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Résumé

Ma thése donne un apergu de l'utilisation des transducteurs a états finis pondérés dans le
domaine de la reconnaissance de la parole. La théorie des transducteurs permet une
manipulation efficace des modeles de langage humain dans les systemes de
reconnaissance de la parole en représentant, de fagon générale et naturelle, les différentes
composantes du réseau de connaissances. Ce réseau est construit efficacement grace aux
opérations générales qui permettent de combiner, d'optimiser et d'élaguer des
transducteurs. La plupart des opérations applicables aux transducteurs ainsi que leur
utilisation en reconnaissance de la parole sont décrites en détail. Ensuite, un algorithme
permettant de " compacter " les transducteurs non-déterminisables est développé et testé
sur plusieurs transducteurs, montrant ainsi son efficacité a diminuer leur taille.

Mots clés: transducteurs a états finis pondérés, reconnaissance de la parole, réseau de

connaissances, compactage, déterminisation



Abstract

My thesis surveys the weighted finite-state transducers (WFSTs) approach to speech
recognition. WFSTs provide a powerful method for manipulating models of human
language in automatic speech recognition systems due to their common and natural
representations for each component of speech recognition network. General transducer
operations can combine, optimize, search and prune the recognition network efficiently.
The most important transducer operations and their applications in speech recognition are
described in detail. Then a transducer compaction algorithm for non-determinizable
transducers is developed and some test results show its effectiveness in reducing the size

of the transducers.

Keywords: weighted finite-state transducers, speech recognition, recognition network

compaction, determinization.
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Chapter 1

Introduction

Continuous Speech Recognition (CSR) is sufficiently mature that a variety of real world
applications are now possible including large vocabulary transcription and interactive
spoken dialogue. Speech Recognition has been an active field of study since the
beginning of the 50's. Great progress has been made, especially since the 70's, using
statistical modeling approaches with Hidden Markov Models (HMMs) and is nowadays
regarded as one of the promising technologies of the future.

1.1 Continuous Speech Recognition

Speech recognition systems generally assume that the speech signal is a realization of
some message encoded as a sequence of one or more symbols [42]. To recognize the
underlying symbol sequence given a spoken utterance, the continuous speech waveform
is first converted to a sequence of equally spaced discrete parameter vectors. These
speech vectors are then transduced into messages by several stages [42]. Each stage can
be represented as a component of speech recognition network. Figure 1.1 illustrates the
stages for CSR. The speech vectors are first transduced into phones, the minimal units of
speech sound in a language that can serve to distinguish one word from another. The
phones are then transduced into syllables, the phonological units which are sometimes
thought to interpose between the phones and the word level. After that, words are formed

by concatenating the syllables and then the recognized sentences are composed with these

words.
Obs.er- . Speech Phones Sylla- R Words Senten-
vation Vectors bles ces

Figure 1.1 Speech Recognition Stages



The statistical approach assumes that the CSR problem is a search problem which is to
find the “best” word sentences with the largest probability for a given an utterance.
Usually cross-word modeling is used between transduction stages for high-accuracy
recognition. In other words, each word can be expanded in a sequence of context-
dependent HMM states, conditioned on the neighboring words. The recognized words are
then determined by the most probable state sequence.

However, currently the major concerns of CSR are the time and space efficiency,
especially for Large Vocabulary Continuous Speech Recognition (LVCSR). Indeed, one
of the trends which clearly come out of the new studies of LVCSR is a large increase in
the size of data. The effect of the size increase on time and space efficiency is probably

the main computational problem one needs to face in LVCSR.

1.2 Finite-State Transducers in Speech Recognition

In the previous section, we have introduced that the spoken utterances are recognized via
some transduction stages. Normally, a transduction stage in CSR is modeled by a finite-
state device, which is a string-to-string (like the dictionary), string-to-weight (like the
language model), or string-to-string/weight transducer (like the hidden Markov models).
Each finite-state device in a transduction stage stands for a component of a recognition
network.

The application of finite-state transducers in natural language and speech processing is a
popular research area [6, 17, 18, 19, 25, 29]. This area is attracting a great deal of
attention in the research in Speech Recognition because each component of the
recognition network can be represented by transducers (for example, the hidden Markov
models) and then these representations can be flexibly and efficiently combined and
optimized by transducer operations. The use of finite-state transducers in speech
recognition is mainly motivated by considerations of time and space efficiency. Time
efficiency is usually achieved by using sequential/deterministic transducers. The output
of sequential transducers depends, in general linearly, only on the input size and can
therefore be considered as optimal from this point of view. Space efficiency is achieved

with transducer minimization algorithms [20] for sequential transducers.



The important research topics on the finite-state transducers are their mathematically
well-defined operations that can generalize and efficiently implement the common
methods for combining and optimizing probabilistic models in speech processing.
Furthermore, new optimization opportunities arise from viewing all symbolic levels of
CSR modeling as weighted transducers [22, 29]. Thus, weighted finite-state transducers
define a common framework with shared algorithms for the representation and use of the
models in speech recognition.

The important finite-state transducer operations are composition, determinization, and
minimization. The composition can combine all levels of the CSR network into a single
integrated network in a convenient, efficient, and general manner. The determinization
algorithms try to construct an equivalent sequential transducer of a weighted transducer.
Instead of the original non-sequential transducer, this sequential transducer dramatically
increases the searching speed in Speech Recognition process. The running time of
sequential transducers for specific input depends linearly only on the size of the input. In
most cases the determinization of transducer not only increases time efficiency but also
space efficiency. The minimization can reduce the size of the CSR network and thus

increase the space efficiency.

1.3 Contribution

The main contribution of my research is the presentation of a transducer compaction
operation which can be applied on non-determinizable transducers to reduce the size of
the transducers. It is useful in CSR to increase time and space efficiency when the
recognition network is represented by weighted finite-state transducers. Moreover, the
implementation of the transducer compaction operation we have done in Centre de
Recherche Informatique de Montréal (CRIM) will be part of the tools for the speech
recognizer of CRIM.



1.4 Thesis Organization

The purpose of this thesis is to survey the weighted transducers in speech recognition and
then present a transducer compaction algorithm which can be applied on non-
determinizable transducers to reduce their size.

First, in Chapter 2, we give a review on statistical speech recognition and finite-state
devices. We describe the CSR problem as a decoding problem to find the word sentences
with the largest probability. The decoding is done with appropriate search strategy on the
recognition network formed by its components which are an acoustic model, a context-
dependency phone model, a pronunciation lexicon/dictionary and a language model in
cascade. Then, we give an extended description of some finite-state devices, these are
automata, string-to-string transducers, weighted acceptors, and weighted transducers. We
first describe the definitions and properties of automata. Next we consider the case of
string-to-string transducers. These transducers have been successfully used in the
representation of large-scale dictionaries. We describe the theoretical bases for the use of
these transducers. In particular, we recall classical theorems and give new ones
characterizing these transducers. We then consider the case of sequential weighted
acceptors and weighted transducers. These transducers appear very interesting in speech
recognition. Language models are represented by weighted acceptors and HMMs are
represented by weighted transducers. We give new theorems extending the
characterizations known for usual transducers to these transducers. We also characterize

the unambiguous transducers admitting determinization.

In Chapter 3, we describe some transducer operations. We briefly describe some basic
transducer operations such as union, concatenation, Kleene closure, projection, best path,
N-best path, pruning, topological sort, reversal, e-removal, and inversion. Then we give
a detailed description of composition, determinization, and minimization. We first
formally define the composition operation. We also describe the composition algorithm
for e-free transducers, then its extension for general case composition is given.
Composition operation can construct complex transducers from simpler ones and

combine different levels of representation in speech recognition. Furthermore we define



an algorithm for determinizing weighted acceptors, then its extension for determinizing
weighted transducers is given, and its correctness is proved. We also briefly describe the
minimization of sequential transducers which has a complexity equivalent to that of

classical automata minimization.

In Chapter 4, we discuss the application of transducers in speech recognition. Each
component of a recognition network can be represented by transducers. Then the
transducers in network cascade are combined using the composition operation. Finally

the network is optimized via determinization and minimization during composition.

In Chapter 5, we present a transducer compaction algorithm. It can apply on non-
determinizable transducers to reduce their size. This operation includes five steps:
weight pushing, encoding, determinization, minimization, and decoding. We first give the
automata determinization algorithm and then the weight pushing algorithm. The automata
determinization algorithm is the classical powerset construction algorithm which can
transform any non-deterministic finite automaton (NFA) into an equivalent deterministic
finite automaton (DFA). The weight pushing algorithm, which is similar to a generic
single source shortest distance algorithm, is to push the weight towards the initial state as
much as possible. Then we give the classical automata minimization algorithm which can
minimize the size of the automata. The transducer compaction operation is just a
combination of these algorithms in appropriate order. At last we describe the applications

of the transducer compaction operation in speech recognition.

In Chapter 6, we describe the experimental tests of the transducer compaction algorithm.
We test it on some transducers we have in CRIM for building a speech recognizer. Test
results show that the transducer compaction operation increases time and space

efficiency.

In Chapter 7, we summarize the whole research work with conclusions.



Chapter 2
Fundamentals of Continuous Speech Recognition and Finite-

State Transducers

This chapter gives a brief overview of the principles and architecture of modern CSR
systems, and describes some finite-state devices such as automata, string-to-string
transducers, weighted acceptors, and weighted transducers, in terms of their definitions

and properties.

2.1 Continuous Speech Recognition

A major breakthrough in speech recognition technology was made in the 1970’s when
Jelinek and his colleagues from IBM developed the basic methods of applying the
principles of statistical pattern recognition to the problem of speech recognition [8].
Systems based on this statistical framework proved to be superior to the former template

and rule based systems.

2.1.1 Framework

The statistical formulation of the CSR problem assumes that a speech signal can be
represented by a sequence of acoustic vectors O = 0,0;...or which are equally spaced
discrete parameter vectors, and the task of a speech recognizer is to find the most
probable utterance (sequence of words) W = w;w;...wx for the given acoustic vectors O.
This sequence of acoustic vectors is assumed to form an exact representation of the
speech waveform on the basis that for the duration covered by a single vector (around 10
ms) the speech waveform can be reasonably regarded as being quasi-stationary. The
specific form of the acoustic vectors is chosen so as to minimize the information lost in
the encoding and to provide the best match with the distributional assumptions made by

the subsequent acoustic modeling. The CSR problem is then cast as a decoding problem

in which we seek the word sequence /4 satisfying:

W=argmax P(W|0) (2.1)
W



Using Bayes’ formula,

W =argmax P(O | W)P(W) (2.2)

P(w10) denotes the probability that the words W were spoken, given that the evidence O
was observed.

P(w) denotes the probability that the word string # will be uttered.

P(0/w) denotes the probability that when the speaker says W the acoustic O will be
observed.

Here P(0/W) is determined by generative model and P(#) is determined by a language
model. Most of current research represents P(O/W) as an acoustic model. Here we
separate pronunciation model from acoustic model in the generative model for better
representation which we will explain later. The CSR problem is thus reduced to designing
and estimating appropriate generative and language models, and finding an acceptable

decoding strategy for determining W,

2.1.2 Generative Model for Speech Recognition

Since the vocabulary of possible words might be very large, the words in W are
decomposed into a sequence of basic sounds called base phone Q of which there will be
around 45 distinct types in English [37]. To allow for the possibility of multiple

pronunciations, the likelihood P(O|W) can be computed over multiple pronunciations.

POW) = ; P(O|Q)P(QIW) 23)
Where
P = T, PQiw 24)

And where P(Qilwy) is the probability that word wy is pronounced by the base phone
sequence Ok = q M qg(k).... In practice, there will only be a very small number of possible
O for each w;, making the summation in equation 2.3 easily tractable.

Here P(O|Q) is determined by an acoustic model and P(Q|W) is determined by
pronunciation model.

The generative model, P(O|W), is typically decomposed into conditionally-independent

mappings between levels:



e Acoustic model P(O|Q): mapping from phone sequences to observation

sequences.

e Pronunciation model P(Q|W): mapping from word sequences to phone sequences.

2.1.2.1 Acoustic Model
When the Context-dependent (CD) phone model is used, the computation of P(O|Q) can

be decomposed as:

P(0|Q) = 3 P(O\M)P(M|Q) 2.5)
Where M represents the CD phone seql';ences.
P(O|M) is determined by HMMs when CD phone model is considered. Whereas for
Context-Independent (CI) phone model, P(O|Q) can sufficiently be determined by
HMMs.

i. Hidden Markov Models (HMMs)

Each base phone ¢ is represented by a continuous density hidden Markov model (HMM)
of the form illustrated in Figure 2.1 with transition parameters {a;} and output
observation distributions {b,)}. The latter are typically Gaussian and since the
dimensionality of the acoustic vectors o, is relatively high, the covariances are

constrained to be diagonal.

Acoustic
Vector

Sequence ¥ by(o,) ébz(oz) V bs(o3y) vbi(0) ‘ bs(os)

o= [l o [ 05 [ o0 [] o5

Figure 2.1 HMM with 3 emitting states



Given the composite HMM M formed by concatenating all of the constituent CD model

phones the acoustic likelihood is given by
P(OIM)= ) PX,0|M) (2.6)
X

where X =x(0)...x(T) is the state sequence through the composite model and

T
pX 0ld) = axpyxy [ 1, b:0(00) axysas 2.7)

The acoustic model parameters {a;} and {b/)} can be efficiently estimated from a corpus
of training utterances using Expectation-Maximization (EM) which includes a E-step and
a M-step [9]. For each utterance, the sequence of baseforms is found and the
corresponding composite HMM constructed. A forward-backward alignment is then used
to compute state occupation probabilities (the E-step), the means and variances are then
maximized via simple weighted averages (the M-step) [9]. Note that in practice the
majority of the model parameters are used to model the output distributions and the the
transition parameters have little effect on either the likelihood or the recognition
accuracy.

ii. Context-dependent (CD) Phone Models

P(M|Q) are determined by a CD phone model. P(M|Q) maps the CD model sequences to
phone sequences.

In CD phone models each phone is assumed to be able to expand in a sequence of HMM
states conditioned on the neighboring phones, usually a triphonic model is used, in which
a phone is determined by considering the previous and the following phones. The CD

phone models are very useful in high-accuracy speech recognition.

2.1.2.2 Pronunciation Model
P(Q|W) is determined by a pronunciation model which maps the phonemic transcriptions
to word sequences. The pronunciation model is usually called Lexicon or pronunciation

dictionary.

2.1.3 Language Model

The probability of a word sequence W = w;w;...wg is



PW) = Hll(:l P(Wi| Wi-1, Wie2, ..., Wi) 2.8)

For large vocabulary recognition, the conditioning word history in equation 2.7 is usually

truncated to n-1 words to form an N-Gram language model

P(‘[/V) = H::l P(wkl W], Wk-2, «eey Wk-n+1) (29)

Where 7 is typically 2 or 3 and never more than 4. The n-gram probabilities are estimated
from training texts by counting n-gram occurrences to form Maximum-Likelihood
parameter estimates. The major difficulty of this method is data sparsity which is

overcome by a combination of discounting and backing-off [38].

