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Summarv

Asthma is the most commoniy reported respiratory disease in clinical practice, affecting both

children and aduits (1). This disease is characterized by reversible airflow obstruction, increased

bronchial responsiveness, and airway inflammation (2). lt has been shown that persistent inflammation of

the airways can lead to chronic and possibly irreversible changes that affect the airway physiological

response to different stimuli (3). Over the last twenty years, cysteinyl leukotrienes (cys-LT) have been

shown to be potent bronchoconstrictor agents and important inflammatory mediators in the

pathophysiology 0f both acute and chronic asthma (1). Leukotrienes (LI) can induce smooth muscle

contraction, increase vascular permeabiiity, stimulate mucus secretion and recruit eosinophils into the

lungs (4). A number of activated inflammatory cells (i.e. mast cells and eosinophiis) can release cys-LTs

(4) and it has been shown that cys-LTs can collaborate with cytokines, namely Interieukin (lL)-5, in the

recruitment of eosinophils into the asthmatic airways (5), suggesting an autocrine cys-LT pathway

mediating the asthma phenotype. IL-5, alone, is a very important cytokine in asthma. IL-5 s increased in

the lungs of allergic and nonallergic asthmatics (6). Intra-tracheal administration of IL-5 ta human

asthmatics or to sensitized animais with the characteristics of atopic asthmatics increases the airway

response (7,8).

It s clear that enhanced cell-mediated immunity is an important char.açteristic of asthmatics. This

immunity s centralized around the activity of activated T lymphocytes. Activated lymphocytes are present

and increased in the airways of patients with asthma (9). The first part of my project studied the

reiationship between LIs and ceil-mediated immunity. By pre-treating sensitized BN rats with interleukin

(IL)-2, a T celI growth factor, these animais wiii have upreguiated cellular immunity with increased

inflammatory cells in the lung lavage and increased airway response ta antigen (10), but bile LI

production after antigen challenge in these animais has been previously shown ta be comparable ta

contrais (11). My hypothesis is that upreguiated cellular immunity creates a state of heightened sensitivity

to leukotrienes, which can be measured by assessing the response 0f the airways ta ieukotriene D4. As

weII, I hypothesize that blocking the cys-LT1 receptor with Monteiukast wiil alter the effects of IL-2 on the

late airway response and possibly affect cytokine production in the lungs.
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The second part of my thesis examined whether IL-5 can cause the characteristics of asthma in

animais that are considered normai. For these experiments I studied rats that do not develop the early or

late airway response after sensitization and antigen challenge. I hypothesize that intra-tracheal

administration of IL-5 can affect airway cholinergic responsiveness, the early and late airway response,

lung resistance, and airway inflammation in these rats. At the same time, it wouid be important to see if

these effects caused by IL-5 could be reversed by the anti-IL-5 monoclonal antibody (TRFK5).

My results show that there is a iink between ceII-mediated immunity and the leukotriene pathway.

Upregulation of the immune response with IL-2 increases the sensitivity of the airways to LTs. As well,

Montelukast inhibits the IL-2-mediated late airway response and modulates cytokine mRNA production

after antigen challenge, namely a decrease in Th2 cytokines (IL-4 and IL-5) and an increase in Thi

cytokine (IFN-y). However, IL-5 administered to normal controis is unable to cause many of the

physiologic and inflammatory characteristics of asthma (i.e early and late airway response and lung

eosinophilia after challnge, respectively), but the cytokine can trigger airway hyperresponsiveness to

methacholine, as welI as increase baseline lung resistance 20 hours after antigen challenge. Moreover,

Th2 cytokine mRNA expression is increased in the Iungs of IL-5 treated animais. In conclusion, the

information that is presented in this thesis establishes a link between cell mediated immunity and the

leukotriene pathway. I also show that one mediator is not sufficient to induce ail the physiological changes

that are present in asthma. (Keywords: Asthma, Cysteinyl-Leukotrienes, Interleukin-5)
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Résumé

L’asthme est la maladie respiratoire la plus rencontrée en pratique médicale clinique aussi bien

chez l’enfant que chez l’adulte (1). Cette maladie est associée à une obstruction réversible du flux d’air,

à une augmentation de la réactivité bronchique, ainsi qu’à une inflammation des voies respiratoires (2).

Il a été démontré qu’une inflammation persistante des voies respiratoires peut devenir chronique et

entraîner des changements irréversibles affectant la réponse physiologique des voies respiratoires face à

différents stimuli (3). Durant les deux dernières décennies, il a été démontré que les leukotriènes

cysteinyleês (cys-LT) sont des agents broncho-constricteurs ainsi que d’importants médiateurs

inflammatoires impliqués dans la physiopathologie de l’asthme chronique et de l’asthme aigu (1). Les

leucotriènes (LT) peuvent induire la contraction des fibres musculaires lisses, l’augmentation de la

perméabilité vasculaire, la stimulation de la sécrétion de mucus, ainsi que le recrutement des

éosinophiles dans les poumons (4). Plusieurs cellules inflammatoires activées (ex. mastocytes et

éosinophiles) peuvent libérer les cys-LT (4). lI a d’ailleurs été démontré que les cys-LT peuvent interagir

avec les cytokines, notamment l’interleukine (lL)-5, pour recruter les éosinophiles aux voies respiratoires

des asthmatiques (5). Il existe donc potentiellement une voie autocrine de la cys-LT promouvant le

phénotype de l’asthme. A elle seule, IL-5 est une cytokine très importante dans l’asthme. Ainsi, la

concentration d’IL-5 est augmentée dans les poumons des asthmatiques allergiques et non-allergiques

(6). L’administration intra-trachéale d’IL-5 augmente la réactivité des voies respiratoires et ce tant chez

les humains asthmatiques que chez les animaux sensibilisés servant de modèles de l’asthme atopique

(7,8).

Il est maintenant clair que l’augmentation de l’immunité cellulaire est une caractéristique

importante chez les patients asthmatiques. Cette immunité est centralisée autour de l’activité des

lymphocytes T activés. En effet, les lymphocytes T activés sont présents et augmentés dans les voies

respiratoires des patients asthmatiques (9). La première partie de mon projet étudie la relation entre les

LT et l’immunité cellulaire. L’interleukine(lL)-2, un facteur de croissance des cellules T, administrée en

pré-traitement à des rats Brown Norway sensibilisés, à pour effet de stimuler l’immunité cellulaire et

augmenter les cellules inflammatoires du lavage broncho-alvéolaire. Par conséquence, il a été démontré

que la réponse des voies respiratoires â l’antigène est augmentée (10), mais que la production du LT
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chez ces animaux demeure comparable aux groupes contrôles (11). La première partie de ma thèse

étudie l’hypothèse que lorsque l’immunité cellulaire est amplifiée, cela crée une augmentation de la

sensibilité des voies respiratoires aux LT, qui peut être mesurée en testant la réactivité des voies

respiratoires à la LTD4. En plus, mon hypothèse est que le blocage du récepteur de la cys-LT1 avec le

Montelukast (MK-0476) altérera l’effet de ‘IL-2 sur la réponse tardive des voies respiratoires et affectera

possiblement la production de cytokines dans les poumons.

La deuxième partie de ma thèse vérifie si l’administration de l’lL-5 peut causer des changements

caractéristiques de l’asthme, chez les animaux considérés comme normaux. Pour ces expériences, j’ai

étudié des rats qui ne développent pas de réponse aigu ou tardive dans les poumons, suite à la

sensibilisation et à la provocation antigénique. Mon hypothèse est que l’administration intra-trachéale

d’IL-5 peut affecter la réponse cholinergique des voies respiratoires, la réponse aigu ou tardive des voies

respiratoires, la résistance pulmonaire, ainsi que l’inflammation des voies respiratoires, chez ces rats. En

même temps, il serait important de voir si ces effets causés par l’IL-5 peuvent être bloqués par l’anticorps

monoclonal anti-IL-5fTRFK5).

Mes résultats montrent qu’il existe un lien entre l’immunité cellulaire et la voie des LT.

L’augmentation de l’immunité cellulaire avec l’IL-2 augmente la sensibilité des voies respiratoires aux LT.

De plus, le Montelukast inhibe la réponse tardive causée par l’i L-2 et réUuj d’une part la production

d’ARN messagers particulièrement celles de l’lL-4 et l’lL-5 libérés par les cellules Th2 et d’autre part

augmente la production de l’IFN-y libéré par les cellules Thi. Par contre, l’administration d’IL-5 chez les

rats contrôles ne permet pas de reproduite plusieurs des caractéristiques physiologiques et

inflammatoires de l’asthme (i.e. réponse aigu et tardive des voies respiratoires et éosinophilie des

poumons respectivement), mais cette cytokine peut déclencher une hyper-réactivité des voies

respiratoires à la méthacholine, ainsi qu’augmenter la résistance pulmonaire de base, 20 heures après la

stimulation antigénique. De plus, l’expression des ARN messagers des cytokines de type Th2 est

augmentée dans les poumons des animaux traités à l’IL-5. En conclusion, les résultats présentés dans

cette thèse démontrent bien le lien entre l’immunité cellulaire et la voie de synthese des LT. De plus ces

résultats montrent qu’un seul médiateur n’est pas suffisant pour induire tous les changements

physiologiques présents dans l’asthme. (Mots Clés : Asthma, Leukotriènes-cysteinyleês, interleukine-5)
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Introduction

1.1.1 Epidemiology

Allergic disease in general and asthma in particular have become an increasing problem for

public health, especially in developed countries. Epidemiologic evidence suggests that the prevalence of

asthma has increased significantly, especially among children (12,13). Asthma affects 5 to 10% of the

population (14) and in the United States alone, asthma affects 14 to 15 million persons. It s the most

common cause for hospitalisation of children and it continues to be fatal. In the United States, an

estimated 5000 persons die of asthma per year (15).

Some scientists have questioned the validity of reports that suggest that the prevalence of

asthma is increasing considerably in the population as a whole. Their main argument is that the reported

increases are possibiy due to a greater awareness among physicians of the importance of asthma as a

cause of chronic respiratory symptoms, especially among children (16). This theory is understandable

because it is stiil true today that many chiidren with asthma receive other diagnoses (wheezy bronchitis,

spastic bronchitis, etc.). However recent surveys that have included objective measures of risk factors for

asthma, such as allergic sensitization and bronchial hyperresponsiveness (17) confirm that only a small

proportion of the observed increases in the prevalence of asthma are due to a shift in diagnostic labelling.

Most surveys of chiidren in Western countries have reported that the prevalence of asthma is higher in

boys with some male/female ratios exceeding 2 to 1 (18).

1.1.2 Risk Factors I Asthma Mechanisms

In recent decades, a number of studies have suggested that allergen exposure is the primary

cause of asthma, and that the global increases in asthma prevalence could be the result of increases in

exposure to aeroallergens (19). The hypothesized causal mechanism s that allergen exposure produces

sensitization and continued exposure leads to clinical asthma through the development of airway

responsiveness and inflammation (Figure 1). However, there is a distinction between factors that can

precipitate attacks (secondary causation of asthma) and those that increase the risk of developing

asthma (primary causation of asthma). It is welI established that allergen exposure is a secondary cause
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cf asthma in that it can trigger asthma attacks in sensitized asthmatic subjects and that prolonged

exposure can lead to persistence cf symptoms (19). Other risk factors which precipitate attacks include

viral infections, cigarette smoke, atmospheric pollution, and stress (20). A factor that proiongs or

exacerbates asthma symptoms may thereby increase asthma prevalence even if it has no effect at ail on

the incidence cf asthma. The evidence linking specific allergen exposure to asthma is weak and, if the

association is causal, the population attributable risk appears te be small. Some researchers have

theorised that the prevalence of asthma s related more te the total burden cf aercaliergens than to

exposure to a particular allergen. An alternative explanation is that specific allergen exposure may net be

a major primary cause cf sensitisation or of asthma itself, but may determine the specificity of the

sensitisation in susceptible individuals.

Several studies have shown the adverse effects of ambient air pollution on respiratory health

(20,21,22,23). A major causative agent could be cutdccr air pollution, derived from cars and other

vehicles. Studies have demonstrated that urbanisation and high levels cf vehicle emissions 15 correlated

with increasing frequency cf pollen-induced respiratory allergy. Pollen grains or plant-derived

paucimicronic components carry allergens that can prcduce allergic symptoms. There is evidence that air

pollutants may promote airway sensitisaticn by increasing the allergenicity cf airbcrne allergens. By

affecting plant growth, air pollutants can affect both the amount cf pollen produced and the amount cf

allergenic proteins contained in pollen (24,25). Aercallergens released by pollen grains can be transferred

te other, small, non-biclcgical particles cf air pollution such as diesel exhaust particulate (DEP) acting as

biological aerocontaminants cf the inhaled air which can penetrate deep into the airways inducing allergic

symptoms in sensitized subjects (26). DEP aIse exerts an adjuvant immunclcgical effect on

Immunoglubulin(lg) E synthesis in atcpic subjects thereby influencing sensitization te airbcrne allergens

(27). Airway muccsal damage and impaired muccciliary clearance induced by air pollution may facilitate

the access cf inhaled allergens te the ceils cf the immune system. Despite evidence cf a correlation

between the increasing frequency cf respiratcry allergy and the increasing trend in air pollution, the link

and interaction is stili speculative.

Researchers have pcstulated that the recent increases in asthma prevalence cculd be due te an

increase in the level cf exposure te certain indoor aeroallergens (17). They reason that changes in the
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structure of modem homes have rendered them more impermeable to the outdoor environment, making

the inhabitants of these homes significantly more exposed to indoor allergens. In addition, it is suggested

that the use of certain materials for home construction and in furniture stimulates the gcowth of indoor

allergen sources such as house-dust mites. Also the modem tendency to keep cats and dogs inside

homes can also increase the risk of sensitization to allergens produced by these pets.

It is important to note than an individual’s response to allergen exposure depends on the source

and components, as wefl as climatic factors which can favour the accumulation of allergens at ground

level. Therefore, the effects of allergens on lung function depends on the environmental concentration of

the allergen, the duration of exposure and the total ventilation of exposed persons.

1.1.3. Hygiene Hypothesis

There has been a significant increase in the prevalence of allergic diseases over the past 2 ta 3

decades. There are also clear differences in the prevalence of allergy and asthma between rural and

urban areas within one country. For example, in Ethiopia, asthme is more prevalent in urban areas than in

rural villages (28), and asthma is more common in residents of urban Germany than in farmers living in

rural Bavaria (29). b explain these observations, environmental factors associated with more

industrialised and urban living have been studied intensively, but there is little consistent evidence ta

suggest that obvious tisk factors, such as increased exposure ta indoor allergens (such as endotoxin and

lipopolysaccharides (LPS)), pollution, or changes in diet and breastfeeding, could account for the rise in

atopic diseases. lndeed, it may be that endotoxin prevents the development of asthma (30). Another

category of environmental factors, childhood infections, shows an overwhelming and consistent negative

association with atopy and allergic diseases. Allergic sensitization is overrepresented among first-born,

but is less frequent in children from large families (31), and those attending day care (32), suggesting that

a frequent exchange of infections may have a protective effect (31). It has been proposed that the lack of

intense infections in industrialised countries due ta improved hygiene, vaccination, and use of antibiotics

may alter the human immune system such that it responds inappropriately ta innocuous substances. This

so-called “hygiene hypothesis” (31) has a particular immunological profile, specifically e unique balance

between type 1 (Thi, associated with bacterial and viral infections and autoimmune diseases) and type 2
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(Th2, associated with helminth infections and allergic diseases) immune responses (33). The theory is

that limited exposure to bacterial and viral pathogens during eariy childhood results in an insufficient

stimulation of Thi cells, which in turn cannot counterbalance the expansion of Th2 cells and results in a

predisposition to allergy.

Th2 responses are characterised by increased IgE to allergens, mastocytosis, and eosinophilia.

Helminths are prevalent in developing countries and lead to strong Th2 responses. Nevertheless,

helminth-infected populations show little signs of aliergic disorders. This difference may be explained by

the differences in exposure to pathogens. A high prevalence of chronic infections in developing countries

resuits in persistent immune challenge, with cycles of infection and inflammation, which is followed by the

triggering of anti-inflammatory molecuies to restrict immunopathology. This dynamic interaction educates

the immune system to establish a robust regulatory network, possibly the key to controlling allergic

diseases. Such a network would be weakly developed in industrialised countries with low pathogen load,

allowing inappropriate immunopathologic reactions to develop more readily.

The immunological explanation for the hygiene hypothesis has been influential in directing

strategies to prevent allergic diseases. Induction of allergen-specific Thi response by Bacille Calmette

Guerin (BCG) or DNA vaccination is being advocated on the basis of the promising results obtained in

experimental animaIs (34).

1.1.4 Genetics

The environmental modifications that are causing the increases in asthma are more likely to exert

their influences in individuals who have certain genetic backgrounds. Genetic susceptibility is defined as

the presence of polymorphisms in genes that determine that certain individuals are at increased risk of

developing those diseases. The genetic variations that predispose those to asthma were present in the

population long before the current epidemic started. However, in the absence of certain environmental

influences, these variations did not lead to the development of clinical illnesses in the past. Complex

diseases such as asthma and allergies are almost always the result of interactions between different sets

of genes and environmentai influences that, acting together with these genetic variations make these

complex diseases more likely.
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It is very difficuit to measure simultaneously ail the environmental influences that can interact to

determine asthma risk, and particularly to measure them at the time in which they are active. Therefore

several genome-wide screens for asthma and its associated or related traits have been carried out

(35,36,37,38,39,40,41). Most of these studies lack sufficient statistical power, but some have been

relatively consistent in reporting genetic linkage in the same chromosomal region. Therefore, these

genetic loci may contain major genes influencing atopy and asthma (42). The latter include genes within

the cytokine gene cluster on chromosome 5, 11, 12, and 16 as likely candidates that may contribute to

asthma and allergy development. In addition, these data support the invoivement of genes involved in

antigen presentation fMHC) and T ceil responses (43). Studies in identicai twins have convincingly

demonstrated that at least 50% of the susceptibility to asthma is determined by inherited predisposition

(44).

Some of these aforementioned candidate genes couid yieid new therapeutic approaches once

they are fully validated. It remains to be established whether there are functional polymorphisms in these

candidate genes that determine the severity of the disease phenotypes. These polymorphisms could be

the target of several therapeutic scenarios, including a reduction in gene expression or an elimination or

alteration in the protein of interest.

1.2. Asthma Characteristics

Asthma is often associated with atopy, a disorder characterized by sustained, inappropriate IgE

responses to common environmentai antigens (allergens) encountered at mucosal surfaces (45). Cross

Iinking of surface Fc receptors to aliergen-specific IgE is assumed to play a role in the pathogenesis of

atopic asthma (46). However, a minority of asthmatic individuals are not demonstrably atopic according to

conventional criteria, which has led to the suggestion that asthma may be divided clinically, and perhaps,

mechanisticaiiy, into atopic (extrinsic) and nonatopic (intrinsic) variants (47).

Intrinsic asthma is considered to be a distinct pathogenetic variant of asthma since, uniike

extrinsic asthma, patients with the disease are skin test-negative to common aero-allergens, and have

total serum IgE concentrations within the normai healthy range. As well, the celiular pattern for

eosinophils, neutrophils, T lymphocytes, and cytokines differs between atopic and non-atopic patients
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with asthma. In atopic asthmatics, the airway inflammation is characterized by high numbers of

eosinophils, mast celis, and T lymphocytes, whereas non-atopic asthmatics mainly display high number of

neutrophils and mast cells (48). IL-4 and IL-5 positive cells are found in higher numbers in atopic than in

non-atopic patients with asthme. There are also distinct structural alterations in the airway mucosa of

patients with atopic asthme that are flot found in non-atopic asthmatics.

Intrinsic asthma occurs in an older age group of people without any history of ellergy to

environmentaÏ factors (49). In contrast, extrinsic asthme usually develops in childhood, occurs often

seasonally and remains present throughout life, with periods 0f remission (50,51). Intrinsic asthma has a

preponderance to affect females and it is associated with nasal polyps and aspirin sensitivity (52,53).

Whereas some authors suggest that around 10% of asthmatics are intrinsic, a Swiss study found that a

third of total asthmatics are non-allergic (intrinsic)(53,54).

Ever since the first description of intrinsic asthma, there has been debate around the relationship

of this variant of the disease to atopy (53). One suggestion is that intrinsic asthma represents e form of

autoimmunity, or autoallergy, triggered by an infection since respiratory influenza-like illnesses often

precedes the onset. Some researchers suggest that intrinsic asthmatics are allergic to an as yet

undetected allergen and could therefore benefit from allergen avoidance, as previously demonstrated in

atopic asthmatics (55).

