Amil-3150.9

Université de Montréal |l 732 i

A survey
of

graph and subgraph isomorphism problems

par
Yaohui Lei
Département d’informatique et de recherche opérationnelle

Faculté des arts et des sciences

Mémoire présenté a la Faculté des études supérieures
en vue de 'obtention du grade de
Maitrise és sciences (M.Sc.)

en informatique

Avril, 2003

(©Yaohui Lei, 2003

Université l'“‘\

de Montréal

Direction des bibliothéques

AVIS

L'auteur a autorisé I'Université de Montréal a reproduire et diffuser, en totalité
ou en partie, par quelque moyen que ce soit et sur quelque support que ce
soit, et exclusivement a des fins non lucratives d'enseignement et de
recherche, des copies de ce mémoire ou de cette thése.

L'auteur et les coauteurs le cas échéant conservent la propriété du droit
d'auteur et des droits moraux qui protégent ce document. Ni la thése ou le
mémoire, ni des extraits substantiels de ce document, ne doivent étre
imprimés ou autrement reproduits sans I'autorisation de l'auteur.

Afin de se conformer & la Loi canadienne sur la protection des
renseignements personnels, quelques formulaires secondaires, coordonnées
ou signatures intégrées au texte ont pu étre enlevés de ce document. Bien
que cela ait pu affecter la pagination, il n'y a aucun contenu manquant.

NOTICE

The author of this thesis or dissertation has granted a nonexclusive license
allowing Université de Montréal to reproduce and publish the document, in
part or in whole, and in any format, solely for noncommercial educational and
research purposes.

The author and co-authors if applicable retain copyright ownership and moral
rights in this document. Neither the whole thesis or dissertation, nor
substantial extracts from it, may be printed or otherwise reproduced without
the author's permission.

In compliance with the Canadian Privacy Act some supporting forms, contact
information or signatures may have been removed from the document. While
this may affect the document page count, it does not represent any loss of
content from the document.

Université de Montréal

Faculté des études supérieures

Ce mémoire intitulé:

A survey of graph and subgraph isomorphism problems

présenté par:

Yaohui Lei

a été évalué par un jury composé des personnes suivantes:

Alain Tapp (président-rapporteur)
Gilles Brassard (directeur de recherche)
Gena Hahn (Co-directeur de recherche)

Pierre McKenzie (membre de jury)

Abstract

Graphs are useful as a flexible and versatile data structure for the representation of objects
and concepts. The graph and subgraph isomorphism problems have been thoroughly
studied for decades. They have been drawing great interest in many theoretical and
practical domains including transport planning, chemistry, geography, information retrieval,

automata theory, linguistics, computer-aided-design, mathematics and computer science.

An introduction and preliminaries begin this survey. This includes basic computational
complexity theory, group theory and graph theory. Then, we begin the graph isomorphism
by showing the isomorphism-complete class. Some special graph isomorphisms in the
P class are presented from two approaches: combinatorial approach and group-theoretic

approach.

The survey is followed by an analysis of the subgraph isomorphism problem. First, we
give an overview of complexity results for this problem. Then, we present some special

subgraph isomorphisms such as subtree, planar subgraph, etc.

From the practical algorithms point of view, several graph and subgraph isomorphism

algorithms are introduced. A performance comparison of these algorithms is outlined.

At the end of the survey, we give a conclusion and a discussion of these problems. Since
we usually refer to special cases for these problems, we consider some other possibilities

which might be interesting.

Key words: graph isomorphism, subgraph isomorphism, computational complexity, group

theory, isomorphism-complete class, combinatorial approach, group-theoretic approach

Résumeé

Les graphes sont utiles comme une structure de données flexible et versatile pour la
représentation des objets et des concepts. Les problémes de I'isomorphisme de graphe et
'isomorphisme de sous-graphe ont été bien étudiés depuis des décennies. Ils ont été pris du
grand intérét dans beaucoup de domaines théoriques et pratiques incluant la planification
de transport, chimie, géographie, recherche d’information, automates théorie, linguistique,

Conception Assistée par ordinateur, des mathématiques et informatique.

Une introduction et les préliminaires commencent cette synthése. Ceci inclut la base de
la théorie de complexité du calcul, la théorie de groupe et la théorie de graphe. Ensuite,
nous commencons ’isomorphisme de graphe en montrant la classe isomorphisme-complet.
Quelques isomorphisms spéciaux de graphe dans la classe de P sont présentés de deux

approches : approche combinatoire et approche groupe-théorétique.

La synthése est suivie d’une analyse du probléme d’isomorphisme de sous-graphe. D’abord,
nous donnons une vue générale des résultats de complexité pour ce probléme. Puis, nous
présentons certains isomorphisms spéciaux de sous-graphe tels que le sous-arbre, le sous-

graphe planaire, etc.

Du point de vue d’algorithmes pratiques, plusieurs algorithmes sur 'isomorphisme de
graphe et I'isomorphisme de sous-graphes sont présentés. Une comparaison de performance

de ces algorithmes est décrite.

A la fin de cette synthése, nous donnons une conclusion et une discussion de ces problémes.
Puisque nous référons souvant & des cast spéciaux pour ces problémes, nous considérons

quelques autres possibilités qui pourraient étre intéressantes.

Mots-clés: isomorphisme de graphe, isomorphisme de sous-graphe, complexité du calcul,

théorie de groupe, isomorphisme-complet, approche combinatoire, approche groupe-théorique

I

Contents

1 Introduction and Preliminaries 1
1.1 Introduction 1
1.1.1 Graphisomorphism, 2
1.1.2 Subgraph isomorphism 3

1.2 Basic computational complexity 4
1.2.1 Turing machine 6
1.2.2 Decision problems 10
1.2.3 Polynomial reductions and transformations 12
1.2.4 The classes P, NP, NP-hard and NP-complete 13
1.25 TheclassNC 16

1.3 Group theory preliminaries 16
1.3.1 Group definitions 17

III

1.3.2 Cosets and Lagrange’s Theorem 19

1.3.3 The Orbit-Stabilizer Theorem 20
1.3.4 Normal Subgroups, Homomorphism and Automorphism 21

1.4 Graph preliminaries. 22
1.4.1 Basic graph terminology 22
1.4.2 Graph homomorphism and isomorphism 25

2 Graph Isomorphism 26
2.1 Isomorphism-completeclass 27
2.1.1 Bipartite graph isomorphism 0L, 28
2.1.2 Chordal graph isomorphism 29
2.1.3 Chordal bipartite graph isomorphism 30
2.14 Self-complementary graph isomorphism 33
2.1.5 Regular graph isomorphism 35

2.2 Some graph isomorphism problemsin P 37
2.3 Combinatorial approach 38
2.3.1 Treeisomorphism 38

2.3.2 Planar graph isomorphism 42
2.3.3 Convex bipartite graph isomorphism 49

vV

2.3.4 DBounded distance width graph isomorphism 53

2.4 Group-theoretic approach 58
2.4.1 Bounded eigenvalue multiplicity graph isomorphism 60

2.4.2 Trivalent graph isomorphism 63

2.4.3 Bounded valence graph isomorphism 66

3 Subgraph Isomorphism 70
3.1 Complexity results 70
3.2 Subtree isomorphism 72
3.3 Planar subgraph isomorphism 75
3.4 Embedded subgraph isomorphism 79
3.5 Relational view approach 82

4 Practical Algorithms 90
4.1 Review of practical algorithms 90
4.2 McKay’s Nauty algorithm 91
4.3 Ullmann’s backtracking algorithm - 93
4.4 Schmidt and Druffel’s backtracking algorithm 95
4.5 Performance comparison 98

5 Conclusion and Discussion 100

3.1

5.2

9.3

Review L e 100
5.1.1 On graph isomorphism 100
5.1.2 On subgraph isomorphism 101
5.1.3 On practical algorithms 101
Look ahead 102
5.2.1 Turn toothergraphs 102
5.2.2 Probabilistic vs. deterministic 103
5.2.3 Quantum vs. classical 104
A propos de thissurvey 107

VI

List of Figures

1.1

1.2

1.3

2.1

2.2

2.3

24

2.5

3.1

3.2

3.3

two examples of isomorphic graphs 3
sample computation tree of an ATM 9
classes Pand NP 14
change a graph to a bipartite graph 28
achordal graph &y cemen sesienmaw ¥ e 29
reduction of graph G, Gand G . . . s e e e 8 55w e .. 31
self-complementary graphs 33
self-complementary digraph 34
an example of subtree isomorphism 73
decision tree representation 85
reduction of the decision tree toBDD 86

VII

List of Algorithms

co ~J O

find the minimal tree distance decomposition 55
check if G and H are isomorphic. 56
ISO_CHECK procedure 57
GET_IB sub-procedure, 59
subtree-Isomorphism(G,H) 74
LMDFS on two embedded graphs 81
embedded subgraph isomorphism 82
Nauty algorithm 92

VIII

Chapter 1

Introduction and Preliminaries

1.1 Introduction

Graphs are useful as a flexible and versatile data structure for the representation of objects
and concepts. It is well known that graph representations are widely used for dealing
with structural information in different domains such as transportation, networks, image
interpretation and processing, computer-aided design, pattern recognition, and many other
subfields of science and engineering. For example, the intersections and traffic routes of a
city can be represented by graphs. The intersections are represented by vertices while the

routes are drawn as edges in a graph.

Two graphs are equal if they have the same vertex set and the same edge set. But there
are other ways in which two graphs could be regarded as being the same. For instance, one
could regard two graphs as being “the same” if it is possible to rename the vertices of one
and obtain the other. Such graphs are identical in every respect except for the names of

the vertices. In this case, we call the graphs isomorphic. When graphs are small enough,

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 2

whether two graphs are isomorphic can be detected easily manually, while this becomes

infeasible when the graphs are much bigger.

In this survey, we give an overview of the subject not only from a theoretical point of
view but also from a practical aspect. On the one hand, we give an introduction and
preliminaries to the mathematics in order to make understanding easier. On the other
hand, complicated proofs and algorithms with deep theory background are simplified and
outlined. Nevertheless, in order to keep the integrity and the continuity, some of these

proofs and algorithms are quoted almost verbatim from their sources.

1.1.1 Graph isomorphism

The graph isomorphism (GI) problem was listed as an important open problem already in
Karp [75] over three decades ago. The graph isomorphism problem is deciding whether two
given graphs are isomorphic, i.e. whether there is a bijective mapping from the vertices of
one graph to the vertices of the second graph such that the edges are respected. Much work

[79] is dedicated to the search for an exact isomorphism between two graphs or subgraphs.

It is a problem of interest in many theoretical and practical domains [79] including transport
planning, chemistry, geography, information retrieval, automata theory, linguistics, computer-
aided-design, mathematics and computer science [23, 30, 89]. Graphs represent various
real structures or situations; we want to know whether two structures or situations are
essentially the same with respect to a selected point of view, in other words, isomorphic.
Figure 1.1 gives two examples: one is for the directed graph and the other is for the

undirected graph.

The GI problem is very simple to define and understand, but it seems very difficult to

give an efficient solution, i.e. a polynomial-time algorithm. Because of its theoretical and

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 3

1N

1

Figure 1.1: two examples of isomorphic graphs

practical importance the problem has been studied from many different points of view
[61]. There are some algorithms to solve this problem, but they have an exponential-
time complexity [79]. Hence, time complexity is the main issue of the graph isomorphism

problem.

1.1.2 Subgraph isomorphism

While graph isomorphism treats the isomorphism relation between whole graphs, the
subgraph isomorphism focuses on subgraphs of one graph. Subgraph isomorphism problem
is to determine whether there is a subgraph of one given graph which is isomorphic to
a given second graph. Subgraph isomorphism is very important in computer vision,
bio-computing and image processing. Like graph isomorphism, it has been studied in
depth for both theoretical and practical interests. For example, [127], one of possible
applications of subgraph isomorphism is for finding whether a given chemical compound is
a sub-compound of a further specified compound, given the structural formulas. Moreover,
subgraph isomorphism is an important and very general form of exact pattern matching,

such as string searching, sequence alignment, tree comparison and pattern matching on

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 4

graphs.

Subgraph isomorphism is a common generalization of many important graph problems
[47], including Hamilton paths, cliques, matchings, girth, and shortest paths. Most of the
research on subgraph isomorphism algorithms has been based either on heuristic search
techniques as in [35, 127], or on constraint satisfaction techniques as in [40, 93]. The best
known algorithms for subgraph isomorphism are based on a relational view approach [40]

on exhaustive search with backtracking.

The rest of this survey is organized as follows. Chapter 1 introduces the terminology and
preliminaries on computational complexity, group theory and graph theory. Chapter 2
focuses on the graph isomorphism problem. Complexity results, combinatorial and group-
theoretic approaches to solve graph isomorphism problem are shown as well as polynomial-
time algorithms on special cases of graphs such as trees, planar graphs, bounded valence
graphs, etc. In Chapter 3, the subgraph isomorphism problem is discussed by presenting
complexity results in subtrees, planar graphs and embedded graphs. Another point of view
regarding subgraph isomorphism, the relational view, is presented too. As for practical
algorithms in graph and subgraph isomorphism problems, Chapter 4 shows basic ideas of
major algorithms, Nauty, Ullmann and Schmidt & Druffel, along with a comparison of

performance. A conclusion and a discussion of these aspects are given in Chapter 5.

1.2 Basic computational complexity

In this section, we give a brief overview of computational complexity theory. For more

detailed description, readers are encouraged to consult [3, 110, 111].

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 5

The theory of computation, a subfield of computer science and mathematics, is the study
of mathematical models of computing, independent of any particular computer hardware.
Complexity theory is part of the theory of computation dealing with the resources required
during computation to solve a given problem. The most common resources are time (how
many steps it takes to solve a problem) and space (how much memory it takes to solve a

problem).

Given a problem, we need an algorithm to solve it. How do we know that an algorithm is
a “good” one? A useful measure of performance is “the time or space required to solve a
problem as a function of the size of data”. Generally speaking, computational complexity

theory studies:

¢ the efficiency of algorithms

¢ the inherent difficulty of problems of practical and/or theoretical importance

An important discovery in the area is that computational problems can vary tremendously

in the effort required to solve them precisely.

Definition 1.1 Consider functions f, g: N — R*. Say that f(n) is of the order of g(n),

written f(n) € O(g(n)) (called big-O notation), if there is a positive constant ¢ such that

for every n, f(n) <c-g(n).
Algorithms which have a polynomial or sub-polynomial time complexity (that is, they take
time f(n) € O(g(n)), where g(n) is a polynomial), are often practical.

Algorithms with complexities which cannot be bounded by polynomial functions are called

exponential-time algorithms.

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 6

1.2.1 Turing machine

In computational complexity theory, we use frequently the idea of a Turing machine. A
Turing machine is an abstract model of computer execution and storage introduced in 1936
by Alan Turing to give a mathematically precise definition of “algorithm” or “mechanical

procedure”.

Definition 1.2 A Turing machine consists of:

1. A tape which is divided into cells, one next to the other. Each cell contains a symbol
from some finite alphabet. The alphabet contains a special blank symbol and one or
more other symbols. The tape is assumed to be arbitrarily eztendible to the left and
to the right, i.e., the Turing machine is always supplied with as much tape as it needs
for its computation. Cells that have not been written to during a computation are

assumed to be filled with the blank symbol.
2. A head that can read and write symbols on the tape and move left and right.

3. A state register that stores the state of the Turing machine. The number of different
states is always finite and there is one special start state with which the state register

15 1nitialized. Some states may be designated as “accept” states.

4. A transition table that tells the machine what symbol to write, how to move the head
(“L” for one step left, and “R” for one step right) and what its new state will be, given
the symbol it has just read on the tape and the state it is currently in. If there is no
entry in the table for the current combination of symbol and state then the machine

will halt.

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 7

5. The Turing machine accepts its input if it halts in an “accept” state and refuses

otherwise.

Definition 1.3 An ordinary (deterministic) Turing machine (DTM) is a tuple:

T = <Qv2a1—‘a67q07B7F>

where @) s a finite set of states, T' is the finite set of tape symbols, B € T is the blank
symbol, 3 C T is the set of input symbols, 6 : @ xT' = Q xT'x {L, R} is the move function,

qo € Q 1is the start state and F' C Q 1is the set of final states.

Definition 1.4 An non-deterministic Turing machine (NTM) is a tuple:

T= <Q7 Ea Fa 6a qo0, Guccept, %‘eject)

where Q) is a finite set of states, & is the input alphabet, not containing blank symbol T is
the finite set of tape symbols, 6 : Q@ x ' = Q x ' x {L, R} is the move function, gy € Q is

the start state, Qaecepr € @ s the accept state and Greject € @ 15 the Teject state.

A NTM differs from a DTM in that rather than a single instruction triplet, the transition
rule may specify a number of alternate instructions. NTM can be thought of a generalization
of DTM. At each step of the computation we can imagine that the computer “branches”
into many copies, each of which executes one of the possible instructions. Whereas a DTM
has a single “computation path” that it follows, a NTM has a “computation tree”. If any
branch of the tree halts with an “accept” condition, we say that the NTM accepts the

input.

Definition 1.5 A configuration of a Turing machine is a 3-tuple (u, q,v), where

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 8
¢ uv is the current tape contents;

¢ u is the part (possibly empty) of the string from the leftmost symbol till the scanned

cell of the tape;

¢ if a is the symbol in the scanned cell, then v is the part (possibly empty) of the string

from a to rightmost non-blank symbol.

¢ q is the current state.

We next define Alternating Turing Machine (ATM). Just as an NTM is a generalization of
a DTM, an ATM is a generalization of an NTM.

Definition 1.6 An ATM M = (Q,%,T',6, F) (Q is a set of states, " is the tape alphabet,
0 is the transition function, ¥ is the input alphabet, and F is the set of final states) is an

NTM with the following differences:

1. Each state g € Q is a pair < n,z >, where z € {"Universal”,” Ezistential”} is
a “label” for the state and n is the state name. This partitions Q into a set of
ezistential (3) states and a set of universal (V) states. Fiz an input z. We call
a configuration (tape contents, position of R/W head, state of control) to be an
ezxistential configuration if its state is ezistential. Universal configurations are defined

stmilarly.

2. Acceptance of M: If a Turing Machine can legally go from a configuration C, to
another configuration Cy in a single step according to the transition function, C| is
called the parent of Cy or Cy is the child of C,. Configurations without any children
are called leaf configurations and others are called non-leaf configurations. We now

recursively label each configuration to be either accepting or rejecting as follows.

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 9

(a) A leaf configuration whose state is a final state is labeled “accepting”. A leaf

configuration whose state is not a final state is labeled “rejecting”.

(b) A non-leaf existential configuration is labeled “accepting” if at least one of its
children is labeled “accepting”, and it is labeled “rejecting”, otherwise. A non-
leaf universal configuration is labeled “accepting” if all of its children are labeled

“accepting”, and it is labeled “rejecting”, otherwise.

(c) The M is said to accept the input z, if and only if its starting configuration is

labeled “accepting”.

In thinking about the computation of an ATM, it is helpful to represent the computation

as a tree, see figure 1.2.

{8 BB

Figure 1.2: sample computation tree of an ATM

Each node of the tree is labeled with the machine’s configuration and has arrows pointing
to the configurations reachable by outgoing transitions from the node. The outcome of the
computation is determined recursively as follows. A node which is in the machine’s accept
state gy accepts. A node in the 3 state accepts if and only if at least one of its children

accepts. A node in the V state accepts if and only if both of its children accept. Every

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 10

other node has only one child, and accepts if and only if its child accepts. The machine

accepts if and only if the root of its computation tree accepts.

1.2.2 Decision problems

In the theory of computation a problem is a set of finite-length questions (strings) with
associated finite-length answers (strings). A decision problem is a problem that requires

a YES or NO answer. These problems are also referred to as recognition problems.

A decision problem is usually formalized as the problem of deciding whether a given string
belongs to some specified set of strings, also called a formal language. The set contains
exactly those questions whose answers were “YES”. If there is an algorithm that is able to
correctly decide for every possible input string whether it belongs to the language, then
the problem is called decidable and otherwise it is called undecidable. Important points

are.

¢ If a problem is decidable, there is a Turing machine M that when processing any
instance, z, of P (i.e., any string z on its input tape) will eventually finish in state
accept if T is 2 “YES” instance of the problem and will eventually finish in state Greject

if z is a “NO” instance of the problem.
¢ A problem for which no such Turing machine exists is undecidable.

¢ Decision problems are a whole lot easier to deal with when looking for special
problems, like unsolvable problems, because proposed solutions only either accept
or reject their input rather than producing some likely complex output on its tape

that needs to be analyzed.

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 11

¢ If we can find a decision problem that is undecidable, the we know that there are
unsolvable problems. We don’t need to look for some very complex general problem
that is unsolvable if we can find a very simple decision problem that we can prove is
undecidable by showing that there is no possible Turing machine that could decide

it.

Computer programs, from a tiny “Hello, world!” procedure to a huge operating system,
may be viewed as computing functions. Since all computers employ binary notation,
such functions are defined over sets of binary strings. In considering the question “What
problems can be solved by computers?”, it is sufficient to concentrate on decision problems.
Hence, “What problems can be solved by computers?” is equivalent to “What decision

problems can be solved?”.

Any binary string can be viewed as a representation of some natural number. Thus for

decision problems on binary strings we can concentrate on the set of functions of the form

f:N—={0,1}
INPUT: n a natural number

OUTPUT: 1 if n satisfies a given property; 0 if n does not satisfy it.

