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SUMMARY

TR6, also named DcR3, M68, is a recently identified soluble receptor belonging to the

TNFR superfamily. FasL, LIGHT and TL1 are 3 so-far identified ligands for TR6, and

they all belong to the TNF ligand superfamily. TR6 can interfere with fasL and Fas

interaction. It can also interfere with the interaction between LIGHT and HveA, and

between TL1 and DR3. Some tumors have high TR6 expression. It has been

hypothesized that TR6-secreting tumors use this molecule to evade immune surveillance

and gain survival advantage.

In this project, the role of TR6 in immune regulation was invcstigated. We demonstrated

that hurnan TR6 could cross-react with mouse LIGHT. As the mouse counterpart of TR6

unlikely exists according to Genebank search, this finding allowed us to use human TR6

in the mouse system. In the mouse system, soluble human TR6 could suppress IL-2, IL-5

and GM-CSF secretion by mitogen-activated T ceils, and downregulate cytotoxic T-cell

development in vitro. In vivo, soluble TR6 could suppress graft versus host disease and

allograft rejection. These effects of TR6 are probably achieved by its interference with

the interaction between LIGHT and HveA on T cells.

In human system, we found that solid phase TR6, in the presence of suboptimal solid

phase anti-CD3, could significantly costimulate T cells in terms of proliferation.

Blocking studies using soluble LIGHT and Fas indicated that LIGHT likely mediated the

costimulation. This bas revealed a novel mechanism of TR6 triggered reverse signaling
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through a ligand, LIGHT. Base on this finding, it is likely that the suppressive effect of

soluble TR6 in the mouse system is due to its interference of the two-way costimulation

between HveA and LIGHT. Intriguingly, soluble TR6 could augment T-cell proliferation,

lymphokine production and cytotoxic T-cell activity in the human system. The opposite

effect of soluble TR6 in the human and mouse systems is probably due to different

affinity of TR6 to human and mouse LIGHT. The dimeric TR6-Fc might have higher

afflnity to human LIGHT, hence capable of triggering strong reverse costimulation

through LIGHT. Although it rnight block the two-way costimulation between HveA and

LIGHT and abate the immune response, the overall effect is dominated by reverse

costimulation through LIGHT. In the mouse system, affinity of human TR6 to mouse

LIGHT might be lower, and cannot effectively trigger LIGHT reverse signaling; its

overali effect is thus biased to the blocking of the two-way interaction between HveA and

LIGHT, hence repressed immune responses.

We also found that human peripheral blood mononuclear cells could secrete TR6 and the

secretion was enhanced by T-cell activation. Interestingly, both soluble and solid phase

TR6 was able to suppress mitogen-induced T-cell aggregation. T cells pretreated with

TR6 had reduced actin polymerization and pseudopodium formation, which are both

important for the celi-celi interaction. These results suggest that TR6 might regulate the

duration of T-cell interaction with other cells, and allow T cells to disengage from

antigen presenting cells or fellow T ceils once the interaction becornes unnecessary.
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This study has discovered three important functions of TR6 in immune regulation. Some

of the findings, such as the suppressive effect of soluble TR6 in immune response and

enhancing effect of solid phase TR6 could be exploited for clinical applications. Our

findings have also broadened our knowÏedge on TR6 in immune regulation.

Key words: TR6/DcR3; LIGHT; reverse signaling; costimulation

FACULTÉ DES ÉTUDES SUPÉRIEURES UNIVERSITÉ DE MONTRÉAL XIAOCHUN WAN V



Résumé

Récemment, TR6 aussi connu sous le nom de DcR3 ou M68, a été identifié comme un

récepteur soluble appartenant à la superfamille du récepteur TNf. Les ligands FASL,

LIGHT et TL1, qui font partie de la superfamille du ligand TNF, ont la capacité de lier le

récepteur TR6. TR6 peut interférer au niveau de l’interaction de Fas et FasL, de LIGHT et

HveA ou encore de TL1 et DR3. Puisque certaines tumeurs expriment fortement le

récepteur TR6, il a été proposé que les tumeurs sécrétant TR6 pourraient échapper à la

surveillance du système immunitaire, par un avantage de croissance.

Ce projet explore le rôle du récepteur TR6 dans la régulation immunitaire. Nous avons

démontré que le récepteur TR6 humain peut interagir avec le ligand LIGHT de souris.