1.2.1 Early Airway Response ILate Airway Response

AI lergen challenge of sensitized atopic individuals results in an early response (ER), which in the

skin is seen as the immediate wheal and flare reaction, and after inhalation as e decrease in airway

caliber occurring within minutes (56). The eatly airway response (ER) occurs within minutes of inhalation

of antigen, lasts up to an hour, and is followed by a prompt return to baseline lung resistance (57) (Figure

2A). The ER is mediated by IgE antibodies, which are present on mast ceils and basophils. These

antibodies cross-link when in contact with allergen leading to degranulation of the cells and increased

microvascular permeability (58). Bronchoconstriction of the airways during the ER is induced by the

release of histamine, Ieukotrienes, eicosanoids, and possibly other bronchoconstrictive agents (59).



12

The late airway response (LR) occurs 4 to 12 hours after antigen exposure and may persist long

after antigen exposure has ceased (60) (Figure 2E). In general, most atopic asthmatics develop both

responses (Figure 2C), although occasionally, only an early or a late response is encountered (61).

Airways of individuals experiencing the LR show increased edema and an infiltration with different

inflammatory cells, in particular eosinophils and T lymphocytes (62,63).

1.2.2 Airway Hyperresponsivness

Airway hyperresponsiveness fAHR) is characterized by an increase in the sensitivity and

reactivity of the airways to agonists, such as allergens, and the development of a lower threshold to

spasmogens that will hinder airflow (64). AHR occurs before the symptoms of the LR arise and can

remain after the symptoms have subsided (65,66). The type of physiological response s directly related

to the degree and method by which various antigens are presented to the immune system in the airways

of atopic asthmatics (67). Exposure to an antigen to which one is sensitized to may only cause an acute,

transient increase in airway hyperresponsiveness, however continuous exposure to an allergen may

cause an individual to reach a chronic state of airway inflammation and hyperresponsiveness (61).

Inflammation is flot always necessary for AHR to occur. Bronchoconstrictive agents such as histamine,

cholinergic agents and some -agonist blockers cause bronchospasm through smooth muscle contraction

without airway inflammation (61).

AHR occurs through neuronal mechanisms and inflammatory mediator release which affects the

sensitivity of the airways to stimuli and accordingly the amount of smooth muscle contraction.

Consequently, increased AHR leads to a decrease in airway diameter (68). The relationship between

inflammation and hyperresponsiveness in the airways is especially important during the LR. There s an

increased presence of inflammatory cells and mediators in the airways during the LR (69).

Type 2 T helper lymphocytes (Th2) orchestrate the inflammation and are crucial for the

development of AHR. Celis and molecules involved in T celI activation (dendritic cells, T celI receptor,

major histocompatability complex molecule, and costimulatory molecules) are also vital. There are at least

three pathways that lead to AHR. One is dependant on immunoglobulin E and mast celis, one on
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eosinophils and interleukin-5 (IL-5), and one on IL-13. Eosinophils are probably the most important

effector ceils of AHR.

The nature of the relationship between AHR and atopy (specific lgE to aeroallergens) is unknown

and one of the most important questions in asthma. It is clear from epidemiological studies that these two

abnormalities are Iinked. However, flot ail allergic (atopic) people have AHR and flot ail individials with

AHR are allergic. Furthermore, there is some suggestion that the risk factors for the two abnormalities

are different.

12.2.1. Airway Hyperresponsiveness in Humans

Researchers have long used stimuli, such as histamine and methacholine, to measure the level

of AHR in patients with asthma and in animal models. By instilling or nebulizing incremental doses of

these mediators to the airway, they are able to assess and to quantify the threshold of tolerance toward

non-specific irritant stimuli (70,71). AHR is often defined as a 20% fall in the FEV1 in response to a

provoking agent, such as histamine, methacholine, or hypertonic saline, and sometimes to exercise or

cold air hyperventitation. However a measure of AHR is not always considered to be a sign of asthma or

even of airway inflammation (72). The amount of AHR to cholinergic agonists correlates only with the

level of certain asthmatic symptoms such as wheezing and nocturnal cough and can give a limited

prognosis of the severity of an asthmatic attack (72). Airway hyperresponsiveness is not restricted to non

specific stimuli. AHR can occur in normal subjects following viral respiratory infection and can be present

in atopic non-asthmatic individuals, in patients with chronic obstructive pulmonary disease or cystic

fibrosis (73,74,75).

1.2.2.2. Airway Hyperresponsiveness in Animal Models

Airway responsiveness in the intact animal depends on tracheal smooth muscle airway

contractiiity, chest wall compliance, bronchiolar mucus plugging, airway fibrosis, and other factors (76).

AHR is a function of both airway hyper reactivity (an increased response to a given dose of

bronchoconstrictor) and airway hyper sensitivity (the ability to respond to a smaller dose of

bronchoconstrictor) (77).

There are three ways to measure AHR (78). The ex vivo technique examines the contractility of

dissected tracheal smooth muscle stimuiated by electricity or methacholine. The first in vivo method
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measures the airway pressure and lung resistance of an anaesthetised animal with an intratracheal and

intra-esophageal cannula (79). The second in vivo method uses unanaesthetised and unrestrained

animaIs in a plethysmography box to produce a mathematically derived parameter called the enhanced

pause (Penh) that reflects airway obstruction (78).

The ex vivo method differs from in vivo measurements because it neglects the effects of edema,

mucus, or chest wall recoil on airway narrowing. The first in vivo method requires the technique of trachea

and esophageal cannulations. The second in vivo method permits uninterrupted measurements, enabling

the evaluation of early and late phase bronchial response and the discernment of airway hyperreactivity

and airway hyperresponsiveness (80). Howevet, in some circumstances, the nasopharynx contributes

significantly to the total airway resistance with this method.

1.2.3 Airway RemodellinglObstruction

Asthma has traditionally been thought of as an entirely reversible disorder. However, a number of

studies have demonstrated that individuals with asthma experience an accelerated rate of respiratory

function deterioration (81). Patients with asthma can develop a physiological state characterized by

irreversible, or partially reversible, airway obstruction, and they manifest persistent AHR even after

prolonged corticosteroid therapy. The pathogenic mechanisms responsible for these findings are poorly

understood but they may be the resuit of structural changes, referred to as airway remodelling.

Remodelling in chronic asthmatic airways is characterized by waii thickening, subepithelial fibrosis,

mucous metapiasia, myofibroblast hyperplasia, vascular abnormalities, and myocyte hyperplasia and

hypertrophy (82).

7.2.3.1 Aiway walI thickening

Ail components cf the airway wall (inner, outer and total) have been reported to be thickened in

asthma. Many elements contribute to this response, including an increase in airway smooth muscle.

edema, ïnftammatory celI infiltration (Figure 3), glandular hypertrophy, and connective tissue deposition.

Compared to ncnasthmatic subjects, airway wall thickness is increased from 50% to 300% in cases cf

fatal asthma, and from 10% to 100% in cases of non-fatal asthma (83). The exact physiologic and



Figure 3: Photomicrographs of airway inflammation

(a) the airway submucosa (S) from a nonasthmatic
individual with few inflammatory celis, bar = 0.1 mm

(b) the submucosa from an individual with
fatal asthma with polymorphonuclear and
mononuclear celi infiltration, bar = 0.05 mm
Reprinted with permission from Holgate ST, Busse WW.,
Tnftammatory Mechanisrns in Asthma. Vol 117.
Marcel Dekker Inc.,NY, pg. 12, 2001.
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pathologic consequences of airway wall thickening are incompieteiy understood. Some models have

demonstrated that the thickening response reduces the amount of smooth muscle shortening required to

cause airway closure (84).

1.2.3.2 Basement Membrane Thickening

Collagen deposition beneath the basement membrane is described as “basement membrane

thickening” (85). This has been recognized as increased coilagen types III and V, as weli as matrix

components laminin and fibronectin along the basement membrane (composed of type IV collagen) (86).

Multiple factors have been associated with subepitheliai coilagen thickening including increased

frequency of asthma (87), longer duration of symptoms (88), airway hyperresponsiveness (89), increased

T lymphocyte and fibrobiast activity (90,91), epithelial damage (92), as well as mast ceil and eosinophil

infiltration (93). A possible mechanism is that growth factors reieased by cellular activity lead to increased

myofibroblast numbers and activation observed below the basement membrane (94) where they appeat

in relative abundance. Enhanced coilagen production by myofibroblasts and fibroblasts beyond the rate of

collagen breakdown will lead to increased deposition. Potentiaily, the increased airway rigidity may

contribute to mortality in asthma by reducing the maximal bronchodilator response. In addition, internai

mucosai edema may cause significant internai luminai narrowing, without allowing outward radial

expansion of the wall.

1.2.3.3 Smooth Muscle Hypertrophy/Hyperplasia

A 50-230% and 25-150% increase in the area of airway smooth muscle has been demonstrated

in fatal and nonfatal asthma, respectiveiy (83) (Figure 4). These findings imply that the increased smooth

muscle mass in some asthmatics may predispose to poorer iung function and a poorer response to a

severe attack. Presumably, the factors known to be trophic for smooth muscle growth act unopposed in

persistent airway inflammation. These inciude histamine, thrombin, thromboxane A2, and epidermal and

platelet-derived growth factor (95). The modeliing studies of Wiggs and colleagues have indicated that

shortening of inner airway walI smooth muscle by 40% may be sufficient to lead to airway closure (96).



Figure 4: Photomicrograph of airway smooth muscle

Reprinted with permission from Holgate ST, Busse WW.,
Inftammatory Mechanisrns in Asthma. Vol 117.
Marcel Dekker Inc.,NY, pg. 1$, 2001

(a) a nonasthmatic individual showing normal
airway smooth muscle (M), bar = 0.5 mm

(b) an individual with fatal asthma showing a
prominent layer of smooth muscle (M) surrounding
the folded airway mucosa, bar = 0.05 mm
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Moreover, the added thickness may account for the loss of dynamic expansion of deadspace seen during

inspiration in asthma (97).

1.2.3.4 Mucus Metaplasia

Mucus hypersecretion, epithelial mucus metaplasia, and airway obstruction due to bronchial

mucus plugging are well-documented features of chronic asthma and status asthmaticus (98).

Morphometric and immersion fixation studies demonstrate that the area of mucus glands is increased in

fatal and nonfatal asthma. Liquid and mucus can also f111 in the interstices and folds of the airway surface.

This could add to the forces tending to narrow the airway by amplifying the effect of muscle shortening

and increasing the surface tension at the air-liquid interface.

1.2.3.5 Airway Vascularity

The bronchial mucosa of endobronchial biopsies from mild asthmatics has been shown to contain

increased numbers of vessels per unit area (738 per mm2) (99). The increase in vascularity below the

basement membrane and adjacent to the musculature is potentially capable of causing further luminal

narrowing. Using anti-collagen type IV antibodies on biopsies from mild asthmatics, researchers have

found significantly more vessels overali and more vessels larger than 300 pm2 in asthmatic airways,

suggesting bronchial vasodilation in addition to angiogenesis. Canine models have demonstrated in vivo

correlation between airway thickening and airflow obstruction (100). This engorgement might also

contribute to the loss of airway distensibility seen in asthma (97).

1.3 Airway Inflammation

1.3.1 IgE

The secretion of IgE by B lymphocytes defines the allergic state, and the association between

allergy and asthma is well established (101). The percentage of asthmatic subjects defined as allergic

depends on whether subjects have a positive skin test to an aeroallergen in addition to elevated levels of

serum IgE. IgE binds to high or low affinity receptors (FceR) and CD23, respectively) on the surface of a

variety of effector celis, the most important of which are mast cells and basophils. The cognate antigen
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crosslinks IgE bound to high affinity receptors on mast cells and on basophils causing the celis to release

a variety of preformed and newly generated mediators that promote airway hyperresponsiveness, mucus

hypersecretion, and increases in vascular permeability. The early asthmatic response is clearly

dependant on IgE-mediated activation of mast cells through high affinity receptors (FceRI). Antigen

specific IgE responses are regulated by HLA class Il and T-ceIl receptors and involve T-B cognate

interaction while nonantigen-specific IgE response involve noncognate interaction of mast celis,

basophils, and T and B cells (102). IL-4 is the most important cytokine mediating IgE synthesis and

together with IL-13 plays a central role in the IgE-dependent allergic reaction.

The role of IgE in mediating an allergic airway reaction is confirmed by the finding that treatment

of allergic asthmatic patients with monoclonal anti-IgE antibodies attenuated airway eosinophilia,

increased the dose of allergen needed to provoke an early reaction, and reduced the mean maximum fali

in FEV1 during the early and late responses to allergen challenge (103). Therefore, IgE has a direct role in

mediating not only the ER, but also the LR.

While IgE-dependant inflammation plays a major part in allergic asthma, there are many

inconsistencies. One study has demonstcated that total IgE s a poor diagnostic indicator of respiratory

allergic disease (104) and in the African population serum levels of IgE have been reported to be higher

in nonasthmatics than in asthmatics (105). Moreover, IgE knockout mice when challenged with allergen

can elicit an inflammatory tesponse in the airway as weIl as airway hyperresponsiveness (106). Even the

syndrome of active anaphylaxis, with mast celi activation and mediator release can be displayed by both

ovalbumin (OVA) sensitized lgE’ and FceRI-deficient mice after intravenous challenge with OVA

(107,108). These studies cast a question mark on the precise role of IgE in allergic disease.

1.3.2 Eosinophils

The current view of the eosinophil is that t is a proinflammatory celI with substantial tissue

destructive potency. The biological activities exerted by the eosinophil are related to the products

released from its granules, including the eosinophil cationic protein (ECP) and the major basic protein

(MBP) (Figure 5) . These two potent cytotoxic proteins have the capacity to kiil both mammalian and non

mammalian celis, such as parasites, by making pores in celi membranes, which leads to osmotic lysis
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Figure 6: Eosinophil Cationic Protein (ECP)

Electron microscopic demonstration ofthe effect of eosinophil
cationic protein on cellular membranes which can produce pores
with an approximate diarneter of 5nm.
Photo courtesy ofDr. Per Venge, Uppsala University,
Uppsala, $weeden
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(Figure 6). The accumulation and activation of eosinophfls from the bone marrow to the lungs is

governed by the upregulation of adhesion molecules on lung endothelial celis and the production of

various cytokines and chemotactic molecules by mast cells and T cells. 0f these cytokines, IL-5 seems to

play a central roTe, because it regulates most aspects of eosinophil behaviour, such as growth, apoptosis,

adhesion, and secretion (109). Activation of the endothelium by cytokines such as IL-4 favours their

migration to the lungs by upregulating the expression of vascular ce!! adhesion molecule 1 (VCAM-1) on

endothelial cells (110).

Eosinophils differentiate within the bone marrow under the influence of GM-CSF, IL-3, and IL-5

(Figure 7). In response to allergic stimuli in the lung, the eosinophil pool in the bone marrow expands and

the number of eosinophils residing in the blood and at the site of allergen provocation increase markedly.

Circulating eosinophils are recruited into tissues following adhesion to endothelial celis expressing

specific adhesion molecules, including VCAM-1, which recognizes vascular leukocyte antigen-4 (VLA-4)

found on eosinophils, and ICAM-1 that binds CD11/CD18 molecules on a range of leukocytes types.

Eosinophils migrate in response ta chemoattractants, including Iipid mediators, complement components,

chemokines, and cytokines. Eosinophils express receptors for complement components C3a and C5a, for

chemokines including IL-8, RANTES fCCR-1) and eotaxin (CCR-3), for cytokines including IL-1, IL-2, IL-

3, IL-4, IL-5, IL-9, IL-16, GM-CSF, IFN-y, and TNF-Œ, and for immunoglobulins (1g) A, G, and E (high and

10w affinity) (111). Eosinophils are thus weII equipped ta respond ta a range of inflammatory stimuli.

Eosinophils are also an important source 0f inflammatory mediators. Among the lipid derivatives,

eosinophils have the capacity to produce an amount of leukotrienes comparable with that of mast cells

and basophils and higher than that of monocytes (Figure 7). Eosinophi!s also generate 15-HETE,

lipoxins, platelet-activating factor (PAF), and small amounts of thromboxane2 (TXA2) and prostaglandin2

(PGE2). The eosinophil specific granule contains MBP in its core, and ECP, EPO, and EDN in its matrix.

These granule-derived proteins have cytotoxic activity for helminths and are implicated in branchial

epithelial damage (112).

Early studies on post-mortem Iungs obtained from patients who died of asthma showed

significant eosinaphilia. Influx of eosinophilia into the branchoalveolar lavage (BAL) fluid was

demonstrated during the late response aher allergen challenge of atopic subjects, at a time when
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bronchial responsiveness is enhanced. In numerous clinical asthma studies, eosinophilia lias been

demonstrated in bronchial biopsies, induced sputum, BAL fluid, and blood of allergic and nonallergic

patients (113). Levels of MBP and ECP are elevated in lung tissue and BAL fluid obtained from

asthmatics, suggesting eosinophil activation (112). Eosinophil numbers in biopsies and BAL fluid

correlate with asthma symptom scores, Iung function (FEV1) and nonspecific AHR.

Although there is evidence of the eosinophil as a primary effector ceII leading to

bronchoconstriction, epithelial damage and AHR in clinical asthma, its contribution in individual subjects

may be highly variable (113). In several studies, a distinct proportion of patients with clinically significant

asthma had negligible counts of eosinophils in bronchial biopsies or BAL fluid. Correlations between

eosinophilia and AHR may be statistically significant, but individual patients may differ from this simple

relationship, with activated T cells sometimes showing stronger correlations with measures of disease

severity.

In contrast to wild-type litter mates, allergic IL-5 -I- mice do not generate eosinophilia in the blood

and bone marrow compartments in response to allergen provocation of the lung, and this greatly reduces

the level of eosinophils recru ited to the airways (114). However, mature eosinophils stiil reside in the

blood (albeit reduced numbers) and bone marrow compartments, indicating that baseline differentiation,

maturation, and subsequent extramedullary migration persist in the absence of IL-5 (114). Results

suggest that the primary role for IL-5 is in the promotion of peripheral eosinophilia in response to aHergic

stimulation.

1.3.3 Neutrophils

The neutrophil has only recently boen the target of considerable interest regarding asthma

pathogenesis. In recent years, the expansion of invasive studies to more severe forms of asthma, the

advent of sputum analysis, concerns regarding the eosinophil as the most important effector celi and an

appreciation of the properties intrinsic to the neutrophil, have Ied to an increased interest in this celI type.

The inflammatory products generated by the neutrophil range from cytokines, chemokines, and Iipid

mediators to reactive oxygen species, various proteases and growth factors (115). The most important of
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these are IL-8, LTB4, and matrix metalloproteinase (MMP)-9. IL-8, a potent chemoattractant for

neutrophils, has been reported to be increased in asthmatic patients.

Neutrophils may predominate in the airways of patients with nocturnal asthma, sudden-onset fatal

asthma, acute exacerbations or severe asthma poorly controlled by high dose glucocorticoids (116).

Sputum analysis of asthmatics demonstrated that neutrophils were the prominent ceil in subjects with

severe asthma, as weIl as mild asthmatics. Although the sputum reflects pathology in the larger airways,

in both transbronchial biopsies and surgical evaluation of neutrophils in the small airways, there appears

to be an increase in neutrophils, with specific localization to the small airway inner wall (117).

It is not likely that the neutrophil plays any role in the acute bronchospasm associated with

asthma, given the profile of the mediators genetated by these celis. Neutrophils are more likely to be

involved in chronic inflammation, wound repair, and remodelling processes of asthma. The neutrophil is

well-known to be part of the wound repair processes in the skin, eyes, and blood vessels (118). Studies

indicate that the neutrophil may contribute to the fibrotic processes associated with asthma, particularly

the basement membrane thickening, through its production of TGF-13 and MMP-9. TGF-f3 has been

reported to be increased in bronchoalveolar fluid and in the celis of patients with asthma, with studies

showing that at least 50% of these TGF-Ç3 ceils are neutrophils (117). MMP-9 has also been reported to

be increased in asthma and in patients with status asthmaticus, but whether their source is the neutrophil

or not is difficuitto prove. (119).

Neutrophils have also been suggested to play a role in mucus production and secretion, both

prominent features in severe asthmatics. Several animal studies support a role for neutrophils and

neutrophil elastase in both the upregulation of MUC-5 mRNA and protein, and in the degranulation of

goblet cells (120,121). In animal models, removing the neutrophil appears to decrease mucus production

(122). As well, data suggest that the neutrophil might be an important mediator of airway caliber in

asthma but might not be an important mediator of bronchial hypersensitivity.
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1.3.4 Mast Ceils

Mast ceils are key cellular participants in allergic disease (Figure 8). Their potential role in
asthma was recognized early on with the identification of these ceils as major sources of the
spasmogenic mediator histamine. The activation of mast cells is known to release a range of potent
mediators of inflammation, including proteoglycans (heparin, chondroitin sulphate), proteases (tryptase,
chymase), cytokines (IL-4, GM-CSF) and lipid mediators such as prostaglandins(PG) D2 and LIC4 which
leads to bronchoconstriction. Ihese products may be stored in the prominent secretory granules of these
ceils and are released following celI activation. Mast ceils can be stimulated to degranulate by cross
linking allergen-specific IgE bound to high-affinity IgE receptors on the ceIl membrane. Mast cells express
approximately 300 000 high affinity IgE receptorslcell, but cross-linking only 100 receptors will result in
detectable responses (123). Mast cells may also be activated by diverse stimuli acting through other
receptors (specific allergens, adenosine, neuropeptides, opiates). Histamine, the best studied of mast celi
products, accounts for 5-10% of mast ceil granule content, and is stored in association with
proteoglycans. Histamine receptor stimulation resuits in smooth muscle contraction, increased vascular
permeability, and prostaglandin generation.

