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$ommaire

Plus de 1/3 des décès enregistrés au Canada au cours des dernières années sont

causés par les maladies cardiovasculaires. L’un des problèmes cardiovasculaires le plus

communs est l’athérosclérose coronaire qui consiste en l’accumulation de plaques sur les

parois des artères. La recherche sur les niveaux de risque de l’athérosclérose coronaire

est, par conséquent, de très grande importance pour le diagnostic et ta stratégie

thérapeutique à entreprendre ultérieurement. Cliniquement, l’imagerie IVUS (ultrasons

intravasculaires) combinée avec l’angiographie est largement utilisée pour l’examen

médical et le traitement des maladies cardiovasculaires.

Dans l’imagerie IVUS, les méthodes « pose estimation » sont employées pour

déterminer la trajectoire du cathéter à partir d’une projection unique obtenue par

angiographie. Des progrès remarquables ont été réalisés par les travaux de recherche sur

la «pose estimation », à partir d’une vue unique en image, et par l’implémentation de

méthodes de reconstruction 3D de la trajectoire du cathéter dans une imagerie IVUS. En

dépit de ces améliorations significatives, l’exigence d’une connaissance antérieure de la

configuration 3D des artères coronaires est un inconvénient majeur qui se pose lors de la

construction 3D de la trajectoire du cathéter dans une imagerie IVUS. Malheureusement,

il y a eu un manque d’exploration de nouvelles méthodes susceptibles de pallier cet

inconvénient.

Cette thèse se focalise sur la «pose estimation» à partir d’une projection unique

et ce, pour une reconstruction 3D de la trajectoire du cathéter dans une investigation

IVUS. Premièrement, nous explorons l’état de l’art de la «pose estimation» projection

unique en passant en revue et en simulant trois méthodes typiques choisies parmi

d’autres. Les inconvénients des méthodes existantes nous ont motivés à étudier la

possibilité d’une «pose estimation» à partir d’une séquence d’images. Nous proposons

une nouvelle méthode de pose estimation à partir d’une séquence d’images de vue unique
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visant la reconstruction du la trajectoire de cathéter dans imagerie IVUS. Ensuite, nous

simulons avec un logiciel mathématique la méthode proposée par des courbes spirales et

nous l’appliquons par la suite à une séquence d’images obtenues à partir d’une

expérimentation fantôme. Les résultats obtenus montrent que les erreurs de

reconstruction varient entre 5.81% et 6.68% pour les simulations et 1.25% à 1.36% (en

termes de taille de fantôme reconstruit) pour l’étude fantôme.

Bien que ces chiffres pourraient sembler plutôt médiocres, ils sont réellement une

mine d’or pour les médecins qui n’ont pas accès aux informations 3D (à moins d’utiliser

un laboratoire complexe proposé par une autre méthodologie, ce qui est impraticable dans

les cliniques). La méthode proposée a l’avantage, d’une part, d’une installation beaucoup

plus facile dans les cliniques et, d’autre part, d’un coût inférieur à celui des méthodes

existantes d’autant plus qu’elle conduira certainement, à l’avenir, à un outil de valeur.

Mots clés : cathéter, pose estimation, vue unique, séquence, IVUS



V

Abstract

Cardiovascular disease causes over 1/3 of ail deaths in Canada in recent years.

One of the most common cardiovascular problems is coronary atherosclerosis, the build

up of plaque on artery walls. The investigation of the severity of coronary atherosclerosis

is therefore very important for the diagnosis and therapeutic strategy that will be

undertaken. Clinically, IVUS (Intravascular Uttrasound) imaging combined with

angiography is widely used in examination and treatment of cardiovascular diseases.

In IVUS imaging, methods of pose estimation are used to determine the trajectory

of the catheter from single projection images obtained by angiography. The research on

pose estimation from single view images or one single view image bas achieved

remarkable progress, and methods have been implemented in the 3D reconstruction of

catheter trajectory in IVUS imaging. Despite these significant improvements, the

requirement of previous knowledge of the 3D configuration of the coronary arteries is a

significant drawback that stili exists in the implementation of 3D construction of a

catheter trajectory in IVUS imaging. Unfortunately, there lias been a lack of exploration

ofnew metbods that could overcome this drawback.

This thesis focuses on pose estimation from single projection aiming to the 3D

reconstruction of the catheter trajectory in an IVUS investigation. Firstly, we investigate

the state of art of pose estimation by single projection by reviewing and simulating three

typical methods, which are cliosen from a variety of published papers reÏated to the topic.

The drawbacks of existing methods motivate us to investigate the possibility of pose

estimation from an image sequence. We propose a novel method of pose estimation from

a single view image sequence targeted for the reconstruction of the catheter trajectory in

IVUS imaging. Afterward, we simulate the proposed method with spiral curves in the

Mathematica® environment, and apply the proposed method to an image sequence

obtained from a phantom experiment. Typical resuits show reconstruction errors ranging

from 5.81% to 6.68% for the simulations and 1.25% to 1.36% (in terms ofthe size oftbe
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reconstructed phantom) for the pliantom study. Aithough these figures could seem rather

mediocre, they are actualiy a goid mine for the physician that lias access to no 3D

information at ail in clinic today (unless he uses quite complex “laboratory” set-up

proposed by other methodologies, which is unfeasibie in clinical practice). The proposed

method has advantages of much easier set-up in the clinical environment and lower cost

than existing methods, thus it will certainly lead to a vaiuable tool in the future.

Key works: catheter, pose estimation, single projection, sequence, IVUS
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Chapter 1

Introduction

1.1 Introduction

Among ail pathologies affecting the modem world, cardiovascular diseases are at

the forefront. In Canada, they account for the death of more Canadians than any other

disease. In 1999 according to Statistics Canada, cardiovascular diseases killed 78,942

Canadians, 36% of ail deaths in Canada. They cost Canadian economy over $18 billion a

year according to a 1994 study by the Heart and Stroke Foundation. One of the most

common cardiovascular problems is coronary atherosclerosis, the buiÏd up of plaque ta

combination of cholesterol, cellular waste, and other materials) on artery walls. Plaque

can cause a heart attack by severely reducing or stopping the blood flow through a

coronary artery. Moreover, the plaque can rupture and form bÏood dots capable of

blocking arteries. The investigation ofthe severity of coronary atherosclerosis is therefore

very important for the diagnosis and therapeutic strategy, such as medication, bypass

surgery, angioplasty (dilation) with or without stent, which will be undertaken. For this

purpose, two main imaging methods are used nowadays. Angiography (X-rays) consists

of the injection with a catheter of a contrast product in the lumen of the arteries, making

them opaque to X-rays. Using several views (projections) the physician can get an

assessment of the position and geometrical severity of the stenosis (narrowing of the

artery due to atherosclerosis). It is nevertheless important to remember that a single

angiogram reveals only a 2-D “silhouette” of the tme 3-D lumen. This has for

consequence that an image under only one (or even a few) angle of sight can badly

represent the extent of a complex stenosis. Although 3-D reconstruction atgorithms exist

in angiography based on two or more views, it remains that angiography visualizes only

the inner lumen of the vessel and cannot determine directly if the vessel wall has
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atherosclerosis; for instance it could miss diffuse (long) lesions with seemingly no

stenosis. Intravascular ultrasound (IVUS) represents a complement (even an alternative)

to angiography for the direct visualization of the arterial anatomy. A miniaturized

ultrasonic transducer at the end of a catheter is inserted in the artery lumen and brought

beyond the lesion of interest and then withdrawn gradually, manually or automatically.

Contrary to angiography, which represents a silhouette of the arterial lumen, IVUS

produces unique echographic images (Figure 1.1) showing the cross-section of coronary

arteries. These images reveal clearly the lumen, watls and plaque, and offer a powerful

tool for diagnostic purposes. Unfortunately, this sequence of images does not offer direct

information about the 3-D geometry of the artery, an essential feature to reliably compute

plaque volume or sheer stress.

Athero.
Plaque

Catheter

Lumen

Intima

Media

figure 1.1 A single frame ofWUS image.

Because there is no information about the 3-D location and orientation associated

with each frame of an IVUS image sequence while coronary angiography can be used to

localize and even to reconstruct of coronary arteries in 3-D, IVUS and angiography

together are widely utilized in assessment of coronary artery diseases in cÏinics (Figure

1.2).
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In a typical IVUS intervention, a few single projection angiographic sequences are

taken to localize the WUS transducer dunng its pullback. In addition, the pullback length

can be measured. This implies that it could be possible to obtain the reconstruction of

coronary arteries. The task of this research is to develop a novel pose estimation method

in which an image sequence from one single projection is used to obtain the

reconstruction of coronary arteries, instead of using a two-camera system such as in

biplane angiography or additional CI or MR information in single projection

angiography. As a result, the costs of clinical equipment and clinical processing could be

reduced for reliable 3-D artery measurements.

figure 1.2 Angiograms (left) and two WUS images taken from the sequence (right) with the
corresponding 3-D reconstruction (middle). (ref: Whale et al. http://www.engineering.uiowa.edu!
-awahle/WahHJS/Slides/virtual-angioscopy.pdf).
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1.2 Pose Estimation in Intravascular Ultrasound Modality

Pose estimation is a method for determining the location and orientation of a 3-D

object with respect to a camera system from 3-D to 2-D point correspondences. Two

kinds of pose estimation methods are used in angiography: biplane angiography [1, 2], in

which images from two views are needed, and single projection angiography [3, 4, 5, 6,

10, 11, 14], in which only one view image and prior knowledge of 3-D configuration of

the object are required. Research on biplane pose estimation has achieved significant

progress. Unfortunately, the required biplane angiography system is more expensive,

usually takes more physical space, and is much more complex to operate than single

projection angiography. This partly explains why these systems are not available

everywhere and even tend to disappear from clinical practice.

Pose estimation from single view needs a previous knowledge of the 3-D

configuration of the object. In single projection angiography implementation, this

knowledge of 3-D configuration of coronary arteries can be obtained by either computed

tomography (CT) or magnetic resonance (MR). This requirement of an extra clinical

processing is a drawback of single projection angiography. Pose estimation from single

view has more challenges than biplane pose estimation due to its specific difficulties.

In this thesis we focus on pose estimation with a single angiographic projection

with knowledge limited to the pullback distance traveled by the ultrasonic transducer in

IVUS intervention.

1.3 Motivation

So far, researchers have focused on implementation of model-based pose

estimation in single plane angiography ignoring the information that could be obtained in

the specific situation of an IVUS intervention. In a practical clinical situation, an image

sequence can 5e taken from single projection during pullback of the catheter during the

IVUS intervention, and the pullback length of catheter in the interval between two

successive images can be measured. Based on this specific situation in IVUS

intervention, a novel method is proposed in this thesis to reconstruct the trajectory ofthe

catheter tip. This trajectory represents the 3-D pose of the catheter that is estimated from
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the 2-D projection on the image sequence.

The proposed pose estimation method overcomes the main drawbacks of biplane

pose estimation methods and model-based single project pose estimation methods by

reducing the clinical costs. Compared with biplane pose estimation and model-based pose

estimation, the estimation of pose from a single plane angiography image sequence and

the measurement to pullback length is rather difficuit. A significant challenge is that,

mathematically, there exist multiple pose solutions corresponding to a given image

sequence with known pullback measurements, but there is no geometrical condition that

can be used to determine the right solution from the multiple solutions. To solve this

problem, we consider the physical characteristics of a catheter and assume that there is no

sharp bend of the catheter.

In terms of accuracy, efficiency, and stability, the proposed method is not as good

as the existing pose estimation methods. However, considering its much easier setup in

the clinicaÏ environment the proposed method will certainly leaU to a valuable tool in the

future.

