
io3,

Université de Montréal

Weighted Finite-$tate Transducers in Speech Recognition:
A Compaction Algorithm for Non-Determinizable

Transducers

par

Shouwen Zhang

Département d’informatique et de recherche opérationnelle

Faculté des arts et des sciences

Mémoire présenté à la faculté des études supérieures
en vue de l’obtention du grade de

Maîtrise ès sciences (M.Sc.)
en informatique

Décembre, 2002

©$houwen Zhang, 2002

r

r

î —, J(J

n

Université
de Montréal

Direction des bibliothèques

AVIS

L’auteur a autorisé l’Université de Montréal à reproduire et diffuser, en totalité
ou en partie, par quelque moyen que ce soit et sur quelque support que ce
soit, et exclusivement à des fins non lucratives d’enseignement et de
recherche, des copies de ce mémoire ou de cette thèse.

L’auteur et les coauteurs le cas échéant conservent la propriété du droit
d’auteur et des droits moraux qui protègent ce document. Ni la thèse ou le
mémoire, ni des extraits substantiels de ce document, ne doivent être
imprimés ou autrement reproduits sans l’autorisation de l’auteur.

Afin de se conformer à la Loi canadienne sur la protection des
renseignements personnels, quelques formulaires secondaires, coordonnées
ou signatures intégrées au texte ont pu être enlevés de ce document. Bien
que cela ait pu affecter la pagination, il n’y a aucun contenu manquant.

NOTICE

The author of this thesis or dissertation has granted a nonexclusive license
allowing Université de Montréal to reproduce and publish the document, in
part or in whole, and in any format, solely for noncommercial educational and
research purposes.

The author and co-authors if applicable retain copyright ownership and moral
rights in this document. Neither the whole thesis or dissertation, nor
substantial extracts from it, may be printed or otherwise reproduced without
the author’s permission.

In compliance with the Canadian Privacy Act some supporting forms, contact
information or signatures may have been removed from the document. While
this may affect the document page count, it does not represent any loss of
content from the document.

Université de Montréal

Faculté des études supérieures

Ce mémoire intitulé:

Weighted Finite-State Transducers in Speech
Recognition: A Compaction Algorithm for Non

Determinizable Transducers

Présenté par:

Shouwen Zhang

A été évalué par un jury composé des personnes suivantes:

Langlais, Philippe
Président-rapporteur

Aïmeur, Esma
Directeur de recherche

Dumouchel, Pierre
Codirecteur

Poulin, Pierre
Membre du jury

Mémoire accepté le: 10 janvier 2003

Résumé

Ma thèse donne un aperçu de l’utilisation des transducteurs à états finis pondérés dans le

domaine de la reconnaissance de la parole. La théorie des transducteurs permet une

manipulation efficace des modèles de langage humain dans les systèmes de

reconnaissance de la parole en représentant, de façon générale et naturelle, les différentes

composantes du réseau de connaissances. Ce réseau est construit efficacement grâce aux

opérations générales qui permettent de combiner, d’optimiser et d’élaguer des

transducteurs. La plupart des opérations applicables aux transducteurs ainsi que leur

utilisation en reconnaissance de la parole sont décrites en détail. Ensuite, un algorithme

permettant de “ compacter “ les transducteurs non-déterminisables est développé et testé

sur plusieurs transducteurs, montrant ainsi son efficacité à diminuer leur taille.

Mots clés: transducteurs à états finis pondérés, reconnaissance de la parole, réseau de

connaissances, compactage, déterminisation

Abstract

My thesis surveys the weighted finite-state transducers (WF$Ts) approach to speech

recognition. WFSTs provide a powerful method for manipulating models of human

language in automatic speech recognition systems due to their common and natural

representations for each component of speech recognition network. General transducer

operations can combine, optimize, search and prune the recognition network efficiently.

The most important transducer operations and their applications in speech recognition are

described in detail. Then a transducer compaction algorithm for non-determinizable

transducers is developed and some test resuits show its effectivcness in reducing the size

ofthe transducers.

Keywords: weighted finite-state transducers, speech recognition, recognition network

compaction, determinization.

TABLE 0F CONTENTS .

LISI 0F FIGURES iv

1. Introduction 1

1.1 Continuous Speech Recognition 1

1.2 finite-State Transducers in Speech Recognition 2

1.3 Contribution 3

1.4 Thesis Organization 4

2. Introduction of Speech Recognition and the Finite-State Transducers 6

2.1 Speech Rcognition 6

2.1.1. Introduction 6

2.1.2. Generative Mode! for Speech Recognition 7

2.1.2.1. Acoustic Model $

2.1.2.2 Pronunciation Model 9

2.1.3 Language Model 9

2.1.4Decoding 10

2.2 finite-State Devices 11

2.2.1. finite-State Automata 13

2.2.1.1 Definitions 13

2.2.1.2. ClosureProperties 14

2.2.2. Mathematical Foundations for Finite-State Transducers 15

2.2.2.1. $emiring 15

2.2.2.2. Power Series 16

2.2.2.3. Weighted Transductions and Languages 17

2.2.3. finite-State Transducers 17

2.2.3.1. Definitions 17

2.2.4. Sequential Transducers 18

2.2.5. Subsequential and p-Subsequential Transducers 19

2.2.6. String-to-Weight Transducers/Weighted Acceptors 22

2.2.6.1 Weighted Finite-State Acceptors (WfSAs) 22

2.2.6.2. Sequential String-to-Weight Transducers/Weighted Acceptors 24

2.2.7. Weighted Transducers.25

2.2.7.1 General Weighted Transducers 25

2.2.7.2. Sequential Weighted Transducers 26

3. Weighted Acceptor and Iransducer Operations 28

3.1. Basic Operations 28

3.2. Composition 29

3.2.1. Theoretical Definition and Operation 29

3.2.2. Composition Algorithm 31

3.2.2.1 -free composition 31

3.2.2.2 General case composition 32

3.2.2.3 Complexity 35

3.3. Determinization 35

3.3.1. Determinization Algorithm for Power Series 36

3.3.2. Weighted Transducer Determinization Algorithm 40

3.3.2.1 Pseudocode and Description of WT_determinization Algorithm 41

3.3.2.2 A Proofofthe WT determinization Algorithm 49

3.3.2.3 Space and Complexity ofthe WT_determinization Algoritbm 50

3.4. Minimization 51

4. Weighted Finite-State Transducer Applications in Speech Recognition 53

4.1 Network Components 53

4.1.1. Transducer O 53

4.1.2 TransducerH 54

4.1.1. Transducer C 55

4.1.2 TransducerL 56

4.1.1. Transducer G 56

4.2 Network Combination 57

4.3. Network Standardization 59

4.3.1. Determinization 59

4.3.2. Minimization 61

5. The Compaction of Finite-State Transducers.63

5.1 Transducer Compaction 63

5.2 The Automata Determinization 63

5.2.1. The Automata Determinization Algorithm 64

5.2.2. The Complexity ofthe Automata Determinization Algorithm 65

5.3 Weight Pushing 66

5.3.1. Reweighting 66

5.3.2. Weight Pushing Pseudocode 69

5.4 The Automata Minimization 71

5.4.1. Partitioning 71

5.4.2. Applications of Partitioning Algorithm 72

5.4.3. The Automata Minimization Algorithrn 74

5.5 The Complexity ofTransducer Compaction 76

5.6 Transducer Compaction in Speech Recognition 77

6. The Experimental Tests of the Transducer Compaction Algorithm 7$

6.1 Test Components 78

6.2 Experimental Tests 79

6.2.1 AUPELf Task 79

6.2.2 Test and Resuit 79

7. Conclusion $2

7.1 Review ofthe Work $2

7.2 future Work 84

References $5

LIST 0F FIGURES

1.1 Speech Recognition Stages 1

2.1 HMM with 3 emitting states $

2.2 Recognition cascade 10

2.3 A finite-state automaton example 14

2.4 A 2-subsequential transducer example 19

2.5 A weighted finite-state acceptor 22

2.6 A weighted transducer example 26

3.1 Example of -free transducer composition 30

3.2 Pseudocode ofthe &-ftee composition 32

3.3 Transducers with g labels 33

3.4 Composition with marked g’s 33

3.5 Composition Output 33

3.6 Composition filter 34

3.7 Algorithm for the determinization ofa weighted acceptor T1 defined on the semfring

(R+ u {cc}, mm, +, cia, 0) 36

3.8 Algorithm for the determinization ofa weighted transducer T1 defined on the

semiring (u {co}, A, •, co, g) x (R+ u {cc}, mm, +, co, 0) 41

3.9 47

3.10 48

3.11 Weighted acceptor A 52

3.12 weighted acceptor A1 obtained by pushing from A in the tropical semiring 52

3.13 Weighted acceptorA2 obtained by minimizingAi 52

4.1 Weighted accepetor for acoustic observation 54

4.2 A HMM transducer for a context-dependent model phone b 54

4.3 Context-dependent triphone transducer 55

4.4 A word mode! as weighted transducer 56

4.5 A toy pronunciation lexicon as transducer L 56

4.6 A toy language mode! as weighted transducer 57

4.7 Context-dependent composition examp!es 5$

iv

5.1 The automata determinization algorithm.64

5.2 Weighted acceptorAi 67

5.3 Weighted acceptor A2 obtained bypushing from A1 in the tropical semiring 6$

5.4 Weighted acceptor A3 obtained bypushing from A1 in the 10g semiring 6$

5.5 Generic single-source shortest-distance algorithm 69

5.6 Partitioning algorithm 72

5.7 The automata minimization algorithm 74

5.8 The transducer minimization algorithm 75

V

Acknowledgement

I would like to express my hearty appreciation to my supervisor Esma Aïmeur for her

inspiring guidance toward a research work. Her encouragement and advice are the most

valuable experience in my career of study.

I am grateful to my co-supervisor Pierre Dumouchel for his kindness in supporting me to

get the opportunity to do my research work in CRIM and interesting me in the area of

speech recognition. His support also provided me with the opportunity of preparing my

future career.

I am also grateful to Gilles Boulianne, Patrick Cardinal and Jun Qiu for their comments

and help in doing my research in CRIM.

Special thanks are due to my wife Chunhong Liu for her love and unconditional support.

Chapter 1

Introduction

Continuous Speech Recognition (CSR) is sufficiently mature that a variety of real world

applications are now possible including large vocabulary transcription and interactive

spoken dialogue. Speech Recognition has been an active field of study since the

beginning of the 5OEs. Great progress has been made, especially since the 7Os, using

statisticaÏ modeling approaches with Hidden Markov Models (HMMs) and is nowadays

regarded as one ofthe promising technologies ofthe future.

1.1 Continuous Speech Recognition

Speech recognition systems generally assume that the speech signal is a realization of

some message encoded as a sequence of one or more symbols [42]. To recognize the

underlying symbol sequence given a spoken utterance, the continuous speech waveform

is first converted to a sequence of equally spaced discrete parameter vectors. These

speech vectors are then transduced into messages by several stages [42]. Each stage can

be represented as a component of speech recognition network. Figure 1.1 illustrates the

stages for CSR. The speech vectors are first transduced into phones, the minimal units of

speech sound in a language that cari serve to distinguish one word from another. The

phones are then transduced into syllables, the phonological units which are sometimes

thought to interpose between the phones and the word level. Afier that, words are formed

by concatenating the syllables and then the recognized sentences are composed with these

words.

Obser- Speech Phones $ylla- Words Senten
vation Vectors bles ces

Figure 1.1 Speech Recognition Stages

1

The statistical approach assumes that the CSR problem is a search problem which is to

find the “best” word sentences with the largest probability for a given an utterance.

Usually cross-word modeling is used between transduction stages for high-accuracy

recognition. In other words, each word can be expanded in a sequence of context

dependent HMM states, conditioned on the neighboring words. The recognized words are

then determined by the most probable state sequence.

However, currently the major concems of CSR are the time and space efficiency,

especially for Large Vocabulary Continuous Speech Recognition (LVCSR). Indeed, one

of the trends which clearly corne out of the new studies of LVCSR is a large increase in

the size of data. The effect of the size increase on time and space efficiency is probably

the main computational problem one needs to face in LVCSR.

1.2 Finite-State Transducers in Speech Recognition

In the previous section, we have introduced that the spoken utterances are recognized via

some transduction stages. Normally, a transduction stage in CSR is modeled by a finite

state device, which is a string-to-string (like the dictionary), string-to-weight (like the

language model), or string-to-string/weight transducer (like the hidden Markov models).

Each finite-state device in a transduction stage stands for a component of a recognition

network.

The application of finite-state transducers in natural language and speech processing is a

popular research area [6, 17, 18, 19, 25, 29J. This area is attracting a great deal of

attention in the research in Speech Recognition because each component of the

recognition network can be represented by transducers (for example, the hidden Markov

models) and then these representations can be flexibly and efficiently combined and

optimized by transducer operations. The use of finite-state transducers in speech

recognition is mainly motivated by considerations of time and space efficiency. Time

efficiency is usually achieved by using sequential/deterministic transducers. The output

of sequential transducers depends, in general linearly, only on the input size and can

therefore be considered as optimal from this point of view. Space efficiency is achieved

with transducer minimization algoritbms [20] for sequential transducers.

2

The important research topics on the finite-state transducers are their mathematically

well-defined operations that can generalize and efficiently implement the common

methods for combining and optimizing probabilistic models in speech processing.

furthermore, new optimization opportunities arise from viewing ail symbolic levels of

CSR modeling as weighted transducers [22, 29]. Thus, weighted finite-state transducers

define a common ftamework with shared algorithms for the representation and use of the

models in speech recognition.

The important finite-state transducer operations are composition, determinization, and

minimization. The composition can combine ail levels of the CSR network into a single

integrated network in a convenient, efficient, and general manner. The determinization

algorithms try to construct an equivalent sequential transducer of a weighted transducer.

Instead of the original non-sequential transducer, this sequential transducer dramatically

increases the searching speed in Speech Recognition process. The mnning time of

sequential transducers for specific input depends linearly only on the size of the input. In

most cases the determinization of transducer flot only increases time efficiency but also

space efficiency. The minimization can reduce the size of the CSR network and thus

increase the space efficiency.

1.3 Contribution

The main contribution of my research is the presentation of a transducer compaction

operation which can be applied on non-determinizable transducers to reduce the size of

the transducers. It is useful in CSR to increase time and space efficiency when the

recognition network is represented by weighted finite-state transducers. Moreover, the

implementation of the transducer compaction operation we have done in Centre de

Recherche Informatique de Montréal (CRIM) will be part of the tools for the speech

recognizer of CRIM.

3

1.4 Thesis Organization

The purpose ofthis thesis is to survey the weighted transducers in speech recognition and

then present a transducer compaction algorithm which can be applied on non

determinizable transducers to reduce their size.

First, in Chapter 2, we give a review on statistical speech recognition and finite-state

devices. We describe the CSR problem as a decoding problem to find the word sentences

with the largest probability. The decoding is done with appropriate search strategy on the

recognition network formed by its components which are an acoustic model, a context

dependency phone mode!, a pronunciation !exiconldictionary and a language mode! in

cascade. Then, we give an extended description of some finite-state devices, these are

automata, string-to-string transducers, weighted acceptors, and weighted transducers. We

first describe the definitions and properties of automata. Next we consider the case of

string-to-string transducers. These transducers have been successful!y used in the

representation of large-scale dictionaries. We describe the theoretica! bases for the use of

these transducers. In particular, we recali ciassical theorems and give new ones

characterizing these transducers. We then consider the case of sequentiai weighted

acceptors and weighted transducers. These transducers appear very interesting in speech

recognition. Language models are represented by weighted acceptors and HMMs are

represented by weighted transducers. We give new theorems extending the

characterizations known for usua! transducers to these transducers. We a!so characterize

the unambiguous transducers admitting determinization.

In Chapter 3, we describe some transducer operations. We briefly describe some basic

transducer operations such as union, concatenation, Kleene closure, projection, best path,

N-best path, pruning, topologica! sort, reversai, E-removal, and inversion. Then we give

a detai!ed description of composition, determinization, and minimization. We first

formally define the composition operation. We also describe the composition a!goritbm

for E-free transducers, then its extension for generai case composition is given.

Composition operation can constnict complex transducers from simpler ones and

combine different levels of representation in speech recognition. furthermore we define

4

an aÏgorithm for determinizing weighted acceptors, then its extension for determinizing

weighted transducers is given, and its correctness is proved. We also briefly describe the

minimization of sequential transducers which has a compÏexity equivalent to that of

classical automata minimization.

In Chapter 4, we discuss the application of transducers in speech recognition. Each

component of a recognition network can be represented by transducers. Then the

transducers in network cascade are combined using the composition operation. Finally

the network is optimized via determinization and minimization during composition.

In Chapter 5, we present a transducer compaction algorithm. It can apply on non

determinizable transducers to reduce their size. This operation includes five steps:

weight pushing, encoding, determinization, minimization, and decoding. We first give the

automata determinization algorithm and then the weight pushing algorithm. The automata

determinization algorithm is the classical powerset construction algorithm which can

transform any non-deterministic finite automaton (NFA) into an equivalent deterministic

finite automaton (DfA). The weight pushing algorithm, which is similar to a generic

single source shortest distance algorithm, is to push the weight towards the initial state as

mucli as possible. Then we give the classical automata minimization algorithm which can

minimize the size of the automata. The transducer compaction operation is just a

combination of these algorithms in appropriate order. At last we describe the applications

of the transducer compaction operation in speech recognition.

In Chapter 6, we describe the experimental tests of the transducer compaction algorithm.

We test it on some transducers we have in CRIM for building a speech recognizer. Test

resuhs show that the transducer compaction operation increases time and space

efficiency.

