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RÉSUMÉ

Cette thèse traite du calcul quantique, dans ses aspects théoriques et expérimentaux.

La théorie du calcul quantique est une généralisation de la théorie du calcul standard

inspirée par les principes de la mécanique quantique. La découverte d’algorithmes quan

tiques efficaces pouvant résoudre des problèmes pour lesquels il ne semble pas y avoir

d’algorithmes classiques performants remet en question la thèse forte de Church-Turing,

qui énonce que tous les modèles de calcul sont essentiellement équivalents en ce qui

concerne ce qu’ils peuvent calculer et avec quelle efficacité.

Dans la première partie de cette thèse, nous étudions la nature de cette différence.

Nous introduisons tout premièrement un cadre général et simplifié pour caractériser l’es

sentiel d’une théorie quantique, en comparaison avec un théorie déterministe ou proba

biliste. Nous avançons la thèse que les axiomes les plus fondamentaux sont ceux reliés

à la mesure, et que c’est à partir d’eux que ces différences sont engendrées. Nous cou

vrons certaines variations sur ces théories et démontrons quelques relations structurelles

intéressa.ntes qui les concernent. Par exemple, les seuls modèles qui sont simultanément

quantiques et probabilistes sont les modèles déterministes.

Nous utilisons ce méta-modèle pour ré-introduire de façon succincte et uniforme les

modèles de calcul déterministes, probabilistes et quantiques de machine de Turing et de

circuit. De plus, nous généralisons le modèle de circuit sur des demi-anneaux arbitraires.

Nous réussissons ainsi à fournir une nouvelle classification de classes de complexité exis

tantes en variant le choix du demi-anneaux et de norme vectorielle sur les espaces vec

toriels d’états sur lesquelles elles sont définies. En particulier, les modèles déterministes,

probabilistes et quantiques standards peuvent être caractérisés (avec la même norme)

en définissant des circuits sur l’algèbre booléenne, les rationaux ou réels positifs et

les rationaux ou réels, respectivement. Nous explorons aussi ce modèle avec d’autres

demi-anneaux non-standards. Nous démontrons que les modèles basés sur les quater

nions sont équivalent au calcul quantique. Finalement, nous renforçons cette «hiérarchie

algébrique» en utilisant le formalisme des formules tensorielles pour construire une fa

mille de problèmes complets (ou complets avec promesse) pour les classes de complexité

correspondantes.

La deuxième partie concerne le calcul quantique expérimental par résonance

magnétique nucléaire (RMN). Un important obstacle de cette démarche est l’incapacité
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d’initialiser correctement le registre de mémoire quantique, un problème relié à celui du

rapport signal-bruit en spectroscopie par RMN. Une des techniques les plus prometteuses

pour le résoudre est le refroidissement algorithmique, une généralisation des techniques

de transfert de polarisation déjà utilisées par les spectroscopistes en RIvIN. Nous discu

tons les procédés adiabatiques traditionnelles ainsi que leurs limitations. Nous décrivons

une variation sur cette technique. l’approche non-adiabatique, qui utilise l’environnement

pour refroidir au delà de ces limites. En particulier, nous décrivons un nouvel algorithme

efficace de refroidissement algorithmique qui pourrait atteindre des températures de spin

de presque 00 K à en RIVIN à l’état liquide avec des registres de taille déjà plus raison

nable (30—60 spins). Finalement, nous faisons part de la réalisation en laboratoire de

la toute première expérience réussie de refroidissement algorithmique non-adiabatique.

Ceci constitue, nous l’espérons, un premier pas vers le développement complet de cette

technique prometteuse, avec des applications bien au delà du calcul quantique par RIVIN.

Mots clés : Calcul quantique, théorie du calcul, théorie de complexité du calcul,

théorie de complexité du calcul quantique. calcul quantique expérimental, résonance

magnétique nucléaire (R’IN), transfert de polarisation, refroidissement algorithmique,

refroidissement algorithmique non-adiabatique.



ABSTRACT

This thesis covers the topic of Quantum Computation, in both its theoretical and ex

perimental aspects. The Theory of Quantum Computing is an extension of the standard

Theory of Computation inspired by the principles of Quantum Mechanics. The discovery

of efficient quantum algorithms for problems for which no efficient classical algorithms are

known challenges the Strong Church-Turing Thesis, which states that ail computational

models are essentially equivalent in terms of what they can compute and how efficiently

they can do so.

In Part I of this thesis, we study the nature of this difference. We first introduce

a general and simplified framework for characterising the essence of a quantum theory,

in contrast with a deterministic or a probabilistic theory. We put forth the thesis that

the most fundamental axioms are those related to measurement, from which these differ

ences emanate. We cover some variations on these theories, and show some interesting

structural relationships between them. For example, the only models which can be si

multaneously quantum and probabilistic are the deterministic ones.

We then use this meta-model to re-introduce in a succinct and uniform magner the

deterministic, probabilistic and quantum versions of the Turing Machine and circuit

computational models. Moreover, we generalise the circuit model on arbitrary semirings.

We thus succeed in providing a new classification of existing complexity classes by varying

the semirings and vector norms with which their vector space of states is defined. In

particular, the standard models of deterministic, probabilistic, and quantum computing

can be characterised (with the same norm) by defining circuits on the boolean algebra, the

positive rational or reals, and the rational or reals, respectively. We further explore this

model with other non-standard semirings. We show that quaternion based models are

equivalent to quantum computation. Finally, we strengthen this “algebraic hierarchy”

by using the tensor formula formalism to construct a family of complete (or promise

complete) problems for the corresponding complexity classes.

Part II concerns experimental Quantum Computing by Nuclear Magnetic Resonance

(NMR). An important obstacle in this approach is the inability to properly initialise the

quantum register, which is related to the signal-to-noise problem in NMR spectroscopy.

One of the most promising techniques to solve it is Algorithmic Cooling, a generalisation

of the polarisation transfer techniques already used by NIVIR spectroscopists. We discuss
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the traditional adiabatic approaches and their limitations. We describe a variation on

this technique, the non-adiabatic approach, which uses the environrnent in order to cool

beyond these limits. In particular, we provide a new, efficient non-adiabatic cooling

algorithm which could achieve near-zero spin temperatures in liquid-state NvIR already

with more reasonably sized registers (30—60 spins). Finally, we report on the successful

laboratory realisation of the first ever non-adiabatic cooling experiment. This constitutes,

we hope, the first step towards the fully fledged development of this promising technique,

with applications far beyond NMR-based Quantum Computing.

Keywords: Quantum Computation, Theory of Computation, Computational Com

plexity Theory, Quantum Computational Complexity Theory, Experimental Quantum

Computation, Nuclear Magnetic Resonance (NMR), Polarisation Transfer, Algorithmic

Cooling, Non-Adiabatic Algorithmic Cooling.
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INTRODUCTION

About Computation...

Thus is the nature of the game in Theory of Computing and Complexity: We look

at the different modeis which could be built, in principle, to see if they are equivalent. If

they are the physics or engineering are of no concern, and can be “abstracted away”

If they are not, then we know what features are worth worrying about. As a result of

playing this game, with many possible models, the two following principles of the Theory

of Computing have been postulated:

• The Church-Turing (CT) Thesis: Ail models of computation that we can propose

are either weaker or equaily powerful to the so-caUed universal models of com

putations, of which the historicaily most significant are the Turing Machine and

Church’s Lambda calculus.

• The Strong Church-Turing Thesis: 0f ah modeis that we can propose, none is

fundamentaily more efficient than the above.

However, here we have the theory of quantum computing, which thumbs its nose at

the Strong Church-Turing thesis. In appearance, it seems that the thing quantum does

help computation as it seems to allow to compute things more efficiently with it than

without. So, if we are willing to believe that such a beast as a quantum computer couid

be built, it seems that the Strong CT Thesis could go the way of the theory of the ether...

About Quantum Physics...

But what is this mysterious thing quantum? What is its essence? The term “quan

tum” is a Latin adverb meaning “as much as,” and has the same root as “quantity.”

Historically, in Physics, it had to do with certain physical quantities being “quantised,”

or more preciseiy discretised. Energy, in particular, a continuous quantity in Classical

Physics, is discretised and one speaks of “quanta of energy”. Beyond the mere name, lies

a new paradigm for the description of physical reahity and its dynamics, with a new and

axiomatic mathematicai formalism describing it.

As a doctoral student with no Quantum IVlechanics background, I was damned if

I was going to iearn the physics. So I had to exorcise the daemons of Physics out of



2

quantum computing, before I could understand it, let alone do research in it. Demons

such as “Observables,” “Borel sets,” “Hamiltonians,” “infinite-dimensional space,” and a

menagerie of other weird animais, such as cats who cannot make up their minds, fermions

that can’t stand each other, bosons that do, etc, etc.

More to the point, Quantum Physics was introduced at the turn of the last celltury

to heip solve sorne of the mysteries physicists were facing then (photoelectric effect. etc.).

However the mystery that I (and many others) face as a computer scientist is quite

another. About this thing quantum which aids computation, we must ask the following:

what in it is essentiai in the context of computation, and of these properties which are

the ones at the origin of the demise of the strong CI thesis?

About the thing quantum which accelerates computation...

Fortunateiy, by the time I started my Ph.D. the exorcism was weli under way. The

quantum circuit abstraction was already the king of the hiil. A simple model which under

some quantum equivaient of the strong CI thesis (or rather, a patched version replacing

it) is beheved to be equivaient to ail other models quantum. It is an important fact that

not ail of die axioms of Quantum Mechanics (as it is usuaily defined) are reievant in

the context of computation. Thus, when we speak here of the thing quantum, we are

aiready considering a subset of the properties of “quantumness” of physical reahty. A

lot of the “demoniacal” characteristics of Quantum Physics (space, time, energy, etc.)

can and must be abstracted away, which is what the quantum circuit modei achieves.

Another non-negligibie positive side-effect of adopting that model is that it also exorcises

many of Computabihty Theory’s own idiosyncrasies, with which a dose of the quantum

thing becomes monstrous.1

A first impression of mine was that in quantum computing, quantumness had httie to

do with quantities being “quantised” (yech! what an awful phrase...). As a matter of fact,

things are aiready quantised in computation: it is a fundamentai tenet of the Theory of

Computing (which supports both the weak and strong Ci theses), that under reasonable

assumptions 2 ail quantities can be quantised, i.e. digitised. without ioss of generahty or

‘Indeed, much like the effect of an after-midnight snack on a peaceful Gremiin, the resuit of feeding
some quantum tape into an unsuspecting Turing Machine is not a pretty sight. The poor thing becomes
so confused and agitated that it cannot figure ont when to stop! Kids, do flot try this at home, unless
you want to spend the rest of your Ph.D. figuring out when or how it is going to hait and go back to its
normal, peaceful self...

2More precisely, models for which a bounded amount of error exists. Errorless models such as analogue



3

power of computation. So. we can forget about looking at the Latin dictionary for more

dues.

Having thus extracted the essential, which of the remaining properties of quantum

computing are responsible to create that difference, to assist computation? The first sus

pect is its time-symmetry or reversibility, linked to the unitarity of the allowed dynamic

transformations in Quantum Physics. However, that is clearly not it (it is a restriction!),

as again reversibility was shown to be a requirement which does not restrict power, i.e.

the strong CT stili holds under it.

Quantum parallelism is another popular one. It has to do with the ability of a system

or computational device to mysteriously “be” in several states at the same time. Or

with cats which are not content with their seven lives, but also want to have a few

deaths as well... IViore seriously, it can be modelled by replacing the set of configurations

of the computational device (its states) by a richer set which includes suitable linear

combinations of the elements of the old; thus, non-trivial linear combinations represent

these “mysterious” parallel states. That could be it, but early on it was pointed out to

me that no, that was not it in itself. This property is essential, yes, but not a priori

sufficient.

In fact quantum parallelism unbridled can lead to models of computation which are

unreasonably powerful (a phenomenon similar to that of analogue computing...). What

provides that modulating restriction on the model is the inability to obtain total infor

mation on these new states of a computational device. This restriction is given by a

measurement mule or principle. which in some sense says that the nice mathematical trick

we have pulled by replacing the state set by a linear space is very nice and clever, but

useless in the end: our observations are stiil bound to and based on the original state

set, which we often refer to as the computationat basis of the linear state space. This

principle is, in some sense, the computational equivalent of the principle of quantisa

tion in Physics. One can sa that even though the linear state space is “continuous”

(it does form a complete metric space), the quantities representing measurements on it

are “quantised” in that only a finite (albeit exponentially large) number of “values” (the

base states) can be observed. Thus, with this tenuous epistemological link, we renege

our initial impression that there was nothing “quantum” about quantum computation...

Given this restriction, I was told, what is necessary for this thing quantum to pro

computing are not covered by the strong CT thesis, but these models are considered unreasonable due
to the impossibility of constructing devices with arbitrary precision and accuracy.
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duce interesting resuits is the abillty for these parallel existences to cancel each other

in some cases; a phenomenon referred to as interference. At that tirne, it was already

intuitively perceived that it was this property of quantumness which is esseutial, as with

out this property the known, interesting quantum algorithms wouid cease to work. This

is flot only true of computation, but of quantum mechanics at large also. As Feynmann,

thinking about Physics rather than about computation, had already put it, “somehow or

other, it is as if probabilities sometimes needed to go negative.” How does one, however,

carefully enunciate, let alone prove, such a principle?

Because these things are hard, it was not my intention to go about formalising siich

a principle. However, it happened, by accident. $o, how does one go about it? “Go back

to principles,” the old adage says. And indeed we go back to the nature of the game in

Computability and Complexity Theory, as we described right at the beginning: we define

new models, we see if they are equivalent.

First, we will play this game with the intent of narrowing down what that thing

quantum really is, from the computing point of view. We will build a “unified” model

of computation or meta-model in which we can describe ail the usuai models (determin

istic, probabihstic and quantum), and even some new ones. These modeis will ail have

the same structural properties of parallehsm (iinearity of the state space) and the same

measurement principies. In this meta-model of computation, we have a single varying

parameter which instantiates the different modeis: the algebraic structure on which the

iinear state space is defined. This structure wiil define the allowed coefficients in linear

combinations of base states, coefficients which, due to their relationship wit.h the mea

suring mies, are often cailed pro babitity amplitudes. Since the oniy thing that changes is

this underlying algebraic structure, we cali this method the atgebrazc approack.

Using this method is a good idea, firstly because it provides a nice “big picture.”

Secondly. it provides us with tools for proving the equivalence of some of these mod

els. Thus, we can build a “hierarchy” of modeis (or compiexity classes) based on this

parameter. Some leveis collapse, some we do not know. More concretely. and coming

back to our main question, on that hierarchy we wili be able to draw a une, a frontier,

beyond which things can possibiy vioiate the strong CT thesis. In particular, quantum

computing, as usuaily defined, is beyond that une, and classicai and probabihstic on this

side of it. This une, this separation, corresponds precisety to what we thought it was, this

is, paraphrasing feynmann, that abihty for probabihty amplitudes to become negative,
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and hence with the possibility annulling each other.

Unfortunately, while Te strongly believe that this une is ‘for real” and not just an

illusion or a product of oui’ own mathematicai ineptitude, there is to this day no solid

proof of its existence. Even though we can solve surprisingly hard prohiems within the

quantum model, there is stiil no formai proof that these problems could not be solved

under more traditional models3. With respect to this question, a third, albeit marginal,

advantage of this meta-model is that it seems to bring us doser to resolving that question.

In fact it gives a target to shoot at. Along with that une cornes a complete problem for

the quantum model, which we can try to show outside of traditional complexity classes.

At the heart of the problem is the necessity to keep track of the signs of the amplitudes

in order to correctly simulate the final probabilities of measurement. The apparent

inability of classical probabilistic algorithms to do so provides some “evidence”, as a

complexity-theorist would put it, that there is a non-empty gap between the probabilistic

and quantum models.

About computing with quantum things...

In, theory. there is no difference between theory and practice.

In pTactice, there is...

Thus quoth the Computer Engineer to the Theoreticai Computer Scientist4. To this

the computer scientist can respolld in a variety of ways. If he is ahie to do so, he will go

back to the whiteboard and prove that these differences are insubstantial to the power

of computation of the device being built. He then hits the engineer right back with

the aimighty CT thesis, in its appropriately patched, hard cover version, saying “No,

there isn’t.” If he is generous enough, he might provide the Engineer with a proof of

that statement, which she can hopefully make into a simulation method of the original

theoretical model bv the device.

0f course, if the computer scientist does not succeed to prove it (either because

he is too stupid, or because it is simply not t rue), then he will create a new, revised

theory, write it up and present it to the Engineer, nonchaiantly saying “Now, there

3More precisely, the only exponential complexity separations between the classical and quantum mod
els that have been shown are for the query complexity of certain computational tasks; no such separations
have been exhibited in terms of absolute complexity measures (e.g. time or space).

40r, for that matter, SO can the physicist in the context of quantum computing.
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isn’t.” Nodding lier head, the Engineer will ask, “So what of the old theory? Does this

mean that we cannot compute what we wanted to?” And so on...

This is exactly the situation that has arisen in the field of Experimental Quantum

Computer Engineering. $o far the most successful technique for implementing small-scale

quantum computations is that employing the principles of Nuclear Magnetic Resona.nce.

This method utilises the magnetic spins of a macroscopic sample to represent quantum

bits (called qubits), and employs an NMR spectrometer to manipulate and read out this

collective magnetisation. In theory, this method is a correct implementation of the quan

tum model. However, this is only so under conditions which cannot be achieved today

and might neyer be easy to achieve. Thus in practice, and if we restrict ourselves to

NMR, there is a difference between what we can do and what we would like to do, theo

retically. More concretely, the two main deviations of NMR QC from the garden-variety

quantum computing model are a) a different measurement mie, and b) the inability to

initialise the computation with a pure state, or in other words the inability to reset the

memory to a known state before starting the computation.

In this case, the first reaction of the theoretician corresponds to trying to show to

the experimentalist that these shortcomings will not make a difference in the power of

computation of his device, hence providing an extended version of the strong “quantum”

CT thesis. $o going back to the beginning once more, we, theoreticians, define revised

theoretical model and try to show them equivalent or inequivalent to the previous models.

So far, we have been unable to do so. In fact, even the time-tested technique of Divide

and Conquer, a favourite of many Theoretical Computer Scientists, does not work here:

we do not know how to show the equivalence of these models (or lack thereof) even if

onÏy one of these discrepancies is introduced.

Ultimately, since we cannot conclusively answer any of the questions of the Engi

neer/Experimentalist, what is a theoretician to do? One answer is to become an experi

mentalist ourselves and try to solve some of these problems at that level, and make some

of these differences vanish. 0f course, there are limits on how “wet” most theoreticians

will get their hands...

To solve the problem of initialisation, one very interesting theoretical resuit of an “ex

perimental” nature is the discovery of the technique of algorithmic cooting. In its original

variant, it consists in performing a pre-computation prepamation of the memory, such as

the result a small portion of it is in a known state. This purified portion can then be used
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for the intended computation. This process is in fact a kind of compression algorithm,

whose action eau be viewed as lowering the entropy or associated “temperature” of the

purified portion of the memory; hence the name. The price to pay is that the remainder

of the memory cannot be used. Furthermore, the size of the purified region is limited by

how mixed the states are initially, and is far too small to make a difference with current

experimental technology. So, while the idea is nice in theory, it is not in practice.

What is ironic, is that that these techniques had long been known under the name of

potarisation transfeT by NMR spectroscopists. While some interesting theoretical resuits

providing limits on the efficiency of these techniques were known, as far as we know true

compression experiments had not been performed, nor had true scalable algorithms for

arbitrary-sized memories been described.

A second improved variant was proposed which in principle could be made practical.

It involves recycling the wasted part of the memory by interaction with the environment.

This process, called thermatisation, allows those bits to go back to their initial state, and

then to be used again to purify another region of the memory with the same compression

algorithms as before. By combining compression and thermalisation, and under the right

conditions, it is possible to purify the whole memory. We present here a new and more

practical method of doing so, achieving satisfactory levels of purification, even with initial

states such as those encountered with current technology. We also study the fundamental

limits of such techniques, in thus extending those results known about the first variant.

Unfortunately, these methods require ideal conditions which are not easy to obtain in

the lab. In particular, we must have that the purified part of the memory be completely

isolated from the environment, or alternatively that the length of the thermalisation

process be very short compared with the time it takes for the purified part to go back to

its natural mixed state.

Wanting desperately to get my hands wet, the objective I set myself vas to actually

perform a proof-of-concept experiment demonstrating this method, or at least a simplified

version thereof. The first step was to analyse which were the threshold conditions which

had to be attained in order for the experiment to work, in particular which was the

minimal gap between thermalisation times of the purified portion a.nd the portion to be

recycled. Once these minimal conditions were established, an experimental technique

had to be found in order to achieve those conditions. We were fortunate to find and

perfeet a chemical laboratory technique that allowed us to manipulate just enough these
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thermalisation times, The experiment was successful (barely), thus accomplishing two

important objectives: a) proving that algorithmic cooling cari work even in the lab, and b)

proving that if a mere theoretician can make it work, surely professional experimentalists

can improve it to make it even more practical. So there!!!



Part I

De adhibenda re quantica

ad accelerandam computationem
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About the quantum thing which acceterates cornputa.tion

\rhat is indeed the nature of this thing quantum which appears to make computations

using it go faster? Is it entangiement, is it state superposition, is it interference of

computationai paths? This question lias puzzled researchers in Quantum Computing in

its beginnings, but it is now generally understood that the key ingredient without which

no speed up eau occur is interference. In this first part of the thesis we have sought to

make that intuition as formai as possible.

Chapter 1 introduces a mini-epistemology of deterministic, probabilistic and quantum

theories. We make tabula rasa of ail previous axioms and principles of these theories,

in particular Quantum Mechanics, and painstakingly re-introduce only those character

istics of these theories which are relevant and non-redundant. The prize is a uniform

mathematical model, based on vector spaces, within which we can uniformly describe

the models of these theories, in particular computational modeis.

In Chapter 2, we review the standard models of classicai and quantum computation,

however, presenting them, in some cases, in a more generahsed fashion. In particular,

we develop a notion of circuit more general and formai than the one usualiy introduced,

which wili aliow us to define circuits operating and computing with states defined on

arbitrary aigebraic structures. This will in turn allow us to characterise the most impor

tant compiexity classes. both classicai and quantum, within a unified framework. whereby

variations in the underlying state structure plays a centrai role in generating the richness

and variety of the compiexity picture.

In the iast two chapters of this part, we go beyond mereiy restating what vas known

in more formai terms. In Chapter 3, we compiete the aigebraic picture of complexity

classes by considering the quaternionic numbers. We ask and answer the question of

which complexity class(es) they generate. Finaliy, in chapter 4 we use the formalism

of tensor formule to strengthen the abstract classification of Cliapter 2 by providing a

family of complete and promise-complete prohiems for tlie relevant classical and quantum

complexity classes.

Credits and Acknowledgements

The work in Cliapters 1 and 2 is mostly a straightforward formalisation and gen

erabsation of previously introduced concepts. Pew novel resuits are to be found tliere,

except maybe for tlie proof that no models other than deterministic ones exist which are
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simultaneously quantum and probabilistic. This is joint work with Michel Boyer. who

generalised an earlier resuit of the author. This whole question was born in discussions

with David Poulin.

The resuit on quaternions in Chapter 3 is joint work with William Schneeberger, who

should be credited with the main idea. The author was only responsible for working out

the details. . . The contents of this chapter are alrnost exactly the same as those of our

joint article on this topic [FSO3]•

finally, the notion of a strong characterisation through complete problems based on

tensor formula was born in conversations with Markus Holzer while he was a postdoctoral

fellow with Pierre IVlcKenzie at the Université de Montréal. These ideas were painstak

ingly developed by Martin Beaudry, from the Université de $herbrooke, in a long and

slow process, whose results are gathered in a joint article [BFH02], on which Chapter 4 is

largely based.

In addition to my co-authors, the following persons played a crucial role in discussions,

to motivate and validate (not always agreeing...) the work of the author in these topics:

Lance Fortnow, Michele Mosca, David Poulin and John Watrous.

5within which, one can say in the author’s defence, the Devil lives...



CHAPTER 1

A THEORY 0F THEORIES

“Vade retro Satanas!”

1.1 About Theories and Models

From a scientific point of view, a theory is the set of abstract principles, axioms,

and hypotheses that have been formulated with the objective of describing a reality, and

ultimately make predictions about it.1 The axioms and rules of a theory allow us to

construct models of reality. These models allow us in turn to describe, understand and,

hopefully, accurately predict the behaviour of the particular siiver of reality that the

theory strives to encompass.

Que central dogma of modem Epistemology is that no theory is perfect nor can it

be. Reality is just too big and complex for our feeble littie minds. Independently of

whether we want to accept this philosophical principle or not, the practical reality is

that sometirnes a theory of everything is just too cumbersome. Whether by necessity or

by choice, our theories remain abstract and factor away those aspects of reality which

we cannot grasp or we choose to ignore. For example, the PTincipte of Abstraction has

become in Modem Science and Engineering a maxim indoctrinated into beginners and a

universal methodology:

Ignore everything that witt not affect your predictions.

In the sciences and engineering, the models that a theory allow us to construct de-

scribe systems. which are the limited portions of reality which we wish to understand.

The state of a system is the abstract object that describes it. From it depend the resuits

of measurements, which lis how information can be extracted about the system from

‘The Oxford English Dictionarv[OEDS9] gives the following definitions of theory in this sense:

a) a scheme or system of ideas or statements held as an explanation or account of a
group of facts or phenomena;

b) a statement of what are held to be the general laws, principles, or causes of something
known or observed.

and the Webster c03] as:

a) The general or abstract principles of a body of fact, a science, or an art.
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without. finalhç the dynamics of the theory prescribe how the states will change and

evolve with time. 2

As unexpected resuits are obtained or as phenomena unexplainable under the current

theories are observed, we formulate new theories or revise old ones. That has tradition

ally been the pattern in the Natural Sciences. However, in the Applied Sciences and

Engineering it is often that some of the aspects that we had previously neglected or

abstracted away become of interest. Thus, theories can become partially obsolete ont of

io fault of their own, but out of the fact that they no longer meet our changing scope of

applications.

Furthermore, according to the relativism mentioned above, different fields of knowl

edge contribute complementary aspects of the understanding of reality. Physics and

Computer Science have provided in the last thirty years one remarkable example of how

these points of view can meet and enrich each other. The field of Quantum Computing

is indeed one the chiidren of this happy marnage.3

In the end, and for whichever reason, the fact is that there are many valid and

worthy theonies, each with their own utility and scope of application. Indeed, their

variety and number make it useful to study them systematically, identifying their common

features and classifying them according to their differences. In other words, to define an

epistemological theory of theories. Not a theory of everything but one limited to physical

theories and theories of computation. one that will suit our particular purpose.

The types of theories that will interest us in the context of Physics and Computation

are deterministic, pro babitistic, and quantum theories. But befone we start enunciating

what they are, a word about nomenclature. With the advent of Quantum Computing,

the traditional Theory of Computation, i.e. the deterministic and probabilistic models

of computing, have been re-dubbed the ctassical Theory of Computation. A similar

phenomenon has occurred in Physics where nowadays the term “classical” is used for

those theories which are neither relativistic nor quantum. However, there might be some

ambiguity about whether probabilistic theonies should be considered classical. Some

scientific texts and historians of Science. especially older 011es, stili refer to Classical

Physics as that of Newton and its successors, excluding Statistical Mechanics. In the

rest of this document, we will abide with the more modem use in both Physics and the

2When we say that states evoive with “time,” we do flot necessariiy mean physicat time, a very shppery
business... It is only under very specific circumstances that computational time can be equated to physical
time.

3and so is Physics of Computation, the unjustly forgotten eider brother.
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Theory of Computation.

1.2 Deterministic Theories

1.2.1 Concepts and Definitions

In classical deterministic theories, the notion of state unequivocaily defines with ab

solute precision ail of the attributes and properties of the system. From the knowledge of

the state of a system, ail predictions are deterministic and the answer to every possible

question or resuit of every possible measurement at that moment is uniquely defined by

the state object. Furthermore, the dynamics of a deterministic theory is such that given

its initiai state, the state of a system at any future moment is uniquely defined, and thus

so is the outcome of ail possible measurements in the future. These are in fact the two

axioms of a deterministic theory.

Definition 1.1 (Deterministic Theory). The axioms of Deterministic Theory are the

following:

Axiom 1 (Measurement Rule). The state of a system preciseiy and unequivocally

defines the resuits of ail possible measurements.

Axiom 2 (Dynamics). How systems evoive with time depends exclusiveiy on the prop

erties of these previous states of the system, whether measurement related or not.

For simplicity, and without loss of generaiity, we xviii assume throughout that the

resuit of ail measurements can be represented with a single variable defined over a unified

outcome domain. In that case, we can then give the foiiowing formai definition.

Definition 1.2 (Deterministic Model; Deterministic Theory). A deterministic

modet is a 4-tuple (8, V, f, V) comprised of the foiiowing elements:

• 8 is the state space,

• V is the set of resuits of ail measurements.

• f : 8 t— V is the measurement rute, where f(s) represents the outcome of measure

ment on state s e 8, and

• V {D(t1, t2) : 8 i—# 8} is the famiiy of evoiution functions parametrised by valid

times of observation t1 < t2. such that if the state of the system at t1 is s, then

the state of the system at time t2 is s = D(ti, t2)(si).
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To sirnplify our presentation, let us represent the outcome of a measurernent at time

t with a single variable v(t). Alsot, let D : S S represent the tirne evolution function

from some fixed initial time to to a later tirne t > t0, Le.

D = D(to, t) (1.1)

A very important characteristic of deterministic models is that it is aiways possible

to make a deterministic prediction of the outcome of measurement. In particular, given

the initial state o at to, it is possible to infer the value of v(É) as follows

v(t) = Vt f(D(so)) (1.2)

However, what the dynamics does not define is a rnap between measurernent outcomes

v and Vt at times t0 and t respectively. In other words, given onty knowledge of vo, we

cannot determine with certainty the value of Vt. This situation is described in Figure 1.1.

) st

vo X > Vt = f(Dt(so))

Figure 1.1: The relationship between states and measurement outcomes in deterministic
models. The crossed-out arrow indicates that no deterministic relationship exists.

The non-existence of a deterministic time evolution map between measurement out

cornes stems from the fact that there rnight be more than one state with the same

outcome, or in other words that f is not a bijection. Suppose that we could only observe

a system at one fixed moment in time. Then, all states s of the system with the same

measurernent outcorne would appear indistinguishable to us. In fact, the measurement

rules define an equivalence TeÏation in the state space S, where each equivaience class

[s] = {s’ I f(s’) f(s)} represents all the states which are rnutually indistinguishable.

In the absence of knowledge on the dynamics or because of the inability to re-measure

at a later time, this indistinguishability is complete. That is why these equivalence

1Whule it is true that in most physical theories. the time evolution function D(t1, t2) will only depend
on the difference z(t) t2 — t1, this is not the case for ail modela that interest us, as we wili see.
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classes are sometimes called partial information states or also macro-states (also written

as M-states), in contrast with the original states which are dubbed total information

states or mzcro-states (or t-states). is equivalent to considering a model with a new

state space 57f, the quotient of S under the relation deffned by the measurement fuie f.
The state space 57f is in fact isomorphic to the space of measurement values V adopted

by the total measurement variable y, with each value y being associated uniquely with

an M-state[s] as follows

e [s] f(s’) = e for some s’ [s] (1.3)

Because there is no deterministic map between outcome values, unfortunately such a

model would not be deterministic, as there would be no deterministic map between

IVI-states.

1.2.2 Examples of Deterministic Models

In the rest of this section, we will introduce and discuss some examples of deterministic

models relevant to our purposes.

1.2.2.1 Turing Machines

The quintessential exampie of deterministic models in the Theory of Computation

is the Turing Machine, an abstraction of computationai devices which according to the

Church-Turing Thesis embodies the essence of all imaginable and reasonable computa

tion. It consists of a finite state machine or automaton, an infinite memory tape (with

a beginning and no end) consisting of individual cells, and a read-write tape head con

trolled by the automaton that can move to any position on the tape, but only moving

by one cell at each step. In one of its simplest formulation, the Turing Machine tape

contains only binary input symbols in = {O, 1} and blank celis, represented with the

symbol . In other words. the tape alphabet is F U {}. In that case. it can then be

formally defined as follows:

Definition 1.3 (Turing Machine). A Turing Machine (TM) is a 4-tuple, (Q, q, q, S)

where

• Q is the set of internal states of the automaton.
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• qo E Q is the initiat state of the automaton.

• q E Q is the final or haïting state of the automaton.

• 6, is the transition function describing the beha.viour of the 1M, where

6: Q—{qf} x F i’ Qxfx{L,R}.

The image S(q, b) = (q’, b’, d) indicates what the TM wili do next when the automaton

is in internai state q E Q, q q, and the symbol under the tape head is b. First, it will

overwrite it with b’. Then, it will move the head in the direction indicated by d: right if

d = R, left if cl = L, and stationary if cl = L and it is at the beginning of the tape. Finaily,

the internai state of the automaton wiil change to q’. Upon entering the final state q,

the TIVI wili haït and perform no further action.

States. At any given moment of the computation, the state of a 1M, also referred to

as its configuration, is defined by the state of its internai finite automaton, the position

of the tape head. and the svmbols written on its tape.5 Configurations are typicafly

represented by a string [CL, q, CR], where q is a string representation of the internai state

of the automaton. CL E P is the string of tape symbois to the ieft of tape head, and

CR E F* is the string of symbois under the head and to its right up to the iast non-biank

symbol. The configuration string is thus aiways finite.

Dynamics. The dynamics of this model is defined by the transition function 6 and the

fact that the TM will hait upon entering the final internai state q. It is therefore fuiiy

deterministic.

Measurement. According to the spirit of the modei, what can be “seen” of a Turing

Machine hy an external observer are its tape contents, its tape head position and whether

the machine lias haÏted. More formaÏÏy, that means if the TM is in configuration [CL. q, cRi.

then the resuit of our observations can be represented as [CL, h, CR], where h is a Booiean

variable representing whether q = q.

51n the Theory of Computation. the term configuration is used to distinguish the state of the 1M
with the state of the internai automaton, a system within a system. Here we use the term state for the
state of the entire Ti’vI.
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However, nothing fundamental in the Theory of Computation prevents observation

of ail the components of the state of a T\i, including the internai state. In fact, this

allows for the principle of simulation in which a 1M or another kind of computational

device mimics the behaviour of a TM by observing and keeping track of its successive

configurations. One of the consequences of the Universality Theorem for Turing Machines

is that computability is not affected. nor is problem compiexity (for most reasonabie

classes), by whether we adopt this white box model or the more abstract black box model

just mentioned. Consequently, the resuits and predictions of the underlying theory are

not affected whether we allow full or only partial observation of the 1M configurations,

or in other words on how we define macro-states as long as they include the contents of

the tape.

1.2.2.2 Boolean Circuits

Bootean or togicat circuits were invented as an abstraction of electronic circuits, today

ubiquitous even within the computer on which this text is being written. Thev consist

of elementary logical gates operating on Boolean variables which are ‘brought” to them

by wires which interconnect the gates. Ihese Boolean values (O or 1) are idealised

abstractions representing some physical property such as voltage. The gates operate on

these values

Abstractly, a circuit can be defined as a graph with the following properties:

Definition 1.4. A circuit C = (I, O, Ç, W) is a special kind of directed acyctic graph

(V, W) with vertices V and edges W, where

• The set of vertices is partitioned into three components V = I U O U Ç, where

— I represents the input nodes, to which a given “input” value is assigned at

initialisation.

— O represents the output nodes, from which the “output” of the circuit will be

determined.

—

Ç is the set of gates in the circuit, each transforming the values on its input

connections onto values on its output connections according to a fixed rule.

• The set ofedges W c (IuOu(Ç x N)) x (IUOU(Ç x N)) ofthe graph. corre

sponds to “wires” linking input and output nodes with the (labelled) connections

of the gates, with the following restrictions and semantics. If w = (u, y) e W then:
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— u E I and t = (g. j) E Ç x N, indicates that the u-th input node is connected

to the j-th input connection of gate g E Ç

— u E O and u = (g, i) E Ç x N, indicates that the i-th output connection of g

is connected to the v-th output node

— u, u E Ç x N, with u = (g, i) and y = (g’, j) indicates that the i-th output

connection of g is connected to the j-th input connection of gate g’.

— u E I and u E O indicates a direct connection from an input node to an

output node, without going through any gates.

— the in-degree of any input connection or output node is 1 (no fan-in).

Intuitively, circuits are used as computing devices by setting the input nodes to the

input of the computational task we want to solve. The values then “propagate” to the

input connections of ail connected gates through the wires of the circuits. These gates

in turn act by “reading” ail input connections, and “writing” the correct values onto the

output connections, which are in turn propagated to the next gates or output nodes.

The output of the circuit is defined when ah output nodes have “received” a value, and

consists of the combined values of all output nodes.

In particular, a Boolean circuit is one where all the gates g implement a fixed logical

operation such as AND, OR or NOT, or ntore generally any map g : ‘‘ where k and

/ are the number of input and output connections of g, respectively.

As an example of a deterministic model, Boolean circuits have the following elements.

Measurement. The interface with the outside is defined by the output nodes. Their

values are the observables of the system and their value is aiways uniquely defined.

States and Dynamics. If viewed as a physical system, the state of the circuit could

be defined as the collection of Boolean values that each of the wires of the circuit has.

However, such a description is not very useful as it represents the complete computation,

from input to output, and from beginning to end. We would like to require the notion of

state to correspond to a particular moment within the computation. However, in circuits

the notion of time becomes somewhat elusive and unconventional.

There is no implicit notion of time as a motor of change in circuits: change in a

circuit is effected by the gates. Whilst a notion of “before” and “after” can be defined

within each gate, the fact is that the graph of wires interconnecting the gates does not
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necessarily define a unique total ordering of the gates themselves. As a consequence, in

some cases saying that this gate was “before” this one can be meaningless.

What are these “moments” then, at which it is sensible to define the state of circuit?

They can modelled as bipartite cuts in the circuit graph with certain particular properties.

Definition 1.5 (Temporal Cut of a Circuit). A temporal cut of a circuit C is a

bipartite cut (Ç,, Ç) of the circuit graph (i.e. Ç, fl Ç 0 and Ç, U Ça = V), where we

cali Ç, the “left” side and Çp. the “right” side, with the following properties:

i. Ail input nodes are on the ieft side, and ah output nodes are on the right side,

i,e.IC Ç, and Oc Ç.

ii. All wires across the cut are directed from the left to the right, i.e. there are no

w = (‘u, y) e W such that u E Çp. and e E Ç,, we

The width of a temporal cut is the number wires that cross the dut,

i.e. {w = (u. e) I u e Ç, and e E Ç} 6

Let 7 be the set of ah temporal cuts of a circuit C. We can define a partial order

within 7 as foilows

Definition 1.6. Let t = (Ç,, Ç) and t’ = (Ç’,, Ç’a) be two temporal cuts in 7. We say

that t < t’ if

a) (Immediate successor.) Ç’, = Ç. U {u}, where u é Ç, or

b) (TTansitivity.) There exist., ti.... ,tm E fb, m 1, such that t < ti < < trn < t’.

With this definition, we can properly identify the “initial” and “final” moments to and

tf as the cuts cutting all and only the input wires (Ç. I) and that cutting all and only

the output wires (Ç = O), respectively. In particular, we will have that to = min(fa’)

and tf = max(Tc). We can thus view T as a computational equivalent of the space-tirne

continuum for C. However, 7z is not totally ordered and therefore there is no unique

“trajectory” of time, or in other words no well defined time “axis.”

If we really insist on having a “proper,” fully ordered notion of time, we cari aiways

choose one hy making arbitrary choices or by incorporating into our model other elements

of reality which would make that choice for us. For example, if we were to attribute

6Note that the situation is somewhat simplified if we consider reversible circuits or gate arrays, where
ail temporal cuts have the same width.
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lengths to the wires then it would be possible to define a sensible temporal ordering of

the gates in the graph, associat.ed with the physical events of voltage change at each of

the gates, where the initial moment corresponds to a simultaneous change of voltage in

ail the input nodes.7

Regardless, these temporal cuts can also be intuitively viewed as moments at which

one of the many correct simulations of the circuit could have stopped. Thus, it is sensible

to associate to each possible cut a state of the circuit at the corresponding moment.

Definition 1.7 (State of a Boolean Circuit). The state of a boolean circuit G at

a temporal cut t = (Ç, ) of width m is the vector of boolean values (b1, b2, . . . ,

where for 1 <i <ra, b E lI is the wire value of the i-th wire w = (u, e) crossing the cut

(according to some arbitrary ordering of the wires).

In particular, the states associated with to and tf are called the initiat state and the

final state, respectively.

The dynamics of a Boolean circuit can be deterministically described in terms of its

gates and its states as follows. Let s be the state at a cut t, and let cut t’ be an immediate

successor of t, i.e. Ç’ = Ç U {g}, where g E Ç is a gate of the circuit. The state s’ at

time t’ is constructed by taking the entries corresponding to the input connections of

g. and substituting them with the values of the output connections as defined by the

truth table of g and the values at the input connections. In general, and by applying

this method iteratively, it is thus possible to uniquely determine the state of the circuit

at any moment t’, given a description of the state of the circuit at any moment t < t’

that precedes it.

1.2.2.3 Classical Mechanics

In its Laplacian or Hamiltonian formulations, Classical Mechanics is also a determin

istic theory.

States. It is sufficient to consider the position and momentum vectors for ail particles

in the system. Thus, states can be represented as the set of ah 3-dimensional coordinates

of the position and momentum vectors with respect to an initial frame.