1.4 Organization of the Thesis

This thesis presents a study on pose estimation by single projection in the context

of IVUS intervention. The thesis is organized as follows.

In Chapter 2, we begin with the definition of pose estimation from single

projection. Then we review and simulate three typical methods of pose estimation chosen

from various existing methods. These three typical methods are Newton’s method, a

classic method, SPT, a method developed intendedly for angiography implementation,

and POSIT, a recently published method. The simulation resuits on several cases, and a

comparison in terms of accuracy, efficiency, and stability are presented. In Chapter 3, we

analyze the problem of pose estimation with a single plane image sequence and a

measurement of the catheter pullback length, and the difficulties associated with this

problem. To solve the problem, we propose a new method, which is presented in detail.

Furthermore, the proposed method is simulated using several given cases and the

simulation results are shown. In Chapter 4, the proposed method is applied to phantom

(physical model) image sequences provided by the Montreal Heart. Chapter 5 concludes
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the thesis by highlighting the findings of this investigation and by suggesting some

possible future work.
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Chapter 2

Existing Pose Estimation Methods

2.1 Introduction

Conventional 3-D IVUS uses an automated puÏïback device to get a stack of

IVUS images providing additional information for volumetric measurements.

Unfortunately this rnethod assumes a straight vessel, which is a crude approximation for

coronary arteries. In fact, due to the vesse! cuwature, the image planes are flot parallel.

Moreover the catheter twists when following a tortuous vesse! generating a rotation

artifact in the image plane. Thesc problems must be considered to compute a truc 3-D

reconstruction of the vesse! from IVUS images. A few groups [1, 2] have successfully

implemented solutions to this problem using biplane angiography to infer the 3-D

trajectory ofthe catheter. At the University of Iowa [1], they extract the 2-D catheter path

in both biplane angiograms and then reconstruct the 3-D trajectory knowing the biplane

imaging system geometry. Assuming a known constant pullback speed, the actual

location of each IVUS frame along (and perpendicular to) the 3-D pullback path is

obtained. b compute the catheter twist, they determine the relative rotation with a

sequential triangulation method and the absolute orientation from the out-of-center

position of the IVUS catheter used as a landmark in both angiograms and IVUS images.

Another group [2] from the Cleveland Clinic Foundation has proposed a method that

could be used with or without a pullback device. The 3-D trajectory of the IVUS

transducer was computed as a function of time using biplane angiography similarly to the

University of Iowa’s group. Each IVUS frame was time-synchronized with the

angiographic images and then correctly positioned perpendicular to the trajectory. Then,

a 3-D segmentation method based on a 3-D extension of active contours (snakes) extracts

the lumen surface. Finally the IVUS lumen is backprojected on the angiograms to find
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the best twist. Unfortunately, the required biplane angiography system is more expensive,

usually takes more physicai space, and is much more complex to operate than its single

plane parent. This partly explains why these systems are not available everywhere and

even tend to disappear from clinicai practice. In addition, for IVUS artery reconstruction,

a calibration step (to assess the biplane imaging system geometry) is necessary and the X

ray radiation dose to the patient could typically be higher. Ail this would add a significant

burden to the already quite complex IVUS intervention protocol. We believe that

atthough the biplane approach gives spectacular results it will probably find limited use

in clinical practice except in university hospital research laboratories. As for the use of 3-

D position sensors (e.g., six-degree-of-freedom magnetic sensor) for tracking the

trajectory of the transducer, this is indeed an efficient method for 3-D conventional

ultrasound transducer but this is certainly a big technological challenge for IVUS and is

probably not reachable in the near future.

Because of the drawbacks existing in biplane angiography for IVUS artery

reconstruction, there has been a rise of implementations of single projection angiography

for IVUS artery reconstruction [4, 5, 11]. It overcornes the drawbacks existing in biplane

angiography.

In this thesis, we focus on pose estimation from single projection methods, which

are employed in single projection angiography. The rest of this chapter presents a review

and simulations of three typical pose estimation methods that are chosen from many

publications in the computer vision community and biomedical engineering community.

These methods are Newtons method [3], SPT (Single Projection Technique) by Hoffman

et al. [4, 5, 11], and POSIT (Pose from Orthography and Scaling with ileration) by

Demonthon et al. [6, 14]. In the next chapter, we will present our research on pose

estimation by image sequence from single projection.

Newton’s method is named after Newton’s numerical method that is empioyed to

solve systems of nonlinear equations, which are obtained from the relation of object

points and their corresponding full perspective projections. Newton’s method is simple

and straightforward. The main drawback of Newton’s method is that it has a Iimited

suitable scope of location and orientation for the object.

SPT is a method of pose estimation by single projection that was deveÏoped for



9

angiography modality. The main idea of SPT is to align the object points with their

corresponding projections by adjusting translation and rotation using projection

Procmstes technique [7, 8, 9]. The method lias two main steps. The first step is to align

the object points with their corresponding projections by adjusting the translation in the

x-y plane iteratively. In the second step, projection-Procrustes technique is carried out to

adjust the translation and rotation to optimize the alignment ofthe object points with their

corresponding projections. SPI is tested in a phantom experiment by Hoffman et al., and

the resuits are given in [5]. However, the phantom experiment is based on several dots

that are fixed in a known configuration instead of a catheter. SPI is relatively complex.

In terms of stability, SPI is better than Newton’s method, but stiit lias the drawback of a

limited suitable scope of location and orientation for the object.

POSIT emerged recently. It consists of iteratively improving the pose computed

with weak perspective projection (i.e., scaled orthographic projection) camera model to

converge to a pose estimation computed with a perspective projection camera model.

Furthermore, Horaud et al. [14] derive the idea for POSIT and develop an improved

version of POSIT by using paraperspective projection instead of weak perspective

projection. According to our simulation in Mathematica, POSIT is the best method for

pose estimation by single projection in terms of efficiency, accuracy, and stability among

the three methods.

This chapter is organized as follows: Section 2 gives a geometrical definition for

the problem of pose estimation from single projection. Section 3 reviews the Newton’s

method, the SPI method, and the POSII method. A modification that we have made to

reduce the slow convergence problem existing in SPI is also described in Section 3. In

Section 4, a comparison among the three methods based on the simulation resuits is

presented. Section 5 presents a summary for this chapter.
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2.2 The Problem of Pose Estimation by Single Projection

Pose estimation by single projection is also called rnodel-based pose estimation, or

mode! matching, or optical jigging. The geometry of pose estimation by single projection

is depicted in Figure 2.1. The 3-D camera coordinate system, (X Y, Z), is defined such

that its origin is located at the focal spot. The image plane is located at a distance of focal

length, f from the focal spot, and the image coordinate system, (x, y), lying in the image

plane, is parallel to X and Y. The superscript M in (xM,
y’) is used to denote measured

image coordinates. Independent of the camera reference frame, the 3-D model coordinate

system, (Xv, Y’, Ztm), is defined relative to the points in the object itself. The pose

estimation by single projection problem can be stated as follows:

- Let P1m, ..., Pm, with P”’ = [X’1 , , Z[’ ]T and n 3, expressed in the model

reference frame, be n points of an object mode!.

- Let P1, ..., P4,, with P, = [X1, Y , Z.]’, expressed in the camera reference frame,

Image
Plane

Spot

lnmge
Fraine

frame

Y

Figure 2.1 Geometry of pose estimation by sing!e projection problem. The mode! points in the
camera reference frame and the model reference frame are dcnoted by (X Y, Z) and (X’1, Y’1, Z’1),
respectively. The image ofa moUd point on thc image plane is denoted as (x”, yM)

indicate the coordinates ofthe corresponding points on the object observed.
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- Let pi, ...,
p,,, with p. = [x1

,
y1 j7, be the n image points, expressed in the image

reference frame, projections ofthe P.

The goal is to determine the rigid transformation, i.e., rotation matrix R and translation

vector T, aligning the camera reference frame and model reference frame:

1 =R1m +T.

The above equation can be written as

[X1,Y,,Z1]T =R[J(”,Y”,Z”jT +T, (2.1)

where T can be represented by T1, T2 and T3, the translations along the X Y, and Z axes,

as follows:

T=[T,T,,T3]T, (2.2)

and R can be represented by Euler angles, Ø,, ç and q, the rotation angles about the Y

and Z axes ofthe camera reference frame as in the foltowing equation:

cos Ø. — sin Ø. O cos Ø, O sin Ø, 1 0 0
RT = sinØ. cosç& 0 0 1 0 0 cosç5 —sinØ . (2.3)

O O Ï — 5m Ø, O cos Ø, O sin Ø, cos

Inversely, Euler angles, Ø, ç5 and 02, can also be computed from R by Euler angle

decomposition:

if r31 ±1:

_______

(2.4)

if (r3 ) =

with R being written as:

(2.5)

= ArcSiJ

________

I
1_(rj)2 J

= ArcSin(r31)

1l
= ArcSiJ

1_(,)2 J
=0

= ArcSin(—r,3),

R= ‘21

In the equations (2.4), we assume that OØ<180 , 0 <900 and O02<Ï80
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2.3 Review of Tliree Methods of Pose Estimation by Single Projection

In this section, we review three typical methods of pose estimation by single

projection [3, 4, 5, 6, 10, 11, 14], which are chosen from many publications in the

computer vision community and the biomedical engineering community. The methods

are Newton’s method, a classic method, SPT method, a method intended for

implementation in angiography, and POSIT, a method that emerged recently.

2.3.1 Newton’s Method

The algorithm employs Newton’s iterative method to solve the system of nonlinear

equations, which are obtained from the full perspective projection [3].

The relation between object points and their corresponding image points in camera

coordinates is given by the full perspective projection equation:

[x1,y1]’
[ixi]T

(2.6)

Ptugging equations (2.1), (2.2), and (2.5) into equation (2.6), we can see that each image

point correspondence generates two non-linear equations,

=

,1X7’ + I2 + i3Z + ]
in rn nii3X1 + ‘32g + i33Z1 +

(2 7)
— .

r, X” + i, )Ç. + ,73Z1 + T,
in m rnî31X1 +r37Y, +r33Z1 +I

The unknown components of R and T can be determined from a sufficient number of

correspondences, each bringing two equations like equation (2.7). The resulting systems

have six unknowns, Ø, Ø,, Ø. Tj, T,, and T3. Here R depends only on three free

parameters ç1, Ø1,, and Ø.
Newton’s numerical method is now employed to solve the systems. Assuming that

(, i) is the tnie solution for the system, the method starts off with an initial guess for

and , say R° and 1, and computes p through equation (2.7) with R = R’ and T =

(k=O, 1, ...), until the residuals

5x1 =x1(Rk,TJo)_
(2.8)

Sy1 =y1(Rk,Tk)_jY
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are srnall enough. In equation (2.8), and j5 are x andy coordinates ofmeasured image

points. The first-order expansions of residuals are

-AT+
j=1,2,3 k=x,y,z

(2 9)
+

øk =
j=L,2,3 j k=x,v,z øk

where the partial derivatives with respect to T1, T2, and T3 are

—
r ax,

—

— f
X

aiz’ai ‘ai z.2

and

a0 aj a,

ai ‘aT,Z1’aT3 zi2.

The partial derivatives with respect to the rotation angles are

—

— xj ax, — 2
+ Z,2 a, — r,

- ‘ - f ‘

and

ay, — )Ç2+z12 ay,
f

XY. X.
f ,2 ‘,•

- ‘ -

The six unknowns A1, AT,, AI, AØ, AØ,, and AØ in equation (2.9) can be

determined if at least three point correspondences are known.

In the iterative process, R and Tare updated as follows:

(2.10)

and

(2.11)

where T prev and R ‘“ are the values of T and R in the previous iteration, and A T and

AR are the corrections of T and R, respectively. AR is calculated with AØ, AØ,,,

and AØ.. through equation (2.3).