In Chapter 7, we summarize the whole research work with conclusions.

5

Chapter 2

Fundamentals of Continuous Speech Recognition and Finite

State Transducers

This chapter gives a brief overview of the principles and architecture of modem CSR

systems, and describes some finite-state devices such as automata, string-to-string

transducers, weighted acceptors, and weighted transducers, in terms of their definitions

and properties.

2.1 Continuous Speech Recognition

A major breakthrough in speech recognition technology was made in the 1970’s when

Jelinek and his colleagues from IBM developed the basic methods of appÏying the

principles of statistical pattem recognition to the problem of speech recognition [8].

Systems based on this statistical framework proved to be superior to the former template

and mie based systems.

2.1.1 Framework

The statistical formulation of the CSR problem assumes that a speech signal can be

represented by a sequence of acoustic vectors O = 0102... Or which are equaiiy spaced

discrete parameter vectors, and the task of a speech recognizer is to find the most

probable utterance (sequence of words) W = w1w2... WK for the given acoustic vectors O.

This sequence of acoustic vectors is assumed to form an exact representation of the

speech waveform on the basis that for the duration covered by a single vector (around 10

ms) the speech waveform can be reasonably regarded as being quasi-stationary. The

specific form of the acoustic vectors is chosen so as to minimize the information lost in

the encoding and to provide the best match with the distributional assumptions made by

the subsequent acoustic modeiing. The C$R problem is then cast as a decoding problem

in which we seek the word sequence W satisfying:

J’fr=argmax F(WIO) (2.1)
w

6

Using Bayes’ formula,

= argmaxP(O I W)P(W) (2.2)
w

(wi o) denotes the probability that the words W were spoken, given that the evidence O

was observed.

(w) denotes the probability that the word string Wwill be uffered.

P(o I w) denotes the probability that when the speaker says W the acoustic O will be

observed.

Here (oiw) is determined by generative model and (w) is determined by a language

model. Most of current research represents (o / w) as an acoustic model. Here we

separate pronunciation model from acoustic mode! in the generative mode! for better

representation which we will explain later. The CSR problem is thus reduced to designing

and estimating appropriate generative and language models, and finding an acceptable

decoding strategy for determining I’.

2.1.2 Generative Model for Speech Recognition

Since the vocabulary of possible words might be very large, the words in W are

decomposed into a sequence of basic sounds called base phone Q of which there will be

around 45 distinct types in Eng!ish [37). To allow for the possibility of multiple

pronunciations, the likelihood P(OI W) can be computed over multiple pronunciations.

P(OIW) = P(OIQ)F(QIW) (2.3)
Q

Where

P(QIW)
= fl1 P(Q,jw) (2.4)

And where P(Qklwk) is the probabi!ity that word wk is pronounced by the base phone

sequence Qk = q/’ In practice, there wi!! only be a very small number of possible

Qk for each Wk making the summation in equation 2.3 easi!y tractable.

Here P(OIQ) is determined by an acoustic model and P(QIW) is determined by

pronunciation mode!.

The generative model, P(OI W), is typically decomposed into conditionally-independent

mappings between levels:

7

• Acoustic model P(O(Q): mapping from phone sequences to observation

sequences.

• Pronunciation model P(QI W): mapping from word sequences to phone sequences.

2.1.2.1 Acoustic ModeÏ

When the Context-dependent (CD) phone mode! is used, the computation of F(OI Q) can

be decomposed as:

P(OIQ) P(OIM)P(MÏQ) (2.5)

Where Mrepresents the CD phone sequences.

P(OIM) is determined by HMMs when CD phone mode! is considered. Whereas for

Context-Independent (CI) phone model, P(OIQ) can sufficient!y be determined by

HMMs.

j. Hidden Markov Modets (HMMs)

Each base phone q is represented by a continuous density hidden Markov mode! (HMM)

of the form il!ustrated in Figure 2.1 with transition parameters {a} and output

observation distributions {bQ}. The latter are typical!y Gaussian and since the

dimensionality of the acoustic vectors ot is relative!y high, the covariances are

constrained to be diagonal.

Markov
model

Acoustic
Vector

Sequence

O Oj 002

Figure 2.1 HMM with 3 emitting states

003 004 0

8

Given the composite HMM M fonned by concatenating ail of the constituent CD mode!

phones the acoustic likelihood is given by

P(OjM) = P(X,OIM) (2.6)

where X =x(O) . . . x(T) is the state sequence through the composite model and

i’(X Okf) = ax(o),x(1) fl,j bx(t)(Ot) aX(,(l+]) (2.7)

The acoustic mode! parameters {a} and {b3Q} can be efficiently estimated from a corpus

of training utterances using Expectation-Maximization (EM) which includes a E-step and

a M-step [9]. for each utterance, the sequence of baseforms is found and the

corresponding composite HMM constructed. A forward-backward alignment is then used

to compute state occupation probabilities (the E-step), the means and variances are then

maximized via simple weighted averages (the M-step) [9]. Note that in practice the

majority of the mode! parameters are used to model the output distributions and the the

transition parameters have littie effect on either the iikelihood or the recognition

accuracy.

ii. Context-dependent (CD) Phone ModeÏs

P(MÏQ) are determined by a CD phone mode!. P(M1Q) maps the CD mode! sequences to

phone sequences.

In CD phone mode!s each phone is assumed to be able to expand in a sequence of HMM

states conditioned on the neighboring phones, usua!!y a triphonic mode! is used, in which

a phone is determined by considering the previous and the following phones. The CD

phone mode!s are very usefiil in high-accuracy speech recognition.

2.1.2.2 Pronunciation Model

P(QI W) is determined by a pronunciation model which maps the phonemic transcriptions

to word sequences. The pronunciation mode! is usually called Lexicon or pronunciation

dictionary.

2.1.3 Language Model

The probability ofa word sequence W= wjw2...wK is

9

P(J’J9
= r:1 F(wkI Wk1, Wk2, ..., wI) (2.8)

for large vocabulary recognition, the conditioning word history in equation 2.7 is usually

truncated to n-] words to form an N-Gram language model

P(J19
= fI1 P(wkl Wk4, Wk2, ..., Wk+1) (2.9)

Where n is typically 2 or 3 and neyer more than 4. The n-gram probabilities are estimated

from training texts by counting n-gram occurrences to form Maximum-Likelihood

parameter estimates. The major difficulty of this method is data sparsity which is

overcome by a combination of discounting and backing-off [38].

2.1.4 Decoding

A modem speech recognition system thus consists of two stochastic knowiedge sources,

namely the acoustic model and the language model, a lexicon (which in fact may also be

a stochastic model), and a phonetic context-dependent network (in case of cross-word

modeling) in the search stage [27]. These components are illustrated as a recognition

cascade in figure 2.2.

o____ H

C

L

observations Context-dependent phones word Word
phones sequence

figure 2.2 Recognition cascade

In Figure 2.2, H is the union of ail HMMs used in an acoustic modeling which maps

sequences of distribution indices to context-dependent phones. C is a phonetic context

dependent model which maps context-dependent phones to phones for cross-word

modeiing. L is a pronunciation dictionary or lexicon which maps phonemic transcriptions

to word. G is a language model, usualiy a 3-gram language model is used.

Once the whole speech recognition network is built, Viterbi decoding [42] is usually used

to compute the most likely state sequence for an unknown input ullerance. Trace back

through this sequence then yields the most likely phone and word sequences.

10

Decoding is a very complex search problem for LVCSR, especially when context

dependent phone mode! and n-gram language model are used. A standard scheme for

reducing search costs uses multiple passes over the data. The output of each pass is a

lattice of word sequence hypotheses rather than the single best sequence. This allows the

output of one recognition pass to constrain the search in the next pass. An initial pass can

use simple models when the search space is large and later passes can use more refined

models when the search space is reduced.

However, the weighted transducer approach makes the decoding become easy and fast

without resorting to complex schemes. This will be described in detail in the following

chapters.

2.2 finite-State Devices

finite-state devices, such as finite-state automata, graphs, and finite-state transducers

have been known since the emergence of Computer Science and are extensively used in

areas such as program compilation, hardware modeling, and database management.

Although finite-state devices have been known for a long time, more powerful

formalisms such as context-free grammars or unification grammars have been preferred

in computational linguistics. However, the richness of the theory of finite-state

technology and the mathematical and algorithmic advances resulted in the recent study in

the field of finite-state technology have had a great impact on the representation of

electronic dictionaries, natural language, and speech processing. As a resuit, significant

developments have been made in many related research areas [7, 1$, 26, 29, 34].

Some of the most interesting applications of finite-state machines are concerned with

computational linguistics [4, 21, 22, 24, 25]. We can describe these applications from two

different views. Linguistically, finite automata are convenient since they allow us to

describe easily most of the relevant local phenomena encountered in the empirical study

of language by compact representations [5]. Parsing context-free grammars can also be

deait with using finite-state machines, the underlying mechanisms in most of the methods

used in parsing are related to automata [6]. from the computational point of view, the use

of finite-state machines is mainly motivated by considerations of time and space

11

efficiency. Actually, the effect of the size increase on time and space efficiency is the

main computational problem flot only in language and speech processing but also in

modem computer science. In language and speech processing, time efficiency is achieved

by using deterministic (or sequential) automata. In general, the running time of

deterministic finite-state machines for specific input depends linearly only on the size of

the input. Space efficiency is achieved with classical minimization algorithms for

deterministic automata. Applications such as compiler construction have shown

deterministic finite automata to be very efficient [161.

In speech recognition the Weighted Finite-State Transducer (WFST) approach has been

considerably studied recently [17, 18, 19, 21, 22, 25, 26, 28, 29]. WfSTs provide a

powerfiil method for manipulating models of human language in automatic speech

recognition systems due to their common and natural representations for HMM models,

context-dependency, pronunciation dictionaries, grammars, and alternative recognition

outputs. Moreover, these representations can be combined by general transducer

operations flexibly and efficiently [17, 2$]. An efficient recognition network including

context-dependent and HMM models can be built using weighted determinization of

transducers [18, 22]. The two most important transducer operations, weighted

determinization and minimization aÏgorithms, can optimize time and space efficiency.

The weights along the paths of a weighted transducer can be distributed optimally by

applying a pushing algorithm.

Sequential finite-state transducers are very important devices in natural language and

speech processing [18, 19, 20]. Sequential finite-state transducers, simply sequential

transducers are also called deterministic transducers. This concept is an extension from

deterministic automata to transducers with deterministic inputs. That is a machine which

outputs a string or/and weights in addition to accepting (deterministic) inputs.

Hereafier a detailed description of the related finite-state devices used for language

processing and speech recognition is given. As basic concepts, we first give an

introduction on the definitions and properties of finite-state automata and finite-state

12

transducers. Then we consider the case of string-to-string transducers, which have been

successfully used in the representation of large-scale dictionaries, computational

morphology, and local grammars and syntax. Considered next are sequential string-to

weight transducers or so called deterministic weighted acceptors. These transducers are

very useful in speech processing. Language models, phoneme lattices, and word laffices

are among the obj ects that can be represented by these transducers.

2.2.1 Finite-State Automata

finite-State Automata (FSA) can be seen as defining a class of graphs and also as

defining languages. The following is a simple description on the definitions of fSA and

some closure properties. Other information, such as deterministic F$A (sequential F$A),

decidability properties, and space and time efficiency discussion are available from

references [4, 31, 35, 36].

2.2.1.1 Definitions

FSA:

A finite-state automaton A is a 5-tuple (, Q, 1 F, E’), where:

• is a finite set called the alphabet

• Q is a finite set of states

• I c Q is the set of initial states

• F c Q is the set of final states

• EQx(u {E})xQisthesetofedges.

By this definition fSA can be seen as a class of graphs.

figure 2.3 is a finite-state automaton example. It represents a typical left-to-right, three

distribution-HMM structure for one phone, with the labels along a complete path

specifying legal sequences of acoustic distributions for that phone.

13

Figure 2.3 A finite-state automaton example

Extended set of edges:

The set of strings built on an alphabet is also caiied the free monoid . The formai

definition of the star * operation can be found in reference [28J. The extended set of

edges E Q x x Q is the smallest set such that

(i) Vq e Q, (q, 6, q) e E

(ii) Vw e and Va e u {}, if(qi, w, q) e E and (q, a, q3) e E then (qi,

w.a, q3) e E, where . stands for concatenation.

Extended transition function:

The transition function d of a FSA is a mapping from Q x (u {E}) to 2, and satisfies

d(q’, a) = {q e Qj(q’, a, q) e E}. The extended transition function d, mapping from Q x

onto 2, is that function such that

(i) Vq e Q, d(q, 6) = {q}

(ii) Vw e and Va e u {}, d(q, w.a) = LJq,E d(q, w) d(qj, a)

Now, a ianguage L(A) can be defined on finite-state automaton A:

L(A){w e *,jeJId(j,w)nFØ}

A ianguage is said to be regular or recognizable if it can be defined by an FSA.

2.2.1.2 Closure Properties

The set ofrecognizable ianguage is closed under the following operations:

(1) Union. If A1 and A2 are two FSAs, it is possible to compute an F$A A1 u A2

such that LA1 u A2) = LÇ41) u LtA2).

14

(2) Concatenation. If A1 and A2 are two fSAs, it is possible to compute an FSA

A,.A2 such that L(A,.A2) = L(A,).L(A7).

(3) Intersection. If A, = (, Q,, 1,, F,, E,) and A2 (, Q., £7, F2, E2) are two

fSAs, it is possible to compute an fSA denoted A, n A2 such that L(A, n A2)

= L(A,) n L(A2). Such an automaton can be constructed as follows:

A, n A2 = (, Q] X Q2, (1,, 12), F, X F2, E) with

E = L](qj,a,rj)€Ej, (q2,a,r2)EE2 {((q,,q2),a,(r,,r7))}.

(4) Complementation. If A is an FSA, it is possible to compute an fSA —A such

that L(-A) =
- L(A).

(5) Kleene Star. If A is an FSA, it is possible to compute an fSA A* such that

L(A*) = L(A)*.

2.2.2 Mathematical Foundations for Finite-State Transducers

Before introducing the finite-state transducers we have to give a description about their

mathematical foundations. In this section the mathematical foundations such as semiring,

power series, weighted transductions, and languages are described in detail.

2.2.2.] Semiring

The semiring abstraction permits the definition of automata representations and

algorithms over a broad class of weight sets and algebraic operations [31]. A semiring (K

, ®, 0, 1) is a ring that may lack negation. It consists of a set K equiped with an

associative and commutative operation , called collection, and an associative operation

0, called extension, with identities O and 1, respectively, such that 0 distributes over

and 0 0 a = a O 0=0. In other words, a semiring is similar to the more familiar ring

algebraic structure (such as the ring of polynomial over the reals), except that the additive

operation may flot have an inverse. for example, (N, +, , 0, 1) is a semiring, where O

and 1 are respectively the identity element for + and operations with + for collection and

for extension.

15

The weights used in speech recognition oflen represent probabilities. The appropriate

semiring to use is then the probability semiring (R, +, , 0, 1). However, impiementations

ofien replace probabilities with (negative) log probabilities for numerical stability. The

appropriate semiring to use is then the image by -log ofthe semiring (R, +, , 0, 1) and is

called the log semiring.

An important example in speech recognition is the min-sum semiring or tropical

semiring, (R+ u {co}, mm, +, co, 0) with min for collection and + for extension. Another

semiring (* u {cc}, A, •, cc,) , called string semiring, is also ofien used in speech

recognition, where , aiso cailed a free monoid, defines a set of strings built on an

alphabet , A longest common prefix operation, and • concatenation operation, cc a new

e1ementsuchthatforanystringwE(* u{co})(wAcc=ccAw=wandw.co=co.w

= co). The cross product oftwo semirings defines a new semiring.

Some definitions and caiculations invoive collecting over potentially infinite sets, for

instance the set of strings of a language. Cleariy, collecting over an infinite set is aiways

well-defined for idempotent semirings such as the min-sum semiring, in which a + a = a

Va e K More generally, a closed semiring is one in which collecting over infinite sets is

well-defined.

2.2.2.2 Power $eries

A formai power series S: x i— ($,x) is a function from monoid to a semiring (K e,

®, Ô, 1). Rationai power series are those formai power series that can be built by rational

operations (concatenation, sum, and Kleen closure) from the singleton power series given

by ($,x) = k, ($,y) = Ô if xy for x E, kEK The rationai power series are exactly those

formal power series that can be represented by weighted acceptors which we wili discuss

later in this chapter. A formai power series $ is rationai iff it is realizabie by a weighted

acceptor (recognizable) [9].

16

2.2.2.3 Weighted Transductions and Languages

A weighted transduction T is a mapping T: Ix T— K where E’ and T are the sets of

strings over the alphabets and f, and K is an appropriate weight structure; for

instance the real numbers between O and 1 in the case ofprobabilities.

A weighted Ïanguage L is a language satisfying the mapping L: 2— K. Each

transduction S: x I* K has two associated weighted languages, its flrst and second

projections ri(8): E— K and n(S): T—* K, defined by

,r (S) (s) = r S(s, t)

r,(S)(t) = t)

2.2.3 Finite-State Transducers

Finite-state Transducer (FST), also called string-to-string transducer, is an extension

from FSA. Each arc in FST is labeled by a pair of symbols rather than by a single

symbol. A string-to-string transducer is defined on a string semiring.