2.1.4 Decoding

A modern speech recognition system thus consists of two stochastic knowledge sources,
namely the acoustic model and the language model, a lexicon (which in fact may also be
a stochastic model), and a phonetic context-dependent network (in case of cross-word
modeling) in the search stage [27]. These components are illustrated as a recognition

cascade in Figure 2.2.

o—— H C » L G |—»
observations Context-dependent phones word Word
phones sequence

Figure 2.2 Recognition cascade

In Figure 2.2, H is the union of all HMMs used in an acoustic modeling which maps
sequences of distribution indices to context-dependent phones. C is a phonetic context-
dependent model which maps context-dependent phones to phones for cross-word
modeling. L is a pronunciation dictionary or lexicon which maps phonemic transcriptions
to word. G is a language model, usually a 3-gram language model is used.

Once the whole speech recognition network is built, Viterbi decoding [42] is usually used
to compute the most likely state sequence for an unknown input utterance. Trace back

through this sequence then yields the most likely phone and word sequences.
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Decoding is a very complex search problem for LVCSR, especially when context-
dependent phone model and n-gram language model are used. A standard scheme for
reducing search costs uses multiple passes over the data. The output of each pass is a
lattice of word sequence hypotheses rather than the single best sequence. This allows the
output of one recognition pass to constrain the search in the next pass. An initial pass can
use simple models when the search space is large and later passes can use more refined
models when the search space is reduced.

However, the weighted transducer approach makes the decoding become easy and fast
without resorting to complex schemes. This will be described in detail in the following

chapters.

2.2 Finite-State Devices

Finite-state devices, such as finite-state automata, graphs, and finite-state transducers
have been known since the emergence of Computer Science and are extensively used in
areas such as program compilation, hardware modeling, and database management.
Although finite-state devices have been known for a long time, more powerful
formalisms such as context-free grammars or unification grammars have been preferred
in computational linguistics. However, the richness of the theory of finite-state
technology and the mathematical and algorithmic advances resulted in the recent study in
the field of finite-state technology have had a great impact on the representation of
electronic dictionaries, natural language, and speech processing. As a result, significant

developments have been made in many related research areas [7, 18, 26, 29, 34].

Some of the most interesting applications of finite-state machines are concerned with
computational linguistics [4, 21, 22, 24, 25]. We can describe these applications from two
different views. Linguistically, finite automata are convenient since they allow us to
describe easily most of the relevant local phenomena encountered in the empirical study
of language by compact representations [5]. Parsing context-free grammars can also be
dealt with using finite-state machines, the underlying mechanisms in most of the methods
used in parsing are related to automata [6]. From the computational point of view, the use

of finite-state machines is mainly motivated by considerations of time and space
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efficiency. Actually, the effect of the size increase on time and space efficiency is the
main computational problem not only in language and speech processing but also in
modern computer science. In language and speech processing, time efficiency is achieved
by using deterministic (or sequential) automata. In general, the running time of
deterministic finite-state machines for specific input depends linearly only on the size of
the input. Space efficiency is achieved with classical minimization algorithms for
deterministic automata. Applications such as compiler construction have shown

deterministic finite automata to be very efficient [16].

In speech recognition the Weighted Finite-State Transducer (WFST) approach has been
considerably studied recently [17, 18, 19, 21, 22, 25, 26, 28, 29]. WFSTs provide a
powerful method for manipulating models of human language in automatic speech
recognition systems due to their common and natural representations for HMM models,
context-dependency, pronunciation dictionaries, grammars, and alternative recognition
outputs. Moreover, these representations can be combined by general transducer
operations flexibly and efficiently [17, 28]. An efficient recognition network including
context-dependent and HMM models can be built using weighted determinization of
transducers [18, 22]. The two most important transducer operations, weighted
determinization and minimization algorithms, can optimize time and space efficiency.
The weights along the paths of a weighted transducer can be distributed optimally by
applying a pushing algorithm.

Sequential finite-state transducers are very important devices in natural language and
speech processing [18, 19, 20]. Sequential finite-state transducers, simply sequential
transducers are also called deterministic transducers. This concept is an extension from
deterministic automata to transducers with deterministic inputs. That is a machine which

outputs a string or/and weights in addition to accepting (deterministic) inputs.
Hereafter a detailed description of the related finite-state devices used for language

processing and speech recognition is given. As basic concepts, we first give an

introduction on the definitions and properties of finite-state automata and finite-state
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transducers. Then we consider the case of string-to-string transducers, which have been
successfully used in the representation of large-scale dictionaries, computational
morphology, and local grammars and syntax. Considered next are sequential string-to-
weight transducers or so called deterministic weighted acceptors. These transducers are
very useful in speech processing. Language models, phoneme lattices, and word lattices

are among the objects that can be represented by these transducers.

2.2.1 Finite-State Automata

Finite-State Automata (FSA) can be seen as defining a class of graphs and also as
defining languages. The following is a simple description on the definitions of FSA and
some closure properties. Other information, such as deterministic FSA (sequential FSA),

decidability properties, and space and time efficiency discussion are available from

references [4, 31, 35, 36].

2.2.1.1 Definitions
FSA:
A finite-state automaton 4 is a 5-tuple (Z, Q, 1, F, E), where:
e X is a finite set called the alphabet
e Qs a finite set of states
e Jc Qis the set of initial states
e F c Qis the set of final states
e Ec Ox((Zu {g}) x Qis the set of edges.

By this definition FSA can be seen as a class of graphs.
Figure 2.3 is a finite-state automaton example. It represents a typical left-to-right, three

distribution-HMM structure for one phone, with the labels along a complete path

specifying legal sequences of acoustic distributions for that phone.
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dl d2 d3

d1 c d2 d3 @

Figure 2.3 A finite-state automaton example

Extended set of edges:

The set of strings built on an alphabet ¥ is also called the free monoid Z*. The formal
definition of the star * operation can be found in reference [28]. The extended set of

edges E ¢ O x X* x Q is the smallest set such that

0 VgeQ,(q.eq9¢ck
(i) Vwe Z*andVae I u {&},if (g1, W, q2) € Eand (g2, a, q3) € E then (g,

wea, q3) € E, where . stands for concatenation.

Extended transition function:

The transition function d of a FSA is a mapping from Q x (Z L {&}) to 29, and satisfies
d(q’,a) = {q € Q|3(q’, a, g9) € E}. The extended transition function d, mapping from Q x
T* onto 29, is that function such that

® Vq € Q,d(q, )= {q}

(i) Vwe Z*andVae I U {e}, d(g, wea) =\Jgcdq,w d(gi, a)

Now, a language L(A4) can be defined on finite-state automaton 4:
L) ={we Z*,iel|d(i,w)NF+J}
A language is said to be regular or recognizable if it can be defined by an FSA.

2.2.1.2 Closure Properties
The set of recognizable language is closed under the following operations:
(1) Union. If 4; and A4, are two FSAs, it is possible to compute an FSA 4; U 4;
such that L(4; v 42) = L(4)) v L(4>).
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(2) Concatenation. If 4; and 4, are two FSAs, it is possible to compute an FSA
AjeA; such that L(A42) = L(A;)+L(A>2).

(3) Intersection. If 4; = (Z, Qy, i}, F1, E;) and 4, = (Z, O3, iz, F>, E3) are two
FSAs, it is possible to compute an FSA denoted 4; N A4; such that L(4; N 42)
= L(A)) N L(A43). Such an automaton can be constructed as follows:

AN A= (Z, Q1 x Os, (i1, i2), Fj x F3, E) with

E= U(q,,a,r,)eE/, (g2a,r2)eE; {((QI,qz),a,("l:rZ))} .

(4) Complementation. If 4 is an FSA, it is possible to compute an FSA — 4 such
that L(-4) = X* - L(A).

(5) Kleene Star. If 4 is an FSA, it is possible to compute an FSA 4* such that
L(A*) = L(A)*.

2.2.2 Mathematical Foundations for Finite-State Transducers

Before introducing the finite-state transducers we have to give a description about their
mathematical foundations. In this section the mathematical foundations such as semiring,

power series, weighted transductions, and languages are described in detail.

2.2.2.1 Semiring

The semiring abstraction permits the definition of automata representations and
algorithms over a broad class of weight sets and algebraic operations [31]. A semiring (X,
D, ®, 0, i) is a ring that may lack negation. It consists of a set K equiped with an

associative and commutative operation @, called collection, and an associative operation
®, called extension, with identities 0and i, respectively, such that ® distributes over @,

and 0® a = a ®0=0. In other words, a semiring is similar to the more familiar ring
algebraic structure (such as the ring of polynomial over the reals), except that the additive
operation @ may not have an inverse. For example, (N, +, -, 0, 1) is a semiring, where 0
and 1 are respectively the identity element for + and - operations with + for collection and

- for extension.
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The weights used in speech recognition often represent probabilities. The appropriate
semiring to use is then the probability semiring (R, +, -, 0, 1). However, implementations
often replace probabilities with (negative) log probabilities for numerical stability. The
appropriate semiring to use is then the image by -log of the semiring (R, +, -, 0, 1) and is

called the log semiring.

An important example in speech recognition is the min-sum semiring or tropical
semiring, (R+ U {0}, min, +, c, 0) with min for collection and + for extension. Another
semiring (Z* U {®}, A, o, ®, €) , called string semiring, is also often used in speech
recognition, where £*, also called a free monoid, defines a set of strings built on an
alphabet T, A longest common prefix operation, and e concatenation operation, © a new
element such that for any string we (Z* U {0}) (WAoo =0 Aw=wand we o =cw e w

= o). The cross product of two semirings defines a new semiring.

Some definitions and calculations involve collecting over potentially infinite sets, for
instance the set of strings of a language. Clearly, collecting over an infinite set is always
well-defined for idempotent semirings such as the min-sum semiring, in whicha +a=a

Va € K More generally, a closed semiring is one in which collecting over infinite sets is

well-defined.
2.2.2.2 Power Series

A formal power series S: x> (S,x) is a function from monoid %" to a semiring (K,®,

®,0,1). Rational power series are those formal power series that can be built by rational

operations (concatenation, sum, and Kleen closure) from the singleton power series given

by (S.x) =k, (Sy) = 0 if x=y for x€X’, keK. The rational power series are exactly those
formal power series that can be represented by weighted acceptors which we will discuss
later in this chapter. A formal power series S is rational iff it is realizable by a weighted

acceptor (recognizable) [9].
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2.2.2.3 Weighted Transductions and Languages
A weighted transduction T is a mapping T~ 3'x I’ K where 2" and I” are the sets of
strings over the alphabets 2 and I°, and K is an appropriate weight structure; for
instance the real numbers between 0 and 1 in the case of probabilities.
A weighted language L is a language satisfying the mapping L: Y — K. Each
transduction S: 2 x I”'— K has two associated weighted languages, its first and second
projections mi(S): 3> Kand mx(S): I’ — K, defined by

m(S)(s) = ZterSE, 1)

mS)(M) = Zsex+SE, 1)

2.2.3 Finite-State Transducers
Finite-state Transducer (FST), also called string-to-string transducer, is an extension
from FSA. Each arc in FST is labeled by a pair of symbols rather than by a single

symbol. A string-to-string transducer is defined on a string semiring.

2.2.3.1 Definitions
FST:
A Finite-State transducer is a 6-tuple (2, X5, O, i, F, E),
where:
e I is the input alphabet among a finite set
e X, is the output alphabet among a finite set
e (is a finite set of states
e e Qis the initial state
e Fc Qis the set of final states
e Ec OxZ* x I* x Qis the set of edges

Path:

If an FST T= (%1, %2, O, i, F, E), a path of T is a sequence ((p»a:,0i,9)))=1,» of edges E
such that g; = pi+; for i = 1 to n-1. Where, (p;,a,b;,;) is an edge, g; is a state which can be
reached from state p; with an input alphabet a; and an output alphabet b;.
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Successful path:

Given an FST T = (Zy, Z3, O, i, F, E), a successful path ((p;,a;,b;,9;))j=1,» of Tis a path of T
such that p;=iand g, € F.

These definitions only are part of important definitions on Finite-state transducers and
will be frequently used in the following sections. Other definitions and closure properties
(for example Union, Inversion, Letter transducer including e-free transducer and

Composition) on FSTs can be found from the literature [12, 26].

2.2.4 Sequential Transducers
Sequential transducers are the most useful transducers used in natural language and
speech processing. Many works have been done on this topic [18, 19, 20, 21, 22].
In language and speech processing, sequential transducers are defined as transducers with
a deterministic input (string or just a symbol). At any state of such transducers, at most
one outgoing arc is labeled with a given element of the alphabet. This means the input is
distinct. The output label might be a string (or a single symbol), including the empty
string €. Of course, the output of a sequential transducer is not necessarily deterministic.
The formal definition of a sequential string-to-string transducer is as follows:
A sequential transducer is a 7-tuple (Q, i, F, Z, A, § o), where:

e (is the set of states

e i e Qis the initial state

e F € Q, the set of final states

e I and A, finite sets corresponding respectively to the input and output

alphabets of the transducer

e J, the state transition function which maps Q x X to O

e g, the output function which maps O x X to A*
S and o are partial functions (a state ¢ € Q does not necessarily admit outgoing
transitions labeled on the input side with all elements of the alphabet). These functions
can be extended to mappings from Q x Z* by the following classical recurrence relations:

Vse Q,VweX*VaeZ, O g =s &s wa)=dds w),a),
a(s, & = g o(s, wa) = ofs, w)o(d(s, w), a).
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Thus, a string w € T* is accepted by T iff &4 w) € F, and in that case the output of the

transducer is ofi, w).

2.2.5 Subsequential and p-Subsequential Transducers

Subsequential transducers are an extension of sequential transducers. By introducing the
possibility of generating an additional output string at the final states the application of
the transducer to a string can then possibly finish with the concatenation of such an
additional output string to the usual output. Such extended sequential transducers with an
additional output string at final states are called subsequential transducers.

Language processing often requires a more general extension. Indeed, the ambiguities
encountered in language (for example ambiguity of grammars, ambiguity of
morphological analyzers, or ambiguity of pronunciation dictionaries) can not be handled
by sequential or subsequential transducers because these devices only have a single
output to a given input. Since we can not find any reasonable case in language in which
the number of ambiguities would be infinite, we can efficiently introduce p-subsequential
transducers, namely transducers provided with at most p final output strings at each final
state to deal with linguistic ambiguities. However, the number of ambiguities could be
very large in some cases. Notice that /-subsequential transducers are exactly the

subsequential transducers. Figure 2.4 shows an example of a 2-subsequential transducer.

Figure 2.4 A 2-subsequential transducer example

A very important concept here is the sequential/p-subsequential function. Similarly, we
define sequential/p-subsequential functions to be those functions that can be represented
by sequential/p-subsequential transducers. The following theorems give a brief
introduction on the characterizations and properties of subsequential and p-subsequential

functions (of course, also that of sequential and p-subsequential transducers). Here, the
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expression p-subsequential means two things, the first is that a finite number of
ambiguities is admitted, the second indicates that this number equals exactly p.

Theorem 2.2.5.1 (composition):

Let f: Z* — A* be a sequential/p-subsequential and g : A* — Q¥ be a sequential/g-
subsequential function, then g o fis sequential/pg-subsequential.
The details about transducer composition are described in Chapter 3.

Theorem 2.2.5.2 (union):

Let f: Z* — A* be a sequential/p-subsequential and g : A* — Q* be a sequential /g-

subsequential function, then g + fis 2-subsequential/(p + g)-subsequential.

The linear complexity of their use makes sequential and p-subsequential transducers both
mathematically and computationally of particular interest. However, not all transducers,
even when they realize functions (rational functions), admit an equivalent sequential or
subsequential transducer. More generally, sequential functions can be characterized

among rational functions by the following theorem.

