, value types, and enumeration types.

Assembly Defines an Assembly, which is a reusable, versionable, and self-
describing building block of a CLR application.

MethodInfo Discovers the attributes of a method and provides access to

method metadata.

Parameterlnfo | Discovers the attributes of a parameter and provides access to
parameter metadata.

FieldInfo Discovers the attributes of a field and provides access to field
metadata.

Propertylnfo Discovers the attributes of a property and provides access to
property metadata.

EventInfo Discovers the attributes of an event and provides access to event
metadata.

Constructorinfo | Discovers the attributes of a class constructor and provides
access to constructor metadata.

MemberInfo Discovers the attributes of a member and provides access to
member metadata.

Code example 1 exemplifies the use of some basic introspection classes to query a

class about its members (fields, properties, constructors, methods, etc.)

public class Typelntrospection({
public static void Main () {
Type theType = Type.GetType (“Assembly”);
MemberInfo[] mbrInfoArray = theType.GetMembers();
foreach (MemberInfo member in mbrInfoArry)
Console.WriteLine(™{0} is a {1}”, member,
brInfo.MemberType);}}

SN o W N R

Code example 1: Type Introspection
Excerpt of the ouput:

System.String s localFilePrefix is a Field
Boolean IsDefined(System.Type) is a Method
Void .ctor() is a Constructor

System.String CodeBase is a Property

20

In line 3 we get a reference to the “Assembly” type. Line 4 retrieves all the members

that are declared in the type. The rest of the code iterates through the members and

prints them to the standard output.

Here 1s a code example that shows the true power of introspection and reflectivity.

First, we dynamically discover and change the value of a private field, and then we

dynamically discover and invoke an object’s method.

1. public class MyClass/{

2. private string myString=“01ld value”;

3. public int MyStringLength (String inputString) {

4. return inputString.Length ;}}

5.

6. public class FieldInfo_ SetValuef{

7. public static void Main ()} {

8. MyClass myObject = new MyClass();

9. Type myType = Type.GetType (“MyClass”);

10. FieldInfo myFieldInfo = myType.GetField (*myString”,
11. BindingFlags.NonPublic | BindingFlags.Instance);
12. Console.WriteLine (“"\nField value of 'myString': {0}”,
13. myFieldInfo.GetValue(myObject));

14. myFieldInfo.SetValue(myObject, “New value”,

15. BindingFlags.Default, null , null);

16. Console.WritelLine(“Field value of 'mystring' : {0}”,
17. myFieldInfo.GetValue(myObject)):

18. Object theObj = Activator.Createlnstance (myType);

19. Type[] paramTypes = new Type[l];

20. paramTypes[0] = Type.GetType(“System.String”);

21

21. MethodInfo myMethod = myType.GetMethod

22. (“MyStringLength”, paramTypes) ;

23. ParameterInfo[] pi = myMethod.GetParameters();
24. Type returnType = myMethod.ReturnType;

25. Conscle.WriteLine(“The parameter type: {0}”,
26. pi[0] .ParameterType);

27. Object[] parameters = new Object[1l];

28. parameters{0] = “Hello”;

29. Object returnval = myMethod.Invoke (theObj,parameters);
30. int val = (int)returnval;

31. Console.WriteLine(val);}}

Code example 2: Value Modification with reflection

Excerpt of the ouput:

The parameter type: System.String
The return type: System.Int32

Field value of ‘myString’: Old value
Field value of ‘myString’: New value

Lines 10-11 show how to get a reference to the declaration of a private field by using
the field’s name. At line 13, we retrieve the value of the field for a particular object.
Lines 14-15 demonstrate how to modify the value of the field for a particular object.
Line 18 uses a static method of the Activator class to create an instance of a type.
Lines 23-25 demonstrate how to discover the various aspects of a dynamically
discovered class method. Lines 27-28 prepare the necessary parameters to make the
dynamic call to the method and line 29 makes the call. This code fragment

demonstrates the raw reflective powers that are missing in C++.

3.3.2 Attribute Programming[50] [41]

Both the C# and the CLI standards defined a method for adding declarative
information (metadata) to runtime entities. Since the .Net Framework has at its core
the CLI, it also has metadata support. The mechanism through which metadata may
be added to a program is called attribute programming. Attributes can be added to all
the elements of a program except the body of properties and methods. It is even
possible to add declarative information to the assembly, which is a unit of deployment

that is similar to an .exe or .dll file on the Windows platform.

22

As mentioned before, attributes in .Net may be used to add extra information about
elements in a program but they also provide an elegant, consistent approach to adding
declarative information to runtime entities that permit a new way of designing
software. The mechanism to retrieve these attributes (metadata) at runtime has also
been standardized, permitting software components developed by different teams or
even companies to interact and discover each other through metadata. Metadata may
even be used to control how the program interacts with different runtime entities. It is

this capability that we exploit later in this thesis.

The following is an example of a possible attribute that could be used to tag a class
with hardware type information. We give an example of a class tagged with some

metadata and we recover the metadata using introspection.

1. [HardwareType (“CPU”)]

2. public class MyProcessor{

3. public string technology= “FPGA”;}

4.

5. public class MetadatalInspecter{

6. public static void Main{) {

7. MyProcessor obj = new MyProcessor ();

8. Type hardwaretype = typeof (HardwareTypeAttribute)

9. Type type = obj.GetTypel):;

10. Object[] attributes =

11. type.GetCustomAttributes (hardwaretype, false)

12. foreach (Object attribute in attributes) {

13. HardwareTypeAttribute ht = attribute

14. as HardwareTypeAttribute;

15. Console.Writeline (“Hardware Type:{0}”, ht.type);}}}
Code example 3: Attribute programming example

Excerpt of the ouput:

Hardware Type: CPU

The important lines are 10 and 11 which show how to retrieve custom metadata from

a type object.

23

3.3.3 Delegates

Callbacks are an important concept in the implementation of event handling. Here is a

good informal definition for the concept of a callback:

A scheme used in event-driven programs where the program
registers a subroutine (a "callback handler") to handle a
certain event. The program does not call the handler directly
but when the event occurs, the run-time system calls the
handler, usually passing it arguments to describe the event.
[29]

Most modern programming languages have constructs that permit the implementation
of callbacks such as function pointers in C++ and interfaces in Java [2] . The .Net
Framework and C# use delegates to address event handling. The concept of delegates
improves upon function pointers by being object-oriented and type-safe and improves
upon interfaces by allowing the invocation of a method without the need for inner
class adapters. Also, delegates are inherently multicasting — a delegate contains a list
of bounded methods that are invoked in sequence when the delegate is invoked.
Another interesting difference between a delegate and a function pointer is that the
delegate may contain an instance method in its invocation list, not only a static
method as with function pointers, because the delegate keeps the information of the

object that the method should be called on.

There are three steps in defining and using delegates: declaration, instantiation, and

invocation.

Delegates are declared using delegate declaration syntax.

1. delegate void MyDelegate();
The example declares a delegate named MyDelegate that takes no arguments and

returns no result,

Delegates are instantiated like all other object-oriented constructs.

1. class Test/{

2 static void F() {

3. System.Console.WriteLine (“Test.F"”) ;|
4

24

5. static void Main{) {
6. MyDelegate d = new MyDelegate (F);
7. d();}} // delegate invocation

Code example 4: Simple delegate example

The example declares a variable of type MyDelegate and then instantiates it. The

delegate is then invoked.

1. class Test{

2. static void F{() {

3. System.Console.WriteLine (“*Test.F”);}

4.

5. static void G{() {

6. System.Console.WriteLine (“Test.G"”);}

7.

8. static void Main() {

9. MyDelegate d = new MyDelegate(F); //static binding of F
10. d += New MyDelegate(G) //dynamic binding of G
11. d();}}// delegate invocation

Code example S: Delegate example

In the above example, when the delegate is invoked, both the F and G methods are

called in the sequence in which they were bound to the delegate.

C# has added a key to add event handling semantics to a class field that is a delegate
type: event. A delegate qualified with the event keyword has no effect on the field
from inside the class or class instance’s scope. From outside the scope, however, the
field may not be invoked, the field can only be used on the left-hand side of the +=
and —= operators. The += operator adds a handler for the event, and the -= operator
removes a handler for the event.

. public delegate void DataNotifyHandler (object sender,
System.EventArgs e);

public class DataProducer(

1
2
3
4
5. public event DataNotifyHandler notify;}
6
7. public class DataConsumer|

8

9 void DataReady(object sender, EventArgs e) {
10. Console.WriteLine (“Data is ready!”);}}

11.

25

12. public class App{

13.

14. static public wvoid Main() {

15. DataProducer prod = new DataProducer();

16. DataConsumer com = new DataComsumer();

17. prod.notify+= new DataNofityHandler (com.DataReady) ;
18. }

Code example 6: Event keyword example

The above example shows a bDataConsumer class that adds pataReady as an event
handler for the netify event of a DataProducer class which is declared with the
event keyword. This example shows how a simple and naive way of synchronizing a

producer and consumer.

3.3.4 Delegates and Reflectivity

A powerfull combination is the use of reflection in collaboration with delegates.
Compared to most language .Net/C# permits methods to be bound to a delegate at
runtime. For example, in C++, the name of the method that is bound to a function
pointer must be known at compile time, but in .Net/C# it is possible to create a
delegate type object with a static method of the Delegate class. The method takes as
parameters an object and the name of the method which should be bound to the

created delegate.

With reflectivity, it is possible at runtime to discover the names of the various
methods that an object supports, so it is possible to dynamically discover an object’s

method and bind it to a delegate.

The example below illustrates this flexibility:

1. public delegate void myMethodDelegate();
2. public class MyClass{

3 static public void Hello() {

4 Console.WritelLine (“Hello”);}

5. public void GoodMorning({) {

6 Console.WriteLine (“Good Morning”) ;}
7 public void Bye () {

8 Console.WritelLine (“Bye”);}}

9

10. public class MainApp|

26

11. static event myMethodDelegate myDelegate;

12. static public void Main({() {

13. MyClass obj = new MyClass();

14. Type objType = obj.GetType();

15. Type myMethodDelegateType = typeof (myMethodDelegate);

1s6. foreach (MethodInfo method in

17. objType.GetMethods (BindingFlags.DeclaredOnly |

18. BindingFlags.Static |

19. BindingFlags.Instance |

20. BindingFlags.Public)) {

21. if (method.GetParameters () .Length == 0 &

22. method.ReturnType == typeof (void))

23. if (method.IsStatic)

24. myDelegate+= (myMethodDelegate)Delegate.CreateDelegate
25, (myMethodDelegateType, method) ;
26. else

27. myDelegate+= (myMethodDelegate)Delegate.CreateDelegate
28. (myMethodDelegateType, obj,method.Name) ;
29. }

30. if (myDelegate!=null)

31. myDelegate();}}

Code example 7: Delegates and reflection

This example iterates through all the static and instance methods that are declared
public of an object (obj) of type MyClass. Each method is verified for two conditions:
no formal arguments and a void retumn type._ If the method fulfils the two conditions it
is then bound to a delegate object (myDelegate). Static and instance methods of an
object are bound dynamically to a delegate in different ways. Line 23-25 show how to
bind a static method. Lines 26-28 show how to bind an instance method. Line 30-31
test the delegates in order to discover if it has been initialized. If it has a value other

than null it is invoked.

The core of our environment makes use of an algorithm similar to code example 7,
however, we incorporate the use of attributes to selectively filter the methods.
Dynamic method discovery and delegate creation are useful because they enable a
simple and elegant solution for implementing entry points in a simulation kernel for
third-party tools. We also use them to dynamically create the processes of our

simulation model (see Chap 5).

Chapter 4 ESys.Net

After struggling with the downfalls of SystemC, we looked for another alternative
that would enable us to model systems in a simple effective manner and that would
allow us to explore different types of CAD and EDA tools for partition, verification
and synthesis. After looking at many environments and languages we stumbled cross
the C# language and the .Net Framework. We immediately noticed that C# and .Net
brought together several important features from various existing solutions i.e. Java,
C++, ML, etc. and brought several new features that would probably enable the
development of a new environment for system-level design based on the previous

work of SystemC.

This section describes the fruit of our labor: Embedded Systems with .NET, a new
system-level design environment based on SystemC. ESys.Net is meant to be an
evolution of SystemC by offering the same modeling capabilities but in a more
elegant package. ESys.Net also innovates on SystemC by using a better underlying
programming language which permits it to inherit operating system primitives, a rich

software component library for rapid tool development and powerful runtime.

The next section will present briefly with the aid of an example the core elements of

ESys.Net. These elements will then be explained in depth in subsequent sections.

41 A Simple Example

The best way to present a new tool is with an example, here is a simple example

called “MyFirstSystem” that we will use to present our environment.

Here is a pictorial representation of MyFirstSystem.

28

ModuleB |
ModuleA.
gent _ |
System\ /’t %_4’\// _ sig3 !
(clock) —-—>& sigl | Adding J_ testbench
~ — process
N [Mede .

generator

Figure 2 : My First System

“MyFirstSystem” is a model for a simple synchronous hardware component that is
being tested with a testbench. The hardware component, named “generator”,
generates an integer on its output port on each positive edge of the main system clock.
When a new value is generated by the hardware component, the testbench is notified
of the new value by the “generator”. The testbench then reads the new value from its

input port and then prints it out.

Like most real hardware components, the “generator” is composed of sub-
components. These sub-components are responsible for generating an integer value
on each positive edge of the main system clock which is then added together by a

computation process in the encapsulating component.

The following code represents the blueprint for the two sub-components (genl and

gen2):

. public class ModuleA : BaseModule{
public Clock clk;
public outInt porta;

[Process]
[EventList (“posedge”, “clk”)}]
public void Gen () {

1

2

3

4

5. public ModuleA(): base () {}
6

7

8

9.

10. while (true) {

29

11. for(int i=0;0<100;i++) {
12. porta.Value=i;
13. Wait ();111}}

Code example 8: ModuleA blueprint

Code example 8 declares the specification for a component that has one input port,
clk and one output port, porta. The input is used to drive the component with a clock
signal. The output is used to transmit an integer value that is generated by the Gen
method. Hardware elements are concurrent by nature, they all compute in parallel. To
indicate that the Gen method represents a computation that is concurrent, which we
call a process, we tagged the method with a Process attribute. All methods tagged
with the Process attribute execute concurrently. The EventList attribute indicates that

the Gen method is sensitive to the positive edge (posedge) of the clk input.

The role of the EventList tag is to indicate an association between a process and a
triggering object which is implemented with the Event class that is defined in our
environment. As its name implies, the Event class represents an event that may occur
during the simulation of the model. When an event is triggered, the processes that are
associated to an event are executed. In the above example, the clk field owns an event
called posedge — that represents the event of a positive edge-, when the clock

represented by clk field generates a positive edge, it triggers it posedge event.

The Wait method call in the Gen method indicates that the execution should stop at

that point and then resume when an event on its triggers list occurs.

1. public class ModuleB : BaseModule ({
2.

3. public inInt porta;

4. public Event syn event;

5.

6. public ModulB(): base() {}

7.

8. [Process]

9. public void Run{) {

10. while (true) {

11. Wait (syn_event);

12. Console.WriteLine (porta.Value);}}}

Code example 9: ModuleB blueprint

30

This code fragment represents the blueprint of the testbench module. It only has an
input port porta. Its Run method has been tagged with a Process attribute so it will
run concurrently with the Gen methods of the genl and gen2 sub-components. What
1s distinct about this module is that the method indicated to become a process does
not have an EventList attribute. This is not a problem, before the simulation starts, all
methods that are processes that do not have an event list are executed once. The Wait
method call with an event as an argument within the Run method indicates that the

method will stop at this point and wait until the event is triggered.

1. public class MyModule : BaseModule {
2. public outInt porta;

3. public Clock clk;

4. public Event syn_event = new Event();
5.

6. ModuleA genl = new ModuleA();

7. ModuleA gen2 = new ModuleA();

8. IntSignal sigl = new IntSignal():

9. IntSignal sig2 = new IntSignal{():;
10.

11. public MyModule(): base () {}

12.

13. [PMethodl}

14. [EventList(“sensitive”,“sigl”,“sig2”)]
15. public void Add() {

1e6. porta.Value = sigl.Value + sig2.Value;
17. syn_event.Notify(0);}

18.

19. public override void BindingPhase () {
20. genl.clk = clk;

21. gen2.clk = clk;}}

22,

Code example 10: MpyModule blueprint

This code fragment is the blueprint for the main module called “generator”. It has an
input for a clock signal and an output for an integer value. It also contains two sub-
components of type ModuleA — the blueprint presented earlier-, two signals used to
connect the sub-components together and an event instance that will be used to notify
the testbench when the “generator” generates a new value. The component has a

method that is tagged with the PMethod attribute. This indicates that the method

31

should be considered as a concurrent process like a method that is tagged with
Process. The difference between a method tagged with PMethod and Process is in
their simulation implementation. A method tagged with a Process attribute keeps its
state between Wait method calls. A method tagged with a PMethod tagged cannot
call the Wait method, it is executed like a normal method call so the state of variables

declared in the body of the method are not kept between execution.

The EventList of the Add method indicates that the method is sensitive to the two
internal signals (sigl and sig2) that are used to communicate with the sub-
components. Each signal owns an event called sensitive. A signal triggers its
sensitive event when a new value that is different from its former value is written to
the signal. The Notify method call in the 4dd method on the syn_event event causes
the event to be triggered which causes the testbench module’s Run method to be

awaken and executed.

The last method in the “generator” component is called BindingPhase. 1t is invoked
before the simulation starts and is used to propagate signals throughout a module
hierarchy for binding purposes. Binding is necessary to connect a signal to a port such

as the clk signal being bound to the clk ports of the two sub-components.

. public sealed class MyFirstSystem:SystemModel {

1

2

3 TopModule top = new TopModule();
4. ModuleB testbench = new ModuleB() ;
5. Clock clk = new Clock(“clockl”,4);
6 IntSignal sig3 = new IntSignal{():;
7

8

9

public MyFirstSystem (ISystemManager manager): base (manager) {
top.clk = clk;

10. top.porta = sig3;
11. testbench.porta = sig3;
12, testbench.syn _event = top.syn event;}}

Code example 11: MyFirstSystem
The overall “MyFirstSystem” system is defined by creating a class that inherits from
SystemModel. This class is used to encapsulate a system and is the entry point for the

simulator to extract the model to be simulated. In this class we instantiate the main

32

module, the system clock, a signal and the testbench. The elements are then
connected together, sig3 is connected to the main module and the testbench, and the

main module’s syn_event event is connected to the testbench.

To execute the simulation, we need to create an instance of our model and an instance
of a simulator; then we must bind the two together and start the simulator. Here is the

code:
public class MyApp{

public static wvoid Main{() {
Simulator sim = new Simulator():

sim.sysm = sysModel;
sim.Run(50) ;

1
2
3
4
5. MyFirstSystem sysModel = new MyFirstSystem (sim);
6
7
8 }

9

Code example 12: MyApp

Like Java, the execution entry point for a C# application is a public static method
called Main. The 50 passed in the Run method of the sim instance is the number of
time units that must be simulated before stopping. The other sections of this chapter
will explain in more details each of the modeling concepts that were briefly presented

in this example.

4.2 Modules and Module Hierarchies

As time passes, design problems are not becoming simpler, they are becoming larger
and ever more complex. Luckily, one of the oldest approaches to complex problem
solving is still alive and well: divide and conquer. The basic concept of subdivision in
ESys.Net is a user defined module. Modules are like black boxes, we use them by
connecting them together without knowing how they work. So a simple and informal
definition of a module could be: an entity that encapsulates a service or a
functionality that an end user may access through its user interface. The word
interface, as used here, simply means the outer wrapper of the module that is
available to the end user, for example the touch pad of a microwave is part of a user

interface. By breaking down a complex problem into simpler ones, implementing

33

those simpler problems into modules and them encapsulating connected modules into
higher level modules, we can create a hierarchy of modules that is simple to manage,

to understand and more importantly solves a complex problem.

The power of abstraction that modules permit is very important. Since an end-user
only relies on the interface of a module and not the internal workings of it, a systems
designer may interchange, in a plug-and-play fashion, modules with the same
interface to quickly modify his design. From the perspective of a module designer,
the abstraction of implementation permits the designer to constantly upgrade the
internal workings of his design without affecting the rest of the system that his

module may be part of.

Complex systems are very difficult to model directly, so we usually partition them
into simpler sub-systems that we can easily model and then recombine to form
complete system. ESys.Net, like most existing HDLs, proposes the partitioning of
complex systems into logical blocks possessing inputs, outputs and processing

capacities.
There are two parts involved in the use of a user defined module:

1. The declaration of the module;

2. The instantiation of the module in the context of a system.

4.2.1 Module Declaration

Declaring a module is like creating a blueprint of a chip. A module declaration
contains the blueprint of its interface (e.g. ports) and its inner workings (sub-
components and processes).

. public class MyModule: BaseModule{

\\ Declared interface and inner components shouldd go here
\\ but this is a simple portess ? component

1
2
3
4
5. \\ A simple constructor for anonymous components
6 public MyModule () {}

7 \\ Another simple construtor

8 public MyModule (string name): base(name) {}

9

\\ Declared inter workings should comme here

34

10. \\ but this component does not do anything.}
Code example 13: General module declaration
Since ESys.Net relies on an object-oriented framework, all user defined modules
must inherit from the BaseModule class and implement the necessary constructors. If
the constructor on line 3 is used when instantiating the user defined module, a default
identification name will be generated for the module instance. If the constructor on
line 4 is used, the programmer must supply the module identification name when
instantiating the module. All module instance identification names in the context of a
module hierarchy level must be unique, meaning that modules that are siblings of the

same parent in the module hierarchy tree must have unique identification names.

4.2.2 Module Instancing

As a chip blueprint is only a design on paper, a user module declaration, which is a
user defined class declaration, is the same. As with all statically type object-oriented
programming languages, we must declare a variable of the same type as the need

user-defined module and initialize the declared variable by calling a constructor.