An example is the Prime problem: return 1 if n is a prime number; 0 if n is a composite

number.

Decision problems are important because any general problem with an n-bit answer can be
transformed into a decision problem with a YES/NO answer. Solving the general problem
can’t be more than n times harder than solving the decision problem. There are several

ways to do this transform. For example, if the general problem is of the form:

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 12

Given an input X, return the answer string Y’

then the associated decision problem is:

Given an input X and an integer k, return whether the kth bit of Y is 1

1.2.3 Polynomial reductions and transformations

The basic tools for relating the complexities of various problems are polynomial reductions
and transformations. We say that a problem A reduces to another problem B in polynomial-

time, denoted as A o, B if:

1. there is an algorithm for A which uses a subroutine for B, and
2. each call to the subroutine for B counts as a single step, and

3. the algorithm for A runs in polynomial-time.

If Ao, B and B x, A we say that the problems are polynomially equivalent and write

A=, B.

The practical implication comes from the following proposition and its contrapositive:

If A polynomially reduces to B and there is a polynomial-time algorithm

for B, then there is a polynomial-time algorithm for A.

There are three cases related to the proposition.

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 13
1. (A reduces to B) and (B is “easy”) = A is “easy”
2. (A reduces to B) and (A is “hard”) = B is “hard”
3. (A reduces to B) and (B is “hard”) => no conclusion for A - (a very common case)

4. (A reduces to B) and (A is “easy”) = no conclusion for B - (also a very common

case)

That is, if A polynomially reduces to B, then B is at least as hard as A.

1.2.4 The classes P, NP, NP-hard and NP-complete

Definition 1.7 The class P (polynomial-time) consists of all those decision problems that
can be solved on a deterministic Turing machine in an amount of time that is polynomial
in the size of the input; the class NP (non-deterministic polynomial-time) consists of all
those decision problems whose positive solutions can be verified in polynomial time given
the right information, or equivalently, whose solution can be found in polynomial time by

a non-deterministic Turing machine.

Definition 1.8 The NP-hard (Non-deterministic Polynomial-time hard) refers to the class
of decision problems that contains all problems H such that for all decision problems L in
NP there is a polynomial-time many-one reduction to H. Informally this class can be
described as containing the decision problems that are at least as hard as any problems in

NP, although it might, in fact, be harder.

Definition 1.9 The NP-complete is the complezity class of decision problems for which

answers can be checked for correctness by an algorithm whose run time is polynomial in the

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 14

size of the input (that is, it is NP) and no other NP problem is more than a polynomial
factor harder. Informally, a problem is NP-complete if answers can be verified quickly,
and a quick algorithm to solve this problem can be used to solve all other NP problems

quickly.
In complexity theory, the N P-complete problems are the hardest problems in NP, in the
sense that they are the ones most likely not to be in P.

Clearly, P C NP. Is P a proper subset of NP? This is the most important open question
in theoretical computer science. Most people think that the answer is probably “yes”, then
there are some problems in NP which are not in P (See Figure 1.3).

NP—complete

WD

&>

Figure 1.3: classes P and NP

If P = NP then all of the NP problems collapse to P. Ladner [80] shows that this is the

only case.
Theorem 1.1 If P # NP then there exists sets in NP that are neither in P nor NP — complete.

Some people believe the question may be undecidable within the current axiomatization.

A $1,000,000 prize [131] has been offered for a correct solution.

The question “Is P = NP 77 can be rephrased as: if positive solutions to a YES/NO

problem can be verified quickly, can the answers also be computed quickly? Here is an

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 15

example to get a feeling for the question. Given two large numbers X and Y, we might
ask whether Y is a multiple of some integer between 1 and X, exclusive. For example, we
might ask whether 69799 is a multiple of some integer between 1 and 250. The answer
is YES, though it would take a fair amount of work to find it manually. On the other
hand, if someone claims that the answer is YES because 223 is a divisor of 69799, then
we can quickly check that with a single division. Verifying that a number is a divisor
is much easier than finding the divisor in the first place. The information needed to
verify a positive answer is often called a “certificate”. So we conclude that given the right
certificates, positive answers to our problem can be verified quickly (i.e. in polynomial
time) and that’s why this problem is in NP. It is not known whether the problem is in P.
The special case where X =Y was first shown to be in P in 2002 [1], after many years of

research.

The NP-complete term for hard problems essentially means: “abandon all hope of finding
an efficient algorithm for the exact solution of this problem”. We should point out that
proving or knowing that a problem is NP-complete is not all that negative. Knowing
such limitations, people do not waste time on impossible projects and instead turn to less
ambitious approaches, for example to find approximate solutions, to solve special cases or
to alter broblems a little so that they become tractable (even at a loss of some fit to real-life
situation, which is particularly useful in practical application since sometimes we cannot
provide or guarantee an exact mapping between “real life” and theoretical representation).
The goal of this theory is therefore to assist algorithm designers in directing their efforts

toward promising areas and avoid impossible tasks.

A NP-complete problem has the following most important property. Finding an efficient
algorithm for any NP-complete problem implies that an efficient algorithm can be found

for all such problems, since any problem belonging to this class can be recast as any other

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 16
member of the class: they are all polynomially equivalent.

The practical significance of showing the recognition version of an optimization problem to
be N P-complete is that one should not pursue the search for a good optimizing algorithm
for such a problem and be content with finding a good approximating (i.e. heuristic)

algorithm.

1.2.5 The class NC

The class NC (short for “Nick’s Class”, introduced by Nick Pippenger) is the set of decision
problems decidable in polylogarithmic time on a parallel computer with a polynomial
number of processors. In other words, a problem is in NC if there are constants ¢ and k

such that it can be solved in time O((logn)¢) using O(n*) parallel processors.

Just as the class P can be thought of as the class of tractable problems, NC can be
thought of as the class of problems that can be solved efficiently on a parallel computer. It
is unknown whether NC' = P, but most researchers suspect this to be false, meaning that
there are some tractable problems which are “inherently sequential” and cannot significantly

be sped up by using parallelism.

The parallel computer in the definition can be assumed to be a parallel, random-access
machine (PRAM). That is, a parallel computer with a central pool of memory, and any

processor can access any bit of memory in constant time.

1.3 Group theory preliminaries

We begin with a brief review of elementary facts from group theory, which we give usually

without proofs. For details, readers can consult [6, 81]. It is essential to understanding the

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 17

recent approach, group-theoretic techniques, to solve graph isomorphism.

1.3.1 Group definitions

Definition 1.10 A group is a set G together with a binary operation o on G such that

1. ao(boc)=(aob)oc, for all a,b,c € G (associative law),

2. There exists an element e € G, called the identity element, such that ace = eoa = a,

for all a € G,

3. To each a € G, there exists an element b, called the inverse of a, such that aob =

boa=ce.

In the third condition, b is usually denoted as a™! because it is unique. For any ¢ such

that aoc=coa=¢e, wehave c=coe=co(aob)=(coa)ob=0b.

A common group example is Z; = ({1,2,---,p—1},-), where p is a prime and the operation

is multiplication modulo p.

The order of the group G is the number of its elements and is denoted |G|. A group of

order p”, with p a prime number and n > 1, is called a p-group.

Let G be a group and a € G. Let n be the smallest positive integer, if it exists, such that
a™ = e. Then n is called the order of ¢ and we shall write order(a) = n. One also says

that a is of finite order with order n.

An element g € G such that order(g) = |G| is called generator. A group G that has such

a generator is called cyclic.

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 18

A trivial group I is the group consisting of the identity e only.

A group G is commutative, if, for all g,h € G, go h = hog. Otherwise, G is non-
commutative. A commutative group is also called Abelian in honour of one of the first

group theorists, Neils Henrik Abel.

A nonempty subset H of a group G is called a subgroup of G if

1. a,b € H implies that ab € H ,
2. e € H (where e is the identity of G),

3. a € H implies that a™! € H.

We write H < G, when H is a subgroup of G.

A group G is called permutation group if G is a set of permutations of a fixed set X
and the group operation is the composition of permutations (we think of a permutation

as a bijection from the set X onto itself).

Let G; and G2 be groups with operations o, * respectively. The Cartesian product
G1 x Gy is the set of pairs Gy x Gy = {(91,92) | 91 € G1,92 € Ga2}. Let us define a group
operation multiplication on G; x G,. For two arbitrary elements (a;,as) and (b;,b,) in
G1 X Gy, define their product by (ay, ag) (b1, b2) = (a10b1, ag*by). The set of all ordered pairs
(z1,z2) such that z; € G, and z, € G, form a group under the operation multiplication.

We call this group the direct product of G; and G,.

Let X be a fixed set of cardinality n. Let Sym(X) denote the set of all bijections from
X onto itself, i.e. the set of all permutations of X, and let the operation be composition.

Then Sym(X) is a permutation group and is called the symmetric group on X. If YV

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 19

is another set of cardinality n, then a bijective map f between X and Y defines a unique
correspondence between the elements in Sym(X) and the elements in Sym(Y). This
correspondence says that we have f(m)o f(¢) = f(m o ¢) for all 7, € Sym(X). We call
f an isomorphism between Sym(X) and Sym(Y’). We usually choose X = {1,2,---,n},

the set of the first n natural numbers. In this case, Sym(X) is abbreviated by S,,.

A transposition is a permutation of a set which fixes all but two elements. Let X be
a set of cardinality greater than 1. Consider the set of those elements in Sym(X) which
can be expressed as the product of an even number of transpositions. This set is closed
under composition and thus forms a permutation group Alt(X) which is called alternating

group on X. The order of Sym(X) is exactly twice the order of Alt(X).

1.3.2 Cosets and Lagrange’s Theorem

Given H, a subgroup of G, and g € G, the set Hg={hog | h € H} is a right coset of
H in G. Similarly, the set gH = {goh | h € H} is a left coset of H in G. Note that H
is both a left and a right coset of itself. It is easy to show that two left (right) cosets of H
are either disjoint or equal, and that all cosets are of cardinality equal to the order to H.

Thus, we may partition G into the left (right) cosets of H.

The number of distinct left (equivalently, right) cosets of H is called the index of H in G,

and is written [G : H].

Theorem 1.2 (Lagrange) The order of G is equal to the product of the order of H and
the indez of H in G, i.e. |G| = |H| X [G : H].

It follows that the order of any subgroup H must divide the order of G.

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 20

1.3.3 The Orbit-Stabilizer Theorem

Definition 1.11 A group G is said to act on a set X when thereisamap ¢: GxX — X

such that the following conditions hold for all elements x € X :

¢ o(e,z) = z where e is the identity element of G.

¢ &(9,0(h,z)) = ¢(gh,x) for all g,h € G.

We write gz for ¢(g, z). Suppose that the group G acts on the set X. If we start with the

element x € X and apply group elements in all possible ways, we get

B(z) = {9z : g € G}

which is called the orbit of z under the action of G. The action of G on X is transitive
(we also say that G acts transitively on X) if there is only one orbit, in other words,
for any z,y € X, there exists g € G such that gz = y. Note that the orbits partition X,
because they are the equivalence classes of the equivalence relation given by y ~ z if and

only if y = gz for some g € G.

The stabilizer of an element z € X is

G(z)={9€G: gz =z},

the set of elements that leave z fixed. A direct verification shows that G(z) is a subgroup.
This is a useful observation because any set that appears as a stabilizer in a group action

is guaranteed to be a subgroup; we need not bother to check each time.

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 21

The following theorem, known as the Orbit-Stabilizer theorem, is fundamental in many

applications.

Theorem 1.3 Suppose that a group G acts on a set X. Let B(zx) be the orbit of z € X,
and let G(x) be the stabilizer of x. Then the size of the orbit is the index of the stabilizer,

that is,
|B(z)| =[G : G(z)].

Thus if G is finite, then |B(z)| = |G|/|G(z)|; in particular, the orbit size divides the order

of the group. W

1.3.4 Normal Subgroups, Homomorphism and Automorphism

A subgroup H of G is normal written H < G, if, for all g € G, Hg = gH.

Let G and G’ be two groups, h a map from G to G'. Then the map h is a group

homomorphism if, for all g1, 9. € G, h(g: - g2) = h(g1) - h(g2).

The set K of all elements in G which are mapped to the identity e’ of G’ is a normal
subgroup of G and is called the kernel of the homomorphism, denoted by Ker(h). If
the subgroup K is I, the trivial group, then A is an isomorphism. The image of a
homomorphism & is the set of all the elements of G’ to which are mapped the elements of

G, denoted by Im(h).

An isomorphism from G onto itself is called an automorphism of G.

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 22

1.4 Graph preliminaries

1.4.1 Basic graph terminology

Since graphs have been widely studied in different contexts, there are various different
terminologies in this field. The comprehensive book written by Brandstidt, Le and
Sprinrad [25] is a good reference. The notation and concepts in this survey are based

on this book.

¢ A graph is an ordered pair of sets G = (V, E) where V (or V(G) to emphasize that
it belongs to the graph G) is the vertex set and F (or E(G) to emphasize that it
belongs to the graph G), E C {{u,v} | u # v,u € V,v € V}, the edge set. Usually,
the number of vertices, |V| is denoted by n, while the number of edges, | E|, is denoted
by m. If e = {u,v} € E(G), we say that vertices u and v are adjacent in G, and
that e joins u and v. We'll also say that u and v are the ends of e, denoted by
u € e,v € e. The edge e is said to be incident with « (and v), and vice-versa. We
write uv (or vu) to denote the edge {u,v}, on the understanding that no order is
implied. Note that E(G) is a set. This means that two vertices either are adjacent
or are not adjacent, there is no possibility of more than one edge joining a pair of
vertices. The elements of £ are 2-subsets of V. Thus, a vertex cannot be adjacent

to itself.

¢ A digraph (short for directed graph) is an ordered pair of sets G = (V, A), where

V is a set of vertices and A is a set of ordered pairs (called arcs) of vertices of V.

¢ The open neighbourhood of a vertex v in a graph G is the set N(v) = {u | uv € E};
the closed neighbourhood is N(v) = N(v) U {v}.

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 23

¢ The adjacency matrix of a graph on the vertex set {1,---,n} is an n xn 0-1 matrix
A = (a;;) in which the entry a;; = 1 if there is an edge from vertex 7 to vertex j and

is 0 if there is no edge between vertex 7 and vertex j.

¢ The incidence matrix of a graph on the vertex set {1,---,n} and the edge set
g
1,---,mj} is an n X m matrix A = (a;;) in which then entry a;; = 1 if edge j is
J g

incident with vertex 7 and 0 otherwise.

¢ A walk (or, vg — v, walk) in a graph is an alternating sequence of vertices and edges,
Vo, €1, V1, €2, V2, €3, V3, *, €n, Up Such that e; = v;_1v; for 1 < ¢ < n. The integer n
is the length of the walk. It is the number of edges in the walk, one less than the

number of vertices. A closed walk is a walk that starts and ends at the same vertex.

¢ A trail is a walk in which no edge is repeated. Similarly, a closed trail is a trail that
starts and ends at the same vertex. A path is a walk in which no vertex is repeated.

A graph which has a path between every pair of vertices is called connected graph.

¢ A cycle (or circuit) is a closed path which does not contain a vertex twice (except

at the beginning and end).
¢ A loop is an edge that connects a vertex to itself.

¢ The distance dg(z,y) in graph G of two vertices z, y is the length of a shortest z —y

path in Gj if no such path exists, we set d(z,y) := oco.

¢ The greatest distance between any two vertices in graph G is the diameter of G,

denoted by diam(G).

¢ A wheel is a graph that consists of a cycle and one vertex in the “middle” which is
connected to all the vertices on the cycle. An odd wheel is a wheel whose outer

cycle is of odd length, and an even wheel has an even cycle for the “rim”.

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 24

¢ The girth of a graph G is the length of the shortest circuit of G (or infinity if G has

no circuit).

¢ A tree is a connected graph that has no circuits. Sometimes it is convenient to
consider one vertex of a tree as special; such a vertex is then called root of this tree.
A tree with a fixed root is a rooted tree. Choosing a root 7 in a tree T imposes a
partial ordering on V(T') by letting < y if (z,y) € T. This is the tree-order on
V(T) associated with T" and r. Note r is the least element in this partial order, every

leaf z # r of T is a maximal element.

¢ The path P, (n the number of vertices) is a tree with two vertices of degree 1 and

the other (n — 2) vertices of degree 2. This graph is called path graph P,.

¢ The subgraph of G induced by a subset W of its vertex set V (i.e. W C V) is the
graph formed by the vertices in W and all the edges of G whose two endpoints are
in W. It is denoted as G[WW]. Analogously, we define the subgraph G[F] induced by
the set of edges F.

¢ The complement G of G is a graph on V, but two distinct vertices are adjacent in

G if and only if they are non-adjacent in G.
¢ A stable set of G is a subset of vertices with no edge between any two of them.

¢ The degree of a vertex V of G is the number of edges incident to it. It is also called

valence, is denoted by d(v) and is given by d(v) = |N(v)].

¢ The connected components of a graph G are the connected subgraphs of G induced

by sets of vertices such that no two vertices in different sets are connected.

¢ A cut vertex is a vertex whose removal (along with all edges incident with it)

produces a graph with more connected components than the original graph.

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 25

¢ A complete graph is a graph in which any two distinct vertices are adjacent. A
complete graph on n vertices is denoted by K,. A clique of G is a complete subgraph

of G.

4 The line graph L(G) of a graph G = (V, E) is the graph whose vertex set is E and
whose edge set is ', where e;e, € E' if and only if e; and e, are incident to the same

vertex in G.

¢ A graph G is k-vertex-connected (resp. k-edge-connected) if we need to delete
at least k vertices (resp. k edges) in order to get a non-connected graph. The (vertex

or edge)-connectivity of the graph is the largest k such that G is k-connected.

1.4.2 Graph homomorphism and isomorphism

Although we have mentioned several isomorphism terms above, we would like to give the

definitions formally since our approaches, presented later, frequently refer to them.

Definition 1.12 IfG and H are graphs, a homomorphism from G to H is amap f : V(G) — V (H)
with the property that f(u) is adjacent to f(v) whenever u is adjacent to v. A bijective

homomorphism whose inverse is also a homomorphism is an isomorphism.
We write G; = G, if Gy and G5 are isomorphic.
Definition 1.13 An automorphism of a graph G is an isomorphism f that maps G to

itself. Formally, an automorphism of a graph G is a one-to-one, onto map f : V(G) = V(G)
such that (u,v) € E(G) & (f(u), f(v)) € E(G).

Chapter 2

Graph Isomorphism

The GI problem has been intensively studied. It occupies an important position in the
complexity family because no one knows what is its computational complexity. It is well
known that GI is in NP, but despite decades of study by mathematicians and computer
scientists, it is not known whether GI is in P or not [51]. There is some evidence that it is
not likely to be N P-complete [90, 126]. Many researchers conjecture that GI's complexity
lies somewhere between P and N P-complete. If P # NP then, by Ladner’s theorem [80],
there exist problems which are of intermediate status; many people think that GI lies in

this level.

One early result on the complexity of GI is an O(ezp(n'/?+°(V)) (moderately exponential)
algorithm due to Babai [9]. Moderately exponential means that on a problem of size n,
the measure of computation, m(n), is more than any polynomial n¥, but less than any
exponential ¢, where k£ > 0,c > 1. Formally, m(n) is of moderately exponential growth if

for all k > 0, m(n) = Q(n*) and for all € > 0, m(n) = o((1 + €)).

The best existing upper bound for the problem is ezp(y/cn - logn) (c is a constant) given

26

CHAPTER 2. GRAPH ISOMORPHISM 27

by Luks and Zemlyachenko [14], but there is no evidence of this bound being optimal.
By imposing certain restrictions on the properties of the graphs, however, it is possible to
design algorithms that have polynomially bounded complexity. In the following sections,
we will give the complexity classes of restricted graph isomorphism problems which have

been compiled by many mathematicians during the last decades.

2.1 Isomorphism-complete class

The graph isomorphism problem is not isolated. It is, in fact, a class of problems.
A rigorous discussion of the structural complexity of the graph isomorphism problem is
given in Ko6bler, Schoning, and Toran [78]. In an attempt to classify the graph isomorphism
problem a new class of problems has been developed: the isomorphism-complete class
[59]. A problem is said to be isomorphism-complete if it is provably equivalent to the
isomorphism problem. This class includes problems that can be shown to be polynomially

equivalent to the graph isomorphism problem.

As mentioned, the complexity of GI is polynomial if we add some restriction on the graphs.
Conversely, many other restricted isomorphism problems are known to be polynomially
equivalent to GI. It has been proved that the following types of graphs are in the isomorphism-
complete class: bipartite graphs, line graphs [63], rooted acyclic digraphs, chordal graphs,
transitively orientable graphs, regular graphs [23], directed path graphs [15], k-trees (unbounded
k), and comparability graphs [103]. In 1978, Colbourn [37] proved that the question

of deciding whether a graph is self-complementary, is graph isomorphism complete. In
2002, Kaibel and Schwartz [73] proved that the problem of deciding whether two (convex)
polytopes are combinatorially isomorphic is graph isomorphism-complete, even for simple

or simplicial polytopes. In the same year, Nagoya, Uehara and Toda [103] showed that

CHAPTER 2. GRAPH ISOMORPHISM 28

chordal bipartite graphs are in the isomorphism-complete class, too.

Now we review several types of graphs in the isomorphism-complete class and give brief

proofs.