The algorithm ofNewton’s rnethod is sumrnarized as follows:

The input is formed by n corresponding image and mode! points, with n 3, and

the initial estimates R° and T°.
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1) Using the current estimates of kand , compute P through equation (2.1).

2) Project P1 onto the image plane through equation (2.6).

3) Compute the residuals & and ‘5y. (j = l,2,...,n).

4) Solve the linear system of n instances of equation (2.9) for the unknown

corrections, AT, AT7, AI, AØ, AØ,, and AØ.

5) Update the current estimates of the translation vector T and rotation matrix R.

6) If the residuals are sufficiently small, exit; else go to step 1.

2.3.2 SPT Method

SPT (Single Projection Technique) [4, 5, 11] lias been developed by Esthappan and

Huffrnann for impternenting the orthogonal Procrustes algorithrn [7, 8, 9]. The process of

the rnethod is composed oftwo parts described as follows:

The first part ofthe method uses the differences between the projected model points

(x1 ,y1) and the measured image points (x”,y) through the following equations to

adjust T1 and T2 iteratively.

T TP [[ _ii}

= T,pv
1

(2.12)

where prev and TPt(w correspond to previous estimates of T1 and T2, respectively and n is

the number of points in the model. Figure 2.2 shows the relation between (x , y.) and

M M(x1 ,y1 ).

In the second part of the method, R and T are optimized in an iterative manner by

using the projection-Procrustes technique. Carrying out of the projection-Procrustes

technique involves alignment of the point in the model with their respective projection

unes, i.e., the ray trace from the origin, or the focal spot, ofthe camera reference frame to

the measured image coordinates, p’ = (x’ ,
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h— tx,’,y’,f]

- (x)2 +(y’)2 +f2

Plane

Focal
Spot

Iniagc
Y Frame

Figure 2. 2 Projection of a point P onto the image plane at [x1, y]T and the corresponding
mcasured image coordinates at [x’ , y’ ] T

FirstLy, the point positions, P1, are projected onto their respective projection unes,

forming the corresponding points, P,; sec Figure 2.3. P1 are gÏven by:

= hh,

where

(2.13)

(2.14)

is a unit vector directed from the focal spot to p’ = (x’ , y’), the measured image

coordinates of the i-th point. The positions of the model points, P, are related to the

points on their respective projection lines, P1’, in the camera reference frame according to

the following equation:

P”=sPA+r+E (2.15)

where P and P1’ are n x 3 matrices representing the position of the moUd points in the

camera reference frame and on the projection unes, respectively, A is a 3x3 rotation

matrix, r is a 1 x 3 vector representing the translation from the centroid of P to the

centroid of P1’, s is a scalar, and E is an n x 3 residual matrix. Equation (2.15) can be
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rewritten as

E=(P1’ —r)—sPA. (2.16)

Note that for some unknown reasons, our simulation shows that convergence of

SPT was unacceptably slow which is different from the resuit given in [5]. We have made

a modification to the formula given in [5] according to the Procrustes algorithm presented

in [7, 8, 9]. We define a new coordinate system, named modeiC, such that its origin is

located at the centroid of P. Then we use pC and [pP]C to represent P and P’ in the

modeiC reference frame, and use pC and [pP]C to replace P and P” —r in equation

(2.15), respectively. The translation from camera reference frame to the modelC reference

frame is denoted as Ii’. In the modeÏC reference frame, the equation (2.15) is rewritten as

E=tP]c’_sPcA. (2.17)

In [5], r is flot considered explicitly in the process of projection-Procntstes and the

translation I is flot mentioned. Afier the modification above, the process can converge

to the solution as expected.

Image
Plauc

Pi,

F.

Spot

Y
Image
Iranie

Figure 2.3 The point positions, P, are projected onto their rcpectivc perspective projection une,
from the focal spot to the {x1Al M 1T, at the positions P,”.
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The Procrustes algorithm [7, 8, 9] is used to determine the transformation (i.e., A

and s) that aligns pC and [pP]C optimally, i.e., sucli that the transformation minimizes

the sums of squares of E, given by

Tr(ET .E), (2.18)

In equation (2.18), Tr(A) = is called the trace of square matrixA. The solution for

A is computed by using the orthogonal Procrustes algorithm according to the equation:

A=UVT, (2.19)

where

[pC]T[pP]C
= (])ZVT, (2.20)

i.e., UZVT is the singular value decomposion f [pc]r[pP]C In the iterative process of

the algorithm, the rotation R is adjusted through the following equation:

(2.21)

where Rt’’ corresponds to the estimate of R in the previous iteration.

The model points are oriented and positioned in the camera reference frame

according to the refined estimate of R and the estimate of T through equation (2.12).

Subsequently, p. = [x1
, y.] and P” are adjusted through equations (2.6) and (2.13),

respectively.

The scale factor, s, is computed through the following equation:

T ffpC ATt P1Ckr1
(222)

- Tr(PTP)

Subsequently, T1 and T2 are adjusted through equation (2.12), while T3 is adjusted

according to the following equation:

T pret’

(2.23)
s

The above iterative process is repeated until the difference between P and P” is

sufficiently small. SPI method retums T1, T2, T3, ç5, Ø,, and Ø., where Ø, Ø, and Ø.
are computed by applying Euler angle decomposition to R [5].

In order to accelerate the convergence of the process, the translation, T’, we

propose strategy of appÏying to the initial model reference frame such that the centroid of
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object is located at the origin of the model reference frame and add it to the SPT

algorithm in our simulation. The translation is indicated by the following equation:
p1

=

[pin ]Jfl
+ T’, (2.24)

where [1 ]lfl represents object points in the initial mode! reference frame as the input of

the algorithm. Inversely, in order to obtain the transformation, T”, referring to the initial

model reference frame, the transformation indicated in the following equation is applied:

T”=T+T’R, (2.25)

where T and R are the resuits obtained from the SPI method in the mode! reference

frame transformed by T’. We name equations (2.24) and (2.25) as the preprocess and the

postprocess, respectively.

The SPI algorithm can now be summarized as follows:

The input is fonned by n corresponding image and mode! points, with n 3, and

the initial estimates R° and T. The algorithm is divided into two parts.

Preprocess according to equation (2.24).

Ihe first part:

Adjust T1 and T2 through equations (2.12) iteratively. In my program, the iteration

process is repeated 12 times.

The second part:

1) Compute the unit vector of projection unes through equation (2.14).

Estimate F through equation (2.1), and project P onto projection unes, P”,

through equation (2.13).

2) Translate P and P” in camera reference frame into pC and [pP ]C in modeiC

reference frame.

3) Compute the SVD of {pc]T[p]c, and then compute A through equation

(2.19).

4) RefineR through equation (2.20), T1 and T2, through equation (2.12).

5) Optimize T3 through equations (2.21) and (2.22).

6) If the difference between P and P” is not sufficiently small, go to step 1.

The postprocess is taken according to equation (2.25), and then results of T1, T7,

T3, q5, Ø, and Ø. are retumed.
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2.3.3 POSIT Method

POSIT (Pose from Orthography and Scaling with Ileration) [6, 14] has been

developed by DeMenthon and Davis. The method approximates the perspective

projection with a scaled orthographic projection (SOP), also known as weak perspective

projection, and estimates the pose by solving a linear system. The above process is

iterated to achieve more accurate pose by optimized SOP.

The scheme of the POSIT method is depicted in Figure 2.4. The model reference

frame is centered at P0 and its coordinate system is (u, y, w). The origin of camera is at

the focal spot and its coordinate system is (X Y, Z), with i, j, and k representing the unit

vectors along X, Y, and Z axes, respectively. The object point P1 in the camera reference

frame is represented as P = [X, Y, Z1], and its perspective projection and SOP are

represented as p. = [x ]T and = [x’, y]T, respectively. Plane K is through Po and

parallel to the image plane.

The goal of the POSIT rnethod is to compute the rotation matrix and translation

vector of the object. The rotation R is the matrix whose rows are the coordinates of the

unit vector i,j, k ofthe camera reference frame expressed in the object coordinate system

(it, y, w) and is written as:

ju 1,
W

R
= J J i

k k k

where i, i.,, i are the coordinates of j in the coordinate system (u, y, w) of the object, and

similarÏy withj11,j,j and k, k1, Iç.

b compute the rotation, we only need to compute j and j in the model reference

ftame. The vector k is then obtained by i x j. The translation T equals to 0F0, and

therefore the coordinates of the translation vector are Xo, Yo, Zo. The point po is the

projection of point P0 on the image plane; and the translation T is atigned with vector 0p

and is equal to --0rn0. Therefore to compute the object translation, we only need to

compute its z-coordinate Zo. Thus the object pose if fuÏly defined once we find I, j, and

Z0.
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T

‘ —
fjx, jz,

LX,,YI

_

z0 ‘ z0

where [x, y]T is the image ofP with SOP.

The ratio s = is the scaling factor ofthe SOP. The point I {X0,Y0,Z0]T bas

u,,—

z

focal
Sj)Ot

Plane

j [mage

L____ y frame

figure 2.4 Scheme of the POSIT method. The image p is the perspective projection of object
point F and image p°” is the scaled orthographic project (SOP) of the object point F. K is the
plane through F and parallel to the image plane.

The POSIT method is based on using SOP to approximate the perspective

projection. Here, we choose Zo as the depth of SOP and therefore SOP ofP1= [Xj, Y1, Z]T

is expressed as:

(2.26)

the same image p0 = [x0, y0] in both SOP and perspective projection.
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From figure 2.4, we have

0 (2.27)
jj7 .2_j=y.(1+E.)—y0

z0

where E. is defined as

(2.2$)

andkis

k=ixj. (2.29)

The proof of equation (2.26) is given in [4].

Equation (2.27) can be rewritten as

jj .J=x(1+E)—x
(2.30)pp .J=y(1+E)—y

where

I = Li
(2.31)

J = j_i.
z0

Given an estimate of E., equation (2.30) provides a linear system of equations in which

the only unknowns are the coordinates of I and J. The linear systems of equation (2.3 1)

can be solved by using Linear Least Square method [7].

The P0511 algorithm starts with an estimate of E1, say E. = 0, and solves equation

(2.30). Then a more accurate E. is obtained by flrstly computing i andj through equation

(2.3 1), then k through equation (2.29), flnally E. through equation (2.2$). The above

process adjusts E. until the change of E1 between the current and previous iterations is

sufficiently small.

In order to meet the atgorithm requirement that the object point P0 must be located

at the origin of the model reference frame, the translation, T’, applied to the initial model

reference frame has been added to the SPT algorithm in our simulation. The translation is
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noted as:

I” =[I.”j” +T’, (2.32)

where [1” ]“ represents object points in the initial model reference frame as the input of

the algorithrn. Inversely, in order to obtain the transformation, T”, in the initial model

reference frame, we compute:

T” =T+T’R. (2.33)

The following is the summary of the algorithm.

Preprocess according to equation (2.32).

1) Translate the object with 1 so that the Po is located at the origin of the

transformed model reference frame through equation (2.32).

2) Let E, = 0, (1 =

3) Compute x.(1 + E/”) — x0 and y(l ÷ E)r?l ) —
y0; solve for vectors land Jusing

the Linear Least Square method; and compute j = and j =
SI S2

f 14) Compute new E.: using k = t xj; Z0 = —; E1 = —P,P . k.
s Z0

5) If , — E/’ Threshold , retum the result; else go to step 2.

Postprocess according to equation (2.33). Then retum T,, T2, T3, Ø, and Ø.

