
Université de Montréal

/û3,

Determination of Software Quality Through a Generic Model

par

Nouba Mehio

Département d’informatique et de recherche opérationnelle

Faculté des arts et des sciences

Mémoire présenté à la Faculté des études supérieures
en vue de l’obtention du grade de

Maître ès sciences (M.Sc.)
en informatique

Juin 2003

Copyright, Nouha Mehio, 2003

)

:) j

Université
de Montréal

Direction des bibliothèques

AVIS

L’auteur a autorisé l’Université de Montréal à reproduite et diffuser, en totalité
ou en partie, par quelque moyen que ce soit et sur quelque support que ce
soit, et exclusivement à des fins non lucratives d’enseignement et de
recherche, des copies de ce mémoire ou de cette thèse.

L’auteur et les coauteurs le cas échéant conservent la propriété du droit
d’auteur et des droits moraux qui protègent ce document. Ni la thèse ou le
mémoire, ni des extraits substantiels de ce document, ne doivent être
imprimés ou autrement reproduits sans l’autorisation de l’auteur.

Afin de se conformer à la Loi canadienne sur la protection des
renseignements personnels, quelques formulaires secondaires, coordonnées
ou signatures intégrées au texte ont pu être enlevés de ce document. Bien
que cela ait pu affecter la pagination, il n’y a aucun contenu manquant.

NOTICE

The author of this thesis or dissertation has granted a nonexciusive license
allowing Université de Montréal to reproduce and publish the document, in
part or in whole, and in any format, solely for noncommercial educational and
research purposes.

The author and co-authors if applicable retain copyright ownership and moral
rights in this document. Neither the whole thesis or dissertation, nor
substantial extracts from it, may be printed or otherwise reproduced without
the author’s permission.

In compliance with the Canadian Privacy Act some supporting forms, contact
information or signatures may have been removed from the document. While
this may affect the document page count, it does not represent any loss of
content from the document.

Université de Montréal
Faculté des études supérieures

Ce mémoire intitulé

Determination of Software Quality Through a Generic Model

présenté par:

Nouha Mehio

A été évalué par un jury composé des personnes suivantes:

Philippe LANGLAIS
président-rapporteur

Houari SAHRAOUI
directeur de recherche

Hakim LOUNIS
codirecteur

Jian-Yun NIE
membre du jury

Mémoire accepté le: 2 décembre 2003

Résumé

Ce mémoire introduit une approche pour l’évaluation de la qualité du logiciel: Boîte

à Outil d’Analyse de Programmes (BOAP). BOAP a été développée dans le cadre d’un

projet pour le Centre du Test de Logiciel (CTL). Le but de l’approche BOAP est

d’évaluer l’architecture du logiciel indépendamment du langage de programmation en

prenant en compte des caractéristiques architecturales comme l’évolvabilité et la stabilité.

Cet objectif est atteint grâce à un module de mapping qui transforme les programmes en

une représentation indépendante du langage de programmation soit un modèle générique.

Le modèle généré est persistant; il permet donc son utilisation pour des analyses futures.

Pour ce projet, le module de mapping a été développé pour supporter la transformation

des programmes Java vers le modèle générique.

Dans le cadre de ce projet, la stabilité des interfaces des classes dans les systèmes

orientés objet est évaluée durant leurs évolutions. Notre étude empirique a été réalisée à

partir de données tirées des applications Java Open Source à plusieurs versions. Le

module de mapping a été utilisé pour transformer ces applications en modèle générique.

Un module métrique a été développé afin d’extraire, à partir de la représentation générée,

des métriques de conception qui évalueront des propriétés orientées objet qui ont un effet

sur la stabilité des interfaces des classes comme le couplage, l’encapsulation et l’héritage.

Un modèle de classification a été généré pour prédire les classes qui auront un

impact sur la stabilité du système. Nous avons utilisé l’algorithme d’apprentissage C4.5

pour produire nos modèles prédictifs.

L’utilisation du modèle générique a l’avantage d’avoir les analyses et les modèles

générés applicables à d’autres systèmes, indépendamment de leur langage de

programmation.

Mots-clés: outils d’évaluation de qualité, représentation générique, modèle de qualité,

stabilité, métrique de conception, algorithme d’apprentissage

Abstract

This thesis introduces an approacli for system assessment: BOx for Analyzing

Programs (BOAP) developed for the Centre du lest de Logiciel (CTL). The driving goal

of the BOAP approach is the assessment of architectural quality of any program witli

regard to important characteristics like evolvability and stability independently of its

programming language. It is cliaracterized by a mapping module that will transform any

program into a language-independent representation i.e. a generic model. The generated

model is persistent, and can therefore be retrieved and manipulated by different systems

for quality evaluation and various analyses. Until now, BOA? supports only C/C++

language, therefore for this project we enhanced BOA? by supporting Java language.

In this project we investigated interface stability for object-oriented class of systems

throughout their evolution. An empirical study was conducted on various versions of

Open Source Java applications. These applications were mapped into the generic model

using BOA?. A metric module was developed to read from the representation and to

extract design metrics that evaluate object-oriented properties affecting interface stability

like coupling, encapsulation and inheritance.

A classification model was built to predict which class is likely to have an unstable

impact on the system. C4.5 machine learning language was used to build the predictive

model. Since the predictive model was done out of the generic model, it lias the

advantage to be applicable on other systems independently of their programming

language.

Keywords: quality assessment tool, generic representation, quality model, stability,

design metric, machine leaming,

111

Contents

Introduction .1

1.1 QuALITY M0DEL 1
1.2 MoTiVATIoN AND AIM 3
1.3 PR0JEcTSTRKFEGY 4
1.4 THEsIs ORGANIzATI0N 5

2. State of the Art 6

2.1 S0VrwARE STIuTY 6
2.1.1 Conclusion 1]

2.2 OBJEcT-ORIENTTD DESIGN METRIc5 13
2.2.1 Encapsulation 13
2.2.2 Coupling 14
2.2.3 Inheritance 17

2.3 QuALITY MEA5uREMENT AND EvALuATI0N TooLs 19
2.3.1 TAC+± 20
2.3.2 OMOOD 22
2.3.3 MOODMT 24
2.3.4 DATRIX 26
2.3.5 MOO$E 28
2.3.6 Conclusion 31

3. BOAP Approach 33

3.1 PAR5ING MoDuLE 34
3.2 MAPPING MODULE 35
3.3 GEi’ic METAM0DEL 37

3.3.1 Scopes 39
3.3.2 Types 40
3.3.3 Methods andAttributes 42
3.3.4 Functions andparameters 43

3.4 SUMiviARY 0f THE METAM0DELs 44
3.5 METRIc ExTRAcTIoN MoDuLE 45

3.5.1 Metric Calculation 47

4. The Extraction of Java Programs into the Generic Representation 53

4.1 GENERAL APPROACH 53
4.1.1 Reconstrïtcting Datrix ‘s ASG 55
4.1.2 MappingofJava code 55
4.1.3 Conclusion 60

5. Evaluation 62

5.1 EXPERllvIENTAL FRAMEWORK 62
5.1.1 Hypothesis 62

o

iv

5.1.2 Ident5’ing changes in application interface 64
5.1.3 Defining the Metrics 65

5.2 DATA COLLECTION 67
5.2.1 Jigsaw 68
5.2.2 JEdit 69
5.2.3 Jext 70
5.2.4 GNU Free 71

5.3 BuILDING MODELS 0F EVALUATION AND DETECTION 73
5.3.1 Results 76
5.3.2 Evaluation and Validation ofthe Models 80

6. Conclusion 85

7. References 87

List of Tables

Table 1: A summary ofthe ident(fication criteriafor EBTs, OBs, 8
Table 2: System design metricsfor static architectural structure assessment 9
Table 3: Class metrics that influence interaction (dynamic) structural characteristics 9
Table 4. TAC++ metrics 2]
Table 5: QMOOD Classification ofMetric Classes Based on $cope and Information.... 23
Table 6: MOOD Metrics vs. QuaÏity Attributes 25
Table 7: Summary ofMetamodels 44
Table 8: Metrics impÏemented 66
Table 9 $ummary Java Applications 67
Table 10: Dependent and Independent variables 74
Table 11: J-Index Value 23

List of Figures

Figure 1: Quality ModeÏ Relationshts 2
Figure 2: Overview ofQuaiity Model 2
Figure 3: Ciass Interactions 12
figure 4: TAC++ Organization 20
Figure 5: QMOOD Organization 22
figure 6: MOODKÏT Organization 24
figure 7: DATRiXOrganization 26
Figure 8: Architecture ofMOO$E 28
Figure 9: BOAP Architecture 33
Figure 10: Generic metarnodel 32
Figure 11: $cope Diagram 39
Figure 12: Type Diagram 41
Figure 13: Feature Diagram 42
Figure 14: Mapping example at the system level 59
Figure 15: Mapping example at the class level 60
Figure 16: Evolution ofJigsaw 69
Figure 17 Evolution ofjEdit 70
Figure 18: Evohttion ofJext 71
Figure 19: Evoiution ofGNUFREE 72
Figure 20: A nainesfile (‘classes, attribute, and attribute values) 75
Figure 21: A portion ofdata file 75
figure 22: Predictive modelfor hypothesis 1 in ruie based modei between major version

s 77
Figure 23: Predictive modeifor hypothesis 1 in rute based model between minor version

s 79

Abbreviations
ASG: Abstract Semantic Graphs

ASI: Abstract Syntax Tree

BOA?: Boîte à Outil d’Analyse de Programmes

CRIM: Centre de Recherche Informatique de Montréal

CIL: Centre du lest de Logiciel

GLIC : Génie Logiciel et Ingénierie de la Connaissance

ISO: International Organization for Standardization

00: Object Oriented

o

Acknowledgement

Tliroughout my master, I have been fortunate to have the support and help of many

people.

First I want to express my gratitude and my appreciation to my supervisor Dr. Houari

Sahraoui for introducing me to the field of software quality. In my professional career

this master project helped me tremendously in having a criticized judgment on how to

design quality software. And I also appreciate the support, the guidance and the

encouragement lie provided throughout the development of this work.

Also, I want to thank my co-supervisor Dr. Hakim Lounis tliat gave me the

opportunity to do my master research at CRIM (Centre de Recherche Informatique de

Montreal) with tlie GLIC (Genie Logiciel et Ingénierie de la Connaissance) group where

I leamed a lot in the field of software quality and other software engineering related

fields. At CRIM, I had the privilege to work with ElHachemi Alikacem; I want to thank

him for his great support.

Thanks, Ah and Hala for your love, friendship and for simply being part of my hife.

Finally, tliank you Haitliam, my partner of life, for being always here for me.

I dedicate this master thesis to my parents, Ziad and Amira. I have been blessed with

their guidance, their advice, tlieir dedication and their continuous support throughout my

education and my hife in general.

Chapter 1

1. Introduction

Software evolves with time due to changes in technologies, in customer

requirements, hardware, etc. The lack of stability in evolving software can lead to poor

product quality, increased project cost, and lengthened project schedule. Software

instability is due mainly to poor architecture. Badly designed software will have an

unstable architecture that will be difficult to adapt to changes. With the introduction of

new changes and functionalities, the architecture tends to drift from its original

architecture and becomes more complex and instable, which reduces system

maintainability. Unless actions are taken, software maintenance will become increasingly

difficult and risky. Therefore there is a need in evaluating and predicting the stability of

existing software, and having defined criteria for developing stable software. Industries

are looldng for tools capable of evaluating system evolution for controlling its quality.

1.1 Quality Model

Predicting whether a component has an instable impact on the system or flot is

achieved through a quality model. Most of the existing evaluation tools are based on a

defined quality model. Such models list major attributes that a high-quality software

product should possess (e.g., reliability and maintainability). Many quality models and

metrics have been suggested by the literature. One of the earliest software quality models

was suggested by McCall f36]. McCall’s quality model defines software-product

qualities as a hierarchy of factors, criteria, and metrics and was the first of several

models. International efforts have also led to the development of a standard for software

product quality measurement, 1S09 126f25]. It proposed six characteristics that can define

software quality: functionality, reliability, efficiency, usability, maintainability and

2

portability. 1S09126 quality model classified stability as a sub-characteristic of

maintainability. These characteristics, called quality factors, are high-level external

factors and cannot be measured directly from the system being assessed. These key

factors are further decomposed into lower-level internai factors called quaiity criteria.

They inciude coupling, cohesion, encapsulation and modularity. These internai quality

factors are decomposed into a set of low-ievel, directiy measurable attributes called

quaiity metrics. Primitive metrics (direct measures) are combined to form composite

metrics (indirect measures). The distinction between extemal and internai factors is

important, as the satisfaction of the internai qualities should ensure the satisfaction of

externai qualities. These relationships are represented in the figure below.

A quality model is deveioped using a statistical or machine learning modeling

technique, or a combination of techniques. This is done using historicai data. Once

constructed, such a model takes as input the metrics extracted for a particular component

and produces a prediction of the stability (stable or instable) for that component as shown

in Figure 2.

Fuaiity Model Itdcied
\itrics t StahIitv

INFERNAl.

C()MPOSF[[

PRIMÎ11VE
FACTOR METRIC(S) METRIC(S)

Figure 1: Quality Model Relationships

Figure 2: Overview of Quality Model

3

1.2 Motivation and Aim

Commercial and research-based tools for automatic data collection and analysis,

called quality measurement and evaluation tools, have been developed to help in the

management of software quality. Most of those tools extract metrics from the source

code. They can be specific for a programming language or they can treat a variety of

languages. Usually, depending on the organization’s goals, assessment tools specialize

for a set of metrics and assess specific characteristics. They can also be customizable by

allowing the user to add new metrics and specify quality model.

Evolving software require a tool capable of evaluating change impact on software

stability. Thus assessing the initial design of the system, estimating the changes in design

between versions and predicting its stability in future releases using quality rules and

criteria. This project takes into consideration the need for such a tool. Therefore, we

adopted an approach for the architecture of a tool for system assessment: BOx for

Analyzing Programs (BOAP). It is developed by a group of researchers at Centre de

Recherche de Montréal (CRIM) as part of a project for the software-testing center, Centre

de Tests du Logiciel (CTL). This approach is based on transforming the source code of

the system into a language-independent representation i.e., a generic modeif 1]. This

representation will be used to extract design metrics for software stability assessment.

The aim of this thesis is twofold. First, we want to enhance BOAP by supporting

Java application. Second, we want to generate quality rules that will evaluate and predict

class interface stability in object oriented systems. The use of the generic model

generated by BOAP will allow us to extract metric from a language-independent

representation thus having the ability of having generic rules applicable on other systems.