2.1.1 Bipartite graph isomorphism

A bipartite graph is a graph G whose vertex set V can be partitioned into two non empty
sets V1 and V5 in such a way that every edge of G joins a vertex in V; to a vertex in V5.
An alternative way of thinking about it is as about colouring the vertices in V; one colour

and those in V5 another colour, with no edge between vertices of the same colour.
Theorem 2.1 Bipartite graph isomorphism =, graph isomorphism.
Proof. Testing the isomorphism of bipartite graphs is isomorphism-complete, since any

graph can be made bipartite by replacing each edge by two edges connected with a new

vertex (see Figure 2.1).

o
o
”“
<.

C i C
Figure 2.1: change a graph to a bipartite graph

Clearly, the original graphs are isomorphic if and only if the transformed graphs are. O

CHAPTER 2. GRAPH ISOMORPHISM 29

2.1.2 Chordal graph isomorphism

Definition 2.1 [58] An undirected graph is called chordal if every cycle of length greater

than 8 possesses a chord, that is, an edge joining two nonconsecutive vertices of the cycle.

An example of chordal graphs is shown in Figure 2.2. Chordal graphs are also called
triangulated graphs, rigid-circuit graphs, monotone transitive graphs and perfect elimination

graphs in the literature [25].

Figure 2.2: a chordal graph

Theorem 2.2 (Lueker and Booth [87], 1979)

Chordal graph isomorphism =, graph isomorphism.

Proof. We construct a polynomial mapping M from a graph G to a graph M (G) such that
M(G) is a chordal graph, and G can be recovered from M (G) up to isomorphism. We will

show that the question of whether G is isomorphic to G5 is reduced to the question of

whether M (G,) is isomorphic to M(G5).

“For the reduction to chordal graph isomorphism, let M(G) = G' = (V', E'), where V' =

VUEF, and

E'={{v,w}|v#w,v,weV}U{{v,e} |veV,e€ E,vece}

CHAPTER 2. GRAPH ISOMORPHISM 30

The construction can be implemented to take O(n + m) time, where n = |V|, m = |E|.”

Now, we consider any cycle of length greater that 3 in G'. If the cycle contains only V-
vertices, then it has a chord, since all V-vertices are adjacent. Otherwise, the cycle contains
an F-vertex, and then the two vertices adjacent to this E-vertex must be V-vertices, thus,

they are adjacent. Therefore, G’ is chordal.

“Assume now that n > 4. It turns out that G’ contains enough structure to allow us to
reconstruct G, up to isomorphism. As a matter of fact, since all V-vertices are adjacent, all
of them have degree at least equal to n — 1, which is more than 2, while E-vertices always
have degree 2, because an E-vertex is adjacent to exactly two V-vertices. Furthermore,
two vertices of G are adjacent if the corresponding V-vertices are adjacent to a common

FE-vertex.”

Thus, it is easy to see that the problem of testing isomorphism of G; and G5 is then

polynomially reduced to the problem of testing isomorphism of M(G;) and M(G,). O

2.1.3 Chordal bipartite graph isomorphism

Definition 2.2 A graph is chordal bipartite if the graph is bipartite and every cycle of

length at least 6 has a chord.

We have shown that the bipartite graph isomorphism as well as chordal graph isomorphism
are in the isomorphism-complete class. Naturally, we wonder in which class does chordal
bipartite graph isomorphism lie. It is well-known that chordal bipartite graphs form a
subclass between bipartite graphs and convex graphs. Recently, the complexity of this
class of graphs was proved polynomially reducible to the general graph isomorphism too

[103].

CHAPTER 2. GRAPH ISOMORPHISM 31

Theorem 2.3 (Nagoya, Uehara and Toda [103], 2002)

Chordal bipartite graph isomorphism =, graph isomorphism.

Proof. (sketch) The proof is based on a construction technique.

Babel, Ponomarenko and Tinhofer show that the GI problem for directed path graphs is
isomorphism-complete in [15]. They give a reduction from any given bipartite graph to
a directed path graph: two given bipartite graphs are isomorphic if and only if reduced

directed path graphs are isomorphic.
“Given bipartite graph G = (X,Y,E) with |[X UY| = n and |E| = m, the reduced
directed path graph G = (V, E) is constructed as follows (see an example Figure 2.3):
V=XUYuU E, and E contains:

1. {e,e'} for e, € in E,

2. {z,e} for each z € X and e € E with z € e,

3. {y,e} foreach y € Y and e € E with y € e.”

Figure 2.3: reduction of graph G, G and G

“By this reduction, G has the following properties:

CHAPTER 2. GRAPH ISOMORPHISM 32
1. G[E] is a clique of size m,
2. G[X UY] is an independent set of size n,

3. for each e € E, e has exactly one neighbour in X, and another neighbour in Y. Thus,

each vertex e € E has degree m + 1.

Without loss of generality, we assume that m > 1 and |X| > 1,|Y| > 1.”

Following this reduction, Nagoya, Uehara and Toda [103| construct a chordal bipartite
graph G = (V, £) from the directed path graph G = (XUYUE, E’) in polynomial time.
Let V= XUY UEUZE UBUW. Each vertex e € E corresponds to three vertices

e € E',e; € B, and e, € W, respectively. That is, |E| = |E'| = |B| = |[W| =m.

“First, we show how to connect the vertices in EU E'UB U W.

1. for each vertex e € E, four edges {e, €'}, {¢',es}, {€s €w}, {€, eu} are added into &,

2. for each pair of vertices e; and e,, {e1,€}}, {€},e2} are added into &£

Since G[E] is a clique, G [E'U E'] is a bipartite complete graph. In figure 2.3, black square
vertices are in E, white square vertices are in E’, small black vertices are in B, and small

white vertices are in W. ”
We recall that the vertices in B U W are not connected to any vertices in X UY.
“The next step in the construction is to show how to connect the vertices in X and Y to

the vertices in EU E' U BUW as in the example Figure 2.3.

1. for each vertex z € X, {z,e} is added into & if {z,e} € E,

CHAPTER 2. GRAPH ISOMORPHISM 33

2. for each vertex y € Y, {y,e'} is added into & if {y,e} € E.

Then, it is proved that reduced chordal bipartite graph isomorphism is polynomially
equivalent to directed path graph isomorphism. Given a bipartite graph G, the reduced

graph G has n + 4m vertices and m? + 5m edges.”

Hence, the chordal bipartite graphs are in isomorphism-complete class. O

2.1.4 Self-complementary graph isomorphism

Definition 2.3 A (di)graph G is self-complementary (sc) if it is isomorphic to its

complement G.

There are relatively few self-complementary graphs; on twelve vertices, for instance, only
720 of the 165,091,172,592 graphs are self-complementary [113]. These are some examples
(See Figure 2.4):

n=1 o

n=4 *—o—0—o

e

Figure 2.4: self-complementary graphs

Theorem 2.4 (Colbourn [37], 1978)

The recognition of self-complementary digraphs =, graph isomorphism.

CHAPTER 2. GRAPH ISOMORPHISM 34

Proof. For convenience, let us consider Figure 2.5. The problem of determining the
isomorphism of two graphs G' and H can be polynomially reduced to the recognition of
self-complementary digraphs. “By reduction, we substitute G for vertex 1 and H (graph
H’s complement) for vertex 2, and call the resulting digraph S. Thus, digraph S is self-

complementary if and only if G and H are isomorphic.”
@ @

Figure 2.5: self-complementary digraph

Now, we assume that S is self-complementary. “In one direction, since every vertex in
G has out-degree at least n, whereas any vertex in H has out-degree at most n — 1, any

isomorphism carrying S into S must map G into H.”

In the other direction, assume that G is isomorphic to H. “For any isomorphism f mapping
G to H, we build the inverse mapping g which is an isomorphism from H into G. An
isomorphism from S to S is constructed by using the mapping f to map vertices from the
portion of S representing G to the portion of S representing H, and using mapping g to
perform the parallel mapping from H to G. Thus, we can see that S is self-complementary.”

O

Colbourn also showed that:

Theorem 2.5 (Colbourn [37], 1978)

The recognition of self-complementary graphs =, graph isomorphism.

Theorem 2.6 (Colbourn [37], 1978)

Self-complementary graph isomorphism =, graph isomorphism.

CHAPTER 2. GRAPH ISOMORPHISM 35

Similar proofs can be found in [37].

2.1.5 Regular graph isomorphism

A graph in which every vertex has the same degree is called regular. If every vertex has
degree k then we say the graph is regular of degree & or k-regular. Null graphs are regular

of degree zero.

Theorem 2.7 (Booth [23], 1978)

Regular graph isomorphism =, graph isomorphism.

Proof. Here, we give an outline of the proof given by Booth [23]. Since any isomorphism
test for arbitrary graphs will also work for regular graphs, we need only show that graph
isomorphism is polynomially reducible to regular graphs isomorphism. This proof constructs
aregular graph REGULAR(G) from any given general graph G and proves that G; &£ G, &
REGULAR(G,) =2 REGULAR(G,).

“Let G = (V, E) be any graph having V = {v; [1 <i<n}and E={e; | 1 < j < m}

where every vertex belongs to at least one edge and m — n > 2. Define the following sets:

Vo={gr |1 <k <m-—2},
V= {h|1<i<m—n+2}

and

CHAPTER 2. GRAPH ISOMORPHISM 36

Ey = {{vi,e;} |vi€e;,1<i<n,1<j<m}
Ey = {{vi, fi} lvi¢e;;1<i<n,1<j<m},
Es={{ej, g} |1 <k<m—-2,1<j<m},

Ev={{fpm}|1<I<m-n+21<j<m).

Let REGULAR(G) be the graph (VUEUV,UV,UV;, E;UE,UE3UEY). 7 We can establish
two facts about REGULAR(G): it is a regular graph of degree m and given REGULAR(G)

we can recover G uniquely.

The first fact is easily verified. “Each v; € V' has degree m in REGULAR(G) because it
is adjacent to either e; or f; for all 1 < j < m; each e; € E has degree m because it is
adjacent to exactly 2 of the v; € V and to all m —2 of the g, € V5; each f; € V] is adjacent
to exactly n — 2 of the v; € V and also to all m — n + 2 of the hy € V3; each g, € V5 is

adjacent to all m of the e; € E; finally each h; € V3 is adjacent to all m of the f; € V4.

The second fact follows from the observation that in REGULAR(G) every gy € V, has
exactly the same set of neighbours and every h; € V; has exactly the same set of neighbours.
“We can tell these two sets apart because |V3| > |V3] since n > 4 if m —n > 2 in a graph.

Having thus located V3, we know that

E = {vertices at distance 1 from V,},

V = {vertices at distance 2 from V,}

and also that {u,v} € E if and only if there is an edge in REGULAR(G) from both
u and v to some e; € E. The encoding (G1,G2)—=(REGULAR(G:), REGULAR(G,))
thus has the property that G; = G, if and only if REGULAR(G,)~REGULAR(G,).

Moreover, it is clearly computable in polynomial time and hence is a polynomial reduction

CHAPTER 2. GRAPH ISOMORPHISM 37

of graph isomorphism to regular graph isomorphism if we realize that isolated vertices can
be handled with a simple pretest and that adding an equal number of copies of K4 to
both G, and G, will not affect their isomorphism but will ensure that m —n > 2, without

increasing the size of the input by more than a polynomial.” O

2.2 Some graph isomorphism problems in P

As we mentioned before, although it seems to be hard to have a polynomial-time algorithm
for general graph isomorphism, many graphs with restrictions are readily handled. For
example, trees, planar graphs, graphs of bounded genus, graphs of bounded valence, graphs
of bounded tree-width, graphs of bounded eigenvalue multiplicity and trivalent graphs have

polynomial-time algorithms.

The first major result in this field was given by Luks [51, 88] in 1978. He showed that
graphs with bounded valence can be solved in polynomial time O(n*!°9%) where k is the
bounded valence. This result was obtained by applying powerful group theory. We will

give a special presentation of group theory techniques in a later section.

Other interesting graphs are interval graphs.

Definition 2.4 A undirected graph is called interval graph if its vertices can be put into
one-to-one correspondence with a set of intervals of the real line, such that two vertices are

connected by an edge if and only if their corresponding intervals have nonempty intersection.

Interval graphs can be tested for graph isomorphism in O(mn), where m is the number of
edges and n is the number of vertices, following results by Hsu [69] in 1995. Compared

to other results, this result is very interesting in that it does not require some explicit

CHAPTER 2. GRAPH ISOMORPHISM 38

parameter to be fixed (constant) which is often required by many polynomial algorithms,

and seems feasible to apply to a large and practical group of graphs [51].

In the following sections, several major results in the graph isomorphism problem will be
shown using two approaches: combinatorial approach and group-theoretic approach. All
of these results are in polynomial time at most; some of them are even in linear time or

alternating logtime (Alogtime). We discuss this problem in the next section.

2.3 Combinatorial approach

2.3.1 Tree isomorphism

As we have seen, a tree is a finite, connected, acyclic graph. Tree isomorphism is the basis
of naive solutions to the more general problems of subtree isomorphism, largest common

subtree, and perhaps also smallest common super-tree.

Trees isomorphism has been studied since the 1970’s. First, in 1974, Aho, Hopcroft and
Ullman [2] gave a linear-time algorithm for tree isomorphism, based on comparing two
trees in a bottom-up fashion. Certainly, linear time is the best possible sequential run time
for tree isomorphism, but it is possible to consider refined algorithms, say parallel run, in
smaller complexity classes [32], for instance, the class NC. In 1981, Ruzzo [116] found an
NC-algorithm for solving the tree isomorphism problem for trees of logarithmic degree.
Later, in 1991, Miller and Reif [100] mentioned an NC-algorithm for this problemproblem
and the tree canonization problem for trees of arbitrary degree and depth. Further, Lindell
[86] showed deterministic logarithmic-space algorithms for the tree isomorphism, tree

comparison and tree canonization problems. Finally, in 1997, Buss [32] gave an alternating

CHAPTER 2. GRAPH ISOMORPHISM 39

logtime (Alogtime) algorithm for tree isomorphism. In this survey, we shall show the idea

of Buss Alogtime algorithm.

Preliminaries and definitions

Definition 2.5 [42] The class of languages accepted by ATMs within time O(logn) is

called Alogtime.

Definition 2.6 An immediate subtree of T is a subtree whose root is a child of T'’s root

vertez.

Definition 2.7 [32] Let S and T be trees. We define S = T, called tree equality, by

induction on the number of vertices in S and T by defining that S = T holds if and only if

1. |1S|=1T|=1 or

2. S and T both have the same number, m, of immediate subtrees, and there is some
ordering Si,- -+, S, of the immediate subtrees of S and some ordering Ty, - -, Ty of

the immediate subtrees of T such that S; = T;,Vi,1 <1 < m.

It is easy to check that S = T if and only if there is an isomorphism of S and 7.

Definition 2.8 Let S and T be trees. We define S < T and S < T, called linear ordering
of trees, simultaneously by induction on the size of S and T. The linear ordering S < T
holds if and only either S < T or S = T. The linear ordering S < T holds if and only if

either |S| < |T| holds or the following conditions hold:

CHAPTER 2. GRAPH ISOMORPHISM 40
1. |S| =1T|, and

2. Let 51, -, Sy be the immediate subtrees of S ordered so that Sy, < Sy < -+ < 5,
and let Ty, - - -, T, be the immediate subtrees of T, similarly ordered with Ty, < T;

for alli. Then

(a) For some i < min{m,n},S; < T; and for all1 < j <1,S; =Ty, or

(b)) m<nandT; = S; for all1 <i<m.

Miller and Reif [100] introduced a method to represent trees by strings over the two symbol
alphabet containing open and close parentheses. The tree with a single vertex is denoted by
the string “()”. If T is a tree with more than one vertex, if ay, - - - , o, are strings representing

the immediate subtrees, then “(ay,- -, an)” is a string representation of tree T.

Hence, the isomorphism of trees becomes the problem of determining whether two input

string representations are isomorphic.

The basic idea of the algorithm

It is known that Alogtime algorithms are capable of parsing parenthesis languages. For
more information on these aspects of Alogtime, readers are advised to consult [31]. Particularly,
by counting parentheses, an Alogtime algorithm can compute the depth of a vertex in a
tree, can determine the i-th child of any vertex in a tree and know the ancestor/descendant
predicates, etc. Also, Alogtime algorithms are capable of converting between prefix and

infix notations [32].

Definition 2.9 Let S be a subtree of a tree T. Let T =Ty, Ty, -, Ty = S be the (unique)

sequence of subtrees of T' such that each T;y, is an immediate subtree of T;. The size-

CHAPTER 2. GRAPH ISOMORPHISM 41

signature of S in T is defined as the sequence (|To|, |T1], -, |Tk]). If S’ is a subtree of a

tree T, then S and S’ are similar provided:

1. They have the same size-signature, and

2. They are isomorphic, i.e., S = S'.

It is easy to see that the size-signature is invariant under isomorphism. By parsing and
counting techniques, there is an Alogtime procedure which, from a string representation of

a tree T' and a given subtree S of T', can generate the size-signature of S in T [32].

Let logn denote the logarithm (in base 2) of n rounded down to the integer. The logsize,

logsize(T), of a tree T is defined to equal log|T|.

Definition 2.10 Let T1,T, be non-equal and non isomorphic trees. Let S be a subtree of

T\. We say that S distinguishes Ty from Ty provided that S is a proper subtree of T and:

1. The logsize of S is strictly less than the logsize of the parent tree of S, and

2. The number of subtrees of T1 which are similar to S is not equal to the number of

subtrees of Ty which are similar to S.

Now, we present the idea of tree isomorphism algorithm in the help of the representation

of trees.

“We can view an Alogtime algorithm as a game between two players: the first player is
asserting that the two trees are non-isomorphic, while the second player is asserting that

the two trees are isomorphic. The input to the game consists of two string representations

CHAPTER 2. GRAPH ISOMORPHISM 42

of two trees T} and T>, and we denote this instance of the game G[T}, T5]. The game begins
with the first player identifying a subtree S; that distinguishes T} from 75. Then the two
players play a log time game to count the number of subtrees of T} and of T, which are

similar to S;. If these numbers are equal, the second player wins. Otherwise the first player

wins.”

Determining the truth of these assertions involves:

1. comparing the size-signatures of S and S, which is easily done in Alogtime, and

2. checking whether S = S, which involves recursive call G[S, Si].

In addition, Buss [32] showed that the entire game G[T}, T3], including the recursive calls
to the game, uses only O(logn) rounds, where n is the maximum size of T, and T5. Thus,

we have the following theorem.

Theorem 2.8 (Buss [32], 1997)

The tree isomorphism problem is in Alogtime.

It is obvious that the proof is essentially a formal implementation of the game described

just above.

2.3.2 Planar graph isomorphism

When we draw a graph on a piece of paper, we naturally try to make it as clear as possible.
One obvious way to limit the mess created by all the lines is to avoid intersections. For

example, we may ask if we can draw the graph in such a way that no two edges meet in

CHAPTER 2. GRAPH ISOMORPHISM 43

a point other than a common end. Graphs drawn in this way are called planar graphs.
A graph is called outer-planar if it can be embedded in the plane such that every vertex
lies on the boundary of the same half-plane, without loss of generality on the boundary of

the upper half-plane.

Planar graphs corresponding to the regular polyhedra and other geometric figures have
been investigated since the time of the ancient Greeks. More recently, planar graphs
appear in some applied disciplines. An example is VLSI design where one would like to
design a large electric network on a planar electric board so that the connections between
the components of the network do not intersect (or intersect as little as possible). Some

results on planar graphs were inspired by such practical problems.

Complexity results

Planar graph isomorphism has been extensively studied during last decades. The graph
1somorphism problem for triconnected (also called 3-connected) planar graphs is particularly
simple since a triconnected planar graph has a unique embedding on a sphere [129].
Weinberg [128] studied this fact while developing an algorithm for testing isomorphism
of triconnected planar graphs in O(n?) time. Although it is for triconnected planar graphs,
this result has been extended to general planar graphs and improved to O(n - logn) steps
by Hopcroft and Tarjan [66, 67]. Furthermore, in 1974, a linear time O(n) algorithm was
found by Hopcroft and Wong [68]. In this survey, we give an overview of this approach. We
intend only to establish the existence of a linear algorithm which subsequent work might

make truly efficient.

CHAPTER 2. GRAPH ISOMORPHISM 44

The motivation

The previous work on isomorphism of planar graphs shows that, without loss of generality,
we can restrict attention to determining isomorphism of embeddings of triconnected planar
graphs. If G; and G5 are nontrivial, triconnected planar graphs, they have a unique
representation on a sphere only up to parity (that is, left or right depend on whether
the graph is viewed from inside or outside the sphere). Thus one must actually test
isomorphism of one planar representation of G; with both representations of G5 in order
to determine if G; and G, are isomorphic. Henceforth, we restrict our attention to the
isomorphism of fixed embeddings of planar graphs. From now on, the word “graph” refers

to a specific labeled planar representation of a planar graph.

General ideas of the algorithm

At the beginning, the algorithm assigns integer labels to vertices and pairs of integer labels
to edges, one label with each end. The integer associated with a vertex is called the vertex
label. Let edge e be incident at vertices u and v. The integer associated with the vertex
u end of e is called the u-label of e and the integer associated with the vertex v end of e

is called the v-label of e.

Next, the algorithm treats each graph as a simplified one by a sequence of reductions.
A reduction of graph G is a replacement of each labeled subgraph of G of a given type
by a labeled subgraph of another given type. A list of possible reductions, each having an

associated priority, will be shown in detail later.