1. MyModule module a
2. MyModule module b

new MyModule (“*modulea”);

new MyModule () ;

Code example 14: Module instantiation
The code on line 1 initializes a reference variable called module_a by instantiating an
object of type MyModule and assigns the instance identification name “modulea” to
module_a. The code on line 2 initializes a reference variable called module_b by
instantiating an object of type MyModule and assigns a generated instance

identification name to module_b.

4 2.3 Module Hierarchies

As an IC may 1tself contain other sub-IC components, modules may themselves
contain instances of other modules. Also, as a sub-IC component is not visible from
outside of its containing 1C; inner modules are usually not accessible from outside

their container module either. We can see that by recursively creating modules by

35

composition, we obtain a hierarchy or tree of modules. Module hierarchies are

obtained by instancing modules within module declarations.

public class ModuleA: BaseModule{
\\ Declared interface and inner components shouldd go here
\\ but this is simple portess component

1.
2.
3.
4.
5. \\ A simple construtor for anonymous components
6. public MyModule() {}

7. \\ Another simple constructor

8. public MyModule (string name): base(name) {}

9. \\ Declared inter workings should comme here

10. \\ but this component does not do anything.}

11.

12. public class ModuleB: BaseModule/{

13. \\ These are sub-components instantiation

14. ModuleA modl = new ModuleA (“modl”)

15. ModuleA mod2 = new ModuleA (“mod2”)

16. \\ A simple constructor for anonymous components
17. public ModuleB(): base{(){}

18. \\ Another simple constructor

19. public ModuleB(string name): base({}

20. \\ declared inter workings should comme here

21. \\But this component does not do anything.}

Code example 15: Module hierarchy
Sub-modules should be declared private because they should be semantically hidden
within the scope of their parent module — not accessible from outside their containing
module. The keyword private was omitted in the above code because by default, C#’s

variables are private and not public like Java.

4.2.4 Module Interfaces

A module’s interface is the only thing exposed to the outside world; the basic element
used to make a module’s interface is a port. A port represents an entry or exit point

for data moving in or out of the module.

36

A L, 1
o ' Sum
—
B
e Full Adder
Carry in Carry out
—P —

Figure 3 : Full Adder Module Interface Example

Figure 3 shows a FullAdder module with a number of ports. The ports on the left are
input ports or in/out ports while the ports on the right are output ports. Each port has

an identification name.

The above module and its interface could be declared as follows:

1. public class Fifo: BaseModule({
2. public inBool A;

3. public inBool B;

4. public inBool CarrylIn;

5.

6. public outBool Sum;

7. public outBool CarryQOut;

8.

9. public FullAdder (): base(){}
10. public FullAdder (string name): base (name) {}
11. }

Code example 16: FIFO declaration
4.2.5 Modules Inner-Workings

The semantics of modules and interfaces as mentioned above permits the partitioning

of a system into logical blocks but what is important above all is the processing

capabilities of the block.

The logical unit of processing in ESys.Net is a process. Since hardware by nature is
inherently very parallel and that one of our main objectives is to simulate hardware
components, a process 1s simulated in parallel with all the other processes that
makeup the simulated model. A basic process is simply declared by creating a

standard private class method that takes no parameters, returns nothing and is tagged

37

with a Process and EventList attribute. Since a process is basically a class method, it
has access to class variables, instance variables and other class methods. Also, since
the ports of a module are instance variables, processes have access to them and it is
by this mechanism that a module can read from the input ports of a module and write

on the output of the module.

Here is an example of a simple one bit adder:

A —
B > Sum
—
B
—_— —— P Full Adder
. Carry out
Ca n
amym L .

Figure 4 : One Bit Adder Example

1. public class FullAdder: BaseModule({

2. public inBool a;

3. public inBool b;

4. public inBool carryln;

5. public outBool sum;

6. public outBool carryOut;

7. public FullAdder (): base(){}

8. public FullAdder (string name): base({}

9.

10.

11. [Process]

12. [Eventlist(“sensitive”, “a”, “b”, “carryIn”)]
13. private void Add{() {

14. bool tmp = (a.value ~ b.value);

15. sum = tmp ~ carryIn.value;

16. carryOut = (a.value & b.value) | (tmp & carryIn.value);
17. 1}

18. }

Code example 17: Adder implementation
Lines 2 to 6 declare the Adder’s interfaces. Line 12 to 16 declares the Adder’s add
process. The tag on line 10 is associated with the method that follows and indicates

that it 1s a process of type process method (Section 4.2). The tag on line 11 indicates

38

the process is sensitive to ports a, b, and carryIn — meaning that the process should
be called when there is a value written on ports a, b, ¢. Since ESys.Net is based on an
event-driven simulation, it is necessary to indicate when a process should be called; if
the inputs of a process don’t change, the outputs should not change either so there is

no use in executing the process for nothing.

4.3 Processes

Systems are all about processing data. Even with elegant solutions for system
decomposition or abstracting, system modeling solutions are useless without solid
data processing constructs. The logical unit of data processing in ESys.Net is a
process. From a semantics point of view, processes are non hierarchical entities that
transform data in parallel. Since a system in ESys.Net is partitioned into black box
components that take data as inputs and produce data as outputs, a process is always

contained within a module.

A process is created by tagging a module’s private method with a custom attribute
predefined in our environment. When a model is discovered and analyzed before
simulation, the ESys.Net kernel detects via reflexivity all private methods that are
tagged with the necessary attributes and registers those methods to be managed by the

kernel.

As previously explained, since ESys.Net is based on an event-driven simulation
kernel, all the actions to be performed are linked to an event. When the event is
triggered the associated actions are performed in parallel. Since processes represent
the actions in our environment, they are all associated to events in a one-to-many
fashion. We will see that there are two kinds of process-event associations: static and

dynamic.

4.3.1 Process Declaration and Registration

In order to be eligible to become a process, a class method must have a private scope,
have no formal arguments and return nothing. There are two kinds of processes in

ESys.Net, which will be explained later, process methods and parallel methods

39

\\T/

Parallel Method Process Method

Figure 5 : Process Sub-Types

In order to indicate that a declared method should be considered by the kernel to be a
process method or parallel method, the method is tagged with the Process or the

PMethod attribute respectively.

. public class ModuleA : BaseModule {

. public ModuleA(): base{() {}
public ModuleA(String name): base (name) {}

{Process]

1
2
3
4.
5.
6
7. private void aProcessMethod() {}
8

9

[PMethod]
10. private void aParallelMethod{() {}
11. }

Code example 18: Process method and Parallel method declaration

4.3.2 Static and Dynamic Process-Event Association

A process can be bound to an event in one of two ways: statically and dynamically.
Semantically, a static link between a process and an event means that the process-
event association holds globally for the entire simulation; whereas a dynamic
association holds only for a certain period of time. Also, a process’ static association
list 1s declared with the process’ declaration, whereas a process’ dynamic association
list changes throughout the execution of the simulation. In ESys.Net a process’
dynamic association list has precedence over its static association list - if a process

has at a certain point in time a non empty dynamic association list, the process will

40

not be triggered by events in its static association list until the process’ dynamic list is

empty.
4.3.3 Process Static Sensitivity

A process’ static event association list is created using the EventList tag on a method
already tagged with a Process or PMethod tag. The EventList tag takes as its first
argument the name of an event that we want to associate with the process, and has as
remaining arguments an unlimited number of entities (signals, channels, etc...) which

are owners of an event that has the specified name in the first argument.

1. public class ModuleA : BaseModule ({

2. public IntSignal sigl = new IntSignal();
3. public IntSignal sig2 = new IntSignal{();
1.

5. public ModuleA(): base(){}

6. public ModuleA(String name): base (name) {}
7.

8.

9. [Process]

10. [Eventlist(“sensitive”,”sigl”,”sig2”)]}
11. private void aProcess() {

12.

13. }

Code example 19: Static Sensitivity

The above example states that the module has a process method that must be
statically associated with two events which have the name “sensitive”, one owned by

sigl and the other owned by sig2.

If the process method must be associated with events of different names, multiple

EventList tags must be used for each event name.

. public class ModuleA : BaseModule {

. public IntSignal sigl new IntSignal (“sigl”)

. private Event myEvent new Event ():
. public ModuleA(): base(){}

1
2
3
4
5. public ModuleA (String name): base (name) {}
6
7
8

[Process]
[EventList (“sensitive”,”sigl”)]

41

9. [Eventlist(“myEvent”,”this”)]
10. private void aProcess() {
11.

12. }

Code example 20: Static Sensitivity with multiple events names
The above example states that the module has a process method that must be
statically associated with two events, one owned by sigl with the name “sensitive”
and the other named “myEvent” owned by the current module (the owner name this is

a keyword meaning the current module).

4.3.4 Parallel Method Process

A parallel method (pmethod) process is executed by the ESys.Net kernel as a
synchronous method invocation, so upon completion it returns control to the
ESys.Net kernel. Because of its implementation, a pmethod does not maintain the
state of its local variables and it is impossible to explicitly suspend the pmethod’s
execution — it may not have calls to the Wait method or have an infinite loop. If the
state of the local variables must be kept between pmethod invocations, the user must

explicitly manage them using class variables.

A pmethod’s dynamic sensitivity list is created using the NextTrigger method with
one or more event objects as arguments. The NextTrigger method may be called in
the body of the pmethod process code, or it may be called in a method called by the

pmethod that is either owned by the current module or communication channel.
Parallel Method Dynamic Sensitivity

When triggered, the entire body of the pmethod is executed. Execution of a
NextTrigger statement sets the sensitivity for the next triggering event of pmethod.
The execution of NextTrigger does not cause the pmethod to end prematurely. The
NextTrigger method specifies the event, event list or time delay that is the next
triggering condition for the pmethod. If multiple NextTrigger statements are executed,
the last one executed before the pmethod completes determines the next trigger

condition (i.e. last one wins).

42

1. public class ModuleA : BaseModule {

2. public IntSignal sigl = new IntSignal (“sigl”)
3. private Event myEvent = new Event{();

4.

5. public ModuleA(): base() {}

6. public ModuleA(String name): base(name) {}
7.

8.

9. [PMethod]

10. [EventList(“sensitive”,”sigl”)]}

11. private void aProcess() {

12. NextTrigger (myEvent) ;

13. }

Code example 21: PMethod Dynamic Sensitivity
4.3.5 Process Method

A process method is implemented with a .Net Framework thread. The process method
runs until a Wait method call is executed whereupon the process is suspended. Upon
suspension the state of the process is implicitly saved. The process method is resumed
based upon its sensitivity list. Its state is then restored and execution of the process

method resumes from the point of suspension (statement following Wait).

If the body or parts of the body of the process method are required to be executed
more than once then it must be implemented with a loop, typically an infinite loop.

This ensures that the process can be repeatedly reactivated.

If a process method does not have an infinite loop and does not call Wait in any way
then the process will execute entirely and exit within the same delta-cycle. The Wait
method can be called in the body of the process method code, or can be called in a
method called by the process method that is either of a member function of the

module or a method of a channel.

If a process method does have an infinite loop but does not call Wait in any way then
the process will continuously execute during the same delta-cycle. No other process
will execute (ESys.Net currently executes one process at a time to mimic SystemC;

the next version will execute multiple processes).

43

Process Method Dynamic Sensitivity

Execution of the Wait method with arguments specifies the condition or conditions
for resuming the process method. This list of arguments is considered the process

method’s dynamic sensitivity list.

1. public class ModuleA : BaseModule {

2. public IntSignal sigl = new IntSignal(“sigl”)
3. private Event myEvent = new Event{():

4.

5. public ModuleA(): base(){}

6. public ModuleA(String name): base(name) {}
7.

8.

9. [Process)

10. [EventList(“sensitive”,”sigl”)]

11. private void aProcess() {

12. while (true) {

13. Wait (myEvent);

14. }

15. }

Code example 22: Process Method dynamic sensitivity

Empty Static Sensitivity List

If a pmethod or process method has no static sensitivity list specified then it will be

automatically executed once before the simulation starts.
Triggering on a single event

If the NextTrigger or Wait method is called with a single event argument then the
pmethod will be triggered when that event is triggered. Syntax for triggering on a
single event:

1. private Event myEvent = new Event{();
2.

3. NextTrigger (myEvent) ;

44

4. Wait (myEvent);

Code example 23: Triggering on a single event

Triggering after a specific amount of time

If the NextTrigger or Wait method is called with a time value argument then the
process will be triggered after a delay of the specified time. Syntax for triggering after
a specific amount of time:

1. NextTrigger (200);

2. Wait(200);

Code example 24: Triggering after a specific amount of time

If the time value argument is zero then the process will be triggered after one delta-
cycle. Syntax for triggering after one delta-cycle delay:

1. NextTrigger(0);

2. Wait(0);

Code example 25: Triggering with zero time

Triggering on one event in a list of events

1f the NextTrigger or Wait method is called with an OR-list of events then the process
will be triggered when one event in the list of events has been triggered. Syntax for
triggering on one event in a list of events:

1. NextTrigger(el | e2 | e3);

2. Wait(el | e2 | e3);

Code example 26: Triggering on one event in a list of events
Triggering on all events in a list of events
If the NextTrigger or Wait method is called with an AND-list of events, then the
process will be triggered when all events in the list of events have been triggered. The

events do not have to be triggered in the same delta-cycle or at the same time. Syntax

for triggering on all events in a list of events:

1. NextTrigger(el & e2 & e3);

45

2. Wait(el & e2 & e3);

Code example 27: Triggering on all events in a list of events

Triggering on an event in a list of events with timeout

If the NextTrigger or Wait method is called with a combination of a specific amount
of time and an OR-list of events, then the process will be triggered when one event in
the list of events has been triggered or after the specified amount of time whichever
occurs first. Syntax for triggering on one event in a list of events with timeout:

1. NextTrigger (200, el & e2 & e3);

2. Wait (200, el & e2 & e3);

Code example 28: Triggering on an event in a list of events with timeout

Triggering on all Events in a list of events with timeout

If the NextTrigger or Wait method is called with a combination of a specific amount
of time and an AND-list of events then the process will be triggered either when all
events in the list of events have been triggered or after the specified amount of time
which ever occurs first. Syntax for triggering on all events in a list of events with
timeout:

1. NextTrigger (200, el | e2 | e3);

2. Wait (200, el | e2 | e3);

Code example 29: Triggering on all Events in a list of events with timeout
4.4 Signals

With the concepts of modules and processes, it is possible to break up a complex
problem into logical sub-units of functionality and describe the parallel processing
entities that they contain. We are, however, not able to describe the interconnections
that must exist to assemble the numerous modules together. Signals are the basic
entities that permit interconnections between modules. They play the same role as
wires and PCB traces, but they also play a more complex and deeper role in our

simulation.

46

441 Signals and Simulation

In order to create a usable simulation model of a system, there are two missing
concepts required to glue everything together. Firstly, we need a way to transport
information between modules and secondly, all data moving from one module to
another must happen or seem to happen in parallel. To fulfill the first requirement, we
need a container that stores information moving to and from module ports. The
second requirement is a little more complex to satisfy because the amount of
parallelism available on a typical computer is much lower than needed to simulate
hundreds of data items moving in parallel. As a result, we must use a software
management system to simulate the parallel movement of data. In order to achieve
our second requirement, we use a concept called the delta cycle. All information
moving out of a module at a current delta cycle will only be available at the next delta

cycle.

Signals fulfill our two missing requirements. They are containers for information
travelling between modules and they are the buffers that help implement the delta
cycle concept. When a module writes a value to a signal, the signal stores the value
but does not make it accessible until the next delta cycle. This implies that even if a
module writes to a signal before another module can read the current value - this
situation occurs because we cannot effectively execute the read and write in parallel
so they are serialized in a delta cycle-, the value read by the module is the one that

was current at the beginning of the current delta cycle.

44.2 Instancing

In ESys.Net, there is a class that represents a signal for every basic type supported by
the CTS. To transport other types of data, there is a signal that manipulates objects
and since the CTS is based on a unified type system, we can use it to transport any
data of a user defined type (when reading the value, however, we must cast). Like all
the elements in ESys.Net, signals have two constructors: one that lets the user specify

the instances identification name and another that generates the names automatically.

1. IntSignal sigl = new IntSignal(“sigl”);

47

2. IntSignal sig2 = new IntSignal{():
Code example 30: Signal Instancing
The code on line 1 declares and initializes a reference variable called sigl by
instantiating an object of type IntSignal -which is a signal that transports an Integer
datum- and assigns the instance identification name “sigl” to sigl. The code on line 2
declares and initializes a reference variable called sig2 by instantiating an object of

type IntSignal and then assigns a generated instance identification name to sig2.

4.4.3 Inner and Outer Signals

A signal can either be visible on both sides of a module’s boundary -the signal is used
from within the module and is used by the module’s outer environment- or it may
only be visible from within the boundaries of its owning module. It is important to
note that a signal may be an “inner” signal in one reference but an “outer” signal in a
lower hierarchal reference (e.g. a signal that is only used from within a module is
considered as “inner” for the reference of that module but if it is used by one of the
module’s sub-modules then in the reference of a sub-module the same signal is
considered to be “outer”) and also that a signal will only be considered “inner” in one
reference. In Figure 6 we can see that the InnerA signal is considered inner in the
presented reference of the ModuleA but would be considered “outer” if we took the

reference of the SM1 sub-module.

We can further illustrate the concept of an outer and inner signal with the example of
an IC. A wire that is visible only from within an IC is considered “inner” but if a
signal is also connected to the outer pin of the IC, it is visible from the outside also so

it 1s considered “outer”.

4.4.4 A Signal’s Logical Scope

Like a variable, a signal has a logical scope. The scope determines how it is declared
and instantiated. However, unlike a variable, a signal has many scopes because it has
a scope for every module that uses it. Using the concepts of “inner/outer” signals as
references, we can alternatively say that a signal has a scope for every reference in

which it exists and that scope can be “inner” or “outer”. The concept of scope is very

48

important because we must determine in which modules a signal is used, for a
variable that represents the signal must be declared in all modules that use it. What is
truly important is that we can only instantiate one signal that we assigned to the

declared variables representing it.

In order to illustrate the concept of a signal’s scope we shall use an example. Figure 6
illustrates a simple module — ModuleA- composed of 2 sub-modules — SM1 and
SM2 - and a process — P1. The top module has 3 input signals — InA, InB and InC -
3 outputs signals — OutA, OutB and OutC- and 3 inner signals — InnerA, InnerB
and InnerC. The InA signal feeds the SM1 sub-module to produce the InnerA signal
which feeds the SM2 sub-module to produces the QOutA signal. The SM2 sub-module
is also fed by the InnerB signal produced by the P1 process with the InB signal. The
P1 process also produces the OutA signal. The InC signal also feeds the InnerC that
then feeds the OutC. If we take signal InnerA for our study of scope, we can see that
it is used by modules ModuleA (which encapsulates it), SM1 (which uses it) and
SM2 (which uses it). InnerA has a scope in all three modules, so each module has a

local variable declared as the same type as InnerA

__ ModueA =
Jr—— B OutA
InA [InnerA = -
————— > SM1 sSM2 '
| D Module
| ‘ TN,
' = . {) Process
’/ N
-
~~" InnerB ~——== Innersignal
i
InB ————» Outer signal
P1 \} - e
" OutB
Inc s InnerC
e e e - o o o e e e — —— 5B - B
— = ——— OutC

Figure 6 : Inner/Outer Signals

With the concepts of a signal’s scope and “inner/outer” signals, we can state that a
signal must be declared private and instantiated in its scope where it is considered

“inner”. It must be declared public in all scopes where it is considered “outer” and

49

initialized (bound) with the instance created in the “inner” scope. Another reason an
“outer” signal must be declared public (besides the fact that we must have access to it
to initialize it) is that the signal is a gateway between a module’s “inner” and its

“outer” world, thus it must be visible on both sides to fulfill this role.

Here 1s one possible code for the illustrated example.

1. public class ModuleA : BaseModule {
2.

3. SM1 sml = new SM1();

4. SM2 sm2 = new SM2();

5. IntSignal InnerA = new InnerA():;
6.

7. sml.InnerA = InnerA; //binding
8. sm2.InnerA = InnerA; //binding
9.

10. }

11.

12. public class SM1 : BaseModule {
13, .

14. public IntSignal InnerA;

15. .

i16. }

17. public class SM2 : BaseModule {
18. ..

19. public IntSignal InnerA;

20. .

21. }

Code example 31: Inner/Outer signals

445 Special Binding Cases

There exist two special binding cases which need particular attention: binding an
“outer” signal to an “inner” signal and binding an “outer” signal to a sub-module’s

“outer” signal.

The first case presents the following problem: when we bind an “inner” signal to an
“outer” we are basically extending the “inner” signal with the “outer” signal (or vice-
versa). If we follow the rules mentioned above we should declare a variable for the
“outer” signal, then we should declare and instantiate a variable for the “inner” signal.

The problem is that we cannot glue the two signals together in order to propagate the

50

value from one to the other. Also, when the constructor of the module containing the
“outer” signal and the “inner” signal is called, the “outer” signal is not initialized at
that moment (it is only bound later); hence we don’t even have two signals to glue
together and we cannot bind the “inner” signal to the “outer” because an “outer”

signal should always receive its value from the “outer” environment.

The second case is almost the same as the first; it occurs when we want to bind an
“outer” signal to the “outer” signal of a sub-module. The problem is that when the
constructor of the parent is called the sub-module is created but the parent’s “outer”
signal does not have a value at that current moment, so it can not be propagated to the

sub-module.

In order to solve the two state problems, there is a virtual method that all user
modules inherit which is called after all the module hierarchy is created, the
BindingPhase method. If a user module does not have any of these special cases,
overriding the method is not necessary and all the instancing of the signals (and sub-
modules) and binding to the sub-modules may be done in the module’s constructor. If
the special cases are present, the user must override the method and put the signal
binding code there. For the first case, no signal is instantiated for the “inner” signal
and it receives its value from the “outer” signal. It is, however, impossible to glue the
“outer” signal belonging to the same module with an “inner” signal; as a result, in
Figure 6, the route from InC to InnerC to OutC is impossible to create without a

process separating the inner signal from one of the outer signals.

In the second case, the sub-module’s “outer” signal is bound with the value of the
module’s “outer” signal. This solution is possible because at the top most level, there
should only be “inner” signals and they should have been bound to the modules at
that level; so if we call the binding method after the creation of the module hierarchy

it is possible to propagate the signal from the top to bottom.

