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Abstract

Graphs are useful as a flexible and versatile data structure for the representation of objects

and concepts. The graph and subgraph isomorphism problems have been thoroughly

studied for decades. They have been drawing great interest in many theoretical and

practical domains including transport planning, chemistry, geographv, information retrieval,

automata theory, linguistics, computer-aided-design, mathematics and computer science.

An introduction and prelirninaries begin this surve. This includes basic computational

cornplexity theory, group theory and grapli theory. Then, we begin the graph isomorphisrn

by showing the isomorphism-complete class. Some special graph isomorphisms in the

P class are presented from two approaches: combinatorial approach and group-theoretic

approach.

The survey is followed hy an analysis of the suhgraph isomorphism problem. First, we

give an overview of complexity resuits for this problem. Then, we present some special

subgraph isornorphisms such as subtree, planar suhgraph. etc.

from the practical algorithms point of view, several graph and subgraph isomorphisrn

algorithms are introduced. A performance comparison of these algorithms is outlined.

At. the end of the survev, w’e give n conclusion and a discussion of these problems. Since

we usually refer to special cases for these problems, we consider some other possibilities

which might be interesting.

Key words: graph isomorphism, subgraph isomorphism, computational complexity, group

theory, isomorphism-complete class, combinatorial approach, group-theoretic approach
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Résumé

Les graphes sont utiles comme une structure de données flexible et versatile pour la

représentation des objets et des concepts. Les problèmes de l’isomorphisme de graphe et

l’isomorphisme de sous-graphe ont été bien étudiés depuis des décennies. Ils ont été pris du

grand intérêt dans beaucoup de domaines théoriques et pratiques incluant la planification

de transport, chimie, géographie, recherche d’information, automates théorie, linguistique,

Conception Assistée par ordinateur, des mathématiques et informatique.

Une introduction et les préliminaires commencent cette synthèse. Ceci inclut la base de

la théorie de complexité du calcul, la théorie de groupe et la théorie de graphe. Ensuite.

nous commençons l’isomorphisme de graphe en montrant la classe isomorphisme-complet.

Quelques isomorphisms spéciaux de graphe dans la classe de P sont présentés de deux

approches : approche combinatoire et approche groupe-théorétique.

La synthèse est suivie d’une analyse du problème d’isomorphisme de sous-graphe. D’abord.

nous donnons une vue générale des résultats de complexité pour ce problème. Puis, nous

présentons certains isomorphisms spéciaux de sous-graphe tels que le sous-arbre, le sous-

graphe planaire, etc.

Du point de vue d’algorithmes pratiques, plusieurs algorithmes sur l’isomorphisme de

graphe et l’isomorphisme de sous-graphes sont présentés. Une comparaison de performance

de ces algorithmes est décrite.

À la fin de cette synthèse, nous donnons une conclusion et une discussion de ces problèmes.

Puisque nous référons souvant à des cast spéciaux pour ces problèmes, nous considérons

quelques autres possibilités qui pourraient être intéressantes.

Mots-clés: isomorphisme de graphe, isomorphisme de sous-graphe, complexité du calcul,

théorie de groupe, isomorphisme-complet, approche combinatoire, approche groupe-théorique
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Chapter 1

Introduction and Preliminaries

1.1 Introduction

Graphs are useful as a flexible and versatile data structure for the representation of objects

ancl coiicepts. It is well known that graph representations are widely used for dealing

with structural information in different domains such as transportation, networks, image

interpretation and processing, computer-aided design, pattern recognition, and many other

subflelds of science and engineering. For example, the intersections and traffic routes of a

city can be represented by graphs. The intersections are represented b vertices whule the

routes are drawn as edges in a graph.

Two graphs are equat if they have the same vertex set and the same edge set. But there

are other ways in which two graphs could be regarded as being the same. For instance, one

could regard two graphs as being “the same” if it is possible to rename the vertices of one

and obtain the other. Such graphs are identical in everv respect except for the names of

the vertices. In this case, we cali t.he graphs isomorphic. When graphs are small enough,

1



CHAPTER 1. INTRODUCTION AND PRELIMIIVARIES 2

whether two graphs are isomorphic can he detect.ed easily rnanually, whule this becomes

infeasible when the graphs are rnuch bigger.

In this survey, we give an overview of the subject not only from a theoretical point of

view but also from a practical aspect. On the one hand, we give an introduction and

preliminaries to the mathematics in order to make understanding casier. On the other

hand. cornplicated proofs and algorithms with deep theorv background are simplified and

outlined. Nevertheless, in order to keep tue integrity and the continuity, some of these

proofs and algorithms are quoted alrnost verbatim from t.heir sources.

1.1.1 Graph isomorphism

The graph isomorphism (GI) problem was listed as an important open problem already in

Karp [•51 over three decades ago. The graph isomorphism problem is deciding whether two

given graphs are isomorphic, i.e. whether there is a bijective mapping from the vertices of

one graph to the vertices of the second graph such that the edges are respected. Much work

1791 is dedicated to the search for an exact isomorphism between two graphs or subgraphs.

IL is a problem of interest in many theoretical and practical domains 1791 including transport

planning, chemistrv, geography, information retrieval, automata theory, linguistics, computer

aided-design, mathernatics and computer science 123, 30. 891. Graphs represent various

real structures or situations: we want to know whether two structures or situations are

essentiallv the same with respect to a selected point of view, in other words, isomorphic.

f igure 1.1 gives two examples: one is for the directed graph and the other is for the

undirected graph.

The GI problem is very simple to define and understand, but it seems very difficuit to

give an efficient solution, i.e. a polynoinial-time algorithm. Because of its theoretical and
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practical importance the problem has been studied from many different points of view

[511. There are some algorithms to solve this problem, but they have an exponential

time complexity [79]. Hence, time complexity is the main issue of the graph isomorphism

problem.

1.1.2 Subgraph isomorphism

While graph isornorphism treats the isomorphism relation between whole graphs, the

subgraph isomorphism focuses on subgraphs of one graph. Subgraph isomorphism problem

is to determine whether there is a subgraph of one given graph which is isomorphic to

a given second graph. Subgraph isomorphism is very important in computer vision,

bio-computing and image processing. Like graph isomorphism, it has been studied in

depth for hoth theoretical and practical interests. For example, t1271. one of possible

applications of suhgraph isomorphism is for finding whether a given chemical compound is

a sub-compound of a further specified compound, given the structural formulas. Moreover,

subgraph isomorphism is an important and very general form of exact pattern matching,

such as string searching, sequence alignment, tree comparison and pattern matching on

Figure 1.1: two examples of isomorphic graphs
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graphs.

$ubgraph isomorphism is a common generalization of many important graph prohiems

f47], including Hamilton paths, cliques, matchings, girth, and shortest paths. Most of the

research on subgraph isomorphism algorithms bas been based either on heuristic search

techniques as in f35, 127], or on constraint satisfaction techniques as in [40, 931• The best

known algorithms for subgraph isomorphisrn are based on a relational view approach [40]

on exhaustive search with backtracki;ig.

The rest of this survey is organized as follows. Chapter 1 introduces the terminology and

preliminaries on computational complexity, group theory and graph theory. Chapter 2

focuses on the graph isomorphism problem. Complexity resuits, combinatorial and group

theoretic approaches to solve graph isornorphism problem are shown as well as polynomial

time algorithrns on special cases of graphs such as trees, planar graphs, bounded valence

graphs, etc. In Chapter 3, the subgraph isomorphism prohiem is discussed by presenting

complexitv resuits in subtrees, planar graphs and embedded graphs. Another point of view

regarding subgraph isomorphism, the relational view, is presenteci too. As for practical

algorithms in graph and subgraph isomorphism problems, Chapter 4 shows basic ideas of

major algorithms, Nauty, Ullmann and $chmidt & Druffel, along with a comparison of

performance. A conclusion and a discussion of these aspects are given in Chapter 5.

1.2 Basic computational complexity

In this section, we give a brief overview of computational complexity theory. For more

detailed description, readers are encouraged to consult [3, 110, 1111.
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The theorv of computation, a subfield of computer science and mathematics, is the studv

of mathematical models of computing, independent of any particular computer hardware.

Complexity theory is part of the theory of computation dealillg with the resources required

during computation to solve a given problem. The most common resources are tirne (how

many steps it takes to solve a problem) and space (how much memory it takes to solve a

problem).

Given a problem. we need an algorithm to solve it. How do we know that an algorithm is

a “good” one? À useful measure of performance is “the time or space required to solve a

problem as a function of the size of data”. Generally speaking, computational complexity

theory studies:

• the efficiency of algorithms

• the inherent difficultv of problems of practical and/or theoretical importance

An important cliscovery in the area is that computational problems can vary tremendously

in the effort required to solve them precisely.

Definition J Considerfunctions f, g: N - R. Say that f(n) is ofthe order ofg(n),

written f(n) e O(g(n)) (catted big-O notation), if tÏzere is a positive constant c such that

for every n, f(n) < c g(n).

Algorithms which have a polynomial or sub-polynomial time complexity (that is, they take

time f(n) e O(g(n)), where g(n) is a polynomial), are often practical.

Algorithms with complexities which cannot be bounded by polynomial functions are called

exponential-time algorithms.
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1.2.1 Turing machine

In computational complexity theory, we use frequently the idea of a Turing machine. A

Turing machine is an abstract model of computer execution and storage introduced in 1936

by Alan Turing to give a mathematically precise definition of “algorithm” or “mechanical

proceclure”.

Definition 1.2 A Turing machine consists of:

1. A tape which is divided into ceïts, one next to the other. Each ceïï contains a symbol

from some finite alphabet. The alphabet contains a speciaï bïank symbot and one or

more other symboïs. The tape is assumed to be arbitrariïy extendible to the ïeft and

to the right, i.e., the Turing machine is aïways suppïied with as much tape as it needs

for its computation. Ceïïs that have not been written to during a computation are

assumed to be fiïïed with the bïank symbot.

2. A head that can read and wTite symboïs on the tape and moue ïeft and right.

3. A state register that stores the state of the Turing machine. The number of different

states is aïways finite and there is one special start state with which the state register

is initiaïized. Some states may be designated as “accept” states.

4. A transition table that teïïs the machine what symbol to write, how to moue the head

(“L”for one step left, and “R”for one step right) and what its new state will be, given

the symbol it has just read on the tape and the state it is currently in. If there is no

entry in the table for the current combination of symbol and state then the machine

wiïl haït.
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5. The Turing machine accepts its input if it halÉs in an “accept” state and refuses

otherwise.

Definition 1.3 An ordinary (deterministic) Turing machine (DTM,) is a triple:

T (Q,Z,F.6,qo,B.f)

where Q is a fuite set of states, F is the finite set of tape symbots, B e F is the blank

symbot, Z C F is the set of input symbots, 6 : Q x F —* Q x f x {L, R} is the moue fanction,

qo e Q is the start state and f C Q is tÏie set of final states.

Definition 1.4 An non-deterministic Turing machine (NTM,) is a triple:

T = (Q, Z, F, 6, qo, qaccept, qreject)

where Q is a fuite set of states, Z is the input alphabet, not containing bÏank symbot, F is

the fuite set of tape symbots, 6 : Q x f —* Q x f x {L, R} is the moue function, q0 E Q is

the start state, Qaccept E Q is the accept state and qreject e Q is the reject state.

A NT1\’I differs from a DTM in that rather than a single instruction triplet, the transition

rule may specifv a number of alternate instructions. NTM cari be thought of a generalization

of DTM. At each step of the computation we can imagine that the computer “branches”

into rnany copies, each of which executes one of the possible instructions. Whereas a DTM

has a single “computation path” that it follows, a NTM has a “computation tree”. If any

branch of the tree haits with an “accept” condition, we say that the NTM accepts the

input.

Definition 1.5 A configuration of a Turing machine is a 3-triple (u. q, u), wheTe
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• nu is the current tape contents;

• n is the part (possibty empty) of the string frorn the Ïeftrnost symboÏ titi the scanned

ceÏt of the tape;

• if a is the symnbot in the scanned ccii, then u is the part (possibiy empty) of the string

from a to rightrnost non-biank syrnboÏ.

• q is the current state.

We next. define Alternating Turing Machine (ATM). Just as an NTM is a generalization of

a DTM, an ATM is a generalization of an NIM.

Definition 1.6 An ATM M (Q, , F, , F) (Q is a set of states, F is the tape alphabet,

6 is the transition function, is the input alphabet, and F is the set of final states) is an

NTM with the foïlowing differences:

1. Each state q E Q is a pair < n, z >. where z e {“Universat”, “Existentiat”} is

a “label” for the state and n is the state narne. This partitions Q into a set of

existentiat ) states and a set of universal (V) states. Fix an input x. We cati

a configuration (tape contents, position of R/W head, state of controt,.) to be an

existentiai configuration if its state is existential. Univers al configurations are deflned

sirnilarly.

2. Acceptance of M: If a Turing Machine can legally go from a configuration C1 to

another configuration C2 in a single step according to the transition function, C1 is

catted the parent of C2 or C2 is the child of C1. Configurations without any children

are caÏled leaf configurations and others are called non-teaf configurations. We now

recursivety label each configuration to be either accepting or rejecting as follows.
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(a) A teaf configuration whose state is a finat state is tabeted “accepting”. A teaf

configuration whose state is not a final state is labeted “rejecting’

(b) A non-teaf existentiat configuration is tabeÏed “accepting” if at teast one of its

chiÏdren is ÏabeÏed “accepting’ and it is ÏabeÏed ‘rejecting”, otherwise. A non

teaf uniue’rsat configuration is Ïabeted “accepti’ng” if alt of its chitdren are tabeted

“accepting”, and it is Ïabeled “rejecting”, othermise.

(c) The M is said to accept the input x, if and onÏy if its starting configuration is

tabeted “accepting”.

In thinking about the computation of an ATM, it is helpfui to represent the computation

as a tree, see figure 1.2.

figure 1.2: sample computation tree of an ATM

Each node of the tree is labeled with the machine’s configuration and has arrows pointing

to the configurations reachable by outgoing transitions from the node. The outcome of the

computation is determined redursively as follows. A node which is in the machine’s accept

state qj accepts. A node in the state accepts if and only if at least one of its chiidren

accepts. A node in the V state accepts if and only if both of its chiidren accept. Every

.

.
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other node has oniy one child, and accepts if arid only if its child accepts. The machine

accepts if and only if the root of its computation tree accepts.

1.2.2 Decision problems

In the theory of computation a problem is a set of finite-length questions (strings) with

associated finite-length answers (strings) .A decision problem is a problem that requires

a YES or NO answer. Tiiese problems are also referred to as recogriition problems.

A decision problem is usually formalized as the problem of deciding whether a given string

heiongs to some specified set of strings, also called a formai language. The set contains

exactly those questions w’hose answers were “YE$”. If there is an algorithm that is a.hle to

correctly decide for every possible input string whether it belongs to the language, then

the problem is called decidabte and otherwise it is called ‘a’ndecidabÏe. Important points

are

• If a problem is decidable, there is a Turing machine M that when processing any

instance, ï, of P (i.e., any string x on its input tape) will eventually finish in state

Qûcept if ï is a “YES” instance of the problem and will eventually finish in state Qreject

if s is a “NO’ instance of the problem.

• A problem for which no such Turing machine exists is undecidable.

• Decision problems are a whole lot easier to deal with when looking for special

problems, like unsolvable problems. because proposed solutions only either accept

or reject their input rather than producing some likely complex output on its tape

that needs to be analyzed.
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+ If we can find a decision problem that is undecidable, the we know that there are

unsolvable problems. We don’t need to look for some very complex general problem

that is unsolvable if we can find a very simple decision problem that we can prove is

undecidable by showing that there is no possible Turirig machine that could decide

it.

Computer programs, from a tiny “Hello, world!” procedure to a huge operating system.

may be viewed as computing functions. Since all computers employ hinary notation.

sucS functions are defined over sets of binarv strings. In considering the question “What

problems can be solved by computers?”, it is sufficient to concentrate on decision prohiems.

Hence, “What problems can 5e solved by computers?” is equivalent to “What decision

problems can 5e solved?”.

Any binarv string can be viewed as a representation of some natural number. Thus for

decision problems on binary strings we can concentrate on the set of functions of the form

f : N {O, 1}

INPUT: n a natural number

OUTPUT: 1 if n satisfies a given property; O if n does not satisfy it.

An example is the Prime problem: return 1 if n is a prime number; O if n is a composite

numher.

Decision problems are important because any general problem with an n-hit answer can he

transformed into a decision problem with a YES/NO answer. $olving the general problem

can’t 5e more than n times harder than solving the decision problem. There are several

ways to do this transform. For example, if the general problem is of the form:



CHAPTER 1. INTRODUCTION AND PRELIMINARIES 12

Given an input X, return the answer string Y

then the associated decision problem is:

Given an input X and an integer k, return whether the kth bit of Y is 1

1.2.3 Polynomial reductions and transformations

The basic tools for relating the complexities of various problems are polynomial reductions

and transformations. We say that a problem A reduces to another problem B in polynomial

time, denoted as A cxp B if:

1. there is an algorithrn for A which uses a subroutine for B, and

2. each cail to the subroutine for B counts as a single step, and

3. the algorithm for A runs in polynomial-time.

If A cx B and B x A we say that the problems are polynomially equivalent and write

The practical implication cornes frorn the following proposition and its contrapositive:

If A polynornially reduces to B and there is a polynomial-time algorithm

for B, then there is a polynomial-time algorithm for A.

There are three cases related to the proposition.
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1. (A reduces to B) and (B is “easy”) ,‘ A is “easy”

2. (A reduces to B) and (A is “hard”) ,‘ B is “hard”

3. (A reduces to B) and (B is “hard”) == no conclusion for A - (a very common case)

4. (A reduces to B) and (A is “easy”) no conclusion for B - (also a very common

case)

That is. if A polynomiallv reduces to B. then B is at least as hard as A.