The isomorphism algorithm assigns the label 1 to each vertex and the label 2 to each edge

end. Then the highest priority reduction which is applicable is applied to G; and G,.

CHAPTER 2. GRAPH ISOMORPHISM 45

Certain discrepancies may be detected at this stage in which case the algorithm terminates
and G, and G, are not isomorphic. For example, if the number of subgraphs of the type
to be collapsed by the reduction differ in G; and G, then clearly the graphs are not
isomorphic. The process of applying reductions continues until no further reduction is

applicable. At every stage the highest priority applicable reduction is applied.

Given a type of graph, the actual process of applying a reduction will sequentially collapse
all its subgraphs. Therefore, the subgraph modifications cannot interfere with each other
if the result is to be order independent. Moreover, the modified labels encode sufficient
information to insure that the resulting graphs are isomorphic if and only if the original
graphs are isomorphic. To ensure that both graphs receive the same labels in each
reduction, label assignments for each reduction are always done simultaneously for both

graphs.

After each reduction, the graph is simplified because there is a strict decrease in the
complexity of the graph as measured by the sum of the number of edges and vertices.
The work done to achieve this decrease in the sum of the number of edges and vertices is
proportional to the decrease. The fact that a triconnected planar graph has a number of
edges less than three times the number of vertices insures termination of the algorithm in

time which is linear in the number of vertices.

When no further reduction is applicable, the graphs are the five regular polyhedral graphs
or a trivial graph consisting of a single vertex. These graphs can be tested for isomorphism

(as labeled graphs) by exhaustive matching in a fixed finite time.

CHAPTER 2. GRAPH ISOMORPHISM 46

The reduction algorithm

As mentioned above, the algorithm treats several reductions. Here, we give a brief description

for each reduction.

1. “Removal of loops and 1-degree vertices. The highest priority reductions involve
loops, 1-degree vertices and bonds. Suppose e; and e, are incident at w and that
e; immediately precedes e, in the clockwise ordering of edges at w in the planar

embedding, then we write exCWe,. We write e;CCW, e, to denote eoCWe;.

(a) Removing loops. A loop tuple is a triple (non-loop edge e = (v, w), loop edge
f, loop vertex v) such that edge e is counterclockwise adjacent to the loop f
at vertex v. The number triple of a loop tuple (e, f,v) is the ordered triple
(v-label(e), label of end of f clockwise adjacent to edge e, other label of f). The
reduction consists of constructing the corresponding number triple for each loop
tuple, assigning each number triple an integer, assigning the integer associated
with loop tuple (e, f,v) to the v-label of e, and removing the loop f. Given
a list of loop tuples for a graph G, this reduction produces a unique resultant
graph G’ independent of the order of the list of loop tuples. Furthermore, the

algorithm can be implemented in time linear in the number of loops removed.

(b) Removing 1-degree vertices. A spoke is a 1-degree vertex and its associated
edge. Each 1-degree vertex is associated with a unique spoke. A spoke center
has no edges incident other than spoke edges and the number of spoke edges
is greater than one, then we have a star. If we have just one spoke, we have
a dumbbell. With the similar manner to remove loops, this reduction also

produces a unique resultant graph G’ in time linear in the number of vertices.”

CHAPTER 2. GRAPH ISOMORPHISM 47

2. “Bond associated reductions.

(a) A clump is a maximal set of edges e, -, e, k > 1, connecting two distinct
vertices v and w such that (i) at least one of v and w is adjacent to a vertex
other than v and w, (ii) e;CCW,e;y1 and e,CWye;41 for 1 < i < k. The two
vertices v and w are called clump vertices. During the reduction, each clump

is replaced by a single edge labeled with an integer.

(b) A skein is a graph consisting of two vertices u and w and k edges, k > i, each
edge incident at both u and w. The vertices u and w are the skein vertices
and the k edges are the skein edges. During the reduction, each vertex in a
skein is associated with an integer. Replace each skein by a vertex labeled with

the smaller of the two integers.”

3. “Four general reductions and two special cases. Once loops, bonds and degree one
vertices have been removed, Euler’s theorem guarantees the existence of a degree 2,
3, 4 or 5 vertex [107]. With this in mind, we call a vertex of degree 2, 3, 4 or 5 a
low degree vertex. Thus we need only insure that we can apply a reduction whenever
a low degree vertex exists. The remaining reductions, in order of priority, are as
follows. Note, for each case, the reduction can be implemented in linear time. For

details of each reduction, readers can consult [68].

(a) The first reduction is the replacement of all degree d vertices, all of whose
neighbours are of degree other than d. This is done for d = 2,3,4,5. At this
point either the graph is a regular degree d graph or there exists a degree d

vertex which is adjacent to a non-degree d vertex, d = 2, 3,4, 5.

(b) The next class of reductions collapses an edge connecting a degree d vertex with

a non-degree d vertex. This also is done for d = 2, 3, 4, 5.

CHAPTER 2. GRAPH ISOMORPHISM 48

(c) The final two general classes of reductions handle graphs which are regular

degree d.

(d) There are also two special reductions, involving degree four vertices.”

General outline of the algorithm

Now we give the outline of the algorithm. Before each reduction application, the REDUCTION
array is scanned for the first (highest priority) non-empty list of items. This can be done
easily through querying an array which tells the current number of items in each list. At
the same time, pointers to vertices, edge-ends, faces which are modified or whose local
conditions have changed, are stored. After a subsequent pass over these pointers, items in
the reduction lists are removed and added to reflect the new relationships. It is easy to see
that this updating can be done in time linear in the decrease in complexity of the graph,

the decrease affected by the prior reduction.

Discussion

We think this planar graph isomorphism algorithm’s importance is mostly theoretical,
demonstrating existence rather than providing a practical algorithm; its relative inelegance
seems to suggest that “better”, perhaps even practical, linear algorithms exist and that the

problem is still not yet fully understood.

Recently, Gazit and Reif [57] developed a parallel planar graph isomorphism algorithm in
O(logn) with O(n'® - \/logn) processors with probability to fail of 1/n or less.

CHAPTER 2. GRAPH ISOMORPHISM 49

2.3.3 Convex bipartite graph isomorphism

In the isomorphism-complete section, we have proved that bipartite graph isomorphism
is polynomially reducible to general graph isomorphism. Nevertheless, some subclasses of
bipartite graphs, for example, convex bipartite graphs, can be tested in polynomial time
for the isomorphism. The class of circular convex bipartite graphs is properly contained
in the class of convex bipartite graphs, for which an O(n?) isomorphism testing algorithm
using identification matrices method was announced by Chen [34] in 1989. In 1999, Chen
[33] presented an optimal O(n + m) isomorphism testing algorithm for convex bipartite
graphs using the theory of identification matrices. Before showing the ideas of the latter

algorithm, we introduce the basics of identification matrices.

Identification matrices

Definition 2.11 A permutation matriz is any matriz which can be created by permuting

the rows and/or columns of an identity matriz.

In other words, a permutation matrix P is a square (0, 1)-matrix with exactly a single 1
in each of its rows and columns so that PAM is equivalent to permuting the rows of the
matrix M, MP is equivalent to permuting the columns of A/, and PM P! is equivalent to
permuting the rows and the corresponding columns of M (here, P! is the transpose of P

and M is an arbitrary matrix of the same size as P).

Now, we suppose that R is a relation which defines a certain graph class €.

Definition 2.12 Let M; and M, be two matrices representing, respectively, two graphs G,

and Gy of the class €, according to the relation R. Suppose Gy and G, are isomorphic if

CHAPTER 2. GRAPH ISOMORPHISM 50

and only if there exist two permutation matrices P, and Py such that M; = P M>P,. Then

M, and M, are said to be identification matrices for G| and G5 of €, with respect to ®R.

Lemma 2.1 Suppose M, and M, are identification matrices for graphs G, and G, with
respect to a certain relation R. Then two graphs are isomorphic if and only if there ezists

a permutation matriz P such that My and My P have the same set of rows.

Proof. (=) Suppose G; and G, are isomorphic. Then there exist two permutation
matrices, say P, and P,, such that A, = P,M,P,, by the definition of identification

matrices. It follows that M; and M,P, have the same set of rows.

(<) Suppose there exists a permutation matrix P such that Af; and M, P have the same
set of rows. Then there exists another permutation matrix, say P, such that Af; = P, M,P.

It follows from the definition of identification matrix that G, and G, are isomorphic. O

Therefore, to test isomorphism of two graphs, given two identification matrices with respect
to a relation, it suffices to test if, by permuting the columns, the two (resulting) matrices

can have the same set of rows.

Theorem 2.9 Adjacency matrices are identification matrices for bipartite graphs.

Basic ideas of the algorithm

Definition 2.13 A matriz is called an augmented adjacency matriz if it can be ob-

tained from the adjacency matriz by adding 1’s along the main diagonal.

Definition 2.14 A (0, 1)-matriz is said to satisfy the consecutive 1’s property for rows

if the columns of the matriz can be permuted so that in the resulting matriz all the 1’s

CHAPTER 2. GRAPH ISOMORPHISM 51

in each of its rows are consecutive. A (0,1)-matriz is said to satisfy the circular 1’s
property for rows if its columns can be permuted so that each row of the resulting matriz
has circularly consecutive 1’s (that means, if we treat the first column and the last column

as adjacent columns, these 1’s are consecutive).

Theorem 2.10 Given two graphs represented by two identification matrices with respect
to a certain relation, isomorphism can be tested in O(a + b+ f) time if at least one of the
two matrices satisfies the consecutive 1’s property, assuming either matriz is of size a X b

and contains f elements with value one. 0O

Definition 2.15 If the vertices of a bipartite graph G(U,V, E) can be ordered so that for
each element v in one vertez set V, the elements of U adjacent to v occur consecutively in
U, then the graph G is a convez bipartite graph. Formally, a bipartite graph G(U,V, E)
is a convez bipartite graph if there exists an ordering (vi,vs, - -, vyv|) of V such that, for
allu € Uand1 <i < j < |V|, if (u,v;) € E and (u,v;) € E then (u,v) € E for all

i<k<j.

Definition 2.16 A connected bipartite graph G(U,V, E) is a circular convez bipartite
graph, if the vertices can be ordered such that for any vertez u in one verter set, say U,

the vertices adjacent to u occur circularly consecutively in V, the other vertez set.

Definition 2.17 If the vertices of a bipartite graph G(U,V, E) can be ordered so that the
U by V incidence matriz has the consecutive 1’s property for both rows and columns, then

the graph is called a doubly convex bipartite graph.

Theorem 2.11 A graph is a doubly conver bipartite graph if and only if its adjacency

matriz satisfies the consecutive 1’s property.

CHAPTER 2. GRAPH ISOMORPHISM 52

Theorem 2.12 Isomorphism for doubly convez bipartite graphs can be tested in O(n+m)

time.

Proof. “By Theorem 2.9, adjacency matrices are identification matrices for doubly convex
bipartite graphs. Since the adjacency matrix for a doubly convex bipartite graph satisfies
the consecutive 1’s property and there are 2m 1-elements in one matrix, it follows from
Theorem 2.10 that isomorphism for doubly convex bipartite graphs can be tested in

O(m + n) time.” O

The following theorem can be obtained immediately from Theorem 2.10 and Theorem 2.12.

Lemma 2.2 Isomorphism for connected convex bipartite graphs can be tested in O(n +m)

time.

Now, for arbitrary convex bipartite graphs, we can test for isomorphism as follows.

“Partition a convex bipartite graph G into two parts, G; and G, with G, consisting of the
connected components each of which is a doubly convex bipartite graph, and G, consisting
of the rest. Let G' = (G, G}) be such a partition for another convex bipartite graph.
Then G and G’ are isomorphic if and only if G, and G are isomorphic and G, and G|,
are isomorphic. Adjacency matrices are identification matrices for G; and G} and the
isomorphism can be tested in linear time by Theorem 2.12. For each of G, and G, we
partition the vertex set in such a way that the vertex incidence matrix has the consecutive

I’s property. The isomorphism for G, and G} can be tested in linear time.”

As a result, we have the following theorem.

Theorem 2.13 (Chen [33], 1999)

Isomorphism for convez bipartite graphs can be tested in O(n + m) time.

CHAPTER 2. GRAPH ISOMORPHISM 93

Obviously, the isomorphism-testing algorithm for convex bipartite graphs is optimal since

the time complexity matches the trivial lower bound of Q(n + m).

2.3.4 Bounded distance width graph isomorphism

We give a very important concept related to trees, introduced by Robertson and Seymour

[115], now standard in graph theory.

Definition 2.18 Given a graph G = (V, E), we call the pair ({X; |i € I}, T =(I,F)) a
tree decomposition of G, where I is an indez set, {X; | i € I} is a collection of subsets

of V and T is a tree, such that

1 UX=V(G),

el

2. for each edge {v,w} € E, there is an 1 € I such that v,w € Xj,

3. for each v € V the set of vertices {i | v € X;} forms a subtree of T.

Definition 2.19 The width of a tree decomposition ({X; | i € I}, T = (I, F)) equals
mealx(|Xi|—1). The tree-width of a graph G is the minimum width over all tree decompositions

of G.

For a given graph G and two vertices u,v € V(G), dg(u, v) denotes the distance between
u and v, that is, the number of edges on a shortest path between u and v. For a set

S C V(G) and a vertex w € V(G), dg(S, w) denotes min dg(v,w).

vES

Definition 2.20 A tree distance decomposition of a graph G = (V,E) is a triple
({X:|i€e I}, T=(I,F),r), where

CHAPTER 2. GRAPH ISOMORPHISM 54
1. rel.

2. UXi=V(Q), foralli#j, X;nX; =2,
i€l

3. for eachv €V, ifv € X;, then dg(X,,v) = dr(r,1),
4. for each edge {v,w} € E, there are 1,5 € I such thatv € X;, w € X; and either

i=jor{i,j} €F,

Vertex r is called the root of the tree T, and X, is called the root set of the tree distance
decomposition. The width of a tree distance decomposition ({X; | i € I}, T,r) is equal to
max | X;|. The tree distance width of a graph G is the minimum width over all possible
i€

tree distance decompositions of G.

Definition 2.21 A rooted tree distance decomposition of a graph G = (V, E) is a tree
distance decomposition ({X; |1 € I},T = (I, F),r) of G in which |X,| = 1. The rooted
tree distance width of a graph G is the minimum width over all rooted tree distance

decompositions.

Graph isomorphism can be solved in polynomial time for graphs of bounded degree [88],
tree-width, path-width, or bandwidth [130]. However, in each of these three cases, the
exponent of the algorithm grows with the parameter [22]. Thus, a question is, whether
algorithms exist for graph isomorphism with a running time O(f(k) n¢), where c is small
constant, k£ is the maximum degree (tree-with, path-with, etc.); in other words, whether
graph isomorphism is fized parameter tractable [44]. These questions are apparently hard.
In [130], some interesting special cases of these problems are discussed; several natural
graph parameters are introduced: the (rooted) path distance width, and the (rooted)

tree distance width. Here, we give an overview of the (rooted) tree distance width graph

isomorphism.

CHAPTER 2. GRAPH ISOMORPHISM 95
Basic ideas of the algorithm
Let D= ({X; |t €I}, T=(I,F),r)be a tree distance decomposition of graph G. Tree D

is minimal if G[V(D, 1)] is connected for each ¢ € I. The algorithm 1 (cited from [130]) is

to find the minimal tree distance decomposition in O(|E(G)|) time.

Algorithm 1 find the minimal tree distance decomposition
PROCEDURE GetTDD

INPUT: a graph G = (V, E) and a root set S
OUTPUT: the minimal tree distance decomposition
{Xi|liel}, T=(,F),r),X,=S5)

for any v € V set distance(v) = dg(S,v);
m := max distance(v);
ve

I =9, F:=2;h:=0;
for any 4,0 <i <m+1set V; = {v eV |distance(v) = i};

FOR i :=m DOWN TO 0 DO
Compute the connected components of G[{v € V' | ¢ < distance(v) < i+ 1}];
/* We call the connected components Sy, ---, S, */

FOR j := 1 TO ¢t DO
Xnys =85 — Vig;

Add edges {v,u}, v,u € Xj4; to E(G) such that
G[Xh+;] becomes connected;

I'=Tu{h+3}

F:=FU{{h+j,k}IXkCSj/\kSh};
END FOR

h:=h+t;
END FOR

END PROCEDURE

It is proved [130] that given a graph G and a set S C V(G), we can compute in O(|E(G)|)

time the unique minimal tree distance decomposition with root set S. Hence, O(k - n?)

CHAPTER 2. GRAPH ISOMORPHISM o6

time is needed to compute a rooted tree distance decomposition of minimum width of a

graph G.

Let D = (XF |i € I€), T% = (I°,F€),rg) and D¥ = (XF | i € I, TH = (I" , F7), ry)
be two rooted tree distance decompositions of the graphs G and H respectively. We call
DS and D¥ isomorphic if there exists an isomorphism f : V(G) — V(H) from G to H and
an isomorphism g : I¢ — I¥ from T to T¥ such that g(r¢) = r# and for each i € IC,

G H
z €I, f(z) € I,

In [130], it is showed that the algorithm takes O((k!)2k?n?) time to check if two rooted
tree distance decomposition are isomorphic. Now, we give the final algorithm 2 (cited from

[130]) to determine if two graphs G and H are isomorphic.

Algorithm 2 check if G and H are isomorphic
PROCEDURE RTDW_ISO(G, H)

INPUT: graphs G and H of rooted tree distance width at most &k
OUTPUT: TRUE, if they are isomorphic; otherwise, FALSE

use GET-TDD to compute a minimum width rooted tree distance decomposition D of
G with width at most k£ and root set consisting of an arbitrary vertex vg € V(G);

FOR each vy € H DO
use GET_TDD to compute a rooted tree distance decomposition

DH of H with root set {vy};

IF the width of D¥ is at most kK THEN
IF ISO_CHECK(D¢, D¥) THEN return TRUE;

END FOR
return FALSE

END PROCEDURE

This algorithm has two phases. In the first phase, a rooted tree distance decomposition of

minimum width is computed for G. For each vertex v € V, GET_TDD is used to compute

CHAPTER 2. GRAPH ISOMORPHISM 57

the unique minimal rooted tree distance decomposition of G with root set {v}. Then, the
decomposition DY of smallest width, say k is selected. It is shown [130] that this phase
needs O(k - n?).

In the second phase, for each w € V(H), the algorithm computes the unique minimal
rooted tree distance decomposition D of H with root set {w}. If the width of D¥ equals

k, then procedure ISO_CHECK(D®,D¥) is used to test whether decomposition D¢ and

DH are isomorphic.

The procedure ISO_ CHECK (cited from [130]) is listed below.

Algorithm 3 ISO_CHECK procedure
PROCEDURE ISO_CHECK(D¢, D)

INPUT: decomposition D¢ = ({X€ | i € I€},TC¢ = (I°, FS),r¢),
Df = ({X[|i e I"},T" = (1", F¥),rp).
OUTPUT: TRUE if D€ is isomorphic to D; FALSE if not.

IF T¢ and T# are not isomorphic THEN return FALSE;
let m be the depth of TC

FOR [:=m DOWNTO 0 DO
FOR each pair (p,q), p € V(T%) and q € V(TH)
such that dre(p,r¢) = dpu(p,75) =1 DO
compute R"? using GET 1B(p, q,1);
IF R®"# = @ THEN return FALSE;
return TRUE;

END PROCEDURE

This procedure first tests whether 7¢ and T# are isomorphic. This test requires O(n)
time. Now, suppose T° and T# are isomorphic. Let m denote the maximum depth of a
node in 7¢ (and hence in T# since they are isomorphic). Now, for each level [, 0 <[< m,

- . G H . 5
and each pair of nodes p, g, with p € I and ¢ € I'", the algorithm computes the set R

CHAPTER 2. GRAPH ISOMORPHISM 98

using sub-procedure GET _IB. The following algorithm shows the sub-procedure GET _IB
(cited from [130]).

This sub-procedure computes R}*? as follows. First, it checks if | X§| = |X[| and the num-
ber of children of p equals the number of children of ¢. If not, then R"? = @. Otherwise,
for each bijection f : X¢ — X from G[X] to H[X[] that is an isomorphism, GET _IB

tries to make a matching between the children of p and the children of g.

It is shown [130] that the overall complexity of ISO_ CHECK is O(k!?k*n?). As the number
of edges in T¢ is O(n), the running time of the second phase of algorithm RTWD _ISO is
O(k!?k*n3). Moreover, as the number of different root sets for H is n, the total running

time to check the isomorphism of graphs G and H is O((k!)%k?n?).

2.4 Group-theoretic approach

Recently, group theory was used effectively to solve what looks like a purely graph-theoretic
problem, graph isomorphism [64]. This approach is based on group-theoretic concepts and

the study of permutation groups.

Group theory can be thought of as an algebraic study of symmetry, and the lovely insight
that connects the two topics is that in order to tell efficiently whether two graphs are
the same it suffices to “know” the symmetries that the two graphs possess. Using this
approach, efficient (as well as not-so-efficient) polynomial-time algorithms were obtained
to determine whether graphs from several important classes are isomorphic. Among these
classes are graphs where all vertices have bounded degree. Sometimes these algorithms are

thought of as the apotheosis of this approach.

CHAPTER 2. GRAPH ISOMORPHISM 59

Algorithm 4 GET _IB sub-procedure
PROCEDURE GET_IB(p,gq,l)

INPUT: Nodes p in T and ¢ in T# such that dyc(re,p) = dpu(p,rg) = 1.
OUTPUT: R.