Here is an example of the InA signal and the InnerC (with the premise of an added

process between the InnerC signal and the OutC signal) signals from Figure 6.

1. public class ModuleA : BaseModule {

51

2. public IntSignal InA;

3. public IntSignal InB;

4. public IntSignal InC;

5. public IntSignal OutA;

6. public IntSignal OutB;

7. public IntSignal OutC;

8. IntSignal InnerA;

9. IntSignal InnerB;

10. IntSignal InnerC;

11. SM1 sml;

12. SM2 sm2;

13.

i4. public ModuleA{(): base(){}

15. public ModuleA(string name): basef{
16. sml = new SM1{();

17. sm2 = new SM2{();

18. InnerA = new IntSignal():

19. InnerB = new IntSignal(}:;

20. sml.a_out_outer_signal = InnerA;
21. sm2.a_in outer_signal = InnerA;
22, }

23. ..

24. //the binding method

25. public overrides void bindingPhase () {
26. sml.a_in outer signal = InA;

27. sm2.a_out_outer signal = OutA;
28 InnerC = InC;

29. }

30.

Code example 32: Special signal binding cases
We must point out that it is impossible to connect two outer signals belonging to the
same module without using at least an intermediate process to copy the value of one

signal to the other.

4.5 Ports and Interfaces

In most HDLs, ports are entities that makeup the interface of a module. Ports are like
the pins of an IC, permitting the flow of “information” in and out of the module. It is
through the concept of ports that modules can interact with their environment. In
ESys.Net, the concept of ports does not explicitly exist. Ports are replaced by another

concept of higher abstraction, a software interface. In this context, the word interface

52

has the same meaning as the concept of interfaces in object-oriented programming
languages such as Java and C#. A software interface is composed of a set of method
declarations but provides no implementation for those methods. Unlike Java, C#
permits the declaration of properties (fields) to be part of an interface [2] . Software
interfaces are then implemented by user defined types (classes), forcing the user
defined type to implement a body for each method declaration in each software

interface it uses [2] .

Software interfaces permit contractual programming and information hiding. In this
way, a consumer of a reference variable declared as being of a certain interface type
is guaranteed that the reference legally supports the set of methods declared in the

interface definition and that no other methods are available.

4.5.1 The Elimination of Ports

We have eliminated the explicit concept of ports because in most HDLs a port is just
an entity that adds an abstraction layer to a communication entity (like a signal), and
offers a simple “read/write” API to access it. The proof of this is that in most HDLs,
it is necessary to bind a signal to a port and a “read/write” to the port causes the
“read/write” from the signal. The port is just delegating the work to the signal. Note
that the functionality provided by a port is the same as a software interface; it is for

this reason that we have eliminated ports.

In ESys.Net ports are used to control the way we access “outer” signals. Returning to
the concepts of “inner/outer signals”; we can say that a signal which is “inner” in a
certain scope can be logically accessed for reading and for writing. However a signal
which is “outer” in a certain scope does not have both of its ends in the same scope so
it can logically only be accessed for reading or for writing. The problem here is that
signals implement both reading and writing functionalities, so it is very difficult to
enforce which can be done and when. Since software interfaces permit contractual
programming and information hiding, we can hide an “outer” signal declaration
behind an interface that only supports the communication direction which is logical

for that signal’s current declaration scope. In addition, like the signal that the

53

software interface is hiding, it must be declared visible (public in C#) to the exterior

world because it becomes the gateway to the outside world.

4.5.2 Predefined Interfaces

The ESys.Net framework provides a collection of predefined software interfaces. For
each primitive value type supported by the CTS, there is an in, out and inout
interface. The replication of the basic directional interfaces for every type is
necessary because .Net and C# do not support templates or generics in their present
state. The next version of .Net should have generics [37] so the interface library will
be reduced to a collection of three generic interfaces: in, out and inout. Here is the
model for the three basic directional interfaces but typed for a Boolean value.

public interface inBool {

bool Value{get;}bool IsChanged{get;}}

. public interface outBool{

. bool Value{set;}bool NextValue{get;}}
. public interface inoutBool : inBool, outBool{}

(42 I N VU (VI

Code example 33: Boolean software interfaces

Line 1 declares an interface called inBool that has two properties that are Booleans:
one called “Value” that is read-only and one called “IsChanged” that is also read-
only. Line 2 declares an interface called outBool that has two properties that are
Booleans: one called “Value” that is set-only and one called “NextValue” that is read-
only. Line 3 declares an interface called inoutBool that is the union of the inBool and

outBool interfaces.

All the predefined software interfaces for ports in ESys.Net are based of the presented
three interfaces. We have added the “IsChanged” and “NextValue” properties for
verification and transactional support reasons. The “isChanged” property permits
querying a signal hiding behind an interface in order to discover if it was modified
during the preceding delta cycle, the “NextValue” property enables accessing the

value that will be available on the signal during the next delta cycle.

54

= Carry outn

al b1 an bn
|| |
l l l Y
i Carry out1
Carryinl ——p» . - — .
bitt Carryinn bitn
v v
sum1 sumn

Figure 7 : A N bit Adder

Table II below shows two partial implementations of the » bit adder presented in the

Figure 7 above. One implementation uses public signals for its interface; the other

uses software interfaces to hide the signals in order to control how they are accessed.

Table Il :

Interfaces

Without the use of interfaces

With the use of interfaces

25.
26.
27.
28.
29.
30.

public class NBitAdder: BaseModule(

//interface declaration
public BoolSignalf] a;
public BoolSignal(] b;
public BoolSignalf[] sum;
public BoolSignal carrylIn;
public BoolSignal carryout;

//sub-modules decl. and int.
Fulihdder [} adder;

//inner signals decl.and int.
BoolSignal([] innerCarry;
int size;

public NBitAdder (int size): base(){
a = new BoolSignal{size};
b = new BoolSignal[size];
sum = new BoolSignal[size);
innerCarry = new BoolSignal[size-1};
adder = new FullAdder|[size];
for(int i = 0;i<size;i++)

adder[i] = new FullAdder():
this.size = size;}

public NBitAdder(int size,string na):

base({name) {this{(size);}

public override void BindingPhase () {
for{i=0;i<size-1;i++){
adderf{i).a = a[i];

WO Jo U whH

25.
26.
27.
28.
29.
30.

public class NBitAdder: BaseModule({

//interface declaration
public inBooll[} a;
public inBool[] b;
public outBool[] sum;
public inBool carryln;
public outBool carryoOut;

//sub-modules decl. and int.
FullAdder[] adder;

//inner signals decl.and int.
BoolSignal[] innerCarry;
int size;

public NBitAdder (int size): base(){
a = new BoolSignal([size];
b = new BoolSignal[size]:
sum = new BoolSignal[size];
innerCarry = new BoolSignal{size-1};
adder = new FullAdder(size];
for(int i = 0;i<size;i++)

adder[i] = new FullAdder():
this.size = size;}

public NBitAdder (int size,string na):
base(name) ({this(size) ;)

public override void BindingPhase() (
for(i=0;i<size-1;i++){
adder(i].a = al[i]:

55

Without the use of interfaces With the use of interfaces
31. adder(i].-b = b[i]): 31. adder{i].b = b[i};
32, adder[i] .sum = sum(i}; 32. adder(i].sum = sum([i];
33. adder([i] .carryIn = innerCarry({il; 33. adder([i].carryIn = innerCarry(i};
34. adder [i+1).carryOut= innerCarry{i}; 34. adder([i+l].carryOut= innerCarry{i];
35. } 35. }
36. adder([i].carryln = carryIn; 36. adder([i].carryIn = carryln;
37. adder[size-1].carryOut = carryOut;}} 37. adder{size-1]).carryout = carryout;}}
4.6 Events

Events play a crucial role in the ESys.Net environment because it is based, like
SystemC, on an event-driven simulator. Events encapsulate the concept of an instance
of time, the instance dwelling in the timeline of a simulation, and a group of actions
(processes) to be performed at that time instance. Events also have a triggering cause
that associates them to a specific instance of time. The triggering causes can be just
about anything: the occurrence of a specific time in the simulation, the changing of a

signal’s value, the occurrence of another event etc.

A more practical view of an event in ESys.Net would be: events determine when a
process execution should be triggered or resumed. An event is an object used to
represent a condition that may occur during the course of simulation and to control
the triggering of processes. When an event is notified (triggered), it causes the

simulation kernel to execute the processes that are bound to the triggered event.

All events are instances of the Event class which is part of the ESys.Net framework.
1. Event myEvent = new Event(); // event declaration and
2. instantiation

Code example 34: Event instantiation

4.6.1 Event Occurrence

It is important to distinguish an event from the actual occurrence of that event. An
event may have multiple occurrences, each occurrence being unique though reported
through the same event. We can say that an event is like a conceptual relation
between a point in time and a group of actions, and that an instance (or occurrence) of

that relation links a specific moment of time to a specific group of actions.

56

An event is always owned. It may be owned by a module, channel or signal; it can

also be global to a model, making it owned by all modules and channels in the model.

The owner of an event is responsible for creating an occurrence of the event (by
notification) when the triggering cause of the event occurs (change of state of a
channel, occurrence of a specific time in the simulation etc.). The event object, in
turn, is responsible for keeping a list of processes that are linked to it. Thus, when

notified, the event object will inform the simulation kernel of which processes to

trigger.
P - ___H‘“‘-\,\
{/ Event owner)
<}———————— Nofification

‘ Event l - Triggering
| _ i A

— % . .

(Process 1) Process 2) ' Process 3)

Figure 8 : Event Occurrence

4.6.2 Event Notification [63]

Events can be notified in three ways using its Notify method- immediate, delta-cycle

delayed and timed:

* Immediate notification means that the event is triggered in the current
evaluation phase of the current delta-cycle. The notify method with no
arguments (Notify()) indicates immediate notification.

* Delta-cycle delayed notification means that the event will be triggered during
the evaluation phase of the next delta-cycle. The notify method with an
argument of zero indicates a delta-cycle delayed notification - the event is
scheduled for the next delta-cycle.

* Timed notification means that the event will be triggered at the specified time

in the future. The notify method with a non-zero argument (Notify(x))

57

indicates a timed notification of x simulation time units. The time of
notification is relative to the execution time of the notify method as opposed

to an absolute time,

1. 1. Event myEvent = new Event(); // event declaration and
2. instantiation

3. 2. myEvent .Notify(); // immediate notification

4. 3. myEvent.Notify(0); // delta-delay notification

5. 4. myEvent .Notify(10); // declaration of a 10 time unit
6. notification

Code example 35: Event notifications

Lines 2 to 4 are occurrences or instances of the myEvent event.

4.6.3 Muiltiple Simultaneous Event Notifications [63] [24]

Events can have only one pending notification, and retain no “memory” of past
notifications. Multiple notifications to the same event, without an intermediate trigger

are resolved according to the following rule:

* An earlier notification will always override one scheduled to occur later
* An immediate notification is always earlier than any delta-cycle delayed or

timed notification.

Note that according to these rules, a potential non-determinism exists. Assume that
processes A and B are ready to run in the same delta-cycle. Process A issues an
immediate notification on an event, and process B issues a delta-cycle delayed
notification on the same event. Process C is also sensitive to the event. According to

the scheduler semantics, processes A and B execute in an unspecified order.

TableIII: Event non-determinism

Process A { Process B { Process C {

my_event.Notify(); my_event.Notify(0); Wait(my event)

58

If process A executes first then the event is triggered immediately, causing process C
to be executed in the same delta-cycle. Then process B is executed and since the
event was triggered immediately, there is no conflict and the second notification is

accepted causing process C to be executed again in the next delta-cycle.

If, however, process B executes first, then the delta-cycle delayed notification is
scheduled first. Then, process A executes and the immediate notification overrides
the delta-cycle delayed notification, causing process C to be executed only once, in

the current delta-cycle.

4.6.4 Cancelling Event Notifications

A pending delayed event notification may be cancelled using the Cancel method .
Immediate event notifications cannot be cancelled since their effect occurs

immediately.

4.6.5 Events, Signals and Clocks

In ESys.Net, all predefined signals are owners of two events: senmsitive and

transaction.

The sensitive event is triggered when the value of the signal changes from it

precedent value and transaction is triggered when a value is written to the signal.

Clock objects are owners of three events: posedge, negedge and sensitive. (Note

clocks are channels even if they appear to be signals)

The posedge event is triggered on the positive edge transition of the clock, negedge
1s triggered on the negative edge transition of the clock and sensitive is triggered on

both of the formers.

4.7 Channels

With the model elements that we have seen so far - modules, signals, events. .. etc- it
is possible to create fairly complex systems. However, like most modern system

description languages, we have added the semantics of channels to the environment

59

[59] . Channels are the basic modeling elements for complex inter-module
communication. Through interfaces that channels implement, modules may
communicate with each other. A channel may abstract a simple point-to-point

communication but can also model very complex Network On Chip (NOC).

Channels may be seen as modeling elements that are a cross between modules and

signals.

Channels differ from signals in that they may contain structure such as sub-modules,
sub-channels, and processes. They differ from modules because they implement, like
signals, the IDeltaUpdatable interface (this concept will be explained later) that
permits them to be synchronized with the simulation delta cycles. In this way, we
have simplified SystemC’s channel semantics by unifying the concept of primitive

channels and hierarchical channels [63] .

Another important aspect of channels is that, since they abstract communication
between modules, they permit the refinement of a model’s communication elements

without the modification of the communicating elements.

4.7.1 Channel Declaration and Instancing

There are two parts involved in the usage of a user defined channel:

1. The declaration of the channel

2. The instantiation of the channel in the context of a system.

Like user defined modules, all user defined channels inherit from an abstract based
class called BaseChannel. Since the BaseChannel class inherits from the BaseModule
class, channels may be constructed in the same way as modules by using sub-
components, processes and interfaces.

public class MyChannel: BaseChannel, MyInterface(

\\ declared interface and inner components

public MyChannel () {}
public MyChannel (string name): base (name) {}

oo W NP

\\ declared inter workings}

Code example 36: Channel declaration

60

If the constructor on /ine 3 is used when instantiating the user defined module, a
default identification name will be generated for the module instance. If the
constructor on /ine 4 is used, the programmer must supply the channel identification
name when instantiating the channel. All channel instances identification names in
the context of a module hierarchy level must be unique with all other modules and

channels names.

On line 1 we have declared that the channel implements a user defined interface
called MylInterface.

Channels are instantiated in the same way as modules.

new MyChannel (“channela”);
new MyChannel () ;

1. MyChannel channel a
2. MyChannel channel b

Code example 37: Channel instantiation

The code on line 1 initializes a reference variable called channel_a by instantiating
an object of type MyChannel and assigns the instance identification name “channela”
to channel_a. The code on line 2 initializes a reference variable called channel b by
instantiating an object of type MyChannel and assigns a generated instance

identification name to channel b.

4.7.2 Channels and Software Interfaces

Since channels are specialized forms of user defined modules, they also have an
interface that is constituted of ports. However, channels usually implement software
interfaces, enabling modules to communicate with the channels through well defined
method calls that are declared in the implemented interfaces. Modules are also able to

declare ports with theses software interfaces.

The abstraction brought by interfaces is not really necessary, but it permits a clean
separation between the communication elements of a model and the processing
elements, because the implementing element hiding behind an interface may be
trivially changed without changing the elements using the interfaces. Also, since we

use the predefined concept of software interface’s in .Net/C#, channels may

61

implement multiple interfaces and an interface may be implemented in different ways

by different channels.

4.7.3 Sensitivity

Channels like modules may contain events, but these events may be declared with a
public accessibility and used in the EventList of a process. This enables channels to

be regarded as signals but with much more complicated inner-workings.

4.7.4 Channel hierarchies and inner-workings

As with module hierarchies, channels hierarchies are often useful to manage the
complexity of modern communication channel modeling, since the concept of a
channel is a sub-concept of a module. The inner structure and workings of a channel
are designed in the same way as a module. Therefore a channel may contain sub-

channels, sub-modules, event, signals, ports, processes etc.

4.7.5 The IDeltaUpdatable Interface

The IDeltaUpdatable interface is a custom interface that is defined in the ESys.Net
framework. It is through this interface that elements such as signals are synchronized
with the delta cycles of a simulation. The interface definition is as follows:

1. public interface IDeltaUpdatable {

2, void Update():;
3. void RequestUpdate() {}}

Code example 38: IDeltaUpdatable interface
The RequestUpdate method must implement the request of a delta-cycle
synchronization for the element that is making the call. The BaseChannel class has a
default implementation for this method that calls the simulation kernel and puts the
requesting element in the simulation kernel’s list of elements to be updated before the
next delta-cycle. The Update method is the method that is called to perform the delta-
cycle synchronisation. It is with this method that the signals of the environment
change their current value with the value that has been written to the signal during the
previous delta-cycle. The BaseChannel class implements this method with an empty

virtual method which can be overridden by subclasses.

62

In order to use a channel in a simple way, one can put aside the delta-cycle
synchronization elements of a channel. If the delta-cycle behaviour is important,
however, one must only redefine the Update method to implement the correct
synchronization behaviour and call the predefined RequestUpdate method
appropriately.

We should point out at this point that any user defined model element may implement
this interface and use the simulation kernel’s delta element handling method to

synchronize with delta-cycles:

1. public void RequestUpdate (IDeltaUpdatable up)
Code example 39: RequestUpdate method

4.7.6 Unification of the Channel Concept [63] [24]

SystemC has two kinds of channels: primitive channels and hierarchical channels.
Primitive channels are flat elements; they do not have any hierarchical structure and
do not contain processes. They support, however, the synchronization of their state
with the simulation kernel’s delta-cycle. Hierarchical channels are modules hiding
behind a “typedef”, so they can have structure and processes but they are not
inherently capable of being synchronized with the delta-cycles like primitive

channels.

ESys.Net has unified these two entities within the concept of the BaseChannel. A
primitive channel is just a specific case of a user defined channel that is not
hierarchal, does not contain any processes and which has a custom defined Update()
method. Also, our BaseChannel is truly a specialization of a module and not just a

hiding alias which permits a better analysis of a model because the concepts are well
defined.

4.7.7 Example [65] [24]

In Annex A we present an example that illustrates a communication channel that is
designed like a SystemC primitive channel; the channel is a FIFO. This FIFO channel
comes with a number of methods. Basically, we find both blocking and non-blocking

/O as well as some functions to query the state of the FIFO. In its implementation,

63

we use the “Request/Update” scheme. We also find a good example of dynamic
sensitivity in order to implement the blocking I/O. The FIFO’s read and write
interfaces are given first, then the FIFO ,and then a simple example with a producer
and consumer using the channel. This example is an ESys.Net partial implementation

of an example in the SystemC 2.0 functional specification that is explained in depth .

Chapter 5 Simulation Kernel

The ESys.Net modeling constructs that we have seen so far are almost identical to the
ones found in SystemC. This is no coincidence because, as mentioned earlier,
ESys.Net is meant to be an evolution of SystemC. The true difference between the
two environments lies within the implementation of their respective simulation
kernels. ESys.Net innovates on SystemC by leveraging the advance software
capabilities of the .Net Framework, through the use of C#, in order to create a simpler
and more flexible simulation kermnel. The programming features that are the

foundation of the kernel are:

= attribute programming
= reflectivity
* native .Net threads
* native .Net synchronization primitives
= delegates and events
The simulation kernel is a very important aspect of our environment because it is at

its heart. The kernel has many important functions such as:

= Simulation model elaboration
* Process scheduling

* Delta-cycle synchronisation

» Model correctness verification

* Mediator for third-party tools

5.1 Modeling Directives

One of the important characteristics of ESys.Net is that it offers the system designer
the possibility to easily specify execution directives by tagging the different concepts
in the specification. These directives concern (i) the association of a process or
parallel method semantic to a class method, (i) the addition of a sensitivity list, (iii)
the calling of methods before or after the execution of a certain process and (iv) the
execution of a class method at a specific moment during the execution. This was
implemented by exploiting the attribute programming paradigm provided by .NET

and the C# language. Table IV summarizes the available attributes, their semantics

and the concepts to which they are applied.

TableIV: Attributes and their role in ESys.Net
Attribute Description Applied to concept
Process Associate a thread to a class Class Method
method
PMethod Associate a method process to a Class Method
class method
EventList (list of events) Add sensitive list for a process Process
ManualRegistration Manual registration of the element Field
PreCall (Name of Method) o Method to be called Process
8 before the process
PostCall (Name of Method) |2 ke Method to be called Process
‘g g after the process
SimlInit (Name of Method) -3 ES Simulation init Class Method
SimEnd (Name of Method) -g 5 i Simulation end Class Method
Cyclelnit (Name of Method) 5 a2 Cycle initialization Class Method
CycleEnd (Name of Method) |.€ & &,:j Cycle end Class Method
Deltalnit § g % Delta cycle Class Method
‘5 5 initialization
DeltaEnd £3 Delta end Class Method
FinalDelta A % Last delta Class Method
Reset Simulator reset Class Method

The utilisation of attribute programming offered us a very powerful tool, one that

enabled us to create a transparent means to permit the addition of hardware semantics

to behavioural code in a simple and elegant way.

66

In order to offer a declarative mechanism to add hardware semantics to a model,
SystemC uses macro. We believe that the use of attributes is much more elegant than
macro, because they do not hide code that must be debugged when working on a
model [50] .

5.2 Simulation Semantics

Most of the differences between SystemC and ESys.Net are within the simulation

kernel so both will be described and compared.

5.2.1 SystemC [64] [63]

SystemC has at its core an event based simulation kernel like most current simulation
environments 1.e. Verilog, VHDL. A SystemC simulation execution may be broken
up in a number of consecutive phases: elaboration, initialization and process

scheduling.
Elaboration phase

It is during this phase that the simulation model is created from the model description.
Structural elements of the systems i.e. modules, channels, signals etc. are created and
connected throughout the system hierarchy. Hierarchical structures are elaborated
through recursive construction using object construction behaviour. During the
elaboration phase, the simulation kernel must create a process object for each

threaded and method based process.