The rules will be generated using machine-learning technique.

4

1.3 Project Strategy

My master thesis will take the following steps:

1. Adding Java language support to the mapping module.

Until now the mapping module is done for the C/C++ language. The choice relied on

Java because of its increasing popularity as the language of choice of the industries,

especially in the development of distributed systems and web based applications. This

is due to Java’ s portability and platform independence.

2. Building the BOAP repository with java applications with multiple versions.

We chose open-source applications available on the web. Many open-source projects

adopt CVS as version control platform; so we can have access to any version of source

code programs. We will be able to study the changes done on the software throughout

its evolution.

3. Defining intemal factors that affect software stability.

In our study, we focus on interface stability of classes for Object Oriented (00)

systems. Metrics capturing important structural characteristics like coupling,

encapsulation, and inheritance have been chosen from the literature. A module for

metric extraction bas been developed. It reads and extracts measures from the generic

representation.

4. Classifying interface stability of classes in 00 applications.

We classified an interface to be instable if its change will impact the structure of the

system. The severity of this impact wiÏÏ depend on the visibility of the interface in the

system. A module for stability classification has been developed. It compares versions

and looks for changes in the interface and classifies it depending on its visibility.

5. Generating predictive models out of the extracted metrics by using C4.5 a machine

learning technique.

A predictive model is built using the set of metrics extracted from the generic model.

The predictive model will assist software developers to identify instable components.

o

5

The advantage of this predictive model is that it can be applied to any system

independently of its language of implementation.

1.4 Thesis Organization

This thesis is organized as follow: chapter II will define software stability and will

expose some related research. It will then introduce some of the architecture of some

existing tools to measure software quality and it wiÏl survey some interesting object

oriented design metrics proposed by the literature. Chapter III introduces the generic

metamodel and the architecture of the system BOAP followed by a description of the

metrics that are extracted in terms of the metamodel. Chapter IV wlll detail the mapping

of systems in Java into the metamodel. And a case study on the stability of software

during their evolution will follow in chapter V. And finally, chapter VI attempts to draw

some conclusion.

Chapter 2

2. State of the Art

Pressman estimated that 60% of the total effort of the software development is

devoted to its maintenance, from which 80% is due to software evolution f41]. The effort

of the maintenance is inversely proportional to the stability of the software.

Consequently, it is important to evaluate the stability of the software during its evolution

as an indicator of effort and cost.

In this respect, we will first define software stability and expose some of the research

done in this field. And second, we will introduce some tools and design metrics that are

used to assess quality characteristics and finally we will suggest a suitable approach to

assess systems during their evolution.

2.1 Software Stability

The classic definition of the word stability is: “Not easily moved, changed,

destroyed, or altered”t.

Unlike hardware, software should flot deteriorate with time. Unfortunately, it does

and this is due mainly to changes in software. In fact, changes to software result in the

degradation of the software structure. Parnas D. states “the software structure is

deteriorated as the software is modified to the point where nobody understands the

modified product” f40].

e
The Concise Oxford Dictionary, 6 edition.

7

Long-lived software must adapt to several environmental changes including increased

user expectations, new user requirements, software modifications, new hardware

platforms, new operating systems, new compiler technology, new networking

technologies, and new development languages and techniques to name a few. The

software engineering communities have identified this problem. However as stated by

Fayad M., “the software engineering techniques outlined by many software-engineering

authors have not achieved an adequate amount of stability in software projects” f18].

Note that not all software requires the same level of stability. It really depends on the

size of the application itself: the larger the system the higher the importance of stability.

So the key question is how designers and architects build stable software products?

Martin R. suggests that software developers should apply the Stable Dependencies

Principle and the Stable Abstractions Principle to achieve more changeable

architecturef32]. The author defines stability as the likelihood that a given module will

change. Since it is certain that some modules must change to meet changing requirements

Martin recommends that the key to module design is that “the dependencies between

packages in a design should be in the direction of the stability of the packages. A package

should only depend upon packages that are more stable that it is.” The Stable

Abstractions principle is defined as: “Packages that are maximally stable should be

maximally abstract. Instable packages should be concrete. The abstraction of a package

should be in proportion to its stability.”

Recently, M. Fayad has introduced a new software engineering paradigm: the

Software Stability Modelf 19]. The main objective of this model is the provision of a

method to produce stable software products avoiding the reengineering of the system due

to changes or extensions in the initial requirements.

This model introduces the concepts of Enduring Business Themes (EBTs) and

Business Objects (B Os) as a solution to the reengineering problem. The idea is to identify

those aspects of the environment in whicli the software will operate that will flot change,

and to cater the software to those areas. This yields a stable core design and, thus, a stable

software product. The changes that will be introduced to the software project will then be

in the periphery. The objects that do flot remain constant over time are considered

8

Industrial Objects (IOs). Therefore, IOs should be moved to the periphery so that changes

in them do flot have ripple effect through the rest of the system. The table below lists

seven criteria for distinguishing between EBTs, BOs and IOs.

. Enduring Btisiness
Criteria Btisnwss Objects Industrial Objects

Theines

$tability Over Tbne Stable over time Extemally stable Unstable

. Adaptable without Adaptable through
Adaptabihty Not necessanly adaptable

change intemal change

Essentialily Essential Essential Replaceable

Explicitness Implicit Implicit or explicit Explicit

Cornrnonality ta the
. Core Core Penpheral

Dornain

Tangibility Conceptual Semi-tangible Tangible

Table 1: A summary ofthe identification criteria for EBTs, OBs, and IOs.

These concepts provide a basis for the measurement and comparison of different

architectures. Like other quality characteristics, stability can be evaluated through design

metrics. Only recently the stability characteristic have been evaluated on object-oriented

applications and more specifically on framework architecture. Object-oriented paradigm

is relatively recent and the application of OOD languages to build systems is as recent.

The stability of software will only appear with time, when changes start to be introduced

to the system. Therefore there are only few existing studies that deal with the evaluation

of stability of software.

Bansiya J. introduces a method to evaluate framework architecture characteristics

and stability, which is based on a quantitative assessment of the changes in framework

versions using object-oriented design metricsf7]. The author uses metrics to compute the

structural extent-ochange in the framework architecture between releases. This extent

0f-change is used as a measure of stability in framework architecture. The value of the

measure indicates the relative stability of the architecture structure. Higher values of the

measure are reflective of higher instability in the structure; values doser to zero indicate

greater stability.

As frameworks evolve, the static and interaction (dynamic) structure of frameworks

changes due to additions, deletions, or the modification of relationships between

9

framework classes, the addition of new classes, or the removal of existing classes.

Bansiya identifies two categories of evolution characteristics, architectural and individual

class characteristics listed below.

Metric Naine Description

DSC: Design Size in Classes Count of the total number of classes in the system.

NOH: Nwnber ofHierarchies Count of the number of class hierarchies in the system.

. . Count of the number of classes (sub classes) that use inheritance in the
N$I: Number ofSingle Inhentances

system.

NMI: Number oflitdtiple Inheritances Count of the number of instances of multiple inheritance hi the system.

Average depth of inheritance of classes in the system. Computed by

. dividing the sum of maximum path lengths to aIl classes by the number of
ADI: Average Depth ofinheritance

classes. Path length to a class is the number of edges from the mot to the
class in an inheritance hierarchy.

Average number of children per class in the system. Computed by dividing

A WI: Average Width oflnheritance the sum of the number of children over all classes by the number of classes

in the system.

Table 2: System design metrics for static architectural structure assessment

Metric Name Description

ACIS: Average nuinber ofSen’ices Count of the number of public methods in a class

Count of the number of distinct (parent) classes from which a class inherits.

ANA: Average number ofParents This metric is different from the depth of inheritance metric because it

takes_into_account_instances_of multiple_inheritances.

Count of the different number of classes that a class is directly related to.

ADCC: Average Direct Class Coupling Tncludes classes that are directly related by attribute declarations and
parameter_declarations in methods.

Table 3: Class metrics that influence interaction (dynamic) structural characteristïcs

C

Bansiya J. applied the assessment of stability on available frameworks. The result

showed that the extent-of-change measure values increase in the early versions of the

frameworks and drops close to zero in the later versions. The early versions, which have

extent-of-change values significantly higher than zero, represent versions that are

evolving with changing architecture whereas releases with extent-of-change’ s close to

zero, represent versions with stable architecture.

10

Mattson M. uses the same approach introduced by Bansiya to assess a commercial

frameworkf6]f34]. Out of the metric results obtained, Mattson M. formulated the

foïlowing hypotheses:

Hypothesis 1: a stable framework tends to have narrow and deeply inherited class

hierarchy structures, characterized by high valuesfor the average depth of inheritance of

classes cind low values for the average width ofinheritance hierarchies.

Hypothesis 2: a sable framework has an NSI/D$C ratio just above 0.8 f multiple

inheritance is seldom used in the framework i.e. the number of sïtbclasses in a stable

frarnework isjust above 80%.

Hypothesis 3: a stable frarnework lias the normaÏized ADCC metrics going towards

1.0.

This indicates that the number of relationships is flot increasing with newer versions.

Hypothesis 4: a stableframework has a low value ofExtent-of-change below 0.4.

Hypothesis 5: it takes the development and release of three to five versions to

produce a stableframework

11

2.1.1 Conclusion

We exposed some of the research done on software stability. Some of the factors

that cause software instability were identified. Proposed models and measures that can

help designers to assess software stability were discussed. It can be concluded that a

system is stable if its structure does flot change during its evolution. The main factor that

causes the system to be instable is mainly the level of class dependencies. In a bad

design, any change in a class can have a ripple effect on the system, thus maldng it

instable. Depending on the extent-of-change level, the system can be reengineered to

support the new change.

Several object-oriented measures are used to assess the quality of system’s

architecture, like: coupling, encapsulation, cohesion, inheritance, modularity and others.

From those measures we select the ones that are related to measuring the structure of the

system: interconnection and interaction between classes to assess the interface stability of

the system.

Coupling, encapsulation and inheritance are selected as measures of stability. Those

measures are abeady used to assess the stability of frameworks, and hypotheses were

formulated out of the metrics extracted. We want to assess interface stability in 00

applications. A change in class interface will impact the structure of the system thus the

stability if it is accessible by at least an application module. The severity of this impact

will depend on the visibility of the interface in the system.

In object-oriented systems there are 3 main levels of visibility: Public, Protected,

and Private. A class declared public can be accessed by the application, protected is

limited to the module and private to the class itself. Therefore the visibility of the class

plays an important role in determining the level of interaction between classes.

The overali architecture of the system can be pictured as a set of classes interacting

with one another. The nature of the link between two interacting class depends on the

type of relationship established between them. The different class interactions are

C illustrated in the figure below as defined by Martin C. f32].

12

In the following section we will expose some of the design metrics that we

consider being associated to interface stability.

Ôirectoc Assciaior Ccruiposton

Figure 3: Class Interactions

13

2.2 Object-Oriented Design Metrics

Design metrics assess the internallexternal structure, relationships, and functionality

of software components. Object-oriented development can be analyzed at both system

and class levels. At the system level, the external structural characteristics of the system

are analyzed. At this level, class hierarchies, and the relationships between classes are

evaluated. At the class level, internai characteristics, components used in the assessment

include methods, signatures of the methods, the number and types of attribute

declarations in the class. The research community has proposed many different metrics

for object-oriented systems. The specification of metrics was donc according to the

different research and literature exposed in the previous section.

Some metrics have been specified to assess the stability characteristic:

Number of parameters referenced

Number of global variables

Number of parameters changed

Number of called relationships

In this section, we will focus on some important design metrics that evaluate major

00 concepts: methods, classes, encapsulation, coupling, and inheritance.

The metrics used for this project are defined by Chidamber and Kemererf 13], Briand

and al.f 11], and Bansiya Jj8].

2.2.1 Encapsulation

Encapsulation is defined as the enclosing data and behavior within a single constrnct.

In object-oriented designs, encapsulation refers to designing classes that prevent access to

attribute declaration by defining them private, thus protecting the internai representation

14

of the object. Encapsulation contributes in “information hiding”, and it offers two ldnds

of security:

1. Protects object’s internai state from being changed from outside users.

2. Changes can be done to the behavior implementation without affecting other objects.

When users of an object, example methods, depend upon how the object is

represented, or implemented they introduce a dependency that requires the user of the

object also to be changed when the object changes. By hiding the internai representation

(encapsulation), and thereby forcing the user of the object to use the object interface,

objects have the flexibility to change their internai representation without cascading the

changes to user of the objectf22]. Encapsulation reduces the dependency between classes,

thus maldng the structure stable to changes. Thus, encapsulation promotes flexibility, and

reusability.

Bansiya J defines the following metric:

DAM (Data Access Metric)

DAM is the ratio of the number of private and protected attributes to the total

number of attributes declared in the class. A higli value for DAM is desired.

attribute(c) private + attribute(c) protec/ed

DAM(c) =

attribute(c)

2.2.2 Coupling

Coupling is the degree of interdependence between two or more components. The

fewer the connection, the less chance there is for the ripple effect. Ideally, changing one

component should not require a change in another. The coupling between two classes is a

measure of how they depend on each other. The general goal is to minimize the amount

of coupling between classes.

15

Classes that are tightly coupled are hard to reuse in isolation, since they depend on

each other. Tight coupling leads to systems, which cannot change easily without

changing many other classes. Such a system becomes hard to adapt, and maintaïn. On the

other hand loose coupling increases the probability that a class can be reused by itself and

a system that can be adapted, modified, and extended more easily. Weak coupling lets a

designer vary the components of a design without affecting its clients.

Briand and al. proposed a suite of coupling metrics for object-oriented designf 1 1].

They define three different facets of coupling between classes in 00 systems: locus, type

and relationship. Coupling between classes can be due to any combination of these facets.

Relationship refers to the type of relationship: friendship (C++ specific), inheritance,

or other.

Locus refers to expected locus of impact; i.e., whether the impact of change flows

towards a Class (import) or away from a Class (export).

Type refers to the type of interactions between classes. The three types of interaction

defined are: Class-Attribute, Class-Method, and Method-Method.

Class-Attribute (CA) interaction: there is a class-attribute interaction between classes

A and B, if class A has an attribute of type B.

Class-Method (CM) interaction: there is a class-method interaction between classes

A and B, if the signature of a method of Class A has a reference of type of Class B.

Method-Method (MM) interaction: Let m1 and m belong to Class A and Class B

respectively. There is a MM interaction if m calis method m.

