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Sommaire

Plus de 1/3 des décés enregistrés au Canada au cours des derniéres années sont
causés par les maladies cardiovasculaires. L’un des problémes cardiovasculaires le plus
communs est l'athérosclérose coronaire qui consiste en I’accumulation de plaques sur les
parois des artéres. La recherche sur les niveaux de risque de l'athérosclérose coronaire
est, par conséquent, de trés grande importance pour le diagnostic et la stratégie
thérapeutique a entreprendre ultérieurement. Cliniquement, I’imagerie IVUS (ultrasons
intravasculaires) combinée avec l'angiographie est largement utilisée pour l'examen
meédical et le traitement des maladies cardiovasculaires.

Dans I'imagerie IVUS, les méthodes « pose estimation » sont employées pour
déterminer la trajectoire du cathéter a partir d’une projection unique obtenue par
angiographie. Des progrés remarquables ont été réalisés par les travaux de recherche sur
la «pose estimation », & partir d’une vue unique en image, et par I’implémentation de
meéthodes de reconstruction 3D de la trajectoire du cathéter dans une imagerie IVUS. En
dépit de ces améliorations significatives, 1’exigence d'une connaissance antérieure de la
configuration 3D des artéres coronaires est un inconvénient majeur qui se pose lors de la
construction 3D de la trajectoire du cathéter dans une imagerie IVUS. Malheureusement,
il y a eu un manque d’exploration de nouvelles méthodes susceptibles de pallier cet
inconvénient.

Cette thése se focalise sur la « pose estimation » a partir d’une projection unique
et ce, pour une reconstruction 3D de la trajectoire du cathéter dans une investigation
IVUS. Premi¢rement, nous explorons I’état de I’art de la « pose estimation » projection
unique en passant en revue et en simulant trois méthodes typiques choisies parmi
d’autres. Les inconvénients des méthodes existantes nous ont motivés a étudier la
possibilité d'une « pose estimation » & partir d'une séquence d'images. Nous proposons

une nouvelle méthode de pose estimation a partir d'une séquence d’images de vue unique



v

visant la reconstruction du la trajectoire de cathéter dans imagerie IVUS. Ensuite, nous
simulons avec un logiciel mathématique la méthode proposée par des courbes spirales et
nous I’appliquons par la suite a4 une séquence d’images obtenues & partir d'une
expérimentation fantdme. Les résultats obtenus montrent que les erreurs de
reconstruction varient entre 5.81% et 6.68% pour les simulations et 1.25% a 1.36% (en
termes de taille de fantdme reconstruit) pour 1'étude fantome.

Bien que ces chiffres pourraient sembler plutdt médiocres, ils sont réellement une
mine d'or pour les médecins qui n’ont pas accés aux informations 3D (3 moins d’utiliser
un laboratoire complexe proposé par une autre méthodologie, ce qui est impraticable dans
les cliniques). La méthode proposée a 1’avantage, d’une part, d'une installation beaucoup
plus facile dans les cliniques et, d’autre part, d’un coit inférieur a celui des méthodes

existantes d’autant plus qu’elle conduira certainement, a l'avenir, a un outil de valeur.

Mots clés : cathéter, pose estimation, vue unique, séquence, IVUS



Abstract

Cardiovascular disease causes over 1/3 of all deaths in Canada in recent years.
One of the most common cardiovascular problems is coronary atherosclerosis, the build
up of plaque on artery walls. The investigation of the severity of coronary atherosclerosis
is therefore very important for the diagnosis and therapeutic strategy that will be
undertaken. Clinically, IVUS (Intravascular Ultrasound) imaging combined with
angiography is widely used in examination and treatment of cardiovascular diseases.

In IVUS imaging, methods of pose estimation are used to determine the trajectory
of the catheter from single projection images obtained by angiography. The research on
pose estimation from single view images or one single view image has achieved
remarkable progress, and methods have been implemented in the 3D reconstruction of
catheter trajectory in IVUS imaging. Despite these significant improvements, the
requirement of previous knowledge of the 3D configuration of the coronary arteries is a
significant drawback that still exists in the implementation of 3D construction of a
catheter trajectory in IVUS imaging. Unfortunately, there has been a lack of exploration
of new methods that could overcome this drawback.

This thesis focuses on pose estimation from single projection aiming to the 3D
reconstruction of the catheter trajectory in an IVUS investigation. Firstly, we investigate
the state of art of pose estimation by single projection by reviewing and simulating three
typical methods, which are chosen from a variety of published papers related to the topic.
The drawbacks of existing methods motivate us to investigate the possibility of pose
estimation from an image sequence. We propose a novel method of pose estimation from
a single view image sequence targeted for the reconstruction of the catheter trajectory in
IVUS imaging. Afterward, we simulate the proposed method with spiral curves in the
Mathematica® environment, and apply the proposed method to an image sequence
obtained from a phantom experiment. Typical results show reconstruction errors ranging

from 5.81% to 6.68% for the simulations and 1.25% to 1.36% (in terms of the size of the
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reconstructed phantom) for the phantom study. Although these figures could seem rather
mediocre, they are actually a gold mine for the physician that has access to no 3D
information at all in clinic today (unless he uses quite complex “laboratory” set-up
proposed by other methodologies, which is unfeasible in clinical practice). The proposed
method has advantages of much easier set-up in the clinical environment and lower cost

than existing methods, thus it will certainly lead to a valuable tool in the future.

Key works: catheter, pose estimation, single projection, sequence, IVUS
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Chapter 1

Introduction

1.1 Introduction

Among all pathologies affecting the modern world, cardiovascular diseases are at
the forefront. In Canada, they account for the death of more Canadians than any other
disease. In 1999 according to Statistics Canada, cardiovascular diseases killed 78,942
Canadians, 36% of all deaths in Canada. They cost Canadian economy over $18 billion a
year according to a 1994 study by the Heart and Stroke Foundation. One of the most
common cardiovascular problems is coronary atherosclerosis, the build up of plaque (a
combination of cholesterol, cellular waste, and other materials) on artery walls. Plaque
can cause a heart attack by severely reducing or stopping the blood flow through a
coronary artery. Moreover, the plaque can rupture and form blood clots capable of
blocking arteries. The investigation of the severity of coronary atherosclerosis is therefore
very important for the diagnosis and therapeutic strategy, such as medication, bypass
surgery, angioplasty (dilation) with or without stent, which will be undertaken. For this
purpose, two main imaging methods are used nowadays. Angiography (X-rays) consists
of the injection with a catheter of a contrast product in the lumen of the arteries, making
them opaque to X-rays. Using several views (projections) the physician can get an
assessment of the position and geometrical severity of the stenosis (narrowing of the
artery due to atherosclerosis). It is nevertheless important to remember that a single
angiogram reveals only a 2-D “silhouette” of the true 3-D lumen. This has for
consequence that an image under only one (or even a few) angle of sight can badly
represent the extent of a complex stenosis. Although 3-D reconstruction algorithms exist
in angiography based on two or more views, it remains that angiography visualizes only

the inner lumen of the vessel and cannot determine directly if the vessel wall has



atherosclerosis; for instance it could miss diffuse (long) lesions with seemingly no
stenosis. Intravascular ultrasound (IVUS) represents a complement (even an alternative)
to angiography for the direct visualization of the arterial anatomy. A miniaturized
ultrasonic transducer at the end of a catheter is inserted in the artery lumen and brought
beyond the lesion of interest and then withdrawn gradually, manually or automatically.
Contrary to angiography, which represents a silhouette of the arterial lumen, IVUS
produces unique echographic images (Figure 1.1) showing the cross-section of coronary
arteries. These images reveal clearly the lumen, walls and plaque, and offer a powerful
tool for diagnostic purposes. Unfortunately, this sequence of images does not offer direct
information about the 3-D geometry of the artery, an essential feature to reliably compute

plaque volume or sheer stress.

Athero.
Plaque

Catheter

Lumen

Intima

Figure 1.1 A single frame of IVUS image.

Because there is no information about the 3-D location and orientation associated
with each frame of an IVUS image sequence while coronary angiography can be used to
localize and even to reconstruct of coronary arteries in 3-D, IVUS and angiography
together are widely utilized in assessment of coronary artery diseases in clinics (Figure

1.2).



Figure 1.2 Angiograms (left) and two IVUS images taken from the sequence (right) with the
corresponding 3-D reconstruction (middle). (ref: Whale et al. http://www.engineering.uiowa.edw/
~awahle/WahIUS/Slides/virtual-angioscopy.pdf).

In a typical IVUS intervention, a few single projection angiographic sequences are
taken to localize the IVUS transducer during its pullback. In addition, the pullback length
can be measured. This implies that it could be possible to obtain the reconstruction of
coronary arteries. The task of this research is to develop a novel pose estimation method
in which an image sequence from one single projection is used to obtain the
reconstruction of coronary arteries, instead of using a two-camera system such as in
biplane angiography or additional CT or MR information in single projection
angiography. As a result, the costs of clinical equipment and clinical processing could be

reduced for reliable 3-D artery measurements.



1.2 Pose Estimation in Intravascular Ultrasound Modality

Pose estimation is a method for determining the location and orientation of a 3-D
object with respect to a camera system from 3-D to 2-D point correspondences. Two
kinds of pose estimation methods are used in angiography: biplane angiography [1, 2], in
which images from two views are needed, and single projection angiography [3, 4, 5, 6,
10, 11, 14], in which only one view image and prior knowledge of 3-D configuration of
the object are required. Research on biplane pose estimation has achieved significant
progress. Unfortunately, the required biplane angiography system is more expensive,
usually takes more physical space, and is much more complex to operate than single
projection angiography. This partly explains why these systems are not available
everywhere and even tend to disappear from clinical practice.

Pose estimation from single view needs a previous knowledge of the 3-D
configuration of the object. In single projection angiography implementation, this
knowledge of 3-D configuration of coronary arteries can be obtained by either computed
tomography (CT) or magnetic resonance (MR). This requirement of an extra clinical
processing is a drawback of single projection angiography. Pose estimation from single
view has more challenges than biplane pose estimation due to its specific difficulties.

In this thesis we focus on pose estimation with a single angiographic projection
with knowledge limited to the pullback distance traveled by the ultrasonic transducer in

IVUS intervention.

1.3 Motivation

So far, researchers have focused on implementation of model-based pose
estimation in single plane angiography ignoring the information that could be obtained in
the specific situation of an IVUS intervention. In a practical clinical situation, an image
sequence can be taken from single projection during pullback of the catheter during the
IVUS intervention, and the pullback length of catheter in the interval between two
successive images can be measured. Based on this specific situation in IVUS
intervention, a novel method is proposed in this thesis to reconstruct the trajectory of the

catheter tip. This trajectory represents the 3-D pose of the catheter that is estimated from



the 2-D projection on the image sequence.

The proposed pose estimation method overcomes the main drawbacks of biplane
pose estimation methods and model-based single project pose estimation methods by
reducing the clinical costs. Compared with biplane pose estimation and model-based pose
estimation, the estimation of pose from a single plane angiography image sequence and
the measurement to pullback length is rather difficult. A significant challenge is that,
mathematically, there exist multiple pose solutions corresponding to a given image
sequence with known pullback measurements, but there is no geometrical condition that
can be used to determine the right solution from the multiple solutions. To solve this
problem, we consider the physical characteristics of a catheter and assume that there is no
sharp bend of the catheter.

In terms of accuracy, efficiency, and stability, the proposed method is not as good
as the existing pose estimation methods. However, considering its much easier setup in
the clinical environment the proposed method will certainly lead to a valuable tool in the

future.

1.4 Organization of the Thesis

This thesis presents a study on pose estimation by single projection in the context
of IVUS intervention. The thesis is organized as follows.