In the airways, mast cells are abundant in the mucosa. Ihey may also be ptesent in the
submucosa, particularly in the vicinity of mucus glands, and small numbers are free in the lumen, where
they are weil placed to respond to inhaled allergens. Mast celi derived mediators have been found in
lavage fluid from patients with asthma, supporting the role of these cells in the immediate or early allergic
reaction in asthma (123). When aHergen challenge preceded BAL, increases were documented for
histamine, LTD4, PGE2, and tryptase (123). Ihe role of mast ceNs in the late allergic response has been
more difficult to resolve. However, they are thought to play a key role in the development of the chronic
inflammatory phase through their production of cytokines and chemotactic factors that lead to the
recruitment 0f other celi types such as eosinophils (107).
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7.3.5 Macrophages

Monocytes and macrophages are ceils of the mononuclear phagocyte lineage and are found in

essentially every human tissue and body cavity. They derive from immature bone marrow precursors that

are released into the blood, where they are termed monocytes, and are then recruited to tissues where

they undergo tissue-specific terminal differentiation to macrophages. Macrophages exhibit a wide range

of functions, ranging from the capacity to phagocytose and kili microorganisms, to presentation of antigen

to T ceils and the release of large quantities of numerous soluble mediators (Figure 9).

Macrophages can be activated via the cross-linking of surface IgE bound to the high and low

affinity receptors for IgE. Activation through the 10w affinity IgE receptor, FceRll, leads to release of

soluble mediators, including proinflammatory cytokines and leukotriene B4 and C4 (124,125). Recent

studies have shown greatly increased efficacy by monocytes of antigen uptake and presentation to T ceils

via the high affinity IgE receptor, FceRl (126).

The pulmonary immune system represents a highly specialized and unique environment. Despite

containing the greatest proportion of memory T ceNs of any compartment of the body and having

continuaI exposure to foreign antigen in the air we breathe, littie or no immune activation is observed in

the Iungs of normal healthy individuals. Such activation would be likely to result in damage to the fragile,

permeable epithelial lining of the airways that permits gaseous exchange to occur, a primary and

essential function of the lung. Macrophages play a central role in preventing such activation from

occurring. Alveolar macrophages, located on the distal side of the epithelial lining of the ung, have a

highly phagocytic and microbicidal nature. They are responsible for eliminating inhaled particulate

antigens, such as microbes, allergens, and toxic substances, by physical means, namely ingestion

followed by degraduation and elimination. In doing so, inadvertent and unnecessary immune activation is

prevented.
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1.3.6 Dendritic Ceils

Over the iast 25 years, it has become clear that dendritic celis (DC) are the major antigen
presenting ceNs inducing the primary immune response in vivo (127). DCs capture antigens in the

peripheral tissues and carry it into the T celi area of draining lymph nodes, where naive T lymphocytes

are continuousiy re-circulating in search of specific antigens. Aithough many celi types such as

macrophages and eosinophils have been shown to transport antigens into the draining nodes, the

directed migration into the T celi area is a specialised function of DCs (128). The capacity to uptake

antigens 15 a feature of immature DCs residing in peripheral tissues, and is largely lost during the

migration of DCs into the draining lymph nodes. This way, immature DCs effectively make a “snapshot” of

the antigens present in a peripheral inflammatory site. Interactions in the draining Iymph noUes are

important for clonai expansion, differentiation, and avoidance of anergy in T ceNs.

Lung DCs have an immature phenotype, specialized for uptake and recognition of inhaled

antigen, but not yet capable of stimulating naive T celis, because they lack co-stimulatory molecuies

(129,130,131,132). When antigen is encountered in an inflammatory context, there is a dramatic change

in the behaviour of the DC5, a process called maturation. Upon recognition of foreign antigens, DCs have

to migrate from the periphery to the draining Iymph nodes against the chemotactic gradient that attracts

immature DCs. Therefore, upon recognition of antigen, DCs lose responsiveness to iung-expressed

chemokines, e.g. by downregulation of the CCR6 receptor, but at the same time increase the expression

of the CCR7 molecule, which directs the DCs towards the lymph noUes (133). The migration of airway

DCs in response to an immunogenic stimulus is rapid and within 12h, lung derived DCs can be traced in

the T ceil area of the mediastinai Iymph nodes of the iung (1 28,134,135).

The increased presence of DCs in the airways of atopic asthmatics and allergen exposed animais

suggests that DC5 have a critical contribution to the disease pathogenesis (136,137,138). They have

been associated with Th2-dependant sensitization Ieading to eosinophiihc airway inflammation (139).

Reducing the number of DC5 eithet experimentaiiy or by inhaied corticosteroids is associated with a

reduction in eosinophillic airway inflammation (140).
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7.3.7 Lymphocytes

It is widely believed that T celis acting via the release of cytokines are central regulators 0f human

airway inflammation and in turn, the abnormalities in lung patho-physiology in asthma such as wide

spontaneous fluctuations in airway caliber, bronchial hyperreactivity and airflow obstruction are the direct

consequence of inflammation 0f the bronchial mucosa. Th2-based T cells (T ceil populations able to

secrete IL-4, IL-5, IL-6, IL-9, and IL-13) are dominant effector ceils in the pathogenesis of asthma.

Lymphocytes are activated by antigen-presenting celis and adopt functional phenotypes under instruction

from soluble and physical signaIs that they receive during antigen presentation. They expand by

proliferation, reaching sites of inflammation under the instruction of patterns of chemokines and adhesion

molecules where, as armed effector cells, they affect other leukocytes. The abbreviations Thi (T helper

celi type 1) and Th2 (T helper celI type 2) have been classically referced to CD4 c3 TCR T ceil subsets

that are crucial to both the innate and adaptive immune systems. Other lymphocytes have been reported

to produce Thlrrh2-type subsets including y3 TCR T ceNs (141,142), and CD8 c43 TCR T cells (143).

Multiple Th forms have been described (e.g. Thi, Th2, Thp, ThO, and Th3) (141,144,145,146,147), and

the terms naive, effector, and memory are often mentioned within the same context (141,144,148,149).

Antigen-naive T cells are designated Thp for precursor of T helper celI (144). Antigen exposure to a Thp

ceil results in the selective maturation to either Thi or Th2 ceils. The Th phenotypes are characterized by

the cytokines they produce. The first Th ceil types characterized were mouse Thi and Th2 cells. Mouse

Thi ceils secrete IFN-y, while Th2 ceils secrete IL-4 (150). In humans, Thi cells have been identified to

secrete IFN-y, while Th2 ceils secrete IL-4 and IL-5 (151). Subsequent studies have established that Thi

ceils produce IFN-y, TNF-f3, and IL-2, while Th2 cells produce IL-4, IL-5, IL-6, and IL-13 (144,147).

Another Th ceil type with a unique cytokine secretion pattern is the Th3 ceIl (146,1 52,153) which appears

to be a CD4 immune regulatory T celI that secretes TGF-3 (146). ThO ceNs have been described as

producing both IL-4 and IFN-y (141,144), but their actual existence is controversial.

Thl and Th2 ceNs have been associated with specific immune responses due to the cytokines

they secrete (Figure 10). For pathogens that require internalization, the presence of Thi cytokines (IFN-y

and TNF-3) is consideted necessary. Conversely, for large extracellular parasites such as helminths, Th2-

type cytokines (IL-4 and IL-5) have been consideted most protective (145,154,155,156). In the case of
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Thi-type cytokines, IFN-y has a multitude of functions. It promotes phagocytosis and upregulates

microbiai killing. In particular, it induces lgG28 (in mice) which s known to opsonize bactetia. On

phagocytes, IFN-y promotes the expression of FccRp receptors, which are used for phagocytosis. IFN-y

provides ail the tools necessary to eliminate most external microbes (155,156,157,158). For the classic

Th2 cytokines, IL-4 promotes production of neutralizing antibodies (lgG1) and the mast ceH/eosinophil

degranulating antibody IgE (157,158). IL-4 aiso promotes upregulation of IgE receptors on mast celis,

eosinophils and macrophages, and it induces membrane expression of MHC class II molecules and the

IL-4 receptor on macrophages (157). IL-4 and IFN-y often exist in an antagonistic relationship. IFN-y

blocks IgE and IgG1 production, while IL-4 blacks IgG2a secretion (1 58).

The majority of aliergen-specific T ceil clones derived from the peripherai blood of atopic

individuals produce increased amounts of IL-4 and IL-5 and lower levels of IFN-y (159). Coiiectively the

current biology of T cells in asthma suggest that they have the most important role in regulating ceilular

inflammation.

7.3.8 Leukotrienes

The cysteinyl leukotrienes (cys-LT) LTC4, LTD4, and LTE4, originally described as the slow

reacting substance of anaphylaxis (SRS-A), are proinflammatory mediators that play an integral raie in

the pathophysiology of asthma. Cys-LTs function as potent bronchoconstrictors and asthmatic patients

demonstrate increased production of cys-LT during naturaiiy occurring asthma and acute asthma attacks

as well as after allergen and exercise challenge (160).

Leukotrienes are eicosanoids that are produced de nova from the ceIl membrane phosphoiipid

arachidonic acid by the activity of 5-lipoxygenase in conjunction with 5-lipoxygenase-activating protein.

This reaction generates the unstable leukotriene A4, which is, in turn, converted either ta the chemotaxin

LTB4, or ta cysteinyl leukotrienes LTC4, LTD4, and LTE4 (161). In humans, the cysLTs are at least 100-

1000 times more potent bronchoconstrictors than histamine (162). They aiso increase airway blood flow

and vascular permeability, allowing the exudation of plasma macromolecules and contributing ta the

airway edema that characterizes asthma (163,164,165). In addition, the cys-LTs induce mucus secretion

(166) and reduce respiratory ciliary motility, hampering mucociliary clearance (167).
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LTD4 and LTE4 are potent and specific chemoattractants for eosinophils which are recognized as

the predominant celi type in asthma-reiated inflammation (168). A recent study has forged an important

link between cys-LTs and the variable eosinophii response to aliergen challenge (169). 0f 18 asthmatic

patients, 9 produced a significant (>200-folU) increase in cys-LT levels in the BAL 24 ht after inhaled

ailergen challenge, whiie the other 9 showed no significant increase (<20-fold). Oniy the high LT

producers showed a significant rise in BAL eosinophils atter allergen challenge, accompanied by

increases in LT84, IL-5, IL-6, and total protein. The “high LT producer” phenotype may thus be

synonymous with a subgroup of asthmatics with a high level of airway eosinophiiia. The celiular sources

of excess cys-LT production in the airway are unclear. Following inhaled allergen challenge, release of

LTC4 into BAL fluid is associated with simultaneous release of histamine, PGD2, and ttyptase, suggesting

a mast celi source for ail four mediators (170). However, in persistent asthma, the eosinophil itself may be

an important source of LTC4. In allergic and nonallergic asthmatics with mild, moderate and severe

disease, eosinophils represent the majority of bronchial mucosal ceils expressing LTC4 synthase, the

terminal enzymes in the LTC4 synthetic pathway, with only small numbers of mast celis and macrophages

expressing the enzyme. In mild allergic asthma patients with seasonal symptoms, the numbers of ceils

expressing LTC4 synthase rose 4 to 5 fold in the pollen season and the overwhelming majority of these

ceils are eosinophils (171). Taken together, the data suggestthatthe release of cys-LTs from eosinophils

themselves may sustain a seif-perpetuating cycle of eosinophil recruitment and futther cys-LT synthesis

in a significant subpopulation of asthmatics. A high capacity for cys-LT synthesis appears to be the

predisposing factor, possibly triggeted by cys-LTs released from allergen-activated mast ceils. Within the

airway, the capacity of rectuited eosinophils to generate cys-LT may be upregulated by Th2 type

cytokines (172) and also by contact with human bronchiai epithelial cells (173). Eosinophil-derived cys

LTs may be most important in chronic impairment of lung function, with mast cell-derived cys-LTs more

important in the acute response to allergen and other stimuli.

1.3.9 Cytokines

Inflammation of the airways underlies the pathology of tespitatory disorders such as asthma and

chronic obsttuctive pulmonary disease. No one mediatot of inflammation is responsible for ail the clinical
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and pathological changes of asthma (Figure 11). The primary inflammatory profile of asthma consists of

an accumution of CD4+ T helper type 2 (Th2) lymphocytes and eosinophils in the airway mucosa. Th2

cells orchestrate the asthmatic inflammation through the secretion of a series of cytokines, particularly IL-
4, IL-13, and IL-5.

1.3.9.1 Interleukin (IL)-4

IL-4 is a 20 kDa monomec secreted by Th2 celis, mast cells, basophils, and eosinophils. It was
originally identified as a B celI growth factor, which drives the optimal stimulation of B celis by antigen

(174). In addition, IL-4 stimulates B ceil expression of major histo-compatability complex (MHC) class II
molecules, b7-1 (CD86), CD4O, surface IgM, and the low affinity IgE receptor, resulting in enhanced

antigen presenting capacity of B cells (144). IL-4 also induces the immunoglobulin isotype switch from
IgM to IgE (175,176,177,178). Using in vitro priming models, t was shown that IL-4 is required for the

generation of IL-4 producing T cells (144). Another important activity of IL-4 in allergic inflammation is

inducing the expression of VCAM-1 on endothelial cells. This will produce enhanced adhesiveness of the

endothelium for T cells, eosinophils, basophils, and monocytes, which is characteristic of aflergic

reactions (179).

The raIe of IL-4 in IgE production can not be extended to inducing AHR, which is a major
characteristic of asthma. Overexpression of IL-4 in lungs ieads to a Ïymphocytic and eosinophillic

inflammation, but without AHR (180). Moreover, mice deficient in B ceil antibody production can exhibit

the phenotype of the experimental asthma modet (181,182). Thus, an essential effector raie for IL-4 in

experimental asthma has been difficuit ta show. Although IL-4 appears to play an important tale in Th2

cell development and recruitment to the airways (183,184,185), t is now generaiiy accepted that IL-4

does not have a similar raie in the development of AHR, at Ieast in mouse models.

Nevectheless, it has been shown that IL-4 receptor (IL-4R) biocking antibodies inhibit ailergen

ïnduced AHR (186), which is in contrast with the Iack of effect of anti-IL-4 antibodies on AHR in the same

model. Similar observations were obtained with IL-4RŒ deficient mice (187), which turned out ta be more

resistant ta the development of asthma than IL-4 deficient mice, suggesting that another IL-4Ra

interacting cytokine plays an important cote in this mode!. The obvious candidate is IL-13, a cytokine
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closely related to IL-4, which binds to IL-4Rc and is also produced by Th2 cells from patients with asthma

(188). Overexptession of IL-13 in the iungs induces inflammation, mucus hypersecretion and subepithelial

fibrosis. In addition, intratracheal IL-13 administration can lead to airway hyperresponsivness,

eosinophilia, and increased igE production in a mouse model (189,190). The candidate mechanisms for

IL-13 effects include direct alterations in epitheliai ceils or smooth muscle functïon because IL-13

receptors have been detected recently on these celi types (191). Direct evidence for the role of IL-13 is

confirmed by the observation that blocking its activity by intratracheal administration of soluble IL-13

receptor (IL-13R) reduced AHR and mucus production in a mouse model cf asthma (189,190,192).

1.3.9.2 Interleukin (IL)-5

Several unes of evidence suggest that IL-5 is important in asthma. IL-5 is an important growth

factor for eosinophils (193) and is increased in the lungs of allergic and nonallergic asthmatics (194). IL-5

expression in the lungs and sputum of patients with allergic asthma increases 24 hours after antigen

challenge (195) and a clear correlation exists between IL-5 expression and the presence of eosinophils in

the airways of patients with asthma (196). Intra-tracheal administration of IL-5 to human asthmatics or to

sensitized animais with the characteristics of atopic asthmatics increases the airway response to antigen

(197,198).

IL-5 acts on B cells and eosinophils in the mouse and seems to be restricted to eosinophils in

humans (199). IL-5 is crucial in regulating the eosinophillic response both in vitro (200) and in vivo, as

seen during helminth infections (201). Transgenic mice in which IL-5 is constitutively expressed in ail T

cells show a profound and life long eosinophilia, with large numbers cf eosinophils in the blood, spleen,

and bone marrow (202). When the IL-5 gene is inactivated in sensitized mice challenged with an antigen

aerosol, lung eosinophilia is absent and very littie inflammation and lung damage is observed (114).

Similarly, anti-IL-5 antibodies decreases the eosinophil infiltration induced by OVA inhalation in the

trachea of sensitized mice (203). Whereas blocking IL-5 reduces eosinophil responses to allergen, this

strategy falis short cf inhibiting AHR, both in mouse experimental models (204) and in preliminary human

observations (205). Thus, airway eosinophilia is flot a requirement for allergen induced airway

responsiveness (206,207). Although blocking IL-5 might fail ta prevent the acute phase cf asthma, this
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approach couid be an efficient way ta intertere with long term airway remodeiling, a process in which

eosinoph ils are thought ta be crucial.

7.3.9.3 Interferon-y

1FN-y is a glycoprotein produced by T cells (CD4, CD8, ‘y) and NK ceils (208). It binds the 1FN-y

receptor f IFN1iR) as an antiparaHel dimer. Although the iFN-yRa subunit binds 1FN-y with high affinity, it

requires an additional iFN-yR3 subunit ta transduce intraceilular signais (209,210). The resuitant cascade

involving tyrosine phosphorylation of signai transducers and activators of transcription (STATs) activates

up to at least 20 identifiable 1FN-y respansive genes. Ta date, 12 of these are unique ta IFN-y. The

transcription af these genes determines the biologicai and biochemical effects of 1FN-y (211).

The abiiity of 1FN-y to activate macrophages is central ta its raie in ceIl-mediated immunity. IFN-y

enhances macrophage microbicidai actions thraugh the reguiation of genes coding for the enzymes 0f

nitric axide (NO) synthase and the NADPH oxidase system (212). in addition ta activating macrophages,

1FN-y has been shown ta recruit and activate inflammatary and Thi ceils. IFN-y can directiy induce Thi

celi proliferation and augment antigen presentatian and T ceii activating capacity of macrophages. it

achieves this functian by increasing the ceil surface expression af major histacampatability ciass ii (MHC

Ii) and B7 on macrophages (213). 1FN-y facilitates the recruitment of Iyrnphcytes and macrophages ta

infiammatory sites by inducing 1CAM expression on endathelial ceils and pramates furthur accumulation

by the induction of chemotactic factors such as 1FN-y inducible pratein 10 (iPi 0) and LTB4 (214,215).

iFN1’ promotes the differentiation of CD8 and CD4 T ceils into active cytataxic cells (216,217).

In addition, 1FN-y enhances cytotoxic T-cell recognition and destruction of infected ceils by increasing the

expression of surface MHC I. This cytatoxic respanse releases viable organisms either protected in the

cytosoiic compartments of celis or persisting in senescent phagocytes, exposing them ta a different

display of effector inflammatory celis.

A number af cytokines antagonize the effects of IFN-y. Since inflammation due ta Thl immune

responses is associated with tissue damage, during the course of pratective immunity against microbes

such as mycobacteria, the presence af a system ta counterbalance Thi respanses is essential ta prevent
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progressive tissue damage. This is particulariy important because once a Thi response begins, they tend
to become self-perpetuating. The Th2 response is important in the regulation of the Thi process. IL-4, the
signature Th2 cytokine, inhibits inflammatory functions of macrophages and Thi cells (218). IL-4 inhibits

macrophage secretion of the monokines IL-1 and IN F-a and suppresses cytokine production by Thi cefls

(218). It also stimulates macrophages to produce IL-i receptor antagonist (IL-ira), e naturally occurring
inhibitor of IL-i activity. Both IL-4 and IL-13 activate intraceflular STAT proteins (STAT6) (219). These

pathways appear to facilitate IL-4 inhibition of the transcriptional activation of IFN-y inducible proteins.

Furthermore, IL-4 inhibits the ability of IFN-y to augment microbicidal activities including superoxide

production. Thi responses often appear early while Th2 cells predominate Iatet in an immune response
that suggests that the in vitro observation of Th2 responses may occur in vivo to limit the consequences

of Th J -mediated protective imm unity.

