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Sommaire

Les recherches théoriques du présent mémoire, sur les mutations aux treillis
de Galois induites par des changements de contexte, sont une base pour la
dynamique des treillis & fermeture en général. Les algorithmes en émanant pour
incrémenter, décrémenter, construire graduellement ct assembler un treillis de
Galois ont la complexité minimale connue et utilisent des structures de donnéces
originales chainées réciproquement. Ils sont tous applicables au domaine des
treillis & fermeture en général. dont 'usage en informatique, sciences naturelles,

et génie électrique est plus répandu.

Mots clés: treillis de Galois, algorithmique, structures de données



Abstract

Theoretical inquiry into the mutations of Galois lattices induced by changes in
their context lays a comprehensive basis for studying the dynamics of lattices
with known closure in general. The resulting algorithms for incremental and
decremental update, gradual building and assembly of a Galois lattice have
the minimal known complexity and are supported by innovative reciprocally
interlinked data structures. All of them are also adaptable to the general ficld
of lattices with known closure, which have a wider range of applications in

computer science, electrical engineering and the physical sciences.

Keywords: Galois lattices, algorithms, data structures
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Chapter 1

Introduction

The theoretical results leading to Theorem 3.1 of the present thesis, and the
theorem itsclf, are a new ground for further study of lattice dynamics, whose
significance lics not only in the abstract mathematical interest, but also in the
fact that Galois lattices are widely used for a hierarchical representation of
mostly dynamic information in computer science, natural and social sciences,
which requires the structures to easily adapt with changes in said information.
This is also true for the additional use in physical sciences and electrical engi-
neering of other lattices with known closure, to which results are easily trans-
ferrable. The study is well supplemented by theory on precedence dynamics
(18, 19]. Minimal complexity achieved recently [20] for building lattices with
known closure applied exclusively to their static computation from a given ba-
sis. Inherent dynamic changes in the latter, however, cannot be translated into
appropriate changes in the lattice through that approach without rebuilding
anew. The algorithm introduced on Table 3.2 allows dynamic building, incre-
mental update and assembly of any two lattices, while the one in Table 3.3 is
the original introduction of decremental update, both algorithms performing all

of these operations with the same minimal complexity. which is lower than that
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achieved for similar operations until recently [16, 17, 18, 21, 22]. It is also worth
noting that former work on algorithms for gradual building of Galois lattices,
with a single known exception [17], considered a partially static context, since
either the set of objects G or of attributes M was left invariant as in a very
recent algorithm {19] of minimal complexity. Such approach is inappropriate
for the truly dynamic nature of information underlying the practical need for
the lattice structures. Finally, reciprocally interlinked data structures on Fig-
ure 4.2, developed here to insure minimal complexity for the algorithm in Table
3.3, allow updating a set of fully interdependent, interlinked and unordered
lists with complexity linear in the size of a single one, rather than the usual
quadratic polynomial. A short review of pertinent literature on lattice theory
(1,2, 3, 4,5, 6, 7] and Galois lattices [12, 13, 14, 15, 16, 17, 18, 19] from formal
concept analysis [8, 9, 10, 11] in the next chapter is followed by the theory on
dynamics introduced by the present thesis with ensuing algorithmic results and
a further chapter on algorithm implementation. Appendices on original proofs
of existing theoretical results, implementation details and Java programme code

conclude the thesis.



Chapter 2

Lattice Overview

Intuitive notions of context and concept are needed to enter the field of concept
or Galois lattices. A classroom may be taken containing some professor, student,
monkey, and book, each of them characterised as appropriate through living,
human, teaching, listening and old. The concept of a living human in the
classroom context is composed of all entities sharing the characteristics of living
and human, which in this example are, intuitively, said professor and student,
both assumed to be alive in a classroom, whether they look or not so. More
precisely, a formal context may be viewed as a finite set of objects, a finite set of
attributes, and a relation between the two. This is a simplified version of what
is context in ordinary language, as data allowing for the proper interpretation of
words. A formal concept is the subset of all objects sharing a particular subset
of attributes, and similarly for a subset of the latter. Again, this is a simplified
version of what is often vaguely called a concept.

Since lattice theory is based on the notions of ordered sets and order, a formal
beginning with the latter is appropriate. For a set S, an order or partial order
is a binary relation <, which is reflexive as z < z, antisymmetric as z < y

and y < z imply £ = y, and transitive as ¢ < y and y < z imply z < z for
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w0 | &0
S| E |8
23 = | s
S1E| 98|
> = @ w0 —
= = et = @]
v | lw|z |y |z
monkey |1 | + +
student 21+ |+
professor | 3 | + | + + | +
book 4 +

Table 2.1: In the common classroom context, the objects are assigned numbers,
the attributes letters, and the incidence is shown by the + signs in place.

all z,y,z € S. A set S with a partial order on it is an ordered set. It is
easy to notice that inclusion C on the subsets of a given set S is an order on
the power set P(S) of the latter. The binary relation >, defined as z > vy if
and only if y < z is also an order. The relations are dual and by the duality
principle any statement applicable to either is, mutatis mutandis, applicable
to the other. Further, 2 < y and dually y > z if and only if z < y with z # y.
For R C S, an infimum, if it exists, A R € S of the subset R is a lower
bound of the subset, as AR < r for all r € R, and it is the greatest lower
bound, with supremum \/ R € S being the least upper bound. As an exam-
ple, for the family or set of sets {@, T}, the subset QNT = QAT is the infimum,
while Q VT = Q U T is the supremum, with inclusion order on P(QUT). If
R C S is such that, z < r implies z € R for every r € R and all z € S, then R

is an order ideal in S, with order filter dually defined for z > r. The subsets
y={z€S|z<y}andy’'={zeS|z>y}

are order ideal and order filter with respective supremum and infimum y. The
binary relation precedence < is such that z < y if and only if £ < y and there
is no z with ¢ < z < y, where z is a predecessor of y and y is an successor
of . As an example, the empty set is a predecessor of any singleton subset of a

set S, with inclusion order on P(S), and any of the latter subsets is a successor
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to the former. The binary relation > is dually defined. A formal context K
is a triple (G, M,I) with a set of objects G, a set of attributes M, and a
binary relation their incidence I C G x M. In the example on Table 2.1, the
professor may be characterised as living, human, listening and old, the student
only as living and human, properly, without mention of listening, the monkey as
living and, indeed, teaching with, finally, the book as old only. The classroom
thus becomes a formal context, with the set of characteristics as M, while said
professor, student, monkey and book together are G. All is given on Table 2.1.

The right-side incidence operator provides the subset of all objects Y’
sharing a given subset of attributes Y and the subset of all attributes X' shared

by a given subset of objects X or
X'={ae M| (o,a) €I forallo€ X},

Y'={0€eG|(o,a) e lforallacY}.

For simplicity, it is preferable to use v or 123 instead of {v} or {1,2,3}, and
{1} or {v,w,z} become 1' or vwz'. Thus 1’ = vr and vwy' = 3 from the
example in Table 2.1, or more clearly, the monkey 1 is characterised as living
and teaching vz, while the one characterised, among other, as living, human
and listening vwy is the professor 3. Further, X C X" and X' = X" for any

subset of objects X or of attributes Y, as shown by Lemma 2.1.
Lemma 2.1 If K is a contezt with X;, X; € P(G), then X; C X/ and X| =
X", while for all n < |P(G)|,

n

U x) =X
j=1

i=1

and X; C X; implies X D X}, with the same for Y;,Y; € P(G), plus \/ Bx =
(G,G") and A Bk = (M', M) for the Galois or concept lattice By from K.
Proof: easily available in literature on concept lattices [8, 9, 10].

A formal concept of a context K is a pair (X,Y) with extent X C G
such that X = Y’ and intent Y C M such that Y = X'. Otherwise said,
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it is an ordered pair (X", X') or (Y’,Y"). In the preceding example, 1’ = vz
and vz’ = 1 gives the concept (1,vz), while vwy' = 3 but 3’ = vwyz and the
proper concept is (3, vwyz), not (3, vwy). In fact, (9, vwzyz), (1,vz), (3, vwyz),
(23,vw), (34,2), (123,v), (1234,0) are all the concepts in the example from
Table 2.1. It is also proper to underline that, for every attribute a € M, there
is a maximum concept (a’,a”) containing a and, for every object o € G, there
is a minimum concept (0", ¢') containing it. These are known as the attribute
concept of a and the object concept of 0. Continuing with Table 2.1, the
object concept for the student 2 is (23,vw), which is, accidentally, also the
attribute concept for human w. The composed incidence operator is a closure
operator for the sets of extents or intents as (X", X’) is a concept for every
X C G or dually for every Y C M.

A complete lattice is an ordered set S such that, for any subset R C S,
ARE€E S and \/ R € S exist. The duality principle for the relations < and > of

(1234, 0)

(123, v) (34, 2)

(1,vz) (3, vwyz)

(0, vwzyz)

Figure 2.1: In this representation, known as Hasse diagram, of the lattice from
the context in Table 2.1, concepts are points, of which, as an example, the
middle one has attributes living and human vw shared by objects professor and
student 23, with lines connecting predecessors to successors above them.



CHAPTER 2. LATTICE OVERVIEW 7

course applies. For a context K, a concept lattice is the ordered family B
of all concepts from K with a partial order <, by which concepts (X;,Y;) <
(X;,Y;) if and only if X; € X; with ¥; C Y;. The lattice corresponding to the
context of Table 2.1 is given on Figure 2.1. The following theorem is considered
fundamental [2, 8, 9, 10] for concept lattices and formal concept analysis.

Theorem 2.2 The lattice By is a complete lattice, in which infimum and
supremum for any subfamily of concepts R = {(X,Y1)...(X,,Y,)} are

AR= (X (JY)") and \/ R = ((|J X)", (2
i=1 i=1

i=1 i=1

Proof: easily available in literature on concept lattices [2, 8, 9, 10].