1.2.4 The classes P, NP, NP-hard and NP-complete

Definition 1.7 The cÏass P (polynomiat-time) consists of alt those decision pro btems that

eau be sotved on a deteri inistic Taring machine in an amount of time tha.t is potynomiat

in the size of the input; the cÏass NP (non-deterministic poÏynomzat-time) corisists of ail

those decision probtems uhose positive solutions eau be verifled in polynomial time given

the right information, or equivatentty, whose solution con be found in polynomial time by

a ‘non- determznzstzc Taring machine.

Definition 1.8 The NP-hard (Non-deterministic Potynomiat-time hard,) refers to the ctass

of decision pro btems that contains alt probtems H such that for alt decision probtems L in

NP there is a potynomiat-time many-one reduction to H. Informatly this ctass eau be

described as coritaining the decision probtems that are at teast as hard as any pro blems in

NP, atthough it might, in fact, be harder.

Definition 1.9 The NP-comptete is the comptexity ctass of decision probtems for which

ans’wers can be checked for correctness by an aigorithm whose mn time is polynomial in the
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size of the input (that is, it is NP) and no other NP probtem is more than a polynomial

factor harder. InformaÏty, a probtem is NP-comptete if answers can be verified qnickty,

and a quick atgorithm to soïve this probtem can be used to soïve alt other NP probtems

quickÏy.

In complexity theory, the NP-complete problems are the hardest problems in NP, in the

sense that they are the ones most likely flot. to be in P.

Clearlv. P C NP. Is P a proper subset of ATp? This is the most important open question

in theoretical computer science. Most people think that the answer is probably “ves”. then

there are some problems in NP which are not in P ($ee Figure 1.3).

If P = NP then ail of the NP probiems coHapse to P. Ladner [80] shows that this is the

only case.

Theorem 1.1 1fF NP then there exists sets in NP that are neither in P nor NP — comptetc.

Some people believe the question may be undecidable within the current axiornatization.

A $1,000,000 prize [131] has been offered for a correct soliltion.

The question “Is P = NP ?“ can be rephrased as: if positive solutions to a YE$/NO

problem can be verifled quickly, can the answers also be computed quickly? Here is an

Figure 1.3: classes P and NP
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example to get a feeling for the question. Given two large numbers X and Y, we might

ask whether Y is a multiple of some integer between 1 and X, exclusive. For example, we

might ask whether 69799 is a multiple of some integer between 1 and 250. The answer

is YES, though it would take a fair amount of work to find it manually. On the other

hand, if someone daims that the answer is YES because 223 is a divisor of 69799, then

we cari quickÏy check that with a single division. Verifying that a number is a divisor

is much easier than finding the divisor in the first place. The information needed to

verify a positive answer is often called a “certificate”. So we conclude that given the right

certificates. positive answers to our problem can be verified quickly (i.e. in polynomial

time) and that’s why this problem is in NP. It is not known whether the problem is in P.

11w special case where X — Y was first shown to he in P in 2002 11, after rnany years of

research.

The NP-cornplete term for hard problems essentially means: “abandon ail hope of finding

an efficient algorithm for the exact solution of this problem”. We should point out that

proving or knowing tha.t a problem is NP-complete is not all that negative. IKnowing

such limitations, people do not waste time on impossible projects and instead turn to less

ambitions approaches, for example to find approximate solutions, to solve special cases or

to alter problems a httle so that they become tractable (even at a loss of some fit to real-life

situation, which is particularly useful in practical application since sometimes we cannot

provide or guarantee an exact mapping between “real life” and theoreticai representation).

The goal of this theory is therefore to assist algorithm designers in directing their efforts

toward promising areas and avoid impossible tasks.

A NP-complete problem has the following most important property. Finding an efficient

algorithm for any NP-compÏete problem implies that an efficient algorithm can be found

for all such problems, since any problem belonging to this class can be recast as any other
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member of the class: they are ail polynomially equivalent.

The practical significance of showing the recognition version of an optimization problem to

5e NP-complete is that one should not pursue the search for a good optimizing algorithm

for such a problem and 5e content with finding a good approximating (i.e. heuristic)

algorithm.

1.2.5 The class NC

The class NC (short for “Nick’s Class”, introduceci by Nick Pippenger) is the set of decision

problems decidable in polvlogarithmic time on a parallel computer with a polynomial

number of processors. In other words, a problem is in NC if tliere are constants c and k

such that it can 5e solved in time O((logn)c) using O(nk) parallel processors.

Just as the class P can he thought of as the class of tractable problems, NC can be

thought of as the class of prohiems that can 5e solvecl efficientlv on a parallel computer. It

is unknown whether NC = P. but most researchers suspect this to lie false. meaning that

there are some tractable prohiems which are “inherentiy sequential” and cannot significantlv

5e sped up by using parallelism.

The parallel computer in the definition can 5e assurned to 5e a parallel, random-access

machine (PRAM). That is, a parallel computer with a central 1)001 of memorv. and any

processor can access any hit of memory in constant time.

1.3 Group theory preliminaries

We begin with a brief review of elementary facts from group theory, which we give usuallv

without proofs. For details, readers eau consuit [6, 81]. It is essential to understanding the
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recent approach, group-theoretic techniques, to solve graph isomorphism.

1.3.1 Group deftnitions

Definition 1.10 A group is a set G together with a binary operation o on G snch that

1. a o (b o c) = (o o b) o e, for alt a. b. c e G (associative Ïaw,

2. There exists an etement e E G, catted the identity eÏement, such that aoe eoa = a,

for alt a E G,

3. To each a E G, there exists an etement b, catÏed the inverse of a, such that a o b =

boa = e.

In the third condition, b is usuallv denoted as a hecause it is unique. For any e such

thataoc=coa=e,wehavec=coe=co(aob)=(coa)ob=b.

A common group example is = ({1, 2,.. ,p—l}, .), where pis a prime and the operation

is multiplication modulo p.

The order of the group G is the number of its elernents and is denoted G. A group of

order p’, with p a prime number and n> 1, is called a p-group.

Let G be a group and a E G. Let n be the smallest positive integer, if it exists, such that

e. Then n is called the order of a and we shah write order(a) = n. Que also says

that a is of finite order with order n.

An element g E G such that order(g) = G is called generator. À group G that has such

a generator is cahled cyclic.
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À trivial group I is the group consisting of the identity e oniv.

À group G is commutative, if, for ail g, h E G, g o h h o g. Otherwise, G is non

commutative. À commutative group is also called Abelian in honour of one of the first

group theorists, Neils Henrik Àbel.

À nonempty subset H of a group G is called a subgroup of G if

1. a,b e H hnplies that ab E H,

2. e E H (where e is the identity of G),

3. a e H implies that a e H.

We write H < G, when H is a subgroup of G.

À group G is calied permutation group if G is a set of permutations of a fixed set X

and the group operation is the composition of permutations (wc think of a permutation

as a bijection from the set X onto itself).

Let G1 and G2 5e groups with operations o, * respectively. The Cartesian prodiict

G1 x G2 is the set of pairs G1 x G2 = {(g1, 92) g1 e G1, g E G2}. Let us define a group

operation multiplication on G1 x G2. For two arbitrary elements (ai, a2) and (b1, b2) in

G1 xG2, define their product by (a1, a2)(b1, b2) = (aiobi, a2*b2). The set of ail ordered pairs

(.r1.x2) such that x1 E G1, and 12 E G2 form a group under the operation multiplication.

We cail this group the direct product of G1 and G2.

Let X be a fixed set of cardinalitv n. Let Sym(X) denote the set of ail bijections from

X onto it.self, i.e. the set of ail permutations of X, and let the operation be composition.

Then Syrn(X) is a permutation group and is cailed the symmetric group on X. If Y
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is another set of cardinalit n, then a bijective map f between X a.nd Y defines a unique

correspondence between the elements in Sym(X) and the elements in Sym(Y). This

correspondence says that we have f(n) o f(ço) = f(ir o ) for ail 7C, E $ym(X). We cali

f an isomorphism between $ym(X) and $ym(Y). We usually choose X = {1, 2, ,

the set of the first n natural numbers. In this case, Sym(X) is abbreviated by S.

A transposition is a permutation of a set. which fixes ail but two eiement.s. Let X he

a set of cardinality greater than 1. Consider the set of those elements in Sym(X) which

can be expressed as the product of an even number of transpositions. This set is cÏosed

uncler composition and thus forms a permutation group Att(X) which is cailed alternating

group on X. The order of Sym(X) is exactiy twice the order of Ait(X).

1.3.2 Cosets and Lagrange’s Theorem

Given H. a subgroup of G, and g E G, the set Hg = {h o g h E H} is a right coset of

H in G. Simiiarlv, the set gH = {g o h h E H} is a left coset of H in G. Note that H

is hoth a left anti a right coset of itself. It is easy to show that two left (right) cosets of H

are either disjoint or equal, and that ail cosets are of cardinality equai to the order to H.

Thus, we may partition G into the ieft (right) cosets of H.

The number of distinct left (equivalently. right) cosets of H is called the index of H in G,

and is written [G : H].

Theorem 1.2 (Lagrange) The order of G is equat to the product of the order of H and

the index of H in G, i.e. G = H X [G: H].

It foiiows that the order of any subgroup H must divide the order of G.
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1.3.3 The Orbit-$tabilizer Theorem

Definition 1.11 A group G is said to act on a set X when there is a rnap G x X — X

such that the fottowing conditions hotd for alt etements x X:

• (e, ) x where e is the icÏentity etement of G.

• (g, (h, x)) (gh. r) for alt g, h E G.

We write gx for x). Suppose that the group G acts on the set. X. If we start with the

elernent ï e X and apply group element.s in ail possible wavs, we get

3(r) = {gï: g E G}

which is called the orbit of ï under the action of G. The action of G on X is transitive

(we also say that G acts transitively on X) if there is oniy one orbit, in other words,

for any ï, y E X, there exists g E G such that gx y. Note that the orbits partition X,

because they are the equivalence classes of the equivalence relation given by y ï if and

only if y = gx for some g e G.

The stabilizer of an element ï E X is

G(ï)={gEG:gx=ï},

the set of elements that leave ï fixeci. A direct verification shows that G(x) is a subgroup.

This is a useful observation because any set that appears as a stabilizer in a group action

is guaranteed to be a subgroup; we need not bother to check each time.
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The following theorem, known as the Orbit-Stabilizer theorem, is fundamentai in many

applications.

Theorem 1.3 Suppose that a group G acts on a set X. Let 3(x) be the orbit of x e X,

and let G(x) be the stabitizer ofx. Then the size of the orbit is the index of the stabitizer,

that is.

[G: G(x)].

Thus if G is fuite, then B(x) G/G(x); in particutar, the orbit size divides the order

of the group. D

1.3.4 Normal Subgroups, Homomorphism and Automorphism

A subgroup H of G is normal written H < G, if, for ail g e G, Hg = gH.

Let G and G’ 5e two groups, h a rnap from G to G’. Then the map h is a group

homomorphism if, for all 91,92 e G, h(g1 •92) = h(g1) h(g2).

The set K of ail elements in G which are mapped to the identity e’ of G’ is a normal

subgroup of G and is called the kernet of the homomorphism, denoted by Ker(h). If

the subgroup K is I, the trivial group, then h is an isomorphism. The image of a

homomorphism h is the set of ail the elements of G’ to which are mapped the elements of

G, denoted by Im(h).

An isomorphism from G onto itself is called an automorphism of G.
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1.4 Graph prelimillaries

1.4.1 Basic graph terminology

Siiice graphs have been widely studied in different contexts, there are various different

terminologies in this field. The comprehensive book written by Brandstiidt, Le and

Sprinrad [251 is a good reference. The notation and concepts in this survev are hased

on this hook.

+ A graph is an ordered pair of sets G = (V, E) where V (or 17(G) to emphasize that

it belongs to the graph G) is the vertex set and E (or E(G) to emphasize that it

belongs to the graph G), E C {{n,v} n v,n E Vu E V}, the edge set. Usually,

the number ofvertices. tV is denoted bu n. while the number ofedges, lEI, is denoted

bv rn. If e = {u, v} é E(G). we sav that vertices n and u are adjacent in G, and

that e joins n and y. We’ll also sa that n and u are the ends of e, denoted bu

n E e, y E e. The edge e is said to be incident with n (and u ), and vice-versa. We

write nv (or un) to denote the edge {n,u}, on the understanding that no order is

implied. Note that E(G) is a set. This means that twro vertices either are adjacent

or are not adjacent, there is no possibility of more than one edge joining a pair of

vertices. The elements of E are 2-subsets of V. Thus, a vertex cannot he adjacent

to itself.

+ A digraph (short for directed graph) is an ordered pair of sets G = (V, A), where

V is a set of vertices and A is a set of ordered pairs (called arcs) of vertices of V.

+ The open neighbourhood of a vertex u in a graph G is the set N(u) = {n nu E E};

the closed neighbourhood is N(u) = N(u) U {v}.
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• The adjacency matrix of a graph on the vertex set {1,. , n} is an n X n O-1 matrix

A = (ajj) in which the entr ajj = 1 if there is an edge from vertex i to vertex j and

is O if there is no edge between vertex i and vertex j.

• The incidence matrix of a graph on the vertex set {1,. , n} and the edge set

{ ..... , rn} is an n x ni matrix A (ajj) in which then entry = 1 if edge j is

incident with vertex j and O otherwise.

• A walk (or. e0
— Cn walk) in a graph is an alternating sequence of vertices and edges.

e0, e1, e1. e2, e2, e3, e3.• ,e,1, e such that e = e4e for Ï < i < n. The integer n

is the length of the walk. It is the number of edges in the walk, one Ïess than the

number of vertices. A closed walk is a walk that starts and ends at the same vertex.

• A trail is a waik in which no edge is repeated. $imilariy, a closed trail is a trail that

starts and ends at the same vertex. A path is a walk in whicli no vertex is repeated.

A graph which lias a path between everv pair of vertices is cailed connected graph.

• A cycle (or circuit) is a closed path which does not contain a vertex twice (except

at the beginning and end).

• A loop is an edge that connects a vertex to itself.

• The distance dG(x,y) in graph G oftwo vertices x,y is the length ofasliortest r—y

path in G; if no such path exists. we set d(x, y) := oc.

• The greatest distance hetween anv two vertices in grapli G is the diameter of G,

denoted by diam(G).

• A wheel is a graph that consists of a cycle and one vertex in the “middle” whicli is

connected to ail the vertices on the cycle. An odd wheel is a wheei whose outer

cycle is of odd iength, and an even wheel lias an even cycle for the “rim”.
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• The girth of a graph G is the length of the shortest circuit of G (or infinity if G lias

no circuit).

• A tree is a connected graph that has no circuits. Sometimes it is convenient to

consider one vertex of a tree as special; such a vertex is then called root of this tree.

A tree with a fixed root is a rooted tree. Choosing a root r in a tree T imposes a.

partial ordering on V(T) by letting x < y if (x, y) T. This is the tree-order on

V(T) associated with T and r. Note r is the least element in this partial order, every

leaf x r of T is a maximal element.

• The path P7 (n the number of vertices) is a tree witli two vertices of degree 1 and

the other (n — 2) vertices of degree 2. This graph is cailed path graph P.

• The subgraph of G induced by a subset W of its vertex set V (i.e. W V) is the

graph formed by the vertices in W and ah the edges of G whose two endpoints are

in W. It is del1oted as G[W]. Analogouslv, we define the suhgraph G[F] induced by

the set of edges f.

• The complement Ô of G is a grapli on , but two distinct vertices are adjacent in

Ô if and oniy if they are non-adjacent in G.

• A stable set of G is a subset of vertices with no edge between any two of them.

• The degree of a vertex V of G is the number of edges incident to it. It is also cailed

valence, is clenoted hy d(v) and is given hy d(v) — N(v).

• The connected components of a graph G are the connected subgraphs of G induced

by sets of vertices such that no two vertices in different sets are connected.

• A cut vertex is a vertex wliose rernoval (along witli ail edges incident with it)

produces a grapli with more connected components than the original graph.
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• A complete graph is a graph in which any two distinct vertices are adjacent. A

complete graph on n vertices is denoted by K,. A clique of G is a complete subgraph

ofG.

• The une graph L(G) of a graph G = (V, E) is the graph whose vertex set is E and

whose edge set is E’, where e1e2 e E’ if and only if e1 and e2 are incident to the same

vertex in G.

• A graph G is k-vertex-connected (resp. k-edge-connected) if we need to delete

at least k vertices (resp. k edges) in order to get a non-connected graph. The (vertex

or edge)_connectivity of the graph is the largest k such that G is k-connected.

1.4.2 Graph homomorphism and isomorphism

Although we have mentioned several isornorphisrn terrns above, we would like to give the

definitions formally since our approaches, presented later, frequently refer to them.

Definition 1.12 If G arid H are graphs, a kornornorphismfrom G to H is a rnap f: V(G) —* V(H)

with the property that f(n) is adjacent to f(v) whenever n is adjacent to u. A bijective

homomorphism whose inverse is aÏso a horno’morphism is an isomorphisrn.

We writ.e G1 G if G1 and G2 are isomorphic.

Definition 1.13 An automorphism of a graph G is an isomorphism f that rnaps G to

itsetf. FormatÏy, an antomorphisrn ofa graph G is a one-to-one, onto map f : V(G) —+ V(G)

SUCÏl that (n.v) E(G) (f(n).f(v)) e E(G).



Chapter 2

Graph Isomorphism

The GI problem has been intensively studied. It occupies an important position in the

complexity family because no one knows what is its computational complexity. It is well

known that. GI is in NP, but despite decades of study by mathematicians and computer

scientists, it is flot known whether GI is in P or flot f51J. There is some evidence that it is

not likely to be NP-complete [90, 126j. Many researchers conjecture that GUs complexity

lies somewhere between P and NP-complete. If P L NP then, hy Ladner’s theorem [$0],

there exist problems which are of intermediate status; many people think that GI lies in

this level.