2.2.3.1 Definitions

FST:

A finite-State transducer is a 6-tuple (E1, E2, Q, i, F, E),

where:

• E1 is the input alphabet among a finite set

• E2 is the output alphabet among a finite set

• Q is a finite set of states

• i e Q is the initial state

• F ci Q is the set of final states

• E Q x Ei* x E2* x Q is the set ofedges

Path:

If an FST T = (E1, E2, Q, I, F, E), a path of T is a sequence ((p1,a1,b,q1)),=i, of edges E

such that q =pi+j for i = 1 to n-1. Where, (p1,a1,b1,q1) is an edge, q is a state which can be

reached ftom state p’ with an input alphabet a and an output alphabet b.

17

Successful path:

Given an F$T T= (ri, 2, Q, I, F, E), a successful path ((pj,aj,bj,q))1=i, of Tis a path of T

such thatpi = i and qn E F.

These definitions only are part of important definitions on Finite-state transducers and

will be frequently used in the following sections. Other definitions and closure properties

(for example Union, Inversion, Letter transducer including E-free transducer and

Composition) on FSTs can be found from the literature [12, 26].

2.2.4 Sequential Iransducers

Sequentiai transducers are the most useful transducers used in natural language and

speech processing. Many works have been done on this topic [1$, 19, 20, 21, 22].

In language and speech processing, sequential transducers are defined as transducers with

a deterministic input (string or just a symbol). At any state of such transducers, at most

one outgoing arc is labeled with a given element of the alphabet. This means the input is

distinct. The output label might be a string (or a single symbol), inciuding the empty

string . 0f course, the output of a sequential transducer is flot necessarily deterministic.

The formai definition of a sequential string-to-string transducer is as foliows:

A sequential transducer is a 7-tupie (Q, 1, F , A, o), where:

• Q is the set of states

• f E Q is the initial state

• F E Q, the set of final states

• and A, finite sets corresponding respectively to the input and output

alphabets of the transducer

• c5 the state transition function which maps Q x to Q
• u, the output function which maps Q x to A*

6 and u are partial functions (a state q E Q does not necessarily admit outgoing

transitions labeled on the input side with ail elements of the alphabet). These functions

can be extended to mappings from Q x by the following classical recurrence relations:

VseQ,Vwe*,Vae, 6(s,E)=s,6(s,wa)=6(6(s,w),a);

u(s,) = u(s, wa) = u(s, w) u(6(s, w), a).

18

Thus, a string w E is accepted by T iff t5(i, w) E f, and in that case the output of the

transducer is u(i, w).

2.2.5 Subsequential and p-Subsequential Transducers

Subsequential transducers are an extension of sequential transducers. By introducing the

possibility of generating an additional output string at the final states the application of

the transducer to a string can then possibly finish with the concatenation of such an

additional output string to the usual output. Such extended sequential transducers with an

additional output string at final states are called subsequential transducers.

Language processing ofien requires a more general extension. Indeed, the ambiguities

encountered in language (for example ambiguity of grammars, ambiguity of

morphological analyzers, or ambiguity of pronunciation dictionaries) can flot be handled

by sequential or subsequential transducers because these devices only have a single

output to a given input. Since we can not find any reasonable case in language in which

the number of ambiguities would be infinite, we can efficiently introduce p-subsequential

transducers, namely transducers provided with at mostp final output strings at each final

state to deal with linguistic ambiguities. However, the number of ambiguities could be

very large in some cases. Notice that 1-subsequential transducers are exactly the

subsequential transducers. figure 2.4 shows an example of a 2-subsequential transducer.

A very important concept here is the sequential/p-subsequential function. Similarly, we

define sequential/p-subsequential functions to be those functions that can be represented

by sequential/p-subsequential transducers. The following theorems give a brief

introduction on the characterizations and properties of subsequential and p-subsequential

flrnctions (of course, also that of sequential and p-subsequential transducers). Here, the

a.a

figure 2.4 A 2-subsequential transducer example

19

expression p-subsequential means two things, the first is that a finite number of

ambiguities is admitted, the second indicates that this number equals exactlyp.

Theorem 2.2.5.1 (composition):

Let f: * —> * be a sequential/p-subsequential and g : A’ Q* be a sequential/q

subsequentiai function, then g ofis sequential/pq-subsequentiai.

The details about transducer composition are described in Chapter 3.

Theorem 2.2.5.2 (union):

Let f: Z’ > z* be a sequential/p-subsequential and g : Ç* be a sequential /q

subsequential function, then g +fis 2-subsequentia1/v + q)-subsequential.

The linear complexity of their use makes sequential and p-subsequential transducers both

mathematicaily and computationally of particular interest. However, flot ail transducers,

even when they realize functions (rational ffinctions), admit an equivaient sequential or

subsequentiai transducer. More generally, sequential functions can be characterized

among rationai functions by the following theorem.

Theorem 2.2.5.3 (characterization of seguential function):

Letfbe a rational function mapping to A*. fis sequentiai iff there exists a positive

integer K such that:

Vu e , Va e , w e A, Iwi K:f(’ua,) =f(u)w

That is, for any string u and any element a,J(ua) is equal toj(u) concatenated with some

bounded string, Notice that this implies that J(u) is aiways a prefix ofj(ua), and more

generally that iffis sequential then it preserves prefixes.

The fact that flot ail rational functions are sequentiai could reduce the interest of

sequential transducers. The following theorem shows however that transducers are

exactiy compositions of lefi and right sequential transducers.

Theorem 2.2.5.4 (composition of left and riht seguential transducers):

Letfbe a partial fiinction mapping ‘ to A*. fis rationai iff there exists a lefi sequentiai

function t: —+ and a right sequential function r: > such thatf= r o Ï.

20

Lefi sequentiai fiinctions or transducers are those we previously defined. Their

application to a string proceeds from left to right. Right sequential fiinctions apply to

strings from right to lefi. According to the theorem, considering a new sufficiently large

alphabet Q allows one to define two sequential functions 1 and r decomposing a rationai

functionf This resuit considerably increases the importance of sequentiai functions in the

theory of finite-state machines as well as in the practical use oftransducers.

Sequential transducers offer other theoretical advantages. In particular, while several

important tests such as the equivalence are undecidable with general transducers,

sequential transducers have the following decidability property.

Theorem 2.2.5.5 (decidability):

Let T be a transducer mapping to A*. It is decidable whether T is sequential.

The following theorems describe the characterizations of subsequential and p

subsequentiai functions.

Theorem 2.2.5.6 (characterization of subseg uential function):

Letfbe a partial function mapping to A. f is subsequential iff:

(1) fhas bounded variation

(2) for any rational subset Yof A*,f4(Y) is rational

Theorem 2.2.5.7 (characterization of p-subseguential function):

Let f = (f, ..., f,,) be a partial function mapping D o m(/) c to (ts.’)”. f is p

subsequential iff:

(1) fhas bounded variation

(2) for ail i (1 I p) and any rational subset YofA*,J7’(Y) is rational

Theorem 2.2.5. $ (characterization of p-subseguential function):

Let fbe a rational function mapping to f is p-subsequential iff it has bounded

variation.

21

2.2.6 Strïng-to-Weight Transducers/Weighted Acceptors

A Weighted finite-state Acceptor (WfSA), or a string-to-weight transducer is a finite

state automaton, A, that has both an alphabet symbol and a weight, from some set K, on

each transition.

2.2.6.] Definition and Properties of Weighted Finite-state Acceptors

The definition of WFSA is based on the aigebraic structure of a semiring, S=(K , 0, 0,

1).

Weighted finite-state acceptors or simpiy weighted acceptors are transducers with input

strings and output weights. Figure 2.4 gives an exampie of a weighted finite-state

acceptor, which represents a toy language model.

is/O.5

Figure 2.5 A weighted finite-state acceptor

Given a semiring (K, , 0, 0, 1), the formai definition of a weighted acceptor is as

follows:

A weighted acceptor T is defined by T= (Q, , L F, E,). p over the semiring K, where:

• Q is a finite set of states

• the input alphabet

• Ic: Q is the set of initial states

• F Q, the set of final states

• E Q x x R÷ x Q a finite set of transitions, where R, is the output

weight

• 2 the initial weight function mapping I to R÷

• p the final weight function mapping F to L

Cornpared to the definition of a transducer, we can define for T a partial transition

function 5mapping Q X to 2 by:

data/O.66

22

V(q, a) e Q x 2 cq, u) = {q’ Ix e R+: (q, ci, x, q’) e E},

and an output flinction mapping E to R+ by:

Vt=(p, u, x, q) e E, a(t)=x.

The following concepts and extensions are very important for string-to-weight

transducers. Although we have defined some of them in section 3 in general, more details

based on string-to-weight transducers are introduced.

A path rt in Tfrom q e Q to q’ e Q is a set of successive transitions from q to q’: Yr=((qo,

a, X, qi),
..., (q,,,.i, a,j, Xm1,, q,,,)), with V I e [O, m-i], qj+j e 8(q, a’). We can extend

the definition of uto paths by: a(ft) xoxj.

The rt e q q’ I w refers to the set of paths from q to q’ labeied with the input string w.

The definition of 6can be extended to Q x by:

VRc:Q,Vwe *,R,w)UqER q,w).

The minimum of the outputs of ail paths from q to q’ labeled with w is defined as:

9 (q, w, q)
= mina,, (q - q) w a(it).

A successful path in T is a path from an initial state to a final state. A string w e is

accepted by T iff there exists a successflul path iabeled with w: w e I, w) n F. The

output corresponding to an accepted string w is then obtained by taking the minimum of

the outputs of ail successful paths with input label w:

mm(i,J e IxF:Je i, w) (2(i) + 9(1, w,J + p(J).

A transducer T is said to be trim if ail states of T belong to a successftil path. Weighted

acceptors ciearly realize functions mapping to R+. Since the operations we need to

consider are addition and mm, and since (R+ {co}, mm, +, co, O) is a semiring, Hence

these functions are formai power series. They have the following characterizations which

we imported from formai language theory [1, 31]:

1) (5, w) is the image of a string w by a formai power series S. (S, w) is called ffie

coefficient of w in S,

2) by the coefficients, S = ,, * (S, w)w can be used to define a power series,

3) the support of Sis the language defined by:

23

supp(S) = {w e : (S, w) co}.

A transducer T is said to be unambiguous if for any given string w there exists at most

one successful path labeied with w.

2.2.6.2 Sequential String-to- Weight Transducers/WeightedAcceptors

Recali that a transducer is said to be sequential if its input is deterministic, that is, if at

any state there exists at most one outgoing transition iabeled with a given element of the

input alphabet . Sequential weighted acceptors have many advantages over non

sequentiai weighted acceptors, such as time and space efficiency. But flot each weighted

acceptor has an equivaient sequential weighted acceptor [18, 29]. The formai definition

of a sequentiai weighted acceptor/string-to-weight transducer is foiiows:

Definition 2.2.6.1 (seguential weighted acceptor):

A sequentiai weighted acceptor T = (Q, i, F, , c5, o, 2, p) is an 8-tuple, where:

• Q is the set of its states

• I e Q its initial state

• F ci Q the set of final states

• the input alphabet

• 6 the transition function mapping Q x to Q, 6 can be extended as in the

string case to map Q x to Q
• u the output function which maps Q x to R+, c can aiso be extended to

Q x

• 2 e R+ the initial weight

• p the final weight function mapping F to L

A string w e is accepted by a sequential acceptor T if there existsf e F such that i,

w) =f Then the output associated to w is: 2+ a(i, w) + pQ).

Considering the benefits of time and space efficiency, the sequentiai transducer or

acceptor is preferred in language and speech processing. But, like we mentioned before,

not ail transducers are sequential transducers. The process used to transfer a non

sequential transducer to an equivaient sequential transducer is called determinization.

Unfortunately, flot ail transducers have an equivaient sequentiai transducer, which also

24

means that not ail transducers can be determinized. The following definition can be used

to determine whether a transducer can admit determinization.

Definition 2.2.6.2 (determinization):

Two states q and q’ of a string-to-weight transducer T (Q, I f, , 5 u, 2, p), flot

necessarily sequential, are said to be twins if:

V(u, y) e (*)2, ({q, q’} J u), q e q, y), q’ e q’, y)) = q, y, q) = q’, y,
qr).

If any two states q and q’ of a string-to-weight transducer T are twins we say T has twins

property. If a string-to-weight transducer has twins property it is determinizable. Notice

that according to the definition, two states that do flot have cycles with the same string y

are twins. In particular, two states that do flot belong to any cycle are necessarily twins.

Thus, an acyclic transducer has the twins property.

The following theorem gives an intrinsic characterization of sequential power series:

Theorem 2.2.6.1 (characterization of seguential power series):

Let S be a rational power series defined on the tropical semiring. $ is sequential iff it has

bounded variation.

The proof on this theorem is based on twins property [3].

2.2.7 Weighted Transducers

Weighted finite-state Transducers (WFSTs), or simply weighted transducers, are also

called string-to-string/weight transducers (S$WTs). The definition of string-to

string/weight transducers is similar to the definition of string-to-string transducers or

string-to-weight transducers. The only difference is that the output of a string-to

stringlweight transducer is a pair composed by a string and a weight. The SSWTs

generalize WF$As by replacing the single transition label by a pair (I, o) of an input label

I and an output label o. While a weighted transducer associates symbol sequences and

weights, a WF$T associates pairs of symbol sequences and weights, that is, it represents

a weighted binary relation between symbol sequences [11, 44].

2.2. 7.1 GeneraÏ Weighted Transducers

A formai definition ofthe weighted transducers is given as the following:

25

A weighted transducer T is defined by T = (Q, , A, ï, f, E, X, p),

where:

• Q is a finite set of states

• 1 and A, finite sets corresponding respectively to the input and output alphabets ofthe

transducer

• 1 E Q is the initial state

• F ci Q, the set of final states

• Ec:QxxAxR±xQafinitesetoftransitions

• 2 the initial weight function mapping I to L

• p the final weight function mapping f to L

The set E can be extended to include transitions Q x x A x R+ x Q, where their input

and output can be strings.

Without extension of E, it defines the weighted transducers used in our CSR research.

Each arc of these transducers has a feature that its input and output are symbols like in

Figure 2.5. The symbol refers to a string with a length equals to 1 or O (an empty string

E).

2.2.7.2 $equential Weighted Transducers

The sequential transducers described here are transducers with a deterministic input. At

any state of such transducers, at most one outgoing arc is labeled with a given element of

the alphabet.

A sequential weighted transducer T = (Q, 1, F, , A, 6, a, X, p), where:

Figure 2.6 A weighted transducer example

26

• Q is the set of its states

• ï ê Q its initial state

• f Q the set of final states

• and A, finite sets corresponding respectively to the input and output alphabets ofthe

transducer

• Sthe transition function mapping Q x to Q
• uthe output function which maps Q x to A x R+

• 2 ê L the initial weight

• p the final weight function mapping f to R+

The transition function 6 can be extended as in the string case to map Q x to Q, and

the output function ucan also be extended to Q x to A* x L.

If the extensions of 6 and u are not allowed, the defined sequential weighted transducers

wiil have only symbois as input and output of their arcs like in figure 2.5. This type of

sequential weighted transducers are widely used in current CSR researches.

Even though the sequential property is expected, not ail weighted transducers are

sequential. In fact, in most cases the original transducer is flot sequentiai. Therefore a

determinization algorithm is needed.

In this chapter we have reviewed the principÏes and architecture of modem CSR systems

and then described the formai definitions and properties of finite-state devices inciuding

automata, string-to-string transducers, weighted acceptors, and weighted transducers.

In the next chapter we will describe some weighted acceptor and transducer operations.

27

Chapter 3

Weighted Acceptor and Transducer Operations

Like unweighted acceptors, weighted acceptors and transducers also have a common set

of finite-state operations to combine, optimize, search, and prune them [26]. Each

operation implements a single, welY-defined function that has its foundations in the

mathematical theory of rational power series [il, 441. Many of those operations are the

extensions of classicai algorithms for unweighted acceptors to weighted transducers.

3.1 Basic Operations

The basic operations, like union, concatenation, KÏeene closure, etc., combine

transducers in parallel, in series, and with arbitrary repetition, respectively. Other

operations include projection, best path, N-best path, pruning, topoÏogicaÏ sort reversal

E-removal inversion, etc. Projection converts transducers to acceptors by projecting onto

the input or output label set (Jrojection). Best path or N-best path finds the best or the N

best paths in a weighted transducer. Pruning removes unreachable states and transitions.

Topological sort operation sorts acyclic automata topologically, that is to number states

by satisfying the condition j j for any transition from a state numbered i to a state

numbered j. Reversal consists of reversing ail transitions of the given transducer,

transforming final states into initial states and initial states into final states. E-removal

operation removes ail transitions for which the input or output symbois are E. Inversion

operation inverses the transducer by swapping the input with output symbols on

transitions.

In foliowing sections a few important operations that support the speech recognition

applications are described in detail.

2$

3.2 Composition

The composition operation is the key operation on transducers and is very useful since

they ailow the construction of more complex transducers from simpler ones.

3.2.1 Theoretical Definition and Operation

Given two transductions Tj: fx T— K and T2: 1x T— K, we can define their

composition T1 O T2 by

(Tj ° T,)(r,t) = I(r,s)®T2(s,t)

Leaving aside transitions with E inputs or outputs for the moment, the following mie

specifies how to compute a transition of T1 O T2 from appropriate transitions of T1 and T2

(qi a.b/w
> qi ‘and q b.c/w,

> q.?’) => (qi, q) a.c/(w10w2)
> (q q’)

where s x;1’ #‘

> represents a transition from s to t with input x, output y and weight w.

For example, ifS represents F(siIs) and R P(,Is, $ ° R represents P(sIs).

It is easy to see that composition ° is associative, that is, in any transduction cascade Si O

52
° S,,, the order of association of ° operations does flot matter.