OCAEC
The OCAEC metric is defined as:

OCAEC(c) = CA(d,c)
dE Others(c)

Where: Others(c) = C — (Ancestors(c) u Descendents(c) u {c})

This metric counts CA-interactions to class c from classes that are not descendants or

ancestors of class c.

16

OCMEC

The OCMEC metric is defined as:

OCMEC(c) = CM(d,c)
deOiIzes(c)

This metric counts CM-interactions from class e to classes that are flot descendants of

class c.

OCAIC
The OCAIC metric is defined as:

OCAIC(c) ACA(c,d)
dOthers(c)

This metric counts CA-interactions from class c to classes that are flot ancestors of

class e.

OCliIC
The OCMIC metric is defined as:

OCMIC(c) = ACM(c,d)
deOrhers(c)

This metric counts CM-interactions from class c to classes that are flot ancestors

of class c.

Chidamber and Kemerer defined the following coupling metrics

CBO
Coupling between object classes

Let e e C

CBO’(c) = fcl e C \ {{e}u Ancestors(c)}: uses(c, d) y uses(d, c)j

17

The CBO for a class is a count of the non-inheritance related couples with other classes.

Two classes are coupled when the methods of one class use methods or instance variables

of another class.

RFC
Response For Class is a measure of all the local methods, and all the methods called

by local methods. The larger the response set for a class, the more complex the class, and

the more difficult to maintain.

2.2.3 Inheritance

Inheritance is the mechanism where a deflved class inherits characteristics from its

base class. The programmer designs an inheritance hierarchy that defines how classes are

derived from other class. If the inheritance is well defined it will allow code reuse and

good modularity.

As more and more classes are added to design hierarchies, they become difficult to

manage and hierarchies no more have a defined structure. This often leads to the need to

reorganize the tree structure.

Inheritance exposes a subclass to details of its parent’s implementation, thus

“inheritance breaks encapsulation’f8]. The implementation of a subclass becomes bound

up with the implementation of its parent class. In this case any change in the parent’s

implementation will force the subclass to change. This dependency limits flexibility. One

cure for this is to inherit only from pure abstract classes or interfaces, which provide no

implementation.

DIT and NOC have been taken from the Chidamber and Kemerer suite of 00
design metrics.

Depth ofinheritance tree (DIT)
The depth of a class within the inheritance hierarchy is the maximum number of

Ç steps from the class node to the root of the tree. This metric counts the number of

18

ancestors of a class. The deeper a class is within the hierarchy, the greater the number of

methods it is likely to inherit, making it more complex to predict its behavior.

O,fFarents(c)=O

DIT(c)= -

1 + max{DIT(c’) $ c’e ?arents(c)},else.

Number ofcltitdren (NOC)

The number of chiidren is the number of immediate subclasses of a class in the

hierarchy. It is an indicator of the potential influence a class can have on other classes in

the design. If a class has a large NOC value, it may require more testing of the methods in

that class.

NOC(c) = Children(c)

The usefulness of the selected 00 design metrics, with respect to their ability to

predict interface stability is discussed in Chapter 5 where we present the experimental

results of our study.

Several measurement tools have been developed to extract quality metrics. In the

following section we will expose 4 measurement tools, we will compare their architecture

and we will attempt to find the best suitable tool for our assessments.

C

19

2.3 Quality Measurement and Evaluation Tools

Several software metric tools have been developed for the estimation of software

quality and have been used in real-world software development.

The tools for software measurement that are currently available can be divided into

three categoriesf 15]:

1. Tool-integrated facilities: A few software development tools have integrated

some facilities to the software measurement. For example the

Objectworks/Smalltalk 4.1 compiler has a class “measure”, it calculates the

number of instance variables, instance methods, class variables. Line of code

is also measured by most of the compilers.

2. Tool-extended facilities: The user of the software development tool can

extend the measurement facilities of the tool. The programming language

SmalltalklV can be extended to calculate system, class and method measures.

3. Stand-alone measurement tools: These are software tools specifically

developed for performing metric-data gathering, analysis, and visualization.

In general, metric tools support the following functionalities:

• Collection of measurement data

• Inspection of source code

• The display of measurement results

• Application of the quality model

• Comparison of measurement results

20

2.3.1 TAC++

TAC++ (Tool for Analyzing C++ code) is a research prototype suitable for

producing assessment of C++ applicationsf2oJ. It lias been developed at the department

of System and Informatics of the University of Florence and is capable of estimating the

values of several of direct and indirect metrics for the evaluation of effort, maintenance

and reusability costs.

The tool is comprised of three main components: evaluating low-level and higli

level metrics, defining and showing metric histograms and profiles, and statistically

analyzing system for metric validation.

The following is a general description of the TAC++ organization. The C++ code is

preprocessed for inclusion of macro definitions, header files, conditional compilation

andlor constant declarations. Once the code is preprocessed, it is analyzed by a Lexical

Grammatical analyzer that provides LLM (Low Level Metric). These are direct metrics —

[codeJj4>[Preprocessor

Class Browser/ EditorJ<[LexfGtam AnaIyzJ=—>i. LLM Evaluator

Figure 4: TAC++ Organization

21

such as LOC, Mc, Ha, Number of Method, etc. The LLM Evaluator saves the

relationships between classes. The obtained LLM can be managed to define high level,

user-defined metrics. The High Level Metric Editor allows the user to define custom

metrics according to the specified formula. Histograms and profilers (Kiviat diagram,

tables, etc.) can be generated to analyze system, class, or method-level metrics. The

metrics can be validated by the means of the Statistical Analyzer that correlates the real

data collected with metric values. The Statistical Analyzer is mainly based on multilinear

regression techniques.

The metrics extracted by TAC++ are proposed by known literature; some of them are

listed in the following table.

Metric Comment Reference

NOC Number 0f Chiidren

. S. R. Chidamber and C.
DIT Depth Inhentance Tree F. Kemerer

WMC Weighted Methods for Class

$ize2 Number of Class attributes md methods W. Li and S. Henry

Ha Halstead Metric H. M. Halstead

Mc McCabe Cyclomatic Complexity T. J. McCabe

Table 4: TAC++ metries

o

22

2.3.2 QMOOD

QMOOD (Quality Metrics for Object-Oriented Development represented in C++) is

an automated tool developed by Jagdish Bansiya; it supports the assessment and analysis

ofover 30 object-oriented design metrics f5]f8].

The tool has a repository in which the metric data of analyzed projects can be stored

and retrieved later for comparisons.

Figure 5: QMOOD Organization

o

The figure above shows the key components of the tool architecture. QMOOD

handies inputs from several sources at a time. After preprocessing the files, a C++ Parser

does a syntactic analysis of classes to build an Abstract Syntax Tree (AST). The AST

constitutes the knowledge of the input system being analyzed. The C++ language

Knowledge Component represents information necessary for interpretation of a group of

23

nodes representing C++ constructs in the AST. This component generates structures that

required for the processing of nodes of the AST. The AST is then traversed to collect

metric information. Metric measures are provided for class level and system level. The

tool supports object-oriented design metrics and they are implemented in the Design

Metrics Component. The data for computing these metrics is collected using a set of 15

metric classes in the tool. The tool classifies the metrics based on their scope (Class or

System) and information (Simple or Derived).

Information
. Class System

CÏassflcation

Method Metric Class System Metric Class

Simple Data Metric Class Relational Metric Class

Access Metric Class
Object Size Metnc Class

Parameter Metric Class Virtual Method Metric Class

Cohesion Metric Class Mcestor Metric Class

Derived Client Access Metric Class Association Metric Class

Class Complexity Metric Class Abstraction Metric Class

Modularity Metric Class

Table 5: QMOOD Classification ofMetric Classes Based on Scope and Information

Resuits of a design assessment can be placed in Design Repository for future access

and for comparison with other designs. QMOOD allows for calculated metric values to

automatically be compared to other versions or systems that have been previously

analyzed.

The QMOOD++ tool is easily adaptable to incorporate new metrics and changes to

the relationships between design properties and design metrics and the weights assigned

to the relationships. New metrics can be easily added by programming the tool to process

the AST representation 0f the design for the desired information.

C

24

2.3.3 MOODKTT

The team of Femando Brito e Abreu from the Faculty of Sciences and Technology of

the Lisbon New University and INESC worked on the development of MOODKIT f2]f3].

It includes a set of tools for extracting the MOOD metrics from several Object-Oriented

languages; these tools are based on the GOODLY (Generic Object Oriented Design

Language? Yes!) Language. GOODLY was conceived with the main purpose of

facilitating the extraction of MOOD design metrics. It allows expressing the most

relevant design information such as the inheritance relations, associations and message

exchanges.

User

The first part of the MOODKIT system performs a formalism conversion: converts

the code into GOODLY code in ASCII format, and the second part calculates the MOOD

(Metrics for Object Oriented Design) metrics. The two parts are independent. This new

architecture therefore allows proceeding independently in two directions: On one hand,

enlarging MOODKIT applicability by adding new formalism converters. On the other

Figure 6: MOODMT Organization

25

hand, facilitating the expansion of the MOOD set of metrics in an unrestricted way. The

MOOD set includes the following metrics:

MOOD Metrics Encapsulation Inheritance Polyinorphisrn Message

L Passing

A’Iethod Hiding factor (MUF) X

Attrihute Hiding Factor (AHF) X

Method Inheritance factor (MIF) X

Attribute Inheritance factor (AIF) X

Polymoiphisrn factor Pf) X

Coupling Factor (CF) X

Table 6: MOOD Metrics vs. Quality Attributes

This tool in its current version, allows parsing Eiffel, Smalltalk, C++ and Java code,

as well as object models expressed in OMT and UML to produce GOODLY code.

26

2.3.4 DATRIX

Beil Canada in conjunction with University researcli lias developed a measurement

tool Datrix that focuses on a static source code evaluation that is mostly concerned witli

the maintainability attributes fl4j. Datrix covers many of the ISO 9126 Maintainability

sub-cliaracteristics: Analyzability, Changeability, Stability, and Testability.

The tool provides source code metrics that describe properties of three types of

components: the routines, the classes, and the files.

—

.

Source Code & Buitd Info
-

parserllinker I
]r

Abstract Sernantic Graph ASG)
An I

Data Decaratan Grph Ï
Cnr Fk

Di Fkw rapi I

Analyzet

[-e -

System Information

____LZ

Viewers(Report Generators

Figure 7: DATRIX Organization

Parsersflinkers are first used to extract information about the source code to analyze.

The parsers/linkers generate an Abstract Semantic Graphs (ASG). The ASG is essentially

C

27

an AST with embedded semantic information. Datrix ASG model pursues two main

objectives: 1) Completeness: this means that any ldnd of Reverse Engineering analyses

should be doable on the ASG, without even having to return to the source code. 2)

Language Independence: the model shouid be the same for ail common concepts of C++,

Java, and other languages. The Analyzers module is a metric tool, it process and refines

information provided by the ASG in order to generate specific analysis results like

architectural analysis, inheritance graphs, etc. More than fifty metrics are calculated, tliey

characterize files, classes and functions.

The ASG is a semantically enhanced AST. It is composed of nodes and edges. It

lias also a number of analyzers that compute metrics at routine, class, and file-level.

These tools work either on the source code or on the ASG.

Datrix measures 53 characteristics of routines, which cover 5 domainsf29]f30]f35].

The Programming Rules is the first domain, mostly evaluating wliether the structured

programming mie (each block lias one point of entry and one point of exit) are applied.

The Coupling domain includes metrics that determine to what extent a given routine

is coupled to the rest of the system, regarding the number of global identifiers it uses

(global variables references, and call to other routines).

Dimension and Complexity forms the third domain. Various measurements are made

on the size of the routines, as well as the complexity of the statements and of the control

flow graph (CFG). The last 3 metrics in this domain also provide information on the size

and complexity of the routine, but in the dimension of the data instead of the control

flow. Metrics that influence the number of test cases required for unit testing, as well as

the effort required to build each test case are classified in the TestabiÏily domain.

The fifth and last domain is made up of ail metrics related to the internai

documentation.

28

o

2.3.5 MOO$E

MOOSE is a metric tool developed as part of the FAMOOS project f16]. The main

purpose of this project is to help the management and the evolution of object-oriented

systems. Moose is a language independent reengineering tool. It consists of a repository

to store models of software systems, and provides facilities to analyze, query and

navigate them. It is based on the FAMIX metamodel, which provides a language

representation of object-oriented sources and contains the required information for

system reengineering.

The figure below represents the architecture of MOOSE.

Figure 8: Architecture ofMOOSE

o

29

Its architecture allows ftexibility and extensibility. It supports reengineering of

applications developed in different object-oriented languages, as its core model is

language independent. Also new entities like measurements can be added to the

environment.

The architecture of MOOSE is composed of several modules. The IrnportfExport

Framework provides support to import information into and export information from the

MOOSE repository. CDFI and XMl, two standard exchange formats are used as interface

to the metamodel parser. The Services component includes metrics and other analysis

supports. The metric module supports language-independent design metrics as well as

language-specific metrics. The language-independent metrics are computed based on the

FAMD(representation. FAMIX does not support metrics that need information about

method bodies. The services provided by MOOSE are limited to the class interface level

therefore only static information can be obtained. Detailed abstract syntax tree

information is flot covered. But stiil in comparison to the previously exposed tools

MOOSE lias an advantageous architecture because of its flexibility and extensibility. In

addition MOOSE has been used for reverse engineering and refactoring purposes.

Q

T
he

ta
bl

e
be

lo
w

is
a

su
rn

m
ar

y
o

f
th

e
di

ff
er

en
t

to
ol

s
di

sc
us

se
d.

o 30

O
bj

ec
t-

O
ri

en
te

d
D

es
ig

n
T

he
to

o
al

lo
w

s
th

e
u
se

rt
o

in
co

rp
or

at
e

M
et

ri
cs

pr
op

os
ed

by
ne

w
m

et
ri

cs
an

d
ch

an
ae

s
to

th
e

.
.

.
T

he
to

ol
is

li
m

it
ed

to
Q

M
O

O
D

C
++

on
ly

th
e

li
te

ra
tu

re
as

w
el

l
as

A
S

T
re

la
ti

on
sh

ip
s

be
tw

ee
n

de
si

cn
pr

op
er

ti
es

.
.

.
.

C
++

ap
pl

ic
at

io
ns

.
de

fi
ne

d
by

th
e

to
ol

an
d

de
si

gn
m

et
ri

cs
an

d
th

e
w

ei
gh

ts
de

si
gn

er
.

as
si

gn
ed

to
th

e
re

la
ti

on
sh

ip
s.