One earlv resuit on the complexitv of GI is an O(exp(nl/2+0(’))) (rnoderately exponential)

algorithrn due to Babai [9j. Moderately exponential means that on a problem of size n,

the measure of computation, ïn(n), is more than any polynomial k but less than any

exponential c, where k > 0, e> 1. Formally, m(n) is of moderately exponential growth if

for ail k> 0, m(n) Q(k) and for ail f > O , m(n) = o((1 + f)’).

The best existing upper hound for the problem is exp(cn logn) (c is a constant) given

26
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by Luks and Zemlyachenko 1141, but there is no evidence of this bound being optimal.

By imposing certain restrictions on the properties of the graphs, however, it is possible to

design algorithms that have polynomially bounded complexity. In the following sections,

we vill give the cornplexity classes of restricted graph isomorphisrn problems which have

been compiled hy many mathematicians during the last decades.

2.1 Isomorphism-complete class

The graph isomorphisrn problem is not isolated. It is, in fact, a class of problems.

A rigorous discussion of the structural complexit of the graph isomorphisrn problem is

given in Kdbler, Schôning, and Torân 1781. In an attempt to classify the graph isomorphism

problem a new class of problems has been developed: the isomorphism-complete class

t591• A prohiem is said to be isomorphism-complete if it is provably equivalent to the

isomorphisrn prohiem. This class includes problems that can he shown to he polnomially

equivaleiit to the graph isomorphism problem.

As mentioned, the complexity of GI is polynomial if we add some restriction on the graphs.

Conversely, many other restricted isomorphism problems are known to be polynomially

equivalent to GI. It has been proved that the following types of graphs are in the isomorphism

complete class: bipartite graphs, line graphs [63], rooted acyclic digraphs, chordal graphs,

traiisitively orientable graphs, regular graphs [231, directed path graphs [15], k-trees (unbounded

k), and comparability graphs [103]. In 1978, Colbourn [31 proved that the question

of deciding whether a graph is self-complementary, is graph isomorphism complete. In

2002, Kaibel and Schwartz (73] proved that the problem of deciding whether two (convex)

polytopes are combinatoriallv isomorphic is graph isomorphism-complete, even for simple

or simplicial polytopes. In the same year, Nagoya, Uehara and Toda [1031 showed that



HÀPTER 2. GRÀPH ISOIVIORPHISM 28

chordal bipartite graphs are in the isomorphism-complete class, too.

Now we review several types of graphs in the isomorphism-complete class and give brief

pro ofs.

2.1.1 Bipartite graph isomorphism

A bipartite graph is a graph G whose vertex set V can he partitioned into two non emptv

sets Vj and in such a way that every edge of G joins a vertex in to a vertex in .

An alternative way of thinking about it is as about colouring the vertices in V1 one colour

and those in V2 another colour, with no edge between vertices of the same colour.

Theorem 2.1 Blpartite graph isomorphism graph zsorno7phzsrn.

Proof. Testing the isomorphism of bipartite graphs is isomorphism-complete. since any

graph can he made bipartite bv replacing each edge by two edges connect.ed with a new

vertex (see f igure 2.1).

a\/b

a

figure 2.1: change a graph to a bipartite graph

Clearly, the original graphs are isomorphic if and only if the transforrned graphs are. D
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2.1.2 Chordal graph isomorphism

Definition 2.1 [58] An undirected graph is catted chordat if every cycle of tength greater

than 3 possesses a chord, that is, an edge joining two nonconsecutive vertices of the cycle.

An example of chordal graphs is shown in figure 2.2. Chordal graphs are also called

triangutated graphs, rigid-circuit graphs, monotone transitive graphs and perfect etimination

graphs in the literature [25].

Theorem 2.2 (Lueker and Booth [87J, 1979)

Chordat graph isomorphism graph isomorphism.

Proof. We construct a polynomial mapping M from a graph G to a graph M(G) such that

M(G) is a chordal graph, and G can be recovered from M(G) up to isomorphism. We will

show that the question of whether G1 is isornorphic to G2 is reduced to the question of

whether M(G1) is isomorphic to M(G2).

‘for the reduction to chordal graph isomorphism, let 11.1(G) = G’ = (V’, E’), where V’ =

VUE. and

Figure 2.2: a chordal graph

E’ = {{v,w} y w,v,w “}U{{u,e} u e Ve E,v e e}.
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The construction can be implemented to t.ake O(n + in) time, where n V, in

Now, we consider any cycle of length greater that 3 in G’. If the cycle contains oniy V

vertices, then it lias a chord, since ail V-vertices are adjacent. Otherwise, the cycle contains

an E-vertex, and then the two vertices adjacent to this E-vertex must be V-vertices, thus,

they are adjacent. Therefore, G’ is chordai.

“Assume now that n 4. It turns out that G’ contains enough structure to aliow us to

reconstruct G, up to isomorphism. As a mat.ter of fact, since ail V-vertices are adjacent, ail

of them have cÏegree at ieast equal to n — 1, which is more than 2, while E-vertices aiways

have degree 2, because an E-vertex is adjacent to exactly two V-vertices. Furthermore,

two vertices of G are adjacent if the corresponding V-vertices are adjacent to a common

E-vertex.”

Thus. it is easv to sec that the probiem of testing isornorphism of G1 and G2 is then

polynomialiy recluced to the probiem of testing isornorphism of M(G1) and M(G2). D

2.1.3 Chordal bipartite graph isomorphism

Definition 2.2 A graph is choTdat bipartite if the graph is bipartite and every cycle of

tength at teast 6 has a chord.

We have shown that the bipartite graph isomorphism as weil as chordai graph isomorphism

are in the isomorphism-complete ciass. Naturaiiv, we wonder in which class does chordai

bipartite graph isomorphism lie. It is well-known that chordal bipartite graphs form a

subclass between bipartite graphs and convex graphs. Recentiy, the compiexity of this

class of graphs was proved polynomially reducible to the generai graph isomorphism too

[1031.
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Theorem 2.3 (Nagoya, Uehara and Toda [103], 2002)

Ghordat bipartite graph isomorphism graph isomorphism.

PToof. (sketch) The proof is based on a construction technique.

Babel, Ponomarenko and Tinhofer show that the GI prohiem for directed path graplis is

isomorphism-complete in 115]. They give a reduction from any given bipartite graph to

a clirected path graph: two given bipartite graphs are isomorphic if and only if reduced

directed path graphs are isomorphic.

“Given bipartite graph G = (X, Y, E) with X U Y = n and E = m, the reduceci

directed path graph (, Ê) is constructed as follows (sec an example Figure 2.3):

= X U Y U E, and Ê contains:

1. {e,e’} for e,e’ in E.

2. {x,e}foreachiXandeEw’ithxe.

3. {y,e} for each ye and e E Ewith yE e.”

îÎÎ
Figure 2.3: reduction of graph G, Ô and G

“By this reduction, Ô has the following properties:
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1. Ô[E] is a clique of size ni,

2. Ô[X U Y] is an independent set of size n,

3. for eacli e E E, e lias exactlv one neighbour in X, and another neighbour in Y. Thus.

eacli vertex e e E lias degree ni + 1.

Witliout loss of generality, we assume that ni > 1 and X) > 1, Y) > 1.”

Following this reduction, Nagoya, Uehara auJ Toda [103] construct a cliordal bipartite

graph Ç (V. ) from the directed path grapli (X U Y U E, Ê) in polynomial time.

Let V X U Y U E U E’ U B U W. Each vertex e E E corresponds to three vertices

e’ E E’, eb E B, and e E W, respectively. That is, E) = E’) B) W) = ni.

“First, we show how to connect the vertices in E U E’ U B U W.

1. for each vertex e E E, four edges {e, e’}, {e’, eb}, {eb, e}. {e, e} are added into S.

2. for each pair of vertices e1 and e9, {e1, e}. {e. e2} are added into S

Since Ô[E] is a clique, Ç[E U E’] is a bipartite complete graph. In figure 2.3, black square

vertices are in E, white square vertices are in E’, srnall black vertices are in B, and small

white vertices are in W.

We recail that the vertices in B U V are not connected to any vertices in X U Y.

“The next step in the construction is to show how to connect the vertices in X and Y to

the vertices in E U E’ U B U 1V as in the example figure 2.3.

1. for each vertex x E X. {, e} is adcled iuto S if {, e} E E.
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2. for each vertex y E Y, {y, e’} is added into if {y, e} e Ê.

Then, it is proved that reduced chordal bipartite graph isomorphisrn is polynornially

equivalent to directed path graph isomorphism. Given a bipartite graph G, the reduced

graph Ç bas n + 4m vertices and rn2 + 5m edges.”

Hence, the chordal bipartite graphs are in isomorphism-complete class.

2.1.4 Self-complementary graph isomorphism

D

Definition 2.3 A (di,)graph G is seÏf-comptementary (sc] if it is isomorphic to its

compternent G.

There are relatively few self-cornplementary graphs; on twelve vertices, for instance, only

720 of the 165,091,172,592 graphs are self-complementarv [1131. These are some examples

(See Figure 2.1):

n=1

n=4

n=5

.

.. . .

Theorem 2.4 (Colbourn [37J, 1978)

figure 2.4: self-complementary graphs

The recognition of setf-comptementary digraphs
, graph isomorphism.
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Proof. For convenience, let s consider Figure 2.5. The problem of determining the

isomorphism of two graphs G and H can be polynomially reduced to the recognition of

self-compÏementary digraphs. “By reduction, we substitute G for vertex Ï and R (graph

H’s complement) for vertex 2, and cail the resulting digraph S. Thus, digraph S is self

complementar if and only if G and H are isomorphic.”

Figure 2.5: self-complementary digraph

Now, we assume that S is self-complementarv. “In one direction, since everv vertex in

G lias out-degree at least n, whereas any vertex in R lias out-degree at most n — 1, any

isomorphism carrying S into must map G into H.”

In the other direction, assume that G is isomorphic to H. “For any isomorphism f mapping

G to H. we build the inverse mapping g which is an isomorphism from R into . An

isornorphism from $ to is constructed bv using the mapping f to map vertices from the

portion of S representing G to the portion of representing H, and using mapping g to

perfbrm the parallel mapping from R to Ô. Thus, we can see that S is self-complementary.”

D

Colbourn also show’ed that:

Theorem 2.5 (Colbourn j37], 1978)

The recognition of setJ-comptementary graphs graph isornorphism.

Theorem 2.6 (Colbourn [37], 1978)

Setf-cornpÏementary graph isornorphi9rn graph isornorphism.
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Similar proofs can be found in [31•

2.1.5 Regular graph isomorphism

A graph in which every vertex has the same degree is called regular. If every vertex bas

degree k then we say the graph is regular of degree k or k-regular. Nuil graphs are regular

of degree zero.

Theorem 2.7 (Booth [231, 1978)

Regutar graph isomorphism graph somorph2sm.

Proof. Here, we give an outiine of the proof given by Booth [231. Since any isomorphism

test for arhitrary graplis will also work for regular graphs. we need only show that graph

isornorphisrn is polvnornially reclucihie to regular graphs isornorphism. This proofconst.ructs

a regiilar graph REG ULAR(G) from any given general graph G and proves that G1 G2

REGULAR(G1) REGULAR(G2).

“Let G (Ç E) be any graph havillg V {u 1 <i <n} and E {e 1 <j <m}

where every vertex belongs to at least one edge and rn — n > 2. Define the following sets:

= {fi 1 j <m}.

1 km—2},

={kt 1<1< m—n+2}

and
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E1 {{u. e} v e, 1 <i < n, 1 <j <m},

E2 = {{v,f} I v e,1 <i <n,1 <j <in},

E3 = {{ej,gk} 1 <k <in—2,1 <j <m},

E4 {{j,hj 1<1< m—n+2,1 <j <m}.

Let REGULAR(G) be the graph (VUEUV1ULU, E1UE2UE3uE1). “ We can establish

two facts about REGULAR(G): it isa regular graph of degree in and given REGULAR(G)

we cari recover G uniqueiy.

The first fact is easily verified. “Each v E V lias degree in in REG ULAR(G) because it

is adjacent to either e or fj for ail 1 < j < in; cadi e é E lias degree in because it is

adjacent to exactly 2 of the v E V and to ail in — 2 of the 9k ê V2; cadi f e V1 is adjacent

to exactiy ‘n — 2 of the v E V and also to ail in — n + 2 of the k, E V3; each 9k E is

adjacent to ail in of the e ê E; finally each li, E is adjacent to ail in of the J ê

The second fact follows from the observation that in REGULAR(G) every g, ê V lias

exactly tire same set of neighbours and every h, ê lias exactly the same set ofneighbonrs.

“We can teil these two sets apart hecause 1721 > 1731 since n > 4 if in — n> 2 in a graph.

Having tins located 17, we know that

E = {vertices at distance 1 from 1},

V = {vertices at distance 2 from 1’}

and also tliat {u,v} E E if and oniy if there is an edge in REGULAR(G) from both

u and V to some e E E. Tic encoding (G1, G2)—÷(REGULAR(G1), REG ULAR(G2))

thus lias the property that G1 G if and oniy if REGULAR(G1)REGULAR(G2).

I’vIoreover, it is clearly computable in polynomial time and hence is a polynomial reduction
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of graph isomorphism to regular graph isomorphism if we realize that isolated vertices can

5e handled with a simple pretest and that adding an eqilal number of copies of 1(4 to

both G1 and G2 will not affect their isomorphism but will ensure that in — n > 2, without

increasing the size of the input by more than a polynomial.” E

2.2 Some graph isomorphism problems in F

As we rnentioned before, although it seerns to be hard to have a polvnomial-time algorithm

for general graph isomorphism. many graphs with restrictions are readilv handled. for

example. trees, planar graphs, graphs of bounded genus. graphs of hounded valence, graphs

of bounded tree-width. graphs of hounded eigenvalue rnultiplicitv and trivalent graphs have

polynomial-time algorithms.

The first major resuit in this field was given by Luks j51, $81 in 1978. He showeci that

graphs with bounded valence can be solved in polynomial time o(nt09k), where k is the

bounded valence. This resuit was obtained by applying powerful group theory. We will

give a special presentation of group theory techniques in a later section.

Other interesting graphs are interval graphs.

Definition 2.4 A undirected graph is catÏed interval graph if its vertzces cari be put into

one-to-one correspondence with a set of intervaïs of the reat une, such that two vertices are

connected by an edge if and onïy if their corresponding intervats have nonempty intersection.

Interval graphs can be tested for graph isomorphism in O(mn), where m is the number of

edges and n is the number of vertices, following resuits h Hsu j69] in 1995. Compared

to other resuits, this result is very interesting in that it does flot require some explicit
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C parameter to be fixed (constallt) which is often required by many polynomial algorithms,

and seems feasible to apply to a large and practical group of graphs [51J.

In the following sections, several major resuits in the graph isornorphisrn problem will he

shown using two approaches: combinatorial approach and group-theoretic approach. Ail

of these resuits are in polyllomial time at most; some of them are even in linear time or

atternating Ïogtime (Atogtirne). We discuss this problem in the next section.

2.3 Combinatorial approach

2.3.1 Tree isomorphism

As we have seen, a tree is a finite, conllected, acyclic graph. Tree isomorphism is the basis

of naïve solutions to the more general problems of subtree isomorphism, largest common

subtree, and perhaps aiso smallest common super-tree.

Trees isomorphism bas been studied since the 1970’s. first, in 1974, Aho, Hopcroft and

Uliman [2] gave a linear-time aigorithm for tree isomorphism, based on comparing two

trees in a bottom-up fashion. Certainly, linear time is the best possible sequential run time

for tree isomorphism, but it is possible to consider refined algorithms, sav parallel run. in

smaller complexity classes [321, for instance, the class NC. In 1981, Ruzzo [1161 found an

NC-algorithm for solving the tree isomorphism problem for trees of logarithmic degree.

Later, in 1991, Miller and Reif [100] mentioned an NC-aigorithm for this problemproblem

and the tree canonization problein for trees of arbitrary degree and depth. Further, Lindell

[$61 showed deterministic logarithmic-space algorithms for the tree isomorphism, tree

comparison and tree canonization problems. Finaiiy, in 1997, Buss [32] gave an aÏternating
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togtime (Àlogtime) algorithm for tree isomorphisrn. In this surve, we shah show the idea

of Buss Alogtime algorithm.

Prelimirraries and definitions

Definition 2.5 [2J The cÏass of tanguages accepted by ATMs within tiine O(logn) is

catted Alogtime.

Definition 2.6 An immediate snbtree of T is a subtree whose root is a chitd ofT’s root

vertex.

Definition 2.7 [32J Let $ and T be trees. We define $ T, caÏted tree equatity, by

induction on the number of vertices in S and T by defining that S T hotUs if ccnd onÏy if

1. S T = 1 or

2. S and T both have the same number, in, of immediate subtrees, and theTe is some

ordering 5i , 5m of the immediate subtrees of S and sorne ordering T1, Tm of

the immediate subtrees of T such that $ T,Vi, 1 < j < m.

It is easv to check that $ T if and only if there is an isornorphisrn of $ and T.

Definition 2.8 Let S and T be trees. We define S - T and S - T, catted tinear ordering

of trees, sirnuttaneousÏy by induction on the size of $ and T. The tinear ordering $ -< T

hotUs if and onÏy either $ - T or $ T. The tinear ordering $ -< T hoÏds if and onÏy if

either $ < T hotds or the foïtowing conditions hotU:
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1. S = T, and

2. Let $, Si,, be the irnrnediate snbtrees of S ordered so that 5m 5m—i S,

and let T1, ,T be the immediate s’izbtrees of T. szrnzlarty oTdered with T1 — T

for alt j. Then

(a) For sorne j <inin{rn,n},S - I and for ahi <j T, or

(b) rn<n andISforattl <i<rn.

Miller and Reif 1100] introduced a method to represent trees by strings over the two symbol

alphabet containing open and close parentheses. The tree with a single vertex is denoted by

the string “Q”. If T is a tree with more than oiie vertex, if cr1, orn are strings representing

the immediate subtrees, then “(ou,. , n)” is a string representation of tree T.