R :=G®; ;
IF |X7| # |X,'| THEN return;

Count the number of children of p in TC;
Count the number of children of ¢ in T#;
IF the number of children of p and ¢ are different THEN return;

FOR each bijection f : X& +— X[that is an isomorphism DO
BEGIN

Set childrenP := {p : p is a child of p};

Set children@ := {{ : is a child of q};

boolean found := FALSE;

FOR each p € childrenP DO
BEGIN
IF found THEN break;
FOR each ¢ € children@ DO
BEGIN
IF found THEN break;
FOR each g € R, DO
IF G[XF U X{] and H[XF U X[] are isomorphic
under the function f U g THEN
BEGIN
childrenP := childrenP — {p};
children@ := children@ — {{};

found : - TRUE;
break;
END
END
IF NOT found THEN return;
END
RPT:= RM U f;

END

END PROCEDURE

CHAPTER 2. GRAPH ISOMORPHISM 60

The following sections give an overview of this approach. For details, readers may consult

corresponding references.

2.4.1 Bounded eigenvalue multiplicity graph isomorphism

Consider an undirected graph X with n vertices, represented by its adjacency matrix A.
Viewing A as a linear transformation in R”, the eigenvalues of A are the roots of the
characteristic polynomial, det(A—A). We say that the graph X is of eigenvalue multiplicity
m if no root of the characteristic polynomial has multiplicity exceeding m. The analysis of
graphs through their eigenvalues constitutes the theory of graph spectra [20, 41]. In [13],
the isomorphism of graphs X and Y can be tested by an O(n'™*¢) deterministic and by an
O(n*™*¢) Las Vegas algorithm, where n is the number of vertices of X and Y. The term
“Las Vegas algorithm” was introduced in [10]. It means an algorithm which uses flips of a
coin; its output may be NO ANSWER, but whenever an answer is reached it is correct,

and for any particular input, the probability of receiving NO ANSWER is less than 1/2.

Linear algebra preliminaries

Consider an undirected graph X on n vertices represented by its adjacency matrix A. Since
Ais an n x n, symmetric real valued matrix it has n real eigenvalues. Let {A\;, Ay, -+, A, }
be the set of distinct eigenvalues. Associated with the eigenvalue J; is the eigenspace S,
containing the eigenvectors associated with A; : S; = {z € R* | Az = \;z}. By virtue of

the symmetry of the matrix A:

1. If A; is an eigenvalue with multiplicity m; then S; has dimension m;.

2. The direct sum S1 S, @ --- @ S, = R".

CHAPTER 2. GRAPH ISOMORPHISM 61

3. If i # j then S; and S; are mutually orthogonal.

Let V = {ej, s, - -,e,} be the standard basis of R", i.e. the unit vectors. These vectors
are identified with the vertices of X as enumerated in the adjacency matrix A. Recall that
the automorphism group of X is the set of permutations on V' which preserve adjacency
under isomorphism. The automorphisms of X induce orthogonal linear transformations on
R" by permuting the unit vectors. So the automorphism group of X may equivalently be
defined as the set of permutation matrices 7 which commute with the adjacency matrix of

X:7m e Aut(X) & 1A = Ar.

Tower of groups approach

In 1979, Babai introduced the “tower of groups” approach to give a polynomial-time coin
tossing algorithm to decide multiplicity [10]. With this technique, Hoffmann solved the
graph isomorphism for cone graphs of bounded degree [65]; later, Furst, Hopcroft and Luks

applied it to trivalent graphs [53].

In general, a permutation group on n points may have as many as n! elements. However,
any permutation group G may be represented by a set of at most n? generating permutations

whose closure under multiplication is equal to G [52].

We first consider the problem of determining a set of generators of the automorphism group

of a graph X with eigenvalue multiplicity < m. The following theorems are proved in [13].

Theorem 2.14 For a graph X with eigenvalue multiplicity < m, the generators of the
automorphism group Aut(X) can be found by an O(n*™*¢) deterministic and by an O(n™*°)

Las Vegas algorithm.

CHAPTER 2. GRAPH ISOMORPHISM 62

We use the symbol [to mean “restricted to”.

Theorem 2.15 Let X be a graph with eigenvalue multiplicity < m. Then one can partition

the vertezr set of X as Cy + Cy+ -+ -+ Cs in n® time so that

1. each C; s invariant under Aut(X);

2. a permutation group H; < Sym(C;) of order |H;| < n™ can be listed in n™*¢ time

such that (Aut X) | C; < H;,1=1,2,---,s

Let X be a graph with coloured vertices, the colour classes forming a partition C; + Cy + - - -

of the vertex set. Assume that groups H; < Sym(C;) are explicitly listed fori =1,2,---,s
Their direct product H; x Hy X --- X H; acts on V. The question about “graphs with
restricted colour-groups” is to determine a set of generators for G = Aut(X) N (Hy x Hy x

-+ x Hy). This is a particular case of the “intersection of group-cylinders” problem solved
in [10]. Let N = max{|H;| : ¢ = 1,2,---,s}. The problem complexity is bounded by
O(N n°).

Now, let G° > G! > --- > G* = {e} be a tower of groups. The elements of G° are encoded
by words in an alphabet, and group operations are performed by an Oracle (Black-box).
The question 7 € G is decided by an Oracle, for any 7 € G°. In addition, a set of
generators of G° is provided. The problem is to find generators for each G*. This problem

was first formulated by [10].

An algorithm essentially due to Sims and analyzed by Furst, Hopcroft and Luks [52] solves

this problem by O(T?), where

r= 361 1)

+Cy=1

CHAPTER 2. GRAPH ISOMORPHISM 63

Hence, the total running time of this approach will be O(T? - n?) = O(N? - n°+?). In the
problem of determining the automorphism group of a graph with no more than m-tuple
eigenvalues, we have N < n™. The running time of the entire algorithm is dominated by

the “tower of groups” part. Finally, the problem can solved in O(n™*¢) time.

The Las Vegas algorithm for the “tower of groups” for “graphs with restricted colour-groups”
requires only O(N - n¢) time. This results in O(n?™*¢) for determining the automorphism

group of a graph with no more than m-tuple eigenvalues.

2.4.2 Trivalent graph isomorphism

As mentioned above, group theory plays an important role in solving the graph isomorphism
problem. Consider a graph X which is the disjoint union of X; and X, and look at its
automorphism group A (elements are vertex relabellings which preserve adjacency; the
group operation is composition of labellings). If the graphs are isomorphic, then A, and
hence any generator set for A, has elements which map a vertex of X; to a vertex X,.
The converse is also true, so it suffices to compute a generator set for A. In other words,
testing graph isomorphism is polynomially reducible to determining generators for the
automorphism group of graphs and there are small sets of generating permutations [64].
Trivalent graphs, also called cubic graphs, are graphs all of those vertices have degree 3.

Here, we consider the trivalent graph isomorphism.

Basic ideas of the algorithm

In order to test isomorphism of connected trivalent graphs X' and X? with n vertices

and O(n) edges, we answer O(n) questions of the following form: Given e; € E(X!) and

CHAPTER 2. GRAPH ISOMORPHISM 64

e; € E(X?), is there an isomorphism from X' to X2 that maps e; to e,? This question is
reduced to constructing a generator set [54] for Aut.(X), the group of automorphism of a
connected trivalent graph X that fixes a specified edge, e. This reduction to the study of
Aut.(X) was observed in [53]. In order to understand well this important reduction, we

recall the proposition [88] formally and give the proof here.

Proposition 2.1 Testing isomorphism of trivalent graphs is polynomial-time reducible to
the problem of determining generators for Aut.(X), where X is a connected trivalent graph

and e is a distinguished edge.

Proof. “Assume we posses a polynomial-time algorithm which returns generators for any
such Aut.(X). Once again, it suffices to be able to compare two connected trivalent graphs
X', X2 Fix an edge e; € E(X'). For each edge e; € E(X?) we can test whether there
is an isomorphism from X! to X? which maps e; to e; as the following: Construct a

connected trivalent graph X from the disjoint union X; U X, by

1. inserting new vertices v; in e; and v, in ey,

2. joining v; to v, with a new edge e.

Then there is an isomorphism from X! to X2 mapping e, to e, if and only if some element
of Aut.(X) transposes v; to vp. Furthermore, if such automorphism exists, any set of

generators of Aut.(X) will contain one.” O

The motivation to compute Aut.(X) is essentially from Tutte’s observation [125] that
Aut.(X) is a 2-group. The other useful feature is that there is a natural sequence of

“approximations” to Aut.(X). For this, we let X,,7 =1,2,---,n — 1, be the subgraph of

CHAPTER 2. GRAPH ISOMORPHISM 65

A comprised of all vertices and edges on paths of length < 7 through e (so X; is e and

Xn—1is X). There are natural homomorphisms
T+ Aute(Xry1) — Aute(X,),

in which 7, (o) is the restriction of ¢ to X,. In the rth stage, r = 1,2,---, we construct a
generating set for Aut.(X,+1) given one for Aut.(X,). This task can be broken into two

problems:

1. Find a set of generators R for Ker(w,).

2. Find a set of generators S for Im(n;,).

Thus, if 7,(S") = S in Aut.(X,41), then R U S’ generate Aut.(X,;1). The harder problem

is the second. It is reduced to the following problem [88]:

Problem 1.
Input: A set of generators for a 2-subgroup, G, of Sym(A), where A is a coloured set.

Find: A set of generators for the subgroup {o € G | o is color preserving}.

To solve the colour automorphism algorithm for 2-groups, Luks [88] uses a divide-and-
conquer strategy, the decomposition of the set into orbits. After investigating the problems
[54, 88], it is shown that Aut.(X) can be computed in time O(n?), where X is an n-vertex,

connected, trivalent graph.

Having the upper bound of Aut.(X), the reduction could be used to test isomorphism for
n-vertex, connected, trivalent graphs X', X2 in O(n*) steps. It can be done through an

Aut.(X) computation corresponding to each e, € E(X?). According to [54], however, an

CHAPTER 2. GRAPH ISOMORPHISM 66

examination of this process could include repetitive computation of the groups, blocks,

etc. for Aut,, (X1).

Our ultimate goal is to compute Isoe, ¢,(X!, X?), the set of all isomorphisms from X! to
X? that take edge e; to edge e;. If o is one such isomorphism, then Iso,, .,(X?, X2) =
o Aut,, (X'). With this in mind, we compute Aut,, (X!), together with the blocks, groups,
and search for a single representative isomorphism, if one exists. The authors show that
I50g, e,(X', X?) = oAut,, (X) is computable in time O(n2logn). Finally, isomorphism
of n-vertex trivalent graphs can be tested in time O(n3logn). The algorithm determines
the set of all isomorphisms. The Las Vegas algorithm for Isoe, ¢, (X', X2) = cAut,, (X?)
problem can be solved in time O(n?), thus for the isomorphism of n-vertex trivalent graphs

the time is expected in time O(n?).

Discussion of the result

Can the result be generalized? The fast algorithms for 2-groups be generalized to p-groups.
Although the groups that turn up in the consideration of graphs of higher valence are not
p-groups, there is a sense in which they are almost p-groups [88]. One expects that this
observation should lead to improvements of isomorphism testing for small valence, say 4

and 5 (where the groups are solvable).

2.4.3 Bounded valence graph isomorphism

Now, we study further the trivalent graph isomorphism problem. As discussed in the previ-
ous subsection, the problem of determining generators for Aut(X) is reducible to problems

of determining generators for the automorphism group of graphs and there are small sets

CHAPTER 2. GRAPH ISOMORPHISM 67

of generating permutations. Luks went on to show that trivalent-graph-isomorphism is
in P by reducing it to a colour automorphism problem for 2-groups and presenting
a polynomial-time solution for the latter [88]. The technique was extended to graphs of
bounded valence. We recall the colour-automorphism problem here, since it is frequently

investigated.

colour Automorphism Problem.
Input: A coloured set A and generators for a group G of permutations of A.

Find: Generators for the subgroup consisting of the colour preserving maps.

Now, we look back on determining generators of Aut(X). In the colour automorphism
problem, computing Aut(X) is a special case: Let G be the group of all permutations of
the vertex set VV(X) while viewing G as an action on the set A of unordered pairs of vertices;
colour A with two colours (for example, blue and red) to delimit edges and non-edges of

X; then Aut(X) is the colour-preserving subgroup.

We have discussed trivalent graph isomorphism. Now, we consider graphs of valence < ¢t
where ¢ is, henceforth, fixed. The procedure introduced in the previous subsection is still
helpful and beneficial to our new situation. The reduction to determining the kernel and
image of

T Aute(Xry) = Aute(X,),
is the same as in the trivalent graph case.

“We consider the set V(X,41) \ V(X;). Let A denote all non-empty subsets of V(X,) of

size <t — 1. We define a “father-map”

f V(X)) \ V(X)) - A

CHAPTER 2. GRAPH ISOMORPHISM 68

by f(v) = {w € V(X;) | (v,w) € E(X)}. An element o0 € Aut.(X,;;) now lies in
K, = kernel(w,) if and only if it stabilizes each set of “tuplets”, f~!(a), for a € A. The

sets f~!(a) form a partition of V (X, ;) \ V(X,) and K, is the direct product
K, =[] Sym(f~\(a)).
acA

Each of the factors in the direct product can be specified with at most two generators.

We observe next that ¢ € Aut.(X,) is in the image of =, if and only if o stabilizes, for

each 0 < s <t —1, the set of fathers of s-tuplets
A ={acA||fY(a)| = s}

as well as the set A’ of new edges. colour A, accordingly, with 2¢ colours. The problem is

once again one of finding the colour automorphism in G = Aut.(X,) acting on A.”

With the similar idea presented in the trivalent graph case to reduce the problem, Luks

introduced another concept.

Definition 2.22 Fork > 2, let 'y denote the class of groups G such that all the composition

factors of G are subgroups of Sy.

Then, he proves that for each r, Aut.(X,) € I';_;. Hence, testing isomorphism of graphs

of bounded valence is polynomial-time reducible to the following problem with & fixed:

Problem 2.
Input: A set of generators for a subgroup, G, of Sym(A), where G € 'y and A is a coloured
set.

Find: A set of generators for the subgroup {o € G | 0 is color preserving}.

CHAPTER 2. GRAPH ISOMORPHISM 69

Solving this problem with the same divide-and-conquer strategy of trivalent graph case,

Luks shows that it can be computed in polynomial time.

All in all, testing graph isomorphism of bounded valence can be solved in polynomial time.

Actually, Luks gives an algorithm in complexity of O(n®¢'°¢¢) with bounded valence d.

Chapter 3

Subgraph Isomorphism

Subgraph isomorphism is an important and very general form of exact pattern matching.
In the general subgraph isomorphism problem, given a “text” G and a “pattern” H, one
must either detect an occurrence of H as a subgraph of G, or list all those occurrences.
For certain choices of G and H there can be exponentially many occurrences, so listing
all occurrences cannot be solved in sub-exponential time. Because of reductions from
Hamiltonian path and clique finding, the decision problem is NP-complete [55]. Hence,
sub-exponential algorithms are unlikely. However, for any fixed pattern H with £ vertices,
both the enumeration and decision problems can easily be solved in polynomial O(nf) time,
and for some patterns, a better bound might be possible. Thus one is led to the problem

of determining the algorithmic complexity of subgraph isomorphism for a fixed pattern.

3.1 Complexity results

Since this section is far away from the first chapter, we recall the definition of subgraph

isomorphism here: given two graphs G; and Gy, find out if G, contains a subgraph that is

70

CHAPTER 3. SUBGRAPH ISOMORPHISM 71

isomorphic to Gy, or find all such isomorphic subgraphs. Formally, the graph G,(V4, E}) is
isomorphic to a subgraph of a graph G3(V5, E,), denoted by G; = S, < G, if there is an

injection ¢ : V; — V5 such that, for every pair of vertices v;,v; € V4, if (v;,v;) € E; then

(p(vi), p(v;)) € Es.

For the general subgraph isomorphism problem, no better bound than the naive O(n)
bound is known [72], where £ is the number of vertices in pattern H. Although the subgraph
isomorphism is N P-complete, some special cases are interesting, and have polynomial-time
algorithms. Shamir and Tsur [120] gave a polynomial-time O((k'®*/logk)-n), where k and
n are the number of vertices of H and G, for subtree isomorphism. Under the assumption
that the degree of some distinguished vertices is preserved under the subgraph isomorphism
mapping, it was shown that the subgraph isomorphism problem is solvable in quadratic
time as well [28]. While it still remains N P-complete, Eppstein [47] solved the subgraph
isomorphism problem in planar graphs in linear time, for any pattern of constant size. This
is the first known algorithm for this problem that is polynomial in |G|. Jiang and Bunke

[72] also showed that embedded subgraph isomorphism can be solved in polynomial time.

It has long been known that if the pattern H is either K3 or K4, then there can be at most
O(n) instances of H as a subgraph of a planar graph G, and that these instances can be
listed in linear time [17, 70, 112]. In [46], it is shown that listing all cycles in fixed length

in outer-planar graphs can be done in linear time.

Furthermore, with the outer-planar cycle, any wheel with given fixed size can be found in
linear time. Itai and Rodeh [70] discuss the problem of finding the girth of a general graph,
or, equivalently, finding short cycles. Richards [114] gives O(n-logn) algorithms for finding
Cs and Cg subgraphs, and leaves open the question for larger cycle lengths. Bodlaender
[21] discusses the related problem of finding a path or cycle longer than some given length

in a general graph, which he solves in linear time for a given fixed length bound.

CHAPTER 3. SUBGRAPH ISOMORPHISM 72

3.2 Subtree isomorphism

As described in the chapter on graph isomorphism, it has been proved that tree isomorphism
can be tested in linear time, even Alogtime. However, for the subtree isomorphism problem,
this is not the case. Polynomial-time algorithms for subtree isomorphism with tree-width at
most 2 were first given by Matula [91] in 1968. Later, faster algorithms, with complexity
time O(k'®n), were given by Matula [92] and Chung [36]. In contrast, the subgraph

isomorphism problem is N P-complete when G is a tree and H is a forest [55].

Basic notation

A rooted tree is a triplet G(V, E,r), where (V, E) is an unrooted tree, and r is some
vertex in V' which is called the root. It is sometimes denoted as G". We also denote by G7
the rooted subtree of G™ whose vertices are all descendants of v, and its root is 7. Let G”
and H™ be rooted trees, we write H™ Cp G" if there is a rooted subtree J" of G™ which is

isomorphic to H' .

An O(k!®n) algorithm

Based on Chung’s algorithm [36], we briefly describe the idea of the O(k!°n) algorithm.

Let G(V, E) and H = (Vy, Eg) be the input trees, and select a vertex r of G to be the root.
We recall that the open neighbourhood of a vertex v in a graph G is N(v) = {u | uv € E};
the closed neighbourhood is N(v) = N(v) U {v}.

Lemma 3.1 For any vertez v in G", verter u in H and a verter w € N(u), we have that
HY Cr G}, if and only if for every child u' of u in HY, there is a distinct child v' of v such

that H::/ gR G:}/. ':]

CHAPTER 3. SUBGRAPH ISOMORPHISM 73

“We store this information in sets S(v, u) defined as follows: for every v € V, and for every
u € Vy,

S(v,u) ={w e N(u) | HY Cr G}
Notice that:

1. u € S(v,u) if and only if H* = H* Cp GT
2. u € S(v,u) implies S(v,u) = N(u)

3. d(v) < d(u) — 1 implies S(v,u) = @.”

An example is illustrated in Figure 3.1. In this example, we have H*, H*? ¢ GT and
Hp, HY Cr GY, so S(v,u) = {u1,us}. The graph B(v,u) is the bipartite graph con-
structed to compute S(v,u). There is an edge w;v; in this graph if and only if u € S(v;, ;).
H" ¢ G}, as B(v,u) does not contain a matching of size 3. H* Cp G7 as B, (v,u) =

B(v,u) — u; contains a matching of size 2.

B(v,u)
@ ©
g w @

Figure 3.1: an example of subtree isomorphism

The general algorithm is described in Algorithm 5 (cited from [120]).

CHAPTER 3. SUBGRAPH ISOMORPHISM

74

Algorithm 5 subtree-Isomorphism(G, H)

Select a vertex r of G to be the root of G.
FOR allu € H,v € G DO S(v,u) + @.

FOR all leaves v of G" DO
FOR all leaves u of H DO S(v,u) + N(u).

FOR all internal vertices v of G" in a postorder DO
Let vy, v, -+, v; be the children of v.
FOR all vertices u = uy of H with degree at most ¢t + 1 DO
Let uy,uy, -+, us be the neighbors of u.
Construct a bipartite graph B(v,u) = (X, Y, E,,),
where X = {uy, -, u:},Y = {vy,- -+, v},
and By, = {u;v; | v € S(vj,u;)}.

Denote Xg = X and X; = X — {u;}.

FOR all0<i< s DO
Compute the size m; of a maximum matching
between X; and Y.

S(v,u) ¢ {u; | m; = |X;],0 <4 < s}
IF v € S(v,u) THEN return YES

END FOR
END FOR

return NO

Theorem 3.1 (Shamir and Tsur [120] , 1997)

Algorithm Subtree-Isomorphism solves the subtree isomorphism problem in O(k'®n) time

and O(kn) space.