Theorem 2.2.5.3 (characterization of sequential function):

Let f be a rational function mapping Z* to A*. fis sequential iff there exists a positive
integer K such that:
Yu € *, Va € X, dw € A*, |w| < K: flua) = flww

That is, for any string # and any element a, f{ua) is equal to f{u) concatenated with some
bounded string, Notice that this implies that fu) is always a prefix of fua), and more
generally that if fis sequential then it preserves prefixes.

The fact that not all rational functions are sequential could reduce the interest of
sequential transducers. The following theorem shows however that transducers are

exactly compositions of left and right sequential transducers.

Theorem 2.2.5.4 (composition of left and right sequential transducers):
Let fbe a partial function mapping * to A*. fis rational iff there exists a left sequential

function /: =* — Q* and a right sequential function r: Q* — A* such that f=ro L
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Left sequential functions or transducers are those we previously defined. Their
application to a string proceeds from left to right. Right sequential functions apply to
strings from right to left. According to the theorem, considering a new sufficiently large
alphabet Q allows one to define two sequential functions / and » decomposing a rational
function f. This result considerably increases the importance of sequential functions in the
theory of finite-state machines as well as in the practical use of transducers.

Sequential transducers offer other theoretical advantages. In particular, while several
important tests such as the equivalence are undecidable with general transducers,

sequential transducers have the following decidability property.

Theorem 2.2.5.5 (decidability):

Let T be a transducer mapping Z* to A*. It is decidable whether T is sequential.

The following theorems describe the characterizations of subsequential and p-

subsequential functions.

Theorem 2.2.5.6 (characterization of subsequential function):

Let f'be a partial function mapping Z* to A*. F'is subsequential iff:
(1) fhas bounded variation

(2) for any rational subset Y of A*, f “(Y) is rational

-subsequential function):

Let f = (fi, ..., f,) be a partial function mapping D o m(f) ¢ Z* to (A*Y. f is p-

Theorem 2.2.5.7 (characterization of

subsequential iff:
(1) fhas bounded variation
(2) for all i (1< i <p) and any rational subset ¥ of A*, f;’ !(y) is rational

Theorem 2.2.5.8 (characterization of p-subsequential function):

Let f be a rational function mapping =* to (A*Y. f'is p-subsequential iff it has bounded

variation.
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2.2.6 String-to-Weight Transducers/Weighted Acceptors

A Weighted Finite-state Acceptor (WFSA), or a string-to-weight transducer is a finite-

state automaton, 4, that has both an alphabet symbol and a weight, from some set K, on

each transition.

2.2.6.1 Definition and Properties of Weighted Finite-state Acceptors

The definition of WFSA is based on the algebraic structure of a semiring, S=(K, ®, ®, 0,

1).

Weighted finite-state acceptors or simply weighted acceptors are transducers with input

strings and output weights. Figure 2.4 gives an example of a weighted finite-state

acceptor, which represents a toy language model.

is/0.5

Figure 2.5 A weighted finite-state acceptor

Given a semiring (K, &, ®, (_), i), the formal definition of a weighted acceptor is as

follows:

A weighted acceptor T is defined by T=(Q, £, I, F, E, 4, p) over the semiring K, where:

Q is a finite set of states

% the input alphabet

I c Qis the set of initial states

F < Q, the set of final states

E c Q x  x Ry x Q a finite set of transitions, where R. is the output
weight

A the initial weight function mapping / to R+

p the final weight function mapping F'to R+

Compared to the definition of a transducer, we can define for T a partial transition

function d mapping Q x X to 29 by:
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V(g a)e Ox 2 &g a)={q'3x € R+:(q. a, x, q") € E},
and an output function o mapping E to R+ by:

Vt=(p, a,x q) € E, o(t) =x.
The following concepts and extensions are very important for string-to-weight
transducers. Although we have defined some of them in section 3 in general, more details
based on string-to-weight transducers are introduced.
A path nin T from g € Qto g’ € Q is a set of successive transitions from g to g": 7=((gq,
ag, X0, 41)s ---» (Gm-1» Am-1, Xm-1,, qm)), With V i € [0, m-1], qi+; € 6(q; a;). We can extend
the definition of o to paths by: o(m) = xpx;...xXm-1.
The ©n € q ~ q' | w refers to the set of paths from g to g’ labeled with the input string w.
The definition of & can be extended to QO x £* by:

V(g,w)e OxZ*, &q,w)={q':IpathninT,neqg~q'|w} and to 29 x T*, by:

VRc Q,Vw e ¥, &R, w) =\U; e r &g, ).

The minimum of the outputs of all paths from q to ¢’ labeled with w is defined as:
6(g, w, ¢) =minyc (g~ g)|w (7).
A successful path in 7 is a path from an initial state to a final state. A string w € Z* is
accepted by T iff there exists a successful path labeled with w: w € &I, w) N F. The
output corresponding to an accepted string w is then obtained by taking the minimum of
the outputs of all successful paths with input label w:
ming, p e 1x F:fe &, w) (AD + G w, ) + o))
A transducer T is said to be trim if all states of T belong to a successful path. Weighted
acceptors clearly realize functions mapping Z* to R.. Since the operations we need to
consider are addition and min, and since (R+ U {0}, min, +, oo, 0) is a semiring, Hence
these functions are formal power series. They have the following characterizations which
we imported from formal language theory [1, 31]:
1) (S, w) is the image of a string w by a formal power series S. (S, w) is called the
coefficient of win S,
2) by the coefficients, S = Z,, ¢ 2+ (S, w)w can be used to define a power series,

3) the support of S is the language defined by:
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supp(S) = {w € Z* : (S, w) # 0}.
A transducer T is said to be unambiguous if for any given string w there exists at most
one successful path labeled with w.
2.2.6.2 Sequential String-to-Weight Transducers/Weighted Acceptors
Recall that a transducer is said to be sequential if its input is deterministic, that is, if at
any state there exists at most one outgoing transition labeled with a given element of the
input alphabet X. Sequential weighted acceptors have many advantages over non-
sequential weighted acceptors, such as time and space efficiency. But not each weighted
acceptor has an equivalent sequential weighted acceptor [18, 29]. The formal definition
of a sequential weighted acceptor/string-to-weight transducer is follows:

Definition 2.2.6.1 (sequential weighted acceptor):

A sequential weighted acceptor T=(Q, i, F, Z, §, o, 4, p) is an 8-tuple, where:

e (is the set of its states

e | e Qits initial state

e F c Q the set of final states

e X the input alphabet

e S the transition function mapping Q x X to Q, & can be extended as in the
string case to map O x £* to O

e o the output function which maps Q x X to R+, ¢ can also be extended to
Oxx*

e 1 € R, the initial weight

e pthe final weight function mapping F to R+

A string w € T* is accepted by a sequential acceptor T if there exists f € F such that &G,
w) = f. Then the output associated to w is: 4+ o(i, w) + p(f).

Considering the benefits of time and space efficiency, the sequential transducer or
acceptor is preferred in language and speech processing. But, like we mentioned before,
not all transducers are sequential transducers. The process used to transfer a non-
sequential transducer to an equivalent sequential transducer is called determinization.

Unfortunately, not all transducers have an equivalent sequential transducer, which also
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means that not all transducers can be determinized. The following definition can be used

to determine whether a transducer can admit determinization.

Definition 2.2.6.2 (determinization):

Two states g and ¢’ of a string-to-weight transducer T = (Q, I, F, %, 6, o, 4, p), not
necessarily sequential, are said to be twins if:

Y(u,v) € C*), ({9, 9"} < &4, u), q € &g, V), ' € &g',v)) = &g, v, 9) = &g’ v 9.

If any two states g and ¢’ of a string-to-weight transducer T are twins we say T has twins
property. If a string-to-weight transducer has twins property it is determinizable. Notice
that according to the definition, two states that do not have cycles with the same string v
are twins. In particular, two states that do not belong to any cycle are necessarily twins.
Thus, an acyclic transducer has the twins property.

The following theorem gives an intrinsic characterization of sequential power series:
Theorem 2.2.6.1 (characterization of sequential power series):

Let S be a rational power series defined on the tropical semiring. S is sequential iff it has
bounded variation.

The proof on this theorem is based on twins property [3].

2.2.7 Weighted Transducers

Weighted Finite-state Transducers (WFSTs), or simply weighted transducers, are also
called string-to-string/weight transducers (SSWTs). The definition of string-to-
string/weight transducers is similar to the definition of string-to-string transducers or
string-to-weight transducers. The only difference is that the output of a string-to-
string/weight transducer is a pair composed by a string and a weight. The SSWTs
generalize WFSAs by replacing the single transition label by a pair (i, 0) of an input label
i and an output label 0. While a weighted transducer associates symbol sequences and
weights, a WFST associates pairs of symbol sequences and weights, that is, it represents

a weighted binary relation between symbol sequences [11, 44].

2.2.7.1 General Weighted Transducers

A formal definition of the weighted transducers is given as the following:
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A weighted transducer T is defined by T=(Q, 2, A, i, F, E, A, p),

where :

e (is a finite set of states

e X and A, finite sets corresponding respectively to the input and output alphabets of the
transducer

e | e (Qis the initial state

e F c Q, the set of final states

e Ec OxZxAxR,x Q afinite set of transitions

e ] the initial weight function mapping / to R.

e pthe final weight function mapping F'to R+

The set E can be extended to include transitions Q x £* x A* x R, x Q, where their input

and output can be strings.

Without extension of E, it defines the weighted transducers used in our CSR research.

Each arc of these transducers has a feature that its input and output are symbols like in

Figure 2.5. The symbol refers to a string with a length equals to 1 or 0 (an empty string
€).

Figure 2.6 A weighted transducer example

2.2.7.2 Sequential Weighted Transducers
The sequential transducers described here are transducers with a deterministic input. At

any state of such transducers, at most one outgoing arc is labeled with a given element of
the alphabet.

A sequential weighted transducer T=(Q, i, F, Z, A, 6, 6, A, p), where :
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Q is the set of its states

i e Q its initial state

F < Q the set of final states

T and A, finite sets corresponding respectively to the input and output alphabets of the
transducer

o the transition function mapping QO x 2 to Q

o the output function which maps O x Z to A x R+

A € R, the initial weight

p the final weight function mapping F to R+

The transition function & can be extended as in the string case to map Q x * to O, and

the output function o can also be extended to O x Z* to A* x R..

If the extensions of & and o are not allowed, the defined sequential weighted transducers

will have only symbols as input and output of their arcs like in Figure 2.5. This type of

sequential weighted transducers are widely used in current CSR researches.

Even though the sequential property is expected, not all weighted transducers are

sequential. In fact, in most cases the original transducer is not sequential. Therefore a

determinization algorithm is needed.

In this chapter we have reviewed the principles and architecture of modern CSR systems

and then described the formal definitions and properties of finite-state devices including

automata, string-to-string transducers, weighted acceptors, and weighted transducers.

In the next chapter we will describe some weighted acceptor and transducer operations.
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Chapter 3
Weighted Acceptor and Transducer Operations

Like unweighted acceptors, weighted acceptors and transducers also have a common set
of finite-state operations to combine, optimize, search, and prune them [26]. Each
operation implements a single, well-defined function that has its foundations in the
mathematical theory of rational power series [11, 44]. Many of those operations are the

extensions of classical algorithms for unweighted acceptors to weighted transducers.
3.1 Basic Operations

The basic operations, like wunion, concatenation, Kleene closure, etc., combine
transducers in parallel, in series, and with arbitrary repetition, respectively. Other
operations include projection, best path, N-best path, pruning, topological sort, reversal,
g-removal, inversion, etc. Projection converts transducers to acceptors by projecting onto
the input or output label set (projection). Best path or N-best path finds the best or the N
best paths in a weighted transducer. Pruning removes unreachable states and transitions.
Topological sort operation sorts acyclic automata topologically, that is to number states
by satisfying the condition i < j for any transition from a state numbered i to a state
numbered j. Reversal consists of reversing all transitions of the given transducer,
transforming final states into initial states and initial states into final states. e-removal
operation removes all transitions for which the input or output symbols are €. Inversion
operation inverses the transducer by swapping the input with output symbols on
transitions.

In following sections a few important operations that support the speech recognition

applications are described in detail.
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3.2 Composition

The composition operation is the key operation on transducers and is very useful since

they allow the construction of more complex transducers from simpler ones.

3.2.1 Theoretical Definition and Operation
Given two transductions 7. x> Kand T PN x> K, we can define their
composition 7; ° 7> by

(T, ° T)(r,t) = ®T,(r,s) BT, (s,1)

Leaving aside transitions with £ inputs or outputs for the moment, the following rule

specifies how to compute a transition of T; ° T> from appropriate transitions of T; and 7>
(g1 —=* 5 q;’and g2 7)) = (g1, q2) —=L12) 5 (g0, 927)

where s—*¥'¥ 5, represents a transition from s to ¢ with input x, output y and weight w.

For example, if S represents P(s)|s;) and R P(s;|s), S ° R represents P(s;s;).

It is easy to see that composition ° is associative, that is, in any transduction cascade S; °

S, _°S,, the order of association of ° operations does not matter.

The composition of two transducers represents their relational composition. In particular,

the composition T = R ° § of two transducers R and S has exactly one path mapping

sequence u to sequence w for each pair of paths, the first in R mapping u to some

sequence v and the second in S mapping v to w. The weight of a path in T is the ®-

product of the weights of the corresponding paths in R and S [11, 44].

Composition is useful for combining different levels of representations. For instance, it

can be used to apply a pronunciation lexicon to a word-level grammar to produce a

phone-to-word transducer whose word sequences are restricted to the grammar. Many

kinds of CSR network combinations, both context-independent and context-dependent,

are conveniently and efficiently represented as compositions.

The composition algorithm generalizes the classical state-pair construction for finite

automata intersection [18] to weighted acceptors and transducers [7, 29]. The

composition R °S of transducers R and S has pairs of an R state and an § state as states,

and satisfies the following conditions:
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(1) its initial state is the pair of the initial states of R and S;

(2) its final states are pairs of a final state of R and a final state of S, and

(3) there is a transition ¢ from (r, s) to (r’, s’) for each pair of transitions #z from r to r’
and ts from s to s’ such that the output label of ¢ matches the input label of ¢’. The
transition ¢ takes its input label from g, its output label from #s, and its weight is the
®-product of the weights of 7z and tswhen the weights correspond to probabilities.

Since this computation is local, i.e. it involves only the transitions leaving two states

being paired and can thus be given a lazy implementation in which the composition is

generated only as needed by other operations on the composed machine. Transitions with

€ labels in R or S must be treated specially as we will discuss later.

Figure 3.1 shows two simple e-free transducers over the tropical semiring, Figure 3.1a

and Figure 3.1b, and the result of their composition, Figure 3.1c. The weight of a path in

the resulting transducer is the sum of the weights of the matching paths in R and S since

in this semiring, ® is defined as the usual addition (of log probabilities).

Figure 3.1: Example of e-free transducer composition
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Since weighted acceptors are represented by weighted transducers in which the input and
output labels of each transition are identical, the intersection of two weighted acceptors is

just the composition of the corresponding transducers.