Concept lattices are traditionally called Galois lattices [3] and, for sim-
plicity, all further lattices here are Galois unless explicitly stated otherwise. For
an attribute a, the context (a’,a,I N (a’ x a)) gives rise to a singleton lattice
where infimum and supremum coincide, and dually for an object o with o'. Fur-
ther, a basis B(M), sometimes called base [26], from which the closed family
may be generated, contains all pairs a,a’ with ¢ € M providing the extents of
all attribute concepts, with the same for all objects and B(G). This definition is
an adaptation to concept lattices of some more general definition for basis of a
lattice [25] or a family [26]. The columns of Table 2.1 can be seen as an attribute
basis and the rows as an object one for the lattice of Figure 2.1. An interesting
property is that any B contains in fact two complete lattices, one composed
of extents with supremum G and another of intents with supremum M. Both
are intersection closed with respective inclusion order on the powerset of G and
dual order on the powerset of M. Intersection of intents is accompanied by
union of extents and vice versa under the conditions of the theorem above.

The following theorem for computing predecessors [20] is an important result
for reducing the complexity of algorithms for building lattices. More precisely,
with g = |G|, m = |M|, b = |Bk]|, the above allows for a procedure [20]

on Table 2.2 computing the predecessors of a given concept with complexity
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algorithm computeLattice()

. for all a € B(M) do

. for all (X,,Y;) € Bk do

. if (@ N X (e NX;)) ¢ B then B U= (' N X;,aUY))
. else (@' NX;) U= (aUY))

. GU=ad and if (d',a") ¢ Bk then Bx U= (a’,a)

.1ex] computePredecessors (B k)

1
2
3
4
1
6

procedure computePredecessors (linkableConcepts)

1. for all (X;,Y;) € linkableConcepts do

2. for alla€ M\Y; do

.. (a'NX; (@' NX;)')'s count++

. (X, Y:)’s resettableCounts U= (a' N X, (a' N X;)")

s. i (o' N X)) | = Y3 + (' N X}, (&' N X;)')’s count then

5. do (a’ﬂXi,(a’ﬂXi)’) =< (X,,}/l)

+. for all (Xj;,Y;) € (X;,Y})’s resettableCounts do (X;,Y;)’s count = 0

Table 2.2: The computeLattice () algorithm [20] computes the family By
from data in the basis and predecessors by Theorem 2.3, while G U= ' is for
G = GU{a'}. Notice that setting precedence on line 6 of the procedure is simple
addition of pointers at the beginning of linked lists, while concepts are retrieved
by their extents or intents from tries on lines 3 and 4 of the algorithm, which
is performed in O(m + g) and similarly on line 3 of the procedure. This gives
complexity for the algorithm in O(bm(g + m)), or O(bmg) if m < g.

O(m(g + m)), giving O(bm(g + m)) for all concepts in the lattice. The com-
plexity is O(bmg) if m < g and this is the minimal known one for computing
the predecessors in a lattice and for building the lattice from the basis or context

data [20].

Theorem 2.3 If (X;,Y;),(X;,Y;) are concepts of lattice Bg, then the first
precedes the second if and only if the former is pair infimum (X;,Y;) = (X;,Y;)A
(a’,a") for all a in the difference of their intents, or

(X3, ;) < (X;,Y;) if and only if X;Na' = X; for alla € Y3\ Y;,

and dually for all objects 0 € X; \ X;.
Proof: available, mutatis mutandis, in the original publication [20].

As an example of its application on the lattice from Figure 2.1, let the first

concept be (3,vwyz) and the second (34,z). The difference in their intents is
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vwy and v’ = 123, w' = 23, ¥y’ = 3 from Table 2.1. The intersection of v', w'
and y’ with 34 all give 3, which is the intent of (3, vwyz) and it precedes (34, z).
If (123, v) had been used instead of the latter concept, the difference would have
been wyz and, for w' = 23, the intersection with 123 is not 3 but 23, whence
not all attributes in the difference of intents give the same result, and (3, vwyz)
does not precede (123,v). In what follows M \ a is simplified form for M \ {a}

and other similarly so, with
K\a=(G\'a,M\a,IN((G\'a) x (M \a))),

and dually for subcontext K \ 0. Follows a theorem [19], which is here proven,
on the dynamics of precedence or on partially inferring the precedence relation
in the superlattice B [19] from that in the sublattice B\, [18, 19].

Theorem 2.4 If (X;,Y:) < (X;,Y;) in By, then (X;, X)) < (X7, X]) in

B, except that, if (X;Na’,Y;Ua) < (X;,Y;) in the superlattice and X; Na’ #

Xi, then (X', X}) A (X}, X}), and dually with o € G.

Proof: given as Proof A.3 in appendiz.

With a; being (a’,a"), and so for o', below is a lemma [16], which is here
proven and is necessary for the proof of Theorem 2.4 as seen in appendix, about
the successors from Bk \ a; of concepts in a;. Application examples for said
theorem and the lemma are to be seen on Figure 3.2 in next chapter upon intro-
ducing general theory on the dynamics of Galois lattices beyond the precedence
evolution.

Lemma 2.5 Let (X;,Y;) = AR for R={(X,Y) € Bg\a, | XNa' = X;Na'}
and there is no (Xm,Ym) € Bg\, with X;Na' = Xy, then (X;Na’,Y;Ua) < AR
and no other concept in ay precedes any in R, plus dually for an object o, of,

and the supremum.
Proof: given as Proof A.2 in appendiz.



Chapter 3

Lattice Dynamics

Original results of the thesis start with Theorem 3.1 giving the dynamic evolu-
tion of the family B from K \ e to K. Here the isolation opcrator provides the

subsct of all objects 'Y or all attributes 'X with respective incidence Y and X,
'X ={a€ M| (o,a) €I if and only if o € X},

'Y ={o€ G| (o,a) €I if and only ifa € Y}.

Notation is simplified as for the incidence operator and, in Table 2.1. only
the monkey 'l = z is characterised as teaching, while the one characterised
exclusively as living and human ‘vw = 2 is the student.

Theorem 3.1 If (X,Y) € Bk\,, then (X" Na', (X" Na')) € ay and, if X" #
X"Nna', then (X", X') € Bk \ aj and (X", X') = (X"Y), else (X", X') =
(X", Y Ua), where

a; ={(X"nd (X"Nd"))e Bk | (X,Y) € Bx\o or X =G}

with Bg \ ay = {(X",Y) € Br | (X,Y) € Bk\q orY =08} and, if (X,Y) =
(G\'a,0) with 'a # @, then (G\'a)" = G in Bk, while in all other cases,
X" = X in the superlattice, and dually for o'.

Proof: given as Proof A.1 in appendiz.

Otherwise said, all extents of concepts in the sublattice remain unchanged

as cxtents of concepts in the superlattice, except for that of the sublattice
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80 | &0
1.8 1.8
EEE
S 318 | &
= = e =]
v |w|z |y
monkey | 1| + +
student 21+ |+
professor | 3 | + | + + +
+ | 4 | book |
z
o
G

Table 3.1: The initial classroom context, before the addition of the attribute 2z
with proper incidence to the subcontext (123, vwzy, I N (123 x vwzy)) or K \ z,
is missing not only 2 itself but also object 4 or ’z.

supremum if it is (G \ ‘a,0) and if ‘a # @. The theorem further states that
(X3,Y:) € Bk isin ay if and only if thereis (X}, Y;) € By, or (X;,Y;) =V Bk
with the former being infimum of the pair (X;,Y;) = (X}, X}) A (a’,a") and, if
(Xi,Y:) = (X}, X]) in the superlattice, then ¥; = Yj Ua. It is to consider X7
here within the statement on extents of concepts in the sublattice. Similarly,
the family B x \ a contains all concepts from the sublattice whose extent is not
included in o, plus (G, ®) if present in Bg. The theorem allows to obtain a
and Bk \ a;, whence the whole superfamily, from the subfamily B K\a-

As an example in Table 3.1 representing K \ z for K in Table 2.1, any subset
of attributes vwzy shares only a subset of objects 123 because 4 = 'z exclusively
and z is still to be added. The concepts in B g\ are (0, vwzy), (3, vwy), (1,vz),
(23,vw) and (123, v). Since z' = 34 and the extent of (#,vwzy) and (3,vwy) is
included in z’, then these two concepts with z added to intents, plus (2', z) form
zy in B . In this case, all extents of concepts are unchanged in the superlattice
as G\'z # 0 and the special case mentioned in Theorem 3.1 does not apply. For

concepts from the sublattice whose intent is added by z to form a superlattice

concept, the graphical representation on Figure 3.1 remains the same with the
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evolution of the lattice, beyond changes in the intent listing. As an example, the
sublattice concept of living human and listening, otherwise said the professor
(3,vwy) € B\ :, in the superlattice is replaced by (3, vwyz) € Bk, which is still
the same professor although in a different context, whence the representation
(3,vwy+2z) on Figure 3.1 with + indicating the evolution from sublattice to
superlattice, equally observable for the infimum (@,vwzy+z). The concepts
concerned by the matter are, in general, all those from B\, whose extent is
included in @', but the same is also to be considered for the particular case of
(G\'a,0) when 'a # 0. Of course, the graphical representation of concepts from
the sublattice, which also belong to the superlattice, remains the same.