TBut that is precisely the kind of model that would violate our cherished Principle of Abstraction, as
these lengths would in no way change the ultimate outcome of the computation, which is why we do not
do this in Computer Science: we let the electrical engineers and physicists worry about such things.
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Dynamics. The dynamics of such systems is represented by the Laplacian or Ramil

tonian operators. From them. and given an initial state, it is always possible to uniquely

determine the state of the system at a later time t. In other words, there exists a de

terministic map D on the state space S, D : S F—> S, such that St = Dt(s) is the state

of the state description of the system after time t lias elapsed from the system being in

state s. In this case, D only depends on the Hamiltonian/Laplacian of the system and

the elapsed time t.

Measurement. Nothing fundamental in this theory prevents ns from obtaining full in

formation on the exact value of these coordinates. Measurements are, in principle, fully

unrestricted. This would be tantamount to equating micro-states and macro-states. Un

der more reasonable circumstances, however, observations are restricted to macroscopic

variables such as speed and position of the centre of mass, angular momentum, etc. In

this case, macro-states are equivalent to the Cartesian product of the domain of these

variables.

1.3 Probabilistic Theories

1.3.1 What Is a Probabilistic Theory?

In our objective to trim our meta-model of theories to the bare essentials, let us forget

for a minute everything we know or might know about probabilistic models, and adopt

a nescient approach. First, and by their name, we can assume that they somehow must

involve probabilities, an otherwise abstract mathematical concept defined axiomatically.

Secondly, we presume that they are distinct from deterministic theories. As a couse

quence, some element of determinism of the latter theories must go: either determinism

of the dynamics or that of measurement.

But in fact, we cannot choose to abandon determinism of the dynamics without

abandoning deterministic measurements also. To see this, consider a non-deterministic

theory which retains determinism of measurements. Let S be state space of this theory,

and let V = {v, v2, . . .} represent the sample space of measurements.8 By assumption,

there must exist a mapping f : S >—> V defined by our measurement rule, such that

5For convenience, we will make the assumption in the rest of this document that the sample space
is discretised. It is possible to make this discussion more general, but at the cost of introducing much
heavier mathematical machinery than the author is willing or able to use.
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knowledge of the initial state o at time to would in principle allow us to know the

unique outcome of measurement at that moment, i.e. f(so).

However, also by assumption, the evolution map N is not deterministic, which means

that at time t, o could have several possible images {8i, 82, . . .}, or in other words N(s)

could be any non-singleton subset of S. In that case, measurement at time t would

not yield a unique answer, with any of the values in {f(si), f(82),. . .} being possible.

In other words, we have that the determinism of measurement is flot preserved by a

non-deterministic dynamics. This situation is depicted in Figure 1.2.

so > N(so) = {si, 52, . .

+
Vtrr??

Figure 1.2: The relationship between states and measurement outcomes in probabilistic
models where we have defined a deterministic measurement rule. If the dynamic mapping
between states is non-deterministic (represented here by a dotted arrow), then there is
not necessarily a unique outeome ut at time t.

Hence, we are ieft with the other scenario in which we no longer have deterministic

measurement rules. This important departure from deterministic theories means, among

other things, that states no longer determine ail the properties of the system. For ex

ample, if the same system eau be “prepared” to be in the same state more than once,

the outcome of measurement eau be different each time. Equivalently, two copies of an

identical system even if prepared and initialised in the same identical fashion wili yieid

different outeome values when observed. However, one thing wiil remain constant for

both instances of the system: the relative frequencies of each outcome value. This is how

“probabilities” are involved in a probabihstic theory: a system observed under fixed con

ditions defines a probabitity distribution or (PD) on the sample space of the measurement

variables.

The evolution of a system wili change its characteristies, and in particular these

probabibties will change. However, it is expected that these probabilities wili depend on

the initial probability distribution, and onty on it. In other words, whiie the measure

ments are no longer deterministic, the dynamics between probability distributions of the
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outcomes stili is.

Definition 1.8 (Probabilistic Theory). ihe axioms of Probabilistic iheory are the

following

Axiom 1 (States). The states of a system are objects which assign a probability to each

point of a given sample space, i.e. they can represented as probability distributions

on the sample space.

Axiom 2 (Measurement Rule). A system which is observed under the same identical

initial conditions, i.e. in the same state, will yield different resuits, but according

to the same fixed probability distribution determined by the state.

Axiom 3 (Dynamics). The probability distribution of outcomes of a system after it

has evolved under its natural dynamics depends exclusively on the probability dis

tribution of its initial state.

Probability distributions are usually represented as probability vectors. When work

ing with probability vectors, it is useful to use the 1 norm instead of the usual Euchdean

norm.

Definition 1.9 (t; norm). The 1 norm over a discrete vector space VC) is the map

:V—1Cdefinedas

IIIH ZIxiI

where x are the coordinates of .

Like ail norms, the t1 norm is preserved under base changes and it also lias an asso

ciated distance cailed grid or Manhattan distance, i.e. d1(.) The Ïi norrn

ailows us to re-characterise probability vectors more succinctly.

Definition 1.10 (PD-space). Tlie pro babitity distribntion space or PD-space of dimen

sion N is the subset PD(N) of the N-dimensional reai vector space RN such that for

every probabitity vector e PD(N):

i. p (p O, Vi {1,...,n}, and

ii. IIPi — 1.

Furthermore, the PD-space PD(V) associated with a sampie space Y of cardinahty N is

simpiy PD(N).
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Note that another common characterisation of PD(N) is as the simplex generated by

the canonical basis {ê1,. . . } of R. This suggests a natural way in which one cari map

an arbitrary random variable y with outcomes in V onto the corresponding probability

vector (i.e. probability distribution). The map is defined by assigning to each sample

point v E V the canonical base vector . ‘Iore generally, we have that

y H—* = Pr(v = v) (1.4)

Based on the axioms of Definition 1.8 and on the mathematical formalism just defined

for PD-spaces (Definition 1.10), we cari formulate probabilistic models as models in which

the states are the probability distributions, and are thus represented by probability

vectors.

Definition 1.11 (Probabilistic Model). A probabitistic model is a 2-tuple (V,?)

where:

• V is the set of resuits of ail measurements, i.e. the sample space.

• The state space of the model is PD(V), the PD-space of probability distributions

over the sample space V.

• P = {P(tï, t2) : PD(V) PD(V)} is the family of evolution functions parametrised

by vaiid times of observation t1 < t2, such that if the state of the system at t1 is

y, then the state of the svstern at time t2 is

P2 = P(t1,t9) ( (1.5)

In comparison with deterministic models, we let the total measurement variable v(t)

becorne a ran dom variable. whose domain V becomes the sample space. lis outcome

wiil 5e distributed according to the probability distribution describing the state of the

system.

(p=Pr(v=vj (1.6)

While this measurement rule is intrinsically non-deterministic, it is possible that for

sorne of the states the outcome witt be deterministic. This states correspond to {0, 11-

valued PD’s §, where

()j Pr(v = v s) = j(j) (1.7)
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These states which are called the deterministic or fun damentaÏ states of the theory play

in important role. In the probability vector formalism, they are of course represented

by the canonical base vectors {é}. By the same token, any deterministic models can be

represented as probabilistic models, as is illustrated in Figure 1.3. Finally, we will also

adopt the same notation shorthand of Equation 1.1, by defiuing the evolution operator

P for some fixed initial to and ail t > to as

Pt = P[to,t] (1.8)

- P -
-

______

P0 ) Pt $0 ) st

(P*}
°X ) V Vj X ) Vj

(a) Probabilistic IVIodel

Figure 1.3: In probabihstic modeis (a), the “states” or PD’s allow us to make predictions
both in the “present’ (time to) and in the “future” (time t). These predictions are
symbolised as “—e— u”, indicating that the value e wiil be obtained with probability
p. Deterministic models (b), can also be viewed as a special case of probabilistic modei
where to each state s we associate a {O, 1}-valued PD s= 5f(). In neither case, can we
assume that in general there exist a probabilistic (or deterministic) mapping that will
determine the probabihty that we obtain vj at time t if we have obtained v at time to,

which is indicated by the crossed-out arrows.

1.3.2 The “Hidden Variable” Interpretation

Notwithstanding this abihty to make probabilistic predictions, it remains that in

probabilistic models the states of a system no longer describe unequivocally all of its

properties. This erosion of the concept of state is somewhat unsatisfying, as the theory

seems no longer “compiete”. In fact the idea that a scientific theory is inherently incom

plete is abhorred by many. Indeed, one might ask what the source of this uncertainty

is and whether it is “real” or just a mathematicai artifact.

The fact that a modei exhibits probabilistic behaviour might be attributed to the

modeÏ being incomplete and not the theory itseif. The theory is complete because what

(b) Deterministic Model
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is really happening is that the states of our model are but a partial and irnperfect re

flection of reality, a reality which can be described in terms of some hidden variables,

which had not been considered, and which in fact rnight not even be directly observable.

Nonetheless, they do affect the outcorne of measiirernent and they will also affect the

dynamics of the system. The new extended model is deterministic and the skeptics are

happy: randornness is nothurig but an illusion...

More precisely, the explanation behind this uncertainty cornes in the forrn of a deter

ministic hidden variable modet, whose measurernent outcomes coincide with those of the

original probabilistic model. Under full knowledge of the hidden variables, the outcorne

is deterministic. However, and precisely because of the fact that they are “hidden”, we

assurne under this interpretation that they are distributed according to some fixed a

priori distribution. The probability distribution on the rneasurement outcorne is induced

by this a priori distribution and the rneasurement rule of the hidden variable model,

through the law of conditional probabilities.

Again, let us assume for simplicity and without loss of generality, that such hidden

variables can be represented with a single holistic hidden variable or hidden state, whose

domain 7? contains all possible (combined) values of these hidden variables. Furthermore,

given the time evolution function D on R, let D be its equivalent defined onto the PD

space of 7?, i.e.

Dt:7?—*7? D:PD(R,)—*PD(7?)
(19)

ri i’ Dt(rj) ri

which is extended by linearity to the general case

D) (R)é (1.10)

il r=D(r)

Note that D is in fact ollly a reshuffling of the base vectors of PD(7?). Sirnilarly, we can

define a generalised measurement rule f’ PD(R) —* PD(V) applied to PD’s on 7?. In

the “deterministic case” where fi is a {0, 1}-valued distribution equal to 1 at r, then its

image under f’ will also be a {0, 1}-valued distribution equal to Ï at y f(r). Let R

be the randorn variable distributed according to fi, and y be the measurement outcome

random variable. Then, by applying the law of conditional probabilities we obtain the
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general case as follows:

(f’(])) Pr(vv R)

— Pr(v=vR=r)Pr(Rr=r)
rE7

= Ôf(.)(V) Pr(R = r)
rE7

= Pr(R=r)
f(r)v

=
(1.11)

rE7?I f(rj)=vj

This generalised measurement rule is the basis for justifying the “existence” of ran

domness in our probabilistic model. The idea is that given an a priori distribution,

the rule f’ will generate a PD on measurement outcomes, which will mirnic that of the

original model, and moreover, will do so even when we substitute the original PD with

its image under the generalised tirne evolution D. More forrnally. we have the following

definit ion.

Definition 1.12 (Hidden Variable Interpretation). Let M = (V, P) be a proba

bifistic model. We say that a deterministic rnodel 7-t = (R., V. f, V) is a hidden variable

interpretation for M if for any arbitrary valid observation tirnes t> to, there is for every

possible initial PD pj an a priori distribution ffo E PD(R) of the hidden state space R.

such that

Initial consistency. is “consistent” with in the following sense

f’(Io) =p (1.12)

Dynamics consistency. The hidden PD at time t, = D(Jo) is “consistent’ with

the state at tirne t, j5 = Pt(p7j), i.e.

f’(D(.o)) (1.13)

From this definition, it would seern as if the designers of hidden variable models

would have to corne up with an a priori distribution every time. Beyond the fact that

this seems to add an unnecessary degree of complication, it is somewhat unsatisfactory.
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We have introduced hidden variable interpretations precisely to be able to ‘derandomise”

probabilistic models, and now we stiil have to invent probability distributions at every

step. The following lemma addresses that concern.

Lemma 1.13. For every PD in the sampte space E PD(V), there exists a PD on

the hidden state space R PD(R) such that R is consistent with j3 i.e. such that

f’(IZ)=j5.

Proof. As we saw in Section 1.2, the original measurement rule f defines equivalence

classes [vi] = {r I f(r) = v}, on the state space R., with each equivalence class corre

sponding to those hidden states yielding the same resuit.

Suppose j3 is a base vector of PD(V), i.e. = é. Then, we will assign to it the

distribution Ïj which is uniform on the equivalence class {v], i.e.

Pr(R = r) FfF if r E [y2]
(1.14)

O otherwise

We are in fact defining a map g $ PD(V) i— PD(R.) such that the image of this base

vector is

= = e (1.15)
rE[v] 2

In general, we will have for an arbitrary PD

(1.16)

It now suffices to prove that f’ o g = id. For any E PD(V). and all indices j of V, we

have that

(f’(g(i5)) = (g(p) by Equation 1.11

= ( (Plk ffc) by Equation 1.16

rE[V] VkEV

= ( (p ( I [t] I
by Equation 1.15

ra [vi] VkEV rjE [vk]
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but since the operator (.)j selects coefficients of terms where ê = we have

=

rE [vi] VkEV

=
t I =

rj[vj]

and thus f’(g(j5) = j3. E

As a consequence of this lemma, we see that finding a specific a prioTi PD for each

initial PD j5 of the probabilistic model is not critical to the existence of a hidden variable

interpretation: one aiways exists and can be obtained from the map g defined in the proof

of Lemma 1.13. In partidular, if we fix the map g as the universal way of constructing

a przorz distributions, then the initial consistency condition can be ignored and the

dynamics condition can be rewritten as

Vt>t0, Pt=f’oDog (1.17)

Thus, the difficulty lies in finding evolution operators D such that the second condition,

which is the critical one, is met. This is illustrated in Figure 1.4.

-.

_______

-. - D -.

R0 > R R0 > R

f’ Ptof’f’oD f’ f’

Pt=f’oDog

-. Pt - - Pt -

P0 ) Pt P0 > Pt

ta) (b)

Figure 1.4: The conditions of consistency of a hidden variable interpretation. Figure (a)
represents the conditions of initial and dynamics consistency in the original definition
(Def. 1.12). Succinctly put, both conditions are met if this diagram commutes along the
dotted diagonal arrow. Figure (b) shows the situation when the prior R0 is obtained by
the general method from Lemma 1.13. In that case, the dynamics consistency condition
is met when both paths from p7 to , i.e. along the original probabilistic model alld
along the hidden variable model, commute.

In summary, hidden variable interpretations allow for a possible answer to the ques
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tion of origin of uncertainty in probabilistic models: it is just a consequence of the fact

that we are missing some information. If indeed ail probabilistic modeis had hidden vari

able interpretations, this wouid provide a satisfying and definite answer: randomness is

oniy an ilusion created by our lack of information of a “larger” deterministic reality. We

will address in Section 1.4 the question of which probabilistic models have such hidden

variable interpretations. We wiil now discuss some significant examples of probabilistic

models.

1.3.3 Examples of Probabilistic Models

1.3.3.1 Markov Chains

Markov chains are the work horses of stochastic modelling. They are used in a wide

variety of domains such as Telecommunications, Operations Research, Population Theory,

Finance, etc. A Markov chain model consists of a discrete set of fundamental “states”

that we can observe the system to be in. It is not a deterministic modei, however, and

the state space of the system being modelied is composed of probability distributions

over these fundamental states. In our formahsm, the fundamental states represent the

sampie space Y, and the state space is then PD(V).

In these modeis time is discretised into individuai time steps. The defining charac

teristic of a Markov chain is that the state of a system depends only on its immediate

predecessor in time. This is aiso cailed the Markovian property of stochastic processes

and it is said of Markov chains that they are “memoryless”. Ihe term chain” in fact

refers to the collection of random variables {vo, V1, . . Vi,. . .}. where vt represents the

outcome of measurement at time t. The ‘1arkovian property is thus expressed as:

Pr(vt t’ vo = , vt_1 = vj_1) = Pr(vt = e vt_i = v_1) (1.1$)

If furtherrnore, we assume that the there exist transition probabilities between the

fundamental states of the system. which are time-independent and independent of the

previous states, the system is said to be of first order.

P(i,j) Pr(vt = t’j I Vt_i = v)

1 step
PT(V H—* v)

= Pr(é e) (1.19)
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These transition probabilities define in fact the images of the base vectors é of the

PD-space PD(V)

P() = Pr(ê —* é)é P(i,j)é (1.20)

and by linearity of the PD-space, also those of any PD

P(p) = (pP(i,j)e (1.21)

which can be represented in terms of a matrix product

= P , with P(j, i) (1.22)

Furthermore, The operator describing the dynamics after t steps of evolution is theil

simply Pt = pt

The class of matrices which can represent valid linear dynamics of this kind is called

the stochastic matrices. Their entries are in the interval [0, 1] and their columns add up

to 1 (the i-th column is the prohability vector representing the image of é).

1.3.3.2 Probabilistic Turing Machines

A Prohabilistic Turing Machines (PTM) is exactly like a determinist.ic TM, except

that the internai controi is a probabiiistic finite automaton. A probabibstic finite automa

ton (PFA) is a special kind of non-deterministic automaton. which lias a fixed probabihty

assigned to each of the possibie state transitions.

Definition 1.14 (Probabilistic Turing Machine). A probabitistic Turing machine is

a 4-tuple (Q, qo, q, n) where

• Q is the set of states of the automatoi

• qo e Q and q E Q are the initial and final (accepting) states of the automaton

• n is a pro babitistic transition function

n:(QxF)x(Qxfx{L,R}) i’ [0,1]
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with the property that for ail q Q, b f

rr(q,b,q’,b’,d’) = 1
q’E Q
b’E f

d’E {L,R}

The evolution of a non-deterministic Turing machine can be represented as a com

putation tree. It is a tree of configurations, where the root corresponds to the initiai

configuration, and the chuidren of a node are the configurations which can reached from

it in one step. The i-th level thus corresponds to the configurations of the machine after

exactiy i steps.

In order to construct a probabibstic model such as those defined in Definition 1.11 for

PTM’s we would like to assign probabilities to the nodes in the tree, normalised for each

level, suci that the value of a node at the i-th level corresponds to the probability that

the PTIVI reached that configuration in i steps. The transition probability n of the PFA

induces the following transition probability function for configurations. Let C represent

the space of configurations. Let c, c’ E C be two configurations, and let a, b e f and

u,v e r, then

n(q. b. q’, b’, L) if c = [ua, q, bu] and c’ = [u. q’, ab’v] (head moues Ïeft,)

n(q, b, q’, b’, R) if c [u, q, abv] and e’ = [ub’, q’, bv] (head moves right)

P(c, c’) = n(q, b, q’. b’. L) if c = [q, bu] and e’ = [q’, b’v] (head hits Ïeft end

1 if c = e’ = u, q. u] (final sta.te)

O otherwise

(1.23)

In a traditional non-deterministic computation tree it is possible for the same config

uration to 5e present more than once in the same levei of the tree, each instance corre

sponding to a different computation path. Because we are assuming that the “choices” of

the PFA at step j are independent from previous choices at steps j < i, we cari define the

probahility of a computation path as the product of each of the configuration transition

probabilities aiong the path, starting from the root. However, in order for probabilities to

5e weil defined for the configurations themseives, it is necessary to “merge” ail instances

of the same configuration within the same level. We thus do not have a probabilistic com

putation tree, but instead a directed acyclic graph (DAG) with a single root (the initial
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configuration). where edges are labelled with the (non-zero) transition probabilities from

Equation 1.19. Having done that, the following eqilation defines proper probabilities for

a configuration c at step i in a computation DAG rooted at configuration c0.

P(c) (1.24)

Note the above sum is not restricted to “parent” configurations d, because by definition

of P(c’, c) O if c cannot 5e preceded by c’ (Equation 1.23). This is usefiil because it

makes the above definition valid independentiy of the topology of the computation DAG,

which could 5e different for each initial configuration.

We are now ready to construct our probabilistic model. The sample space is the space

of configurations C and the state space is PD(C). If we represent PD’s as probability

vectors, we can obtaill from Equation 1.24 an expression for the image PD of the initial

configuration co as follows:

Pt(c) = p(t)(C). (1.25)
cE C

where 6 and are the {O, 1}-valued PD’s associated with configurations co and c. This

defines the dyuamics rnap in PD(C) for ail of its base vectors. and hence by linearity it

is defined on ail PD’s in PD-space.

Only one httle problem. A technicahty which have readiiy swept under the rug is

the fact that the sums in the above equations are infinite... This is worrisome for two

main reasons. first, one has to start worrying about whether these sums converge. In

principie, that is not a problem, as iong as the Turing machine haits, and because the set

of non-zero probabilities in any such PD that will 5e reached bv a PT\1 is finite. Last

but not ieast, it is quite inconvenient to manipulate or describe potentiaily infinite state

objects, specialiy with the aggravatioii we are essentiaily describing a finite object (the

probabibstic Pinite Automaton). That is in part why probabilistic Turing machines are

not usuaily modelled in this way.

1.3.3.3 Probabilistic Circuits

Probabiiistic circuits are the naturai probabilistic extension of Booiean circuit. The

most traditional description of probabilistic circuits is one where we extend the standard

if i = O
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set of universal deterministic gates with additional elementary pro babiÏistic gates.

Definition 1.15 (Probabilistic Circuit). A probabilistic circuit is a circuit C =

(I, O, Ç, W) where

1. Each input node i e I is associated a Boolean value x e Z.

2. Each gate g e Ç has an associated transition probability map 7r9 x —* [0, 1]

• , X), (yi, . . . , y)) = Pr((xi ,...,k) (yi,... , ye)) (1.26)

with the property that

ir9((xi, . . . ,X), (yi, . .
. ,ye)) = 1

where k and L are the number of input and output connections of g, respectively.

States. In probabilistic circuits, even if we think of the wires as “carrying” boolean

values, the nature of the gates is such that we may observe different values on the wires

of the circuits every time we “reset” the circuit, and this, even if we initialise ail the

input nodes in the same fashion every time.9

Unlike in Boolean circuits, we cannot soundly assign definite boolean values to the

wires. Instead. one could trv to describe the state cuts by assigning to each wire a prob

ability value. Unfortunatelv, this is equivalent to describing the value of each wire with

an independent random variable, and in general these variables will not be independent.

In particular, consider the 2-way FAN—OUI gate, whose two output connections are by

definition equal to the value of its single input connection. Let w0 be the random vari

able representing the input connection, distributed according to probabilities p and q

(p + q = 1) of being O or 1. Let also w be the random variable representing the values of

both output connections. Bv definition, of FAN—OUI, w will be distributed with probabili

ties p and q of obtaining 00 and 11 respectively, and probability O of obtaining 01 or 10. If

we define (partial) random variables w1 and w2 for the outcome probabilities of the first

and second output connection, i.e. the marginals of w, we will find that w0 w1 w2.

However, the Cartesian product of these marginals will not describe the correct global

statistics for both wires, i.e. w w x w2.

9This situation would be an example of the scenario we discussed in Section 1.3.1 of a probabilistic
model with a deterministic measurement rule.
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Therefore, in order to correctly and fully predict the output statistics of ail wires,

locally and globally, we must consider the following notion of state.

Definition 1.16 (State of a Probabilistic Circuit). Let t = (Çj, Ç) be a temporal

cut of a probabilistic circuit G of width n-i, and let Wt = {w(u, y) u E V E Ç} be

the set of wires across the t.

A state of a probabilistic circuit G at t is any PD with domain where

Measurement. Furthermore, suppose that the wires traversing the cut t are la

belled according to some conventional order (e.g. from “top” to “bottom”), i.e. W =

{ W1, W,. . . , Wm}. To each wire w, we associate a corresponding random variable w.

Then, if the state of the circuit at t is described by , we cari formulate a “holistic”

measurement rule as follows

Pr(wi = bj,W2 b2,...,Wm = bm) (P)b (1.27)

where the binary string b1, b2, . . . , b, is the b-th string in m lexicographical order.

Dynamics Pinally, we can describe the dynamics on states by using the transition

probabilities defined by the gates as follows. Let be the state at t, where t’ is an

immediate successor to t, with gate g being the extra gate being added to the left side

of t’, i.e. {g} = Ç’j.
— Ç. Let g have k input connections and £ output connections,

and t and t’ have widths k + n-i and £ + m respectively. Without loss of generality,

let W {wl, . . . W} and W’ = {w, . .
. ,W+m}, the set of wires across t and t’

respectively, be ordered such that g is at the “top”, i.e. such that wires w1, . . . ,wJ, are

going into the input connections of g (w = (., g), for 1 <i < k) and wires w, . . . , w are

leaving the output connections of g (w (g, .), for 1 < j < L). Then the state of the

circuit at t’, represented by j, is given by

(P’)yl Y,Y+i Pr(w = Yi, . . . ,W = y, = Y+1, . . . = Y+m)

= X1,.,Xk

((x1, .. . , Xk), (ni, . . .
, y))

. Xk,y,+f Yt+m (1.2$)
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1.3.3.4 Non-Linear Probabilistic Models

We can describe non-linear maps on a discrete PD-space PD (N) as a vector of func

tions f = (fi, f2, . . . , fiv), with each component a function fi W [0, 1] taking as

argument the components of an arbitrary PD and mapping it into the correspondirig

coordinate of the image of In other words, we have that

f : PD(N) F— PD(N)

pi fi(pi,...,piv)

(1.29)

fN(pi,...,pN)

of course with the condition that

V fi(pi,...,pN)=1 (1.30)

Consider the following very simple example: fi = p +p and f2 = 2p1p2. $uch model

are not hard to construct, as we can select any functions from [0, i]N
H-* [0, 1] for the first

N — 1 coordinates, the last one being chosen to match the condition of Equation 1.30.

Viewed as stochastic processes, these models would stili have the Markovian property;

they are sometimes referred to as higher ordeT IVlarkovian processes. Unfortunately, the

author does not know any good natural examples of such systems. One reason why it

is hard to find such examples is that, as we will see later, such models cannot be easily

derandomised, as they do not have well defined transition probabilities.

From a Theory of Computation point of view, it would be interesting to try to define

what an abstract classical non-linear computational model would look like and what its

relative power would be. Unlike the non-linear quantum case, which we will discuss in

Section 1.5.2.2, there is no shortage of non-linear behaviour in the Classical worldit).

1.4 A Taxonomy of Classical Theories

The hidden variable interpretations address the question of uncertainty by suggesting

that it is an illusion. The opposite operational approach would be to answer “we don’t

care!” and simply carry on using probabilistic and accept the fact that the theory might

‘°As any electronics expert would teil us, non-linearity is the enemy!



38

be incomplete.

Beyond philosophical questions of validity of one or the other interpretation. the truth

is that both of these interpretations provide a rich language within which to describe and

discuss prohahilistic systems, as we have seen in the various examples of Section 1.3.3.

However, the naturai question to ask is, are both approaches equivalent and equally valid?

Or more precisely, under what circumstances can they both be used, in which circum

stances they cannot, and whether they encompass ail reasonabie probabifistic models.

Having defined models as formal objects ailows us to regroup them in ciasses, akin to

compiexity classes, for each of the fiavours of theories introduced so far. The questions

above can then be formulated as compiexity-like questions of class inclusions and exclu

sions.

Definition 1.17 (Classical Theories). Let the following theories be formaliy defined

as the class of models with the foilowing properties.

Deterministic Theory. D, the class of deterministic models.

Hidden Variable Theory. HV, the class of models with hidden variable interpreta

tions.

Linear and Non-Linear Probabilistic Theories. LP, the class of probahilistic mod

els whose PD-space dvnamics is linear, and its complement NLP = I — P.

Probabilistic Theory. P, the class of ah probabilistic models.

R is easy to see that any deterministic model V = (8, V, f, V) has a unique associated

(formal) probabihistic modei (PD(8), V’), where V’ are the formal dynamics map defined

in Equation 1.10. The “outcomes” of this probabilistic modei are states of the original

model. whose ultimate outcome in V is defined by f, or in other words the measure

ment ruie of this probabilistic model is defined by f’, defined in Equation 1.11. Thus.

Deterministic Theory can sensibly be considered a special case of Probabilistic Theory.

We therefore have the following inclusion chains, trivialiy obtained from the defiiitions

above:

fLP
D C < > C P D NLP (1.31)

1J
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In fact. the main resuit of this section is the following theorem which significantly

clarifies the picture given in Equation 1.31.

Theorem 1.18. Let M = (V, P) be a pro babilistic modet. Then, the foltowing statements

are att equivatent:

i. P = P(to, t) is tinear, for atÏ t > to

ii. M has wett defined transition probabitities Pr(v 1 vi), for ail t > to.

iii. M has a hidden variable interpretation.

Proof.

i ii. If P is linear, then the images of the base vectors é of PD(V) can be written

as

P(ê) = Pt(j,i)e (1.32)

As defined, these coefficients Pt(j, j) depend only on the map P. But on the other hand,

by the semantics given to base vectors of PD(V) in Equation 1.4, the definition of P in

(1.8), and the notion of PD’s as state in Equation 1.6, we have that the coefficients of

P(é) are

= Pr(vt = v y0 = v)

= Pr(e 4- v) (1.33)

And. thus we have that the coefficients Pt(j, i) are precisely the sought after transition

probabilities.

ii == iii. Ibis is the most important and complicated part of the proof. Intuitively,

the idea is the following. The hidden variable model 7- that we will construct will take

a “deterministic” view of the given probabilistic model M (V, P). similar to that

depicted Figure 1.2. Ibis is. 7- pretends that the underlying state space is indeed V (and

not that of PD’s defined over it, PD(V)). As discussed in Section 1.3.1, this does not allow

us in general to make deterministic predictions of the future. However, since for any given

time interval [to, t], M bas well-defined transition probabilities Pt(j, i) = Pr(v vi),

then 7- can “simulate” the probabilistic dynarnics P by “choosing” one of the possible

new “states” v e V according to the corresponding transition probability P(j,i), where
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v is the current “state” at time to. Then, the probability that the corresponding resuit vj

would have been obtained by the (probabifistic) measurement rule of P, will be identical

to the probability of choosing vj as t.he new state.

The is that, unfortunatel. since fl is a deterministic model, it cannot really “choose”

a v with the right probability. Instead, it will decide which of the possible states to

transition to based on its hidden variables, i.e. those components of its state space not

representing the “states” y e V of the simulated model M.

More formally, we have that 7t (R. x V, V, f, V), where R. is the hidden portion

of fl’s state space, which is iised to make the “choices” of transitions. For example, a

simple choice model for 7-1 is the following. Let R. = [0, 1] and let the measurement rule f
simply ignore the hidden portion, i.e. f(r, y) y. For a time interval [to, t] the dynamics

D is defined as follows

Dt(r,v) = (r,v’)

where r e [0, 1] and u’ depends on v and r as follows

j—1 j
v’(i,r) = vj, if ZPt(j.i) <r < P(j.i) (1.34)

In other words. r is used to select which is the next state vj by comparing it with the

cumulative density function for the transition probabilities P(•. j) from e.

Note that in this case, PD(R.) is isomorphic with PD([0, 1]) x PD(V). Let U represent

the uniformly distributed random variable over the [0, 1] interval. Tlien, a generalisation

of the function g from the proof of Lemma 1.13 for continuous state spaces will provide an

a priori distribution o = g(flo) = (U,o) which will trivially meet the initial consistency

criterion of Definition 1.12 for the initial state ]3o of M . It is possible to verify, but we

will not provide the details here, that the dynamics consistency criterion of Equation 1.13

is also met, i.e. that f’(D’(U,po)) = , where j3 = P(z5o is the state of M at time t.

Finally, because transition probahilities are well defined for ah intervals, the choices

made by 7-1 for evolution in a subsequent time interval [t, t’]. (with to < t < t’), for

example, can be made independently of those for the interval [to. t]. In other words. we

can apply the reasoning above iteratively for each new interval, as long as we provide

the hidden model 7-t is provided with a “fresh supply” of values r’s, independently and

uniformly distributed over [0. 1].
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iii L Let 7-1 = (7?, V, f, V) be a hidden variable interpretation for M = (V, P). Then

by the dynamics consistency condition as expressed in Equation 1.17, we have that for

ail t > to, P = f’oDog. The map f’ isa linear homomorphism between the PD(V) and

PDQR.), since it was defined that way in Equation 1.11. $0 5 map g PD(V) —* PD(R,

as can be seen from its definition in Equation 1.16. Pinally, the formai map : between

PD’s in PD(7?.) is oniy a permutation of the base vectors (Equation 1.10, and is also

linear. Since linear homomorphisms are closed under composition, we have that Pt must

also be linear. ci

Corollary 1.19. LP = 11V

As a consequence, we can now somewhat simplify the inclusion chain of Equation 1.31

DCLPCPDNLP (1.35)

In some sense, the fact that 11V C LP is not surprising, since hidden variable inter

pretations are based on the constructions of marginals by the law of conditional proba

bilities, which is an inherentiy linear operation; this linearity is then forced through to

the dynamics of the probabiiistic model.

A much more surprising and interesting consequence, in our opinion, is that non

linear probabihstic models cannot have hidden variabte inteTpretatzons. These non-iinear

probabilistic models somehow challenge the traditionai view that the intrinsic or PD

based approach to probabilistic model and the hidden variable interpretation approach

are equivalent. They are so, but only for linear models. As we have seen in Section 1.3.3.4,

one can find reasonable abstract exampies of such models, but precisely because they have

no hidden variable interpretations, it is hard to see what they would correspond to, or in

other words, what kind of reality they model. The author has approached some experts

in the fieid of simulation and stochastic processesP°3], and came up empty handed in

his search for a system that would need to be modelled by such non-linear probabilistic

models. These non-linear models seem to be the odd child that nobody has heard of or

plainly ignores.

Another “odd chiid” within the family of scientific theories is Quantum Theory. Like

probabilistic theories, given a state description it is possible to make probabilistic pre

dictions on the outcome of any (allowed) measurement. Nonetheless, there is no direct

correspondence between these probabihties as the system evolves with time, as we shah
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see.

1.5 Quantum Theories

1.5.1 Exorcising the Daemons

As discussed in the Introduction, rather than introducing quantum theory with the

traditional axioms of Quantum Theory such as presented in a typical textbook on Quan

tum Ivlechanics, we will take here a minimalist approach with the goal of arriving to a

lean and mean formulation of Quantum Theory.

According to the axiomatic definition given in Section 1.3.1, states in Probability

Theory are probability yielding objects. Based on this, the measurement fuie simply

states that these probabilities indeed correspond to probabihties of observing outcomes

of measurement. The state-defining Axiom 1 of Definition 1.8 imposes a restriction on the

state space: the values must be probabilities, i.e. they must be non-negative and add up to

1 over the sample space. However, these PD’s are essentialiy functions from the sample

space to the [0, 1] interval. As any good mathematician wiil know, representing such

functions11 as vectors is nothing special. The fact that PD’s are represented as vectors

in Euclidean space is a mathematicai convenience, and nothing moTe! The theory does

not gain (nor lose) anything by this choice. To see this, simply consider that if j5j and

are probabihty distributions, then so is ajj + bp for any vaine of a, b E [0, 1] such that

and a + b = 1. In other words, PD’s are closed under convex linear combillations.

We have made this trivial fact excruciatingly clear to underline the foilowing: the

fact that the state space has a linear structure is not an additionai axiom, but rather a

consequence of the conditions imposed on the state space by the measurement mie.

The situation is simiiar in Quantum Theory, incredible as it may sound to some.

States in a quantum modei, are objects defining pTobabitity amplitudes or just amplitudes,

which, we wiii assume for now are compiex numbers’2. Furthermore, the meaning of these

amplitudes is given by the measurement rule of quantum theories, which states that

the probabilities of observation are related to the squared moduius of these probability

amplitudes.

Axiom 1 (States). The states of a system are objects which assigil to each point of the

‘1Strictly speaking, when taiking of infinite dimensional functions, one must talk of bounded functions
in the case of a discrete domain and integrabte functions on continuous domains.

‘2Because the physicists say sa... We will revise this assumption in later chapters.
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sample space a probability amplitude.

Axiom 2 (Measurement Rule). A system which is observed under the same identical

initial conditions, i.e. in the same state, will yield non-deterministic resuits. Row

ever, the probability of observing a given resuit will be the squared moduhis of the

corresponding prohability amplitude.

for now, these are the only two axioms which we will ‘accept”. As was the case for

probabilistic theories, these two axioms have the following immediate implications:

1. The dornain of such amplitude-returning functions must be equal to or at least

include the sample space of measurements.

2. Amplitudes must have modulus less than or equal to 1, in order for the squared

modulus (i.e. probabilities) to be less than or equal to 1.

3. The sum of squared moduli over the sample space must be equal to 1.

furthermore. we also have that if and 2 are two objects with these properties. then

so will ùy + 2, as long as Il2 + [312. In general. a linear combination Oj of

such objects will also obey these properties if ‘oj 2 = 1. If we allow quantum theories

to have deterministic states, corresponding to states which return with certainty a given

measurement outcome. we thence have that, as before. we do flot gain nor lose anything

by representing quantum states as vectors (with the above restrictions). Well, this is

almost the truth modulo n small technicality, the global phase factor, which we will

address shortly.

At this point, let the physicists in the readership (if any) hold their breath no longer:

we are switching to Dirac’s ket notation13. Let us also introduce the t2 norm, to make

our discussion clearer.

Definition 1.20 (12 norm). The t2 norm (also called Euctidean nonn) over a discrete

vector space V(K) is the map II. : V —+ )C defined as

IIlI2

where x are the coordinates of .

‘3For those of you who are flot familiar with it, here je the one-liner definition: v is a column vector,
and is the same vector in row form and with each entry conjugated, i.e. (e Le)t. That’s it, you’re
donc. Go forth, and continue reading without fear!
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0f course, the 12 norm is also preserved under base changes. Its associated distance

is the usual Euclidean distance. which is why by default it is not subscripted. i.e.
. =

I 12. However, one important property of the 12 norm, unparallelled in the other norms

such as l, is its relationship with the vectorial inner product

= IIl (1.36)

Properly equipped now, let us examine the question of the global phase factor. In

complex vector spaces there will 5e more than one vector meeting the above conditions

which will return a probability 1 of observing a given result v: they are ah co-linear,

separated only by a multiplicative constant e6, the so-cahled arbitrary global phase fac

tor. The fact that more than one vector represents the same state is mathematically

inconvenient, and thus two solutions are possible to remove this arbitrariness:

a) Represent quantum states as equivaience classes of these vectors, according to the

following equivalence relation:

& s.t. ) = e’) (1.37)

b) Think of quantum sta.tes as 1-dirnensional subspaces or rays of the complex vector

space. For this, we can represent states with the rank 1 projectors )( onto those

subspaces, where ) is any unit vector in 12 norm in the corresponding subspace.

In either case, it will 5e ‘safe” to use a vector space to represent quantum states. in the

sense that we are not introducing unnecessary artifacts into the theory. Even though

slightly more inelegant, we will follow the first approach (it is far more common) to

represent the state space as follows:

Definition 1.21 (PA-space). The (complex) probabiÏity amplitude space or FA-space

of dimension N is the set PA(N) of unit vectors in the N-dimensional complex vector

space up to a global phase factor, or more precisely the set of equivalence classes

[l)] = { ‘) s.t. ‘) = e’°I),& E R, II II i}

Moreover, the PA-space PA(V) associated with a a sample space V is simply PA(l V I).

When this is unambiguous, and as notation shorthand we will forthwith skip the
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equivalence class symbol [.] and represent states with just the ket symbol I•)
Notice that so far we have purposeiy specified nothing about the dynamics of Quan

tum Theory. The only condition imposed on the dynamics by the Axioms 1 and 2 is

that it must preserve the PA-space, which is exactly equivalent to preserving 12 norm. In

probabilistic theories, there xvas no axiom of dynamics other than the implied conditions

of preserving PD-space. In the case of Quantum Theory, and for reason that we will let

the physicist explain, we will accept one more independent axiom.

Axiom 3 (Dynamics). The dynamics is a linear homomorphism on the state space.

In summary, we have reduced Quantum Theory to only two basic assumptions: j) the

state space has a structure which supports a probability amplitude based measurement

fuie (Axioms 1 and 2), and ii) the dynamics on this state space is linear (Axiom 3). It is

important to note that while Axioms 1 and 2 and interdependent, Axiom 3 is completely

independent. In particular, we have chosen to introduce them in that order to iilustrate

that linearity of the state space is not a consequence of Axiom 3, an easy mistake to

make. but of Axioms 1 and 2. In fact, it is mathematicaily sound (even though possibly

not from a physicai point of view) to think of non-linear quantum theories, as we vi11

discuss shortiy.

As a resuit of this discussion, we have a minimai set of axioms and a suitable math

ernatical formalism to describe quantum models as follows.

Definition 1.22 (Quantum Model). A quantum modet is a 2-tuple (V,U) where:

• V is the set of resuits of all measurements, i.e. the sampie space.

• The state space of the model is PA(V), the PA-space of probabihty amplitude

distributions over the sample space V.

• v is the random variable representing measurement outcomes of systems in state

I CI). The probability of observing resuit v E V in that case is given by

Pr(v = v) = I(Iei)I2 (1.38)

• U = {U(t1. t2) : PA(V) —* PA(V)} is the family of evoiution linear operators

pararnetrised by valid times of observation t1 < t2. such that if the state of the
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system at t is i), then the state of the system at time t2 is

2) = U(ti,t2)i). (1.39)

1.5.2 Examples of Quantum Models

1.5.2.1 Quantum Mechanics

Quantum Mechanics is often introduced in terms of fundamental rules or postulates.

Different text vary in their presentation , but the following presentation (based on pro

jective measurements) is typical of an introductory Quantum Mechanics textbook.

State Space. $tates are unit vectors of a complex Hilbert space H.

Composition Rule. The combined state space of two systems having state space H1

and H2 is their tensor product H1 0 H2.

Dynamics. The time evolution operators are obtained by solving Schr&linger’s equa

tion. For time-invariant Hamiltonians, and for initial time t = O, these operators

(also called propagators) will take the form U(t) = et where H is the Hamilto

nian operator of the system. $ince H is hermitian, the matrices U(t) above are

necessarily unitary.