Hence, the isomorphism of trees becornes the problem of determining whether two input

strmg representations are isomorphic.

The basic idea of the algorithm

It is knowri that Alogtime algorithms are capable of parsing parenthesis languages. for

more information on these aspects of Àlogtime, readers are advised to consuit [311. Particularly,

by counting parentheses, an Alogtime algorithm can compute the depth of a vertex in a

tree, can determine the i-th child of any vertex in a tree and know the ancestor/descendant

predicates, etc. Also, Alogtime algorithms are capable of converting hetween prefix and

infix notations [32].

Definition 2.9 Let S be a subtree of a tree T. Let T = T0. T1. , T = S be the (unique)

sequence of subtrees of T such that each T is an irnrnedia.te subtree of I. The size
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signature of S in T is defined as the sequence (ToL T1, , Tk). IfS’ is a subtree of a

tree T’, then S and S’ are simitar provided:

1. They have the same size-signature, and

2. They are isomorphic, i.e., $ S’.

It is easy to see that the size-signature is invariant under isomorphism. By parsing and

counting techniques, tl1ere is an Alogtime procedllre which, from a string representation of

a tree T and a given subtree $ of T, can generate the size-signature of S in T 132].

Let logn denote the logarithrn (in base 2) of n rounded down to the integer. The logsize.

togsize(T), of a tree T is deflned to equal log jT.

Definition 2.10 Let T1,T2 be non-equat and non zso’rnorphic trees. LetS be a subtree of

Ty. We say that S dist’inguishes T1 fro’m T2 pro vided that S is a proper subtree of î and:

1. The togsize of S is strictty Ïess than the Ïogsize of the parent tree of S, and

2. The number of snbtrees of T1 which are sirnitar to S is not equat to the nwrnber of

subtrees of T2 which are simitar to S.

Now, we present the idea of tree isomorphism algorithm in the help of the representation

of trees.

“We can view an Alogtime algorithm as a garne between two players: the first player is

asserting that the two trees are non-isomorphic, while the second player is asserting that

the two trees are isornorphic. The input to the game consists of two string representations
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oftwo trees T1 and T2, and we denote this instance of the game G[T1,T]. The ga.me begins

with the first player ideutifying a subtree S that distinguishes T1 from T2. Then the two

players play a log time game to count the number of subtrees of T1 and of T2 which are

similar to S1. If these numbers are equal, the second player wins. Otherwise the first player

wins.,,

Determining the truth of these assertions involves:

1. comparing the sizesignatures of S and 51, which is easilv done in Àiogtime. and

2. checking whether S 51, which involves recursive cail G[S, Si].

In addition, Buss [32J showed that the entire game G[T1, T2], inciuding the recursive cails

to the game, uses only O(logn) rounds, where n is the maximum size of T1 and T2. Thus,

we have the foliowing theorem.

Theorem 2.8 (Buss [32], 199Z)

The tree isomorphism probtem is in Atogtime.

It is obvious that the proof is essentially a formai implementation of the game described

just above.

2.3.2 Planar graph isomorphism

When we draw a graph on a piece of paper, we naturaliy try to make it as clear as possible.

One obvious way to limit the mess created by ail the unes is to avoid intersections. for

exampie, we may ask if we can draw the graph in such a way that no two edges meet in
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a point other than a common end. Graphs drawn in this way are called planar graphs.

A graph is calÏed outer-planar if it can be ernbedded in the plane such that every vertex

lies on the boundary of the sarne haif-plane, without loss of generality on the boundary of

the upper haif-plane.

Planar graphs corresponding to the regular polyhedra and other geometric figures have

been investigateci since the tirne of the ancient Greeks. More recentlv, planar graphs

appear in some applied disciplines. An example is VLSI design where one would like to

design a large electric network on a planar electric board so that. the connections between

the components of the network do not intersect (or intersect as little as possible). Some

results on planar graphs were inspired by such practical problems.

Complexity resuits

Planar graph isomorphisrn fias been extensively studied during last decades. The graph

isoinorphism problem for triconnected (also called 3-connected) planar graphs is particularlv

simple since a triconnected planar graph has a unique embedding on a sphere 11291.

Weinberg [128] studied this fact while developing an algorithm for testing isomorphism

of triconnected planar graphs in 0(n2) time. Although it is for triconnected planar graphs,

this result has heen extended to general planar graphs and improved to O(n. logni) steps

b Hopcroft and Tarjan [66. 67]. furtherrnore, in 1974, a linear tirne 0(n) algorithm was

found by Hopcroft and Wong [681. In this survey, we give an overview of this approach. We

intend onlv to estabhish the existence of a linear algorithm which subsequent work rnight

make truly efficient.
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The motivation

The previous work on isomorphism of planar graphs shows that, without loss of generality,

we eau restrict attention to determining isomorphism of embeddings of triconiiected planar

graphs. If G1 and G9 are nontrivial, triconnected planar graphs, they have a unique

representa.tion on a sphere onlv up to parity (that is. left. or right depend on whether

the graph is viewed from inside or outside the sphere). Thus one must actually test

isomorphism of one planar representation of G1 with both representations of G2 in order

to determine if G1 and G2 are isomorphic. Henceforth, we restrict our attention to the

isornorphism of fixed embeddings of planar graphs. from now on, the word “graph” refers

to a specific labeled planar representation of a planar graph.

General ideas of the algorithm

At the beginning, the algorithm assigns integer labels to vertices and pairs of integer labels

to edges. one label with each end. The integer associated with a vertex is calleci the vertex

label. Let edge e he incident at vertices u and u. The integer associated with the vertex

u end of e is called the ‘u-label of e and the integer associated with the vertex y end of e

is called the u-label of e.

Next, the algorithm treats each graph as a simplifled one bv a sequence of reductions.

A reduction of graph G is a replacement of each labeled suhgraph of G of a given type

by a labeled subgraph of another given type. A list of possible reductions, each having an

associated priority, will be shown in detail later.

The isomorphisrn algorithm assigns the label 1 to each vertex and the label 2 to each edge

end. Then the highest priority reduction which is applicable is applied to G1 and G2.
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Certain discrepancies may be detected at this stage in which case the algorithm terminates

and G1 and G2 are not isomorphic. for example, if the number of subgraphs of the type

to be collapsed by the reduction differ in G1 and G2, then clearly the graphs are not

isornorphic. The process of applying reductions continues until no further reduction is

applicable. M every stage the highest priority applicable reduction is applied.

Given a type of graph, the actual process of applying a reduction will sequentially collapse

ail its subgraphs. Therefore, the subgraph modifications cannot interfere with each other

if the resuit is to be order independent. Moreover, the modified labels encode sufficient

information to insure that the resulting graphs are isomorphic if and only if the original

graphs are isomorphic. To ensure that both graphs receive the same labels in each

reduction, label assignrnents for each reduction are always done simuitaneously for both

graphs.

After each reduction, the graph is simplified because there is a strict decrease in the

complexitv of the graph as rneasured by the sum of the number of edges and vertices.

The work doue to achieve this decrease in the sum of the number of edges and vertices is

proportional to the decrease. The fact that a triconnected planar graph has a number of

edges less than three times the number of vertices insures termination of the algorithm in

tirne which is linear in the number of vertices.

When no further reduction is applicable, the graphs are the five regular polyhedral graphs

or a trivial graph consisting of a single vertex. These graphs can be tested for isomorphisrn

(as labeled graphs) by exhaustive matching in a fixed finite time.
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The reduction algorithm

As mentioned above, the algorithrn treats several reductions. Here, we give a brief description

for each reduction.

1. “Removat of Ïoops and 1-degree vertices. The highest priority reductions involve

loops. 1-clegree vertices and bonds. Suppose e1 and e2 are incident at w and that

e1 irnrnediatelv precedes e2 in the clockwise ordering of edges at w in the planar

embedding, then we write e2ClV,e1. \Ve write eiCCIVe9 to denote e9Ct’Vei.

(a) Rernoving toops. A loop tuple is a triple (non-loop edge e (u, w), ioop edge

f, ioop vertex u) such that edge e is counterclockwise adjacent to the loop f
at vertex u. The number triple of a loop tuple (e, f, u) is the ordered triple

(v-label(e). label of encl off clockwise adjacent to ecige e, other label off). The

reduction consists of constructing the corresponding number triple for each loop

tuple, assigning each number triple an integer. assigning the int.eger associated

with loop tuple (e, f, u) to the u-label of e, and rernoving the loop f. Given

a list of loop tuples for a graph G, this reduction produces a unique resultant

graph G’ independent of the order of the Ïist of loop tuples. furthermore, the

algorithrn can be implernented in time linear in the number of loops rernoved.

(b) Rernoving 1-degTee vertices. A spoke is a 1-degree vertex and its associated

edge. Each 1-degree vertex is associated with a unique spoke. A spoke center

has no edges incident other than spoke edges and the number of spoke edges

is greater than one, then we have a star. If we have just one spoke, we have

a dumbbell. With the similar manner to remove loops, this reduction also

produces a unique resultant graph G’ in time linear in the number of vertices.”
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2. ‘Bond associated reductions.

(a) A clump is a maximal set of edges e1, , ek, k > 1, connecting two distinct

vertices y and w such that (i) at least one of y and w is adjacent to a vertex

other than u and w, (ii) eCCI’I’Çe±1 and eCWWe+i for 1 < i < k. The two

vertices u and w are called clump vertices. During the reduction, each clurnp

is replaced by a single edge laheled with an integer.

(b) A skein is a graph consisting of two vertices u and w and k edges, k > i, each

edge incident at both u and ‘w. The vertices u and w are the skein vertices

and the k edges are the skein edges. During the reduction, each vertex in a

skein is associated with an integer. Replace each skein by a vertex labeled with

the smaller of the two integers.”

3. “Four generaÏ reductions and two speciat cases. Once loops, bonds anci clegree one

vertices have been removed, Euler’s theorem guarantees the existence of a degree 2,

3, 4 or 5 vertex [1071. WTith this in mmd, we call a vertex of degree 2, 3, 1 or 5 a

low degree vertex. Thus we need only insure that we can applv a reduction whenever

a low degree vertex exists. The remaining reductions, in order of priority, are as

foliows. Note, for each case, the reduction can be implemented in linear time. For

cletails of each reduction, readers can consult [6$].

(a) The first reductioii is the replacement of ah degree d vert.ices, ail of whose

neighbours are of degree other than d. This is done for d 2, 3, 4, 5. At this

point either the graph is a regular degree d grapli or there exists a degree d

vertex which is adjacent to a non-degree d vertex, d = 2, 3, 4, 5.

(h) The next class of reductions collapses an edge connecting a degree d vertex with

a non-degree d vertex. This also is done for d = 2, 3, 4, 5.
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(e) The final two general classes of reductions handie graphs which are regular

clegree ci.

(d) There are also two special reductions, involving degree four vertices.”

General outiine of the algorithm

I\ow we give the outiine of the algorithm. Before each reduction application, the REDUCTION

array is scanned for the first (highest priority) non-emptv list of items. This can be doue

easily through querying an array which teils the current number of items in each list. At

the same time, pointers to vertices, edge-ends, faces which are rnodified or whose loca.1

conditions have changed, are stored. After a subsequent pass over these pointers, items in

the reduction lists are removed ancl added to refiect the new relationships. It is easy to see

that this updating eau be clone in tirne linear in the decrease in complexitv of the graph.

the decrease affected hy the prior reduction.

Discussion

We think this planar graph isomorphism algorithm’s importance is mostly theoretical,

demonstrating existence rather than providing a practical algorithrn; its relative inelegance

seems to suggest that “hetter”, perhaps even practical, linear algorithms exist and that the

problem is stiil not yet fully understood.

Recentlv. Gazit and Reif [.57] developed a parallel planar graph isomorphism algorithm in

O(logn) with O(n’5 \/i processors with probability to fail of 1/n or less.



CHAPTER 2. GRÀPH ISOIIORPHISAJ 49

2.3.3 Convex bipartite graph isomorphism

In the isomorphism-complete section, we have proved that bipartite graph isomorphism

is polynomially reducible to general grapli isomorphism. Nevertheless, some subclasses of

bipartite graphs, for example, convex bipartite graphs, can be tested in polynomial time

for the isomorphisrn. The cÏass of circular convex bipartite graphs is properly contained

in the class of convex bipartite graphs, for which an 0(n3) isomorphisrn testing algorithm

using identification matTzces method was announced by Chen [34] in 1989. In 1999. Chen

t31 presenteci an optimal 0(n + m) isornorphism testing algorithm for convex bipartite

graphs using the theory of identification matrices. Before showing the ideas of the latter

algorithm, we introduce the basics of identification matrices.

Identification matrices

Definition 2J1 A permutation matrix is any matrix ‘which cari be created by permuting

the rouis and/or cotumns of an identity matrzx.

In other words, a permutation matrix P is a square (O, 1)-matrix with exactly a single 1

in each of its rows and columns so that PAl is equivalent to permuting the rows of the

matrix M, MP is equivalent to permuting the columns of M, and PMPt is equivalent to

permuting the rows ami the corresponding coltimns of M (here, Pt is the transpose of

and Ai is an arhitrary matrix of the same size as P).

Now, we suppose that 9 is a relation which defines a certain graph class .

Definition 2.12 Let M1 and M2 i5e two matrices representing, respectiveÏy, two graphs G1

ami G2 of the ctass , accordi’ng to the relation 9. Suppose G1 and G2 are isomorphic if
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and onty if there exist two permutation matrices P1 and P2 such that M1 = P1M2P2. Then

M1 and M2 are said to be identification matrices for G1 and G2 of , with respect to 9t.

Lemma 2.1 Suppose M1 and M2 are identification matrices for graphs G1 and G2, with

respect to a certain relation . Then two graphs are isomorphic if and onÏy if there exists

a permutation matrix P such that M1 and M9P have the same set of roms.

Proof () Suppose G1 and G2 are isomorphic. Then there exist two permutation

matrices, sav P1 anci P2, such that i’iÏi = P1II2P2, bv the definition of identification

matrices. It follows that M1 and M2P2 have the same set of rows.

() Suppose there exists a permutation matrix P such that M1 and M2P have the same

set ofrows. Then there exists another permutation matrix, say Py, such that M1 = P1M2P.

It follows from the definition of identification matrix that G1 and G2 are isomorphic.

Therefore. to test isomorphism of two graphs, given two identification matrices with respect

to a relation, it suffices to test if, by permuting the columns. the two (resulting) matrices

can have the sarne set of rows.

Theorem 2.9 Adjacency matrices are identification matrices for bipartite graphs.

Basic ideas of the algorithm

Definition 2.13 A matrix is calted an angmented adjacency matrix if it can be ob

tained from the adjacency matrix by adding 1 ‘s atong the main diagonal.

Definition 2.14 A (0, 1)-matrix is said to satisfy the consecutive 1 ‘s property for rows

if the columns of the matrix can be permnted so that in the resutting matrix all the 1 ‘s
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in each of its rows are consecntive. A (O, 1)-matrix is said to satisfy the circutar 1 ‘s

property for rows if its cotnmns can be permnted so that each rou of the resutting rnatrix

lias circutarÏy consecutive 1 ‘s (that means, if we treat the flrst cotumn and the Ïast coÏumn

as adjacent cotumns, these 1 ‘s are consecutive).

Theorem 2.10 Given two graphs represented by two identification matrices with respect

to a certain relation, isomorphism can be tested in O(o, + b + f) time if at teast one of the

two matrices satisfies the consecutive 1 ‘s property, assuming either ‘matrix is of size a x b

and contains f etements with vatue one. D

Definition 2.15 If the vertices of a bipartite graph G(U. V, E) con be ordered so that for

each etement u in one vertex set V. the etements of U adjacent b r occur consecutiveÏy in

J, then the graph G is a convex bipartite graph. FormaÏty, u bipartite graph G(U, , E)

is u convex bipartite graph if there exists an ordering (vi. v2. v-i) of V such that, for

alt u E U a.nd 1 < i < j < V, if (u, v) e E and (u, t1) E E then (u, ck) E E for alt

i<k<j.

Definition 2.16 A connected bipartite graph G(U, V, E) is a circutar convex bipartite

graph, if the vertices can be ordered such that for any vertex ‘u in one vertex set, say U,

the vertices adjacent to u occur circutarly consecutivety in V, the other vertex set.

Definition 2.17 If the vertices of a bipartite graph G(U, V, E) can be ordered so that the

U by V incidence matrix has the cons ecutive 1 ‘s property for both rows and coÏumns, then

the graph is called a doubty convex bipartite graph.

Theorem 2.11 A graph is a doubty convex bipartite graph if and only if its adjacency

matrix satisfies the cons ecutive 1 ‘s property.
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Theorem 2.12 Isomorphism for doubïy convex bipartite graphs cari be tested in O(n + m)

tira e.

Froof “By Theorem 2.9, adjacency matrices are identification matrices for doubly convex

bipartite graphs. Since the adjacency matrix for a doubly convex bipartite graph satisfies

the consecutive l’s property and there are 2m 1-elements in one matrix, it follows from

Theorem 2.10 that isomorphism for doublv convex bipartite graphs can be tested in

O(m+n)time.”

The following theorem cari be obtained immediatel from Theorem 2.10 and Theorem 2.12.

Lemma 2.2 Isomorphisrn for connected convex bipartite graphs cari be tested in O(n+m)

tira e.

Now. for arbitrarv convex bipartite graphs. we can test for isomorphism as follows.

“Partition a convex Ï)ipartite graph G into two parts, G1 and G2 with G1 consisting of the

connected components each of which is a doubly convex bipartite graph, and G2 consisting

of the rest. Let G’ = (G, G) be such a partition for another convex bipartite graph.

Then G and G’ are isomorphic if and only if G1 and G are isomorphic and 02 and G

are isomorphic. Adjacency matrices are identification matrices for G1 and G and the

isomorphism can be tested in linear time by Theorem 2.12. For each of 02 and G, we

partition the vertex set in such a way that the vertex incidence matrix lias the consecutive

l’s propert. The isomorphism for G2 and G can be tested in linear turne.”