3.2.2 Composition Algorithm

3.2.2.1 ¢ -free composition
Given two e-free transducers T; = (0}, Z, A, I}, F1, E;, A, p1) and T2 = (02, Z, A, I, F3,
E3, A3, p»), the result of the composition of 7 and T3 is transducer 7= (Q, Z, A, i, F, E, 4,
p). In this algorithm, transitions are combined using the ®-product associated with the
semiring over which the transducer is defined. To show the algorithm some notations are
introduced :
1. For ge O, E[q] represents the set of transitions leaving g,
2. ForeeE,
i) i[e] represents the input label of e,
ii) o[e] represents the output label of e,
iii) wfe] represents the weight of e,
iv) nfe] represents the destination state of e.

Now the sfree composition can be shown as the following pseudocode :

COMPOSITION (T3, T») :
l. S Q¢«Ee«leFeO
2. foreachgq,;el;
3. do for each g, I
do Q « Q{(91,92)}
I «1U{(q1, 92)}

A( g1, 92)) < Ai(q1) ® Axq1)
ENQUEUE (S, (g1, g2))
ifq]EFI andqzng

0 % NS A

then F « FU {(q1,92)}
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10. (a1, 92)) < pi(q1) B pAq2)
11. while S = &

12. do (g1, q2) < head[S]

13. for each ( e}, e;) € E[q;] x E[q] such that o[e;] = i[e:]

14. do if (n[e,], nlez)) ¢ O

15. then O « O U{(n[e,], nlez])}

16. ENQUEUE (S, (n[es], n[ez]) )

17. if n[e;] € F; and nfe;] € F;

18. then F « F U{(n[e,], n[ez])}

19. A(nlei], nlez]) < pi(a1) ® pAq2)

20. E «EU{((q1, 92), ilei], olez], wles] ® wlez], (nei], nle2])}
21. ENQUEUE(S)

Figure 3.2 Pseudocode of the &-free composition

3.2.2.2 General Case Composition
Transitions with € labels in 7; or 7> add some subtleties to composition. In general,
output and input £'s can be aligned in several different ways: an output £ in T} can be
consumed either by staying in the same state in 7> or by pairing it with an input £in T5;
an input £ in T, can be handled similarly. For instance, the two transducers in Figure
3.3(a) and (b) can generate all the alternative paths in Figure 3.4. However, the single
bold path is sufficient to represent the composition result, shown separately in Figure 3.5.
The problem with redundant paths is not only that they increase unnecessarily the size of
the result, but also they fail to preserve path multiplicity: each pair of compatible paths in
T, and T> may yield several paths in T; ° T>. If the weight semiring is not idempotent, that
leads to a result that does not satisfy the algebraic definition of composition.
This path-multiplicity problem can be solved by mapping the given composition into a
new composition

T/)°T,—> T, °F°T,
in which F is a special filter transducer and the T, are versions of the 7; in which the

relevant ¢ labels are replaced by special “silent transition” symbols & as shown in Figure
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3.3(c) and (d). The bold path in Figure 3.4 is the only one allowed by the filter in Figure

3.6 for the input transducers in Figure 3.3.

100000

© T

@ T,

Figure 3.4 Composition with marked €’s

O O O

Figure 3.5 Composition output
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Figure 3.6 Composition filter

By inserting a filter between T, and T, (more precisely, between T, and T,) and applying

the e-free composition algorithm on this new composition, the redundant paths are
removed. Interestingly, the filter itself can be represented as a finite-state transducer.
Filters of different forms are possible, but the one shown in Figure 3.6 leads in many
cases to the fewest transitions in the result, and often to better time efficiency [25]. (The
symbol x represents any element of the alphabet of the two transducers.)

The filter can be understood in the following way: as long as the output of 7; matches the
input of T3, one can move forward on both and stay at state 0. If there is an &-transition in
T, , one can move forward in T; (only) and then repeat this operation (state 1) until a
possible match occurs which would lead to the state 0 again. Similarly, if there is an &
transition in 75, one can move forward in T (only) and then repeat this operation (state 2)
until a possible match occurs which would lead to the state 0.

Clearly, all the operations involved in the filtered composition are also local, therefore
they can be performed on demand, without the need to perform explicitly the replacement
of T; by T,'.

We can thus use the lazy composition algorithm as a subroutine in a standard Viterbi
decoder to combine on-the-fly a language model, a multi-pronunciation lexicon with
corpus-derived pronunciation probabilities, and a context-dependency transducer. The
external interface to composed transducers does not distinguish between lazy and
precomputed compositions, so the decoder algorithm is the same as for an explicit

network.
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3.2.2.3 Complexity

In the worst case, the composed transducer results in the combination of all state-pairs
(91, g2) as its states and has at most |E;|-|E;| transitions. Thus it takes O(|Q;|-|Q2|) for the
creation of states and O(|E,|-|E;|) for the creation of all transitions. Therefore, the overall
complexity is:

O(Qil-1Qa| + |Ei|"|E2| )
3.3 Determinization

A deterministic automaton is non-redundant and contains at most one path matching any
input sequence, thus reducing time and space required to process an input sequence.
In the same way, a deterministic/sequential WFSA needs to eliminate redundancy. Thus
it must calculate the combined weight of all the paths for a given input sequence. For
instance, in the case, common in speech recognition, where weights are interpreted as
(negative) logarithms of probabilities, the weight of a path is obtained by adding the
weights of its transitions, and the combined weight for an input string is the minimum of
the weights of all paths accepting that string. In the case where weights are probabilities
where the overall probability mass of all paths accepting an input is sought, weights are
multiplied along a path and summed across paths. Both cases can be handled by the same
algorithm, parameterized with appropriate definitions of the two weight combination
operations.
As aforementioned, not all transducers have an equivalent sequential transducer, which
means that not all transducers can be determinized. The following definition can be used
to determine whether a transducer can admit determinization.
Two states g and g’ of a string-to-weight transducer T'= (0, I, F, Z, J, o, 4, p), not
necessarily sequential, are said to be twins if:

V(u, v) € (E*), ({9, 9"} € &L u), g € &g, v), 4" € &g', V) = &g, v, ) = &g', v,
99
If any two states g and g’ of a string-to-weight transducer T are twins, we say T has twins

property. If a string-to-weight transducer has twins property it is determinizable.
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Notice that according to the definition, two states that do not have cycles with the same
string v are twins. In particular, two states that do not belong to any cycle are necessarily
twins. Thus, an acyclic transducer has the twins property.

The sequential power series in the tropical semiring are functions that can be realized by
sequential string-to-weight transducers. Many rational power series defined on the
tropical semiring considered in practice are sequential, in particular acyclic transducers
represent subsequential power series.

The following theorem gives an intrinsic characterization of sequential power series:

Let S be a rational power series defined on the tropical semiring. S is sequential iff it has

bounded variation [18].

3.3.1 Determinization Algorithm for Power Series

In speech recognition systems the tropical semiring is widely used. The determinization
algorithm will be frequently applied to the power series defined on tropical semiring.
Therefore, the following algorithm is presented in the case of a tropical semiring (R+ U
{0}, min, +, o0, 0) on which the transducer is defined. This algorithm is easily changed to
fit other semirings by replacing min and + by their own binary operations.

The following determinization algorithm constructs an equivalent sequential weighted
acceptor Ty = (03, iz, F», Z, &, 02, A2, p2) to a given non-sequential one T; = (O, %, I,

F,, E;, A1, p1) defined on tropical semiring [3,10,22].

PowerSeriesDeterminization(7;, 7,)
1 F 24 “
2 A2 < min 4;(i)

iel,

3 iz U {(, A7+ 10))}

Q « {iz}
while O = ©
do g, < head[Q]
if (there exists (g, x) € ¢, such that g € F))
then F, « F> U {g,}

0w NN N N K
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9 pAg) < min  (x+ pi(q)

gefy, (4, x)eq,

10 for each a such that I'(g2, a) # &

1 do o2qz; a) < @ xggri(r;z, a) e+ 1=(g, a, g}})n m(0)eEy a0

12 Sard) e o (g, min o (0dgz @] +x+ o))
13 if (02(q2, a) is a new state)

14 then ENQUEUE(Q, dxq>, a))

15 DEQUEUE(Q)

Figure 3.7 Algorithm for the determinization of a weighted acceptor 7 defined on the

semiring (R+ U {0}, min, +, o, 0)

The key points in this algorithm are further explained as follows:

1. Line 2 and line 3 tell us that the initial weight A, of T’ is the minimum of all the initial
weights of T;. The initial state i, is a subset made of pairs (7, x), where i is an initial state
of T;, and x = A;(i) - A,. We use a queue Q to maintain the set of subsets g, not be
examined. Initially, Q contains only the subset i;. The subsets g, are the states of the
resulting transducer. Q is a final state of 7> iff it contains at least one pair (g, x), with g a
final state of T; (lines 7-8). The final output associated to g; is then the minimum of the

final outputs of all the final states in g, combined with their respective residual weights

(line 9).

2. For each input label a such that there exists at least one state g of the subset g,
admitting an outgoing transition labeled with a, one outgoing transition leaving g, with
the input label a is constructed (lines 10-14). The output o(q2, a) of this transition is the
minimum of the outputs of all the transitions with input label a that leave a state in the

subset ¢, when combined with the residual weight associated to that state (line 11).
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3. The destination &(qg2, a) of the transition leaving g is a subset made of pairs (g’, x').
where g’ is a state of T; that can be reached by a transition labeled with a, and x' the
corresponding residual weight. In line 12, x' is not shown explicitly, but it is computed by
taking the minimum of all the transitions with input label a that leave a state g of g, and
reach g’, when combined with the residual weight of g minus the output weight (g2, a).

Finally, 8x(q2, a) is enqueued in Q iff it is a new subset.

4. n)(f) is the destination state of a transition ¢ € E;. Hence, n;)(t) = q', if t = (g, a, x, q9") €
E;. The sets I'(g2, a), Aq2, a) and Uq2, a) used in the algorithm are defined by:

(g2, @) = {(g, %) € q2: 3t=(g, a, o1(t), n:(#)) € E1}

Ag2 a)={(g, x, 1) € g2 E;: 1=(q, a, 0,(1), ni(¥)) € Ei}

Ug2, a) = {(q': (g, x) € q2:3t=(g, a, 01(), 9)) € £y}

I'(g2, a) denotes the set of pairs (g, x), elements of the subset g, having transitions
labeled with the input a. g2, a) denotes the set of triples (g, x, #) where (g, x) is a pair in
g2 such that g admits a transition with input label a. g, a) is the set of states g’ that can
be reached by transitions labeled with a from the states of the subset g..

Notice that several transitions might reach the same state with different residual weights.
Since we are only interested in the best path, namely the path corresponding to the
minimum weight, we can keep the minimum of these weights for a given state element

of a state (line 11 of the algorithm).

The complexity (both space and time) of this power series determinization algorithm is
exponential. However, in some cases in which the degree of nondeterminism of the initial
transducer is high, the determinization algorithm turns out to be fast and the resulting
transducer has less states.

It has been proved that if the determinization algorithm terminates, then the resulting

transducer T is equivalent to 7.
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This power series determinization algorithm is applied to a tropical semiring, i.e. the
weighted acceptor. Actually, it is possible to extend the determinization algorithms for
different semirings based on this PowerSeriesDeterminization algorithm. For weighted
transducers, subsets in the algorithm are made of triples (g, w, x) where q is a state of the
original transducer, w is a residual string and x is a residual weight. So, we have to
consider the pair (w, x) as output in the determinization of weighted transducers. Also
some special cases have to be handled. In fact, based on this general algorithm an
efficient determinization algorithm has been developed to deal with the weighted

transducers, named WT determinization Algorithm [14].

The determinizable transducers can be simply defined as those transducers with which
the determinization algorithm terminates. If a transducer is not determinizable the
algorithm will keep running until resources are used up. It has been declared early in this
thesis that the complexity of the application of sequential transducers is linear in the size
of the string to which it applies. This property makes it worthwhile to use the power
series determinization in order to speed up the application of transducers. Unfortunately,
not all transducers can be determinized using the power series determinization because
determinization does not apply to all transducers. Therefore it is important to be able to

test the determinizability of a transducer.

We know that if a transducer defined on the tropical semiring has the twins property then
it is determinizable. There are transducers that do not have the twins property and that are
still determinizable. Normally it is not an easy job to characterize such transducers

because we need more complex conditions [19].

Actually, if we wish to construct the result of the determinization of transducer T for a
given input string w, we do not need to expand the whole result of the determinization,
but only the necessary part of the determinized transducer. When restricted to a finite set
the function realized by any transducer is sequentiable since it has bounded variation.

Acyclic transducers have the twins property, so they are determinizable. Therefore, it is
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always possible to expand the result of the determinization algorithm for a finite set of

input strings, even if T is not determinizable [22].

3.3.2 Weighted Transducer Determinization Algorithm

We have introduced a general PowerSeriesDeterminization algorithm, which is applied to
a tropical semiring such as a weighted acceptor. This algorithm can be also used to

develop determinization algorithms for other semirings.

Here we consider the string semiring (Z* U {0}, A, ®, ©, €), where A denotes the longest
common prefix operation. The cross product of two semirings defines a semiring. The
general algorithm also applies when the semiring is the cross product of (Z* U {c0}, A, e,
o, €) and (R+ U {0}, min, +, o, 0). This allows us to determinize transducers outputting

pairs of strings and weights -- the weighted transducers.

For the string-to-string/weight transducers, subsets in the algorithm are made of triples (g,
w,x) € O x T* U {o} x R+ U {o} where g is a state of the original transducer, w is a
residual string, and x is a residual weight. So, we have to consider the pair (w, x) as
output in the determinization of weighted transducers. Also, in order to consider this
PowerSeries-Determinization algorithm as general, some special cases have to be
handled.

Based on the general algorithm and the features of the weighted transducers, a new
determinization algorithm called WT determinization used for weighted transducers has

been developed [14, 29].
Figure 3.5 gives the detailed pseudocode of the WT_determinization algorithm. This

algorithm constructs a sequential weighted transducer T2 = (Qz, iz, F2, Z, A, &, 03, A2, P2)
equivalent to a given determinizable weighted transducer T, = (Q), Z, A, 1, F1, E;, A1, p1).
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3.3.2.1 Pseudocode and Description of the WT _determinization Algorithm
WT_determinization(7;, 1)

1
2

O 0 NN N Wn b

11
12

13

14
15

16

17
18
19
20

21

Fz «—
Az < m%n Ai(D)
P2 U {G, & A" + Au(@))}

Q « {iz}
while O # &
do g, « head[(]
if (g # {-2} and for any (g, w, x) € q2)
if (there exists (g, &, x) € g2 suchthatq € F;orqg= {-1})
then Fr « F> U {q2}

pAq2) < min (x+ pi(q)

geful-1), (g, &, x)eqy, p({-1})=0 _
if (there exists (g, w, x) € g2 suchthatw # &, q € Fyorqg={-1})

then g’ « v (g, w, x + pi(q))

(g, w. x)eqy, gelU{-1}, py(-1)=0, wze

’

w e« v firstSymbol(w)

(9. w, x)eqy’
for each symbol s € w’

do 03(q2, &) « (s, min [x+ p(D])

(g, w, x)eq,’, firstSymbol(w)=s

5x(q2, &) « v ({-1}, we(02(g2, W)™,

(4, w, x)eqy’, firsiSymbol(w)=s
(oxg2, D) +x+ pi(q))
if (0:(q2, €) is a new state)
then ENQUEUE(Q, (g2, €))
for each a such that I'(g, a) # &

do 0'(q2, a) < (/\@ w9el(@: a) [We(a1(D)|w)],

min [x + min ai(Hx])

(g, w, x)el'(q,, a) 1=(q, a, o\(1), m(1)ek,
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22 52,(q2’ a) < : (kj a) {(q P w0(0'1(t)|w)-(0'2 ,(q25 a)l“’)-ls

gev(a
(@ w, x, Der(as, a),n‘gvlo, a(Dh=w, m(1)=q' (o2 (g2 @y +x-+ D)
23 if (02'(q2, a)|w is not a symbol and also not a empty string)
24 w’ « 02'(q2, a)|w
25 0:(q2, @) < (firstSymbol(w”’), 02'(q2, a)lx)
26 w’’ <« removeFirstSymbol(w’")
27 (g2, a) « ({-2}, w”’, 0) L &:'(q2, a)
28 if (62(q2, a) is a new state)
29 then ENQUEUE(Q, 6x(q3, a))
30 else 0x(q>, a) < 02'(q2, a)
31 02(q2, a) < &'(q2, a)
32 if (0:(q2, a) is a new state)
33 then ENQUEUE(Q, 6x(q2, a))
34 else if(g = {-2})
35 o:(q2, €) « (firstSymbol(w"), 0)
36 w'<«— removeFirstSymbol(w'")
37 ifw"=y¢)
38 then 5x(q>, ) « &'xAq2, a)
39 else dx(q2, &) « ({-2}, w", 0) L &°x(q2, a)
40 if(52(g2, €) is a new state)
41 then ENQUEUE(Q, dx(q>, &)

42 DEQUEUE(Q)

Figure 3.8 Algorithm for the determinization of a weighted transducer T defined on the

semiring (Z U {0}, A, ®, 0, €) x (R+ U {0}, min, +, o, 0).