The mechanism(s) by which IFN-y protects against allergen-induced AHR are unknown. It is

possible that the inhibitory effect of IFN-y on AHR may be mediated by its action in inhibiting eosinophil

recruitment. However, there is no significant increase in airway and BAL eosinophilia with anti-IFN-y

antibody treatment, despite a significant enhancement of AHR (220). The protective function of IFN-y

might be conducted by Thl T lymphocytes or CD8 T cells suppressing Th2 ceils, eosinophils and

neutrophils, and ultimately reducing the Th2-orchestrated airway inflammation and AHR.

1.3.9.4 Interleukin-2

IL-2 is pivotai for the generation and regulation of the immune response. In mice, IL-2 is regarded

as e defining Thi cytokine, whiie in humans, this distinction is Iess clear (221). tL-2, a glycoprotein with e

single molecular size of 15.5 kD, is e pleiotrophic cytokine produced principafly by activated T-heiper ceNs

(222). It primarily functions in an autocrine fashion to clonaily expand antigen-specific T celis and

generate memory phenotypes. The IL-2-secreting T helper cells expand eariy after antigenic stimulation

and the subsequent differentiation into Thi or Th2 cells occurs under the influence of other cytokines

(223). Unlike IFN-y production by CD4 celis, which requires IL-2 during both priming and expression

phases, IL-4 production requires IL-2 only during priming phase (223). IL-2 also acts as a paracrine factor
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influencing NK ceil, B ceIl, and phagocyte function (224,225,226). IL-2 augments microbicidai activity,

cytokine production, and celi surface expression of cytokine receptors (226).

IL-2 stimulates T celis to undergo celi cycle progression via interactions with its specific

membrane receptors (227). Resting T ceNs do not produce IL-2, nor are they capable of responding ta IL-

2 when it is added exogenously (228). It has been shown that signais sent out from the T cell antigen

receptor complex co-ordinate the transcriptional activation of bath the IL-2 gene and the genes encoding

IL-2 receptors (229). Activation of the T cell receptar renders the ceils “competent” ta receive the cell

cycle “progression” signaIs that are provided by IL-2. IL-2 promates a graduai and sustained increase in

ceIl size and prepare the cell metabaiically for DNA repiication. IL-2 is considered the authentic G1

progression factor for T cells (230).

The essential nature of IL-2 and IL-2 receptors for the generation of a normal immune response is

readily demonstrated by a deficiency in the system. For example, immunodeficient athymic mice Iack the

capacity ta produce IL-2 but can respond ta IL-2 when it is supplied exogenausly (231). Patients suffering

from acquired immunadeficiency syndrome have similar immune responses as these athymic mice,

namely these patients have a selective loss of helper T cells resulting in the inability ta produce IL-2 and

other lymphakines in response ta antigen challenge.

Stimulation of the immune response via the IL-2 receptar is under ciinical investigation as a

patential new form af immunotherapy far cancer (232). The exact mechanism responsibie far the

beneficial effects is unclear, but it could be explained either by the IL-2-directed clonai expansion af

tumour-reactive cells or by stimulation af naturai killer cells. Others have used IL-2 as an adjuvant far

stimulating the immune respanse ta vaccines (233).

1.3.10 Chemokines

Chemakines are smali secreted prateins, whose main function is ta cegulate ceil trafficking. They

are ciassified into four subciasses: CC, CXC, C, and CX3C chemakines, based an the location of the first

twa cysteine residues in their sequence. Ta date, 23 human CC chemokines, 14 human CXC, and ane

each of the C and CX3C chemakine subclasses have been described (234). The bialogicai effects af

chemakines are mediated by ceil surface receptars. Nine CC chemakine receptars, five CXC chemakine
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receptors, one CX3C chemokine receptor, and one C chemokine receptor have been characterized.

Interestingly, there is a certain degree of promiscuity in the chemokine superfamily, with many Iigands

binding different receptors and vice versa (234).

The identification of eotaxin as the first chemokine with the preferential ability to recruit

eosinophils has drawn much attention to this molecule (235). Eotaxin was first discovered in the BAL fluid

of guinea pigs after allergen challenge (236). Unlike other eosinophil chemotactic factors, eotaxin binds to

a single receptor, CCR3, which is highly expressed on eosinophils (237,238). In human asthma, eotaxin

is produced at high concentrations and localises in the airway epithelium (238). Several other chemokines

including RANTES, MCP-3, and MCP-4 can also recruit eosinophils, probably through the CCR3 receptor

(238).

In the lung, eotaxin is produced by many celi types. The pcimary source of eotaxin following

allergen exposure is thought to be epithelial ceNs (239), but eotaxin can be produced by a large number

of other cell types including lung fibroblasts, airway smooth muscle, endothelial cells, alveolar

macrophages, eosinophils themselves, and lymphocytes (234).

Eotaxin acts in the early stages following allergen exposure, in conjunction with IL-5 to co

ordinate the differentiation of myeloid progenitor ceNs in the bone marrow and induce the export of these

cells into the peripheral blood and subsequently recruited to local sites of inflammation (240). Eosinophil

degranulation can be elicited by eotaxin, which has been found to be able to induce respiratory burst and

actin polymerisation (240).

The eotaxin-CCR3 axis is also responsible for the recruitment of a subset of Th2 lymphocytes to

the allergic site. This has been demonstrated by the ability of a CCR3 antibody to isolate IL-4 and IL-5

producing cells from the peripheral blood of atopic patients and that antibody inhibition of eotaxin in a

mouse adoptive transfer model can block the recruitment of Th2 cells into the lung and inhibit eosinophilia

and allergen-induced bronchoconstriction (241,242,243). It has also been shown that human blood

basophils express high levels of the CCR3 receptor and in vitro will release inflammatory mediators such

as histamine and leukotrienes following stimulation with eotaxin.

One of the several possible explanations for the redundancy of chemokines, particularly for the

CCR3 receptor, is that they may be expressed in a temporal fashion. Studies on the kinetics of ceil
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recruitment and chemokine expression showed that eotaxin plays a major rote in the recruitment of

eosinophils during the early phase reaction at 6h, but that eotaxin-2 and MCP-4 are involved in the late

phase accumulation of eosinophils at 24h post-chaltenge (244). Moreover, recent data from mouse

studies have produced evidence that Th2 lymphocyte recruitment into the lung is at least partially

dependent on the involvement of eotaxin up to a 4 day time point, but that by day 7, monocyte-derived

chemokine (MDC) becomes predominant in regulating Th2 celi infiltration in an adoptive transfer model of

lung inflammation (243). Thus, the recruitment of inflammatory celis over the entire period of the course of

a disease state like allergic asthma will Iikely be dependent on the spatial and temporal regulation of

chemokine expression.

1.4 Asthma Therapy

1.4.1 Drugs

Management of asthma begins with educating the patient about the disease. It also includes

environmental control interventions and the management of complicating factors such as sinusitis and

gastroesophageal reflux. Recent advances in understanding asthma pathogenesis, including the rotes

that cytokines, leukotrienes, adhesion molecules, and transcription factors play in the recruitment and

infiltration of inflammatory cells have leU to promising therapies, potential or already in use. These include

new generation inhaled steroids, leukotriene blockers, and antibodies against IgE. New inhalation devices

are using dry-powder formulations and vehicles such as hydrofluoroalkanes to deliver the active drug.

Experimental therapies include cytokine antagonists, adhesionmolecule blockers, and transcription factor

inhibitors. Oligonucleotide therapy, DNA vaccination, and new phosphodiesterase and tryptase inhibitors

are also being tested. Much of the research has focused on airway remodelling, and so the outlook for not

only asthma management but even reversibility or a cure is becoming optimistic.

The current options for asthma drugs can be placed in 4 categories: bronchodilators, anti

inflammatory drugs (nonsteroidal and glucocorticosteroids), leukotriene modifiers, and phosphodiesterase

inhibitors.
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7.4.1.7 Bronchodilators

Short-acting bronchodilators such as f32-adrenergic agents salbutamol and penoterol and

pirbuterol are useful as rescue medication and for acute symptom relief but they tend to have increased

systemic side effects. A long-acting bronchodilator, salmeterol, combines the active site of salbutamol

with a highly lipophillic side chain that appears to attach to an exosite of the 32-receptor on bronchial

smooth muscle, holding the salmeterol molecule in place for an extended period 0f time. Salmeterol is a

highly selective 32-agonist. Combined with moderate or even 10w doses of inhaled corticosteroids, it

improves lung function in patients with asthma and increases the number of symptom-free days.

7.4.1.2 Anti-inflammatory drugs

In persistent asthma, anti-inflammatory medication is crucial. The cromones — cromolyn sodium

and nedocromil, are acceptable for milU disease. However, they are flot as effective as inhaled

glucocorticoids for controlling inflammation or preventing airway remodelling. For many years, the

treatment of asthma has depended heavily on the use of glucocorticoids. These agents were introduced

into clinical practice in the 1940’s and proved extremely effective in controlling asthma in most patients

with the condition (245). However, long-term use of oral steroids leads to significant and unacceptable

side effects, so oral corticosteroids (OCS) therapy is restricted to those whose disease cannot be treated

effectively by any other means. The introduction of inhaled corticosteroids (lCSs) in 1970 was a major

advance, allowing many patients with relatively mild asthma to receive regular inhaled steroid therapy

(246).

Until recently, metered-dose inhalers fMDI’s) were the only devices available to deliver inhaled

asthma drugs. These hand-held, pressurized, multiple-dose systems administer aerosolized particles

measuring one to seven microns. They have disadvantages, including difficulty of use, need for spacer

devices, and use of chlorofluorocarbons (CFCs), considered as the primary cause of ozone depletion, as

vehicles. The first CFC-free inhaler became available in 1995. Since then other types of inhalers have

been introduced including dry powder inhalers, and inhalers using hydrofluoroalkanes as vehicles

(permitting a reduced particle size, which in turn improves distal penetration). lnhaled glucocorticoids

include beclomethasone, triamcinolone, flunisolide, budenoside, and fluticasone. A preparation of
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beclomethasone with ozone-friendly hydrofluoroalkane propellant is now available. A combination of

fluticasone and salmeterol is available as well as a combination of budenoside with another long-acting

2-agonist formoterol. At Iow doses, inhaled glucocorticoids are considered highly effective and safe. At

higher doses, bone growth and metabolism may be affected and bone density reduced.

7.4.7.3 Leukotriene Modifiers

These agents are fairly new and controversies persist on precisely when to use them. Zafirlukast

and Montelukast are Cys-LT1 receptor antagonists. Zileuton is the only available inhibitor of leukotriene

synthesis, acting by inhibiting 5-lipoxygenase. Zafirlukast is approved for use in asthmatic chiidren at

Ieast seven years old and Montelukast for chiidren at least two years old. As a group, leukotriene

modifiers alleviate asthma symptoms, improve objective measures of airway function, and decrease the

need for concomitant P2 rescue medication and inhaled corticostecoids. Individually, Montelukast has

been shown to be effective in reversing exercise-induced bronchospasm. Leukotriene modifiers can be

beneficial given in concert with other agents (more in 1.4.2.1).

7.4.1.4 Phosphodiesterase Inhibitors

Theophyfline, a bronchodilator was employed for many decades as asthma therapy and may

have potential as an adjunctive agent or for severe asthma in patients flot optimized on high dose inhaled

glucocorticoids. The drug is known to inhibit several of the intracellular enzyme phosphodïesterases,

which protect signal pathways essential for -adrenergic cellular responses, but studies have also

demonstrated anti-inflammatory effects unrelated to phosphodiesterase inhibition.

7.4.1.5 Steroid-sparing strategies

Much effort has gone into the search for safet inhaled steroids since it has been shown that

inhaled beclomethasone is absorbed and has detectable systemic effects in terms of reductions in short

term linear growth rates (247), but at present it remains uncertain whether these effects have any long

term adverse consequences on final height or on any other aspect of heaith (248).
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Troleandomycin: A macrolide antibiotic that was formerly used quite widely in asthma
exacerbations. It also inhibits the hepatic metabolism of methyl prednisolone (249), and it seems Iikely
that the beneficial effects results from this mechanism.

Cyclosporin A (CyA): A fungal metabolite that has successfufly been used as an
immunosuppressant agent in the prevention of rejection after organ transplantation. The principal action
of CyA is to inhibit 1-celI activation and suppress the production of cytokines associated with activation.
CyA blocks the late asthmatic reaction and inhibits eosinophil-assocîated cytokines after allergen
challenge (250). However, given the potential severity of side effects, there s insufficient evidence of
benefit to recommend its use.

Gold: Gold can inhibit some of the processes implicated in asthma, including IgE dependant
histamine release and neutrophil chemotaxis. Although gold can reduce doses of oral corticosteroids,
there is evidence of side effects which precludes its use as a promising therapy.

1.4.2 Therapeutic guidelines

Expert panels have classified asthma as intermittent or persistent. Persistent disease is turther

classified as mild, moderate, or severe. Intermittent asthma can be managed with inhaled 32-agonists.

Exercise-induced intermittent asthma may be relieved by warm-up exercises and use of 32-agonists,

cromolyn sodium, or nedocromil taken prior to exertion. Recent reports suggest that for exercise-induced

asthma a formoterol inhaler or Montelukast may provide more sustained relief than short-acting

agonists (251).

Mild persistent asthma requires long-term control medication, usuafly meaning the initiation of

anti-inflammatory agents such as low-dose inhaled corticosteroids. Other alternatives include leukotriene

modifiers, cromolyn or nedocromil. Acute asthma symptoms can be managed with intermittent use of

inhaled 2-agonists or occasional bursts of oral glucocorticoids. For moderate persistent asthma,

management includes long-term control medications such as moderate-dose inhaled corticosteroids or a

combination of low-dose inhaled steroids with a Iong-acting bronchodilator such as salmeterol or

formoterol. Severe persistent asthma usually requires oral glucocorticosteroids. lt is important to use the

lowest possible dose, to administer the drug on alternate days, and to monitor closely for adverse effects
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including osteoporosis and cataracts. Leukotriene modifiers may have some steroid-sparing potential and

under adequate management and with adequate compliance, many patients may be weaned from oral

glucocorticoids.

7.4.2.1 Efficacy of Inhaled corticosteroids vs antileukotriene drugs

The cornerstone of asthma treatment is inhaled corticosteroids. Iheir efficacy is a result of their

potent and broad anti-inflammatory properties. Antileukotriene drugs provide an alternative and novel

apptoach to the treatment (252). Ihe novelty of these new compounds is that they are targeting cysteinyl

leukotrienes, a major player in the pathophysiology of asthma. The antileukotriene drugs are more

effective than placebo, but they are flot as effective as inhaled corticosteroids in improving lung function,

reducing 32-agonist use, and decreasing symptom-free days. In contrast, they may have similar beneficial

effects on reducing asthma exacerbations and decreasing peripheral blood eosinophil counts. For

patients with mild and moderate disease there are a number of circumstances that support using an

antileukotriene drug first, such as in cases of aspirin tolerance, predominantly exercise-induced

symptoms and problems with using an inhaler or the adverse effects of inhaled corticosteroids such as

dysphoria and thrush. In addition, it has been shown that inhaled corticostecoids are not effective in aIl

patients with asthma (253). Corticosteroids produce minimal suppression of leukotriene production, and in

some cases enhance production (254,255).

Currently, tour antileukotriene drugs are approved for use in one or more countries. They are the

leukotriene synthesis inhibitor zileuton and the cys LI1 receptor antagonists zafirlukast, montelukast, and

pranlukast. Although these drugs differ in several pharmacokinetic and pharmacodynamic properties, and

in other properties as weIl (e.g. adverse effects, drug interactions), they are aIl effective in treating

patients with asthma (256,257).

The first published study that directly compared an antileukotriene drug and an inhaled

corticosteroid was reported by Malmstrom and colleagues in 1999 (253). Ihis was a randomized, double

blind, placebo-controlled, parallel group design, 12-week trial comparing the oral leukotriene receptor

antagonist Montelukast (lOmg once daily at bedtime) with the inhaled corticosteroid beclomethasone

(200pg twice daily). Bath treatments produced clinically important beneficial effects, reduced periphecal
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blood eosinophils and did not cause rebound loss of asthma control when therapy was stopped. The key

differences were that beclomethasone produced a larger beneficial effect, while montelukast had a more

rapid onset of action. Overall, using the patient populations described in the studies (mostly patients with

mild to moderate asthma) inhaled corticosteroids are more effective in the clinical trial setting. They

produce a greater improvement in lung function, as measured by FEV1, and a similar or greater reduction

in daytime and night-time symptoms and 32-agonist use. However, these resuits do flot take into account

differences in adherence to prescribed therapies in the “real world” setting. Problems related to improper

use of inhaled corticosteroids, and the unwillingness of some individuals to take inhaled medications,

result in beneficial effects that are typically less than what one would expect based on the controlled

clinical trials. These issues appear to be less important with the orally administered anti-leukotriene

drugs.

On the basis of the available data, inhaled corticosteroids have the advantage over the

antileukotriene drugs as monotherapy for the treatment of mild to moderate asthma. However, in patients

with moderate to severe disease, treatment requires the use of more than one medication. The

overwhelming consensus is that inhaled corticosteroids should be one of the medications. Which drug to

add next is more controversial. One potential advantage of the anti-leukotriene drugs over the others is

their ability to reduce airway inflammation in addition to their beneficial effect on pulmonary physiology.

1.4.3 Alternative Therapies

7.4.3.7 Anti-IgE

Since its role in the pathogenesis of allergic disease is central, lgE is an attractive target for

therapy. The first specific, selective anti-lgE therapy developed for study of humans is a unique

humanized monoclonal anti-IgE antibody called rhuMAb-E25 (or omalizumab). Omalizumab inhibited both

early and late phase reactions (258,103). Asthma exacerbations were significantly less frequent in the

omalizumab group than in the placebo group. lnterestingly, even subjects receiving placebo experienced

some improvement, meaning that the difference from active treatment s difficult to demonstrate (259).
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7.4.3.2 Anti-histamine

Most new antihistamines display additional antiallergic effects and can modulate some

inflammatory phenomena (i.e. expression of adhesion molecules on epithelial and endothelial cells,

recruitment 0f eosinophils and mononuclear cells at the site of disease) (260). Therapeutically, its use s

improbable because antiallergic effects are usually obtained in vitro at concentrations much higher (10-

1000 times) than in vivo. Therefore, antihistamines cannot be presently considered as an alternative to

any of the standard antiasthma drugs.

1.4.3.3 Cytokines

Strategic approaches for cytokine inhibition include the blocking of transcription factors that lead

to their expression, blockade after release, cytokine receptor antagonism, and the inhibition of signalling

pathways that are activated after cytokine-receptor binding. Results with a humanized anti-IL-5 antibody

have been disappointing (205). Although successful in markedly reducing circulating eosinophils and in

preventing eosinophil accumulation in the airways, it is unable to reduce airway reactivity to methacholine

challenge in patients with asthma. A soluble IL-4 receptor antagonist has shown clinical benefits for

patients with moderate asthma, who require dally inhaled corticosteroids (186). Agents that target IL-13

and TNF-cL cemain to be evaluated in asthmatic inflammation. The use of cytokines with anti-inflammatory

effects may also have therapeutic value. The evaluation of such agents in human beings, including IL-10,

IL-12, and IFN-y, is at a preliminary stage, but so far the results have not been encouraging.

1.4.3.4 !mmunotherapy

Vaccination with allergen extracts are being considered as sttategies foc asthma. Vaccination with

mycobacteria has antiallergic properties. In Japan, early vaccination with BCG is associated with a

substantial reduction in the risk of developing allergy (261) although similar associations were flot

observed in studies performed in Sweden (262).

Two new approaches using DNA vaccines are undergoing serious consideration. The first

involves the use of CpG oligodeoxynucleotides (ODNs). Preadministration of CpG ODNs prevented both

airway eosinophilia and bronchial hyperresponsiveness in a mouse model of asthma (263).
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An alternative approach is to use allergen-specific naked DNA sequences as vaccines.

Preliminary data suggest that giving naked DNA leads to production of allergens from within the airways’

epithelial cells. Because of the different handling pathways for endogenous and exogenous allergens

(262), it seems that the endogenously produced allergen elicits a Thi-type response which in theory can

overcome the existing Th2 pattern response in human asthmatics and eliminate the allergy.