As a resuit, we have the following theorem.

Theorem 2.13 (Chen [331, 1999)

Isornorphism for convex bipartite graphs cari be tested in O(n + ra) time.
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Ohviouslv, the isomorphism-testing algorithrn for convex bipartite graphs is optimal since

the time complexitv matches the trivial lower bound of 2(n + m).

2.3.4 Bounded distance width graph isomorphism

We give a very important concept related to trees, introduced by Robertson and Seymour

[115J, now standard in graph theory.

Defiriition 2.18 Given a graph G = (V E), vie caït the pair ({X i E I}, T = (I, F)) a

tree decomposition of G, where I is an index set, {X i E I} is a collection of subsets

of and T is a tree, such that

1. UX=(G),
iEI

2. for each edge {v, w} E E, there is an i E I such that u, w E Xj,

3. for each u V the set of vertices {i u E X} forms a subtree of T.

Definition 2.19 The width of a tree decomposition ({X i E I}, T = (I, F)) equats

max(X—1). The tree-width ofa graph G is tÏze minimum width over alt tree decompositions

of G.

for a given graph G and two vertices u, e E V(G), dG(u, u) denotes the distance between

‘u and e. that is, the number of edges on a shortest path between u and u. for a set

S C V(G) and a vertex w E V(G), dG(S,w) denotes min dG(v,w).

Definition 2.20 A tree distance decomposition of a graph G = (/Ç E) is a triple

({X i E I},T= (I,F),r), where
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1. r E I.

2. UX=V(G),forattij,XflX=0,
iEI

3. for each u E V, zf u E X, then dG(Xr.U) = dT(T,i),

4. for each edge {u,w} E E, there are i.j E I such that u E X, w E X and either

i=j or{i,j}EF,

Vertex r is caÏted the root of the tree T, and Xr is catÏed the root set of the tree distance

decomposition. The width of a tree distance decomposition ({X i E I}, T, r) is equat to

max Xj. The tree distance width of a graph G is the minimum width over ail possible
zI

tree distance decompositions of G.

Definition 2.21 A rooted tree distance decomposition of a graph G = (V, E) is a tree

distance decomposition ({X i é I}, T (I, f), r) of G in which Xr = 1. The rooted

tree distance width of a graph G is the minimum width over ail rooted tree distance

deco’mpositions.

Grapli isomorphism can be solved in polynomial time for graphs of bounded degree 188],

tree-width, path-width, or bandwidth [130]. However, in each of these three cases, the

exponent of the algorithm grows witli the parameter [22]. Thus, a question is, whether

algorithms exist for graph isomorphism with a running time O(f(k) nc), where c is small

constant.. k is the maximum degree (tree-with. path-with, etc.); in other words, wliether

graph isomorphism is fixed parameter tractable [44]. These questions are apparently liard.

In [130], some interesting special cases of these problems are discussed; several natural

graph parameters are introduced: tlie (rooted) patli distance width, and the (rooted)

tree distance width. Here, we give an overview of the (rooted) tree distance width graph

isomorphism.
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Basic ideas of the algorithm

Let D ({X i e I}, T = (I, F), r) be a tree distance decomposition of graph G. Tree D

is minimal if G[V(D, i)] is connected for each i e I. The algorithm 1 (cited from j130]) is

to find the minimal tree distance decomposition in O(E(G)) time.

Algorithm 1 find the minimal tree distance decomposition
PROCEDURE GetTDD

INPUT: a graph G E) and a root set S
OUTPUT: the minimal tree distance decomposition

({X ie I},T = (I,F),r),Xr S)

for anvv e V set distcrnce(v) dc;(S, u);
m:= max distance(u);

vE

I := 0: F := 0: h =0:
for any i, 0 <i <in + 1 set {v E V distance(v)

FOR i := mDOWN TO 0 DO
Compute the connected components of G[{v E V j < distance(v) < i + 1}];
/ * We call the connecteci components S, . . . , 5 */

FORj:=1TOtDO
:= S

—

Md edges {u, n}, u, n E to E(G) such that
G[Xh+] becomes connected;

I :=IU{h+j};
F:=FU{{h+j,k}XkcSAk<h};

END FOR

h := h + t;
END FOR

END PROCEDURE

It is proved [130J that given a graph G and a set S C V(G). we can compute in O(E(G))

time t.he unique minimal tree distance decomposition with root set S. Hence, O(k . n2)
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time is needecl to compute a rooted tree distance decomposition of minimum width of a

graph G.

Let DG = j jG) TG = (1G, fG)
TG) anci D (Xl’ j IH) TH (IH, fH)

TH)

be two rooted tree distance decompositions of the graphs G and H respectivelv. We cail

DG and D’ isomorphic if there exists an isomorphism f V(G) —* V(H) from G to H and

an isomorphism g : H from TG to TH such that g(TG) = rH and for each i E

X e I, f(.x) e

In [1301, it is showed that the algorithm takes O((k!)2k2n2) time to check if two rooted

tree distance decomposition are isomorphic. Now, we give the final algorithm 2 (cited from

11301) to determine if two graphs G anci H are isomorphic.

Algorithm 2 check if G and H are isomorphic
PROCEDURE RTDW ISO(G. H)

INPUT: graphs G and H of rooted tree distance width at most k
OUTPUT: TRUE, if thev are isomorphic; otherwise. FALSE

use GET-TDD to compute a minimum width rooted tree distance decomposition DG of
G with width at most k and root set consisting of an arbitrary vertex VG E V(G);

FOR each UH E H DO
use GET TDD to compute a rooted tree distance decomposition
D” of H with root set {u,j};

IF the width of D” is at most k THEN
IF I$O CHECR(DG, D”) THEN return TRUE;

END FOR

return FALSE

END PROCEDURE

This algorithm has two phases. In the flrst phase, a rooted tree distance decomposition of

minimum width is computed for G. For each vertex u E V, GET TDD is used to compute
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the unique minimal rooted tree distance decomposition of G with root set {v}. Then, the

decomposition DG of smallest width, say k is selected. It is shown [1301 that this phase

iieeds O(k n2)

In the second phase. for each w e V(H), the algorithm computes the unique minimal

rooted tree distance decomposition D’ of H with root set {w}. If the width of DH equals

k, then procedure I$O CHECK(DG,DhI) is used to test whether decomposition D° and

are isomorphic.

The proceclure ISO_CHECK (cited from [130]) is listed helow.

Algorithm 3 ISO_CHECK procedure
PROCEDURE ISO CHECK(DG, D”)

INPUT: decomposition DG = ({X i I},T°’ (JG FG)rG)

DFI ({X[’ i e JH} TH = (JH F11)TH)
OUTPUT: TRUE if DG is isomorphic to DH; FALSE if not.

IF T° and TF are not isomorphic THEN return FALSE;
let in be the depth of TG

FOR t := in DOWNTO O DO
FOR each pair (p, q), p E V(TG) and q e V(T”)

such that dTc(p,rG) dTH(p,TH) t DO
compute using GET IB(p, q, t);

IF R°’T’’ 0 THEN return FALSE;

return TRUE;

END PROCEDURE

This procedure first tests whether TG and T’ are isomorphic. This test requires 0(n)

time. Now, suppose TG and T” are isomorphic. Let in denote the maximum depth of a

node in TG taud hence in T” since they are isomorphic). Now, for each level Ï, O < Ï < rn,

and each pair of nodes p, q, with p e 1G and q e I”, the algorithm computes the set R’’
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using sub-procedure CET_lB. The followillg algorithm shows the sub-procedure GETIB

(cited from j130J).

This sub-procedure computes as follows. First, it checks if yG and the num

ber of chiidren of p equals the number of chiidren of q. If flot, then 0. Otherwise,

for each bijection f : —+ from G{XG] to H[X’] that is an isomorphism, GETIB

tries to make a matching between the chiidren of p and the chiidren of q.

It is shown [1301 that the overali complexity of ISO CHECK is O(k!2k2n2). As the number

of edges in TG is 0(n), the running time of the second phase of algorithin RTWD ISO is

0(k!2k2n3). Moreover, as the number of different root sets for H is n, the total running

time to check the isomorphism of graplis G and H is O((k’)2k2n3)

2.4 Group-theoretic approach

Recently, group theory vas used eftectively to solve what looks like a purely graph-theoretic

problem, graph isomorphism [64]. This approach is based on group-theoretic concepts and

the study of permutation groups.

Group theory can 5e thought of as an algebraic study of symmetry, and the lovely insight

that connects the two topics is that in order to teil efficiently whether two graphs are

the same it suffices to “know” the symmetries that the two graphs possess. Using this

approach. efficient (as well as not-so-efficient) polvnomial-time algorithms were obt.ained

to determine whether graphs from several important classes are isomorphic . Among these

classes are graphs where ail vertices have bounded degree. Sometimes these algorithms are

thought of as the apotheosis of this approach.
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( Algorithm 4 GET_IB sub-procedure
PROCEDURE GET_IB(p, q. t)

INPUT: Nodes p in TG and q in T” such that dTG(TG,p) = dTH(p,TH) = t.
OUTPUT:

0;

IF THEN return;

Count the number of chuidren of p in TG:
Count the number of chiidren of q in T”:
IF the number of chiidren of p anci q are clifferent THEN return;

FOR each bijection f X i—* Xv” that is an isornorphisrn DO
BEGIN

Set chitdrenP := {5 ]5 is a chitd of p};
Set chitdrenQ := {2 : f1 5 a chitd of q};
boolean found := FALSE;

FOR each j5 E chiidrenP DO
BEGIN

IF found THEN break:
FOR each ç e chitdrenQ DO
BEGIN

IF found THEN break:
FOR each g R1 DO

IF G[XG U V] and u Xi’] are isomorphic
under the function f U g THEN
BEGIN

chitdrenP := chitdrenP — {i5};
chitdrenQ := chitdrenQ

—

{ij};
fourni := TRUE;
break;

END
END
IF NOT found THEN return:

END
:= R U f;

END

END PROCEDURE
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The foliowing sections gin an overview of this approach. For details, readers may consult

corresponding references.

2.4.1 Bounded cigenvalue multiplicity graph isomorphism

Consider an undirected graph X with n vertices, represented by its adjacency matrix A.

Viewing A as a linear transformation in r, the eigenvalues of A are the mots of the

characteristic polynomial, detQJ—A). We say that the graph X is of eigenvalue multiplicity

mif no mot of the characteristic polynomial has multiplidty exceeding m. The analysis of

graphs tbrough their eigenvalues constitutes the theory of graph spectra 120, 411. h [131,
the isomorphism of graphs X and Y can be tested by an Q(n4m.j deterministic and by an

O(n) Las Vegas algofithm, where n is the number of vertices of X and Y. The terni

‘las Vegas algorithm” was intmduced in 1101. It means an algoritbm which uses flips of a

coin; its output may be NO ANSWER, but whenever an answer is reached it is correct,

and for any particular input, the pmbabffity of receiving NO ANSWER is less than 1/2.

Linear algebra preliminnries

Consider an undirected graph X on n vertices represented by its adjaeency matrix A. Since

Aisannxn, symmetricrealvaluedmatrixithasnrealeigenvalues. Let {Ai,A2,...,A,.)

be the set of distinct eigennlues. Associated with the eigennlue A is the eigenspace S

containing the eigenvectors associated with A S = {x E r I As = Ajx). By virtue of

the symmetry of the matrix A:

1. If A1 is an eigenvalue with multiplicity mj then S lias dimension m.

2.ThedirectsumS1@S2e•••eS,.=r.
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3. If i j then S and S are mut.ually orthogonal.

Let V {ei, e2, , e} be the standard basis of R7, i.e. the unit vectors. These vectors

are ideitified with the vertices of X as enumerated in the adjacency matrix À. Recali that

the automorphism group of X is the set of permutations on V which preserve adjacency

under isomorphism. The automorphisms of X induce orthogonal linear transformations on

R’ by permuting the unit vectors. So the automorphism group of X may equivalently be

defined as the set of permutation matrices n which commute with the adjacency matrix of

X n e Ant(X) irA = An.

Tower of groups approach

In 19”9. Babai introduced the “tower of groups” approach to give a polynornial-time coin

tossing algorithm to decide multiplicitv [1OJ. With this technique, Hoffmann solved the

graph ]Somorphisrn for cone graphs of bounded degree 1651; later, furst, Hopcroft and Luks

applied it to trivalent graphs [53].

In general, a permutation group on ‘n points may have as many as n! elements. However,

any permutation group G may be represented hy a set of at most n2 generating permutations

whose closure under multiplication is equal to G [521.

We first consider the problem of determining a set of generators of the automorphisin group

of a graph X with eigenvalue multiplicitv < in. The following theorems are proved in [13].

Theorem 2.14 For a graph X with eigenvaÏue rnnttipÏicity < m, the generators of the

automorphism groztp Ant(X) can befound by an O(n2m+c) deterministic and by an O(nm)

Las Vegas atgor’ithm.
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We use the svmbol r to mean “restricted to”.

Theorem 2.15 Let X be a graph with eigenvatue muttipticity < ra. Then one cari partition

the vertex set of X as C, + 02 + + C in riC time so that

1. each C is invariant under Ant(X);

2. a permutation group H < Sym(0) of order < ntm cari be tisted in time

such that (A’utX) rC <Hi, i

Let X be a graph with coloured vertices, the colour classes forming a partition C, + C2 + + C = I

of the vertex set . Assume that groups H < Sym(C) are explicitlv listed for i 1. 2, s.

Their direct product H1 x H2 x x H,, acts on . The question about “graphs with

restricted colour-groups” is to determine a set of generators for G 1ut(X) n (H x H2 x

x H5). This is a particular case of the “intersection of group-cvlinders” problem solved

in 1101. Let N = max{jH : i = 1, 2, . . , s}. The problem complexitv is hounded bv

O(Nnc).

Now, let G° > G’ > > G’ = {e} be a tower of groups. The elements of G° are encoded

by words in an alphabet, and group operations are performed by an Oracle (Black-box).

The question n e G2 is decided by an Oracle, for any n e G°. In addition, a set of

generators of G° is provided. The prohlem is to find generators for each G2. This problem

vas first formulated by [10].

An algorithm essentially due to Sims and analyzed by Furst, Hopcroft and Luks [52] solves

this problem by 0(T2), where

T ([G1l : G] - 1).
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Hence, the total running time of this approach will be O(T2 n) = O(N2 .
C+2) In the

problem of determining the automorphism group of a graph with no more than m-tuple

eigenvalues, we have N < m• The running time of the entire algorithm is dominated by

the “tower of groups” part. finally. the problem can solved in Q(n1m±c) tirne.

The Las Vegas algorithrn for the “tower of groups” for “graphs with restricted colour-groups”

requires only O(N. C) time. This resuits O(712Tn+c) for determining the automorphism

group of a graph with no more than m-tuple eigenvalues.

2.4.2 Trivalent graph isomorphism

As mentioned ahove, group theory plays an important role in solving the graph isomorphism

problem. Consider a graph X which is the disjoint union of X, and X2, and look at its

automorphism group A (elements are vertex relahellings which preserve adjacency; the

group operation is composition of labelhngs). If the graphs are isomorphic, theil A, anti

hence anv generator set for A, bas elements which map a vertex of X, to a vertex 2•

The converse is also true, so it suffices to compute a generator set for A. In other words,

testing graph isomorphism is polynomially reducibie to determining generators for the

automorphism group of graphs and there are smail sets of generating permutations 1641.

Trivalent graphs, also called cubic graphs, are graphs ail of those vertices have degree 3.

Here. we consider the trivalent graph isomorphism.

Basic ideas of the algorithm

In order to test isornorphism of connected trivalent graphs X’ and X2 with n vertices

and 0(n) edges, we answer 0(n) questions of the following form: Given e, E E(X’) and
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é E(X2), is there an isomorphism from X’ to X2 that maps e1 to e2? This question is

reduced to constructing a generator set [1 for Ate(X), the group of automorphism of a

connected trivalent graph X that fixes a specified edge, e. This reduction to the study of

Ate(X) was observed in [531. In order to understand well this important reduction, we

recail the proposition [88] formally and give the proof here.

Proposition 2.1 Testing isornorphis’m of trivalent graphs is potynorniaÏ-time reducibÏe to

the probtem of determining generato’r’s for Aite(X), where X is a connected trivalent graph

a’nd e is a distinguished edge.

Proof. “Assume we posses a polynomial-time algorithm which returns generators for any

such Ate(X). Once again, it suffices to be able to compare two connected trivalent graphs

2 Fix an edge e1 é E(X’). For each ecige e2 e E(X2) we can test. whether t.here

is an isomorphism from (1 to which maps e1 to e2 as the following: Construct a

connected trivalent graph X from the disjoint union X1 U X2 hv

1. inserting new vertices y1 in e1 and y2 in e2,

2. joining u, to u2 with a new edge e.

Then there is an isomorphism from X1 to X2 mapping e, to e2 if and only if some elernent

of .4te(X) transposes u1 to u2. Furthermore, if such automorphism exists, anv set of

generators of Aute(X) will contain one.” E

The motivation to compute Ate(X) is essentially from Tutte’s observation 1125] that

Ate(X) is a 2-group. The other useful feature is that there is a natural sequence of

“approximations” to Ate(X). For this, we let Xr, r 1, 2, , n — 1, be the subgraph of
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X comprised of ail vertices and edges on paths of lengt.h < r through e (so X1 is e and

X_1 is X). There are natural homomorphisms

Âte(Xr+i) ÀVte(Xr),

in which irr(u) is the restriction of u to Xr. In the rth stage, r = 1, 2,, we construct a

generating set for Ate(Xr+i) given mie for Aute(Xr). This task can be broken into two

problems:

1. Find a set of generators 7?. for Ker(nr).

2. Find a set of generators S for hn(irr).

Thus. if 7tr(S’) = S in Ate(Xr+i), then 7? U S’ generate A’te(Xr+i). The harder prohiem

is the second. It is recluced to the following problem [881:

ProbÏem 1.