SystemC’s elaboration phase can be further broken up into two sub-phases that occur
at different instances. The first sub-phase occurs at compilation time. During this sub-
phase, macros are expanded revealing the code that creates the necessary process
objects and retrieve pointers to the methods that are declared to become either
threaded or method based processes. The second sub-phase is done during execution
time. It is during this sub-phase that the structural elements are created and

connected. Certain aspects of the simulation may be configured at this point.

67

Initialization

Initialization is the first step in the SystemC scheduler. Each method process is
executed once during initialization and each threaded process is executed until a wait

statement 1s encountered.
Process Scheduling

The SystemC scheduler controls the timing and order of process execution, handles
event notifications and manages updates to channels. It supports the notion of delta-
cycles. A delta-cycle consists of the execution of an evaluation and update phase.

There may be a variable number of delta-cycles for every simulation time.

SystemC’s processes are non-preemptive. This means that for thread processes, code
delimited by two wait statements will execute without any other process interruption
and a method process completes its execution without interruption by another

process.

The semantics of the SystemC simulation scheduler is defined by the following eight

steps. A delta-cycle consists of steps 2 through 4.

1) Initialization Phase.

2) Evaluation Phase. From the set of processes that are ready to run, select a
process and resume its execution. The order in which processes are
selected for execution from the set of processes that are ready to run is
unspecified. The execution of a process may cause immediate event
notifications to occur, possibly resulting in additional processes becoming
ready to run during the same evaluation phase. The execution of a process
may include calls to the request update() function which schedules
pending calls to update() function in the update phase. The
request_update() function may only be called within member functions of
a primitive channel.

3) Repeat Step 2 for any other processes that are ready to run.

4) Update Phase. Execute any pending calls to update() from calls to the
request_update() function executed in the evaluate phase.

5) If there are pending delta-delay notifications, determine which processes
are ready to run and go to step 2.

68

6) If there are no more timed event notifications, the simulation is finished.

7) Else, advance the current simulation time to the time of the earliest (next)
pending timed event notification.

8) Determine which processes become ready to run due to the events that have
pending notifications at the current time. Go to step 2.

I Elaboration phase l

v

[Initialisation phase I

Choose ready process and
resume its execution

m _

T~ processes

s

Update signals and primitive
channels

msses

~_If pending timed events

Increment Delta '—-»

Advance simulation time |

I Simulation End l

Figure 9 : SystemC’s scheduler structure

Figure 9 is an overview of the simulation semantics of SystemC. Note that it is very
closed; there are no entry points for third-party tools Erreur! Source du renvoi

introuvable..

5.2.2 ESys.Net

This section describes elaboration, initialization and the simulation semantics.
ESys.Net is an event based simulator. ESys.Net’s simulation execution may be

broken up into the same steps as SystemC.

69

Elaboration

As is the case in SystemC and most environments, it is during this phase that
ESys.Net model element instances are created and connected together such as
module, channels, signals etc. However, unlike must environments our elaboration
phase is done dynamically at run-time; there is no code added at compile time as in
SystemC. ESys.Net models do not take for granted a specific simulator. At runtime a
model is bound to a simulator, that in turn through .Net’s introspections capabilities,
analyses the model (structure and directives) and creates a simulation representation
of the model. This permits our models to be compiled separately from a specific
simulator and to bind the models at a later time to a specific simulator. This also
allows us to have many simulator works on different models or parts of models in a
unique binary execution. Verilog, VHDL and SystemVerilog take for granted that
there 1s only one simulator so it is implicit and it is during compilation that a model is

bound to it (there can only be one model per simulation).

The first part of the elaboration phase is to discover and register the various elements
of the model; code example 40 presents an incomplete pseudo-code of the algorithm

we use to do these tasks.

1. SubModelElementRegistration (ModelObject element)
2. type := GetType(element)

3. fields:= GetAllFields(type)

4. foreach field in fields

5. if Not (ManualRegisteredTagged{(field))

6. field instance:= GetFieldInstance(field, element)
7. select(field instance)

8 case Clock:

9 RegisterClock(field instance)

10. case Channel:

11. RegisterChannel (field instance)

12. SubModelElementRegistration(field instance)
13. case Module:

14. RegisterModule(field instance)

15. SubModelElementRegistration(field instance)

16. case Signal:
17. RegisterSignal (field instance)
18. case Event:

70

19. RegisterEvent (field instance)
Code example 40: Model Discovery and Registration
Each object in the model is passed through this algorithm. Each field in the currently
treated object (element) is extracted and registered in accordance to its base type i.e.
module, channel, clock, event or signal. If a field is module or channel, it is
recursively passed through the same algorithm. However, if a field is tagged with the
ManualRegistered attribute it is not processed.

The second part of the elaboration phase is the heart of the kernel. The algorithm that
we use creates the simulation model. The algorithm is responsible for the creation of
the processes and for the binding of these processes to their triggering static events.

The algorithm also binds class methods to hooking points within the kernel.
The simulation model construction algorithm can be broken up into four parts:

* Process discovery and verification
= Process method creation
= Parallel Method creation

» (allback hooking

Each part will be presented with an incomplete pseudo-code.

1. SimulationModelCreation/()

2. For each element in RegisteredChannels and RegisteredModules
3. type:=GetType (element)

4, if type is an Interface

5. type:= GetDeclaringType (type)

6. methods:=GetAllPrivateMethods (type)

7. foreach method in methods

8. parameters:= GetParameters (method)

S. if Size(parameters)=0

10. method instance:= GetMethodInstance (method, element)
11. select (method)

12. case ProcessTagged:

13. -

14. case PMethodTagged:

15.

16. case Default:

17.

Code example 41: Process dicovery and verification

71

Code example 41 gives the pseudo-code that goes through all the registered channels
and modules, and retrieves their method declarations that have a private scope. For
each method declaration found, the algorithm verifies if the method is eligible to be a
process (e.g. verifies if the method takes no arguments and returns void). The code
then gets the method instance for the currently processed object and then verifies if

the method declaration has either a Process tag, a Pmethod tag or callbacks tags.

1. thread:= CreateThread(method instance)

2. process:= CreateProcess(thread)

3. RegisterProcess (process)

4. if HasEventList (method)

5. event list: = GetEventlist (method)

6 owners:= GetOwners(event list)

7 event name:= GetEventName (event list)

8 field instances:= GetOwnersFromElement (element)

9 for each field instance in field instances

10. event:= GetEvent (event name, field instance)
11. Bind (event, process)

12. if Not (HasEventList (method)) or SimInitTagged (method)
13. ExecuteAtSimulationInitialisation(process)

14. if PreCallTagged (method)

15. premethods:= GetPreCallMethods (method)

16. foreach premethod in premethods

17. premethod instance:= GetMethodInstance (premethod, element)
18. PreCallHook (process, premethod instance)

19. if PostCallTagged (method)

20. postmethods:= GetPostCallMethods (method)

21. foreach postmethod in postmethods

22. postmethod instance:= GetMethodInstance (premethod, element)
23. PostCallHook (process, postmethod instance)

Code example 42: Algorithm part for process methods

The block of pseudo-code in example 42 is responsible for the creation and
management of process methods. It creates a thread for the method instance and then
creates a process method object for the thread. The process method object is then
registered in the kernel. Processing of the static event list is done next. If no static
event list is declared, the process method is registered to be executed before the
simulation starts. Lines 5 to 11 process the process method’s event list and binds it to

the correct event objects. The rest of the code deals with methods that must be called

72

before or after the execution of the process method; these methods are good for pre

and post condition verification.

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

. pmethod := CreateProcess (method instance)
RegisterProcess (pmethod)
if HasEventList (method)

event list: = GetEventList (method)

owners:= GetOwners (event list)

event name:= GetEventName (event list)

field instances:= GetOwnersFromElement (element)

for each field instance in field instances
event:= GetEvent (event name, field instance)
Bind (event, pmethod)

. if Not (HasEventList (method)) or SimInitTagged (method)

ExecuteAtSimulationInitialisation (pmethod)

if PreCallTagged (method)

premethods:= GetPreCallMethods (method)

foreach premethod in premethods
premethod instance:= GetMethodInstance (premethod, element)
PreCallHook (pmethod, premethod instance)

if PostCallTagged (method)

postmethods:= GetPostCallMethods (method)

foreach postmethod in postmethods
postmethod instance:= GetMethodInstance {premethod, element)
PostCallHook (pmethod, postmethod instance)

Code example 43: Algorithm part for parallel methods

The pseudo-code in example 43 does almost the same thing as the previous example

but no thread is created for the parallel method.

O O N o U WN -

HOE e e
o W N = O -

if SimInitTagged(method)

SimInitHook (method instance)

if SimEndTagged (method)

SimEndHook {(method instance)

if CycleInitTagged (method)

CycleInitHook (method instance)

if CycleEndTagged (method)

CycleEndHook (method instance)

if DeltaInitTagged (method)

DeltaInitHook (method instance)

.1f DeltaEndTagged (method)

DeltaEndHook (method instance)

. 1f LastDeltaTagged (method)

LastDeltaHook (method instance)

73

15. if PreDeltaUpdateTagged (method)

16. PreDeltaUpdateHook (method instance)
17.1if PreDeltalncTagged (method)
18. PreDeltaIncHook (method instance)

Code example 44: Algorithm part for callback hooking

The code block in example 44 manages the binding of methods to the various

callback points in the simulation kernel.
Initialization

Initialization is the first step in the ESys.Net scheduler. Processes are not executed by
default, only processes that have been tagged with a Simlnit directive or processes
that don’t have a sensitivity list (transaction level processes) are executed during this

phase.
Process scheduling

The ESys.Net scheduler controls the timing and order of process execution, handles
event notifications and manages updates to channels and signals. It supports the
notion of delta-cycles. ESys.Net processes are pre-emptive. The semantics of the
ESys.Net simulation scheduler are defined by the following eight steps. A delta-cycle
consists of steps 3 through 11. As illustrated by the steps of a simulator scheduler, we

have added many hooking points (steps in bold) within our simulation kernel.

1) Initialization Phase.
2) Execute cycle initialization callbacks
3) Execute delta initialization callbacks

4) Evaluation Phase. From the set of processes that are ready to run,
select a process. The order in which processes are selected for
execution from the set of processes that are ready to run is unspecified.

5) Execute pre-method callbacks for the current process
6) Resume current process’s execution
7) Execute post-method callbacks for the current process

8) Process execution (The execution of a process may cause immediate
event notifications to occur, possibly resulting in additional processes
becoming ready to run in the same evaluation phase)

74

9) Repeat Step 4 for any other processes that are ready to run.
10) Execute pre-update callbacks

11) Update Phase. Update delta-cycle dependent elements that requested
updates (signals and primitive channels)

12)If there are pending delta-delay notifications, determine which
processes are ready to run and go to step 3.

13) Execute last delta callbacks
14) If there are no more timed event notifications, go to step 18.
15) Else, execute cycle end callbacks

16) Advance the current simulation time to the time of the earliest (next)
pending timed event notification.

17) Determine which processes become ready to run due to the events that
have pending notifications at the current time. Go to step 2.

18) Execute simulation end callbacks

19) The simulation ends here.

75

Element discovery/
registration and elaboration
phase

Sim Init o

Initialization phase

Cycle Init -5 -¢
Delta Init - -§
Y
Choose ready process |
Pre Execution 4——— - Execute Pre
Y
Choose ready process and
resume its execution
Post Execution =] Execute Post
— L"-\‘.____ {
_ 1 no more ready g '11
~ \processes L ‘
| Update IDelta | |
DetaEnd = 1
s A |
(\lf;ending processes /\3——»{ Increment Delta l—b-
T e - |
— |
Last Delta - — 1 - |
X [
// S P —— I
<_|f pending timed events ~——»-{ Advance simulation time }—b
Cycle End S-S AN
Sim End - - = ---i

| Simulation End

Figure 10: ESys.Net Scheduler Steps

Figure 10 gives a good view of the simulation kernel. Compared to SystemC, our

simulation kernel has many callbacks points for third-party tool binding.

Since our hooking points are implemented with delegates and events, it is possible to
hook many callbacks to a same entry point and callbacks may be class instance
methods or static class methods. Also, since we are using delegates, it is possible to
bind a method to a hook point at runtime because it is not necessary to know at

compile time the names of the methods we want to bind to a delegate.

76

The following is a simple code example that illustrates the instantiation of a model, a
simulator, and a verification tool, and the binding of the elements. Notice that with a
simple line of code we can bind a method to the Cyclelnit event of a simulator. The
Cyclelnit event is triggered at the beginning of every simulation cycle.
public class SimpleBusApp{
static public void Main() {

1

2

3 My VeriTool tool = new VeriTool () ;
4. MyModel model = new MyModel (sim);
5
6
7

Simulator sim new Simulator (sbt);
sim.cycleInit += new HookingPoint (tool.verifie);

sim.Run(100000);}}

Code example 45: Tool hooking

Chapter 6 Comparison and Experimental

Results

ESys.Net is not meant to be a new solution but rather an evolution of an existing
solution: SystemC. For this reason we will not discuss the pros and cons of pure
modeling semantics and library based approach because SystemC has already
addressed theses points. Rather, we will discuss here the pros and cons of our design
compared to those of ‘SystemC’. Also since ESys.Net is intended to be an evolution
to SystemC, we shall not compare it to other environments because many articles

already exist that compare SystemC to other alternatives [68] [8][9] .

We will present some experimental results collected on performance issues and an
example that illustrates the ease of connection of a third-party tools to the simulation

kemel.

6.1 Advantages of the Environment

ESys.Net design has many advantages over those of SystemC. The advantages can be
categorized into three aspects: the simplification of semantics and programming, and

a more open integration.

6.1.1 Semantic Simplification

ESys.Net has simplified SystemC’s more advanced modeling concepts such as ports

and channels.

78

Unification of ports and interfaces

As mentioned in a previous section, we have unified the concept of ports and
interfaces. This unification has been done for several reasons. Firstly, in SystemC,
ports are intermediate objects that have a predefined interface on which processes
make calls. On a method call, a port delegates the call to another interface, which
hides a channel that is contained within it. The predefined interfaces that ports
support in SystemC are very basic — simple read and write calls; for this reason, a
user must use indirection on a port to get a pointer on the contained interface and then
make an indirect call to that interface. Since SystemC’s main objective is system level
modeling, very few designs will be able to use simple read/write calls that do not take
any arguments to model complex buses like the ones used in NoC. SystemC has even
questioned the usefulness of ports, but decided to keep them for static binding

verification purposes.

“The question arises whether port objects are needed at all —
one could argue that it would be sufficient to only have the
notion of interfaces being implemented by channels.
Basically, port objects serve a dual purpose. Firstly, they
allow for the implementation and enforcement of (static)
design rule checks. Secondly, they provide objects that can be
attached attributes such as names or priorities.”[24]

The first argument based on design rule verification is not so justified with .Net/CH#.
SystemC provides a mechanism that allows channels to verify static design rules
when ports are bounded to the channel. The mechanism is provided by a virtual
method called register _port() that channels may override. The method is called when
a port is bound to the channel. Because SystemC is based on C++, this mechanism
would be very hard to implement without ports. ESys.Net does not currently have
anything equivalent to this verification mechanism, but an equivalent mechanism
could be fairly easily created. Since ESys.Net is based on .Net/C#, reflective
capabilities could be used to analyze a model after the elaboration phase and fill a
data structure in the individual channels with information such as: what modules have
a reference to the channel, which interface is used in the module to abstract the

channel etc.

79

The second argument supporting the usefulness of ports for attaching extra

information such as priorities and name is not valid with the help of attribute

programming. Metadata may be attached directly to the interface variable declaration:
. public class FullAdder: BaseModule({

1

2. [Priority(1l)lpublic inBool a;
3. public inBool b;
4

Code example 46: Metadata (priority)

By unifying the concept of a port and an interface, we have simplified our design
library. Moreover, our models take less memory because there is no memory

allocated for an interface.
Unification of primitive and hierarchical channels [24]

SystemC has divided the semantics of high level communication into two orthogonal
entities: primitive channels and hierarchical channels. The concept of hierarchical
channels is not truly defined because they are just modules hiding behind a “typedef™.
We find that this separation is quite arbitrary and that hierarchical channels should be
better defined.

ESys.Net unifies the two entities making the concept of primitive channels a specific
case of the general concepts of hierarchical channels. This simplification makes for a
simpler environment. Moreover, the concept of a channel in ESys.Net is clearly
separate from the concepts of modules. This separation will permit tools to easily

distinguish channels from modules in the same way our discovery algorithm does.

6.1.2 Programming Simplification

The main purpose of system design languages is to model and simulate complex
systems at high and low levels of abstraction. At high levels of abstraction, systems
should be easily modelled and quickly debugged. Since SystemC is based on C++, it
i1s plagued with all the complexities of the languages such as pointers, manual
memory management and macros just to name a few. Because of these programming

complexities, even simple systems become overly complex to model (just dealing

80

with header files can be a headache). System designers should be good at designing

systems not necessary programming with C++ [17] .

The C# programming language offers a simple and elegant basis for the ESys.Net
environment. With C#, designers can focus on the modeling of systems instead of the
ins and outs of the supporting language. Moreover, the dynamic verification that the

Net runtime does on executing code permits the creation of less error prone systems.

6.1.3 A Simpler Better Framework

Taken as is and for what it is, SystemC is a very effective environment. However,
because SystemC is based on a fairly low level language like C++, its evolution and
customization is greatly hindered by its underlining design. For performance reasons
and because C++ does not support reflective capabilities, SystemC makes excessive
use of macros and obscure design techniques. To stay cross platform, SystemC makes
use of a user side thread library. This is not a problem as such, but when debugging
custom modifications to the simulation kernel, the debugger must go through this
complex code which is a problem. Moreover, custom modifications to the kernel are
often necessary because SystemC’s design was not intended for hooking third-party
tools to the simulation kernel [53] [11] . ESys.Net alleviates all these problems by

leveraging the many features of .Net/C#.
Simpler design

By leveraging the already rich runtime and class framework provided by .Net/C#,
ESys.Net has a much smaller and simpler design that SystemC. By using the
threading capabilities provided with the runtime, ESys.Net offers cross-platform
threads whose implementation is hidden from the user. This simplifies the debugging
of the simulation kernel. It also shortened the time necessary to develop the kernel
because the thread library is almost trivial compared to QuickThreads (the library

used by SystemC).

By using attribute programming reflectivity and delegates, the use of pointers, macros

and “typedef’s” were completely eliminated, offering a simple design that is easy to

81

debug. ESys.Net is simpler to understand and debug because there are no macro
expansions at compile time, so what is debugged is what is written and not what has
been expanded. Pointers are also a problem to debug, especially when they are

function pointers.

Modules
Cormmunication channels
Signals
Events

Attnbute programming, Tagging
Interfaces
Thread management

Intermediate fo n—'r:at

Figure 11 : Leveraging of existing features

Figure 11 shows how ESys.Net was designed with a layered approach by using
already existing features found in .Net and C#. The further box represents the scope
of .Net, the middle box represents the scope of C# and the top box represents the
scope of ESys.Net.

When features are found in overlapping boxes, it means that the features are defined
in the lower box but are leveraged by the higher ones. We can see by the diagram that
ESys.Net only needed to implement the missing hardware semantics such as modules

signals, etc.; all the rest comes from .Net and C#.

As an example of how much code was saved by using .Net and C# to implement
ESys.Net, here is a comparison of the scheduling kernels: SystemC’s kernel is very

large, just the scheduling kernel is well over 1500 lines of code (this is not counting

82

the lines of code used by the user side thread library which is about the same size and
the code that is hidden by macro expansions), ESys.Net is only about 500 lines of
code. Because we leverage the use of an advanced programming environment, the
ESys.Net kernel is very simple and can almost be read like pseudo-code which is not

the case with SystemC.
Open design

The business and academic worlds believe we are going through a design crisis
because the computation power of hardware technologies is growing exponentially
but our ability to produce effective design for these technologies is not [27] .
Environments such as SystemC help designers build and test complete systems
rapidly, but design exploration and verification through simulation has its limits. In
order to get past the current design crisis, new sophisticated CAD and EDA tools are
required to perform advanced design analysis and verification. CAD and EDA tools
could also automate certain aspects of design space exploration with the use of

constraints.

Some environments such as Verilog and SystemVerilog have well defined APIs that
permit the hooking of third-party tools to the simulation kernel [32] [54] [4] . These
APIs usually permit the registration of callback functions or the ability to introspect
the current model being simulated. However, most of the APIs are overly complex
lIimiting the rapid design of custom tools. SystemC, because of its design, does not
easily support the hooking of third-party tools. Many have had to modify the
kernel[11] [53] . Also, since C++ offers no standard reflective capabilities, model

introspection is very limited even with the new SystemC Verification Library.

ESys.Net makes third party tool hooking simple by providing numerous callback
points in the simulation kernel, making kernel modification almost avoidable in most
cases. Through the use of Net/C# reflective capabilities, it is feasible for small

development teams to design sophisticated analysis tools rapidly.

The following code examples are excerpts of a complete programme in Annex C. The

program demonstrates the powerful reflective capabilities of .Net/C# and the simple

83

elegance of third-party tool hooking with ESys.Net. The program is a complete
implementation of the simple “MyFirstSystem” example that we presented in section
4.1. The program also contains the code for a verification tool that we will be
presented briefly below. The verification tool, once bound to a system model, can
discover all the signals and ports contained within the model. It then keeps a list of
the elements it finds. The verification tool is then capable of printing out the current
value and name of each signal and port. In the code excerpts that follow, we will
rapidly present the algorithms used for the discovery and printing as well as the code
that binds the tool to the simulator.
private void DiscoverSignals (ImodelElementContainer
element, string parentname) {

Type type = element.GetTypel():
ArrayList hierarchialElements = new ArrayList();

1

2

3

4

5. Object[] couple;
6 foreach(FieldInfo fi in type.GetFields(BindingFlags.Instance]|
7 BindingFlags.Public |

8 BindingFlags.NonPublic)) {

9 Object obj = fi.GetValue (element);

10. if (obj is BaseModule) {

11. couple = new Object[2];

i2. couple[0] = parentname + "." + fi.Name;
13. couple{l] = obj;

14. hierarchialElements.Add{couple);

15. }else if (obj is BaseSignal) {

16. couple = new Object(2];

17. couple{0] = parentname + "." + fi.Name;
18, couple{l] = obj;

19. signals.Add (couple);

20. }

21. }

22. foreach(Object[] pair in hierarchialElements)
23. DiscoverSignals ((IModelElementContainer)pair([1],
24. (string)pair{0]):

25.}

Code example 47: Signal Discovery method
Code example 47 is the code fragment we use to discover the signals and ports of the
system model. It is based on the same pseudo-code explained in Chapt.5 that the

simulation kemel uses to discovers the various elements of a model.