This algorithm considers two basic requirements on the resulting transducer 7. First, the
original transducer T; used in our CSR research has each its arc with a format symbol:

symbol/weight. Second, each final state of the original transducer 7, has only an
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accepting weight (or output weight). These two characteristics are kept in the resulting

transducer T5.

In this algorithm, n;(f) is defined as the destination state of a transition ¢ € E;. Hence,
ni(f) = q', if t = (g, a, w, x, q") € E;. The sets I'(q2, a), {gz, a), and gz, a) used in the
algorithm are defined by:

[(g2, @)= {(g, w, x) € q2: It =(q, a, o1(1), (1)) € E}}

Hgz2 a)={(q, w,x, 1) € g2x E;: t=(q, a, oi(t), ni(t)) € E;}

Ugz a)={(q': (g, w,x) € g2:3t=(q, a, 51(1), q") € Ei}
I'(g2, a) denotes the set of triples (g, w, x), elements of the subset g, having transitions
labeled with the input a. (q., a) denotes the set of quadruples (g, w, x, ) where (g, w, x)
is a triple in ¢ such that g admits a transition with input label a. Wq>, a) is the set of
states g’ that can be reached by transitions labeled with a from the states of the subset g.
Notice that the state g could be {-1} or {-2} (for example in lines 7-8). -/ and -2 stand for
the state number whereas {-1} and {-2} stand for the state with the number -/ and -2. We
know that g is the state number of the old transducer, g can never be a negative value. In
fact, these states with a negative state number are generated and used to handle the
special cases met during the determinization process. For easy understanding of this
algorithm, a detailed introduction follows.

1. Line 1 refers that the initial final state set of T is empty.

2. Lines 2-3 indicate that the initial weight A, of T3 is the minimum of all the
initial weights of T;. The initial state i, is a subset made of triples (i, €, x), where i is an
initial state of T}, € is an empty string, and x = A;(i) - A,. Fortunately, each transducer
used in our automatic speech recognition research has only one initial state. This makes
an easy implementation of lines 2-3. The next step is to put this initial state i; into an
empty queue Q. Here, Q is used to maintain the set of subsets g2 not yet extended (or
determinized). Each subset in Q corresponds to one state of O, for the new transducer 7>.

Initially, Q contains only the subset i, (line 4).
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3. F, is the set of the final states of the sequential transducer 7. g, represents a
final state iff it contains at least one triple (g, &, x), where q is a final state of 7; or equals
to {-1} (see lines 8-9), ¢ refers to an empty residual string, x is a residual weight. This
type of triple is named final triple. The final output weight associated to g; is then the
minimum output weight of all the final triples in g (line 10).

4. g equal to {-1} refers to a final state without outgoing arcs. This state does not
exist. It is designed and assumed to be one special state of the old transducer during the

determinization.

Line 11 meets the special case 1. In this case subset g, contains triple (g, w, x) such that
w# g q € Fjor q equals {-1}. This type of triple is named sub-final triple. When a sub-
final triple appears in g, a final state with accepting output (w, x) has been reached.
According to the basic requirements, if each final state of the original transducer has only
an accepting weight, the resulting transducer's final states can not have accepting output
composed by string and weight. Accepting output of any final state of the resulting

transducer has to be a weight.

How to handle it? Firstly a new subset ¢>’ has to be constructed with the triples (g, w, x)
such that w # & g € F) or q equals {—I} in g;. This ¢,’ is considered as part of g,. Next
we construct the set of outgoing output symbols w’ from the set of w in g, (lines 12-13).
Line 14 to 19 are used to finish the expanding based on w’. Each output symbol s in w’
corresponds to an outgoing arc from g, the input symbol of this arc is €, the weight is the
minimum weight of all sub-final triples with same s in ¢, (lines 14-15). The destination
of this arc is a subset 85(qz, €) formed by triples in g,” with the same s. 32(g2, €) contains
triples that g equals {—1}. The residual string of each triple in 8x(g2, €) is the string by
removing s from the residual string w of the corresponding triple in g,’. The weight of
each triple in 8(q, €) is the result of the sum of the corresponding triple’s residual
weight x and its accepting cost in g’ (if ¢ equals {—/} its accepting cost is zero) minus

the output weight of the newly constructed outgoing arc. If 35(¢2, €) is a new subset, then

44



put it into queue Q (lines 18-19). Continue this loop until each symbol in w’ has been
checked.

Therefore, g equals {~/} means that g is considered as a special final state in the original
transducer without outgoing arcs and with a final weight zero. It is special because that
state {-/} does not exist in Q. State {-1} is needed during the determinization when

subset g, has at least one sub-final triple.

5. For each input symbol a such that there exists at least one state g of the subset
g admitting an outgoing transition labeled with a, one temperate outgoing transition
leaving g, with the input symbol a is constructed (lines 20-21). The output 07°(q2, a) of
this temperate transition is composed of two parts. One is a residual string which is the
largest common prefix of the output strings of all the transitions with input symbol a that
leave a state in the subset g, when concatenated at the end with the residual string
associated to that state. The other part is a residual weight which is the minimum of the
output weights of all the transitions with input symbol a that leave a state in the subset g2,

when combined with the residual weight associated to that state.

The temporary destination state & (g2, a) of the transition leaving g is a subset made of
triples (g’, w’, x’), where ¢’ is a state of 7 that can be reached by a transition labeled
with a, w’ is the corresponding residual string, x’ is the corresponding residual weight. It
is possible that &’(qz, a) has triples with same g’ but different residual strings. Each
residual string w’ is constructed by removing the output string o> (g2, a)|, from the head
of a string which is a concatenation of two strings. One of these two strings is the residual
string w of the corresponding triple (g, w, x) in subset ¢, where ¢’ can be reached from ¢
by the transition o;(f) with input symbol a. Another string is just the output string ()}
x is computed by taking the minimum of output weights of all the transitions with input
symbol a that leave a state g in the subset ¢, and reach the same state g’ with the same

residual string w’, when combined with the residual weight of ¢ minus the output weight

(o)) ’(qu a)lx-
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6. If 02'(q2, a)|, is a symbol or an empty string, this temporary transition o, (g2, a)
is a transition leaving g, with the input symbol a named ox(g>, a), and the destination
state for this transition is & (g2, @) named &g, a) (lines 30-31). If 0x(q>, a) is a new

state then put it into queue Q.

Otherwise, if 02°(¢2, a)| is a string with a length larger than 1, this temporary transition
02°(q2, @) has to be handled as a special case because of the basic requirements. This

special case is defined as special case 2.

Review that according to the basic requirements during the determinization if the output
of an outgoing arc 4 of a new state is a string (at least two symbols), 4 has to be
transferred to the symbol:symbol/weight format. In WT _determinization this special case

is handled by the following:

(1) Assign the string part 07 '(q2, a)l, to w'(line 24).

(2) Make a transition from g, with input symbol a, output symbol is the first
symbol of w", and its output weight is 02 (g2, a)|x (line 25). Then, remove the
first symbol of w".

(3) The destination state (g2, a) in line 27 is union of a new triple and &, (g2, @).
The new triple ({-2}, w", 0), where {-2} is a special state of ¢’ which doesn’t
present in Q;, it means that the state Jx(g>, a) is an expanding state of the
string 02°(q2, )}y, w" is the residual string, and the residual weight is zero.
Here, temporary state & (g2, a) refers to that the final expanding state of this
string is & (g2, a). If state 55(q2, a) is a new state, then enqueue it into queue
O (lines 28-29).

7. If the special case 2 described in the last paragraph occurs. A subset ({-2}, w",
0) U &°x(q2, a) will be assigned to ¢,. Line 34 meets this condition. In line 35 a transition
is made from g, with input symbol &, output symbol is the first symbol of w", and its
output weight is zero. Then, remove the first symbol of w". If w" is an empty string,

assign the state & (g2, a) to 8(qa, a). Otherwise, construct a destination state 8x(q2, a) by
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the union of a new triple (-2 as q’, w" as residual string, zero as residual weight) and the
state &°(q2, a). The next step is to check whether state d(qg., a) is a new state. If 5x(g2, a)

is a new state then put it into queue Q.

8. In line 42 the first element of Q is removed, and the algorithm returns to line 5.
The algorithm will continue until Q is an empty queue. Finally when this algorithm is
terminated a sequential weighted transducer T is returned with the same functions of the

non-sequential transducer T7.

a:B/2.0

(b)

Figure 3.9 (a) a non-sequential weighted transducer T;
(b) a sequential weighted transducer T3
obtained from the WT determinization of T
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9. Examples of this algorithm are shown in Figure 3.9 and Figure 3.10. Notice that
an input string ac admits several outputs in T, in Figure 3.9: {(BD, 6), (BD, 11)}. Only
one of these outputs (BD, 6), with the smallest output weight) is kept in the resulting
sequential transducer T, since we are only interested in the output with the minimum

output weight for any given string.

c:C/1.0

(® a:A/0.0

Figure 3.10 (a) a non sequential weighted transducer 7.

(b) sequential transducer T obtained from the determinization of T,

In Figure 3.9, after the determinization both state number and arc number are reduced.
However, in some special case the state number or both state number and arc number

is/are increased after the determinization such as in Figure 3.10. This is also a successful
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determinization result because the resulting transducer is sequential. The sequential
transducer will dramatically increase the searching speed when it is applied to the CSR
process instead of the equivalent non-sequential one [3].

Notice that several transitions might reach the same state with a same residual string but a
priori different residual weights. Since only the best path is interested, namely the path
corresponding to the minimum weight, the algorithm keeps only the minimum of these
weights for a given state element of a subset (line 22). This case can be observed in the

final determinization step of 7; in Figure 3.9.

3.3.2.2 A Proof of the WT determinization Algorithm
It is very important to prove that if the determinization algorithm terminates then the
resulting sequential transducer 77 is equivalent to T7.
Here, we emphasis the termination of the determinization algorithm. This is because there
are transducers for which determinization does not halt. It then generates an infinite
number of subsets. We define determinizable transducers as those transducers with which

the algorithm terminates.

Assume that the determinization algorithm terminates, then the resulting transducer 77 is
equivalent to 7. The following is the proof [18].

We denote by 8;(q, w, q’, w") the output with the minimum weight of all paths from g to
g' with a same output string w'. By construction we have:

A2 < min /11(1')

iel,

We define the residual output string s(g, w) and the residual output weight associated to g
in the subset &(i2, w) as the weight c(g, w) associated to the triple containing g in (i,
w). By induction on [w| we show that the subsets constructed by the algorithm are the sets
6:(iz, w), w € Z*, such that:

Vwe Z*, 52(i2: W) = 5%) W) {(q’ S(q, W), C(q’ W)} (31)

qeoiidy,

C(q, W) = I"I‘}:lln (/11(1'1) + 01(i1, w,q, W')) - O'z(iz, W)lx - ﬂz

oz, w)=(W'es(g, w)', min (L) + (i1, w, q, w')) -A2)

qed, (1), w)

49



A pair (g, s(g, w)) belongs at most to one triple of a subset since for all paths reaching g
with a same residual string s(g, w), only the minimum of the residual output weight is
kept. If s(g, w) equals to an empty string, the output string of (2, w) is w'. Notice also
that, by definition of min, in any subset there exists at least one state g with a residual

output weight c(g, w) equal to 0.

A string w is accepted by 7 iff there exists g € F; such that g € &i(J;, w). Its output
string is w'. Using the equation (3.1), it is accepted iff 8x(I;, w) contains a triple (g, (g,
w), ¢(g, w)) with ¢ € F; and s(g, w) equals to an empty string. This is exactly the
definition of the final states F> (line 8). So 7} and T accept the same set of strings.

Therefore, T> and T are equivalent.

3.3.2.3 Space and Complexity of the WT determinization Algorithm

Both space and time complexity of the determinization algorithm for the determinizable
weighted transducers are exponential to the size of the original transducer T;. However,
in some cases in which the degree of non-determinism of the initial transducer is high, the
determinization algorithm turns out to be fast because the resulting transducer has much

less states than the initial one.

The proof on the space and time complexity of the WT _determinization is the same as
that of the determinization of automata or weighted acceptors. It can be found in
references [18, 22]. Formerly, the definitions of the weighted transducers have been
addressed. And the WT determinization algorithm for the determinization of the

determinizable weighted transducers has been provided.
Since the WT determinization algorithm returns the whole resulting transducer, a large

amount of memory is needed for the determinization, especially when the size of the

resulting transducer is large.
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3.4 Minimization

Any deterministic acceptor can be minimized using classical minimization algorithms [2,
22]. Similarly using the minimization algorithm for WFSAs, we can minimize any
deterministic weighted acceptor A [20, 22]. After applying minimization algorithm on
WFSA 4, the resulting weighted acceptor B has the least number of states and the least

number of transitions among all deterministic weighted acceptors equivalent to A.

A deterministic weighted acceptor 4 can be viewed as an unweighted acceptor by
interpreting each pair (a, w) of a label a and a weight w as a single label. We can then
apply the classical minimization algorithm to this acceptor. But, it could have no effect
on A since the pairs for different transitions are all distinct. In the same way we can also

minimize deterministic transducers or weighted transducers.

However, before applying classical minimization algorithms, we can transform 4 to an
equivalent weighted acceptor 4; by using a pushing algorithm which pushes weight
among arcs. Usually the weights are pushed towards the initial state as much as possible.
The size of 4, can then still be reduced by applying the classical minimization algorithm
to the resulted transducer 4, with each distinct label-weight pair viewed as a distinct
symbol, as described above. The details about the weight pushing algorithm will be
discussed in Chapter 5.