Measurement Rule. Observable quantities are represented by hermitian operators

called observables. The sample space of such an observable O is the set of its

eigenvalues and the expected resuit of measurement on a state ) is given by

(O).

How do these postulates compare to the abstract model of quantum theories we have

presented above?

The state space rule is in form identical in content to our Axiom 1. Even though

obscured by the introduction of observables, the measurement rule is not really different

from our own Axiom 2 either. Thanks to the spectral decomposition theorem, observ

ables can be decomposed into a sum of projection operators onto orthogonal subspaces,

i.e. O = where P = P are the projectors for the eigenspace corresponding to

the eigenvalue )j. These subspaces are the subset of states which will yield the corre

sponding eigenvalue with probability 1. With respect to this mathematical formulation,

we have adopted the following simplifications:
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• Only measurements “along” the canonical base vectors are allowed, or more pre

cisely projective measurements onto the corresponding 1-dimensional subspaces.

• We do not care what the numerical value of measurement is, and therefore the

notions of eigenvalue and observable as the weighted sum of the corresponding

projector loose meaning.

None of these simplifications weaken Quantum Theory, in that ah other “observables”

can be obtained within our model if:

• We introduce partial measurements within the model. Partial measurements can

be viewed as random variables whose domain is not restricted to singleton events,

but to any arbitrary event of the event space of that sample space.

• We precede measurements with the appropriate unitary transformations.

In fact, the measurement postulate can even be presented in a more general form by

using POVM or superoperator-based measurements. The truth, however, is that ail of

these presentations are equivalent, and we chose the simplest possible one.

In all fairness, one of the reasons it is sensible for us to apply Occam’s Razor principle

here is because we are dealing with discrete and even finite sample spaces. For physicist,

the notion of observables and measurement operators becomes truly useful when having

to deal with physical space and time and thus with random variables on continuous

domains. In Quantum Information Theory and Communication Complexity, where one

qubit more or less makes a difference, the separate study of generalised measurements

is relevant and necessary. But as we are, in this our endeavour, mostly interested in

quantum computation, we can afford to do these simplifications.

As can be seen, the dynamics of the system is typically described in terms of the

Hamiltonian or the corresponding propagators. Is this equivalent to our assumption of

iinearity in Axiom 3? The foilowing celebrated theorem gives the answer.

Theorem 1.23 (Wiener). The only tinear transformations which are inner-productpre

serving are the nnitary (Ut = U1) and the anti-unitary (Ut = —U—’) transformations.

Like many important theorems, the proof is surprising simple, yet its consequences

are profound. It means that the fact that propagators in Quantum Theory are unitary

is not a.n axiom either. In particular, it is not a consequence of the structure of the
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Hamiltonians or any other assumption about them either. It is a consequence of a lower

level assumption than that, the linearity of the dynarnics. Whiie tins might sound like

heresy to some, it is important for us to take this view because in our abstract approach,

such things as Hamiltonians and the $chr5dinger’s Equation do not necessarily make

sense (what is the Hamiltonian of an abstract quantum circuit?). Unitarity does have

an important consequence, however, relevant to both Quantum Mechanics and Quantum

Computation: reversibility or time-symmetry.

We did not discuss the composition rule in our presentation because we do not feel

that it is an axiom either: it is an indirect consequence of the measiirement rue. When we

bring two systems together, each with its own sample space V1 and V2, the sample space

of the combined system must be their Cartesian product V1 x V2. If anything should

be taken as an axiom or questioned, it is this simple fact. From this fact, and given

the association between resuits and canonical base vectors (Equation 1.4), it becomes

necessary that the basis of the combined state spaces be the Cartesian product of the

basis of each of the original state spaces, and that naturally defines the tensor product

space. In other words. there is nothing special about the tensor product composition

rule. It adds nothing to the theory.

It is also important to underline that in our presentation state space structure and

measurernent (Axiorns 1 and 2) form an indivisible logical unit: the measurernent rule

dictates the forrn of the state space, and at the same time the measurement rule is defined

in terrns of state objects. Because of this, one probably should combine and present them

as one single axiom, but we chose not do so for clarity.

1.5.2.2 Non-Linear Quantum Theories

What would happen if we got rid of Axiom 3? The dynamics would stili have to be

12 norm preserving but might not be linear. The possibility of a non-linear Quantum

Mechanics has been studied and explored by sorne theoretical physicists. There is even

some speculation about the fact that non-linearity might actually happen at scales smaller

than that which we can observe today. The fact is that ail experimental evidence to date

suggests that linearity hoids. with very high levels of accuracy. In any case, discussing

such a possibility is way beyond the scope of this document and the ability of the author.

Nonetheless, one interesting realisation is that non-linear quantum computation mod

els might have significantly more power than the standard (hnear) Quantum Computing
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models. In particular, Abrams and Lloyd [AL98] have shown that a non-linear Quantnm

Computing model with gates exhibiting even “small amounts” of non-linearity, wonld

allow the resolution in polynomial-time of both NP-complete problems and problems

poly-time reducible to #P functions (i.e. problems in P#P), something which is widely

believed that the standard linear Quantum Computing models cannot do.

1.5.2.3 Quantum Turing Machines

Quantum Turing Machines (QTM) are the original qnantum compnting model. They

were first introduced by Deutsch [Deu85] and they are discussed at length by Bernstein

and Vazirani in [B’97] The following definition is akin to that of Probabilistic TM’s given

in Definition 1.14 and is inspired on that of [8\’97]•

Definition 1.24 (Quantum Turing Machine). A quantum Turing machine is a 4-

tuple (Q, qo, q, u) where

• Q is the set of states of the automaton

• qo e Q and q e Q are the initial and final (accepting) states of the automaton

• n is an amplitude transition function

u: (Q x F) x (Q x F x {L,R}) i’ C

with the property that for ail q e Q, b e F

Z v(q,b,q’,b’,d’)2 = 1
q’E Q
b’E F

d’a {L,R}

Dynamics. Bernstein and Vazirani describe both probabilistic and qnantum TM’s in

terms of holistic infinite but countably dimensional linear operators P or Û, which are

stochastic and nnitary, respectively. Very mnch like the transition table &f sometimes

nsed to describe the dynamics of deterministic machine, these operators can be viewed

as infinite dimensional matrices, whose columns and rows are indexed by configurations

of the machine. In particnlar, Eqnation 1.23 properly defines the operator P given the

transition function n in the case of PTIVI’s. In the case of a deterministic TIVI, the
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transition table can be defined in the same fashion and takes the form of a 0-1 stochastic

matrix.

For quantum TM’s we could similarly define the “entries” (U),’ of the operator U

by replacing n with y in Equation 1.23. Note however, that if we define U in this way,

it will not be unitary, because we have two inherently non-reversible transformation: a)

when the machine hits the left-end of the tape, and b) when the machine reaches the

halting state and “ioops” in it by staying in that state with probability amplitude 1. The

standard way to deal with this (as in [3V971) is to remove the two point of contention by

a) considering a two-way tape, and b) requiring that the machine be wett behaved, which

is equivalent to saying that it halts after the same number of steps for ail inputs of the

same size.

We thus have that U is defined as foliows

v(q, b, q’, c, L) if c = [ua, q, be] and c’ = [u, q’, acv] (head moves left)

U(c, c’) e(q, b, q’, c, R) if c = [u, q, abv] and c’ [uc, q’, bv] (head moves right)

O otherwise
(1.40)

Measurement. Accordingiy, we can assign to each configuration c an amplitude after

i steps (as long as i < t. where t = t(n) is the (uniform) number of steps on inputs of

length n) similarly as we did for PTIVI’s in Equation 1.24

f 0(c) if j = O
U’(c) = (1.41)

Z U(c’, c)U(’)(c’) if j > 1
c’E C

Thus, at each time step i, we can define a measurement outcome probability, by

applying the quantum measurement rule

Pr(QTI\i M
measure

c after j steps) = Ut)(c)2 (1.42)

1.5.2.4 Quantum Circuits

Quantum Circuits were aiso introduced by Deutsch [DeuS9Ï They can be introduced

in a very similar fashion as probabilistic circuits. However, since ail transformations

must be 12 norm preserving, they must also be reversibie, and in particular so must ail
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gates. As a resuit ail gates must have the same number of input and output connections.

Furthermore, ail circuits must have the same number of input and output nodes. which

xviii also coincide with the width of ail temporal cuts. Circuits with such a topology are

often referred to as gate arrays.

Definition 1.25 (Quantum Circuit). A quantum circuit is a circuit C = (I, O. Ç, W)

where

1. Each input node i I is associated a Boolean value x E D.

2. There is an identical number of input and output nodes, i.e. I I = I O I calied its

widtk.

3. Each gate g E Ç has an associated transition amplitude map y9 x —* C

with the property that

eg((xi,

. . . ,Xk), (y1, . ,yk))12 1

where k is the number of input and output connections of g.

States. As with probabilistic circuits, we must associate the states of a quantum circuit

with its temporal cuts.

Definition 1.26 (State ofa Quantum Circuit). Let C be a quantum circuit ofwidth

n and iet t (Ç, Ç) be one of its temporal cuts.

A state of a quantum circuit C at t is a vector ) in the PA-space PA(2’2), where

each canonical vector lei) has been associated with the i-wire across the cut t, according

to some fixed ordering (normaliy top-to-bottom).

Measurement. Similarly as for probabilistic circuits, we can use the quantum mea

surement ruie to define joint probabilities of outcomes for the wires of a temporai cut.

As before. let w, 1 <i <n., be the random variable associated with measuring the i-th

xvii-e across the cut (counting from the “top” of the circuit). If the state of the circuit at

t is described by I&) then we have that

Pr(wi = b1,w2 = b2,..., Wm = bm) IKbI)I2 (1.43)

where bbi,b2,...,bm and b) = Ibi)»Ib).
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Dynamics. The dynamics of a quantum circuit eau be defined similarly to that of a

probabilistic circuit. Let I) be the state before a gate g is applied and JçY) 5e the state

after g, but before any other gates have been applied. Unlike for probabilistic gates, g

must have the same number of input and output connections k; also ail cuts will have

the same width m. As before, assuming w.l.o.g. that g applies to the first k wires in the

eut, we have that

/ / I
Ç )ii Yk,Yk+1 ,‘,Ym = Pr(w1 gi, . . . ,Wk = Yk, Wk+l = Yk+1, . . . ,Wm = Ym)

= X Xk

u9 ((xj, . . . , Xk), (yi, , Yk)) Xk,Yk+1 “
(1.44)

where I) represents the i-th coordinate of ), when X = X1 . . . Xm 5 the i-th string in

in lexicographical order.

However, the dynamics of gates is not usually defined with amplitude transition func

tions in this way, but rather in terms of unitary matrices (this time of finite dimensions,

which is much tidier than in the case of QTM’s). The “out-of-context” action of a k-ary

gate g , i.e. the action of g when it is the only gate in a circuit, is described with a matrix

U9 of dimension 2k x 2k whose columns are the images Ue) corresponding to the i-th

canonical vector of PA(2c); in other words (U9), = e9(x, y), where x and y are the j-th

and i-th strings in lexicographical order. $imilarly, we can associate to any circuit C of

width n, a unitary matrix tI of order x 2? describing its action on from the input

nodes to the output nodes. We will describe in more detail in Chapters 3 and 4 how

these circuit matrices can 5e constructed and succinctly represented.

1.6 A Unified View of Theories

The goal of this chapter was two-fold: to provide a simplified yet not less general

account of Quantum Theory in order to try to understand its essence, and also provide a

“big picture”, epistemologically speaking, within which we could place Quantum Theory.

In order to accomplish the latter we present a unifying view of the theories we have seen

SO far, based on the common mathematical formalism of vector spaces. This formalism

will allow us to compare and classify these theories and their variations, thus completing

the taxonomy introduced in Section 1.4.
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1.6.1 The Vectorial Representation

With the help of vectorial representations the three theories that we have discussed

can be brought together under the same light.

In probabilistic models, the canonical base vectors are identified with points in the

sample space of measurement variables (Equation 1.4), and the state space is constituted

by l norm unit vectors with non-negative coefficients, i.e. the simplex generated by

the canonical base vectors which we called PD-space (Definition 1.10). Using Dirac’s

notation to represent PD’s, we can succinctly re-write the two axioms of probability

theory as follows:

Definition 1.27 (Probabilistic Theory). Probabilistic Theory is re-deflned with the

following axioms:

Axiom 1 (States). States are represented as vectors I) in PD(N) C RN(R), i.e.

p = 1 and p) = (pej) > 0 (1.45)

Axiom 2 (Measurement Rule). Given a state p), the probability of obtaining v e V

is given by

Pr(v = v) = (pIj) (1.46)

Axiom 3 (Dynamics). The dynamics of the model is defined by any family of PD

space preserving functions P such that P(ti, t2) : PD(V) PD(V).

In this case, the maps P are non-negativity and lj norm preserving. If they are linear

(which is not a requirement), then they can be represented by stochastic matrices, as

discussed in Section 1.3.3.1, and we can re-write the dynamics equation for probabilistic

models (1.5) for states p0) and IPt) at times to and t, respectively, as

pt) = P,po) (1.47)

Even though this might not be practical or technologically viable, nothing fundamen

tal in a deterministic theory prevents all properties of a system from being ultimately

measured. Under this assumption, which we believe quite reasonable (i.e. that V = 8),

one can view deterministic models as special case of probabilistic theories, as discussed

in Section 1.4. A formal vectorial representation of such models is possible, in which the
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canonical base vectors are identiffed with the actual states of the deterministic (Equa

tion 1.7). In this case the state space is restricted to precisely these vectors. and the

dynarnics must preserve this set.

Definition 1.28 (Deterministic Theory). Is defined with the following axioms:

Axiom 1 (States). States are represented as vectors p) in D-space, i.e. the following

subset of RN (R)

hp = 1 and )i = (plei) E {0,l} (1.48)

Axiom 2 (Measurement Rule). Given a state p), the probability of obtaining v E V

is given by

Pr(v = v) (pJe) (1.49)

Axiom 3 (Dynamics). The dynamics of the model is defined by any family of D-space

preserving funct ions.

Compared with the probabilistic case, Axiom 1 has the extra constraint on the inner

product that it must not just be non-negative but also {0, 1}-valued. Axiom 2 is identical

and so is Axiom 3 if we replace “PD-space” with “D-space”.

FinalÏy, we have Quantum Theory whose axioms can he re-formulated in similar

terms:

Definition 1.29 (Quantum Theory). Is defined with the following axioms:

Axiom 1 (States). States are represented as vectors p) in PA(N) C CN(C), i.e.

hI b = 1 (1.50)

Axiom 2 (Measurement Rule). Given a state I) the probability of obtaining v E V

is given by

Pr(v = v) = I(Iej)I2 (1.51)

Axiom 3 (Dynamics). The dynamics of the model is defined by any family of PA-space

preserving linear homomorphisms U = {U(t1, t2) : PA(V) PA(V)}.

Let us now summarise our main conclusions:
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• There is nothing special about vector spaces. Using this formalism is nothing but

n mathematical convenience. It adds nothing rior does it detract anything from the

theories.

• The difference between these theories are those illduced by the measurement rules.

These variations induce a different subset of the vector space as the valid state

space.

• The only incontrovertible requirement of the dynamics is that it must be closed

within the state space. In the case of Quantum Theory, there is the additional

axiomatic requirement that the transformations be linear, but this is not a conse

quence nor is it the cause, in our view, of the linear structure of the state space.

Table 1.1 summarises the axioms of these theories when represented with as vector space.

Deterministic Probabilistic Quantum

$ample space V = {vl, V2, . . . , VJ\r}

State space D-space PD-space PA-space

d=dé s.t. p=pé s.t. s.t.

•IIpIIi=’ IIII21
• d (dlej) {O,1} •p (sje) > O • = (sIe) e C

IVleasurement 2

Pr(v = v)
Kdlei) (pej) Kei)I

Dynamics Any map Any map Any tinear map
d:{ei, ...} i—* {ei, ...} P: PD(N) H—* PD(N) U: PA(N) —+ PA(N)

éH*e()=Dej j-P() I)F-U)

Table 1.1: The Deterministic, Probabilistic and Quantum Theories described in terrns of
the sarne vectorial representation.

1.6.2 Variations on the Dynamics

In our discourse so far, the axioms of dynamics corne last and are added onlv if they

are needed. The measurement rue dictates the structure of the state space. which in

turn dictates any restrictions on the dynamics.
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In the deterministic case, the state space (D-space) is comprised exclusivelv of the

canonical base vectors and in principle we cari think of the dynamics as a map on indexes,

i.e. D : {1..nJ I» [1..n], such that However, we cari also “pretend”, without

changing the theory, that the mapping is linear 011 the rest of the vector space. This has

the advantage for us that we can represent D as an N x N matrix containing a single 1

in every column, and zeroes everywhere else, i.e. {O, 1}-valued stochastic matrices. The

image D(i) of cari thus be re-written as Dé.

In the probabilistic and quantum case, the only incontrovertible requirements of the

dynamics is that they are closed within the PD- and PA-state, respectively. In the former,

the necessary and sufficient conditions are preservation of the 1 norm and of the non

negativity of coefficients. In the quantum case, 12 norm preservation is sufficient. These

conditions are not axioms per se, as they are a consequence of the previous axioms. If

however, we make it a requirement that transformations be linear, we are restricting

the set of valid transformations to stochastic matrices in the probabilistic case, and to

unitary and anti-unitary matrices in the quantum case. At this point, we will brush aside

anti-unitary matrices. The reasoning behind it, albeit quite “weak”, is that the extra

minus sign is tantarnount (in most cases) to a global phase factor11.

What about reversibility? Reversibility has many faces BraO1] Logical reversibility

of a transformation means that it is possible to uniquely determine the input of the

transformation given its images. In the Theory of Reversible Computation. one also talks

of physical reversibitity as the property of a computation to be performed exclusivelv with

logically reversible elementary operations, and of thermodynamic reversibiÏity as that of

performing such computation withoiit dissipating heat.

The reason behind discussing reversibility is because we are interested in studying

its implications as a possible restriction or requirement on the dynamics of a theory. As

such, the notion that is relevant to us is that of logical reversibility. which simply means

that the dynamics map is one-to-one. It is tantamount to the possibility of determining

exactly the states in the past. if we have full knowledge of the state in the present. This

is a stronger notion than plain time reversibility, which is just the possibility that the

dynamics map can be applied in both directions of time.

In the deterministic case the notion of logical reversibility comes quite naturally. Let

‘tlhis justification is mildly unsatisfactory, because these phase factors are introduced even in the
density matrix representation and might, for example, affect the outcome of computation if we consider
controlled anti-unitary operations. There is evidence, however, that adding these transformations do not
change the model of computation103.
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cl: [1..N] {l..N] be the index map representing the base change é —k The

corresponding O-1 stochastic matrix is D, whose only non-zero entries are Dd(). While

D is stochastic, there could be more than one non-zero entry in the j-th row, indicating

that the e is the image of two different inputs. Requiring that cl is one-to-one is equivalent

to requiring that D be doubly stochastic. However, we have the following simple and

trivial fact, which characterises what we get in this case:

Lemma 1.30. The only O-1 matrices which are also doubly stochastic are the permntation

matrices.

It is possible to construct exa.mples of reversible non-linear transformations in both

the probabilistic and quantum cases. Very littie else can be said about them, as they

have not been well studied.

As we discussed in Section 1.5.2.1, the linearity axiom of Quantum Theory implies

unitarity. Unitary matrices are inherently logically reversible, as their inverses always

exist and is in fact their conjugate transpose. Thus, the inverse image of any state

= UP) is equal to U’) UtI).

This is not the case for stochastic matrices, as they do not necessarily have multi

plicative inverses. The existence of well-defined transition probabilities allow us to write

the dynamics equation of such models as a forward inference rule:

-. Pt
(pt)j = Pr(vt = v) = Pr(vo = v) Pr(v i’ v)

= (o)j P(j, i) (1.52)

which is sound since the sum along columns is Pr(v ej) = 1. In the case of doubly

stochastic matrices, we can also write a backward inference rule as follows

I PtPr(v j = v) = Pr(vt = v) Pr(v H—* v)

= ( P(j,i) (1.53)

These equations define proper probabilities because the sum along the rows Pr(v —*

v) is also equal to one. We can thus talk of a well defined “reverse” probabilistic

map P. Let j be the corresponding PD which is given by the expression j
= PttJ5.

This PD represents predictions about the past, in the absence of knowledge about the
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current outeorne of measurement, but with knowledge of the current distribution

Unfortunately. doubly stochastic matrices do not ahvays have inverses either, and this

PD does not correspond to the state of the system at time to. More precisely, if

then bears no relation with p. Furthermore, it is flot even true that Pj = j5 With

doubly stochastic matrices, one can say that the direction of time eau be “reversed”, but

this does not brings us back to the “past” in the way we would have expected. In fact,

the only time when this is possible is when we have = p, Vj3 which is only the case for

the permutation matrices, as they are the only doubly stochastic matrices whose inverses

are also doubly stochastic.

Another special case of interest is that of symmetric doubly stochastic matrices.

In their case, Equations 1.52 and 1.53 are the same, which means that time evolution

is the same in the future and past directions. These are often called time reversibte

Markov chains, but the term time symmetric is more accurate and more in tune with

the concept of reversibility as described above. In terms of matrix representation of the

dynarnics it simply means that P = Pt. The equivalent concept for the deterministic case

are permutations of order 2, which are composed exclusively of disjoint transpositions,

i.e. nilpotent permutations H s.t. 112 = id. Similarly, in the quantum case the “time

symmetric” unitary transformations will be those for which U = Ut, which corresponds

exactly to the nilpotent unitary transformations with U2 = id (e.g. Walsh-Hadamard,

CNOT. 180-degree rotations, etc.).

Deterministic Probabilistic Quantum

Unrestricted norm & 12 norm
{O, 1} stochastic O preserving preserving

Unrestricted Stochastic

Reversible Doubly stochastic (Anti)-Unitary
Linear Permutations

Logica.lly rev. Permutations

Time symmetric Nilpotent Symmetric Nilpotent unitary
permutations douhly stochastic

Table 1.2: A comparative table of dynamics in the deterministic, probabilistic and quan
tum theories.



59

1.6.3 Quantum vs. Classical Models

Let us now try to place Quantum Theory within the taxonomy of classical theories

which we described in Section 1.4.

The first realisation is that quantum theories are not necessariiy probabilistic in the

sense defined. Consider the standard (linear) quantum theory. The PA-vectors repre

senting states naturally define PD-vectors for the measurement of outcomes through the

measurement rule of Equation 1.38. This can be defined as a map M PA(N) i— PD(N)

expressed as follows

-. If ‘)

(p H—* )I = IKIei)I (1.54)

or equivalently

p =M()) =Diag(’I)QI) (1.55)

where Diag(.) represents the vector constructed with the diagonal of a matrix. We can

also give the following expression for the PD of a future state as

I,’ Diag(U)(Ut) (1.56)

The problem is that in general the expression Diag(UI) ( Ut) cannot be expressed in

terms of the diagonal of I)(I alone. and thus there is no map P : PD(N) PD(N)

s.t. M(UI)) = P(M(I))). This situation is illustrated in Figure 1.5.

While not ail quantum theories are probabilistic, our first question, then, is whether it

is possible for a quantum theory to simultaneously 5e a probabilistic theory. Converseiy,

we can ask whether a probabilistic theory can 5e made quantum. This is not obviously

truc. Even though the map JI is not one-to-one. it wouid be aiways possible to construct

a pre-image of a given PD-vector b taking its component-wise square roots. However.

there is no prescription for generating a proper dynamics on these PA-vectors. For linear

maps, one might be tempted to consider the entry-wise square root of the original prob

abilistic dynamics matrix P as the quantum dynamics transformation. The images of

the base vectors in PA-space under this map (i.e. the coiumns of this square root matrix)

wouid indeed 5e unit vectors in 12 norm, however since these columns are not orthogonal
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Io) > lt) = Uo)

outji

X ) t=Diag(Uo)QIoIUt)

Figure 1.5: 11w relationship between states and PD’s of outcomes in quantum models.
The map M associates with each quantum states the probability distribution of measure
ment in the canonical basis. The crossed-out arrow indicates that in general no direct
deterministic map exists between the PD’s of an initial state and that of its image under
a unitary transformation. In other words, this diagram does not commute.

the resulting matrix would not be unitary, and consequently would not preserve 12 norm

on non-basis vectors. Thus, the resulting PA-dynamics would not be linear.

11w following theorem gives a definite answer to both of these questions. It was proven

by Boyer [BoyO3] based on an initial partial result restricted to linear transformations

discovered by the author.

Theorem 1.31. The only unitary transformations U for which there exists a map P

s.t. P o M = M o U are the permutation matrices up to phase changes. More precisety,

matrices of the form U = DE. uhere H is a permutation matrix, and D ei Ii) (j

is a (diagonal) phase change matrix.

In pictorial terms, what this theorem says is that the only transformation that will

make the diagram in Figure 1.5 commute are the permutation matrices, up to phase

factor. II is important to note, though. that given such a U = DE, the corresponding

map P will be the the underlying permutation H. This means that for ail intents and

purposes we can ignore these phase factors, as they will not affect the probahilities of

outcomes.

1.6.4 An Algebraic Twist to the Vectorial Representation

In Section 1.6.1 we introduced a representation of theories inspired on the minimal

restrictions that the measurement rule imposed on a generic vector space. In the case of

classicai theories, the state spaces are restricted sets of the Euclidean vector space, while

in the quantum case we use complex vector spaces. However, it is also possible to take

the opposite approach and describe some of these theories within a uniform measurement
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rule and dynamics axioms. The difference betweell them is then established by changing

the actual vector space.

Consider the Boolean Algebra (lE, V, A). While vector spaces are usually defined in

terms of fields, it is also possible to verify that the lE”(lE) has ail the reievant vector

space properties. We can define ail required vectoriai operations on it, inciuding inner

product. On this vector space we have the correct notion of orthogonality (two strings are

orthogonai if they are distinct everywhere). Furthermore, the t2 and Ïj norms coincide

the norm of a vector is simply the hamming weight of the corresponding binary string—

and the only unit vectors are the canonicai base vectors. We can thus view the D-space

as the unit bali in JEN (lE) alld define the measurement rule and dynamics in terms of the

12 norm: the modei definition is stili the same. In other words, deterministic models can

be viewed as quantum models with a PA-space defined on a Booiean vector space.

On the other hand, suppose that we had a PA-space restricted to vectors of reai

non-negative amplitudes. The set R+ = [O, oc) of non-negative real ilumbers is not

a fieid either, but as in the case of the Booleans, R(R+) can be considered a vec

tor space with all the relevant properties. As with reguiar quantum theories, the map

lut t PA(N) — PD(N) defines the PD of measurement outcomes associated with a given

state. The difference now is that M is necessarily one-to-one and onto. The following

iemma characterises exactiy the kind of dynamics that we can have in this case.

Lemma 1.32. The onty tinear transformations Which preserue 12 °rm and non

negativity are the permutation matrices.

Proof. A direct proof can be obtained by using eiementary hnear algebra techniques.

However, we find it more interesting and instructive to use Theorem 1.31. Because l,I_1

is weli defined (take the positive square root of the corresponding probabihty), the map

MoUoM4 describes the dyllamics ofPD’s. i.e. j5 = Ji(U(M’ (j5o))). By Theorem 1.31,

this imposes a restriction on U to be a permutation matrix with phase changes But

since U must preserve non-negativity. it is just a regular permutation matrix. with no

phase changes.

Having run into this special kind of probabihstic modeis twice now, and due to its

importance in iater chapters, we wiil give it a name.

Definition 1.33 (Extrinsic Probabilistic Model; Extrinsic Theory). A proba

biiistic model (V, P) is said to be extrinsic if ail P(ti, t2) e P are permutation matrices.
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Extrinsic Tkeory is the subclass of Probabilistic Theory encompassing extrinsic prob

abilistic models and is represented by the symbol X.

Theorem 1.31 and Lemma 1.32 each provide an alternate characterisation for extrinsic

models. The name “extrinsic” is motivated by computational models. The fact that the

dynamics is perfectly deterministic means that randomness must be introduced in the

system by initialising it in a non-deterministic state. This is in contrast with intrinsic

probabilistic models, where the dynamics is allowed to be probabilistic (e.g. stochastic

matrices) and can “generate” randomness, even when starting with a deterministic initial

state.

Thus, we have that deterministic theories, extrinsic probabilistic theories, and quan

tum theories can ail be represented in the PA-space formahsm, each being generated with

its implicit restrictions by changing the vector space on which the PA-space is defined.

This is summarised in Table 1.3. While this approach is mathematically convenient and

will allow us to give answers to some interesting questions regarding Complexity Theory

in the following chapters, we wish to stress that we believe it is misleading and epistemo

logically incorrect to think of these theories as being defined by the underlying algebra

of these vector spaces.

Deterministic Extrinsic Quantum

$ample space V = {v, V2,. . . , VJ\T}

I) E

State space N() R(R+) CN(C)

s.t. I2=1

Measurement Pr(v v) = IKIei)I2

Dynamics Permutations Unitary

Table 1.3: A common algebraic picture for deterministic, extrinsic probabilistic, and
quantum models. The measurement rule and the unit vector (in 12 norm) requirement
are identical, with ail other specific restrictions of each model are embedded in the choice
of the vector space.



63

1.6.5 The Big Picture: A Complete Taxonomy of Theories

In this chapter, we have introduced a generic abstract look at various types of scientific

theories by addressing the following questions, in this order:

1. What can be rneasured? The answer to that question determines the sample

space.15

2. How can it be rneasured or how are the resuits of measurements deflned? This is

the measurement rule, which in turn implies requirements on the states and defines

the structure of the state space.

3. How do the systems change? III other words, what is the dynamics on the state

space.

This approach lias allowed us to corne up with rninirnalist, non-superfluous charac

terisations of the various theories. In particular, from the usual postulates of Quantum

Theory we have retained only those which we believe fundarnental, or at least for the pur-

poses of the Theory of Cornputation. We have thus completed the exorcism announced

in the introduction...

Deo gratia...

But we have gone further, and produced several interesting byproducts.

1. We have found that linear (or stochastic) probabilistic models have two interesting

characterisations: they have hidden variable interpretations and they have well

defined transition probabilities (Theorem 1.1$).

2. We have introduced a comrnon mathematical representation for all of these theories

based on vector spaces, which allows us to understand and compare the differences

between them (Table 1.1).

3. We have introduced and discussed a rich variety of rnodels of sub-theories in which

the dynamics is restricted beyond the requirements imposed by the rneasurement

mie (Table 1.2).

‘In our case, we assumed a discrete sample space throughout, for simplicity of argument and because
that will be sufficient for our purposes. However, the conclusions presented here still apply to other types
such as continuous sample spaces.



64

4. We have introduced an “algebraic” meta-theory based on vector spaces and the

12 norm, which characterises deterministic, extrinsic probabilistic, and quantum

theories as instances of the same meta-model, each obtained with a different algebra

on which the vector space is defined: 1, R, and C. respectively. (Table 1.3).

5. As a resuit, we have also found two characterisations of probabilistic extrinsic

probabilistic models: they are the only (non-trivial) logically reversible probabilistic

models (Lemma 1.30) and they are a special case of quantum theories with non

negative amplitudes.

In terms of classification of the main theories and their variations, the following

inclusion chain summarises what we know.

QD XCDS
—

— CLP=HVCPDNLP (1.57)

QflP=X (1.58)

where we have introduced the symbols DS and Q for probabilistic theories with doubly

stochastic dynamics and for quantum theories, respectively. This taxonorny of theories

is represented in Figure 1.6.

It is important to note that while Figure 1.6 looks like a complexity class Venn dia

gram, it is not. These generic and abstract epistemological conclusions do not necessarily

translate verbatim into the language of complexity classes whose underlying computa

tional devices are modelled according to these theories. $tudying how these theories

generate sound notions of computation and well defined complexity classes, as well as

the relationship between them, is the topic of the next chapter.
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Deterministic
(O-1 Stochastic)

Figure 1.6: A Venu diagram representing a complete taxonomy of theories iiicluding
deterministic. quantum, and the various varieties of probabilistic theories. The shaded
areas of the diagram indicate that no models exist with those properties.



CHAPTER 2

CLASSICAL AND QUANTUM THEORIE S 0F COMPUTATION

In Chapter 1, we introduced and discussed various types of models within the Determin

istic, Probabilistic and Quantum theories. While we arrived at some interesting abstract

conclusions. these are not necessarily directlv applicable to the corresponding computa

tional models. In this chapter, we will re-describe the models of Classical and Quantum

Theory of Computation in order to create a unified view of the corresponding complexity

classes.

We start by quickly introducing the traditional models of the classical Theory of

Computation, followed by those of Quantum Computation. We then re-introduce classi

cal computation with “quantum-like” formulations, discuss its implications and describe

a common complexity picture for ail of these computational models.

2.1 Deterministic Computation

2.1.1 Turing Machines

Turing Machines were introduced in Section 1.2.2.1 as an example of a deterministic

model. Their states, more commonly referred to as configurations, were described and

so was their dynamics. Without loss of generahty, we assumed that the sample space of

“measuring” a TM would include a description of the state of its internai finite control

fa deterministic finite automaton). However, no semantics was given to Turing Machines

as computation devices.

Turing Machines such as defined in Definition 1.3 are typically described as compu

tation devices in the following sense:

1. The initial state of the TIVI is [qo, x], where x is a binary string representing the

logical input to a problem which we intend or pretend that the TIVI will solve.

2. Upon halting, the TM wili be in the configuration {FL, qf, FR1. The output of the

computation on input z, represented as M(x) is the (possibly empty) string FL(x)

to the ieft of the tape head.

3. If the TM does not hait. then the output of the TM on input z, i1I(x) is not defined.
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With this sernantics, the following formai definitions can 5e given of a TM performing

computational tasks.

Definition 2.1. Let L be a ianguage in . A TM M is said to decide L if

Vx e L, M(x) = “1”

Vx L, M(x) = “0” (2.1)

Definition 2.2. Let F = {f n 1,2, .
. .} be a family of functions s.t. f t

—

We say that a TM M computes F if

VnN,Vx, M(x)=f(x) (2.2)

2.1.2 Boolean Circuits

We briefty discussed Boolean circuits in Section 1.2.2.2 as an example of deterministic

model. Formaily, they are a speciai type of circuits defined in Definition 1.4.

Definition 2.3 (Boolean Circuit). A Bootean circuit is a circuit C = (I, O, Ç, W)

where

1. b each input node i e I is associated a Booiean value x e

2. Each gate g e Ç lias an associated map g : where k and t is the number

of input and output connections of g. respectiveiy.

3. To each wire w = (u. u) e W is associated a Boolean value by the formai function

val(.) defined recursively as foliows:

if u e I
(2.3)

ifu=(g,j) and u’ = (u’,(g,i))

Given an input string x = (x1, X2.. . x1j), we can define the output 0(x) of a Boolean

circuit C as the concatenation of the values of vires going to output nodes, i.e.

C(x) = (va1(w1),...,va1(w01)) (2.4)
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where w1 is the unique wire going to the first output node, w2 to the second one, and

50 011.

With this notion of circuit output, Boolean circuits can be given a semantics with

which they can 5e used as computational devices, similar to that of Turing Machines.

Definition 2.4. A family of (single output) Boolean circuits C = {C n e N} is said to

decide a language L if for ail inputs x E ,

x e L =r C(x) = (1)

xL = C(x)=(O) (2.5)

This can be generalised to functions f : m for circuits with n input and ni

output nodes.

Definition 2.5. A family of Boolean circuits C {C n E N} is said to compute a

family of functions .F if for every input x E ,

C(x)=f(x) (2.6)

As is the case for TIVI’s, the computational complexity of such functions (or that

of deciding languages) can be expressed in terms of circuit resources. The compiexity

measures of reievance are:

Circuit Size. The total number of gates in the circuit, i.e. Ç

Circuit Depth. The maximum number of gates between any input and output wire,

i.e. the diameter of the graph.

Circuit Width. The maximum width of any temporal cut of the circuit, as given in

Definition 1.5.

Boolean Circuits are typically comprised of the logical gates AND, OR and NOT, or

aiternatively just NAND gates. This is because any arbitrary boolean gate can be replaced

with such universal sets of gates.

Lemma 2.6. An arbitrary Bootean gate g of k input nodes and t output nodes can be

reptaced with a ciTcuit C of size o(2k+t) containing onty gates in the set {AND, OR, NOT},
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or equivatentÏy by a circuit G’ of size o(2k+1) containing onÏy NAND gates, snch that

VxEZk, g(x)=G(x)=C’(x) (2.7)

2.1.3 Deterministic Complexity Classes

While Computability Theory studies which languages can be decided and which func

tions can be computed, the Theory of Complexity concerns itself with how efficiently

this can be done, when it can be done. One of the interpretations or consequences of the

Strong Church-Turing Thesis is that the only resources that are of concern, expressed in

the Turing Machine formalism, are

1. the total time of computation, defined as the number of steps used by the TM to

arrive to its halting state, and

2. the total space used by the TM, corresponding to the number of celis to the left of

the tape head’s rightmost position throughout the computation.

Based on these resources, complexity classes can be deflned to regroup languages

or functions according to the difficulty of deciding or computing them, respectively. For

example, the deterministic complexity classes representing tractable problems are defined

as follows.

Definition 2.7. A TM M is said to run in potynomial time, for short just said to be

poty-time, if there exists an n0 and a k> 1 such that for all input x of length n> n0, M

halts in less than n steps.

Definition 2.8. A language L is in the class P if there exists a poly-time TM that

decides L.

A family function F is in the class FP if there exists a TIVI that computes .F.

While these classes have traditionally been described in the Turing IViachine model,

there is a natural relationship between the computational complexity in the circuit and

TM models, expressed by the following theorems, which allows us to re-formulate these

classes in the Boolean circuit model also.

Theorem 2.9. A TM M running in time t(n) and space s(n), where t(n) > n < s(n),

can be simulated by a circuit family C1 with circuit depth O(t(n)) and width O(s(n)).
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Since for any TIVI we have that s(n) <t(n), this theorem is most often quoted (e.g. in

[SiP96]) as follows:

Corollary 2.10. A TM running in time t(n) cari be simuÏated by a circuit famity of

czrcuzt size O(t2(n)).

Proof. The idea of the proof of this well known theorem is to construct a circuit of width

O(s(n)) whose input will consist of a binary description of the initial configuration of

the Tvi. The circuit is layered so that each level of the circuit computes on the output

wires” of that layer the configuration of the TIvI after one step. Because the TM vil1

flot use at any time more than s(n) ceils of tape aiid because the finite automaton lias

a constant number of states, configurations can be represented by O(s(n)) boolean wire

values, and each layer will involve at most O(s(n)) gates, with a layer depth bounded by

a fixed constant (depending only on the alphabet size and the size of the automaton).

Similarly. because the Tfvi will hait within t(n) steps, at most t(n) such Ia.yers will be

needed. E

The converse of this theorem is also well known. The idea behind it is based on a

circuit-hased version of the Universality Tl;eorem for Turing Machines. Consider n suit

able encoding scheme for describing Boolean circuits, where each description contains, for

example, an ordered list of elementary gates, representing Ç, together with an adjacency

list of the circuit grapli representing the gate wiring W.

Theorem 2.11. There exists a Turing Machine U, catted a Universal Circuit Evaluator,

which on input a binary string x E “ and a description of a circuit C of n inputs

1. witÏ output the correct value output by G on x. This is,

Vx E , U(x) = M([C, x])

2. witt run in time O(s(n)) and use space O(w(n)), where s(n) and w(n) are the size

and width ofC, respectiveÏy.

Proof. In order to simulate the circuit, the Turing IViachine first of ail “serialises” the

circuit by filldhig a topological sort of the circuit graph. The outcome of this topological

sort is an ordering of the gates from the input to the output, with the property that

the input wires of the i-th gate are ah leaving from gates with ordinal less than i. This
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ordering thus defines a safe order in which the TM can evaluate each of the gates. At

each step, the TM will need to keep track of at most w(n) wires, and because each gate

can be evaluated with constant steps and space, the overail simulation will take time and

space O(s(n)) and O(w(n)). E

One significant difference between computational compiexity expressed in terms of

circuits and in terms of TM’s is that in the former there is no well defined notion of

atgorithm. In a circuit famiiy C solving a particular problem, it is principle possible

for the circuits G to be radically different from each other for different input sizes.

Furthermore, it is even possible that there exists no general prescription or algorithm for

generating a circuit description C given only the input size n, or at least no efficient

way to do so.

This gives rise to the notion of non-uniform complexity classes, which capture the

fact that in order to decide languages in those classes one might benefit from a little

bit of “extra help” for any given input size. These classes can be expressed in terms of

circuits, or equivalently in terms of T1VI having access to special advice strings. The most

common such class is the following:

Definition 2.12. A lailguage L is in the non-uniform complexity class P/poly if there

exists a family of advice strings A = {A I n e N} and a poly-time Turing Machine M

such that for ah n and ail inputs r e ,

xL =

xL = M([x,A])=O (2.8)

The alternative approach to circuit-based complexity is to require the circuit family C

to be “uniform” in the sense that their circuit description cari be computed and generated

by an algorithm, potentially with bounded resources. Typically, the circuit-generating

algorithm is characterised by a resource-bounded TM which on input a number n e N,

represented in unary, will generate a circuit description for C.

Definition 2.13. A Turing IViachine M is said to uniformly generate a circuit family

C {C, n e N} if on input the unary representation of n N, M outputs a circuit

description of C.
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Based on this definition. we can have the following alternate, circuit-based formula

tions of the deterministic classes from Definition 2.8.

Definition 2.14. A language L is in the class P if there exists a poly-time TM that

uniformly generates a circuit family C that decides L.

A function family F is in the class FP if there is a poly-time TM that uniformly

generates a circuit family C that computes F.

Notice that we did not put any bounds on the resources of the circuits in C, as these

are automatically implied in the poly-time bound of the generating TM: a poly-time TM

can generate a description of a circuit of at most polynomial size. Thus, by Corollary 2.10

and Theorem 2.11, it is immediate that these definitions of P and FP are equivalent to

those of Definition 2.8.