84

public void PrintSignals() {

foreach (Object[] pair in signals) {

Object currentValue = pair[l].GetTypel().
GetProperty ("Value") .GetValue(pair(l],null);

Console.WriteLine("Signal/Port name: {0};",pair[0]);

Console.WriteLine("Current value: {0};",currentValue);

Console.WriteLine("----------—————-oom——m ")y:

10. }

1.
2
3
4
5. Console.Writeline("----—=---——=--———--——c—-— ")
6
7
8
9

Code example 48: Printing method

Code example 48 gives the algorithm used to print the current value of the signals and

ports found by the tool, as well as their hierarchical names.

1. static void Main(string[] args) {

Simulator sim
MyFirstSystem
. SignalPrinter
sim.simInit+=

sim.Run(20);

0 o 0 WN

= new Simulator();

sys = new MyFirstSystem(sim);

sp = new SignalPrinter (sys,"MyFirstSystem");
new RunnableMethod (sp.Initialize);

sim.cycleInit+= new RunnableMethod(sp.PrintSignals);

Code example 49: Tool hooking

Code example 49 is responsible for hooking the tool’s initialization method to the

Simlnit event of the simulator as well as the tool’s printing method to the Cyclelnit

event. When the simulator starts its initialization phase, it will cause the tool to

initialize itself. At the beginning of each simulation cycle, the tools will print the

value and names of the signals and ports. The following is part of the simulation

output (the complete output is in Annex B)

Excerpt of the ouput:

Signal/Port name: MyFirstSystem.sig3;

Current value: 0;

Signal/Port name: MyFirstSystem.top.porta;

Current value: 0;

85

With SystemC, a simple but effective tool like the one presented in the previous
pages, is unreasonably complex to create. The simple elegance of third party tools
hooking that ESys.Net supports, we believe, is in itself a major contribution to the

community.

6.2 Disadvantages of the Environment

One advantage of SystemC is that people can model software parts of the overall
system and then simulate them. Once those parts are verified, they can be compiled
with already existing tools for a vast number of processors because C/C++ are still
the major languages used for software development (especially embedded systems).

C# currently lacks this capability because it relies on a runtime.

The generic programming features of C++ don’t have any equivalent in C#. It is
possible to simulate generic programming by writing algorithm with only variables of
type Object. This does not permit the compiler to do static type check and it also
forces the user to use a lot of type casting (slowing down simulation). Generic
programming would simplify the creation of custom user signals that are type safe
and faster to execute. It would also simplify the ESys.Net library because we had to
create a signal for each basic value type supported by the CTS. This said, generic
programming features have been announced for the next version of .Net\C#; there is

already an experimental version that is available called Gyro [37] .

Another advantage of SystemC is that its simulation library is more complete. It
contains elements for the modeling of fixed point floating types, some predefined
channels and the simulator supports many time units just to name a few. All of these
features may be modeled in ESys.Net. We did not implement them because they did

not add any value to our proof of concept.

6.3 Experimental Results

To prove the efficiency of ESys.Net we performed several experiments. The main
criteria that we used for the evaluation were the performance and the applicability for

concrete systems modeling and simulation.

86

Firstly, we compared the performance of the C# language to the C++ language using
a concrete application, the simulation model of a DLX processor. We measured the
simulation time of this application for the C# specification execution on .NET and the
C++ description executing natively. The results obtained were that the two languages
present comparable capabilities in terms of simulation speed — the C# execution time
penalty was below 10%. These results are in concordance with reported numbers
concerning the use of C# versus C for real-time applications. We consider this penalty

acceptable given the advantages of the NET framework.

In addition, we modeled and simulated a second concrete application. In order to
compare with a well known simulator, we used an application provided by SystemC.
The overview of this application is illustrated in Figure 12. The application consists

of 7 main components (Annex A):

* a communication channel that ensures the communication between the other
components of the system. These components may be masters or slaves of the
channel. A master module requires communication primitives from the
channel and the slave module offers services to the communication channel;

= two memories (the fast memory and the slow memory) that differ by the
number of clock cycles necessary to read or write data; the memories are slave
modules of the communication channel;

= three master modules that read/write date to/from the memories through the
communication channel;

= an arbiter that provides a priority based management for the concurrent

requests from the masters.

Fast
Memory

Slow
Memory

Arbiter | | Blocking
Master

Unblocking
Master

Direct
Master

Communication Channel

Figure 12 :

General view of the application

87

We obtained the correct simulation of the system (verified by comparing the results in

our environment with those given by SystemC).

The CLI specification does not mention if threads should be pre-emptive or

collaborative. Microsoft thread implementation is pre-emptive. Pre-emptive threads

permit the modeling of concurrent software components in a precise way, enabling

the verification of race conditions and dead lock. SystemC lacks the capability

because its threads are collaborative. To evaluate the performance penalties of context

switches due to pre-emptive threads, we conducted a simple simulation that modeled

the worse case scenario of a single variable affectation during a time slice. We then

added progressively more computation during a time slice to see how the cost would

evolve. Here is a snippet of the code:

[Process]

[Event List(“sensitive”,”InA”)]

. private void Run({() {

. int i;

. for(i=0;i<LIMIT;i++){}

. InA.Value =

. Wait{);

}
10.}

1
2
3
4
5. while(true) {
6
7
8
9

i;

Code example 50:

Context switch verification

We modeled this process in ESys.Net and SystemC with threaded processes and

methods based processes. Figure 13 compares the execution time of ESys.Net and

SystemC when the LIMIT parameter of the “for” statement is increased.

88

W

o

o

o
J

§ — Ratio ESys.NET/SystemC Threads
g - Ratio Esys.NET/SystemC Methods
E

)

o

o

o
{

T T 1

0 50000 100000 150000

Instructions between context switch

Figure13: ESys.Net versus SystemC performance

The experiment shows that our environment may present a performance penalty.
Even if the computation in .NET threads is executed efficiently, the context switch
and the thread instantiation in the current implementation of NET are relatively
costly compared to QuickThreads used by SystemC. Consequently, the penalty is
reduced proportionally with the growing complexity of the computation performed in
the threads. The overall performance of .NET threads compared to SystemC threads
may vary from 30 times for light threads to less than 75% penalty for computation
intensive .NET threads. Using method based processes resuits in a penalty lower that
10% [42] .

It is important to emphasize that this performance cost is compensated by two
advantages that are presently missing in SystemC: the possibility of modeling real
multi-threading and the possibility of modeling software components at different
abstraction levels. These advantages are foreseen in the future version of SystemC
and the cost to pay for introducing them have not yet been evaluated. Consequently,
the comparison between ESys.Net and SystemC thread performances is quite unfair
because they are conceptually different. Our experiments only quantify the penalty of

having a real multi-thread based environment.

89

6.4 Summary

Here is a table that summarize the advantages and disadvantages of ESys.Net

compared to SystemC.

Table V : Summary of the Advantages and Disadvantages over SystemC

Advantages

Simpler programming basis | The C# programming language is a simpler language
than C++ that offers many high level programming
constructs, hence programmer are more productive
because they can code faster and the code is less error
prone. Using C# also permits designers to concentrate
more on modeling tasks then on eclectic language

specificities.

Semantic unification The ESys.Net Framework has unified some of the
modeling concepts found in SystemC : ports and
interfaces, channels and primitives channels, which
simplifies the modeling framework and makes it

smaller.

Open design Third party tool integration and CAD tool creating is

made simple by the use of reflection.

Simpler design The ESys.Net kernel is many times simpler then the
SystemC kernel because it is based on the high level
programming constructs of C# and the Net
Framework. Our simpler design permit the ease

debugging of custom modifications.

90

Disadvantages

Incomplete library

The ESys.Net Framework is not as complete as
SystemC ‘s - we did not create a complete library
because it did not add to our proof of concept. A

complete library can easily be created.

Code speed

The Common Intermediate language execution is
about 10% slower then compiled C++ code. However
we find this cost insignificant compared to the
productivity gains and runtime support offered by
Net.

Thread speed

The modeling processes that are implemented with
.Net threads have a high performance penalty
compared to SystemC’s processes that are modeled
with QuickThreads. However, by using threads that
are pre-emptive and scheduled by the OS, ESys.Net
permits the modeling of concurrent software tasks and
may utilize the parallelisms offered by a
multiprocessor system to gain simulation speedups. If
the ability to use fibers to implement threads in .Net
became available, the performance cost would

probably be completely eliminated [57] .

We believe that the advantages of ESys.Net gain though using the .Net Framework

greatly outweigh the performance penalties that are incurred. Also, we believe that it

is important for the next generation of modeling and simulation tools to put aside

issues of performance penalties that have a constant cost because the growth of

system models is exponential — even a large constant gain in performance will rapidly

become insignificant with the rapid size growth of system models. We believe that

the next generation of solution should put the emphasis on higher modeling

abstractions and higher design productivity.

91

Chapter 7 Summary and Future Work

Nowadays, in order to respect the time to market and strict cost constraints, system
designers need new modeling and simulation solutions. These solutions must enable
easier memory management and software component complex specifications, multi-

language features and mitigated connection with other existing or new CAD tools.

In this thesis a new solution for modeling and simulating called ESys.Net was
presented. ESys.Net brings to the hardware/software modeling community a new
solution that has all the benefits of SystemC without having most of its drawbacks
such as: the complexity of the C++ language, the complexity of the modeling library,
the lack of introspection, etc. Our solution also fulfills all the requirements that we
enumerated in the introduction and with no significant performance cost. The solution
that we propose in this research project is based on the advanced programming
capabilities of the C# programming languages and of the Net Framework runtime.
By leveraging these capabilities, we have developed an environment called ESys.Net

which is meant to be an evolution to SystemC.

Before SystemC become available, designers had to purchase very expensive
proprietary environments for hardware and system modeling. SystemC is distributed
free of licensing fees which permits small and medium size companies to do design
work without a big investment up front. SystemC is also “open source”, so companies
can modify the environment to incorporate their own custom tools. However, custom
tool integration with SystemC is very difficult and time consuming because of C++
and because of SystemC’s design, so difficult that major proprietary modification to
the kernel usually have to be made. This has pushed the development of custom tools

out of the realm of reality of many companies, leaving them with the only option of

93

purchasing expensive “off the shelf tools” that do not always fulfill all requirements

the companies would like.

Today, even though designers can use SystemC at no cost, if they want to do any
complex modeling, they are almost obliged to go back to buying software with six
digit price tags. By using ESys.Net, designer can avoid being slaves to expensive “off
the shelf” “one size fits all solution” (most of us know that one size fits all does not
exist!). ESys.Net is meant to be a “free” and “open source” solution that will allow
designer to model systems quickly and effectively, and will also allow them to create

sophisticated custom CAD tools cheaply.

7.1 Summary

ESys.Net offers many advantages over its predecessor. Among these are (i) a reduced
set of modeling semantics due to concept unification, (ii) a simple programming basis
exempt of eclectic syntactic elements, (iii) a simulation kernel that supports third-
party tools integration, (iv) an overall environment that is better suited to less prone
models, (v) a rich software library that permits the modeling of complex software
components (especially operating system elements).In this thesis many concepts were
examined and reviewed. We gave an overview of the different environments available
for the modeling and simulation of hardware/software systems. These environments
where described only briefly because it was not our intention to justify our solution in
regards to these alternatives. We also presented a brief introduction to the new
challenges facing system designers today and in the future and new software
technologies that might help to solve these problems. We presented the Net
Framework and the C# programming language in order to expose their advance
features which make up the backbone of ESys.Net. A large part of this thesis explains
the various aspects of our environment. We also compared the simulation kernels of
SystemC and ESys.Net because that is where their most significant differences lay. In
the last pages, we objectively presented the pros and cons of ESys.Net vs SystemC.
We gave some experimental results to justify our solution and we gave an irrefutable

example to demonstrate the shear power of our environment.

94

7.2 Where Do You Go From Here?

The following are some of the many areas that should be investigated in order to

expand on the work that was done to develop ESys.Net further:

» Behavioural synthesis

= System partitioning exploration

= Integration of linear temporal logic and assertion verification

= Heterogeneous system modeling

* Cosimulation with SystemC

= Visualisation and model analysis tools
The next important steps should be, however, the optimisation of the simulation
kernel. Even though good performance results were collected, many implementation

improvements could and should be done.

In conclusion we would like to point out that this research also confirms that software
expertise might bring about substantial contribution to the hardware and system

modeling domain.

References

[1]
[2]

[3]

[4]

[3]

(6]

[7]

[8]

(9]

ASML Home Page, www.research.microsoft.com/foundations/Asml./, 2003.

Albahan, B., “4 Comparative Overview of C#”,

genamics.com/developer/csharp_comparative.htm, 2003.

Bailey, S., “Comparison of VHDL, Verilog and SystemVerilog”, Model
Technology, Wilsonville, OR, Digital Simulation White Paper, July 2003.

Bailey, S., “VHDL-200X improves design and verification”, EEDesign,
November 7 2003.

Bellows, P. and Hutchings, B., “JHDL-an HDL for reconfigurable systems”,
IEEE Symposium on FPGAs for Custom Computing Machines, Napa, CA, pp.
175-184, April 1998.

Borrione, D., Piloty, R., Hill, D, Lieberherr, K.J. and Moorby, P., “Three
decades of HDLs. II. Conlan through Verilog”, IEEE Design & Test of
Computers, vol. 9, issue 2, pp. 54-63, June 1992,

Buchenrieder, K., Pyttel, A. and Sedlmeier, A., “A powerful system design
methodology combining OCAPI and Handel-C for concept engineering”,
Design, Automation and Test in Europe, Paris, France, pp. 870-874, March
2002.

Cai, L., Verma, S. and Gajski, D., “Comparison of SpecC and SystemC
Languages for System Design”, University of California, Irvin, Technical

Report CECS-03-11, May 2003.

Charest, L. and Aboulhamid, EM., “A VHDL/SystemC Comparison in
Handling Design Reuse”, International Workshop on System-on-Chip for Real-
Time Applications, Banff, Canada, pp. 79-85, July 2002.

[10]

[11]

[12]

[13]
(14]

[15]
[16]

[17]

[18]

[19]
[20]
[21]
[22]

96

Charest, L., Aboulhamid, E.-M. and Bois, G., “Applying patterns and multi-
paradigm approaches to hardware/software design and reuse”, in Patterns And
Skeletons For Parallel And Distributed Computing, F. Rabhi and S. Gorlatch,
Eds. London: Springer-Verlag, pp. 297-325, 2002.

Charest, L., Reid, M., Aboulhamid, E. M. and Bois, G., “A Methodology for
Interfacing Open Source SystemC with a Thrid Party Software”, Design,
Automation and Test in Europe, Munich, Germany, pp. 16-20, March 2001.
Chu, Y., Dietmeyer, D.L., Duley, J.R., Hill, F.J., Barbacci, M.R., Rose, CW.,
Ordy, G., Johnson, B. and Roberts, M., “Three decades of HDLs. 1. CDL
through TI-HDL”, JEEE Design & Test of Computers, vol. 9, issue 3, pp. 69-
81, September 1992.

Comparison of VHDL, Verilog and System Verilog, www.bitpipe.com/, 2003.

Delpasso, M., Bogliolo, A. and Benini, L., “Virtual Simulation of Distributed
IP-Based Designs”, Design Automation Conference, New Orleans, LA, pp. 50-
55, June 1999.

DotGNU Home Page www.gnu.org/projects/dotgnu/, 2003.

Doulos “A Brief History of VHDL”
www.doulos.com/knowhow/vhdl designers guide/a brief history of vhdl/,
2003.

Doulos, “SystemC In Europe: Current Usage and Future Requirements”™,

www.doulos.com/, 2003.

Drucker, L., “SystemC Verification Library speeds transaction-based

verification”, EFDesign, February 24 2003.

ECMA-334:December 2002, C# Language Specification.
ECMA-335:December 2002, Common Language Infrastructure (CLI)
Extensible Markup Language (XML), www.w3c.org/XML, 2003.

F. Doucet, S. Shukla, and R. Gupta, “Introspection in system-level language
frameworks: meta-level vs. integrated”, Design, Automation and Test in

Furope, Munich, Germany, pp 382-387, March 2003.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]
[32]

[33]
[34]

[35]

[36]

97

Ferrandi, F., Rendine, M. and Sciuto, D., “Functional verification for SystemC
descriptions using constraint solving”, Design, Automation and Test in Europe,
Paris, France, pp. 744-751, March 2002.

Functional Specification For SystemC 2 .0, www.systemc.org, 2003.

Goering, R., “Accellera outlines major SystemVerilog enhancements”,
EEDesign, December 4 2003.

Gough, K.J., “Stacking them up: a comparison of virtual machines”,
Australisian Computer Systems Architecture Conference, Queensland,
Australia, pp. 55-61, January 2001.

Hara, Y., “Researchers describe embedded processor design tool”, EEDesign,

May 9 2002.

Hutchings, B. and Nelson, B., “Developing and debugging FPGA applications
in hardware with JHDL”, Thirty-Third Asilomar Conference on Signals,
Systems, and Computers, Pacific Grove, CA, pp. 554-558, vol. 1, October 1999.

Hyperdictionary, “Callback Definition”,

www. hyperdictionary.com/computing/callback, 2003.

IEEE Std 1076.1-1999:1999, IEEE standard VHDL analog and mixed-signal

extensions.
IEEE Std 1076-1987:1988, IEEE standard VHDL language reference manual.

IEEE Std 1364-1995:1996, IEEE standard hardware description language based
on the Verlog(R) hardware description language.

ITRS, “International Technology Roadmap for Semiconductors, Design”, 2001.

Jerraya, A. and Emst, R., “Multi-language system design”, Design, Automation
and Test in Europe, Munich, Germany, pp. 696-699, March 1999.

Jia, H. and Liu, J., “Developing remote virtual instrument laboratory (RVIL)
based on browser/server pattern”, International Conferences on Info-tech &

Info-net, Beijing, China, pp. 267-272, vol.4, October-November 2001.

Keating, M. and Bricaud, P., Reuse Methodology Manual for System-on-a-Chip
Designs, 2™ Edition, Boston, Kluwer Academic Publisher, 1999.

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]
[48]
[49]

98

Kennedy, A. and Syne, D., “Design and Implementation pf Generics for the
.Net Common Language Runtime”, Programming Language Design and

Implementation, Snowbird, Utah, pp. 1-12, June 2001.

Khusid, M. and McElrath, L., “StateMate vs. SystemC”, 18-849B Project 1,
March 26 2001.

Kilgore, R.A., “Multi-language, open-source modeling using the Microsoft
NET architecture”, Winter Simulation Conference, San Diego, CA, pp. 629-
633, December 2002.

Lee, E.A. and Neuendorffer, S., “MoML - A Modeling Markup Language in
XML, Version 0.4”, Technical Memorandum UCB/ERL M00/12, University of
California, Berkeley, 2000.

Liberty J. “Programming C#: Attributes and Reflection” Oreilley,
www.oreillynet.com/pub/a/dotnet/excerpt/prog_csharp_chl8/index.htmi, 2003.

Lutz, M.H and Laplante, P.A., “C# and the .NET framework: ready for real
time?”, I[EEE Software, vol. 20, pp. 74-80, January-February 2003.

Martignano, M, Drago, N., Fummi, F. and Martini, S., “A combined approach
to validate the design of embedded network devices”, /EEE International
Symposium on Circuits and Systems (ISCAS), Scottsdal, AR, pp. 169-172 vol.3,
May 2002.

Martin, G., “SystemC and the Future of Design Languages: Opportunities for

Users and Research”, Symposium on Integrated Circuits and System Design,
Sao Paulo, Brazil, pp. 61-62, September 2003.

Meijer E., Miller J. Technical “Overview of the Common Language Runtime”

research.microsoft.com/~emeijer/Papers/CLR.pdf, 2003.

Mono Home Page, www.go-mono.com/, 2003.

Moorby, P., “A Look Back At Verilog”, Electronic Design, June 10 2002.
Moores Law, www.webopedia.com/TERM/M/Moores Law.html, 2003.

.NET Framework Home Page, www.microsoft.com/net, 2003.

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]
[60]
[61]
[62]

99

Newkirk, J. and Vorontsov A A., “How .NET's custom attributes affect design”,
IEEE Software, vol. 19, pp. 18-20, September-October 2002.

Nicolescu, G. and al., “Validation in a Component-Based Design Flow for
Multicore SoCs”, International Symposium on Systems Synthesis, Kyoto, Japan,
pp 162-167, October 2002.

Overview: Hardware Compilation and the Handel-C language

web.comlab.ox.ac.uk/oucl/work/christian.peter/overview handelc.html, 2003.

Paulin, P.G., Pilkington, C. and Bensoudane, E., “StepNP: A System-Level
Exploration Platform for Network Processors”, IEEE Design & Test of
Computers, vol. 19, issue 6, pp. 17-26, November-December 2002.

Rich, D.I., “The evolution of SystemVerilog”, /EEE Design & Test of
Computers, vol. 20, issue 4, pp. 82-82 July-August 2003.

Rotor Home Page

research.microsoft.com/Collaboration/University/Europe/RFP/Rotor/, 2003.

Sarmenta, L.F.G., Chua, S.J.V., Echevarria, P., Mendoza, J.M.; Santos, R.-R.;
Tan, S. and Lozada, R.P., “Bayanihan Computing .NET: grid computing with
XML web services”, Cluster Computing and the Grid 2nd IEEE'ACM
International Symposium, Berlin, Germany, pp. 404-405, May 2002.