An O((k'®/logk) - n) algorithm

In the above algorithm, we need to find a maximum matching. In 1995, Feder and Motwani

[48] found an algorithm for bipartite graphs with equal-size parts. Here, this idea can

be extended to general bipartite graphs [120]. Thus, an improved algorithm could be

CHAPTER 3. SUBGRAPH ISOMORPHISM 75

implemented by modifying the Subtree-Isomorphism algorithm. We omit the modification

here. For details, please consult [120]. Finally, we have:

Theorem 3.2 (Shamir and Tsur [120] , 1997)

The subtree isomorphism can be tested in O((k'/log k) - n) time.

3.3 Planar subgraph isomorphism

Now, we consider the special case in which G and H are planar graphs, a restriction
naturally occurring in many applications. As mentioned in the graph isomorphism section,
a planar graph is one that can be drawn on the plane in such a way that there are no “edge

crossings”, i.e. edges intersect only at their common vertices.

Eppstein uses a graph decomposition method similar to the one used by Baker [16] to
approximate various N P-complete problems on planar graphs. Baker’s method involves
removing vertices from the graph, leaving a disjoint collection of subgraphs of small tree-
width; in contrast, Eppstein focused on a collection of non-disjoint subgraphs of small

tree-width covering the neighbourhood of every vertex.

Definitions and preliminaries

Definition 3.1 The width of a tree-decomposition (T, W) is the number max{|W,| — 1 :
t € V(T)}, and the tree-width tw(G) of G is the least width of any tree-decomposition

of G.

Before presenting the basic ideas of the algorithm, we need to introduce briefly an algorithmic

technique, dynamic programming.

CHAPTER 3. SUBGRAPH ISOMORPHISM 76

Definition 3.2 Dynamic programming is an algorithmic technique in which an optimization
problem 1s solved by caching subproblem solutions (memorization) rather than recomputing

them.

Dynamic programming is an efficient programming technique for solving certain combinatorial
problems. It is an approach developed to solve sequential, or multi-stage, decision problems:
hence, the name “dynamic” programming. The word programming in the name has nothing
to do with writing computer programs. Mathematicians use the word to describe a set of
rules which anyone can follow to solve a problem. They do not have to be written in
a computer language. Dynamic programming is recursion’s somewhat neglected cousin.
It tends to break the original problem to sub-problems and chooses the best solution in
the sub-problems, beginning from the smaller in size. For an introduction of dynamic

programming, please consult [76, 104].

Basic ideas of the algorithm

First, we show a key structural property of planar graphs: if they have low diameter they
also have low tree-width. Such a result was already implicit in the work of Baker [16]. With
a bound on tree-width, we can use dynamic programming techniques to compute many
graph properties in linear time [19, 123]. In [47], Eppstein proves that a planar graph G
with diameter D has tree-width O(D), and a tree-decomposition with width O(D) can be

found in time O(D - n).

Lemma 3.2 [47] Assume we are given graph G with n vertices along with a tree decomposition
of G with width w. Let S be a subset of the vertices of G, and let H be a fized graph with

at most w vertices. Then, in time O(c*'°8%n) for some constant ¢, we can count all

CHAPTER 3. SUBGRAPH ISOMORPHISM 77

isomorphisms of H in G that include some vertez in S. In time O(c¥'%8%n + kw) we can

list all such isomorphisms.

Proof: (sketch) The basic technique used is dynamic programming.

In the first step, by the dynamic programming technique, we apply the tree decomposition
recursively in a tree 7' coming from the tree representation of G. Each vertex in the tree
corresponds to a clique in the tree decomposition of G, and the subtree rooted at that

vertex corresponds to a subgraph separated from the rest of G by the vertices in that

clique.

Next, we introduce a term partial isomorph. “A partial isomorph at a vertex N of the tree
T is an isomorphism between an induced subgraph H' of the pattern H and a subgraph of

the portion of G corresponding to the subtree rooted at N. ”

Then, let G’ be the graph induced in G by the vertices (of G) in the vertex N (of T),
together with two new additional vertices, each connected to all vertices in N. Further,
each of the two additional vertices is given a self-loop. Then from any partial isomorph
at N we can derive a graph homomorphism from all of H to G’, which is one-to-one on
vertices of NV, maps the rest of H’ to the first additional vertex, and maps H — H' to the

second additional vertex in G'. Let a partial isomorph boundary be such a map.

“There are O(c}"'%") possible partial isomorph boundaries for a given vertex of T, for some
constant c¢;. For each partial isomorph boundary, in each vertex, we compute the number
of partial isomorphisms which give rise to that boundary. We also compute a similar count
of those partial isomorphisms involving a vertex of S. These numbers can be computed in a
straightforward way from the same information at the vertex’s children, by combining the
w-logw

O(c¥'°8™) counts from each children in pairs of children at a time, resulting in O(cy ")

work per combined pair and O(c*'°8¢n) overall work.”

CHAPTER 3. SUBGRAPH ISOMORPHISM 78

At the root vertex of the tree T', we simply sum the number of isomorphisms involving .S
among those partial isomorph boundaries for which none of H is mapped to the second
additional vertex. To recover the isomorphisms themselves, we simply return back through
the tree using the already computed counts to determine which portions of the total sum

came from which partial isomorphisms at each level. O

Well, we succeeded in solving the subgraph isomorphism problem quickly in graphs of
bounded tree-width. We also see the subgraph of any planar graph G induced by the

vertices near some particular vertex has bounded tree-width.

Now, we reconsider our original question: how to decide the subgraph isomorphism without
this restriction? Can we utilize the above result? Naturally, we hope to decide the subgraph
isomorphism between H and G by covering G with a collection of all such subgraphs. This
involves another technique: neighbourhood covers, introduced by Awerbuch and Peleg [7]
who used them for distributed computation: one can apply local computations in each cover
rather than in the whole graph, since each neighbourhood is covered, and the computations

terminate quickly since each subgraph has small diameter.

Lemma 3.3 Let G be a planar graph. Then, we can find a collection of subgraphs G; with

the following properties:

¢ For every vertez v of G, the subgraph G' induced by the vertices of G within distance

w of v is a subgraph of one of the graphs G;.
¢ Every vertez of G is included in at most three subgraphs G;.

¢ Every subgraph G; has tree-width O(w).

CHAPTER 3. SUBGRAPH ISOMORPHISM 79

We give an algorithm for the subgraph isomorphism problem based on Lemma 3.2 and 3.3.

Theorem 3.3 (Eppstein [47], 1995) We can count the isomorphisms or induced isomorphisms
of a given connected pattern H with w vertices, in a planar graph G with n vertices, in time

O(c¥°8%n). If there are k such isomorphisms, they can be listed in time O(c¥'°8vn + wk).

Proof. (sketch) We apply Lemma 3.3, with S = (V,G), to find in O(n) time a set of
disjoint subgraphs G; with tree-width O(w), covering the radius w neighbourhoods of all
vertices in G. We choose one such subgraph Gj, let S be the vertices in G; with covered
neighbourhoods, and find all subgraph isomorphisms involving vertices in S using the
algorithm of Lemma 3.2. We then remove S from all other covering subgraphs G; so that
the resulting graphs form a cover of G — S, and we continue to use that cover to find all

remaining subgraph isomorphisms in G — S. O

Discussion on the technique

Actually, this technique can also be extended to other families of graphs. Eppstein shows
[47] linear or quadratic algorithms for any family having a certain relation between diameter

and tree-width.

3.4 Embedded subgraph isomorphism

Definitions and preliminaries

An embedded graph is a graph with a combinatorial embedding of the edges around each

vertex. Formally, we have:

CHAPTER 3. SUBGRAPH ISOMORPHISM 80

Definition 3.3 An embedded graph G = (V,E, L) is a graph (V, E) together with a set

L ={L(v)} of ordered, circular lists of edges incident to each vertez v € V.

Two embedded graphs are isomorphic if the underlying graphs are isomorphic and the
isomorphism preserves and reflects not only the structure of the graphs but also their

combinatorial embeddings.

Definition 3.4 An embedded subgraph isomorphism of an embedded graph G, =
(W1, Ev, Ly) into an embedded graph Gy = (Va, Ey, Ly) is a subgraph isomorphism f : Vy — V,
of (i, E1) into (Va, Ey) such that Ly(f(v)) 1s a cyclic rotation of f(Li(v)), for all vertices

v e V.

Description of Algorithms

In a finite, undirected, connected graph it is always possible to construct a cyclic directed
path passing through each edge once and only once in each direction. Such a path is
called Eulerian path. It can be constructed by traversing each edge of the corresponding
bi-directed graph exactly once in each direction, which guarantees that the degree of each
vertex is even. Such a traversal is called a leftmost depth-first traversal (LMDFS), since
the edges are explored in left-to-right order (if drawn downwardly) for any vertex of the

graph and, more generally, the whole graph is explored in a left-to-right fashion.

An algorithm was formulated by Trémaux and recalled by Weinberg [128] for finding a
way out of a maze, that is, for the leftmost depth-first traversal of an undirected graph.

“Starting with an edge traversed in one of its directions,

¢ When a non-visited vertex is reached, take the next (in the counter-clockwise ordering

of the edges around the vertex) edge.

CHAPTER 3. SUBGRAPH ISOMORPHISM 81

¢ When a visited vertex is reached along a non-visited edge, take the same edge but in

the opposite direction.

¢ When a visited vertex is reached along a visited edge, take the next (in the counter-

clockwise ordering of the edges around the vertex) non-visited edge, if any.”

The following algorithm 6 71, 72, 128] performs LMDFS on two embedded graphs, starting

with edges e; of G} and ey of Gs.

Algorithm 6 LMDFS on two embedded graphs
PROCEDURE Match(Gl, Gz, €1, €9, AI)

let v; be the target of edge e;
let v be the target of edge e,
IF vertex v; has been visited THEN
IF reversal of edges e; has been visited THEN
let €] be the reversal of edge e,
let e, be the reversal of edge e,
let €] be €]
REPEAT
let e} be the cyclic successor of edge €]
let €5 be the cyclic successor of edge €
UNTIL €} = e/ or edge €] has not been visited
IF edge €| has been visited THEN return
ELSE
let €] be the reversal of edge e,
let e} be the reversal of edge e,
ELSE
let €} be the cyclic successor of reversal of edge e;
let e; be the cyclic successor of reversal of edge e,
add(v;, v2) to vertex mapping M

mark edge e; and vertex v; as visited
Match(Gl, GQ, €1, €9,]V.[)
END PROCEDURE

As the synchronized leftmost depth-first traversal proceeds, procedure Match extends a

vertex mapping M : V| — V, into the maximal vertex mapping representing an embedded

CHAPTER 3. SUBGRAPH ISOMORPHISM 82

subgraph isomorphism of a subgraph of G, into Gs.

Starting with an empty mapping, algorithm 7 [71, 72, 128] finds, whenever possible, a
vertex mapping M : Vi — V), representing an embedded subgraph isomorphism of an

embedded graph G; into an embedded graph G,.

Algorithm 7 embedded subgraph isomorphism
FUNCTION Embedded _Subgraph_Isomorphism(G;, Go, M)

let e; be an edge of G,

FOR all edges e; of G, DO
let M be an empty vertex mapping
Match(Gl, GQ, €1, €9, A/.[)
let s be the size of A/
IF s = n; THEN return TRUE
return FALSE

END FUNCTION

Since the Match algorithm visits every edge of the embedded graphs at most once in each
direction, the worst-case time complexity is O(m; + m;,). The worst-case time complexity

of the Embedded_ Subgraph_ Isomorphism algorithm is O((m; + my) - my).

The algorithms can be readily extended in order to enumerate all embedded subgraph

isomorphisms.

3.5 Relational view approach

As introduced in the first chapter, most of the research on subgraph isomorphism algorithms
has been based either on heuristic search techniques or on constraint satisfaction techniques.
In this section, another approach to the problem of finding all subgraph isomorphisms
is presented. A relational formulation of the problem by Cortadella and Valiente [40],

combined with a representation of relations and graphs by Boolean functions, allows us

CHAPTER 3. SUBGRAPH ISOMORPHISM 83

to handle the combinatorial explosion in the case of small pattern graphs and large target
graphs by using Binary Decision Diagrams (BDDs), which are capable to represent large

relations and graphs in small data structures.

Definitions and preliminaries

Definition 3.5 Given two sets A and B, a binary relation R between A and B is a
subset of A x B. Given a set of sets Ay, -, An, an n-ary relation R over Ay, -+, A, is a

subset of Ay x -+ x An. For a binary relation we say that zRy if and only if (z,y) € R.

A binary relation R can be represented by a |A| x |B| Boolean matrix Mgy, in which
Mun[z,y] = zRy. A binary relation R between a set A and itself is a subset of A% and can

also be represented by a directed graph G = (V| E), where V = A and E = R.

Considering Boolean functions over the set B = {0, 1}, an n-variable Boolean function is a
function f : B® — B. Typically we will represent Boolean functions with Boolean formulae
in which the operators + and - will denote the disjunction and conjunction respectively,
the operator - having higher precedence than + operator. For simplicity, the operator -

will be often omitted. For example, the 3-variable Boolean function

£(0,0,0) = £(0,0,1) = £(0,1,1) = £(1,1,1) = 1

f(O,]-,O):f(l,O,O)=f(1,0,1):f(1,1,0):0

can be represented by the Boolean formula

CHAPTER 3. SUBGRAPH ISOMORPHISM 84

f(z1, 2, 23) = T1%2 + Tox3

Given a set A4, an encoding function of A is an injective function o : A — B". A necessary
condition for o to be injective is that |A| < 2". Given an encoding function o of a set A,

the characteristic function of A is an n-variable function y4 defined as follows:

xalz)=1<3Ja€A:0(a) =z

where z is a vector of n Boolean variables, z = (zy,-- -, z,).

Given a binary relation 2R between two sets A and B and two encoding functions o4 :
A — B" and op : B — B™, the characteristic function of R is an (n +m)-variable Boolean

function xg : B**™ — B defined as follows:

xr(z,y) =1 3(a,b) eR:0(@)=zAc(b) =y

where £ = (z1,--+,%,) and y = (y1,---,¥m). Characteristic functions can be trivially
extended to n-ary relations. Henceforth, and for the sake of simplicity, we will use the
symbols A and R to represent the characteristic functions x4 and xx respectively under

some implicit encoding functions.

Binary Decision Diagrams

Binary Decision Diagrams (BDDs) have emerged as an efficient canonical form to manipulate

large Boolean functions. The introduction of BDDs is relatively old [82], but only after

CHAPTER 3. SUBGRAPH ISOMORPHISM 85

the recent work of Bryant [26] are they transformed into a useful tool. For a good review

of BDDs we refer to [27].

Now, we give a brief review of this method. A binary decision diagram represents a Boolean
function as a rooted, directed acyclic graph. As an example, we give a representation of a

Boolean function f(z,z2,23) as a graph (See Figure 3.2).

Figure 3.2: decision tree representation

Each nonterminal vertex v is labeled by a variable var(v) and has arcs directed toward
two children: low(v) (shown as a dashed line) corresponding to the case where the variable
is assigned 0, and high(v) (shown as a solid line) corresponding to the case where the
variable is assigned 1. Each terminal vertex is labeled 0 or 1. For a given assignment to
the variables, the value yielded by the function is determined by tracing a path from the
root to a terminal vertex, following the branches indicated by the values assigned to the

variables. The function value is then given by the terminal vertex label.

“For an Ordered BDD (OBDD), we impose a total ordering < over the set of variables
and require that for any vertex u, and either nonterminal child v, their respective variables
must be ordered var(u) < var(v). In the decision tree of Figure 3.2, for example, the

variables are ordered z; < 75 < z3.

CHAPTER 3. SUBGRAPH ISOMORPHISM 86

Furthermore, we provide three rules to reduce the decision tree without altering the function

represented:

¢ Remove Duplicate Terminals: Eliminate all but one terminal vertex with a given

label and redirect all arcs into the eliminated vertices to the remaining one.

¢ Remove Duplicate Nonterminals: If nonterminal vertices u and v have var(u) =
var(v), low(u) = low(v), high(u) = high(v), then eliminate one of the two vertices

and redirect all incoming arcs to the other vertex.

¢ Remove Redundant Tests: If nonterminal vertex v has low(v) = high(v), then

eliminate and redirect all incoming arcs to low(v).”

For example, Figure 3.3 illustrates the reduction of the decision tree shown in Figure 3.2 to
an OBDD. Applying the first transformation rule (left graph) reduces the eight terminal
vertices to two. Applying the second transformation rule (middle graph) eliminates two
of the vertices having variable z3 and arcs to terminal vertices with labels 0 (low) and 1
(high). Applying the third transformation rule (right graph) eliminates two vertices: one
with variable z3 and one with variable z,. In general, the transformation rules must be

applied repeatedly, since each transformation can expose new possibilities for further ones.

Figure 3.3: reduction of the decision tree to BDD

CHAPTER 3. SUBGRAPH ISOMORPHISM 87

If a OBDD is reduced (no further reductions can be applied) then we have a Reduced
Ordered BDD (ROBDD). Given a total ordering of variables, an ROBDD is a unique

canonical form [27].

Representation of Directed Graphs

The approach to subgraph isomorphism is based on unlabeled, directed, simple graphs,

also called relational graphs [119].

It is frequent to represent a graph by a Boolean adjacency matrix A, where an element
a;j = 1if (a;,a;) € E, and a;; = 0 if (a;,a;) ¢ E. We shall usually denote the boolean

matrix A and the relation E associated to a graph G(V, E) by the same name FE.

Proposition 3.1 (Cortadella and Valiente [40], 2000) The set of vertices of a graph

G = (V, E) with |V| = n can be encoded using [log, n] variables.

Proof. Let k = [log,n] and let oy : V — B* be a function mapping each vertex of V to a
distinct k-bit Boolean vector. Then oy is an encoding of V, and it has [log, n] variables.

O

Proposition 3.2 (Cortadella and Valiente [40], 2000) Given an encoding oy : V —
B* for the set of vertices of a graph G = (V, E), where [V| =n and k = [log, n], the set E

of arcs of the graph can be represented by a characteristic function on 2[log, n| variables.

Proof. Let oy : V — B* be an encoding of the set of vertices V of a graph G = (V| E),

where |V| =n and k£ = [log, n], and let = and y denote k-bit Boolean vectors, which will

CHAPTER 3. SUBGRAPH ISOMORPHISM 88

be used to represent the source and target vertices of each arc in E. Then

oy = 3 [H xi@men yz-e-aav,m}

ueV veV,uEV (1<i<k 1<i<k
represents the set of arcs F, and it has 2[log, n| variables. (]

Once an encoding function is defined on a graph, this graph can also be represented by a

BDD.

Subgraph isomorphism

We now give a relational definition of subgraph isomorphism.

Definition 3.6 A relation ¢ C V' x V is an isomorphism of a graph G' = (V',E') to a
subgraph of a graph G = (V, E) if

pTpC 1, popT =1, E C ¢E'¢"
and it is also written ¢ : G' — G.

While the first two conditions assert that ¢ is an injective function from V' to V, the third
condition guarantees that ¢ preserves the structure of G, that is, that it maps all arcs of

G’ to arcs of G.

“The set of all subgraph isomorphisms of a graph G’ = (V’, E') into a graph G = (V, E) can
be represented by an n-ary relation I C V", where [V’'| = n. The subgraph isomorphism

relation I is defined as follows:

!

(v1,+++,vn) € I <= F asubgraph isomorphism ¢ : G’ — G such that ¢(v}) = vy,--, () = vp.

CHAPTER 3. SUBGRAPH ISOMORPHISM 89

Given two graphs G' = (V', E') and G = (V, E) with |V'| = n, let E;; C V" denote the
n-ary relation on V' containing exactly those (pairwise disjoint) vertices of V which are

joined by some arc in G, that is,

Eij:{(:L‘la'"71‘1'7"'7:6]'7'“71‘71) % l (llazj) €E7 Zr :,él'SfO'f'allT?éS}.”

The following theorem [40], shows the subgraph isomorphism relation I.

Theorem 3.4 (Cortadella and Valiente [40], 2000)

I= () E;
(v:,v;)EE’
Discussion

This approach is used to finding all subgraph isomorphisms of a (pattern) graph into
another (target) graph. From experimental results [40], compared to Ullmann’s algorithm,

it has a better performance as long as the number of vertices of target graph is fairly small.

For very large target graphs, however, the approach is limited in the size of the pattern
graph because BDDs representing all subgraph isomorphisms become too large. An open
problem is therefore to find an optimal encoding of the target graph and optimal variable

orderings in order to obtain smaller BDDs.

Chapter 4

Practical Algorithms

4.1 Review of practical algorithms

Practically, graph and subgraph isomorphism is aimed directly at developing an algorithmic
procedure for isomorphism detection. Most of these algorithms are based on a state-space
search with backtracking. A major improvement [50, 97] of the backtracking method was
showed by Ullmann, who introduced a refinement method which reduces the search space

of the backtracking procedure remarkably [127].

Another backtracking algorithm is the one presented in [118] by Schmidt and Druffel. It
uses the information contained in the distance matrix representation of a graph to establish
an initial partition of the graph vertices. This distance matrix information is then used in

a backtracking procedure to reduce the search tree of possible mappings.

Regarding the graph isomorphism problem, it is also necessary to mention McKay’s Nauty
algorithm [98]. It is based on a set of transformations that reduce the graphs to be matched

to a canonical form on which the testing of the isomorphism is significantly faster. Even

90

CHAPTER 4. PRACTICAL ALGORITHMS 91

if Nauty is considered one of the fastest graph isomorphism algorithms available today, it
has been shown that there are categories of graphs for which it requires exponential time

[101].