In Chapter 2, we begin with the definition of pose estimation from single
projection. Then we review and simulate three typical methods of pose estimation chosen
from various existing methods. These three typical methods are Newton's method, a
classic method, SPT, a method developed intendedly for angiography implementation,
and POSIT, a recently published method. The simulation results on several cases, and a
comparison in terms of accuracy, efficiency, and stability are presented. In Chapter 3, we
analyze the problem of pose estimation with a single plane image sequence and a
measurement of the catheter pullback length, and the difficulties associated with this
problem. To solve the problem, we propose a new method, which is presented in detail.
Furthermore, the proposed method is simulated using several given cases and the
simulation results are shown. In Chapter 4, the proposed method is applied to phantom

(physical model) image sequences provided by the Montreal Heart. Chapter 5 concludes



the thesis by highlighting the findings of this investigation and by suggesting some
possible future work.



Chapter 2
Existing Pose Estimation Methods

2.1 Introduction

Conventional 3-D IVUS uses an automated pullback device to get a stack of
IVUS images providing additional information for volumetric measurements.
Unfortunately this method assumes a straight vessel, which is a crude approximation for
coronary arteries. In fact, due to the vessel curvature, the image planes are not parallel.
Moreover the catheter twists when following a tortuous vessel generating a rotation
artifact in the image plane. These problems must be considered to compute a true 3-D
reconstruction of the vessel from IVUS images. A few groups [1, 2] have successfully
implemented solutions to this problem using biplane angiography to infer the 3-D
trajectory of the catheter. At the University of lowa [1], they extract the 2-D catheter path
in both biplane angiograms and then reconstruct the 3-D trajectory knowing the biplane
imaging system geometry. Assuming a known constant pullback speed, the actual
location of each IVUS frame along (and perpendicular to) the 3-D pullback path is
obtained. To compute the catheter twist, they determine the relative rotation with a
sequential triangulation method and the absolute orientation from the out-of-center
position of the IVUS catheter used as a landmark in both angiograms and IVUS images.
Another group [2] from the Cleveland Clinic Foundation has proposed a method that
could be used with or without a pullback device. The 3-D trajectory of the IVUS
transducer was computed as a function of time using biplane angiography similarly to the
University of lowa’s group. Each IVUS frame was time-synchronized with the
angiographic images and then correctly positioned perpendicular to the trajectory. Then,
a 3-D segmentation method based on a 3-D extension of active contours (snakes) extracts

the lumen surface. Finally the IVUS lumen is backprojected on the angiograms to find



the best twist. Unfortunately, the required biplane angiography system is more expensive,
usually takes more physical space, and is much more complex to operate than its single
plane parent. This partly explains why these systems are not available everywhere and
even tend to disappear from clinical practice. In addition, for IVUS artery reconstruction,
a calibration step (to assess the biplane imaging system geometry) is necessary and the X-
ray radiation dose to the patient could typically be higher. All this would add a significant
burden to the already quite complex IVUS intervention protocol. We believe that
although the biplane approach gives spectacular results it will probably find limited use
in clinical practice except in university hospital research laboratories. As for the use of 3-
D position sensors (e.g., six-degree-of-freedom magnetic sensor) for tracking the
trajectory of the transducer, this is indeed an efficient method for 3-D conventional
ultrasound transducer but this is certainly a big technological challenge for IVUS and is
probably not reachable in the near future.

Because of the drawbacks existing in biplane angiography for IVUS artery
reconstruction, there has been a rise of implementations of single projection angiography
for IVUS artery reconstruction [4, 5, 11]. It overcomes the drawbacks existing in biplane
angiography.

In this thesis, we focus on pose estimation from single projection methods, which
are employed in single projection angiography. The rest of this chapter presents a review
and simulations of three typical pose estimation methods that are chosen from many
publications in the computer vision community and biomedical engineering community.
These methods are Newton's method [3], SPT (Single Projection Technique) by Hoffman
et al. [4, 5, 11], and POSIT (Pose from Orthography and Scaling with ITeration) by
Demonthon et al. [6, 14]. In the next chapter, we will present our research on pose
estimation by image sequence from single projection.

Newton's method is named after Newton’s numerical method that is employed to
solve systems of nonlinear equations, which are obtained from the relation of object
points and their corresponding full perspective projections. Newton's method is simple
and straightforward. The main drawback of Newton's method is that it has a limited
suitable scope of location and orientation for the object.

SPT is a method of pose estimation by single projection that was developed for



angiography modality. The main idea of SPT is to align the object points with their
corresponding projections by adjusting translation and rotation using projection-
Procrustes technique [7, 8, 9]. The method has two main steps. The first step is to align
the object points with their corresponding projections by adjusting the translation in the
x-y plane iteratively. In the second step, projection-Procrustes technique is carried out to
adjust the translation and rotation to optimize the alignment of the object points with their
corresponding projections. SPT is tested in a phantom experiment by Hoffman et al., and
the results are given in [5]. However, the phantom experiment is based on several dots
that are fixed in a known configuration instead of a catheter. SPT is relatively complex.
In terms of stability, SPT is better than Newton's method, but still has the drawback of a
limited suitable scope of location and orientation for the object.

POSIT emerged recently. It consists of iteratively improving the pose computed
with weak perspective projection (i.e., scaled orthographic projection) camera model to
converge to a pose estimation computed with a perspective projection camera model.
Furthermore, Horaud et al. [14] derive the idea for POSIT and develop an improved
version of POSIT by using paraperspective projection instead of weak perspective
projection. According to our simulation in Mathematica, POSIT is the best method for
pose estimation by single projection in terms of efficiency, accuracy, and stability among
the three methods.

This chapter is organized as follows: Section 2 gives a geometrical definition for
the problem of pose estimation from single projection. Section 3 reviews the Newton’s
method, the SPT method, and the POSIT method. A modification that we have made to
reduce the slow convergence problem existing in SPT is also described in Section 3. In
Section 4, a comparison among the three methods based on the simulation results is

presented. Section 5 presents a summary for this chapter.
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Figure 2.1 Geometry of pose estimation by single projection problem. The model points in the
camera reference frame and the model reference frame are denoted by (X, ¥, Z) and (X", Y", Z"),
respectively. The image of a model point on the image plane is denoted as (x", y).

2.2 The Problem of Pose Estimation by Single Projection

Pose estimation by single projection is also called model-based pose estimation, or
model matching, or optical jigging. The geometry of pose estimation by single projection
is depicted in Figure 2.1. The 3-D camera coordinate system, (X, Y, Z), is defined such
that its origin is located at the focal spot. The image plane is located at a distance of focal
length, £, from the focal spot, and the image coordinate system, (x, y), lying in the image
plane, is parallel to X and Y. The superscript M in (x*, ™) is used to denote measured
image coordinates. Independent of the camera reference frame, the 3-D model coordinate
system, (X", Y", Z"), is defined relative to the points in the object itself. The pose

estimation by single projection problem can be stated as follows:
- Let P7, ..., P", with P" =[X",Y",Z"]" and n>3, expressed in the model

reference frame, be » points of an object model.

- Let Py, ..., P, wWithP, =[X ,.,Y,,Z,.]T, expressed in the camera reference frame,

indicate the coordinates of the corresponding points on the object observed.
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- Let py, ..., ps, with p, =[x,,¥,]", be the n image points, expressed in the image
reference frame, projections of the P;.

The goal is to determine the rigid transformation, i.e., rotation matrix R and translation

vector T , aligning the camera reference frame and model reference frame:
P=R-P"+T.
The above equation can be written as
[X,.Y,,Z) =R-[X!,Y",Z"] +T, @.1)
where T can be represented by T}, T and T3, the translations along the X, ¥, and Z axes,
as follows:
T=[1,.7,.T,, (22)
and R can be represented by Euler angles, ¢, @ and ¢, the rotation angles about the X, Y

and Z axes of the camera reference frame as in the following equation:

cosg. —sing. Of cosg, O sing, |1 0 0
R =|sing, cosg. O O 1 0 [0 cosg, -sing_ |. (2.3)
0 0 1| —sing, 0 cosg, |0 sing, cosg,

Inversely, Euler angles, @, @ and @, can also be computed from R by Euler angle

decomposition:
)

13

=y

if ry, #£1:99, = ArcSin(ry,)

¢, = ArcSin

@. = ArcSin| —22L___ (2.4)

| W/l—(ru)2
9. =0

if () =214 @, = ArcSin(-ry,)
@. = ArcSin(-ry),

with R being written as:

7o . 2.5)

In the equations (2.4), we assume that 0<¢,<180  0<g, <90° and 0<@.<180°
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2.3 Review of Three Methods of Pose Estimation by Single Projection

In this section, we review three typical methods of pose estimation by single
projection [3, 4, 5, 6, 10, 11, 14], which are chosen from many publications in the
computer vision community and the biomedical engineering community. The methods
are Newton’s method, a classic method, SPT method, a method intended for

implementation in angiography, and POSIT, a method that emerged recently.

2.3.1 Newton’s Method

The algorithm employs Newton’s iterative method to solve the system of nonlinear
equations, which are obtained from the full perspective projection [3].

The relation between object points and their corresponding image points in camera
coordinates is given by the full perspective projection equation:

T
[x,») = [%%} . (2.6)

Plugging equations (2.1), (2.2), and (2.5) into equation (2.6), we can see that each image

point correspondence generates two non-linear equations,

_ X AR n 2" + T
X+, Y a2 + T

y = X"+ Y +ry 2" + T,
l X" Y+ 20 + T

X.

H

@2.7)

The unknown components of R and T can be determined from a sufficient number of
correspondences, each bringing two equations like equation (2.7). The resulting systems
have six unknowns, @, @, @, T;, T, and T;. Here R depends only on three free
parameters ¢, @, and ¢..

Newton’s numerical method is now employed to solve the systems. Assuming that
(R,T) is the true solution for the system, the method starts off with an initial guess for
R and T, say R’ and 7%, and computes p; through equation (2.7) with R = R* and T =
T, (k=0, 1, ...), until the residuals

&, =x,(R*,T*)-x,

2.8
5yi=yi(Rk’Tk)_yi 25)
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are small enough. In equation (2.8), X; and y, are x and y coordinates of measured image

points. The first-order expansions of residuals are

Z aT AT + Z —A¢k i

j=1,2,3 Ic\'v'

ay ay
i AT ]
Z T Z): A, =

where the partial derivatives with respect to 7}, T>, and T; are

S axi_o ﬂz_in

o,z o1, o, 7
and

%—0 _f ay,:_fY,;.

oT, aT “z o, 7

i

The partial derivatives with respect to the rotation angles are

o, XY ox,  Y’+Z! ox, X,

. / z? ’ 39, =f Z2 ’ 9¢. _fz,?
and

ay, - Y;2+Z,'2 ayx _ XxYx ayl _ X:

o9, / z} o9, -/ Z} 99, _fo '

2.9)

The six unknowns AT,, AT,, AT,, A¢., Ag,, and Ag¢. in equation (2.9) can be

determined if at least three point correspondences are known.

In the iterative process, R and T are updated as follows:
T=T""+A4T

and

R=R"" -AR,

(2.10)

@2.11)

where T”" and R” are the values of T and R in the previous iteration, and 4T and

AR are the corrections of T and R, respectively. 4R is calculated with Ag_, Ag,,

and Ag, through equation (2.3).

The algorithm of Newton’s method is summarized as follows:

The input is formed by n corresponding image and model points, with » >3, and

the initial estimates R’and T’.
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1) Using the current estimates of Rand T , compute P; through equation (2.1).
2) Project P; onto the image plane through equation (2.6).

3) Compute the residuals &, and dy, (i =1,2,...,n).

4) Solve the linear system of » instances of equation (2.9) for the unknown

corrections, AT, AT,, AT;, A¢_, A¢y, and Ag..