Before introducing an algorithm based on the last theorem, it is proper
to mention that gradual or dynamic lattice building [16] starts from a null

context and concept family. The first step is inevitably adding a with a’ to the

(+1234, +0)

A\
/ AN

(123,v) \f (+34,+2)
(23, vw)

(1,vz) (3, vwy+z)

(0, vwzy+2)

Figure 3.1: This is the graphical representation with solid lines of the lattice
for the subcontext from Table 3.1, and upon the attribute z with proper inci-
dence being added to it, the resulting portion of the superlattice is represented
with dashed lines, while elements after the + signs are added by the evolution
from sublattice to superlattice as for (3,vwy) € B\, and (3,vwyz) € Bk
represented by (3, vwy+2).
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null context and obtaining the singleton lattice with K \ a = #. The process
continues, and an augmented context with an additional attribute plus proper
incidence results from each further step, together with a new superlattice. In
this dynamic process, it must be kept in mind that each superlattice so obtained,

in the next step, if any, is the sublattice B\, for the next attribute a being

(+123, +v) B(123,vwz, I N (123 X vwz))

(123,v)

(123, v, IN123x0) (23, vw)

o (+23, +vw) |
e

\l

(+0, +vwz)

B(123, vw, IN123 xvw)

B(123,vwezy, I N (123 x vwzy))
(123,v)

(23, vw)

(1,vz)

(0, vwz+y)

Figure 3.2: Illustrating lattice building for the context in Table 2.1, the + signs
indicate evolution from sublattice to superlattice as in Figure 3.1, the loss of a
predecessor by Theorem 2.4 is shown with dots, while (43, +vwy) < (23,vw)
instead of preceding (123,v) is given by Lemma 2.5, all finalised on Figure 3.1.
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algorithm updateLattice (moreAttributes)

1. for all @ € moreAttributes do

2. if 'a # 0 then if (G \'a) =0 then G\ 'a U="a else
5. Bg U= (G,G'") and do (G \'e,(G\'a)') < (G,G")

s. updateConcepts (a, (G,G"))

s. computePredecessors ({(X,Y) € ay | (X, X") ¢ Bx\a})

procedure updateConcepts (a, (X,Y))

.. Bg U= (X,Y) and for all (X,,Y;) < (X,Y) do

2. if (X;,Y;) ¢ Bk then updateConcepts (a, (X;,Y;))

o if (&' NX, (e’ NX)) ¢ Bk then

. BgU=(a’NX,aUY)and do (¢’ NX,aUY) < (X,Y)

s. for all (X;,Y;) < (X,Y) do if a € Y; then do (X;,Y;) A (X,Y)
o elseifad' NX =X thenY U=a

Table 3.2: The updateLattice (...) algorithm updates a lattice by gradually
adding a set of attributes to its context and computing, for each a of them the
superlattice B from Bk, as per Theorem 3.1 with predecessors by Theorem
2.4 and Theorem 2.3. Notice that extent, intent and trie operations on lines 3 to
5 or on line 6 of the procedure above have complexity in mathcalO(g + m). The
complexity of the procedure on line 5 of the algorithm is in mathcalOm(g + m)
per concept and, given the definition of its arguments, it is executed exactly once
on no more than the number of concepts in the final superlattice. This gives
complexity for the algorithm in O(bm(g + m)), or O(bmg) if m < g equalising
the minimal known one, with ¥ U= a for Y = Y U {a} and other similarly.

added. Taking Table 2.1, lattice building can be shown by adding attribute v,
of course with v', to the null context for K \ wzyz = (123,v,1 N (123 x v)).
Further steps from successfully adding w, z,y are on Figure 3.2, with K \ z on
Table 3.1 and Figure 3.1 in the next chapter. The reasoning is dually applicable
to objects. Gradual lattice building with a partially static context, where either
G or M is invariant has been more widely studied [16, 17, 18, 19], including a
theory on precedence dynamics [18, 19].

The last two theorems introduce on Table 3.2 an algorithm for incremen-
tal lattice update upon adding attributes to the subcontext, or dynamic lattice
building, with complexity in O(bm(g + m)) giving O(bgm) with m < g, which

is the least known complexity for the purpose and where b = |B | for the final
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algorithm reduceLattice (someAttributes)

.. extractBasis (A Bk)

2. for all a € B(M)N someAttributes do

. for all (X,Y) € Bg do Bk\,U=(X,Y) and if a € Y then

s If (Y \a),Y\a)¢ Bk then Y\=a else

s Bra\= (X,Y) and for all (X;,Y;) < (X,Y) do (X;,¥;) £ (X,Y)
s for all (X;,Yr) < (Y \a),Y \a)do (X, Vi) A (Y \a),Y \a)

7. if (X,Y)=V Bk and 'a # 0 then

. if (G\'a,(G\'a)") ¢ Bx\, then X\="'a else Bj\,\= (X,Y)

. computePredecessors ({((Y \ a)’,Y \ a) € Bx | (X,Y) €a;\ Bk})

procedure extractBasis ((X,Y))

1. visitedConcepts U= (X,Y’) and for all (X;,Y;) > (X,Y) do
2. if (X;,Y;) ¢ visitedConcepts then extractBasis ((X;,Y;))
.. forallae (M\B(M))NY do B(M)U=a

Table 3.3: The reduceLattice (...) algorithm updates a lattice by gradu-
ally removing a set of attributes from its context and computing, for each a of
them the sublattice B\, from Bx as per Theorem 3.1 with predecessors by
Theorem 2.4 and Theorem 2.3. The complexity of the procedure above is in
O(bm), insignificant to that of the algorithm. Notice that extent, intent and
trie operations on lines 4 to 6 have complexity in O(g + m). The complexity of
the procedure on line 5 of the algorithm is in O(m(g + m)) per concept and,
given the definition of its arguments, it is executed exactly once on no more
than the number of concepts in the initial superlattice. This gives complexity
for the algorithm in O(bm(g + m)), or O(bmg) if m < g equalising the mini-
mal known one, with Bg\,\= (X,Y) for Bg\, = Bx\a \ {(X,Y)} and other
similarly. Finally, notice that only the algorithms in Table 2.2 and Table 3.2
are implemented here, not the present one.

superlattice computed upon adding all attributes. The Java implementation
of these algorithms is expalined in next chapter. Reciprocally interlinked data
structures are introduced and used there, with an expansion of the implemen-
tation in mind, to insure the minimal known complexity above for an algorithm
on decremental update as the one on Table 3.3.

If two lattices with disjoint bases have to be assembled, the first can be
updated with the basis of the second and complexity will be as for the updat-

ing algorithm on said Table 3.2. If necessary for the purpose, a basis can be
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extracted from a lattice through the procedure in Table 3.3, whose complexity
in O(bm) or O(bg) is insignificant to the algorithm for update and assembly.
In fact, since every concept except the supremum is part of the order ideal a;
for at least one a € M, it is easy to reduce the problem of assembling two
sublattices with disjoint B(M) to the operations, as in Theorem 3.1, involving
one of them and the family of attribute concepts (a’,a”) of the second lattice,
which are suprema of the order ideals in the latter. This is, however, equiva-
lent to the approach of update and gradual building of Table 3.2 using a' from
the basis, and dually for o' and B(G). Finally, Lemma 3.2 below may allow
for a more practical version of the algorithm on Table 3.2 by reducing the size
of intersection computations, although without immediate effect on worst case

complexity.

Lemma 3.2 If (X;,Y;),(X;,Y;) € B\, (X;,Y;) < (X;,Y;), then the set
Xina' = X;N(X;Na') since X; C X; and similarly in Bk,-

Proof: given as Proof A.4 in appendiz.

A second part of Theorem 2.2, which is not provided here but is easily
available in literature on concept lattices [2, 8, 9, 10], deals with isomorphism
between them and complete lattices in general. It allows, thus, generalising to
the latter, which have a wider array of applications in natural sciences, electrical

engineering and computer science, results obtained here for the former.



Chapter 4

Implementation and Tests

The algorithms for static building on Table 2.2 and for dynamic or gradual
building on Table 3.2 arc implemented using the lattice and concept strictures

on Figure 4.2, basis on Figurc 4.3. plus tric and sct auxiliaries on Figure 4.1,

NENEPENE
! !

|2|'|i|'| (BI,[-1-]
el 1 BLIT]
[wi -1

as beside

alI1,399[qo
aLITOINqLIIe
sydoouo)[re

Figure 4.2 onto
(123, v), (23, vw)

|

Figure 4.1: The set structure comprises pointers to the object and attribute
tries, and to a list of pointers to all concepts, while everything is represented
at the point upon computing % x\z,. when the list linkableConcepts is reset to
null and omitted here to improve readability, and the pointers from attributeTrie
lead to the elements of allConcepts exactly as those from objectTrie.
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preserving names from algorithms. Summary of execution results is also shown.

The implementation of the algorithms presented thus far is based on a lattice
structure seen on Figure 4.2, which is composed of pointers to the supremum
and infimum concepts, the attribute and object basis and to a set structure.
The latter is a seen on Figure 4.1 with pointers to attribute and object tries, to
a list of pointers towards all concepts and one of pointers towards those pending
predecessor computation. The tries are linked lists shown on the latter figure
and allow the retrieval of concepts by their intent or extent, in keeping pointers
indirectly through the list of all concepts to the latter. Said list is very desirable
for processing with linear complexity in the size of the family. A concept is
a structure shown on Figure 4.2. It comprises Boolean variables to mark the

concept from the sublattice as visited upon traversal and modified upon adding

(123,v)
[ I3 12} [1]«® extent
|- [vl+®intent
Figure 4.1 SuCCessors

Figure 4.3 [

&—— predecessors

[- 13} [2]«® extent
%K\xyz . = intent

108

sIsega)ngLIye
wnwaldns
wnwyut

(23, vw)

Figure 4.2: The lattice data structure upon computing B\, of K in Table 2.1
with pointers to infimum and supremum concepts, linked lists of intent, extent,
predecessors and successors,, while elements, which are null or uncomputed at
that step as the objectBasis plus the successors and predecessors of supremum
and infimum respectively or the Boolean and numerical variables in the concepts,
are omitted to improve readability.
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a to its intent or dually o, numerical variables for extent and intent length,
pointers to extent and intent lists, plus pointers to the reciprocally interlinked
lists for predecessors and successors. The latter are pointers to concepts, such
that the one to a predecessor of a concept (X,Y) will also point to an element
in the successor list of said predecessor. Exactly this very element reciprocally
points to (X,Y) and to the pointer mentioned in the predecessor list.