Figure 3.11 shows a example of a weighted acceptor 4, Figure 3.12 shows a weighted
acceptor A, obtained by pushing from A4 in the tropical semiring. And Figure 3.13 shows
the weighted acceptor 4, obtained by minimizing 4;. Obviously the resulting automaton
A is equivalent to 4; and the size of the automaton can then be reduced using the

minimization algorithm.
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Figure 3.11: Weighted acceptor 4

Figure 3.12: Weighted acceptor 4, obtained by pushing from A in the tropical semiring

Figure 3.13: Weighted acceptor 4, obtained by minimizing A,
The time complexity of weighted minimization is the same as that of classical
minimization: linear in the acyclic case (O(m+n)) [5], and (O(m log n)) [2] in the general
case, where 7 is the number of states and m the number of transitions.
In this chapter we have introduced the transducer operations. How can they be used in

speech recognition? In the next chapter we will describe the application of weighted
transducers in speech recognition.
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Chapter 4
Weighted Finite-State Transducer Applications in Speech

Recognition

In Chapter 3 we have described some weighted finite-state transducer operations. These
operations are very useful in speech recognition when all of the components of the
recognition network are represented by transducers. In this chapter we will describe the

applications of weighted finite-state transducers in speech recognition.
4.1. Network Components

The speech recognition networks can be combined and optimized as an integrated speech
recognition network prior to decoding. The word pronunciations are found in the lexicon
and are substituted into the grammar. The decoder of the recognition networks then
identifies the correct context-dependent models to use for each phone in context, and
finally substitutes them to create an HMM-level network. The code that performs these
operations is specified to particular model topologies. For example, the context-
dependent models might have to be triphonic, the grammar might be restricted to
trigrams, and the alternative pronunciations might have to be enumerated in the lexicon.
Moreover, these network combinations and optimizations are applied in an appropriate
sequence to a prespecified number of levels as we will describe later in this chapter.

However a uniform transducer representation can be used for n-gram grammars,
pronunciation dictionaries, context-dependency specifications, HMM topology, word,
phone or HMM segmentations, lattices and #—best output lists. In the following sections,

the transducer representations in speech recognition will be discussed in detail.
4.1.1. Transducer O

The acoustic observation can be represented as a weighted acceptor O for a given

utterance as shown on Figure 4.1. Each state represents a fixed point in time #, and each
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transition has a label, 0;, drawn from a finite alphabet that quantifies the acoustic signal

between adjacent time points and is assigned probability 1.0.

° 0/1.0 ° 0,/1.0 @_, o 0a/1.0

Figure 4.1 Weighted acceptor for acoustic observation

The weighted acceptor in Figure 4.1 can be interpreted as a weighted transducer by
giving each transition identical input and output labels. This adds no new information,
but is a convenient way of interpreting any acceptor as a transducer.

For more complex acoustic distributions (for instance, continuous densities) we can
instead use multiple transitions (¢.;, d, p(0i|d), t;) where d is an observation distribution

and p(0;|d) the corresponding observation probability.

4.1.2. Transducer H

Figure 4.2 shows a three-state HMM transducer as a phone model mapping sequences of
distribution indices to context-dependent phones, i.e. triphones. In this figure, the
triphone is denoted as a-b+c where b is the modeled phoneme, a and c are the left and
right neigboring phonemes of b, and O; denotes the observation distribution, d;; denotes
transition probabilities. The transducer H is obtained by taking all the closure of the
union of all HMMs used in acoustic modeling. Therefore transducer H preserves phone

model identity while sharing distribution subsequences whenever possible.

0,:&d00(i) 0,:¢dll(i) 0;:&d22(i)

0,:¢/ do1(i) @ 0,:¢/ d12(i) @s:a—b+c/d23(z@
T LT 2 P

%

Figure 4.2 A HMM transducer for a context-dependent model phone b
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4.1.3. Transducer C

Context-dependent phone models can be represented by finite-state transducers. They can
be built directly in many cases. The transducer of Figure 4.3 for instance can be
constructed directly to represent the inverse of a context-dependency model: it maps
phone sequences to sequences of names of context-dependent phone models (HMMs). 1t
encodes triponic context-dependency for only two hypothetical phones x and y for
simplicity. Each state (a, b) encodes the information that the previous phone was a and
the next phone is b; ¢ represents the start or end of a phone sequence and * an unspecified

next phone.

Figure 4.3: Context-dependent triphone transducer

For instance, it is easy to see that the phone sequence xyx is mapped by the transducer to
x/€ y y/x_x x/y_& via the unique state sequence (g *)(x, y)(, x)(x, £). More generally,
when there are n context-independent phones, this triphonic construction gives a
transducer with O(r?) states and O(’) transitions. A tetraphonic construction would give
a transducer with O(n’) states and O(n*) transitions. In real applications, context-
dependency transducers will benefit significantly from determinization and minimization
since the n-phone is modeled by an HMM that is likely to be shared among many n-

phones due to context clustering required by data sparsity.

55



4.1.4. Transducer L

The transducer L from phone sequences to word sequences is built similarly to transducer
H. A word model is a transducer from phone sequences to the specified word that assigns
to each phone sequence the likelihood that the specified word produced. Thus, different
paths through a word model correspond to different phonetic realizations of the word.
Figure 4.4 shows a typical topology for a word model. L is then defined as the closure of

the sum of the word models. Figure 4.5 shows a toy pronunciation lexicon.

ey:€/0.5 t:€/0.3

Figure 4.4 A word model as weighted transducer

g:g/l

Figure 4.5 A toy pronunciation lexicon of transducer L

4.1.5. Transducer G

The language model can be easily represented as a weighted acceptor as shown in Figure
2.4. The following weighted transducer in Figure 4.6 is an interpretation of the weighted
acceptor in Figure 2.4 as a weighted transducer. Any n-gram language model can be
represented in a similar way. An n-gram language model G is often constructed as a
deterministic weighted acceptor with a back-off state — in this context, the symbol € is

treated as a regular symbol for the definition of determinism.

56



is:is/0.5

data:data/0.66

@ using:using/1
_—>

intuition:intuition/0.33

worse:worse/0.3

Figure 4.6 A toy language model as a weighted transducer

4.2. Network Combination

The network components can be combined by applying composition operations. Consider
the word model in Figure 4.4. The transducer L is formed by taking the union of this
transducer with the transducers for the remaining word models in the grammar G of
Figure 4.6, and then taking its Kleene closure by connecting an e-transition from each
final state to the initial state. The resulting transducer L would pair any sequence of
words from that vocabulary to their corresponding pronunciations. Thus,
L°G

gives a transducer that maps from phones to word sequences restricted to G.

The composition can also be used to implement a context-independent substitution.
However, a major advantage of transducers for speech recognition is that they generalize
naturally the notion of context-independent substitution of labels by a network to the
context-dependent case. The transducer of Figure 4.3 does not correspond to a simple
substitution, since it describes the mapping from context-independent phones to context-
dependent triphonic models, denoted by phone/left context_right context.

The following simple example shows the use of this context-dependency transducer. A
context-independent string can be represented by the obvious automaton having a single
path as in the example in Figure 4.7a. We thus can interpret it as a corresponding
transducer with identical input and output labels. Then we compose it with the context-
dependency transducer in Figure 4.3. The result is the transducer in Figure 4.7b, which
has a single path labeled with the context-independent labels on the input side and the

corresponding context-dependent labels on the output side.
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The context-dependency transducer, of course, can be composed with more complex
networks than the trivial one in Figure 4.7a. For example, composing the context-
dependency transducer with the transducer in Figure 4.7c results in the transducer in
Figure 4.7d. By definition of relational composition, this must correctly replace the
context-independent units with the appropriate context-dependent units on all its paths.
Therefore, composition provides a convenient and general mechanism for applying

context-dependency to CSR networks.
@) @—* OO ©)
@% Xy/xx@xx/xx ( : ) XX/X_y ( : >yy/xe‘

yy/x_e
X:x/X_y yy/x_e
3 1y/x
YYIXy y:y/y_e
y:yly_x

(d)

Figure 4.7: Context-dependent composition examples

Let C represent a context-dependency transducer from context-dependent phones to

context-independent phones, then
C°L°G
gives a transducer that maps from context-dependent phones to word sequences restricted

to the grammar G. Note that C is the inverse of a transducer such as in Figure 4.3.
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The context-dependency transducer, of course, can be composed with more complex
networks than the trivial one in Figure 4.7a. For example, composing the context-
dependency transducer with the transducer in Figure 4.7c results in the transducer in
Figure 4.7d. By definition of relational composition, this must correctly replace the
context-independent units with the appropriate context-dependent units on all its paths.
Therefore, composition provides a convenient and general mechanism for applying

context-dependency to CSR networks.
O @—> OO0
@% yiy/x_ I@xx/xx(:>xx/x_y(:>yy/xs‘

yiy/x_g
yy/xy yyly €

(d)

Figure 4.7: Context-dependent composition examples

Let C represent a context-dependency transducer from context-dependent phones to
context-independent phones, then

C°L°G
gives a transducer that maps from context-dependent phones to word sequences restricted

to the grammar G. Note that C is the inverse of a transducer such as in Figure 4.3.
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As the pronunciation lexicon, the HMM set is represented as H, the closure of the union
of the individual HMMs as in Figure 4.2. With H in hand,
He°C*°L"°G

gives a transducer that maps from distributions to word sequences restricted to G.

Thus composition can be used to combine all levels of the CSR network into an
integrated network in a convenient, efficient, and general manner. Then the optimizations
are applied to reduce decoding time and space requirements. If the network needs to be
modified dynamically, for example by adding the results of a database lookup to the
lexicon and grammar in an extended dialogue, a hybrid approach is adopted so that it can
optimize the fixed parts of the network and can use lazy composition to combine them

with the dynamic portions during recognition.

4.3. Network Optimization

The benefits of transducer application in speech recognition are time and space
efficiency, which rely on the transducer optimization operations. Here two steps are
described in detail for optimizing an integrated network; (a) determinization, and (b)

minimization.

4.3.1. Determinization

The weighted transducer determinization is used at each step of the composition of each
pair of networks. The determinization eliminates redundant paths in the composed
network to reduce recognition time. Furthermore, its use in intermediate steps of the
construction also helps to improve the efficiency of composition and to reduce network

size.

It can be shown that, in general, the transducer L °G from phone sequences to words is
not determinizable. This is clear in presence of homophones. Homophones are words of
the same language that are pronounced alike even if they differ in spelling, meaning, or
origin, such as "pair" and "pear". Homophones may also be spelled alike, as in "bear" (the
animal) and "bear" (to carry). But, even in the absence of homophones, L °G might not

be determinizable because, in some cases, the first word of the output sequence cannot be
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determined before the entire input phone sequence is known. Such unbounded output

delays make L °G non-determinizable.

An auxiliary phone symbol, denoted #;, which marks the end of the phonemic
transcription of each word, is introduced to make it possible to determinize. Other
auxiliary symbols #p ... #.; are used when necessary to distinguish homophones as in the
following example:

rehd#y read

rehd#; red
At most P auxiliary phones, where P is the maximum degree of homophony, are

introduced. The pronunciation dictionary transducer augmented with these auxiliary

symbols is denoted by Z .

For consistency, the context-dependency transducer C must also accept all paths
containing these new symbols. For further determinizations at the context-dependent
phone level and distribution level, each auxiliary phone must be mapped to a distinct
context-dependent phone. Thus, self-loops are added at each state of C, mapping each

auxiliary phone to a new auxiliary context-dependent phone. The augmented context-

—~

dependency transducer is denoted by C.
Similarly, each auxiliary context-dependent phone must be mapped to a new distinct
distribution name. P self-loops are added at the initial state of H with auxiliary

distribution name input labels and auxiliary context-dependent phone output labels to

allow for this mapping. The modified HMM model is denoted by H .
The addition of auxiliary symbols guarantees the determinizability of the transducer
obtained after each composition, allowing the application of weighted transducer

determinization at several stages in the construction.

First, L is composed with G and determinized, yielding det(L- G). The benefit of this
determinization is the reduction of the number of alternative transitions at each state to at
most the number of distinct phones at that state, while the original network may have as

many as ¥ outgoing transitions at some states where ¥ is the vocabulary size. For large
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tasks in which the vocabulary has 10’ to 10° words, the advantages of the optimization
are clear [29].

The context-dependency transducer might not be deterministic with respect to the
context-independent phone labels. For example, the transducer shown in Figure 9 is not
deterministic since the initial state admits several outgoing transitions with the same input

labels x or y. To build a small and efficient integrated network, it is important to first

~

determinize the inverse of C.

~ ~

C is then composed with the resulting transducer and determinized. Similarly H is
composed with the context-dependent network and determinized. This last
determinization increases sharing among HMM models that start with the same
distributions: at each state of the resulting integrated network, there is at most one
outgoing transition label with any given distribution name. This leads to another
reduction in recognition time.

As a final step, the auxiliary distribution symbols of the resulting network are simply
replaced by €’s. The corresponding operation is denoted by 7. The sequence of

operations just described is summarized by the following construction formula:

N = n{det( H °det(C - det(L -G)))) 4.1
where parentheses indicate the order in which the operations are performed. The result N
is an integrated recognition network that can be constructed even in very large-

vocabulary tasks, and leads to a substantial reduction of the recognition time [29].

4.3.2. Minimization
After being determinized, the integrated network can be further reduced in size by being
minimized. We keep the auxiliary symbols in place, and then apply the minimization

algorithm. After that, we can remove the auxiliary symbols:

N = rd{min(det( H °det(C - det( L -G))))) (4.2)
Minimization only reduces the size of the transducers in terms of number of states and

transitions, but also significantly affects the decoding speed. As described earlier, a key
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step of minimization is to push weights toward the initial state. The pruning, which uses a
conventional Viterbi beam search for the decoder, is also largely affected by this. It slows
down decoding if pushing in the tropical semiring in some cases [28], but in our tests it
gives good results. However, it surely has a beneficial effect on the decoding speed if
pushing in the log semiring, which is that the negative log of the sum of all probability
mass from each state to the (super-) final state is used as the reweighting potential
function. When this potential function is used for reweighting, the total sum of
probabilities over all transitions leaving any state is 1. Thus, the transducer is pushed in
terms of probabilities along all future paths from a given state rather than the highest
probability over the single best path. Interestingly, it can be proved that using either
pushing in the minimization step results in equivalent machines. However, by using log
probability pushing (pushing in the log semiring), a property that holds for the language
model now also holds for the integrated network, namely the weights of the transitions
leaving each state are normalized as in a probabilistic automaton.

If the lowest cost path potential function is used, then classical single-source shortest path
algorithms can be employed, which we will describe in Chapter 5. However, adopting the
sum of probability mass potential function required a significant generalization, of
independent interest, to the classical algorithms [28].

In the WFSTs approach for CSR, since the search transducer is built statically, these
optimizations can be performed entirely off-line. The transducers in recognition network
are handled in a highly flexible way, independently of the decoder specifics about
contextual range. The final optimized network is substantially reduced to only twice that
of language model [27]. Cross-word context expansion increases the network by just a

few percents with respect to the optimized context-independent network [27].