5) Update the current estimates of the translation vector T and rotation matrix R.

6) If the residuals are sufficiently small, exit; else go to step 1.

2.3.2 SPT Method

SPT (Single Projection Technique) [4, 5, 11] has been developed by Esthappan and
Huffmann for implementing the orthogonal Procrustes algorithm [7, 8, 9]. The process of
the method is composed of two parts described as follows:

The first part of the method uses the differences between the projected model points
(x;,y;) and the measured image points (x!',y!) through the following equations to

adjust 7, and T, iteratively.
T prev ( [x J
Z S
T7=Tprev_ el o M _3’
2 2 [n Z[yx yl ]) f

where 77 and T, correspond to previous estimates of T, and T3, respectively and 7 is

(2.12)

the number of points in the model. Figure 2.2 shows the relation between (x; , y;) and

G0

In the second part of the method, R and T are optimized in an iterative manner by
using the projection-Procrustes technique. Carrying out of the projection-Procrustes
technique involves alignment of the point in the model with their respective projection

lines, i.e., the ray trace from the origin, or the focal spot, of the camera reference frame to

the measured image coordinates, p} = (x", ).
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Focal
Spot

Image
Y Frame

Figure 2. 2 Projection of a point P; onto the image plane at [x;, y,]", and the corresponding
measured image coordinates at [x, y¥ ] .

Firstly, the point positions, P;, are projected onto their respective projection lines,

forming the corresponding points, P” ; see Figure 2.3. P’ are given by:

P’ =[P, -k, (2.13)
where
JED (M) + 12

is a unit vector directed from the focal spot to p” =(x,y" ), the measured image
coordinates of the i-th point. The positions of the model points, P, are related to the
points on their respective projection lines, P¥, in the camera reference frame according to
the following equation:

P =sPA+t+E (2.15)
where P and P¥ are nx3 matrices representing the position of the model points in the
camera reference frame and on the projection lines, respectively, 4 is a 3x3 rotation
matrix, 7is a 1x3 vector representing the translation from the centroid of P to the

centroid of P, s is a scalar, and E is an nx3 residual matrix. Equation (2.15) can be
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rewritten as

E=(P" -1)-sPA. (2.16)

Focal
Spot

Image
Y Frame

Figure 2.3 The point positions, P;, are projected onto their repective perspective projection line,

from the focal spot to the [x,”, y |7, at the positions P,” .

Note that for some unknown reasons, our simulation shows that convergence of
SPT was unacceptably slow which is different from the result given in [5]. We have made
a modification to the formula given in [5] according to the Procrustes algorithm presented

in [7, 8, 9]. We define a new coordinate system, named model®, such that its origin is

located at the centroid of P. Then we use P¢ and [P”]° to represent P and P’ in the

model® reference frame, and use P¢ and [PP]° to replace P and P* —7 in equation

(2.15), respectively. The translation from camera reference frame to the model® reference

frame is denoted as 7€. In the modelC reference frame, the equation (2.15) is rewritten as
E=[P"]° -sP‘A. (2.17)

In [5], 7is not considered explicitly in the process of projection-Procrustes and the

translation 7€ is not mentioned. After the modification above, the process can converge

to the solution as expected.
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The Procrustes algorithm [7, 8, 9] is used to determine the transformation (i.e., 4
and s) that aligns P and [P”]° optimally, i.e., such that the transformation minimizes
the sums of squares of E, given by

Tr(E" -E), (2.18)
In equation (2.18), Tr(A4)= Z":a,.,. is called the trace of square matrix 4. The solution for

=l

A 1s computed by using the orthogonal Procrustes algorithm according to the equation:

A=UVT, (2.19)
where

[P PP =UZVT, (2.20)
i.e., USV is the singular value decomposion of [P]"[P”]° . In the iterative process of
the algorithm, the rotation R is adjusted through the following equation:

R=R"™A, (2.21)
where R corresponds to the estimate of R in the previous iteration.

The model points are oriented and positioned in the camera reference frame

according to the refined estimate of R and the estimate of T through equation (2.12).
Subsequently, p, =[x,,y,] and P? are adjusted through equations (2.6) and (2.13),
respectively.
The scale factor, s, is computed through the following equation:
TP AP
Tr(P'P)

(2.22)

Subsequently, T; and T are adjusted through equation (2.12), while T; is adjusted
according to the following equation:

prev
T

S

T3=

(2.23)

The above iterative process is repeated until the difference between P and P’ is
sufficiently small. SPT method returns T}, T3, T3, @,, §,, and ¢_, where ¢, ¢,, and ¢,
are computed by applying Euler angle decomposition to R [5].

In order to accelerate the convergence of the process, the translation, 7', we

propose strategy of applying to the initial model reference frame such that the centroid of
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object is located at the origin of the model reference frame and add it to the SPT

algorithm in our simulation. The translation is indicated by the following equation:
P" =[P"1"+T", (2.24)
where [P"]" represents object points in the initial model reference frame as the input of

the algorithm. Inversely, in order to obtain the transformation, T, referring to the initial
model reference frame, the transformation indicated in the following equation is applied:
T"=T+T'-R, (2.25)
where T and R are the results obtained from the SPT method in the model reference
frame transformed by T’. We name equations (2.24) and (2.25) as the preprocess and the
postprocess, respectively.
The SPT algorithm can now be summarized as follows:
The input is formed by n corresponding image and model points, with n >3, and
the initial estimates R” and 7°. The algorithm is divided into two parts.
Preprocess according to equation (2.24).
The first part:
Adjust T; and T, through equations (2.12) iteratively. In my program, the iteration
process is repeated 12 times.
The second part:
1) Compute the unit vector of projection lines through equation (2.14).
Estimate P through equation (2.1), and project P onto projection lines, P,
through equation (2.13).
2) Translate P and P” in camera reference frame into P¢ and [P ] in model®
reference frame.
3) Compute the SVD of [P°]"[P”]°, and then compute 4 through equation
(2.19).
4) Refine R through equation (2.20), T; and T, through equation (2.12).
5) Optimize T3 through equations (2.21) and (2.22).
6) If the difference between P and P” is not sufficiently small, go to step 1.
The postprocess is taken according to equation (2.25), and then results of T}, 15,

Ts, ¢, ¢, and @. are returned.
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2.3.3 POSIT Method

POSIT (Pose from Orthography and Scaling with ITeration) [6, 14] has been
developed by DeMenthon and Davis. The method approximates the perspective
projection with a scaled orthographic projection (SOP), also known as weak perspective
projection, and estimates the pose by solving a linear system. The above process is
iterated to achieve more accurate pose by optimized SOP.

The scheme of the POSIT method is depicted in Figure 2.4. The model reference

frame is centered at P, and its coordinate system is (u, v, w). The origin of camera is at

the focal spot and its coordinate system is (X, Y, Z), with i, j, and k representing the unit
vectors along X, Y, and Z axes, respectively. The object point P; in the camera reference
frame is represented as P; = [X;, Y;, Z], and its perspective projection and SOP are
represented as p; =[x,,»,]” and p’°" =[x/, y/]", respectively. Plane K is through P, and
parallel to the image plane.

The goal of the POSIT method is to compute the rotation matrix and translation
vector of the object. The rotation R is the matrix whose rows are the coordinates of the
unit vector i, j, k of the camera reference frame expressed in the object coordinate system
(u, v, w) and is written as:

iu iv lw
R=\j, J, Jul|s
k, k, k
where iy, i, i, are the coordinates of i in the coordinate system (u, v, w) of the object, and
similarly with j,, j,, ji and k,, k,, k.
To compute the rotation, we only need to compute i and j in the model reference

frame. The vector k is then obtained by ix j. The translation T equals to OP,, and

therefore the coordinates of the translation vector are Xy, Yy, Zp. The point py is the

projection of point Py on the image plane; and the translation T is aligned with vector Opy

. Z . .
and is equal to —>Om,,. Therefore to compute the object translation, we only need to

compute its z-coordinate Z,. Thus the object pose if fully defined once we find i, j, and

Zy.



20

Imagce
Plane

Focal
Spot

J Image
y Frame

Figure 2.4 Scheme of the POSIT method. The image p; is the perspective projection of object
point P; and image p,s F is the scaled orthographic project (SOP) of the object point P;. K is the
plane through P, and parallel to the image plane.

The POSIT method is based on using SOP to approximate the perspective
projection. Here, we choose Z as the depth of SOP and therefore SOP of P;= [X, Y, Z,-]T

is expressed as:

T
oyl =| e 2.26
[x:¥i] [ 7, Z, (2.26)
where [x/, y/]" is the image of P; with SOP.

The ratio s = ZL is the scaling factor of the SOP. The point P, =[X,,Y,,Z,]" has

0

the same image p, =[x,,y,]" in both SOP and perspective projection.
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From Figure 2.4, we have

BE-Lizxare)-x,
2.27)

0
BP-Lj=yare)-y,
0
where &, is defined as
E = lP,,P,. -k (2.28)
ZO
and k is
k=ixj. (2.29)
The proof of equation (2.26) is given in [4].
Equation (2.27) can be rewritten as
PP -1=x(l+¢g)-x, (2.30)
FP -J=y(l+&)-y, '
where
I= Zii
f" (2.3D)
J==].
ZO

Given an estimate of ¢;, equation (2.30) provides a linear system of equations in which

the only unknowns are the coordinates of I and J. The linear systems of equation (2.31)

can be solved by using Linear Least Square method [7].

The POSIT algorithm starts with an estimate of ¢,, say ¢, =0, and solves equation
(2.30). Then a more accurate &, is obtained by firstly computing i and j through equation
(2.31), then k through equation (2.29), finally &, through equation (2.28). The above
process adjusts £; until the change of &, between the current and previous iterations is

sufficiently small.
In order to meet the algorithm requirement that the object point P, must be located
at the origin of the model reference frame, the translation, T, applied to the initial model

reference frame has been added to the SPT algorithm in our simulation. The translation is
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noted as:

P" =[P"]" +T’, (2.32)
where [P"]" represents object points in the initial model reference frame as the input of

the algorithm. Inversely, in order to obtain the transformation, 7™, in the initial model
reference frame, we compute:
T"=T+T' -R. (2.33)
The following is the summary of the algorithm.
Preprocess according to equation (2.32).
1) Translate the object with T° so that the P, is located at the origin of the
transformed model reference frame through equation (2.32).

2) Leteg =0, (i=12,.,n).

3) Compute x,(1+€/)~x, and y,(1+ &)~ y,; solve for vectors I and J using

i | )
the Linear Least Square method; and compute i =— and j = i
Sy Sy

. 1
4) Compute new &;:using k =ixj; Z, =£; &, =E—P0P-k.
s 0

5) If le,. — & < Threshold , return the result; else go to step 2.

Postprocess according to equation (2.33). Then return T}, T5, T3, @, $,,and ¢_.

2.4 Comparison of the Three Methods

Six groups of test data were used; the last three groups are generated randomly by a
Mathematica program while the first three groups are chosen manually, and used to test
the pose methods presented above. In order to evaluate the noise robustness of the
methods, further tests were carried out by adding random noise with maximum amplitude
of £5% to the measured images in the above test data. The test data without noise effect
and the results are listed in Table 2.1 through Table 2.7, while the test data by adding
noise and the results are listed in Table 2.8 through Table 2.14.

Following are the main observations that can be made regarding the comparison of

these three pose estimation methods from the data in Table 2.1 through Table 2.7.
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- The POSIT method is the most efficient and the most accurate method.

- The POSIT method does not need an initial estimate of rotation and translation, while
both SPT and Newton’s methods need initial estimates.