2.4 Comparison of the Three Methods

Six groups of test data were used; the last three groups are generated randomÏy by a

Mathematica program while the first three groups are chosen manuaÏly, and used to test

the pose methods presented above. In order to evaluate the noise robustness of the

methods, further tests were carried out by adding random noise with maximum amplitude

of ±5% to the measured images in the above test data. The test data without noise effect

and the resuits are listed in Table 2.1 through Table 2.7, whule the test data by adding

noise and the resuits are listed in Table 2.8 through Table 2.14.

following are the main observations that can be made regarding the comparison of

these three pose estimation methods from the data in Table 2.1 through Table 2.7.
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- The PO$IT method is the most efficient and the most accurate method.

- The POSIT method does not need an initial estimate of rotation and translation, while

both SPT and Newton’s methods need initial estimates.

- The Newton’s method is only suitable for a small range of rotation angles, typically

smaller than 300 around the Z-axis, even when a proper initial estimate of rotation

angles are given. The SPT method is better than the Newton’s method, but is also

limited to suitable rotation angles range due to the possibility of solutions faïling into

local minima. The drawbacks and a solving strategy are discussed in [11]. The

POSIT, which does flot need the initial estimates of R and T can be used with any

rotation angles.

In conclusion, according to our simulation, the POSIT method demonstrates fairly good

performances in terms of accuracy, efficiency, and is suitable for the whole rotation

range.

Compare the test results between the data in Table 2.1 through Table 2.7 and the

data in Table 2.1 through Table 2.7, we can see that when adding random noise to the

rneasured images, the accuracy of the POSIT is affected significantly. For most of cases,

for example: the data in Table 2.8, Table 2.9, Table 2.11, Table 2.12, and Table 2.13, the

enors by the POSIT are even worse than the enors by SPT method.
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Table 2.1 Within a smalt rotation around the Z-axis, Newton’s method, SPT method, and POSIT
obtain proper solutions. SPI demonstrates a good performance in terms of accuracy, while
POSIT demonstrates a good performance in terms of efficiency.

o o 0’

10 0 0

10 10 0 ØR=[iO —15 20]T, r=[2o 20 351T,.f 100

0 10 0
Objeci =

0 0 10

10 0 10

10 10 10

0 10 10,

57.1 57.1’

76.5 60.4

t 66.5 83.5

46.7 82.2
image =

‘ 39.1 41.1

55.8 44.8

48.0 63.6

31.1 61.2

Newton’s Method SPI POS1T

Initial Estirnates T0=[0,0112]T, 0R0=[000IT T0[O,Oj72]T, 0j000jT

TirneCost(sec.) 0.14 0.09 0.04

Num ofiterations 30 20 20

ErrorofR(°) 0.0367 0.0000197 0.00155

Errorofl 0.00673 0.0000149 0.00111
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Table 2.2 Within a small rotation around the Z-axis, Newton’s method, SPI method and POSIT
obtain proper solutions. POSIT demonstrates good performances in terrns of accuracy and
efficiency.

‘0 0 0

10 0 0

10 10 0 ØR30 —40 5o, T=î20 —20 60],f 100

0 10 0
Object =

0 0 10

10 0 10

10 10 10

0 10 10,

33.3 —33.3

36.9 —22.8

28.7 —11.1

23.9 — 20.3
image =

20.3 — 35.7

24.9 — 26.0

17.3 —15.3

11.7 —24.1

Newton’s Method SPT POSIT

Initial Estirnates T0=[O,0f72]T, ØR[O,O,0]’ T0{O,Ofi2]T, 0R0[O,O,O]T

lime Cost (sec.) 0.18 0.1 0.04

Num oflterations 36 24 20

ErrorofR(°) 0.386 2.49x10 1.91X10’3

ErrorofT 0.559 2.42X107 8.70X1015
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Table 2.3 With this test data, both Newton’s method and SPT method cannot obtain a proper
solution.

0 0 0

10 0 0

10 10 0 ,ØR=[180 —5 s]T,r=[—io —10 35Ï’f’100
0 10 0

Object=
0 0 10

10 0 10

10 10 10

O 10 10

‘

— 28.6 — 28.6

—0.222 —3].8

—2.76 —60.9

• —30.9 —56.9
image =

—43.4 —39.9

—3.92 —44.9

— 7.49 — 85.9

—46.7 —79.4

Newton’s Method SPI POSIT

Initial Estimates T11=[0,0J12JT, 0R0=[0,0,0]T T0=[0,0,fl2JT, 0R0=[000]T

TimeCost(sec.) annot achieve resuiL Cannot achieve resuit 0.04

Num oflterations 20

ErrorofR(°) 0.0000203

Errorof T 4.35x106
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Table 2.4 The same test data as in Table 6.1 (cl), but a proper set of initial estimates of rotation
angles are given, SPT obtains a proper solution, while Newton’s method still fails to find the
solution.

0 0’

10 0 0

10 10 0 , ØR=[18O 5
5]T,

T=[—l0 —10 35]Tf=100

0 10 0
Object

O O ]0

10 0 10

10 10 10

0 10 10

— 28.6 — 28.6

—0.222 —31.8

— 2.76 — 60.9

• —30.9 —56.9
image =

—43.4 —39.9

—3.92 —44.9

—7.48 —85.9

— 46.7 — 79.5

Newton’s Method SPT POSIT

Initial Estimates T0=[0,O,fl2]’,ØR0=[ 150,20,20]’ T0=[O,Oj72]T,?o=[ 150,20,20]’

TimeCost(sec.) Cannot achieve resuit Cannot achieve resuit 0.04

Num oflterations 20

ErrorofR(°) 0.0000203

ErrorofT 4.35x106
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Table 2.5 With this test data, Newton’s mcthod fails to find the solution. POSIT method
demonstrates better performance in terms of efficiency and accuracy.

‘0 0 0

10 0 0

10 io o , øR=[60 5 6O1, r[—io —w 7o],f= 100

0 10 0
Object

0 0 10

10 0 10

10 10 10

0 10 10

f_]43 —14.3

—6.45 —7.78

—16.7 —3.54

• —25.1 —9.25
image =

—14.4 —24.8

—7.12 —17.7

—16.7 —13.2

—24.7 —19.6

Newton’s Method SPT POSIT

Initial Estimates T0=[0,0j72]T, j0[000]T T0=[0,0.112]T, ØR0=[0,0,0]T

TimeCost(sec.) CannDt achieve recuit 0.1 0.04

Num oflterations 20 20

ErrorofR(°) 6.55x105 3.02x10’4

ErrorofT 9.84x106 2.94x1014
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Table 2.6 With this test data, Newton’s method failed to find the solution. The POSIT method
demonstrates better performance in terms of efficiency and accuracy.

—5 —3 10

— [207 —49 22 J, T = [—30 17 40f ,f= 100

Object= —10 9 —3

—5 —7 —4

—10 4 1,

—103 59.3

—68.7 24.4

image= —74.8 15.9

— 59.5 47.5

—81.0 29.2

Newton’s Method SPT POSIT

Initial Estirnates T0=[0,0jÏ2]’, ØR0=[O,O,O]T T0=[O,O,fi2]T, Ø0[o00]T

TimeCost(sec.) Cannot achieve resuit 0.07 0.04

Num of Iterations 20 20

EfforofR(°) 2.17 4.09x106

ErrorofT 0.207 1.03x106
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Table 2.7 With the test data, Newton’s rnethod failed to find the solution. The POSIT method
demonstrates better performance in terms of efficiency and accuracy.

4 —9 7

10 5 —9 ‘
= [29$ —65 24]T, T=9 —4 4l]T,f=iOO

Object =
—2 5 —2

7 —8 1

11.1 2.66

58.2 6.87
image

25.7 — 17.0

24.7 4.06

Newton’s Method SPT POSIT

Initial Estirnates T0=[O,OJÎ2JT, j0[000JT T0{0,O,fl2]T. 0R0[000lr

TirneCost(sec.) Cannot achieve recuit 0.07 0.04

Num oflterations 20 20

ErrorofR(°) 0.153 3.Q5x1Q8

ErrorofT 0.0237 6.00x10’°
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Table 2.8 By adding random noise with maximum amplitude of ±5% to the measurcd images in
the test data in Table 2.1, it is shown in this case that the errors of the resuit by the POSIT
become larger than the errors of the result by the $PT. Newton’s method still lias the largest
errors in its result.

‘0 0 0’

10 0 0

10 10 0 ØR=î10 —15 20]T, T=[20 20 35]Tf=100

0 10 0
Object =

0 0 10

10 0 10

10 10 10

0 10 10

•54.7 54.7

74.2 58.6

D 69.5 87.2

• 45.6 $0.3
image =

38.9 40.9

56.9 45.7

47.4 62.7

32.2 63.3

Newton’s Method SPT POS1T

Initial Estirnates T0=[0,0,fl2]T, 0R0=[000]T T0=[0,0J12f, ?0=[O,O,O]T

Tirne Cost (sec.) 0. 1$ 0.09 0.05

Num oflterations 36 20 20

ErrorofR(°) 6.88 5.08 5.80

EnorofT 1.09 0.780 1.00
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Table 2.9 By adding random noise with maximum amplitude of ±5% to the measured images in
the test data in Table 2.2, it is shown in this case that the errors ofthe resuits by the three methods
have no significant differences.

‘0 0 0’

10 0 0

10 10 0 , ÔR30 —40 50]T
T=[20 —20 601T,f 100

O ]0 O
Object =

0 0 10

10 0 10

10 10 10

0 10 10,

‘33.4 —33.4’

36.1 —22.3

28.9 —11.2

• 24.0 —20.3
image =

19.9 —35.1

24.2 — 25.2

17.0 —15.1

11.8 —24.2,

Newton’s Method SPT POSIT

initial Estirnates T,)={O,0J72] T, ØR0=[O,O,O]’ T[O,Of12] ‘, 0R0{O,O,O]T

Tirne Cost (sec.) 0.17 0.09 0.04

Num ofiterations 36 20 20

ErrorofR(°) 3.66 2.91 3.81

Enorof T 1.24 1.25 0.670
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Table 2.10 By adding random noise with maximum amplitude of ±5% to the measured images
in the test data in Table 2.3, it is shown in this case that the errors of the resuit by the POSIT
become significant large.

‘0 0 0’

10 0 O

10 10 O R=[180 —5 51’ r=[—io —10 351T,f=100
0 10 0

Object =

0 0 10

10 0 10

10 10 10

0 10 10,

—27.1 —27.1

—0.217 —31.1

— 2.88 — 63.6

— 29.7 — 54.6
image

—43.8 —40.2

—3.97 —45.5

— 7.65 — 87.8

—46.0 —78.3

Newton’s Method SPT POSIT

Initial Estimates T0=[0,0,112JT, ØR=[ooOjT T0=[0,0.f72j” 0R0=[000]T

TirneCost(sec.) annot achieve resuit Cannot achieve resuit 0.04

Num oflterations 20

ErrorofR(°) 1.14

Errorof T 0.849



34

Table 2.11 By adding random noise with maximum amplitude of +5% to the measured images
in the test data in Table 2.4, it is shown in this case that the errors of the result by the POSIT
become much larger than the errors shown in Table 2.4.

‘0 0 0

10 0 0

10 10 0
‘ 01? =[180 —5 5]’, T=[—10 —10 35j’,f 100

0 10 0
Object =

0 0 10

10 0 10

10 10 10

10 10

— 27.3 — 27.3

—0.217 —31.0

—2.84 —62.8

• —31.8 —58.4
iiiiage =

—44.1 —40.6

—4.08 —46.8

—7.51 —86.1

‘ —45.8 —77.8,

Newton’s Method SPT POSIT

Initial Estirnates T0=[0,0,J12] TØJ?0[ 150,20,20]’ T0=[0,0j12]T ØR0=[ 150,20,20] T

TirneCost(sec.) Cannol achieve result Cannot achieve resuit 0.04

Num oflterations 20

ErrorofR(°) 3.19

ErrorofT 0.886
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Table 2.12 By adding random noise with maximum amplitude of ±5% to the measured images
in the test data in Table 2.5, it is shown in this case that the errors of the result by the POSIT
become larger than the errors of the restiit by the SPT.