1.5 AnimaI Models

Animal models, including guinea pigs, monkeys, rats and mice, have been used to study the

pathogenesis of asthma. Rat and mouse models of allergic lung disease have been utilized to dissect the

complex pathaphysiological mechanism underlying the asthma phenotype. A wealth of research activity

has shown that rats and mice can be induced to display a range of the pathophysiological features that

are hallmarks of the human disease. These animal models have been shown to develop inflammatory

infiltrates in the lungs, both in peribronchiolar tissues (as shown in lung sections) and in the airway lumen

(collected in BAL). Although eosinophils are generally the most prolific ceil type within these infiltrates,

lymphocytes are also present in significant numbers. Lung sections show that there is an increase in

mucus secretion from the bronchoepithelïal surface. Analysis of serum reveals that rats and mice show an

increase in both total and allergen-specific IgE, as well as increased IgG2atiters. This Th2-type profile is

reflected in the cytokines generated within the lungs namely IL-4 and IL-5 being present in significantly

greater quantities than IFN-y. Many investigations have also documented changes in lung function

following allergen provocation, using a variety of techniques. The variety of protocols that have been used

to induce pulmonary eosinophilia, AHR, and mucus hypersecretion s tremendous. The use of animal

models has enabled researchers to highlight specific pathways and to study the function of these

pathways in vivo.

7.5.1 Brown Norway Rat Mode! of Aliergic Asthma

Brown Norway (BN) rats are a well established model of allergic asthma. This model reflects

many features of human allergic asthma, including both early and late phase reactions (264), elevated

antigen-specific IgE (265), airway inflammation (266), and increased airway responsiveness ta several
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stimuli (267). Allergen exposure of sensitized animaIs induces airway accumulation 0f inflammatory cells,

such as eosinophils, lymphocytes, neutrophils in BAL fluid, eosinophils, CD2, CD4, CD84 T cells in the

airway submucosa and expression of mRNA for Th2 cytokines. The BN rat is known to produce IgE in

large quantities after sensitization (268,269). Injecting BN rats with gold salts causes an important

increase in serum IgE concentration and this technique is used to identify the genetic determinants

controlling the IgE response (270). Mas et al. showed that rat chromosome 9, together with a region on

rat chromosome 10, plays a major role in the control of the IgE response (271). Sensitization of the BN rat

can be performed using a vaciety of antigens; the most popular of which are ovalbumin and house dust

mite injected subcutaneously. The sensitization procedure does not change the cellular profile of BAL

fluid, but even affer a single exposure to aerosolised antigen foliowing sensitization, airway inflammation

develops. After repeated exposure to antigen, BAL fluid contains an incteased percent of neutrophils,

eosinophils, and lymphocytes. This pattern is similar ta the cellular distribution of BAL fluid recovered from

asthmatic subjects after a local aliergen challenge (272). Neutrophil infiltration in humans is commonly

found in cases of severe asthma or status asthmaticus, while in the BN rat model, neutrophil influx ta the

BAL induced by allergen is usually prominent early on (273,274,275,276).

lncreased numbers of CD4 and activated IL-2 receptor-positive T cells can be observed in the

BAL and lung parenchyma, demonstrating that activated T helper cells are involved in the allergic

response in the lung of the BN rat asthma model (277,278). This observation is similar to the findings in

human asthma (277,278). Stimulation of similar amounts of CD4 or CD8 T cells revealed that both T cell

populations of BN rats produce significantly less Th1 and more Th2 cytokines than their Lewis rat strain

counterpart (279). The former group also showed that the BN rat CD8 T celI compartment produces only

one-quarter the amount of IFN-y produced by the CD4 T cell compartment, suggesting that the defective

IFN-y production by the BN rat CD8 T celi compartment may account for the susceptibility of this rat

strain to develop Th2-type immune responses. In another study comparing rat strains, Sirois et al.

showed that alveolar macrophages (AM) from BN and Sprague-Dawley (SD) rats are functionally different

(280). LPS and 0X8-stimulated AM from BN rats produce more Th2-type cytokines (IL-10, IL-13) than AM

from SD rats, suggesting that these celis may play an important raie in creating a cytokine milieu that may

favour the development of allergic reactions.
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The link between airway inflammation and airway responsiveness in BN rats has flot been ciearly

established. It could be that the inflammation aiters the mucoepithelial barrier, thus selectively increasing

the airway responsiveness to inhaled broncho-constrictor agents. BN rats develop a transient episode of

AHR within 24hr of an ovalbumin challenge which is associated with an increased number of eosinophils

and activated T lymphocytes bearing the CD25 marker in the BAL (273,281). Moreover, the cell influx and

AHR are abolished by corticosteroids (276). No clear relationship between eosinophilia and AHR has

been demonstrated in studies using the BN rat. For example, inhibition of allergen-induced eosinophilia

with the immunosuppressant cyciosporin A is not accompanied by a reduction in AHR (270), while

inhibition 0f AHR has been observed in the absence of any reduction in airway eosinophilia following anti

ICAM-lantibody treatment (282). lntravenousiy administered ovalbumin in the antigen-sensitized BN rat

causes bronchospasm (283) and microvascular leakage into the airways (284). Nagase et al have

demonstrated a role for 5-HT and leukotriene D4 in the increase in tissue resistance seen in the airways

after antigen administration in sensitized BN rats (283). BN rats antigen-induced bronchospasm appears

to be mediated equally by the activation of 5-HT and Cys-LT1 receptors with little or no involvement of

histamine or its receptors.

Recentiy, inconsistencies in eliciting a LR after ovalbumin challenge in the highly inbred BN rat

animal model prompted Turner et al (284) to study the airway responsiveness to aflergen in BN rats from

2 different continents. This study concluded that the same substrain of BN rat, namely SSN, showed

different responses to aliergen. Specifically, BN (SSN) rats from the United Kingdom (UK) produced

greater altergen-induced LR and associated cellular influx into the BAL than USA BN SSN rats. Moreover,

Th2 cytokines were expressed more in UK BN rats than in USA BN rats while the latter expressed more

Th1 cytokine in the lung tissue. We chose to use the USA BN (SSN strain) rats in our studies despite

these differences and re-estabiish a strong asthma phenotype, including eosinophilia, AHR, and a LR by

giving these animais IL-2 injections (11).
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1.6. Active Immunization Models

1.6.1. Sensitization and Challenge

This protocol relies on the delivery of an antigen to replicate a sensitization and challenge phase,

in order to mimic the allergic tesponse to exogenous or innocuous stimuli. This protocol involves

preimmunization with the allergen before a challenge phase in which the allergen is introduced to the

target organ, in the case of the lungs, either intranasally, as an aerosol, or via the trachea (286). This

basic protocol induces a pulmonary eosinophilia generally in conjunction with an increase in circulating

IgE levels. There are countless variations to this protocol including subtle differences in the route of

administration and the use of a variety of antigens, from complex microorganisms to simple proteins and

chemicals (287). Soluble protein antigens are widely used to elicit alletgic pulmonary inflammation and

range from simple proteins such as ovalbumin (OA) to complex, environmentally relevant antigens, such

as cockroach or house dust mite proteins (287). The most used protein is chicken egg QA, the use of

which models late-phase events such as eosinophilia, and in some protocols, AHR in vivo. OA is an

important human allergen and has the advantage of reliably inducing in rats and mice antigen-specific lgE

cesponses that are largely dependant on IL-4. Zhang and colleagues (1997) (288) found that a

combination of systemic and local exposure to QA resulted in a maximal and reproducible induction of

responses. These responses included AHR in vivo, production of allergen-specific IgE, peri-airway and

bronchoalveolar infiltration of eosinophils and increased expression of Th2 cytokines in the local Iymphoid

tissues.

1.6.2 Adjuvant

The use of adjuvant during the priming phase is to boost the immune response to the allergen in

use. Specifically, the use of aluminium compounds (alum) is associated with the induction of Th2

responses (289, 290). ONalum was found to induce IL-4 and IL-5 production in the absence of IL-4

signalling in IL-4R and Stat6 deficient mice (291).
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1.6.3 Dose

Constant and Bottomly (1997) concluded that there is no clear-cut conclusion regarding dose and

a corresponding development of specific immunity but pointed out that the type o! antigen used is critical

(292). They remarked that studies in which low dose Ihi-type responses were elicited used parasite

antigens, whereas 10w doses of soluble proteins tended to elicit a Th2-type response.

Antigen dose is an important issue in the context of immunotherapy. lmmunotherapy with

suboptimal doses of OA has been found to down-regulate AHR and BAL eosinophilia with e concomitant

decreased production of Th2 cytokines (293). However, the same study found that immunotherapy with

an immunodominant epitope of OA aggravates AHR and increases BAL eosinophilia (293).
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Avant-Propos

Much of the research in asthma has focused on the multiple proinflammatory mechanisms

involved in thïs complex inflammatary disease (3). The therapeutic approach ta this disorder has focused

on symptamatic contrai thraugh the alleviation 0f bronchospasm and the elimination of inflammation. The

direct relation of airway inflammation ta airway remodeiling and disturbances af lung function,

deveiopment of irreversible changes in lung function, and increased branchial responsiveness is complex

and difficuit ta assess. This thesis focuses on twa important components of airway inflammation:

cysteinyl-leukotrienes and interleukin-5, and their roles in the asthma phenotype.

The most widely studied biological effects of the cysteinyl leukotrienes are smooth muscle

contraction and vascular leakage. There is much less convincing evidence that the cysteinyl leukatrienes

cause any effects on ceIl-mediated inflammation. We decided ta use the Brown Norway rat model ta

investigate haw cysteinyl leukotrienes influences airway inflammation in asthma. This animal model has

been used extensively in the study of asthma because af its abiiity ta mount a high IgE response, a

cammon indicator of asthma, fallowing antigenic stimuli. Howevet, these animais are unabie ta mount a

physiolagicai response ta antigen. A recent study by Renzi et al showed that by giving these animais IL-2,

they were able ta have an increased airway response ta antigen (10). Therefore, ta study how

leukotrienes affect the physiologicai and inflammatory response in BN rats, we first promoted the animais’

celI-mediated immunity with IL-2 and then gave the animais Montelukast, a cysteinyl leukatriene receptar

antagonist to inhibit leukotriene activity. We measured the physiological and inflammatory response with

the following tests: airway responsiveness ta leukotrienes, the late airway response foilowing antigen

challenge and airway inflammation, namely celi influx and cytokine production. These tests allawed us ta

characterize the physiologic effects of leukotrienes in a pseudo asthmatic airway and the changes in the

cellular and cytokine profile in the lung.

Having measured cytokine expression in the lung, we decided ta furthur study specific changes

that cytokines, specificaiiy IL-5, can cause in the airways. In order ta study these changes, we agaîn used

the Brown Narway rat model, as aur experimental system because it represents an animai madei nat

predispased ta maunt a physiolagic or a complete immunalagicai response fie. Eosinophils, Th2

cytokines) following antigenic stimuli. Therefore by challenging these animais with IL-5, we would observe
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functional and cellular changes caused directiy by IL-5. The ultimate question being answered is can IL-5

alone convert normal rats into rats with an ailergic phenotype? Once the animais were challenged with IL-

5, we measured airway responsiveness to methacholine, the eariy and late airway response to antigen,

lung resistance, and airway inflammation.

These experiments increase in recognition and understanding of asthma as an immune-mediated

disease. Because airway inflammation, such as leukotrienes and IL-5, has profound effects on the

immune system, they influence both the pathogenesis of asthma and its ongoing status. This study

concludes that there is indeed a direct relationship between cysteinyi Ieukotrienes and the airway

response and ceII—mediated immunity, however one such mediator, IL-5, is unabie to cause a compiete

asthmatic phenotype.
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Materials and Methods

2.1. Cysteinyl Leukotrienes, Cellular Immunity and the Airway Response to antigen of BN rats

2.1.1 Animais and sensitization

Sixty-two highly inbred male BN SSN rats, 7-8 weeks old and weighing 200 to 240g were

obtained from Harlan Sprague-Dawley Inc. (Walkerville, MD). Rats were maintained in conventional

animal facilities at the Research Centre of Notre-Dame Hospital, Montreal. The Animal Care Committee

approved ail the experiments that were performed in this study.

Rats were sensitized on day 1 by subcutaneous injection of 1 ml of saline containing 1 mg of OA

and 200 mg of aluminium hydroxide (Sigma Chemicals, St. Louis, Ml).

2.1.2 Measurement 0f lung resistance

Rats were anaesthetised with either somnotol (50 mg/kg i.p.) [LTD4 responsivenessJ or urethane

(lg/kg i.p.) [ERILR]. A heating pad was used to maintaïn body temperature constant during the

experiment and rectal temperature was monitored continuously with an electronic thermometer. Lung

resistance (RL) was measured during spontaneous tidal breathing with the animais in the supine position

as previously described (11). Flow was measured by placing the tip of the tracheal tube inside a small

Plexiglas box (265 ml in volume). A Fleisch no.O pneumotachograph coupled to a piezoresistive

diffecential pressure transducer (Micro-Switch 163PC01D36, Honeywell, Scarborough, Ont. Canada) was

attached to the other end of the box to measure airflow. Transpulmonary pressure (Ptp) was measured

using a water-filled catheter placed in the lower third of the esophagus connected to one port of a

differential pressure transducer (Transpac Il, Abbott, Illinois); the other port was connected to the

Plexiglas box. The esophageal catheter consists of a polyethylene tube (PE-240, 6 cm. long).
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The pressure and flow signais were amplified, passed through eight-pole Bessel filters (modei

9O2LPF, Frequency Devices, Haverhill, MA) with their cut off frequencies set at 100 Hz. The data was

recorded and stored on a computer. The arway response was evaluated from RL, which was determined

by fitting the equation of motion of the lung by multiple linear regression using commercial software (RHT

lnfodat Inc, Montreal, Quebec, Canada). Endotracheal tube resistance was 0.11 cm H20/mIls at a flow of

25 mI/s. Tube resistance was subtracted from ail values of Rc.

2.7.3 Experimental Protocol

2.7.3.7 Experiments assessing the ainNay responsiveness to LTD4

Our study investigated the effects of lung agonists, such as LTD4, in an animal model at a state of

heightened cell-mediated immunity; a state commonly found in asthmatics. Therefore, we chose to inject

IL-2, a known T-cell growth factor, into rats to boost their ceilular immunity. Twenty-two rats were given

either 0.2 ml 0f saline or 20,000 units of human recombinant IL-2 diluted in 0.2 ml of saline

subcutaneously twice a day for 4.5 days from the 9th to the 14th
day after sensitization. On day 14, rats

were challenged with incremental doses of LTD4 (0.05 ng/mI to 1 000ng/ml) (Cayman Chemical Company,

Ann Arbor, Michigan) intratrachealiy in 5Opl until a doubling in lung resistance occurred (Figure 12). LTD4

was given to rats intratracheally at doses established in previous studies (294).

2.7.3.2 Experiments assessing the effects of montelukast on IL-2 induced increased ainway

responsiveness after OA challenge

Four groups of rats were studied (Figure 13). The first 2 control groups consisted of twenty

sensitized rats that were given 0.2 ml of saline subcutaneously twice a day for 4.5 days, from day 9 to day

14 after sensitization, and were challenged with an aerosol of saline or OA on day 14. The second 2

experimental groups consisted of twenty sensitized rats that received 20,000 units of human recombinant

IL-2 subcutaneousiy twice a day for 4.5 days from the 9th to the 14111 day affer sensitization. On day 14,

prior to and 2 hours following OA challenge, rats received an i.v. injection of 0.36 ml of saline or
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montelukast (MK-0476, 0.5mglkg, Merck Frosst, Montreal, Quebec). MK-0476 was flot tested atone for

two reasons. One, the objective of this experimental protocol was limited to studying the IL-2-mediated

lung response in BN rats. BN rats flot treated with IL-2 do not mount an airway response, therefore giving

MK-0476 to these rats could flot be justified. Moreover, MK-0476, an experimental drug at the time, was

graciously donated by Merck Frosst and in a quantity sufficient to test only the principal questions of our

study. Alt rats were challenged with an aerosol of saline or OA (lmg/ml) for 5 minutes. Lung resistance

(RL) was measured at baseline, 5, 10, 15, 20 and 30 minutes after challenge and subsequently every 15

minutes for a period of 8 hours.

2.7.4 Bronchoalveolar Lavage (BAL)

Eight hours after OA challenge, the lungs wete lavaged through the tracheal tube by five

instillations and immediate retrieval of 5ml of saline at room temperature. The ceils were separated from

the supernatant by centrifugation, washed and the total celi count was determined with a hemacytometer

as previously described (10). The differential count was assessed on a cytospin slide that was prepared

with a Cytospin model III (Shandon, Pittsburgh, PA) and stained with Wright-Giemsa (Biochemical

Sciences, Swedesboro, NJ). At least two hundred oeils were counted under oit-immersion microscopy.

2.7.5 Lung Retrieval and Preparation

After performing BAL, the chest wall was opened and animaIs were exsanguinated by cardiac

puncture. The pulmonary vasculature was washed by slowly injecting balanced saIt solution (lOmi) into

the right ventricie until the lungs were white. The right lung was fixed in fresh 4% paraformaldehyde for in

situ hybridization, while the right lung was snap frozen in liquid nitrogen for semi-quantitative polymerase

chain reaction (SQ-PCR).

2.7.6 RNA preparation, reverse transcription and PCR

TRIzol reagent (Gibco BRL, Montreal, Quebec, Canada) was used as a monophasic solution to

homogenize tissue and to isolate total RNA from frozen biopsies according to the manufacturer’s

instructions. Reverse transcription was performed on 5 pg of total RNA with Moloney murine ieukemia
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virus (M-MLV) reverse trancriptase (Gibco BRL, Montreal, Quebec, Canada) in the presence of RNasine

(Pharmacia, Montreal, Quebec, Canada). PCR was performed by using an automatic thermal cycler (MJ

Research Inc., Ottawa, ON, Canada). Cycle conditions were 94°C for 1 mm, 60°C for 2 mm, 72°C for 3

min. cDNA (2p1) was amplified in a 25-pI reaction volume containing 0.5 pM (each) dNTPs, 0.5 pM

primers, lU Taq Polymerase (Gibco BRL, Montreal, Quebec, Canada).

2.7.7 Semi-Quantitative Reverse Transcription Polymerase Chain Reaction

For semi-quantitative experiments, the PCR was set up as described above, except that the

reaction mixture contained 5 pCi/ml of [a32PJUATP as a tracer. Specific primers were used to amplify

selected cytokine messages (295). Preliminary experiments determined the optimal number of cycles for

each primer, which were as follows: cyclophillin (a housekeeping gene): 19 cycles, and IL-4, IL-5, and

IFN-y: 30 cycles. The above cycle numbers were selected as midpomnts of their respective linear ranges

for amplification of cDNA (2pl), and there was a linear correlation between input cDNA and the yield 0f

PCR products. Quantities of cDNA were standardized to yield equivalent amounts of PCR products for

cyclophillin and compared with each other. In order to determine the relative mRNA expression of each

cytokine present in different samples, 20 pI of the amplified product was electrophoresed through a

polyacrylamide gel, containing 5% urea, in Tris-acetate/EDTA(TAE) buffer. The gels were dried and

exposed overnight at -80°C using autoradiography film (Kodak, Rochester, MY). The radioactive signal

specific bands were quantified by an Instant Imager System 2000 (Alpha Innotech Corporation, CA). The

relative amount of radioactive signal (RS) of specific bands for each cytokine and cyclophillin were

calculated as follows: relative amount of cytokine mRNA = (RS for cytokine in sample)/(RS for cyclophillin

in sample).

2.7.8 In situ hybridization

In order to confirm the differences in Thl/Th2 cytokine expression obtained by SQ-PCR, we

performed in situ hybridization for IL-4 and IFN-y as previously described (295). Cryostat blocks wete

made from stored lungs and eight micron sections were cut consisting of an intact airway and surrounding

submucosa and placed on poly-L-lysine coated slides. Sections were incubated at 37°C for 12 hours and
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either processed immediately or stored at -80°C until used. The cDNA for IL-4 and IFN-y was subcloned

into the Bluescript RNA vectot (pBluescript SK, Stratagene, La Joua, CA) and sense and antisense

probes were generated by 17 and SP6 RNA polymerases. Labefling of RNA probes with digoxigenin

(DIG)-11-UTP was performed according to the manufacturer’s recommendations (Boehringer Mannheim,

Mannheim, Germany). The IabeHed probes were digested by aikaline hydrolysis to an average Iength of

100 to 200 bases before precipitation and hybridization was performed at 42°C for 12h. The slides were

washed in decreasing concentrations of SSC (4 X SSC to 0.1 X SSC) and RNase A (2Opg/mI) to remove

unhybridized probe. As a negative control, preparations were hybridized with DIG-UTP-labelled sense

probes under the same conditions. Specimens were then stained for 1 minute with Hoechst 33258 dye

(bisbenzimide; Sigma Chemical Co., St.Louis, MD.) at a dilution of I pglml in PBS for visualisation under

a Zeiss Axiophot fluorescence microscope (Cari Zeiss (Oberkochen), Ltd., Welwyn Garden City, UK).

Positive celis wete counted in a random coded order at x200 magnification. In the airway submucosa,

positive celis were counted along the entire length of the epithelial basement membrane in a minimum of

6 sections. Results are expressed as the mean number of positive cells per millimeter square of airway

basement membrane for each RNA probe.