The structure for basis is presented on Figure 4.3. It is proper to consider
its form in a dynamic perspective. When the lattice building from the basis
begins, the latter is a linked list of attributes, where each element additionally

points to a simple list of objects or a’ for its attribute a. For all a added

-

Figure 4.2 onto
, -] - | -
(123, v)’s extent

|
FIHELUNE L EUE L MEE AR

Figure 4.1 Figure 4.2
Figure 4.2 1
l I predecessors
? 2 2 5 13 2+® extent
=, - E E’ |- Jwl+F Jv]+® intent
£ - S
& &
o ]
3 (23, vw)
¢ %K\xyz

Figure 4.3: While building B from attributeBasis, the incidence a’ of each
attribute a corresponds to the extent of its attribute concept (a’,a”), and the
basis structure contains an extent list for every attribute not yet added or a
pointer to the extent of the attribute concept otherwise, as seen for v and w
upon computing B g\ sy and dually for the objectBasis, which here is yet to be
extracted from the final lattice, and is omitted mention for readability.
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density 0.25 b 10 15 20 25
computeLattice 0.847 1.033 1.335 2.906 6.063
updateLattice 0.847 0.990 1.306 2.466 4.634
density 0.50 5 10 15 20 25
computeLattice 0.847 1.437 5.810 48.503 | 304.970
updateLattice 0.861 1.345 3.933 22.179 | 104.013
density 0.75 5 10 15 20 25
computeLattice 0.873 1.449 17.082 | 1761.218 -
updateLattice 0.849 1.363 10.267 | 951.166 -

Table 4.1: Summary of execution results in seconds for the algorithms on Table
2.2 and Table 3.2, on the machine gle21.iro.umontreal.ca with 400 MHz proces-
sor plus 128 MB system memory operating on Linux kernel 2.4.18-27.7, shows
that the latter one clearly outperforms the former. Columns above indicate the
number of attributes and objects in each randomly generated test context, while
density of the context is used here in reference to the ratio between size of the
average incidence o' or @’ and size of G or M respectively. Execution results
were not taken for density 0.75 on context with 25 objects and attributes be-
cause the lattice grows exponentially with G and M at high density, which leads
to large execution times.

to the context, a’ becomes the extent of some concept. The pointer form the
attribute basis still points to it, but there is now an additional pointer from the
concept (a’,a”), which is well visible on the figure for w and w’ = 23, being
also the same for v and 123. The latter are the only attributes in the context
K \ zyz represented, and all other elements of the attribute basis retain their
original version, pending processing in contexts K \ yz, K \ z, K. Of course, all
is dually applicable when building or updating the lattice with objects. Finally,
performance tests comparing the algorithms on Table 2.2 and Table 3.2 are
summarised on Table 4.1. They are discussed with more detail in appendix and
indicate that the algorithm for dynamic lattice building of the present thesis
clearly outperforms the one for static building, both of them being with the

same minimal known complexity.



Chapter 5

Conclusion

Having introduced results on the dynamics of concept lattices and algorithms
arising therefrom with the minimal known complexity for their task, it is proper
to look at the extension of the work into the field of general lattice dynamics
with proper manipulation and use. The results so far allow only for the disjoint
update or assembly of lattices, where attributes or objects with their incidence
being added to contexts are not yet present there. Mutations without that
restriction are something that remains to be explored. So is the internal update
of a lattice, by which some object loses its incidence relation to an attribute
and another one gains the same, or further variations thereof including their
dual version. Of course, having inquired into the assembly of two sublattices,
need arrives for disassembly. Present algorithms can be made more rational
through further observations on the predecessors of concepts exclusive to the

superlattice, and it is also worth exploring the practical applications of theory.
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Appendix A

Original Proofs

Proof A.1 (Theorem 3.1) If (X,Y) € Bg\,, then (X" Na’,(X"Na')') € a
and, if X" # X" Na', then (X", X') € By \ a; and (X", X') = (X",Y), else
(X", X") = (X",Y Ua), where

ay = {(X"Na',(X"Na')) € Bk | (X,Y) € Bxra or X =G}

with Bx \ ay = {(X",Y) € Bg | (X,Y) € B\, or Y =0} and, if (X,Y) =
(G\'a,B) with 'a # 0, then (G \ 'a)" = G in Bk, while in all other cases,
X" = X in the superlattice, and dually for of.

Proof: For the latter statement on (X,Y) € B\, when (X,Y) # (G\'a,0),
fXCad withX ={z,...2,}, Y ={y1...Ym}, then

ﬂ:z; =Y Ua and (Y Ua)' = ﬂy]
i=1

in the superlattice, otherwise X',Y' are unchanged and either way X" = X.
In the case of (G \ 'a,®), the above reasoning applies if 'a = 0, otherwise (G \
‘a)) = a or (G \'a) = 0 in the superlattice and 'a € (G \ 'a)". Starting
from the beginning, since (X", X') € Bk for all X C G and (a’,a") € Bk,
then their pair infimum (X" Na', (X" Na')') also is in the superlattice. If
(X", X") € ay, then (X", X") < (a’,d") and X C a'. When the extent is not
a subset of @', or X" # X" Na', then the concept must be in Bk \ a, with
X' =Y in the superlattice for (X,Y) € B\, by the reasoning starting the
proof, which also shows that X' = Y Ua if X C a. If (Xmm,Ym) € ay, then
(Ym \a),(Ym \ a@)") € Bg\a or (Y \ @), (Yn \ @)"") = (G,0) and, in both
cases, X, = (Yi\a)Ua) = (Y;\a) Nd' in B by Lemma 2.1. This gives,
with (X,Y) for (Y \ @), (Y \ @)"), the definition of the order ideal above.
If (X:,Y;) € Bk \ay, thenY; C M\ a and Y] = X; in the sublattice, unless
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(X5, Y:) = (G,0) with'a # 0, in which case Y] = G\ 'a in the sublattice. This
defines, with (X,Y") for (Y!,Y;), the family Bx \ a, as above in the theorem.

Proof A.2 (Lemma 2.5) Let (X;,Y;) = AR for R = {(X,Y) € Bk \ay |
XNa' = X;Na'} and there is no (Xm,Ym) € Bk, with X; Na' = X, then
(X;Nnad',Y;Ua) < A R and no other concept in a| precedes any in R, plus dually
for an object o, of, and the supremum.

Proof: The difference of intents between A\ R and (X; Na',Y; Ua) is only
a with the latter being infimum for the pair of the former and (a',a"), whence
the precedence by Theorem 2.3. Notice that, in this case, AR € R and, if
(Xm,Ym) € ay with X, # X; Na' preceded some (X,Y) € R, then X Na' =
Xm # X;Na', which is a contradiction and (X, Yn) 4 (X,Y).

Proof A.3 (Theorem 2.4) If (X;,Y;) < (X;,Y;) in B\, then (X;, X)) <
(X}, X]) in B, except that, if (X; Na',Y;Ua) < (X;,Y;) in the superlattice
and X; Na' # X;, then (X', X]) A (X}, X}), and dually witho € G.

Proof: If (X;,Y;),(X;,Y;) € Bk \ ay, which is to say (X;,X]) = (X, Y7)
and (X}, X}) = (X;,Y;) or (X}, X}) = (X; U'a,Y;) in the superlattice, where
the latter is the case of (X;,Y;) = (G\'a,®), then the difference of their intents
remains the same and so does the precedence. If (X;, X]), (X}, X}) € ay, then
(Xi, X{) = (X4, YsUa) with (X}, X}) = (X;,Y;Ua) or (X}, X]) = (a',Y;Ua) =
(G,Y; Ua) in the superlattice, as per Theorem 3.1, where the lalter case is
for (X7,X;) = (G \'a,0) with 'a # § and o' = G, whence the difference in
intents remains again the same from sublattice to superlattice and so does the
precedence. If (X;,Y;) € By \ a, and (X;,Y;Ua) € ay, the precedence relation
remains valid in the superlattice if X; Na' = X, otherwise

(Xj,Yj) < (X; Na',Y; Uea) < (X;,Y7)
as shown already by Lemma 2.5 above.

Proof A.4 (Lemma 3.2) If (X;,Y;),(X;,Y;) € Bk\,, (X;,Y;) < (X,Y)),
then the set X; Na' = X; N (X; Na') since X; C X; and similarly in Bg\,.

Proof: By Theorem 2.2, X; C X; implies X;Na' C X;Na’, whence X;Na’ =
X; N (X;Na') and dually for B g\,



Appendix B

Illustrative Execution

The programme runs on a data file, supplied by the user, containing strictly
increasing numbers separated by spaces on cach line, with all lines being in-
dependent of cach other. It is instructed, by calling options, to interpret line
numbers of the data file as either objects or attributes and line contents as the
proper incidence. Two test files with the object and with the attribute basis of

the context from Table 2.1 are used in the demonstration and listed below.

:26:26 more class.obj
3

2

245

7

1

1

1

5
7:26:37 more class.att
123

23

1
3
4
7

:26:41
The execution results for static and for dynamic or gradual building of the
lattice from the object basis, using respective options 0 or 2 at the end of the
programme call, or from the attribute basis with options 1 and 3 follow. The
different order of computing concepts with each building approach is visible in
the order of their display and the same applies also on updating their succes-

sors. Notice that, unlike in the text, attributes are assigned numbers exactly
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as objects and are distinguished by their position on the display of a concept,

where objects are on the left and attributes on the right.