O O

10 O O

10 10 0 , ØR=[60 —5 60]’, Tz[_J0 —10 70]T,f 100

0 10 0
Object =

0 0 10

10 0 10

10 10 10

0 10 10

‘—14.2 —14.2

—6.70 —8.08

—17.0 —3.61

• —26.3 —9.67
image =

—14.0 —24.1

—7.13 —17.7

—17.2 —13.6

—25.4 —20.2

Newton’s Method SPI POSIT

Initial Estimates T0=[0,0,/12]T, 0[000jT T0=[0,0j12j, ØR=[0.0,01’

TirneCost(sec.) Cannot achieve recuit 0.1 0.04

Num oflterations 20 20

ErrorofR(°) 0.648 1.58

ErrorofT 1.71 1.77
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Table 2.13 By adding random noise with maximum amplitude of +5% to the measured images
in the test data in Table 2.6, it is shown in this case that the errors of the resuit by the PO$IT
become as large as the errors ofthe result by the SPT..

—5 —3 10

‘0k [207 —49 22 T = [—30 17 40]T
‘1=100

Object={—1Û 9 —3

—5 —7 —4

—10 4 1

—102 58.9

—67.3 23.9

image = — 75.8 16.1

— 60.8 48.5

—77.9 28.1

Newton’s Method SPI POSIT

Initial Estirnates T0=[0,0,JÏ2]T, ØR0={0,0,0]’ T0=[0,0j721T, 0{0001T

TirneCost(sec.) Cannot acheva result 0.1 0.04

Num oflterations 20 20

ErrorofR(°) 5.38 2.76

ErrorofT 0.402 0.704
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Table 2.14 By adding random noise with maximum amplitude of ±5% to the measured images
in the test data in Table 2.7, it is shown in this case that the errors of the resuit by the POSIT
become larger than the errors ofthe result by the SPT.

4 —9 7

10 5 9 = [298 —65 24]T
T=[9 4J]rf= 100

Object =
—2 5 —2

7 —$ 1

11.5 2.75

. 59.7 7.05
image =

24.5 —16.2

23.7 3.90

Newton’s Method SPT POSIT

Initial Estirnates T,[0,0,fl2jT øRj[ooo]T T0=[0,0,f121T, 0[lJoiJ]T

TimeCost(sec.) ‘annot achieve result 0.07 0.04

Num oflterations 20 20

ErrorofR(°) 1.44 13.1

ErrorofT 111 1.68
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2.5 Summary

In the reconstruction of vessels from WUS images, biplane angiography or single

projection angiography is needed. Biplane angiography bas the drawbacks of the

expensive equipment, complex operation, and requirement of calibration. Because single

projection angiography overcomes most of the drawbacks existing in bipÏane

angiography, it has drawn increasing attention from researchers.

Single projection angiography employs the method of pose estimation by single

projection. Among many publications on pose estimation by single projection, we have

studied three methods. They are Newton’s method, SPI, and POSIT. The simulation

resuits have shown that the POSIT method is the best method in terms of accuracy,

efficiency, and stability among the methods we have studied.

Although single projection angiography overcomes the drawbacks existing in

biplane angiography, on the other hand, it requires a prior knowledge of the 3-D

configuration of vessels. In the next chapter, we wiÏl investigate the possibility and

propose a method of using an image sequence taken by single projection angiography to

reconstruct a trajectory of catheter in IVUS intervention without a prior knowledge of

configuration of vessels.
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Chapter 3

A Method of Pose Estimation by an Image

$equence from Single Projection

3.1 Introduction

As presented in Chapter 2, in the reconstruction of catheter trajectory in 3-D

IVUS artery intervention, either biplane angiography or single projection angiography is

employed to provide the information of location and orientation for each frarne of WUS

images. Single projection angiography has advantages of low equipment cost and is

easier to operate over biplane angiography and therefore has drawn a lot of attention from

researchers. Kowever, for single projection angiography, there exists a limitation that a 3-

D configuration of artery is required. That is due to the fact that the method of pose

estimation by single projection, which is used in single projection angiography, requires

prior knowledge of the 3-D configuration of the object. The 3-D configuration of artery

can be obtained by computed tomography (CT) or magnetic resonance (MR). This

consequently increases clinical cost.

In this chapter, we propose a nove! method of pose estimation with image

sequence taken from a single view. Compare with the methods discussed in Chapter 2,

the proposed method only needs the measurement of pullback length of the catheter,

instead of the requirement of the knowledge of the 3-D configuration of the object,

instead. In a typical IVUS intervention, an angiographic sequence from single projection

can be taken to localize the IVUS transducer during its pullback. Based on this fact, we

propose a new method of pose estimation with an image sequence taken from a single

view with no need of prior knowledge of the object 3-D configuration, targeting for an

implementation in angiography. The proposed method avoids the additional CT or MR
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imaging used in single projection angiography, and thus reduces the clinic cost and

simplifies the IVUS investigation.

The proposed method is simulated in Mathematica by using a given spiral curve

to represent the configuration of an artery. Several cases are implemented with various

locations, orientations, and sizes ofthe given curve.

The chapter is organized as follows. In Section 2, we describe the configuration of

an angiography system during an IVUS intervention. In Section 3, we present in detail

our new method of pose estimation with an image sequence from single projection. In

Section 4, we present the simulation of the proposed method in Mathematica. In Section

5, we give a summary of this chapter.

3.2 Angiography in IVUS intervention

In a typical 3-D IVUS intervention, angiography is used to determine the location

and orientation ofIVUS images. In this section, we describe the configuration ofa typical

angiography system geometrically. A set of typical measurements for the configuration is

given, which will be used in the simulation ofthe proposed rnethod.

Figure 3. 1 shows the configuration of a coronaiy angiography system for 3-D

IV US. The focal length, f is the distance from a focal spot (i.e., X-ray source) to the

image plane. The patient is located between the focal spot and the image plane. We use ci

to indicate the distance from the focal spot to the centre ofthc patient’s heart. Notice that

cl cannot be measured accurately. In a 3-D IVUS intervention, a miniaturized ultrasonic

transducer at the end of a catheter is inserted in the artery lumen, and then withdrawn

gradually. An image sequence is taken during the pultback of the catheter. The pullback

length of a catheter between grabbing images i and image i+] is indicated as AI,. as

shown in figure 3.2. In the following discussion, we assume that /l000m,n and

c/=500mnz. The size of the heart is within a sphere of radius r=lOOmm. These

assumptions for measurements are close to the real clinical situation.
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3.3 A Method of Pose Eslimation with an Image Sequence from Single Projection

In this section, we propose a method of pose estimation with an image sequence

from single projection. The rnethod is intended to be irnplernented for the reconstruction

ofthe trajectory ofa catheter from an image sequence taken by single angiography. In the

foïlowing discussion, the trajectoty ofa catheter is viewed as a 3-D curve.

This section is otganized as fotlows. In subsection I, we geometrically analyze

the problem of pose estimation by an image sequence from single projection. In

subsection 2, we discuss how to find multi-solutions for the trajectory curve. A strategy

for eliminating invalid solutions using physical characteristics of the catheter path is

presented in subsection 3. In subsection 4, we discuss the strategy that we use to reduce

the accumulated error. in subsection 5, we discuss how to determine the location ofthe

start point of the trajectory curve. In the last subsection, we summarize the proposed

rnethod.

3.3.1 A Geornetrical Analysis of the Problem of Pose Estimation by an Image Sequence

from Single Projection

We define the coordinate system for an angiography camera system as (X }Ç Z)

with its origin tocated at the focal spot and image plane at Z=J and define the coordinate

Figure 3.1 The configuration ofa system ofWUS combined with coronary angiography
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system for an image as (x, y), which Lies in the image plane and is parallel to the X and Y

axes. The coordinate systems (X Y, Z) and (x, y) are ilÏustrated in igre 3.1. As shown in

Figure 3.2, P1(X, }, Z) andp1(x1, V) respectively represent the 3-D location ofa catheter

tip and its corresponding projection on the image plane when the i-th coronary

angiography image is captured. Since the size of the heart, within a sphere of radius

r lOOmm, is significantÏy smaller than the focal Iength, J1 000mm, we assume that

catheter tip images are caught under a weak perspective projection. furthermore, we

assume that the length of the curve, AI1, is srnall enough so that each segment of the

trajectory curve can be viewed as a straight une with its length approxirnately equal to

AI1. Based on the above assumptions, the relation between a segment of the trajectory of

the cathetertip, F1P1±1, and its weak perspective image, p,pj±j, as shown in Figure 3.2, can

be represented as the following equations:

X1 — X. = (x,1 — x) . s (3.1 a)

—

= — j) s (3. lb)

Z11 Z = ±AÏ — (x÷1 — x)2 $2
— — , (3.1 e)

where s = a scale factor for weak perspective projection. and AÏ1 is the pullhack

length of the catheter in the interval between capturing the i-th image and capturing the

i+Ï-th image.

Based on the assumption of weak perspective projection, the X and Y-coordinates

of the point on the trajectoly coiiesponding to a point in the image can be estirnated by

fol lowing equations:

X. = sx.
(3.2)

Iç =syi.

Furthermore, we assume that the Z-coordinate of the start point of the trajectory curve,

noted as Z1, is known, and the length ofpullback ofcatheter, AÏ1, is known, then Z1 (i>O)

can be computed by using equation (3. Ic). Later in this chapter, we wiLl present a strategy

for estimation of Z1.
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figure 3.2 A segment of trajectory ofa catheter tip and its projection on the image plane

J

Ft)a1 spot

Figure 3.3 11 is the plane that passes through the point F+ and is parallel to the X and Y-axis, Ø
is the angle between the une of FP1÷1 and the plane H.
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3.3.2 Finding Solutions for a Trajectory Curve

Obviously, X and Y1 can be easily computed through equation (3.2) and Z1 can be

computed deductively through equation (3.1 c) providing Zj is previously known.

However, there is an undetermined sign in equation (3.lc), which will Ïead to multiple

solutions for Z. This subsection will focus on the detennination of the sign in equation

(3.lc).

The part of trajectory ofthe catheter tip in Figure 3.2 with respect to the object is

enlarged in Figure 3.3, in order to depict the problem in detail. We use H to denote the

plane that passes through the point P+j and is parallel to theXand Y-axis, to denote die

angle between the une of P1P1÷1 and the plane FI. in the following, we wiil consider two

situations according to weather Ø tliresholcÏ or > threshoÏd. Geometrically, the

difference between the two situations is that in the former one, the une P1P1+i is almost

parallel to the plane [I: while in the later one, there is a significantty large angle between

the line P1P1+1 and the plane H.

Firstly, we deal with die situation when is greater than the threshold. Due to the

physical characteristic of a catheter and the configuration of an artery, the trajectory of

the catheter tip must be a smooth curve, i.e., there is no sharp bend on the trajectory. Ibis

characteristic can be represented mathematically by assuming that the value of the second

derivative of the curve at the point P1 vi1l be significantly srnall. Figure 3.2 shows the

trajectory of a catheter tip that passes through two points, F’ and P1+1, which are

corresponding to the image points p, and p+j. Now we discuss the problem of soiving

f1+1 from known p, Pi±I, and P-. In equation (3.1), AÏ1, the Ïength of curve PF+i, can be

approximated as the length of une P1P1±1, providing the length of curve P,P1÷; is

significantly srnall. By solving equation (3.ic), vie have two possible solutions, denoted

as (X1 , , Z1) and (x , , z1), for the point F1+1(X+1, Y+ï, Z1±j), due to

the options of sign in equation (3. ic). Now we need to determine the solution that best

approxirnates F1+i between and I. To achieve this, we use a strategy of

comparing their second derivatives of two segments of curves constructed by possible

solutions at point P1. That is, the best solution represents a smooth curve, and therefore
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bas a srnaller absolute value for the second derivative than the bad solution. We represent

the trajectory ofa catheter tip as the following equations:

X = X(t)

Y=Y(t) (3.3)

Z = Z(t).