T
he

to
ol

ge
ne

ra
te

s
an

in
te

rm
ed

ia
te

O
bj

ec
t-

la
ng

ua
ge

re
pr

es
en

ta
ti

on
,

G
O

O
D

L
Y

,
th

e
M

O
O

D
K

IT
O

ri
en

te
d

M
O

O
D

M
et

ri
cs

G
O

O
D

L
Y

an
al

ys
is

is
do

ne
on

th
e

re
pr

es
en

ta
ti

on
,

T
he

to
ol

is
hr

ni
te

d
to

.
.

M
O

O
D

m
et

ri
cs

.
la

ng
ua

ge
s

an
d

th
er

ef
or

e
it

is
la

ng
ua

ge
in

de
pe

nd
en

t.
T

he
A

S
G

is
sy

nt
ax

.
sp

ec
if

ic
,

th
er

ef
or

e
th

e
T

he
to

ol
ge

ne
ra

te
s

an
in

te
rm

ed
ia

te
C

/C
+

+
an

d
.

.
.

.
re

su
it

s
ob

ta
in

ed
fr

om
D

A
T

R
IX

D
at

nx
D

es
ig

n
M

et
nc

s
A

S
G

la
ng

ua
ge

re
pr

es
en

ta
ti

on
,

A
SG

;
th

e
Ja

va
.

.
.

th
e

an
al

ys
is

of
th

e
an

al
ys

is
is

do
ne

on
th

e
re

pr
es

en
ta

ti
on

.
A

SG
is

la
ng

ua
ge

sp
ec

if
ic

.
T

he
F

A
M

IX

O
be

ct
-

T
he

to
ol

su
pp

or
ts

re
en

gi
ne

er
in

g
of

re
pr

es
en

ta
ti

on
is

M
O

O
S

E
O

ri
en

te
d

D
es

ig
n

M
et

ri
cs

F
A

M
IX

ap
pl

ic
at

io
ns

de
ve

lo
pe

d
in

di
ff

er
en

t
li

m
it

ed
to

th
e

cl
as

s
ob

je
ct

-o
ri

en
te

d
la

ng
ua

ge
s

as
its

co
re

in
te

rf
ac

e.
T

he
re

fo
re

la
ng

ua
ge

s
.

.

m
od

el
F

A
M

D
(

is
la

ng
ua

ge
in

de
pe

nd
en

t.
dy

na
nu

c
in

fo
rm

at
io

n
ca

nn
ot

be
_o

bt
ai

ne
d.

D
ir

ec
t

M
et

ri
cs

de
fi

ne
d

by
th

e
li

te
ra

tu
re

.

T
he

to
ol

al
lo

w
s

th
e

us
er

to
cu

st
om

iz
e

T
he

to
ol

is
li

m
it

ed
to

de
ri

ve
d

m
et

ri
cs

fr
om

th
e

di
re

ct
ly

C
++

ap
pl

ic
at

io
ns

.
ca

lc
ul

at
ed

m
et

ri
cs

ge
ne

ra
te

d.

31

2.3.6 Conclusion

This section exposed the architecture of several tools used for metric extraction and

quality assessment. In general measurement tools are primarily intended for the analysis

and exploration of specific language application, therefore the metrics are tailored to

measure properties of software components written in this specific language. However,

there are few tools that support several languages.

The Datrix and MOOSE tools showed the most ftexibility in terms of their

architecture. Unlike TAC++, where the metric extraction module is directly from the

source code, Datrix and MOOSE extraction module is independent of the source code.

This is due to the use of an intermediate representation of the code: ASG and FAMIX

respectively. This approach will allow independent development between the Analyzer

and the Parser module. Plus, the extraction of metrics will be on the intermediate

representation only. In addition the ASG and FAMD(treat the semantic of the language

unlike the AST representation used by QMOOD. This means that any kind of reverse

engineering analyses should be doable, without even having to return to the source code.

MOODKIT uses the same concept of an intermediate language, the GOODLY language

but it was conceived specifically to extract MOOD metrics. Consequently, the use of an

intermediate representation is a key factor for the efftciency of the metric tool to support

several programming languages.

The measurement tools will assess and predict specific quality characteristics out of

the metrics extracted. Statistical analysis is done on the data obtained, and predictive

models are generated. In the tools exposed, the analysis and predictive models generated

are language-specific, since the intermediate representation like the ASG keeps into

account the syntax of the language. Therefore we cannot apply a predictive model

specific to C++ on a Java application. The predictive model must be general enough to

suit different languages.

In this respect, we decided to go one step further similar to FAMIX by designing a

C generic model that is programming language independent representation, meaning that

32

abstracts away from language specific syntax, so analysis can be applied onto different

languages. The ASG will be used as the interchange format input. BOAP that consists of

a set of tools will generate the generic model. BOAP approach and the generic model will

be discussed in detail in the subsequent sections.

33

Chapter 3

3. BOAPApproach

The BOAP architecture lias two key components. The first is tlie mapping module;

the second is the metric extraction module. In this architecture, the Generic Model

representation plays a central role that is stored in an object-oriented database for future

analysis.

One of the overriding principles in this design is the fact that ah language-specific

inferences take place before getting to this Generic Model fi]. In consequence, this

representation can accommodate different programming languages: both object-oriented

and non-object-oriented languages.

This architecture allows proceeding independently in two directions. On one hand,

enlarging BOAP applicability by enriching the database with new system representations

and treatment other programming languages. On the other hand, facilitating the

figure 9: BOAP Architecture

34

extraction and expansion of the set of metrics used later for design related analysis. The

following section gives a general overview of BOAP.

3.1 Parsing Module

First the Datrix parser parses the application. This produces an abstract syntax tree

(AST) that is transformed to an abstract semantic graph (ASG).

“An A$G 1$ essentially an AST with embedded semantic information. $pecfically, in

an A$I a reftrence to an entity is represented by an edge pointing to a simple leafnode

that holds the name of the entity. In an A$G, a reference is represented by an edge

pointing to the root ofthe (shared) subgraph in the A$G that represents the declaration

ofthe entity

The programming languages supported by Datrix are Java and C++. The output of

Datrix parser, ASG, is in plain ASCII text. The ASG defined is made of nodes and edges.

These nodes and edges are typed. Edges are flot simply pointers from one node to

another, but entities with their own properties. The following is an example of a node and

an edge Datrix representation in a TA-like format:

$INSTANCE 1 cAliaslype
1{
beg= 1.13
end= 1.15
name = “foo’
visb = pub
}

(cArcSon 17 19)

{
order 3

}

Each node begins with the letters $INSTANCE. The type of the node is cAliasType

andthenodeidis 1.

35

We have an edge if the une begins with “(“. The type is cArcSon. The id of the

startNode edge is 17 and the id of the endNode is 19. The order of an edge is represented

with the respect to the startNode of the edge. The information extracted from the node,

the edge and their attributes will be the input for the mapping module.

3.2 Mapping Module

The mapping module gathers language-specific semantic and transforms the ASG

into a language-independent representation. Language specific inferences have to take

place to convert Datrix output into the generic model.

The approach consists of two steps:

1. Reconstruction of the ASG as the input phase for the generation of the

representation.

2. Performance of language-specific inferences to generate the Generic Model.

The first step seems redundant, but it is preferable to generate our own representation

as we parse in Datrix’s input so possible future changes in the Datrix format will flot

affect the generation phase.

The second step will first generate the skeleton of the program. Then the subsequent

step will consist of filling up the rest of the model using language specific inferences.

The module implements the representation in Java. The Java objects representing the

generic model are stored in an object-oriented database. The implementation of the

database is based on ObjectStore PSE (Personal Storage Editions) PRO that provides

persistent storage for Java objects. ObjectStore was chosen because it allows you to store,

and query complex data.

This object base database maintains all the entities that are part of the system, ah

information about the history and status of the project. Analysis and metric extraction

wihl be done directly from the database.

C

36

The advantages of our program representation are:

1. It is a language-independent representation. In general parsers are specific to

a programming language. Therefore, the representation generated is closely

related to the programming language. On the other hand, our model is used to

represent various languages.

2. It produces generic code analysis. Analysis modules are related to the

architectural representation of the code. The use of the generic model allows

us to do the analysis only once.

3. Tt is adaptable to our needs. The model representations generated by the

existing parsers may flot be adaptable to our needs. Aspects or information

needed may be missing in those models. From our knowledge, there are no

open models that can be customized to our needs. By defining a model of

representation we define an architecture that is adaptable to our need.

Different aspects and information can be represented that are essential to our

analysis.

In the following section we will explore the generic model where we will describe the

components that defines it.

o

37

3.3 Generic Metamodel

There are a number of existing metamodels for representing software. Several of

those are aimed at object-oriented analysis and design, Unified Modeling Language

(UML)f3$] is an example. However, these metamodels represent software at the design

level. Reengineering requires information about software at the source code level. The

starting point is to have a precise mapping of the software to a model rather than a design

model that might have been implemented in lots of different ways.

In the reengineering research community several metamodels have been developed.

They are aimed at procedural languages, object-oriented languages or object

orientedlprocedural hybrid languages. Most metamodels support multiple languages.

This thesis answers this question by specifying a language-independent metamodel

for object-oriented software, the generic metamodel. The figure below shows a part of the

metamodel that has been developed until now for the scope of this project.

The metamodel is defined using an object structure written in Java. The object

structure consists of approximately 40 classes that model specific components of the

abstract representation.

The metamodel is persistent. This allows the generated model to be stored to

secondary storage and retrieved again, possibly by a different system. Maldng the model

persistent greatly simplified the design of the supporting tools each tool can retrieve an

existing system and extend or modify it and store it again. Having the metamodel

persistent also provided a simple solution to the problem of parsing very large class

libraries.

A partial object diagram of the metamodel classes is shown in figure 10.

38

o

One of the main principles in this design is the fact that ail language-specific

inferences have taken place before getting to this representation.

Both object-oriented and non-object can be represented in this generic model. In

addition, design level and implementation level analysis can be done out of the

metamodel.

The main aspects treated in this representation are: Scopes, types and compositions,

methods and attributes, functions and parameters, and finally instructions. The following

section will describe ail the different aspects mentioned above.

Figure 10: Generic metamodel

39

3.3.1 Scopes
The scope of a declaration is the region of the program within which the entity

declared by the declaration can be referred to using a simple name (provided it is visible).

A declaration is said to be in scope at a particular point in a program if and only if the

declaration’s scope includes that point.

In object-oriented languages there is the concept of visibility and there are 4 levels of

visibility: private, protected, public and unknown (for other). The visibility defines the

access control and it can be specified in an Entity or a Feature to control when access to a

member is allowed. Private limits the access to the Entity itself, Protected gives access

within the Module and finally Public it is accessible by the entire application.

Global Scope

Identifiers with global scope are visible to ail the application, which include all

the modules.

Module Scope

Identifiers with module scope are visible only within the module. A module is

defined as a subset of an application. It composed of one or several files. In Java, this

scope corresponds to a package.

figure 11: Scope Diagram

40

File Scope

Identifiers with file scope are visible only within the file. A file includes is

composed of one or several entities.

Block Scope

The scope of a local variable declaration in a block is the rest of the block in

which the declaration appears, starting with its own initializer. As a general rule, a

variable that is declared in a block is only visible within the block.

3.3.2 Types

In general, the types are divided into two categories: primitive types and reference

types.

Primitive Types

The primitive types are the Boolean type and the numeric types. The numeric

types are the integral types byte, short, int, long, and char, and the floating-point types

float and double.

Reference Types

The reference types are defined by the user. They are class types, interface types,

structure types, array types, etc.

In our model, the different types have been represented by specific objects. Every

element belonging to a component (attribute, method, parameter...) refers to the object

representing his type. In this section we will describe the different classes representing

Ç the types in the model.

41

• Behaviors consist of method signatures. A signature consists of an identifier, a

retum type and a list of parameters’ type.

• Basic Type represents the primitive types. Until now, the primitive types

considered in our model are: Boolean, char, float, double, short, byte, long, int

and void.

• Entity includes class, type, interface and theory. An Entity declaration lias a name

and may include moc4fler: public, protected, private, package, static. Entity can

have one or more features. C Inheritance represents inheritance relationships

between entities. Thus, there are two associations between Clnheritance and

Entity that correspond to the two roles of an entity within an inheritance

relationship.

• Unknow Type represents unresolved types or types that are not defined in the

application. Types that are not defined in the application are imported types from

extemal libraries.

Figure 12: Type Diagram

The class Typed Structure is one of the major foots of this model. This class

includes all sort of set of types.

42

3.3.3 Methods and Attributes

Figure 13: Feature Diagram

Methods and attributes are defined respectively in the model by the class Feature

and Attribute. feature has a name (attribute name or function name) and modifiers,

which correspond to visibility categories (private, protected, public, package, etc).

Flnheritance represents inheritance relationships between Features. F Inheritance

allows treating inheritance during the mapping by taking into account the semantic of

each programming language. Once the mapping is done, with F Inheritance we can have

abstraction of how the features are inherited.

As discussed above, each Entity can have one or several Feature. In addition, the

Class Feature has a link with the class Typed Structure representing the retum type of

the method and a link with Parameter representing the parameters of the method and a

link to Block representing the body of the method. The class Attribute is a sub-class of

Feature.

43

3.3.4 Functions and parameters

In hybrid languages such as C++, functions can be defined and they are presented in

the model by the class NamedBehavior. This class has a link to the class

Typed Structure to represent the retuming type of the function, a link to class Farameters

representing the parameters of the function, a link to class Block representing the body of

the function, a link to class File in which this function is defined and a link to class $cope

defining its visibility within the system.

44

3.4 $ummary of the Metamodels

BOAP’s metamodel lias advantages over the already exiting ones. Not only it is

language independent but also it has the capability to represent an application at its

design level as well as the implementation level. The following table gives a general

comparison of the different metamodels exposed.

Metamodel Language independent Metncs $upported

AST-QMOOD No Design Metrics

Partially: language
independent core with

Design MetricsASG-DATRIX
multiple language

extensions.
Partially: language

independent core with
Design MetricsGOODLY-MOODKTT

multiple language
extensions.

Partially: language
independent core with Design MetricsFAMIX-MOOSE

multiple language
extensions.