7:27:40 java -cp run.jar Run class.obj 0
objectBasis
: 1,3
1,2
: 1,2,4,56
5

W N

infimum

null : 1,2,3,4,5
S1CCessors
3:1,2,4,5
1:1,3

supremum
1,2,3,4 : null
predecessors
1,2,3 : 1

3,4 :5

concept

3,4 : 5
successors
1,2,3,4 : null
predecessors
3:1,2,4,5

concept
3:1,2,4,5
successors

3,4 : 5

2,3 :1,2
predecessors
null : 1,2,3,4,5

concept

2,3 :1,2
successors
1,2,3 : 1
predecessors
3:1,2,4,5

concept
1,2,3: 1
successors
1,2,3,4 : null
predecessors
1:1,3

2,3 :1,2

concept

1:1,3
successors

1,2,3 : 1
predecessors
null : 1,2,3,4,5

7:28:34 java -cp run.jar Run class.obj 2

objectBasis
1:1,3
2:1,2
3:1,2,4,5
4 :5

concept
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3,4 :5
successors
1,2,3,4 : null
predecessors
3:1,2,4,5

supremum
1,2,3,4 : null
predecessors
3,4:5

1,2,3 : 1

concept
3:1,2,4,5
successors
3,4:5

2,3 :1,2
predecessors
null : 1,2,3,4,5

concept

2,3 :1,2
successors
1,2,3 : 1
predecessors
3:1,2,4,5

concept

1,2,3 : 1
successors
1,2,3,4 : null
predecessors
2,3 : 1,2
1:1,3

infimum

null : 1,2,3,4,5
successors
3:1,2,4,5
1:1,3

concept

1:1,3
successors

1,2,3 : 1
predecessors
null : 1,2,3,4,5

7:30:11 java -cp run.jar Run class.att 1
attributeBasis

:1,2,3

: 2,3

G WA=

1
: 3
4,5
supremum
1,2,3,4,5 : null
predecessors
4,5 : 5
1,2,3 : 1

concept

4,5 : b
successors
1,2,3,4,5 : null
predecessors
null : 1,2,3,4,5

29
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concept
3:1,2,4
SUCCessors

2,3 : 1,2
predecessors
null : 1,2,3,4,5

concept

1:1,3
Successors

1,2,3 : 1
predecessors
null : 1,2,3,4,5

infimum

null : 1,2,3,4,5
successors
1:1,3
3:1,2,4

4,5 : 5

concept

2,3 : 1,2
SucCcessors
1,2,3 : 1
predecessors
3:1,2,4

concept

1,2,3 : 1
successors
1,2,3,4,5 : null
predecessors
1:1,3

2,3 : 1,2

7:31:17 java —cp run.jar Run class.att 3
attributeBasis

:1,2,3

: 2,3

@b W N
S W

5

concept

4,5 : 5
successors
1,2,3,4,5 : null
predecessors
null : 1,2,3,4,5

supremum
1,2,3,4,5 : null
predecessors
4,5 : 6

1,2,3 : 1

concept
3:1,2,4
successors

2,3 : 1,2
predecessors
null : 1,2,3,4,5

concept
1:1,3
successors
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1,2,3 : 1
predecessors
null : 1,2,3,4,5

infimum

null : 1,2,3,4,5
successors

4,5

concept

2,3 :1,2
successors
1,2,3 : 1
predecessors
3:1,2,4

concept

1,2,3 : 1
successors
1,2,3,4,5 : null
predecessors
1:1,3

2,3 :1,2

7:32:11

The algorithms on Table 2.2 and Table 3.2 were tested on the machine
gle21.iro.umontreal.ca, which has a 400 MHz processor plus 128 MB system
mernory and operates on Linux kernel 2.4.18-27.7. The sct of test files comprised
randomly generated contexts with 5, 10, 15, 20 or 25 objects and attributcs.
The size of the average incidence o' or a’, as comparced to the size of G or
M respectively, was sct to 0.25, 0.5 and 0.75 for the tests. This ratio may
be considered context density as it indicates how much a representation of the
context like Table 2.1 is filled with + or not. A level of density is manually
chosen as command line option 1, 2 or 3, for the respective density levels above,
to the generator of random test files listed below.

11:02:53 more Ran.java
import java.io.=*;
import java.util.=;
public final class Ran {
private static BufferedWriter init (int g) {
try { return new BufferedWriter (new FileWriter ("" + g)); }
catch (IOException o) { returm null; }
}
private static void load (int n) {
BufferedWriter b[] = { init (1), init (2), init (3), init (4), init (5) };
StringBuffer s = new StringBuffer ();
Random r = new Random ();
for (int k = 1; k <= 5; k ++) {
for (int § = 1; j <=k = 5; j +) {
for (int i = 1; i <=k * 5; i ++)
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if (r.nextFloat () < n * 0.25) s.append ("" + i + " ");
try { s.setCharAt(s.length () - 1, ’\n’); }
catch (IndexOutOfBoundsException e) { ; }
}
try {
blk - 1]).write (s.toString ());
b{k - 1].flush Q;
s.setLength (0);
} catch (I0Exception u) { ; }
}
}
public static void main (String[] argv) {
try {
int m = Integer.parselnt (argv[0]);
if (m <1 || m > 3) throw new NumberFormatException ();
else load (m);
} catch (Exception x) {
System.out.println ("\nto user : use command line java Ran 1..3");
System.out.println ("options : 1 - averages demsity of 25/100");

System.out.println (" : 2 - averages demsity of 50/100");
System.out.println (" : 3 - averages density of 75/100");
System.out.println (*results : files named 1, 2, 3, 4, 5 with");
System.out.println (" : 5..25 basis units respectively");
System.out.println ("warning : overriting files i, 2, 3, 4, 5\n");
}

}

}

11:03:35

Transcript of the test session follows. The first command creates context
files with density 0.25, follows execution of the algorithm from Table 2.2 and,
after it, the one from Table 3.2 on contexts of increasing size. All is repeated
upon the creation of context files with density 0.5 and 0.75 too. Results are
summarised on Table 4.1 in the text.

:15:12 java Ran 1

:15:23 time java -cp run.jar Run 1 0 >> temp.out
.847u 0.078s 0:00.96 94.7}% 0+0k 0+0io 1725pf+0w
:15:34 time java -cp run.jar Run 1 2 >> temp.out
.847u 0.068s 0:00.96 93.7}% 0+0k 0+0io 1725pf+0w
:15:41 time java -cp run.jar Run 2 0 >> temp.out
.033u 0.072s 0:01.18 93.2% 0+0k 0+0io 1733pf+0w
¢15:52 time java -cp run.jar Run 2 2 >> temp.out

.990u 0.111s 0:01.14 96.4J 0+0k 0+0io 1733pf+0w
:15:58 time java -cp run.jar Run 3 0 >> temp.out
.335u 0.148s 0:01.53 96.0% 0+0k 0+0io 1735pf+0w

:16:09 time java -cp run.jar Run 3 2 >> temp.out
.306u 0.101s 0:01.45 96.5% 0+0k 0+0io 1735pf+0w
:16:16 time java -cp run.jar Run 4 O >> temp.out
.906u 0.203s 0:03.15 98.4% 0+0k 0+0io 1735pi+O0w
:16:29 time java -cp run.jar Run 4 2 >> temp.out
.466u 0.199s 0:02.69 98.5% 0+0k 0+0io 1735pf+0w
:16:39 time java -cp run.jar Run § 0 >> temp.out
.062u 0.369s 0:06.47 99.2) 0+0k 0+0io 1735pf+0w
:16:59 time java -cp run.jar Run 5 2 >> temp.out
.634u 0.336s 0:05.01 99.0% 0+0k 0+0io 1735pf+0w
17:10 java Ran 2

17:21 time java -cp run.jar Run 1 0 >> temp.out
847u 0.089s 0:00.97 94.8% 0+0k 0+0io 1725pf+0w
:17:31 time java -cp run.jar Run 1 2 >> temp.out
861u 0.076s 0:00.96 96.8% 0+0k 0+0io 1725pf+0w
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17:37 time java -cp
437u 0.126s 0:01.60
17:46 time java -cp
345u 0.128s 0:01.51
17:63 time java -cp
.810u 0.330s 0:06.18
:18:11 time java -cp
.933u 0.312s 0:04.29 98.8%
:18:22 time java -cp rum.jar
48.503u 1.431s 0:50.17 99.5%
8:19:23 time java -cp rum.jar
22.179u 1.250s 0:23.95 97.7%
8:19:56 time java -cp run.jar
304.970u 4.705s8 5:12.26 99.1%
8:25:18 time java -cp rum.jar
104.013u 2.773s 1:46.86 99.9%
:27:15 java Ran 3
:27:33 time java -cp
873u 0.074s 0:00.99
27:49 time java -cp
849u 0.082s 0:00.98
27:56 time java -cp
449u 0.109s 0:01.60
28:05 time java -cp
.363u 0.107s 0:01.52 96.0%
:28:14 time java -cp run.jar
17.082u 0.695s 0:17.83 99.67
8:28:39 time java -cp rum.jar
10.267u 0.599s 0:10.93 99.2Y%
8:28:56 time java -cp rum.jar

run.jar
96.8%
run. jar
96.6%
run.jar
99.3%
run.jar

0 00t - 00+

run. jar
94.9Y,
run.jar
93.8%
run. jar
96.2%
run. jar

00O mO D0

1761.218u 12.779s 29:41.55 99.