- The Newton’s method is only suitable for a small range of rotation angles, typically
smaller than 30° around the Z-axis, even when a proper initial estimate of rotation
angles are given. The SPT method is better than the Newton’s method, but is also
limited to suitable rotation angles range due to the possibility of solutions falling into
local minima. The drawbacks and a solving strategy are discussed in [11]. The
POSIT, which does not need the initial estimates of R and T can be used with any
rotation angles.

In conclusion, according to our simulation, the POSIT method demonstrates fairly good

performances in terms of accuracy, efficiency, and is suitable for the whole rotation

range.

Compare the test results between the data in Table 2.1 through Table 2.7 and the
data in Table 2.1 through Table 2.7, we can see that when adding random noise to the
measured images, the accuracy of the POSIT is affected significantly. For most of cases,
for example: the data in Table 2.8, Table 2.9, Table 2.11, Table 2.12, and Table 2.13, the
errors by the POSIT are even worse than the errors by SPT method.
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Table 2.1 Within a small rotation around the Z-axis, Newton’s method, SPT method, and POSIT
obtain proper solutions. SPT demonstrates a good performance in terms of accuracy, while
POSIT demonstrates a good performance in terms of efficiency.

0 0 0
10 0 0
10 10 0|, g,=[t0 -15 20, T=[20 20 35].f=100
0 10 0
Object =
0 10
10 0 10
10 10 10
0 10 10
57.1 57.1
76.5 60.4
66.5 83.5
, 467 822
image =
39.1 4l.1
55.8 448
48.0 63.6
311 61.2
Newton’s Method SPT POSIT
Initial Estimates | T4={0,0,/2]", ¢R,~[0,0,0]" T=[0,0,/12]", @R~[0,0,0]
Time Cost (sec.) 0.14 0.09 0.04
Num of Iterations 30 20 20
Error of R (°) 0.0367 0.0000197 0.00155
Errorof T 0.00673 0.0000149 0.00111
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Table 2.2 Within a small rotation around the Z-axis, Newton’s method, SPT method and POSIT
obtain proper solutions. POSIT demonstrates good performances in terms of accuracy and

efficiency.

0 0 0
10 0 0
10 10 0|, ¢,=[30 —40 50, 7=[20 —20 60] /=100
0 10 0
Object =
0 0 10
10 0 10
10 10 10
0 10 10
333 -333
369 -228
28.7 -11.1
. 23.9 -203
mage =
203 -357
249 -26.0
173 -153
1.7 -24.1
Newton’s Method SPT POSIT
Initial Estimates | T;=[0,0,/2]", #R,~[0,0,0)" | T,/=[0,0,72)", ¢R~[0,0,0]"
Time Cost (sec.) 0.18 0.1 0.04
Num of Iterations 36 24 20
Error of R (°) 0.386 2.49%]10°6 1.91x10° %
Error of T 0.559 2. 42x10°7 8.70x10 *?
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Table 2.3 With this test data, both Newton’s method and SPT method cannot obtain a proper
solution.

0 0 0
100 0 0
10 10 0|, ¢, =[180 -5 5[, T=[-10 -10 35],f=100
Object = 0 10 0
0 0 10
10 10
10 10 10
0 10 10
-286 -286
-0222 -318
~276 -609
) -309 -569
A=\ 434 —399
-392 -—449
-749 -859
—-46.7 -794
Newton’s Method SPT POSIT

Initial Estimates | 7,=[0,0,12)", ¢#R,~[0.,0,0] T=[0,0,72]", #Rs~[0,0,0]"

Time Cost (sec.) fannot achieve result |Cannot achieve result 0.04
Num of Iterations 20
Error of R (°) 0.0000203

Errorof T 4.35x10°®
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Table 2.4 The same test data as in Table 6.1(c1), but a proper set of initial estimates of rotation
angles are given, SPT obtains a proper solution, while Newton’s method still fails to find the
solution.

0 0 0
10 0 O
T I s
10 10 0|, g, =[180 -5 s, T=[-10 —10 35 .f=100
0 10 0
Object =
0 0 10
10 0 10
10 10 10
0 10 10
-28.6 -28.6
-0.222 -318
-2.76 -609
. -309 -56.9
image =
-434 -399
-392 -449
-748 -859
-46.7 -179.5
Newton’s Method SPT POSIT

Initial Estimates |7,=[0,0,/72]",#R,~[150,20,20)7 | T,=[0,0,72]", #R,=[150,20,20]"

Time Cost (sec.) |Cannot achieve result |Cannot achieve result 0.04
Num of Iterations 20
Error of R (°) 0.0000203

Errorof T 4.35x10 ©
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Table 2.5 With this test data, Newton’s method fails to find the solution. POSIT method
demonstrates better performance in terms of efficiency and accuracy.

0 0 O
10 0 0
10 10 0(,¢,=[60 -5 60], T=[-10 —10 70].f=100
) 0 10 0
Object =
0 0 10
10 0 10
10 10 10
0 10 10
-143 -143
-645 -7.78
-16.7 -3.54
) -25.1 -925
image =
~144 -248
-7.12 -17.7
-167 -132
-247 -196
Newton’s Method SPT POSIT
Initial Estimates | 7,=[0,0,/2]", #R,~[0,0,0]" T,~[0,0,/12)7, #R,~[0,0,0]"
Time Cost (sec.) |[cannot achieve result 0.1 0.04
Num of Iterations 20 20
Error of R (°) 6.55x10 % 3.02x10 M
Errorof T 9.84x%10°6 2.94x10*
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Table 2.6 With this test data, Newton’s method failed to find the solution. The POSIT method
demonstrates better performance in terms of efficiency and accuracy.

-5 -3 10
-5 5 -4l,9,=[07 -49 2F,T=[-30 17 40] /=100
Object=|~10 9 -3

-5 -7 -4
-10 4 1
-103 593
-68.7 244
image=(-74.8 159
-59.5 475
-81.0 29.2
Newton’s Method SPT POSIT

Initial Estimates | 7,~[0,0,/72]", @R,~[0,0,0]" T4=[0,072]", #R,~[0,0,0]"

Time Cost (sec.) |[cannot achieve result 0.07 0.04
Num of Iterations 20 20
Error of R (°) 2.17 4.09x10°®

Errorof T 0.207 1.03x10°¢
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Table 2.7 With the test data, Newton’s method failed to find the solution. The POSIT method
demonstrates better performance in terms of efficiency and accuracy.

4 -9 7
10 5 —of 8. =[98 -65 247.,T=[9 -4 41],r=100
Object =
-2 5 -2
7 -8 1
1.1 2.66
, 582  6.87
image =
257 -17.0
247 4.06
Newton’s Method SPT POSIT

Initial Estimates | 7,=[0,0,/2]", @R,~[0,0,0]" T,~[0,0,72]", ¢R~[0,0,0)"

Time Cost (sec.) [Cannot achieve result 0.07 0.04

Num of Iterations

Error of R (°) 0.153 3.05x10 ®
Errorof T 0.0237

6.00x10°10
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Table 2.8 By adding random noise with maximum amplitude of +5% to the measured images in
the test data in Table 2.1, it is shown in this case that the errors of the result by the POSIT
become larger than the errors of the result by the SPT. Newton’s method still has the largest
errors in its result.

0 0
10 0 0
10 10 0|, ¢,=[10 -15 20, T=[20 20 35].f=100
0 10 0
Object =
0 0 10
10 0 10
10 10 10
0 10 10
54.7 547
742 586
L 69.5 87.2
, 456 80.3
8= 389 409
56.9 45.7
474 62.7
322 633
Newton’s Method SPT POSIT

Initial Estimates

T~[0,0,72]", #R~[0,0,0]"

T;=(0,0,/72)7, @R,~[0,0,0]"

Time Cost (sec.) 0.18 0.09 0.05
Num of Iterations 36 20 20

Error of R (°) 6.88 5.08 5.80

Errorof T 1.09 0.780 1.00
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Table 2.9 By adding random noise with maximum amplitude of 5% to the measured images in
the test data in Table 2.2, it is shown in this case that the errors of the results by the three methods
have no significant differences.

0 0 0
10 0 0
10 10 0|, 4,=[30 -40 50[.7=[20 —20 60],/=100
0 10 0
Object =
0 0 10
10 0 10
10 10 10
0 10 10
334 -334
36.1 -223
289 -112
) 240 -203
mage =
19.9 -35.1
242 -252
170 -15.1
1.8 -242
Newton’s Method SPT POSIT

Initial Estimates | T,=[0,0,/72]", ¢R~[0,0,0)" | T,/=[0,0,/2]", ¢R,~[0,0,0]”

Time Cost (sec.) 0.17 0.09 0.04
Num of Iterations 36 20 20
Error of R (°) 3.66 2.91 3.81

Errorof T 1.24 1.25 0.670
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Table 2.10 By adding random noise with maximum amplitude of 5% to the measured images
in the test data in Table 2.3, it is shown in this case that the errors of the result by the POSIT
become significant large.

0 0 0
10 0 0
10 10 0, ¢,=[180 -5 5], T=[-10 —10 35].f=100
Object = 0 100
0 0 10
10 0 10
10 10 10
0 10 10
-271 =211
-0217 -31.1
-2388 -636
) -297 -546
= _438 —402
-397 -455
-765 -878
-460 -783
Newton’s Method SPT POSIT

Initial Estimates | 7,=[0,0,/2]", @R~[0,0,0]" | T,=[0,0,/72]", #R,~[0,0,0)"

Time Cost (sec.) Cannot achieve result |Cannot achieve result 0.04
Num of Iterations 20
Error of R (°) 1.14

Errorof T 0.849
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Table 2.11 By adding random noise with maximum amplitude of +5% to the measured images
in the test data in Table 2.4, it is shown in this case that the errors of the result by the POSIT
become much larger than the errors shown in Table 2.4.

0 0 0
10 0 0
10 10 0,9, =[180 -5 5], T=[-10 —-10 35],f=100
0 10 0
Object =
0 10
10 0 10
10 10 10
0 10 10
-273 =273
-0.217 -31.0
-284 -62.8
, -318 -584
image =
-441 -40.6
-4.08 -468
-751 -86.1
-458 -778
Newton’s Method SPT POSIT
Initial Estimates | 7,=[0,0,/72]",#R,=[150,20,20]7 | T,=[0,0,72]", #R,=[150,20,20]"
Time Cost (sec.) [Cannot achieve result [Cannot achieve result 0.04
Num of Iterations 20
Error of R (°) 3.19
Errorof T 0.886




35

Table 2.12 By adding random noise with maximum amplitude of +5% to the measured images
in the test data in Table 2.5, it is shown in this case that the errors of the result by the POSIT
become larger than the errors of the result by the SPT.

0 0 0
10 0 0
10 10 0|, ¢,=[60 -5 60, T=[-10 —10 70],f=100
0 10 0
Object =
0 0 10
10 0 10
10 10 10
0 10 10
-142 -14.2
-6.70 -8.08
-17.0 -3.61
_ -263 -9.67
image =
-140 -241
-7.13 -17.7
-172 -13.6
-254 -20.2
Newton’s Method SPT POSIT

Initial Estimates | T,=[0,0,/2]", ¢R,~[0,0,0)" T,~[0,0,12", ¢R,~[0,0,0]"

Time Cost (sec.) |Cannot achieve result 0.1 0.04
Num of Iterations 20 20
Error of R (°) 0.648 1.58

Errorof T 1.71 1.77
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Table 2.13 By adding random noise with maximum amplitude of +5% to the measured images
in the test data in Table 2.6, it is shown in this case that the errors of the result by the POSIT
become as large as the errors of the result by the SPT..