Shankar, A. “Implementing Coroutines for NET by Wrapping the Unmanaged
Fiber API”, msdn.microsoft.com/msdnmag/issues/03/09/CoroutinesinNET/

default.aspx, 2003

Singer, J., “JVM versus CLR: A Comparative Study”, International Conference
on Principles and Practice of Programming in Java, Kilkenny City, Ireland, pp.
167-169, June 2003.

SpecC Home Page, www.ics.uci.edu/~specc/index.html, 2003.

Synopsys, CoCentric® System Studio, 2001.

SystemC Home Page, www.systemc.org/, 2003.

SystemC 1n Europe - current usage and future requirements,

www.doulos.com/systemc report/, 2003.

[63]
[64]
[65]
[66]

[67]

[68]

100

SystemC Version 2 LRM, www.systeme.org, 2003.

SystemC Version 2 User’s Guide, www.systemc.org, 2003.

SystemC, Version 2.0, www.systemc.org/, 2003.

T. Grotker, “Modeling software with SystemC 3.0”, www-ti.informatik.uni-
tuebingen.de/~systemc/ Documents/Presentation-6-OSCI5_groetker.pdf, 2003.

Wikipedia, “Hardware Description Language Definition”,
en2.wikipedia.org/wiki/Hardware description_language, 2003.

Yoo, S. and al., “Building Fast and Accurate SW Simulation Models Based on
Hardware Abstraction Layer and Simulation Environment Abstraction Layer”,
Design, Automation and Test in Europe, Munich, Germany, pp. 150-155,
March 2003.

Annex A Fifo Channel Example

1N

{92TS = ®ZTIS STY]
!{®2TS]3UT MBU = wow

w0 Udyl x9bHBTq BQ 3snw 8zTG, ‘) < 9ZTS)JASSSY UOTIBOTITIOA

}(@zTs 3urn)ogzt3 ortrqnd

8ZTS Y3TM I03DONIJSUO0D //

{()3ueAag MBU = UBIITIM BIBP JUSAF
{()3jusag MAU = pESI BlEp JUSAY
®T0AD e3Tep STyl bBuTanp us33Taim ssTdwes# ,// {USIFTIM WAU JUTN
aT0A0 eaTep sTY3 butanp pesx serdwes# // fpeSI wnu Jutn
sTgepeex saTdwes# // {8TqEPESI WNU JUTN
OJTJ @yl 3JO 8ZTS // {82TS 3JuIn
©JTJ ®Yy3 Jo 8zTSs // {3uox3y 3uln
Azowsw o0FTI 8yl // ‘fwaw []3uT
}3T ®3Tam OFT3 ‘3JT pesx O3FT3F ‘Touueydaseg :03JT3F sserd orrqnd

|||||||||||||||||||||||||||||||| /7
OFTF : TIANNYHD FAILIWIEd //
|||||||||||||||||||||||||||||||| /7
_ {
@917 seoedsg 3senbex //:()9sx3 wnu Juln
231Tam burydoTg-uou /7 f(BIEP JUT JOBI)DITIM qu TOOQ
@37am buTrydorq // ¢(Blep 3IUT JBX)IITIM PIOA
}3T 23Tam 03T3 @oeFIL3uT 2TTqnd
|||||||||| e 4
FT 93TaM OFTI : FDVAIIAINI //
||||||||||||||||||||||||||||||||| //
_ {
aTqerTeae soTdwesy# 3sanbsx //!()9TgeTTRAR WNU 3UIn
pesx burydolg-uou // ¢ (BIBP UT IBI)peaI qu TOOq
pesx HBUTYOOTQ // ¢ (e3EP JUT JFOI)pESI PIOA
}3T peax 0373 @oezaa3jur oTTqnd
|||||||||| et bel V4
3T PBSI OJTI : HDVAYHINI //
|||||||||||||||||||||||||||||||| //

umoys 3jou @1e sjxed swos !9pod> opnasd //

fwayskg Butsn

$2'0JTI\OFTI\ASCGSAST\YoaeasSay\ 13

AN OO0

£(0)AITION USIITIM B3RP
(0 < u233TaIM wWnU)JIT
} ()®3epdn proa 9pTaxsao orTgnd

{?{(US33TIM WNU - STQEPESI WNU - 92TS§) UINIBI } ()98xF wnu juin orTqnd
{ ¢{(pedx1 wnu - aTgeEpPEaI WNu) UIN}dI } ()aTgeITear wnu jutn orTgqnd
9917 ssoedsy pue sTqerTeae saTdwesy# 3sanbsx //

{

snx) uInalal

{4+3U0T3
!ejep=[3uoxy]juwsu
uakumnmoumomwwm

{+4 US3ITIM wnu
{9sTeI uaniax
(0 == ()9@217 wnu)JT
}(e3ep 3UT JOI)o3Tam qu Toog orrqnd
{

/3nI1] uINSI

{--3uox3
{[1-3ucazjusuw = ejep
! ()o3epdnasenbay

{+4+ pesI wnu
{38TEI UINlax
(0 == ()sTqerTeae unu)JIT
} (e3aep 3uT Fox)pesax qu Tooq OTTGnd
$S900NS U0 ,9NI3, UINIdI //
Ss90D® 93Tim Pue pesx DBurysolg-uou //
{
{(e3ep 391)93TIM qU
(pee1 eiep)3Tem
(0 == ()®213 wnu)3T
}(ejep juT F®1)23TIM pPTOA OTTQnd
{

’
.

{(ejep 381)pesax qu
£(u®33TIM elEp)3TeMm
(0 == ()9TgeTTRAR WU)3T
} (eaep 3ut 381)pesax proa d11qnd
§s®0DP ©3TIM pue pesax burydolq //
{

sD°03TI\0ITI\A8QsAST\yoaessay)\ :d

{ LTT

{ 91T
! (TeA)@UTTOITIM OTOSUOD GIT
pesax buryooTq // {(Tea Fo1)pesx-andur PIT
} (++ T {GT > T {0 = T 3uT)I03 €TT
su 0T I03 3tem // {(0T)3tem 1T
} (enxl)aTTym T11T
{0=T®a 3JUT 01T
} (JuoTido® UTEW PTOA 60T
[ss@d014d] 801
— _ LOT
fandut JT pesx oFtTy oITqud 901
}oTnponoseg : zspeax sseTd oTT1and 60T
pOT
{ €01
{ 0Tt
{ 10T
{ 00T
i++TEA 66
23Tam DBurydOTqg // ! (Tea Foax)eatam-andino 86
JO++ T 02 > T f0 = T 3UT)a037 L6
su Q7 03 1Tem // {(QT)3Tem 96
} (enxy)eTTym g6
{0 = 1IBA 3JUT 43
} ()uoT3ade uTew proa €6
[ss®202xd] Z6
_ _ 6
f3ndano 3T 83Tam o313y 2TTqnd 06
}oTnpoReseg : 193Tam sserd oITrgnd g3
||||||||| // 88
dATAWYXd // L8
||||||||| // 98
S8
{ vs8
_ _ { €8
{0 = US9IITIM WNU = PEII wnu Z8
{yjbueT waw (JuTn) = STqEpPRSI uwnu 18
£ (0)AITION"peax EBlEp 08
(0 < peax wnu)3T 6L

$0 0JTI\OJTI\ASQSASH\ydIEaS™Y\ :

{

! ()auTIpesy ' 9TOsU0)
£(000T) uny ‘WS
! (,9Tdwaxd,, ‘WTS) TOPOW MU = W Tapouw
{()I03BTOWTS MOU = WIS IOJRTNWIS
} (JuTen pToa oT3e3s 2TTgnd

}ddy sse1o orTqnd

{J = andut*x
{7 = andjano-m
} (oweu ‘zsbeuew)sseq: (sweu HBuTals‘zsbruew zsbeuepuslsASI) Tepou oTTgnd

{{)xopESI MBU I I9peEs1
()I93TIM MBU = M IDJTIM
(s)¥yo0T1q @3eTIUR]ISUT //
{(0T)OJTF MdU = T OJTI
(s) Teuueyd o1BTI9P //

} TopoNwelsAg: Tepow sseTd otTqnd

(s) TouueBYD 03 3IDdUUOD pue

{

§0°0JTJI\0JTI\AS3QsAST\ysaeasay\ 14

€P1
(A
TvT
0FT
6€T
8ET
LET
9¢€1
Gel
PET
€ET
CET
T€T
0€T
621
82T
L2t
921
TN
[
€CT
ezt
¢t
02t
61T
8TT

i

Annex B Simple Bus Example

¥OW¥E_snd FATARIS

‘1LIYM_SNE FATAWIS

'1S300FY_SNd ATAWIS

‘0 = 3O sng FTAWIS
}

snje3s sng o7dwts wnus ostTgqnd

QEINV¥D MD0T_snd FTIWIS

‘I3S MDOT_SNd FTAWIS

‘0 = ON 30071 snd FTAWIS
}

snie3s yoo7 snq o7dwts wnus 2tTgnd

sosumujg\sngsTdwTs\sng sTdwrs\yosIeasay\ 13

AN TNV~ O0O AHANM
e e]

s en

{{38b}ssaIppe pua jutn

{{19b)}ssa1ppe 31e3S 3UTN

! (ssexppe juTn ‘ejep JUT I9I)23TIM snielis sng sTduTs

! (ss8Ippe JUuTn ‘ejep JuT Jax)pesax snjels sng oTduTs
}

IT 3081Tp snq oTdwrs:JT oaeTs sng ordwrs soegyisjut orrqnd

! (A3tr01ad enbtun jutn)snjieis 38b snjeis sng ordwurs

asTe3// ! (ssaappe 3jurn ‘ejep []3uT ‘Ajtrotxd onbTun 3jutn)s3TIm proA

astez// ! (ssaappe 3urn ‘ejep [Jaur ‘Ajrxorad snbTun jutn)pesar proa

! (300N Tooq ‘ssaippe jurn ‘ejep []3utr ‘A3TIioTad snbtun JUTN)SITIM PTOA

! (fooTn Tooq ‘ssaappe Jutn ‘ejep []13uT ‘A3TrotTad enbTunm JUTR) PRSI PTOA
}

IT buryooTq uou sng ardurts soezrajut orrand

!(ssaxppe 3juIn ‘ejep 3JUT JOI)S3TIM 3IDBITP TOOQ
! (ssaIppe JUTN ‘Elep QUT ISI)pPeaI 3108ITP TO0g
}

IT 1001Tp sng oTdwrs @oezasjur orrgqnd

asTe3//! (ssaappe 3Ie3ls 3utn ‘eaep []aur ‘A3Trotrad enbrtun jutn)eaTim 3sing sniels sng eTdurs

asTe3// ! (ssaappe 3Ie3s jurtn ‘ejep []3ut ‘A3taorad snbtun jurn)pesi 3sing snieis soagq oTdurs

(yo0Tn Tooq ‘ssaappe 3Ie3s Jurn ‘eiep []3ur ‘Aataorad enbrun 3uTn)83Tim 3IsIng sniels sng oTdwTs

(00T Tooq ‘ ssexppe 3xe3s jJurn ‘ejep []Jaur ‘A3TIiorad enbtun juTn)pesi 3jsing snieis sog ordwurs
}

IT buryooTrq sng o7dwrs @oeyidjur oTTqnd

! (s3sanbax 3s1TAe1IV)o3eI3TqIe 3senbax sng oT7dwrs

}

3T z93Tgae snqg oTdwts soejaajur orrand

! suoTioaTToD walsAg butrsn

gD sooeyIsjur\sngaTduts\sng aTduTs\yoiessay\ 4

ANMIND O oD

{

so*sooegyaajur\sngaTdurg\sng sTdwuTs\yoIeasay\::d

Sp
A4
(374
A4
184
(024

[(42012, *,2bpabauy,) 3sTTIUBAT]

[PoylIsNd]
.. /7
ssaooad --//
.. /7

{(T)3TXT judwUOITAUY "wWB]}SAS

uAwmwuvvmuﬁcw.mmbmﬂm~mmquUmHuamum.Nm>mHm~ﬁ~=xﬁmw..xﬁﬂw : {0} °aeTS,)SUTT23TIM INQ STOSUOD
! (ssaappe pua-TaaeTS’sSseappe 1Ie3s T3ABTS'T/,X{Z}""X{T1} : {0} @aeTS,)dUTTSITIM IN0 "STOSUOD
! (4, : saaeTs 7z jo sooeds ssazppe burddelisao 10114,)SUTTS3TIM INQ ' STOSUOD

*Z9ARTS < SS9IpPpE 3Ie3s”

} 3T butyoorq snq oTdwrs‘IT

} (derasao ouji) IT
! (ssaIppe pus
T9aRTS) || (SSoIppe 3IR1S°*ZOABRTS > SS8IpPpe pud-TeaeTs) = deTisao ou
{37 eaeTs sngq ardwrs se [{]3xzod oaeTSs = zoaels JT s2aeTs sng oTdwrs
_ o P (C4+ fT > C g = C 3ur) 1037
!31 saeTs sng o7dwis se [1]3x0od SaABTS= [9ABRTS JT SABTS sng ST4AWTS
} (T++ {3unop-3xod eaeTS > T !0 = T 3JuT) 103
!derxsa0 ou ToOq
soaeTS @Yyl JO seexe Arxowsw butddeTisno I103J 309yd OT3IRIS B wioyxad //
} {)uoT3zexogels 3O pud pIoa OTTAnd
[3TuTwrsS]

{!osTey=0soqiea w} (oweu)oseq: (sweu burtiis)sng orduis orTgnd
{ {esoqiaa=ds0qiaa w} (sweu)dseq: (9soqiaa Tooq ‘ sweu Hurtils)sng o7dwrs oTTqnd

!TTnu=3ssnbax juszano w 3ssanbair sng ordwts 23eatad
{()23sTTARIIY M3BU = sissnbai w 3sTTARIIY 83eatad
!{ssogasa w Tooq a¥jeatad
{()3sTIARIay MU = 310d 8aeTs 3IsTTARIIY OTTAnd
{310d z93TQIR JIT 1393Tgie sng o7durs orrqnd
{Y00TD yDoT1d o1T1gnd
ThutyooTq uou snqg oTdWTS‘IT 3091Tp sng orduTs ‘Touueypeseg : sng o7dwts sseyo otrrand

!{suoT3oaTT0D wa3sAg Hursn
‘wa3sAg bButsn

so-sngaTduts\sngoTdwts\sng o7duTs\ys21easayd\ :d

8¢
LE

€
Ve
€€
4%
1€
o€

8¢
Le
9¢

ve

FNOOTN OO0 A NM
HrA A e A A A A A NN NN

A NN WSO O
—

} (sseappe 3utn ‘ejep JUT JBI)SITIM 308ITp Tooq driqad

! (ssa2ippe ‘ejlep JOI)PeROI 1D9ITP SARTS UINIDI

!esTeT uanisx
(TTnu==2a€TS) JIT

! (ssa1ppe)oaeTs 18D = saeTS JT oarTs snqg o1duTs

{asTeI uIniax

! (ssaappe’,paubTTe pIOoM JOU Xp{(} SSBIPPE <-- UOUYH SNd) UTTISITIM INO STOSUOD
paubtiTe piom jou ssaippe //} (0 =] p%sSsaippe) JIT
} (ssexppe 3juTn ‘elep JUT JOI)peal 308ITp Tooq OTTgnd
|| //
@0BJIDIUT SAH 3IDBATP --//
|| //

{()syo0T aedTd
(TTnu==31sanbax juszand w) JIT

! {)assnbai sTpuey
(TTnu =; 3senbsex jusxind w) JIT

! (ssexppe-3senbsi juexInd w’Q°QT/PWILIUBIIND ‘, [{P:T}] ATS {B:0}.)oUTTSITIM INO STOSUOD
(osoqaaa w) IT
§93B1Ss 3JTeM BABTS I0]Tuouw \\

}osta{
!({)3senbaz 31¥3u 326 = 3ssnbax juszino w
}(TTnu == 3senbax jua1ind w) IT

‘utebe 3ssnbax syy 3oeTss //

03 I83TOIR 9yl o1Tnbex sisonbsx 3siang ‘xsgysueal ejep o1burs //

® Y3TM SUOP ST SABTS Y3l I93Je pai1edTd ST 3sanbsx juszano w //
} ()uotioe utew proa dTTqnd

so-sngoaTdwrg\sngeTdwurs\sng aTdwrs\yoxesasay\:d

!13S MD0T Sng ITAWIS sn3els yoo7 snq oTdwrs : QIINVED MOOT SN8 ATAWIS SnIels 30of sng oTduts
é& (I9S MDOT SNd ATAWIS - snieils yoo1 sng o7dwts == ydojn-issnbai) = yooin-3sanbax
(y001n) IT

{ejep = ejep-3sanbazx

!ssaoiIppe = SsSaIppe pus-issnbax
!ssaippe = ssaappe-isanbax
3sTeI = 23Tim op-lsanbazx

L _!(,Sng uT TI0IIF, ' (MOWYE SNE ATIWIS° Sniels sng ardwts
== snjeis-3sanbaz) || (MO SNd ATAWIS sniels sng oTdwTs == snjels-3sanbal)) 3I8SSY° UCTIEDTITISOA
PoYSTUTI 30U TTTIS ST 3sanbaxz syl usym 3ioqe //
! (AatzoTxd onbTun)issnbax 396 = 3sanbax 3ssnbsax snq ardwts

! (ssaippe
‘fytzotad enbTun ‘sweN ‘0-QT/WILIULIIND ‘,{X:g} & ({p:z})pedx : {s:1} {H:0},)dUTTI®ITIM INO STOSUOD
(9soqzaa w) JIT
} (yooTn Tooq ‘ssaappe jurn ‘ejzep []aut ‘Aj3Tiotad enbtun jutn)pesx proa oTTgnd

{

! (esTeI ‘ssoippe‘ejep‘Aitzorad onbtun)pesax
} (ss@appe 3jutn ‘ejep []a3uT ‘A3txorad enbrtun juin)pesx proa oTtTand

! (Ss2Ippe ‘ejep JOI)S3TIM 3DSITP OABTS UINISI

{9sTey uiniaix
(TTnu==8s®©TS) JT

! (ssexppe)oaeTs 396 = sae(s JT oaeTs snqg oTdwuts
!asTeI uaniax

! (ssoIppe’,pouUSTTTR PIOM 30U Xp{0} SSOIPPE <—- YOWWA SNH ,)SUTTSITIM'®3INO 3TOSUOD
paubTTTe PIOM jOU SsaIPPe //} (0 =i y%SS2IPPE) IT

so-sngaTdwrs\sngaTdwuTts\sngq aTduTts\yosaeasay\ 4

PIT
€11
[N
ITT
01T
60T
80T
LOT
90T
SOT

Ot
€0T
[40)
T0T

{

{(9sTe3 ‘ssaippe 11els ‘ejep ‘AjrIotad enbtun)pesi 3sIng uiniai

} (sseappe 3ae3s juTn ‘ejep []3uT ‘A3trorad snbtun juln)peax jsing snjeis snq arduts or1qnd
|| //

soegxajut sng burydorq --//
|| //

{

{snje3s- (A3trotad enbtun)aysenbax 3186 uiniax
} (A3tzotxd snbtun jutn)snie3s 326 snieas snq arduts orrand

{153003Y SN ITJWIS sniels sng or7duTts = snjeis-isanbaex

£13S MDOT SNd FIAWIS sniels y0o7_snq oTdwTs : JIINVED MD0T SNE ATIWIS Sn3eis }oof snq ordurs
& (IS ¥MD0T sSnd FTAWIS sniels oot snq o7dwrs == yooTn-3isanbsax) = yooTn-isanbax

== SN3els - -3sanbaI)

(¥o0Tn) JT

!ejep = eaep-asanbax

!ssaIppe = Ssaippe pua-3sanbex

’ !ssoIppe = ssaippe-isanbax
{9013 = 83Tam op-issnbax

L _!(4SNE UT ZIOIxd, ' (YOW¥d SNg ITAWIS snieis snq oTdwrs
1 (MO sng ATAWIS’ sniels snq oTduUTs == snjels-3sanbal))3119SSY UOTIEDTITISA
PaysSTuTy jou TITIS ST 3Isanbsax ay3z usym 3Ioqe //
! (Rataxotad enbtun)issnbei 186 = 1ssonbex 3senbex sng srduts

! (ssaippe

‘Kataotad snbtun ‘swey ‘Q-QT/oWTLIusxxnd ‘,{x:¢} & ({p:z})@3tam : {s:7} {B:Q},)oUTTIOITIM INO STOSUOD

}

(ssogaaa w) 3IT
(¥o0Tn Tooq ‘ssaippe Jurn ‘eiep []3ur ‘Aatxorxd enbtun jurn)e3Tam proa orTqnd

{

! (osTe3I‘sseappe’ejep ‘AxtioTad onbTun)a3TIM
} (ssoxppe juTn ‘ejep []3uT ‘A3TxoTad enbTun jurn)a3Tam prtoa orTqud

189009y SNd ATdWIS - sniels sng o7dwuts = snjels-isanbax

so - sngoTdutg\sngaTduts\sng a7duts\ysIesasay\ :d

161
0ST
691
8% 1
LyvT
91
SvI
A7)
€PT
(A
9T
0Vl
6€T
8ET
LET
9€1
GET
PET
€ET
el
TE€T
0€T
62T

8¢1
LeT
921
SCt

(XA
€CT
AN
T¢1
oct
6TT
81T
LTT
91T
STT

ejep = ejep-isenbaix

by (T~ (0)yarbuaTi®n-eiep) (JUTIN) + SSSIPPE 3IRIS = SSBIPPE pud‘i3senbax
!ssoIppe 3Ie1S = ssaippeissabex

fenI3 = ©3TIM op-isenbax

! (Aatxotad snbtun)issnbax 3186 = 3senbax 3senbax sng srdwurs

! (ssoxppe 3IB3S !