8:59:24
8:59:24 time java -cp run.jar

951.166u 6.984s 16:02.06 99.5%

9:15:55

The Java programme code, based on the structures introduced in the text
and used in a Java executable file named run.jar in the examples, is given in
next appendix. It displays all calling options in the case of inappropriate call,
or relevant information in the case of errors encountered. The algorithmic code

is split among the different classes but easily identifiable by the names used in

Table 2.2 and Table 3.2.

Run 2 0 >> temp.out
0+0k 0+0io 17365pf+0w
Run 2 2 >> temp.out
0+0k 0+0io 1735pf+0w
Run 3 0 >> temp.out
0+0k 0+0io 1735pf+0w
Run 3 2 >> temp.out
0+0k 0+0io 1735pf+0w
Run 4 0 >> temp.out
0+0k 0+0io 1735pf+0w
Run 4 2 >> temp.out
0+0k 0+0io 1735pf+0w
Run § 0 >> temp.out
0+0k 0+0io 1735pf+0w
Run 5 2 >> temp.out
0+0k 0+0io 1735pf+0w

Run 1 0 >> temp.out
0+0k 0+0io 1726pf+0w
Run 1 2 >> temp.out
0+0k 0+0io 1726pf+0w
Run 2 0 >> temp.out
0+0k 0+0io 1735pf+0w
Run 2 2 >> temp.out
0+0k 0+0io 1735pf+O0w
Run 3 O >> temp.out
0+0k 0+0io 1735pf+0w
Run 3 2 >> temp.out
0+0k 0+0io 1735pf+0w
Run 4 0 >> temp.out
5% 0+0k 0+0io 1735pf+0w

Run 4 2 >> temp.out
0+0k O+0io 1735pf+0w
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Java Source

import java.io.x*;
public final class Run {
private ObjectBase objectRead (double i, StreamTokenizer s) throws IOException {
ObjectBase temp = null;
temp = i == StreamTokenizer.TT_NUMBER ?
new ObjectBase (s.lineno (), null, intentRead (i, s)) : null;
if (temp != null) temp.next = objectRead (s.nextToken (), s);
else if (i != StreamTokenizer.TT_EOF) throw new I0Exception ();
return temp;
}
private AttributeBase attributeRead (double i, StreamTokenizer s) throws IOException {
AttributeBase temp = null;
temp = i == StreamTokenizer.TT_NUMBER ?
new AttributeBase (s.lineno (), null, extentRead (i, s)) : null;
if (temp != null) temp.next = attributeRead (s.nextToken (), s);
else if (i != StreamTokenizer.TT_EOF) throw new I0Exception ();
return temp;

}
private Extent extentRead (double i, StreamTokenizer s) throws IOException {
Extent temp = null;
if (i == StreamTokenizer.TT_NUMBER) {
double j = s.nval;
double k = s.nextToken ();
if (k == StreamTokenizer.TT_NUMBER &k s.nval <= j) throw new IDException ();
temp = new Extent ((int) j, extentRead (k, s));
} else if (i == StreamTokenizer.TT_WORD) throw new I0Exception ();
return temp;
}
private Intent intentRead (double i, StreamTokenizer s) throws IDException {
Intent temp = null;
if (i == StreamTokenizer.TT_NUMBER) {
double j = s.nval;
double k = s.nextToken ();
if (k == StreamTokenizer.TT_NUMBER &k s.nval <= j) throw new IDException ();
temp = new Intent ((int) j, intentRead (k, s));
} else if (i == StreamTokenizer.TT_WORD) throw new I0Exception ();
return temp;
}
private void load (String g, int i) {
StreamTokenizer s;
ObjectBase temp;
AttributeBase other;
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Lattice 1 = new Lattice ();
try {
8 = new StreamTokenizer (new BufferedReader (new FileReader (€)));
s.eollsSignificant (true);
f(i==0111i==2){
temp = objectRead (s.nextToken (), s);
System.out.println("objectBasis\n" + temp.show ());
if (i == 0) l.computelattice (temp);
else l.updateLattice (temp);
} else {
other = attributeRead (s.nextToken (), s);
System.out.println("attributeBasis\n" + other.show ());
if (i == 1) l.computeLattice (other);
else l.updateLattice (other);
}
if (1l.set.allConcepts != null) System.out.print (1l.set.allConcepts.show());
} catch (FileNotFoundException n) {
System.out.println ("\nerror! problem accessing the input file!\n");
} catch (IOException m) {
System.out.println ("\nerror! problem with input file provided!");
System.out.println ("insure increasing integers in each line!\n");
}
}
public static void main (String(] argv) {
Run r = new Run ();
try {
int i = Integer.parseInt (argv(1]);
if (argv(0] == null || i > 3 || i < 0) throw new NumberFormatException ();
else r.load (argv(0], i);
} catch (Exception n) {
System.out.println ("\nto user : java -cp run.jar Run file 0..3");
System.out.println (“"options : O - none of other oprions 1..3");

System.out.println (" 1 - attribute basis input file");
System.out.println (" 2 - gradually building lattice");
System.out.println (" 3 - both of other options 1..2");

System.out.println ("exemple : java -cp run.jar Run go.file 2");
System.out.println ("in file : every line increasing integers\n");
}

}

}

final class Lattice {
protected ObjectBase objectBasis;
protected AttributeBase attributeBasis;
protected Concept infimum, supremum;
protected Set set;
protected Lattice () { this.set = new Set (); }
protected void computelattice (ObjectBase b) {
Concept temp, down;
Intent up = b.side;
down = new Concept (null, null);
objectBasis = b;
try { objectBasis.computelattice (this, down, up); }
catch (NullPointerException n) { ; }
temp = set.intentFind (down.intent);
if (temp == null) {
temp = down;
set.add (temp);
}
infimum = temp;
supremum = set.intentFind (up);
try { set.linkableConcepts.computeSuccessors (this); }
catch (NullPointerException n) { ; }
set.allConcepts.reset ();
set.linkableConcepts = null;
}
protected void computelattice (AttributeBase b) {
Concept temp, up;
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Extent down = b.side;
up = new Concept (null, null);
attributeBasis = b;
try { attributeBasis.computelLattice (this, up, down); }
catch (NullPointerException n) { ; }
temp = set.extentFind (up.extent);
if (temp == null) {
temp = up;
set.add (temp);
}
supremum = temp;
infimum = set.extentFind (down);
try { set.linkableConcepts.computePredecessors (this); }
catch (NullPointerException n) { ; }
set.allConcepts.reset ();
set.linkableConcepts = null;
}
protected void updateLattice (ObjectBase b) {
objectBasis = b;
try { objectBasis.updateLattice (this); } catch (NullPointerException n) { ; }

protected void updateLattice (AttributeBase b) {
attributeBasis = b;
try { attributeBasis.updateLattice (this); } catch (NullPointerException n) { ; }

}

final class Set {
protected ObjectRoot oroot;
protected AttributeRoot aroot;
protected List allConcepts, linkableConcepts;
protected Set () {
this.oroot = new ObjectRoot (null);
this.aroot = new AttributeRoot (null);

}

protected void add (Concept ¢) {

allConcepts =
oroot.add (c.extent, aroot.add (c.intent, new List (c, allConcepts, null, null)));
if (allConcepts.next != null) allConcepts.next.previous = allConcepts;

linkableConcepts = new List (c, linkableConcepts, null, null);
c.extentLength = c.extent != null ? c.extent.length () : O;
c.intentLength = c.intent != null ? c.intent.length () : O;
}
protected Concept extentFind (Extent e) {
List temp = oroot.find (e);
return temp != null ? temp.concept : null;
}
protected Concept intentFind (Intent e) {
List temp = aroot.find (e);
return temp != null ? temp.concept : null;
}
protected void extentUpdate (Extent e, Concept c) {
int temp = e.length ();
if (temp > c.extentLength) {
(oroot.add (e, oroot.remove (c.extent))).concept.extent = e;
c.extentLength = temp;
}
}
protected void intentUpdate (Intent e, Concept ¢) {
int temp = e.length ();
if (temp > c.intentLength) {
(aroot.add (e, aroot.remove (c.intent))).concept.intent = e;
c.intentLength = temp;
}
}
}

final class List {
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protected Concept concept;

protected List next;

protected List previous;

protected List reciprocal;

protected List (Concept c, List n, List p, List r) {
this.concept = c;

this.next = n;

this.previous = p;

this.reciprocal = r;

}
protected String show () {
String n = "";
if (concept.predecessors == null || concept.successors == null) {
if (concept.successors == null) n = "supremum\n";
if (concept.predecessors == null) n = n + "infimum\n";
} else n = "concept\n";
return next != null ? n + concept.show () + concept.more () + next.show ()
n + concept.show () + concept.more ();
}
protected String more () {
return next != null ? concept.show ()} + next.more () : concept.show ();
}

protected void reset () {

concept.visited = false;

concept.modified = false;

concept.count = 0;

concept.resettableConcepts = null;

try { next.reset (); } catch (NullPointerException n) { ; }

protected void computeLattice (Extent e, Intent t, Lattice 1, Concept c)
throws NullPointerException {
Intent temp = t.intersect (concept.intent);
Extent other = e.unite (concept.extent);
Concept further = 1.set.intentFind (temp);
if (further != null) l.set.extentUpdate (other, further);
else l.set.add (new Concept (other, temp));
c.extent = further == concept ? c.extent : concept.extent != null ?
concept.extent.intersect (c.extent) : null;
next.computeLattice (e, t, 1, c);
}
protected void computelLattice (Intent e, Extent t, Lattice 1, Concept c)
throws NullPointerException {
Extent temp = t.intersect (concept.extent);
Intent other = e.unite (concept.intent);
Concept further = l.set.extentFind (temp);
if (further != null) l.set.intentUpdate (other, further);
else 1l.set.add (new Concept (temp, other));
c.intent = further == concept ? c.intent : concept.intent != null ?
concept.intent.intersect (c.intent) : null;
next.computeLattice (e, t, 1, c);
}
protected void computeSuccessors (Lattice 1) throws NullPointerException {
try { l.objectBasis.computeSuccessors (1, concept, concept.extent); }
catch (NullPointerException n) { ; }
concept.resettableConcepts =
new List (concept, concept.resettableConcepts, null, null);
concept.resettableConcepts.reset ();
next.computeSuccessors (1);
}
protected void computePredecessors (Lattice 1) throws NullPeinterException {
try { l.attributeBasis.computePredecessors (1, concept, concept.intent); }
catch (NullPointerException n) { ; }
concept.resettableConcepts =
new List (concept, concept.resettableConcepts, null, null);
concept.resettableConcepts.reset ();
next.computePredecessors (1);
}
protected void updateLattice (ObjectBase b, Lattice 1) throws NullPointerException {
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if (concept.visited != true) concept.updatelLattice (b, 1);
next.updateLattice (b, 1);