-5 -3 10
-5 5 -4l,4,=[207 -49 227.T=[-30 17 40] /=100
Object={-10 9 -3

-5 -7 -4
-10 4 1
-102 589
-67.3 239
image=|-758 16.1
~60.8 485
-77.9 28.1
Newton’s Method SPT POSIT

Initial Estimates | 7,~[0,0,2]", ¢R,~[0,0,0]" T,~[0,0012), #R~[0,0,0]

Time Cost (sec.) {Cannot achieve result 0.1 0.04
Num of Iterations 20 20
Error of R (°) 5.38 2.76

Errorof T 0.402 0.704
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Table 2.14 By adding random noise with maximum amplitude of 5% to the measured images
in the test data in Table 2.7, it is shown in this case that the errors of the result by the POSIT
become larger than the errors of the result by the SPT.

4 -9 7
0 5 -9l-0,=[298 -65 24],T=[9 -4 41] ,r=100
Object =
-2 5 -2
7 -8 1
1.5 275
. 59.7 17.05
image =
245 -16.2
23.7 3.90
Newton’s Method SPT POSIT

Initial Estimates | 7,~[0,0,/2)", ¢R,~[0,0,01 T~[0,0,/72]", @R=[0,0,0"

Time Cost (sec.) fannot achieve result 0.07 0.04

Num of Iterations 20 20

Error of R (°)

Errorof T
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2.5 Summary

In the reconstruction of vessels from IVUS images, biplane angiography or single
projection angiography is needed. Biplane angiography has the drawbacks of the
expensive equipment, complex operation, and requirement of calibration. Because single
projection angiography overcomes most of the drawbacks existing in biplane
angiography, it has drawn increasing attention from researchers.

Single projection angiography employs the method of pose estimation by single
projection. Among many publications on pose estimation by single projection, we have
studied three methods. They are Newton’s method, SPT, and POSIT. The simulation
results have shown that the POSIT method is the best method in terms of accuracy,
efficiency, and stability among the methods we have studied.

Although single projection angiography overcomes the drawbacks existing in
biplane angiography, on the other hand, it requires a prior knowledge of the 3-D
configuration of vessels. In the next chapter, we will investigate the possibility and
propose a method of using an image sequence taken by single projection angiography to
reconstruct a trajectory of catheter in IVUS intervention without a prior knowledge of

configuration of vessels.
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Chapter 3
A Method of Pose Estimation by an Image

Sequence from Single Projection

3.1 Introduction

As presented in Chapter 2, in the reconstruction of catheter trajectory in 3-D
IVUS artery intervention, either biplane angiography or single projection angiography is
employed to provide the information of location and orientation for each frame of IVUS
images. Single projection angiography has advantages of low equipment cost and is
easier to operate over biplane angiography and therefore has drawn a lot of attention from
researchers. However, for single projection angiography, there exists a limitation that a 3-
D configuration of artery is required. That is due to the fact that the method of pose
estimation by single projection, which is used in single projection angiography, requires
prior knowledge of the 3-D configuration of the object. The 3-D configuration of artery
can be obtained by computed tomography (CT) or magnetic resonance (MR). This
consequently increases clinical cost.

In this chapter, we propose a novel method of pose estimation with image
sequence taken from a single view. Compare with the methods discussed in Chapter 2,
the proposed method only needs the measurement of pullback length of the catheter,
instead of the requirement of the knowledge of the 3-D configuration of the object,
instead. In a typical IVUS intervention, an angiographic sequence from single projection
can be taken to localize the IVUS transducer during its pullback. Based on this fact, we
propose a new method of pose estimation with an image sequence taken from a single
view with no need of prior knowledge of the object 3-D configuration, targeting for an

implementation in angiography. The proposed method avoids the additional CT or MR
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imaging used in single projection angiography, and thus reduces the clinic cost and
simplifies the IVUS investigation.

The proposed method is simulated in Mathematica by using a given spiral curve
to represent the configuration of an artery. Several cases are implemented with various
locations, orientations, and sizes of the given curve.

The chapter is organized as follows. In Section 2, we describe the configuration of
an angiography system during an IVUS intervention. In Section 3, we present in detail
our new method of pose estimation with an image sequence from single projection. In
Section 4, we present the simulation of the proposed method in Mathematica. In Section

5, we give a summary of this chapter.

3.2 Angiography in IVUS intervention

In a typical 3-D IVUS intervention, angiography is used to determine the location
and orientation of IVUS images. In this section, we describe the configuration of a typical
angiography system geometrically. A set of typical measurements for the configuration is
given, which will be used in the simulation of the proposed method.

Figure 3.1 shows the configuration of a coronary angiography system for 3-D
IVUS. The focal length, f, is the distance from a focal spot (i.e., X-ray source) to the
image plane. The patient is located between the focal spot and the image plane. We use d
to indicate the distance from the focal spot to the centre of the patient’s heart. Notice that
d cannot be measured accurately. In a 3-D IVUS intervention, a miniaturized ultrasonic
transducer at the end of a catheter is inserted in the artery lumen, and then withdrawn
gradually. An image sequence is taken during the pullback of the catheter. The pullback
length of a catheter between grabbing images i and image i+/ is indicated as A/, as
shown in Figure 3.2. In the following discussion, we assume that f=1000mm and
d=500mm. The size of the heart is within a sphere of radius r=100mm. These

assumptions for measurements are close to the real clinical situation.
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Figure 3.1 The configuration of a system of [IVUS combined with coronary angiography

3.3 A Method of Pose Estimation with an Image Sequence from Single Projection

In this section, we propose a method of pose estimation with an image sequence
from single projection. The method is intended to be implemented for the reconstruction
of the trajectory of a catheter from an image sequence taken by single angiography. In the
following discussion, the trajectory of a catheter is viewed as a 3-D curve.

This section is organized as follows. In subsection 1, we geometrically analyze
the problem of pose estimation by an image sequence from single projection. In
subsection 2, we discuss how to find multi-solutions for the trajectory curve. A strategy
for eliminating invalid solutions using physical characteristics of the catheter path is
presented in subsection 3. In subsection 4, we discuss the strategy that we use to reduce
the accumulated error. In subsection 5, we discuss how to determine the location of the
start point of the trajectory curve. In the last subsection, we summarize the proposed

method.

3.3.1 A Geometrical Analysis of the Problem of Pose Estimation by an Image Sequence
from Single Projection
We define the coordinate system for an angiography camera system as (X, ¥, Z)

with its origin located at the focal spot and image plane at Z=f; and define the coordinate
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system for an image as (x, v), which lies in the image plane and is parallel to the X and Y
axes. The coordinate systems (X, Y, Z) and (x, y) are illustrated in Figure 3.1. As shown in
Figure 3.2, P; (X, Yi, Z)) and p; (x;, v) respectively represent the 3-D location of a catheter
tip and its corresponding projection on the image plane when the i-th coronary
angiography image is captured. Since the size of the heart, within a sphere of radius
r=100mm, is significantly smaller than the focal length, /~1000mm, we assume that
catheter tip images are caught under a weak perspective projection. Furthermore, we
assume that the length of the curve, A/, is small enough so that each segment of the
trajectory curve can be viewed as a straight line with its length approximately equal to
Al;. Based on the above assumptions, the relation between a segment of the trajectory of
the catheter tip, P;P;+,, and its weak perspective image, Pipi+1, as shown in Figure 3.2, can

be represented as the following equations:

X=X =(x,—x;)s (3.1a)
Yo=Y, =y —y)s (3.1b)
Zx+l —Zi = i\/Alxz —('x1+| _x‘)l _sl _(yi+l _yi)2 _SZ » (31C)

where s = d/f, a scale factor for weak perspective projection, and A/; is the pullback
length of the catheter in the interval between capturing the i-th image and capturing the
i+1-th image.

Based on the assumption of weak perspective projection, the X and Y-coordinates
of the point on the trajectory corresponding to a point in the image can be estimated by
following equations:

X =% (3.2)
Y, =sy;.
Furthermore, we assume that the Z-coordinate of the start point of the trajectory curve,

noted as Z, is known, and the length of pullback of catheter, Al,, is known, then Z; (i>0)

can be computed by using equation (3.1c). Later in this chapter, we will present a strategy

for estimation of Z,.
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Figure 3.2 A segment of trajectory of a catheter tip and its projection on the image plane
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Figure 3.3 Tl is the plane that passes through the point P;,; and is parallel to the X and Y-axis, ¢
is the angle between the line of P.P;., and the plane II.
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3.3.2 Finding Solutions for a Trajectory Curve

Obviously, X; and Y; can be easily computed through equation (3.2) and Z; can be
computed deductively through equation (3.1c) providing Z; is previously known.
However, there is an undetermined sign in equation (3.1c), which will lead to multiple
solutions for Z;. This subsection will focus on the determination of the sign in equation
(3.1c).

The part of trajectory of the catheter tip in Figure 3.2 with respect to the object is
enlarged in Figure 3.3, in order to depict the problem in detail. We use IT to denote the
plane that passes through the point P;;; and is parallel to the X and Y-axis, ¢ to denote the
angle between the line of P;P;+; and the plane IT. In the following, we will consider two
situations according to weather ¢ < threshold or ¢ > threshold. Geometrically, the
difference between the two situations is that in the former one, the line P;P;+; is almost
parallel to the plane I1; while in the later one, there is a significantly large angle between
the line P;P;+; and the plane I1.

Firstly, we deal with the situation when ¢ is greater than the threshold. Due to the
physical characteristic of a catheter and the configuration of an artery, the trajectory of
the catheter tip must be a smooth curve, i.e., there is no sharp bend on the trajectory. This
characteristic can be represented mathematically by assuming that the value of the second
derivative of the curve at the point P; will be significantly small. Figure 3.2 shows the
trajectory of a catheter tip that passes through two points, P; and P;+;, which are
corresponding to the image points p;, and p;+;. Now we discuss the problem of solving
Piiy from known p;, pi+s, and P;. In equation (3.1), A/, the length of curve P;P;.,, can be
approximated as the length of line PPy, providing the length of curve PP, is

significantly small. By solving equation (3.1c), we have two possible solutions, denoted

as PO P v z"y and P‘”(X‘z) Y& Z‘z’), for the point Py /(Xi+1, Yie1, Zi+1), due to

i+l i+12 7 i+l 3% i+l i+l i+ i+l 2+
the options of sign in equation (3.1c). Now we need to determine the solution that best

approximates P;;; between P!} and P!Y. To achieve this, we use a strategy of

comparing their second derivatives of two segments of curves constructed by possible

solutions at point P;. That is, the best solution represents a smooth curve, and therefore
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has a smaller absolute value for the second derivative than the bad solution. We represent

the trajectory of a catheter tip as the following equations:

X=X
Y=Y(t) (3.3)
Z =Z(1).

The second derivatives of the X, Y, and Z at point P; can be estimated as:

X" = AX, -AX,,
At, - At

Y” = M (3.4)
At, — At

Z’ = AZi _AZi—I
At, — At

where 4X;, AY;, AZ;, AX;.1, AYy, and AZ;; represent Xiv) - X, Yie) = Yi, Ziv1 — Ziy X - X1,
Yi— Y., and Z; — Z;;, respectively. Here Pi./(Xi.;, Yi.1, Zi.;), the point previous to the point
P;, is assumed to be known. The best solution of P;.; makes the curve pass through the

points P, P;, P, smoother, and therefore has smaller value for X”,Y”, and Z”

computed by equations (3.4). We use the following formula to estimate the values for the

second derivative of the curve at the point P;:

2 2 2
—AX, AY, - AY, —AZ,
AX,-AX, ) (AY,-AY, ) (AZ,-Az, ) o5
At - At At - At At - At

Based on the discussion above, the best solution for P;+; will be the solution obtained

from equation (3.2) and equation (3.1c) with smaller value given by formula (3.5).
Secondly, we deal with the situation of ¢ < threshold. In this situation, the line
Pi/P; is almost parallel to the image plane, and values for the second derivative of the
two possible solution curves at the point P; are significantly close. Consequently, we are
not able to determine the sign for equation (3.1c) by the assumption of the smooth
characteristic of a trajectory curve. In this situation, we respectively compute the two
possible solutions and, based on the two possible solutions, compute further solutions

recursively until the reconstructed trajectory curves extend long enough. On the
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trajectory, if there are n points where ¢< threshold, then there are 2" groups of possible
solutions for the trajectory curve. The problem of choosing the right solution from multi-

solutions is tackled in the next subsection.