2.2 Probabilistic Computation

2.2.1 Probabilistic, Coin-Flip and Randomised Turing Machines

In Section 1.3.3.2 we introduced Probabilistic Turing Machines as an example of a

model in a probabilistic theory. Probabilistic TM’s are initialised in the same way as

deterministic ones. However. the notion of a PTM computing or deciding is a bit more

elusive than for a DTivi. but not too much. Because the state of the PTM after t steps

is a probability distribution over configuratioiis, one cannot determine with certaintv

whether the machine has halted at that point. i.e. whether the deterministic automaton

lias reached the single halting state q. Let CH = {c C c = [CIL, q, C]} be the subset

of halting configurations, then we can define the probabitity that the machine lias halted

after t steps as:

Pr(Tf’vl has halted) =
p(t)(C) (2.9)

CE CH

where p(t)(.) is the probability function for configurations described in Equation 1.24.

As defined in Equation 1.23, the probability transition function is such that once the

PTM enters a halting state, it will remain in that state with probahility 1. Thus, the

probability of halting will increase monotonically as a function of the number of steps.

However, this probability might neyer reach 1.

On the other hand, even if the PTM has halted with prohability 1, its output might

not be uniquely defined, as the different configurations [CL, qf, CR] tape in the sum of
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Equation 2.9 might have different strings CL to the left of the tape head. We can.

however. assign to each of these possible answers GL a probability of “being the output

according to the probabulity distribution p(t)(.) from Equation 1.24. hnterestingly, note

that these probabilities of output at time t are well defined, even if the probability

of halting at t is not 1, i.e. even if the PTM lias flot “completeiy halted” on ail its

computation paths. The output of a PTM M can thus be viewed as a random variable

M(t)(x), which represents the contents of the tape to the left of the tape head after t

steps and having being initialised with [qo, x]. With this notion of probability of answers

it is possible to have a probabilistic equivalent of Definitions 2.1 and 2.2.

Definition 2.15. Let L be a language in Z. A PTM M is said to decide L in time t(n),

with accuracy bounds A and 3, A, B C [0, 1], if for every input size n E N, and input

x E °, we have that t = t(n) and

x E L Pr(M(t)(x) = “1”) E A

x L z= Pr(M(t)(x) = “0”) e B (2.10)

Definition 2.16. Let F = {f n E N} be a family of functions s.t. f,, —i
. We

say that a PTIVI M computes F in time t(n), with accuracy bound A Ç [0, 1], if

Vii E N, Vx E ‘,t = t(n). Pr(M(t)(x) = f(x)) E A (2.11)

The parametrisation using the sets A and B allows us to define uniform probabilistic

classes within the same ianguage. Their meaning is as foliows. A represents the set

of “acceptable” probabilities values (where the different values correspond to different

inputs) for the event that the PTM outputs the correct answer when the input x is in

the given language L. Similarly. B represents the set of “acceptable” probability values

in the opposite case, i.e. when the input is not in the given ianguage L. Note that for the

standard definitions of probabilistic (and quantum) complexity classes, the sets A and

B will be intervais. normally containing 1 (i.e. the possibility of being always right on a

given input is not discarded).

1J principle, it would have been more natural to restrict the output random variable M(t) (x) to only
be defined on those computation paths where the PTM has halted after t steps, thus eliminating the
“freak” occurrence of the right answer being on the left portion of the tape before the PTM has finished
its computation. However, this distinction is not strictly necessary as for most cases that will interest us
(i.e. complexity classes) we can aiways construct an equivalent PTM M’ which will (almost) neyer have
the right answer on the left of the tape until the end.
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Traditionally, however. Turing Iviachines have been introduced in a less general fashion

as we have introduced them here. TIVI’s are after ail essential “digital” objects, and it was

only natural that the range of transition probabilities also 5e discretised,” in particular

by restricting them to binary choices, each with equal probability 1/2, i.e. “coin flip.”

Definition 2.17. A coin-flip Turing Machine (CFTM) is a probabilistic Turing Machine

(Definition 1.14), with the added restriction that the probahilistic transition function n

can only take values 0, 1 or 1/2, i.e. for ah q, q’ Q, b, b’ F and cl e {L, R}

n(q, b, q’, b’, cl’) {0, , 1}

Because the coin-flip TM’s are a special case of PTM’s, our definition of language

acceptance for PTM’s (Definition 2.15) is stiil applicable to them as is.

Besides the fact that it is always “messy” to deal with arbitrary real numbers (i.e. tran

sition probabilities), the reason, we suspect, that the original probabilistic Turing Ma

chine model is that of coin-flip TM’s is due to the fact that they are essentially equivalent

to the more generic kind, in the sense given by the following theorem.

Theorem 2.18. For every probabitistic TM M running in time t = O(poly(n)), there

exists a coin-flip TM M’ running in tirne t’ = O(poly(n)), which has atmost the same

output statistics. More precisety, for alt input sizes n E N, inputs x E Z, and possibte

ansuers y e . we have that:

Pr(M(t)(x)
= y) — Pr(MI(t’)(x)

= y) (2.12)

Proof. The general idea is that the CFTM M’ will simulate the PTM M by making the

same choices and trying to jump to the same type of configuration with equal or almost

equal probabilities. Whenever M does a deterministic transition (i.e. n(.) = O or 1). then

M’ can immitate M without introducing error in the final output statistics.

In generaL however, this will not 5e the case. Let thenpi,p2, . .
.

,p,--, 5e the probabihty

values for the next transition. The CfTM can simulate samphing according to that

distribution by performing cl “coin-flips” and choosing the flrst possibility with probability

Lpi2’1]
/2d the second with probabihity Lp22d] /2d, etc. A relatively simple probabihistic

argument wihl show that the probabilities of outcornes will not differ signiflcantly if cl

is large enough, but more importantly that these differences will decrease exponentially

in cl.
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Let us choose d to be polynomial, e.g. d = n°, then the error statistics introduced

with one instance will be less than 1/2°c. Let M run in t(n) = b steps. Then, we have

that the probabilïty that the CFTM M’ commits an error in any of these transitions is

bounded by

Pr(M’ chooses wrong transition at least once) < i (i
—

where we make the last inequality hold (for sufficiently large n) by choosing a sufficiently

large cl, i.e. a b for b> 1 or a 2 otherwise. In either case, the total running time of

M’ will be at most n2 and thus stili polynomial. E

An apparent paradox of Theorem 2.1$ is the foilowing. If we construct a PTM

with arbitrary transition probabilities, including for exampie uncompiitable real numbers

(e.g. Chaitin’s Q), then such a machine could solve uncomputable problems such as the

Halting Problem. By applying the above theorem, we could thus also build a coin-flip TM

that solves the same problems with arbitrary high probability. This seems unreasonable

for such a simplified model. The catch is that the corresponding transition probabilities,

whiie restricted to powers of 2. are stili uncomputable. Thus the resulting coin-flip TM

wouid flot have a computable description interpretabie by a Universal Turing Machine.

Because of this fact, they are in some sense “unimplementable,” which is why they are

not usualiy discarded. not being a reasonable model of computation. In the forthcoming,

we only consider TM’s with computable transition probabilities, which thus assures that

they can ail be interpreted/simulated by the same Universai Turing Machine.

In chapter 1, PTvI’s were introduced as an instance of probabiiistic models defined

in Definition 1.$. Under that view, the states of a PTM are not its configurations. but

the PDs over them. In other words, the set of configurations C is not the state space but

the sample space of the model. This defines a deterministic dynamics (Equation 1.25)

on the state space PD(C), and the probabilistic “computation rules” of Definitions 2.15

and 2.16, which are naturally obtained as specialisation of the abstract measurement rule

of prohabiiistic modeis.

This view is a bit artificial and uncommon in the context of computing2, which is why

2Translation: it is quite unnatural to computer scientists...
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PTM’s are more often described with C as the state space and a probabilistic dynamics

based on a transition probability function such as that of Equation 1.23. In appear

ance, identifying states with configurations seems to yield a deterministic measurement

rule, and hence deterministic computation rules sucli as those of Definitions 2.1 and 2.2.

However, as we discussed in Section 1.3.1, the measurernent rule is not completely deter

ministic, as we cannot make deterministic predictions about the outcome of measurement

in tire future. This situation is depicted in Figure 2.1.

p(l) P(ct, Ct+i)
) p

* {+rI I* I
Left(c) Left(c) Left(ct) Left(ct+i)

(a) States as PD’s (b) States as configurations

Figure 2.1: (a) In the PD-state based representation ofPTM’s, the “output” at time t (the
left portion of tire tape) is assigned a probability according to the PD of configurations
at that moment . The one-step deterministic dynamics on PD(C) defined by p(’) can
he used to make a probabilistic prediction for (i.e. assign a probability to) the output
at the next step. (b) If the space of configurations C is viewed as the state space of
the model. then the measurement rule can be represented by the deterministic function
Left(.) defined on C. which returns the string on left portion of the tape. Tire dyiramics
is probabilistic and tire configuration ct at time t will transition to the next configuration
ct according to the transition probability prescribed by P(ct. ct÷i). A deterministic
prediction for tire output at the next step is not possible, but a probabilistic one is.

Both of these representations are equally valid. Nonetheless, the configuration-based

representation allows for an alternate interpretation which is less awkward and also often

used to introduce probabilistic computation: a deterministic TM which lias access to a

a special ‘random” tape and computes as follows.

Definition 2.19 (Randomised Turing Machine). A randomised Turing iachine

(RTM) ivI is a special kind of DTM that has an extra read-only, read-once tape cailed

tire random input tape. Tire transition function of M takes the form

Q—{qf} x F x I’ Q x F x {L,R}. (2.13)

Tire image (q, b, r) = (q’, b’, d) indicates that when in state q and having read symbols b
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and r under its regular tape and random tape heads respectively, M will write symbol b’

on the regniar tape. move the regular head in the direction of d. move the random tape

head to the right (aiways) and enter state q’.

A randomised TM is initialised sirnilarly as a DTM except that its random tape is

assumed to be infinite and contains no blank symbols. Their output is also deflned as

the left portion of the regular tape when the machine has flnally halted. The output,

however, will not only depend on the input x on the regular tape, but also on the portion

of its random tape that was examined; it is represented by the function M(x, r) where r

represents the examined portion of the random tape.

Strictly speaking, randomised TM’s are a deterministic model and we cannot speak

of “probabilities” of an RTM returning a value “M(x)” as we do for probabilistic TM’s

(generic or coin-flip). Instead, we consider the frequency counts of an RTM returning an

output, where we count the number of times that machine will return a given output as

we run through ah possible random tape inputs.

Definition 2.20. The frequency count function of a randomised TM M running iII time

t = t(n) is the function 1-’M x ‘— [0, 1] defined as

{r E M(x,r) y}
VM(x,Y)

{r E t}
(2.14)

With this notion deflned, the criteria for randomised TM’s to decide or to compute

are deflned as fohlows.

Definition 2.21. Let L be a language in An RTM M is said to decide L, with

accuracy bounds A and B, A, B C [0, 1], if

Vx e L, vM(x, “0”) E A

Vx L, VAJ(x, “1”) E B (2.15)

Definition 2.22. Let F = {f,7 n E N} be a family of functions s.t. f, *
. We

say that a PTM M computes F, with accuracy bound D [0, 1], if

Vu E N, ViE ‘, vjj(x,f(x)) e D (2.16)

This model of computation is nothing more than a hidden variable interpretation

(Definition 1.12) for probabilistic TM’s. The contents of the random tape are indeed
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the hidden variables of this model. Ihe hidden state space is the state of configurations

[C1, q, C][R1, q]. where R1 represents the contents of the random tape to the left of that

tape head.

These randomised TM’s in fact constitute a “derandomisation” of PTIVI’s in the sense

that prohabilities have been substituted with the relative frequency counts. Indeed,

assignillg the same weight to each string r of length t in the random tape is equivalent to

assigning a uniform a priori distribution on the hidden portion of the state space, and in

that sense these frequency counts cnn be viewed as “probabilities.” In other words, any

randomised TM can be so transformed into a PTM, and furthermore since the uniform

distribution is the Cartesian product of the {1/2, 1/2} distribution on each of the t celis

of the random tape, we obtain the following equivalence.

Theorem 2.23. Any randomised RTM M’ can be simuÏated by a CFTM M’ with tire

exact same output statistics and tire same running time. E

The converse statement is also true, and is in fact a computational (and much sim

pler) equivalent to the proof that probabilistic models having well defined transition

probabilities had hidden variable interpretations (Theorein 1.18).

Theorem 2.24. Ang CFTM M cari be simutated by an RTM 1i’ with tire same exact

output statistics and running time.

Proof. iii’ mimics 111 exactly in all of its deterministic transitions. In addition, every time

M makes a coin-ftip transition. M’ “chooses” which is going to be the next configuration

by considering the value of the random tape cell under its head. E

2.2.2 Probabilistic, Coin-Flip and Randomised Circuits

Very much like probabilistic Turing Machines, probabilistic circuits cnn be defined

and described in a varietv of wavs. In Section 1.3.3.3, we introduced generic probabilistic

circuits using the abstract circuit model of Definition 1.4 and generic probabilistic gates.

Let n = I be the number of inputs nodes in C, which have been assigned ordered

labels [1..m] (e.g. from “top” to “bottom”), and let to = min(Tc) be the initial moment

of C (vide supra our discussion of “time” in abstract circuits in Section 1.3.3.3). Given n

deterministic input x = x . . . x, we usually initialise the circuit with n “deterministic”

initial state, o, where = 1, if x is the j-th string in Z in lexicographical order.
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Initialised in such a way. the output of a probabilistic circuit C is naturally deflned

by the final state p at the final moment tf = max(Tc) of the circuit. Since Pf will

depend on j5, which in turns depends on x, we can identify the (probabilistic) output of

C with a random variable C(x) depending on x, with domain on zm (where m = O is

the number of output nodes of C), which is distributed according to the PD p. With

this notion of probabilistic output, we can give probabilistic circuits (generic or coin-flip)

a sound semantics as computational devices.

Definition 2.25. A family of probabilistic circuits C {C n e N} is said to decide a

language L, with accuracy bounds A and B, A, B [O, ij, if for every input size n E N,

and input x E

xEL ‘, Pr(C(x)=i)éA

L zrrr Pr(C(x) = O) B (2.17)

Definition 2.26. A family of probabilistic circuits C = {C I n e N} is said to compute

a family of functions .F = {f n e N}, with accuracy bound D C [0, 1], if for every input

x E ,

Pr( (x) = f(x)) e D (2.18)

b the best of our knowledge. non-uniform probabilistic classes have flot been defined

or studied so far, and we will not concern ourselves with them. On the other hand,

uniform probabilistic classes have been well studied and we will review them in Sec

tion 2.2.4. In our model of generalised probabilistic circuits, we advance the following

notion of uniformity.

Definition 2.27. A family of probabilistic circuits C is said to be uniformly generated

by a (deterministic) Turing Machine M if

i. There is a finite set of types of probabilistic gates which represents all gates in all

circuits in C.

ii. On input 1, M wiÏÏ output a description of the graph of G,. and a table of finite

encodings of the transition probabilities for each gate g in C.

An important consequence of this somewhat restrictive model3 in terms of complexity

is that when we consider families of probabilistic circuits with n input nodes, the number

3The most general model we can think of is one where the set of elementary gates is flot finite, but
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of input and output nodes for each of the elementary probabilistic gates, whichever they

may 5e, can 5e considered constants which do not vary with n.

Note also that any of the usual deterministic gates (AND, OR, CNOT, etc.) can 5e viewed

as a special case of probabilistic gates with a {0, 1}-valued transition probabilities.

The second and more traditional way to introduce probabilistic circuits is to define

them in term of coin-flip gates. The coin-flip gate is the simplest possible probabilistic

gate, which irrespective of its input will produce a O or a 1 with equal probability on its

single output connection.

Definition 2.28 (Coin-flip Probabilistic Circuit). A coin-flip circuit C is a prob

abilistic circuit whose only probabilistic circuit is the single-input/single-output proba

hilistic gate CF, with transition probabilities

ncF(.,O) zrrcF(.,l) = 1/2 (2.19)

The following lemma addresses the question of the significance of this restriction, and

teils us that under most reasonable circumstances it is sufficient to consider only coin-flip

gates, as we will see later in Section 2.2.4.

Lemma 2.29. Any pro babilistic gate g of k inputs and t outputs can be simulated by a

coin-flip probabitistic ciTcuit C of size O(2t log 1/e). such that the output statistics of

g and C differ by at most e. More precisety, for alt inputs x = (xi ‘k) Dk and

possible outputs y = (yy,. . . , Yt) , we have that

lrg(x,y) — Pr(C(x) = y) <E (2.20)

As we did in Section 2.2.1 with the introduction of ra.ndomised TM’s, it is possible

to derandomise probabilistic circuits with the introduction of a hidden variable interpre

tation.

Definition 2.30 (Randomised Circuit). A randomised circuit is a special kind of

deterministic Boolean circuit represented as C = (I, Q, Ç, W), where the set of input

nodes I = I u I lias two separate components:

I, the input nodes per se, which are initialised with the input values x1, . . . , x.

involves only computable and finitely encodable transition probabilities. We choose the above model
for simplicity, as we do not believe the complexity classes we tvill be studying will be affected by the
restrictions introduced in Definition 2.27.
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I the random input nodes, with are initialised with “random” value T1, . . . , r.

The computation semantics of randomised circuits are based on the relative frequency

counts of random inputs which cause the circuit to produce the right answer, i.e.

Definition 2.31. The frequency count fuuction of a randomised circuit G with n inputs

nodes, £ random input nodes and ru output nodes. is the function y0 Z x i—4 [0. 1]

defined as
({rEC(xr)=Y}I

ifyEm
(2.21)

t O , otherwise

Definition 2.32. A family of randomised circuits C = {C n e N} using L = £(n) random

inputs is said to decide a language L, with accuracy bounds A and B, A, B [0, 1], if

for every input size n E N, and input x E

xEL = t’cjx,1)eA

vcjx,O)EB (2.22)

Definition 2.33. A family of probabilistic circuits C = {G I n e N} using £ = «n)

random inputs is said to compute a family of functions F = {f, I n e N} with accuracy

bound D C [0, 1] if for everv input x e .

vc,(x,f(x)) e D (2.23)

The idea behind viewing such circuits as hidden variable interpretations of proba

bilistic circuits is the following. Whenever a probabilistic gate g in the origina.1 circuit

would make a probabilistic choice on one of the possible output vectors, the randomised

circuit simulates that gate by choosing one of these vectors by looking at some of the

random inputs. This is made precise by the following theorem.

Theorem 2.34. For every farnity of pro babilistic, potg-size circuits C = {C} there exists

a famity of poty-size randomised circuits C’ = {C1Ç} using at most t nD random inputs

that witt have atmost the same output statistics. More precisety for alt inputs x e ‘,

and possibte answers m, we have that:

Pr(C(x) y) — yc(x,y) < (2.24)
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Proof. Consider flrst the special case where the only probabilistic gates in the circuits C7

are coin-flip gates. Then, the gates can be “simulated” by simply using (only once) one

of the random inputs as the output of a coin flip gate. If we assume that each random

input r is equidistributed to be O or 1, we will then obtain in Eqns. (2.22) and (2.23)

the exact same output statistics as those of the original circuit, i.e. those from Eqns.

(2.17) and (2.1$). Conversely, a probabilistic circuit not having access to equidistributed

random inputs, can generate them by simply using anciÏlary inputs and pre-processing

them with a coin-flip gate.

In the general case, however, the circuit in C will use a finite set of elementary

probabilistic gates {gj,.. . , gj, each with a constant number of inputs and outpiits.

By Lemma 2.29, each of these gates can be approximated within e by circuits of size

O(log 1/e). To simulate C, we assemble a coin-flip probabilistic circuit C which sim

ulates each elementary probabilistic gate g in C with error bound e < 1/2’. Each

sub-circuit for the simulation of each elementary gate g will involve at most 0(n) coin-

flip and deterministic gates and thus C will stiil have poly-size. We have thus reduced

the general case to the special case above. E

On the other hand, the relationship between coin-flip and randomised circuits is

obvious.

Theorem 2.35. Any coin-flip circuit C of n inputs, of size s and containing ni CF gates,

can be sirnulated exactty by a randornised circuit C’ of size s — ni with n input nodes and

ni random input nodes, where ni is the number of CF gates in C.

Conversety, any randomised circuit C’ with n inputs and ni random inputs, of size s’,

can be simuÏated exactly by a coin-flip circuit C of size s’ + ni.

In both cases we have that for ati inputs x and possible outputs y E D*

Pr(C(x) = y) uG(x, y) (2.25)

Proof. To simulate the outcome of each CF gate. C’ uses up one random input node.

Conversely, to simulate a random input, C simply uses a single CF gate. The rest of the

proof is simple accounting. E

As a result of this equivalence and Theorem 2.34 we have the following equivalence

(with approximation) between probabilistic and coin-flip circuits, which in fact shows the

following very important universality of the coin-flip gate CF for probabilistic circuits.
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Theorem 2.36. For every famity of poty-size probabil’istic circuits C {C} using an

arbitrary set of probabilistic gates (described by stochastic matrices), there exist a famity

ofpoty-size coin-flip circuits C’ {C} such that for alt inputs x e and ovtpzzts in

y E

Pr(C(x) = y) — Pr(C’(x) y) < (2.26)

D

2.2.3 Equivalence of Probabilistic Models of Computation

So far, Theorems 2.1$ and 2.34, for TM’s and circuits respectively, show us that we

can go from probabilistic to randomised models at the cost of introducing some differ

ences in the output statistics, albeit quite small. There is also a “lateral” equivalence

relationship between randomised TIVI’s and randomised circuits. As before, this rela

tionship is qualified by the fact that we are taiking about poly-time TM’s and poly-size

families of circuits.

Theorem 2.37. For every randomised TM M running in time n there exists a poÏy

sized famiÏy of randomised circuits G(x, r) using = £(n) <nc random input nodes with

the same exact output statistics.

Coneersely, for every famiÏy of randomised circuits C = {C}, using L = L(n) random

inputs, and that is uniformty generated in time n, there exists a randomised TM M

running in time O(nd) wzth the same outpnt statistics.

More precisely, we have that for both cases and alt input sizes n N, inputs x E

and possible answers y E

vcjx,y) (2.27)

Proof. The proof of this theorem is based on a simple adaptation of the determillistic

equivalences for TI\I and circuits described in Theorems 2.9 and 2.11. Structurally. both

;‘I and the circuits in C are deterministic and the proof of these theorems carry with

minor modifications.

In order to simulate il/f, construct u deterministic circuit based on its transition table,

whose random inputs will correspond to the random tape celi values. $ince M examines

at most nC such cells, the simulating circuit will have ut most a total of n + nc input

nodes (including random inputs), and consequently will have at most polynomial size.
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Conversely, let M be the poly-time TM generating the circuit C, E C on input the

string 1. We construct the machine M which on input x will:

1. Run M to obtain a description of C

2. Run the Universal Circuit Evaluator TM on C(x, r), where r is a binary string of

size 1 constructed by reading the first £ random tape input celis.

3. Output the value G(x,r).

By definition M wilÏ run in time nd, and by Theorem 2.11 the Circuit Evaluator will

run in time Q(d) because C is at most of size d Therefore the whole simulation is in

O(n°). E

By using this last theorem and the equivalences RTM vs. CFTM and randomised vs.

coin-flip circuits (Theorems 2.23, 2.24 and 2.35), we directly obtain the following lateral

equivalence between coin-flip models.

Corollary 2.38. For every coin-flip TM M Tunning in time t = O(poly(n)) there exists

a poty-sized famity of coin-flip circuits G(x, r) using £ = £(n) = Q(nC) random input

nodes with the same exact outpzzt statistics.

Conversely, for every family of randomised circuits C = {G}, using £ = £(n) random

inputs, and which is uniformty generated in poly-time, there exists a randomised TM M

running in time t O(poly(n)) with the same output statistics.

More precisely, we have that for both cases and alt input sizes n E N, inputs x E

and possible answers y E

Pr(M(x) y) = Pr(C(x) = y) (2.28)

E

Furthermore, by combining this last resuit with the equivalence (with approximation)

of PTM’s and CFTM’s (Theorem 2.18), and that between probabilistic and randomised

circuits (Theorem 2.34), we have the following equivalence (with approximation) between

probabilistic TIVI’s and circuits.

Corollary 2.39. For every probabitistic TM M running in tirne t = O(poly(n)) there

exists a poÏy-sized famity of probabitistic circuits C(x, r) using £ = £(n) O(nc) random

input that approximates M with exponentiatty smalt error.
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Conversety. for every famity of randomised circuits C = {c}, using t = t(n) random

inputs, and ‘uniformty generated in poly-time, there exists a pro babitistic TM M running

in Lime t = O(poly(n)) whzch approximates C with exponentialty smatt error.

More precisety, in both cases and alt input sizes n E N, inputs x E Z’ and possible

answers y E we have that

Pr(M(t)(x)
= y) — Pr(C0(x) = y) < (2.29)

D

2.2.4 Probabilistic Complexity Classes

“Luck is not a factor!”

- Kiingon Proverb

The various definitions of computation for probabilistic models introduced in Sec

tion 2.2 involve accuracy bounds. which define. in essence, how luckv we have to be

in order to obtain a correct answer. This “luck” wlll either influence the choices made

by a probabilistic gate or automaton, or will influence the choice of random bits in a

randomised TM or circuit.

The discovery in 1976 [R76, ss77] that probabilistic algorithms existed for the problem

of primaÏity testing prompted a revision of the Strong Church-Turing thesis. Here was

an example of a natural problem which could apparently flot be solved deterministically

in polynomial time , but for which there existed a probabilistic poly-time algorithm

which in addition had a reasonable chance of success with every input. Accordingly, the

notion of computational tractability was revised to include such probabilistic algorithms,

as tong as the pro bability of success was sufficientty high, or in other words as long as we

do not have to rely on a lot of good luck to obtain the correct answer.

This relaxation of the Strong Church-Turing is reasonable in practice for several rea

sons. First. randomness exists in nature and in principle it should not be technologically

too hard to harness it and bring it in to our computational devices. In particular, the

randomised models above have a built-in mechanism for doing so: the random inputs.

Secondly, if the probability of success is sufficiently large. it is possible to amplify it

11t was only relatively recentlv (2002) that it was shown that. indeed. there are deterministic poly-time
algorithms for primality testing I02]•
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significantly by doing a reasonable amount of repetitions of the same computation. It is

thus possible, even within the the context of polynomially bounded resources, to obtain

a probability of success which is as close to 1 as we desire, even though neyer ezactÏy 1.

These notions are made formai by the introduction of prohabilistic complexity classes.

Definition 2.40. A language L is in the ciass BPP if there exists a k > O and a

probabilistic poiy-time TM M that decides L with accuracy bounds A = B [1/2 +

i/7k 11

The Chernoif bound is a technical result in Probabiiity Theory which bounds the

variance of the majority or sum of several independent instances of the same random

variable. It can be used to show that if we repeat the execution of M a polynomial number

of tirnes and make the final decision by considering the most frequent answer (accept or

reject), then the resulting error probabihty will be bound by a constant, independent of

n. Thus, we can have an alternate characterisation of BPP by replacing the accuracy

bounds in Definition 2.40 with A = B = [2/3, 1] or even with A 3 [1 — i/2k, 1], for

any constant k > 0.

Suppose that a probabilistic algorithm had the ability to detect with certainty

mernbership in a language, but not the opposite. This is the case for the lan

guage COMPOSITE and Rabin’s probabilistic algorithm for primahty testing. If

X E COMPOSITE, i.e. if ï is a composite integer, then the algorithm wili produce

with high probability a verifiabie proof or ‘certificate” that x has factors (but not the

factors themseives!) and accept x. On the other hand, if x is prime then no factors can

be found and the probabilistic primality testing algorithrn will “correctly” reject ï in ail

cases. This kind of one-sided error aigorithms inspires the class RP which can be defined

as follows.

Definition 2.41. A ianguage L is in the ciass RP if there exists a probabilistic poly-tirne

TM M that decides L with accuracy bounds A = [1/2, 1] and B = {1}.

It is precisely this kind of symmetry breaking that motivates the fact that the defi

nitions of Sections 2.2.1 and 2.2.2 of BPP have two accuracy bounds A and B, one for

strings within the language and one for those without. When they are both equal, or

both simiiariy bounded, it is more natural and usuai to taik of the probability of errvr of

the PTM.
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This one-sidedness is flot completely unusuaL however, and it is an important struc

tural property of certain complexity classes. In partidular, the non-deterministic class

NP can be viewed as an instance of a probabilistic class which shows this characteristic.

Theorem 2.42. A tanguage is in the cÏass NP if there exists a poty-time PTM 11/1 that

decides L with accuracy bonnds A = (0, 1] and B = [11.

Proof. This proof is most easily described in terms of a randomised TM, which is without

loss generality as we showed in Section 2.2.1. Let M be the RTM accepting L with

A (0, 1] and B = [1]. Then M can be viewed as a non-deterministic machine if we

consider the random tape as a witness tape. Since A = (0, 1] there must exist at least

one random tape input r s.t. M will accept an x in L, and because B = [1] no x L

will be incorrectiy accepted. Conversely, a non-deterministic TM M’ with a witness tape

accepting L cnn 5e thought of as a randomised TM, by considering the witness tape as a

random input. The existence of a witness guarantees that at O A and the infallibility

of M’ on inputs outside of L guarantees that no “random” input will make it yield the

wrong answer in this case, and thus B {1}. E

Consider the foliowing “dummy” probabilistic algorithrn:

1. On input x, flip n fair coin (i.e. look at k random tape ceils, perform k coin-flip

gates, etc.)

2. If the outcome is “tails” then accept x, otherwise reject x.

Obviously, this oblivious “algorithm” has, for ail input x, a positive probability of Seing

right. In fact, haif of the time it will give the right answer...

We would expect any “useful” probabilistic algorithm to do at least Setter than this

yardstick algorithm. The class of ianguages which can be solved by such probabilistic

algorithms, for which we onlv require that they do strictly Setter than just choosing the

answer at random (even if admitedly not very much Setter) is captured Sy the following

definition.

Definition 2.43. A language L is in the class PP if there exists a probabilistic poly-time

TM M that decides L with accuracy bounds A = B = (1/2, 11.

An important difference with the class BPP is that the accuracy cannot Se amplifled

efficiently. Indeed, the accuracy is bounded away from 1/2, Sut could be so only Sy
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very small. even exponentiallv small amount, e.g. a = 1/2 + l/2fl. One cannot amplify

this exponentially srnall advantage to any desired constant by using common techniques

based on Chernoff’s bound without an exponentiai number of repetitions.

This is in part why we informally cali PP a “lucky” class. Even though the “amount

of Ïuck” required to get the correct answer is strictly Iess than that needed by the coin

fiipping “algorithm,” a disproportionate arnount of luck is stili necessary. For example

if we were to use the majority method, in order to obtain significant confidence in the

correctness of the final answer one might need an exponential number of trials of the

algorithm. Rence, problems in PP are not considered to be tractable.

Another important characteristic of the class PP is that the it can be defined with any

fixed cut point other than 1/2. This is, we can substitute the condition in Definition 2.43

with A = Q-y, 1) and B = (1
—

-y, 1], for any constant y in the open interval (0, 1).

2.3 Quantum Computation

2.3.1 Quantum Turing Machines

We briefty discussed Quantum Turing Machines in Section 1.5.2.3, as a generalisation

of probabilistic TM’s. The main disadvantages of QTM’s concerns halting.

In a deterministic TM given a fixed input x there is no ambiguity about when the

machine haits (if it halts a ah) and about its output then. In a probabilistic 1M, we

resolved that ambiguity bv adopting the convention that once a PTM arrives to the

(unique) halting configuration. it then transitions with probability 1 to that same con

figuration (Equation 1.23). With this convention, the probability of halting increases

monotonicaliy with the number of steps, and thus we can sensibly define a probabil

ity of the PTM outputting any given answer at any given time. In particular, we can

speak of the probabihity that a PTM lias accepted input ï at a given finite tinte t even

if some paths in the computation tree have not terminated. Thus, we can give proper

computation sernantics to PTMs (Definitions 2.15 and 2.16).

Unfortunately the same technique cannot be applied verbatim to QTM’s, vide supra,

because the trick above is inherently non-reversible, and thus the resuiting dynamics is

flot unit ary.

for this reason, we normally only consider QTM’s with a 2-way infinite tape, which

are well behaved in that they aiways liait on the same number of steps t(n) for ail inputs
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of the same size. Thus, at the final halting time t, we have that the QTM is an a

superposition of configurations oj[u, q, vi], with the output defined in terms of u,

the string of symbols from the leftmost non-blank symbol to the position tape head. The

probability of the QTM outputting u is defined in terms of the corresponding amplitude

as aj2. Thus, we can have a well defined random variable M(x) for a QT1VI M, which

represents the output statistics of M on input x after t(x) steps of computation. With

this variable, we can give QTM’s the same computation semantics as PTM’s.

Definition 2.44. Let L be a language in A QTM M is said to decide L in time

t(n), with accuracy bounds A and B, A, B Ç [0, 1], if for every input size n e N, and

input x e , we have that M always halts in exactly t = t(n) steps and

x L = Pr(M(x) “1”) E A

x L Pr(M(x) = “0”) B (2.30)

Definition 2.45. Let F = {f n N} be a family of functions s.t. f7 t —* We

say that a QTM M compntes F, with accuracy bound D C [0, 1], if for ail input sizes

n e N, and ail inputs x e , M haits in t(n) steps and

Pr(M(x) = f(x)) e D (2.31)

It is important to note that for polynomial time QTM’s the “well-behaved” require

ment is not unduly restrictive. Informaily, a “naughty” poly-time QTM can in principle

be simulated by a poly-time well behaved one5. $econdly, the requirement that the QTM

uses a 2-way infinite tape does not affect the power of computation for poly-time ma

chines either, as cari be shown by straightforward adaptation to the quantum case of

these facts for deterministic TM’s.

It is also worthy to note two very important differences between PTM’s and QTM’s.

First of ail, there is no single “universal” quantum transition, like the coin-flip transition

for PTM’s. Thus we cannot easily define “coin-flip” QTM’s or some similar simplified

model. However, Adleman, DeMarrais, and Huang [M97] have shown that a universal

QTIVI exists which uses only transition amplitudes in {0, ±3/5, ±4/5, lI.

More importantly, we cannot derandomise quantum Turing Machines like we did

for PTM’s. This is, we cannot view QTM’s as regular deterministic machines having

5We say informally, because the notion of simulating a naughty QTM is itself quite slippery...
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access to a “quantum” tape. Indeed. even if the quantum tape celis where in some non

factorisable superposition, a randomised TM accessing tape cell-by-cell would necessarily

“destroy” any non-locality between the tape celis. Thus, we can view this impossihulity as

a computational consequence of John Bell’s celebrated theorem which states that there

are quantum models for which no local hidden variable interpretation exists.

2.3.2 Quantum Circuits

We have already deflned and briefly discussed quantum circuits in Section 1.5.2.4.

They were introduced by Deutsch [Deu89] and studied in detail later by Yao [‘93, who

showed that poly-size quantum circuits can suitably approximate QTM’s. Yao’s resuit

provide the quantum version of the “lateral” equivalence (up to approximation) between

poly-time probabilistic TM’s and poly-time probabilistic circuits (Corollary 2.39).

Furthermore, several universality resuits (which we vil1 review in more detail in

Section 3.1.2) exist for quantum circuits. In its most recent and simplifled version

[ShiO2, AhaO3], we have that any unitary transformation can be suitably approximated with

a circuit consisting only of TOFFOLI and HADAMARD gates. Because the TOFFOLI gate is

universal for reversible deterministic circuits, we can view these circuits as the quantum

equivalent of the coin-flip probabilistic circuit.

Definition 2.46. A quantum T-F circuit is one which is exclusively comprised of the

TOfFOLI and HADAMARD gates. represented with the following unitary matrices

10000000

01000000

00100000

o o o i 0 0 0 0 f_L _LN
TOFFOLI = HADAMARD = I ‘ I (2.32)

O O 0 0 1 0 0 0
_)

00000100

00000001

00000010

We can rephrase the resuit of [ShiO2, AhaO3] in ternis similar to those of Theorem 2.36

as follows:

Theorem 2.47. For every famity of poÏy-size quantum circuits C = {C} using an
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arbtrary set of unitary gates. there exists e famiÏy of poty-size quantum T-F circuits

C’ = {C} such that for atÏ inputs x e ° and outputs in y e

Pr(C(x) = y) — Pr(C’0(x) y) < (2.33)

E

Similarly to QTM’s, quantum circuits cannot be locally derandomised. In other

words, a model similar to randomised circuits having instead access to qubit-carrying

wires could not accurately simulate quantum circuits for the same reasons as for QTM’s.

Quantum circuits can be initialised with classical values in a similar fashion as prob

abilistic circuits. However, the fact that the circuit must be reversible imposes two

differences with traditional probabilistic circuits in how we give quantum circuits a coin

putation semantics. First of ail, because the number of outputs is equal to the number of

inputs, and not everything that we vill want to compute is a permutation, we will have

to designate some of the output nodes as carrying the resuit of the desired computation;

those other output nodes which do not carry the desired answer are often referred to as

garbage (qu)bits. Secondly, it might be the case that in order to compute some func

tion on inputs of size n, some additional input nodes might be required, which must he

initialised to some fixed classicai value.6

As a result, we must make the following adjustments before we define a sound com

putation semantics. Given an input size n e N, let C be a circuit of width w, with w n.

Given a “logical” input x of size n, i.e. x = xi, then the “physical” input to the

circuit will be the classical input x’ = xOu_n, i.e. the string x appropriately padded with

O’s to total length w. In ket notation, we have that Ix’) Ix) ® 1O)®°’. By initialising,

the circuit with Ix’), we are implicitly designating the first n input nodes as “logical”

input nodes. and the bottom w — n input nodes as ancill, set to O. Then, if I(x)) is the

final state of C when so initialised. we can define the associated holistic random variable

C(x) with domain on , with statistics defined as per Equation 1.43.

Definition 2.48. Let C = {C n e N} be a famiiy of quantum circuits of width w input

nodes, w = w(n) > n. We say that C decides a language L, with accuracy bound A and

6These concepts were already well established within the field of Reversible Computation, and have
little to do with “quantumness.”



92

B, A, B C [0, 1], if for every input size n N, and input x

x e L Pr(C(x’) “1...”) E A

x L = Pr(Cn(x’) = “0...”) E 3 (2.34)

Definition 2.49. Let C {C n e N} be a family of quantum circuits of width w

input nodes, w = w(n) > n. We say that C computes a (uniform) family of functions

F = {fn : m, m = m(n), Vn e N}, with accuracy bound D C [0, 1], if for

every input x E Z,

Pr( Cn(X’) = Yi . . . Yw) e D (2.35)

f(x)=yy Ym

2.3.3 Quantum Complexity Classes

Similarly to probabilistic computing, non-uniform quantum circuit complexity has

not been well studied, and is probably of limited interest.

On tue other hand, even though they are “quantum” objects, quantum circuits can be

described classically (e.g. by writing out the unitary matrix that describes them). Thus,

we can think of quantum algorithms as uniformly generated families of quantum circuits.

This approach, has many advantages over the QTM-based description of Quantum Com

plexity. Furthermore, for the poly-time/poly-size based complexity classes that interest

us, the QTM vs. quantum circuit equivalence of [Yao93] along with Theorem 2.47 allows

us to characterise ail of the following classes in terms of uniformly generated families of

quantum T-F circuits.

It is important to note that other circuit initialisation models are possible, such as

that in which ail input nodes are set to 0. This is the so calied input non-uniform model,

in which the deterministic TM generating quantum circuit descriptions is aliowed to gen

erate a different circuit C for every input x on its tape. This model is in fact equivalent

to the one presented above in the context of polynomiaily bounded computations.

The notion of tractabihty applies to Quantum Computing as to classicai computing

models. First, we do not consider tractable problems for which the resources required to

solve them increase super-poiynomially. Second, we do not expect our quantum devices

to be unreasonably lucky, much the same as for classical probabilistic computing devices.

This gives rise to the the first quantum complexity class [3B92], which embodies problems
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which can tractably be solved with a quantum computer.

Definition 2.50. A language L is in the class BQP if there exists a k > O and a family

of quantum (T-F) circuits C uniformly generated in deterministic poly-time that decides

L with accuracy bound A = B = [1/2 + 1/nk, 1].

Note that like its probabilistic cousin BPP the class BQP can also be amplffied

[BBBV97] to arbitrary accuracy parameters A = B = [2/3, 1] or A = B [1 — i/2k, 1].

The non-deterministic class NP, however, bas two different analogues in the quantum

world. If we view languages in NP as having poly-size witnesses, then the quantum

analogue is the class QIVIA (sometimes also refered to as QNP), which is the class of

problems having poly-size quantum witnesses verifiable in quantum poly-time. On the

other hand if we view NP as an instance of a one-sided “lucky” probabilistic class, such

as in Theorem 2.42, then its quantum analogue is the class NQP.

Definition 2.51. A language Lis in the class NQP if there exists a family of quantum (T

F) circuits C uniformly generated in deterministic poly-time that decides L with accuracy

bounds A = (0, 1] and B {1}.

It is an open problem whether the classes QIVIA and NQP classes are equivalent or

not.

Finally, one can also define a quantum analogue of the two-sided “lucky” class PP as

follows.

Definition 2.52. A language L is in the class QPP there exists a family of quantum (T

F) circuits C uniformly generated in deterministic poly-time that decides L with accuracy

bounds A = B (1/2, 1].

However, the following theorem bas been known by complexity theorists for a while

[ForO2] It has an elementary proof (reproduced in [BFH02]) once the necessary tools from

the Theory of Counting Complexity bave been introduced (see 97] for a good survey

on this topic).