2.1.9 Data Analysis (Section 2.7 to 2.7.8)

The concentration of LTD4 required to double RL (EC200RL) was obtained by linear interpolation

between the two concentrations bounding the point at which RL reached 200% of the control value.

Comparisons of airway responsiveness to LTD4 between groups were performed with 10g transformed

data and analyzed using unpaired, non-parametric Mann-Whitney tests. The LR was calculated as the

area under the curve of RL above the baseline value over the 3-8 hour period following challenge (9).

Data were analyzed using a Kruskal-Wallis nonparametric ANOVA test for groups of rats followed by

Dunn’s multiple comparisons test between twa independent groups of rats. Differences were considered

ta be statistically significant when p values were Iess than 0.05.
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2.2 Interleukin-5 and the Airway Response of BN rats

2.2.7 AnimaIs and sensitization

Ninety-three highly inbred male BN SSN rats, 7-8 weeks old and weighing 200 to 240 g were

obtained from Harian Sprague-Dawiey Inc. (WalkerviHe, MD). Rats were maintained in conventional

animal facilities at the Meakins-Christie Labs of McGill University or the CHUM Reseatch Centre. The

Animal Care Committees of each institution approved ail the experiments that were performed in this

study.

We actively sensitized the rats by subcutaneous injection of imI of saline containing 1 mg of

ovalbumin (OA) and 200 mg of aluminium hydroxide (Sigma Chemicals, St.Louis, Ml).

2.2.2 Eosinophll colony proliferation from peripheral blood mononuclear ceil progenitors (PBMNC)

These experiments were per[ormed to assess whether rhIL-5 induced eosinophil proliferation

from progenitors in rats as previously described in humans (296). We isolated PBMNC from ten BN rats

by centrifugation over Ficoll Hypaque. The cells were plated at a concentration of 1 x 1 û6 celis per ml in

35 x 10 mm tissue culture dishes (Falcon) in supplemented lscove’s-modified Dulbecco’s medium

containing 20% heat inactivated fetal bovine serum, 1% peniciilin, 1% streptomycin, 5 x 10 mol/L 2-

mercaptoethanol, 0.9% methylceiluiose with or without rhlL-5 (0.25, 1, 2 or 5 ng/mi). Mer 14 days of

culture at 37°C in a humidified atmosphere containing 5% CC2 in air, colonies (defïned as any

aggregation of more than 40 ceils) were counted by inverted microscopy and eosinophil-type colonies

fCFU-Eo) were counted as a function of their morphologic appearance. CFU-Eo appeared as tight,

compact aggregations of round, refractile cells and showed varying combinations of eosinophilic,

basophilic, and mixed eosinophilic-basophiiic celis on May-Grunwald-Giemsa staining.

2.2.3 IgE determination

Specific IgE levels to QA were determined by ELISA as previously described (297). Assays were

performed on 96-well microtiter plates (Immulon Il, Fisher, Pittsburgh, PA). Plates were coated overnight
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with mouse monoclonal antibody to rat IgE (Zymed Labs Inc., San Francisco, CA) diluted 1:500 in

carbonate/bicarbonate buffer. Plates were blocked with PBS-0.5% Casein. A 1:10 dilution of serum in

PBS-0.5% Casein was prepared prior to addition of lOOpI to the plates. Biotin-labelled CA (0.02 mg/ml)

was added to the wells. The above steps were done at 2h intervals at 37CC. Between steps the wells

were washed three times with PBS-0.5% casein. Horseradish peroxidase conjugated avidin (Sigma

Chemicals, Montreal, Quebec) in PBS-0.5% casein (1:500 dilution) was added for 30 minutes. Plates

were developed at room temperature for 15 min. after addition of TMB substrate (Sigma Chemicals,

Montreal, Quebec) diluted (1:10) in substrate buffer, and were read with an ELISA plate reader (SLT Lab

Instruments, Fisher Scientific Go., Pittsburgh, PA) at 450nm.

2.2.4 Endotoxin determination and challenge

The concentration of endotoxin in the administered rhlL-5 was quantified using the Limulus

Amebocyte Lysate (LAL) test (Associates of Cape Cod, Falmouth, MA). The same concentration of

endotoxin (Lipopolysaccharide (LPS), Sigma, St.Louis, MC), diluted in 0.9% saline was given intra

tracheally to animaIs and airway responsiveness to Mch and inflammatory celis in the BAL were

measured.

2.2.5 Lung lavage (BAL)

These experiments were performed 14 days after sensitization. Forty-three rats were

anaesthetised with somnotol (50 mg/kg), intra-tracheally intubated and were awakened after intra

tracheal injection of BSA, rhIL-5 (1 to 10 pg) or 10 pg rhlL-5 and 50 ng TRFK5 (BD Biosciences, Canada).

Twenty hours later the animaIs were again anaesthetised with somnotol, intubated and BAL was

performed after methacholine (Mch) challenge. The BAL retrieval is described earlier in section 2.1.4.

2.2.5.7 Staining of BAL celis for major basic protein (MBP)

The cells obtained from BAL were fixed in acetone-methanol, washed in Tris-Borate solution

(TBS), incubated with blocking solution (Dako Diagnostics, Mississauga, Ontario) (10 minutes) and

incubated with 60,il of primary monoclonal MBP lgG antibody (diluted 1:30 in Tris Borate Solution (TBS))

at 4°C in a humid chamber overnight (11). The next day, slides were again washed with TBS, and
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incubated with secondary anti-primary antibody for 45 minutes at room temperature. The siides were

washed again in TBS, and incubated with Streptavidin-Aikaline phosphatase antibody (Dako Diagnostics,

Mississauga, Ontario) for 45 minutes at room temperature. Signais were reveaied using a Fast Red stain

(Sigma Chemicals, St.Louis, MD) and viewed under a Nikon Eclipse E600 microscope (Nikon, USA) at

40X magnification.

2.2.6 Measurement of lung mechanics

Lung mechanics measurements followed protocols detailed in section 2.1.2.

2.2.7 Airway responsiveness to methacholine

Fourteen days after sensitization, rats were given either rhIL-5 (1, 3 and lOpg), lOpg of rhIL-5

and 50 ng TRFK5 or 60 Endotoxin Units (EU) of LPS (Figure 14). The latter two groups underwent airway

responsiveness to methacholine tests only 20 hours later. The dose of rhIL-5 was based upon previous

studies involving guinea pigs (298) and humans (299). 10 ug 0f rhIL-5 given nebulized to asthmatics was

shown to be sufficient to increase airway responsiveness and infiltration of eosinophils into the airways.

30 minutes, 20 hours or 72 hours later rats were anaesthetised with somnotol (50 mg/kg), intubated and

baseline RL was measured. Rats receiving lOpg of IL-5 was also challenged with a nebulized aerosol cf

OA (50 mg/mI in sterile water) for 30 seconds 20 hours after IL-5 administration. Ail rats were given an

aerosol of phosphate-buffered saline (PBS) followed by progressively doubling concentrations of Mch

(from 0.0625 to 32 mg/ml in sterile saline) and RL was measured after each aerosol until it increased to at

least 200% of the PBS baseline value. Aerosols were generated from 3m1 of solution using a Hudson

nebulizer with an airflow of 10 L/min; each administration lasted for 30 seconds.

2.2.8 Measurement of airway responses to OA

Fourteen days after sensitization, rats were anaesthetised with somnotol (50 mg/kg), intra

tracheally intubated and received either IL-5 (3pg) or the same weight of BSA intra-tracheally prior to

being awaken (Figure 14). This specific dose of IL-5 was given to animais based on a previous
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experiment by Lilly et aI (298) that showed that instilling 5ig of IL-5 to guinea pigs caused a peak in

airway eosinophilia. We chose 3tg as a comparable dose to a smaller mass animal model. The following

day, rats were anaesthetised with urethane (1.1 glkg), intubated and baseline RL was measured. The rats

were then challenged with aerosolized QA (50 mglml in sterile water) by using a Hudson nebulizer (Model

1400; Hudson, Temecula, CA) et airflow of 10 L/min for 5 minutes. RL was measured before and at 5, 10,

and 15 min after the OA challenge, and at 15 min intervals for a total period of 8h.

2.2.9 Lung mincing and digestion

These experiments were performed 8 hours after OA challenge as previously described (296) in

16 rats either pre-treated with 3 pg of IL-5 or 3 pg of BSA. The chest wall was opened, and the animal

was exsanguinated after puncture of the left ventricle by section of the abdominal aorte. Blood was kept

in a heparinized tube for analysis of lymphocyte subsets by fiow cytometry. The pulmonary vasculature

was washed by slowly injecting balanced saIt solution (IOmI) into the right ventricle until the lungs were

white. The lungs were dissected from the chest and mediastinal structures, weighed, and separated into

the large airways (trachea and large bronchi until approximately the fifth generation) and small airways

and parenchyme (SIP). Tissue digestion and cell retrieval through a #60 sLeve (Sigma) was performed

and slides were prepared by centrifuging 500,000 cells in enriched RPMI 1640 for 5 min et 400 rpm in a

cytocentrifuge. The cellular differential was assessed on a Wright-Giemsa stained slide by counting 200

cells undet oil-immersion microscopy.

2.2.10 Isolation and staining of blood lymphocyte subsets

Peripheral blood mononuclear cells were isolated from fresh heparinized peripheral blood by

standard Ficoil-Hypaque methods and prepared for flow cytometry as previously described (300). The

isolated cells were washed with Hanks balanced saIt solution and stained directly by incubating with the

monoclonal antibodies W3/25 (equivalent of the CD4 helper lymphocytes) or 0X8 (CD8

suppressor/cytotoxic lymphocytes) for 30 min. Cells were studied immediately or flxed in 1%

paraformaldehydelo.85% saline. The fixed cells were stored et 4°C in the dark until analysis. Flow
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cytometry was performed with an argon laser, 488nm FACScan analyzer (Becton Dickinson FACS

Division, Sunnyvale, CA) focusing on the lymphocyte cluster. Controls consisted of celis stained with

polyclonal antibodies obtained from mouse ascites fluid.

2.2.17 Measurement of cytokine mRNA expression

These experiments were performed 20 hours after OA challenge as previously described (298) in

16 rats either pre-treated with 3 pg IL-5 or BSA. Alt the animaIs were killed by exsanguination. The Iungs

were dissected from the chest atter perfusion of the pulmonary vessels, fixed in 4% paraformaldehyde

and then transferred an hour later into a 15% sucrose in PBS solution et 4°C. Airways from the lung were

cut transversely into 1cm pieces, and blocked with liquid nitrogen. Cryostat blocks were cut at a depth of

8 pm/ section, placed on poly-L-Iysine coated slides and stored at -80°C.

In situ hybridization was performed as previously described (301) and as detailed in section 2.1.8.

2.2.12 Statistical analysis (Section 2.2 to 2.2. 11)

The concentration of Mch required to double RL (EC200RL) was obtained by linear interpolation

between the two concentrations bounding the point at which RL reached 200% of the control value.

Comparisons of airway responsiveness to Mch between groups were performed with log-transformed

data. b compare the prevalence of ER among treatment groups, we defined e significant ER as an
increase in RL to at least 150% of the baseline value within 1 hour after OA challenge. The late response

was calculated as the area under the RL vs. time curie from 1 80-480 min post challenge. The differences

between the tested and control group means were analyzed using Student’s t test or the Mann-Whitney

U-test, as appropriate, to compare magnitude, time to peak, ER and LR, inflammatory cells and cytokines.
Resuits are presented as mean + SEM, except for values of EC200RL, which are reported as geometric

means. b determine the statistical significance of the airway responsiveness to Mch challenge, we

employed unpaired student’s t test. Significance was accepted when the probability (p) value was <0.05.
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2.2.73 Chemicals

Ovalbumin, BSA, APAAP, urethane, Mch, paraformaldehyde, coHagenase, and Wright-Giemsa

stain were purchased from Sigma Chemicals (St.Louis, MI); Bordetella pertussis vaccine was purchased

from the Armand Frappier Institute (Montreal, Quebec, Canada); Fetal caif serum, penicillin, streptomycin,

L-glutamine, nonessential amino acids, RPMI 1640 medium, Iscove’s modified Dulbecco’s medium,

HBSS and tryptan blue were obtained from GIBC0 Laboratories (Grand Island, NY). Ficoli-Hypaque was

obtained from Pharmacia (Montreal, Quebec, Canada). RhIL-5 was graciously donated by Merck Frosst

(Montreal, Quebec, Canada). Somnotol was used ta put rats ta sleep and was abtained from BDH

Pharmaceuticals (Mantreal, Quebec, Canada). Harris Haematoxylin was purchased fram Zymed

Chemicals (California, USA). W3/25 and 0X8 were abtained fram DAKO, Cedarlane (Carpinteria, CA).
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Resuits

Pre-treatment with IL-2 increases airway responsiveness to LTD4

b determine the relationship between LTs and upregulation of celI-mediated immunity, rats were

pre-treated with either saline or IL-2 for 4.5 days and after general anaesthesia and endotracheal

intubation were challenged on the 14th day after sensitization with exponentiafly increasing doses of LTD4

to measure airway responsiveness. Rats pre-treated with IL-2 showed increased airway responsiveness

to LTD4 (fig. 15). The mean dose of LTD4 that caused a doubling in resistance was 88.2 + 38.4 ng/ml

(n=10, 1 rat dieU during the procedure) for IL-2 treated rats. Rats pre-treated with saline required a higher

dose 0f LTD4 in order to double lung resistance (665.7 ± 47.6 nglml, n=1 1, p <0.05).

Montelukast, a cys-LTI receptor antagonist, inhîbits the IL-2-med,ated increase in LR after OA

challenge

Montelukast (MK-0476) was given i.v. in order to block the effects of LTs on the cys-LT1 receptor.

In animais given IL-2 and then challenged with QA, montelukast blocked the LR significantiy (n10, 1 rat

dieU during the procedure) when compared to IL-2 pre-treated animais that received saline i.v. instead of

montelukast and were then OA challenged (n10, 1 rat died during the procedure, LR: IL-2 + MK = 4.54 +

0.61 vs. IL-2 + Saline = 26.49 + 5.96, p<0.05) (fig. 16).

Effect of IL-2 and montelukast on the differential celI count in the BAL

The administration of IL-2 significantly increased the total number 0f celis recovered in Iung

lavage 8 hours after antigen challenge when compared to rats that received saline and were flot OA

challenged (IL-2 + OVA: 6.47 ± 1.78 x 106 cells/ml vs. SAL + SAL: 2.93 ÷ 0.77 x 106 cells/ml; p<0.05).

The number of eosinophils in the BAL were significantly increased in animais pre-treated with IL-2 and

QA challenged when compared to saline pre-treated and either saline or OA chailenged rats (p<0.05, fig.

17). The absolute numbers of eosinophils rather than the percentage of eosinophils per total celis

counted in each group is reported here. Although the volume 0f cells was equal in each group, the total

number of cells recovered was signiflcantly different. Therefore, it is statistically incompatible to compare
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percentages between groups with unequal population sizes. Rats that received IL-2 and montelukast and

were OA challenged showed a trend for a decrease in the number of total ceNs and eosinophils found in

the BAL compared to those that received just IL-2 and DA challenged but this difference was not

significant (p>O.05).

Effect of IL-2 and montelukast on cytokine mRNA production

SQ-PCR analysis of lung cytokine mRNA obtained 8 hours after OA challenge showed that IL-2

pre-treatment increased the expression of Th2 cytokine (IL-4 and IL-5) mRNA 8 hours after OA challenge

(fig.18a, 18b). IL-2 pre-treatment also decreased the expression of the Thi cytokine mRNA IFN-y after

OA challenge (fig. 18c). Montelukast inhibited the effect of IL-2 on lung cytokine mRNA expression and

caused a decrease in IL-4 and 5 and an increase in IFN-y mRNA 8 hours after OA challenge.

Results obtained by SQ-PCR for Thi (IFN-y) and Th2 (IL-4) cytokines were confirmed by in situ

hybridization (figure 19a and b). Analysis of lung cytokine mRNA obtained 8 hours atter QA challenge by

in situ hybridization showed that IL-2 pre-treatment increased the number of IL-4 mRNA positive cells

(19a) and decreased the number of IFN-y mRNA positive ceNs (fig. 19b) in the submucosa of the airways

when compared to control challenged rats (p<O.05). Montelukast inhibited the increase in cells expressing

IL-4 mRNA but also increased the number of ceNs expressing IFN-y mRNA in IL-2 pre-treated rats after

DA challenge.

Effect of rhIL-5 on eosinophil colony formation from proqenitors

To determine if rhIL-5 exhibits significant functional activity in BN rats, BN rat PBMNC’s were

incubated in 0, 0.25, 1, 2, and 5 ng/ml of rhIL-5 in enriched RPMI medium for 14 days. Concentrations of

IL-5 above 1 ng/ml caused a significant increase in eosinophil/basophil colonies when compared to

controls (p<0.O5) and the number of eosinophil/basophil colonies increased with the concentration of rhIL

5 (fig. 20).
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Effect of ovalbumin sensitization on OA-specific IgE levels from serum

To show that BN rats were properiy sensitized to OA, serum from two activeiy sensitized rats was

coliected 0, 1, 2, and 3 weeks following sensitization. OA-specific IgE levels were measured in duplicate

and showed an increase in OA-specific igE levels (fig. 21).

Effect of intra-tracheal administration of rhIL-5 on airway responsiveness to Mch

Bovine serum albumin, 1, 3 or J0ig of rhlL-5 were administered intra-tracheaily and airway
responsiveness to Mch was measured 20 hours Pater. The amount of Mch that caused a doubling in RL

decreased significantIy as doses of IL-5 increased from 1ug to 10ig (fig. 22). The airway response to

Mch was significantly increased in the rats that received 3 pg of IL-5 when compared to the group that

received BSA (p< 0.05). The airway response to Mch was aiso significantIy increased in the group that

received 10 ig of rhIL-5 when compared to the BSA group (lOp.ig IL-5: 1.3 + 0.4 mg/ml vs. BSA: 6.5 0.9

mg/mI; p<0.01) (fig. 22). 50jg of TRFK5 significantIy reduced the effect of lOpg of rhIL-5 on the airway

response to Mch (4.75 0.48 mg/mi; p<0.05). Experiments testing the effect of LPS at a concentration

equai to that measured in the rhlL-5 (60 EU) showed no significant difference in airway responsiveness to

Mch with control animais. Airway responsiveness to Mch 30 min. and 72 hours after administration of

lOpg of IL-5 was flot significantly affected (Fig. 23).

Effect of dose of intra-tracheal rhIL-5 on the cellular return from lung lavage

Intra-tracheai administration of rhIL-5 increased the celiular return from BAL 20 hours Pater. The
6 6total cellular return was for ltig: 6.65 + 2.08 x 10 cells, for 3ig: 9.75 ± 1.84 x 10 cells and for lOpg:

6
. . . . .13.1 3.07 x 10 cells (p<0.O5). 50 ng of TRFK5 given in combination with lOpg of rhIL-5 significantly

reduced the total cellular return from the BAL (3.28 + 0.53 x 106 cells; p<0.O5). The number of neutrophils

increased significantly in the rats that received lOpg 0f IL-5 when compared to the group that received no

IL-5 (10 pg IL-5: 8.01 ± 2.21 x 106 cells vs. no IL-5: 2.78 ± 0.73 x i6 celis; p<0.O5). The effect of IL-5 on

BAL neutrophils was significantiy reduced by TRFK5 (2.23 ± 0.42 x 106 cells; pcO.O5). No difference was

found in the total number of macrophages, lymphocytes, and basophils that were present in the BAL of

each group (Macrophages: lOpg IL-5: 4.53 ± 0.92 x i6 celis vs. Controls: 3.95 + 0.27 x 106 cells;
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Lymphocytes: lOpg IL-5: 0.252 ± 0.067 X 106 cells vs. Controls 0.154 0.09 x 106 ceHs; Basophils: lOpg

IL-5: 0.0655 + 0.0403 x i6 celis vs. Controls: 0.05 ± 0.03 x io6 cells). Also, rats given TRFK5 did flot

show a significant difference between controls or IL-5 alone. There was no difference n total eosinophils

between ail groups when evaluated by Wright Giemsa stain or with an anti-MBP stain (Eosinophils: lOpg

IL-5: 0.243 ± 0.0403 x i6 ceNs vs. Controls: 0.092 ± 0.07 x 10 ceNs vs 10 pg IL-5 and 50 ng TRFK5:

0.0689 ± 0.02 x 106 cells; p>0.O5).

Effect of rhlL-5 on the physiologïcal response after ovalbumïn challenge

Pre-treatment with 3pg of rhIL-5 did not affect the ER (Figure 24a) or LR (Figure 24b) but

significantIy increased RL 20 hours after challenge with OA (IL-5: 0.178 ± 0.046 cm H20/ml/s vs. Control:

0.094 + 0.057 cm H20/ml/s, p = 0.01, Figure 25). There was no significant difference in responsiveness

to Mch between the group that was saline-challenged and given IL-5 and the OA-chailenged groups that

wete given BSA oc IL-5 (EC200RL: IL-5 + Saline: 10.69 + 0.55 mg/ml vs. BSA + OA: 11.8 + 2.93 mg/ml vs.