3.3.3 Determination of the right solution from multiple solutions
This section discusses how to choose the right solution from multi-solutions
obtained in the last subsection. We first project the points of each possible solution onto

the image plane using the following equations:

Z,
X, =~_’xi
J (3.6)
Z
Y:' = _yl'
S

For each possible solution, we compute the Euclidean distances between the projections
of solution points and the measured images, and pick the solution associated with the

smallest Euclidean distances as the right solution.

3.3.4 Reducing Accumulated Error

The assumption of weak perspective projection in equations (3.1) introduces
errors into the solution for each segment of trajectory curve. Furthermore, deductively
using equation (3.1c) produces a significant amount of accumulated error for the solution
of trajectory curve. This subsection proposes a strategy to reduce the accumulated error.

As presented in subsection 3.2.1, we assume that the coronary angiography
system is a weak perspective projection camera system. The main reason for this
assumption is that the Z-coordinate of the trajectory curve cannot be measured in the
clinical situation. Based on this assumption, we use d, depicted in Figure 3.1, as the

average distance from the object to the focal spot. In the Chapter 2 of [3], it is suggested

. — . VA = .
that a weak perspective projection becomes viable when §>20. Here Z 1is the

distance from an object to a focal spot in average, and 8Z is the offset of an object point

from Z along the Z-coordinate. In the situation we discuss, &Z is around 100mm, half the
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size of a human heart; and Z is equivalent to d, about 500mm. Then we have é =5,

which is much smaller than the suggested value of 20. Although this may seem
encouraging errors are nevertheless introduced in the result by solving equation (3.1c).
We now analyze the error in the worst-case in above configuration. Figure 3.4
depicts the perspective project and week perspective projection in the worst-case. H’ and
H are the week perspective projection and full perspective projection of object # on the

image plane, respectively. We have

H':_ﬂl =1000-200=500
Z -0 500-100
and
H:&: 1000-200 — 400
Z 500

The error for the worst-case is |H "-H l / H' = |500 - 400, / 500 =20%.

HI
H
Image plane
h=200 ~
S
S
Py
L
Object o
) S
SO '~
~ [
N
%
Focal spot

Figure 3.4 The error analysis of the week perspective project vs. the full perspective project.
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Furthermore, another error is introduced by using the distance of each two
subsequent points to approximate the curve length between the two points. Increasing the
frame rate of the angiography image sequence can reduce this kind of error, but would
cause an unacceptable increase of the X-ray dose to patients on the other hand.

In the deductive computation, abovementioned errors will accumulate. Even
worse, a significant accumulated error may cause the method to become unstable.

To reduce the abovementioned errors, we propose a strategy that uses an iterative

process to improve the weak perspective projection model, thus reducing the errors. At
the first loop of the iteration, we use weak perspective projection and set Z to a given

value. In our simulation, we have Z =500mm. Then in the following loops of the
iteration, we use Z-coordinate values in the solution obtained in the previous loop of the
iteration to replace the values for Z. Our simulation results show that the strategy

significantly reduces the errors in about ten loops.

3.3.5 Determination of the Location of the Start Point of the Trajectory Curve

In the previous discussion, we have assumed that Z;, Z-coordinate for the first
point of a trajectory curve, is known. However, in clinical situation, it cannot be
measured. To solve the problem, we use a strategy that is similar with the one we have
used for choosing the right solution from multi-solutions. That is, we compute all
solutions using the method given in previous subsections with an assumed Z; from
400mm to 600mm by steps of 10mm. Among the solutions obtained, we compute the
Euclidean distance between the projection of the points in each solution and the measured
images, and pick Z; associated with the solution with the smallest Euclidean distance.
Then repeat the above computation in a small range around the estimation for Z; obtained
previously. For instance, if the estimation for Z; is 521mm, we compute a more accurate
Z; and its associated solution by testing Z; from S11mm to 531mm by steps of lmm.
Obviously, the computation for Z; is rather time consuming. According to our previous
analysis in Section 3.3.2, if there are n points where 0< threshold, then the right solution

has to be chosen from 2" groups of possible solutions.

3.3.6 A Summary of Proposed Method
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In this subsection, we summarize the method that has been described in the

previous subsections.

The configuration of a single angiography camera system is shown in Figure 3.1.

The object consists of m points corresponding to the trajectory of a catheter tip. Its centre

is located near the Z-axis at about the distance of d from the focal spot. The input image

sequence consists of m frames, and in each of them there is an image dot that is projected

by the corresponding object point. In addition, the length of the curve between each two

subsequent points can be measured as Al; (the pullback length). The following algorithm

can be used for reconstruction of the object based on the above known conditions. The

algorithm consists of four procedures.

Procedure Find_Solutions:

This procedure finds multi-solutions, which is returned as a ListSolutions.

Input: numStartPoint, listSolutions=null, Z, solutionSet.

Note that Z represents the estimated values for Z; through Z,,.

Return: listSolutions

1)
2)

3)

Copy solution to solutionSet! and solutionSet2.

Compute X,umsiariPoine A0 Youmstaripom: through equation (3.2), and add them
into solutionSetl and solutionSet2. Note: solutionSet! and solutionSet2 are
used to store the two possible solutions due to the sign in equation (3.1c¢).
XnumsStartoint+ 1> AN Ypumsiaripoin+ 1 through equation (3.2).

Compute AZ, . c.poim through equation (3.1c). Then compute to two possible

} 1 _
solutions for Zuumswnpoine+1 though Z, o oo = Z umsiaripoint T AZ ymsiaripoin »

and Z2 =7 -AZ Add solutions into solutionSet!

numStartPoint+1 numStartPoint numStartPoint *

and solutionSet2, respectively.

If (numStartPoint==m), return solutionSetl and solutionSet2.

Repeat following steps 4) and 5) until i > m.

4)

5)

Let AZ™ =Z,-Z, AX,=X,,—-X,, and AY,

<
Il
<

i+1 i

AZ[™ < threshold , goto step 7).

If (AX, -AX, )’ +(AY, =AY, )’ +(AZF™ - AZ, )<
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(AX, —AX,,)* +(AY, =AY, )* +(-AZ[™ - AZ,,)?,

Z.,=Z +AZ™ and Z}, =Z} -AZ"™

else

Z,,=Z ~AZ"™ and Z} =Z} +AZ["™ .

Compute X;,; and Y;+, through Equations (3.2).

Add solutions into solutionSet! and solutionSet2, respectively.
6) Return the solutions.

7) Recursively invoke Find_Solutions with numStartPoint being set to i and
Z,=Z,+AZ[™.
Add the returned solutions of the above invocation into the /istSolutions.
Recursively invoke Procedure Find_Solutions with numStartPoint being set to
i.and Z,,, =Z, - AZ]"™ .
Add the returned solutions of the above invocation into the /istSolutions.
Return the listSolutions.

When invoking Procedure Find_Solutions, listSolutions and solutionSet should be

provided as empty lists. numStartPoint should be set to 1, and Z, is initialed to an

estimated value.

Procedure Choose_Solution:

This procedure finds the best solution from multi-solutions obtained by the

Procedure Find_Solutions.

Input: listSolutions

Return: bestSolution

For each solution in listSolutions

1) Project the solution onto the image plane through equation (3.6).

2) Compute the Euclidian distance between corresponding projected and
measured points. The solution with the smallest Euclidian distance is the
bestSolution.

3) Return bestSolution.
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Procedure Optimization:

This procedure reduces the error.

[nput: All previously obtained solutions

Return: solution

1) Set Z; through Z,, to the estimated values.

Repeat steps 2) through 4) for twelve times

2) Invoke Procedure Find_Solutions.

3) Invoke Procedure Choose Solution.

4) Modify the values for Z, through Z,, according to the solution.

5) Retumn the solution.

Procedure Find Z1:

This procedure finds the best estimated value for Z;.
Input: Z¥* and Z"", which represent upper and lower boundaries of the object

along the Z-axis, respectively. S is the step length used for looping.
Return: the best solution and its associated Z;.
1) ForZ;in[Z}",ZY=], by step S
Invoke Procedure Optimization and put the solutions into a list.
2) For each solution in the list
Project the solution onto the image plane through equation (3.3).
Compute the Euclidian distance between corresponding projected and
measured points.
3) The solution with the smallest Euclidian distance is the best solution. Return

the best solution and its associated Zj.

3.4 Simulation of Proposed Method in Mathematica

In this section, we present the simulation of the proposed method in Mathematica
and the analysis on the simulation results.

In the simulation of the proposed method, we set a camera system with its focal

spot located at the origin of the camera reference frame, and image plane at Z=1000, i.e.,



52

focal length /=1000. Furthermore, we assume, in the object reference frame, a helicoidal

trajectory of the catheter tip:

X =rsin(t)
Y =rcos(z) 3.7
Z =h(t-rx),

where 0 <¢ <27 . In order to simulate the proposed method with object located at various
locations and orientations, we define a transformation from object reference frame to

camera reference frame as follows:

x,.v,zT =R-[x",y" z"] +T (3.8)
where T can be represented by 7, T3, and T3, the translations along X, ¥ and Z axes, as
follows:

T=[T,T,,T,]", (3.9)

and R can be represented by Euler angles, ¢, @, and ¢, the rotation angles about X, Y,

and Z axes of the camera reference frame as following equation:

cosg. —sing, O cosg, 0 sing, |1 0 0
R" =|sing. cosg. O O 1 0 |0 cosg, —sing |. (3.10)
0 0 1| —sing, 0 cosg, |0 sing, cosg,

Since the image plane is perpendicular to the Z-axis, theoretically, the proposed method
will demonstrate the same characteristic with changing @.. So in the following
simulation, we set T = [0, 0, SOO]T, and set@, = 0°, and assign ¢_, ¢,=0°,60°, 120°.

In Procedure Find_Solutions of the proposed method, 4/, which represents the

length of the curve between each two subsequent points, can be computed from the

corresponding change of ¢ in equation (3.7):

Al= (VX2 +Y?+Z"dr, (3.11)
At
where, we assume that 41; is a constant. From Equation (3.7), we have
X’ =rcos(t)
Y’ =rsin(t) (3.12)
Z'=h.

Plugging equation (3.12) into equation (3.11), we have:
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Al = \Jr? cos®(At) +r*sin’ (Af) + b2 . (3.13)
Through equation (3.13), we can compute 4/ from 4¢, which are given in the following

simulations.

3.4.1 Simulations based on known Z,

In this subsection, the simulations are based on the assumption that Z;, the Z-
coordinate of the start point of the trajectory, is known a priori. Simulation for
determining Z; using Procedure Find_Z1 of the proposed method is presented in the next
subsection.

Table 3.1 shows the simulation results when » = 100, 4 = 32 in equation (3.7),

and 4t = 0.3.  Among the nine situations tested, the results show that only in the case: @,
=0°, ¢,=60°, ¢. =0°, the proposed method fails although in the cases: ¢ = 120°, P, =
60°, ¢. =0°and ¢, = 120°, ¢, = 120°, @_ = 0°, there are significant errors (almost fails)
and in the case: ¢, = 0°, ¢, = 120°, ¢_ =0°, significant errors happen at the end of the

trajectory. The average relative error is 8.69%, and the error is mainly contributed by the

case of ¢ = 120°, ¢, = 60°, ¢. =0°. In this simulation, the proposed method almost

fails.
Table 3.2 shows the simulation results when » = 100, & = 32 in equation (3.7),

and 4t = 0.2. Compared with the results shown in Table 3.1, the results have been
improved by reducing 4t for the case: ¢, = 0°, ¢, = 60°, ¢. =0°, though significant
errors remain at the end of the trajectory. There is little improvement however for cases:
9.=120°, ¢,= 60°, ¢, =0° and ¢ = 120°, ¢,= 120°, ¢_ =0° and little change with
case: ¢, =0°, @,=120°, @. =0°. The average relative error is 6.68%.