Theorem 2.53. QPP = PP

2.4 A Unified Algebraic View of Complexity Classes

In this section, we build upon the ideas introduced in Section 1.6 and our previous

discussion of the various circuits models in this chapter to provide a unified picture of
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complexity classes.

Whiie it is not the usua.1 way to do so, it is possible to formulate ail of the above

polytime-based probabilistic classes in terms of uniformly generated probabilistic circuits,

even deterministic classes, as we have already doue in Section 2.2.4. On the other hand,

by applying the vectorial model for PD’s (the PD-space introduced in Section 1.6.1,

we can represent the states of a probabilistic circuits as unit vectors iu ly norm within

R(R). Similarly, we can consider states of boolean circuits, as unit vectors within the

vector space B1(lB). In both cases, the outcome probabilities are defined by the same

measurement rule (Equatiou 1.46).

In the quantum case, we have seeu how to formulate quantum classes iu terms of

quautiim circuits, whose states can be represeuted as vectors iu PA-space, i.e. complex

unit vectors in 12 norm. In that case, however, the measurement rule (Equation 1.51) is

differeut, which iuduces different restrictions on the dyuamics, and thus ou the circuit

gates.

It is possible to generalise these notions of circuit by using the semiring algebraic

structure.

Definition 2.54 (Semiring). A semiring[G0l92,T<6 is a tuple (S, +,.) with {O, 11 C S

and two biuary operations ,. S x S —* S (sum and product), such that (S, +, O) is a

commutative monoid7. (S... 1) is a rnonoid, and multiplication distributes over sum. i.e.,

a.(b+c)a.b+a.c and (a+b).c=a.c+b.c,

for every a, b, and c in S, aud O . a = a O = O for every a iu S.

A semiring S is commutative if and only if a . b = b . a for every a and b.

With these properties, we cau souudly define modules S°1S) as the sound generalisa

tion of the concept of vector space 8 for the following semiriugs which will be of iuterest

to us.

• The Boolean Algebra (i. V, A).

• The commutative semiring of positive rational (Q+, +,.) and positive real (R+, +,•)

numbers.

7A monoid is a group where not ail eiements have inverses.
8Normaily, vector spaces are only defined in terms of fields.
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• The flelds of rational (Q, +, .), real (R, +,.) and complex numbers (C, +, .).

• The skew field (or division algebra) of quaternions (R, +,).

Our definition of circuit (Definition 1.4) was merely topological, in that it only deflned

the properties that a graph must have to be called a circuit. The notion of state of a

circuit, as deflned for probabilistic or quantum circuits (Definitions 1.16 and 1.26), is

in fact identical. Furthermore, the definition of dynamics on such states is structuraily

the same in both cases (Equations 1.28 and 1.44). Thus it is justified to advance the

following generic definitions of circuit.

Definition 2.55 (Algebraic Circuit). An atgebraic circuit over a semiring S is a circuit

C = (I, O, Ç, W) with the following semantics:

Initialisation. The input nodes i e I are initialised with individual values lxj) S (S).

Dynamics. Each gate g e Ç performs a map -y9 t 5 from its k input connections

onto its output connections.

furthermore, we say that an algebraic circuit

• is tinear, if Vg E Ç, 7g is linear,

• is probabitistic, if it is linear, Vi e I, x Iii = 1, and ail gates preserve l norm

(i.e. Vg e Ç, -y9 is stochastic),

• is quantum, if it is hnear, Vi E Il x 112 = 1, and ah gates preserve 12 norm

(i.e. Vg e Ç, -y9 is (anti)-unitary),

• is reversibte if Vg e Ç, -y9 is a bijection (C is necessarily a gate array), and

• is deterministicatty initiatised if Vi e I, xi) e {lO), 11)1.

Let us now discuss generalisations of the computation semantics of probabilistic and

quantum circuits (Definitions 2.25 and 2.48, respectively) for the corresponding types of

aigebraic circuits. Note that these definitions are structurally the same, as ail that they

require is a measurement rule assigning probabilities to the fluai state of the circuit.

So far we have only considered a computation semantics for deterministicahiy mi

tiahsed circuits. This might seem unnecessariiy restrictive, because it does not necessar

ily ailow the aigebraic circuits to take fuil advantage of the rich algebraic structure of the
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underlying semiring. However, If we relax the initialisation requirement to allow for ar

bitrary input vectors x), then the computational model become unnecessarily powerful,

because, for example, some of those numbers involved might uncomputable or require

large amounts of computation. The solution lies to this problem is the same as that for

circuit uniformisation: we force the input values (possibly non-deterministic) to also be

uniformly generated in polynomial time.

Definition 2.56. Let C {C} be a family of algebraic circuits over some semiring S,

with G having k = k(n) input nodes and £ = £(n) output nodes.

We say that a language L is decided with arbitrary inputs with accuracy bounds A

and B by C if there exists a deterministic poly-time M which on input x

1. generates a description of C, and

2. generates a description of the k 2-dimensional input vectors xi),..., xk), such that

x e L
Y2

Pr (C(x)) = 1Y2 .. . y) e A

xL
y2

yPrtChltI=OY2YtB

(2.36)

where Ix) = xi) ®. . . ® x) and C? is the random variable associated with the final state

ofC.

2.4.1 Characterisations Based on Probabilistic Algebraic Circuits

In the case of probabilistic algebraic circuits, we can only define a computation seman

tics such as that of 2.25 on non-negative semirings9, because otherwise the measurement

rule (as defined) would yield negative outcome probabilities. Thus restricted, it is sound

to introduce the following notation for characterising complexity classes.

Definition 2.57. Let S be a non-negative semiring. We denote by P(A,B), A,B

[O, 1], the class of all languages decided with accuracy bounds A and B by families of

determinzsticatty initialised probabilistic algebraic circuits on S, uniformly generated in

poly-time.

9By this we simply mean that S C R.
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However. this is an overly restrictive definition (as we will see in some cases). be

cause it does not necessarilv allow the algebraic circuits to take full advantage of the

rich algebraic structure of the underlying semiring. However, if we relax the initialisation

requirement to allow for arbitrary input vectors zj), then the corresponding computa

tional models become unnecessarily powerful, for example, because these inputs could

contain hard (or impossible) to compute “advice.” The solution is to force the input

values (possibly non-deterministic) to also be uniformly generated in polynomial time.

Definition 2.58. Let S be a non-negative semiring. We denote by P5(A, B), A, B

[0, 1], the class of ail languages decided with accuracy bounds A and B by families of poiy

time uniformly generated probabilistic algebraic circuits on S, initialised with arbitTary

inputs

The non-negative semirings that we consider are 1R, Q+ and R+. For these we have

the following structural relationships.

Theorem 2.59. F0T att A and B in [0, 1] we have that:

i. P(A,B) = P(A,B)

fl. PQ4JA,B) = P(4,B) C P(A,B) = 73R(A,B)

E

Proof. The proof of the flrst staternent is immediate from the definitions. So are the

inclusions, p(A,B) C P(A,B) and P.(A,B) C

The converse of these inclusions is a simple generalisation of the proof of equivalence

of randomised and coin-flip circuits (Theorem 2.35). Suppose that the i-th input is

initialised with xi) = ajIO) +b1), with a, b e S. Then. given a description of the inputs

xi), the generating TM can also generate a description of a gate which transforms the

vector O) into Jr). Thus. a description of a deterministically initialised circuit in the

same model can also be genera.ted.

Finally, the inclusion (1 B) Ç (A, B) is trivially derived from the fact that

QcR. E

Note that in general the contrapositive of the inclusion in ii is not true for ail A and

B. However, for those classes which do flot require the accuracies to be exponentialiy
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close to some fixed value, we can use Theorem 2.36 to show equality of both of these

models.

In particular, with this notation we can easily classify the following ciassical complex

ity classes:

Theorem 2.60.

P=P({1},{1})

BPP = P([2/3, 1], [2/3, 1]) = P([2/3, 1], [2/3, 1])

P2 = P((1/2, 1], {1})

NP
= &t(° 1], {1})

PP = P((1/2, 1], (1/2, 1])

D

2.4.2 Characterisations Based on Reversible Circuits

‘We now turn to a special case of algebraic probabilistic circuits: probabilistic circuits

that are also reversible. $ince these circuits are by definition linear, this means that ail

gate transformations ‘fg are represented by permutations matrices. This kind of dynamics

we also called extrinsic in Chapter 1, because the probabilistic behavious is “outside” of

the circuit. For this particuiar case, we introduce a similar notation as before for both

the case of deterministic and arbitrary inputs.

Definition 2.61. Let S be a non-negative semiring. We denote as XP5(A, B), the class

of ah ianguages decided with accuracy bounds A and B, A, 3 C [0, 1], by families of

reversible, probabiiistic aigebraic circuits on S uniformly generated in poly-time.

Similarly, XP(A, B) the chass of languages accepted by such circuits under the ad

ditional restriction that they be deterministicatty initiatised.

As before we have the fohlowing structural relationships:
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Theorem 2.62. For alt A and 3, A, B C [0, 1] we have that:

XP(A,B) = XP(A,3) = XP.(A,3) = XP.(A,B) = P(A,B) (2.37)

XP(A3) C P(A,B)

C ni ni (2.38)

XP(A,B) Ç P(A.B)

Proof The first equality for B is trivial from the definition. The equalities XP(A, B) =

XP(A, B), for any S, stem from the inability of deterministically initialised circuits to

generate any state vectors other than deterministic ones with only permutation gates.

The equality with P(A, 3) is derived from the fact any deterministic circuit can 5e

converted into a reversible one (with deterrninistically initialised ancill) with at most a

linear size overhead. All other inclusions are by definition. E

As a resuit of this characterisation we can also classify the standard classes as follows.

Theorem 2.63.

P = XP({1}, {1}) = XP([2/3, 1], [2/3, 1])

BPP = XP([2/3, 1], [2/3,1])

RP = X((1/2,1Ï,{1})

NP XP((O, 11, {1})

PP = XPQ((1/2, 1], (1/2, 1])

2.4.3 Characterisations Based on Quantum Circuits

Unlike in the case of probabilistic circuits, we can define a PA-space on any of the

semirings we have introduced above, non-negative or not. Thus, we can also use a similar

notation to represent classes accepted by quantum circuits on arbitrary semirings. by

generalising the computation semantics for “traditional” quantum circuits, i.e. quantum

circuits on C.

Definition 2.64. We denote as Q(A, B), A, B C [0,1], the class of alllanguages decided

by families of deterministically initialised, quantum algebraic circuits on S, uniformly
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generated in poly-time with accuracy bounds A and B.

Definition 2.65. We denote as Q5(A, B), A, B Ç [0,1], the class of ail languages decided

with arbitrary inputs with accuracy bounds A and B by families of quantum circuits on S.

In this case, several interesting structural relationships exist.

Theorem 2.66. For’ any semiring S, and A, B Ç [0, 1] we have

Q(A,B) nP(A,B) = XP(A,B)

In other words, if we are restricted to deterministicatty initialised modets, modets which

are both quantum and pro babilistic are computationatly equivatent to deterministic ones.

Proof. This proof is an application of Theorem 1.31, which telis us that the only dynamics

possible in this case are matrices of the form U = Dfl, where fi is a permutation and

D e0i li) (il is a (diagonal) phase change matrix. In fact, from a computational

point of view we can completely ignore these phase factors, because they will neyer change

under permutations, and at the end of circuit evaluation no information can be extracted

from them because of the measurement rule. Thus the whole process can be simulated

by repiacing U with II, with no error. E

As a consequence of Lemma 1.32, we also directly obtain the following relationship

Corollary 2.67. For any non-negative semiring S and A, B [0, 1] we have

Q5(A,B) = XP(A,B)

E

Finally, it is also possible for quantum circuits to efficiently and reversibly generate

“random” inputs, in a very similar fashion as for probabilistic circuits (vide supra the

proof of Theorem 2.59)

Theorem 2.68. For att semirings S and A, B [0, 1] we have

Q(A,B) = Q5(A,B)

Finaliy, as we did for probabilistic classes, we can also use this notation to re

caracterise the following quantum complexity classes.
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Theorem 2.69.

EQP = Q({1}, {Ï})

BQP = Q([2/3, 1], [2/3, 1])

NQP = Q((0, 1, {1})

(Q)PP = Q((1/2, 1], (1/2, 1])

2.4.4 Characterisations Based on Extrinsic Quantum Circuits

In Section 2.4.2 we decided to consider reversible circuit as probabilistic circuits.

However, while the “probabilistic” attribute of an algebraic circuit is a property having

to with its computation semantics, reversibility is pureiy a structural property. Thus,

we can equally think of reversible “quantum” circuits, whose computation semantics is

derived from t2-based measurement rule. On the other hand, ail quantum circuits must

5e reversible because of the linearity requirement (Theorem 1.23), and this would seem

to be a shaliow endeavour. In fact, what we are interested in is in studying the subset of

quantum computing models where the dynamics is deterministic, but the initiai states

might not. In other words, the quantum equivalent of randomised circuits, which we will

call extrinsic in that the “quantumness” will be external to the dynamics.

Definition 2.70. We denote by XQ(A, 3), A, B C [0, 1]. the class of ianguages decided

with arhitrary inputs with accuracy bounds A and B by families of quantum circuits

whose gates ah implement permutations (on the PA-space).

We do not bother to define a deterministicaHy initialised version XQ(.,.) of this

notation because it is triviailv equivalent to XP(., .). Other than this simple reiationship

we have that:

Theorem 2.71. For ait A, B C [0, 1]

XQ(A,B) = XP(A,B)

XQ(A,B) = XPa+(A,B)

Proof. The first identity stems from the fact that the t1 and the 12 norm coincide on the

booleans iR. They do not coincide in the case of the positive reais, however. Nonetheless,
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there is an isomorphism between l unit vectors in R(R+) and 12 unit vectors on the

same vector space: simplv take the square foot of each component. Thus, since initial

states are aiways product states, it is possible to efficiently convert them from one form

(PD-vector) to the other (PA-vector) and vice-versa. E

0f particular note is the class XQR(A,B), for A B [2/3,1]. III essence, this

class is identical to BQP except that we only allow quantum gates at the beginning of

the circuit. Since the HADAMARD gate is quantum universal with the TOFFOLI gate, we

can think of these extrinsic quantum circuits as having their quantumness externalised;

they are deterministic circuits with access to “quantum coins” in the state 1/’0) —

1/”)1) (the minus sign is necessary, because otherwise we would bave the class BPP).

Furthermore, we can easily remove the unsightly square roots by considering these coins

two at a time. We thus have deterministic circuits with “negative probability coins.”

Equivalently, we can think of this model as quantum circuit where we are only allowed

to use quantum gates at the first level of the circuit. Despite this transition, note that

this kind of circuit is capable of generating entanglement. We therefore think that it is

very unlikely equivalent to classical computing, despite the fact that structurally differ

in only a single minus sign...

As far as we know, however, it is an interesting open question (probably not even that

hard to answer) whether this model is equivalent to the full blown quantum computing

model. We conjecture that it is.

Conjecture 2.72. XQ(’A,B)=Q(A.B)

In the next chapter we will take these algebraic generalisations further and prove

computational equivalences regarding the quaternion algebra also. In the last chapter of

this part. we will then reinforce the characterisations given in this section by providing

complete and promise complete problems for the classes discussed here.



CHAPTER 3

REAL AND QUATERNIONIC COMPUTING

In Chapter 1 we introduced n common description of some of the classical theories and

quantum theories using the mathematical formalisms of PA-spaces. In Chapter 2, we

used that formalism to show and illustrate the fact that the most important compiexity

classes can also be expressed within a unified meta-model. For example, the fundamental

classes of deterministic and probabilistic computing can be fully characterised by PA

based models over the Boolean and positive real vector spaces, respectively. On the other

hand, we have described Quantum Computing in terms of the PA-space over complex

vector spaces. We have done so for historical reasons, and following the lead of Quantum

IvIechanics. One question that then arises naturally is which other algebras we can define

reasonable and sound computational models with, and how do their power of computation

relate to that of the other PA-based models that we have described. This chapter will

explore the question of what kind of computational models can be defined, which involve

other finitely generated algebras over which a PA-space can be properly defined.

It was first shown that restricting ourselves to real amplitudes does not diminish

the power of quantum computing [T97}, and further, that in fact rational amplitudes

are sufficient [ADH9TÏ• Both these resuits were proven in the Quantum Turing Machine

model, and the respective proofs are quite technical. Direct proofs of the first result for

the quantum circuit model stem from the fact that severai sets of gates universai for

quantum computing have been found [Kit9Z, BMPOO, ShiO2. RGO2Ï which involve only real

coefficients. We will redefine and review the resuits known for computing PA-spaces

based on real vector spaces in Section 3.1, also providing a new generic and structural

proof of the equivalence of this model to standard complex quantum computing.Ihis

proof can then be easily adapted to the quaternionic case, as we will show in Section 3.2.

3.1 Real Computing

3.1.1 Definitions

Intuitively, the real computing model is defined as n restricted version of quantum

computing, where ail amplitudes in the state vectors are required to be real numbers.
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Conjugation is equivalent to the identity operation and bras are simply transposed kets.

$imilarly the matrix dagger operator (t) can 5e replaced with the matrix transpose

operator (t).

In this case, we must replace unitary transformations with orthonormal transforma

tions, as these are the only inner-product preserving operations on this inner-product

space. One could conceive a model in which the state vectors always have real ampli

tudes, but in which arbitrary unitary transformations (on the complex Rilbert space) are

allowed, as long as the end resuit is still a real amplitude vector. It is elementary to show

that orthonormal transformations are the only ones that have this property, and hence

this model is as general as can be, given the fact that we insist that the amplitudes 5e

real.

Rebits and States

In quantum computing and quantum information theory, we define the qu bit as the

most elementary information-containing system. Abstractly, the state of a qubit can be

described by a 2-dimensional state vector

J) Œ0) + J1), s.t. Il 112 = yll2 + l2 =1 (3.1)

where 10) and Il) are the two canonical basis vectors for such a 2-dimensional space. Two

vectors I) and I’) are said to represent the same qubit value if they are in the same

1-dimensional ray. In other words,

c1) = e8IIY),where O e [0,2n). (3.2)

Definition 3.1 (Rebit). The corresponding concept in real computing is called a rebit.

As in Equation 3.1, its state can also 5e described by a 2-dimensional vector on the real

Hilbert space

I) = alO) + bu), s.t. I1 = Va2 + b2 = 1 (3.3)

In this case, the arbitrary phase factor can only 5e +1 or —1, and the rebit equivalence
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relation which replaces Equation 3.2 is

= e’6I’),where O e {0,îr} (3.4)

— I) = (3.5)

Similarly as for qubits. single rebit states do have a nice geometrical interpretation:

they are isomorphic to the circumference, having 10) and 1) at opposite extremes. One

way to sec this is to consider the locus of points in the Bloch sphere for which e0 = 1, or

in other words, those with no circular polarisation. Unfortunately, there is no such nice

geometric representation of an arbitrary n-qubit state, and we believe the same is truc

for n-rebit states.

The computational basis vectors for a rebit are stiil 10) and 1), and for arbitrary

n-rebit systems they can also be represented as n-bit strings. The measurement rule in

defining the probabilities of obtaining the corresponding bit string as a resuit is still the

same

Pr(l) i’ “b”) = KIb)2 (3.6)

One physical interpretation that can be given for rebits or rebit systems is that of

a system of photons, where we use the polarisation in the usual manner to ca.rry the

information. However, these photons are restricted to having zero circular polarisation,

and being operated upon with propagators which neyer introduce circular polarisation,

i.e. orthonormal operators. The computational basis measurements are stili simple po

larisation measurements in the vertical-horizontal basis.

Real Circuits and Real Computational Complexity

Real circuits are nothing but a particular example of algebraic circuits, as described

in Definition 2.55, for the field of real numbers R. Using the same notation as in Sec

tion 2.4.1, we denote the classes of languages accepted by real circuits with QR(’ .), and

Q(...) for the determinist.ically initialised circuits.

3.1.2 Previously Known Resuits

From a Complexity Theory point of view, the first question that arises naturally is

how does this real computing model compare with the quantum computing one. In other

words, can the probleins which are efficientÏy solved by a quantum algorithm also be
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solved by an efficient real algorithm?

For the Quantum Turing Machine model, the answer was previously known to be

“Yes”. Even though, it is flot explicitly stated as such, the following theorem is tradi

tionally attributed to Bernstein and Vazirani, as it can be easily deduced from the resuits

ifl [BV97J

Theorem 3.2 (Bernstein, Vazirani). Any Quantum Turing Machine can be approxi

mated sufficientty welt by another, whose transition matrix only contains computabte real

numbers of the form ± cos(kR) and sin(kR), where k is an integer and

R = 1/22.

The need for having such transcendental amplitudes was eventually removed. By

using transcendental number theory techniques, Adieman, Demarrais, and Huang showed

in [M)H97], that, in fact, only a few rational amplitudes were required, in particular only

the set {0, ±1, ±3/5, ±4/5}.

It is important to note that Theorem 3.2 does not apply directly to circuits, or at

least not in a completely trivial mallner. The constructions in the proof are relatively

elaborate and rely heavily on techniques of Turing Machine engineering. Nonetheless,

quantum circuits were shown to be equivalent to Quantum Turing Machines by A.C.

C. Yao in [Yao93]• In principle, the construction of that proof could be used to show

that quantum circuits do not require states with complex amplitudes to achieve the same

power as any complex-valued circuit or QTIVI.

However, the celebrated universality result of Barenco, Bennett, Cleve, DiVicenzo,

Margolus, $hor, Sleator, Smolin, and Weinfurter [BBC95] provides a direct proof of that

fact, as they show that CNOT and arbitrary 1-qubit rotations —which contain only real

coefficients— form a universal set of gates for quantum circuits. IViore recent results have

produced ever smaller sets of universal gates (this is just a sample list):

• TOFFOLI, HADAMARD, and 7r/4-rotation, by Kitaev [Kit9T] in 1997.

• CNOT, HADAMARD, ir/8-rotation by Boykin, Mor, Pulver, Roychowdhury, and Vatan

[BMP+OO] in 2000.

• TOFFOLI and HADAMARD, by Shih [ShiO2] in 2002, with a simpler proof by Aharonov

[AhaO3J in 2003.
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• Controlled O-rotations, by Rudolph and Crover [R02] in 2002

The motivation behind these resuits was to corne up with the simplest possible gates,

given the fact that quantum states in nature can and wiÏl have arbitrary complex ampli

tudes, and thus, so will their unitary propagators. The fact that the simpler sets involve

only real numbers was a priori just a “desirable side-effect.” Our motivation, however, is

completely different. We play a different game: suppose that all we had were these mys

terious “rebits,” unable to enter complex amplitudes. What could we do then? Because

of this motivation, our proof will have a different ftavour. In fact, the proof is completely

general in that it works with any universal set of gates. In particular, it will work with

gates which have arbitrary complex transition amplitudes. In other words, in proving

the following, more general theorem, we will completely ignore the above results. That

will allow us to recycle its proof later on in Section 3.2.

Theorem 3.3. Any n-qubit quantum circuit constructed with gates of degree cl or Ïess

(possibty inctuding non-standard comptex coefficients gates) can be exactty simutated with

an n + 1 rebit circuit with the same number of gates of degree at most d + 1.

3.1.3 A New Proof of Equivalence

3.1.3.1 The Underiying Group Theory

The idea behind the proof is to make use of the fact that the group 511(N) can be

embedded into the group SO(2N). We provide an explicit embedding h.’ Whule this

mapping is not unique. what is special about it is that it lias ail the necessary properties

for us to define a sound simulation algorithm based on it. This mapping is defined as

follows. Given an arbitrary unitary transformation U, its image O h(U) is

h t Re(U) Im(U)
(J O = h(U) I I (3.7)

-Im(U) Re(U))

where the Re and 1m opera.tors return the real and imaginary parts of a complex number,

respectively. and applied to complex matrices, return the matrix composed of the real

1lndepeudently, Aharonov [AhaO3l has also used this mapping recently to provide a simple proof that
TOFFOLI and HADANARD are universal.
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and imaginary parts of each entry. Note also, that if we define the following formai tensor

f Re imN
Tl I (3.8)

—1m Re]

we cari express the definition of h more simply as

UOh(U)=T®U (3.9)

The first fundamental property that this mapping must have for us to use it effectively

in a simuiation is the foiiowing.

Theorem 3.4. Let GN represent the image of $U(N) under h. Then h is a proper

group isomorphism between SU(N) and GN, and GN is a snbgroup of SO(N).

Proof. It is easy to see that any matrix in GN, which wili have the form of Equation 3.7,

wiil have a unique inverse image, and hence that h is an injective mapping. The following

iemma is sufficient to show that h is a group homomorphism.

Lemma 3.5. Let A and B be any two arbitrary N x N matTices, then h(AB) =

h(A)h(B).

Proof. The first step is to obtain a simple matrix multiplication rule for matrices, using

the operators Re a.nd 1m. For arbitrary complex numbers ci and , we have that

Re(ciB) = Re(ci) Re() — Im(ci) ImCB)

Im(ci3) = Re(ci)Im(j3)+Im(ci)ReB) (3.10)

Since these ruies hoid for the products of ail of their entries, it is then easy to see that

this same multiplication ruie wili aiso hold for complex matrices. In other words, we can

substitute ci and in Equation 3.10 with any two arbitrary complex matrices A and B

which are muitipliable, to get

Re(AB) = Re(A)Re(B)—Im(A)Im(B)

Im(AB) = Re(A) Im(B) + Im(A) Re(B) (3.11)
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We are now equipped to verify our daim

h(A)h(B) = (T®A)(T®B)

Re(A) Im(A) ( Re(B) Im(B)

-Im(À) Re(Â)) -Irn(B) Re(B)

Re(A) Re(B) — Im(A) Im(B) Re(A) Im(B) + Im(Â) Re(B)

— Im(A) Re(B) — Re(A) Im(B) — Irn(Â) Im(B) + Re(A) Re(B)

—

Re(ÀB) Im(A3)

-Im(AB) Re(A3)

= T ® AB = h(AB) (3.12)

E

Finally, we want to show that GN C $O(2N). This is equivalent to showing that ail

the images O = h(U) are orthonormal, i.e. that Q
= O. $ince by Lemma 3.5 h is

a group homomorphism, it maps inverse elements into inverse elernents, i.e. h(U’) =

h(U)’. Since U is unitary, we have that

0’ = h(U)1 = h(U’) = h(Ut) (3.13)

whiie the following lemma wiil give us an expression for Q

Lemma 3.6. Let A be an arbitrary N x N comptez matrix, then h(At) = h(A)t

Proof. By definition of h and by transposition rules of block matrices, we have

= (T ® A)t

=
Re(A) Im(A)

-Im(A) Re(A))

—

Re(A) — Im(A)t
—

Im(A) Re(A)t

—

Re(At) Im(At)
—

—Im(At) Re(At)

= T ® At = h(At) (3.14)
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where we also used the following generic matrix identities

Re(A) = Re(À)t

t tIm(A ) = —Im(A) . (3.15)

D

In particular, we have that 0 = h(U)t = h(Ut) = h(U—’) = O, and we are done

proving Theorem 3.4. D

The fact that h is a group isomorphism is important, because it implies that GN

is preserved under “serial” circuit construction. In other words, it means that if we

have real circuits that simulate the quantum circuits with operators U and V, then we

can simulate a quantum circuit with operator UV by simply putting both real circuits

together. This suggests a way in which to decompose the problem of simulating a generic

quantum circuit, i.e. by constructing the real circuit one level at a time.

3.1.3.2 The Simulation Algorithm

Let C be a generic n-qubit quantum circuit with operator U, composed of s elemen

tary gates. The simulation algorithm will consist of the following steps:

Step 1. Serialise the given circuit by finding an ordering of its gates, so that they can

be evaluated in that order, one by one. In other words, find a total order of the

circuit gates, such that = Uts)U(8_l) ..
.

Step 2. For each gate g E {1,. . . , s} in the above ordering, replace the n-ary opera

tion U(), corresponding to the g-th gate, with an adequate real circuit ()

simulating it.

Step 3. Construct the overali real circuit C’ by concatenating the circuits for each level

g, in the same order as defined in Step 1. This is, if Oc is the operator for C’,

then let 0 = (s) .0(2)0(1).

Step 4. Write a description of the real circuit C’ and of its input state and ask the real

computing “oracle” to provide the resuit of a measurement on its final state.

Step 5. Perform the classical post-processing on the result of the measurement and

provide a classical answer.
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The algorithm, as described 5° far, is not compÏeteiy defined. In what follows, we will

derive, one by one, the missing details.

First, the total order in $tep 1 can be obtained by doing a topologicai sort of the

circuit’s directed graph. This can be done efficiently in time poiynomia.1 in the size of

the circuit2. The effects of $tep Ï on C are depicted in Figure 3.1.

j(i) (J(2) LJ3 (J(4)

3.1.3.3 Constructing the Real Circuit

In principle, each of the eiementary quantum gates g is described by a unitary operator

defined on the d-qubit complex Hilbert space. We can assume without loss of genera.iity

that these gates are described in the input to the simulation algorithm as x 2d matrices3,

which we denote with subscripted capitals. Thus, the g-th gate has associated to it a

d-ary gate operator Ug (with typically d = 1, 2).

However, in the context of a circuit the operator fully describing the action of gate g

is an N-ary operator acting on ail n qubits, which depends not only on U9 but also on

the positions of the wires on which g acts. We denote this operators with superscripted

capitais. Thus, after serialisation of the circuit C in Step Ï, these operators will

correspond to the g-th ievel of the serialised version of C.

In general, the g-th gate wili be a d-ary gate operating on wires with indices jy <

32 < <jd, not necessarily contiguous, with the associated circuit operator which

wili depend on j, . .
.
,jj. For exampie, in the case of a 2-qubit gate g operating on the

j-th and k-th wires, 1 <j < k <n, Ut can be expressed in terms of its elementary gate

2These orderings, because of the fact that they can be found efficiently, are the base of the ‘strong”
equivalence of the circuit and the Turing Machine models of computation.

31n fact, what we are given are finite-precision approximations cf these matrices.

Figure 3.1: Serialisation of the quantum circuit C in $tep 1.
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U9 as follows

(j, k) $1.j S2,k (U9 ® In_2) 52.k S1,j

Sg(Ug®In_2)$g (3.16)

where 1m is the identity operator for m qubits, is the n-qubit swap operator acting

on ires i and j, and $ is a shorthand for describing the necessary swap operator

for the g-th gate. The logic behind Equation 3.16 is explained graphically in Figure 3.2.

Note however, that this conversion using swap gates is not itself part of the simulation,

but only a mathematical convenience to be used later. These swaps gates will not be

included in the final real circuit C’ and do not represent a computational overhead.

j

k

Figure 3.2: Obtaining an expression for the N-ary circuit operator u().

As for Step 2, the isomorphism h readily suggests a method for substituting each of

the s levels of the original quantum circuit C. Let H be the 2ddimensional complex

Hilbert space on which Ug acts, and let H be the 21-dimensiona1 real Hilbert space

on which its image O = h(U9) acts. If g is a d-qubit gate, then O, operates on d + 1

rebits. We thus have an extra wire, and it is not a priori clear how to map the original d

quantum wires with these d + 1 real wires. To resolve this arnbiguity, we need to define

how we associate the base vectors of H with those of H.

We use the columns of the tensor T defining h in Equation 3.9, to define the following

mappings between H and H-g. Let I) be an arbitrary state vector in H. and let

l,j 82,k S2k
.
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h t Re
( I øl) (3.17)
\-Im)

h /imN
H--* lt) ® l) = I I ® ) (3.18)

\Re)

Note that the images lo) and li) are mutualiy orthogonal in Hg. In addition, both ho

and h1 are proper linear homomorphisms, as can be easily verified given the distributivity

of the tensor product with matrix addition.

The base vectors lb) of H are column vectors with ail zero entries, except with a 1

at the integer value j of b; i.e. Kjlb) = 1, and (klb) = 0, k # . Thus, it is easy to see

what these basis vectors are mapped to:

lb) Ibo) = 10) ® b) (3.19)

F—* lbi)=I1)®lb) (3.20)

These homomorphisms define the semantics to give to each of the d + 1 real wires on

which O acts, as is shown in Figure 3.3. When the original quantum gate takes lb) as

input, the corresponding real gate O has two possible base vectors lbo) or lbi) as inputs.

This corresponds to having an extra wire at the top of the gate with value 10) or Il)

respectively. and the base state lb) in the bottom d wires. f inally, note that since Ug 5

represented as a matrix of constant dimension, then O is also a small matrix, which can

be computed from tI and written down in constant time.

ao)+fl1) aO)+fli)

1)0
q

Figure 3.3: Simulation of an individual elernentary binary quantum gate, by a tertiary
real gate. Note that in general, for non classicai inputs, the final state of °g cannot be
factored like in the example shown.
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Even though we have defined how to sirnulate “out-of-context” d-ary elementary

quantum gates, we have not yet explained how to simulate them in their corresponding

positions in the circuit G. In other words, we stili have to describe how to simulate the

N-ary operators Again, the isomorphism h cornes to the rescue: we will simulate

(g) by finding an (n + 1)-rebit circuit that computes its image = h(U()) under h.

Unfortunately, we cannot simply construct this circuit from the matrix definition of

h(U()), because it is a huge matrix and that would require exponential time. However,

(g) is a very simple N-ary operator: it is after all just a d-ary gate, which has a succinct

description given by Equation 3.16. Since it involves at most cl qubits, then the circuit

only needs to involve those same wires and one other extra rebit.

At this point, we have to make a further apparently arbitrary choice, i.e. which one

of the n — cl other available wires will play the role of the “top” rebit for the O gate?

In other words, where shail we place the extra wire required for implementing O()?

The answer comes from the homomorphisms h0 and h1 in Equations (3.17) and (3.1$),

respectively. They are also autornatically defined on the state space H of the whole

circuit, and hence they generate the same wire semantics as for isolated d-ary gates: the

extra wire must be at the top of the circuit, as is shown in Figure 3.4. Similarly, as in

Equation 3.16, we have for the case where U = 2, an expression for 0(g) in terms of O.

O(9)(j, k) = S3,k+1 (0g 0 In—2) S3,k+1 S2,1

S(0g®In_2)S, (3.21)

where again we define for convenience, and j and k are the indices of the wires on

which gate g acts on the original circuit C.

We now have a simple and well defined scheme for constructing the desired simulating

circuit C’. In $tep 3, we will construct C’ by concatenating the real circuits for the N-ary

operators (9)• One important characteristic of this scheme is that we are reusing the

extra wire needed for each gate, each time using the same top wire. This is illustrated in

Figure 3.5. Even though they act on the whole space H, the 0(g) operators are simply

(U+ 1)-ary gates put in context, and they can be described in a succinct manner requiring

only a constant number of symbols. Therefore, the overall size of the description for C’

will be linear in the size of the initial description of C which was given as input.

What is remarkable about this scheme, is that despite its simplicity, it gives precisely
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what we wanted, this is, that the final operator O be in some sense as similar as

possible to the operator U of the original circuit. In fact, we have the following third

nice property of our simulation.

Lemma 3.7. The inverse image of Oc is precisely Uc, i.e. Oc = h(Uc).

PToof. Because of the serialisation ofStep 1, we have that Uc = .. . u(2)u(’). We use

this and the group isomorphism properties of h from Lemma 3.5 to obtain the following

k

Figure 3.4: Obtaining an expression for the (N + 1)-ary circuit 0(g)•

(2) (3)

Figure 3.5: Simulation of a quantum circuit by a real circuit.
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expression for its image

h(Uc) = h(u(8) .
..

= h(U(8)) . .
. h(U(’))

fl h(U())

g=s—i

We can now use the expression of Equation 3.16 to substitute for

fl h($9(U9 ®I_2)$g)

= [J h($9) h(U9 ® In_2) h($9)

Since $ is composed only of O’s and l’s, we have that Re($9) $, and I1TI($9)

O. Furthermore, we have that $, = Ii ® $, from their definition in Equations (3.16)

and (3.21), and thus,

= fl (I ® $) h(U9 ® In_2) (Ii a $)

= fl $ h(U9 0 I2) S,

However, the tensor product is just a formai operation, and its associativity property

holds even with a tensor of operators hke T. Hence, we have

=11 $[To(U9oI_2)]$

=fl $[(ToU9)®I_2]$

=11 $[h(U9)oI_2] S,

fl $jO9øI_2)$

which with the padding expression of in Equation 3.21 finaliy gives

=

.ll = oc. (3.22)

g

E
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3.1.3.4 Circuit Initialisation and Measurement

Having described how to construct the real circuit C’ from the original circuit C. we

stili have to address the issue of how to initialise C’ in Step 4, and furthermore of how to

interpret and use its measurements to simulate the initial quantum algorithm in Step 5.

Let If) represent the initial state given to C, and let ) be its image under U, i.e. the

final state of the circuit before measurement. If we think back of the two homomorphisms

ho and h1 from Hg to HÊ, induced by h, we have two logical choices for initialising the

corresponding real circuit 0c, the states [‘I’) and ‘Pi). Which should we choose, and in

either case what will the output look like? The answer to the latter question is given by

the following lemma.

Lemma 3.8. The images of ‘o) and ‘P;) in the reat circuit C’ are

Oc[’I’o) = 7 0 ‘1) o) (3.23)

OcI’Pi) = Ii 0 ) = (3.24)

Proof. As in the proof of Lemma 3.5, all we require are the matrix multiplication rules

of Equation 3.11

OcI’Po) (T 0 Uc)(7 O ‘P0))

= ( Re(Uc) Im(Uc) (Re(o))

-Im(Uc) Re(Uc)) Im(’Po))

= ( Re(U) Re(’Po)) + Im(Uc) Im(’Po))

—Im(Uc)Re(’Po)) +Re(Uc)Im(’Po))

Re(Uc’Po))

-Im(U’Po))

To Ø I) = Io) (3.25)
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With the same method, we eau obtain a similar expression for , i.e.

OcRi) = (Tø Uc)(Ti ® Ii))

- ( Re(Uc) Im(Uc) (Im(i))
-

-Im(Uc) Re(Uc)) Re(i))

= T ® ) = Ii) (3.26)

D

Let us assume for a moment —and in fact, this is without loss of generality— that

the original circuit was to be initialised with some base vector Ix), with a final state

= UIx). Again, there are two possible choices for initialising the corresponding real

circuit, namely Ixo) = I0)Ix) and xi) = I1)jx). What would then be the output of the

simulated circuit in either case? In the very special case that 11) is also a base vector,

then we would have Io) IO)) and Ic1i) = I1)), and thus, in either case, the bottom

n-wires would contain the right answer and we eau ignore the top wire. But when ) is

some arbitrary pure state, neither purely real nor purely imaginary, we cannot give such

a nice semantic to the top wire. In particular, it might be entangled with the rest of the

wires, and hence we cannot factor the final state.

Nonetheless, what is surprising is that if we trace ont the top wire, in ail cases we

will get the same statistics and furthermore that we will obtain the right statistics, i.e.

the same as if we had used the original quantum circuit C. More formaily, we have

Lemma 3.9. Let I) be an arbitrary n-qubit pure state, and let po = TriIo)QIoI and

Pi = TriIi)(iI represent the partial traces obtained by tracing ont (i.e. forgetting about)

the top wire. Then we have that

P0 = Pi, (3.27)

Diag (P0) = Diag (p’) = Diag (I)(I). (3.28)

Proof. The partial trace of the first wire of an arbitrary density operator given in biock

matrix form
(AB

P1
\\CD
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is given by,

Tri(p) = [I0] p [I1O]t + [0II] p [o1I]f

= À+D (3.29)

In particular, we have that

= (T ® I)) (T ®

which by applying transposition rules for block matrices and Equation 3.11 gives

t Re()) t
= I I Re((I) Im((I)

( Re())Re((I) Re())Im(()
(3.30)

— Im(I)) Re(QI) — Im(J)) Im(Q1j) )
and similarly for

= (T ® )) (7 ® (i)t

=

- Im()) Im((I) Im(I)) Re((I)
(3.31)

—
Re()) Im(() Re(I)) Re((’11) )

By symmetry, we thus have the same expression for both partial traces

p0 = py = Re(I)) Re((I) — Im(11)) Im(QI)

= Re(I)QII) (3.32)

Since is hermitian, its diagonal entries are ail real, and therefore it has the same

diagonal entries as po and p. LI

In other words, combining this with Lemma 3.8, we arrive to the conclusion that it

does not matter what we set as the initial value of the top wire, 10) or 1). Furthermore,

it is easy to verify that any 1-rebit state will do, whether pure or even totally mixed, as

long as it is unentangled and uncorrelated with the bottom wires.
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3.1.4 Further Considerations and Consequences

3.1.4.1 Complexity of simulation

In general, if we initially have a d-qubit gate, the new gate will be a (U + 1)-rebit

gate. However, if U9 contains only real entries, then 0 = I 0 U9. which means that in

this particular case the top rebit need not be involved. and therefore the new gate is the

same as the original. If the whole quantum circuit we are given is constructed with such

real gates, then we are in luck and we do not require the extra rebit at ail. In the general

complex case, however, the circuit width is at most one more than that of the original

circuit.

However, one non-negligible consequence of our simulation is that any parallelism

that the original circuit may have had is lost after we serialise the circuit in Step 1 of

the simulation algorithm. While it might be stiil possible to parallelise parts of the reai

circuit C’ (e.g. where we had real gates in the C), in the worst case, if ail gates in C

require compiex amplitudes, then the top wire is aiways used and the circuit depth for

C’ is equal to its gate count s. This is a conseque;ce of our decision to reuse the same

wire as the “top wire” for each gate. However, it is possible to reduce this depth increase

at the cost of using several “top wires” and re-combining them towards the end of the

circuit. This will result in only a 0(log s) increase in circuit depth.

Finally, as we have mentioned before. the overall classical pre- and post-processing

requires littie computational effort. Converting a description for the original circuit C into

C’ requires time linear in the size of the circuit description, i.e. 0(s). Post-processing

will be exactly the same as for the original quantum algorithm, since the statistics of

measuring the bottom wires of C’ (or any subset thereof) will be exactly the same as

those of measuring the wires of C, as per Lemma 3.9.