The composition of two transducers represents their relationai composition. In particuiar,

the composition T = R ° S of two transducers R and S has exactly one path mapping

sequence u to sequence w for each pair of paths, the first in R mapping u to some

sequence y and the second in S mapping y to w. The weight of a path in T is the 0-

product of the weights of the corresponding paths in R and S [11, 44].

Composition is useful for combining different levels of representations. For instance, it

can be used to apply a pronunciation lexicon to a word-levei grammar to produce a

phone-to-word transducer whose word sequences are restricted to the grammar. Many

kinds of CSR network combinations, both context-independent and context-dependent,

are conveniently and efficientiy represented as compositions.

The composition aigorithm generalizes the ciassical state-pair construction for finite

automata intersection [18] to weighted acceptors and transducers [7, 29]. The

composition R OS of transducers R and S has pairs of an R state and an S state as states,

and satisfies the following conditions:

29

(1) its initial state is the pair ofthe initial states of R and S;

(2) its final states are pairs of a final state of R and a final state of S, and

(3) there is a transition t from (r, s) to (r’, s’) for each pair of transitions tR from r to r’

and tg from s to s’ such that the output label of t matches the input label of t’. The

transition t takes its input label from tR, its output label from t, and its weight is the

Ø-product of the weights of tR and t5when the weights correspond to probabilities.

Since this computation is local, i.e. it involves only the transitions leaving two states

being paired and can thus be given a lazy implementation in which the composition is

generated only as needed by other operations on the composed machine. Transitions with

labels in R or $ must be treated specially as we will discuss later.

Figure 3.1 shows two simple E-free transducers over the tropical semiring, Figure 3.1 a

and Figure 3.1 b, and the resuit of their composition, figure 3.1 c. The weight of a path in

the resulting transducer is the sum of the weights of the matching paths in R and $ since

in this semiring, ® is defined as the usual addition (of log probabilities).

c:aJO.3

a:b/O.
1 a:aIO.4

(a) (b)

(c)

a:b/O.6

Figure 3.1: Example of -free transducer composition

n
j

Since weighted acceptors are represented by weighted transducers in which the input and

output labels of each transition are identical, the intersection of two weighted acceptors is

just the composition ofthe corresponding transducers.

3.2.2 Composition Algorithm

3.2.2.1 -free composition

Given two -free transducers T1 = (Qj, , A, Ii F1, E1, %j, pj) and T2 = (Q2, , A, ‘2, F2,

E2,)2, p2), the resuit of the composition of T1 and T2 is transducer T = (Q, , A, j, F, E, 2,

p). In this algorithm, transitions are combined using the ®-product associated with the

semiring over which the transducer is defined. To show the algorithm some notations are

introduced:

1. For q E Q, E[q] represents the set of transitions leaving q,

2. ForeEE,

t) i[e] represents the input label of e,

ii) o[e] represents the output label of e,

iii) w[e] represents the weight of e,

iv) n[e] represents the destination state of e.

Now the E-free composition can be shown as the following pseudocode:

COMPOSITION (T1, T2):

1. 8—Q—E—I—F—Ø

2. foreachqjEl1

3. doforeachq2EL

4. do Q ‘—Qu{(qj,q2)}

5. 16—ILJ{(qj,q2)}

6. %((qi, q)) — %i(qi) ® %2(qI)

7. ENQUEUE (S, (qi, q))

8. ifqjEFiandq2EF2

9. thenf—Fu {(ql,q2)}

31

10. q,, q)) +— pi(qj) ® p2(q2)

11. while$ø

12. do(qj,q2)—head[Sj

13. for each (e, e2) E E[qi] x E[q2J such that o[ejJ = i[e2]

14. do if(n[ejJ, n[e2]) Q
15. thenQ 6—Qu{(n[ej],n[e2J)}

16. ENQUEUE (S, (n[ei], n{e2]))
17. if n[ejJ E fi and n[e2] e f7

1$. then f —Fu{(n[ey], n[e2])}

19. ,(n[ej], n{e7])) +— pi(qi) 0 p2(q2)

20. E ‘—E u{((q,, q), i[ei], o[e2], w[ei] O W[e2], (n[eiJ, n{e2])}

21. ENQUEUE(5)

figure 3.2 Pseudocode ofthe E-free composition

3.2.2.2 General Case Composition

Transitions with labels in T1 or T2 add some subtieties to composition. In general,

output and input ‘s can be aligned in several different ways: an output E in T1 can be

consumed either by staying in the same state in T2 or by pairing it with an input & in T2;

an input in T2 can be handled similarly. for instance, the two transducers in Figure

3.3(a) and (b) can generate all the alternative paths in Figure 3.4. However, the single

bold path is sufficient to represent the composition resuit, shown separately in Figure 3.5.

The problem with redundant paths is flot only that they increase unnecessarily the size of

the resuit, but also they fail to preserve path multiplicity: each pair of compatible paths in

T1 and T2 may yield several paths in T1 ‘ T2. If the weight semiring is flot idempotent, that

leads to a result that does not satisfy the algebraic definition of composition.

This path-multiplicity problem can be solved by mapping the given composition into a

new composition

T10T2— 1 °F° T

in which f is a special filter transducer and the 1” are versions of the T1 in which the

relevant & labels are replaced by special “suent transition” symbols as shown in figure

n
J

3.3(c) and (d). The bold path in Figure 3.4 is the only one allowed by the ifiter in Figure

3.6 for the input transducers in Figure 3.3.

(a) T1
b: E .•

(b) T2

(e) i;’

(cT

Figure 3.4 Composition with marked ‘s

Figure 3.5 Composition output

Figure 3.3 Transducers with labels

(2:

d:a
(x:x)

ad b:e e: & d:a

ii

By inserting a filter between T1 and T2 (more precisely, between T’ and T) and applying

the s-free composition algorithm on this new composition, the redundant paths are

removed. Interestingiy, the filter itself can be represented as a finite-state transducer.

Fiiters of different forms are possible, but the one shown in Figure 3.6 leads in many

cases to the fewest transitions in the resuit, and ofien to better time efficiency [25]. (The

symbol x represents any element ofthe alphabet ofthe two transducers.)

The filter can be understood in the following way: as long as the output of T1 matches the

input of T2, one can move forward on both and stay at state O. If there is an s-transition in

T1 , one can move forward in T1 (only) and then repeat this operation (state 1) until a

possible match occurs which would lead to the state O again. Similarly, if there is an s-

transition in T2, one can move forward in T2 (only) and then repeat this operation (state 2)

until a possible match occurs which would lead to the state O.

Clearly, ail the operations involved in the filtered composition are also local, therefore

they can 5e performed on demand, without the need to perform explicitly the replacement

ofT1by 1.

We can thus use the lazy composition algorithm as a subroutine in a standard Viterbi

decoder to combine on-the-fly a language mode!, a multi-pronunciation lexicon with

corpus-derived pronunciation probabilities, and a context-dependency transducer. The

extemal interface to composed transducers does flot distinguish between iazy and

precomputed compositions, so the decoder algorithrn is the same as for an explicit

network.

Figure 3.6 Composition filter

34

3.2.2.3 Complexity

In the worst case, the composed transducer resuits in the combination of ail state-pairs

(qi, q) as its states and has at most EjllE2I transitions. Thus it takes O(1Q111Q21) for the

creation of states and O(IE1 . IEI) for the creation of ail transitions. Therefore, the overail

complexity is:

O(1Q111Q2I + IE1LIE2I)

3.3 Determinization

A deterministic automaton is non-redundant and contains at most one path matching any

input sequence, thus reducing time and space required to process an input sequence.

In the same way, a deterministic/sequentiai WFSA needs to eliminate redundancy. Thus

it must caiculate the combined weight of ail the paths for a given input sequence. for

instance, in the case, common in speech recognition, where weights are interpreted as

(negative) logarithms of probabilities, the weight of a path is obtained by adding the

weights of its transitions, and the combined weight for an input string is the minimum of

the weights of ail paths accepting that string. In the case where weights are probabilities

where the overail probability mass of ail paths accepting an input is sought, weights are

multiplied along a path and summed across paths. Both cases can be handied by the same

algorithm, parameterized with appropriate definitions of the two weight combination

operations.

As aforementioned, not ail transducers have an equivalent sequential transducer, which

means that not ail transducers can be determinized. The following definition can be used

to determine whether a transducer can admit determinization.

Two states q and q’ of a string-to-weight transducer T (Q, I, f, , cS u, 2, p), flot

necessarily sequentiai, are said to be twins if:

V(u, y) e (*)2, ({q, q’} cz u), q e cq, y), q’ e y)) z q, y, q) = q’, V,

q .

If any two states q and q’ of a string-to-weight transducer T are twins, we say T has twins

properly. If a string-to-weight transducer has twins property it is determinizable.

35

Notice that according to the definition, two states that do flot have cycles with the same

string y are twins. In particular, two states that do flot belong to any cycle are necessarily

twins. Thus, an acyclic transducer has the twins property.

The sequential power series in the tropical semiring are functions that can be realized by

sequential string-to-weight transducers. Many rational power series defined on the

tropical semiring considered in practice are sequential, in particular acyclic transducers

represent subsequential power series.

The following theorem gives an intrinsic characterization of sequential power series:

Let $ be a rational power series defined on the tropical semiring. $ is sequential iff it has

bounded variation [1$].

3.3.1 Determinization Algorithm for Power Series

In speech recognition systems the tropical semiring is widely used. The determinization

algorithm will be frequently applied to the power series defined on tropical semiring.

Therefore, the following algorithm is presented in the case of a tropical semiring (R+ u

{co}, mm, +, co, 0) on which the transducer is defined. This algorithm is easily changed to

fit other semirings by replacing min and + by their own binary operations.

The following determinization algorithm constructs an equivalent sequential weighted

acceptor T2 = (Q2, 12, f2, , 6, o, 22, P2) to a given non-sequential one T1 (Qi, , Ii,

F1, E1, %j, p’) defined on tropical semiring [3,10,22].

PowerSeriesDeterminization(T,, T2)

1 F2<—Ø

2 %2—rnin%j(i)
lEI1

3 ‘2 J {(i, %2 +
lEI1

4 Q-{i2}

5 whuleQØ

6 doq2+—head[Q]

7 if (there exists (q, x) q such that q e F,)

$ thenF24—F2u{q2}

36

9 P2(2) — min (x + pj(q))
qEb1, (q, x)Eq2

10 for each a such that f(q2, a) 0

11 do J2(q2, a) — min [x + min ui(t)]
(q, x)uf(q2, a) t=(q, a, a1(I), n1(l))eE1

12 82(q2, a) +- u {(q’, min ({o(q2, a)f’ + x +
q’Ev(q2, u) (q, x, I)Ey(q2, a), n1(I)=q’

13 if (c2(q2, a) is a new state)

14 then ENQUEUE(Q, 5q2, a))

15 DEQUEUE(Q)

Figure 3.7 Algorithm for the determinization ofa weighted acceptor T1 defined on the

semiring (R+ u {cc}, mm, +, co, 0)

The key points in this algorithm are further expiained as foilows:

1. Line 2 and une 3 tel! us that the initial weight 22 of T2 is the minimum of ail the initial

weights of T1. The initial state 2 is a subset made of pairs (i, x), where ï is an initial state

of T1, and x = - 22. We use a queue Q to maintain the set of subsets q not be

examined. Initially, Q contains only the subset ï2. The subsets q are the states of the

resulting transducer. Q2 is a finai state of T2 iff it contains at least one pair (q, x), with q a

final state of T1 (unes 7-8). The final output associated to q2 is then the minimum of the

final outputs of ail the final states in q combined with their respective residuai weights

(line 9).

2. For each input labei a such that there exists at least one state q of the subset q,’

admitting an outgoing transition labeled with a, one outgoing transition ieaving q with

the input label a is constructed (unes 10-14). The output o(q2, a) ofthis transition is the

minimum of the outputs of ail the transitions with input label a that leave a state in the

subset q, when combined with the residual weight associated to that state (une 11).

37

3. The destination 6(q, a) of the transition leaving q is a subset made of pairs (qÇ x’).

where q’ is a state of T1 that can be reached by a transition labeled with a, and x’ the

corresponding residual weight. In une 12, x’ is flot shown explicitly, but it is computed by

taking the minimum of ail the transitions with input label a that leave a state q of q and

reach q’, when combined with the residual weight of q minus the output weight a2(q2, a).

finaliy, c2(q2, a) is enqueued in Q iff it is a new subset.

4. nj(t) is the destination state ofa transition t e E1. Hence, njQ) q’, if t = (q, a, x, q’) e

E1. The sets f(q2, a), a) and i’(q, a) used in the algorithm are defined by:

f(q2, a) = {(q, x) e q2 : t = (q, a, j(t), nj(t)) e E1}

?Kq2, a) = {(q, x, t) e q x E1: t (q, a, uj(t), nj(t)) e E1}

(q2,a)= {(q’: (q,x) e q : t=(q,a, uj(t),q) e E1}

f(q2, a) denotes the set of pairs (q, x), elements of the subset q, having transitions

labeÏed with the input a. j(q, a) denotes the set of triples (q, x, t) where (q, x) is a pair in

q such that q admits a transition with input label a. i{q2, a) is the set of states q’ that can

be reached by transitions labeled with a from the states ofthe subset q.

Notice that several transitions might reach the same state with different residual weights.

Since we are only interested in the best path, namely the path corresponding to the

minimum weight, we can keep the minimum of these weights for a given state element

of a state (une 11 ofthe algorithm).

The complexity (both space and time) of this power series determinization algorithm is

exponential. However, in some cases in which the degree of nondeterminism of the initial

transducer is high, the determinization aigorithm turns out to be fast and the resuiting

transducer has less states.

It has been proved that if the determinization algorithm terminates, then the resulting

transducer T2 is equivalent to T1.

38

This power series determinization algorithm is applied to a tropical semiring, i.e. the

weighted acceptor. Actually, it is possible to extend the determinization algorithms for

different semirings based on this Power$eriesDeterminization algoritbm. For weighted

transducers, subsets in the algorithm are made of triples (q, w, x) where q is a state of the

original transducer, w is a residual string and x is a residual weight. $o, we have to

consider the pair (w, x) as output in the determinization of weighted transducers. Aiso

some special cases have to 5e handled. In fact, based on this general algorithm an

efficient determinization algorithm has been developed to deal with the weighted

transducers, named WT determinization A lgorithm [14).

The determinizabie transducers can be simply defined as those transducers with which

the determinization algorithm terminates. If a transducer is not determinizable the

algorithm will keep running until resources are used up. It has been declared early in this

thesis that the complexity of the application of sequentiai transducers is linear in the size

of the string to which it applies. This property makes it worthwhile to use the power

series determinization in order to speed up the application of transducers. Unfortunately,

not ail transducers can be determinized using the power series determinization because

determinization does flot apply to ail transducers. Therefore it is important to be able to

test the determinizability of a transducer.

We know that if a transducer defined on the tropical semiring has the twins property then

it is determinizabie. There are transducers that do flot have the twins property and that are

stiil determinizable. Normally it is not an easy job to characterize such transducers

because we need more complex conditions [19).

Actually, if we wish to construct the result of the determinization of transducer T for a

given input string w, we do flot need to expand the whole resuit of the determinization,

but only the necessary part of the determinized transducer. When restricted to a finite set

the function realized by any transducer is sequentiable since it has bounded variation.

Acyclic transducers have the twins property, so they are determinizable. Therefore, it is

j

aiways possible to expand the resuit of the determinization algorithm for a finite set of

input strings, even if T is flot determinizable [221.

3.3.2 Weighted Transducer Determinization Algorithm

We have introduced a general FowerSeriesDeterminization algorithm, which is applied to

a tropical semiring such as a weighted acceptor. This algorithm can be also used to

develop determinization algorithms for other semirings.

Here we consider the string semiring (* u {co}, A, •, co, E), where A denotes the longest

common prefix operation. The cross product of two semirings defines a semiring. The

general algorithm also applies when the semiring is the cross product of(u {co}, A,•,

co,) and (R÷ u {co}, mm, +, co, 0). This allows us to determinize transducers outputting

pairs of strings and weights -- the weighted transducers.

for the string-to-string/weïght transducers, subsets in the algorithm are made of triples (q,

w, x) e Q r 2’ u {co} r R÷ u {cc} where q is a state of the original transducer, w is a

residual string, and x is a residual weight. So, we have to consider the pair (w, x) as

output in the determinization of weighted transducers. Also, in order to consider this

Power$eries-Determinization algorithm as general, some special cases have to be

handled.

Based on the general algorithm and the features of the weighted transducers, a new

determinization algorithm called WT determinization used for weighted transducers lias

been developed [14, 29].

Figure 3.5 gives the detailed pseudocode of the WTdeterminization algorithm. This

algorithm constructs a sequential weighted transducer T2 = (Q2, j2, F2, , A, 8, cr2, %2, P2)

equivalent to a given determinizable weighted transducer T1 (Qi, , A, Ii, F1, E1, %j, pi).