In this chapter we have introduced the application of weighted transducers in speech
recognition. The transducers in the recognition network can be combined and then
standardized in order to increase time and space efficiency. In the next chapter we will
present a transducer compaction operation which can reduce the size of non-

determinizable transducers.
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Chapter 5

The Compaction of Finite-State Transducers

In the last chapter we have surveyed weighted finite-state transducers in speech
recognition. Weighted determinization and minimization can optimize time and space
requirements of a transducer. However as aforementioned, not all transducers are
determinizable, even the resulted transducer N of eq.4.2. In cases when a transducer or a
weighted acceptor can not be determinized, the transducer determinization and
minimization algorithms described in Chapter 3 cannot be applied. It is necessary to find
an operation to reduce the size of the transducer in order to further increase time and
space efficiency in speech recognition. We developed a finite-state transducer
compaction algorithm which can apply on non-determinizable transducers to possibly
reduce the size of the transducers. It is very useful in speech recognition as we will

discuss later.
5.1 Transducer Compaction

Any automaton (unweighted acceptor) can be determinized by applying classical
automata determinization operations and then can be minimized by applying classical
automata minimization [2, 30]. The transducer determinization and minimization can
only apply on determinizable transducers. To reduce the size of a non-determinizable
transducer, the considered transducer can conceptually be converted into an automaton.
Theoretically if we consider all the symbols and cost of an arc as a single label, the
transducer can be considered as an automaton. Therefore by applying classical automata
determinization and minimization on the “converted” transducers, i.e. the new automata,
the original transducers may be possibly reduced in size. However a weight pushing
operation can also be used before converting the transducer into automaton, and then the
classical automata determinization and minimization can be used to reduce its size as
much as possible. This operation is called transducer compaction. The transducer

compaction operation has the following six steps:
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1. Weight pushing: to push the weight towards the initial state as much as possible for
weighted transducers or acceptors.

2. Encoding: to convert a transducer into an automaton, that is to encode each triple of an
input label, output label, and cost (weighted transducers) or each double of an input
and cost or output (weighted acceptors or string-to-string transducers) into a single
new label.

3. Determinization checking: to check the determinism of the new automaton. If it is
deterministic skip the determinization step, i.e. step 4, and go to minimization directly.

4. Determinization: to apply the classical automata determinization on the new
automaton..

5. Minimization: to apply classical automata minimization on the deterministic automata.

6. Decoding: the encoded labels are decoded back into their original values.

5.2 The Automata Determinization

The well-known powerset construction from [30] shows that for any non-deterministic
finite automaton (NFA) there is an equivalent deterministic finite automaton (DFA). The
main idea of the construction is to consider sets of states of the NFA as states of the DFA.
The DFA uses these sets to remember the set of states that the NFA could have reached

after reading the same input.

5.2.1 The Automata Determinization Algorithm

Let the input finite automaton 4,=(Z;, Oy, I;, Fj, E;) and the output deterministic finite
automaton A=(%, Q, {i}, F, E). A is the result of the determinization of A;. det(4,),
accepting L(A4).

The pseudocode of the automata determinization is as follows:
1. F—E—0

2. i—1I;

3. S—0—{h

4. whileS+0

5 do s— head[S]
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6. if sNF, # 0

7. then F— F U{s}

8. for each a € X'such that (s, a) #0
9. do if 8(5, a) £ Q

10. then Q— QU{di(s, a)}

11. ENQUEUE (S, d(s, a))
12. E—E v {(s,a, di1(5, a))}

13. DEQUEUE (S)

Figure 5.1 The automata determinization algorithm

5.2.2 The Complexity of the Automata Determinization Algorithm

1.

For loop of lines 4-13: each subset s is enqueued at most once (test line 9), hence the

loop is executed at most as many times as the number of states created |Q] (|0]|< 212,

. Test line 6: proportional to the size of s: O(s}),

. Loop 8-13: the number of iterations can be made independent of Z. By considering

Eils] = UgesErlg],
(a) the loop is executed at most |E| times,
(b) line 8:
i. in general, one needs to sort the transitions to determine the set of transitions of
E/[s] labeled with each a: O(|E;[s][log(|E1[s]])),
ii. if the transitions of 4, are presorted with respect to a total order defined on 2, a
k-merge of E[q], q €s, can be used: O(|E1[s]|log(]s])),
(c) line 9:
i. the test can be done by sorting the elements of di(s,a): O(di(s,a)|log(|di(s,a)l)),
and then using a direct-address table or using a perfect hashing: O(|6(s,a))),
ii. if the transitions are presorted with respect to 2 and the destination states, and
if a k-merge is used, no additional sorting is necessary,
iii. in practice, a hash table is used for the membership test and for assigning

numbers to the states,
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4. Total complexity:
(2) O(Omax;egls| + Zsep(|En[s]llogls]) + |Elmax;cols])
= O(12:I(Q + |E| + |Eq|log| Q) }
(b) Exponential with respect to the size of 4;: O = O( 2091y,
It is easy to see that the first term in (a) dominates the running time of the algorithm,

hence the total complexity is: O(Q;| 2'9").

5.3 Weight Pushing

Weight Pushing consists in pushing all the weights along the path towards the initial state

as much as possible. It is a special case of reweighting.

5.3.1 Reweighting

Here we will describe the reweighting in the case of the tropical semiring, a similar
definition can be given in the case of other semirings. There are infinite ways of
reweighting for a weighted automaton to produce equivalent automata. Given a weighted
acceptor T= (0, %, i, F, E, A, p) over the semiring K as defined in section 2.2.7.1 we can
let a transition ¢ = (p[t], I[t], w[t], n[t]) € E represent an arc from the source state p/t] to
the destination state n/t], with the label //t] and weight w/t]. In speech recognition, the
transition weight w/t] often represents a probability or a log probability.

We can change the transition weights of a weighted acceptor T without modifying path

weights [27]. To see how it works, let V: 0 - K —{ 0 } be an arbitrary function, called a

potential function on states. Update the initial weight, the transition weights, and the final

weights by:
A A ® V(i) (3.1)
Ve e E, wle] — [V(p[e])]' ® (w[e] ® V(n[e])) (3.2)
Ve F, p) — V" ® p(h (3.3)

It is easy to see that this reweighting does not affect the total weight of a successful path
and that the resulting automaton is equivalent to the original since the potentials along

any successful path cancel each other.
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Weight pushing consists of reweighting an automaton with the potential ¥ defined in such
a way that for each state ge O, V(q) = d[q], the shortest distance from q to the final
states F' defined by:

d[q] = ®xecrow[n]
where P(q) represents the set of all paths from g to F. For the case of semirings, we can
assume that the semiring K is divisible [28], that is for any a, b € K such thata ® b # 0
there exists a; € K such that:

a=@ad®b)®a

When X is divisible, for each pair (a, b) such that a @ b # 0, a fixed element a; can be
selected to satisfy this equation. We call a; the remainder of the division of a by a © b
and write:

a=®b)'®a

Figure 5.3 shows the result of pushing for the input automaton of Figure 5.2 defined over
the tropical semiring. As can be seen from Figure 5.3, the shortest path from each state to
a final state has weight zero. This is a general consequence of pushing in the tropical
semiring. Figure 5.4 shows the result of pushing in the log semiring applied to 4;. At

each state, the probability weights of outgoing transitions sum to one.

Figure 5.2: Weighted acceptor 4;
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Figure 5.4: Weighted acceptor 45 obtained by pushing from A4; in the log semiring

The key step in weight pushing is how to compute the potential function. In the case of
the tropical semiring, the shortest distance from each state to final states can be computed
efficiently using classical single-source shortest-paths algorithms [23].

In the case of probability semiring or the log semiring, a modified version of the Floyd-
Warshall algorithm can effectively compute shortest distances under certain general
conditions [23]. But, this algorithm has time complexity O(|0)) and space complexity
O(|O). This can make its application to large transducers in speech recognition
impossible in practice. However, a generic single-source shortest-distance (SSSD)
algorithm can work with any k-closed semiring [23]. A k-closed semiring is a semiring

for which there exists & such that:
k+l1 k

YaeK ©@d"'=® d"

n=0 n=0
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We can see that the tropical semiring is 0-closed. The log semiring is not £-closed for any
ke N. However, if the equality tests in the SSSD algorithm are replaced by approximate
equalities modulo a small number €, then the SSSD algorithm can also cover the case of
the log semiring by producing e-approximations of the correct shortest distances. Smaller
g’s result in better approximations and in practice, the resulting approximation is in the
order of or less than that of the approximations already made in speech recognition [28].
In the case of the log semiring, the SSSD algorithm is several orders of magnitude faster
than the extension of the Floyd-Warshall algorithm and is very practical even for very
large recognition transducers. In the case of tropical semiring, the SSSD algorithm

coincides with classical shortest-distance algorithms.

5.3.2 Weight Pushing Pseudocode

GENERIC-SINGLE-SOURCE-SHORTEST-DISTANCE (WEIGHTED ACCEPTOR T)
1 forj—1 to |Q]

2 do d[j] — r[j] — 0
3 dfi] —rfi] — 1

4 S {i}

5 while S=0

6 do g— head(S)

7 DEQUEUE (S)

8 R—r[q]

9 rlq] < 0

10 for each e E[q]

11 do if d[nfe]]=d[n[e]] © (R ® w[e])

12 then d/nfe]] < d[n[e]] ® (R ® w[e])
13 r(nfe]] < r[n[e]] ® (R ® w[e])
14 ifnfe]z S

15 then ENQUEUE(S, n/e])

16 dfi] — 1

Figure 5.5: Generic single-source shortest-distance algorithm
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Figure 5.5 gives the pseudocode of the algorithm. A queue S is used to maintain the set of
vertices whose leaving edges are to be relaxed. S is initialized to {i} (line 4). For each
vertex g € 0, two attributes are maintained: dfg/ € K an estimate of the shortest distance

from i to g, and r/q] € K the total weight added to d/q] since the last time g was extracted
from S. Lines 1-3 initialize arrays d and r. After initialization, dfq]/=r[q]= 0 for ge Q-

{i}, and dfq]=r[q]= 1. Given a vertex g € Q and an edge e € E[q], a relaxation step on e
is performed by lines 11-13 of the pseudocode. Each time through the while loop of lines
5-15, a vertex q is extracted from S (lines 6-7). The value of r/q] just after extraction of ¢

is stored in R, and then r/q] is set to 0 (lines 8-9). Lines 11- 13 relax each edge leaving
g. If the tentative shortest distance d/n/e]] is updated during the relaxation and if n/e] is
not already in S, the vertex n/e] is inserted in S so that its leaving edges are later relaxed
(lines 14-15). r[n[e]] is updated whenever d[n[e]] is, to keep track of the total weight
added to d[n[e]] since nfe] was last extracted from S or since the time after initialization
if nfe] has never been extracted from S. Finally, line 16 resets the value of dfi] to 1. The
algorithm works with any queue discipline chosen for S.

It can be proved that using either tropical or log semiring pushing in the minimization
step results in equivalent machines with the same number of states and transitions [28].
However it is radically different on how the weights are distributed along a path.
Experimental tests show that pushing in the log semiring benefits speech recognition
pruning while using the tropical semiring can, in fact, be harmful in some cases [28]. In

our tests pushing in the tropical semiring also gives good results.

5.3.3 Complexity

The complexity of the algorithm depends on the semiring and the choice of queue
discipline. Let T; be the worst cost for inserting a state g in S, T, be the worst cost for
extracting g from S, N, be the number of times that g has been inserted in S, and Te, Te,
and T, be the complexity of @ , ®, and assignment operation, respectively.

The total complexity, in general, for this algorithm is [32] :
O(Q1+(To + To +To)- ) (| Elq]|-N))+(T; + T -3 N,)

qeQ qeQ
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5.4 The Automata Minimization

5.4.1 Partitioning

Suppose we are given a set S, and an initial partition 7 of S into disjoint blocks {B,, B,
..., Bp}. We are also given a function f on S. Our task is to find the coarsest (having
fewest blocks) partition of S, say 7'={ E;, E,, ..., E,}, such that:

1. n’is consistent with 7 (that is, each E;is a subset of some B;), and

2. aand b in E; implies fla) and f{) are in some E;.

We shall call 7 the coarsest partition of S compatible with 7 and f.

The obvious solution is to repeatedly refine the blocks of the original partition by the
following method. Let B; be a block. Examine f{a) for each a in B;. B; is then partitioned
so that two elements a and b are put in the same block iff fla) and £b) are both in some
block B;. The process is iterated until no further refinements are possible. This method
yields an O(nz ') algorithm, since each refinement requires time O(n) and there can be O(n)
refinements.

We can develop a partitioning algorithm that in refining a block into two subblocks
requires time proportional to the smaller subblock. This approach results in an O(n log n)
algorithm [2].

For each BcS, let £/ (B)={b| f(b) B}. Instead of partitioning a block B; by the values of
f{a) for ae B;, we partition with respect to B; those blocks B; which contain at least one
element in f (B, and one element not in f (B). That is, each such Bj is partitioned into
sets {b|be B; and f(b) € B;} and {b|be B; and f(b)&B;}.

Once we have partitioned with respect to B;, we need not partition with respect to B; again
unless B; itself is split. If initially f{5)e B; for each element b & B;, and B; is split into B;’
and B;’’, then we can partition B; with respect to either B;’ or B;’’ and we will get the
same result since {b|b e B; and f(b)e B’} is identical to Bi-{b|be B; and f(b)e B/’}.

Since we have our choice of partitioning with respect to either B;’ or B;’’, we partition
with respect to the easier one. That is, using the smaller of f “(B?) and f (B). The

algorithm is given below:
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Input. A set of n elements S, an initial partition 7={Bj, By, ..., B,}. and a function f: S—S.
Output . A partition 7'={By, By, ..., B;} such that 7’ is the coarsest partition of S
compatible with zand f.

Partition algorithm :

1. WAITING<{1, 2, ..., p}

2.q € p;

3. While WAITING not empty do

4. Select and delete any integer i from WAITING;

5. Bm€<f(Bi);

6 For eachj such that B; N B;,,# 0, B; & Biny do
7. g€qtl;

8 creat a new block Bg;

9 B, € B;N Bipy ;

10. B; € B;— By,

11. If j is in WAITING then add g to WAITING
12. Else

13. If ||Bj||<=||B,|| then

14. Addj to WAITING

15. Else add g to WAITING

Figure 5.6 Partitioning algorithm

5.4.2 Applications of Partitioning Algorithm

For a finite automaton MA=(23, O, qo, & F), §is a mapping from Q x J'to O rather than
just a mapping from Q to Q. However we can treat §as a set {J}, &, ..., J,} of functions
on S, where each &, is the restriction of Jto the input symbol a.

By placing pairs (i, &,) in the WAITING. Each pair (i, &,) consists of the index i of block
a of the partition, plus &,, the function on which to partition.

Initially, WAITING = { (i, &)| i = I or 2 and ae J}, since initial partition { F, O-F} has

two blocks.
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Definition 1 : Consider the equivalence relation ~ on 0 defined by
g ~piff VoeY : &q, m)eF=8p, m)eF
For g €Q, the equivalence class of Q containing g is denoted by /g]. Then the minimal
DFA for L is given by MA=(2, Q’, q¢’, &’, F”), where
0'=0l~
qo0’~[ q0]
F={[f]\feF}
5 ([q], a)=[ &q, a)] for all geQ and all ae)}’
Note that &is well-defined since for p, ge Q with p ~q one has VYael: &p, a)=&4q, a).

All DFA’s that accept the same language as a given minimal DFA are either isomorphic

to it or have more states.