Design Metrics and
GENERIC-BOAP Yes Metrics of Implementation

Table 7: Summary ofMetamodels

As well as storing the architectural information of system components, the meta

model classes can be queried to generate system information. The information gained

from these queries can be used to generate further information such as metrics. The next

step of this project is to generate a module that extracts metrics from the BOAP’s generic

metamodel. Next section outlines the application of this information for metrics

collection.

o

45

3.5 Metric Extraction Module

This module will traverse the representation stored in the database starting from the

system level to the module level to the entity level and finally to the block level. The

mapping is not done to represent inside the block. For the purpose of our study, this

information will not be needed. Detailed information that is commonly available within

the definition of a block, for example method invocations were not taken into account.

Since this information is not available at the design level, we excluded metrics related to

cohesion and complexity. It is at the design level that the interface of classes and the class

dependencies are defined. We can extract information about the inheritance relationships

among classes. Within the class we can extract the attributes, the methods and their

parameters, their type and their visibility. The metrics that can be collected during design

stage of a project like inheritance, coupling and inheritance metrics were calculated. We

defined and extracted relevant metrics to our study at the system and class level and they

are listed below:

System]eve] metric

Metric Description Summary

TBC Total base classes of system
This metric is a count of the number of classes that don’t have

parent classes.

. This metric is a count of the total number of classes in the
CLS Number of classes in a system system.

This metric counts the number of leaf classes in the hierarchies
Number of Leaf Classes of the design.

This metric is the average depth of inheritance of classes in the
design. It is computed by dividing the summation of maximum

ADI Average Depth of Inheritance path lengths to ail classes by the number of classes. The path
length to a class is the number of edges from the root to the

class in an inheritance tree representation.

This metric is the average number of children per class in the
. . design. The metric is computed by dividing the summation of

AWI Average Width of Inhentance
the number of chiidren over ail classes by the number of classes

in the design.

C

46

Class Level metric

Metric Description Summary

DIT
Depth of Inheritance ThÏs metric is the length of the inheritance path from the

root to a class.

NOC
Number of Chiidren This metric is a count of the number of immediate chiidren

(sub classes) of a class.
NPA . . This metric counts the number of attributes that are

Number of Public Attnbutes
declared as public in a class.
This metric is a count of the number of public methods in a

CIS Class Interface Size
class.

NOM Number of Methods This metric is a count of all the methods defined in a class.

NOD Number of Attributes This metric is a count of the number of attributes in a class.

CSM Class Size Metric This metric is an ordinal number that is the sum of the
number of methods and attributes in a class.

. . This metric is the ratio of the number of public methods to
OAM Operation Access Metnc

the total number of methods declared in the class. A high
value for OAM is desired.

. This metric is the ratio of the number of private (protected)
DAM Data Access Metnc .

attnbutes to the total number of attnbutes declared in the
class. A high value for DAM is desired.
This metric is a count of the different number of classes

DCC Direct Class Coupling that a class is directly related to. The metric includes
classes that are directly related by attribute declarations
and message passing (parameters) in methods.

. . . This metric is a direct count of the number of different
Direct Attribute Based Couphng .

DAC class types that are declared as attnbute references mside a
class.

DPC
Direct Parameter Based This metric is a count of the number of class object types

Coupling that are required directly for message passing (parameters)
to methods in a class.
O: Relation type other then Hereditaiy or Friend type

OCMIC
Other Class-Method Import CM: Class-Method Interaction

Coupling IC: The count of method having as a retum type or
parameter type a class type.
O: Relation type other then Hereditaiy or Friend type

OCMEC
Other Class-Method Export CM: Class-Method Interaction

Coupling EC: The count of parameter of a method’s class or
method’s retuning type with a class C type.

. O: Relation type other then Hereditaiy or friend type
Other Class-Attnbute Import

OCAIC
C F

CA: Class-Attnbute Interaction
oup ing

IC: The count of Attribute of type class object
. O: Relation type other then Hereditary or Friend type

Others Class-Attribute Export
OCAEC . CA: Class-Attnbute Interaction

LOUfliifl
‘ EC: The count of Attribute having a class C type.

.

47

3.5.1 Metric Calculation

As stated before, the metrics are calculated using the representation according to our

metamodel. In the remaining of this section we will show how the system and class

metrics can 5e derived from the representation.

A system is defined as a collection of 00 classes. Let us assume a function called

Classes which when applied to a system S, gives the distinct classes of $ represented by

the set of instances of the class “Class”, refer to Figure 10: Generic metamodel.

CLS: Number of classes in a system

CLS is defined as the cardinality of the set Classes defined as follow:

CL$ = Classes($)

TBC: Total base classes of system

Let Base be the set of base classes of a system such that

Base($) = {c1 I e. e Class A sup(c1) = Ø} where sup (e1) is the set of parent classes of

c that can be obtained using the relation with the class “C_Inheritance»

Therefore, TBC can 5e defined as the cardinality of the set Base defined as follow:

TBC = Base($)

NLC: Number of Leaf Classes

Let Leaf5e the set of classes without chiidren in a system such that

Leaf($) = {e1 I e. e Class A sub(c1) = Ø} where sub(e1) is the set of children classes

of c that can be obtained using the relation with the class “C_Inheritance”.

NLC = Leaf($)

48

NOC: Number of Chuidren

Let Chiidren be the set of subclasses of a class c, where cj is a subclass of c.

e and c are instances of “Class” and their relation is obtained by the class

“C_Jnheritance”: Children(c) = {c I e. c1 .sub}

Then we can define NOC of a class as:

NOC(c) = ChiÏdren(c)

In the system level we can also define the average width, which is the NOC of each

class of the system over the total number of class.

AWI: Average Width oflnheritance

NOC(e,)

AWI=
CL$

where n is the total number of classes in a system.

DIT: Depth oflnheritance

The Depth of Inheritance of a class c can be defined as follow

O,fsup(c) = 0

DJT(c,)= J
l+max{DIT(c’) c’e sup(c)},else.

In the system level we can define the average depth of inheritance as follow:

C

49

ADI: Average Depth of Inherïtance

DIT(c1)

ADI= ‘=

CL$

where n is the total number of classes in a system.

Now that we’ve exposed the inheritance related metric in terms of the generic

representation, the rest of the metrics are related to coupling and encapsulation.

CSM: Class Size Metric

Method and attribute of a class are considered as “Features”. Let Feature be the set

of method and attributes of a class c then

C$M =1 Feature(c) I

DAM: Data Access Metric

DAM measures the ratio of non-public attributes to the total number of attribute in a

class.

= NOD - NPA

NOD

This metric can be equated by getting the total number of instances of the class

“Attribute” from which we identify the attribute “modifier” that are equal to public.

Let pubAttribute be the public attribute of a class, therefore there is an instance of

“Attribute” that has its attribute “modifier” = public.

VxpubAttribute(x) = {x I x e Attribute A X e Attribute.modfier = public}

Therefore for a class c:

NOD = Attribute(c)

NPA = pubAttribute(c)

50

OAM: Operation Access Metric

OAM
=

NOM
where

NOM = Methods(c)

CIS is the number of public method in a class. Let m be a method of a class. In terms of

our representation it is an instance of the class “Feature” but flot an instance of the

subclass “Attribute”. Feature bas an attribute “modifier” for assigning the visibility of the

method. Therefore the total of public method is obtained by summing the instances of the

class “Feature” exciuding “Attribute” in a class having the attribute “modifier” set to

“public”.

Let PubMethods be the set of methods in the system.

VxPubliethod(x) = {x I x e feature A x Attribute A modifier public}

Therefore CIS is the cardinality of public Methods in a class

CI$ = FubMethod(c)

DAC: Direct Attribute Based Coupling

Let A be the set of attributes in a class that are of a class type.

Let C be the set of classes in the system.

VxDAC(x) = {x I x e A, (x.has — type e C)}

DPC: Direct Parameter Based Coupling

We should note that Behavior is used to represent both functions and methods

associated with classes.

NamedBehavior is a method signature, with parameter types, a return type and a

name.

A Behavior has a set of parameters through the association has-parameter.

Q A Parameter is associated with Typed$tructure, which can be an entity.

51

Set Farameter, 0fmethod = NamedBehavior3. hasfiarameter

Then

Let? be the set ofparameter ofa rnethod

F = {Parametei , Parameter ,...Farametei}where n is the total number of method’s

parameter.

VxDPC(x) = {x I xe F. (x.has_typee c)}

DCC: Direct Class Coupling

DCC(c) = DFC(c) + DAC(c)

OCAEC: Other C]ass-Attribute Export Coupling

Class-Attribute (CA) interaction: there is a class-attribute interaction between classes

A and B, if class A has an attribute of type B.

Let D be the set of attributes of class A.

VxOCAEC(x)={xlxe DAx.has_typeE B}

o

52

OCMEC: Others Class-Method Export Coupling

CM-interactions: there is a class-method interaction between classes A and B, if the

signature of a method of Class A has a reference of type of Class B.

Let Mbe the set of behaviors of class A.

VxOCMEC(x) = {x I x e M A {x.return — type e B y x.has — param.has — type e B}}

The metrics chosen measure characteristics related to coupling, inheritance and

encapsulation. The combination of the resulting metrics will be used to estimate the

quality design, in our case software stability.

This chapter gave an overview of the BOAP architecture. A fundamental role is

played in this architecture by a language-independent representation: the generic

metamodel. It provides great flexibility by allowing the mapping and the analysis to be

independent ftom each other. In addition we discussed the metric module that was

developed to extract design metrics from the metamodel. The next chapter will describe

the mapping of Java applications.

Chapter 4

4. The Extraction of Java Programs
into the Generic Representation

4.1 General approach

Language specific inferences have to take place to convert Datrix output, the ASG,

into the generic model.

The approacli consists of two steps:

1. Reconstruction of the ASG as the input phase for the generation of the

representation.

2. Performance of language-specific (Java) inferences to generate the

Generic Model.

The first step seems redundant, but it is preferable to generate our own representation

as we parse in Datrix’s input so possible future changes in the Datrix format will not

affect the generation phase.

The second step will first generate the skeleton of the program. Then the subsequent

step will consist of filling up the rest of the model using language specific inferences.

Consider the following source code:

public class cStudent{
private int age
public void get$tudent(cStudent student); }

O
The figure below illustrates the two steps mentioned above. The left hand-side graph

shows a simplified Datrix model while the right hand side it is our defined representation.

54

o

[s denea n

/ CIss
— n3me:

cSIudent

has

Çnehnvrot)

hasparameter

(Parmeter
nam: Studnt”

For this particular example, it is worth notÏng that the generic model can be

generated from a single traversai of the Datrix ASG. However, there are cases when the

generic representation cannot be generated in a single traversai and that includes

language-specific inferences, for exampie in case of inheritance.

dfino

cScupeCompH
nme:cStudentjEIv

onns

(/ cCIaç
cStut

\ fs pbcontans
contains

cQbject: e”
v pnvate

or (Atttbue
tyeÏ BascType

nrne: aqe” name: “nt

_______ ________—J

ha .yp

public class cPerson{
public String name;}

public class c$tudent extends cPerson{
private int age;
public void getStudent(cStudent student); }

55

Datrix’s ASG would represent the attribute “name” in the above example only

once, as part of the definition of the class cPerson. The class cStudent lias access to the

attribute “name” through the inheritance relation: cStudent extends cPerson. In our model

we treat the language specific inferences, therefore we repeat the attribute “name” in the

subclass cStudent. For this purpose we need an operation to copy it down which is done

in the mapping module.

4.1.1 Reconstructing Datrix’ s ASG

The output file of Datrix contains nodes and edges that define the graph. it is in a

text file format that makes it convenient for data processing. The nodes are identified by

an id together with the name of the particular type of node. The general strategy is to

make a class for each type of node. So when we distinguish a node type, we make an

object of the corresponding type, read the attribute values (order, name, type, and number

of attributes depending on the node type) and use the values to set the corresponding

fields in the newly created object. The name of the node type in the Datrix output file

becomes the name of the class. For instance the Datrix’s node type cScopeGlb becomes

the class cScopeGlb.java. Similarly, we make an object of the correspondent type for

each type of edge we find. We set the startNode and endNode with the corresponding id

of the start and end node. We store cadi node in a hashmap, and we use the id of the

object as the index to the hashmap. For the graph edge, we get its StartNode, and add the

edge to the list of children for the node, thus constmcting the abstract semantic graph in

memory. Once we have the abstract semantic graph, we can perform a language-specific

traversal in order to generate our representation.

4.1.2 Mapping of Java code

The main objects created to represent Java code are:

C

56

• The object dbApplication refers to ail the entities defined in the application.

The object dbScopeGlb refers to ail the entities where their scope is the

application. The two objects refer to each other.

• The object dbModule refers to ail the entities defined in the package. The

object dbScopeModule refers only to entities where their scope is limited to

the package level. The two objects refer to each other.

• The object dbFile refers to ail the entities defined in the file. The object

dbScopeFïle refers only to entities where their scope is limited to the file

level. The two objects refer to each other.

• The object dbBasicType refers to primitive type. The primitive types have a

global scope; therefore the object dbScopeGlb refers to dbBasicType objects.

• The object dbClass refers to the class defined in the application. The

identifier of the dbClass object is its fully qualified name for example

packageName.ObjectName. The object dbClass refers to the dbFile object

corresponding to the file where the class is defined. It also refers to the object

Scope to represent the scope of the class.

• The object dbFeature refers to the method defined in the application. This

object dbFeature is referred by the object dbClass or dblnterface where it is

defined.

• The object dbAttribute refers to the attribute defined in the application. It is a

subclass of dbFeature.

We used the tool Objectstore to have persistent objects. As a consequence, the

representation generated will be saved in an 00 database.

The Datrix parser is limited to treat one file at a tïme. On the other hand, our

mapping module is developed in such a way that we are able to map several Datrix

graphs at once. This way, we can represent the entire application in one database. This is

made possible for the following reasons:

57

• We removed the redundancy in the Datrix graph. We created once the object

representing the same entity for dbApplication and dbScopeGlb objects.

These objects represent the application. The objects representing primitive

types were also created once, as well as for the objects dbModule and

dbScopeModule representing the packages.

• We treated the naming resolution.

Given the following example:

public class A {
public B ref;

}
public class B {

}
Class A and class B are declared in two distinct files. In class A, the attribute ref is

of type class B. The Datrix parser will treat each class individually and will generate two

separate files. During the mapping, the dbAttribute object that represents refwill refer to

the dbClass object representing class B. This reference is made possible only after all the

classes of the application have been treated.

The dbClass objects are identified by their fully qualified name. Usually in a

declaration we use the simple name of the class. In an application we can have the same

simple name for two different classes, but we can only have one fully qualified name.