Input: A set of generators for a 2-subgroup, G, of Sym(A), where A is a coloured set.

Find: A set of generators for the subgroup {u e G u is cotor preseruing}.

To solve the colour automorphism algorithm for 2-groups, Luks [88] uses a divide-and

conquer strategy, the decomposition of the set into orbits. After investigating the problems

[54, 88], it is shown that Ate(X) can be computed in time 0(n3), where X is an n-vertex,

connected. trivalent graph.

Having the upper bound of Aute(X), the reduction could be used to test isomorphism for

n-vertex. connected, trivalent graphs X’, X2 in 0(n1) steps. It can he done through an

Aute(X) computation corresponding to each e2 e E(X2). According to [54], however, an
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examination of this process could include repetitive computation of the groups, blocks,

etc. for Àtei(X’).

Our ultimate goal is to compute ISoei,e9(X’,X2), the set of ail isomorphisms from X’ to

X2 that take edge e1 to edge e2. If u is one such isomorphism, then ISOey,e2(X’,X2)

Âtei(X’). With this in mmd, we compute AntejX’), together with the blocks, groups,

and search for a single representative isomorphism, if one exists. The authors show that

ISOei,e9(X’, X2) = uAntei(X’) is computable in time 0(n2logn). Finally, isomorphism

of n-vertex trivalent graphs can he tested in time 0 (n3 iog n). The algorithm determines

the set of ail isomorphisms. The Las Vegas aigorithm for ISOei,e9(X’, X2) UA1!te(X’)

problem can 5e solved in time 0(n2), thus for the isomorphism of n-vertex trivalent graphs

the time is expected in time 0(n3).

Discussion of the resuit

Can the result be generalized? The fast algorithms for 2-groups be generalized to p-groups.

Although the groups that turn up in the consideration of graphs of higher valence are flot

p-groups, there is a sense in which they are almost p-groups [88]. One expects that this

observation shoulci lead to improvemellts of isomorphism testing for small valence, say 4

and 5 (where the groups are solvable).

2.4.3 Bounded valence graph isomorphism

Now, we study further the trivalent graph isomorphism problem. As discussed in the previ

ous subsection, the problem of determining generators for Ant(X) is reducible to problems

of determining generators for the automorphism group of graphs and there are small sets
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of generating permutations. Luks went on to show that trivalent-graph-isomorphism is

in P by reducing it to a coour automorphism problem for 2-groups and presenting

a polynomial-time solution for the latter [881. The technique was extended to graphs of

bounded valence. We recail the colour-automorphism problem here, since it is frequently

investigated.

coÏonr À utornorphisrn Pro bÏem.

Input: A coloured set A and generators for a group G of permutations of A.

Find: Generators for the suhgroup consisting of the colour preserving maps.

Now, we look back on determining generators of A’ut(X). In the colour automorphism

problem, computing Aut(X) is a speciai case: Let G be the group of ail permutations of

the vertex set V(X) while viewing G as an action on the set A of unordered pairs ofvertices;

colour A with two colours (for example, blue and red) to deiimit eclges and non-edges of

X then Àut(X) is the colour-preserving suhgroup.

We have discussed trivalent graph isomorphism. Now, we consider graphs of vaience < t

where t is, henceforth, fixed. The procedure introduced in the previous subsection is stili

helpful and beneficial to our new situation. The reduction to determining the kernei and

image of

Àtite(Xr),

is the same as in the trivalent graph case.

“We consider the set V(XTl) \ V(X,.). Let A denote ail non-emptv subsets of V(X) of

size t — 1. We define a “father-map”

f: V(Xr+i) \ V(Xr) A
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by f(v) = {w E V(Xr) (u, w) e E(X)}. An element u e Ate(Xri) now lies in

I(. kernet(ir) if arid only if it stabilizes each set of “tuplets”, f ‘(a), for a E A. The

sets f ‘(a) form a partition of V(Xr+i) \ V(X) and Kr is the direct product

= flsym(L1(a)).
aA

Each of tue factors in the direct product can be specified wit.h at most two generators.

We observe next that u E Ate(Xr) is in the image of î if and only if u stahilizes, for

each O < s < t — 1., the set of fathers of s-tuplets

A={aeAIf’(aH=s}

as well as the set A’ of new edges. colour A, accorclingly, with 2t colours. The problem is

once again one of finding the colour automorphisrn in G = 1te(Xr) acting on A.”

With the similar iclea presellted in t.he trivalent graph case to reduce the prohiem. Luks

introduced another concept.

Definition 2.22 For k 2, let Fk denote the cÏass of gronps G snch that alt the composition

factors of G are s’abgronps of $k

Then, lie proves that for each r. Ante(Xr) E F1. Hence, testing isomorphism of graphs

of bounded valence is polvnomial-time reducible to the following problem with k fixed:

Pro bÏem 2.

Input: A set ofgenerators fora subgroup, G, of $ym(A), where G E fk and A isa coloured

set.

F’ind: A set of generators for the subgroup {u e G u is cotor preseruing}.
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Solving this problem with the same divide-and-conquer strategy of trivalent graph case,

Luks shows that it can 5e computed in polynomial time.

Ail in ail, testing graph isomorphism of bounded valence can be solved in polynomial time.

Actuallv, Luks gives an a.lgorithm in cornpiexitv of Q(cdb0g(1) with boundeci valence d.



Chapter 3

$ubgraph Isomorphism

Subgraph isomorphism is an important and very general form of exact pattern matching.

In the generai subgraph isomorphism problem, given a “text” G anci a “pattern” H, one

must either detect an occurrence of H as a subgraph of G, or list ail those occurrences.

For certain choices of G and H there can be exponentially many occurrences, so listing

ail occurrences cannot be solved in suh-exponentiai time. Because of reductions from

Hamiitonian path and clique finding, the decision problem is NP-complete [55j. Hence,

sub-exponential algorithms are unlikely. However, for any flxed pattern H with vertices,

both the enumeration and decision problems can easily be solved in polynomial O(n) time,

and for some patterus, a better hounci might he possible. Thus one is lcd to the problem

of determining the algorithmic complexitv of suhgraph isomorphisrn for a fixed pattern.

3.1 Complexity resuits

Since this section is far away from the flrst chapter, we recall the definition of subgraph

isomorphism here: given two graphs G1 and G2, find ont if G2 contains a subgraph that is

70
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isomorphic t.o G1, or find ail such isomorphic subgraphs. formaiiy, the graph G1(V1, E1) is

isornorphic to a subgraph of a graph G2(V, E2), denoted by G1 32 < G2, if there is an

injection p : —+ V2 such that, for every pair of vertices v, y e V1, if (vi, v) e E1 then

((v),(v)) e E2.

For the general subgraph isomorphism problem, no better hound than the naïve 0(n)

bound is known 1721, where is the numher of vertices in pattern H. Although the subgraph

isomorphism is NP-cornplete, sorne special cases are interesting, and have polyiiomial-time

algorithms. Shamir and Tsur [120] gave a polynomial-tirne 0((k’5/logk) n), where k and

n are the number of vertices of H and G, for subtree isomorphisrn. Under the assumption

that the degree of some distinguished vertices is preserved under the subgraph isomorphism

mapping, it was shown that the subgraph isomorphism problem is solvable in quadratic

time as weil [28]. While it stiil rernains NP-compiete, Eppstein [47] solved the subgraph

isornorphism problem in planar graphs in linear time. for anv pattern of constant size. This

is the first known algorithm for this prohiem that is polynomial in G. Jiang anci Bunke

172] also show’eci that ernbedded subgraph isomorphism can he solved in polynomial time.

It has long been known that if the pattern H is either K3 or K4, then there can be at most

0(n) instances of H as a subgraph of a planar graph G, and that these instances can be

listed in linear time [17, 70, 112]. In [461, it is shown that listing ah cycles in fixed length

in outer-planar graphs can he done in hinear time.

Furthermore, with the outer-planar cycle, any wheel with given fixed size can he found in

linear time. Itai and Rodeh [70] discuss the problem of finding the girth of a general graph.

or, equivalently, finding short cycles. Richards [1141 gives 0(n.logn) algorithms for finding

05 and 06 subgraphs, and leaves open the question for larger cycle lengths. Bodlaender

t21] discusses the related problem of finding a path or cycle longer than some given length

in a general graph, which he solves in linear time for a given fixed length bound.
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3.2 $ubtree isomorphism

As described in the chapter on graph isomorphisrn, it bas been proved that tree isomorphism

can be tested in linear tirne, even Aiogtime. However, for the suhtree isomorphism problem.

this is not the case. Polynomial-time algorithrns for suhtree isornorphism with tree-width at

most 2 were first given by Matula [91] in 196$. Later, faster algorithms, with compiexity

time O(k’5n), were given by Matula [92] and Chung [36]. In contrast, the subgraph

isomorphism probiem is NP-complete when G is a tree and H is a forest [55].

Basic notation

A rooted tree is a triplet G( E. r). where (‘ E) is an unrooted tree, and r is sorne

vertex in V which is calied the root. It is so;netimes denoted as GT. We also denote bv G

the rooted subtree of GT whose vertices are ail descendants of r. and its foot S r. Let GT

and HT’ he rooted trees. we writ.e HT’ ÇR GT if there is a rooted subtree J’ of GT which is

isomorphic to HT’.

An O(k15n) algorithm

Based on Chung’s algorithm [36], we briefly describe the idea of the O(k’5n) algorithm.

Let G( E) and H = ( , EH) be the input trees, and select a vertex r of G to be the root.

We recall that the open neighbourhood of a vertex y in a graph G is N(v) = {n uv

the ciosed neighbourhood j T(y) = N(v) U {v}.

Lemma 3.1 For any vertex u in GT, vertex u in H and a vertex w E N(u), we have that

H G if and onÏy if for every chitd u’ of u in H, there is a distinct chitd r’ of u such

that H, C G,. Li
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“We store this information in sets S(v, u) defined as follows: for every u E V, and for every

u E VH,

S(u, u) = {w e N(u) H1 G}.

Notice that:

1. u e $(v,u) if and only ifH = H C G

2. u E $(v, u) implies S(u, u) N(u)

3. d(v) < d(u) — 1 implies S(v, u) = 0.”

An example is illustrated in Figure 3.1. In this example, we have H, H2 ZR G and

H’,H3 CR G, so S(u,u) {ui,u3}. The graph B(u,u) is the bipartite graph con

structed to compute S(v, u). There is an edge uu in this graph if and only if u E S(v, ui).

H’ G as B(’v, u) does not contain a matching of size 3. H CR G as B1 (‘u u) =

B(v, u) — u1 contains a mat.ching of size 2.

r
G H B(v,u)

Figure 3.1: an example of subtree isomorphism

The general algorithm is described in Algorithm 5 (cited from 11201).
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Algorithm 5 subtree-Isomorphism(G, H)

Select a vertex r of G to be the root of G.
FOR allu E H,e é G DO $(v,u) — 0.

FOR ail leaves e of GT DO
FOR ail leaves u of H DO S(e. u) — N(u).

FOR ail internai vertices e of GT in a postorder DO
Let e1, e2, , e be the chiidren of e.
FOR ail vertices u = u9 of H with degree at most t + 1 DO

Let u1, u2,• , ‘ be the neighhors of u.
Construct a bipartite graph B(e, u) = (X, Y,
where X = {ui, . . . , u5}, Y = {e1, . . . ,

and = {ue lu é $(e,u)}.

Denote X0 = X and X = X — {u}.
FORaÏ1O<i<sDO

Compute the size m of a maximum matching
between X and Y.

S(v, u) — {u Xi O < i < s}.
IF u E $(v, u) THEN return YES

END FOR
END FOR

return NO

Theorem 3.1 (Shamir and Tsur [120] , 1997)

Atgor’ithm Subtree-Isornorphism solves the subtree isornorphi3rn probtem in O(k’5n) tirne

and O(kn) space.

An O((k’5/logk) . n) algorithm

In the above algorithm, we need to find a maximum matching. In 1995, Feder and Motwani

[48] found an aigorithm for bipartite graphs with equai-size parts. Here, this idea can

be extended to general bipartite graphs [120]. Thus, an improved aigorithm could be
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implemented by modifying the $ubtree-Isomorphism algorithm. We omit the modification

here. For details, please consuit [120]. Finally, we have:

Theorem 3.2 (Shamir and Tsur [1201 1997)

The subtree isomorphisrn can be tested in O((k”5/iog k) n) time.

3.3 Planar subgraph isomorphism

Now, we consider the special case in which G and H are planar graphs, a restriction

naturally ocdurring in many applications. As mentioned in the graph isomorphism section,

a planar grapli is one that can be drawn on the plane in such a way that there are no “edge

crossings”, i.e. edges intersect onlv at their common vertices.

Eppstein uses a graph decomposition method similar to the one used by Baker [16] to

approximate varions NP-complete problems on planar graplis. Baker’s method involves

removing vertices from the graph, leaving a disjoint collection of subgraphs of small tree

width; in contrast, Eppstein focused on a collection of non-disjoint subgraphs of small

tree-width covering the neighbourhood of every vertex.

Definitions and preliminaries

Definition 3.1 The width of a tree-decornposition (T, IV) is the number rnax{IW — 1:

t V(T)}. and the tree-width tw(G) of G is the teast width of a.ny tree-decomposition

of G.

Before presenting the basic ideas of the algorithm, we need to introduce briefiy an algorithmic

technique, dyn amic programming.
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Definition 3.2 Dynamic programrning is an algorithmic technique in which an optimization

pro bÏem is sotved by caching subprobÏem sotutions (memorization) rather than recomputing

them.

Dnamic programming is an efficient programming technique for solving certain combinatorial

problems. It is an approach developed to solve sequential, or multi-stage, decision problems;

hence, the name “dynamic” programming. The word programming in the name lias nothing

to do with writing computer programs. Mathematicians use the word to describe a set of

mies which anvone can follow to solve a problem. They do not have to be written in

a computer language. Dynamic programming is recursion’s sornewhat neglected cousin.

It tends to break the original prohiem to suh-pmohlems and chooses the hest solution in

the sub-problems, beginning from the smaller in size. for an introduction of dynamic

programming, please consuit [76, 1041.

Basic ideas of the algorithm

First, we show a key structural property of planar graphs: if they have low diameter they

also have low tree-width. Such a resuit was already implicit in the work ofBaker [16]. With

a hound on tree-width, we can use dynamic progmalnming techniques to compute many

graph properties in linear time [19, 1231. In Eppstein proves that a planar graph G

with diameter D lias tree-width 0(D), and a tree-decornposition with width 0(D) can be

found in time 0(D . n).

Lemma 3.2 /r7J Assume me are given graph G with n vertices atong with a tree decomposition

of G with width w. Let S be a subset of the vertices of G, and tet H be a fixed graph with

at 7nost w vertices. Then, in time Q(cw10wn) for some constant c, me cari count att
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isornorphisrns of H in G that inctude some vertex in S. In time O(cw10wn + kw) we cari

Ïist alt snch isornorphisrns.

Proof: (sketch) The basic technique used is dvnamic programming.

In the first step, hv the dynamic programming technique, we appiy the t.ree decomposition

recursively in a tree T coming from the tree representation of G. Each vertex in the tree

corresponds to a clique in the tree decomposition of G, and the subtree rooted at that

vertex corresponds to a subgraph separated from the rest of G by the vertices in that

clique.

Next, we introduce a term partiaÏ isomoiph. “À partial isomorph at a vertex N of the tree

T is an isomorphism between an induced subgraph H’ of the pattern H and a subgraph of

the portion of G corresponding to the subtree rooted at N.

Then, let G’ be the graph induced in G by the vertices (of G) in the vertex N (of T),

together with two new additional vertices, each connected to ail vertices in N. Further,

each of the two additional vertices is given a selfloop. Then from anv partial isomorph

at N we cari derive a graph homomorphism from all of H to G’, which is one-to-one on

vertices of N, maps the rest of H’ to the first additional vertex, and maps H — H’ to the

second additional vertex in G’. Let a partial isomorph boundary 5e such a map.

“There are Q(c’°) possible partial isornorph boundaries for a given vertex of T, for some

constant c1. For each partial isomorph houndary, in each vertex, we compute the number

of partial isomorphisms which give rise to that boundary. We also compute a similar count

of those partial isomorphisms involving a vertex of S. These numbers can be computed in a

straightforward way from the same information at the vertex’s chiidren, by combining the

O(c 101) counts from each chiidren in pairs of children at a time, resulting in Q(c1°)

work per cornhined pair and O(cb0n) overall work.”
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At the root vertex of the tree T, we sirnpiy sum the nurnber of isomorphisms involving S

among those partial isomorph bounclaries for which none of H is rnapped to the second

additional vertex. To recover the isomorphisms thernselves, we sirnply return back through

the tree using the aiready cornputed counts to determine which portions of the total sum

carne from which partial isornorphisms at each level. D

Well, we succeeded in solving the suhgraph isornorphisrn problem quicklv in graphs of

bounded tree-widtli. We also sec the subgraph of anv planar graph G induced hy the

vertices near some particular vertex has bouncleci tree-width.

Now, we reconsider our original question: how to decide the subgraph isomorphisrn without

this restriction? Can we utilize the above result? Naturally, we hope to decide the subgraph

isomorphism between H and G hy covering G with a collection of ail such subgraphs. This

involves another technique: neighbourhood covers, introciuceci by Awerbuch and Peleg [7]

who used them for distributed computation: one can appiv local computations in each cover

rather than in the whole graph, since each neighbourhood is covered, and the computations

terminate quickiy since each subgraph has srnall diarneter.

Lemma 3.3 Let G be a planar graph. Then, we con find a collection of subgraphs G with

the fottowing properties:

• For everg vertex y of G, tue snbgraph G’ indnced by the vertices of G within distance

w of u is a snbgraph of one of the graphs G.