IL-5 + OA: 17.95 + 3.48 mg/mI; p>0.05, Figure 26).

Effect of rhIL-5 on blood lymphocyte subsets 8 hours after ovalbumin challenge

When compared to controls, pre-treatment with rhIL-5 caused significant differences in blood

lymphocyte subsets 8 hours after QA challenge. We found a higher percentage of blood CD8 cells in IL-5

pre-treated and challenged rats (mean control: 20.6 ± 5.8 vs. challenged: 30.6 ± 3.7, p <0.05), while the

mean percentage of CD4 cells was lower (control mean: 43.0 ± 6.4 vs. challenged: 32.8 ± 5.2, p <0.05).

The CD4ICD8 ratio in the blood of IL-5 pre-treated and challenged rats was significantly lower when

compared to BSA pre-treated rats (IL-5: 1.18 ± 0.47 vs. BSA: 2.92 ± 0.57, p <0.05, Figure 27).

Effect of IL-5 on lung cytokine mRNA expression after ovalbumin challenge

More cells were expressing mRNA for IL-4 in the aicways of IL-5-pre-treated rats 8 hours after

antigen challenge (IL-5 pre-treated: 1 .92 ± 0.28 positive cells/0.45 mm2 basal membrane vs. BSA

Control: 0.33 + 0.04 positive cells/0.45 mm2 basal membrane, p<O.O5). Similar tesults wece found for
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celis expressing IL-5 (IL-5 pre-treated: 1.19 ± 0.08 positive cells/ 0.45 mm2 basal membrane vs. BSA

Control: 0.25 ± 0.09 positive cells/0.45 mm2 basal membrane, pc0.05). However, we found no difference

in interferon-y mRNA expressing cells between both groups (IL-5 pre-treated: 0.482 + 0.042 positive celis?

0.45 mm2 basal membrane vs. BSA Control: 0.394 + 0.086 positive cells/0.45 mm2 basal membrane,

p>0.05).
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Figure 15: Effect of IL-2 on airway responsiveness to LTD4
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Figure 15: Effect of IL-2 on airway responsiveness to LTD4. Rats (n=21) received
either saline or IL-2 s.c. (20,000 Units/twice a day far 4.5 days pre-LTD4 challenge)
and were then challenged with increasing doses cf LTD4 (0.05, 0.5, 5.0, 50, 500, 1000
- ‘ml) until baseline RL doubled. EC200RL was calculated as the amaunt
o LTD4 necessary to double RL.

* p<0.05 between IL-2-treated and saline
treated contrai rats.
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( Figure 16: Effect of Montelukast on IL-2-induced Late Airway Response
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Figure 16: Effect of IL-2 alone or IL-2 and montelukast on the late airway response
to ovalbumin. DA-sensitized rats (n=35) were given either IL-2 (20,000 Units/twice a day)
or saline for 4.5 days starting on day 9. on the J4th day they received either
montelukast (0.5mg/kg) or saline intravenously prior to and 2 hours following OA challenge.
° was measured for 8 hours after DA challenge and the LR was calculated as the area

ider the curve for RL values obtained from 4 to 8 hours after DA challenge.
* p<0.05 between IL-2 treated animais that received saline i.v. and IL-2 treated animais
that received montelukast i.v. prior to and 2 hours following OA challenge
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I
Figure 17: Effect of IL-2 and Montelukast on BAL Inflammatory cells
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Figure 17: Effect of IL-2 pre-treatment or IL-2 and montelukast on BAL
inflammatory ceils after OA challenge. BAL (n=35) was recovered 8 hours
after OA or saline challenge for celI differential analysis. * p<O.05 between
)A-chaIlenged IL-2 pre-tteated rats and saline pre-treated and saline-challenged
rats
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Figure 18A: Effect of IL-2 and Montelukast on lung IL-4 mRNA expression
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Figure 18A: Eftect of IL-2 pre-treatment with or without montelukast on IL-4 total
( N9g

cytokine mRNA expression after OA challenge. Lungs (n=JO) were fixed in
iiquid nitrogen 8 hours after challenge for SQ-PCR analysis.
*p.<005 between IL-2 pre-treated rats that received either saline or montelukast
i.v. prior to and 2 hours following OA challenge.
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Figure 18B: Effect of IL-2 and Montelukast on lung IL-5 mRNA expression
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Figure I 8B: Effect of IL-2 pre-treatment with or without montelukast on IL-5 total
,- ‘ing cytokine mRNA expression after OA challenge. Lungs (n=I0) were fixed in

quid nitrogen 8 hours after challenge for SQ-PCR analysis.*p<oo5 between IL-2 pre-treated rats that received either saline or montelukast
i.v. prior to and 2 hours following OA challenge.
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Figure 18C: Effect of IL-2 and Montelukast on lung IFN-y mRNA expression
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Figure 180: Effect cf IL-2 pre-treatment with or without montelukast on IFN-y total
lung cytokine mRNA expression after OA challenge. Lungs (n=1O) were fixed in

( iquid nitrogen 8 heurs after challenge for SQ-PCR analysis.
*p<005 between IL-2 pre-treated rats that received either saline or montelukast
Lv. prior to and 2 heurs following OA challenge.
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Figure 19A: Effect of IL-2 and Montelukast on IL-4 mRNA positive
ceils in the airways
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Figure 19A: Effect of IL-2 pre-treatment with or without montelukast on IL-4 mRNApositive ceils after OA challenge. Lungs (n=16) were recovered in PBS-Sucrosehours after OA challenge for in situ hybridization.
t 0.05 between IL-2 pre-treated rats that received either saline i.v. or montelukasti.v. prior ta and 2 hours following OA challenge
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Figure 19B: Effect of IL-2 and Montelukast on IFN-y mRNA positive
celis in the airways
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Figure 19B: Effect cf IL-2 pre-treatment with or without montelukast on IFN-y mRNA
positive celis after QA challenge. Lungs (n16) were recovered in PBS-Sucrose
8 hours after OA challenge for in situ hybridization.

6*p<OO5 between IL-2 pre-treated rats that received either saline Lv. or montelukast
i.v. prior to and 2 hours following OA challenge
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Figure 20: Effect of rhlL-5 on eosinophil progenitor colony formation
from rat peripheral blood mononuclear ceils
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Figure 20: Effect of rhIL-5 on eosinophil/basophil type colony production in rat
PBMNC’s (n=10). Ceils were cultured in medium alone or in different concentrations

( f rhlL-5 for 14 days at 37°C and colonies were counted by inverted microscopy after
May-Grunwald-Giemsa staining. *p<005 between IL-5 groups (1,2 and 5ng/ml)
and control
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Figure 21: Effect of ovalbumin sensitization on OA-specific serum IgE levels
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Figure 21: Effect of ovalbumin sensitization on OA-specïfic IgE levels. Serum was
collected in duplicate from 2 actively sensitized rats from week O to week 3 following
nsitization. OA-specific IgE levels was measuted using ELISA. Both animais showed

u major increase in OA-specific IgE levels from week O to week 3
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Figure 22: Effect of IL-5 on airway responsiveness to Methacholine
20 hours after administration
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Figure 22: Effect cf IL-5 on airway responsiveness te Mch 20 hours after
administration. Rats (n=26) received either lpg, 3pg, lOpg cf IL-5 or BSA
(control) intra-tracheally followed by Mch challenge 20 hours later. 6 rats
were given 50 ng cf anti IL-5 antibody intra-tracheally immediately after
receivîng lOpg cf IL-5. 5 rats were given 60 EU of LPS 20 heurs priorto
Mch challenges. Doubling doses of nebulized Mch was given untiil baseline
RL doubled. EC200RL was calculated as the amount cf Mch necessary to
double RL. Bars represent the means cf each group. *p<0 05 between IL-5
treated (3pg) and BSA-treated (control). ** p<0.Ol between IL-5 treated (lOpg)
and BSA-treated (control). p<0.05 between IL-5 treated (lOpg) and lOpg IL-5
with 5Ong TRFK5.
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Figure 23: Effect of lOpg rhlL-5 on airway responsiveness to Methacholine
30 minutes and 72 hours after administration
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Figure 23: Effect of lOpg of IL-5 on airway responsiveness to Mch 30 min. and 72hours after administration (n22). Rats received either lOpg of rhlL-5 or BSA
(control) intra-tracheally followed by Mch challenge 30 min. or 72 hours later
Doubling doses of nebulized Mch was given until baseline RL doubled. EC200RL

s calculated as the amount of Mch necessary to double RL. Bars represent the
mean of each group



88

Figure 24A: Effect of pre-treatment with rhlL-5 on Early Airway Response
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Figure 24A: Effect of pre-treatment with rhlL-5 on the ER after antigen challenge.
Rats (n=23) were sensitized to OA and received either 3pg of rhlL-5 or BSA
intra-tracheally. Twenty hours later, rats were challenged with OA and RL
was measured for 8 hours. The ER was calculated using the highest RL

9Iue during the first hour after antigen challenge. Bars represent the
.eans of each group.
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Figure 24B: Effect of pre-treatment with rhlL-5 on the Late Airway Response
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Figure 24B: Effect of pre-treatment with rhlL-5 on the LR after antigen challenge.
Rats (n=23) were sensitized to OA and received either 3jg of rhlL-5 or BSA
intra-tracheally. Twenty hours later, rats were challenged with OA and RL
was measured for 8 hours. The LR was calculated as the area under the curve
for RL values obtained from 4 to 8 hours after antigen challenge. Bars represent
the means of each group
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Figure 25: Effect of rhlL-5 on lung resistance 20 houts after antigen challenge
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Figure 25: Effect of rhlL-5 on lung resistance 20 hours after antigen challenge.
Rats (n12) were given 3 pg of rhlL-5 or BSA and challenged with QA 20
hours later. RL was measured 20 hours after antigen challenge in both groups
of rats. Bars represent the mean of each group. *p<O.O5 between IL-5 treated/
challenged and control groups.
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Figure 26: Effect of rhlL-5 on the airway responsiveness to Methacholine
20 hours after antigen challenge
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Figure 26: Effect of rhlL-5 on the airway response to Mch 20 hours after antigen
challenge. Rats (n19) were given 3 pg of rhlL-5 or BSA and challenged with saline
or QA 20 hours later. Twenty hours after OA or saline challenge rats were given
exponentially increasing doses of nebulized Mch until baseline RL doubled.

C200RL was calculated as the amount of Mch necessary to double RL. Bars
represent the mean of each group.
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Figure 27: Effect of rhlL-5 on lymphocyte subsets in the blood 8 hours after antigen
challenge. Rats (n=14) were sensitized with OA and received either 3pg of rhlL-5 or
BSA intra-tracheally.Twenty hours later, rats were chaflenged with OA. Peripheral
blood was recovered 8 hours after challenge and analyzed by flow cytometry for the

( ercentages cf CD4 (helper) and CD8 (suppressor/cytotoxic) lymphocytes.
The CD4/CD8 ratio is presented for 7 rats in each group. *p<005 between IL-5

Figure 27: Effect of rhIL-5 on CD4ICD8 Lymphocyte ratio in the blood
8 hours after antigen challenge
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Discussion

The initiative for my doctoral thesis began by reflecting on a paper by Renzi et al. that assessed

whether the increase in airway narrowing by pre-treatment with IL-2 in EN rats was mediated by an

increase in leukotriene production (11). Cysteinyl-LT synthesis was evaluated by measuring the different

leukotriene metabolites in the bile by radioimmunoassay after purification by high-pressure liquid

chromatography. Bile has been previously shown to be the major route of excretion of cys-LT5

(302,303,304). Although IL-2 pre-treatment increased the early and !ate airway responses after OVA

challenge and enhanced airway inflammation, cys-LTs were Iower in IL-2-treated rats at baseline and

during the late response compared to controls, and this effect could not be explained by changes in cys

LT production or metabolism. Studies in humans, primates, and sheep that have looked at the release of

mediators from inflammatory celis have shown that cys-LT retrieval from the bile or from the lungs

increases during the late response and that selective antagonists of cys-LTs block the late response

(302,305,306,307). Therefore, it is undeniable that cys-LT5 have a role in the airway response to allergen.

I sought to explain these observed discrepancies in the IL-2 pre-treated BN rat mode!.

We began our investigation in this anima! mode! by studying the effects caused by IL-2-mediated

T ce!! activation. Although there is strong evidence that the allergic airway response can be modu!ated by

T lymphocytes, it is unclear which pathways are used. By designing an animal mode! protocol that

produced a state of heightened T ce!! activation, I hoped to see by what mechanism ce!! mediated

immunity may increase the late response. IL-2 is an important T ce!! growth factor that is released by T

lymphocytes in response to antigen presentation and !eads to lymphocyte activation, proliferation and

cytokine production fil). IL-2 and its receptor are increased in the lungs of asthmatic subjects (308). IL-2

is currently used in cancer therapy to activate immune effectors, such as T lymphocytes (309). Activated

T lymphocytes are present in the airways of patients with asthma and have been shown to correlate with

asthma severity as evidenced by the inverse correlation between CD25(IL-2)I CD4 cells and peak

expïratory flow rates (310). Not only are there increased numbers of “activated” CD25 (IL-2 teceptor)

bearing T helper celis in the peripheral b!ood of resting mi!d atopic asthmatics compared to normal

controls, this difference is even more pronounced during the deve!opment of exercise-induced

bronchospasm (310). In T ce!! cultures, IL-2 flot only induced CD25 (IL-2R) but also induced surface
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expression of several other activation-associated glycoproteins including 0X40, LFA-1, 57.1, 57.2, 1CR,

and CD4. This pleiotraphic activation led ta subsequent antigen reactivity in assays for T-ceII proliferation

(311). IL-2 aiso stimulates T lymphocytes from asthmatic subjects ta release mediators that increase

eosinophii proliferation and survival (312). Its administration ta human subjects causes easinophiiia

thraugh production af IL-5 (313). IL-2 has been shown ta increase infiammatory celis in the lung lavage,

namely macrophages, neutrophils and lymphocytes (11), therefore, it is capable af inducing pieiamorphic

inflammation.

This inflammation can have a multitude af effects an the airways and the iungs, therefore our first

experiment was ta test their sensitivity ta leukotrienes. In previaus studies performed on the BN rat, Renzi

et al showed that IL-2 pre-treatment caused an increase in the number of inflammatory celis present in

the BAL (10) and an increased airway response ta ovalbumin (10). Since the LR in BN rats and in

humans is related ta LTs (10), one might assume that leukotrienes wouid also be increased but as Renzi

et al. showed, cys-LTs were not increased in IL-2 pre-treated rats despite a LR (11). This observation

could be the resuit af the airways being mare sensitive ta Ieukotrienes. We tested this theory by

assessing the airway responsiveness ta LTD4 in IL-2 pre-treated and contrai rats. Dur resuits show that

rats pre-treated with IL-2 require a significantly Iower mean dose af LTD4 ta double baseline RL when

compared ta controls (p< 0.05) (Figure 14). We conclude that up-regulation of immune function with IL-2

increases the airway responsiveness ta LTs. The precise mechanism by which IL-2 alters the

responsiveness ta LTD4 is unclear. We have previously found a significant increase in BAL eosinophils

after pre-treatment with IL-2 compared ta untreated contrai animais that were challenged (10) or

unchallenged with antigen (OA) (11). In the experiments reported here, eosinophils were alsa increased

in IL-2 pre-treated rats after OA challenge when compared ta contrais. An increase in eosinophiis in the

airways may lead ta the release af more mediators such as eosinophii cationic pratein (ECP) (312) that

have the potentiai ta affect the airway responsiveness ta LTs. The tale of eosinophil-derived ptoteins in

branchial asthma is linked ta their ability ta injure the respiratory epithelium. (314,315,316). This cytotoxic

effect may then resuit in the loss of the functional integrity of the epitheiium and the exposure of mucosal

structures and sensory nerve endings, allowing the development of increased sensitivity af the airways ta

nonspecific bronchoconstrictor agents. Another cause of increased sensitivity ta LTs is the potentiai effect
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caused by IL-2 on Cys-LT1 receptors. Therefore our next experiment was to study the Cys-LT1 receptor in

our model.

The cysteinyl leukotrienes are known to cause airway smooth muscle contraction, which is a

direct function of airway responsiveness. The Cys-LT1 receptor is expressed in several tissues, including

human lung, human bronchus, and on human peripheral blood leukocytes including eosinophils,

neutrophils, monocytes, and T lymphocytes (317). It has been shown that airway smooth muscle cells

express a higher level of cytokine receptor mRNA and surface protein in the atopic asthmatic sensitized

state (318). IL-2 upregulates the production of cytokines that can increase surface receptors (319). It is

possible then that IL-2 increases the expression of the Cys-LT1 receptors on the surface of airway smooth

muscle celis hence an enhanced sensitivity to LTD4. Although oligonucleotide primers for the Cys-LT1

receptor gene have not been successfully synthesized at this time, future studies would include studying

the expression of this important receptor. However, IL-2 may also be exerting an effect at different points

along the signal transduction pathway of the Cys-LT1 receptor and not just specifically on the absolute

number of receptors. Activation of these receptors, which are coupled to G proteins, induces calcium

release that resuits in airway smooth muscle contraction (320). Nabata et al. have shown that vascular

smooth muscle cells pre-incubated with IL-2 had an increase in intracellular Ca2 and in DNA synthesis

when exposed to angiotensin Il (321). The Cys-LT1 receptot has been shown to have a calcium

mobilization response to the individual Cys-LTs. This signal appears to be the result of Ca2 release from

intracellular stores (322). Therefore, it is possible that IL-2 may potentiate the effects of LTD4 on the

airways by increasing Cys-LT1 receptor expression on airway smooth muscle andlor increasing the

activity of the signal transduction pathway.

In order to assess whether the cys-LTs were involved in the increased LR after pre-treatment with

IL-2, we administered the Cys-LT1 receptor antagonist, montelukast, at the Urne of OA challenge in rats

pre-treated with IL-2. The IL-2 induced LR was completely inhibited by montelukast (Figure 15). These

results show that LTs are not only involved in the LR but also in the increased airway response to OA

after pre-treatment with IL-2. The basis for Cys-LT activity in the lung may be due ta the site where its

receptor is located. The recently cloned Cys-LT1 receptor has been detected in human lung smooth

muscle ceils and lung macrophages (321 ,322). The identification of the Cys-LT1 receptor in the lung is
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consistent with the anti-branchoconstrictive actions af Cys-LT1 receptor antagonists such as montelukast

(322). It is therefore likely that IL-2’s effects on the LR occur through either an expansion of Cys-LT1

receptor expression in the lungs or an increase in the sensitivity of the receptor ta LTs as described

above. Besides the Cys-LT1 receptor, airway function can be modulated by countless other inflammatory

pathways. Our next experiment studied celiular and cytokine inflammation in the airways and Iungs of our

animal model.

Studies on the mechanisms of the LR have iinked ts pathophysiology to severai types of

inflammatory factors such as igE production, Thi and Th2 cytokine expression, and ceil influx (323).

However, the precise mechanism by which a LR occurs remains ta be determined. We studied BAL

inflammatory ceits and the expression of Thi and Th2 cytokine mRNA in the lungs of rats in order to

determine if any of these factors were affected by IL-2 treatment or by inhibition of the Cys LT1 pathway

with monteiukast. We found no statisticaliy significant difference in neutrophils, macrophages and

lymphocytes in the BAL between contrai and experimental groups of animais (Figure 16). Animais

chaiienged with OA and pre-treated with IL-2 showed a significant increase in BAL eosinophiis campared

ta the group of animais unchallenged and receiving saline (p<O.O5) (Figure 16). The former group of

animais alsa showed a LR, while the latter did not. This data supports resuits from previaus studies

indicating that eosinophils play an important raie in mediating a LR (324). Monteiukast administration

inhibited the IL-2-mediated LR withaut affecting the total number af ceils or differential in the BAL 8 haurs

after OA challenge. Althaugh there was a decrease in the number of BAL eosinaphils in the group af

animais that were pre-treated with IL-2 and received monteiukast, this difference was nat statisticaily

significant (Figure 16). Mantelukast has been shown ta have numetous effects on easinaphils. Virchow et

aI (325) showed that eosinaphii transmigration acrass cultured human umbilicai vein endothelial celis can

be blacked by montelukast. Moreover, LT receptor antagonists increased basal rates of eosinaphil

apoptasis and reversed GM-CSF-induced easînaphil survival (326). This is evidence af an autocrine

cysteinyl leukotrienes pathway that supports eosinaphii survival in response to a range of survivai stimuli.