In Java, the naming resolution consists in getting the qualified name from the simple

name of the class. We will expose the rules of Java for naming resolution. Those rules

were also applied in our mapping module.

If name of the class is a simple name, then there are three possible scenarios:

1. The class is defined in the same file or it is referenced. In the case where it is

referenced then, its qualified name is composed of the package name that the

class belongs to followed by its simple name. For example:

58

import boap.mapping.clest;

public cTest ref;

The qualified name of the class cTest will be boap.mapping.cTest.

2. The class is a member of the same package as the file from which it is referenced.

3. The class is imported from another package. For example:

import boap.mapping.*;
import boap.metric.*;

public cTest ref;

We look for the class cTest in the imported packages by the file. If the class is

found in one of the packages, the fully qualified narne will constitute with the package

name and the class simple name: package_name.class_simple_name, for example:

boap.mapping.cTest.

Below we will illustrate by an example the mapping of a small program in Java to

the generic model. This example illustrates some of the Java specific notions like

Package, Interface, and Inheritance and shows how they are represented by the generic

metamodel.

Student.j ava

package University;
import java.lang.*;

public class Student extends Person implements Department I{
private String Name;
public String getNameQ;

Q
public void setName(String aName) {};

I

59

The system level illustrates the extemal property of the class in the application.

LMDabse

Figure 14: Mapping example at the system level

60

4.1.3 Conclusion

This chapter gave a general overview of the mapping of the Java code into the

generic representation. Not ail the aspects related to the mapping of Java were covered.

We covered only the aspects that were developed for this project. Java is a language that

is in constant evolution, where new features are added or replaced with new Java

releases. As a consequence, the mapping of Java is a work in progress.

The class level illustrates the internai structure of the class.

C:ass

fl ti rfio
4

Ntme: De rtment

Nnicd Behvior
—.

Modir: pbic) J

ttue

t Nrne: etnie)
Modifier pubCc J

Nati vod

Figure 15: Mapping example at the class level

61

Now that we’ve defined ow genedc model, die next step is to use it to genente

predicilve model w pndict interface stability of classes in 00 systems. fle next chapter

wifl expose a case stidy on die stability o! Java applications.

Chapter 5

5. Evaluation

5.1 Experimental Framework

5.1.1 Hypothesis

Hypotheses have been formulated on the stability of evolving frameworks f6]f34]

and on interface stability of evolving class libraries f42].

In order to define the hypothesis we need to define first what makes a system stable.

In Chapter 2 we exposed some of the research done on software stability. The main factor

that causes the system to be stable is mainly the lack of interdependencies f32]. Yet, the

system does have some dependencies that do flot interfere with stability because they are

unlikely to change. We defined the hypothesis as follow:

Hypothesis 1: The degree ofinterdependence between the class and the environment

within which it is defined has an effect on its stability.

In order to measure the interdependencies we selected metrics related to coupling

inheritance, and encapsulation as indicator of stability.

5.1.1.1 Class Interdependencies vs. Stability

Q
The first measure of interdependence is coupling. It refers to the degree of

interdependence between parts of the designf 13]. High quality software design should

obey the principal of low coupling. The stronger the coupling between modules, i.e., the

more inter-related they are, the more difficuk there modules are to change and correct,

and thus changing a module can cause a negative ripple effect, affecting the stability of

the system.

In order to improve modularity, inter-object class couples should be kept to a

minimum T 13]. The larger the number of couples, the higher the sensitivity to changes in

other parts of the design, and therefore the class is likely to be instable.

The higlier the export coupling of class c, the greater the impact of a change to c will be

on other classes fil], and thus this class will affect the stability of the system. We

propose the following hypothesis:

Another measure of class interdependency is encapsulation. It is defined as the

enclosing of data and behavior within a single construct. In object-oriented designs the

property specifically refers to designing classes that prevent access to attribute

declarations by defining them to be private, thus protecting the internal representation of

the objects. By hiding the internal representation (encapsulation), classes have the

flexibility to change their intemal representation without cascading the changes to other

classes. This significantly reduces the dependency between classes, thus promoting

stability.

Finally, system component can be interdependent through inheritance. Inheritance is

defined as a relationship among classes, wherein one class shares the structure or

behavior defined in one or more classes (single inheritance and multiple inheritance

respectively). As we evolve the inheritance hierarchy, the structure and behavior that are

the same for different classes will tend to migrate to common superclasses. Superclasses

are generalized abstraction, and subclasses represent specializations in which fields and

methods from superclass are added, modified, or hidden.

The lower a class is in the hierarchy, the more it will inherit from superclasses and

therefore lias more chances to be instable. On the other hand, the more children a class

has, the more classes it may potentially affect because of inheritance. Any change to the

accessible class interface can affect its subclasses. Thus making the class instable. We

propose the following hypothesis.

64

Consequently, througli the following class interdependencies: Inheritance, Coupling

and Encapsulation we should be able to measure and predict the level of stability. But

first we need to identify the level of class stability affected by change.

5.1.2 Identifying changes in application interface

Changes can concern data, a method, a class or a class library. Two categories of

changes at the class level were identified by Sahraoui H. et aLf42]. Let C be the interface

of a class C in version j of the application and C,±1 be the interface of C in the version

i+]. The two categories of changes for C are:

A. The interface Ci is no longer valid in version i+]. This liappens in four cases:

1. C is removed

2. C+1 = — some public members

3. C+j = C — some protected members

4. C; = C — some private members

B. The interface C is still valid in version i+1. This happens in two cases

5. C+ = Ci

6. C c C1+1

Types of changes (1 to 6) are ranged from worst to best according to the degree of

impact of each type.

• The deletion of a class has a more serious impact than the deletion of a subset

of its protected method.

• The deletion of a public method lias a more serious impact than the deletion of

protected method.

• The deletion of a subset of a private method lias no serious impact on the

system since its visibility is limited to the file itself.

65

Types are exclusive: The change of class is classified into type k only if it cannot be

classified into the k-] previous types.

For class C some public methods are deleted and some other public methods are

added, C belongs to type 2 and flot type 6.

If a class is renamed then this is considered as a deletion of class (type 1) and the

creation of a new class.

In the same way, a change in a method signature is considered as a method deletion.

A scope change that narrows the visibility of a method (from public to protected or

private and from protected to private) is considered also a method deletion.

A stability module was developed that will classify a class as instable (Type 1) or

stable (Type2) following the above criteria.

Type 1: the public/protected interface of a class has changed or has been deleted

Type 2: the public/protected class interface dïdn’t change.

Let F be the set of public/protected features in a system of version i

Let F÷1 be the set of public/protected features in a system of version i+1

VxType](x)={xIx F AX

VxType2(x)={xlxe F AXE

Now that we defined the two levels of stability, in the next section we present the

metrics related to class interdependency.

5.1.3 Defining the Metric s

We have discussed the design metrics whose extraction is supported by the

metrics module. Initially, several design metrics have been extracted. Some of them were

66

redundant or their values didn’t show significant relation with the change of class

interface. Out of the metrics extracted, the following metrics: DAM, OCAEC, OCMEC,

DIT, NOC have been chosen to evaluate interface stability in evolving applications. They

evaluate the following quality characteristic: Encapsulation, Coupling and Inheritance,

which are criteria of software stability.

This metric is a count of the number of
Others class-method different parameter types used in the methods

OCMEC Export Coupling
export couphng of a class and the number of return types of

the methods of a class.
. This metric is the ratio of the number of

Operation Access
. public methods to the total number of

OAM Metric Couplrng
methods declared in the class. A h;gh value

for OAM is desired.
This metric is the ratio of the number of

DA]’I Data Access Metric Encapsulation private (protected) attributes to the total
number of attributes declared in the class.

. This metric is the length of the inheritance
DIT Depth of Inhentance Inhentance

path from the foot to a class.
. This metric is a count of the number of

NOC Number of Children Inheritance
immediate children (sub classes) of a class.

o

Table 8: Metrics implemented

Now that the framework for our experiment is defined, we need to build our database

from which we will extract metrics and define the stability. For this, we would need to

collect data from several systems. Next section lists the different systems used for our

experimental data collection.

Others class-attribute
OCAEC

export coupling
Export Coupling

This metric is a count of the number of
attributes class types in a class.

67

5.2 Data Collection

In this case study we want to demonstrate the relation between the internal factors

and the interface stability in evolving applications.

For our study, we chose open-source applications available in the web. Many open-

source projects adopt CVS as version control platform; therefore we can have access to

any version of source code programs. We will be able to study the changes done on the

software throughout its evolution. We chose the following systems: Jigsaw, JEdit, Jext,

and GNU.Free. The applications were compiled and the classes generated parsed with the

Datrix parser, and then mapped into the generic representation. The different versions of

an application were gathered in a common ObjectStore database, and thus we generated 4

different database for each application. Gathering the versions in one database facilitate

the comparison and the evaluation of the stability of the system components. From the

generic representation of each application, we extracted the metric chosen to evaluate

encapsulation, inheritance and coupling. We also evaluated the stability of classes for

each system by comparing their components between their consecutive versions. As

defined in the previous section, classes of version i+ 1 are classified as stable if its public

interface (method and attribute) is the same as version i, otherwise the class is considered

instable.

We found that with the software evolution, there is an increase of stable classes

compared to a decrease of instable classes.

The following table lists the application that will be used for our study:

C

Jigsaw 3 2 211 2086
Jext 11 2 83 1059

Jedit 9 2 78 1664

Free I 5 0 23 182

Table 9 Summary Java Applications

68

Major Releases

A major software version is a standalone release containing major functional

enhancements, new features, or significant changes to the software. These versions are

indicated by the number to the left of the first decimal point, and are labeled as 2.0, 3.0,

etc.

Minor Releases

A minor software version is a standalone release containing minor functional

enhancements andlor bug fixes. These versions are indicated by the number to the right

ofthe first decimal point, and are labeled as 2.1, 2.2, etc.

Maintenance Releases (Patches)

A maintenance version is a partial release containing only bug fixes or minor

feature enhancements. Maintenance versions are indicated by the number to the right of

the second decimal point, and are labeled as 2.0.1, 2.0.2, etc.

For this project, we did flot classify the stability between maintenance releases

because the design change is ilTelevant between those versions.

5.2.1 Jigsaw

Jigsaw [281 is W3C’s Web server platform, providing a sample HTTP 1.1

implementation and a variety of other features on top of an advanced architecture

implemented in Java. Jigsaw is a W3C Open Source Project; started May 1996.

Jigsaw 2.0 beta 1 was the first stable and complete version of Jigsaw 2.0, offering

improved extensibility, with the ability to serve resources using multiple protocols. This

was motivated by the desire to support both the HTTP-NG and HTTP/1. 1 specifications.

Releases of the Jigsaw server that were considered for our study are: v2.1.2, v2.0.5

c

69

700
600

u,

500

5 400
9-o 300

200

100

Figure 16: Evolution ofJigsaw

Version 1.0.2 is an early version of Jigsaw with around 300 classes, and it consists of

more instable classes then stable ones when comparing it witli version 2.0.5. This can be

due mainly to the change of design, absence of specific requirements. Version 2.0.5

compared with version 2.1.2, shows more stability. We notice that the number of classes

in the system have doubled, and the ratio of instable classes lias significantly decreased.

We can deduce that in the later version the design was for the major part intact, and that

only new requirement have been added.

5.2.2 JEdit
lEdit f26] is a programmer’s text editor written in Java, being developed by Slava

Pestov and others. This text editor is Open Source software, released under the GNU

General Public License. jEdit supports syntax highuighting for more than 60 file types.

Releases of jEdit text editbor that were considered for our study are: vl.2, vl.3, vl.4,

v2.0, v2.1, v2.2, v2.3, v2.4, v2.5, and v2.6.

The graph below shows the evolution of Jigsaw application from version 1.0.2 to

2.1.2.

800

Evolution ofJigsaw

o

——Stable

—c—Unstable

1.0.2 2.0.5

Version

70

Evolutïon 0f jEdit

300

250
o

200
. ——Stable
o 150

——Unstable
100 -______

z50

o

Version

Figure 17 Evolution ofjEdit

Later versions of JEdit are more stable then the earlier ones. The biggest ratio of

instable classes can be found from version 1.4 to 2.0. First of all, this is a migration to a

major version, and it constitutes in a design change, which explain the instability of the

system. After version 2.1, we can notice the diversion between the stable and instable

line, which is an indication of a stable design.

5.2.3 Jext
Jext f27]is a Java programmer’s text editor developed by Romain Guy and others.

This text editor is Open Source software, released under the GNU General Public

License.

Releases of Jext text editor that were considered for our study are: vl.2, vl.4,

v2.0.2, v2.2.7, v2.3, v2.4.8, v2.5, v2.6.1, v2.7, v2.8, and v2.9.

1.2 1.3 1.4 2.0 2.1 2.2 2.3 2.4 2.5

71

u)
w
u,(n

Q

o
z

Figure 18: Evolution ofJext

The migration of Jext from version 2.3 to 2.4.8 involved the redesigning of the

system. Later versions involved addition of requirements without major design change.

5.2.4 GNU.Free

GNU.FREE f21] is an Internet Voting system and is written in Java. This voting

system software suite is an officiai package of the Free Software foundation’s GNU

project and is supported by FreeDeveioper.net.

Releases of Free that were considered for our study are: vl.O, vl.1, vl.2, vl.3, and

vl.4. Each of these versions includes new features to the editor as weiï as bug fixing.

Evolution 0f Jext

160
140
720
100
80
60
40
20

o

‘—.—Stable -J
—4—- Unstable

\X

r2 r
-2

Version

72

o

35

, 30
G)
ø 25
u,

20

ii- 15
Q

10
Z5

O

Figure 19: Evolution of GNU.FREE

GNU.FREE is a relatively small application, around 30 classes. Version 1.2 and 1.3

didn’t encounter a design change.

We can conclude that the smaller the application, the less it undergoes design

change. Also the latest versions of the application are stable application. There is less

design change in terms of deleting or modifying the accessible interface of a class and

thus affectïng the interdependency between the classes of the system.

Evolution of GNU.FREE

____ ____

-__j[ZZStabIe

__

EybIe

—k—-- —-—

r ‘r

1.0 1.1 1.2

Version

1.3

73

5.3 Building models of evaluation and detection

In order to verify the interface stability hypotheses proposed above, we need to build

some characterization models. We use these models to emphasize the relationship

between interface stability and specific properties of 00 components. These models can

be used to easily assess interface stability based on their level of inheritance, coupling, or

encapsulation. The model building technique that we used is a machine-learning

algorithm calied C4.5.