Table 3.3 shows the simulation results when » = 50, / = 16 in equation (3.7), and
A4t = 0.25. The results show improvement by reducing the size of object. This is due to

the improvement of the condition of weak perspective projection, the camera model used

in the proposed method. The average relative error for this simulation is 5.81%.
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Table 3.1 Simulation of the proposed method when » = 100, # = 32 and 4¢ = 0.3.

]

g=0°¢,=0°¢.=0°
Average error = 7.21773
Maximum error = /2.5507

¢ = 60° ¢, =0° ¢.=0°
Average error = 7.23549
Maximum error = 135.7908

o =120° ¢ =0° ¢. = 0°
Average error = 6.19131
Maximum error = 9.78618

.."
o e

-

6. =0° ¢ = 60° ¢ =0°
Average crror = 75.1197
Maximum error = /71.42

o. = 60° ¢. =60°, ¢ = 0°
Average crror = 2.74184
Maximum error = 6.62557

.= 120° ¢, = 60° ¢. = 0°
Average crror = 25.0995
Maximum error = 4/.0242

-

o =0° ¢, =120° ¢ = 0°
Average error = 14.2298
Maximum crror = /33.691

¢ = 60° ¢, =120° ¢. = 0°
Average error = /.69273
Maximum crror = 3./9318

o =120° ¢.=120° ¢.=0°
Average error = 42,1034
Maximum error = 53.0031
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Table 3.2 Simulation of the proposed method when » = 100, # = 32 and 4t = 0.2.

.y

$.=0°%¢,=0°¢=0°
Average error = 7.84649
Maximum error = /2.896

.= 60° ¢, =0° ¢.=0°
Average error = 10.4022
Maximum error = [4.9839

o =120° @ = 0° ¢ = 0°
Average error = 3.70992
Maximum error = 7.38958

& =0°% ¢, =060° ¢ =0°
Avecrage crror = 7.25877
Maximum error = 52.8793

. = 60° ¢, =60° ¢.= 0°
Averagce crror = 2.3329
Maximum crror = 3.44332

&= 120° @, = 60° ¢. = 0°
Averagc crror = 24.9043
Maximum error = 40.6813

Ny

o= 0° ¢,=120° ¢. = 0°
Average crror = 20.6158
Maximum error = /73.845

o= 60°, ¢, =120° ¢. = 0°
Avcrage crror = 2.01517
Maximum error = 3.90757

& =120° ¢, =0° ¢ = 0°
Avcrage crror = 41.3752
Maximum error = 48.0218




Table 3.3 Simulation of the proposed method when r = 50, A = 16 and 4¢ = 0.25.
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Ny

O =0°%¢.=0° ¢.=0°
Average error = 2.03839
Maximum crror = 4.92998

o= 60° ¢ = 0° .= 0°
Average crror = 3.32538
Maximum crror = 4.62476

6. =120° ¢, =0° ¢ = 0°
Average error= [.67105
Maximum crror = 2.36308

¢\:0°v ¢V:600, ¢:=00
Avcrage crror = 5.01847
Maximum error = 48.8279

o, = 60°, ¢, =60°, ¢. = 0°
Avcrage crror = (.830369
Maximum error = 2.06972

&= 120° ¢, = 60°, ¢ = 0°
Average crror = 9.54844
Maximum error = /3.4792

Ny

Ny

6. =0° @.= 120° ¢. = 0°
Average error=1/.1837
Maximum crror = 99.5178

¢ = 60° . =120° ¢ = 0°
Average error = 0.81/1139
Maximum crror = 3.6921

6. =120° ¢.=0° ¢.=0°
Average error = 18.026
Maximum error = 20.6744
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3.4.2 A Simulation for the determination of Z;
In this subsection, we use Procedure Find ZI1 of the proposed method to

determine Z,. The simulation is based on the case: r = 50, & = 16, and 4¢ = 0.25. The
simulation is accomplished in on two iterations. In the first iteration, we set Z*" =450,
ZM=* =550 and S = 10. The results in Table 3.4 show that Z, is roughly estimated

between 520 and 540.  In the second iteration, we set Z" =520, ZM* =540 and S =

2. The results in Table 3.5 show that Z; is estimated as 530. This is close to the actual
value for Z;, Z; = 525.133. The error item in the tables means the average difference
between the images of the projection of solution and the measured images. The error

values in bold face are the minimum value.

Table 3.4 In the first iteration, Z; is roughly estimated between 520 and 540.

Z 450 | 460 | 470 | 480 | 490 500 510 520 530 540 550

error | 0.547 | 1.377 | 1.118 | 0.970 [ 0.868 | 0.833 | 4.471 | 0.633 | 0.366 | 0.598 | 0.557

Table 3.5 In the second iteration, Z, is estimated as 530.

Z, 520 522 524 526 528 530 532 534 536 538 540

error | 0.633 | 0.606 { 0.432 | 0.398 | 0.376 | 0.366 | 0.411 | 0.616 | 0.602 | 0.596 | 0.598

As mentioned above, the computation of Z; is rather time consuming due to its

exhaustive search mechanism.

3.5 Summary
In this chapter, we have proposed a new method of pose estimation with image
sequence taken from a single view. The proposed method has overcome the limitation

existing in the method of pose estimation by single projection, employed in single

angiography.
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Simulation results for the proposed method have been presented in this chapter. It
has been shown that for most cases, the proposed method has achieved acceptable results.
In the view of these experiments, reducing the object size, which consequently improves
the camera model of weak perspective projection, can improve the results. Reducing the
object size is equivalent to increasing focal length, according to the camera model. Thus,
in real clinical situations, a large focal length can be configured in angiography

equipment in order to achieve improved results.
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Chapter 4
Application of the Proposed Method to

Synthetic Data

4.1 Introduction

In Chapter 3, we have presented our simulation of the proposed method on given
curves with Mathematica. In the simulation, we did not consider the errors that might be
introduced in measurement of image points, and assumed that the catheter trajectory was
rigid. However, in clinical practice, these conditions are not necessarily met. These two
unconsidered characteristics may affect the results of the proposed method. In this
chapter, we will present the application of the proposed method to real data obtained
from a phantom experiment, which simulates an IVUS intervention. The image sequence
of the phantom experiment and the associated documents [15] used in our application
were provided by the Montreal Heart Institute.

This chapter is organized as follows. In Section 2, we will describe the phantom
experiment that was carried out at the Montreal Heart Institute, as well as an image
sequence obtained from the experiment. In Section 3, we will test the proposed method
on the image sequence of the phantom experiment and discuss the results. In the last

section, we will summarize this chapter.

4.2 Phantom Experiment
A phantom experiment has been carried out at the Montreal Heart Institute, which
has been designed for investigation of single projection angiography in 3-D IVUS. In the

following, we describe the phantom experiment.
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d

k-h____._—ﬂ-'// ! 1

Figure 4.1 The phantom is built with a 1000m/ beaker with a pipe spiraling on it about 360°. The
measurement for /4 and d are: A= 125mm and d=109mm.

Figure 4.2 The measurements of the pipe: ¢ = 3.176mm and t = 6.35mm.

The phantom, as shown in Figure 4.1, is built with a 1000m! beaker with a pipe
spiraling on it about 370°. In Figure 4.1, 4 and d are measured with respect to the centre
of the pipe. The measurements of the pipe are shown as Figure 4.2. The catheter used in
the phantom experiment is a JOVUS Avanar F/X, as shown in Figure 4.3. It is an IVUS
imaging catheter product from JOMED. The diameter of the catheter is 2.9French (equals
to 1mm), which is smaller than the inner diameter of the pipe (3.176mm). Therefore while
the catheter moves along the spiral pipe, a movement along the tube diameter direction

may occur to the catheter. This can be observed in the image sequence. By this effect, the
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trajectory of catheter is not a rigid curve.
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Figure 4.3 JOVUS Avanar F/X, an IVUS imaging catheter.

In the phantom experiment, a fluoroscopic camera system has been configured
such that the focal length is f = 945mm, while the distance from the center of phantom to
the focal spot is about 876mm. The camera system is shown in Figure 4.4. The pullback
of the catheter is performed by a Track Back II system, a catheter pullback device from
JOMED. The velocity of pullback of the catheter is about 0.5mm/s, which is measured
with error according to [15], but no range of error is given. A sequence of fluoroscopic
images has been captured by the fluoroscopic camera system during the pullback of the
catheter. The sequence consists of 1109 frames of 1024x1024 pixels fluoroscopic images
taken at a rate of 4 frames per second (fps), which is stored in 5 DICOM image files
(DICOM is a standardized format for medical images). One frame of the image sequence
is shown in Figure 4.5. Unfortunately, there is a gap with an unknown number of frames
(about 200 frames), between frame 220 and frame 221 in the sequence. Therefore, only
the frames from frame 221 to frame 1109, i.e., 889 frames, can be used in our application.

The trajectory to be reconstructed is about 67.9% of the whole trajectory.
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Figure 4.4 The configuration of the fluoroscopic camera system in the phantom experiment.

Figure 4.5 A frame of the fluoroscopic image sequence. The transducer along the catheter is
visible in the lower left quadrant of the image. The circular object appearing along the tube are

62
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simply twist tights attached at regular intervals along the pipe for reference purpose.

4.3 Application of the Proposed Method on the Phantom Experiment Data

The original image sequence consists of 889 frames with a rate of 4fps. It records
the trajectory of the catheter that spirals around the beaker for about 250°. In our
application, two image sequences with a specific number of frames are reconstructed by
picking frames from the original image sequence with a certain number of frames
interval. One reconstructed image sequence, called the Image Sequence I, has 20 frames,
which are picked at an interval of 45 frames from the original sequence as shown in the
first row of Table 4.1. Another reconstructed sequence, called the Image Sequence II, has
18 frames, which are picked at an interval of 52 frames as shown in the first row of Table
4.2.

The coordinates of the catheter (actually the IVUS transducer) tip on each frame
is read in pixel unit manually using Osiris, a software system of medical image
manipulation from Digital Imaging Unit, Center of Medical Informatics, University
Hospital of Geneva. The coordinates of the images in mm unit can be calculated by
multiplying the coordinates by the width of one pixel in the image plane, which is
provided in [15] as 0.1465mm.

In the following subsections, we will present the application of the proposed
method to the Image Sequence I and the Image Sequence II, respectively. These tests are

carried out with Mathematica.

4.3.1 Application of the Proposed Method on Image Sequence 1

In Table 4.1, the first row, named Frame, shows the frame numbers taken from the
original image sequence. The next two rows, named x(pix) and y(pix), indicate the x and
y-coordinates of the projection of the catheter tip measured in pixel unit. The fifth row
and sixth row are the calculated values for above x and y-coordinates in the new
coordinate system, in which the unit of mm is used and the origin is located at the centre
of the image plane. The length of pullback of the catheter between each two subsequent
frames is 0.05%x45/4 = 0.5625 (inch).

Since the Z-coordinate of the start point of the trajectory of the catheter (denoted
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as Z;), which is associated with the image point in frame 221, is unknown, we use
Procedure Find_Z1 presented in section 3.3.5, and assumer that Z; is between 84 1mm and
906mm. Table 4.2 gives the data of the trial of Procedure Find_Z1 in the range above by
step length of 5mm. From the computed results, it is obvious that the estimated Z; is
846mm, shown in bold face. Figure 4.6 shows the reconstructed trajectory of the catheter.
The last three rows in Table 4.1 give the X, Y, and Z-coordinates of the corresponding

points in the reconstructed trajectory.