40

3.3.2.] Pseudocode and Descrttion ofthe WTdetermïnization Atgorithm

WI_determinization(Ti, T2)

1 F2-Ø

2 %2’— min %j(i)
1€”

3 ï2 U {(j, E, À2’ +
IJI

4 Q-{12}

5 whuleQØ

6 doq2..—head[Q]

7 if (q {-2} and for any (q, w, x) e q)

$ if(there exists (q, x) e q, such that q e F1 or q = {-]})

9 thenF2.ic—F2u{q2}

10 p2(q2)— min (x+pj(q))
qEF1L){—1), (q, , x)Eq2, .oi({—’})=°

11 if(thereexists(q, w,x) e q2suchthatw q e Fjorq= {-]})

12 thenq2’’— u (q,w,x+pi(q))
(q, w. x)q,, qef1u{—1}, p1(—l)=O,

13 w’ +— u firstSymbot(w)
(q, w, x)q2’

14 for each symbols e w’

15 do u2(q2, £ — (s, min + pj(q)j)
(q, w, x)q2’, firstSy7lIbol(w)=s

16) — u ({-1}, w.(o(q2, jw)’,
(q, w, x)Eq,’, firsiSyrnbol(w)=s

17 (u(q, E)Ix)’ +x+pi(q))

1$ if (6(q,) is a new state)

19 then ENQUEUE(Q, 2(q2, L))

20 for each a such that F(q2, a) 0

21 do u2 ‘(q2, a) 4— (/\(q, w,x)ET(q2,a) [w.(ui(t)Iw)j,

min [x + min u,(t)Ix])
(q, ii, x)ET(q,, o) i=(q, o, o (1), ni (t))oE1

41

22 c5 ‘(q, a) — u {(q’, w.(eri(t)Iw).(o ‘(q, a)[w)’,
qEv(q,, a)

min [(o ‘(q, a)IxY’ + X + uj(t)IxJ)}
(q, w, x, l)Ey(q2, a), n=u0, o (flI=wi , ni (I)=q

23 if (Œ2 (q2, a)Iw is flot a symbol and also flot a empty string)

24 w”’ç— 02(q2,a)Iw

25 u2(q2, a) +— (flrstSyrnbol(w”), o (q, a)Ix)

26 w” — removefirstSyrnboÏ(w”)

27 ô2(q2, a) — ({-2}, w”, O) u ‘(q, a)

2$ if ((q,’, a) is a new state)

29 then ENQUEUE(Q, 62(q, a))

30 cisc 52(q2, a) — u2 ‘(q2, a)

31 a) +— t52 (q, a)

32 if (2(q2, a) is a new state)

33 then ENQUEUE(Q, c2(q2, a))

34 cisc if(q = {-2})

35 u2(q2, 8) +— (first$ymbol(wlr), O)

36 w”+— removefirst$ymboÏ(wr)

37 if(w”=&)

38 then 2(q2, 2 ÷— 2(q2, a)

39 cisc 82(q2, — ({-2}, w”, O) u 32(q2, a)

40 if(62(q2,) is a new state)

41 then ENQUEUE(Q, ô’2tq2, c))

42 DEQUEUE(Q)

Figure 3.8 Algorithm for the determinization ofa weighted transducer T1 defined on the

semiring (u {c}, A, ., co,) x (R+ u {co}, mm, +, co, 0).

This algorithm considers two basic requirements on the resulting transducer T2. First, the

original transducer T1 used in our CSR research lias each its arc with a format symbol.’

syrnboÏ/weight. Second, each final state of the original transducer T1 has only an

42

accepting weight (or output weight). These two characteristics are kept in the resulting

transducer T2.

In this algorithm, n1(t) is defined as the destination state of a transition t e Ej. Hence,

nj(t) = q if t = (q, a, w, x, q’) e E1. The sets F(q2, a), Xq2, a), and ‘Kq2, a) used in the

algorithm are defined by:

F(q2, a) = {(q, w, x) e q : t (q, a, uj(t), nj(t)) e E,}

3(q2, a) = {(q, w, x, t) e q x E1 : t = (q, a, ui(t), ni(t)) e Ej}

1q2,a)= {(q’: (q,w,x) e q : t=(q,a, uj(t),qr) e Ej}

F(q2, a) denotes the set of triples (q, w, x), elements of the subset q, having transitions

labeled with the input a. a) denotes the set of quadruples (q, w, x, t) where (q, w, x)

is a triple in q such that q admits a transition with input label a. u) is the set of

states q’ that can be reached by transitions labeled with a from the states of the subset q.

Notice that the state q could be {-]} or {-2} (for example in unes 7-8). -1 and -2 stand for

the state number whereas {-1} and {-2} stand for the state with the number -] and -2. We

know that q is the state number of the old transducer, q can neyer be a negative value. In

fact, these states with a negative state number are generated and used to handie the

special cases met during the determinization process. for easy understanding of this

algorithm, a detailed introduction follows.

1. Line 1 refers that the initial final state set of T2 is empty.

2. Lines 2-3 indicate that the initial weight 22 of T2 is the minimum of ail the

initial weights of T1. The initial state ‘2 is a subset made of triples (j, , x), where j is an

initial state of T1, is an empty string, and x 2j(i) - Fortunately, each transducer

used in our automatic speech recognition research has only one initial state. This makes

an easy implementation of unes 2-3. The next step is to put this initial state j2 into an

empty queue Q. Here, Q is used to maintain the set of subsets q. flot yet extended (or

determinized). Each subset in Q corresponds to one state of Q2 for the new transducer T2.

Initially, Q contains only the subset ‘2 (une 4).

43

3. f2 is the set of the final states of the sequential transducer T2. q represents a

final state iff it contains at least one triple (q, x), where q is a final state of T1 or equals

to {-l} (see unes 8-9), refers to an empty residual string, x is a residual weight. This

type of triple is named final triple. The fmal output weight associated to q is then the

minimum output weight of ail the final triples in q (une 10).

4. q equal to {-Ï } refers to a final state without outgoing arcs. This state does not

exist. It is designed ami assumed to be one special state ofthe old transducer during the

determinization.

Line 11 meets the special case 1. In this case subset q contains triple (q, w, x) such that

w q e f1 or q equals {-J}. This type of triple is named sub-final triple. When a sub

final triple appears in q, a final state with accepting output (w, x) has been reached.

According to the basic requirements, if each final state of the original transducer has only

an accepting weight, the resulting transducer’s final states can flot have accepting output

composed by string and weight. Accepting output of any final state of the resulting

transducer has to be a weight.

How to handle it? firstly a new subset q’ has to be constructed with the triples (q, w, x)

such that w q e f1 or q equals {—1 } in q. This q is considered as part of q. Next

we construct the set of outgoing output symbols w’ from the set of w in q’ (lines 12-13).

Line 14 to 19 are used to finish the expanding based on w’. Each output symbol s in w’

corresponds to an outgoing arc from q, the input symbol of this arc is , the weight is the

minimum weight of all sub-final triples with same s in q’ (unes 14-1 5). The destination

of this arc is a subset 52(q2,) formed by triples in q2’ with the same s. 32(q2,) contains

triples that q equals {—] }. The residual string of each triple in 2(q2,) is the string by

rernoving s from the residual string w of the conesponding triple in q. The weight of

each triple in 2(q2,) is the result of the sum of the corresponding triple’s residual

weight x and its accepting cost in q (if q equals {—J } its accepting cost is zero) minus

the output weight ofthe newly constructed outgoing arc. If E2(q2,) is a new subset, then

44

put it into queue Q (unes 1$-19). Continue this loop until each symbol in w’ has been

checked.

Therefore, q equals {—] } means that q is considered as a speciai final state in the original

transducer without outgoing arcs and with a final weight zero. It is special because that

state {-]} does not exist in Qj. $tate {-]} is needed during the determinization when

subset q has at least one sub-final triple.

5. for each input symbol u such that there exists at least one state q of the subset

q admitting an outgoing transition labeled with a, one temperate outgoing transition

leaving q with the input symbol a is constructed (unes 20—21). The output ‘(q, a) of

this temperate transition is composed of two parts. One is a residual string which is the

largest common prefix of the output strings of ail the transitions wïth input symbol a that

leave a state in the subset q, when concatenated at the end with the residual string

associated to that state. The other part is a residual weight wbich is the minimum of the

output weights of ail the transitions with input symbol a that leave a state in the subset q,

when combined with the residual weight associated to that state.

The temporary destination state c ‘(q, u) of the transition leaving q is a subset made of

triples (q’, w’, x’), where q’ is a state of T1 that can be reached by a transition iabeled

with a, w’ is the corresponding residual string, x’ is the conesponding residual weight. It

is possible that ô’2 (q., u) has triples with same q’ but different residual strings. Each

residual string w’ is constmcted by removing the output string o (q, a)I,, from the head

of a string which is a concatenation of two strings. One of these two strings is the residual

string w of the corresponding triple (q, w, x) in subset q, where q’ can be reached from q

by the transition o1(t) with input symbol u. Another string is just the output string j(t)I,,.

x is computed by taking the minimum of output weights of ail the transitions with input

symbol a that leave a state q in the subset q and reach the same state q’ with the same

residuai string w when combined with the residual weight of q minus the output weight

? ‘(2, u)I.

45

6. If o (q, a)(, is a symbol or an empty string, this temporary transition u2 ‘(q, a)

is a transition leaving q with the input symbol a named u2(q2, a), and the destination

state for this transition is ‘(q, a) named 62(q2, a) (unes 30—31). If o(q2, a) is a new

state then put it into queue Q.

Otherwise, if o (q, a)I is a string with a length larger than 1, this temporary transition

O’ (q2, a) has to be handled as a special case because of the basic requirements. This

special case is defined as special case 2.

Review that according to the basic requirements during the determinization if the output

of an outgoing arc A of a new state is a string (at least two symbols), A has to be

transferred to the symboï.symbol/weight format. In WT determinization this special case

is handled by the following:

(1) Assign the string part o’ ‘(q, a)i, to w”(line 24).

(2) Make a transition from q with input symbol a, output symbol is the first

symbol of w”, and its output weight 5 u (q, a)I (une 25). Then, remove the

first symbol of w”.

(3) The destination state 6(q, a) in une 27 is union of a new triple and ‘(q, a).

The new triple ({-2}, w”, O), where {-2} is a special state of q’ which doesn’t

present in Qi, it means that the state 62(q2, a) is an expanding state of the

string o’ ‘(q, a)j11, w” is the residual string, and the residual weight is zero.

Here, temporary state 5 ‘(q, a) refers to that the final expanding state of this

string is ‘(q, a). If state 6(q, a) is a new state, then enqueue it into queue

Q (unes 28-29).

7. If the special case 2 described in the last paragraph occurs. A subset ({-2}, w”,

O) u 6’2(q2, a) will be assigned to q. Line 34 meets this condition. In une 35 a transition

is made from q with input symbol output symbol is the first symbol of w”, and its

output weight is zero. Then, remove the first symbol of w”. If w” is an empty string,

assign the state ? (2, a) to 6(q, a). Otherwise, construct a destination state z(q2, a) by

46

the union of a new triple (-2 as q’, w” as residual string, zero as residual weight) and the

state ‘(q, a). The next step is to check whether state a) is a new state. If ô(q, a)

is a new state then put it into queue Q.

8. In une 42 the first element of Q is removed, and the algorithm retums to une 5.

The algorithm will continue until Q is an empty queue. finally when this algoritbm is

terminated a sequential weighted transducer T2 is retumed with the same functions of the

non-sequential transducer T1.

figure 3.9 ta) a non-sequential weighted transducer T1
(b) a sequential weighted transducer T2
obtained from the WT determinization of T1

(a)

state O state I state 2

b:C/2.O
(b)

47

9. Examples ofthis algorithm are shown in figure 3.9 and figure 3.10. Notice that

an input string ac admits several outputs in T1 in figure 3.9: {(BD, 6), (BD, 11)}. Only

one of these outputs ((BD, 6), with the smallest output weight) is kept in the resulting

sequential transducer T2 since we are only interested in the output with the minimum

output weight for any given string.

c:C/1 .0

In Figure 3.9, afler the determinization both state number and arc number are reduced.

However, in some special case the state number or both state number and arc number

is/are increased afier the determinization such as in figure 3.10. This is also a successful

a:A/2..

a:A/0.0

(a)

.0

a:6 I2.

(b) a:A/0.0

Figure 3.10 ta) a non sequential weighted transducer T1.

(b) sequential transducer T2 obtained from the determinization of T1

48

determinization resuit because the resulting transducer is sequential. The sequential

transducer will dramatically increase the searching speed when it is applied to the C$R

process instead of the equivalent non-sequential one [3].

Notice that several transitions might reach the same state with a same residual string but a

priori different residual weights. Since only the best path is interested, namely the path

corresponding to the minimum weight, the algorithm keeps only the minimum of these

weights for a given state element of a subset (une 22). This case can be observed in the

fmal determinization step of T1 in Figure 3.9.

3.3.2.2 A Proofofthe WT determinization Atgorithm

It is very important to prove that if the determinization algorithm terminates then the

resulting sequential transducer T2 is equivalent to T1.

Here, we emphasis the tennination ofthe determinization algorithm. This is because there

are transducers for which determinization does flot hait. It then generates an in±inite

number of subsets. We define determinizable transducers as those transducers with which

the algorithm terminates.

Assume that the determinization algorithm terminates, then the resulting transducer T2 is

equivalent to Ti. The foilowing is the proof [181.

We denote by Oj(q, w, q’, w the output with the minimum weight of ail paths from q to

q’ with a same output string w’. By construction we have:

22 — min %y(i)
lEI1

We define the residual output string s(q, w) and the residual output weight associated to q

in the subset 5,(i7, w) as the weight c(q, w) associated to the triple containing q in i2,

w). By induction on Iwi we show that the subsets constructed by the aigorithm are the sets

5(i2, w), w e , such that:

Vw e , 6(12, w) = u {(q, s(q, w), c(q, w)} (3.1)
qE1(1, w)

c(’q, w) min (%j(ij) + OQj, w, q, w) - o2(i2, w)I - 22
1l 1I

o(i2, w) = (w’. s(q, w)’, min (%i(ii) + &j(Ij, w, q, w’,)) -22)
qc6(J1, w)

49

A pair (q, s(q, w)) belongs at most to one triple of a subset since for ail paths reaching q

with a same residual string s(q, w), only the minimum of the residual output weight is

kept. If s(q, w) equals to an empty string, the output string of q2(12, w) is w’. Notice also

that, by definition of mm, in any subset there exists at least one state q with a residual

output weight c(q, w) equal to O.

A string w is accepted by T1 iff there exists q e F1 such that q e 6j(Ij, w). Its output

string is w’. Using the equation (3.1), it is accepted iff 62(12, w) contains a triple (q, s(q,

w), c(q, w)) with q e Fj and s(q, w) equals to an empty string. This is exactiy the

definition of the final states F2 (line 8). So T1 and T2 accept the same set of strings.

Therefore, T2 and T1 are equivalent.

3.3.2.3 Space and Complexity ofthe WT determinization Algorithm

Both space and time complexity of the determinization algorithm for the determinizable

weighted transducers are exponential to the size of the original transducer T1. However,

in some cases in which the degree ofnon-determinism ofthe initial transducer is high, the

determinization algorithm tums out to be fast because the resulting transducer has much

less states than the initial one.

The proof on the space and time complexity of the WT_determinization is the same as

that of the determinization of automata or weighted acceptors. It cari be found in

references [18, 22]. Formerly, the definitions of the weighted transducers have been

addressed. And the WTdeterminization algorithm for the determinization of the

determinizable weighted transducers has been provided.

Since the WTdeterminization algorithm retums the whole resuiting transducer, a large

amount of memory is needed for the determinization, especially when the size of the

resuiting transducer is large.

50

3.4 Minimization

Any deterministic acceptor can be minimized using classical minimization algorithms [2,

221. Similarly using the minimization aigorithm for WFSAs, we can minimize any

deterministic weighted acceptor A [20, 22]. After applying minimization algorithm on

WFSA A, the resulting weighted acceptor B has the least number of states and the least

number of transitions among ail deterministic weighted acceptors equivalent to A.

A deterministic weighted acceptor A can be viewed as an unweighted acceptor by

interpreting each pair (a, w) of a label a and a weight w as a single label. We can then

apply the classical minimization algorithm to this acceptor. But, it could have no effect

on A since the pairs for different transitions are ail distinct. In the same way we can aiso

minimize deterministic transducers or weighted transducers.

However, before applying classical minimization algorithms, we can transform A to an

equivalent weighted acceptor A1 by using a pushing algorithm which pushes weight

among arcs. Usualiy the weights are pushed towards the initiai state as much as possible.

The size of A1 can then stiil be reduced by applying the ciassical minimization algorithm

to the resulted transducer A2 with each distinct label-weight pair viewed as a distinct

symbol, as described above. The details about the weight pushing algorithm will be

discussed in Chapter 5.

Figure 3.11 shows a exampie of a weighted acceptor A, Figure 3.12 shows a weighted

acceptor A1 obtained by pushing from A in the tropical semiring. And Figure 3.13 shows

the weighted acceptor A2 obtained by minimizing A1. Obviously the resulting automaton

A2 is equivalent to A1 and the size of the automaton can then be reduced using the

minimization algorithm.

51

aJO

Figure 3.13: Weighted acceptorA2 obtained by minimizingAi

The time complexity of weighted minimization is the same as that of classical

minimization: linear in the acyclic case (O(m+n)) [5], and (O(m log n)) [2] in the general

case, where n is the number of states and m the number of transitions.

In this chapter we have introduced the transducer operations. How can they be used in

speech recognition? In the next chapter we will describe the application of weighted

transducers in speech recognition.

Figure 3.11: Weighted acceptor A

Figure 3.12: Weighted acceptor A1 obtained by pushing from A in the tropical semiring

52

Chapter 4

Weighted Finite-State Transducer Applications in Speech

Recognition

In Chapter 3 we have described some weighted finite-state transducer operations. These

operations are very useful in speech recognition when ail of the components of the

recognition network are represented by transducers. In this chapter we will describe the

applications of weighted finite-state transducers in speech recognition.