C4.5 introduced by Quinlan is a program for inducing classification rules in the form

of decision trees from a set of given examples. C4.5 was used in past works to generate

estimation models in software engineering. It was used to build predictive models for the

detection of faulty and reusable components in 00 systems t24]f33], and detection of

interface stability in ciass libraries f42].

Ail trees produced, both pre- and post-simpiification, are evaluated on the training

data. If required, they can also be evaluated on unseen data in the file filestem.test.

C4.5 consists of two types of variables: a set of variables independent variable and

only one dependent variable. Independent variables are those that are manipulated,

whereas dependent variables are only measured. The terms dependent and independent

variable apply mostly to experimental research where some variables are manipulated,

and in this sense they are independent from the initial reaction pattems, features,

intentions, etc. of the subjects. Some other variables are expected to be dependent on the

manipulation or experimental conditions. That is to say, they dependent on what the

subject will do in response. hi this research, the dependent variable is the classification of

stability.

The C4.5 machine leaming algorithm partitions continuous attributes, in our case the

design metrics, independent variable, finding the best threshold among the set of training

cases in order to classify them on the dependent variable, which is in our case

stable/instable classes. Independent variables are those that are manipulated, whereas

dependent variables are only measured or registered.

74

The following table presents a sample of the input data needed for the process of

predictive model construction

Design Metrics
Stability

Jext Version 2.3 Ciass
DIT NOC DAM OAM OCAEC OCMEC Type

com.chez.powerteam.jext.Jext 0 0 0.79 0.97 2 3 1

com.chez.powerteam.jext.misc.AutoSave o o i.oo 1.00 1 0 1

com.chez.powerteam.jext.FindReplace o o i.oo 0.33 0 0 2

com.chez.powerteam.jext.JextTextArea 0 0 1.00 0.94 2 1 2

com.chez.powerteam.jext.MenuAction 0 58 0.00 1.00 0 0 2

Table 10: Dependent and Independent variables

In order to be meaningful to the C4.5 system, this information has to be converted

into two files: names and data.

Names file: defines class, attribute and attribute value names. The first entry in the

names file gives class name, separated by commas. In our case it will be 1 and 2 (for

stability type). The rest of the file consists of a single entry for each attribute. An attribute

entry begins with the attribute name followed by a colon and then a specification of the

values that the attribute can take. Four specifications are possible:

• Ignore: causes the value of the attribute to be disregarded.

• Continuous: indicates that the attribute has numeric values (float or integer).

• Discrete N, where N is a positive integer: specifies that the attribute has discrete

values, and there is no more than N of them.

• A list of names separated by commas: also indicates that the attribute has discrete

values, and specifies them explicitly.

G

75

1, 2. Stability Type
DIT: continuous. I Depth of Inlieritance
NOC: continuous. I Number of Chuidren
DAM: continuous. I Data Access Metric
DAM: continuous. I Operation Access Metric
OCAEC: continuous. I Others class-method export coupling
OCMEC: continuous. I Others class-attribute export coupling

Figure 20: A names file (classes, attribute, and attrïbute values)

The corresponding data file is used to describe the training cases from which the

decision trees andJor production rules are to be constmcted. Each line describes one case,

providing the values for all attributes (design metrics) and then class of the case (stability

type), separated by commas. The attribute values must appear in the same order that the

attributes were given in the names file. The order of the cases does flot matter.

3,0,1.00,0.90,0,0,1
1,0,0.75,070,0,0,1
0,0,1.00,1.00,0,0,1
0,0,1.00,1.00,0,0,1
5,2,1.00,0.93,0,0,1
1,0,1.00,0.92,0,0,1
0,0,0.00,1.00,0,0,1
0,0,0.00,1.00,2,13,1
0,0,0.00,1.00,0,0,1

Figure 21: A portion of data file

76

5.3.1 Resuits

first we studied the stability of system class between application’s major and minor

versions. Major software versions include mainly new features, minor versions relate

mainly to bug fixing. Therefore we expect that the migration to a major version can cause

more design change and thus more instable classes.

The number of instable classes between Major Versions doubles the stable classes, a

ratio of 1:2 for stable to instable classes. As for Minor Versions, the number of stable

classes is 3 times more then the instable classes, a 3:1 ratio for stable to instable classes.

This is an indication that the migration to a Minor Version involves mostly changes

within the scope of the class itself for example changes in the private interface or within a

method, which is related to bug fixing. Migration to a Major Version showed that it is the

visible interface of a class that is affected, which has an impact on the interdependency

between classes.

We spiit the data into 2 partitions: 75% are training data to build the model and 25%

are test data to verify how well il actually works. The test file is formatted exactly like the

training data file, however it is used to validate the decision tree generated from the

training data file.

Casel: Between Major Versions

Major Version

Jedit 1.2 (compared with y 2.6) 82 2 80

Jext 1.2 (compared with y 2.9) 48 3 45

Jigsaw 1.0.2 (compared with v.2.l.2) 356 145 211

Total 486 150 336

No 0f Actual No ofPercentage #Stable #InstableClasses Classes
Machine

75% of 486 340.2 336 100 236Learning

lesting 25% of486 145.8 150 50 100

Systems Version No of Classes #Stable #Instable

o

77

(A production mie classifier consists of a collection of mles that classifies a case

that classifies a case on a dependent variable with certain confidence factor. We will

comment some of those ruies.

Rule 1: RuJe 2: Rule 3:
DIT = 0 DIT <= 1 DAM <= 0.63
DAM > 0.67 OCAEC <= 6 -> daBs 2
DAM <= 0.94 OCMEC > 2 [75.1%]
OCAEC = 0 OCMEC <= 8
OCMEC = 0 -> class 2

—> class 2 [84.1%]
[86. 0%]

Rule4: Rule5: RuIe6:
NOC>2 OAM>0.63 DIT>1
OCMEC <= 2 OCMEC > 8 -> class 1

—> class 2 —> class 1 [76.5%]
[66.2%] [77.7%]

Rule 7:
DIT <= 1
DAM > 0.72
OCAEC > O
OCMEC <= 2

-> dlass 1
[71. 8%]

Figure 22: Predictive mode! for hypothesis 1 in rule based model between major version s

Coupling vs. Stability

Rule 5 presents the impact of coupling on stability. It reads: “If Operation Access

Metric is greater then 0.63 and Class-Method Export Coupiing is greater then 8, then that

component is likely to be stable (with confidence factor of 77.7%)”. A class with high

coupling is less susceptible to change, because the interdependency is high and a change

can cause a negative ripple effect. Therefore, it is unlikely to change a class that can

cause a design change.

Encapsulation vs. Stability

Rule 1 presents the impact of encapsuiation on stability. It reads: “If Data Access

Metric is greater than 0.67, then that component is likely to be stable (with confidence

factor of 86.0%) “. By hiding the intemal representation, this enhances the flexibility to

C

78

change the internai representation without cascading the changes to other classes.

Encapsulation reduces the dependency between classes, thus making a design stable.

Inherïtance vs. Stability

Rule 4 presents the impact of inheritance on stability. It reads: “If the number of

children is greater than 2, then that component is likely to be stable (with confidence

factor of 66.2%) “. If there are 2 classes or more that inherit from a class, this class

should be stable. A change in a super class wili have a ripple effect on the sub classes.

Therefore it is unlikely that this class will change, and thus stable.

Rule 6 presents the impact of the depth of inheritance on stability. It reads: “If the

depth of inheritance is greater than 1, then that component is likely to be instable (with

confidence factor of 76.5%)”. A class with DIT value greater than one is not in the top

portion of its hierarchy. The deeper a class is within the hierarchy, the more specific it is

and susceptible to change and thus instable.

79

Case2: Between Minor Versions

Minor Version

Total
No of Classes

3809 2910 $99

Rule 1: Ru]e 2: Rule 3:
DIT=0 DAM>0 DIT=0
DAM <= 0.88 DAM <= 0.88 DAM <= 0.15
QAM <= 0.55 OAM > 0.82 DAM > 0.55
OCAEC = O OCAEC > O DAM <= 082

-> class 1 -> class 1 -> class 2
[73.1%] [67.5%] [93.0%]

Rule4: RuleS: Ru]e6:
NOC>0 DIT=0 DAM>0.88
OCAEC = O DAM > 0.07 -> class 2

-> class 2 OCAEC <= 1 [80.1%]
[82.7%] —> class 2

[80.2%]

Rule 7:
DIT = O
OCAEC > O

-> class 2
[78. 5%]

o

Figure 23: Predictive model for hypothesis 1 in rule based model between minor version s

Coup]ing vs. Stability

Less accurate rules were found related to coupling and stability. As discussed

previously, usually the change between minor versions is mainly due to bug fixing and

less is due to design change.

Systems #Stable #Unstable I

C

$0

Some conclusions were found related to encapsulation and inheritance.

Encapsulation vs. Stabi]ity

Rule 6 states that if Data Access Metric is greater than 0.88, then that component is

likely to be stable (with confidence factor of 80.1%).

Inheritance vs. Stability

Rule 4 states that if the Number of Chiidren is greater than 0, then that component is

likely to be stable (with confidence factor of 82.7%).

Rule 7 states that if the Depth of Inheritance of the class is 0, then that component is

likely to be stable (with confidence factor of 78.5%).

5.3.2 Evaluation and Validation of the Models

In order to evaluate the quality of the classification models built, we need formai

measures that comprise objective set of standards. Evaluating model accuracy telis us

how good the model is expected to be as a predictorf5Jf24]. The high accuracy of the

predictive model means that the selected 00 design measures have been useful for

identification of class stability. Two criteria for evaluating the accuracy of predictions are

the measures of correctness and completeness.

Correctness: is defined as the percentage of components that were predicted as

belonging to certain classification group (i.e., stable, instable) and actually did belong to

that classification group. If correctness is low, it means that the model is identifying more

classes as being instable when they are actually stable or vice-versaj9]

Completeness: is defined as the percentage of those components that belonged to

certain classification group (i.e., stable, instable) and were identified by the model. if

compieteness is low, then more components that likely to be instable or stable will not be

identified.

81

Finally the model accuracy measure how correct is the model. It is given by the

following formula:

ni’

Accuracy = z=1..2

i,j=1..2

The following tables present the empirical evidence of the quality of the models

built.

Major Version: Testing Data

o

Tested 100, errors 40 (40%)

Predicted Instable Predicted Stable Completeness

Actual Instable 48 3 94.12%

Actual Stable 37 12 24.49%

Correctness 56.47% 80.00%

Accuracy 60.00%

Predicted Stability

Real

Stability

Instable Stable Completeness

n11
Instable n11 n12

j=1..2

n22
Stable n21 n22

j=l .2

n11 n22
Correctness

i=1..2

82

Minor Version: Testing Data

Tested 1060, errors 384 (36.2%)

Predicted Instable Predicted Stable Completeness

Actual Instable 45 272 14.20%

Actual Stable 112 631 84.93%

Correctness 28.66% 69.88%

Accuracy = 63.77%

We can notice that the accuracy percentage is low. This is mainÏy due to the

unbalance number between stable and instable classes. In the major version case there are

more instable classes then stable ones, therefore it is difficuit to predict the stability of

classes. In the minor version case there are more stable classes then instable ones, making

it difficuit to predict the instability of classes. In consequence we’ve decided to apply

Youden’s J-index in order to resoïve the unbaÏance factor.

5.3.2.1 J-index

Software quality prediction data are often unbalanced, that is, software components

tend to have one label with a much higher probability than other labels. For example, in

our experiments we had much more stable than unstable classes between minor versions

and vice-versa between major classes. On an unbalanced data set, low training error can

be achieved by the constant classifier function that assigns the majority label to every

input vector. By using the training error, we found that C4.5 tended to “neglect” stable

classes for major versions and “neglect” instable classes for minor versions. To give more

weight to data points with minority labels, we decided to use Youden’s J-indexf43]f 10]

defined as

ni’

k ,j

83

Where J is the average correctness per label. If we have the same number of points

for each label, then J = Accïtracy. However, if the data set is unbalanced, J gives higher

relative weight to data points with rare labels. In statistical ternis, J measures the

correctness assuming that the a-priori probability of each is the same. A constant

classifier would have a J-index close to 0.5, while a perfect classifier would have

J(f) =1.

J-Index J()9

Training
Major Version 0.71
Minor Version 0.56

Test
Major Version 0.60
Minor Version 0.50

Table 11: J-Index Value

The J-Index values indicate that stability prediction between minor versions is less

accurate then between major versions. In fact, migration to a minor version involves

mainly bug fixing and minor changes, therefore it is difficuit to predict the changes

affecting the stability of the software.

In consequence if we look at the evolution of software and compare between Minor

version and the Major version graph representation we can see clearly that the stability is

better defined when comparing classes between major versions.

Minor Version Graph Major Version Graph

150

Q
o
o
z

100

50

o

Evolution 0f Jext Evolution 0f Jext

150

—m—Stable 100 —S—Stable

L1J1,stab1e 50 —4-—Unstable

‘b ‘b ‘b o
‘ q2

q, q, q,
12 2.02 2.8

Version version

84

As a resuit, we will consider only the values obtained between Major versions to

validate our hypothesis.

The measures that were taken into account are: DIT, OCMEC, DAM and NOC

with the foilowing mies.

Ru]e5: Ru]e6: RuJe3:
DAM > 0.63 DIT > 1 DAM <= 0.63
OCMEC > 8 -> ->

—> class 1 class 2
class 1 [76.5%] [75.1%]
[77. 7%]

On the other hand, for the following metrics: DAM and OCAEC, the results

showed that they were less significant in predicting the level of stability of a class. This

indicates that the change in a class attribute does flot affect the interdependency between

classes, thus its stability. Usually, class attributes are private within the class, and an

attribute value is usually accessed by a get function. Also for NOC we didn’t get

significant results.

From our result, we can conclude that the degree of interdependence between the

class and the environment within which it is defined has an effect on its stability and DIT,

DAM, and OCMEC are indicators of the level of stability.

o

o

Chapter 6

6. Conclusion

A new measurement tool, BOAP, for assessment of design and implementation

quality attributes in object-oriented designs lias been introduced. The key component of

this tool is its language-independent metamodel.

The metamodel has proven to have advantages over existing ones. First of ail, the

supporting modules, i.e. metrics extraction module and analysis module, support one

representation. Therefore, it allows having a common analysis set tool applied to an

application independently of its programming language. This is ideal wlien the purpose is

to develop generic predictive rules that can be applicable on any system.