2R3T1a0Tad enbrun ‘sweN ‘Q-QT/PWILIIUSIAND ‘,{X:ig} P ({P:z})@3TIm-3sIng : {s:T} {H:0},)dUTTEITIM 1IN0 STOSUOD

(osoqasa w) 3FT
} (320N Tooq ‘sseippe 3Ie3s JuTn ‘ejep []3ur ‘A3Tzorxad enbrun 3uUTN)93ITIM 3SIng sniels sng s1duts orrqnd

{
! (9sTe3 ‘ssaippe j1e3ls ‘ejep ‘A3tzotad snbtun)e3lTImM 3sing uinial
} (sseappe 3xe3s jurn ‘ejep [J3ur ‘A3TxoTad enbrun jutn)e3Tim 3sing snjels sng ordwrs orrand

!snjeas-3sonbax uinisx
! (obpasod-}o0TD) 3TBM
! (euop zo3suexl-isenbax)iTem

{1SAN0AY Snd FTJWIS sniels sng s7duTs = sniels-issnbex
{13S MDOT Snd dTdWIS°Sn3els ¥00T_snq oTdwrs : QIINVYED MDOT SNE ATIWIS Sniels y0oT snq ordurs
& (198 MD0T snd ATAWIS sniels yooT sng oTdwTs == y2oTn-3sanbaxz) = yooln-3sanbax
(20Tn) JIT
!ejep = ejep-isanbeax
{54 (T-(0) yabusTiso ejep) (JUTN) + SSSIPPE 3ILIS = SSBIPPe pud- jsanbax
! ssoaippe 3Ie3}s = ssaiappe-3sanbax
!9sTeJ = ®3TIM op‘isanbax

{(A3tzotad snbtun)issnbex 186 = 3senbax 3ssnbax sng oTdwts

! (sseIppe 1I1e1S

2‘'A3txotad enbrun ‘swey ‘Q-QT/dPwWTLiusaInd ‘,{X:g} 9 ({p:iz})pesr-3sang : {s:T} {H:Q},)dUTT®ITIM INO STOSUOD

(ssoqrea w) IT
} (3{ooTn ToOQ ‘ssoippe 3Iels jutn ‘eijep []auT ‘A3tiotad enbrtun jurn)pesx 3sing snjeis snq ordwts oTTgnd

sorsngajduts\sngeTdurs\sng a7duts\yosxessay\ 14

881
L8T
981
S8T
P8t
€81
¢8l

81
081
6L1
8LT
LLT
9LT
SLT
LT
€LT
LT
TLT
OLT
69T
89T
L9T
991
89T
ot
€91
91
191
091
6GT
8sT
LST
961

QST
PeT
£GT
¢St

} (TTnu==saeTs) 3T

fuiniyex

{TInu = 3senbai jueIINO W

_ o¥¥d Snd ATAWIS sSniels sng o7dwts = snjeiscisanbai juaIiand w

! (ssesxppe*isanbax ucwHHBUIE\:UmcmﬂHHm PIOM J0uU Xp{0} SSaIppe <-- JYOUYd SNd ,)DUTTSITIM INQ " BTOSUOD
} (0 =i p%(ssoxppe*isenbax jusxind w)) IT

! (ssexppe-isenbax jusiand w)oaeTs 3186 = saeTs IT eaeTs sng ordwrs
{LIYM SNE ATdWIS snieds sng o7duts = snieas-issnbax juszano w

{(AaTtro0Tad
*3senbal juazind w ‘sweN ‘0 QT/PWILIUSIAND’, ({P:z})daRTS oTpueH {s:T} {H:p},)dUTTSITIM IN0 ' STOSUOD
(9soqiaa w) 3IT

} ()asenbsx oTpuey prtoa oTTqnd
II \
suop ST IaIsueIl 8oyl “\

aouo sissnbax syl JO snjels YOOT Y3l epeibumop : ()sso0T zIRSTO //
sisanbax butpuad //

JO 3STT 9yl JO 1Ino 3sonbai pTTea B suiniax : ()3seanbax 3xau 396 //
A3TIotad //

usath Jo wroz 3ssnbsx sy3x s3ab :soezaszur-SAg () asanbax 2186 //
3ssnbax anefs-o03-snq oTwojle swrojyzad : ()3sanbax aTpuey //

//

ispoylsw gng --//
.. /1

{snjejls-isanbax uinjsx
! (obpasod-3yo0Td) 3TEM
{ (suop zo3suexl‘3senbax)iTem

{1S3N0TY SNE ATAWIS sniels sng oTduTs = snijels- isanbaz
!13S MO0T SNd ATAWIS Sn3els 207 sng oTdwWIs : QHINVED MDOOT $nd ATIWIS Snieis ¥207 snq oTdwrs

& (148 ¥MD0T sA9 ATAWIS snieas y0o7 sng oTAWTs == ydoTn-3sanbai) = yoorn-isanbax
(¥20Tn) JIT

so-sngeTdurs\sngsTdwrs\sng aTduTs\ys2Ieasay\ 4

9¢¢
Y44
vee
| A4
cee
1ce
0ce
61¢C
81¢
LTC
91¢
GT1¢

pic
€1¢
(A4
112
0TC
60¢
80¢
L0ocC
90¢
S0¢
voe
€0¢
[40k4
102
00c¢
661
86T
L61
961
S61
6T
€61
[4:08
161
06T
681

31sanbax jusiano ay3 JO odueIRSTO Ou :Hurssenoiad TTTIS ST SABTS Byl // 9z

1IIVM SnNg FTIWIS sniels sng oTduts ased €92

fyes1q z9z

_ _ { 192

{1Tnu = 3senbaix jusrind w 092

SUOp ST I93JSUBI]} DARTS (DTWO3R) 9Yy3j 3ING ‘Id9JSURI} O3 BIRP 2I0W // 662

} osT® 8G¢C

_ _ { LSZ

{TI0U = 3sanbsx jusxInd w 962

! (p)AFTION 2uUOpP 19jFSuexl-3jsanbar jusxand w GGz

O sng FTAWIS snjeis sng oTdwrs = sniejs-isenbal jusaznd w vsZ

pe3ardwod (x93sueil oT7BuTs I0) IdFSuvII-3SIng // €62

} (ssaippe pus-isenbai jusIind w < Ssoippe‘3lsanbsi jusiand w) IT FAYA

!{++xoput-3ssnbsi juaxand w 162

(butssazppe 83AQq) pIom 3xdu// !p=+sSssappe‘issenbsi querand w 052

MO SNd FTAWIS®snjels sng oTdwrs 9sed 692

_ iyes1q 8hz

{TInu = 3ssnbax jusiind w LbZ

{()AFTa0N 2uUOp x8Fsuexl-isenbei jusiIno w 9%2

IO snd ATdWIS snae3s sng ordwts = snjels-isanbsal jusIiind w ¥4

1YOW¥d SNd ATAWIS snieds snq oTdwrs osed A2

} (snjels oaeTs)yo3Tms £ve

: Zve

! (sn3je3s aaeTs ‘,({0})=sSnie3is <—- ,)dUTTSITIM INQO STOSUOD ve

(@soqasa w) IT 024

_ B 3 B B B B 6€2
! (ssaxppe*isanbax jusxand w’[xspur-3isenbsar jusiind w]ejepcissnbsal jusIInd W JBI)PEOI‘SARTS = SNIRIS SAPTS gcez
asT® LEZ

2 (ssaappe-isenbax juarino w’[xsputr-isenbei jusiino w]ejep-isenbaIl JUSIIND W JSI)23TIM' BABTS = SNIRIS oABTS 9¢cz
(23Tam op-3sanbeax jusazand w) IT Gez

(A%

MO snd ATAWIS snieas sng oTdwrs = snlels oarTS snieis sngq erdwts cez

AN

i { €T
{urniyaz o€z

] {TTnu = 3sanbax jusIind w 622

' NOWNE Snd BTAWIS snieas sng oTdwtis = snjejls-jsenbsr jusIiind w 8z2

! (ssoxppe*isanbai juszand w’,Xp{(Q)} SSSIPPE I0J SABRTS OU <—- ¥OUYH SN ,)OUTTSITIM' INQ*STOSUOD) LZe

L so sngeTdwrs\sngoTdwrs\sng oTAWTS\Yos2Iedsay\ :d

A

¢ (ba1) PPY "D
{(snjeas-bax

‘AaTroTad bax ‘swey ‘g oT/swrriusxand’,[{c}] ({p:z}) 3senbax : {7} {HB:0}.) UTTISITIM INO OTOSUOD

*snyels snq otdwuts

(8soqasa w) IT _
} ((1LI¥M Snd ATAWIS

== snjejs-bax) || (I1SINDIAY SNE ATIWIS sniels snq oTdwrs == snjejs-bex)) 3T

} (s3senbax w ut bex 3senbax snq erdwrs)yoeszog

£()31STTARIIY MBU = D 3ISTTARIAY

UoT}DS9TSS TRUTT //

5yl I10J I93TQIE SY3 03 3T ssed °s3isanbax ATSyTT JO 395 ® //

osodwod pue swioJ-3senbax Jo bHeq oy3 id9ao ob os ‘Axdws //

sT 3senbsx juszind w ‘uOT3DE SIT YITM SUOP ST SARTS 8Y3 //
} ()3senbax 3xau 386 3ssnbax sng srdwts oTTgnd

{asanbsax uanjiax
! (1sonbax)ppy’sisenbax w
!A3txoTtad = Ajtxotad-iysenbax

! (1obheueun (18heueUEISAST)) 3sonbax snq o7dwts mau = 3senbax jseonbax snq orduts

{

!bax urnjlsa
{p=x3puT-bax
} (Aataotad == A3txorad-bax) 3T
(s3asenbsx w ut bax 3ssnbsax sng sTdwis)yoesiog
} (A3tzotad jutn)isenbax 386 3ssnbax snq a7dwrs orrqnd

{TTDU UIN3DI
{
{opeTS uinlax
((SsaIppe pud dABRTS => SSOIPPR) 7’3 (SSBIPPE => SSBIPPE 3IRJS*8ARTS)) IT
} (3x0od @aeTs UT 9aeTS JT 24aeTs sng oTdwrs)ysesaxog
} (ssaappe jutn)oaeTs 386 IT oaers sng ordurts o1Tand

{yes1q
:3Tnezep
!yea1q

so-sngaTdwrs\sngaTdwurs\sng oTdwIrs\yos2Ieasay\ ::d

10¢€

00¢€
66¢C

86¢
L6¢
96¢
S6¢
434
£6¢
c6¢
16¢
06¢
68¢
88¢
L8C
98¢
98¢
8¢
€8¢
414
i8¢
08¢
6LC
8LZ
LLe
9LZ
SLe
FLe
€Le
cLe
TLZ
oLz
692
89¢
L9e
99¢
§9¢

oce
6T€E
8T¢

{ 9T¢

{ GTE

jyooTn-beazx vTE
_ _ _ _ 9sTs €1€
{135 ¥MDO0T SNd HTAWIS Snjels %00 sng o7dwts yoorn-bax cte
(QEINYED MDOT SNE ATIWIS sniels Y007 sng o7durs == yd0Tn-bax) gt T1€
} (s3isanbsi w ut bsx 3seonbax sng srduts)yoesaog 0IE

} ()syoor zea1d proa oTTqnd 60€

80¢€

{ON MDOT S0d FATAWIS Ssnaels 20T saq oTdwrs

ITTNU uIniyax 90€
uAOVwnmuuaﬂum.uuo&luwpﬂpum urniax G0¢€
(0 < 3unoD'0) 3T po€

{ €0¢

{ c0€

sorsngaTduts\sngaTdwrs\sng a7duTs\yoI1easay\ :g

! (A3txoTad-3senbax /,(z @Tna) [{p:0}]¥ <- ,)SUTTSITIM INO STOSUOD
(esoqisa w) IT
}
(QEINVYD MDOT snd FTIWIS Sn3e3s Y007 snq oTdWTs == ¥DO0Tn-issnbai) It
(sasenbsx ut 3ssnbsx 3senbax sng ay1duts)yoeszog
{
!3sonbsx uanjax
¢ (A3TaoTad-3ssnbax ‘, (T 2T0x) [{pP:0}]¥ <- ,)dUTTSITIM INQ "STOSUOD
(9soqzaa w) IT
}
- - _ o ((3s MD0T snd ITAWIS
*snje3s ¥00T7 sng oTdwrs == yO0Tn°3sanbax)®® (LIVM SNd ATAWIS snjels sng aTdwrs == snjejis-asanbax)) IT
(s3senbax uT 3sanbax 3sonbax sng a1dwis)yoesioF

‘ysenbax sng eTdwrs se [p]s3isenbai = jsenbax 3saq 3sonbax sng ordwts
{
{

! (ssoxppe-isanbax’sniejys-issnbax

‘ [yooTn-3senbax (JuT)] sxeys yooT‘A3troTad-3senbax’, ({x:c}@{z}{T}) [{P:0}]¥ u\,)33TIM" N0 STOSUOD
}
(s3senbax ut 3ssnbex j3senbax snq eTdwTs)yoesiog
{ i+, 'v=1y 'y,-. } = szeyo ydoT []aeyod
{(sweN ‘Q-0T/dWTL3uaIInd ‘,: (T} {B:0}.)®3TIM"INO BTOSUOD

s3ysanbax bButpuad JO 3STT 8yl smoys //

(9soqraan w)

}
3T
}

(sasenbax j3stTieiiy)ejexitqie isenbax snq ordwrs otyqnd

{fesoqiea = asoqisa w} { sweu)sseq : (9soqIida Tooq ‘ sweu butajis)isirqie suqg o7dwrs otTgnd
{fosTey = asoqiaa w)} (sweu)sseq :(sweu HuTals)aslrqre sng oTdwrs oT1Tqnd

‘agoqraa w Tooq @jeatad

}

IT 193TqIe sng oTdwIs ‘eTnporeseg :x23Tqie sng oT7dwrs sserd orrqnd

{SUOTIDITTOD "welsAg bursn
fwa3sAs bursn

so-x93TqIysngaTduTts\sngatdurs\sng atdutrs\yoresssy\:4

‘qsenbax 1seq uinjax

¢t (A3tzoTad-3senbax 3seq ‘, (¢ ®TnI) [{P:0}]¥ <- ,)BUTISITIM 3INQ STOSUOD
(ssoqaaa w) IT

!QIINVED MOOT SNF ITAWIS'Snjels ¥0ol sng oTduTs = ¥oorn-3senbax_3saq
(ON 20T sSnd FTIWIS sniels D07 sng oTdwis = ydDoTn-3issnbsx 3saq) IT

{qsenbax = 3senbax 3saq
(Aatzotad-3senbsx 3saq > Aatzotzd-issnbax) IT
! (A3Ta0Tad<-389nbax 3saq =i A3jTiotad<-[T]sissnbai)jiesse os
r107T q /7
}
(s3sanboax ut 3sanbex j3senbsx sng oTdwrs)yoeaioyg

{

{q1sanbsax uzxniysx

so 193TqIYsngaTduts\sngsTdurs\sng o7dwurs\ynreassy\::d

f(urxyrrryrrrrrrreryy) QUTIIITIM STOSUOD //
{ //

([TIWER' 4 (X310}) QUTTOITIM " STOSUOD //
} (+4T12€>T¢0=T 3uT) 103 //

} ()dooT 3Tem ptoa oTTqnd //

[(u300T2, ‘,obpasod,) 3sTI3usAad] //

[PoY1sHd] //

{{ssa1ppe pus w uinisax}isebh
}sssappe pud jurin orTqnd

{
{{sseoxppe 31e1s W uINlax}lab
} ssazppe 311e1s 3uTn oTTqnd

‘0 = [TIWAW
(T++ {®2ZTS > T #0 = T 3uTn) I03J
{[22TS] JUT MdU = WAKW
{p/(T+SS2Ippe 3I0]S W-SSIIPPE pus w) = dZTS 3JUTN

{(,2I0119 WORIS®Rd, ') == p% (T+SSSIPPE 1IR]S W-SSOIPPE PUD W)) IISSSY UOTIBDTITIOA
{(,I3I0I19 WARISeE], 'SSOIPPE PUD W => SSOIPPER 3ILIS W) IISSSY UOTIBDOTITIOA

/SSoIppeE pus = $S8IPPE PuS W
{SS2IPPE 3IR1S = SSIIPpe 3IeIS W
} ((oweu)sseq : (SS2IPPR PuS JUTN ‘SsSaIppe 1Xe3s JuTln ¢ sweu HuTrajys)weu 3se3y sng oTduts origqnd

!sseIppe pus w jurn ajeatad
!ssa1ppe 3Ie3s w jutn ajeatad
{WAW [13uT 93eatad
{y00TD yo0TD oTTqnd

}

JT eaeTs sng o7dwIs ‘oTnporsseg : waw 3sej sng ordwrts sseyd orrqnd

fwe3sAg bursn

so ‘we3lsegsngaTdwurs\sngeTdurs\sng o7dwurs\yoIeasay\ :q

«&OImDmlmAmEmm.m:pmumlw:QImHQEﬂw uinilax
‘ejep = [p/(ssoIppe 3Ie3S W - SS2IPPeR) JWAK
}

(SsoIppe JUTN ‘ejep JUT J8i)a3Tam sniels snq ordurs otrand

M0 sng FTAWIS- snaels sng oTdwis uinlax
{[{p/(ssoIppe 3Ie3Ss W - SS2IPPR) |WIAW=eIep
}

(ssaxppe 3uTn ‘ejep 1uUT Jax)peal snieas sng orduts orrgnd

£ (MO SNg ATdWIS snieds sng oTdwrs == (SSaIppe ‘elep JoI)olTIMm) UuINlax
}

(ssoIppe JUTN ‘E3EP QUT FOI)9JTIM 30981Tp Tooq d>TTqnd

(MO sng ATAWIS snieds sng oTdwrs == (SS9Ippe ‘elep JoI)pesl) uInlal
}
(ssa2appe JUTN ‘elep JUT ISI)peaI 3091Tp Tooq OTTqnd

so - wdRlsedsngeTduts\sngaTdwrg\sng a7duTs\yoxesasay\ 14

(,ZI0TII8 WBWMOTS, ‘0

(Toweu)sseq :(sajels 3rem Iu

{3nx3l uanialx
“~V\Ammmuvvmluumple - ss3Ippe) JWAW = ejep
} (sseippe juIn ‘ejep JUT JI9I)peax 3091Tp Tooq o1Tqand

{
{--3UNOD 3TEM W () =< JUNOD 3TeM w) IT
} ()doot 3tem proa oTTqnd
[(300712, ‘,obpasod,)3sTTIUusAaq]
LNREEY

{
{!sso1ppe pud w uinisi}isb
}ssaxppe pus jutn orrqnd

{
{!ssaxppe 3138 W urnlai}ilsh
} ssaappe 3ae3s jutn orTqnd

‘0 = [TlWan
(T++ {®2TS > T {0 = T 3JUTN) 203
f{®zTs] JuT MdBU = WIAW
{p/ (I+SSSIPPE 31I8]S W-SSSIPPER PUd W) = BZTS JUTH

{T-=3Unod 3TEeM w
{g93®3S 3TeM IU=S83®31S JTemM Iu w

= p%(I+SS2IPPE 1IE3S W-SSOIPPE PUd W)) IISSSY UOTIBOTITIDA
(4 TIOIID WOWMOTS, ‘SSDIPPE pus W => SSDIPPE 3ILJS W) JISSSY ' UOTILDTITIDA

!SSoIppe pus = S$S°Ippe pus w
ummmunvm.uumum = SSaIppe 31Ie3S W

JuUTn ‘SS9IPpPE pUd JUTN ‘SSaIppe 3Ie}s JuTn ¢ oweu buriis)wsw moTs sng oTduts oTTgnd

{3unoo 3Tem w 3jur a3eatad
!s93e3s 3TeMm Iu w Jurn a3eatid
!sseippe pus w jurn ajeatid
!sssappe 3Ie3s W jurn sjeatad
!WERW []3ut &3jeatad

Y0010 ooT1D oTTqnd

} 37 saeTs snqg srduts ‘sTnpoeseg : wow moTs sng ordwrs ssels orTgnd

s0 "waRMoTSsngaTdwrs\sngeTdwrs\snq aTdwTs\yoszeasay\ 13

}

}

{1TYM SNd ATdWIS°Sn3jels sng oTdWTS uinialx
{
MO SNg FTAWIS sniels sngq oTdWTs uInial
fejep = [p/(SsoIppe 3I€IS W - SSIIPPR) I WAW
} (0 == 3junod 3jtem w) JIT
{
u.HHA&B Snd mmmZHWI..mDm«.mum sSnqg 0HQE..ﬁW|CHDU®H
lg3aj3e]s 3Tem IU EAMCHV = JUNOd J3Tem uw
} (0 > 3unoo 3Tem w) JIT

(ssaxppe 3UTIN ‘ejep 3JuT J8I)93TIM snieas sng a7dwrs orrqnd

{LIVYM SNd FTdWIS sniels sng o7dwIs uiniax
{
MO sng FTAWIS sn3eis sng oTdwrs uanjex
!{(p/ (ssoappe 3IelS W - SSIIAPPe) IWAW = ©B3ep
} (0 == 3unocd 3Tem w) JT
{
!LIYM Snd ATAWIS Ssniels sng oTdwTs uin3ad
8938318 3TEM IU W(JUT) = JUNOD 3JTeM W
} (0 > 3unod 3Tem w) 3IT

(ssoappe 3uTn ‘ejep JUT Ja1)peax sniels sng srduts otrrand

}

{anI3 uUINIax
‘ejep =[p/ (SS8Ippe 1aeIS w - ssaippe)] KW
(ssaxppe JuTn ‘ejep Jul J9I)S3TImM 3091TP Tooq ortgnd

{

S0 "weRMOTSsSNgaTdwTS\sngaTAWTS\Sng 2TdwTs\YyoIeasayg\ 13

{()atep
T =+ [T]lejephu
}(T++ fy3zbustAw > T 0 = 1) FOZ

! (ssoI1ppe W
A ‘oureNy ‘Q*QT/BWTLIUSIIND, {X:iZ} SSOIpPpR JE PSITTRJ pear-Butydolq : {S:T}) {b:0},)BUTTE3TIM INO " BTOSUOD

_ _ (90¥¥d snd ATIWIS sniels snq o7dwIs == snje3s) JT
{(yo0T w ‘ssaappe w ‘ejepAw ‘Aj3trorad enbrTun w)pesx 3sang'izod sng = snje3s
L0 3atem//