4.1. Network Components

The speech recognition networks can be combined and optimized as an integrated speech

recognition network prior to decoding. The word pronunciations are found in the lexicon

and are substituted into the grammar. The decoder of the recognition networks then

identifies the correct context-dependent models to use for each phone in context, and

finally substitutes them to create an HMM-level network. The code that performs these

operations is specified to particular model topologies. For example, the context

dependent models might have to 5e triphonic, the grammar might be restricted to

trigrams, and the alternative pronunciations might have to be enumerated in the lexicon.

Moreover, these network combinations and optimizations are applied in an appropriate

sequence to a prespecified number of levels as we will describe later in this chapter.

However a uniform transducer representation can be used for n-gram grammars,

pronunciation dictionaries, context-dependency specifications, HMM topology, word,

phone or HMM segmentations, Jattices and n—best output lists. In the following sections,

the transducer representations in speech recognition will be discussed in detail.

4.1.1. Transducer O

The acoustic observation can be represented as a weighted acceptor O for a given

utterance as shown on figure 4.1. Each state represents a fixed point in time t1, and each

53

transition has a label, o, drawn from a finite alphabet that quantifies the acoustic signal

between adjacent time points and is assigned probability 1.0.

E o/LO O2/1_ _9/LQ(

Figure 4.1 Weighted acceptor for acoustic observation

The weighted acceptor in Figure 4.1 can be interpreted as a weighted transducer by

giving each transition identical input and output labels. This adds no new information,

but is a convenient way of interpreting any acceptor as a transducer.

For more complex acoustic distributions (for instance, continuous densities) we can

instead use multiple transitions (t11, d p(o,d), t) where d is an observation distribution

andp(o1(d) the corresponding observation probability.

4.1.2. Transducer H

Figure 4.2 shows a three-state HMM transducer as a phone model mapping sequences of

distribution indices to context-dependent phones, i.e. triphones. In this figure, the

triphone is denoted as a-b+c where b is the modeled phoneme, u and e are the lefi and

right neigboring phonemes of b, and O denotes the observation distribution, d denotes

transition probabilities. The transducer H is obtained by taking ail the closure of the

union of ail HMMs used in acoustic modeling. Therefore transducer H preserves phone

modei identity while sharing distribution subsequences whenever possible.

O, . & dOO(z) O . &‘ dli (i) O, . &‘ d22(i)

O, :&/d12(i)

Figure 4.2 A HMM transducer for a context-dependent model phone b

54

4.1.3. Transducer C

Context-dependent phone models can be represented by finite-state transducers. They can

be built directly in many cases. The transducer of figure 4.3 for instance can be

constructed directly to represent the inverse of a context-dependency model: it maps

phone sequences to sequences of names of context-dependent phone models (HMMs). It

encodes triponic context-dependency for only two hypothetical phones x and y for

simplicity. Each state (ci, b) encodes the information that the previous phone was ci and

the next phone is b; s represents the start or end of a phone sequence and * an unspecified

next phone.

for instance, it is easy to see that the phone sequence xyx is mapped by the transducer to

x/sj y/x_x x/ys via the unique state sequence (*)(x, y)(y, x)(x, s). More generally,

when there are n context-independent phones, this triphonic construction gives a

transducer with 0(n2) states and 0(n3) transitions. A tetraphonic construction would give

a transducer with 0(n3) states and 0(n4) transitions. In real applications, context

dependency transducers will benefit significantly from determinization and minimization

since the n-phone is modeled by an HMM that is likely to be shared among many n-

phones due to context clustering required by data sparsity.

figure 4.3: Context-dependent triphone transducer

55

4.1.4. Transducer L

The transducer L from phone sequences to word sequences is built similarly to transducer

H. A word mode! is a transducer from phone sequences to the specified word that assigns

to each phone sequence the likelihood that the specifled word produced. Thus, different

paths through a word mode! correspond to different phonetic rea!izations of the word.

figure 4.4 shows a typica! topology for a word model. L is then defined as the closure of

the sum ofthe word models. figure 4.5 shows a toy pronunciation lexicon.

ey:eIO.5 t:/O.3

d:dat& 1

figure 4.4 A word mode! as weighted transducer

4.1.5. Transducer G

The language model can be easily represented as a weighted acceptor as shown in Figure

2.4. The fo!lowing weighted transducer in figure 4.6 is an interpretation of the weighted

acceptor in Figure 2.4 as a weighted transducer. Any n-gram !anguage model can be

represented in a similar way. An n-gram language model G is ofien constructed as a

deterministic weighted acceptor with a back-off state — in this context, the symbo! is

treated as a regular symbol for the definition of determinism.

figure 4.5 A toy pronunciation lexicon oftransducer L

56

is:is/O.5

0using:using/1

figure 4.6 A toy language model as a weighted transducer

4.2. Network Combination

The network components can be combined by applying composition operations. Consider

the word model in Figure 4.4. The transducer L is formed by taking the union of this

transducer with the transducers for the remaining word models in the grammar G of

figure 4.6, and then taking its Kleene closure by connecting an E-transition from each

final state to the initial state. The resulting transducer L would pair any sequence of

words from that vocabulary to their corresponding pronunciations. Thus,

L°G

gives a transducer that maps from phones to word sequences restricted to G.

The composition can also be used to implement a context-independent substitution.

However, a mai or advantage of transducers for speech recognition is that they generalize

naturally the notion of context-independent substitution of labels by a network to the

context-dependent case. The transducer of Figure 4.3 does flot correspond to a simple

substitution, since it describes the mapping from context-independent phones to context

dependent triphonic models, denoted by phone/left context right context.

The following simple example shows the use of this context-dependency transducer. A

context-independent string can be represented by the obvious automaton having a single

path as in the example in Figure 4.7a. We thus can interpret it as a corresponding

transducer with identical input and output labels. Then we compose it with the context

dependency transducer in Figure 4.3. The result is the transducer in Figure 4.7b, which

has a single path labeled with the context-independent labels on the input side and the

corresponding context-dependent labels on the output side.

data:data/O66

worse;worse/O.3

57

The context-dependency transducer, of course, can be composed with more complex

networks than the trivial one in Figure 4.7a. For example, composing the context

dependency transducer with the transducer in Figure 4.7c resuits in the transducer in

Figure 4.7d. By definition of relational composition, this must correctly replace the

context-independent units with the appropriate context-dependent units on ail its paths.

Therefore, composition provides a convenient and general mechanism for applying

context-dependency to CSR networks.

OOO—Ø
(a)

y:y/xx
Y:Y/x_eD

Let C represent a context-dependency transducer from context-dependent phones to

context-independent phones, then

C°L°G

gives a transducer that maps from context-dependent phones to word sequences restricted

to the grammar G. Note that C is the inverse ofa transducer such as in Figure 4.3.

(b)

(e)

(d)

Figure 4.7: Context-dependent composition examples

58

The context-dependency transducer, of course, eau be composed with more complex

networks than the trivial one in Figure 4.7a. for example, composing the context

dependency transducer with the transducer in Figure 4.7c resuits in the transducer in

Figure 4.7d. By definition of relational composition, this must correctly replace the

context-independent units with the appropriate context-dependent units on ail its paths.

Therefore, composition provides a convenient and general mechanism for applying

context-dependency to CSR networks.

OOO—O
(a)

OO Y:Y/xxK»
XX/XY4 ‘O

Let C represent a context-dependency transducer from context-dependent phones to

context-independent phones, then

C°L°G

gives a transducer that maps from context-dependent phones to word sequences restricted

to the grammar G. Note that C is the inverse of a transducer such as in figure 4.3.

(b)

(e)

(d)

Figure 4.7: Context-dependent composition examples

5$

As the pronunciation lexicon, the HMM set is represented as H, the closure of the union

ofthe individual HMMs as in figure 4.2. With Hin hand,

H°C°L°G

gives a transducer that maps from distributions to word sequences restricted to G.

Thus composition can be used to combine ail levels of the CSR network into an

integrated network in a convenient, efficient, and general manner. Then the optimizations

are applied to reduce decoding time and space requirements. If the network needs to be

modified dynamically, for example by adding the resuits of a database lookup to the

lexicon and grammar in an extended dialogue, a hybrid approach is adopted so that it can

optimize the fixed parts of the network and can use iazy composition to combine them

with the dynamic portions during recognition.

4.3. Network Optimization

The benefits of transducer application in speech recognition are time and space

efficiency, which rely on the transducer optimization operations. Here two steps are

described in detail for optimizing an integrated network; (a) determinization, and (b)

minimization.

4.3.1. Determinization

The weighted transducer determinization is used at each step of the composition of each

pair of networks. The determinization eliminates redundant paths in the composed

network to reduce recognition time. furthermore, its use in intermediate steps of the

construction also helps to improve the efficiency of composition and to reduce network

size.

It can be shown that, in general, the transducer L °G from phone sequences to words is

not determinizable. This is clear in presence of homophones. Homophones are words of

the same language that are pronounced alike even if they differ in spelling, meaning, or

origin, such as “pair” and “pear”. Homophones may also be spelled alike, as in “bear” (the

animal) and “bear” (to carry). But, even in the absence of homophones, L might not

be determinizable because, in some cases, the first word of the output sequence cannot be

59

determined before the entire input phone sequence is known. $uch unbounded output

delays make L °G non-determinizable.

An auxiliary phone symbol, denoted # which marks the end of the phonemic

transcription of each word, is introduced to make it possible to determinize. Other

auxiliary symbols #o ... #k1 are used when necessary to distinguish homophones as in the

following example:

r eh d #o read

rehd#j red

At most P auxiiiary phones, where P is the maximum degree of homophony, are

introduced. The pronunciation dictionary transducer augmented with these auxiliary

symbols is denoted by L.

For consistency, the context-dependency transducer C must also accept ail paths

containing these new symbols. For further determinizations at the context-dependent

phone level and distribution level, each auxiliary phone must be mapped to a distinct

context-dependent phone. Thus, self-loops are added at each state of C, mapping each

auxiliary phone to a new auxiliary context-dependent phone. The augmented context

dependency transducer is denoted by C.

Similarly, each auxiliary context-dependent phone must be mapped to a new distinct

distribution name. P self-loops are added at the initial state of H with auxiliary

distribution name input labels and auxiliary context-dependent phone output labels to

allow for this mapping. The modified HMM mode! is denoted by H.

The addition of auxiliary symbols guarantees the determinizability of the transducer

obtained afier each composition, allowing the application of weighted transducer

determinization at several stages in the construction.

First, L is composed with G and determinized, yielding det(L G). The benefit of this

determinization is the reduction of the number of alternative transitions at each state to at

most the number of distinct phones at that state, while the original network may have as

many as V outgoing transitions at some states where V is the vocabulary size. For large

60

tasks in which the vocabulary has J 0 to 106 words, the advantages of the optimization

are clear [29].

The context-dependency transducer might flot be detenninistic with respect to the

context-independent phone labels. For example, the transducer shown in Figure 9 is flot

deterministic since the initial state admits several outgoing transitions with the same input

labels x or y. To build a small and efficient integrated network, it is important to first

determinize the inverse of C.

C is then composed with the resulting transducer and determinized. Similarly H is

composed with the context-dependent network and determinized. This last

determinization increases sharing among HMM models that start with the same

distributions: at each state of the resulting integrated network, there is at most one

outgoing transition label with any given distribution name. This leads to another

reduction in recognition time.

As a final step, the auxiliary distribution symbols of the resulting network are simply

replaced by ‘s. The corresponding operation is denoted by The sequence of

operations just described is summarized by the following construction formula:

N = ,r(det(H °det(C det(L oG)))) (4.1)

where parentheses indicate the order in which the operations are performed. The resuit N

is an integrated recognition network that can be constructed even in very large

vocabulary tasks, and leads to a substantial reduction ofthe recognition time [29].

4.3.2. Minimizatïon

Afier being determinized, the integrated network can be further reduced in size by being

minimized. We keep the auxiliary symbols in place, and then apply the minimization

algorithrn. After that, we can remove the auxiliary symbols:

N YTE(min(det(H °det(C det(L “G))))) (4.2)

Minimization only reduces the size of the transducers in terms of number of states and

transitions, but also significantly affects the decoding speed. As described earlier, a key

61

step of minimization is to push weights toward the initial state. The pruning, which uses a

conventional Viterbi beam search for the decoder, is also largely affected by this. It slows

down decoding if pushing in the tropical semiring in some cases [281, but in our tests it

gives good resuits. However, it surely has a beneficiai effect on the decoding speed if

pushing in the log semiring, which is that the negative log of the sum of ail probability

mass from each state to the (super-) final state is used as the reweighting potential

function. When this potential flinction is used for reweighting, the total sum of

probabilities over ail transitions ieaving any state is 1. Thus, the transducer is pushed in

terms of probabiiities along ail future paths from a given state rather than the highest

probability over the single best path. Interestingly, it can be proved that using either

pushing in the minimization step resuits in equivaient machines. However, by using log

probability pushing (pushing in the iog semiring), a property that holds for the language

model now also holds for the integrated network, namely the weights of the transitions

leaving each state are normalized as in a probabilistic automaton.

If the lowest cost path potentiai function is used, then classical single-source shortest path

algorithms can be employed, which we wiil describe in Chapter 5. However, adopting the

sum of probability mass potential function required a significant generaiization, of

independent interest, to the ciassicai algorithms [22].

In the WFSTs approach for C$R, since the search transducer is built statically, these

optimizations can be performed entirely off-une. The transducers in recognition network

are handled in a highly flexible way, independently of the decoder specifics about

contextual range. The final optimized network is substantiaily reduced to oniy twice that

of language model [27]. Cross-word context expansion increases the network by just a

few percents with respect to the optimized context-independent network [27].

In this chapter we have introduced the application of weighted transducers in speech

recognition. The transducers in the recognition network can be combined and then

standardized in order to increase time and space efficiency. In the next chapter we will

present a transducer compaction operation which can reduce the size of non

determinizable transducers.

62

Cliapter 5

The Compaction of Fïnite-State Transducers

In the last chapter we have surveyed weighted finite-state transducers in speech

recognition. Weighted determinization and minimization can optimize time and space

requirements of a transducer. However as aforementioned, flot ail transducers are

determinizable, even the resulted transducer N of eq.4.2. In cases when a transducer or a

weighted acceptor can flot be determinized, the transducer determinization and

minimization algorithms described in Chapter 3 cannot be applied. It is necessary to find

an operation to reduce the size of the transducer in order to fiirther increase time and

space efficiency in speech recognition. We developed a finite-state transducer

compaction algorithm which can apply on non-determinizable transducers to possibly

reduce the size of the transducers. It is very useftil in speech recognition as we will

discuss later.

5.1 Transducer Compaction

Any automaton (unweighted acceptor) can be determinized by applying classical

automata determinization operations and then can be minimized by applying classical

automata minimization [2, 30]. The transducer determinization and minimization can

only apply on determinizable transducers. To reduce the size of a non-determinizable

transducer, the considered transducer can conceptuaÏÏy be converted into an automaton.

Theoretically if we consider ail the symbols and cost of an arc as a single label, the

transducer cari be considered as an automaton. Therefore by applying classicai automata

determinization and minimization on the “converted” transducers, i.e. the new automata,

the original transducers may be possibly reduced in size. However a weight pushing

operation can also be used before converting the transducer into automaton, and then the

classical automata determinization and minimization can be used to reduce its size as

much as possible. This operation is called transducer compaction. The transducer

compaction operation has the foilowing six steps:

1. Weight pushing: to push the weight towards the initial state as much as possible for

weighted transducers or acceptors.

2. Encoding: to convert a transducer into an automaton, that is to encode each triple of an

input label, output label, and cost (weighted transducers) or each double of an input

and cost or output (weighted acceptors or string-to-string transducers) into a single

new label.

3. Determinization checldng: to check the determinism of the new automaton. If it is

deterministic skip the determinization step, i.e. step 4, and go to minimization directly.

4. Determinization: to apply the classical automata determinization on the new

automaton..

5. Minimization: to apply classical automata minimization on the deterministic automata.

6. Decoding: the encoded labels are decoded back into their original values.

5.2 The Automata Determinization

The well-known powerset construction from [30] shows that for any non-deterministic

finite automaton (NFA) there is an equivalent deterministic finite automaton (DFA). The

main idea ofthe construction is to consider sets of states ofthe NfA as states ofthe DFA.

The DfA uses these sets to remember the set of states that the NFA could have reached

afier reading the same input.

5.2.1 The Automata Determinization Algorithm

Let the input finite automaton Aj=(I, Q’, I, Fj, E,) and the output deterministic finite

automaton A=(Q, (I), F, K). A is the resuit of the determinization of A,. det(Aj),

accepting L(A1).

The pseudocode ofthe automata determinization is as follows:

1. F—E*--0

2. i÷—I,

3. S*—Q—{I}

4. while$Ø

5. do s— head[S]

64

6. fsflFiØ

7. thenF4—Fu{s}

8. for each a E Xsuch that ôj(s, ci) 0

9. dof6i(s,a)EQ

10. then Q— Q u { (s, ci) }
J]. ENQUEUE (5 6i(s, a))

12. E÷—Eu {(s,a, 6’j(s, a))}

13. DEQUEUE (S)

figure 5.1 The automata determinization algoritbm

5.2.2 The Complexity of the Automata Determinization Algorithm

1. for ioop of unes 4-13: each subset s is enqueued at most once (test une 9), hence the

loop is executed at most as many times as the number of states created IQI (IQI<2hI).