Table 4.1 The Image Sequence I, which is obtained from the original sequence with an interval
of 45 frames.

Frame |221 266 311 356 401 446 491 536 581 626

x(pix) |215 244 277 310 348 393 430 471 514 556

y(pix) | 850 780 695 603 497 404 320 229 155 102

x(mm) |-43.51 [-39.26 [-34.42 |-29.59 |-24.02 [-17.43 |-12.01 |{-6.006 [0.239 |6.446

y(mm) 49.51 39.26  [26.81 1333 ]-2.197 |-15.82 [-28.12 |-41.45 [-52.30 |[-60.06

X(mm) |-38.92 |-34.96 |-3042 [-2598 |-21.09 [-15.38 |-10.68 [-5.370 |0.264 |[5.876

Y(mm) |4432 [34.96 |23.69 11.70  |-1.92 -13.96 |-25.01 [-37.07 |-47.16 [-54.76

Z(mm) |846.0 1836.2 |828.7 |[8223 8223 8275 |8352 |[840.7 |849.1 859.9

Continuation of Table 4.1.

Frame |671 716 761 806 851 896 941 986 1031 1076

x(pix) {601 637 670 712 747 786 817 857 892 929

y(pix) |74 71 96 139 203 290 380 475 570 675

x(mm) [13.03 1831 [23.14 2930 [34.42 [40.14 [44.68 ]50.54 [55.67 |61.09

y(mm) |-64.16 |-64.60 |-60.94 |-54.64 |-45.26 |-32.52 }-19.33 |-5420 |8.497 |23.87

X(mm) |12.03 17.12 2192 28.06 [33.29 |39.01 [43.63 ]49.35 [54.34 |59.63

Y(mm) |-59.21 |-60.41 [-57.72 |-52.34 |-43.78 |-31.61 |-18.88 [-5.293 |8.294 |23.31

Z(mm) |872.0 8852 [8984 (9102 ]920.3 9252 ]929.7 {929.7 ]929.7 |929.7

Table 4.2 The trail of Procedure Find_Z1 in the range of 838mm to 908mm.

Z, 841 |846 (851 |856 |861 866 (871 |876 |88l 886 [891 (896 [901 |906

Err |1.76 |1.75 |1.79 (1.87 [1.98 |2.13 |231 (2.52 [2.74 |5.05 |4.49 |2.89 [2.50 |2.17

Unfortunately, there is no accurate and precise data available that represents the
trajectory of the catheter, with which we could compare our application results.

Therefore, we are not able to estimate directly the errors of the results. However we can
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assess indirectly our results by fitting an arbitrary spiral through our data set and look at
the parameters 4 and d as well as the residual error. As shown in Figure 4.6, a spiral
trajectory has been reconstructed. The average diameter of the constructed spiral
trajectory is estimated as 108.3mm, which is close to 109mm, the known diameter of
spiral pipe. The error is 0.642%. The height of the reconstructed spiral is estimated as
84.61mm. In our application, 68.4% of the spiral trajectory has been reconstructed. The
height of % for the reconstructed of trajectory is 125 x 889 / 1299 = 85.54mm. The error is
1.08%. The residual error can be computed as 1.25%. It is observable from Figure 4.6 (d)
that the reconstructed trajectory is slightly off the spiral curve at the last two points.

4.3.2 Application of the Proposed Method on the Image Sequence II

Table 4.3 is similar to Table 4.1 The length of pullback of the catheter between
each two sequent frames is 0.05 x 52 / 4 = 0.650 (inch).

Again we use Procedure Find Z1 presented in Section 3.3.5, and assume that Z; is
between 841mm and 906mm. Table 4.4 gives the data of the trial of Procedure Find Z1 in
the range above by step length of Smm. From the computed results, Z; is estimated to be
871mm, shown in bold face. Figure 4.7 shows the reconstructed trajectory of the catheter.
The last three rows in Table 4.3 give the X, Y, and Z-coordinates of the corresponding
points in the reconstructed trajectory.

The results are similar to the results obtained for the image sequence 1. Again
some observable errors happen at the last few points in the reconstructed trajectory.

Comparing the results for Z; in Subsection 4.21 and the results for Z; in
subsection 4.2.2, we can find a significant difference between the results that is produced
by Procedure Find Z1 of the proposed method and, it consequently will introduce
differences in the Z-coordinates of the solutions.

Similar with the reconstruction of the catheter trajectory by the Image Sequence I
presented in subsection 4.2.1, we can assess indirectly our results by fitting an arbitrary
spiral through our data set and look at the parameters 4 and d as well as the residual error.
As shown in Figure 4.6, a spiral trajectory has been reconstructed. The average diameter
of the constructed spiral trajectory is estimated as 108.1mm, which is close to 109mm, the

known diameter of spiral pipe. The error is 0.825%. The height of the reconstructed spiral
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is estimated as 84.61mm. In our application, 68.4% spiral trajectory has been
reconstructed. The height of 4 for the reconstructed of trajectory is 125 x 889 / 1299 =
85.54mm. The error is 1.08%. The residual error can be computed as 1.36%. It is
observable from Figure 4.6 (d) that the reconstructed trajectory is slightly off the spiral

curve at the last two points.

Table 4.3 The Image Sequence II, which is obtained from the original sequence with an interval
of 52 frames.

Frame [221 273 325 377 429 481 533 585 637 689

X(pix) |215 250 288 330 373 422 469 516 566 616

Y(pix) |853 770 665 551 432 339 235 153 93 70

X(mm) |-43.51 |[-38.38 |-32.81 |-26.66 |-20.36 |-13.18 [-6.299 [0.5860 [7.991 15.23

Y(mm) |49.51 37.79 12241 5713 |-11.72 |-2534 |-40.58 |-52.59 (-61.38 |-64.75

X(mm) |-40.23 |-35.03 [-29.75 |-24.10 |-18.40 [-12.02 [-5.777 |0.542 [7.417 14.48

Y(mm) [46.04 13449 12032 |5.164 |-10.59 |-23.10 [-37.21 |-48.72 |-57.55 |-61.57

Z(mm) |871.0 |860.4 |853.8 |850.5 |850.5 |859.2 |[865.0 [875.0 (8872 [901.6

Continuation of Table 4.3.

Frame [741 793 845 897 949 1001 1053 1105

X(pix) | 655 702 744 788 825 869 911 950

Y(pix) |84 127 195 295 400 506 622 748

X(mm) 12095 ]27.83 3398 14043 [4585 [52.30 [5845 |64.16

Y(mm) |-62.70 |-56.42 |[-46.44 |-31.79 [-16.40 |-0.879 [16.11 34.57

X(mm) [20.21 ]27.21 33.61 40.19 [45.75 5220 |58.34 |64.05

Y(mm) |-60.51 |[-55.15 [-4592 |-31.60 |-16.37 [-0.877 |16.08 |34.51

Z(mm) 1917.0 [931.0 ]943.1 948.0 [944.9 19449 9449 9449

Table 4.4 The trail of Procedure Find_Z1 in the range of 838mm to 908mm
Zy 841 846 (851 |856 |861 |866 [871 (876 (881 |886 |891 [896 [901 |906

Error [1.53 {1.63 {1.82 |1.96 |1.63 [1.75 [1.00 [1.53 |2.05 |6.27 |5.54 |[4.77 {4.36 [3.69

4.4 Summary

In this chapter, we have presented the application of the proposed method to the
data of a phantom experiment. Firstly, we have reconstructed two image sequences from
the original image sequence obtained from a phantom experiment. Then we have

estimated the residual errors of geometrical size of reconstructed catheter trajectories
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from two image sequences respectively as 1.25% and 1.36%.

(b)

(c) (d)

Figure 4.6 The reconstructed trajectory of the catheter from the Image Sequence I. (a) top-front-
right view (b) right view, (c) front view, (d) bottom view.
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(a)

(b)

()

(d

Figure 4.7 The reconstructed trajectory of catheter from the Image Sequence II. (a) top-front-

right view (b) right view, (c) front view, (d) bottom view.
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Chapter 5

Conclusion

5.1 Conclusion

This thesis research has investigated the problem of pose estimation from single
projection in targeting the reconstruction of coronary arteries in 3-D. The research can be
divided into two parts. In the first part of the research, we have studied existing methods
of pose estimation by a still image from single projection published in the computer
vision community and the biological engineering community. From these methods, we
have chosen three typical methods to review and simulate with Mathematica in this
thesis. From our research on the existing methods and our simulation results, we can
draw the following conclusions: 1) All the existing methods require a previous
knowledge of the 3-D configuration of the object. In the application of reconstructing the
coronary arteries in 3-D, the requirement by the methods means that additional CT or MR
images are involved, thus the clinical costs in terms of operation and equipment are
increased. 2) There has been little research that toggles on pose estimation by image
sequence from single projection. 3) According to the simulation results in Mathematica,
the method of POSIT is the best method in terms of accuracy, efficiency, and stability
among the reviewed methods.

In the second part of our research, we have investigated the possibility of
achieving pose estimation from single projection without a previous knowledge of the 3-
D configuration of the object. We have found that an image sequence from a single
projection, which is easy to be obtained during an IVUS intervention, provides
information that makes the pose estimation possible. Instead of the 3-D configuration of
the artery, the known pullback distance of the catheter during the intervention is used.

Furthermore, we have carried out simulations of the proposed method on given spiral
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curves in Mathematica, and tested the proposed method with real data obtained from a
phantom experiment. The following conclusions have been drawn from our research
results with the new proposed method. 1) It is possible to carry out pose estimation
during IVUS intervention from a single view X-ray image sequence without previously
knowing the 3-D configuration of the object. 2) The proposed method overcomes the
drawback of the other pose estimation methods by eliminating the requirement of
previous knowledge of the 3-D configuration of the object. 3) In practical clinic, an X-ray
image sequence from a single projection is easy to be obtained. 4) There still exist
considerable errors in the construction of trajectory by the proposed method, compared
with the reviewed methods of pose estimation. However, in actual clinical practice, the
physician has absolutely no 3-D information and usually assumes that the artery (or
object) is a straight tube, which is obviously untrue for coronary arteries (the physician
cannot in clinical practice rely on the complex “laboratory” set-up proposed by other
methodologies). Therefore, even the slightest bit of 3-D information is appreciated
because vessel curvature affects the haemodynamics of blood flow in the arteries and the
possible formation of clots and arteriosclerosis. From this point of view, the proposed

method might provide useful information that meets the need of physicians in clinics.

5.2 Summary of Contributions

Though a variety of papers have been published on reconstruction of coronary
arteries with pose estimation from a still image, there has still been a lack of research on
the problem of reconstruction of coronary arteries from an image sequence. Our research
has explored the possibility of solving this problem in the particular case of IVUS
intervention and found a solution for the problem. The proposed method has many
advantages over the other methods, among which its simplicity, much easier setup in the
clinical environment and its lower cost. We thus believe that it might lead to a valuable

tool in the future.

5.3 Future Research
The proposed method could be improved in following ways. 1) A more accurate

result could be achieved by using NURBS instead of the straight lines we have used to
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approximate the curved trajectory when calculating the length of curve. 2) A better
condition for weak perspective projection can be obtained by adjusting the set-up of the
camera system by increasing the distance between the focal spot and the image place.
This could consequently improve the results of the proposed method in terms of stability
and accuracy.

Since pose estimation from an image sequence has significant advantages over pose
estimation from a still image in reconstruction of coronary arteries, it is worthy of
exploration by researchers in medical imaging but also in other areas of computer vision
in general. We believe according to our research that more solutions could be found

regarding such problems.
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