Mantelukast has been shown ta reduce the percentage af easinaphils in the sputum and in the peripherai

bioad af mild asthmatics, but thete was no significant correlatian between this decrease and the abserved

increase in peak expiratary fiow (PEF). This suggests that mantelukast has anti-inflammatary effects on
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the airways of patients with asthma and that its bronchodilatory effect is flot soleiy dependant on a

decrease in airway eosinophilia (327). These results suggest that airway inflammation may be present

without any impact on airway tone (if LT activity is inhibited). However in a mouse model of asthma,

monteiukast had inhibitory effects on inflammatory celI infiltration in the bronchoalveolar lavage along with

a reduction in bronchial hyperresponsiveness (328). These inhibitory effects of montelukast suggest a

more important role for Cys-LTs in the animal model of allergic asthma.

We continued our investigation of this role by studying cytokine expression, specifically Thi and

Th2, in the lungs of our animal model. We assessed cytokine mRNA expression in the lung by using SQ

PCR and found that rats pre-treated with IL-2 had a significant increase in IL-4 and IL-5 mRNA (Th2)

(Figure 17N17B) and lower IFN-y mRNA (Thi) (Figure 17C) expression after OA challenge when

compared to animais given IL-2 and receiving montelukast at the time of challenge (p<O.05). Densometric

analysis allowed us to compare cytokine levels between groups in our study but their values cannot be

compared with other published literature. Therefore, the baseline levels of IL-4, IL-5 and IFN-y in our

control groups reflect only the expression of these cytokines in our animal model. These values indicate

that even without IL-2 treatment, control animais express IL-4, IL-5 and IFN-y in their lungs; findings not

unexpected since these cytokines are important mediators in numerous immunological pathways.

However, the differences in cytokine expression between control groups are flot significant.

The change in the balance between Thi and Th2 cytokine expression was also confirmed by in

situ hybridization. In situ hybridization tests revealed that ceils expressing IL-4 mRNA were more

predominant (Figure 18A) and ceils expressing IFN-y mRNA were Iess predominant (Figure 18B) after

pre-treatment with IL-2 and OA challenge. Interestingly, these changes are similar to those described

previously in the EN rat or in humans when a LR occurs (329). IL-2 effector functions have been iinked to

Th2 cytokine activity, specificaily Youn et aI (330) showed that transgenic mice which have expression of

a chimeric cytokine receptor (extracellular: IL-2R13 chain, cytoplasmic tau: IL-4RŒ) dramatically enhanced

Th2 responses (IL-4, IL-5, and IgE production) upon in vitro 1CR stimulation or in vivo antigen challenge.

This augmented 1h2 effector function is sufficient for establishment of antigen-induced airway

hyperresponsiveness on a normally disease-resistant background (C57BL16). The addition of montelukast

at the time of QA challenge lead to a predominance of cells expressing the Thi cytokine, IFN-y and less
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celis expressing IL-4 and IL-5 mRNA as described in rats that do not develop e LR (301). Previous

studies showed a similar effect by montelukast on Th2 cytokines. Stelmach et aL (331) demonstrated that

montelukast contributes to inhibition of allergic inflammation by decreasing serum IL-4 levels in

correlation with improvements in clinical parameters (symptoms score, FEV1), bronchial

hyperresponsiveness in children with moderate asthme. A separate study by Henderson et al (332)

showed that montelukast inhibited IL-4 and IL-13 mRNA in lung tissue and protein in BAL fluid in OA

treated mice. These data demonstrate that montelukast can reverse the effects of IL-2 and OA challenge

on Thl-Th2 cytokine mRNA expression.

Many studies have shown the important role of cytokines in asthma (333). IL-4 can Iead to

selective recruitment 0f inflammatory celis such as mast cells and eosinophils as well as inducing the

production of IgE from B cells (334). IL-5 is involved in recruiting and activating eosinophils, ceils that

release mediators with the potential of causing several changes that are found in asthma such as

bronchoconstriction, inflammation and epithelial ceil desquamation (327). Th2 cytokines have been

shown to be increased in the Iungs of atopic asthmatics (335). Venkayya et aI (336) showed that Th2

cytokines might induce AHR by acting directly on resident airway cells. Th2-Iymphocyte-conditioned

medium administered to the airways induced AHR within 6hr in naive mice. However, AHR was not

induced when mice Iacked the IL-4 receptor alpha subunit or Stat6, suggesting a critical role for IL-4

and/or IL-13. The induction of AHR occurred in the absence of inflammatory celi recruitment or mucus

production. IFN-y is a Thi cytokine that may inhibit certain effects of Th2 cytokines (318). The role that

cys-LT5 play in modulating the balance between Thi and Th2 cytokines has not been previously

assessed. A recent study by Hasday et al. showed that asthmatics with high cys-LTs production in the

BAL 24 hours after segmental ragweed challenge also had increased IL-5, IL-6, and TNF-a production

compared to 10w cys-LT5 producers (337). This indicates that cys-LIs production may have a direct

relationship with cytokine production. Recently, numerous studies have pointed to an important Iink

between cytokines and the Cys-LT pathway. For example, Thivierge et al. (338) showed that IL-5

upregulated the Cys-LT1R expression on a differentiated eosinophfl celi me. Consequently, receptor

function on these eosinophils is also augmented, namely enhanced responsiveness and chemotactic

response to LTD4. This same group showed a similar relationship between cytokines and the Cys-LT
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pathway in monocytes and macrophages (339). However, in this case, the Th2 cytokines, IL-4 and IL-13,

upregulated the expression and function of the cys-LT1 receptor. These ceils also showed enhanced

responsiveness and chemotactic activity to LTD4, indicating a possible mechanism through which IL-4

and IL-13 can contribute to the pathogenesis of asthma. Leukotriene D4 has also been shown to influence

cytokine production from alveolar macrophages (AM) (340). LTD4 primes AM by causing an increase of

mRNA for MIP-la and TNF-a and when further stimulated with LPS resulted in e release of MIP-la, TNF,

and NO. This is evidence of LTD4’s ability to potentiate the production of proinflammatory mediators by

AM during immunologic stimuli. Moreover, it has recently been established that the cys-LT1 receptor is not

only expressed on the smooth muscle cells of the airways, but that there is also a high expression of the

receptor on peripheral blood lymphocytes (PBL) (320), suggesting that cys-LTs have an effect on T

lymphocyte function. The Cys-LT1 receptor has also been found on human mast cells. Mellor et aI. (341)

not only identified the receptot on mast cells but also showed that the receptor responds to cys-LTs and

the pyrimidinergic ligand, UDP. The threshold of responsiveness to these agonists was lowered after

priming of the mast ceNs with IL-4 for 5 days. This enhanced sensitivity was accomplished without altering

Cys-LT1 receptor mRNA or surface protein expression, suggesting the Iikely induction of a second

receptor with Cys-LT1-like dual Iigand specificity. Evidence of such a receptor has not been observed yet,

but this theory could explain how rats in our study are more sensitive to LTs after IL-2 treatment without

an increase in LTs production. The results presented here suggest that cys-LTs are involved in mediating

cytokine production affer OA challenge because montelukast was able to change the profile 0f Thi and

Th2 mRNA expression. The mechanism by which the LT pathway affects cytokine mRNA production has

not been explored.

In this animal mode!, it is clear that LTs along with inflammatory cells and cytokines play an

important role in mediating a bronchopulmonary response. Allergen challenge of sensitized animaIs

causes the activation and recruitment into the airways of a variety of cells, including eosinophils,

lymphocytes, mast cells, and neutrophils (342, 300, 343). These inflammatory celis are involved in the

physiological and pathological changes that are present in atopic asthme (296). The mechanism by which

these changes occur are flot clear. However resuits from this study so far suggest that the cytokine IL-5

may be an important modulator of allergic inflammation. Studies to date have shown IL-5 to be increased
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in the blood and Iungs of patients with asthma (344) and that administration of IL-5 to patients with

allergic bronchiai asthma increases cholinergic responsiveness and the number of activated eosinophils

in the airways (7). Studies in animais have shown that administration of IL-5 to sensitized guinea pigs

enhances antigen-induced hyperresponsiveness (345) and that IL-5 neutralizing antibodies inhibit the late

phase response after antigen challenge (346). Aithough there is convincing evidence that IL-5 is

important in asthma and in animal modeis of asthma, no study has studied the effects of IL-5 alone in a

nonasthmatic animal model, namely in animais that do flot respond to sensitization and antigen challenge

with early and late-phase responses. We performed this study in the SSN substrain of BN rat that does

not develop an ER or LR after antigen challenge (285, 347) in order to assess whether IL-5 has the

capacity to transform non-responsive BN (SSN) rats into those with the characteristics encountered in

atopic asthma.

We first determined whether recombinant human IL-5 (which has 71% homology with rat IL-5

(346)) had effects on rat blood ceils in vitro. Experiments performed on rat PBMNC showed that rhIL-5

caused a concentration-dependent proliferation of eosinophils from progenitors at a dose ranging from I

to 5 ng/ml (Figure 19). We also determined if the BN rat model was actively sensitized to QA by

measuring levels of OA-specific IgE for I to 3 weeks following sensitization. Rats showed a significant

increase in serum QA-specific IgE for at least 3 weeks following QA sensitization (Figure 20). We then

determined whether intra-tracheal administration 0f rhIL-5 had effects on airway responsiveness to Mch.

An increase in airway responsiveness to Mch occurred 20 hours after intra-tracheal administration of rhiL

5 at a dose of 3 pg or more (Figure 21). Recombinant human IL-5 did not affect airway responsiveness

30 minutes or 72 hours after intra-tracheal administration (Figure 22). The fact that airway

responsiveness to Mch occurred at 20 hours and not at 30 minutes or 72 hours following IL-5

administration suggests that IL-5’s effects on the airway s mediated thru an indirect pathway. It has been

shown that in guinea pigs, inflammatory celi numbers in the tissues peak at or before 24 hours following

IL-5 administration (298) and return to baseline over 6 days. Resuits obtained from lung lavage in our

animais would concur with this study. We found a dose-dependent increase in the total cellular return,

which consisted mainly in neutrophils, from the lung lavage. We measured the level of endotoxin in the

rhIL-5 given to animais, and to be certain that this low level of endotoxin was not affecting the results we
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administered the same dose of LPS intra-tracheally to animais and measured their airway response to

Mch and inflammatory celis in the BAL 20 houts ater. Data collected from animais given LPS did flot

differ significantly with controis, therefore we were confident that the effects af rhiL-5 wete flot due to

endotoxin contamination. We aiso performed additional experiments confirming the direct effect of rhlL-5

by using TRFK5, an IL-5 neutralizing antibody. Addition of 5Ong of TRFK5 to lOpg of rhlL-5 significantiy

reduced airway responsiveness and ceil influx after OA challenge when compared to the groups that

received only lOpg of rhIL-5. Ihe type of celI influx in our IL-5-treated animais was particularly interesting.

We decided to furthur understand the discrepancy between our results and pubiished ilterature.

Our celI influx experiment showed that IL-5 caused an increase in BAL neutrophiis 20 hours post

administration, but flot in eosinophils as has been described in guinea pigs (298). This discrepancy may

be due to the inherent differences between the two animai models. BN SSN rats may flot have had an

increased number of eosinophils in lung lavage because of technical considerations. Van Rensen et al.

(348) administered IL-5 intravenously and by inhalation to mild asthmatics and showed an increase in

blood eosinophils without any effect on eosinophil mobilization in the lungs or on bronchial

respansiveness in either group. Moteover, eosinophil degranulation and mediator release may have

aiready taken place 20 hours aher IL-5 administration preventing us from measuring their presence by a

reguiar Wright-Giemsa stain. However, we obtained the same resuits when we employed MBP staining

which adds more probability to the conclusion that eosinophils were not increased in lung lavage 20 hours

after IL-5 administration. Another reason for this discrepancy is that perhaps eosinophils are unavailable

for recruitment into the lungs in this strain of rat. Until now, experiments assessing whether IL-5 is

involved in asthma have employed animai madels that deveiap ailergic responses after antigen challenge

and have shown that the physiologicai response can be increased by IL-5. It is possible that in “atopic’

animai modeis, eosinophils or their progenitors are readiiy available to be recruited into the lungs

whereas in BN SSN rats these ceils are not avaliabie. Certain studies daim that eosinophils do flot play

an important raIe in bronchoconstriction. In vitro studies of the human smooth muscle response ta IL-5

showed enhanced responsiveness independant of eosinophiis (349). Severai studies over the last yeat

have shown that certain therapies that reduce eosinophil numbers do not lead ta clinical improvement of

asthma (350). Researchers are now questioning the tale of eosinophils in allergic inflammation. Other



102

inflammatory celis may have more important roles than previously thought; such as neutrophils which

release products foxygen radicals, proteases, and cationic proteins) that have the potentiai for altering

airway function by causing tissue injury (351). Therefore, aithough the SSN strain of BN rat may not

respond to IL-5 with increased eosinophil accumulation into the airways, increased responsiveness to

Mch 20 houts post-IL-5- administration may have stili occurred through neutrophil degranulation.

Having studied the effects of administering IL-5 aione in our animal model, we decided to

continue studying the effects of IL-5 on animais challenged with antigen, which causes higher IgE

production. Could IL-5 cause a physiological change in the Iungs of these animais perhaps ieading to an

ER, LR, or AHR? Pre-treatment of guinea pigs with IL-5 has been shown to induce lung eosinophiiia and

bronchoconstriction after antigen challenge (8). As weII, administration of a monoclonal anti-IL-5 antibody

to sensitized guinea pigs inhibits both BAL eosinophilia and airway responsiveness after DA challenge

(352). We assessed the effects of pre-treatment with rhIL-5 on the ER (Figure 23A), LR (Figure 23B),

and AHR in BN SSN rats that do not have a physiological response after sensitization and QA challenge.

Intra-tracheai administration of 3pg of rhIL-5, 24 hours prior to QA challenge, did flot affect the ER, LR, or

cellular influx after challenge when compared to controls receiving the same amount of BSA. It may be

that in the predisposed subject, intra-tracheal IL-5 is capable of increasing aIl the physioiogical changes

that occur after antigen challenge, but that several crucial factors that are necessary for an atopic airway

response may be lacking in the normal rat. These include the presence of inflammatory cells, certain

chemokines (eotaxin, MCP-4) or of other cytokines (GM-CSF) (353,354). Although these animaIs did not

produce an ER or LR after IL-5 treatment and Ag challenge, their Iungs could stiil be susceptible to

surface changes.

We measured these surface changes by calculating the animais’ lung resistance and AHR 20

hours after Ag challenge. We chose these parameters becauses physiologicai changes that occur after

antigen challenge also include airway obstruction and increased cholinergic airway responsiveness. We

first tested the efficacy of our sensitization protocol by giving a group of non-sensitized rats a 3 pg dose of

IL-5 followed 20 hours later by an OA challenge. Lung resistance was not significantly different from the

control group of animais that were sensitized and given BSA instead of IL-5. However, pre-treatment of

sensitized rats with IL-5 increased baseline lung resistance measured 20 hours after OA challenge
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(Figure 24). IL-5 had no effect on airway responsiveness to Mch (Figure 25). The changes in airway

resistance can be linked to various immunological events including T celi activation, IL-4 production, IgE

synthesis and mediator release by effector ceils such as eosinophils and mast cells (355). In our study,

we found a significant decrease in the CD4ICD8 T celI ratio in the blood between IL-5 pre

treated/challenged and control animaIs 8 hours after antigen challenge (Figure 26). The difference is

mainly due to an increase in CD8 cytotoxic/suppressor T cells in the blood of challenged animais. A

decrease in the helper/suppressor ratio in the biood has been described during the LR in humans (296). It

has been postulated that CD4 lymphocytes are recruited into the lungs after antigen challenge in the

subjects that develop a LR. This hypothesis has been predicated upon the finding of increased CD4 ceils

in lung lavage after antigen challenge (355). We have previously reported a decrease in the

helper/suppressor ratio in the blood of BN rats that develop a LR (300). lnterestingly, pre-treatment with

IL-5 induced the same changes in the CD4/CD8 ratio as those previousty reported in BN rats with LR.

However, it is not clear how IL-5 modulates the CD4ICD8 T cell ratio in the biood of the rats. The absence

of a LR in the IL-5 pre-treated rats would suggest that changes in blood lymphocyte subsets is not

sufficient in mediating a LR. Although blood lymphocyte subsets were not significantly different between

groups, we were interested in studying the possible changes in cytokine production from these

lymphocytes.

In our search to find a possible mechanism by which IL-5 could increase RL 20 hours after QA

challenge, we assessed lung Thi and Th2 cytokine mRNA expression. We found increases in both IL-4

and IL-5 mRNA expression after antigen challenge but no effect on the Thi cytokine IFN-y mRNA

expression. Increases in Th2 cytokines are associated with increases in lung resistance affer antigen

challenge in humans (356). Lee et al measured cytokine levels by ELISA in the serum of acute

asthmatics and found higher leveis of IL-4, IL-5, and IL-13 (356). They also associated higher leveis of IL

5 and lower levels of IFN-y with severe airway obstruction. Therefore, it is possible that the effects in RL

encountered in OA challenged BN rats are explained by changes in these cytokines. These cytokines

may act by recruiting and/or degranulating inflammatory cells in the Iungs following antigen challenge.

Our next experiment measured the levels of an important inflammatory ceil, eosinophils, in the BAL of our

animais.
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IL-5 administration followed by allergen challenge has been shown to increase eosinophil

numbers in lung tissue and increase AHR (7). However, in our study there was no observed increase in

AHR to methacholine following IL-5 treatment/OVA challenge. It is possible that the increased RL in IL-5

pre-treated rats masked the effects on AHR. Perhaps other factors are necessary for AHR to occur after

antigen challenge in the BN SSN rat. Factors such as increased CD4 T ceIl activation, higher IgE levels,

the presence of more eosinophils, cytokines such as TNF-Œ, GM-CSF, immunoglobulins, and chemokines

such as eotaxin and RANTES may be necessary for AHR to occur. In addition, certain characteristics of

celis that constitute normal lung tissue i.e. epithelial ceils and smooth muscle celis may also be lacking in

the BN SSN rat for AHR to occur after antigen challenge.

Conclusion

We have confirmed previous resuits in rats and in guinea pigs that show up-regulatïon of cellular

immunity with IL-2 increases the airway response to antigen. Moreover, IL-2 does not increase LT

production in this animal model following antigen challenge, but it can enhance the sensitivity of the

airways to Cys-LTs. Further investigation led to the discovery of a link between LTs and Thl/Th2 cytokine

production. Taken together, the first part of my thesis shows a link between cell-mediated immunity and

leukotrienes in an animal model of asthma.

We then proceeded to assess whether one important cytokine could reproduce ail the changes

that are found in asthma by assessing the effects of IL-5 in BN SSN rats that do flot develop ER and LR

after sensitization and antigen challenge. We found that intra-tracheal administration of rhlL-5 to rats that

do not have the characteristics of atopic asthma will cause some but not aIl of the cellular and

physiological changes that are found in atopic asthma. As suggested in a recent publication (357),

therapeutic strategies directed against IL-5 alone may be insufficient to revert the airway response to

normal in atopic asthmatics. Although preliminary data from the first clinical trials give rise to skepticism

about the efficacy of anti-IL-5 treatment regard ing the improvement of lung function of asthmatic patients,

further studies with a better defined profile of the target population may provide encouraging resuits.

A synthesis of the results from both parts of thesis leads to the general conclusion that asthma is

a heterogeneous disease. On one hand, Cys-LTs are clearly an important mediator in the asthma
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phenotype, with our data showing that it can cause the late response and promote Th2 cytokines. But on

the other hand, IL-5, considered a key mediator in asthma, according to out data has limited impact on

asthma development. Therefore, the overall message is that there is no single cause of asthma, rather

multiple interacting proinflammatory mechanisms, each with varying levels of consequence on the

airways.

Future Perspectives

The discovery of the ptocesses underlying the inflammatory response in the lung and theit control

mechanisms is a long and winding road that many scientists take. This project has managed to shed light

on parts of this road, however much work remains. In order to add more weight to the theories, future

studies are needed to quantify the expression of the Cys-LT1 receptor in our animal mode!. Moreover, a

complete analysis of other important inflammatory markers such as chemokines (particularly CCR3), and

cytokines (ex: IL-13, IL-8) must be done. It would also be important to see if our resuits (name!y

immunomodulation of Thi and Th2 cytokines) could also be duplicated in asthmatics currently being

tteated with montelukast. The cytokine Interleukin-5 was once considered an important mediator due to

its effects on eosinophils. However unsuccessful anti-IL-5 therapies have persuaded scientists that it is

flot the magic bullet for curing asthma. If we acknowledge that the causes of asthme are multifactorial, a

multiple anti-cytokine therapy, including anti-IL-5, is a potentially effective means to combat the disease.

While this study adds to the wealth of knowledge on immunomodulatory function, specifically in asthma,

the scientific community continues to strive to identify specific targets for therapeutic measures that are

designed to impede or abolish the allergic inflammatory cascade.
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