A more recent algorithm, refereed to as VF, is based on a depth-first search strategy,
with a set of rules to efficiently prune the search tree. Such rules, for the specific task of

isomorphism testing, are shown in [39)].

In this survey, we will show several major practical graph and subgraph isomorphism

algorithms. After that, a performance comparison is given.

4.2 McKay’s Nauty algorithm

This is a summary of the description of the Nauty algorithm as described in [98]. Nauty
stands for “No AUTomorphisms, Yes?”. It is currently the preferred method for solving

the graph isomorphism problem. Much of its strength comes from ideas of group theory.

Conceptually, Nauty looks at all the automorphisms in a graph and computes the smallest
automorphism. The smallest automorphism is based upon the binary number formed
by concatenating the rows of the adjacency matrix together and using the smallest such

number.

Description of the algorithm

Basically Nauty uses iterative refinement to break up the partitions with an additional

partitioning step. The additional step involves taking a vertex from a non-singleton

CHAPTER 4. PRACTICAL ALGORITHMS 92

Algorithm 8 Nauty algorithm
INPUT: a graph G
OUTPUT: a canonical graph C

7 <— the partition containing a single cell V'
S +— stack containing 7

WHILE (S is not empty)
x +— pop the top of the stack S
IF (z is a leaf partition) THEN
update(C, z)
ELSE
refine(z)
append the children of z to S
END IF
END WHILE

return C

partition and putting it in its own partition and putting the remainder of the vertices

in that partition into a separate partition.

The part of the algorithm that makes it the current best is its use of an indicator function
A which takes a partition as input and, using eight different graph invariants, computes
a hash function. The hash function hopefully computes a different value for different

automorphisms.

It uses a depth-first search, invokes the indicator function at each vertex, and concatenates
the result onto a sequence and uses that sequence to identify the vertex. This sequence
can then be used to prune the search space. The algorithm stores the current smallest
automorphism and can compare its sequence to the sequence it is currently searching.
If the sequence it is searching has a sequence greater than the sequence of the smallest
automorphism then we do not have to search any farther down that branch. We essentially

prune large parts of the search tree in this way.

CHAPTER 4. PRACTICAL ALGORITHMS 93

When a smaller automorphism is found, the canonical label for the graph is updated. This
process continues until the smallest automorphism is found which causes the rest of the
paths to not be searched since their indicator functions will result in larger values. The
label is thus made up from the smallest canonical label. The algorithm is actually much

more complicated and it involves ideas from group theory.

4.3 Ullmann’s backtracking algorithm

In all methods mentioned, Ullmann’s method [127] is considered one of the fastest algorithms
for the subgraph isomorphism problem. This method is based on backtracking and a
refinement procedure. The algorithm is devised for both graph isomorphism and subgraph

isomorphism; it is still one of the most commonly used today for graph isomorphism.

The basic idea of the algorithm: enumeration

First, let’s introduce an enumeration algorithm [127] designed to find all of the isomorphisms
between a given graph G, = (Va, E,) and subgraphs of a further given graph G5 = (V;, Ej).
The numbers of vertices and edges of G, and Gj are p,, ¢, and Pg, qp, respectively. The

adjacency matrices of G, and Gy are A = [a;;] and B = [b;;], respectively.

Let M’ be a matrix of p, X ps whose elements are 1’s and 0’s such that each row contains
exactly one 1 and no column contains more than one 1. The matrix M’ can be used
to permute the rows and columns of B to produce a further matrix C. Specifically,

C = [c;j] = M' x B x (M')!, where t denotes transposition. If it is true that

Vi, j,1 <3< Par 1 £ J < Do,y (aij = 1) == (cij = 1)’ (4'1)

CHAPTER 4. PRACTICAL ALGORITHMS 94

then M’ specifies an isomorphism between G, and a subgraph Gy. In this case, if m\, =1,
B ij

then the j-th vertex in Gy corresponds to ith vertex in Gy, in this isomorphism.

At the beginning of the algorithm, we construct a p, X ps matrix M° = [mJ;] in accordance
with m?j = 1 if the degree of the jth vertex of Gy is greater than or equal to the degree of

the ith vertex of G,; otherwise, m; = 0.

The enumeration algorithm generates all possible matrices M’ such that for each and every

element m;-j of M', (mgl =1) = (m;’z =1).

For each matrix A/’ the algorithm tests for isomorphism by applying condition 4.1. Matrices
M’ are generated by systematically changing to 0 all but one of the 1’s in each of the rows
of MY, subject to the condition that no column of a matrix M’ may contain more than

one 1.

In the search tree, the terminal vertices are at depth d = p,, and they correspond to
distinct matrices M’. Each nonterminal vertex at depth d < p, corresponds to a distinct
matrix M which differs from A? in that in d of the rows, all but one of the 1’s has been

changed to 0.

This enumeration algorithm can be improved by introducing a refinement procedure to
eliminate successor nodes in the search. In [127], details of the refinement procedure are

explained.

Discussion of this algorithm

This algorithm finds all isomorphisms in a time roughly proportional to p? [127], and
this satisfies Corneil and Gotlieb’s criterion that an algorithm is efficient if the time is

proportional to a power of p,.

CHAPTER 4. PRACTICAL ALGORITHMS 95

4.4 Schmidt and Druffel’s backtracking algorithm

In this approach, Schmidt and Druffel [118] use a distance matrix method. Before giving
the description of the method, we need to mention the concept of composition of a pair
of vectors. It is defined to be the term-wise juxtaposition of their elements. In practice,
this process can be performed in linear time using a list technique developed by Hopcroft
and Wong [68]. We also need to talk about the degree sequence of a graph. It is merely
a listing of the degrees. In terms of the adjacency matrix, the degree sequence can be
generated by summing the rows and columns corresponding to each vertex. Obviously,
if two graphs G' = G?, then they must exhibit the same degree sequences, although the

reversal is not always true.

The distance matrix

The distance matrix is a characterization of a graph which offers information on the

relationship between all vertices in the given graph.

Definition 4.1 The distance matriz D is an n X n matriz in which the element di;
represents the length of the shortest path between the vertices v; and v;. For every pair
of vertices v; and v; there is a unique minimum distance. Ifi = j, then di; = 0. If no path

exists between the two vertices, the length is defined to be infinite.

Theorem 4.1 (Hakimi and Yau [62], 1965) If G is an n-vertex realization of D, then

G is unique.

Given a graph, generation of the distance matrix is a matter of finding the shortest distance

between every pair of vertices. A number of algorithms have been developed to construct

CHAPTER 4. PRACTICAL ALGORITHMS 96

the distance matrix, many of which are summarized by Dreyfus [45]. Floyd’s algorithm

[49], while of order O(n?), is simple and convenient to implement.

Initial partitioning

Since the distance matrix is a unique representation of a graph, and it contains information
concerning the relationship between vertices in the graph, it offers a means of finding an

initial partition which may be finer than that obtained by using the degrees of the vertices.

Definition 4.2 A row characteristic matriz XR is an n X (n — 1) matriz such that

the element xr;, is the number of vertices which are a distance m away from v;.

Similarly define a column characteristic matriz XC such that each element zc;, is

the number of vertices from which v; is a distance m.

A characteristic matriz X is formed by the term-wise juztaposition of the appropriate

elements in the corresponding rows of XR and XC.

Information from the characteristic matrix may be used to form an initial partition. v}
will map to v? in an isomorphism only if 2}, = 22, ¥m. Vertices which exhibit identical
rows of the characteristic matrix will be assigned the same class. The partition so obtained

from the characteristic matrix is often superior to that obtained from the degree sequence

[118].

Theorem 4.2 If two vertices v; and v; are partitioned into separate classes by the degree

sequence, they will also be partitioned into separate classes by the characteristic matriz.

CHAPTER 4. PRACTICAL ALGORITHMS 97

Since the initial partition can be used to limit the size of the search tree, it may reduce
the amount of computation that the backtracking algorithm must do. In some cases, it
provides a way to determine immediately that no isomorphism exists for a given pair of

vertices.

The backtracking algorithm

Definition 4.3 The mapping of v} to v? is consistent if

sr?

1. every element dj; = d?, and dj, = dZ,, Vj, s such that v; has been mapped to v?;

2. every element d}, (v} was not previously mapped) has a corresponding d?, (v was
ik k D P

not previously mapped) such that c; = c2.

Thus, a consistent mapping implies that row ¢ and column ¢ of D! have corresponding
elements in row r and columns r of D?, at least for all previously mapped vertices. The
remaining elements of those rows and columns do not preclude further consistent vertex

mappings if any mappings remain.

The algorithm will choose pairs of vertices v} and v? which are in the same class and will
investigate the consistency of mapping v; to v2. If the mapping is consistent, another pair
of vertices can be chosen for mapping. If a partition is reached such that there are no
consistent mappings, then a mapping between two vertices for which the mapping is not

an isomorphism has been detected and it is necessary to backtrack to try another mapping.

CHAPTER 4. PRACTICAL ALGORITHMS 98

4.5 Performance comparison

In previous sections, several major algorithms for testing graph isomorphism have been
introduced. These algorithms have been devoted to improve performances both in terms of
computational time and memory requirements. However, it is not clear how the behaviour
of those algorithms vary as the type and the size of the graphs to be matched vary if in

real applications.

Foggia, Sansone and Vento [50] have done great efforts to evaluate their performance. The
comparison has been carried out on a large database of artificially generated graph. In
order to do so, they built a database containing 10,000 couples of isomorphic graphs with
different topologies (regular graphs, randomly connected graphs, bounded valence graph).

The size of the considered graphs ranges from a few vertices to about 1,000 vertices.

There is no algorithm that is definitively better than all the others [50]. In particular, for
randomly connected graphs, the Nauty algorithm is the best if the graphs are quite dense
and/or of quite large size. In this case, Ullmann is faster than Schmidt and Druffel if the

size of the graphs is smaller than 700 |50].

For bounded-valence graphs, the Ullmann algorithm is not always able to find a solution;

if it happens, however, its time is smaller than the one of Schmidt and Druffel.

Finally, it is also worth noting that Schmidt and Druffel is always able to find a solution to
the isomorphism problem in the tests, independently of the size and the kind of the graphs

to be matched. As for Nauty and Ullmann algorithms, they are not.

In addition to practical algorithms above, there are other algorithms testing graph isomorphism,
for example, VF and VF2 [39] which base on a depth-first search strategy, with a set of rules

to efficiently prune the search tree. In [126], a new invariant, called Probability Propagation

CHAPTER 4. PRACTICAL ALGORITHMS 99

Matriz, is introduced. By means of this graph invariant, a heuristic algorithm is presented.

This algorithm is easy to implement and highly parallelizable.

Chapter 5

Conclusion and Discussion

5.1 Review

5.1.1 On graph isomorphism

Graph isomorphism problem belongs to those combinatorial search problem for which no
polynomial-time algorithm is available yet. The two approaches usually used to test the
graph isomorphism, the combinatorial approach and the group-theoretic approach, were
presented. As for the former approach, trees, planar graphs, bounded average genus graphs
and bounded distance width graphs are considered since we can have a polynomial-time
algorithm to test their isomorphisms. As for the latter, with the help of powerful group
theory, the isomorphisms of graphs with bounded valence and eigenvalue multiplicity have

been shown to be computed in polynomial time.

These two approaches are very different in the way to think about the problem. The

combinatorial approach focuses on the structure characteristics of special given graphs,

100

CHAPTER 5. CONCLUSION AND DISCUSSION 101

while group-theoretic techniques treat graphs in similar ways. With these methods, many
graphs with restrictions can be tested in polynomial-time, although an efficient algorithm

for general graphs is still unavailable.

From the view point of computational complexity, many scientists made efforts to reduce
polynomially the general graph isomorphism to some special graphs such as bipartite

graphs, regular graphs, chordal graphs, etc.

5.1.2 On subgraph isomorphism

For some restricted classes of graphs, the isomorphism can be tested in polynomial time.
Many aspects of these classes have been studied. Coincidentally, the complexity of subgraph
and graph isomorphism on planar graphs are both polynomial time. As a matter of fact,
planar graphs are easy to be studied since they are pretty simple. Many other graph

problems such as colouring, counting, become easier if we put them on planar graphs.

Of all the methods presented in this survey, I think that the tree-decomposition approach,
together with the dynamic programming technique, are really special and interesting. Tree-
decomposition is not the only way to decompose the problem into some sub-problems.
Modular decomposition, homogeneous decomposition, split decomposition [25], are other

techniques found in the literature.

5.1.3 On practical algorithms

Although there is still much effort to make on the theoretical complexity of the graph and
subgraph isomorphism problems, many practical algorithms have been developed in the

last decades. Theoretically, we consider only the problem of finding a graph or subgraph

CHAPTER 5. CONCLUSION AND DISCUSSION 102

isomorphism between two graphs at a time. However, in practical applications, we often

build a graph database, so-called model graphs, and test single unknown input graph.

The algorithms reviewed in this survey are very general. By the performance comparison,
we may conclude that there is no algorithm which is better than the others in all aspects.
Each one of them has a good behaviour for some types of graphs. Nevertheless, the
ideas used in these algorithms, for example, backtracking technique, are very beneficial for

further improvement.

5.2 Look ahead

Not surprisingly, the graph and subgraph isomorphism problems are still a challenge for
theoretical and practical scientists, although they have been extensively studied through
many approaches and techniques. While some people intend to continue the research for
untouched pieces of this area in the theoretical direction, others focus on the practical

applications.

5.2.1 Turn to other graphs

As readers might have seen, not only graph isomorphism but also subgraph isomorphism are
very difficult for the general case while fairly easy in some special cases, sometimes having
complexity in polynomial, or even linear time. On the one hand, considering special cases
helps us know more and more about these two problems as a whole. On the other hand, it
also intrigues us to delve into other graph classes in that promising results might be found.

Many other graphs with restrictions are worthy of looking for an efficient algorithm.

CHAPTER 5. CONCLUSION AND DISCUSSION 103

Look at an example, although chordal graphs and chordal bipartite graphs are proved to
be in the isomorphism-complete class, it does not prevent us to search for a polynomial
time algorithm provided that additional restrictions, for instance, k-regular, are imposed.
Chordal graphs are crucially important since they represent a generalization of trees with
many different rich properties, while the latter are pretty easy to be tested both for the

graph and the subgraph isomorphism problems.

Since it was shown that directed graph isomorphism is polynomially reducible to undirected
graph isomorphism [99], it might be helpful to use directed graphs since directed graphs
have their own properties, for example, the relationships among vertices are asymmetrical.
In [43], an algorithm for digraph isomorphism was given. Schmidt and Druffel also presented
a fast algorithm to test directed graph isomorphism using distance matrices [118]. More
recently, in 2002, this directed graph isomorphism algorithm was used to solve the topological
morphing problem [74]. Generally speaking, directed graph isomorphism was not studied

as widely as undirected graph isomorphism.

The isomorphism problem for Cayley graphs has been extensively investigated over the
past decades. Cayley graphs are a graphic representation of abstract groups. It was shown
that Cayley graphs have many nice combinatorial properties [8], such as long paths. The
methods to solve the Cayley graph isomorphism range from deep group theory, including
the finite simple group classification, through to combinatorial techniques. A massive

research from Li about Cayley graphs can be found in [83, 84, 85].

5.2.2 Probabilistic vs. deterministic

So far, we consider only exact graph and subgraph isomorphism. In the real world, however,

there is usually a certain amount of noise and distortion present in an input graph [96].

CHAPTER 5. CONCLUSION AND DISCUSSION 104

Therefore, perfect correspondences between the models and the input frequently do not

exist.

A well-known algorithm for inexact graph matching, called the error-correcting subgraph
isomorphism algorithm, was shown in [117, 124]. The algorithm is able to find the best
matching by exploring only the most promising paths. Other methods are also proposed,
such as heuristic search [29, 121], probabilistic relaxation [77] and linear programming [4].
More recently, in 2002, an optimization technique, Estimation of Distribution Algorithms
(EDAs), has been used as a new approach [18] for inexact graph matching. Its foundations

are based on an evolutionary computation paradigm.

Another interesting research direction is the random graph isomorphism which was studied
by Babai, Erdés and Selkow [11] in 1980. They use a straightforward linear-time canonical
labeling algorithm [12] that applies to almost all graphs (i.e. all but 0(2%)) of the graphs on
a fixed vertex set of cardinality n). They showed that in almost all graphs on n vertices,
the largest n®!° degrees are distinct. Hence, for almost all graphs X, any graph Y can be

easily tested for isomorphism of X by an extremely naive linear time algorithm.

5.2.3 Quantum vs. classical

It was predicted that the basic units of chips in a computer would be the size of individual
atoms in future. According to the theory of physics, the current (classical) theory of
computation would become invalid at such level. In contrast to the classical computation
theory, a new theory called quantum computation and quantum information has been
emerging since the 1980’s. The most fabulous feature of quantum computing is quantum
parallelism and quantum interference. Remarkably, scientists predict that quantum computers

(using quantum computing theory) can solve some hard problems breathtakingly faster

CHAPTER 5. CONCLUSION AND DISCUSSION 105

than classical computers (using classical computing theory).

In the early 1990’s several scientists (Deutsch and Jozsa in 1992, Berthiaume and Brassard
in 1992, Bernstein and Vazirani in 1993) sought computational tasks which could be
solved by a quantum computer more efficiently than any classical computer [122]. Simon’s
algorithm (1993) examines an oracle problem which takes polynomial time on a quantum
computer but exponential time on a classical computer. Later, Shor (1994) solved both
factorization and discrete logarithms. Further, Grover (1997) discovered that searching an
element in an unordered database of NV elements can be improved from N to only v N

queries. A very good introduction about this theory can be found in [24, 105].

As far as the graph and subgraph isomorphism problems are concerned, until today, all
of the known algorithms are classical and no quantum algorithm has been invented yet.
Furthermore, even for other graph problems, the quantum approach is hard to be found in

literature.

Viewing the hardness of the problems in the classical situation, we might ask quantum
computation for help. An interesting idea is to apply Grover’s algorithm for searching

good solutions during matching procedures.

Another idea is to construct a quantum circuit with an Oracle. An Oracle is a black
box, which could perform a certain kind of computation. We may assign a state to every
vertex in a given graph. The state can be defined according to the characteristics of
the graph. The Oracle would accept a set of certain vertices as the input and generate
another set of vertices as the output. During each query to the Oracle, only the vertices
which are probably more interesting to our expected result than others are strengthened.
After certain queries, we might know whether two graphs are isomorphic by comparing the

output of each Oracle.

CHAPTER 5. CONCLUSION AND DISCUSSION 106

Take as an example for a k-regular oriented graph. It has been proved that each k-regular
oriented graph can be decomposed into k 1-regular oriented graphs or k permutations on
its labeled vertices, say 1,2, --,n]. We construct an Oracle that accepts a vertex with its
permutation index, that is [1,2,---, k], as the input and transposes it to its next vertex in
its permutation. All the vertices can be put in a superposition which is special in quantum
computation; only one query of Oracle is necessary to transpose them to their neighbours.
For each graph, there is a quantum circuit representing it. We can repeat the query of two
circuits again and again until it can be determined with certain probability whether the two
graphs are isomorphic. Although there are still other related problems, for instance, the
permutation set can be different even for the same graph, it is quite worth considering how
to construct another more hopeful quantum circuit. Other special graphs, such as trees,

chordal graphs, bipartite graphs, are also suitable to construct an Oracle for querying.

In contrast to conventional graph representation, a novel representation related to quantum
physics was shown in [132]: quantum graph. A quantum point is a vector in a complex
Hilbert space whose basis vectors correspond to the vertices of a classical graph. A quantum
arrow is thought of as an operator which destroys vertex v and creates u. A quantum arrow
may be represented as a complex matrix. All other classical concepts are dramatically
changed in quantum manner. Under quantum representation, the graph isomorphism
problem is much more different than that under classical one. It is possible that a novel

approach would emerge in future.

In short, until now, there has not been enough research between quantum computation and
graph isomorphism problem. Two aspects can be considered: one can apply an existing
quantum algorithm to improve the crucial part of classical algorithm; one can also construct
a quantum circuit directly using special properties of the graph. Furthermore, an essentially

different representation in quantum manner for a classical graph may also be interesting.

CHAPTER 5. CONCLUSION AND DISCUSSION 107

5.3 A propos de this survey

In short, this survey involves diverse theories and approaches. The results mentioned
range from the very emergence of the graph and subgraph isomorphism problems to today.
I included different typical sub-problems along with different approaches in order that
readers have a chance to enjoy the beauty of intersections among them. For each sub-
problem, the best complexity result till now was emphasized and presented specifically,
without losing its main idea, integrity and continuity, I hope, while keeping an eye on

relative approaches and results.

As it might have already been seen, the problems involve some related mathematical
disciplines such as group theory, topological graph theory, computational complexity,
linear algebra and so on. To enjoy the brilliant ideas, a solid mathematical background is
necessary. All in all, I do hope that readers have found it understandable, comprehensive,

informative and up-to-date.

Bibliography

[1] M. Agarwal, N. Saxena and N. Kayal, PRIMES is in P, Preprint, August 6, 2002.

[2] A.V. Aho, J.E. Hopcroft, and J. D. Ullman. The design and analysis of computer
algorithms, Addison-Wesley, 1974.

[3] R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows: Theory, Algorithms and

Applications, Prentice-Hall, 1993.

[4] H.A. Almohamad and S.O. Duffuaa, A linear programming approach for the weighted
graph matching problem, IEEE Transaction on Pattern Analysis and Machine
Intelligence PAMI, 5, pp.522-525, 1993.