• Every vertex of G is inctuded in at rnost tÏlTee snbgraphs G.

• Every snbgraph G has tree-width 0(w).

D
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We give an algorithm for the subgraph isomorphisrn prohiem based on Lemma 3.2 and 3.3.

Theorem 3.3 (Eppstein [47j, 1995) We cari count the isomorphisms or induced isomorphisms

oJ a given connected pattern H with w vertices. in a pÏanar graph G wzth n vert’ices, in ti’me

Q(cwon). If there are k such isomorphisms. they cari be Ïisted in time Q(cw10wn+wk).

Proof. (sketch) We apply Lemma 3.3, with $ = (V G), to find in 0(n) time a set of

disjoint subgraphs G with tree-width 0(w), covering the radius w neighbourhoods of ail

vertices in G. We choose one such suhgraph G, let S he the vertices in G with covered

neighbourhoods, and find ail suhgraph isornorphisms involving vertices in S using the

algorithrn of Lemma 3.2. We then remove S from ail other covering subgraphs G so t.hat

the resulting graphs forrn a cover of G — S, and we continue to use that cover to find ail

remaining subgraph isomorphisms in G — S.

Discussion on the technique

Actualiy, this technique can also be extended to other families of graphs. Eppstein shows

[47] linear or quadratic algorithms for any family having a certain relation between diameter

and tree-width.

3.4 fmbedded subgraph isomorphism

Definitions and preliminaries

An embedded graph is a graph with a combinatorial embedding of the edges around each

vertex. Formally, we have:



CHAPTER 3. SVBGRAPH ISOMORPHI$1’I $0

Definition 3.3 An embedded graph G (V E, L) is a graph (V E) together with a set

L = {L(u)} of ordered, circ’uÏar tists of edges incident to each vertex u e V.

Two embedded graphs are isomorphic if the underlying graphs are isomorphic and the

isomorphism preserves and reflects not only the structure of the graphs but also their

combinatorial embeddings.

Definition 3.4 An embedded subgraph isomorphism of an embedded graph G1 =

(r E1, L1) into an ernbedded graph G2 = (V2, E2, L2) is a snbgraph isomorphism f —>

of (, E1) into E2) svch that L9(f(v)) is a cyctic rotation of f(Li(v)), for ait vertices

u E Vj.

Description of Algorithms

In a finite, undirected, connecteci graph it is aiways possible to construct a cyclic directed

path passing through each edge once and only once in each direction. Such a path is

called Enterian path. It can be constructed by traversing each edge of the corresponding

bidirected graph exactly once in each direction, which guarantees that the degree of each

vertex is even. Such a traversai is called a teftrnost depth-first traversai (LMDF$), since

the edges are explored in left-to-right order (if drawn downwardly) for any vertex of the

graph and, more generally, the whoie graph is explored in a ieft-to-right fashion.

An algorithm was formulated by Trémaux and recalled by Weinberg 11281 for finding a

way out of a maze, that is, for the leftmost depth-first traversai of an undirected graph.

“Starting with an edge traversed in one of its directions,

• When a non-visited vertex is reached, take the next (in the counter-clockwise ordering

of the edges around the vertex) edge.
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• When a visited vertex is reached along a non-visited edge, take the same edge but in

the opposite direction.

• When a visited vertex is reached a.long a visited edge, take the next (in the counter

clockwise ordering of the edges around the vertex) non-visited edge, if any.”

The following algorithm 6 [71, 72, 1281 performs LMDfS on two embeddecl graphs, starting

with edges e1 of G1 and e2 of G2.

Algorithm 6 LMDFS on two emhedded graphs
PROCEDURE Match(Gi, G2, e1, e2, lvi)

let u1 be the target of edge e1
let u2 he the target of edge e2
IF vertex u1 has been visited THEN

IF reversal of edges e1 lias been visited THEN
let e he the reversai of edge e1
let e be the reversai of edge e2
let e be e
REPEAT

let e be the cyclic successor of edge e
let e lie the cyclic successor of edge e

UNTIL e = e’’ or edge e lias flot been visited
IF edge e lias been visited THEN return
ELSE

let e lie the reversal of edge ei
let e be the reversai of edge e2

ELSE
let e be the cyclic successor of reversai of edge e1
iet e be the cyclic successor of reversai of edge e2

add(ui,u2) to vertex mapping M

mark edge e1 and vertex u1 as visited
I’viatch(G1, G2, e1, e2, M)

END PROCEDURE

As the synclironized leftmost depth-first traversai proceeds, procedure Match extends a

vertex mapping M: Vj —+ V2 into the maximal vertex mapping representing an embedded
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subgraph isornorphism of a subgraph of G1 into G2.

Starting with an empty mapping, algorithm 7 [71, 72, 128] finds, whenever possible, a

vertex mapping M : T4 — representing an embedded subgraph isomorphism of an

embedded graph G1 into an embedded graph G2.

Algorithm 7 embedded subgraph isomorphism
FUNCTION Embedded Suhgraph Isornorphism(Gi, G2, M)

let e1 be an edge of G1
FOR ail edges e2 of G2 DO

let M be an empty vertex mapping
Match(Gi, G2, e1, e2, M)
let s be the size of M
IF s = n1 THEN return TRUE

return FALSE
END FUNCTION

$ince the Match algorithm visits every edge of the embedded graphs at most once in each

direction, the worst-case time complexity is O(rni + in2). The worst-case Lime compiexity

of the Ernbedded Subgraph Isomorphism algorithm is O((rni + rn2) . in2).

The algorithms can he readily extended in order to enurnerate ail emhedded subgraph

isomorphisms.

3.5 Relational view approach

As introduced in the first chapter, most of the research on subgraph isomorphism algorithms

has been based either on heuristic search techniques or on constraint satisfaction techniques.

In this section, another approach to the prohiem of finding ail suhgraph isomorphisms

is presented. A relational formulation of the problem by Cortadella and Valiente [40],

combined with a representation of relations and graphs by Boolean functions, aiiows us
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to handie the combinatorial explosion in the case of small pattern graphs and large target

graphs by using Binary Decision Diagrams (BDDs), which are capable to represent large

relations and graphs in small data structures.

Definitions and preliminaries

Definition 3.5 Given two sets A and B, a binary relation R between A and B is a

s?lbset of A x B. Given a set of sets A, ,A, an n-ary relation 9 over A1 ,A, is a

subset of A x x A. For a binary relation we say that xy if a’nd onty ‘if (x, y)

A binary relation eau 5e represented by a A x B Boolean matrix M, in which

M[x, y] = .xy. A binary relation hetween a set A and itself is a subset of A2 anci can

also be represented by a directed graph G = (V E). where V A anci E = 9.

Considering Boolean functions over the set = {O, 1}, an n-variable Boolean fnnction is a

function f W — 1. Tvpicafly we will represent Boolean functions with Boolean fbrmulae

in which the operators + and . will denote the disjunction and conjunction respectively,

the operator having higher precedence than + operator. For sirnplicity, the operator

will be often omitted. For example, the 3-variable Boolean function

f(O,O,O) = f(O,O,1) = f(O,1,1) = f(1,1,1) 1

f(O,1,O) = f(1,O,O) = f(1,O,1) = f(1,1,O) = O

can be represented by the Boolean formula
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f (xy,x9.c3) ff1f2 +x2x3

Given a set A, an encoding fonction of A is an injective function u : A — 1 A necessary

condition for u to be injective is that A < 2. Given an encoding function u of a set A,

the charact cristic functzon of A is an n-variable function rA deflned as follows:

where x is a vector of n Boolean variables, :r = (xi,

Given a binarv relation between two set.s A and B and two encoding functions u

A — lW anci UR B —* W’1, the characteristic function of 9 is an (n + rn)-variable Boolean

function XR : —* 1 defined as follows:

XR(x, y) = 1 (a, b) E : u(a) x A u(b) y

where x = (xi,... ,x) and y (yi,. ,y,). Characteristic functions can be trivially

extencled to n-ary relations. Henceforth, and for the sake of simplicity, we will use the

symbols A and 9 to represent the characteristic functions and respectively under

some implicit encoding functions.

Bfnary Decision Diagrams

Binary Decision Diagrams (BDDs) have emerged as an efficient canonical form to manipulate

large Boolean functions. The introduction of BDDs is relatively old 182J, but only after
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the recent work of Bryant [26] are they transformed into a useful tool. For a good review

of BDDs we refer to [27].

Now, we give a brief review of this method .A binarv decision diagram represents a Boolean

function as a rooted, directed acydlic graph. As an example, w’e give a representation of a

Boolean fullction f(xi, X2, x3) as a graph (See Figure 3.2).

/
/

/
/

x3

to

Figure 3.2: decision tree representation

Each nonterminal vertex u is labeled by a variable uar(v) and has arcs directed toward

two chiidren: Ïow(v) (shown as a clashed une) corresponding to the case where the variable

is assigned O, and high(u) (shown as a solid une) corresponding to the case where the

variable is assigned 1. Each terminal vertex is labeleci O or 1. For a given assignment to

the variables, the value ielded by the function is determined b tracing a path from the

root to a terminal vertex, following the branches indicated hy the values assigned to the

variables. The function value is then given by the terminal vertex label.

“For an Ordered BDD (OBDD), we impose a total ordering - over the set of variables

a.lld require that for any vertex n, and either nonterminal child y, their respective variables

must be ordered var(u) —< var(v). In the decision tree of Figure 3.2, for example, the

variables are ordered x1 — x2 —< x3.

/
/

E
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furthermore, we provide three rules to reduce the decision tree without altering the function

represented:

• Remove Dupiicate Terminais: Eliminate ail but one terminal vertex with a given

label and redirect ail arcs into the eliminated vertices to the remaining one.

• Remove Dupiicate Nonterminals: If nonterminal vertices u and y have uar(u)

var(v), iow(n) = tow(v), high(n) = high(v), then eliminate one of the two vertices

and redirect ail incoming arcs to the other vertex.

• Remove Redundant Tests: If nonterminal vertex y has tow(e) = high(v), then

eliminate and redirect ail incoming arcs to tow(v).”

for example, figure 3.3 illustrates the reduction of the decision tree shown in figure 3.2 to

an OBDD. Applying the first transformation rule (left graph) reduces the eight terminal

vertices to two. Applying the second transformation rule (middle graph) elimiiiates two

of the vertices having variable x3 and arcs to terminal vertices with labels O (Ïow) and 1

(high). Àpplying the third transformation rule (right graph) eliminates two vertices: one

with variable r3 and one with variable x2. In general, the transformation rules must be

applied repeatedly, since each transformation can expose new possibilities for further ones.

figure 3.3: reduction of the decision tree to BDD
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If a OBDD is rednced (no further reductions cari he applied) then we have a Reduced

Ordered BDD (ROBDD). Given a total ordering of variables, an ROBDD is a llnique

canonical form [27].

Representation of Directed Graphs

The approach to subgraph isomorphism is based on unlabeled, directed, simple graphs,

also called relational graphs [1191.

It is freciuent to represent. a graph bv a Boolean adjacencv matrix 1, where an element

= 1 if (ai, a) é E. and aj = O if (ai, a) E. \Ve shail usually denote the hoolean

matrix A and the relation E associateci to a graph G(V E) by the same name E.

Proposition 3.1 (Cortadella and Valiente [40], 2000) The set of vertices of a graph

G = (V, E) with VI n. cari be encoded using [log2 i variables.

Proof. Let k [log2 and let UV V k be a function mapping each vertex of V to a

distinct k-bit Boolean vector. Then u1 is an encoding of V, and it has flog2 i variables.

D

Proposition 3.2 (Cortadella and Valiente [40], 2000) Given an encoding u: 1

k for the set of eertices ofa graph G = (V,E), wkere VI n and k [log2n, the setE

of aTcs of tire graph can be represented by a characteristic function on 2 [log2 i variables.

Proof Let u t V k be an encocling of the set of vertices V of a graph G = (V, E),

where VI = n and k = flog2 ni, and let x and y denote k-bit Boolean vectors, which will
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be used to represent the source and target vertices of each arc in E. Then

XE(x,Y) = [n xu(n)]
. [ YiG(V)]

uEV vEV,nEV 1<i<k 1<i<k

represents the set of arcs E, and it. has 2 flog9 1 variables.

Once an encoding function is defined on a graph, this graph can also be represented 5v a

BDD.

Subgraph isomorphism

\Ve now give a relational definition of subgraph isomorphisrn.

Definition 3.6 A relation C V’ x V is an isomorphisrn of a graph G’ = (V’, E’) to o

s’abgrciph of a graph G (a’, E) if

Tj ECET

and it is atso written G’ —+ G.

Whlle the first two conditions assert that is an injective function from V’ to V, the third

condition guarantees that preserves the structure of G’, that is, that it maps ail arcs of

G’ to arcs of G.

“The set of ail subgraph isomorphisms of a graph G’ = (V’, E’) into a graph G (V E) can

be represented by an n-ary relation E C Vi’, where V’ = n. The subgraph isomorphism

relation E is defined as follows:

(u1,.. , u,,) E a subgraph isomorphisrn : G’ — G such that (v) = e1,. 5(u,) e,,.
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Given two graphs G’ (V’, E’) and G = (V, E) with V’ = n, let C V denote the

n-ary relation on V containing exactly those (pairwise disjoint) vertices of V which are

joined by some arc in G, that is,

= {(xi,. , x,
,

, x) E V (xi, x) e E, x,. x8 for alt r

The following theorem j40], shows the subgraph isomorphism relation Ii.

Theorem 3.4 (Cortadella and Valiente f40], 2000)

11= fl E.
(u.u)EE’

Discussion

This approach is used to finding ail subgraph isomorphisms of a (pattern) graph into

another (target) graph. From experimental results 1401. compared to Ullmann’s algorithm.

it has a better performance as long as the number of vertices of target graph is fairly small.

For very large target graphs, however, the approach is limited in the size of the pattern

graph because BDDs representing ail subgraph isornorphisms hecorne too large. An open

problem is therefore to find an optimal encoding of the target graph and optimal variable

orderings in order to obtain smaller BDDs.



Chapter 4

Practical AÏgorithrns

4.1 Review of practical algorithms

Practically, graph and subgraph isomorphisrn is aimed directly at developing an algorithmic

procedure for isomorphisrn detection. Most of these algorithms are haseci on a state-space

search with backtracking. À major improvernent [5O 91 of the backtracking methoci was

showed by Ullmann, who introduced a refinement method which reduces the search space

of the backtracking procedure remarkably [127].

Another backtracking algorithm is the one presented in [1181 by Schmidt and Druffel. It

uses the information contained in the distance matrix representation of a graph to establish

an initial partition of the graph vertices. This distance matrix information is then used in

a backtracking procedure to reduce the search tree of possible mappings.

Regarding the graph isomorphism problem, it is also necessary to mention McKay’s Nauty

algorithm [98]. It is based on a set of transformations that reduce the graphs to be rnatched

to a canonical form on which the testing of the isomorphism is significantly faster. Even

90
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if Nauty is considered one of the fastest çaph isomorphism algorithms availabie today, it

has been shown that there are categories of graphs for which it requires aponential time

11011.

A more recent algorithm, refereed W as W, k based on & depth-first search strategy,

with & set of rifles W efficiently prune the search tree. Such mies, for the specific task of

isomorphim testing, are shown in 1391.

In this suney, we wffl show severai major practical graph and subgraph isomorphkim

algorithms. Alter that, a performance comparison is given.

4.2 McKay’s Nauty algorithm

This is a siimmaq of the description of the Nauty algorithm as described in 1981. Nauty

stands for “No AUTomorphisms, Yes?”. It k cunentiy the preferred method for solving

the graph komorphism probiem. Much of its strength comes from ideas of group theory.

Conceptually, Nauty looks at aU the automorphisms in & graph and computes the smallest

automorphimii. fle smallest automorphism k based upon the binary number formed

by concatenating the rows of the adjacency matit together and using the smaUest such

number.

Description of the algorithm

Basically Nauty uses iterative refinement W break up the partitions with an additional

partkioning step. The additionai step invoives taldng & vertex from & non-singleton
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Algorithm 8 Nauty algorithm
INPUT: a graph G
OUTPUT: a canonical graph C

rr — the partition containing a single celi V
S +— stack containing ‘ir

WHILE (S is not empty)
x +— pop the top of the stack S
IF (i is a leaf partition) THEN

update(C, x)
ELSE

refine(x)
append the chiidren of x to S

END IF
END WHILE

return C

partition and putting it in its own partition anci putting the remainder of the vertices

in that partition into a separate partition.

The part of the algorithm that makes it the current best is its use of an indicator function

A which takes a partition as input and, using eight different graph invariants, computes

a hash function. The hash function hopefully computes a different value for different

automorphisms.

It uses a depth-first search, invokes the indicator function at each vertex, and concatenates

the result onto a sequence and uses that sequence to identifv the vertex. This sequence

can then he llsed to prune the search space. The aÏgorithm stores the current smallest

automorphism and can compare its sequence to the sequence it is currently searching.

If the sequence it is searching has a sequence greater than the sequence of the smallest

automorphism then we do not have to search any farther down that brallch. We essentially

prune large parts of the search tree in this way.
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When a smaller automorphism is found, the canonical label for the graph is updated. This

process continues until the smallest automorphism is found which causes the rest of the

paths to not be searched since their indicator functions will resuit in larger values. The

label is thus made up from the smallest canonical label. The algorithm is actually much

more complicated and it involves ideas from group theory.

4.3 Ullmann’s backtracking algorithm

In ail methods mentioned, Ullmann’s method [1271 is considered one of the fastest algorithms

for the suhgrapli isomorphism probiem. This method is based on backtracking and a

refinement procedure. The algorithm is devised for both graph isomorphism and subgraph

isomorphism; it is stiil one of the most comrnonly used tocÏay for graph isomorphism.

The basic idea of the algorithm: enumeration

first, iets introduce an enumeration algorithm [1271 designed to find ail of the isomorphisms

between a given graph GQ = (Vs, Ec) and subgraphs ofa further given graph G = (1, E).