Cette observation nous a permis d’utiliser le récepteur TR6 humain dans un modèle de

souris, puisque l’équivalent murin de TR6 n’existe pas selon les recherches effectuées à

partir de Genebank. Chez le modèle murin, le récepteur humain TR6 soluble peut inhiber

la sécrétion de IL-2, IL-5 et GM-CSF produite par les cellules T activées et régule

négativement le développement des cellules T cytotoxiques in vitro. In vivo, le récepteur

TR6 soluble peut supprimer la présence de greffes en favorisant le développement de

maladies auto-immunes et le rejet des allogreffes. Ces effets biologiques associés à TR6

sont probablement initiés par l’interférence de TR6 dans l’interaction de LIGHT et HveA

dans les cellules T.

Chez un modèle humain, nous avons trouvé qu’en présence d’une concentration

suboptimale de la phase solide d’un anti-CD3, la phase solide de TR6 costimule
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significativement la prolifération des cellules T. Des études d’inhibition impliquant le

ligand LIGHT soluble et Fas indiquent que LIGHT est responsable de la costimulation.

Ceci suggère un nouveau mécanisme impliquant une inversion de la signalisation liée à

l’activation de TR6 par le ligand LIGHT. Basé sur cette observation, l’effet suppresseur

du récepteur TR6 soluble dans le modèle de souris est dû à l’interférence de la

costimulation à deux sens entre HveA et LIGHT. Étonnamment, le récepteur TR6 soluble

peut augmenter la prolifération des cellules T, la production de lymphokine et l’activité

des cellules T cytotoxiques dans le modèle humain. L’effet opposé du récepteur soluble

TR6 dans le modèle de souris et humain est probablement le résultat d’une différence

d’affinité de TR6 pour le LIGHT humain et le LIGHT murin. Le dimère TR6-Fc pourrait

avoir une plus grande affinité pour le LIGHT humain, d’où sa capacité à déclencher une

forte costimulation inversée induite par LIGHT. Dans le modèle de souris, l’affinité du

TR6 humain pour le LIGHT murin pourrait être plus faible et, par conséquent, incapable

de déclencher efficacement la signalisation inversée. Cet effet est alors biaisé par

l’inhibition de l’interaction à deux sens de HveA et LIGHT, d’où la répression de la

réponse immunitaire.

Nous avons également trouvé que les cellules mononucléaires du sang périphérique

peuvent sécréter le récepteur TR6, sécrétion qui serait augmentée après une activation des

cellules T. De façon intéressante, les phases soluble et solide de TR6 sont capables

d’inhiber l’agrégation des cellules T activées. Les cellules T pré-traitées avec TR6 ont une

réduction de la polymérisation de l’actine ainsi qu’une diminution de la formation des

pseudopodes, toutes deux importantes pour les interactions cellules-cellules. Ces résultats
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suggèrent que TR6 régule la durée des interactions des cellules T avec les autres cellules,

conduisant à un désengagement des cellules présentatrices d’antigènes ou des autres

cellules T, une fois les interactions devenues non essentielles. Cette étude a permis la

découverte de trois fonctions importantes du récepteur TR6 dans la régulation

immunitaire. Certaines de ces découvertes, telles que l’effet inhibiteur du récepteur TR6

soluble dans la réponse immunitaire ainsi qu’une augmentation de l’effet du TR6 de la

phase solide, pourraient être exploitées pour des applications cliniques. Nos observations

ont également permis d’élargir nos connaissances sur le rôle du récepteur TR6 dans la

régulation immunitaire.

Mots clé: TR6/DcR3; LIGHT; reverse signaling; costimulation
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I. INTRODUCTION

Cytokines are important glycoprotein messenger molecules capable of transmitting

signais from one ce!! to another. Most cytokines exist in secreted forrn but some are

either expressed at the celi surface or stored in the extra-cellu!ar space. To date more than

200 cytokines have been identified including interieukins, growth factors, chemokines,

interferons, and a host of others (Caliard et al., 1999; Locksley et aÏ, 2001). Cytokines

need to interact with their receptors expressed on the surface of the target ce!!s, thereby

triggering compiex interceliuiar signaiing cascades, which u!timateÏy control gene

expression required for the cellular response. Under normal circumstances, the

production of cytokines and the expression of their receptors are under tight and complex

biologicai contro!, including negative and positive feedback by the cytokines themselves.