}

protected void updatelLattice (AttributeBase b, Lattice 1) throws NullPointerException {
if (concept.visited != true) concept.updatelattice (b, 1);
next.updatelattice (b, 1);

}

protected void objectClean (Concept c) throws NullPointerException {
if (concept.modified == true) c.removeUpper (this);
next.objectClean (c);

}

protected void attributeClean (Concept c) throws NullPointerException {
if (concept.modified == true) c.removeLower (this);
next.attributeClean (c);

}

}

final class Concept {
protected Extent extent;
protected Intent intent;
protected int extentLength, intentLength, count;
protected List successors, predecessors, resettableConcepts;
protected boolean visited, modified;
protected Concept (Extent e, Intent i) {
this.extent = e;
this.intent = i;
}
protected String show () {
String g, s;
g = extent !'= null ? extent.show () : "null";
s = intent != null ? intent.show () : "null";
return g+ no.oMgy g4 n\nn;
}
protected String more () {
String g, s;
g = successors != null ? “successors\n" + successors.more () : "";
s = predecessors != null ? "predecessors\n" + predecessors.more () : "";
return g + s + "\n";
}
protected void addUpper (Concept c) {
successors = new List (c, successors, null, null);
if (successors.next != null) successors.next.previous = successors;
c.predecessors = new List (this, c.predecessors, null, successors);
if (c.predecessors.next != null) c.predecessors.next.previous = c.predecessors;
successors.reciprocal = c.predecessors;
}
protected void addLower (Concept c) {
predecessors = new List (c, predecessors, null, null);
if (predecessors.next != null) predecessors.next.previous = predecessors;
c.successors = new List (this, c.successors, null, predecessors) ;
if (c.successors.next != null) c.successors.next.previous = c.successors;
predecessors.reciprocal = c.successors;
}
protected void removeUpper (List 1) {
if (1l.previous != null) l.previous.next = l.next;
else successors = l.next;
if (l.next != null) l.next.previous = l.previous;
if (1l.reciprocal.previous != null) l.reciprocal.previous.next = l.reciprocal.next;
else 1l.concept.predecessors = l.reciprocal.next;
if (1l.reciprocal.next != null) l.reciprocal.next.previous = l.reciprocal.previous;
}
protected void removeLower (List 1) {
if (l.previous != null) l.previous.next = l.next;
else predecessors = l.next;
if (l.pext != null) l.next.previous = l.previous;
if (l.reciprocal.previous != null) l.reciprocal.previous.next = l.reciprocal.next;
else 1l.concept.successors = l.reciprocal.next;
if (1l.reciprocal.next != null) l.reciprocal.next.previous = l.reciprocal.previous;
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}
protected void updateLattice (ObjectBase b, Lattice 1) {
visited = true;
try { successors.updateLattice (b, 1); } catch (NullPointerException n) { ; }
Intent temp = b.side.intersect (intent);
Extent other = (new Extent (b.object, null)).unite (extent);
Concept further = l.set.intentFind (temp);
if (further != null) {
if (further == this) {
1l.set.extentUpdate (other, this);
modified = true;
}
} else {
try { successors.objectClean (this); } catch (NullPointerException n) { ; }
further = new Concept (other, temp);
l.set.add (further);
if (successors == null) 1.supremum = further;
addUpper (further);

}
protected void updatelLattice (AttributeBase b, Lattice 1) {
visited = true;
try { predecessors.updatelLattice (b, 1); } catch (NullPointerException n) { ; }
Extent temp = b.side.intersect (extent);
Intent other = (new Intent (b.attribute, null)).unite (intent);
Concept further = 1l.set.extentFind (temp);
if (further != null) {
if (further == this) {
1.set.intentUpdate (other, this);
modified = true;
}
} else {
try { predecessors.attributeClean (this); } catch (NullPointerException n) { ; }
further = new Concept (temp, other);
1.set.add (further);
if (predecessors == null) l.infimum = further;
addLower (further);
}
}
}

abstract class LinkedStructure {
private LinkedStructure next;

}

final class Intent extends LinkedStructure {
protected int attribute;
protected Intent next;
protected Intent (int a, Intent n) {
this.attribute = a;
this.next = n;

}

protected String show () {

return next != null ? "" + attribute + "," + next.show () : "" + attribute;
}

protected int length () {
try { return next.length () + 1; } catch (NullPointerException n) { return 1; }

private Intent duplicate () {

try { return new Intent (attribute, next.duplicate ()); }

catch (NullPointerException n) { return new Intent (attribute, null); }
}
protected Intent intersect (Intent e) {

try {

return attribute == e.attribute ? new Intent (attribute, next.intersect (e.next))

attribute < e.attribute ? next.intersect (e) : intersect (e.next);
} catch (NullPointerException n) {
return e != null && attribute == e.attribute ? new Intent (attribute, null) : null;
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}
}
protected Intent substract (Intent e) {
try {
return attribute == e.attribute 7 next.substract (e.next) : attribute < e.attribute ?

new Intent (attribute, next.substract (e)) : substract (e.next);
} catch (NullPointerException n) {

return e == null ? duplicate () : attribute < e.attribute ?
new Intent (attribute, null) : null;
}
}
protected Intent unite (Intent e) {
try {
return attribute == e.attribute ? new Intent (attribute, next.unite (e.next))

attribute < e.attribute ? new Intent (attribute, next.unite (e))
new Intent (e.attribute, unite (e.next));
} catch (NullPointerException n) {
return e == null ? duplicate () : attribute < e.attribute ?
new Intent (attribute, e.duplicate ()) : e.next != null ?
new Intent (attribute, e.next.duplicate ()) : new Intent (attribute, null);
}
}
protected List addNext (AttributeRoot o, List 1) {
try {
if (o.next == null || attribute < o.next.attribute)
o.next = new AttributeTrie (attribute, null, o.next);
return attribute == o.next.attribute ? next.addNext (o.next, 1) : addSide (o.next, 1);
} catch (NullPointerException n) {
o.next.concept = 1;
return o.next.concept;
}
}
private List addSide (AttributeTrie o, List 1) {
try {
if (o.side == null || attribute < o.side.attribute)
o.side = new AttributeTrie (attribute, null, o.side);
return attribute == o.side.attribute ? next.addNext (o.side, 1) : addSide (o.side, 1);
} catch (NullPointerException n) {
o.side.concept = 1;
return o.side.concept;

}
}
protected List removeNext (AttributeRoot o) {
List temp;
try {
return o.next == null || attribute < o.next.attribute ? null :
attribute == o.next.attribute ? next.removeNext (o.next) : removeSide (o.next);

} catch (NullPointerException n) {

temp = o.next.concept;

o.next.concept = null;

return temp;

} finally { if (o.next.next == null && o.next.concept == null) o.next = o.next.side; }

private List removeSide (AttributeTrie o) {

List temp;
try {
return o.side == null || attribute < o.side.attribute ? null :
attribute == o.side.attribute ? next.removeNext (o.side) : removeSide (o.side);

} catch (NullPointerException n) {

temp = o.side.concept;

o.side.concept = null;

return temp;

} finally { if (o.side.next == null kk o.side.concept == null) o.side = o.side.side; }

protected List findNext (AttributeRoot o) {
try {
return o.next == null || attribute < o.next.attribute ? null :
attribute == o.next.attribute ? next.findNext (o.next) : findSide (o.next);

40



APPENDIX C. JAVA SOURCE

} catch (NullPointerException n) {

return o.next.concept == null ? null : o.next.concept;
}
}
private List findSide (AttributeTrie o) {
try {
return o.side == null || attribute < o.side.attribute ? null :
attribute == o.side.attribute ? next.findNext (o.side) : findSide (o.side);
} catch (NullPointerException n) {
return o.side.concept == null ? null : o.side.concept;
}
}

}

final class Extent extends LinkedStructure {
protected int object;
protected Extent next;
protected Extent (int o, Extent n) {
this.object = o;
this.next = n;

}

protected String show () {

return next != null ? "" + object + "," + nmext.show () : "" + object;
}

protected int length () {
try { return next.length () + 1; } catch (NullPointerException n) { return 1; }

private Extent duplicate () {
try { return new Extent (object, next.duplicate ()); }
catch (NullPointerException n) { return new Extent (object, null); }
}
protected Extent intersect (Extent e) {
try {
return object == e.object 7 new Extent (object, next.intersect (e.next))
object < e.object ? next.intersect (e) : intersect (e.next);
} catch (NullPointerException n) {

return e != null &k object == e.object 7 new Extent (object, null) : null;
}

}

protected Extent substract (Extent e) {

try {
return object == e.object ? next.substract (e.next) : object < e.object ?