[5] K. Appel and W. Haken, Every planar map is four colourable. Part I. Discharging,
Illinois Journal of Math. 21, 429-490, 1977.

[6] M. Aschbacher, Finite Group Theory, Second Edition, Cambridge University Press,
2000.

[7] B. Awerbuch and D. Peleg, Sparse partitions, In Proceedings of the 81st IEEE

Symposium Foundations of Computer Science, pp.503-513, 1990.

(8] L. Babai, Automorphism groups, isomorphism, reconstruction, In Handbook of

Combinatorics, Vol. 2, pp.1447-1540, Elsevier, Amsterdam, 1995.

I

BIBLIOGRAPHY II

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

L. Babai, Moderately exponential bound for graph isomorphism, Proceedings of
the Fundamentals of Computing Science, Lecture Notes in Computing Science 117,

pp-34-50, 1981.

L. Babai, Monte Carlo algorithms in graph isomorphism Testing, Technique Report,

Université de Montréal, DMS 79-10, pp.42, 1979.

L. Babai, P. Erdés, and S. Selkow, Random graph isomorphism, SIAM Journal on
Computing, 9, pp.628-635, 1980.

L. Babai and L. Kuéera, Canonical labelling of graphs in linear average time, the 20th

Annual IEEE Symposium on Foundations of Computer Science, pp.39-46, 1979.

L. Babai, D.Yu. Grigoryev and D.M. Mount, Isomorphism of graphs with bounded
eigenvalue multiplicity, Proceedings of 14th ACM Symposium on Theory of Comput-
ing, pp.310-324, 1982.

L. Babai and E. Luks, Canonical labeling of graphs, In Proceedings of 15th ACM

symposium on Theory of Computing, pp.171-183, 1983.

L. Babel, I.N. Ponomarenko, and G. Tinhofer, The isomorphism problem for directed
path graphs and for rooted directed path graphs, Journal of Algorithms, Vol. 21, No.
3, pp-542-564, November 1996.

B.S. Baker, Approximation algorithms for N P-complete problems on planar graphs,

Journal of the ACM, Vol.41, No.1, pp.153-180, 1994.

R. Bar-Yehuda and S. Even, On approximating a vertex cover for planar graphs, In

Proceedings of 14th ACM Symposium on Theory of Computing, pp.303-309, 1982.

BIBLIOGRAPHY III

[18] E. Bengoetxea, P. Larranaga, I. Bloch, A. Perchant, and C. Boeres, Inexact graph
matching by means of estimation distribution algorithms, Pattern Recognition, 35,

pp.2867-2880, 2002.

[19] M.W. Bern, E.L. Lawler, and A.L. Wong, Linear-time computation of optimal

subgraphs of decomposable graphs, Journal of Algorithms, 8, pp.216-235, 1987.
[20] N. Biggs, Algebraic Graph Theory, Cambridge University Press, 1993.

[21] H.L. Bodlaender, On linear time minor tests with depth-first search, Journal of

Algorithms, 14, pp.1-23, 1993.

[22] H.L. Bodlaender, Polynomial algorithms for graph isomorphism and chromatic index

on partial k-trees, Journal of Algorithms, 11, pp.631-643, 1990.

[23] K.S. Booth, Isomorphism testing for graphs, semi-graphs, and finite automata are
polynomial equivalent problems, STAM Journal on Computing, Vol. 7, No. 3, pp.273-
279, 1978.

[24] D. Bouwmeester, A. Ekert and A. Zillinger, The physics of quantum information,
quantum cryptography, quantum teleportation, quantum computation, Springer-

Verlag, 2001.

[25] A. Brandstadt, V. Le and J. Spinrad, Graph classes: A survey, SIAM Monographs

on Discrete Mathematics and Applications, 1999.

[26] R.E. Bryant, Graph-based algorithms for Boolean function manipulation, IEEE
Transaction on Computers, 35, pp.677-691, 1986.

[27] R.E. Bryant, Symbolic Boolean manipulation with ordered binary-decision diagrams,

ACM Computing Surveys, Vol. 24, No. 3, pp.293-318, 1992.

BIBLIOGRAPHY v

[28] H. Bunke, Graph matching: Theoretical foundations, algorithms, and applications,

In Proceedings of Vision Interface 2000, pp.82-88, Montreal, 2000.

[29] H. Bunke and G. Allerman, Inexact graph matching for structural pattern

recognition, Pattern Recognition Letters 1, 4, pp.245-253, 1983.

[30] R. Busacker and T. Saaty, Finite Graphs and Networks - An Introduction With
Applications, McGraw-Hill, New York, pp.196-199, 1965.

[31] S.R. Buss, The Boolean formula value problem is in ALOGTIME, In Proceedings of
the 19-th Annual ACM Symposium on Theory of Computing, pp.123-131, May 1987.

[32] S.R. Buss, Alogtime algorithms for tree Isomorphism, comparison, and canonization,

Kurt Gddel Colloguium, pp.18-33, 1997.

[33] L. Chen, Graph Isomorphism and Identification Matrices: Sequential Algorithms,

Journal of Computer and System Sciences, 59, pp.450-475, 1999.

[34] L. Chen, Testing Isomorphism for Transformable Convex Bipartite Graphs in
Polynomial Time, Technical Report, OSU-CISRC-12 89-TR54, Department of
Computer and Information Science, College of Engineering, The Ohio State

University, December 1989.

[35] J.K. Cheng and T.S. Huang, A subgraph isomorphism algorithm using resolution,
Pattern Recognition, 13, pp.371-379, 1981.

[36] M.J. Chung, O(n*®) time algorithms for the subgraph homeomorphism problem on
trees, Journal of Algorithms, Vol. 8, No. 1, pp.106-112, 1987.

[37] M.J. Colbourn and J. Colbourn, Graph isomorphism and self-complementary graphs,
SIGACT News, 10, pp.25-30, 1978.

BIBLIOGRAPHY A%

[38] R. Cole, Parallel merge sort. In 27th Annual Symposium on Foundation of Computer
Science, IEEE, pp.511-516, October 1986.

[39] L.P. Cordella, P. Foggia, C. Sansone and M. Vento, Evaluating performance of the
VF graph matching algorithm, Proceedings of the 10th International Conference on

Image Analysis and Processing, IEEE Computer Society Press, pp.1172-1177, 1999.

[40] J. Cortadella and G. Valiente, A Relational view of subgraph isomorphism, RelMiCS,
pp-45-54, 2000.

[41] D.M. Cvetkovic, M. Doob, and H. Sachs, Spectra of Graphs, Academic Press, 1979.

[42] C. Damm, M. Holzer and P. Rossmanith, Expressing uniformity via oracles, Theory

of Computing Systems, 30, pp.355-366, 1997.

[43] N. Deo, J.M. Davis, and R.E. Lord, A new algorithm for digraph isomorphism, BIT,
17, pp.1630, 1977.

[44] R.G. Downey and M.R. Fellows, Fixed-parameter tractability and completeness I:
Basic Results, SIAM Journal of Computing, 24, pp.873-921, 1995.

[45] S.E. Dreyfus, An appraisal of some shortest path algorithms, Operations Research,

17, pp.395-412, 1969.

[46] D. Eppstein, Connectivity, graph minors, and subgraph multiplicity, Journal of
Graph Theory, 17, pp.409-416, 1993.

[47] D. Eppstein, Subgraph isomorphism in planar graphs and related problems,
Proceedings of the sizth annual ACM-SIAM symposium on Discrete algorithms,
pp.632-640, January 22-24, 1995, San Francisco, California, United States.

BIBLIOGRAPHY VI

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

T. Feder and R. Motwani, Clique partitions, graph compression and speeding up

algorithms, Journal of Computer and System Sciences, 51, pp.261-272, 1995.

R.W. Floyd, Algorithm 97: Shortest path, Communications of the ACM, 5, pp.345,
1962.

P. Foggia, C. Sansone and M. Vento, A performance comparison of five algorithms
for graph isomorphism, Proceedings of the 3rd IAPR-TC-15 International Workshop

on Graph-based Representation, Italy, 2001.

S. Fortin, The graph isomorphism problem, Technical Report 96-20, University of
Alberta, Edmonton, Alberta, Canada, July 1996.

M. Furst, J. Hopcroft and E.M. Luks, Polynomial time algorithms for permutation
groups, Proceedings of 21st IEEE Symposium on Foundations of Computer Science,

pp.36-41, 1980.

M. Furst, J. Hopcroft and E.M. Luks, A sub-exponential algorithm for trivalent graph
isomorphism, Technical Report, 80-426, Computer Science Department, Cornell

University, 1980.

Z. Galil, C.M. Hoffmann, E.M. Luks, C.P. Schnorr, and A. Weber, An O(n®logn)
deterministic and an O(n3) Las Vegas isomorphism test for trivalent graphs, Journal

of the ACM, Vol. 34, No.3, pp.513-531, July 1987.

M.R. Garey and D.S. Johnson, Computers and intractability: A guide to NP-

completeness, Freeman, 1979.

H. Gazit, G.L. Miller, and S.H. Teng, Optimal tree contraction in the EREW

model. In S.K. Tewksbury, B.W. Dickinson, and S.C. Schwartz, editors, Concurrent

BIBLIOGRAPHY VII

Computations, Algorithms, Architecture and Technology, pp.139-156. Plenum Press,

1988.

[57] H. Gazit and J.H. Reif, A randomized parallel algorithm for planar graph
isomorphism. Journal of Algorithms, Vol.28, No.2, pp.290-314, 1998.

[58] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press,
1980.

[59] G. Grigoras, On the isomorphism-complete problems and polynomial time

isomorphism. Acta Cybernetica, 5, pp.135-142, 1981.

[60] M. Grohe, Isomorphism testing for embeddable graphs through definability,
Proceedings of the thirty-second annual ACM symposium on Theory of computing,

pp.63-72, Portland, Oregon, United States, May 21-23, 2000.

[61] J.L. Gross and M.L. Furst, Hierarchy for imbedding-distribution invariants of a
graph, Journal of Graph Theory, 11, pp.205-220, 1987.

[62] S.L. Hakimi and S.S. Yau, Distance matrix of a graph and its reliability, Quart of

Applied Mathematics, XXII, 4, pp.305-317, 1965.
[63] F. Harary, Graph Theory, Addison- Wesley, Reading, Mass, 1969.

[64] C.M. Hoffmann, Group-theoretic algorithms and graph isomorphism, Lecture Notes
in Computer Science, ed. by G. Goos and J. Hartmanis, Vol. 136, Springer-Verlag,
1982.

[65] C.M. Hoffmann, Testing isomorphism of cone graphs, In Proceedings of the Twelfth
Annual ACM Symposium on Theory of Computing, pp.244-251, Los Angeles,
California, 28-30 April 1980.

BIBLIOGRAPHY VIII

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

J.E. Hopcroft and R.E. Tarjan, A VlogV algorithm for isomorphism of triconnected

planar graphs, Journal of Computer and System Sciences, Vol. 7, pp.323-331, 1973.

J.E. Hopcroft and R.E. Tarjan, Isomorphism of planar graphs (working paper), in
Complezity of Computer Computations, (R.E. Miller and J.W. Thatcher (eds.)),
Plenum Press, pp.143-150, New York, 1972.

J.E. Hopcroft and J.K. Wong, Linear time algorithm for isomorphism of planar
graphs, Proceedings of 6th Annual ACM Symposium on Theory of Computing,
pp-172-184. 1974.

W. Hsu, O(MN) algorithms for the recognition and isomorphism problem on
circular-arc graphs, SIAM Journal of Computing, Vol. 24, No. 3, pp.411-439, June
1995.

A. Itai and M. Rodeh, Finding a minimum circuit in a graph, SIAM, Journal on
Computing, 7, pp.413-423, 1978.

X.Y. Jiang and H. Bunke, Marked subgraph isomorphism of ordered graphs, In
Advances in Pattern Recognition, Vol. 1451, Lecture Notes in Computer Science,

pp.122-131, Springer-Verlag, 1998.

X.Y. Jiang and H. Bunke, Optimal quadratic-time isomorphism of ordered graphs,
Pattern Recognition, Vol. 32, No.7, pp.1273-1283, 1999.

V. Kaibel and A. Schwartz, On the complexity of Polytope Isomorphism problem

(To appear), Graphs and Combinatorics, July, 2002.

P. Kanongchaiyos, T. Nishita, Y. Shinagawa and T. Kunii, Topological Morphing
Using Reeb Graphs, Cyber Worlds, 11, pp.465-471, 2002.

BIBLIOGRAPHY IX

[75] R.M. Karp, Reducibility among combinatorial problems, Complezity of Computer
Computations (R.E. Miller and J. W. Thatcher, Eds.), Plenum, New York, 1972.

[76] A. Kaufmann, Graphs, Dynamic Programming and Finite Games, Academic Press,

New York, 1967.

[77] J. Kittler, W.J. Christmas, and M. Petrou, Probabilistic relaxation for matching
of symbolic structures, Advances in Structural and Syntactic Pattern Recognition,

pp-471-480, World Scientific, 1992.

[78] J. Kobler, U. Schéning, and J. Toran, The Graph Isomorphism Problem: Its

Structured Complexity, Birkhauser, Boston, 1993.

[79] B. Krena, The Graph Isomorphism Problem, Proceedings of 7th Conference Student
FEI 2001, pp.343-347, 2001.

[80] R. Ladner, On the Structure of polynomial-time reducibility, Journal of the
Association for Computing Machinery, Vol.22, 155-171, 1975.

[81] W. Ledermann, Introduction to the Theory of Finite Groups, Oliver and Boyd, 1967.

[82] C.Y. Lee, Representation of switching circuits by binary-decision programs, Bell

System Technical Journal, Vol. 38, No. 4, pp.985-999, 1959.

[83] C.H. Li, Isomorphisms of connected Cayley digraphs, Graphs and Combinatorics, 14,
pp.37-44, 1998.

[84] C.H. Li, On Isomorphisms of finite Cayley graphs — a survey, Discrete Mathematics,
256, pp.301-334, 2002.

[85] C.H. Li, C.E. Praeger, and M.Y. Xu, Isomorphisms of finite Cayley digraphs of
bounded valency, Journal of Combinatorial Theory, Series B, 73, pp.164-183, 1998.

BIBLIOGRAPHY X

[86] S. Lindell, A logspace algorithm for tree canonization, In Proceedings of the 24th
Annual ACM Symposium on Theory of Computing, pp.400-404, 1992.

[87] G.S. Lueker and K.S. Booth, A linear time algorithm for deciding interval graph
isomorphism, Journal of the ACM, 26, pp.183-195, 1979.

[88] E. Luks, Isomorphism of graphs of bounded valence can be tested in polynomial time,

Journal of Computer and System Sciences, 25, pp.42-65, 1982.

[89] M.F. Lynch, A storage and retrieval of information on chemical structures by

computer, Endeavour, Vol. 27, No. 2, pp.68-73, 1968.

[90] R. Mathon, A note on the graph isomorphism counting problem, Information

Processing Letters, Vol. 8, No. 3, pp.131-132, 1979.

[91] D.W. Matula, An algorithm for subtree identification, SIAM Review, 10, pp.273-274,
1968.

[92] D.W. Matula, Subtree isomorphism in O(n®/2), Annals of Discrete Mathematics, Vol.
2, No. 1, pp.91-106, 1978.

[93] J.J. McGregor, Relational consistency algorithms and their application in finding

subgraph and graph isomorphisms, Information Sciences, 19, pp.229-250, 1979.

[94] B.T. Messmer, Efficient graph matching algorithms for preprocessed model graphs,
Ph.D Thesis, Institute of Computer Science and Applied Mathematics, University of
Bern, 1996.

[95] B.T. Messmer and H. Bunke, A new method for efficient error-correcting subgraph
isomorphism, Syntactic and Structural Pattern Recognition, World Scientific Publish

Company, Singapore, 1995.

BIBLIOGRAPHY XI

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

B.T. Messmer and H. Bunke, Fast Error-Correcting Graph Isomorphism Based
on Model Precompilation, Technical Report IAM-96-012, University of Bern,

Switzerland, September 1996.

B.T. Messmer and H. Bunke, Subgraph isomorphism in polynomial time, Technischer

Bericht IAM 95-003, Institut fiir Informatik, Universitit Bern, Schweiz, 1995.

B. McKay, Practical graph isomorphism, Congressus Numerantium, 30, pp.45-87,

1981.

G. Miller, Graph isomorphism, general remarks, Journal of Computer and System

Sciences, Vol. 18, No.2, pp.128-142, April 1979.

G. Miller and J.H. Reif, Parallel tree contraction part 2: Further applications, STAM

Journal on Computing, 20, pp.1128-1147, 1991.

T. Miyazaki, The complexity of McKay’s canonical labeling algorithm, Groups and
Computation, II (L. Finkelstein and W.M. Kantor, eds.), American Mathematics

Society, Providence, RI, pp.239-256, 1997.

S.H. Myaeng and A. Lopez-Lopez, Conceptual graph matching: a flexible algorithm
and experiments, Journal of Ezperimental and Theoretical Artificial Intelligence, 4,

pp.107-126, April, 1992.

T. Nagoya, R. Uehara, and S. Toda, Completeness of Graph Isomorphism Problem
for Bipartite Graph Classes, COMP2001-93, IEICE, Technical Report, 3/12 2002.

G.L. Nemhauser, Introduction to Dynamic Programming, Wiley, New York, 1966.

M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum Information,

Cambridge University Press, 2000.

BIBLIOGRAPHY XII

[106] N.J. Nilsson, Problem-Solving methods in artificial intelligence, McGraw-Hill, New
York, 1971.

[107] @. Ore, The Four-colour Problem, Academic Press, New York, 1967.

[108] V. Pan and J.H. Reif, Extension of parallel nested dissection algorithm to the path
algebra problems, Computer Science Department TR-85-9, State University of New
York at Albany, 1985.

[109] V. Pan and J. H. Reif, Fast and efficient solution of path algebra problems, Journal
of Computer and Systems Sciences, Vol. 38, No. 3, pp.494-510, June 1989.

[110] C.H. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.

[111] C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization; Algorithms and

Complexity, Prentice-Hall, New Jersey, 1982.

(112] C.H. Papadimitriou and M. Yannakakis, The clique problem for planar graphs,

Information Processing Letters, 13, pp.131-133, 1981.

[113] R.C. Read, The enumeration of self complementary graphs and digraphs, Journal of
the London Mathematical Society, 38, pp.99-104, 1963.

[114] D. Richards, Finding short cycles in planar graphs using separators, Journal of
Algorithms, 7, pp.382-394, 1986.

[115] N. Robertson and P. D. Seymour, Graph minors II: algorithmic aspects of tree-width,
Journal of Algorithms, 7, pp.309-322, 1986.

[116] W.L. Ruzzo, On uniform circuit complexity, Journal of Computer and System

Sciences, 22, pp.365-383, 1981.

BIBLIOGRAPHY XIII

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125)

A. Sanfeliu and K.S. Fu, A Distance Measure Between Attributed Relational Graphs
for Pattern Recognition, IEEE Transactions on Systems, Man, and Cybernetics,Vol.

13, No. 3, pp.353-362, 1983.

D.C. Schmidt and L.E. Druffel, A fast backtracking algorithm to test directed graphs
for isomorphism using distance matrices, Journal of the Association for Computing

Machinery, Vol. 23, No. 3, pp.433-445, July 1976.

G. Schmidt and T. Stréhlein, Relations and Graphs, Discrete Mathematics for

Computer Scientists, Springer Verlag, 1993.

R. Shamir, D. Tsur, Faster subtree isomorphism, Journal of Algorithms, Vol. 33, No.
2, pp.267-280, 1999.

L.G. Shapiro and R.M. Haralick, Structural description and inexacting matching,
IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI, 3, pp.504-
519, 1981.

A. Steane, Quantum computing, Reports on Progress in Physics, 61, pp.117-173,
1998.

K. Takamizawa, T. Nishizeki, and N. Saito, Linear-time computability of
combinatorial problems on series-parallel graphs, Journal of the ACM, 29, pp.623-
641, 1982.

W.H. Tsai and K.S. Fu, Error-Correcting Isomorphisms of Attributed Relational
Graphs for Pattern Analysis, IEEE Transactions on Systems, Man, and Cybernetics,
Vol. SMC-9, No. 12, pp. 757-768, 1979.

W.T. Tutte, A family of cubical graphs, Proceedings of Cambridge Philosophy Society,
pp.459-474, 1947.

BIBLIOGRAPHY XIV

[126] W.-G. Tzeng, G.-S. King, A new graph invariant for graph isomorphism: probability
propagation matrix, Journal of Information Science and Engineering, 15, pp.337-352,

1999.

[127] J.R. Ullmann, An algorithm for subgraph isomorphism, Journal of the Association
for Computing Machinery, Vol. 23, No. 1, pp.31-42, 1976.

[128] L. Weinberg, A simple and efficient algorithm for determining isomorphism of planar

triply connected graphs, IEEE Transaction on Circuit Theory, 13, pp.142-148, 1966.

[129] H. Whitney, A set of topological invariants for graphs, American Journal of

Mathematics, 55, pp.321-325, 1933.

[130] K. Yamazaki, H.L. Bodlaender, B. De Fluiter, and D.M. Thilikos, Isomorphism for
graphs of bounded distance width, Algorithmica, Vol. 24, No. 2, pp.105-127, 1999.

[131] http://www.wikipedia.org/wiki/Complexity classes P_and NP

[132] http://members.aol.com/jmtsgibbs/qgraph.htm