In this project researcli, the BOAP approach was used to analyze the class interface’s

stability during the evolution of its system. By using the generic metamodel as our

system representation, this allowed us to generate generic predictive rules on stability that

can be applicable on other systems.

The object oriented implementation of the metamodel, and especially its persistence,

lias provided a key advantage when utilizing the model in other applications.

The major contributions of this work are:

• The definition of the BOAP architecture.

• Tlie addition of tlie following functionalities to the BOAP architecture:

o Tlie mapping of Java programs into the generic metamodel

o Tlie development of a metric module tliat extracts its measures from

the Generic Model database.

o

o The development of a stability module that uses the database and the

metrics extracted to classify the stability of a class.

• The stability hypotheses and their metrics suites

• The building of predictive models

As for future work, first of ail, we are still refining the generic metamodel. This

includes the addition of language features currently not supported, detailed information

below the method body level and the support for more languages beyond the two C++

and Java that are currently supported.

Presently, the ASG representation is the input for the mapping module; consequently

the mapping module is limited to the programming languages supported by the Datrix

parser. Therefore, the next step is to make the mapping module independent of the Datrix

parser. A solution would be to customize our own parsers.

Apart from refining the metamodel itself we are looking at explicit metamodel

support. The goal is to be able to generate generic tools. We have developed a metric

module that extracts metrics from the generic representation, and a stability classification

module that classifies the stability of the components of the system. Once the

implementation of the generic metamodel is complete, further analysis can be done on the

implementation level.

In addition, a parallel experiment can be done on other systems of different

programming languages, and compare the results of the predictive model obtained for the

accuracy of the generic quality of our model.

87

7. References

[1] Abety C., lia S.H., Lounis H., Miii H., Rizand J.F., Sahraoui H., ‘RAME-Rétro

ingénierie d’éléments Architecturaux de programmes pour en Mesurer la facilite

d’Evolution et la résilience au changement’ Livrable 1, Centre de recherché

informatique de Montréal, August 1999.

[2] Abreu F. B., Ochoa L, Goulo M., ‘The GOODLY Design Language for MOOD

Metrics Collection’, ISEG/INESC

[3] Abreu F. B., Carapuça R., ‘Object-Oriented Software Engineering: Measuring and

Controlling the Development Process’, Proceedings of the 4th International

Conference on Software Quality, ASQC, McLean, VA, USA, October 1994.

t4] Alikacem E. H., Lounis H., Sahraoui H., Mehio N., Cantave R., ‘Livrable Rédigé

pour le CTL: Boîte à outils d’Analyse de Développement de Programmes: BOAP’,

June 2000.

[5] Almeida M. A., Lounis H., Melo W., ‘An Investigation on the Use of Machine

Learned Models for Estimating Software Correction Costs’, In 20th IEEE

International Conference on Software Engineering, 1998.

[6] Bansiya J., ‘Evaluating Framework Architecture Structural Stability’, ACM

Computing Surveys (CSUR) Vo 32, March 2000

[7] Bansiya J., Davis C., ‘Automated Metrics and Object-Oriented, Dr. Dobb’s Journal,

Vol. 22, No 12, pp.42, December 1997.

[8] Bansiya J., ‘A hierarchicai Model for Quality Assessment of Object-Oriented

Design’, PhD Dissertation, University of Alabama, 1997.

[9] Basili V., Condon S., Emam K.E., and Melo W.L., ‘Characterizing and Modeling

the Cost of Rework in a Library of Reusable Software Components’, In l9 ffiEE

International Conference on Software Engineering, May 1997.

88

[10] Bouktif S., Kégi B., Sahraoui H. ‘Combining Software Quality Predictive Models:

An Evolutionary Approach’, ICSM 2000: 385-392.

[11] Briand L., Devambu P., and Melo W.L., ‘An Investigation into Coupling Measures

for C++ In 19th ffiEE International Conference on Software Engineering, Boston,

Massachusetts, May 1997.

[12] Briand L., Daly J., and WUst J. ‘A Unified Framework for Coupling Measurement

in Object-Oriented Systems’, Technical report ISERN 96-14, Fraunhofer Institute

for Experimental Software Engineering, Germany, 1996.

[13] Chidamber S. R., Kemerer C. F., ‘A Metrics Suite for Object-Oriented Design’,

]EEE Transactions on Software Engineering, Vol. 20, No6, pp. 476-493, lune 1994.

[14] Datrix, Abstract Semantic Grapli, Reference Manual, Version 1.3, January 2000.

http ://www .iro. umontreal.callabs/gelo/datrix.

[15] Dumke, R. R., & Kuhrau, I., ‘Tool-Based Management in Object-Oriented Software

Development,’ IEEE 1994.

[16] Ducasse, S., Lanza M., Tichelaar S., ‘Moose: an extensible language- independent

environment for reengineering object-oriented systems, in: Proc. 2nd Inti Syrup.

Constructing Software Engineering Tools,’ CoSET 2000.’

[17] Ducasse, S., Demeyer S., ‘The FAMOOS Object-Oriented Reengineering

Handbook.’ University of Berne, October 1999. See

http://www.iam.unibe.chLfamoos/handbook.

[18] Fayad M., ‘Accomplishing Software Stability’, Communications of the ACM, Vo

45, Jan 2002.

[19] Fayad M., Altman A., ‘An Introduction to Software Stability’, Communications of

the ACM, Vo. 44, September 2001.

[20] Fioravanti, F., Nesi, P., Perlini, S., ‘A Tool for Process and Product Assessment of

C++ Applications’, Froc. of the 2nd Euromicro Conference on Software

Maintenance and Reengineering, CSMR98, ffiEE Press, Florence, Italy, pp.89-95,

(J

89

[211 Free: http://www.free-proj ect.org/

[22] Gamma, E., Heim, R., Johnson, R., & Viissides, J., ‘Design Patterns: Elements of

Reusable Object-Oriented Software’, Addison-Wesley, 1994.

[23] Gosling, J., Joy, B., Steele G., ‘The JavaTM Specification (2’’ edition)’, Addison

Wesley Longman, Reading, MA, United Stated 1996. http:/!java.sun.comldocs.

[24] Ikonomovski S. ‘Detection of faulty components in 00 systems using design

metrics and a machine learning algorithm’, Master thesis, McGill University, 1998.

[25] ISO 9126 Information technology —Software Product Evaluation- Quality

Characteristics and Gidelines for Their Use. International Organisation for

Standardization. Geneva, 1992.

[26] jEdit: http://jedit.sourceforge.net!

[27] Jext: http:!!www.iext.orz/

[28] Jigsaw - W3Cs Server: http:!!www.w3.org/Jigsaw!

[29] Lagu B., April A., ‘Mapping of Datrix software metrics set to ISO 9126

Maintainability subcharacteristics’, in Software Engineering Standards Workshop,

Oct. 96, Montreal, Canada.

[30] Lagu B., Leduc C., Le Bon A., Merlo E., Dagenais M., ‘An analysis framework for

understanding layered software architectures’. In Proceedings IWPC’98, 1998.

[31] Lehman M., ‘Programming and Methodology’, Springer, Verlag, pp. 42-62, 1978.

[32] Martin R. C., ‘Stability’, C++ Report, Feb 1997.

[33] Mao Y., Sahraoui H. A. and Lounis H. ‘Reusability Hypothesis Verification Using

Machine learning Techniques: A Case Study’, Proc. of ffiEE Automated Software

Engineering Conference, 1998.

[34] Mattsson M., Bosch J., Characterizing Stability in Evolving Frameworks, In

Proceedings of the 29th International Conference on Technology of Object-Oriented

Languages and Systems, TOOLS EUROPE 99, Nancy, France, pp. 118-130, June

7-10, 1999

90

[35] Mayrand J., Lagu B., ‘Object Oriented Architecture Assessment Using Metrics’,

OOPSLA96.

[36] McCall J.A., Richards P.K., and Walters G.F., ‘Factors in Software Quality,’ vol. 1,

2, and 3, AD/A-049-014/015/055, National Tech. Information Service, Springfield,

Va., 1977.

[37] Michael M., Evolution Characteristics of an Industrial Application Framework,

Workshop on Object-Oriented Architectural Evolution at the l3th European

Conference on Object-Oriented Programming, ECOOP ‘99, Lisbon, Portugal.

[38] Object Management Group. Unified Modeling Language (version 1.3). Technical

report, Object Management Group, June 1999.

[39] Quinlan J. R., ‘C4.5: Programs for Machine Learning Journal’, Morgan Kaufman

Publishers, San Mateo, California, 1993.

[40] Parnas D. L., ‘Software Aging’ Plenary Talk, 1994.

t41] Pressman R. S., ‘Software Engineering. A Practical Approach’, fourth edition,

McGraw-Hill, 1997.

[42] Sahraoui H. A., Boukadoum A. M., Lounis H., Ethève F., ‘Predicting Class

Libraries Interface Evolution: an investigation into machine leaming approaches’,

Proceedings of the Seventh Asia-Pacific Software Engineering Conference

(APSEC ‘00).

[43] Youden W. J., ‘How to evaluate accuracy. Materials Research and Standards’,

ASTM, 1961.

91

Appendix A

C4.5 resuit for Stabllity predication between Major Versions

C4.5 [release 8] raie generator

Options:
File stem
Rulesets evaluated on unseen cases

Read 220 cases (6 attributes) from ApprentissageMajeurl

Processing tree O

Final raies from tree 0:

Mule 3:
DIT <= 0
DAM > 0.67
DAM <= 0.94
OCAEC < O
OCMEC <= O
—> class 2 [86.0%]

Raie 11:
DIT <= 1
OCAEC <= 6
OCREC > 2
OCMEC <= 8
—> class 2 [84.1%]

Pale 1:
DAM <= 0.63
—> class 2 [75.1%]

Raie 5:
NOC > 2
OCMEC < 2
—> class 2 [66.2%]

Raie 13:
DAM > 0.63
OCMEC > 8
—> class 1 [77.7%]

Rule 17:
DIT > 1
—> dace 1 [76.5%]

Rule 9:
DIT < 1
DAM > 0.72
OCAEC > O
OCMEC < 2
—> ciass 1 [71.8%]

Raie 4:
DIT <= O
MDC <= 2
DAM > 0.94
OCMEC < O
—> class 1 [58.2%)

Default class: 1

Evaluation on training data (220 items)

Tested 220, errors 61 (27.7%) «

ta) (b)

112 7
54 47

<-ciassified as

(a) t class 1
(b) : class 2

Evaluation on test data (100 items)

Tested 100, errera 40 (40.0%) «

ta) (b) <—classified as

92

Rule Size Errer Used Wrong

3 5 14.0% 18 1 (5.6%)
11 4 15.9% 8 0 (0.0%)

1 1 24.9% 23 5 (21.7%)
5 2 33.8% 5 1 (20.0%)

13 2 22.3% 11 1 (9.1%)
17 1 23.5% 32 5)15.6%(

9 4 28.2% 25 5 (20.0%)
4 4 41.8% 40 16 (40.0%)

2
2
2
2
1
1
1
1

Advantage

8 (810)
7 (710)

13 (1815)
3 (411)
0 (010)
0 (010)
0 (010)
0 (010)

AdvantageRule Size Errer Used Wrong

3 5 14.0% 6 3
11 4 15.9% 1 0

1 1 24.9% 5 0
5 2 33.8% 3 0

17 1 23.5% 11 11
9 4 28.2% 5 5
4 4 41.8% 53 9

(50.0%)
(0.0%)
(0.0%)
(0.0%)
(100.0%)
(100.0%)
(17.0%)

—1 (112)
1 (110)
5)510)
3 (310)

0 (010)

2
2
2
2

0 (010)
O (010)

1

1
1

48 3
37 12

ta) t class 1
(b) t class 2

93

C4.5 resuit for $tability predication between Minor Versions

C4.5 [release 8] rule generator

Options:
File stem
Rulesets evaluated on unseen cases

Read 1682 cases (6 attributes) from ApprentissageMineur

Processing tree O

Final rules from tree 0:

Rule 1:
DIT <= O
DAM <= 0.88
DAM <= 0.55
OCAEC < O
—> class 1 [73.1%]

Rule 11:
DAM > O
DAM <= 0.88
DAM > 0.82
OCAEC > O
—> class 1 [67.5%]

Rule 4:
OIT <= O
NOC <= O
DAM <= 0.17
DAM > 0.82
OCAEC <= O
—> class 1 [49.7%]

Rule 2:
DIT <= O
DAM <= 0.15
DAM > 0.55
DAM < 0.82
—> class 2 [93.0%]

Pub 6:
NOC > O
OCAEC < O
—> cbass 2 [82.7%]

Rule 12:
DIT <= O
DAM > 0.07
OCAEC <= 1
—> cbass 2 [80.2%]

Rule 24:
DAM > 0.88
—> class 2 [80.1%]

Rule 7:
DIT <= O
OCAEC > O
—> class 2 [78.5%]

Default class: 2

94

Evaluation on training data (1682 items)

1 4 26.9%
11 4 32.5%

4 5 50.3%
2 4 7.0%
6 2 17.3%

12 3 19.8%
24 1 19.9%

7 2 21.5%

Rule Size Error Used Wrong

9
11

130
19
78

259
193

53

1
2

61
O

11
44
48
10

(11.1%)
(18.2%)
(46.9%)
(0.0%)
(14.1%)
(17 .0%)
(24 .9%)
(18.9%)

Tested 1682, errors 477 (28.4%) «

ta) (b)

86 413
64 1119

<—classified as

ta) t class 1
(b) t class 2

Advantage

7 (811) 1
7 (912) 1
8 (69161) 1
0 (010) 2
0 (010) 2
O (010) 2
0 (010) 2
O (010) 2

Advantage

—14 (9123) 1
—2 (416) 1

—51 (32183) 1
0 (010) 2
0 (010) 2
0 (010) 2
0 (010) 2
0 (010) 2

Evaluation on test data (1060 items)

Rule Size Error Used Wrong

1 4 26.9% 32
11 4 32.5% 10

4 5 50.3% 115
2 4 7.0% 2
6 2 17.3% 37

12 3 19.8% 275
24 1 19.9% 161

7 2 21.5% 24

23 (71.9%)
6 (60.0%)

83 (72.2%)
1 (50.0%)

14 (37.8%)
98 (35.6%)
88 (54.7%)

9 (37.5%)

Tested 1060, errors 384 (36.2%) «

ta) (b)

45 272
112 631

<-classified as

ta) t class 1
(b) : clase 2

ç