new Extent (object, next.substract (e)) : substract (e.next);
} catch (NullPointerException n) {

return e == null ? duplicate () : object < e.object ? new Extent (object, null)
}
}
protected Extent unite (Extent e) {
try {
return object == e.object ? new Extent (object, next.unite (e.next)) :

object < e.object ? new Extent (object, next.unite (e))

nev Extent (e.object, unite (e.next));
} catch (NullPointerException n) {

return e == null ? duplicate () : object < e.object ?

new Extent (object, e.duplicate ()) : e.mext != null ?

new Extent (object, e.next.duplicate ()) : new Extent (object, mnull);
}
}
protected List addNext (ObjectRoot o, List 1) {
try {

if (o.next == null || object < o.next.object)

o.next = new ObjectTrie (object, null, o.next);

return object == o.next.object ? next.addNext (o.next, 1) : addSide (o.next, 1);
} catch (NullPointerException n) {

o.next.concept = 1;

return o.next.concept;
}
}

: null;
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private List addSide (DbjectTrie o, List 1) {

try {
if (o.side == null || object < o.side.object)
o.side = new ObjectTrie (object, null, o.side);

return object == o.side.object 7 next.addNext (o.side, 1) : addSide (o.side, 1);

} catch (NullPointerException n) {
o.side.concept = 1;
return o.side.concept;

}
}
protected List removeNext (ObjectRoot o) {
List temp;
try {
return o.next == null [{ object < o.next.object ? null : object ==

next.removeNext (o.next) : removeSide (o.next);
} catch (NullPointerException n) {
temp = o.next.concept;
o.next.concept = null;
return temp;

} finally {
if (o.next.next == null &% o.next.concept == null) o.next = o.next
}
}
private List removeSide (ObjectTrie o) {
List temp;
try {
return o.side == null || object < o.side.object ? null : object ==

next.removeNext (o.side) : removeSide (o.side);
} catch (NullPointerException n) {
temp = o.side.concept;
o.side.concept = null;
return temp;

o.next.object ?

.side;

o.side.object ?

.side;

o.next.object ?

} finally {
if (o.side.next == null && o.side.concept == null) o.side = o.side
3
}
protected List findNext (ObjectRoot o) {
try {
return o.next == null || object < o.next.object ? null : object ==
next.findNext (o.next) : findSide (o.next);
} catch (NullPointerException n) { return o.next.concept == null ? null :
o.next.concept; }
}
private List findSide (ObjectTrie o) {
try {
return o.side == null || object < o.side.object ? null : object ==

next.findNext (o.side) : findSide (o.side);
} catch (NullPointerException n) {
return o.side.concept == null ? null : o.side.concept;
}
}
}

final class AttributeBase extends LinkedStructure {
protected int attribute;
protected AttributeBase next;
protected Extent side;
protected AttributeBase (int o, AttributeBase n, Extent s) {
this.attribute = o;
this.next = n;
this.side = s;
}
protected String show () {

o.side.object ?

return next != null ? "" + attribute + " : " + side.show () + "\n" + next.show ()

“" 4 attribute + " : " + side.show () + "\n";
}
protected void computelattice (Lattice 1, Concept c, Extent e)
throws NullPointerException {
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Intent temp = new Intent (attribute, null);

Concept other = null;

c.extent = side.unite (c.extent);

c.intent = temp.unite (c.intent);

e = gide.intersect (e);

try { 1l.set.allConcepts.computelLattice (temp, side, 1, c); }

catch (NullPointerException x) { ; }

other = l.set.extentFind (side);

if (other == mull) {

1l.set.add (new Concept (side, temp));

c.intent = temp.intersect (c.intemt);

} else side = other.extent;

next.computeLattice (1, c, e);
3
protected void computePredecessors (Lattice 1, Concept ¢, Intent e) {
Concept temp;

if (e == null || attribute < e.attribute) {

temp = 1l.set.extentFind (side.intersect (c.extent));

c.resettableConcepts = new List (temp, c.resettableConcepts, null, null);

temp.count += 1;

if (temp.intentLength - temp.count == c.intentLength) c.addLower (temp);

next.computePredecessors (1, c, e);

} else next.computePredecessors (1, c, e.next);

}

protected void updateLattice (Lattice 1) throws NullPointerException {
Extent temp;

Concept further = null;

if (1.supremum != null) {

if (side.substract (1.supremum.extent) != null) {

temp = side.unite (1.supremum.extent);

if (1l.supremum.intent == null) l.set.extentUpdate (temp, 1.supremum);
else {

further = new Concept (temp, null);
further.addLover (1.supremum);
1.supremum = further;
1.set.add (further);
1l.set.linkableConcepts = null;
}
}
1.supremum.updatelLattice (this, 1);
try { 1.set.linkableConcepts.computePredecessors (1); }
catch (NullPointerException n) { ; }
1l.set.allConcepts.reset ();
1l.set.linkableConcepts = null;
} else {

l.set.add (new Concept (side, new Intent (attribute, null)));
1l.supremum = l.set.allConcepts.concept;
1l.infimum = 1.supremum;
1l.set.linkableConcepts = null;
}
next.updatelattice (1);
}

}

class AttributeRoot extends LinkedStructure {
protected AttributeTrie next;
protected List concept;
protected AttributeRoot (AttributeTrie n) {
this.next = n;
this.concept = null;

}

protected String show () {

String s = concept != null ? "null\n" : "*;
return next != null ? s + next.show ("") : s + "";
}

protected List add (Intent e, List 1) {
if (e == null) concept = 1;
return e != null ? e.addNext (this, 1) : concept;
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}

protected List remove (Intent e) {

List temp;

temp = e == null ? concept : e.removeNext (this);
if (e == null) concept = null;

return temp;

}

protected List find (Intent e) { return e == null ? concept : e.findNext (this); }

}

final class AttributeTrie extends AttributeRoot {
protected int attribute;
protected AttributeTrie side;
protected AttributeTrie (int a, AttributeTrie n, AttributeTrie s) {
super (n);
this.attribute = a;
this.side = s;
}
protected String show (String s) {
String t = s + attribute;

String g = concept == null ? "" : t + "\n";
return next != null &k side !'= null ? g + next.show (t + ",") + side.show (s)
next != null ? g + next.show (t + ",") : side != null ? g + side.show (s) : g;
}
}

final class ObjectBase extends LinkedStructure {
protected int object;
protected ObjectBase next;
protected Intent side;
protected ObjectBase (int o, ObjectBase n, Intent s) {
this.object = o;
this.next = n;
this.side = s;
}
protected String show () {
return next != null ? "" + object + " : " + side.show () + "\n" + next.show ()
"" 4+ object + " : " + side.show () + "\n"; }
protected void computelLattice (Lattice 1, Concept c, Intent e)
throws NullPointerException {
Extent temp = new Extent (object, null);
Concept other = null;
c.intent = side.unite (c.intent);
c.extent = temp.unite (c.extent);
e = side.intersect (e);
try { l.set.allConcepts.computeLattice (temp, side, 1, c); }
catch (NullPointerException x) { ; }
other = l.set.intentFind (side);
if (other == null) {
1l.set.add (new Concept (temp, side));
c.extent = temp.intersect (c.extent);
} else side = other.intent;
next.computeLattice (1, c, e);
}
protected void computeSuccessors (Lattice 1, Concept c, Extent e)
throws NullPointerException {
Concept temp;
if (e == null || object < e.object) {
temp = l.set.intentFind (side.intersect (c.intent));
c.resettableConcepts = new List (temp, c.resettableConcepts, null, null);
temp.count += 1;
if (temp.extentLength - temp.count == c.extentLength) c.addUpper (temp);
next.computeSuccessors (1, c, e);
} else next.computeSuccessors (1, c, e.next);
}
protected void updateLattice (Lattice 1) throws NullPointerException {
Intent temp;
Concept further;



APPENDIX C. JAVA SOURCE 45

if (L.infimum != null) {
if (side.substract (1l.infimum.intent) != null) {
temp = side.unite (l.infimum.intent);
if (1.infimum.extent == null) 1l.set.intentUpdate (temp, l.infimum);
else {
further = new Concept (null, temp);
further.addUpper (1.infimum);
l.infimum = further;
1l.set.add {(further);
1.set.linkableConcepts = null;
}
}
1l.infimum.updateLattice (this, 1);
try { l.set.linkableConcepts.computeSuccessors (1); }
catch (NullPointerException n) { ; }
1.set.allConcepts.reset ();
1.set.linkableConcepts = null;
} else {
.set.add (new Concept (new Extent (object, null), side));
.infimum = l.set.allConcepts.concept;
.supremum = l.infimum;
.set.linkableConcepts = null;

e

}

next.updateLattice (1);
}
}

class ObjectRoot extends LinkedStructure {
protected ObjectTrie next;
protected List concept;
protected ObjectRoot (ObjectTrie n) {
this.next = n;
this.concept = null;

}
protected String show () {

String s = concept != null ? "null\n" : ;
return next != null ? s + next.show ("") : s + "";
}

protected List add (Extent e, List 1) {
if (e == null) concept = 1;

return e != null ? e.addNext (this, 1) : concept;
}

protected List remove (Extent e) {

List temp;

temp = e == null ? concept : e.removeNext (this);

if (e == null) concept = null;
return temp;

}

protected List find (Extent e) { return e == null ? concept : e.findNext (this); }
}

final class ObjectTrie extends ObjectRoot {
protected int object;
protected ObjectTrie side;
protected ObjectTrie (int o, ObjectTrie n, ObjectTrie s) {
super (n);
this.object = o;
this.side = s;
}
protected String show (String s) {
String t = s + object;

String g = concept == null 7 "" : t + "\n";

return next !'= null && side != null ? g + next.show (t + ",") + side.show (s)
next != null ? g + next.show (t + ",") : side != null ? g + side.show (8) : g;

}

}