3.1.4.2 Universality

We knew already, from the previous results mentioned in Section 3.1.2, that it is

possible to express any quantum circuit in terms of real gates only. If we had not kiown

already that fact, we could have presurned that quantum circuits would be described and

given to us in terms some universal set of gates containing at least one non-reai, complex

gate. In that case, Theorem 3.3 would provide a proof that a real universal set could be

constructed, simply by replacing any non-real gates by its image under k.
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One advantage of this technique is that it does this conversion with very limited

overhead in terms of width, requiring 1 extra rebit for the whole circuit. and flot an

extra rebit for every substituted gate, as rnight have been expected. In addition to its

usefulness in Section 3.2, this is one of the reason that we believe that this particular

version of the equivalence theorem is interesting of its own, when compared to previously

known resuits. In particular, the fact that it provides a much tighter bound on simulation

resources needed, might prove useful in the study of lower quantum complexity classes

and possibly in quantum information theory.

3.1.4.3 Interpretation

With Lemma 3.9, we are left with a curious paradox: while we require an extra rebit

to perform the simulation, we do not care about its initial or its final value. In particular,

it can be anything, even the maximally mixed state. $0, what is this rebit doing?

Let H0 and H1 be the orthogonal subspaces, each of dimension N, spanned by the

lbo) and bi) base vectors of Equations 3.17 and 3.1$, respectively. If a state I) has

only real amplitudes then o) E H and ) E H1. For a generic ), however, Io)
and ) are not contained in either subspace, but in the space spanned by both, i.e. the

complete rebit space H. In that case, the top rebit will not be just 10) or 1) but some

superposition thereof.

In other words, it somehow keeps track of the phase (angle) of the representation

of ) in rebit space ‘with respect to these subspaces. The CNOT gate (or any other

real gate) does not change this phase factor. However, as arbitra.ry gates with complex

transition amplitudes affect this phase factor, their effect is simulated by ‘recording”

this change in the top rebit. How we initialise the top rebit gives an arbitrary initial

phase to the representation of 11), but as we saw, this initial phase does not affect

statistics of the bottom wires, and thus can be set to any value. However, how this phase

has been changed by previous complex gates will affect the bottom rebits in subsequent

complex gates, in a similar fashion as the phase kickback phenomenon in many quantum

algorithmst. That is why that top rebit is needed.

tWith the noticeable difference that phase kickback would flot work if the top qubit were maximally
mixed..
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3.2 Quaternionic Computing

This section closely mimics Section 3.1. first we define what we mean by quaternionic

computing, making sure that it is a sensible model. We then prove an equivalence theorem

with quantum computing, by using the same techniques as those of Theorem 3.3.

3.2.1 Definitions

3.2.1.1 Quaternions

Quaternions were invented by the Irish mathematician Wiliiam Rowan Hamilton in

1843, as a generalisation of complex numbers. They form a non-commutative, associative

division algebra. A quaternion is defined as

&=ao+aii+a2j+a3k (3.33)

where the coefficients a are real numbers and i, j, and k obey the equations

ii = jj = kk = ijk = —1 (3.34)

Multiplication of quaternions is defined by formally multiplying two expressions from

Equation 3.33, and recombining the cross terms by using Equation 3.34. It is very

important to note that while ail non-zero quaternions have multiplicative inverses they

are not commutative . Thus, they form what is called a division atgebTa, sometimes also

called a skew fietd.

The quaternion conjugation operation is defined as foilows

= aç — a1i — a2j — a3k (3.35)

where for clarity, we represent with the (non-standard) symbol (*) in order to distinguish

it from compiex conjugation represented with (*). With this conjugation mie, we can

define the modulus of a quaternion as

(3.36)

5While the square roots of —1 are anti-commutative, e.g. ij = —ii, this is not true in general,
i.e. &/3 —3&.



123

Furthermore, the usual vector muer product has the required properties (i.e. it is norm

defining), and a proper Hilbert space eau be defined on any quaternionic linear space.

It is also possible to complexify the quaternions, this is, to represent them in terms

of complex numbers oniy. Let & be an arbitrary quaternion, then we define its comptex

and weiTd parts as

Co(&) a + a1i (3.37)

Wd(&) a + a1. (3.3$)

We can then decompose & in its complex and weird part as follows:

& = ao+aii+a2j+a3k

= tao + au) + (a2 + a3i)j

Co(&) + Wd(&)j (3.39)

This equation allows us to derive multiplication rules, similar to those of Equation 3.10

Co(&/ = Co(&) Co() - Wd(&) Wd*(/)

Wd(&) = Co(&) Wd() + Wd(&) Co*() (3.40)

where we define Co*(&) [Co(&)]*, and similarly for the weird part Wd*(&) [Wd(&)]*.

It is interesting to note how the non-commutativity of quaternions is made apparent by

the fact that neither identity in Equation 3.40 is symmetric with respect to & and unlike

their equivalent for complex numbers (Equation 3.10), because in general Co*(&) Co(&)

and Wd*(&) Wd(&). We can also rewrite Equation 3.36 for the modulus as

\/Co(&)I2 + Wd(&)12 (3.41)

whieh is very similar to the modulus definition for complex numbers. Finally, we have

the following useful identities

Co(&*) = Co*(&)

Wd(&*) = —Wd(&) (3.42)
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3.2.1.2 Quaterbits

Similarly as in quantum information theory, we can define the quaternionic equivalent

to the qubit, as the most elementary quaternionic information system, the quaterbit. 6

Definition 3.10 (Quaterbit). A quaterbit is a 2-level system with quaternionic ampli

tudes. It can be represented by a unit vector ) in a 2-dimensional quaternionic Hilbert

space, i.e.

= &0) + I’) s.t. = + l2 (3.43)

up to an arbitrary quaternionic phase factor. Indeed, we have that

) = I’),where 1. (3.44)

The canonical values of the quaterbit correspond to the canonical basis 10) and 1)

of that vector space, and are given the same semantics just as before. $imilarly, we

can define n-quaterbit states, with the same canonical basis as for rebits and qubits.

With this definition, the measurement rule in Equation 3.6 is stiil sound and we adopt

it axiornatically.

Quaternions are often used in computer graphics to represent rotations of the 3D Eu

clidean space. However, contrary to rebits or qubits, we have not found a nice geometric

interpretation for the state space of even a single quaterbit.

3.2.1.3 Quaternionic Circuits

For the sake of clarity, let us distinguish the conjugate transpose operation for quater

nion and complex matrices by representing them differently with the () and (t) symbols,

respectively. As before. the only linear transformations Q that preserve 12 norm on this

vector space are the q’ttaternïonic unitary transformations, which have the same property

Q as complex unitary transformations. They form the so-called symptectic group

which is represented as Sp(N).

Thus armed with linear. inner-product preserving operations, we can in principle

apply our generic algebraic circuit definition of Definition 2.55 for the quaternionic case.

A quaternionic circuit is simply an algebraic circuit over H.

Unfortunately, we cannot apply the same definition of computation semantics as

6The name “quits” has also been suggested [P02] and abandoned...
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before (Definition 2.56). The reason is simple and quite surprising: the output of the

circuit is not uniquely defined!

To see this, consider the following property of the matricial tensor product, i.e. the

distributivity of the tensor product with the regular matrix product.

(A ® B). (C ® D) = (A. C) ® (B . D) (3.45)

where A, B, C, D are arbitrary matrices. This equation is in general true for any commu

tative semiring and for non-commutative semirings only if C and D are O-1 matrices.

Figure 3.6: Effects of quaternionic non-commutativity on quaternionic circuits. The
operator for the circuit on the left is obtained by combining the operators “vertically”,
by taking the tensor product first; this corresponds to the operator on the left side
of Equation 3.45. The operator for the right circuit is obtained by combining them
“horizontally” first, and gives the expression on the right hand side of the same equation.

Suppose now that the matrices A, B, C, D correspond to the gate transformations in

the circuit depicted in Figure 3.6. Then, the fact that Equation 3.45 does not hold

means that the two different ways shown there of combining the gates will yield different

operator for the circuit. Furthermore, if both cases even if we initialise in both cases

with the same input, we will obtain different output statistics.

In Section 1.2.2.2, we defined the states of a circuit in terms of temporal cuts in the

circuit graph (Definition 1.5). We then talked of the “space-time continuum” of the

circuit as the set of temporal cuts, on which the circuit topology defines a partial order.

Each topological sort of the circuit graph is one of the many possible total orderings of

the set of cuts, or in other words a chain in the poset (partially-ordered set) of cuts. In

more physical terms, each of these chains or total orders corresponds to a possible path in

the space-time continuum of the circuit. When Equation 3.45 holds, we are guaranteed
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that the overal over each and ail of these paths witt be the same.

In case of the quaternionic circuis, we can expect each of these paths to give a different

answer. rhich of these many paths (for a poly-size circuit, there are exponentially many

of them) is the “correct” one? Which one is somehow privileged by nature? Which orie

should we choose to be the “computational output” of the circuit? The fact is that we

do not know how to resolve this ambiguity, and without it it is not completely clear what

“the” model of quaternionic computing should consist of.

Nonetheless, we were able to obtain the following resuit, which in essence telis us that

ail of these paths somehow have the same computational power and can be independently

sirnuiated in an efficient fashion by a standard quantum computer. This theorem is the

main resuit of this chapter, and its proof is very heavily inspired from that of Theorem 3.3.

Theorem 3.11. Let Ô be any n-quaterbit circuit of size s, composed of gates of xdegree

at most cl. Let u {to, . . . , t8 I to < t1 < ... < t8} represent any chain (or path) in the

poset of temporal cuts of Ô. Let Q represent the operator of the circuit Ô when the gates

are combined one-by-one fottowing the ordering in u, i.e.

Q(s)Q(s_i) . . .

where Q(i) is the (in-context) operator corresponding to the i-th gate in u.

Then, there exists a quantum circuit of n + 1 qubits, emptoying the same number of

gates. each of degree at most cl + 1, that exactly simutates the operator Q0-.

3.2.2 Proof of Main Theorem

3.2.2.1 More Group Theory

As before. the proof is based on the (lesser known) fact that Sp(AT) can be embedded

into SU(2N). We provide a mapping from one to the other. which is very similar to the

one from SU(N) to SO(2N).

The mapping îi from Sp(N) to SU(2N) is defined similarly to the one from SU(N)

to SO(2N) given in Equation 3.7

f Co(Q) Wd(Q)
Q U = h(Q) (3.46)

_Wd*(Q) Co*(Q) J
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or equivalently in its tensor form, as in Equation 3.8

t Co Wd\
=1 I®Q

r* Co )
l_ØQ (3.47)

At this point, what we need to show is that this îi is also a group isomorphism, in

other words the equivalent of Theorem 3.4.

Theorem 3.12. Let ÔN represent the image of Sp(N) under îi. Then î. is a proper

group isomorphism between Sp(N) and ÔN, and GN is a subgroup ofSU(N).

Thanks to the tensor formalism, we do not need to construct the proof in full detail,

as we did for Theorem 3.4. The only thing we need to show are equivalent statements to

those of Lemmas 3.5 and 3.6.

Lemma 3.13. Let A and B be any two arbitrary N x N quaternion matrices, then

îi(AB) = î(A)î(B).

PToof. As before. it is simple to verify that the quaternion multiplication rules in Equa

tion 3.40 also generalise to any multipliable quaternionic matrices A and B. Thus we

have that

= (1®A)(Î®B)

= ( CotA) Wd(A) Co(B) Wd(B)

Wd(A) Co*(A) ) Wd*(B) Co*(B)

CotA) Co(B) — Wd(A) Wd*(B) Co(A) Wd(B) + Wd(A) Co*(B)

— Wd*(A) Co(B) — Co*(A) Wd*(B) — Wd*(A) Wd(B) + Co*(A) Cot(B)

t Co Wd
I I ® AB = T ® AB = h(AB) (3.4$)

— Wd Co* J

Lemma 3.14. Let A be an arbitrarg N x N quaternion matrix, then î1(A) îi(A)t.

Proof. Similarly to the proof of Lemma 3.6, we require the following matrix identities,
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which are easily verified

CotA) = Co(A)t

Co*(Â) Co*(Â)t

Wd(A) = _Wd*(A)t. (349)

We then have that

/ \t
t CotA) Wd(A)

=

_________________

\ Wd(A) Co*(A)

— ( Co(A)t _Wd*(A)t
—

Wd(A)t Co*(A)t

— ( Co(A) Wd(At)
—

_Wd(A) Co*(A)

= t®A=h(At) (3.50)

E

3.2.2.2 The Simulation Algorithm

Let Ô be a quaternionic circuit composed of s elementary gates of at most d quaterbits.

and let Q be its quaternion linear operator. Then the quantum simulation algorithm for

Ô will be very similar to that described in Section 3.1.3.

Step 1 Serialise the given circuit Ô according to u, i.e. such that Q
Q(S)Q(S_l) . . .

Step 2 for each gate g e {1. s} in the ordering defined by u, let g < ... <gj be the

wires on which the d-arv gate Q9 acts. Replace Q(9) with ut the appropriately

padded (n + 1)-qubit operator for the quantum gate U9 = ît(Q9) acting on wires

91 + 1 < <gd + 1 a.nd the top qubit wire.

Step 3 Construct the overail real circuit C by concatenating the circuits for each level

g, in the same order as defined in Step 1. That is, if U is the operator for C,

then let U = . .
.
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Step 4 Write a description of the quantum circuit C and of its (classical) input state

and ask the quantum computing “oracle” to provide the resuÏt of a measurement

on it.s final state.

Step 5 Perform exactly the classical post-processing on the resuit as the original quater

nionic algorithm.

The construction of the circuit as described in Section 3.1.3 is purely formai, and does

not depend at ail on the actual gates and operators. In particular, other than circuit

operator aigebra, the proof of Lemma 3.7 oniy required that h be a group isomorphism,

fact which we have already estabhshed for îi. Thus we can daim the following equivaient

lemma.

Lemma 3.15. The inverse image of U is preciseÏy Q, i.e. U = h(Q).

3.2.2.3 Initialisation and Measurement

We can maintain the same semantics for o) and j), such as defined in Equa

tions (3.17) and (3.1$), by the using the columns ‘î and îj ofthe new tensor =

( Co
(3.51)

—Wd J
twaN

I) ‘T ® I) = I I ® I) (3.52)

\
CoJ

With these definitions, we have the same base cases for setting the top wire, thanks

to the following lemma, equivaient to Lemma 3.$.

Lemma 3.16. Let I’) be any n-qnaterbit state, then we have that the images of ‘I’o)

and ‘) in the quantum circuit C are

U’o) = 7 0 I) = o) (3.53)

UIî1) = ® ) = Ii) (3.54)

Proof. With the quaternion matrix multiplication rules obtained from Equation 3.40, we
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have

Uo) = (T® Q)(7 Ø o))

= ( Co(Q) Wd(Q) ( Co((o))

Wd(Q) Co*(Q)) _Wd*(o))

-

Co(Q) Co(Io)) - Wd(Q) Wd*(o))
—

- Wd(Q) Co(o)) - Co*(Q) Wd*(IWo))

- t Co(QIo))
-

_Wd*(QJo))

7®(Qo))

(3.55)

Ami sirnilarly for , i.e.

U1) = (T® Q)(T1 ® Ii))

=
Co(Q) Wd(Q) (atj1 =

Wd(Q) Co*(Q))

= ® I) = I’) (3.56)

D

Finally, we need to show that as before we can initialise with any qubit value in the

top wire, ignore it at measurement, and stiil get the same statistics as we would have

with the original quaternionic circuit. For that, we have to show that the equivalent of

Lemma 3.9 is stili true.

Lemma 3.17. Let I) be an arbitrarg n-quaterbit state, Io) and 11;) its images under

ho and h1, and P0 and P1 be their respective partial traces when the flrst qubit wire is

traced out. Then.

Diag(po) = Diag(p1) = Diag()(). (3.57)
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where 1j is the i-th coordinate of ), and we use the properties of Co and Wd in

Eqiiation 3.42. We also have,

(iIpjIi) = (il {— Td()) tA7d*((J) +Co*(I)) Cot((D] i)

= —(il /d(4)) À7d*((DIi) + (il Co*(I)) Co*(KI)i)

=
— Wd() Wd*() + Co*() Co*()

= Wd() Wd*() + Co() Co*()

= IWd(2 + ICo(2 = (3.61)

D

3.2.3 Considerations and Consequences

3.2.3.1 Complexity of Simulation

In terms of simulation resources, the situation is similar to that of real computing.

Circuit width is increased by only one, but circuit depth can be equal to the circuit size

in the worst case.

For circuit size, however, we have to make a slight distinction. While the number of

(cl + 1)-ary gates in the new circuit will be the same as the number of d-ary gates in the

original circuit, one might not be satisfied with this type of gate count complexity for

the quantum circuit, given that we do not know cl and that we have very small universal

gates for quantum circuits. In general, if we suppose that the original circuit given to

us is constructed with some set of universal gates, then the simulation will depend on cl,

the number of quaterbits in the largest gate in the universal set. In particular, if cl > 3

we might require to decompose such a gate Qg into a set of elementary 3-, 2- or 1-qubit

gates, universal for quantum computing.

We can assume wlog that we are given a full description of Q9 in terms of its 2d x

quaternion matrix. We can then use the generic method for decomposing the matrix for

the image quantum operator U9 = î(Q9) into our set of elementary gates. Since U9 is a

21 x 2d+1 matrix this might require O(2d) time, and furthermore up to 21 elementary

gates might be required to decompose of Q9.
If a “nice” universal set is being used where cl is a small constant, then this decom

position will occur in 0(1) time and will produce 0(1) extra gates. Hence, we have that
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the total gate count is not exactty n, but is stiil in 0(n). The circuit depth which could

aiready be as large as s, could be increased further by gate decomposition, but again,

only by a constant factor.

While we have not goe through the exercise of looking for a finite universal set of

elementary gates, that would be computationally universal for the symplectic group, we

believe that one exists. Even without the luxury of a finite universal set, it would be in

principle sensible to define a computational model using quaternionic gates, as long as

the description of ail circuits (and their gates) can is of iimited size and can be uniformly

generated. In fact, our resuits do not need the existence of a universal set; they just

would make the computing model more “realistic.”

On the other hand, let us also consider a variety of quaternionic circuits which includes

gates of arbitrary degree —since we cannot show a “nice” universal set with constant

degree gates, let us do so for the sake of completeness. In that case, if the circuit

description has size polynomial in n, then the description of Q9 must also be of polynomial

size, and this puts an upper bound on cl, i.e. cl 0(Ïogn). Thus, in the worst, case,

we can have that each Q9 will require 21 = 0(n) elementary quantum gates, ail in

series, with a resulting 0(n) depth and size overhead for each gate. Computing these

decompositions would take tirne at most 0(n) per gate. We summarise these results in

Table 3.1.

Quaternionic circuit Quantum circuit
width n n+Ï

size S $25+1

depth t t2’

Table 3.1: The overall resources needed to simulate a quaternionic circuit built with d-ary
gates, with a quantum circuit built with 2-ary gates.

We stress the fact that this is a worst case scenario due to the fact that we caillot

bound cl by a constant, as we have not yet shown any universal set of quaternionic gates.

If we did, then cl = 0(1), and the results would be the same, up to a constant, as those

for Theorem 3.3.

3.2.3.2 Interpretation

Because of the similarity of the constructions of Theorems 3.3 and 3.11, we can give

them similar interpretations. More concretely, if we label the basis of the 2N-dimensional
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complex Hilbert space as Ib) = î10(Ib)) and b,) = îi1(Ib)), and order them accordingly.

we can give the same semantics to the extra wire required by the simulation. This is, the

extra quhit is at the top of the simulating circuit. and in a similar way as before keeps

track of the “phase” information hetween both orthogonal subspaces of the complex

Hilbert space spanned by the lb) and b) base vectors. In this case, however, this

information requires the full “power” of a qubit, and not just a rebit. This is due to

the fact that the phase information is defined by a unit quaternion, which cannot be

represented by just one angle (as is the case for a unit complex number).

We can infer, that with this same method it is not possible to simulate an n quaterbit

circuit with only n + 1 rebits. The following corollary, however, shows that just one extra

rebit is sufficient.

Corollary 3.18. Any temporal chain u of an n-quaterbit quaternionic circuit can be

exactty simutated by an (n + 2) -rebit real circuit.

Two proofs are possible. First, we can simply combine the results of Theorems 3.3

and 3.11. IViore interestingly, however, a direct proof is possible by using the standard

representation of quaternions as 4 x 4 real matrices, which suggests the following tensor

Re 1m -Km -Jm

-1m Re -Jm Km
(3.62)

Km Jm Re 1m

Jm -Km -1m Re

where Jm(&) a2 and Km(&) a are the “other” imaginary parts of quaternion &.

This tensor induces a group isomorphism from Sp(N) to SO(4N), which has ah the

properties required for the simulation to be sound.

It is also interesting to note that the converses of these theorems are not necessar

ily true. In other words. not ahi (n + 1)-rebit/qubit circuits can be simulated by n

qubit/quaterbit circuits. This stems from the fact that h and îi do not span the whole

So(2N) and $p(2N), respectively. as a simple counting argument shows. From a com

plexity point of view. this gives evidence of how little the actual amplitude structure does

to change computational power, and further points to what we believe is the ultimate

cause for the “quantum speedup”, the possibility for these amplitudes to destructively

interfere.



CHAPTER 4

COMPLETE PROBLEMS FOR PROBABILISTIC AND QUANTUM

C OMPUTING

As we discussed in Chapters Ï and 2, the action of circuit gates can in ail cases be thought

of as a linear transformation. It is natural then to represent such gates with matrices

defining linear transformation with respect to the canonical basis. Even though this is

not usual, one can even use this formalism for transformations between spaces of different

dimensions

Representing gates in this way brings a significant operational advantage when ma

nipulating and studying circuits. By the semantics given to these matrices as acting on

PD- or PA-vectors by right multiplication, we obtain the following intuitive ruies:

1. If a gate as k inputs and t outputs, then the corresponding matrix wili be of

dimension 21 x

2. If two gates are put one after the other, i.e. “in series”, it is because the number

of output of the first gate li coincides with the number of inputs k2 of the second.

This impiies that the matrices U and V representing them are multipliable in re

verse order. If the underlying aigebra is associative, then matrix product will also

be associative and thus the matrix VU represents the linear map associated with

combining both gates in such a fashion. This is shown in Figure 4.1(a).

3. If two gates are put side-by-side, i.e. “in parallel”, then there is no restriction about

their sizes. The matrix describing this gate combination is the tensor product U®V,

where U represents the gate on the top. This is shown in Figure 4.1(b).

These rules suggest a direct relationship between circuits and the theory of tensor

formule, a generalised type of equations involving matrices as variables. In this chapter,

we wili exploit this relationship to come up with a series of natural compiete and promise

complete problems for some of the most significant ciassical and quantum complexity

classes. We start in Section 4.1 by introducing the notion of tensor formula. We then

formally describe in Sections 4.2 and 4.3 the relationship between circuits and tensor

formule. Finaliy, we introduce in Section 4.4 a type of tensor formula problem whose
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zju1vzÏui

(a) Serial Composition

_____

U®I®V

(b) Parallel Composition

variations will 5e complete or promise-complete for the classes that we are interested in,

thus allowing us to complete our unified map of classicai and quantum complexity theory.

4.1 Tensor Formule and Related Definitions

Let M denote the set of ail matrices of order k r £ over a semiring S (Definition 2.54).

The (i,j)-th entry of Ais denoted by or the transpose of A by At, audits inverse,

if A is an invertible square matrix, by A—’.

Scalar multiplication, addition and multiplication of matrices form the basis of matrix

calculus and are defined in the usual way. Scalar multiplication, addition, and multipli

cation of matrices over a semiring are compatible with transposition and with conjugate

transposition for semirings where a conjugation operation * has been deflned, i.e.

(a.A)t=a.At (a.A)t=a*.At

(A.a)t=At.a (A.a)t=At.a*

(A+B)t =At+ Bt (A+B)t =At+Bt

(A. B)t = Bt . At (A. B)t = Bt . At

Furthermore. if A and B are invertible square matrices having inverses A1 and B’, then

(A. B)’ = B’ .
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A matrix U is unitary if its conjugate transpose is equal to its inverse, i.e. Ut U’. In

semirings where conjugation is equal to the identity operation, i.e. where U = U, it is

usual to eau such matrices oTthogonaÏ. In the remainder of this chapter, we will use the

term unita.ry for both cases.

Additionally we consider the tensor pToduct ® : x — of matrices,

also kiown as Kronecker product[ s83Ï or direct product. For A e AI’ and B e
km.tntheir tensor product A 0 B e M is defined as follows

A®B=

ak,iB ... ak,B

Hence

(A 0 = (A)q.r (B)8,t,

where i = k. (q—1) +s and j = L. (r—1) +t.

The main properties of the Kronecker product of matrices are gathered in the follow

ing identities. These properties are well known[C4Si] and will 5e restatecl for reference

only. They liold true over arhitrary semirings, unless otherwise stated, whenever the

corresponding operations are defined:

Ao(B®C)=(AoB)®C (4.1)

(A+B)®(C+D)=A®C+A0D+B®C+B®D (4.2)

and, if the underlying semiring is commutative, we have

(A o B) . (C o D) = (A. C) o (B . D) (4.3)

Moreover, for arbitrary semirings the Equation 4.3 also holds if B or C are {O, 1}-valued

matrices. Finally, if a is a scalar we have

aØA=aA AØa=Aa
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And for the transpose and conjugate transpose we have

(A®B)t=At®Bt (A®B)t=AtØBt

aiid if A and B are invertible square matrices having the inverses A—’ and B’, respec

tively, we have

(A ® B)—’ = A’ ® B’

As a resuit, note that unitary matrices are closed under multiplication, conjugate

transposition and tensor product.

Definition 4.1 (Tensor Formula). The tensorformutc over a semiring S and their

order are recursively defined as follows:

1. Every matrix F from M’ with entries from S is an (atomic) tensor formula of

order k x L.

2. If F and G are tensor formul of order k x £ and ni x n, respectively, then

ta) (F+G)isatensorformulaoforderkxLifk=mandL=n.

(b) (F. G) is a tensor formula of order k x n if £ = ni.

(c) (F Ø G) is a tensor formula of order km x £n.

3. Nothing else is a tensor formula.

Let T5 denote the set of all tensor formul over S, and define T’ C T5 to be the set of

ail tensor formule of order k x L.

In this chapter we wiil only consider semiring elements whose value can be given with

a standard ellcoding over some finite Ç. Hence, atomic tensor formule, i.e. matrices, can

be string-encoded using list notation such as “[[OO1][1O1]].” Non-atomic tensor formule

can be encoded over the alphabet Z = {O}uÇu{[,],(,),.,+,Ø}. Strings over Z which

do not encode valid formule are deemed to represent the trivial tensor formula O of order

1 X 1.

Let F be a tensor formula of order m x n. Its size, denoted IFI, is max{m, n} and

its tengtk L(F) is the number of symbois in its string representation. It is easy to show

that FI <20(L(F)). The upper bound is attained when F is an iterated tensor product.
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Lemma 4.2. Testing whether a string encodes a vatid tensor formula and if so, comput

ing its order, can be done in deterministic polytime.

Proof. Let M be the Liring machine which, on an input string x, rejects and haits if

the bracketing or operator structure of x are illegal. This can be tested in logspace.

If w is legal, then M continues by running the function order described by the foliowing

pseudo-code:

function order (teilsor F) t tint, int);

var k, L, m, n: int;

begin case F in:

atomic: determine order of F and store it in (k,L);

return (k,L);

(G+H): (k,L) : order(G); (m,n) := order(H);

if k m or L n then hait and reject end if;

return (k,L);

(G. H): (k,L) : order(G); (m,n) : order(H);

if L ni then hait and reject end if;

return (k,n);

(G ® H): (k, L) := order(G); (m, n) := order(H);

return (kL,mn);

end case;

end.

The order function can be implemented on M, using a tape in a pushdown like fashion

to handie the recursive calis. Hence M operates in polytime, since M performs a depth

first search of the formula, and since polynomial space is sufficient to keep track of the

orders in binary notation. The initiai cali order(F) thus returns the order of F. E

Definition 4.3. For each semiring 8 and each k and £ we define va1’ t —* as
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follows:

F if F is atomic

k t
valt(G) + valt(H) if F = (G + H)

Vals’ (F) =

valm(G) . va1’(H) if F = (G . H) and G E T,m

valmt/n(G) ® val’(H) if F = (G ® H) and H E T’’.

That is, we associate with each tensor formula F of order k x its k x £ matrix “value”

in the natural way.

4.2 From Gate Arrays to Formu1a

In principle, it is possible to associate a tensor formula to any kind of circuit, even

a non-reversible one, as long as its gates implement linear operations. However, as we

saw in Chapter 2 restricting the dynarnics to be reversible does not change the power of

computation for any of the complexity classes that we are interested in. In the quantum

case, requiring reversibility is in essence equivalent to requiring linearity; in this case

reversibility cornes “for free.” In the deterministic case, we know that any poly-size

circuit can be converted into one using only reversible gates, also of poly-size. Finally, we

saw that probabilistic poly-time computations can be represented with poly-size classical

reversible circuits aided with an adequate number of random input wires.

On the other hand, irnposing a reversible dynamics does constrain the circuit topology

to be that of a gate array, and therefore simplifies sornewhat the type of tensor formul

that are associated with thern. Therefore, we will restrict ourselves in the forthcoming

to this special kind of circuit.

In this section, we show how to encode gate arrays into specific tensor formule over

au appropriate semiring, and in the next, conversely how to obtain a gate array from a

particular type of tensor formula F. In particular, we are interested in formule with the

following properties.

Definition 4.4. A tensor formula F is sum-free if and only if none of F and its sub

formule has the form (G + H), for tensor formule G and H.

A tensor formula is array-like if and only if ah sub-formule of F evaluate to square

matrices or column vectors.
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Moreover, an array-like tensor formula F is unitary array-tike if and only if ail sub

formule of F evaluate to unitary square matrices, where “unitary” is to be interpreted

as orthogonal when the formule are defined over a semi-ring without conjugation.

We choose the term “unitary array-like” because as we will show, such a formula can

be reorganised as a product of a unitary matrix with a column vector, i.e. as the specifi

cation of a system of linear equations. Observe, that “sum-free array-hke” imphes that

each sub-formula F of a tensor formula fulfils the following properties: If F (G. H),

then G is a matrix and either H is a matrix or a coiumn vector, and if F = (G 0 H),

either both G and H are matrices or both are column vectors.

In the forthcoming, we use the terminology that a gate array is said to be reversible if

and only if all gates in the gate array can be described by unitary (orthogonal) matrices.

Thus, both quantum and probabilistic gate arrays are reversibie gate arrays, as per the

discussion above.

The construction of a sum-free tensor formula from a given gate array is rather

straightforward and is done as follows:

Lemma 4.5. Let C be a (reversibte) gate array operating on n wires, whose gates can

be described by (unitary) square matrices over a semiring S. Then there is a potytime

computabte function, which given a suitabte encoding of C, computes a (unitary) array

tike sum-free tensor formula F0 of order 2’ x 2’ such that for each x = (xi,.. . , x,)

{O, 1}, if gate array C maps b) = x . . . x,) to ), then

2’ 2I) vals (Fc) .

and i) = va1’1(d) for some potytime computabte sum-free tensor formula d.

Proof. Let C be an m-leveiied gate array, where C denotes the i-th level of C, with C1

being the left-most and Cm the right-most level. Without loss of generahty we assume

that each level contains only one gate and moreover each gate acts on neighbouring wires.

This can be achieved by inserting extra swap gates. In the foilowing we describe how to

construct an equivaient tensor formula F0 from C.

If ievel C’ contains a k-bit gate H with 1 <k <n acting on the wires j up to j + k — 1,

for j + k — 1 <n, then

F0 = (ii_1
® H ®

I®n__k+i)
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is the tensor formula of order 272 x 2 which describes the system evolution in the ith

time step.

To complete the description of the sum-free tensor formula F over semiring S let

FC=FCm F02F01,

since according to the usual convention, the input-to-output direction in a gate array is

left-to-right, while in its matrix representation, the array’s action on its input is given as

a product of matrices with a column vector, and is read right-to-left. It is readily verified

that for each x E {O, 1} with 1 <i <n, if C maps ,b) = xi . . . x72) to I) then

= val’2(Fc)

and ) val”(d) for the sum-free tensor formula

xi) ® 1x2) ® ... ® x72).

where as usual O) = () and 1) = (â). Since F and d are polytime constructible from

a suitable description of the gate array C and its input, the stated daim follows. E

Although Lemma 4.5 only applies to input vectors of the form lxi .. . x72), arbitrary

input vectors of the form çb) Zwe{oi} Iw) are appropriately mapped to outpllt

vectors due to the linearity of gate array “semantics,” Observe, that in general it is not

obvions that ail possible vectors b) obey sum-free tensor formula representations; in fact,

only product states and their images under unitary transformations will. Nevertheless,

and without loss of generality, input vectors for probabilistic and quantum computations

do obey sum-free tensor formula representations, since for a gate array on n wires with mi

input bits and 2m2 ancilla bits, i.e. n = mi + 2m2, we find that for a particular input

x = (xi,. .. , xmi) e {O, 1}i the input vector can be described by

my m

l) (®Jxi))
® ( (l00) + 01) +10) + lii)))

where (100) + 01) + 10) + 11)) can be explicitly given without summation. Thus, in

both cases sum-free tensor formul exist.

Moreover, the previous lemma is not restricted to gate arrays operating on n wires
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carrying (qu)bits only. In fact, one can easily generalise the resuit of the lemma such

that it work on gate arrays with multi-valued logic, in the sense that there is a map

ping from {1, . . . n} to the natural numbers, defining the “arity” of the wires. This

approach is even more general than the multi-valued bit approach presented studied in

the literature[ where each wire carnes (qu)dits of same dimensionality. This

more general model allows us to build gates dealing with, e.g. (qu)bits and (qu)trits

simultaneously in a single gate.

4.3 From Sum-Free Formule to Gate Arrays

In the formula to gate array part, we must deal with the fact that a sum-free tensor

formula may contain matrices of various sizes and vectors at atypical locations. In prin

ciple, the latter can be regarded as a non-standard manner of specifying the gate array’s

input. The matrices of various orders, however, cannot 5e readily interpreted in terms

of gate array computations. For instance, consider the sum-free tensor formula

(A® B)(B®A),

where A is of order 2 x 2 and B an order 3 x 3 matrix. These odd-sized orders are discussed

in BFHo2], but will not be discussed here; we will restrict ourselves to power of 2 orders,

representing qubits and qubit operations.

Before we show how to transform a suitable tensor formula into a gate array acting on

(qu)bits, we show that the postulated requirements on a given tensor formula as specified

in the discussion above can 5e verified in deterministic polytime. We omit the proof of

the following lemma, because it is quite similar to the proof of Lemma 4.2.

Lemma 4.6. Testing whether a string encodes a vatid tensor foTmuta and if so checking

(a) sum-freeness,

tb) nnitarity of svm-free formnt.e,

tc) the array-tike property, and

td) whether ati atomic snb-formuta have OrdeTs which are powers of two

can be ail be done in deterministic potytime. D
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Now we are ready to prove the converse relation, i.e. transforming an array-like sum

free tensor into an equivalent gate array, if the formula obeys some additional easily

checkable properties.

Theorem 4.7. Let F be a (unitary) array-tike sum-free tensor formula of order 2 x 1

over semiring 8, where the orders of alt atomic atomic sub-formutce are powers of two.

Then there is a potytime computabte function, which given the tensoT formula F, com

putes e (reversibte) gate array CF oveT $ operating on n wires and an input ‘/‘F) (with

(‘çtYFçbF) = 1), such that
2 1

çF) = vals (F),

if gate array CF maps RbF) to vector IF), and IF) = val”(dF) for some sum-free

tensor formula dF.

Proof. We prove the following more general statement, where we call a tensor formula F

ctosed if F lias order Z” x 1, for some n > O, and open if the order equals 2” x Z”,

for some n > Ï. Let F be a closed (or open) array-like sum-free tensor formula F over

semiring 8 having only atomic sub-formul whose orders are powers of two. Then there

is a polytime computable function, which given the tensor formula F, computes a gate

array CF over 8 operating on n wires and an input ‘/1F) (arbitrary, if F is open), such

that

21val8 (F) if F is closed

F) = val’1(F)
. F) if F is open

if gate array CF maps /F) to vector ql), and ‘F) = val’1(dF) for some sum-free

tensor formula dF.

The statement is shown by induction on the (unitary) sum-free tensor formula F.

If F is an atomic sub-formula, then we distinguish the cases whether F is open or closed:

1. If F is closed, i.e. is of order 2” x Ï, then it specifies the amplitudes for ah pos

sible combinations of values of k input bits. Thus, the trivial gate array CF only

consisting of k wires with no gates at all and the sum-free tensor formula dF = F

satisfies1

F) = val”(F),

‘If working on a fielS instead ofa semiring, one can show the following resuit: Let ç) be a vector over
the field S of Iength 2k obeying () 1. Then there is a matrix A over an extension field of S, whose
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since CF realizes the identity transformation on = val”(dF); this means I)
equals b).

2. If F is a matrix of order 2k x 2k, i.e. formula F is open, then F is interpreted as

the specification of a k-bit gate F. Thus, the gate array CF consists of the single

k-bit gate F acting on k wires and the input to the gate is some 2kdimensional

vector, for example the unit column vector ok) = 0)®k.

Now assume that the statement holds for sub-formulœ G and H of the tensor for

mula F. Thus, by induction hypothesis there are gate arrays CG and CH and inputs I’G)

and I,L’H), that can be specified by sum-free tensor formul dG and dH, respectively. Then

we distinguish two cases:

1. If F = (G . H), then we combine the sub-arrays CH and CG in sequential manner,

where CH is to the left of CG, and define the input to be I’H). It is easy to see

that CG and bH) fulfil the required properties.

2. If F = (G 0 H), then the sub-arrays are combined in parallel, where CG is on top

of CH. Thus, the input equals bG) 0 IbH), which can be described by the sum-free

tensor formula dG 0 dH. Again, the induction assertion is fulfilled.

This proves the statement. Observe, that one can easily show, that whenever F is a

unitary array-like sum-free tensor formula, then ail gates in the gate array CF can be

specified by unitary matrices, and moreover, the input I/’F) obeys (FIF) 1 and lias

a sum-free tensor description. E

The proof above reveals a significant difference between probabilistic and quantum

computation—see the footnote again. In the probabilistic case, the ancilla bits must be

given well prepared to the gate array, since the gate array can only perform deterministic

computations and thus is not able to prepare them itself. In the quantum case, this

preparation is not necessary, since the gate array itself is able to generate them properly.

This means, that in the quantum case one can set ail ancilla bits to, e.g. O), withollt

changing the computational power of the underlying device.

first column equals ), which can be decomposed into an orthogonal matrix Q and an upper diagonal
matrix R whose upper left element equals 1, and both matrices are over S, satisfying A = Q. R. The
proof relies on a careful analysis of the Gram-Schmitt961 diagonalisation algorithm, which inductively
computes an orthogonal (orthonormal) basis from any set of linearly independent vectors. Therefore,
the orthogonal matrix Q may be interpreted as the specification of a k-bit gate Q. Thus, n gate array
consisting of a single Q-gate acting on k wires maps input ‘/) ok) = 0)uk to vector ). Observe,
that if S is n (semi)ring, then n similar statement as that for fields is not true in general.
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4.4 Completeness Resuits

In this section, we use the link established in the previous two sections to find com

plete and promise-complete problems for key classical and quantum complexity classes.

We start by defining promise-free formula-based problems and show their completeness

for deterministic and non-promise complexity classes. We then introduce the necessary

notions of promise problems and promise classes, and reformulate our formula problems.

We will discuss our resuits compared with previous resuits in this area, and finally provide

a “big picture” of the relevant complexity classes in terms of the characterising formula

complete problems.

4.4.1 The Formula Sub-Trace Problem

Intuitively, most of our completeness results derive from the followillg central fact. Let

F be a formula representing a circuit G initialised to some state ‘), then the statistics

of the top wire of the circuit are given by summing the elements of the first half of

the diagonal of the density matrix of the output, which is represented by the formula

F Ft. Since without loss of generality, ail relevant complexity classes can be described

in terms of circuits examining only the top wire, then the ability to evaluate this sum is

tantamount to the computing power of these classes.

Traditionally, the trace of an order n x n square matrix A, denoted by Tr(A), equals

the sum of its diagonal elemellts, i.e.

Tr(A)

We can generalise this notion as follows.

Definition 4.8 (Generalised Trace). For k > O, the k-th sub-trace of a square N x N

matrix A, for short Trk(A), is the sum of its first k diagonal elements, counting dowuwards

from the upper left corner, i.e.

k(A) (A)

For completeness, if k exceeds the order N of A, then the k—th sub trace coincides with

the trace of A. Aiso, we call the haïf-trace of A the sum of the elements of the upper half
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of its diagonal, i.e. its n/2-th sub-trace.

With this generalisation of trace define the following formula problem:

Definition 4.9 (Sub-trace and Haif-trace Evaluation Problems). Let $ be a

semiring. Given a tensor formula F over S of order N x 1 and a natural number k which

is a power of two and is written in binary, the sub-trace evatuation pro btem consists

in determining the k-th sub-trace of va1’(F. Ft). Similarly, the hatf-trace evatuation

probtem consists in determining the N/2-th sub-trace of va1’(F. Ft)

The decision problem version of these problems are the given as follows:

Definition 4.10 (One and Non-zero Sub-trace Problems). The one sub-trace and

non-zero sub-trace problems over a semiring S are the set of 2-tuples (F, k) where F is

a formula of order N x 1 together with a natural number k, which is a power of two

written in binary, for which the k-th subtrace of va1’(F . Ft) is equal to 1, and is

non-zero, respectively.

4.4.2 Promise Problems and Promise Classes

In order to obtain our completeness results we have to deal with promise versions

of the above defined problems. Moreover, we also have to introduce promise cornplexity

classes.