} (@nx3) atrTym

{snye3s sniels sng or1dwrs

T 3uT

!{{yzbuaTAw]jur mou = ejepAw []3auT
}
(yuotioe uTew proa oITgnd
[(u%20712, ‘,9bposod,) 3sT13UdAH]
[ssavoxg]

{3nodWT3=3N0dWTY W
!yD0TN=}D0T W
{SS9Ippe=SSaIppe W
{Aytzotad enbrtun=A3Taotrad snbrun w
}
(T sweu)
A @seq: (3noswrtl JuT ‘yooIn Jooq ‘ssaappe jutn ‘Ajtxorad snbrun jutn ¢ sweu butils)buryoorq zejsew sng o7durs orygnd

{0T%0 = y3zbusTAw juTn 3suod ajeatad
{3noswTy w juT @3eatad

{3007 w Tooq sieatad

!gsaippe w jutn ojeatxd

{K3T1r0tad enbTun w jurn ajeatad

{310d snq 3T butryooTq sng or1dwrs otTgnd
{30070 yooT) otigqnd

}

aTnpopaseqg :HBuTyoorq zo3sew sng oTdurs ssefd orrand

‘we3sAs butsn

1 so*buryoorgaelsensngaTdurs\sngaTduts\sngq o7duTs\ynsIaeasay\ :d

LE
9¢
13

€€
cE
1€
o€

8¢
Le
9¢
Y4

£€¢
44
|¥4

61
8T
LT

ST

A

f()3tem//
! (JnoswTy w)3TeM

! (ssoIppe u
‘suweN ‘Q°QT/PWTriusIInd’, {x:z} ssaippe e pIa[IeJ; wuﬁu3|OCﬂx00MQ "I*muﬁw Am"ow:vwaﬂAWuﬂuz.uso.wHOm:oo
_ _ (dow¥d Snd ITAWIS Sniels sng oTAWTS == snjels) JT
! (o007 w ‘ssazppe w ‘ejepAw ‘A3TIoTid enbtun w)s3Tam 3sang-3xod sng = sniels

{

so-huTyooTgISISeNsngaTAuTs\sngaTdwrs\sng aTdwuTs\ynaeasay\ g

44
v
(037
6¢

{4+3UD
{3ud =+ [p]eizepAu

! (Ippe ‘sweN ‘Q°QT/SWTLIUSIIND’,{X:Z} WOIF pesax jouued JYouwud ¢ {S:T} {B:0},)oUTT®ITIM 300" STOSUOD

(90¥dd snd ATAWIS Sn3els sng oTdwTs ==

((do¥dd snd HATAWIS sniels snq oTdurs =j

2 snieas 39b6-310d sng)®® (MO sSnd ATJIWIS sniels sng ordurts = (A3Tr0Txd snbtun w)snjeas 39b-310d snq)) oT1Tym

(A31aotxd onbtun w)snjieis 3sb:3zod snqg) IT

()arem
(A3txotad snbrtun w)

(3007 w ‘appe ‘eaepAu ‘A3trotrad enbtun w)pesax-izod saq

JUT ‘yDoTn Tooq ‘ssaappe 3Ie3ls jurn ‘A3tzotad enbtun

jutn

} (en13) oTTyM

@bpe }D0TS BUTSTI 3IXBU BY3 I0F " // f()3ITem//
!ssa1ppe 3IB3IS W = IPPE Jurn

{0 = 3ud 3Jut

£{0} =ejepAuw []3uT
}
()uotaoe utew proa OTTqnd
[(uy20T2, ‘,obpasod,) 1sTTIuUaAT]
[ssa00143]

{qnoswT3=3n02wWTy W
{YD0TN=3D0T W
{SS2Ippe 3IL]S=SSBIPPE JIRIS W
{Raytxotad enbtun=A3txotzd enbTun w
}
(Bweu) sseq : (3008wl
‘sweu butxls)buryooTq uou xejsew sng orduts oTTqnd
f{3noswty w Jut d3eatad
{3007 w Tooq aijeatxd
{gsvIppe 3aels w juln 83eatid
{AatroTad sanbTun w juTtn a3eatad
{q10d sng IT bButryooTq uou sng o7dwrs or1qnd
30070 yooT) oTTqnd

9Tnponaseqg :

‘wesks Butsn

}

ButyooTq uou xs3sew sng o7dwts sseyd orrand

so*buTyoorguoNIslsensngoaTduTs\sngaTduts\sng a7duTs\ys2Iessay\ : 3

A

{0 = 3UD !SS®IPPE 31IEJS W = IppE
} ((osx0+ssaxppe 3Ie3ls w) < Ippe) JT
(butssaappe 83AQ) PIOM 3IXBU // !p=+IPPE
abps 30070 HBuTsSTI 3IXdU BY3 I0I °*° // {()aTem//

{(3noswTy w)iTem

!(Ippe ‘sweN ‘0°QT/SWTLIUSIIND‘,{X:Z} O3 93TIm jJouued Youwyd : {S:T} (H:0},)SUTTSITIM INO STOSUOD

(dow¥d snd ATdWIS‘ sniels snq o7dwrs == (A3Txotad snbtun w)sniels 38b-3xod suq) IJT
o o “()arem
_ ((gow¥da snNd ATAWIS sniels snq o1dwts =; (A3rxotad anbtun w)
snjels 3eb 110d snqg) 3% (MO SNE FTIWIS sniyels sng o1dwis =i (A3rtzorad enbrtun w)snjejs 3eb°3xod snqg)) oSTTYm

! (§007 w ‘zppe ‘ejepAw ‘A3jtrotad eunbrtun w)ajTam-izod snq

SO huTyooTgUONID3SeRNsngaTduTrg\sngaTdwrs\sng aTduTts\ynIessay\::d

ov
6€
BE

A

{([gleaepAu ‘{z]lejepAu ‘[T]lejepAu ‘[gleaiepAu ‘GgI+SsSsippe w ‘ssoippe w ‘awey
‘00T /PwWTIIUSIIND Y, ({X:L} ‘{xig} ‘{x:g} ‘{x:p}) = [{x:g}:{x:ig}lwaw : {s:T} {B:Q},)ouTTo3TIM STOSUOD
(ssoqaxsn w) JIT

g+ssorppe w ‘[zleiepAu Jox)pesx jooaTp-izod sng
p+Ssaxppe w ‘[T]}eilepAu Fax)pesxr 31091Tp3xod sng
! (ssaxppe w ‘[g]lelepAw yoI)pesax joaatp-izod snqg

{(zT+Ssoappe w ‘[g]eiepAw Jox)pesx jo91Tp-3jxod sng
2 B
!

}

(enx3) oyTym

{[p]3UT MdU = elepAw []3uT
}
(Yuotaoe utew proa OTTand
[(432072, ‘,3bpasod,) 3sTTiuaAd]
[ss@001g]

lesTeg=9s0qioa w
{3NOBWTI=3N0dWTY W
/{SseIppe=ssaIppe w
}
(Toweu)8seq : (3NOSWT] JUT ‘sseappe urn ¢ oweu Burils)3osITp 193sew sng ordwts orTand

{950qIaA=95S0qIBA W
{3n0dUTI=3NOdWTI W
!ssoIpPpe=SSDIPPR W

}

(Toweu) eseq : (950qIsa TOOQ ‘3Inoa3WT] JUT ‘ssoIppe Jurn ‘ osweu Dburils)oeITp x8isew sng oTdurs orTand

!asoqasa w Tooq ajeatad
3noauwTty w 3JuT 93eatid
!{sga1ppe w juTtn ajeartxd
{qz0d sng JT 3091Tp suq artdwrs orrqnd
{¥0012 yooTd orTand
}

aTnpoWeseg : 131091Tp Io3seuw sng orduts sserd orrqnd

‘wa93sAs Hbursn

sD*30e1TgIalsensngaTdwts\sngaTduts\sng oaTdwTS\ydIeasay\ :g

{(3noswTy w)3Tem

so*3o9xTgIolsesagaTdurs\sngaTdwrs\sng aTdwTs\yoIeasay\ : 4

1

—

Annex C My First System Example

<syrewaix/>3zod

{()3TEM
!T=dnTeA " B3I0d
}(++T200T>0¢0=T 3uT)z0F
} (enx3)eTTYm
} (Yus9 ptoa oTTAnd
[(LAT2. 'uobposod,) 3sTI3uaad]
[sssnoxg]

YTI2 ®Yyl Jo juass sbpssod 8yl 03 SATITSUSE ST poyisuw ss8001d STYL<SNIRWSI>///

<Azeunns />poylsw ssedoxd futiersushd rsbsjur<Axeumnss///

{} (sweu)oseq : (sweu HButils)yaTnPOoW 2TTgnd
<cwered/>30ULRISUT Pa1ONIJSUOCD 3Y] 03 uadaTb sweN¢,weu, =sweu wexeds ///
<AzPuuns /> x030nI3suod jusuodwod<AzBUMNSS ///

‘{e3xzod jurino orTqnd

<Areumms/>310d jndno r9bsjurcAreumuns ///
Y72 201D 21Tand

<Axeuuns />310d 3ndut YDOTD<AIRUMINSS ///

}9Tnpoaseyg : YaTNpPoW ssero orrgnd

<SYNIBWRI/>///

obpa aatTaTSod///

yoes I1s3jye 1 AQ pPOjUSWLIDUT ST ONTeA SYL///

/77

*300TD 8yl jo 8bps///

oaT3Tsod yoes uo snyea 18bsjuT ue sjeasusb///

30010 ® Ag buTtatap usym ‘Jusuodwod STY] JO S8DUBRISUI///
<SYIBWRIS///

<Azeumns /»>I03eI9U99) I9HIBJUI SNOUOIYDUASCAIRUMNS>///

{uoT3yooTIoy walsAs bursn
{SUOT3DOTTOD "wa3sAs Hursn
‘wa3sAg HBursn

€00z swtede] sawep//

Ra//
s0oTdwergTo0LA3IRdPITYL//

S NMINO~0oN

obpa aataTsod///

yoes 1933je z AQq pojusweiIdUT ST anTea 8yL//////

/77

*jo0To 8Yy3 jyo abps,///

aaT3Tsod yoes uo snTea 19H03uT usad e ajexausb///

‘30070 © Aq ButaTap usym ‘Jusuodwod STY3} JO SeduURISUI///
<syIPWRIS///

<Azeumns/>3s8], 19pun Jusucdwod<ATPUMUINS>///

! (snTepe3xod) 2UuTI9]3TIM *STOSUOD
! {quaad uks)aTem
} (enz3)oTTYM
} (Yuny proa oTTqnd
[ssoD0xg]
<Laeuwuns />poyzsw sssooxd burindino<Areuminss///

{} (sweu) oseq : (sweu butils)garnpon o1Tqnd

<wered/>9d0UB]SUT PS3IONIISUOD 9yl 03 usaTbH sweN,sweu,=2weu weied. ///

<Areuuns /> I10305NI13SU0D Jusuodwod<Areumnss ///

fqusa® uAs juaad otTqnd
<AIPUNINS />3USAS UOTIRZTUOIYDUAG<AIRUMINSS ///

{e3zod jugut o1Tqnd
<Kaeummns/»3x0d andut zebsjur«Azeuninss ///

} ©TnpoWssed : goTnpor SseTd o1Tqnd

<SHIRWRI /%) //

usa12s a3yl o3 3T s3andino pue SnTea 9yl spesax jusuodwod ayl///
‘3zod 3nduTr S3T UO @NTBA M3U B JO POTITIOU usym///

17/

UOTIEDTITIOU JUSA® TS9AST TRUOTIIOBSURI] JO Ssuesw 3yl Aq///
pazTuoyodouAs a1e jusuodwod STY] JO Ssaduelsur///

<SHIRWRIL///

<AIePUMNS />YdUdQlsSe] [OAST TERUOTIDESUBIJ<AIPUWNS>///

{ gzt

{ [4AN
T2 = YTo-zudb 121
D = o Tusb 0z1
} () oseygburputg proa 8pTizdac OTTqnd 611
<SyIewsI/>dI8Yy Buop sT sjusucdwod-gns ayl o3 TrubBIS YOOTD oYl JO BUTpPuTg«SHIBWRIS/// 8IT
<AreumNs />poyisu aseygburputg<Azoumns/// LIT
91T
_ { STT
£ (0)AFTION JuUaA>d UAS PTT
{anTep zbTs + onTea-1bTs = snTep-eixod €IT
} {yppy¥ proa oTTqnd AN
[(u2BTs,’,T1BTS, ',®ATITSUIS,,) 3STTIUSDAT] 11T
[POY3IaNd] 0Tt
<syaewa1/>zbTts pue [HTS TeUuBTS SUUT OM3 BY] JO JUSAD SATITSUIS/// 60T
9yl 03 SATITSUSS ST poylsuw ssad01d STYL<SHIGWDI>/// 80T
<Azeummns />poylauw ss9ooxd Hutieasusb 1sbojuicAxewwnss/// LOT
901
{ SoT
1zb1ts = ejzod:zusb 70T
{1618 = e3xod-1usb €0T
} (sweu) aseq : (sweu Dbutils)SdTnNpoRAW d>11gnd 201
<wered/>90UE]SUT PO3IONIJSUOD 3yl 03 usaIb swey«,sweu,=sweu wexeds /// 10T
<Azeumns/: 10300135U0D Juauodwod<ArBUMINS > /// 00T
66
! () TeubTSIUT MBU = zBTs TeubTsiul 86
<Azeumms/>9duelsuT TeubTS IdUUI<ATEPUMNS > /// L6
() Teubtgaur mou = 1HTS TeRUubTSIUI 96
<ATeumns />90UB3SUT TRUDTS ISUUT<ATRUMNS. /// G6
! (ucuab,) ¥oTNPOR MaU = Zudb yaTnpoR V6
<AIeuuns/>8o0uelsuT jusuodwod-gnscAIvumuns: /// £6
! (,Tusb,,) YSTNPOW MdU = Tusb YoOTNPOR 26
<Areumns/>s0uelsut jusuodwod-gngcAIvumnss /// 6
! ()3jusayg mMBU = quaas uks juaay otrTgnd 06
<AIeumuns />1UsA® UOTIBZTUOIYDUAS<ATRUMINSS> /// 68
{ejxzod jurino otrgnd 88
<Azeuuns/>3x0d jndano z9bsjul<Axeuwnss /// L8
370 ¥oo1d oTTand 98
<Axeuuns/>310d 3ndutr yooTd<AIPUMNS: /// G8

} ®Inponaseg : STNpoRAW sseTo or1Tgqnd 3§
<syIRWRI/>/// €8

<ATeummns />TOO0L UOTIBDTITISACAIBUMNS >/ // 9T

€91

!oureNwe}sAs butaas 291

! Toponwa3sAs TaponwalsAs 191
{()3astTThAe1ay MouU = sTeubrts j3stiAeaay 091

}asjuTtagTeubTs sseTo orrand 6671

<syIews1/-/// 8GT

*Topow wa3lsAs e Jo sixod pue Teubrts 9ya/// LGI
ATtesTweudAp I19a00sTPp Jusuocdwod STY3l JO s8dULISUI/// 9GT

<syrewRIs>/// GGT
<Axeumns/><Axewuns />TO0L UOTIBOTITIDA<AIRUMING>/// $GT

€ST

¢St

{ T6T

— ~ { 06T

{quan® uhAs-dol = jusas uks- yousqlssal 6FT

{ehbts = ejxod-yousaqgisel 8FT

‘¢bts = e3zzod-doia LyT

T2 = yo-dol 9% 1

} (1obeuew) aseq : (1obeuew zabrurUElSASI) wolsAgasaTIAW oTTgnd SHT
<AIeuuns />I030NIISUOD Tapow waisAg<Azewunss /// PET
EPT

() Teubrsaur msu = ¢hts Teubrgiur A AN

<Azeuuns />TeubTs Isuul<Areumns: /// 19T
{{p'uTYDOTD,) YDOTD MBU = IO YDOTD 0vT

<ATPUMINS />%D0TO W3sAS uTeRS-Areuunss> /// 6€T
‘(Wyousqissl,,) g2TNPON MRU = Ydusq3issl gaTNPON 8ET
<Azeunns /»3usuodwod yousqgissl<Arewunss /// LET

{ (,TI03RI13U3b,,) STNPORAN MBU = do3 STNPOWAN 9¢T
cATeumns /»3jusauocdwod x0jeIBUBYATRWUNSS /// SeT

} TopowalsAg :walsAgisaTIAN sseTd otTgnd el

<SHTBUWBI/>/// €E€T

abpa eat3Tsod/// ZeT

yoes 1333e T AQ pe2juswaIduT ST anTlea 9YylL/// IE€T

/// Q€T

*3D0TD ay3y 3o 9bps/// 621

sat13Tsod yoes uo dnTea 1sbajur ue sjersusb/// 8ZT

‘30010 ®© AQq buTraTip usaym ‘jusuodwod SIY3 JO SIoURISUL/// LZT
<syrRWRIS/// 92T

<Axeunmns/>103eI9Ud9 19b193UT snouocxyosulscAreunnss/// GZT

pet

{TTnu’[T]aTed)9nTRAdeD" (,onTeA,) A3x8doag3eD " ()adAL3en [T]aTed = snTepjuszind 308lqo S02

} (sTeubts ut ated []303(qo)ydeszoy y0z

} () sTeubrgiutig proa otrrand €02

<Azeuwuns/>s3z0d pue sTeubrs Tepow wslsSAS pPaIsa0ISTP 8yl JO sanfea //, 202
Jua1and ay3 jurtad O3 }OBQITED B Se pasn poylauw SseTd<cATeunmns- /// 102

{ 00¢

f{[o0)xted(butals) ’[T]1Ted (I9UTERIUODIUBWSTITIPONI)) STRUBTSIDAODSTQ 661
(sjusweTdTRTYSIEXSTY UT xTed [}309(qO)yoesioy 86T

{ L6T

{ 961

! (9Tdnoo) ppy - sTeubts G6T

{Lgo = [1)81dnon P61

!SWeN T + ,'u + Sweujuszed = [g]a7dnod €61

f[z]308lqo mou = @1dnod Z61

} (Teubtgoseg sT (qo)FT =sTa({ 161

! (9TdNnoD) PPy SJUSWSTITRTYDIRIDTY 061

‘{fgo = [1]o1dnoo 681

{oWeN T + , s + sweujusazed = [g]atdnod 88T

{[z)aoelgo msu = a1dnod L8T

} (9TnpoReseg ST [qo) 3T 981

! (JuswaTa)anTeA189 17 = [qo 308lqo G81

} ((oTTanguon -’ sbetiburpurg P8t

| oT1and-sbetabutputg €81

|souejsuy -sbeTgburputrg) spTatTaien adAl UT TJ OJUIPTETH)Yoesrog Z81

tatdnoo []309Lq0 181

{()3STTARIIY MOU = SIUSWITHTBRTYDIRISTY 3ISTTARIIY 08T

{()adAr19n quswaTs = adAy adAg 6LT

} (sweujusied HUTIIS/IUSWSTS IDUTRIJUOCDIUSWOTHISPOWI) STRUBTSISA0D0ST PToA @3RATId 8LT
<Azeuums/>A19400sTp 3x0d pue TRUBTS I0J pPosSn poylsuw SSeTI<ATRUMNS: /// LLT

{ 9LT

! (SweNwo1SAS TOPONWS]SAS) STRUDTSISA0DSTI(GLT

} ()®zTyet3iTul pToa oTIqnd PLT

<SyIewai/>Topow walsAs 8yl JO AISA0DSTP 8yl 3SNED STO0J 9Y3 FO UOTILZTTRTITUICSHIPWDIS /// €LY
<Azeumins/>T003} @Yl S2TTETITUT O] HDOBQIIED B SPY POSn POYISdW SSBTIHCATBUMNSS /// ZLT
LT

{ oLT

{sueu=oWeNWS1SAS 69T

{Topow = TIPOWWDISAS 8971

} (sweu buTxls ‘Topow TIPOWWSISAS)z93utagrteubrs otrrqnd 191

<wered/>90UR]ISUT [opow WSISAS BYJ JO Bweu ayl ST STYL<,weu,=>sweud weieds/// 99T

<wexed/>20UB]SUT TOPOW WS}SAS punog oyl ST STUL<, [Ppou,=>sweu wereds/// GoT

{(oZ)unyg-uts
! (sTeubTgjuTag ds) poyldWeTOrRUUNY MBU =+JTUTSTOAD ‘WIS
!{({ozTTeRT3TUI "dS)poylsHeTqeuuny MBU =4+JTUIWTIS ‘WIS
! (4 woSASISITIAR,, 'SAS) I2quTxgTRUbTS Mdu = ds zajutagieubrs
{(wts)wa3sASISITIAN MOU = SAS wo3sASISITIAR
{()TO3ETNWIS M3BU = WIS IOJeTNWIS
} (sbxe [}bPuTajs)uTlew pIoca DT3e3s
<ARzewuns/~ ///
jutod Axjus uotjeorrddy ///
<Azeuuns: ///
} ddy sse1o or1gqnd
S{IRWI >/)/
*3WT) JO S§3TUN Qz I0J POIILIS usyl ST I03eTnWIS 3BYL///
*I1938Uybo] punog pue poleETIUR]ISUT SIF IOJeTNWTS puUE TOOJ UOTIEDIITI=A ‘Topow wajsAs aylL///
<sHIRWRIL///
<Azeumns/>uotjentrdde jutod Axjus UTEN<AIRPWWLS>///

{

e 4) SUTTISITIM " 9TOSUOD

! (snTepluazInd’, f{Q} :8nTea JUSIIND,,)SUTISITIM DTOSUOD

{([o)axTed’, f{0]} :Pweu 3x04/TRUDTS,)SUTTSITIM STOSUOD

fpmmm u) BUTTI]TIM*STOSUOD

f{Trnu’[T]ated)snTeA3}®D " (,dnTeATXSN,) A319doaglen- ()adAg31eo [T]aTted = anTeajxsu 323[qo

cee
1€
0€ce
622
82¢
Lee
9¢c
S¢ce
vece
€cce
zce
1c¢
0¢c
6T¢
81¢
L1Z
91¢
ST¢
pic
€1¢
Z1¢
1T¢
0Te
60¢
80¢
Lo¢
90¢