The second derivatives of the X Y, and Z at point P1 can be estirnated as:

AX —

-

yU= A) A1
(34

- At1
AZ. — AZ.

At1 - At11

where rlX, ri Y1. riZ1, AX1, AI’, and 4% represent X÷, - X, Y1±1 — Y1, Z1±1 — Z1, X -

— Yj1, and Z1 — Z1, respectively. Here P11(X1, Y1, Z11), the point prcvious to flic point

P1, is assumed to be known. The best solution of Pj1 makes the curve pass through the

points P11, P, P1+, smoother, and therefore bas smaÏler value for X’,Y’, and Z’7

computed by equations (3.4). We use the following formula to estimate the values for the

second derivative ofthe curve at the point P1:

AY
(3.5)

1\ At1 —At1_1 j l At —At11 j At —At1_1 j

Based on the discussion above, the best solution for P+i will be the solution obtained

from equation (3.2) and equation (3.lc) with smaller value given by formula (3.5).

Secondly, we deal with the situation of Ø threshold. In this situation, the une

P1iP1 is almost parallel to the image plane, and values for the second derivative of the

two possible solution curves at the point P are significantly close. Consequently, we are

not able to detennine the sign for equation (3. le) by the assumption of the smooth

characteristic of a trajectory curve. In this situation, we respectively compute the two

possible solutions and, based on the two possible solutions, compute ftirther solutions

recursively until the reconstructed trajectory curves extend long enough. On the
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trajectory, if there are n points where 4 tÏireshoÏcl. then there are 211 groups of possible

solutions for the trajectoiy curve. The problem ofchoosing the right soLution from multi

soLutions is tackled in the next subsection.

3.3.3 Determination ofthe right solution from multiple solutions

This section discusses how to choose the right solution from multi-solutions

obtained in the Iast subsection. We flrst project the points of each possible solution onto

the image plane using the following equations:

X. =Lx.

(3.6)z,y

For each possible solution, we compute the Euclidean distances between the projections

of solution points and the measured images, and pick the solution associated with the

srnallest Euclidean distances as the right solution.

3.3.4 Reducing Accumulated ElTor

The assumption of weak perspective projection in equations (3.1) introduces

errors into the solution for each segment of trajectory curve. Furthennore, deductively

using equation (3.lc) produces a significant amount ofaccumulated error for the solution

of trajectory curve. This subsection proposes a strategy to reduce the accumulated eiior.

As presented in subsection 3.2.1, we assume that the coronary angiography

system is a weak perspective projection camera system. The main reason for this

assumption is that the Z-coordinate of the trajectory curve cannot be measured in the

clinical situation. Based on this assumption, we use cl, depicted in Figure 3.1, as the

average distance from the object to the focal spot. In the Chapter 2 of [3], it is suggested

that a weak perspective projection becornes viable when —i.> 20. Here Z is the

distance from an object to a focal spot in average, and 5Z is the offset of an object point

from Z along the Z-coordinate. In the situation we discuss, is around lOOmm, halfthe
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size of a hurnan heart; and Z is equivalent to d about 500mrn. Then we have = 5

which is mucli smaller than the suggested value of 20. Although this may seern

encouraging CITOfS are ncvertheÏess introduced in the resuit by solving equation (3.lc).

We now analyze the enor in the worst-case in above configuration. Figure 3.4

depicts the perspective project and week perspective projection in the worst-case. H’ and

H are the week perspective projection and full perspective projection of object h on the

image plane, respectively. We have

H’=
Jh = l000•200

=500
Z—%Z 500—100

and

H
fi l000200

=400.
Z 500

The etror for the worst-case is H’ — Hl/H’ = 1500 — 4001/500 = 20%.

H’
II

Inîage plane
:1

/ I

Ï,2OO

OhJLct

r

focal spot

Figure 3.4 The enor analysis of the week perspective project vs. the full perspective project.
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Furthermore, another eiior is introduced by using the distance of each two

subsequent points to approximate the curve length between the two points. Increasing the

frarne rate of the angiography image sequence can reduce this kind of enor, but would

cause an unacceptable increase ofthe X-ray dose to patients on the other hand.

In the deductive computation, abovementioned eiors will accurnulate. Even

worse, a significant accumulated error may cause the rnethod to become unstable.

To reduce the abovementioned enors, we propose a strategy that uses an iterative

process to improve the weak perspective projection model, thus reducing the errors. At

the first loop of the iteration, we use weak perspective projection and set 2 to a given

value. In our simulation, vie have Z = 500 mm. Then in the following loops of the

iteration, we use Z-coordinate values in the solution obtained in the previous loop ofthe

iteration to replace the values for 2. Our simulation resuits show that the strategy

signfficantly reduces the errors in about ten loops.

3.3.5 Detenuination ofthe Location ofthe Start Point ofthe Trajectory Curve

In the previous discussion, we have assumed that Zj, Z-coordinate for the flrst

point of a trajectory curve, is known. Kowever, in clinical situation, it cannot be

measured. To solve the problem, we use a stratcgy that is sirnitar with the one we have

used for choosing the right solution from multi-solutions. That is, we compute ah

solutions using the method given in previous subsections with an assumed Z1 fi-om

400mm to 600mm by steps of lOiiim. Among the solutions obtained, we compute the

Euclidean distance between the projection ofthe points in each solution and the measttred

images, and pick Zj associated with the solution with the srnallest Euchidean distance.

Then repeat the above computation in a small range around the estimation for Z1 obtained

previously. For instance, if the estimation for Z1 is 521 mm, we compute a more accurate

Z, and its associated solution by testing Zj from 5llmm to 531mm by steps of lmm.

Obviously, the computation for Z1 is rather time consuming. According to our previous

analysis in Section 3.3.2, if there are n points where threshold, then the right solution

bas to be chosen from 71 groups of possible solutions.

3.3.6 A Sumrnaiy of Proposed Method
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In this subsection, we summarize the rnethod that lias been described in the

previous subsections.

The configuration of a single angiography camera system is shown in Figure 3.1.

The object consists ofrn points corresponding to the trajectory ofa catheter tip. Its centre

is located near the Z-axis at about the distance of cl from the focal spot. The input image

sequence consists of ni frarnes, and in each of them there is an image dot that is projected

by the corresponding object point. In addition, the Iength ofthe ctirve between each two

subsequent points can be measured as Al1 (the pullback tength). The following algorithm

can be used for reconstruction of the object based on the above known conditions. The

algorithm consists offbur procedures.

Procedure Find Solutions:

This procedure finds multi-solutions, which is returned as a ListSoÏtttions.

Input: numStartPoint, tistSo lutions =nutt, Z, solutionSet.

Note that Z represents the estirnated values for Z1 through Z,,1.

Retum: listSotzttions

I) Copy solution to sotutionSet] and sotutionSet2.

2) Compute s,a,-,p()j,, and Y,,11,,151,,.1P1111 through equation (3.2), and add them

into sotutionSeti and sotutionSet2. Note:soÏutionSetl and sohttio,tSet2 are

used to store the two possible solutions due to the sign in equation (3. 1 e).

3) 1Y,i,rnit,ipoi,zt+ i, and }llifllStCI,tpOj,,tt j through equation (3.2).

Compute AZ,i,mstartpont through equation (3.lc). Then compute to two possible

solutions for Z,1111,151c,1p01,,+j though Z111;j,,p0 int j = Z,gurns,ar,po int + nun,StartPo int’

and = ZnufllSttlrtPolflt — Z’nh,fllStarIPoint . Add solutions into .sotution$etl

and soÏutionSet2, respectively.

If (numStartPoint= =m), return solutionSet 1 and solutionSet2.

Repeat following steps 4) and 5) until j ni.

4) Let AZ”’ = Z11 — Z1, AX1 = — X1, and A}” = — Y1. If

77Iernp threshold , goto step 7).

5) 1f (AK1 — AX1_1 )2
+ (AY’

— AY1_1 )2
+ (AZ7”’° —

)2 <
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(AX. — AX.
)2

+ (AY — A}_1 )2
+ (—AZ” — AZ1_1 )2

= Z) + AZ? and Z1 = Z — AZt

else

= — AZ’” and Z?÷1 = Z +

Compute X+1 and Y±1 through Equations (3.2).

Add solutions into sohttion$etl and soÏutionSet2, respecti vely.

6) Return the solutions.

7) Recursively invoke Find Solutions with ntimStarifoint being set to I and

z÷, = z, +

Add the returned solutions of the above invocation into the tistSoÏtttions.

Recursively invoke Procedure Find_Solutions with nuniStutPoint being set to

j. and z,1 = z, — Azwmp

Acld the returned solutions ofthe above invocation into the list$oÏtttions.

Retum the ÏistSotutions.

When invoking Procedure Find Solutions, tistSotutions and solutionSet should be

provided as empty lists. nunStartPoint should be set to I, and Z1 is initialed to an

estirnated value.

Procedure Choose Solution:

This procedure finds the best solution from multi-solutions obtained by the

Procedure Find Solutions.

Input: listSotutions

Retum: bestSoÏution

For each solution in ÏistSohttions

1) Project the solution onto the image plane through equation (3.6).

2) Compute the Euclidian distance between corresponding projected and

measured points. The solution with the smalÏest Euclidian distance is the

hestSotution.

3) Retum hestSotution.
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Procedure Optimization:

This procedure reduces the error.

input: Ail previously ohtained solutions

Return solution

1) Set Z1 through Z, to the estirnated values.

Repeat steps 2) through 4) for twelve times

2) Invoke Procedure F md Solutions.

3) Invoke Procedure Choose Solution.

4) Modify the values for Z1 through Z,,, according to the solution.

5) Return the solution.

Procedure Find ZI:

This procedure finds the best estirnated value for Zj.

Input: Z( and Z1?m, which represent upper and lower boundaries of the object

along the Z-axis, respectively. S is the step length used for looping.

Retum: the best solution and its associated Z0.

1) For Zi in [Z”, Z], by step S

Invoke Procedure Optimization and put the solutions into a list.

2) For each solution in the list

Project the solution onto the image plane through equation (3.3).

Compute the Euclidian distance between colTesponding projected and

measured points.

3) The solution with the smallest Euclidian distance is the best solution. Return

the best solution and its associated Z(,.

3.4 Simulation of Proposeil Method in rvlathematica

In this section, we present the simulation of the proposed method in Mathematica

and the analysis on the simulation results.

In the simulation of the proposed method, we set a camera system with its focal

spot located at the origin ofthe camera reference frame, and image plane at Z=l000, i.e.,



52

focal length/1O00. Furthemiore, we assume, in the object reference frame, a helicoidal

trajectory ofthe catheter tip:

X = rsin(t)

Y = rcos(t) (37)

Z=h(t-,z),

where O t 2fr. In order to sirnulate the proposed rnethod with object located at various

locations and orientations, we define a transformation from object reference fratrie to

camera reference fratrie as fotlows:

[x1, , z, ]T
= R [x;” ,

, z,” ]T
+ T (3.8)

where T can be represented by T1, T2, and T3, the translations along X Y and Z axes, as

follows:

(3.9)

and R can be represented by Euler angles, Ø, Ø, and Ø., the rotation angles about X }Ç

and Z axes ofthe camera reference frame as following equation:

cos Ø. — sin Ø, O cos O 5m Ø,, 1 0 0

RT = sinØ.. cosØ 0 0 1 0 0 cosØ —sinør . (3.10)

O O Ï — sin O cos Ø,, o 5m Ø cos

Since the image plane is perpendicular to the Z-axis, theoretically, the proposed method

wilI demonstrate the same characteristic with changing Ø. So in the folÏowing

simulation, we set T [0, 0, 5OO], and setØ. = 0°, and assign Ø, Ø,= 0, 60°, 1200.