Consider the difference between classical classes PP and BPP. The class PP can be

viewed as a syntactic” class. in the sense that acceptance is defined by simply counting

the number of accepting paths, while BPP can be viewed as a “semantic” class, since for

a nondeterministic machine to define a language in BPP, it must have the property that

for all inputs one of the two outcomes has a ‘clear majority”, i.e. that its probability

is significantly bigger than that of the other outcome. As we saw in chapter 2. we

can also recast this difference in terms of probabilistic or randomised circuits. For such

circuits to accept a language in PP. the (top) output wire must output the correct answer

with probability bigger than a fixed value (flot necessarily 1/2). On the other hand, for a

probabilistic or randomised circuit to decide a language in BPP it must have the property

that the right answer aiways has a clear majority, i.e. a prohability significantly bigger

than that of the wrong answer or, in other words, it must be bounded away from 1/2.

It is not obvious how to verify this property, for all inputs, givefl a description of the

circuit. Thus, it is necessary to introduce the notion of promise probtems and promise
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comptexity classes [E$Y84, Se188]

Definition 4.11 (Promise Problem). A promise probtem is a formulation of a par

tial decision problem and can be specified in the form “R(x) given the promise P(z)?”

where R and P are predicates. That is, on input x, an algorithm solving a promise

problem (P, R) has to correctly decide property R(z) provided that the promise P(x)

holds; otherwise, it can give an arbitrary answer.

More formally, a language L is said to be a solution to (P, R) if z e P implies that

z R z e L. In particular, the set Ris the unique solution to (*,R). Thus, the

promise problem (*, R) is identified with the set R.

This definition allows us to extend classes with built-in promises such as BPP or BQP

by defining their associated promise classes, as follows:

Definition 4.12 (pr—BPP). A promise problem (Q, R) belongs to pr—3PP if and only

if there is a polytime generated family of probabilistic circuits C = {C}, such that if

x P, we have that

i. Que of the answers has clear majority over the other, i.e.

Pr(C(x) = 1) — Pr(C(x) = O)>
poly(n)

ii. If z R, then the correct answer lias clear majority, i.e.

Pr(G(x) = 1) — Pr(C(x) = 0)>
1

— poly(n)

or equivalently Pr(C(x) = 1) > 1/2 + 1/poly(n).

Observe, that (*, L) is in pr—BPP if and only if L is in BPP. Also note that

we could re-formulate Definition 4.12 in terms of randomised circuits by appropriately

substituting probabilities of output with frequency counts over random input choices. For

the quantum case, we can similarly define the promise version of BQP denoted pr—BQP,

by using outcome probabilities of quantum circuits.

4.4.3 Promise Versions of the Sub-trace Problem

Coming back to formula problems, in order to capture the computing power of the

promise versions of the “tractable” classes BPP and BQP, and of their promise-free

“lucky” equivalent PP, we introduce the following variants of the sub-trace problem.
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Definition 4.13 (Majority and Clear Majority Sub-trace Problems). Let S be

a semiring inciuding the rational numbers N or the Boolean Algebra.

1. The majority sub-trace pro btem over the semiring S is the set of ail unitary tensor

formu1 F of order n x 1 together with a natural number k a power of two given

in binary, for which the k-th sub-trace of va1’7(F Ft) is superior to

2. The ctear majority sub-trace pro blem is the promise version of the majority partial

trace problem with the promise that the sub-trace 0f val°(F.Ft) is in [O, ]u[, 1].

where in the case of the Boolean Algebra, S — B, we appropriateiy extend the order

relation in the naturai fashion, i.e. O <x < 1, for ail x e (0, 1), where B = {O, i}2.

$ince we will not only be dealing with the Booiean Algebra B, but also with other

semi-rings such as the rationais Q and the positive rationals Q+ we are not guaran

teed that the vaiues of the sub-traces will be {0, 1}-valued. However, some important

compiexity classes can be formulated in terms of the promise that these sub-traces (or

more importantly the probabilities associated with them) are {0, 1}-valued, such as the

promise versions of the classes P and EQP, pr—P and pr—EQP, respectively. Therefore,

we define the foiiowing promise probiem.

Definition 4.14 (0-1 promise One Sub-trace Problem). The O-1 promise version

of the one sub-trace problem is the promise problem (P, R), where R represents the sub

trace evaiuation probiem (Definition 4.9) and P is the promise predicate indicating that

the sub-trace evaluates to O or 1, i.e.

if vai(F.Ft) e {O,1}
P(F,k)=

S

O otherwise

4.4.4 Completeness Resuits for Q and Q

In order to define a notion of compieteness o promise classes we must define the

notion of reducibility of promise problems.

Definition 4.15. We say that a promise problem (Q, R) is uniformty many-one reducibte

in poiytime to a promise probiem (S, T), if there exists a partial polytime computable

2By this, and in disagreement with the other co-authors of t102], we “abuse notation” and define

the majority problem over the Booleans, even though 1/2 I.
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function f : {x e Q(x) } —*
, such that for every x e we have the Q(x)

implies:

• $(f(x)), i.e. that the original promise is aiways “carried over” if it true and

• R(x) == T(f(x)), i.e. membership in one language is the reduced to membership

in the other.

We are now ready to state the main completeness resuits for the variants of the

sub-trace evaluation problem introduced above.

Theorem 4.16. Let F be the set of alt unztary, array-tike, sum-free formntee. Then, we

have that

i. The O-1 promise version of the one snb-trace pro btem over the positive rationats Q+
(and rationats Q, respectivety), restricted to formutE in F, is comptete for pr—P

(pr—EQP, respectivety) under potytime many-one reductions.

ii. The non-zero sub-trace pro btem over the positive Tationaïs Q+ (rationaïs Q, respec

tivety), TestTicted to formuk.e in F, is compÏete foT NP (NQP, respectivety) under

potytime many-one reductions.

Froof. We only prove the first statement, since the second can be shown by similar

arguments. The hardness of the 0-1 promise one partial trace problem on unitary array

like sum-free tensor formul is shown by a generic reduction from pr—P (pr—EQP,

respectively). By Theorems 2.63 and 2.71, we start with an m-level reversible gate

array C over the positive rationals working on n wires number from 1 to n, whose

accepting subspace is defined by setting the first (qu)bit to 1). Now using Lemma 4.5

we build from C an equivalent tensor formula F0 in polytime. Meanwhile we define for

the gate array’s input (qu)bits x up to x a tensor product d ® x) of order

1 x 2” of n unit column vectors Ix) each of order Ï x 2. By Lemma 4.5, the first 2”’

entries along the diagonal of

val”2 ((Fc
.

. (F .

add up to the probability that the gate array’s first (qu)bit is equal to 0, i.e. that C

accepts x. $crutiny of the reduction shows that the constraint on this probability is
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transported intact from the description of C and x to the partial trace unitary array-like

sum-free tensor formula problem over Q+ instance F d.

In the other direction, we use Theorem 4.7 to translate an instance (F, 2k) of the

partial trace problem variant under consideration into the description of a reversible gate

array CF over m (qu)bits, where m < n, if the order of F equals 2’ x 1, and of its

input Iv’); the 2kth partial trace of

valm’2m (F. Ft)

represents the probability that the top m (qu)bits are equal to O. The promise on the

partial trace is transported unmodified from the input tensor formula to the reversible

gate array.

In addition, the majority problems of Definition 4.13 characterise the following com

plexity classes.

Theorem 4.17. Let F be the set of alt unitary, array-tike, surn-free formutv.

i. The majority sub-trace pro blem over both the positive rationats Q+ and rationats Q
in generat, restricted to formut in F, is comptete foi’ PP under potytirne many-one

reductzons.

ii. The clear majority partiat trace probtem over the positive rationaïs Q+ (rationats Q.
respectivety), restricted to formut& in F, is comptete for pr—BPP (pr—BQP, respec

tivety) under potytime many-one reductions.

Proof. WTe only prove the second statement. for the first statement, observe that PP

equals its quantum counterpart as per Theorem 2.53.

The proof of the second assertion parallels that of Theorem 4.16. Hardness follows

from Theorems 2.63 and 2.71 and Lemma 4.5. while containment is shown with The

orem 4.7, and the fact that the promise on the partial trace problem is transported

unmodified from the input tensor formula to the reversible gate array. E

4.4.5 Completeness Resuits for the Boolean Algebra IR

Theorem 4.18. The one partiat trace, the non-zero partiaÏ trace, and the majority prob

tem over the Bootean semiring ], restricted to the domain of unitary array-tike sum-free

tensor formutc, is comptete for P under togspace many-one reductions.
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Proof. Consider the reversible formulation of P. Note that the diagonal of

val”’2m (F Pt) will only contain a single 1 and zeros everywhere else. Thus, the haif

trace will be 1 if the top bit of the corresponding reversible is equal to one. It is a simple

exercise to verify that in fact since ail conversions from and to formule to circuits can

be doue with logarithmic space. E

In fact, what we have here is a quantum-like re-mix of an oid result. One of the first

problems which was identified as being P-complete was CVAL or Circuit Value problem,

which was defined for non-reversible boolean circuits.

4.5 Summary of Resuits and Open Problems

We summarise our resuits on variants of the partial trace problem over the positive

rationals or rationals in general in Table 4.1.

Sub-trace problem (STP) with appropriate restricted domain

Semiring one STP non-zero $TP majority $TP strict majority STP
with O-1-promise

lB P P P P

Q+ pr—P NP PP pr—BPP

Q pr—EQP NQP PP pr—BQP
R, C, R - NQP PP pr—BQP

Table 4.1: Completeness results summarised.
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About computation with quantum things

Portunately, Quantum Computation is not just a theory. $everal techniques have been

proposed and tested in the laboratory, with which limited scale quantum computing

experiments have been successfully made reality. Despite the fact that it would have

been possible to easily simulate on a classical computer any of the quantum computing

experiments implemented to date (the current record is 7 qubits), these experiments and

techniques have interest on their own.

First, because of being precisely what they are, an opportunity to compute with things

quantum. Beyond the speedups promised by quantum theory of computation, there is a

need and a natural curiousity for doing and understanding how to build and manipulate

these quantum things. Second, they might indeed represent the first step in the long road

to universal, scalable, and usable quantum computers. Whatever the ultimate application

and motivation behind manipulating and understanding the quantum world, from an

engineering point of view these experiments provide a good vehicle for developping and

refining methodologies of construction, control, noise reduction and removal, etc. Finally,

the outcome and problems encountered in performing real experiments can also provide

feedback into the theories that inspired them. In the case of Quantum Computing, one

of the most succesful techniques has been that based on Nuclear Magnetic Resonance.

We have studied NMR QC and even performed some experiments, which has provided

insight in all of the above three facets, as we will see in this second part.

NMR-based Quantum Computing (NMR QC) has allowed teams of researchers world

wide to perform computing experiments involving up to 7-qubits, by using essentially

commercial spectrometers with small liquid-state chemical samples at room tempera

ture. While the widespread availability of N1VIR spectrometers makes these experiments

relatively easy to reproduce and work on, these technique lias severe limitations, both

of a technological and fundamental nature. Most of these difficulties can be dealt with

in small-scale experiments, but these techniques cannot be used with larger scale ex

periments involving more qubits. This lias been described as the NMR QO scalabitity

pro blem. In fact, there is not only one scalability problem, but several, some more

immediate and severe than others.

Among the scalability problems, two of them have particular importance and interest:

register initialisation and final measurement. The type of measurement that can be made

in NIVIR QC experiments differ fundamentally from the idealised projective measurement
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of Quantum Computing Theory. Likewise, the natural initial states of the quantum

memory registers in an NMR QC experiment are much different from those that are

assumed to be available and are used in standard Quantum Computing models and

algorithms.

In this part, we cover the topic of Atgorzthmzc Cooting (AC), which is a technique

that can be used to solve the initialisation problem in certain cases. The technique is

defined and introduced in Chapter 5, where we describe the various theoretical approaches

for this technique, including their limitations and strengths. In Chapter 6 we discuss

the experimental considerations of AC in NMR, including an analysis of its iisefulness

in realistic settings and a high level description of the AC experiments that we have

performed.
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CHAPTER 5

ALGORITHMIC COOLING

“[In NMR] polarisation is like gold.. .“ —Raymond Laflamme

5.1 The Quest for Stronger Polarisation

One of the main limitations of NMR spectroscopy, whether it is used for imagery,

chemical or biochemical analysis, or Quantum Computing, is that the differences in spin

energy levels are very small compared to energy variations due to thermal fluctuation at

room temperature. Thus, even when placed within a strong magnetic fleld the proportion

of nuclei from a macroscopic sample whose spin will be aligned with the fleld, i.e. the

poÏarisation bias or simply polarisation of the sample, is very small. As a resuit, the

tcusable portion of the sample is proportionately very small and hence the detectable

signal that it generates is not very strong either.

Since in order to be able to perform useful tasks, in any of these applications, the

signal strength obtained from the sample must be larger than the background noise,

this problem is often referred to as the Signat-to-Noise ratio pro btem. The quest for a

method to improve polarisation and hence signal strength lias been the Holy Grail of

NMR spectrometers since its infancy.

In this section, we start by introducing the problem and its physical causes. We

continue by reviewing some of the traditional approaches to this problem within the fleld

of NMR. We then quickly describe some of the techniques that have been developed

within the context of Quantum Computing to address this problem, which have been

described under the generic term Atgorithmic Cooting tAC). In Section 5.2 we introduce

some of the mathematical tools behind tAC) by analysing in detail the simpler cases. We

then discuss AC as a scalable technique for improving bias in the context of Quantum

Computing and will explain its limitations in Section 5.3. Finally, in Section 5.4 we

introduce a new Algorithmic Cooling technique, which makes use of the thermodynamical

environment (the “heat bath”) in order to break past the limits of Adiabatic Cooling of

spin.
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5.1.1 Thermal Equilibrium State

The equilibrium bulk spin density matrix of an NMR sample at rooom temperature

o, this is, the steady state solution of the corresponding Schrodinger Equation is called

the thermal state and is given by

o=exP() (5.1)

where k is the Boltzmann constant, T is the sample temperature, and Z is the Zeeman

partition function

t-h1\
Z=Tr(exp

kT

which normalises the density matrix o. If we choose the natural basis of the eigenvec

tors of the corresponding Hamiltonian, i.e. the good old computational basis, then the

diagonal of o represents the probability distributions of those eigenvectors at thermal

equilibrium.

(boIb) exp
(—hEb)

(5.2)

Let us consider first the distribution of the population of M molecules with respect

to one of the spins, without loss of generality the first one. The probability that in an

individual molecule the a given spin is aligned with the magnetic field, i.e. that it is equal

to lzj or 10), is given by P0

P0 = >Pb s.t. lb) = 0b2...b)
b)

$imilarly we define P1, and we have that Po + Pi = Ï. Let us define the polarisation bias

for that spin r as1

sP0—P1 i.e.Po=+ (5.3)

The reduced density matrix for the state of this qubit is diagonal and given by

p= °) (5.4)

Since the signal detected by the coils is the sum of each individual molecule’s signal,

‘In some texts, the hies is instead defined as E = (Po — P,)/2.
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and that parallel and anti-parallel molecules will cancel each other’s signal, the overail

amplitude A of the signal component for that spin is

A=M(Pi-Po)=Ms

It can be shown that when the spin energies are small compared with kT (e.g. at room

temperature), the polarisation bias can be approximated to

zE hw
(5.5)

where w is the resonance frequency of that spin. With current technology (field strengths

in the order of 10 Tesla) and at room temperature, the polarisation bias is pauper, in the

order of io—.

The situation gets much worse when we consider all n spins simultaneously. Let si be

the polarisation bias for the first spin. Suppose then that we could magically “eliminate”

from the sample ail M(1 — s) molecules which do not contribute to the overall signal

strength for the first spiil (because they cancel each other). Consider the second spiil

of the Ms1 molecules left: only roughly Ms1s2 of them would contribute to the signal

for the second spin, where 2 is the polarisation bias for the second spin. It is easy to

show that for small s (which is the case) the overall amplitude A of a coherent signal

including all n modes corresponding to all n spins would be

A MfJs

Since ail s depend on the corresponding which are all within the same order magnitude,

it is easy to see that A will decrease exponentialiy as we increase n. Unfortunately, this

decrease in signal strength cannot be offset indefinitely by signai amplification, as the

noise amplitude does remain constant.

This unfortunate fact has been known for long by NMR spectroscopists, and lias been

their main source of headaches. NMR spectroscopists have been trying for years to find

ways to boost it, transfer it, do away with it, etc. giving Tise to a plethora of spectroscopy

techniques with funny acronyms (see [.Tc] for a small list of them).

In terms of Quantum Computing, this plienomenon also lias direct implications on

the problem of selecting a particular n-qubit pure state from within such a bulk sample:
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the proportion of moiecules that would adopt the desired configuration wouid decrease

exponentially as a function of n if the amplitude of the selecting pulses (i.e. that of

the rotating field) remains constant. This is the essence of the initialisation scalability

probiem in NMR-based Quantum Computing.

5.1.2 Engineering and Experimental Techniques

The Electrical Engineering approach to this problem is simple: amplify the signal as

much as you can (without distortion), and design ail eiectronics in order to protect it

from external noise and minimise internai noise. However, technology has its limits and

current NMR spectrometers aiready use leading-edge microwave electronics. Not much

more can be done with current technology to reduce noise and amplify the signal any

further2.

5.1.3 Thermodynamical or “Real” Cooling

A simple look at the formula for bias in Equation 5.5 already suggests some ways

in which we can improve it. First, the bias is directly proportional to the strength of

the field, so ail we need is a bigger magnet. However, this avenue has been pretty much

walked ail of its length. To give an idea of what we mean, a Commerciai-Off-The-$heif

(COTS) spectrometer for which the ‘H nucleus spin at 400 or 500 MHz, which is suitable

for most types of inorganic and simple organic chemical analysis costs iII the order of 1/2

million $, while a top of the une 900 IVIHz spectrometer costs several million

The other non-constant factor in Equation 5.5 is the ambient temperature T. It is

inversely proportional to the bias, and in principle iowering it wiii increase polarisation.

By lowering the ambient temperature, we are in fact reducing the energy values for ail of

the other non-spin degrees of freedom of the sampie molecuies, including kinetic energy

(linear and angular momentum), intra- and inter-molecuiar potentials, etc. Because, spin

energies only depend on fieid strength and gyromagnetic strengths, which are in principle

unaffected by temperatiire, the ratio of spin energy to thermal energy xviii increase and

so will the bias.

However, in order to achieve significant polarisation increases, say of an order of

2As a rule of thurnb, already a bit less than haif the cost of a Commercial-Off-The-Shelf spectrometer
cornes from its electronics, the other haif being rnostly the cost of its cryogenic superconducting magnet.

3ft it is fact possible to build rnuch stronger magnets, however these magnets, in addition to their
astronornical cost, have the disadvantage they can only be used once...
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magnitude, it would be necessary to lower the temperature to close to 30 K, approxi

mately. While this would not be terribly hard to do from a technological point of view

(the magnet of a typical spectrometer is already being cooled by liquid Helium which

is itself cooled by liquid Nitrogen), at those temperatures the sample would probably

not be liquid anymore. Thus, a lot of the simplifications used in liquid-state NMR, in

partidular the overali isotropy of the spin and the spin-spin interactions would no longer

hold. There is, however, no fundamental reason indicating that the more complex math

ematical treatment required to describe spin and spin dynamics in this case could not be

harnessed to provide a suitable framework for Quantum Computing. This is in fact the

subject of current research in solid-state NMR and other NIVIR-based approaches that

have been proposed for experimental QC.

5.1.4 Polarisation Transfer

But suppose that somehow we knew we had an “algorithmic method” for manip

ulating populations of spins, for example by selectively flipping the spins which were

anti-parallel to the field direction. This would result, by definition, in a higher polarisa

tion bias e’ and also result in an increased signal strength. While this operation would

not result in a decrease of ambient temperature, if we look again at Equation 5.5 this

would result in a new “virtual” temperature also called spin temperature, as follows

/E , E
e = and e = T = T-7 (5.6)

Thus an increase in bias will resuit in a decrease in spin temperature, which is why the

generic term AÏgoTzthmic Cooting as been coined recently within the NMR QC community

for such polarisation increase techniques.

However, while this term is relatively new, the problem of increasing polarisation it

self did not appear with the advent of QC. The oldest and simplest method for increasing

polarisation, which is commonly used in every day NMR spectroscopy is the Insensitive

Nuclei Enhanced by Polarisation Transfer (INEPT). This technique was first proposed

and implemented in 1979 [MF79, sE83] and is commonly used for heteronuclear polarisa

tion transfer from the ‘H to the 13C, in order to take advantage of the higher natural

polarisation of ‘H, approximately four times higher than that of the ‘3C) isotope. From

an algorithmic point of view, INEPT has a vague resemblance to a simple SWAP gate4,

4in fact, the initial part of an NMR implementation of a perfect SWAP gate is almost identical to the
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where the polarisation of the more highly polarised nucleus is transfered to that of the

less polarised one. While its simplicity have made it a routine technique used by NIVIR

spectroscopists, its main disadvantages lie in the fact that the polarisation gain is limited

by the ratios of the gyromagnetic constants —i.e. the polarisation can only be improved

by a factor of 4 in the case of a ‘H to ‘3C transfer— and in the fact that it cannot be

used in homonuclear systems.

From a theoretical point of view, the work of Sørensen at the end of late 80’s
[Sør89, S0r90] provided a sound mathematical framework in which to accomplish two signif

icant achievements in the characterisation of possible polarisation transfer experiments,

namely

1. To provide an absolute upper bound on how much transfer could be achieved.

2. Characterise how such optimal transfered could be achieved.

In particular, in the homonuclear scenario where all nuclei of interest have the same

initial polarisation e, Sørensen’s work provided upper bounds for how much the bias of

a single qubit could be. While $ørensen had already performed in 1989 compression

a.lgorithms polarisation transfer from 3 ‘H onto a single ‘3C, as far as we are aware, the

first completely homonuclear polarisation transfer was performed at IBM Almaden in

2001 [CVSO1] for the case n = 3. These experiments will be discussed in more details in

Chapter 6.

5.1.5 Entropy, Data Compression and Molecular “Heat Engines”

It is also possible to view polarisation transfer as an essentially information processing

operation. For that, let us consider the $hannon entropy of a random variable X over a

domain V = {vy, . . . , vN}, distributed according to probabilities p = Pr(X = v) which

is defined as

H(X) plog—- (5.7)

In particular, consider the entropy of a logical qubit defined by the ensemble of alike

nuclei in a sample5. For the initial thermal state, if we consider the random variable

associated with measuring spins in the direction of the field, the entropy can be expressed

INEPT sequence.
5The correct quantum equivalent for generic qubit states is the von Neumann Entropy, which coincides

with the Shannon entropy for the thermal states.
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as a funct ion of bias as follows

1+E /l+E 1—E /1—E
H(E)

2
log I 2 ) +

2
log

2

E2 E4 E2

— 2 Ln 2 12 Ln 2 2n(2n — 1) Lu 2

=1-
2Ln2

-O(E) (5.8)

Entropy as a function of bias is a monotonically decreasing function. Thus, an increase

in polarisation of one of the spins can 5e seen as reduction of entropy, i.e the amount of

uncertainty about the state of the corresponding qubit.

The celebrated work of Shannon in classica.l Information Theory [548] establishes a

link between entropy of an information source (or the random variable associated with it)

and the ability to compress its output. Without loss of generality, consider a memoryless

information source which outputs bits one at a time, each independently distributed

according to some random variable X with domain {O, 1}. A compression scheme can be

described as a pair of probabilistic procedures E and D (e.g. described as probabilistic

T1’s or circuits, such as those introduced in Chapter 2). The first procedure E on input

a string of n bits of information produced by the information source X will tencode it

by producing a “compressed” string of c(n) < n bits. The decoding procedure D will

then “decode” the encoded string producing and n-bit output which should be (with

reasonable probability) equal to the original string. The link between entropy and this

compression rate c(n) was established by Shannon in terms similar to the above:

Theorem 5.1 (Noiseless Coding Theorem). 6 F0T any (5,E > O, and sufficientty targe

n, there exists a compression scheme with c(n) > n(H(X) + (5) where D witt produce the

original output of X with probabitity greater than 1 — e.

Moreover, no compression scheme exists with c(n) < n(H(X) — (5) such that the

original output is reconstructed with probabitity greater than E.

The quantum analogue of this theorem was discovered by $chumacher [Sch95] and is

very similar except for two significant differences

1. We must consider that in this case what the quantum information source sends are

qubits and not of classical bits.

6Also referred to as Shannon’s “First Theorem” in some Information Theory textbooks.
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2. We allow for the compression scheme to be a quantum process, in which the en

coding is a “string” of qubits.

3. Instead of the Shannon entropy, one must consider the von Neumann Entropy

defined on arbitrary density operators as

S(p) = Tr(plogp) (5.9)

where the log(.) function on linear operator is defined in terms of the Taylor series

expansion of the 10g2 : R+ H-* R function on the reals, which converges for ail

positive linear operators (and in particular density operators).

In essence, both the classical and quantum versions of this theorem teli us that

it is possible to (almost) attain a compression rate of nH(X) for n (qu)bits, but also

that we cannot do any better. Cleve and DiVincenzo went on to show [CD96J that it is

possible to construct poly-size (classical) reversible circuits, that correctly perform the

required encoding and decoding on strings of n qubits, with exponentially decreasing

error probabilities. Their algorithm is essentially classical in nature (it uses oniy Toffoli

gates), but they also show that it is weil suited for the quantum case of encoding a string

of n qubits.

In both cases (classical and quantum), the top c(n) wires of the encoding circuit E wiii

contain the encoded output, with the other n — c(n) wires being in some “uninteresting”

garbage state. The decoding circuit D, when taking as input the encoded c(n) wires,

and —this is very important— having the other n — c(n) ancilla wires set to a fixed

state IO’’)), wiil return on its n output wires the original input to E with probability

exponentiaily close to 1, as long as the c(n)/n is appropriately bounded by the Shannon

or von Neumann entropy of the input wires. Both circuits require an additionai number

of anciliary qubits which are set to O) and returned to that state at the end of the

computation; at most n + 0(1) such anciilœ are required, or only + 0(1) if we are

willing to sacrifice circuit depth.

Now here comes the hnk with bias increase and spin cooiing. Because the thermal

state is essentiaily classical (i.e. the corresponding density matrix is completely diagonal),

let us speak in classical terms without ioss of generality. Suppose that the n input wires

to the encoding circuit E were distributed with bias r and hence had each entropy H(r),

and furthermore that the pair E and D was optimal in the sense of the above theorem,
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i.e that c(n) nH(s). After compression, we expect the entropy of the c(n) compressed

bits to be very high, because otherwise some further compression would be possible under

the same theorem, and thus the compression scheme would not be optimal. On the other

hand, the entropy of the remaining n — c(n) cannot be very high because if it were the

error probability of the decoding circuit D, which replaces them with O’s would be high.

Thus, as a resuit of the compression done by E we obtain as a “byproduct” n(1 — H(s))

bits which with high probability equal to 0, in other words highly biased or “cool” bits.

We can thus see how reversible data compression, classical or quantum, is a type of

algorithmic cooling procedure. Its main disadvantage, however, is that in order to cool

these n(1 — H(E)) bits, we need an extra (/) bits which must be perfectly polarised

with bias E 1 to start with.

Schulman and Vazirani addressed that issue in [$V99] by providing a poly-size cooling

algorithm which works in-ptace, with no requirement for extra qubits. Their procedure

allows cooling of approximately 1/20E2n qubits to within 1 — n10 probability of being 0,

i.e with bias 1 — 2n10 . While not arbitrarily close to 1, as in the case of Schumacher’s

data compression, this polynomial bound is sufficient if the bits cooled to that bias are

used as the initial register of a poly-size quantum compiitation; the final probability of

error of the overali computation will still be be polynomially bounded, and thus it can

be reduces to any arbitrary fixed value.

From a historical perspective, their resuft is fundamental because it provided a glimpse

of hope to the NMR QC community: here was the first fully scalable polarisation transfer

a.lgorithm, suitable for implementation in a NMR spectrometer, i.e. requiring no perfectly

biased ancillary qubits. However, it only offered a gtimpse of hope. At current bias levels

of E = 10, approximately 200 billion qubits would be required to purify a single spin

to the level of polarisation advertised...

To make things worse, it turns out that one cannot do much better. Reversible

compression (classical or quantum) is essentially “adiabatic”, or in information-theoretic

terms it must preserve the total entropy of the system. Let d(n) be the number of per

fectly biased or (almost) entirely biased bits produced by any such compression procedllre

(inclilding [99Ï), i.e. d(n) = n — c(n). In general we will, have

nH(E) = Hinitiai Hfinai > c(n) . 1 + (n — c(n)) . 0 (5.10)

71t is important to note that a polynomially close to 1 bias is sufficient, as long as we will be using
quantum fault-tolerant error correcting codes.
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having only equality in the (theoretical) optimal compression scenario, in which atl of the

entropy is pnmped ont of the bottom d(n) wires onto the top c(n) wires. Thiis, we have

an upper bound on the maximum number of perfectly biased bits that such a procedure

can produce

Theorem 5.2 (Shannon Bound). The nnmber of perfectty biased bits d(n) produced

by any Teversible compression scheme acting on a register of n bits, each in the thermat

state with bias E is bounded by

d(n) <n(1 — H(s)) n22 + Q(4) (5.11)

In particular, we cannot expect to improve the yield of the algorithm of Schulman

Vazirani by more than a factor of 10/ Ln 2 14.4.

5.1.6 Non-Adiabatic Cooling

Another significant breakthrough was necessary in order to bring back the rosiness

to the cheeks of NMR QC experimentalists. Boykin, Mor, Roychowdhury, Vatan, and

Vrijen (BIVIRVV) [BM02] raised to the challenge by importing into algorithmic cooling

something a simple invention more than 200 years old: the radiator. Indeed, as any

mechanical engineer could have pointed out, if you have a “heat” problem, just pump it

ont of your system.

The idea is simple. Once the “top” bits, as it were, have been compressed, their spin

temperature is almost infinite, and in particular higher than the surrounding “environ-

ment” or lattice. This environment, commonly called the heat bath in Thermodynamics,

will be in fact coïder than the compressed bits. The idea then is to pump out the excess

entropy towards the heat bath, naturally returning the overheated bits to their initial

thermal state. The compression procedure can be then repeated to further increase the

bias of previously cooled bits, the overheated bits re-cooled by contact with the environ-

ment, and so on.

This new kind of algorithmic cooling in thus intrinsically non-adiabatic with respect to

the n-bit register that ive are concerned with. The operation of obliviously resetting the

bits to their initial temperature is inherently non-reversible (non-unitary). In particular,

if we consider the entropy of the register alone, it will decrease8, and consequently the

8Flowever, cosmologists and quantum physicists need not despair as, in the grander scheme of things,
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Shannon Bound of Equation 5.11 no longer applies (yeah!). As long as we don’t fun out

of heat bath (which is really acting as a “cold bath”) we can keep cooling our spins...

To be strict from a historic perspective, the term AtgoTithmic Cooting was coined by

Boykin et al. in
[BMR+02]

referring to this technique combining compression and relaxation

with the environment. However we have adopted here the now more common usage of

using “algorithmic cooling” more generically and dubbing the latter technique “non

adiabatic” AC. We will discuss this technique more in detail in Section 5.4.

Rowever, in order to facilitate that discussion we believe it useful to describe the

key techniques and limitations of adiabatic algorithmic cooling (i.e. compression without

exchange of heat with environment) in more detail, as these will be the building blocks

for the construction and analysis of more complex cooling algorithms.

5.2 Basic Building Blocks

5.2.1 The Basic Compression Subroutine and Its Variants

The first building block of cooling algorithm design is the case where we start with

two bits with equal bias. Let ?by,b2 denote the probability that these bits have value b1

and b2. We can consider two cases

1. If both bits had the same value, i.e. b1 b2 then the probability for any one of

them to be O would be

(1 j \(1
P00

_________________________

poo+pii
-

— 1 +2E + E2

— 2(1+E2)

forE«1 (5.12)

thus resulting in an “virtual” approximately two-fold increase of bias.

2. If both bits are different, however, the probability of either of them being O is given

the Second Law of Thermodynamics stili holds: the operations we perform on the combined holistic
system of register and heat bath combined are stiil unitary.
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by

P01 - P10 - (+-)
P0t +p’o P0i+Pio -

= 2(l_E2)
(5.13)

(5.14)

and in this second case we got “unlucky” having obtaining a final bias of.

The trick behind this first compression building block is to try to “force our luck” by

making sure that somehow we select the cases where both bits have the same value. The

simplest possible way of doing this is to perform a CNOT on both bits. If the target bit is

equal to O, then the control bit will have a doubled bias 2s as in Equation (5.12). One

could measure the second bit: if it is O we retain the top bit as a having being “cooled”

and discard it if we obtain a 1, because its bias would be O, as per Equation (5.14).

Unfortunately, measuring qubits is not an option in the NIVIR setting, because of the

unavailability of projective measurements.9

Both the adiabatic Schulman-Vazirani algorithm [S”99] and the non-adiabatic BMRVV

algorithm [BMRo2J use this two-qubit technique repeatedly. They both deal with the

“unlucky” case by using the Law of Large Numbers to deduce that a significant subset of

the control bits must have increased their bias. This makes the analysis a bit complicated

and makes the algorithm themselves quite inefficient.

A simple but crucial improvement to the above technique is the following. Suppose

that we had a third bit, on top of the first two. also with initial bias s. If by measuring

the target bit we obtained a 1, we could replace the original target bit with this new bit;

this can be done with a control swap operation, for example. As a resuit. we have that

the target bit will have a new average bias of

(poo+pii)25+ (p01 +pii)s

+
2) 2s + (1 — 2)

(5.15)

91n fact, if we had projective measurements in NvIR the whole issue cf initialisation would disappear,
as these measurements would provide us with the perfect purification and hence cooling technique.
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Thus, we have achieved a small but significant improvement in polarisation of the target

bit. This technique is the basis for the construction of the Basic CompTession Subrontine

or BC$’°, which will be the basic building block for the design of cooling algorithms. The

circuit for the BCS is shown in Figure 5.1(c). There are other 3-qubit circuits achieving

the same result, such as the Alternate Compression Subroutine or AC$, a slightly simpler

version of BC$ suggested by Mikaeiian [MikOO], and depicted in figure 5.1(d).

(d) Alternate Compression
Subroutine (ACS)

Figure 5.1$ Basic building biocks for the design of AC algorithms.

5.2.2 Optimality of the BCS

The BC$, and algorithmic cooling in general, is best analysed in terms of density

matrices. In the homonuclear case, where ail spins have the same initial bias s, the

initial density matrix P0 is given by a tensor powed of the 1-qubit density matrix p

given in Equation 5.4. Since p is diagonal, so wiil po, with its diagonal given by

/ (1+s)

(1 + s)2(1 — s)

(1 + s)2(1
— s)

(1+s) (1_s)2

(1 + s)2(1
— s)

(1+s) (ys)2

(1 + e) (1 —

(1—s) /

(e) Basic Compression Subroutine (BCS)

1
Diag(po) = Diag(p3) = —

$
(5.16)

10Again, to be “historically correct” the term BCS was coined by BMRVV BM02]
to denote the

2-qubit CNOT-based technique described above. However, the 3-qubit version was so much simpler that
the name stuck to it and is now commonly used.
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In general, the probability that the first (or top) bit is O is given by the sum of the first

haif of the diagonal (the top haif-trace, as we called it in Chapter 4). Because, the initial

density matrix p is diagonal, the most we can hope to do in order to maximise the

sum of the first four elements of the image density matrix is to permute the elements of

the diagonal of p. By simple examination of Equation 5.16, we can see that the only

term in the lower haif-diagonal which is bigger than a term in the upper haif-diagonal is

the 5-th term, corresponding to the base vector 1100). This suggests, another “direct”

compression subroutine, the DC$, which permutes the base vectors 1011) and 1100) and

leaves ail others unchanged. The probability that the top bit is O after such an operation

would be:

POxx ((1 + r) + 3(1 + r)2(1
— e))

= + ( — E) (5.17)

Thus, we obtain that the top qubit would now have a new bias

E’ =
— (5.18)

which is aiways improved if O < r < 1. Even though they are different operations,

their effect in terms of compression of the top qubit is the same in this homonuclear

case, because the half-trace of the resulting density matrix is the same in ail three cases.

Furthermore, they constitute in this case the optimal compression subroutine, because no

other subset of four elements of the diagonal of the initial thermal state density matrix

P0 has a bigger sum.

This is somewhat surprising from an information theoretic point of view. The Shan

non bound (Equation 5.11) seems to allow for a higher rate of entropy transfer. Indeed

if we solve the entropy conservation equation in the optimal case

3H(r) = H(max) + 2H(0) (5.19)

we obtain that Emax v’r, for r « 1, which is slightly bigger than the r’ r of

the BCS. Why this discrepancy? In fact, this discrepancy is also present in the generic

n-qubit case, and we will answer that question in Section 5.3, when we study this scenario.
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5.2.3 The Heterogeneous Case for 3-qubit Registers

Let us now consider the case where we have 3 spins each with different initial bias

61, 82 and 63, corresponding to the lst, 2nd and 3rd qubits, respectively. This could

correspond to a heteronuclear 3-spin molecule or with a homonuclear molecule where

the polarisations have already been manipulated. In this case, we have the following

optimality resuit, jointly due to Sasha Mikaelian and the author.

Theorem 5.3. Let 8a, 6b and e be the ordering of the bias values Ej, 62 and 63, such

that 6a .
Then there are two possibte scenarios for the optimal compression

subroutine onto the lst qubit, discriminated by the quantity

8a — 8b —
E + 8a6b6c (5.20)

as follows

Case 1. If <0 then performing a BC$ is optimal.

Case 2. If t\ > O then swapping the most potarised bit to the top position is optimal. In

particutar, if s = Ea then the optimal transformation is the identity.

Proof Let P0 be the initial thermal density matrix, and let p’ = fiscs P0 llscst be the

density matrix after application of the 3CS routine (whose permutation matrix is repre

sented by fi5cs). The partial trace of p, for the first qubit is:

O
Tr2_3 (pi) = i (5.21)

O (2—E1—E2—E3+s1s2s3)j

By solving the equation 1/2 + 6’/2 = (Tr2_3 (pl))1,i , we obtain a generic expression for

the new bias E of the top qubit, similar to that of Equation 5.18 for the homogeneous

case

E, + 62 + 63
— 618263

E
= 2

(5.22)

In particular, note that this equation is completely symmetric on the bias values.

Assume first that the bits are sorted in the circuit in order of decreasing bias, i.e.
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that (Si, 2, 53) = (sa, s, se). Then, the values in the upper haif-diagonal of po are

1
(1+Sa)(1+Sb)(l+Ec)

(1+Sa)(1+Eb)(1Sc)

+ Ea)(1
— Eb)(i + Sc) (5.23)

while the biggest element in the lower haif-diagonal is

(1Sa)(1+Sb)(1+Sc) (5.24)

The only way to improve the bias of the top bit is if the last term of Equation 5.23 is

less than that of Equation 5.24, which is exactly equivalent to the condition of Case 1

of the theorem statement. In that case, the BC$ (or any of its variants) will accomplish

the required permutation of states. If the condition is not met., then the tenus in Equa

tion 5.23 are already the biggest in the diagonal and no permutation can improve t.he

bias of the top bit.

Consider now the general case where the biases are not sorted as per the wires of the

circuit. If the condition of Case 1 is met then, the optimal bias yield will he obtained

regardless of the ordering of the initial bias values, since new bias for the top bit after

the BC$, Equation 5.22 is symmetric with respect to these initial values. If the condition

of Case 2 is not met, 8a is the maximum achievable bias, by our analysis above, and thus

the best we eau do is swap that bit to the top position, or do nothing if sy is already the

maximum. E

This optimality resuit is somewhat surprising if we consider the following. Similarly

to Equation 5.22, we can obtain expressions for the bias of the 2nd and 3rd bits after a

BC$:

Ei + 2 — 83 + 8i5283

2

E3 = (5.25)

While we expect the residual bias of the third bit s to be negligible, there is stili a

significant amount of polarisation in the second bit ( s in the homogeneous case).

However, the optimality result telis us that this residual polarisation cannot be further
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pumped onto the first bit, and is thus in some sense wasted. We will discuss the reason

why this is so in Section 5.3.2.

5.3 Scalable Adiabatic Cooling Algorithms

Let us now turn to the more generic case where we have an n-bit register with ail bits

having an identical initial bias 80, but where we are only interested in maximising the

polarisation of the top qubit. In order to warm up and introduce some of the analysis

techniques, let us start with a very simplistic cooling algorithm for that case.

5.3.1 A Very Crude n-qubit Cooling Algorithm

Now that we are properly armed with the BCS, we can use it to construct a simple

scalable algorithm for solving the above problem. Let BCS(i,j, k) represent the BCS

operation performed on the i-th, j-th ami k-th wires of a circuit.

function CR UDE-ADIABA TIC-A C (n:int)

for j = 1 to [(n — 1)/2]

BC$(1, 2i, 2i + 1)

end for;

This algorithm simply consists of repeatedly applying BCS m = [(n — 1)/2] times to

the top bit with “fresh” bits each time, in other words the biases of the 2nd and 3rd bits

in the BCS’s above will aiways be 82 = 83 = E.

The first question to ask is, how good is this aigorithm? From a “complexity” point of

view, one must view the initial bias and anaiyse its as efficiency and cost in terms of n. In

terms of cost, the circuit performing it has linear size O(n)’. What is its cooling power,

then? Let 8(i) be the bias of the top bit after the i-th iteration. From Equation 5.22 we

obtain a recurrence relation

8(i+1) l(8(i) + 2E — EE2)

2—E

+ E (for «1) (5.26)

‘10r at most 0(n2) if we are oniy allowed operations between neighbouring bits.
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Since = r, we can solve this recurrence thus obtaining the following solution:

(m) — 2r
1—

f—
1+r2 2 )

s (2
—

(for (m) «1) (5.27)

Also note that the asymptotic limit when we start using more and more bits to boost

the top bit will be:

lim
([(n_l)/2]) = 2s

<2r (5.28)
1+s2

In summary, no matter how many bits we use in our register we will only be able to

double (at most) our initial bias. However we will approach that limit exponentially fast

as we increase the number n of bits used to cool the top bit.