2. Test une 6: proportional to the size of s: O(IsI),

3. Loop 8-13: the number of iterations can be made independent of By considering

Ei[sJ = uqEsEt[qJ,

(a) the loop is executed at most lEI times,

(b) une 8:

i. in general, one needs to sort the transitions to determine the set of transitions of

Ei[s] labeled with each a: O(IE1[sJIlog(IE1[s]I)),

ii. if the transitions of A1 are presorted with respect to a total order defined on .L a

k-merge ofE[q], qqs, can be used: O(lEi[sjI1og(is)),

(c) une 9:

i. the test can be done by sorting the elements of 6i(s,a): O(I51(s,a)Ilog(I61(s,a)I)),

and then using a direct-address table or using a perfect hashing: O(15i(s,a)l),

ii. if the transitions are presorted with respect to X and the destination states, and

if a k-merge is used, no additional sorting is necessary,

iii. in practice, a hash table is used for the membership test and for assigning

numbers to the states,

65

4. Total complexity:

(a) O(QmaxSEQIsj + SEQ(E1 [s] Ilog si) + lEImaxSEQIsl)

= O(iQjl(iQI + lEI + EilogiQi)}

(b) Exponential with respect to the size ofA1: Q = O(2).

It is easy to see that the first term in (a) dominates the running time ofthe algorithm,

hence the total complexity is: O(iQil 2).

5.3 Weight Pushing

Weight Pushing consists in pushing ail the weights along the path towards the initial state

as much as possible. It is a special case ofreweighting.

5.3.1 Reweighting

Here we will describe the reweighting in the case of the tropical semiring, a similar

definition can be given in the case of other semirings. There are infinite ways of

reweighting for a weighted automaton to produce equivalent automata. Given a weighted

acceptor T = (Q, , j, F, E,
,

p) over the semiring K as defined in section 2.2.7.1 we can

let a transition t = (p[t], l[t], w[t], n[t]) E E represent an arc from the source state p[t] to

the destination state n[t], with the label Ï[t] and weight w[t]. In speech recognition, the

transition weight w[t] ofien represents a probability or a log probability.

We can change the transition weights of a weighted acceptor T without modifying path

weights [27]. To see how it works, let V. Q — K — (O} be an arbitrary function, called a

potential function on states. Update the initial weight, the transition weights, and the final

weights by:

2—2®V(i) (3.1)

Ve E E, w[e] — [V(pfe»f’ ® (wfeJ 0 V(hLeJ,)) (3.2)

VfEF,p— [VUr’®p (3.3)

It is easy to see that this reweighting does flot affect the total weight of a successftil path

and that the resulting automaton is equivalent to the original since the potentials along

any successful path cancel each other.

66

Weight pushing consists of reweighting an automaton with the potential V defined in such

a way that for each state q E Q, V(q) = d[q], the shortest distance from q to the final

states f defined by:

d[q] = JrEP(q)W[7T]

where P(q) represents the set of ail paths from q to f. for the case of semirings, we can

assume that the semiring K is divisible [28], that is for any a b E K such that a e b O

there exists a E K such that:

a (a b) 0 a

When K is divisible, for each pair (a, b) such that a e b O, a fixed element a can be

selected to satisfy this equation. We eau aj the remainder of the division of a by a e b

and write:

a1 (a e bj’ 0 a

figure 5.3 shows the resuit ofpushing for the input automaton of figure 5.2 defined over

the tropical semiring. As can be seen from Figure 5.3, the shortest path from each state to

a final state has weight zero. This is a general consequence of pushing in the tropical

semiring. figure 5.4 shows the resuit of pushing in the log semiring applied to A1. At

each state, the probability weights of outgoing transitions sum to one.

aJO

figure 5.2: Weighted acceptor A1

67

aJO

The key step in weight pushing is how to compute the potential function. In the case of

the tropical semiring, the shortest distance from each state to final states can be computed

efficiently using classical single-source shortest-paths algorithms [23].

In the case of probabiÏity semiring or the Ïog semiring, a modified version of the floyd

Warshall algorithm can effectively compute shortest distances under certain general

conditions [23]. But, this algorithm has time complexity O(1Q12) and space complexity

0t1Q13). This can make its application to large transducers in speech recognition

impossible in practice. However, a generic single-source shortest-distance (SSSD)

algorithm can work with any k-cïosed semiring [231. A k-closed semiring is a semiring

for which there exists k such that:

k+t k

VaEK ae3a
n=O n=O

figure 5.3: Weighted acceptorA2 obtained bypushing from A1 in the tropical semiring

figure 5.4: Weighted acceptor A3 obtained bypushing from A1 in the log semiring

6$

We can see that the tropical semiring is O-closed. The log semiring is flot k-closed for any

kE N However, if the equality tests in the SSSD algorithm are replaced by approximate

equalities modulo a small number E, then the $$SD algorithm can also cover the case of

the log semiring by producing E-approximations ofthe correct shortest distances. $maller

‘s resuit in better approximations and in practice, the resulting approximation is in the

order of or less than that of the approximations afready made in speech recognition [28].

In the case of the log semiring, the SSSD algorithm is several orders of magnitude faster

than the extension of the floyd-Warshall algorithm and is very practical even for very

large recognition transducers. In the case of tropical semiring, the SSSD algorithm

coincides with classical shortest-distance algorithms.

5.3.2 Weight Pushing Pseudocode

GENERIC-$INGLE-SOURCE-SHORTEST-DISTANCE (WEIGHTED A CCEFTOR T)

1 forj+—] to QI

2 dod[j]—rLJ7—O

3 d[t] +— r[ij — 1

4 5÷— {i}

5 whileSO

6 do q÷-- head(S)

7 DEQUEUE (S)

$ R÷—r[q]

9 r[q]—0

10 for eacheEE[q]

11 do if d[n[e]] d[n[e]] (R ® w[e])

12 then d[n[e]] — d[n[e]] (R ® w[e])

13 r[n[e]] *— r[n[e]] (R 0 w[e])

14 ifn[e]S

15 then ENQUEUE($, n[e])

16 d[i]4— 1

figure 5.5: Generic single-source shortest-distance algorithm

69

figure 5.5 gives the pseudocode ofthe algorithm. A queue $ is used to maintain the set of

vertices whose leaving edges are to be relaxed. $ is initialized to {i} (une 4). For each

vertex q E Q, two attributes are maintained: d[q] E K an estimate of the shortest distance

from 1 to q, and r[q] E K the total weight added to d[q] since the last time q was extracted

from S. Lines 1-3 initialize arrays d and r. Aller initialization, d[q]= r[q]= O for q E Q —

{i}, and d[q]= r[q]= 1. Given a vertex q E Q and an edge e E E[q], a relaxation step on e

is performed by unes 11-13 of the pseudocode. Each time through the while loop of unes

5-15, a vertex q is extracted from $ (unes 6-7). The value of r[q] just aller extraction of q

is stored in R, and then r[q] is set to O (unes 8-9). Lines 11- 13 relax each edge leaving

q. If the tentative shortest distance d[n[e]] is updated during the relaxation and if n[e] is

flot already in S, the vertex n[e] is inserted in $ so that its leaving edges are later relaxed

(unes 14-15). r[n[e]] is updated whenever d[n[e]] is, to keep track of the total weight

added to d[n[e]] since n[e] was last extracted from S or since the time aller initialization

if n[e] has neyer been extracted from S. finally, une 16 resets the value of d[i] to 1. The

algorithm works with any queue discipline chosen for S.

It can be proved that using either tropical or log semiring pushing in the minimization

step resuits in equivalent machines with the same number of states and transitions [28].

However it is radically different on how the weights are distributed along a path.

Experimental tests show that pushing in the log semiring benefits speech recognition

pruning while using the tropical semiring can, in fact, 5e harmful in some cases [28]. In

our tests pushing in the tropical semiring also gives good results.

5.3.3 Complexity

The complexity of the algorithm depends on the semiring and the choice of queue

discipline. Let T1 be the worst cost for inserting a state q in S, Te be the worst cost for

extracting q from S, Nq be the number of times that q has been inserted in S, and Te, T,

and Ta 5e the complexity of, ®, and assignment operation, respectively.

The total complexity, in general, for this algorithm is [32]

O(1QI+(Te +Te+T)(IE[q](.Nq))+(1+Te) Nq)
qeQ qeQ

70

5.4 The Automata Minimization

5.4.1 Partitioning

Suppose we are given a set 8, and an initial partition 2T of $ into disjoint blocks {Bj, 32,

B}. We are also given a function Ion L Our task is to find the coarsest (having

fewest blocks) partition of$, say r’{ E1, E2, ... , E}, such that:

1. n’ is consistent with r (that is, each E is a subset of some B,), and

2. a and b in E impliesj(a) andj(b) are in some E.

We shah cail n’ the coarsest partition of$ compatible with 2randf

The obvious solution is to repeatedly refine the blocks of the original partition by the

following method. Let B1 be a block. Examinej(a) for each a in B. B is then partitioned

so that two elements u and b are put in the same block ifff(a) and J(b) are both in some

block B1. The process is iterated until no further refinements are possible. This method

yields an 0(n2) algorithm, since each refinement requires time 0(n) and there can be 0(n)

refinements.

We can develop a partitioning algorithm that in refining a block into two subblocks

requires time proportional to the smaller subblock. This approach results in an 0(n log n)

algorithm [2].

For each Bç8, letf’(B){bjf(b)eB}. Instead ofpartitioning a block B by the values of

f(a) for u E B, we partition with respect to B- those blocks B1 which contain at least one

element inf’(B,) and one element flot inf’(Bj,). That is, each such B1 is partitioned into

sets {blbEB1andf(b)EB1} and {bbe B1andf(b,)B1}.

Once we have partitioned with respect to B, we need flot partition with respect to B again

unless B1 itself is split. If initiallyf(b) B for each element b E B1, and B is sphit into B’

and B-”, then we can partition B with respect to either B1’ or B-” and we wihl get the

same result since {bb E B andfb,)e B’} is identical to B,-{bIbe B1 andf”b,e B1”}.

Since we have our choice of partitioning with respect to either B-’ or B-”, we partition

with respect to the easier one. That is, using the smaller off ‘(3g’) and f ‘(Bi”). The

algorithm is given below:

71

Input. A set of n elements S, an initial partition n={Bj, B,,..., B}. and a functionf $—S’

Output. A partition n’={Bj, B2, ..., Bq} such that n’ is the coarsest partition of S

compatible with r and f
Partition algorithm:

1. WAITTNGÉ-{1, 2, ...,p}

2.q t-p;

3. While WAITING flot empty do

4. Select and delete any integer 1 from WAIT1NG;

5.

6. for eachj such that B3 fl 0, B3 do

7.

8. creat a new block Bq;

9. Bq&BjnBinv;

10. BjBj—Bq;

11. 1ff is in WAIflNG then add q to WAITTNG

12. Else

13. If IIBjII<113q11 then

14. Addj to WAITTNG

15. Else add q to WAITESTG

Figure 5.6 Partitioning algorithm

5.4.2 Applications of Partitioning Algorithm

for a finite automaton MA=(2’ Q, qo, F), 6is a mapping from Q x Xto Q rather than

just a mapping from Q to Q. However we can treat 6as a set {ôi, 5,
..., } offiinctions

on S, where each is the restriction of 6to the input symbol a.

By placing pairs (j,) in the WAITING. Each pair (I,) consists ofthe index j ofblock

a ofthe partition, plus c9, the function on which to partition.

Initially, WAITING = { (ï, c) ï] or 2 and ae’}, since initial partition { F Q-F} has

two blocks.

72

Definitïon 1: Consider the equivalence relation on Q defined by

q p if VZUE)efp, zî) F

for q EQ, the equivaience class of Q containing q is denoted by [q]. Then the minimal

DfA for L is given by MA=(X Q qo’, 8 F’), where

Q’=QI

qo’=[qo]

F’=r{[J]feF}

S’([q], a)[q, ci)] for ail qeQ and ail aeX

Note that Sis well-defined since forp, qeQ withp q one has VaEX p, a)=tq, a).

Ail DfA’s that accept the same language as a given minimal DFA are either isomorphic

to it or have more states.

Definition 2 : for ail aeZ let : Q—+Q, q=;q, a).

Cail a partition 7T of Q compatible with 5 if

VCe n UzeX 33€ 2i: Cc:S1’(B)

Lemma 1: The partition induced by is the coarsest partition compatible with S that

refines {F Q\F}.

Lemma 1 ailows us to develop an interesting algorithm whose main idea is to refine the

initial partition {P QF} stepwise until it is compatible.

Let r be a partition of Q that we intend to make compatible by refinement. We eau c the

elements of rblocks. Let B be such a block and ci EX

We eau a block C E7C compatible wrt 3 and a iff Cfl ‘(B) = O or CçS’(3).

If there is a block C flot compatible wrt 3 and ci, then this biock C must flot stay in the

partition because it is not compatible with any refinement of n. So we spiit C up into C,

and C2 with Ci — Cfl ‘(B), C2 —C’\’t3). Afterwards, both Ç,, Ç, are compatible wrt

B and a, and the new partition ‘robtained from the old one by r\ {C}{C,, C2}.

We have to repeat this “spiitting wrt B and a” until every biock is compatible wrt every

other block and every letter in X

73

Once ail blocks have been treated wrt B and a (and have been spiit if necessary), we need

flot spiit wrt B and a again until B itself is spiit. This is true because any subset of a block

compatible wrt B and a keeps that property.

The created new biocks Cj and C2 might make it necessary to spiit further blocks (wrt C

and some a ‘Es), so we will have to use some mechanism to remember them.

If C had to be remembered before we spiit it, we may forget C and concentrate on Ci and

C2 instead, since any block that is compatible wrt Cj and C2 is compatible wrt C= C1uC2

as well.

If C had flot been one of the biocks to remember, this would be due to the fact that ail

other biocks were compatible to C. We observe that for ail blocks D compatible with C,

we have that D is compatible with C1 iff D is compatible with C2. Therefore it suffices to

remember either Cj or C2 because spiitting wrt one of the C will make sure that the

resulting blocks are compatible with the other one as well. 0f course, it is convenient to

choose to remember the smaller of Ci and C2

5.4.3 The Automata Minimization Algorithm

The algorithm is described below. The correctness ofthe algorithm is proved in [2].

The automata minimization algorithm:

(1) 2r+-{F,Qf}.

(2) for ail aeldo

(3) IFI1Q1then

(4) W(a) &-(F}

(5) else

(6) W(a) —{Q\F}

(7) while U W(a)O do

(8) select one be’and delete any B from W(b)

(9) ÷—

(10) for each Ceirnot compatible wrt B and b (i.e. CflB1 0 and C z do

(11) C1&-CflB1

(12) C2 ÷—C\

74

(13) 2T+-7Z(C} u(Cj, C2}

(14) for ail ae2do

(15) ifCisin W(a)then

(16) W(a) 6—W(a) (C}u{ C1 C2)

(17) else

(1$) if I C1<C2 then

(19) W(a) ‘—W(a) u{ Cj)

(20) else

(21) W(a) —W(a) u{ C2)

Figure 5.7 11e automata minimization algorithm

We can extend the automata minimization algorithm to the transducer minimization as

follows:

Finite state machine MA=(Q, qo, 5 F):

(1) r’ç—{f,{qo},Q’} whereQ’÷— Q\{qo}

(2) Wlist+— {F’} whereF’+— {(i, b)I iEFU{qo}, bEJandb goesto i}

(3) while Wlist O do

(4) select one b E’ in any A ‘e Wlist and delete (I, b) for ail ï EA where A is a

correspondence block of A ‘(see N.B.)

(5) if A ‘ is empty then delete A ‘from Wlist

(6) B, ÷—

(7) for each blocklset Ce r flot compatible wrt block A and edge b (i.e. C fl B,, 0,

C B1 and C B) do

(8) C1’—Cfl31

(9) C2 — C

(10) n—n\{C}u{ C1, C2}

(11) if C’, the correspondence block of C, is in Wlist then

(12) Wlist —J’J’7ist\{C’}u{ C1’, C2’}

(13) else

75

(14) if I C1<jC2 then

(15) Wlist÷—Wlist’{ Cj’}

(16) else

(17) Wlist’—Wlistu{ C2’}

figure 5.8 The transducer minimization algorithm

(1) The block in r is different from the block in Wlist in terms of their elements. That is,

the elements in r is a set of states only and in Wlist is a set of state and incoming edge

pairs. But for each block A’ in Wlist there is a correspondence block A in r. In other

words, if A E2ri.e. A {i I ieQ} then there is a correspondence b1ock’in WlistA’ =

{(i, b)l IEA, be’and b goes to i}, e.g. C’={(i,a)I iEC, Cén aeEand a goes to i},

Cj ‘={(i,a)I iEC1, Cjer aEZand a goes to i}

C,={(i,a)I IEC2, C7e ae’and a goes to i}

for the weighted transducer in the compaction algorithm, the triple string-string/weight is

just considered as a unique label, i.e. the unique edge. So each element in Z’is a string

string/weight triple.

5.5. Complexity of Transducer Compaction

In the general case, the classical automata minimization algorithm [2] runs in time

O(f2](QjlogQI). h can be shown that a better implementation ofthe algorithm described

in [2] makes it independent of the size of the alphabet. It then depends only on the in

degree of each state. Thus, a beffer evaluation of the nnming time of this algorithm is

O(IEI Ïog IQI). Hence the transducer compaction minimization step runs in O(IEI . log

IQD.
The overall complexity ofthe compaction algorithm is analyzed as follows:

(1) if the converted automaton is non-deterministic, the determinization step runs in

O(lQl2) and it dominates the running time of the transducer compaction

algorithm. Thus the overall complexity is: O(IQI2).

76

(2) If the converted automaton is deterministic, the transducer compaction algorithm

can just check the determinism and then bypass the determinization step. The

minimization step dominates the running time of the algorithm and it takes O(EI

log QI).