In Procedure Find Solutions of the proposed method, Ai1, which represents the

length of the curve between each two subsequent points, can be cornputed from the

corresponding change of t in equation (3.7):

Ai=ÇifX2 y’2 +Z’2dt, (3.11)

where, we assume that At1 is a constant. From Equation (3.7), we have

X’ = r cos(t)

Y’=rsin(t) (3.12)

Z’=h.

Plugging equation (3.12) into equation (3.1 1), we have:
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Al=,Jr2cos2(At)+r2sin2(At)+Ï12. (3.13)

Through equation (3.13), we can compute Al from zit, which are given in the following

simulations.

3.4.1 Simulations based on known Zj

In this subsection, the simulations are based on the assumption that Z1, the Z—

coordinate of the start point of the trajectory, is known u priori. Simulation for

detennining Z1 using Procedure Find Zl ofthe proposed method is presented in the next

subsection.

Table 3.1 shows the simulation results when r = 100. h = 32 in equation (3.7),

and At = 0.3. Arnong the fine situations tested, the results show that only in the case: 0.
= 0, Ø.,,= 60°. 0 = 00, the proposed rnethod fails although in the cases: Ø= 120°, Ø =

60°, Ø. = 0° and Ø = 120°, Ø = 120°, Ø. = 0, there are significant elTors (almost fails)

and in the case: = 0°, Ø = 120°, Ø. = 0°, significant errors happen at the end of the

trajectory. The average relative eior is 8.69%, and the error is mainly contributed by the

case of Ø= 120°, Ø = 60°, 02 = 0°. In this simulation, the proposed rnethod almost

fa ils.

Table 3.2 shows the simulation results when r = 100, h = 32 in equation (3.7),

and Ai = 0.2. Compared with the resuits shown in Table 3.1, the results have been

improved by reducing At for the case: = 0°, Ø = 60°, 02 = 00, though significant

errors rernain at the end of the trajectory. There is little improvernent however for cases:

Ø=120°, Ø,,= 60°, 02=0° and Ø. = 120°, Ø= 120°, 02=00 and littte change with

case: ç5 = 0°, Ø,= 120°, 02 = 00. The average relative error is 6.62%.

TabLe 3.3 shows the simulation resuits when r = 50, h = 16 in equation (3.7), and

At = 0.25. The resuits show improvement by reducing the size of object. Ibis is due to

the improvement ofthe condition of weak perspective projection, the camera model used

in the proposed method. The average relative error for this simulation is 5.81%.



Table 3.1 Simulation ofthe proposed method when r = 100, h 32 andAt = 0.3.
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Table 3.2 Simulation ofthe proposed method when r = 100, h = 32 andAt = 0.2.
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Table 3.3 Simulation of the proposed method when r 50, h 16 and At 0.25.

= Q . 120°, Ø = 0° = 60°, Ø =120°, Ø = 0 = 120°, Ø Ø Q0
Average error= ]].]837 Average error=0.81]139 Average error= 18.026

Maximum error = 99.5178 Maximum error = 3. 6921 Maximum error = 20. 6744

øv=0°, q=0°, Ø.=0°
Average error 2.03839

Maximum crror = 4.92998

Ø=60°, Ø=0°, =0°
Average error = 3.32538

Maximum errer = 462476

= /20°, Ø = 0°, & = 0°
Averae error 1.67105

Maximum error = 2.36308

Ø=0°, =60°, ç-=0°
Averagc error 5.01847

Maximum errer = 48.8279

= 60°, , =60°, Ø = 0° = 120°, , = 60°, = 0°
Average errer 0.630369 Average errer = 9.54844
Maximum errer = 2.06972 Maximum errer = 13.4792
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3.4.2 A Simulation for the determination of Z1

In this subsection, we use Procedure find_Zl of the proposed method to

determine Z1. The simulation is based on the case: r = 50, h = 16, and Ai’ = 0.25. The

simulation is accomplished in on two iterations. In the first iteration, we set Zf” = 450,

= 550 and S 10. The resuits in Table 3.4 show that Z1 is roughly estimated

between 520 and 540. in the second iteration, we set Z” = 520, Z = 540 and S =

2. The resuits in Table 3.5 show that Z1 is estimated as 530. This is close to the actual

value for Z1, Z1 = 525.133. The error item in the tables means the average difference

between the images of the projection of solution and the measured images. The error

values in bold face are the minimum value.

Table 3.4 In the first iteration, Z, is roughly estirnated between 520 and 540.

Z1 450 460 470 480 490 500 510 520 530 540 550

error 0.547 1.377 1.11% 0.970 0.868 0.833 4.471 0.633 0.366 0.598 0.557

Table 3.5 In the second iteration, Z1 is estimated as 530.

Z1 520 522 524 526 528 530 532 534 536 538 540

error 0.633 0.606 0.432 0.398 0.376 0.366 0.411 0.616 0.602 0.596 0.598

As mentioned above, the computation of Z, is rather tirne consuming due to its

exhaustive search mechanism.

3.5 Summary

In this chapter, we have proposed a new method of pose estimation with image

sequence taken from a single view. The proposed method has overcome the limitation

existing in the method of pose estimation by single projection, emptoyed in single

angiography.
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Simulation resuits for the proposed rnethod have been presented in this chapter. k

lias been shown that for rnost cases, the pmposed rnethod has achieved acceptabLe resutts.

In the view ofthese experiments, reducing the object size, which consequently improves

the camera model of weak perspective projection, can improve the resuits. Reducing the

object size is equivalent to increasing focal length, according to the camera mode!. Thus,

in real clinical situations, a large focal length can be configured in angiography

equipment in order to achieve improved resuits.
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Chapter 4

Application of the Proposed Method to

$ynthetic Data

4.1 Introduction

In Chapter 3, we have presented our simulation ofthe proposed method on given

curves with Mathematica. li the simulation, we did not consider the errors that might be

introduced in measurement of image points, and assumed that the catheter trajectory was

rigid. However, in clinical practice, these conditions are not necessarily met. These two

unconsidered characteristics may affect the resuits of the proposed method. In this

chapter, we will present the application of the proposed method to real data obtained

from a phantom experiment, which sirnulates an IVUS intervention. The image sequence

of the phantom experiment and the associated documents [15] used in our application

were provided by the Montreal Heart Institute.

This chapter is organized as follows. In Section 2, we will describe the phantom

experiment that was carried out at the Montreal Heart Institute, as well as an image

sequence obtained from the experiment. In Section 3, we wiIl test the proposed method

on the image sequence of the phantom experiment and discuss the resuits. In the last

section, we will summarize this chapter.

4.2 Phantom Experiment

A phantom experiment has been carried out at the Montreal Heart Institute, which

has been designed for investigation of single projection angiography in 3-D IVUS. In the

following, we describe the phantom experiment.
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h

figure 4.1 The phantom is built with a l000mt beaker with a pipe spiraling on it about 3600. The
measurement for h and d are: Ïî 125rnm and d=IO9mm.

Q) t

Figure 4.2 The measurements ofthe pipe: c = 3.176mrn and t= 6.35mrn.

The phantom, as shown in Figure 4.1, is built with a l000ml beaker with a pipe

spiraling on it about 370°. In figure 4.1, h and d are measured with respect to the centre

ofthe pipe. The measurements ofthe pipe are shown as Figure 4.2. The catheter used in

the phantom experiment is a JOVUS Avanar F/X, as shown in Figure 4.3. It is an IVUS

imaging catheter product from JOMED. The diameter ofthe catheter is 2.9french (equals

to lrnm), which is smaller than the inner diameter ofthe pipe (3.176rnrn). Therefore while

the catheter moves along the spiral pipe, a movernent along the tube diameter direction

may occur to the catheter. This can be observed in the image sequence. By this effect, the
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trajectory of catheter is flot a rigid curve.

PIM CtuT

j

:::

2JF

3rctl nd tmirI Guii Wre Tpr flp
Shaft Mrk Ext Pùt 0D 0.022’

figure 4.3 JOVUS Avanar F/X, an WUS imaging catheter.

In the phantom experiment, a fluoroscopic camera system has been configured

such that the focal length isJ 945mm, while the distance from the center ofphantom to

the focal spot is about 876mm. The camera system is shown in f igure 4.4. The pullback

of the catheter is performed by a Track Back II system, a catheter pullback device from

]OMED. The velocity of pullback of the catheter is about 0.5mm/s, which is measured

with error according to [15], but no range of error is given. A sequence of fluoroscopic

images has been captured by the fluoroscopic camera system during the pullback of the

catheter. The sequence consists of 1109 frames of 1024x1024 pixels fluoroscopic images

taken at a rate of 4 frames per second (fps), which is stored in 5 DICOM image files

(DICOM is a standardized format for medical images). One frame of the image sequence

is shown in Figure 4.5. Unfortunately, there is a gap with an unknown number of frames

(about 200 frames), between frame 220 and frame 221 in the sequence. Therefore, only

the frames from frame 221 to frame 1109, i.e., $89 frames, can be used in our application.

The trajectory to be reconstructed is about 67.9% ofthe whole trajectory.
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Figure 4.4 The configuration ofthe fluoroscopic camera system in the phantom experiment.
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Figure 4.5 A frame of the fluoroscopic image sequence. The transducer along the catheter is
visible in the Iower left quadrant of the image. The circular object appearing along the tube are
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simply twist tights attached at regular intervals along the pipe for reference purpose.

4.3 Application of the Proposed Method on the Pliantom Experiment Data

The original image sequence consists of 889 frames with a rate of 4fps. It records

the trajectory of the catheter that spirals around the beaker for about 250°. In our

application, two image sequences with a specific number of frames are reconstmcted by

picking frames from the original image sequence with a certain number of frames

interval. One reconstructed image sequence, called the Image Sequence I, has 20 frames,

which are picked at an interval of 45 frames from the original sequence as shown in the

first row of Table 4.1. Another reconstructed sequence, called the Image Sequence II, has

18 frames, which are picked at an interval of 52 frarnes as shown in the first row of Table

4.2.

The coordinates of the catheter (actually the IVUS transducer) tip on each frame

is read in pixel unit manually using Osiris, a software system of medical image

manipulation from Digital Imaging Unit, Center of Medical Informatics, University

Hospital of Geneva. The coordinates of the images in mm unit can be calculated by

multiplying the coordinates by the width of one pixel in the image plane, which is

provided in [15] as 0.1465mm.

In the following subsections, we will present the application of the proposed

method to the Image Sequence I and the Image Sequence II, respectively. These tests are

carried out with Mathematica.

4.3.1 Application ofthe Proposed Method on Image Sequence I

In Table 4.1, the first row, named Frame, shows the frame numbers taken from the

original image sequence. The next two rows, named x(pix) and y(pix), indicate the x and

y-coordinates of the projection of the catheter tip measured in pixel unit. The fifth row

and sixth row are the calculated values for above x and y-coordinates in the new

coordinate system, in which the unit of mm is used and the origin is located at the centre

of the image plane. The length of pullback of the catheter between each two subsequent

frames is 0.05 x45/4 = 0.5625 (inch).

Since the Z-coordinate of the start point of the trajectory of the catheter (denoted
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as Z1), which is associated with the image point in frame 221, is unknown, we use

Procedure Find Z1 presented in section 3.3.5, and assumer that Zi is between 841mm and

906mm. Table 4.2 gives the data ofthe trial ofProcedure Find_Z1 in the range above by

step length of 5rnrn. From the computed results, it is obvious that the estimated Z1 is

846mm, shown in bold face. Figure 4.6 shows the reconstructed trajectory ofthe catheter.