But is in fact blindingly applying BCS with fresh qubits at each iteration the best

strategy? Is it not possible that we might hit a point where doing BCS will do more

harm than good, as in Case 2 of Theorem 5.3, and thus that the bias attained 8(j) might

acttially start decreasing? The answer is no. We can rewrite Equation 5.26 in terms of

the discriminant A of Theorem 5.3 as follows

_(i±1) = (i) —

2

from this, we deduce that the bias will decrease only if A is positive. But, in this case

A = — 2s +

= (i)(1 + 2)
— 2s

2 n±1

= —2s ( ) <o, since o < r < i (5.29)

In fact this algorithm is far from optimal as one might guess. The fact that one can

at most increase the polarisation by a factor two, irrespective of the number of qubits is

a big due.

5.3.2 Upper Bounds on Cooling Efficiency for Adiabatic Algorithms

As mentioned above, the work of $ørensen is a fundamental landmark in under

standing the limits of Algorithmic cooling. However, his key result is what he called a
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“universal bound on spin dynamics”, whose implications go far beyond AC, and bas in

our opinion been unfairly overlooked by the QC community.

Consider the generic situation where we have an arbitrary abstract quantum system

(spin-based or otherwise), whose initial state is described by a density matrix po. Suppose

further that, for whichever reason, we would like to transform as much as possible this

system into a target state p, but in doing so we are limited by the laws of quantum

mechanics, i.e. we are constrained to using unitary transformations on the LiouviÏle space

of which p is a member (i.e. no ancillœ are allowed).

First of ail, one must realise that we cannot aiways fuliy accomplish our objective, as

there does not necessarily exist a U such that p = UpoUt, or in other words, po and p

need not be similar matrices (they might have different eigenvalues). However, we might

be content with transforming po into “as much of” of p as we can, or in other words we

seek to transform po into a p”

p0 p’ = Up0U1 = ap + bp (5.30)

where p-i- is “orthogonal” to p in the Liouville space , i.e. (p, p) = Tr(ptp±) = 0. The

coefficient a represents the projection of p’ onto the target subspace of the Liouville space

spanned by p, or “how much of p” is in p’. Our objective is thus to find the transformation

Umax that will maximise the modulus Ia of this coefficient.

Theorem 5.4 (Sørensen). Let )> ... Àiv and jii > ... > ,ur be the eigenuaÏues of

po and p, respectivety, oTdeTed and possibty repeated. Then, the maximum and minimum

vatues of a in Equation 5.30, over’ att unitary transformations U, are given by

N N

Z À iti Z i /tj
i=1 i=1

amax
N

and amjn
N

(5.31)

Zi4 Zi4
i=1 i=1

We can apply this very general theorem to algorithmic cooling, not by considering the

density matrices po and p but their non-identity part or deviation matrices, as they are

often called by NMR spectroscopists. The initial deviation matrix is 5 P0 — 1/2’I,

where no is the thermal density matrix for n bits, each with initial bias E. The desired

“target” density matrix p is the tensor product of the 1-bit thermal state density matrix

Pa for the first bit, and the identity for ah the others bits. This density matrix and the
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corresponding deviation matrix S are given by

p = p ® (5.32)

S = s (u ® In_i) (5.33)

where PE is given in Equation 5.4. The maximum bias transfer ratio is then given by

the maximum value of the projection amax of 6o onto the subspace of 6. By applying

Theorem 5.4, Sørensen calculated the following absolute bound on polarisation transfer

onto a single bit.

Corollary 5.5. The maximum bias max achievabte on any given qubit by apptying a

unitary transfoTmation on an n qubit system initialised in the thermat state po prn is

given by
- ()(2m+1)

5max—5 22m

where m = and foT s « 1

It is particularly interesting to compare this value with the Shannon bound. If we

take Equation 5.19 and apply it to the n-qubit scenario we get

nH(s) = H(Emax) + (n — 1)H(0)

= H(Emax) + n — 1 (5.35)

which for s « 1 gives us

max (5.36)

By using Stirling’s formula, we can obtain an approximation of the bound in Equa

tion 5.34 which gives a better intuition on how it grows with n

max (for n odd) (5.37)

From this, we eau see that the ratio between the Shannon and Sørensen bounds converges

to 0.80 as n becomes large.

The fundamental reason why the Sørensen bound is worse, not only in this case but

in general, is because ultimately unitary transformations cannot change the eigenvalues
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of a density matrix: they can only permute them. Since the projection value u depends

on these eigenvalues, the Sorensen bound is a natural consequence of this limitation of

unitary matrices.

We can draw from the SØrensen bound two further interesting consequences. First of

ail, the Sørensen bound as computed for this case is not completely tight either. Consider

the homogeneous 3-bit case. For n = 3, we have m = 1 and hy Equation 5.34 we have

that the maximum achievable ratio is E. We know however from Theorem 5.3 that the

BCS is optimal in this case, but only has yield E — E. This difference of e is due to

the fact that the initial state po used by Sørensen to compute the bound in Equation 5.34

is only the first order approximation of the corresponding thermal state, i.e. in the case

n = 3 we have that

p3 = (III + s(ZII + IZI + Zil) + e2(ZZI + ZIZ + IZZ) + E3ZZZ) (5.3$)

(III + E(ZlI + IZI + 711)) = po (for E « 1) (5.39)

Second of ah, we can now see that the simple cooling algorithm of Section 5.3.1 is far

from optimal. In that case, we could at most double the initial bias, while the Sgrensen

bound even though more restricted by a constant than the Shannon bound, stiil allows

for the polarisation to grow as O(/) when we increase the number of qubits.

The next question to ask is whether it is possible to find coohing algorithms which

attain the optimal yield of the Sorensen bound. The answer is only a semi-satisfactory yes.

Sørensen [589j does describe a generic method for obtaining optimal “pulse sequences”.

In principle, the method is simple

Step 1. Find unitary transformations U and V diagonalising the initial and target de

viation matrices 6o and 6. i.e. such that c5 = U60U and 6’ = V6Vt a.re both

diagonal.

Step 2. Find unitary transformations U’ and V’ ordering the eigenvalues of 6 and 6, i.e.

such that the diagonals of 6 = UI6UIT and 6> = VI6V1t are in decreasing

order from top left to bottom right.

Step 3. Construct an n-wire circuit performing operations U’U and apply it to the initial

state po.

The projection of the final deviation matrix 6’ = U’U60UtU’f obtained in Step 3 onto 6
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will be exactly amax, as we cari rewrite Equation 5.31 as

amax (5.40)

In the algorithmic cooling case, because the initial state po is already diagonal, we

need not worry about Step 1. However, it is not clear that there aiways exist poly

size circuits for these unitary transformations. The Cleve-DiVincenzo implementation

of Schumacher compression does in essence compute this ordering of the elements of P0,

and while it can be implemented with poly-size circuits using as littie as n + O(.y), we

beheve that it has not been proven or firmly established that such an ordering can be

accomplished in-place with poly-size circuits in ah cases, or more precisely a polytime

algorithm that can generate such circuits.

What about the heterogeneous bias case for n-bits? Sørensen describes and gives the

bound for one such simple case, in which the top bit has bias eo and ail others have bias

E, which corresponds to the typical NI\’IR scenario of transferring polarisation from, say,

n — 1 ‘H nuclei to a single ‘3C nucleus. In this case, the bound is essentially multiplied

by the ratio of gyromagnetic constants -y, in this example approximately 4. For more

complex cases, such as the anaiysis of intermediary steps in more complicated cooling

algorithms, the universal bound of Theorem 5.4 can be readily apphied.

5.4 Non-Adiabatic Algorithmic Cooling

From the NMR QC point of view, the Shannon or Sørensen bound are bad news. As

mentioned before, we cari at best expect a polarisation ratio of O(/) for single bits,

and thus in order to cool m bits close to bias 1, we still need 2(s2m) bits at bia.s E.

Non-adiabatic cooling presents an opportunity to overcome this barrier.

5.4.1 The Basic Non-Adiabatic Case: 3-qubit Register

As before, and to illustrate the principle, let us present a simple case: that in which

only three bits are available, but where one of them has the capacity to return to its initial

natural bias E(0) “on demand.” We can view this special bit as a “radiator bit,” which

has contact with the environment (heat bath), and when it gets “warmed” to higher

temperature than that of the environment (i.e. a bias less than E(°)) has the ability to

pump out its entropy onto the heat bath. Abstractly, we model this ability by providing
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a non-unitary primitive RESET, which immediately returns a bit to its initial thermal

state P0 = P(o)

The algorithm is as follows:

function 3-BIT-NON-ADIABA TIC-A C (m:int)

for j = 1 to m

BCS(1,2,3)

RESET(3)

$WAP(2, 3)

RE$ET(3)

end for;

Note how similar this algorithm is to the simple, crude adiabatic algorithm of Sec

tion 5,3.112. At the end of each loop iteration, we will have that the bias of the top bit is

8(i), while the bias of the second and third bits will have been returned to The next

BCS on the next iteration will then have exactly the same effect as BCS(1, 2i, 2i + 1) in

the adiabatic algorithm.

We can thus import the analysis of that algorithm and observe that the bias of the top

bit after m steps will be given by Equation 5.27. By Theorem 5.3 and Equation 5.29, we

know that we are performing at every iteration the optimal internai adiabatic transforma

tion to boost the first qubit. Purthermore, we know that 8(i) 5 bounded (Equation 5.28).

We thus have the following upper-bound on non-adiabatic cooling on three qubits.

Theorem 5.6. The maximum achievabte potarisation bias 8max Ofl a 3-bit register is

bounded by 2sf0), where (0)
= max{s°, (0) is the maximum of the naturat (ther

mat) polarisation biases of each bit.

As discussed in Section 5.2.3, after the BCS step in the above algorithm, there is some

non-neghgible leftover polarisation on the 2nd bit, which is transfered to the 3rd bit and

then “wasted” when we perform the second RESET operation. This seems wasteful but

is nonetheless optimal. This kind of “paradox” is actually quite common in Thermody

namics, as any proud owner of a thermal pump or air conditioning unit will know: in the

summer, it is more efficient to extract “cold” (by evaporating water) out of the warm air

outside than it is to do so from within the colder air inside.
12 fact, the only reason we bothered introducing such an inefficient algorithm was as a prelude to the

non-adiabatic case
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5.4.2 A Truly Scalable Non-Adiabatic Algorithm

Ihe 3-bit non-adiabatic algorithm above is not sufficient for algorithrnic cooling pur-

poses. As mentioned in our historical overview, the non-adiabatic cooling algorithm was

proposed hy BMRVV [BM02] This algorithm uses blocks of ni bits and pushes cooled

spins to one end of such blocks in the molecule. To obtain significant cooling, the ai

gorithm requires very long registers of hundreds or even thousands of bits, because its

analysis relies on the Law of large numbers. As a result, although much better than any

adiabatic technique, this algorithm is still far from having any practical implications.

The algorithm presented here [FLMRO3] is n significant improvement on this first non

adiabatic algorithm. Besides the fact that it is much simpler to describe and analyse, it

requires far fewer bits.

The algorithm is recursive in nature. The base case and initial state is where all the

bits are polarised to their natural initial bias Performing a BC$ on three bits with

such n bias will polarise one of them to a new bias s’ s°). In general, if we have

three bits at positions i1, i2, and j3 of a circuit each with bias si), then the procedure

BCS(ii,i2,i3) will boost the bias of the i1-th bit to

To boost the bias level of the i-th bit to bias level rt), we use the following procedure:

function NA C-bit (i:posn,j:int)

if j = O

RESET(i);

returru

end if

do NAC-bit(i,j — 1);

do NAC-bit(i + 1,j — 1);

do NAC-bit(i + 2.j — 1);

BCS(i,i + 1,i + 2)

Ihe general procedure for cooling ni bits to the bias level is simply:

function NAC-register (m:posn,j:int)

for i = 1 to m

do NA C-bit (i,j)

end for;



181

Let us now consider the performance of this algorithm. In terms of space let s(j) be

the number of bits required to cool a bit to level 6(). In terms of execution time (or circuit

size) let us count the total number of BCS gates used as c(j) and separately the total

number of RESET operations as t(j). The recursive nature allows us to setup recurrences

for the various resources used by the algorithm as well as for the bias attained:

1 (•3 3
=

— —a’3, =

s(j + 1) = s(j) + 2, s(O) 1 (5.41)

c(j + 1) = 3c(j) + 1, c(O) = 0 (5.42)

t(j + 1) = 3t(j), t(0) = 1 (5.43)

Furthermore, consider the equivalent costs for cooling m bits to the j-th level, by using

the NAC-register procedure. Then we have that,

s(m,j) = m + s(j) (5.44)

c(m,j) = mc(j) (5.45)

t(m,j) = mt(j) (5.46)

By solving the above recurrences we obtain the following costs:

8(j+1)
(3)i

(5.47)

s(m,j) =m+2j (5.48)

c(m,j) = m3 — 1 (5.49)

t(j + 1) = m31 (5.50)

From an asymptotic point of view, this algorithm is “essentially” polynomial and

comparable in that respect with the Schulman-Vazirani algorithm. To see this, for most

practicable quantum algorithms it will be sufficient to obtain a final bias only polyno

miaÏly close to one, i.e 8C) = ï — O(poly(n)). Since r°) is constant, this means that j

is roughly O(log n), and that ah resources (space, total circuit size and number of bit

resets) wihl be polynomially bounded.
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In practice, and if we consider typical polarisation biases in liquid NMR at room

temperature, the gains are even more impressive. For an initial bias of i0, for ex

ample, the Schulman-Vazirani algorithm requires 1/20r2 bits to cool one single bit, i.e

approximatively a 500 million bits, our algorithm can obtain a very respectable final bias

of 0.982 with j = 30, thus requiring only 60 bits.

Indeed, the interesting feature of this algorithm is that the bias can be boosted

exponentially fast in the number of bits used by the machine. This is, however, at the

cost of an also exponentially increasing number of operations. Nonetheless, for most

practical applications a limited number of steps will be sufficient, with j between 10 and

20 being sufficient before other techniques can take over such as quantum error correction.

$econdly, it is quite clear that this relatively simple algorithm is not “thermodynam

ically” efficient. We showed in the 3-bit case that even though we were discarding bits

with e/2 leftover polarisation by letting them relax in contact with the environment, this

was optimal and that we could not do better. In this case, however, it easy to see that

because of the extended workspace and numbers of these half polarised bits, some of

the polarisation could be “recycled”. Unfortunately, we can no longer use the bounds of

Sørensen or Shannon to benchmark these non-adiabatic algorithm, and thus a new theory

of efficiency must be developed for them, by importing notions from Thermodynamics

such as Q factors ta kind of mechanical/thermal efficiency factor). This we have been

working on with our co-authors but is stili work in progress.

Even inefficient as it is, it would still be a formidable achievement to implement

such an algorithm even for modest values of j. The implications would go far beyond

the world of Quantum Computing and might have implications in Chemistry, Molecular

Biology, Pharmacology, Medicine and all the other fields which are heavy users of NMR

spectroscopy and imagery, which could strongly benefit from an increase in signal strength

even if only of an order of magnitude (j = 6).

That is why we decided to get our hands wet and set out to implement this technique

in the laboratory. The next chapter covers the resiilt of our musings about the viability

of implementing such algorithms and the experimental resuits actually obtained.



CHAPTER 6

EXPERIMENTAL ALGORITHMIC COOLING

6.1 Previous Work and Objectives

At the beginning of Chapter 5 we reviewed the history of NMR experirnents in Ai

gorithmic Cooling. Such experirnents, of course, precede the coining of this terrninology

with its beginnings back in the late 70’s with the flrst INEPT experirnents. To give an

idea of how cominonplace INEPT experirnents have becorne, let us just point out that

a wide variety of pret-à-porter INEPT sequences are part of the standard software dis

tribution that cornes with any COTS spectrorneter. Because it involves only two nuclei,

the transfer lirnit is sirnply the ratio of gyrornagnetic constants. Nothing rnore can be

done.

Already in 1989 Sørensen reports [559] on an experirnent for the case n 4, involving

3 1H nuclei and 1 13C nucleus in the rnethyliodide rnolecule (CH3I). The polarisation is

transfered frorn the ‘R nuclei to the 13C. If e is the initial polarisation of the ‘3C, this

scenario allows for a rnaxirnurn final polarisation of 6e. Cornpared to a BCS (n = 3),

while the presence of a fonrth spin does not irnprove the upper bound, it does in this case

signiflcantly sirnplify the design of the seqnence. It uses a cornbination of non-selective

hard pulses on the ‘H, which have essentially the sarne chemical shift and refocusing

pulses. This is particularly interesting because it shows an exarnple of successful AC in

a rnolecule which is itself not suitable for NMR QC.

This is in contrast with the experirnent perforrned at IBIVI Almadén in 2001 [c’U,

which uses the three identical spin 1/2 Fluorine nuclei in the C2BrF3 rnolecule to boost

the polarisation of one of thern; no other spins are involved in the procednre. Secondly,

this experirnent used “soft” selective pulses to perforrn rotations on the individual spins

without affecting the others. The experirnental results showed a total boost in polar

isation of 125%. This is in cornparison with a theoretical lirnit of 150%; a significant

achievernent nonetheless.

So, as far as adiabatic AC is concerned, proof-of-concept experirnents had been per

forrned in both the hetero- and horno-nuclear scenarios. Higher bounds, conld only be

achieved with a rninirnurn of 5 spins, a non-negligible feat for a beginner such as the



184

author in NMR QC given that the leading edge of that field involved 7-qubit molecules
[KLMT99J

The logical choice for the author and lis collaborators seemed to be to try our luck

with simple non-adiabatic cooling experiments. We therefore set out to find a simple

experiment in which we could demonstrate the concept of non-adiabatic AC, by obtaining

polarisation biases above those allowed by the $hannon and Sørensen bounds for adiabatic

cooling. The next section introduces and discusses the generic problems associated with

performing this kind of experiments. In Section 6.3, we introduce the molecule used for

our experiments and discuss what can and cannot be accomplished with it. In Section 6.4

we describe the particular objective that we wanted to accomplish and describe the

experimental setup that we used. Finally, we discuss in Section 6.5 the results obtained

and avenues for further improvements and future research.

6.2 How to Build a Radiator

As we saw in Section 5.4.1, already with a three bit register, it is possible to exhibit

bias improvements whidh beat both the Shannon and Sørensen bounds for adiabatic

cooling. However, the main difficulty in performing such experiments is the following:

how does one implement this “magical” RESET operation. As we have mentioned in the

last chapter, the simplest possible way to do so is to simply let the natural relaxation

mechanisms act onto the over-heated spins, which with time will bring them back to their

ambient spin temperature and thus to their initial polarisation bias

The rate at which spins return to their natural thermal state is characterised by the

relaxation time T1 (usually expressed in seconds). For states whose density matrix is

already diagonal (i.e. classical), we can express the rate of return to the initial bias as

follows

r(t) s + (s(O) — s)e_t/T1 (6.1)

where s = (°) is the natural polarisation bias ratio, and e(O) is the bias at time t = O.

Intuitively, as t becomes bigger, the polarisation will quickly increase (or decrease) back

to its initial natural value s, at the rate prescribed by Ti, having gone 63% of the way by

T1 seconds, and 86% after 2 . T1 seconds, and, as a rule thumb, having all but completely

returned (99.3%) to its initial bias after 5 . T1 seconds. Unfortunately, this relaxation

works both ways. While lot bits will cool themselves back to the ambient temperature
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(a good thing), cooled bits also re-heat themselves to the ambient temperature thus

undoing the hard work previously done to cool them. For nuclei typically encountered

in liquid-state NMR spectroscopy, Ti values can range from a few tenth of seconds to a

few minutes.

Ii the ideal abstract world, such as of 3MRVV [BMR+02], ail “computation bits” of

our register have no direct contact with the environment and once cooled do not re-heat.

In other words, they are perfectly “insulated” from the environment or, more precisely,

they have infinite Ti. In this idealised model, there are also rapidly-reaching-thermal

relaxation (RRTR) bits, which have small T1 values and thus once heated can rapidly

corne back to their initial bias. The RESET operations can be applied to such RRTR

bits by waiting for 5T1 seconds, for exarnple, and on the non-RRTR, well insulated

cornputation bits by perforrning a SWAP between a heated computation bit and a RRTR

bit at roorn temperature, which can itself then be quickly reset.

BMRVV further suggest that such an idealised model could be irnplemented in prac

tice by taking advantage of eiectron-nuclear interaction, a technique known as ENDOR

(for Electron-Nuclear Double Resonance). The gyrornagnetic constant of electrons is up

to three order of magnitudes larger than that of protons (for example), which by “sim

ple” transfer can boost the nuclear bias by that much. Furthermore, they typically have

relaxation rates in the order of milliseconds, which allows for repeated reset-compression

cycles before the relaxation of the nuclei (with T1’s in a few seconds) can have any appre

ciable effects. ENDOR experiments have been perforrned for several decades and are well

known. Unfortunately, the electronics of standard COTS NMR spectrometers are not

capable of generating nor handling the extremely high microwave frequencies (in the 300-

600 GHz range) necessary to manipulate electron spins within a typical NIVIR-strength

rnagnetic field of 10-15 Tesla.

Again, since constructing a custom-made ENDOR-suitable spectrometer was much

beyond the ability and pocketbook of the author and his collaborators, simpler ways had

to be found to perform a non-adiabatic experirnent.

In a more realistic scenario, we have that T1’s of computation bits are finite and

we do not necessarily have access to “special” RRTR bits. In other words, we assume

that all bits can be used for computation and that they have varying values of Ti. The

elltropy is pumped out of the system by letting the faster bits in the register relax for a

certain time t. 0f course, the prior compression steps wiU have cooled the more slowly
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relaxing bits, which will during that time t loose some of their gained polarisation. After

relaxation, the polarisation gained by relaxation can be pumped back into the slowly

relaxing qubits, and so on. The hope is that by this process we can pump in polarisation

faster than we are losing it by the natural relaxation of cold qubits.

The waiting time t is a free parameter of the procedure, which can be adjusted to

maximise the final polarisation of the cooled bits. As it turns out, when we combine the

equations for relaxation and for the compression procedures (Equations 6.1, and 5.22 for

the BCS), we observe that the final bias only depends on the ratio between the T1 of

the bits being cooled and those being used to pump entropy ont of the system.

In particular, if we consider the simple non-adiabatic algorithm of Section 5.4.1,

the yield of the procedure after m steps of compression/relaxation only depends on the

respective initial bias values, the ratio between the Ti values for the lst and 3rd bits

T11
(6.2)

and on the waiting times t1, t2, . . . , where at step i we wait for t2 and t2i seconds

for the first and second RESET operation, respectively.

6.3 A Heat Engine with Three “Cylinders”

For practical reasons the Trichioroethylene (TCE) molecule C2HC13 was chosent as

the basis for performing a 3-qubit nou-adiabatic cooling experiment. Ihe sample used

consists of doubly labelled TCE at 98 %, i.e. 98 % of the TCE molecules in the sample

have two 13C’s. in a solution of deuterated chloroforrn (12C2HC13). By convention, we

call Cl the carbon nucleus surrounded by Chlorine, C2 the one with the proton H, and

they are the first and second bit of our 3-bit register. This a natural choice, since the

respective T1’s are approximately 30 and 27 seconds, and 5.5 seconds for H, thus having

a natural T1-ratio of i 5. The first question to ask then is how well can we do given

these parameters.

Let us consider first the scenario where we seek to increase the polarisation of the first

qubit alone. The initial biases are , s, 4E and by Theorem 5.3, the optimal transformation

in this case is simply to perform a swap between Cl and H. After an ideal RESET of H,

the polarisation should be 4s, E, 4E, and then the optimal compression is a BCS, which

11t was well known by one of our collaborators who had used it in various successful 3-qubit NMR

Q C experiment, and a sample was available (they are flot cheap...) for our use.
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gives a final bias of 4.5E. This is good news in the sense that it allows us to obtain a

theoretical bias value ‘3C otherwise unattainable in such a 3-bit molecule, hence breaking

$Ørensen’s bound.

Unfortunately, there is not much room for manoeuvre between doing just a swap (or

an INEPT) and achieving 4s, and achieving the theoretical maximum polarisation 4.5s.

For small initial bias E the final polarisation of Cl after waiting for time t before the BC$

s(, t) = (2 — et + e_t/j (6.3)

Considering that for a fixed , we aiways choose the waiting time t that will maximise

polarisation, we can obtain an expression for maximum polarisation as a function of i as

follows

Emax(17) (2+ 171/(1-) — (6.4)

whose limit as 17 —* Ç is 3/2, as we would expect. The more important issue, however,

is how high does ij need to be in order for us to “break even” and make it worth it for

us to use a RESET of H at all. The bad news is that it is not worth it, because > 1

only if > 8.5, which is not the case for this molecule.

How does one get around this problem? The first obvious answer is to identify other

molecules for which the ratio 17 is more favourable. It it not to difficuit to do so, and

some such as alanine were identified. Another approach is to try to maniputate the Tl’s

to our advantage.

The technique used to do so is the insertion of trace amounts of a paramagnetic

impurity in the solvent, which has the effect of accelerating the loss of magnetisation

of outer electrons and protons with the environment (which now includes the salt). As

a resuit, a marked reduction in the Tl relaxation times is usually observed, depending

on the sample molecule. This is a common technique used by NMR spectroscopists to

reduce long Tl’s in order to be able to reduce the waiting time between experiments

when the same experiment is run automatically several times in order to improve signal

strength by sample averaging.

A commonly used paramagnetic salt is Chromium (III) Acetylacetonate (abbreviated

CrAcAc, and also known as Chromium 2,4-pentanedionate). Fortunately, with TCE the

addition of CrAcAc resuits in a dramatic reduction of the T1 for the H, while that of Cl

is relatively unaffected (we do not care about the reduction of Tl for C2). Lacing the
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original sample with a conceiltration of 233.2 rng/L of CrAcAc sait resulted in the Il

changes shown in Table 6.1.

Ti unsalted salted

Cl 30.85 s 28.3 s
C2 27.45 s 16 s
H 5.46 s 1.88 s
77 5.65 15.05

Table 6.1: T1 relaxation times in trichloroethylene before and after adding the CrAcAc
sait to the solvent. The Ti for the H decreased by 65.6% while Cl and C2 changed there
relaxation times by 8.3% and 41.7% respectively. This represents a 266.4% increase for
the T1 ratio j = T1(C1)/T1(H).

Eveil so, the new T1 ratio i = 15.05 only allows for a meager 4.15E final maximal

polarisation, barely 3 ¾ better than doing a simple INEPT... Since this would leave

us almost no room for experimental error, instead of trying to beat the 4E bound of

Theorem 5.3 (the heterogeneous version of the Sørensen bound for the 3-bit case), we

decided instead to chose another experimental target.

6.4 Bypassing the Shannon Bound

The objective of the proposed experiment was to show that it is possible to use non

adiabatic AC to increase the total polarisation of a molecule beyond what is initially

present in its equilibrium thermal state. In other words, we wanted to show that it is

possible to bypass the Shannon bound on entropy conservation.

The initial entropy H0 of the TCE molecule in its thermal state is given by

H0 = H(s) + H(E) + H(4e)

3
1+1+429

1n4

= 3 — ---r (6.5)
ln 4

which represents approximately 2.9999999987 bits, for a typical liquid NMR polarisation

of iO. In other words, the maximum information storage capacity of our 3-bit register

is 13 lO° bits. More important than these absolute values in bits, are the relative

changes in entropy that the register will undergo during our experiment. Assuming that

at the end of the experiment we end up with qubit polarisations c;, cs, and c3E, then
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ignoring any correlation (coherence) between the bits (qubits), we can have an upper

bound on the final entropy

Hf < H(ciE) + H(C28) + H(c36)

— C +C+ C
82 (6.6)

What we seek is that there is a net entropy decrease, i.e. Hf < H0, which is achieved if

c+c+c>42+1+1=18 (6.7)

As we have disdussed before, we implement RESET operations by waiting for a fixed

amount of time. Also, in the case of the TCE molecule, the coupling constants between

Cl and C2, and between C2 and H are 103 and 201 Hz, which is sufficient to efficiently

perform two-qubit operations between qubits 1 and 2 and 2 and 3. However, the Cl-H

coupling constant is only 8,9 Hz, and is too small for direct two-qubit interactions between

Cl and H. With these constraints in mmd, and from an abstract Quantum Computing

point of view the simplest possible procedure to allow us to beat the Shannon bound

would be the following.

function CooÏ-TCE (tl, t2: real)

1 SWAP(2,3);

2 $WAP(1,2);

3 WAIT(tl);

4 SWAP(2,3);

5 WAIT(t2);

In practice, performing a perfect SWAP operation is too long and unnecessary. Instead,

we use the shorter INEPT sequence to do the polarisation transfer from H to C2 and

then from C2 to Cl. The disadvantage is that at the end of this double INEPT the

magnetisation of Cl is ou the XY-plane of the Bloch sphere, and hence subject to T2

relaxation. Since T2 is much smaller than Tl, in this case in the order of a few hundreds

of milliseconds, we must bring back the transfered polarisation parallel to the direction

of the fteld (the positive Z-axis) in order for it to “survive” longer during the first and

second waiting times. The same must be doue after the INEPT in Step 4 for C2.



190

A high-level block diagram for the compiete experiment is shown in Figure 6.1, and

the detailed pulse sequences for each block are given in Figure 6.2.

Figure 6.1: Block Diagram of the Complete Non-Adiabatic Cooling Experiment on TCE.
The arrow boxes denote an INEPT-based polarisation transfer in the direction of the
arrow. Each polarisation transfer sequence is a bit different from the rest, hence the dif
ferent indices. All the boxes include refocusing for unwanted evolutions due to couplings
and the carbon drifting due to chemical shift. The detailed structure of ail the boxes are
given in Figure 6.2. The time periods t1 and t2 are the delay times in which we wait for
the H to repolarise.

For our experiment, a Bruker DIVIX-400 NIVIR spectrometer was used. The figure

“400” indicates that the strength of the magnetic field is such that the resonance fre

quency of the 1H nucleus is approximateiy 400 MHz. The probe used was a bi-channel

probe. Two transmit channels were available, one used for the 13C frequency range

(approx. 100 MHz) and the other for the 1H frequency range. The first channel is cali

brated to transmit at the rotation frequency of C2, which causes C1’s magnetisation to

rotate along the Z axis with the chemical shift frequency of approximately w, which

was approximately 700 Hz on this spectrometer. Unfortunately, signal acquisition was

only possible on the first channel which meant that only the ‘3C spectra (such as those

shown in Figure 6.3) could be obtained. The expected polarisation of H at the end of

the experiment had to be calculated as a function of its measure T1.

To keep our experiment as simple as possible, only “hard” non-selective pulses were

used on both channels, which meant that every rotation of the ‘3C had to affect them

both. As a general rule, unwanted interactions such as chemical shift, unwanted cou

plings, etc. were eliminated by using refocusing pulses at appropriate intervals, as is

described in Figure 6.2. The sequences were designed and verified by using the NIVIR

Calc package, an NMR-oriented version of the QuCaic Mathematica package developed

by Paui Dumais. These resulted in sequence descriptions in terms of NMR-implementable

operations such as WAIT(t) and ROTa(&), where a = X, Y and O = ir/2, n. These sequences

were then manually converted into Bruker “pulse programs”, which were then verified

13
C

13
C

H
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Figure 6.2: The structures of the boxes in the block diagram from Figure 6.1 are portrayed
here. The letters X, Y denote rotations around the X or Y axis respectively. The
superscript 2 denotes a n rotation, and a bar (e.g. ) denotes a — rotation. The
coupling constants are represented by J0C and JH for the carbons and between the
hydrogen and C2. respectively. The magnitude of the chemical shift between the carbons
is represented by w. Since the coupling and the chemical shift are given here in units
of frequency, the horizontal une is the elapsed time.

prior to going to the lab under various experirnental scenarios (different values of t1 and

t_, errors in calibration. etc.) with the NMRsim simulator provided by Bruker with its

standard software.

6.5 Results and Interpretation

The resuits shown in Figure 6.3 were obtained in April 2002, at NMR facilities of the

Département de chimie, at the Université de Montréal. By integrating the peak shapes

forCi and C2, we obtained values ofc1 = 1.75, c2 = 2.13, and C3 3.72 fort1 = t2 = Ss,

where the c3 is calculated as 4(1 — et/Tl). The sum of squares is then

= 21.44> 18. (6.8)
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From Equation 6.7 we deduce that the final entropy Hf is therefore less than the initial

entropy H0 at the thermal state. We have thus successfully realised the first non-adiabatic

spin cooling experiment, successfully beating the Shannon entropy bound.

I.I.III,I,

126 124 122 120 118 116 ppm

ta)

126 124 122 120 118 116 ppm

(c)

126 124 122 120 118 116 ppm

(b)

126 124 122 120 118 116 ppm

(d)

Figure 6.3: These are the spectra of the ‘3C at different stages of the experiment. •The
intensity is in constant arbitrary units. ta) is the spectrum we get after waiting for the
system to fully thermalise and then tipping the spins to the XY plane in order to observe
them. We get (b) after the double INEPT sequence from H to Cl through C2. Cl
has been polarised while C2 has lost almost all of its polarisation. (c) After waiting for
5 seconds to let H regain most of its polarisation, an INEPT from H to C2 is performed.
(d) We wait for another 5 seconds, after which H has regained 93% of its equilibrium
polarisation. The polarisation of the ‘3C’s is still higher than at equilibrium and the
total entropy has gone down by approximately ME2.

Nonetheless, the experiment results are somewhat unsatisfactory for several reasons.

First of all the decrease in entropy is only marginal. In an ideal scenario with infinite

T1’s for the ‘3C and Ti = O for H, and a perfect implementation of the sequences, the

sum of squares of Equation 6.8 can be as high as 42 + 42 + 42
= 48. Our calculations had

however indicated that with the measured Tltirnes of Table 6.1, and with these t1 and
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t2 values, we should have obtained relative polarisations values of slightly at least larger

than 3 for both c and c2. Ihis was unfortunately flot the case. Having verified that

the polarisation of Cl after waiting for t1 had decreased as predicted by the measured

T1 and, similarly, that the polarisation C2 after the second waiting time t decreased as

expected, the only explanation possible is that the problem resides with the “efficiency”

of the transfer sequences.

In fact, the ultimate objective that we had set out to reach was to polarise the whole

molecule to a bias of close to 4r allowing us then to obtain a final bias of 6E on the

Cl, thus achieving with only three spins a single spin bias beyond that which could have

been achieved according to the Sørensen bound. We went as far as designing a BCS-like

sequence for TCE using NMRcalc, and a corresponding pulse program which we verified

with NMRsim. We tested the sequence in the laboratory starting at the thermal state.

According to Equation 5.22, with initial biases E, s, 4s, we should have ended with 3s

polarisation on Cl. The resuit was not even close, with significant leftover magnetisation

out of phase and in the XY plane (even though the sequence was designed to bring it all

back to the Z axis).

Both the failure of the BCS experiment and the inefficiency of the transfer sequence

seem to indicate that the problem is that the effective T2 decoherence time, referred to

as 12* is too small. Ihe width of the peaks indicate a 12* of approximately 60—70 ms,

which is very bad if compared with the “natural” T2 of 400—500 ms that the ICE nuclei

should have. Considering that the BCE sequence is approximately 50 ms long. it is lot

surprising that it was not successful. Ihe INEPI-based transfer sequences being much

shorter, approx. 10—20 ms, were thus more successful. even though not as much we would

need them to in order to obtain more decisive results.

The causes for such a low T2t could be varied and have not been fully identified. The

author and his collaborators suspect that it is mainly due to bad experimental techniques

and setup, such as poor calibration (shimming), impurities (other than CrAcAc) in the

sample, inappropriate filling of the NMR sample tubes, etc. At this time, efforts are

still ongoing at the Technion by some of the collaborators to repeat and improve on the

above experirnents. Improving these resuits with TCE and performing a BCS at the end

of the experiment to obtain a final bias as close to 6s as possible will continue to be our

short-term experimental research objectives.

In the mid-term, and within the same line of research, we intend to explore the possi
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bility of performing non-adiabatic cooling with other more suitable molecules with better

ratios. such as alanine. and in doing SO identifying generic design and implementation

techniques that could make this polarisation improvement tool available to the non-QC

part of the NMR community.

In the long-term, we would like to explore the combination of Algorithmic Cooling

with more drastic technological approaches such electron-nuclear resonance tEND OR),

and possibly solid-state NMR. Even though it is flot clear whether the NIVIR approach

will be the “winner” in the race to build scalable quantum computers, we believe that,

no matter the technology, such bias improvement techniques will play a crucial role in

the construction and operation of such machines. Furthermore, we suspect that the

applications of such techniques will have much farther field of applications than Quan

tum Computing. This is why we intend to continue exploring both the theoretical and

experirnental aspects of Algorithmic Cooling.



Conclusions
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Nihit sub sole nouum...

What has been will be again, what lias been done will be done again;

there is nothing new under the sun.

Is there anything of which one can say, “Look! This is something new”?

It was here already, long ago; it was here before our time.

—The Koheleth, Ecclesiastes 1:9.

Unfortunately, there are no earth shattering resuits on complexity theory in this

thesis. Most of the work was already known, intuitively, by the experts in the field, and

what was not could even be (and lias been) considered trivial. That and more is true.

Yet it was worth doing.

First and foremost because it needed to 5e done: somebody needed to tidy up the

house. Gilles Brassard pointed out to me early on my studies that interference was

the key to understanding the quantum speed up, and that made sense. How could one

make this a stronger statement? The notion of “exorcising” the physics out of Quantum

Computing was definitely inspired by Lance Fortnow. Regretably, lis ideas were not

doue justice by the unfortunate complexity tradition of clinging to Turing IViachine as

the primary model of computation: circuits are far better suited to such generalisations

as we have studied here. I do believe that even though nothing “new” was discovered,

with this work we now are in a better position to introduce new minds to the field of

Quantum Computing, having successfully removed some of the big stones and pitfalls

within which one might fali (at least I did!).

The more I know, the more I know that I know nothing —Socrates

$econdly, sometimes the journey matters more than the destination. Among other

things it is the lessons learned along the way that are what make the journey worth it.

But even more important thant is to discover that we have not learned, i.e. what lies

ahead, what we researchers customarily cails the open questions. What better criterion

to judge the quality of a work than by pondering the quality of what it lias left undone?

Before closing, we will thus come back briefty here to some of the more intriguing and

genuinely new mysteries that this work lias brought to the light of the $un.
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Sed sub tuce sous, noui mysterii.

Extrinsic Quantum Models of Computation

In our quest to exorcise and unify the models of computation, we have corne across

a new non-standard model of computation, which we also called “extrinsic quantum”

computation. It consists of a restriction of quantum computation with arbitrary quantum

inputs (with descriptions that can be generated in poly-time), but limited in the dynarnics

to classical gates (permutations) and possibly phase-shifted permutation. We believe

these models to be interesting, because despite their sirnplicity and apparent closeness

to the standard quantum and classical models, no straightforward resuits of either strict

inclusions or equality seem to be forthcoming.

Quaternionic Computing?

We have shown how a somewhat sensible model of computing can be constructed using

quaternionic amplitudes. A crucial characteristic of this model is that due to the non

commutativity of quaternions, the output to the circuit will depend on the “evaluation

path” of the circuit, as there is no unique circuit operator for ail possible ways of re

combining the gates.

However, any such ordering of gates generates a well defined output, which we have

shown can be simulated exactly and efficiently by a quantum circuit of similar size and

width. This was our main result, which was inspired on a new proof we constructed for

the equivalence of complex and real circuits.

We can interpret this theorem as a general resuit on quaternionic physical models as

follows. If somehow Nature chooses and prefers one of the possible paths of evolution

through the state space, then Nature’s behaviour on such quaternionic systems can be

efficiently simulated by a quantum system of similar complexity. This, provided that we

somehow know which path is prefered.

If this were indeed the case (for example, because the physicists would teil us so), we

complexity theorists might rub our hands together in satisfaction and further sing to the

robustness of the BQP complexity class.

But what if nature somehow did not prefer nor chose one these paths, but somehow

fottowed them alt at the same time. Would there be any mechanism by which the results of

the different computations woiild be weighed (by probabilities or probability amplitudes)?
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Could these paths interfere with each other, in a similar fashion as in quantum models?

Destructively? And if it were the case, could we ultimately harness such extra parallehsm

to achieve a speed-up beyond those achievable with quantum computation models?

The skeptics and realists among the readership might argue that ail of these questions

are completely sterile and voici of interest, because there is not a single kopek (which

is now much less than a cent) of evidence to suggest that such quaternionic models

correspond to anything in Nature, and even less something in it that we could observe

and even less harness for our purposes. If our oniy objective was to one day build a

quaternionic computer, I could no nothing but agree with such skeptics.

Nevertheless, I beheve that one of the major contributions of this work has been to

find and identify a simple and easily explainable potentiai reason why there should not

be quaternion amplitudes involved in Nature: the asymmetry of the possible evolution

paths between two space-time events, even without relativistic effects. This, the physicist

might argue, is the violation of some fundamental principie, and hence not possible nor

likely.

We believe that the continued study of non-standard algebraic models such as those

based on quaternions, but also on the reals, the octonions, and even possibly the finite

fields vil1 continue to bear fruits in that direction. More concretely, we hope that, at

the very least, we might be able to provide more examples of such “weird properties,”

which can be expressed more simplv in the language of information theory than in that

of Physics. For example, it would already seem that the notions of entanglement in these

different models display significant differences (i.e. over-entangiement in the quaternions,

and sub-entanglement in the reals).

Que journey ends, but a new day begins, under the Sua...
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