The numbers of vertices and edges of G and G are p, q and p, q, respectively. The

adjacency matrices of Gc, and G are A = [ci] and B = [b,], respectivelv.

Let M’ be a matrix of p, x p13 whose elements are 1 ‘s and O’s such that each row contains

exactly one 1 and no column contains more than one 1. The matrix M’ can be used

to permute the rows and columns of B to produce a further matrix C. $pecificallv,

C [c] = I’i’ x B x (i)t, rhere t denotes transposition. If it is true that

Vi,j, 1 <j <pu, 1 <j <p, (ajj 1) (c,j = 1), (4.1)
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then M’ specifies an isomorphism between Ga and a subgraph G,. In this case, if = 1,

then the j-th vertex in G corresponds to ith vertex in Gc, in this isomorphism.

At the heginning of the algorithm, we construct a p x p matrix M° = [mg] in accordance

with = 1 if the degree of the jth vertex of G is greater than or equai to the clegree of

the ith vertex of GQ; otherwise, m = O.

The enumeration algorithm generates ail possible matrices M’ such that for each and every

elernent of M’ (m = 1) (m1 = 1).

for each matrix M’ the algorithm tests for isomorphism by applying condition 4.1. Matrices

M’ are generated by systematicaily changing to O ail but one of the l’s in each of the rows

of M°, subject to the condition that no column of u matrix M’ may contain more than

one 1.

In the search tree, the terminal vertices are at depth cl = p, and they correspond to

distinct matrices lvi’. Each nonterminal vertex ut depth cl ?Q corresponds to a distinct

matrix li which differs from iJ0 in that in cl of the rows. ail but one of the 1s bas been

changed to O.

This enumeration aigorithm can be improved by introducing a refinement procedure to

elirninate successor nodes in thcsearch. In 1127L details of the refinement procedure are

expiained.

Discussion of this algorithm

Ibis algorithm finds ail isomorphisms in a time roughlv proportionai to p [127], and

this satisfies Corneil and Gotiieb’s criterion that an aigorithm is efficient if the time is

proportionai to a power ofp.
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4.4 $chmidt and Druffel’s backtracking algorithm

In this approach, Schmidt and Druffel [118] use a distance matrix method. Before giving

the description of the method, we need to mention the concept of composition of a pair

of vectors. It is deflned to be the term-wise juxtaposition of their elements. III practice,

this process can 5e performed in linear time using a list technique developed hy Hopcroft

and Woiig 16$]. \Ve also need to talk about the degree sequence of a graph. It is mereiv

a listing of the ciegrees. In terms of the adjacency matrix, the degree sequence can 5e

generateci hy summing the rows and columns corresponding to each vertex. Obviously,

if two graphs G’ G2, then they must exhibit the same degree sequences, although the

reversai is not aiways true.

The distance matrix

The distance matrix is a characterization of a graph which offers information on the

relationship between all vertices in the given graph.

Definition 4.1 The distance matrix D is an n x n 7natrix in which the eternent dj

represents the tength of the shortest path between the vertices v and v. For every pair

of vertices u and vj there is a vniqne minirn’urn distance. If i = j, then O. If no path

exists between the two vertices, the tength is defined to be infinite.

Theorem 4.1 (Hakimi and Yau [621, 1965) If G is an n-vertex reatization of D, then

G is unique.

Given a graph, generation of the distance matrix is a matter of finding the shortest distance

between every pair of vertices. A number of algorithms have heen developed to construct
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the distance matrix, many of which are summarized by Dreyfus [45]. floyd’s algorithm

[49], while of order 0(n3), is simple and convenient to implement.

Initial partitioning

Since the distance matrix is a unique representation of a graph, and it contains information

concerning the relationship between vertices in the graph, it offers a means of finding an

initial partition which may be fluer than that obtained by using the degrees of the vertices.

Definition 4.2 A row characteristic matrix XR is an n z (n — 1) nzatrix such that

the element x’rjm is the number of vertices which are a distance m a’way fro’m v.

$imiÏarÏy define a cotumn characteristic matrix XC such that each etement xcj is

the number of vertices frora which v is a distance ni.

A characterzstzc matrix X is forrned by the terrn-wise juxtaposition of t,tie appropriate

etements in the corresponding ro’ws of XR and XC.

Informatioll from the characteristic matrix may be used to form an initial partition. v

will map to v in an isomorphism only if x x, Vrn. Vertices which exhibit identical

rows of the characteristic matrix will be assigned the same cÏass. The partition so obtained

from the characteristic matrix is often superior to that obtained from the degree sequence

[1181.

Theorem 4.2 If two vertices v and y are partitioned into separate classes by the degree

sequence, they wiÏt atso be partitioned into separate classes by the characteristic matrix.
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$ince the initial partition cari be used to limit the size of the search tree, it may reduce

the amount of computation that the backtracking algorithm must do. In some cases, it

provides a wav to determine immediately that no isomorphism exists for a given pair of

vertices.

The backtracking algorithm

Definition 4.3 The mapping ofv to v is consistent if

1. every eternent d d5 and d Vj, s such that has been mapped to v;

2. every etement dk (vk was not prevzonsty rnapped,) has a corresponding d (‘v was

not previonsty rnapped] such that c = c.

Thus, a consistent mappmg implies that row i and column i of D’ have corresponding

elernents in row r and columns r of D2, at least for ail previously mapped vertices. The

rernaining elements of those rows and columns do not 1)reClUde further consistent vertex

mappmgs if any mappings remain.

The algorithm wili choose pairs of vertices v and v which are in the same class anci will

investigate the consistency of mapping v to v. If the mapping is consistent, another pair

of vertices cari lie chosen for mapping. If a partition is reached sucli that there are no

consistent mappings, then a mapping between two vertices for which the mapping is not

an isomorphisrn lias been detected and it is necessary to backtrack to try another mapping.
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4.5 Performance comparison

In previous sections, several major algorithms for testing graph isomorphism have been

introduceci. These algoritlirns have been devoteci to improve performances both in terms of

computational tirne and memory requirements. However, it is not clear how the behaviour

of those algorithms vary as the type and the size of the graphs to be matched vary if in

real applications.

Foggia, Sansone and Vento [501 have done great efforts to evaluate their performance. The

comparison has heen carried out on a large database of artificially generated graph. In

order to do so, they built a database containing 10,000 couples of isomorphic graphs with

different topologies (regular graphs, randomly connected graphs, houndeci valence graph).

The size of the considered graphs ranges from a few vertices to about 1,000 vertices.

There is no algorithm that is definitively better than ail the others [501. In particular, for

randomlv connected graphs, the Nautv aigorit.hm is the best if the graphs are quite dense

and/or of quite large size. In this case. Ullmann is faster than Schmidt and Druffel if the

size of the graphs is smailer than 700 1501.

For bounded-vaience graphs, the Ullmann algorithm is not aiwavs able to find a solution;

if it happens, however, its time is smailer than the one of Schmidt and Druffel.

Finally, it is a.lso worth noting that Schrnidt and Druffel is always abie to find a solution to

the isomorphism problem in the tests, independently of the size and the kind of the graphs

to be matched. As for Nauty and Ullmann aigorithms, they are not.

In addition to practical algorithms above, there are other algorithrns testing graph isomorphism,

for example, VF and Vf2 [39] which base on a depth-flrst searcli strategy, with a set of ruies

to efficiently prune the sea.rch tree. In [126], a new invariant, called Probabitity Propagation
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Matrix, is introduced. By means of this graph invariant, a heuristic algorithm is presented.

This algorithm is easy to implement and highly parallelizable.



Chapter 5

Conclusion and Discussion

5.1 Review

5.1.1 On graph isomorphism

Graph isomorphism problem helongs to those combinatorial search problem for which no

polynomial-time algorithm is available yet. The two approaches usually used to test the

graph isomorphism, the combinatorial approach and the group-theoretic approach, were

presented. As for the former approach, trees, planar graphs, bounded average geiius graphs

and bounded distance width graphs are considered since we can have a polvnornial-tirne

algorithm to test their isomorphisms. As for the latter, with the help of powerful group

theory, the isomorphisms of graphs with bounded valence and eigenvalue multiplicity have

been shown to be computed in polynomial time.

These two approaches are very different in the way to think about the problem. The

combinatorial approach focuses on the structure characteristics of special given graphs,

100
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whule group-theoretic techniques treat graphs in similar ways. With these rnethods, many

graphs with restrictions can be tested in polynomial-time, although an efficient algorithm

for general graphs is stiil unavailable.

From the view point of computational complexitv, many scientists made efforts to recluce

polynomially the general graph isomorphism to sorne special graphs such as bipartite

gra.phs, regular graphs, chordal graphs, etc.

5.1.2 On subgraph isomorphism

For some restricted classes of graphs, t.he isomorphism can be tested in polynomial time.

Many aspects of these classes have been studied. Coincidentally, the complexitv ofsubgraph

and graph isornorphism on planar graphs are both polynomial time. As a matter of fact,

planar graphs are easy to be studied since they are pretty simple. Many other graph

problems such as colouring, counting. becorne easier if we put them on planar graphs.

0f ail the rnethods presented in this surve, I think that the tree-decomposition approach,

together with the dynamic programming technique, are really special and interesting. Tree

decomposition is not the only way to decompose the problem into some sub-problems.

Modiztar decoraposition, homogeneons decornposition, spÏit decomposition f25j, are other

techniques found in the literature.

5.1.3 On practical algorithms

Although there is stiil much effort to make on the theoretical complexity of the graph and

subgraph isomorphism problems, many practical algorithms have been developed in the

last decades. Theoretically. we consider only the problem of finding a graph or subgraph
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isomorphism between two graphs at a Lime. However, in practical applications, we often

build a graph database, so-called model graphs, and test single unknown input graph.

The algorithms reviewed in this survey are very general. By the performance comparison,

we ma conclude that there is no algorithm which is better than the others in ail aspects.

Each one of them has a good behaviour for some types of graphs. Nevertheless, the

ideas used in these algorithrns, for example, backtracking technique, are very beneficial for

further improvement.

5.2 Look ahead

Not surprisingly, the graph and subgraph isomorphism problems are stiil a challenge for

theoretical and practical scientists, although they have been extensively studied through

many approaches and techniques. While some people intend to continue the research for

untouched pieces of this area in the theoretical direction, others focus on the practical

applications.

5.2.1 Turn to other graphs

As readers might have seen, flot only graph isomorphism but also subgraph isomorphism are

very difficuit for the general case while fairly easy iii some special cases, sometimes having

complexity in polynomial, or even linear Lime. On the one hand, considering special cases

helps us know more and more about these two problems as a whole. On the other hand, it

also intrigues us to delve into other graph classes in that promising results might be found.

Many other graphs with restrictions are w’ortlw of looking for an efficient algorithm.
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Look at an example, although chordal graphs and chordal bipartite graphs are proved to

be in the isomorphism-complete class, it does not prevent us to search for a polynomial

time algorithm provided that additional restrictions, for instance, k-regular, are imposed.

Chordal graplis are crucially important since they represent a generalization of trees with

many different rich properties, while the latter are pretty easv to he tested both for the

graph and the subgraph isomorphism problems.

Since it was shown that directed graph isomorphism is poÏynomially reducible to undirected

graph isomorphism [99], it might be helpful to use directed graphs since directed graphs

have their own properties, for example. the relationships among vertices are asymmetrical.

In [31, an algorithm for digraph isomorphism was given. Schmidt and Druffel also presenteci

a fast algorithm to test clirected grapli isomorphisrn using distance matrices 1118]. More

recently, in 2002, this directed graph isomorphism algorithm was used to solve the topological

morphing problem Generally speaking, directed graph isomorphism vas not studied

as widelv as undirected graph isomorphism.

The isomorphism problem for Cayley graphs has been extensively investigated over the

past decades. Cayley graphs are a graphic representation of abstract groups. It was shown

that Cayley graphs have many nice combinatorial properties 18], such as long paths. The

methods to solve the Cayley graph isomorphism range from deep group theory, including

the finite simple group classification, through to combinatorial techniques.A massive

research from Li about Cayley graphs can be found in [83, 84, 85].

5.2.2 Probabilistic vs. deterministic

So far, we consider only exact graph and subgraph isomorphism. In the real world, however,

there is usually a certain amount of noise and distortion present in an input graph [961.
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Therefore, perfect correspondences between the models and the input frequently do not

exist.

A well-known algorithm for inexact graph matching, called the error-correcting subgraph

isomorphism algorithm, was shown in j117, 1241. The algorithm is able to find the best

matching by expioring only the most prornising paths. Other methods are also proposed.

such as heuristic search 129, 1211, probabilistic relaxation i71 and linear programming 14]
More recentiy, in 2002, an optimization technique, Estimation of Distribution Aigorithms

(EDAs), has heen used as a new approach [181 for inexact graph matching. Its foundations

are based 011 an evolutionary computation paradigm.

Another interesting research direction is the mn dom graph isomorphism. which was studied

5v Babai, Ercis and Selkow [11] in 1980. They use a straightforward linear-time canonicat

tabeting aigorithm [12] that applies to almost ail graphs (i.e. ail but o(2()) of the graphs on

a fixed vertex set of cardinahty n). They showed that in aimost ail graphs on n vertices,

the largest n015 degrees are distinct. Hence, for almost ail graphs X, any graph can be

easiiy tested for isomorphisrn of X by an extrerneiv naïve linear time algorithm.

5.2.3 Quantum vs. classical

It was predicted that the basic units of chips in a computer wouid be the size of individual

atoms in future. According to the theory of phvsics, the current (ciassicai) theory of

computation would become invalid at such level. In contrast to the classical computation

theory, a new theory caUed quantum computation and quantum information has been

emerging since the 1980’s. The most fabulous feature of quantum computing is quantum

paraÏteÏism anci quantum interference. Remarkabiy, scientists predict that quantum computers

(using quantum computing theory) can soive some hard problems breathtakingiy faster
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than classical computers (using classical computing theory).

In the early 1990’s several scientists (Deutsch and Jozsa in 1992, Berthiaume and Brassard

in 1992, Bernstein and Vazirani in 1993) sought computational tasks which could 5e

solved 5v a quantum computer more efficientlv than anv classical computer [122]. Simon’s

algoritiim (1993) examines an oracle problem which takes polynomial time on a quantum

computer but exponential time on a classical computer. Later, $hor (1994) solved both

factorization and discrete logarithms. further, Grover (1997) discovered that searching an

element in an unordered database of N elements can 5e improved from N to only /N

queries .A very good introduction about this theorv can he found in [21, 105].

As far as the graph and subgraph isornorphism problems are concerned, until today, ah

of the known algorithms are classical and no quantum algorithm lias been invented yet.

Furthermore, even for other graph problems, the quantum approacli is hard to 5e found in

literature.

Viewing the hardness of the problems in the classical situation, we might ask quantum

computation for help. An interesting idea is to apply Grover’s algorithm for searching

good solutions during matching procedures.

Another idea is to construet a quantum circuit with an Oracle. An Oracle is a black

box, which could perform a certain kind of computatiou. We mav assign a state to everv

vertex in a given graph. The state can 5e defined according to the characteristics of

the graph. The Oracle would accept a set of certain vertices as the input and generate

another set of vertices as the output. During each query to the Oracle, only the vertices

which are prohably more interesting to our expected result than others are strengthened.

After certain queries, we might know wliether two graphs are isomorphic by comparillg the

output of each Oracle.
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Take as an example for a k-regular oriented graph. It bas been proved that each k-regular

oriented graph can be decomposed into k 1-regular oriented graphs or k permutations on

its laheled vertices. sav [1, 2,• , n]. We construct an Oracle that accepts a vertex with its

permutation index, that is [1, 2, . k], as the input a.nci transposes it to its next vertex in

its permutation. Ail the vertices can be put in a superposition which is special in quantum

computation; only one query of Oracle is necessary to transpose them to their neighbours.

for each graph, there is a quantum circuit represeilting it. \Ve can repeat the cjuerv of two

circuits again and aga.in until it can he deterrnined with certain probabilitv whether the two

graphs are isomorphic. Although there are stili other related problems, for instance, the

permutation set can be chiferent even for the same graph, it is quite worth considering how

to construct another more hopeful quantum circuit. Other special graphs, such as trees.

chorciai graphs, bipartite graphs. are aiso suitaÏ)le to construct an Oracle for querving.

In contrast to conventional graph representation, a novel representation reiated to quantum

physics was shown in F1321: quantum graph. A quantum point is a vector in a compiex

Hilbert space whose basis vect ors correspond to the vertices of a classical graph. A quantum

arrow is thought of as an operator which destrovs vertex y and creates n .A quantum arrow

may be represented as a complex matrix. Ail other classical concepts are dramatically

changed in quantum manner. Under quantum representation, the graph isomorphism

problem is much more different than that under classicai one. It is possible that a novel

approach would emerge in future.

In short, until now, there has not been enough research between quantum computation and

graph isomorphism problem. Two aspects cari be considered: one can apply an existing

quantum algorithm to improve the crucial part of classical aigorithm; one can aiso construct

a quantum circuit directiy usirig special properties of the graph. furthermore, an essentialiy

different representation in quantum manner for a ciassical graph may aiso be interesting.
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5.3 A propos de this survey

In short, this suney involves diverse theories and approaches. fle resuits mentioned

range from the very emergence of the graph and subgraph isomorphism problems W today.

I included different typical sub-problems along with different approaches in order that

readem have a chance to enjoy the beauty of intersections among them. For each sub

problem, the best compledty result tiil now was emphasized and presented specifically,

without losing its main idea, integrity and continuity, I hope, while keeping an eye on

relative approaches and resuits.

As it might have already been seen, the problems involve some related mathematical

disciplines such as group theory, topological graph theory, computational compledty,

linear algebra and so on. To enjoy the brilliant ideas, a solid mathematical background is

necessary. AU in ail, I do hope that readers have found it understandable, comprehensive,

informative and up-to-date.
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