The last three rows in Table 4.1 give the X Y, and Z-coordinates of the corresponding

points in the reconstructed trajectory.

Table 4.1 The Image Sequence I, which is obtained from the original sequence with an interval
of 45 frames.

frarne 221 266 311 356 401 446 491 536 581 626
x(pix) 215 244 277 310 348 393 430 471 514 556
y(pix) 850 780 695 603 497 404 320 229 155 102
x(rnm) -43.51 -39.26 -34.42 -29.59 -24.02 -1 7.43 -12.01 -6.006 0.239 6.446
y(inrn) 49.51 39.26 26.81 13.33 -2.197 -15.82 -28.12 -41.45 -52.30 -60.06
X(mrn) -38.92 -34.96 -30.42 -25.98 -21.09 -15.38 -10.68 -5.370 0.264 5.876
Y(mm) 44.32 34.96 23.69 11.70 -1.92 -13.96 -25.01 -37.07 -47.16 -54.76
Z(mm) 846.0 836.2 828.7 822.3 822.3 827.5 835.2 840.7 849.1 859.9

Continuation of Table 4.1.

Frame 671 716 761 806 851 896 941 986 1031 1076
x(pix) 601 637 670 712 747 786 817 857 892 929
y(pix) 74 71 96 139 203 290 380 475 570 675
x(mrn) 13.03 18.31 23.14 29.30 34.42 40.14 44.68 50.54 55.67 61.09
y(mm) -64.16 -64.60 -60.94 -54.64 -45.26 -32.52 -19.33 -5.420 8.497 23.87
X(mrn) 12.03 17.12 21.92 28.06 33.29 39.01 43.63 49.35 54.34 59.63
Y(mm) -59.21 -60.41 -57.72 -52.34 -43.78 -31.61 -18.88 -5.293 8.294 23.31
Z(mm) 872.0 885.2 898.4 910.2 920.3 925.2 929.7 929.7 929.7 929.7

Table 4.2 The trail ofProcedure find_Zi in the range of $38mm to 90$mm.

Z0 841 846 851 856 861 866 871 876 881 886 891 896 901 906

Err 1.76 1.75 1.79 1.87 1.98 2.13 2.31 2.52 2.74 5.05 2.89 2.50 2.17

Unfortunately, there is no accurate and precise data available that represents the

trajectory of the catheter, with which we could compare our application results,

Therefore, we are not able to estimate directly the enors of the results. However we can
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assess indirectly our resuits by fitting an arbitrary spiral through our data set and look at

the parameters h and d as well as the residual error. As shown in figure 4.6, a spiral

trajectory has been reconstructed. The average diameter of the constructed spiral

trajectory is estimated as 108.3mm, which is close to lO9mm, the known diameter of

spiral pipe. The error is 0.642%. The height of the reconstmcted spiral is estimated as

$4.6 lrnrn. In our application, 68.4% of tlie spiral trajectory lias been reconstmcted. The

height of h for the reconstructed oftrajectory is 125 X 889 / 1299 = 85.54mrn. The error is

1.08%. The residual error can be computed as 1.25%. it is observable from Figure 4.6 (d)

that the reconstructed trajectory is slightly off the spiral curve at the last two points.

4.3.2 Application of the Proposed Method on the Image Sequence II

Table 4.3 is similar to Table 4.1 The Iength of pullback of the catheter between

each two sequent frames is 0.05 x 52 / 4 = 0.650 (inch).

Again we use Procedure find_Zi presented in Section 3.3.5, and assume that Zj is

between $4lmm and 906mm. Table 4.4 gives the data ofthe trial ofProcedure Find Zi in

the range above by step length of Srnm. From the computed resuits, Z1 is estimated to be

$7Ïmm, shown in bold face. Figure 4.7 shows the reconstructed trajectory ofthe catheter.

The last three rows in Table 4.3 give the X Y, and Z-coordinates of the corresponding

points in the reconstructed trajectory.

The results are similar to the resuits obtained for the image sequence I. Again

some observable errors happen at the last few points in the reconstructed trajectory.

Comparing the resuits for Zj in Subsection 4.21 and the resuits for Z1 in

subsection 4.2.2, we can find a significant difference between the resuits that is produced

by Procedure findZl of the proposed method and, it consequently will introduce

differences in the Z-coordinates of the solutions.

Similar with the reconstruction of the catheter trajectory by the Image Sequence I

presented in subsection 4.2.1, we can assess indirectly our resuits by fitting an arbitrary

spiral through our data set and look at the parameters h and d as well as the residual error.

As shown in figure 4.6, a spiral trajectory has been reconstructed. The average diameter

ofthe constructed spiral trajectory is estimated as 108.lmnz, which is close to lO9mm, the

known diameter of spiral pipe. The error is 0.825%. The heiglit ofthe reconstructed spiral
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is estimated as 84.6lmm. In our application, 68.4% spiral trajectory has been

reconstructed. The height of h for the reconstructed of trajectory is 125 X $89 / 1299 =

85.54mm. The error is 1.08%. The residual error can be computed as 1.36%. It is

observable from Figure 4.6 (d) that the reconstructed trajectory is slightly off the spiral

curve at the last two points.

Table 4.3 The Image Sequence II, which
of 52 frames.

Continuation of Table 4.3.

Frame 741 793 845 897 949 1001 1053 1105
X(pix) 655 702 744 788 825 869 911 950
Y(pix) 84 127 195 295 400 506 622 748
X(min) 20.95 27.83 33.98 40.43 45.85 52.30 58.45 64.16
Y(rnrn) -62.70 -56.42 -46.44 -31.79 -16.40 -0.879 16.11 34.57
X(mm) 20.21 27.21 33.61 40.19 45.75 52.20 58.34 64.05
Y(m,n) -60.51 -55.15 -45.92 -31.60 -16.37 -0.877 16.08 34.51
Z(,nrn) 917.0 931.0 943.1 948.0 944.9 944.9 944.9 944.9

Table 4.4 The trail of Procedure Find_ZI in the range of$38mrn to 90$rnm

Z0 841 846 851 $56 861 $66 871 $76 $81 886 $91 896 901 906

Error 1.53 1.63 1.82 1.96 1.63 1.75 1.00 1.53 2.05 6.27 5.54 4.77 4.36 3.69

4.4 Summary

In this chapter, we have presented the application of the proposed method to the

data of a phantom experiment. Firstly, we have reconstructed two image sequences from

the original image sequence obtained from a phantom experiment. Then we have

estimated the residual errors of geometrical size of reconstructed catheter trajectories

is obtained from the original sequence with an interval

frarne 221 273 325 377 429 481 533 585 637 689
X(pix) 215 250 288 330 373 422 469 516 566 616
Y(pix) 853 770 665 551 432 339 235 153 93 70
X(nim) -43.51 -38.38 -32.81 -26.66 -20.36 -13.18 -6.299 0.5860 7.991 15.23
Y(mm) 49.51 37.79 22.41 5.713 -11.72 -25.34 -40.5$ -52.59 -61.38 -64.75
X(inin) -40.23 -35.03 -29.75 -24.10 -18.40 -12.02 -5.777 0.542 7.417 14.48
Y(m,n) 46.04 34.49 20.32 5.164 -10.59 -23.10 -37.21 -48.72 -57.55 -61.57
Z(m,n) $71.0 860.4 853.8 850.5 850.5 859.2 865.0 875.0 887.2 901.6
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from two image sequences respectively as 1.25% and 1.36%.

Figure 4.6 The reconstructed trajectory ofthe catheter from the Image Sequence I. (a) top-front
right view (b) right view, (c) front vicw, (d) bottom view.

(a)
(b)

(e) (d)



(c) (d)

Figure 4.7 The reconstructed trajectory of catheter from the Image Sequence II. ta) top-front
right view (b) right view, (c) front vicw, (d) bottom view.

68

(a)

(b)

N

N

N

N



69

Chapter 5

Conclusion

5.1 Conclusion

This thesis research has investigated the problem of pose estimation from single

projection in targeting the reconstruction of coronary arteries in 3-D. The research can be

divided into two parts. In the first part of the research, we have studied existing methods

of pose estimation by a stiil image ftom single projection published in the computer

vision community and the biological engineering community. from these methods, we

have chosen three typical methods to review and simulate with Mathematica in this

thesis. From our research on the existing methods and our simulation resuits, we can

draw the following conclusions: 1) Ah the existing methods require a previous

knowledge of the 3-D configuration of the object. In the application of reconstructing the

coronary arteries in 3-D, the requirement by the methods means that additional CT or MR

images are involved, thus the chinical costs in terms of operation and equipment are

increased. 2) There has been littie research that toggies on pose estimation by image

sequence from single projection. 3) According to the simulation resuits in Mathematica,

the method of POSIT is the best method in terms of accuracy, efficiency, and stability

among the reviewed methods.

In the second part of our research, we have investigated the possibility of

achieving pose estimation from single projection without a previous knowledge of the 3-

D configuration of the object. We have found that an image sequence from a single

projection, which is easy to be obtained during an WUS intervention, provides

information that makes the pose estimation possible. Instead of the 3-D configuration of

the artery, the known pullback distance of the catheter during the intervention is used.

Furthermore, we have carried out simulations of the proposed method on given spiral
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curves in Mathematica, and tested the proposed method with real data obtained from a

phantom experiment. The folÏowing conclusions have been drawn from our research

results with the new proposed method. I) It is possible to carry out pose estimation

during IVUS intervention from a single view X-ray image sequence without previousÏy

knowing the 3-D configuration of the object. 2) The proposed method overcomes the

drawback of the other pose estimation methods by eliminating the requirement of

previous knowledge ofthe 3-D configuration ofthe object. 3) In practical clinic, an X-ray

image sequence from a single projection is easy to be obtained. 4) There stiil exist

considerable errors in the construction of trajectory by the proposed method, compared

with the reviewed methods of pose estimation. However, in actual clinical practice, the

physician bas absolutely no 3-D information and usually assumes that the artery (or

object) is a straight tube, which is obviously untnie for coronary arteries (the physician

cannot in clinical practice rely on the complex “laboratory” set-up proposed by other

methodologies). Therefore, even the slightest bit of 3-D information is appreciated

because vessel curvature affects the haemodynamics ofblood ftow in the arteries and the

possible formation of dots and arteriosclerosis. From this point of view, the proposed

method miglit provide useful information that meets the need ofphysicians in clinics.

5.2 Summary of Contributions

Though a variety of papers have been published on reconstruction of coronary

arteries with pose estimation from a stiil image, there lias stili been a lack of research on

the problem of reconstruction of coronary arteries from an image sequence. Our research

bas explored the possibility of solving this problem in the particular case of IVUS

intervention and found a solution for the problem. The proposed method bas many

advantages over the other methods, among which its simplicity, much easier setup in the

clinical environment and its lower cost. We thus believe that it might lead to a valuable

tool in the future.

5.3 future Research

The proposed method could be improved in following ways. 1) A more accurate

resuit could be achieved by using NURBS instead of the straight unes we have used to
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approximate the curved trajectory when calculating the length of curve. 2) A better

condition for weak perspective projection can be obtained by adjusting the set-up of the

camera system by increasing the distance between the focal spot and the image place.

This could consequently improve the resuits of the proposed method in terms of stability

and accuracy.

Since pose estimation from an image sequence has significant advantages over pose

estimation from a stiil image in reconstruction of coronary arteries, it is worthy of

exploration by researchers in medical imaging but also in other areas of computer vision

in general. We believe according to our research that more solutions could be found

regarding such problems.
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