5.6 Transducer Compaction in Speech Recognition

In the previous chapter we have shown that the final transducer N can be formed with

operations following equation 4.2, i.e. N rc(min(det(H° det(Co det(L G))))). N is flot

necessarily determinizable, because of the substitutions of distinct auxilliary markers

with unique epsilons, and may possibly be reduced furthermore. However, instead of

using equation 4.2 we can incorporate the transducer compact operation--compact on

equation 4.1 directly, i.e.,

N = compact(t(det(H O det(C det(L C G))))) (5.1)

And then we can proceed with epsilon removal operation rem on it, finally we have the

transducer N as:

N rem (compact(7t(det(H° det(C det(L C G)))))) (5.2)

Now N is a compact representation of the recognition network as a single transducer and

we can use it to build a speech recognizer to run our speech recognition tasks.

In this chapter a transducer compaction operation is introduced. Its application to speech

recognition gives a very compact representation of the recognition network and better

time and space efficiency.

In the next chapter we will mn some tests on the transducers used for building a speech

recognizer in CRIM.

77

Chapter 6

The Experimental Tests of the Transilucer Compactïon

Algorithm

In the last chapter we have introduced a transducer compaction algorithm and its

application in speech recognition network. In this chapter we will test the transducer

compaction on some transducers currently used in CRIM for building speech recognizers.

Test resuits show that our transducer compaction operation can increase time and space

efficiency in speech recognition.

6.1 Test Components

Thanks to Patrick Cardinal who developed most of the transducer operation code for the

F$M tools in the speech recognition group of CRIM, we can use his fSMPush,

fSMEncode, F$MDecode, f$MDeterminize, fSMRmEpsilon, and fSMCompact which

was written by me to test the transducer compaction algorithm.

FSMPush implements the weight pushing operation on transducers. The weights are

pushed towards the initial state as much as possible.

fSMEncode implements the conversion of a transducer into an automaton and creates an

additional symbol transducer (in fact, it is only a mapping list) to remember the mapping

of labels in conversion.

FSMDecode implements the recovery of the transducer by decoding back the arcs of the

the automaton into original arcs.

FSMDeterminize implements the transducer determinization, it does the same operation

as the automata determinization when the transducer is converted as an automaton by

using FSMEncode operation.

FSMRmEpsilon removes all the epsilon labels in the transducers.

fSMCompact implements the classical minimization on transducers by considering alI

labels and weights ofone arc as a single label without explicitÏy encoding them.

7$

6.2 Experimental Tests

The AUPELF task [13] is tested in our experiments.

6.2.1 AUPELF Task

AUPELF is a standard French language, large vocabulary dictation task from the

AUPELf 97 evaluation [13], which has a vocabulary of 20,000 words. Acoustic

models were trained on BREF-80 and a subset of BREF-Total, containing 53

hours of speech from 100 speakers. Acoustic parameters were 12 Mel

Frequency Cepstral Coefficients (MFCCs) plus energy, and their derivatives. Cross-word

triphone acoustic models were trained with 3981 output distributions, each being a

Gaussian mixture with 32 components and sharing a single global full covariance matrix.

Note that models were not gender-dependent, and that no speaker adaptation (such as

VTLN or MLLR) was used.

N.B.: MFCCs is a representation defined as the real cepstrum of a windowed short-time

signal derived from the Fast Fourier Transform (FFT) of that signal. The difference from

the real cepstrum is that a non-linear frequency scale is used, which approximates the

behavior ofthe auditory system.

6.2.2 Test and Resuit

The tests are done on a Pentium III 866 MHZ under the Linux operating system with the

following command in pipe for transducer compaction operation:

f$MPush —i input transducer I f$MEncode — key.fst I fSliDeterminize I FSMDecode —

key.fst I fSliCompact> output_transducer

key.fst is the additional symbol transducer (in fact, it is only a mapping list) created by

FSMEncode operation to remember the mapping of labels in conversion.

79

Resuits are given in the following table:

Transducer HCDG size Recognition Recognition

(states/arcs) Time Accuracy

ltE(det(H det(C ° det(L O G)))) 6,926,124/9,971,017 1.42X 84.3%

compact(it(det(H° det(C0 det(L0 6,035,816/9,044,551 1.33X 84.3%

rem6 (compact(t(det(H° det(C ° det(L ° G)))))) 4,561,788/1 1,61 9,818 1 .22X 84.3%

Table 6.1 Test resuit on AUPELF task

N.B.: X stands for the real-time performance.

Recognition accuracy is computed by the following equation:

Accuracy = [1 - (S + I + D)/N)] * 100%

Where S represents substitutions of words by other words, I insertions of words, D

deletions ofwords, and N the total words in the test corpus.

From the resuits we can see clearly that with transducer compaction operation, both the

size of the transducer and the recognition time are reduced. The number of states and arcs

are reduced by 13% and 9% respectively; while the recognition time is reduced by 6%

with the recognition accuracy being unchanged (84.3%).

Moreover, with further E-removal operation we obtain even better resuits than that with

transducer compaction. The improvement is also very significant, with the number of

states and the recognition time reduced by 24% and 8% respectively. But the number of

arcs is increased by 28%, which can cancel the effect of reduction in number of states.

However, the recognition accuracy keeps unchanged. In general, it fiirther reduces the

recognition time.

The test resuits show that the transducer compaction operation meets our objective. It can

apply on non-determinizable transducers to considerably increase time and space

$0

efficiency. It can be considered as an extension of the minimization operation with better

flexibility and efficiency in CSR.

However, the transducer compaction operation requires a lot of computation and memory

when the transducers are non-determinizable; while for detenninistic transducers it

performs as well as minimization.

In this chapter we have described the experimental test and the resuits. The resuits meet

the objective ofour research. Thus the transducer compaction operation can be applied on

non-determinizable transducers to reduce its size and acquire time and space efficiency in

CSR. In the next chapter we will conclude this research work and present the future

work.

81

Chapter 7

Conclusion

7.1 Review of the Work

This thesis has addressed statisticai CSR, several state-of—the-art weighted finite-state

transducer algorithms, and their application to speech recognition, and has presented a

transducer compaction algorithm for non-determinizable transducers which can be

applied in speech recognition for increasing time and space efficiency. In this chapter we

summarize this research as follows:

1. The statisticai C$R problem is a decoding probiem which searches word

sentences with the largest probability when an utterance is given. In statisticai

framework, it is assumed that each word can be expanded in a sequence of context

dependent HMM states, possibiy conditioned on the neighboring words in case of cross

word modeling. In practice, the Viterbi criterion is applied, and under this maximum

approximation, the search space can be described as a huge network to be explored for

finding the best path. The recognized words are then determined by the most probable

state sequence. The combinatoriai nature of possible state sequences makes the search

problem a formidable task, especially for LVCSR. Therefore, time and space

requirements are the major concerns for LVCSR, and the decoding strategy is another

concem. To ease these probiems we resort to the WFST approach in CSR.

2. In the WFST approach, ail components used in the search stage of CSR system

—language modei, pronunciation dictionary, phonetic context-dependency, HMM modei —

are represented as WF$Ts. These individuai models are then combined and optimized

using the generai weighted finite-state operations of composition, determinization,

compaction, and weight “re-distribution” (“pushing”). The purpose of these steps is to

create a singie optimized transducer that maps directly sequences of HMM-state-level

distributions to sequences of words. $ince the search transducer is buiit staticaily, these

optimizations can be performed entireiy off-une.

In WFSTs, the components of the recognition network, the transducers, are handied in a

highly flexible way, independently of the decoder specifics about contextual range. The

82

final optimized network is substantially reduced to only twice that of language model

[27]. Cross-word context expansion increases the network by just a few percents with

respect to the optimized context-independent network [27].

3. The composition, determinization, and minimization algorithms remove

redundancy and minimize the size of the recognition transducer in order to increase time

and space efficiency for CSR.

Composition: Composition is the key operation on transducers in speech

recognition. It can construct complex transducers from simpler ones. Also

it is useflil for combining different levels of representation in speech

recognition. Thus composition makes it possible to combine ail

transducers in cascade of the recognition network and to create an

integrated single transducer.

• Determinization: Determinization eliminates redundant paths in the

composed network to reduce recognition time. It can also be used in

intermediate steps of constructing a minimal transducer in order to

improve the efficiency of composition and to reduce the network size. It is

mainly used to increase the time efficiency.

• Minimization: Minimization minimizes the size of the transducer

considered. It pushes the weights towards the initial states as much as

possible, then finds the equivalent states in the transducer, and merges

them into one state. It can increase space and time efficiency in C$R.

• Weight pushing: Weight pushing pushes the weights of weighted

acceptors or transducers towards the initial states as much as possible. It

can be used in intermediate steps of constructing a minimal transducer.

Also it can affect the pruning of the decoder. Pushing in the log semiring

benefits speech recognition pruning. Thus it can improve the decoding

speed.

4. Finally a transducer compaction algorithm is presented. It is designed to reduce

the size of non-determinizable transducers. The transducer compaction operation has the

following six steps:

$3

1. Weight pushing: to push the weight towards the initial state as much as

possible for weighted transducer or acceptor.

2. Encoding: to convert a transducer into an automaton, that is to encode each

triple of an input label, output label and cost (weighted transducers) or

each double of an input and cost or output (weighted acceptors or string

to-string transducers) into a single new label.

3. Determinization checking: to check the determinism of the new

automaton. If it is deterministic skip the determinization step, i.e. step 4,

and go to minimization directly.

4. Determinization: to apply the classical automata determinization on the

new automaton..

5. Minimization: to apply classical automata minimization on the

deterministic automata.

6. Decoding: the encoded labels are decoded back into their original values.

7.2 Future Work

The decoder has a separate representation for variable-length lefi-to-right HMMs for

efficiency reasons, which is called the HMM specfication. However, the integrated

network we have described does flot take good advantage of this since, having combined

the HMMs into the recognition network proper, the HMM specification consists of trivial

one-state HMMs. Thus, by suitablyfactoring the integrated network, we can again take

good advantage of this feature. Therefore a suitable factoring can lead to a substantial

reduction in the size of the network. Currently a simple factoring method has been found

[29]. In the future work we have to find a more effective, less constrained factoring

method that can be used in CSR.

$4

References

1. A. Salomma. Formai Languages. Academic Press, New York, NY. 1973.

2. A.V. Aho, John E. Hopcrofi, and J. D. Uliman. “The Design and Analysis of

Computer Aigorithms”. Addison Weley: Reading, MA. 1974.

3. A.V. Aho, R. Sethi, and J. D. Uliman. “Compiiers, Princiies, Techniques and

Tools”. Addison Wesley: Reading, MA. 1986.

4. D. Perrin. Finite Automata. In J. Van Leuwen, editor, Handbook of Theoreticai

Computer Science, Volume B: Formai Modeis and Semantics, pages 1-57. Elsevier,

Amsterdam, 1990.

5. D. Revuz. “Minimisation of Acyclic Deterministic Automata in Linear Time”.

Theoreticai Computer Science, 92(1): 18 1-189, 1992.

6. E. Roche and Y. Schabes. “Finite-State Language Processing”. A Bradford Book,

The MIT Press, Cambridge, Massachusefts. London England. 1997.

7. F. C. N. Pereira and M. D. Riley. “Speech Recognition by Composition of Weighted

Finite Automata”. Finite-State Language Processing, edited by Emmanuel Roche and

Yves Schabes. A Bradford Book, The MIT Press, Cambridge, Massachusetts. London

England. 1997.

8. F. Jelinek. “Continuous speech recognition by statistical methods”. Proceedings of

the IEEE, 64:532-556, 1976.

9. H. Ney, U. Essen, and R. Kneser. On Structuring Probabilistic Dependences in

Stochastic Language Modelling. Computer Speech and Language, 8:1-38, 1994.

10. J. Berstel. Transductions and Context-Free Languages. B. G. Teubner Stuttgart,

1979.

11. J. Berstel and C. Reutenauer. Rationai Series and Their Languages. Springer-Verlag:

Berlin-New York, 1988.

12. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and

Computation. Addison Wesley: Reading, MA, 1979

85

13. J.M. Dolmazon, F. Bimbot, G. Adda, M. El Beze, J.C. Caerou, J. Zeiliger, and M.

Adda-Decker. ARC Bi - Organisation de la première campagne AUPELF pour

l’évaluation des systèmes de dictée vocale, J$T97 FRANCIL, Avignon, Avril 1997.

14. J. Qiu. Determinization of String-to-String/Weight finite State Transducers in

Speech Recognition. Master’s thesis, McGill University, School of Computer

Science, 2000.

15. K. Koskenniemi. “Finite-State Parsing and Disambiguation”. In proceedings of the
13th International Conference on Computational Linguistics. COLING-90, Vol. 2.

Helsinki, Finland, pages 229-232, 1992.

16. K. Koskenniemi, P. Tapanainen and A. Voutilainen. “Compiling and Using Finite

State Syntactic Rules”. In proceedings of the 15th International Conference on

Computational Linguistics. COLII\TG-92, Vol. I., pages 156-162, Nantes, France.

1992.

17. M. Mobri. On Some Applications of Finite-State Automata Theory to Natural

Language Processing. Naturat Language Engineering, 2:1-20, 1996.

1$. M. Mobri. finite-State Transducers in Language and Speech Processing.

ComputationalLinguistics, 23:2, pages 269-3 12, 1997.

19. M. Mohri. “On the Use of Sequential Transducers in Natural Language Processing”.

Finite-State Language Processing, edited by E. Roche and Y. Schabes. A Bradford

Book, The MIT Press, Cambridge, Massachusetts. London England, pages 355-382,

1997.

20. M. Mohri. Minimization Algoritbms for Sequential Transducers. Theoretical

Computer Science, 234(1-2): 177-201, 2000.

21. M. Mobri. Compact Representations by finite-State Transducers. Proceedings ofthe

32’” Meeting of the Association for Computational Linguistics (ACL 94), pages 204-

209, Las Cruces, New Mexico, 1994.

22. M. Mohri and M. Riley. “Weighted Determinization and Minimization for Large

Vocabulary Speech Recognition”. In Proceedings of the Eurospeech ‘97, pages 131-

134, Rhodes, Greece, 1997.

86

23. M. Mohri. General Algebraic Frameworks and Algorithms for Shortest-Distance

Problems. Technical Memorandum 9812]O-]OTM AT&T Labs - Research, 62 pages,

1998.

24. M. Mobri. Speech Processing. Graduate course, Columbia University, Department of

Computer Science, New York, NY, 515 pages. 199$.

25. M. Mobri, F. C. N. Pereira, and Michael Riley. Weighted Automata in Text and

Speech Processing, In ECAI-96 Workshop, pages 46-50, Budapest, Hungary, 1996

26. M. Mohri, F. C. N. Pereira, and M. Riley. The Design Principles of a Weighted

finite-state Transducer Library. Theoretical Computer Science, 231:17—32, January

2000.

27. M. Mohri and Michael Riley. Integrated Context-Dependent Networks in Very Large

Vocabulary Speech Recognition. In Proceedings ofthe 6th European Conference on

Speech Communication and Technology (Eurospeech ‘99). Volume 2, 811-814,

Budapest, Hungary, 1999.

28. M. Mohri and M. Riley. A Weight Pushing Algorithm for Large vocabulary Speech

Recognition. In (Eurospeech ‘01). Pages 70-73, Aalborg, Denmark, September 2001.

29. M. Mohri, F.C.N. Pereira, and M. Riley. Weighted finite-State Transducers in

Speech Recognition. Computer Speech andLanguage, 16(1):69-88, 2002.

30. M.O. Rabin and D. Scott. Finite Automata and their decision problems. IBM J Res

andDevelop. 3:2(1959) 115-125.

31. M. Siper. Introduction to the Theory of Computation. PWS Publishing Cornpany, 20

Park Plaza. Boston, MA 02116. 1997.

32. P. Cardinal. finite-State Transducers and Speech Recognition. Master’s thesis,

McGill University, School of Computer Science, 2002.

33. R.M. Kaplan and M. Kay. “Regular Models of Phonological Rule Systems”.

Computational Linguistics, 20, 1994.

34. S.C. Kleene. “Representation of Events in Nerve Nets and Finite Automata”. In C. E.

Shannon and J. McCarthy, editors, Automata Studies. Princeton University Press.

1956.

35. S. Eilenberg. Automata, Languages, and Machines. Volume A. Acadernic Press, New

York. 1974.

87

36. S. Eilenberg. Automata, Languages, and Machines. Volume B. Academic Press, New

York. 1976.

37. S.J. Young. “Statistical Modelling in Continuous Speech Recognition.” Proc Int.

Conference on Uncertainty in Artficial Intelligence, pages 562-571, Seattie, WA,

August 2001.

38. S. Katz. “Estimation of Probabilities from Sparse Data for the Language Mode!

Component of a Speech Recognizer”, IEEE Trans. Acoustics Speech and Signal

Processing, 35, 400—401, 1987.

39. 5. L. Graham, M. A. Harrison, and W.L. Ruzzo. “An Improved Context-Free

Recognizer”. ACM Transactions on Programming Languages and Systems, 2, 1980.

40. S. Ortmanns, H. Ney and A. Eiden. Language-model look-ahead for large vocabulary

speech recognition. In Proceedings of the International Conference on Spoken Lan

guage Processing (IC$LP ‘96), pages 2095—2098. University of Delaware and Alfred

I. duPont Institute, 1996.

41. T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms, The MIT Press:

Cambridge, MA, 1992.

42. The HTKBook (for HTK Version 3.0). Cambridge University, 2000.

43. W. Bauer. “On Minimizing Finite Automata”. SA TA CS Bulletin, 35, 1988.

44. W. Kuich and A. Salomaa. Semirings, Automata, Languages. Number 5 in EATCS

Monographs on Theoretical Computer Science. Springer-Verlag, Berlin, Germany,

1986.

$8