Definition 2 : For all ae ), let 8,: O—0, q=&4q, a).
Call a partition 7z of Q compatible with 9, iff

VCern Voel FBer Ccé’(B)
Lemma 1 : The partition induced by ~ is the coarsest partition compatible with & that
refines {F, O\F}.
Lemma 1 allows us to develop an interesting algorithm whose main idea is to refine the
initial partition {F, Q\F} stepwise until it is compatible.
Let 7 be a partition of Q that we intend to make compatible by refinement. We call C the
elements of 7 blocks. Let B be such a block and ae}.
We call a block C e compatible wrt B and a iff CN&;”'(B) = 0 or Ccd,”(B).
If there is a block C not compatible wrt B and a, then this block C must not stay in the
partition because it is not compatible with any refinement of 7. So we split C up into C;
and C; with C; — CNé,”’ (B), C; —Q\6,(B). Afterwards, both C; C; are compatible wrt
B and a, and the new partition 7 obtained from the old one by 7t {C}U{C;, C;}.
We have to repeat this “splitting wrt B and a” until every block is compatible wrt every
other block and every letter in J..
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Once all blocks have been treated wrt B and a (and have been split if necessary), we need
not split wrt B and a again until B itself is split. This is true because any subset of a block
compatible wrt B and a keeps that property.

The created new blocks C; and C, might make it necessary to split further blocks (wrt C;
and some a’e ), so we will have to use some mechanism to remember them.

If C had to be remembered before we split it, we may forget C and concentrate on C; and
C, instead, since any block that is compatible wrt C; and C; is compatible wrt C= C 1oCs
as well.

If C had not been one of the blocks to remember, this would be due to the fact that all
other blocks were compatible to C. We observe that for all blocks D compatible with C,
we have that D is compatible with C; iff D is compatible with C;. Therefore it suffices to
remember either C; or C, because splitting wrt one of the C; will make sure that the
resulting blocks are compatible with the other one as well. Of course, it is convenient to

choose to remember the smaller of C; and C;,

5.4.3 The Automata Minimization Algorithm
The algorithm is described below. The correctness of the algorithm is proved in [2].

The automata minimization algorithm :
() 7« {F Q\F}.

(2) forallael'do

3) if |F|<|Q\F] then

4 W(a) —F)

) else

©6) W(a) «{ O\F}

(7)  while U 4y W(a)=0 do

®) select one be }'and delete any B from W(b)
©) B &'(B)

(10) for each Ce 7w not compatible wrt B and b (i.e. CNBiny 20 and C & Biny) do
(11) Ci «CN Biny
(12) C2«C\ Biny
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(13)
(14
(15)
(16)
(17)
(18)
(19)
(20)
21)

rm{C}u{ C; Cy}
for all ae 3 'do
if C is in W(a) then
W(a) «W(@\{C}o{ C), C3}
else
if | C;|<|C;| then
W(a) «W(a) u{ C;}
else

W(a) «W(a) Of Cy}

Figure 5.7 The automata minimization algorithm

We can extend the automata minimization algorithm to the transducer minimization as

follows:

Finite state machine MA=(2, O, qu, 6, F):

)
@
3)
“

&)
(6)
Q)

@®)
)
(10)
(11
(12)
(13)

7w {F, {go}, O’} where Q" « QOl{qo/
Wiist « {F’} where F’ « {(i, b) | i €F U{qo}, be'and b goes to i}
while Wlist # 0 do
select one beX in any A’eWlist and delete (i, b) for all ie4 where 4 is a
correspondence block of A’ (see N.B.)
if 4’ is empty then delete 4’ from Wlist
Bimy < 5b-1(A)
for each block/set Ce 7 not compatible wrt block 4 and edge b (i.e. C N Bim # 0,
C & Biny and C # Bip,) do
Ci«CN By
C; « CQ\ Biny
< {Cyu{ C; Cs}
if C’, the correspondence block of C, is in Wlist then
Wlist «Wlisn\N{C’}u{ C,’ C2’}

else
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(14) if | C;|<|C,| then

(15) Wlist «Wlist U{ C; "}
(16) else
17 Wlist «Wlist U{ C>’}

Figure 5.8 The transducer minimization algorithm
N.B.:

(1) The block in 7 is different from the block in Wlist in terms of their elements. That is,
the elements in 7 is a set of states only and in Wlist is a set of state and incoming edge
pairs. But for each block 4’ in Wlist there is a correspondence block A4 in 7. In other
words, if deri.e. A= {i|ieQ} then there is a correspondence block A’ in Wlist A’ =
{(i, b)| ieA4, be Y and b goes to i}, e.g. C'={(i,a)| icC, Cem ac’'and a goes to i},
C;={(@i,a)| ieC), C1em, ac’'and a goes to i}

Cy’={(i,a)| ieC;, C2em ac’'and a goes to i}

For the weighted transducer in the compaction algorithm, the triple string-string/weight is

just considered as a unique label, i.e. the unique edge. So each element in 2is a string-

string/weight triple.
5.5. Complexity of Transducer Compaction

In the general case, the classical automata minimization algorithm [2] runs in time
O(12)|Q|-log|Q)). It can be shown that a better implementation of the algorithm described
in [2] makes it independent of the size of the alphabet. It then depends only on the in-
degree of each state. Thus, a better evaluation of the running time of this algorithm is
O(|E| - log |Q)). Hence the transducer compaction minimization step runs in O(|E| - log
1))
The overall complexity of the compaction algorithm is analyzed as follows:
(1) if the converted automaton is non-deterministic, the determinization step runs in
0(|Q|2'Q|) and it dominates the running time of the transducer compaction

algorithm. Thus the overall complexity is: O(/Q|2'?).
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(2) If the converted automaton is deterministic, the transducer compaction algorithm
can just check the determinism and then bypass the determinization step. The

minimization step dominates the running time of the algorithm and it takes O(|E| -

log |Q)).

5.6 Transducer Compaction in Speech Recognition

In the previous chapter we have shown that the final transducer N can be formed with

operations following equation 4.2, i.e. N = m;(min(det( INJ ° det( E ° det(z *(3))))). Nis not
necessarily determinizable, because of the substitutions of distinct auxilliary markers
with unique epsilons, and may possibly be reduced furthermore. However, instead of
using equation 4.2 we can incorporate the transducer compact operation--compact on

equation 4.1 directly, i.e.,

N = compact(n(det( H ° det( C = det( L ° G))))) 6.1
And then we can proceed with epsilon removal operation rem, on it, finally we have the
transducer VN as:

N = rem.(compact(n(det( H ° det(C ° det( L~ ()))))) (5.2)

Now N is a compact representation of the recognition network as a single transducer and

we can use it to build a speech recognizer to run our speech recognition tasks.
In this chapter a transducer compaction operation is introduced. Its application to speech
recognition gives a very compact representation of the recognition network and better

time and space efficiency.

In the next chapter we will run some tests on the transducers used for building a speech

recognizer in CRIM.
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Chapter 6
The Experimental Tests of the Transducer Compaction

Algorithm

In the last chapter we have introduced a transducer compaction algorithm and its
application in speech recognition network. In this chapter we will test the transducer
compaction on some transducers currently used in CRIM for building speech recognizers.
Test results show that our transducer compaction operation can increase time and space

efficiency in speech recognition.
6.1 Test Components

Thanks to Patrick Cardinal who developed most of the transducer operation code for the
FSM tools in the speech recognition group of CRIM, we can use his FSMPush,
FSMEncode, FSMDecode, FSMDeterminize, FSMRmEpsilon, and FSMCompact which
was written by me to test the transducer compaction algorithm.

FSMPush implements the weight pushing operation on transducers. The weights are
pushed towards the initial state as much as possible.

FSMEncode implements the conversion of a transducer into an automaton and creates an
additional symbol transducer (in fact, it is only a mapping list) to remember the mapping
of labels in conversion.

FSMDecode implements the recovery of the transducer by decoding back the arcs of the
the automaton into original arcs.

FSMDeterminize implements the transducer determinization, it does the same operation
as the automata determinization when the transducer is converted as an automaton by
using FSMEncode operation.

FSMRmEpsilon removes all the epsilon labels in the transducers.

FSMCompact implements the classical minimization on transducers by considering all

labels and weights of one arc as a single label without explicitly encoding them.
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6.2 Experimental Tests

The AUPELF task [13] is tested in our experiments.

6.2.1 AUPELF Task

AUPELF is a standard French language, large vocabulary dictation task from the
AUPELF 97 evaluation [13], which has a vocabulary of 20,000 words. Acoustic
models were trained on BREF-80 and a subset of BREF-Total, containing 53
hours of speech from 100 speakers. Acoustic parameters were 12 Mel-
Frequency Cepstral Coefficients (MFCCs) plus energy, and their derivatives. Cross-word
triphone acoustic models were trained with 3981 output distributions, each being a
Gaussian mixture with 32 components and sharing a single global full covariance matrix.
Note that models were not gender-dependent, and that no speaker adaptation (such as
VTLN or MLLR) was used.

N.B.: MFCCs is a representation defined as the real cepstrum of a windowed short-time
signal derived from the Fast Fourier Transform (FFT) of that signal. The difference from
the real cepstrum is that a non-linear frequency scale is used, which approximates the

behavior of the auditory system.

6.2.2 Test and Result

The tests are done on a Pentium III 866 MHZ under the Linux operating system with the
following command in pipe for transducer compaction operation:

FSMPush —i input_transducer | FSMEncode — key.fst | FSMDeterminize | FSMDecode —
key.fst | FSMCompact > output_transducer

key.fst is the additional symbol transducer (in fact, it is only a mapping list) created by

FSMEncode operation to remember the mapping of labels in conversion.
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Results are given in the following table:

Transducer HCDG size Recognition | Recognition
(states/arcs) Time Accuracy
n(det( ]~{ ° det( E’ ° det(z °G))) 6,926,124 /9,971,017 1.42X 84.3%
compact(m(det( ;] ° det( E‘ ° det(z ° G 6,035,816/9,044,551 1.33X 84.3%
rem, (compaci(ndet( I ° det(C® det(L® Gyyyy) | 4561.788/11619818 | 122X 84.3%

Table 6.1 Test result on AUPELF task
N.B.: X stands for the real-time performance.
Recognition accuracy is computed by the following equation:
Accuracy =[1 - (S +1+ D)/N)] * 100%
Where S represents substitutions of words by other words, I insertions of words, D

deletions of words, and N the total words in the test corpus.

From the results we can see clearly that with transducer compaction operation, both the
size of the transducer and the recognition time are reduced. The number of states and arcs
are reduced by 13% and 9% respectively; while the recognition time is reduced by 6%

with the recognition accuracy being unchanged (84.3%).

Moreover, with further e&-removal operation we obtain even better results than that with
transducer compaction. The improvement is also very significant, with the number of
states and the recognition time reduced by 24% and 8% respectively. But the number of
arcs is increased by 28%, which can cancel the effect of reduction in number of states.
However, the recognition accuracy keeps unchanged. In general, it further reduces the

recognition time.

The test results show that the transducer compaction operation meets our objective. It can

apply on non-determinizable transducers to considerably increase time and space
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efficiency. It can be considered as an extension of the minimization operation with better
flexibility and efficiency in CSR.

However, the transducer compaction operation requires a lot of computation and memory
when the transducers are non-determinizable; while for deterministic transducers it
performs as well as minimization.

In this chapter we have described the experimental test and the results. The results meet
the objective of our research. Thus the transducer compaction operation can be applied on
non-determinizable transducers to reduce its size and acquire time and space efficiency in
CSR. In the next chapter we will conclude this research work and present the future

work.
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Chapter 7

Conclusion

7.1 Review of the Work

This thesis has addressed statistical CSR, several state-of—the-art weighted finite-state
transducer algorithms, and their application to speech recognition, and has presented a
transducer compaction algorithm for non-determinizable transducers which can be
applied in speech recognition for increasing time and space efficiency. In this chapter we
summarize this research as follows:

1. The statistical CSR problem is a decoding problem which searches word
sentences with the largest probability when an utterance is given. In statistical
framework, it is assumed that each word can be expanded in a sequence of context-
dependent HMM states, possibly conditioned on the neighboring words in case of cross-
word modeling. In practice, the Viterbi criterion is applied, and under this maximum
approximation, the search space can be described as a huge network to be explored for
finding the best path. The recognized words are then determined by the most probable
state sequence. The combinatorial nature of possible state sequences makes the search
problem a formidable task, especially for LVCSR. Therefore, time and space
requirements are the major concerns for LVCSR, and the decoding strategy is another
concern. To ease these problems we resort to the WFST approach in CSR.

2. In the WFST approach, all components used in the search stage of CSR system
—language model, pronunciation dictionary, phonetic context-dependency, HMM model —
are represented as WFSTs. These individual models are then combined and optimized
using the general weighted finite-state operations of composition, determinization,
compaction, and weight “re-distribution” (“pushing”). The purpose of these steps is to
create a single optimized transducer that maps directly sequences of HMM-state-level
distributions to sequences of words. Since the search transducer is built statically, these
optimizations can be performed entirely off-line.

In WFSTs, the components of the recognition network, the transducers, are handled in a

highly flexible way, independently of the decoder specifics about contextual range. The
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final optimized network is substantially reduced to only twice that of language model
[27]. Cross-word context expansion increases the network by just a few percents with
respect to the optimized context-independent network [27].

3. The composition, determinization, and minimization algorithms remove
redundancy and minimize the size of the recognition transducer in order to increase time
and space efficiency for CSR.

= Composition: Composition is the key operation on transducers in speech
recognition. It can construct complex transducers from simpler ones. Also
it is useful for combining different levels of representation in speech
recognition. Thus composition makes it possible to combine all
transducers in cascade of the recognition network and to create an
integrated single transducer.

» Determinization: Determinization eliminates redundant paths in the
composed network to reduce recognition time. It can also be used in
intermediate steps of constructing a minimal transducer in order to
improve the efficiency of composition and to reduce the network size. It is
mainly used to increase the time efficiency.

* Minimization: Minimization minimizes the size of the transducer
considered. It pushes the weights towards the initial states as much as
possible, then finds the equivalent states in the transducer, and merges
them into one state. It can increase space and time efficiency in CSR.

= Weight pushing: Weight pushing pushes the weights of weighted
acceptors or transducers towards the initial states as much as possible. It
can be used in intermediate steps of constructing a minimal transducer.
Also it can affect the pruning of the decoder. Pushing in the log semiring
benefits speech recognition pruning. Thus it can improve the decoding
speed.

4. Finally a transducer compaction algorithm is presented. It is designed to reduce
the size of non-determinizable transducers. The transducer compaction operation has the

following six steps:
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1. Weight pushing: to push the weight towards the initial state as much as
possible for weighted transducer or acceptor.

2. Encoding: to convert a transducer into an automaton, that is to encode each
triple of an input label, output label and cost (weighted transducers) or
each double of an input and cost or output (weighted acceptors or string-
to-string transducers) into a single new label.

3. Determinization checking: to check the determinism of the new
automaton. If it is deterministic skip the determinization step, i.e. step 4,
and go to minimization directly.

4. Determinization: to apply the classical automata determinization on the
new automaton..

5. Minimization: to apply classical automata minimization on the
deterministic automata.

6. Decoding: the encoded labels are decoded back into their original values.

7.2 Future Work

The decoder has a separate representation for variable-length left-to-right HMMs for
efficiency reasons, which is called the HMM specification. However, the integrated
network we have described does not take good advantage of this since, having combined
the HMMs into the recognition network proper, the HMM specification consists of trivial
one-state HMMs. Thus, by suitably factoring the integrated network, we can again take
good advantage of this feature. Therefore a suitable factoring can lead to a substantial
reduction in the size of the network. Currently a simple factoring method has been found
[29]. In the future work we have to find a more effective, less constrained factoring

method that can be used in CSR.
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