Cytokines can be divided into severai groups such as the hematopoietins, the interferons,

the tumor necrosis factor (TNF)-related molecules, the immtmoglobulin (1g) superfamily

members, and the chemokines. Among these groups, the TNF superfamily is unique since

members of this superfarnily are mainly concentrated in the immune system and display

cruciai functional roles in regulating immune responses (Gruss and Dower, 1995; Gruss

et aÏ., 1996).

1.1. TNF and TNf receptor supeifaindies

TNF ligand superfamiiy was originated from two proteins, TNf-aipha (TNF Œ) and

lymphotoxin a (LT a). These two stmcturaiiy and functionaliy reiated but distinct

proteins, identified by the property of tumor celi lysis, were the prototypic members of
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the TNF superfamily (Carswell et al., 1975; Gray et al., 1984, Pennica et al., 1985). The

receptors ofTNf Œ are TNFR-I (p55) and TNFR-ll (p75) whereas the receptors for LTa

are TNFR-I, TNFR-II and HVEM/TR2 (Locksley et al., 2001). These receptors then

constituted a new TNF receptor (TNFR) related gene famity (Gntss and Dower, 1995;

Locksley et al., 2001). Both TNFR and TNF ligand superfamilies have experienced rapid

expansion over the past decade ami many molecules were identified as TNf or TNFR

superfamily proteins ($FPs) (Srnith et aï., 1994; Idriss and Naismith, 2000; Locksley et

al., 2001).

for the past decades there was no well-coordinated, systernatic naming system and the

nomenclatures for SFPs in these two superfamilies were complicated and sornewhat

redundant. It was common that some members had multiple names given by different

groups (as presented in Table 1 and Table 2). Based on this situation, a standard, official

designation system was foniially introduced for both TNF ligand and TNFR SFPs while

sorne popular, well-accepted narnes are still being used in parallel (Locksley et al., 2001).

(Details refer to Table 1 for related receptors and Table 2 for related Iigands).

1.2. TNfRJainily

Cunently, this stiil growing family has incorporated more than 20 different membrane

proteins and several open viral reading frames encoding related molecules (Locksley et

aÏ., 2001; Adams et al., 2002). As summarized in Table 1, the mammalian TNTR

superfamily now includes: TNFR-I, TNFR-II, Fas, 0X40, CD4O, CD27, CD3O, 4-133,

DcR1, DcR2, TR6 (DcR3), OPG, DR3, DR4, DR5, DR6, HVEM (TR2), RANK, TACI,

BAFFR, EDAR, 3CM, RELT, SOBa, Tnfthl, TAI (Armitage, 1994; Smith, 1994;
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Anderson et al., 1997; Ashkenazi and Dixit, 1998; Gruss and Dower, 1995; Locksley et

aï., 2001). Some rnost recent identified members such as 3CM, RELT, SOBa, Tnfrhl

and TAJ are currently stili flot well defined (Locksley et al., 2001). The viral open

reading frames encoding soluble TNFRs such as crmB (Hu et al., 1994), Va53 (Smith et

al., 1990) G4RG (Howard et ctl., 1991), and SfV-T2 (Upton et al., 1987) were also

identified.

1.2.1. The structzcraÏfeatures ofthe TNFR supe,famiÏy

The mammalian TNFR family members are type I membrane proteins, whose

extracellular N terminal part contains ligand-binding domain. A remarkable feature for

TNFR superfarnily is the low degree of sequence homology in their extracellular ligand

binding domain (20-25%) (Gniss and Dower, 1995). These SFPs are mostÏy trirneric

(Gruss and Dower, 1995; Armitage et al., 1994; Aggarwal et al., 1996; Bazzoni and

Beutler, 1996).

The definition of the TNFR superfarnily is mainly based on the conserved motif of

“cysteine-rich repeats” in the extracellular N-terminal region. These common conserved

cysteine-rich domains are also terrned as cysteine—rich motif or cysteine-rich domain

(CRD), which consists of multiple cysteine-rich repeats of approxirnately 30-40 amino

acids (Smith, 1994). In general, each member of this family contains varying numbers (2-

6) of CRDs as shown in Figure 1. Each CRD is featured by the presence of

approximately 6 cysteine residues that are interspersed within CRD domain. The

structure of CRD is supported by 3 intrachain disulfide bonds fonried by these 6 highly

conserved cysteines (Smith et al., 1994). These multiple cysteine-rich domains in the
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Cytosol

TNFRI 221

INFRII 174

Fas 145 —c 1-

TR6 300

DR3 1930

DR4 203

DR5 221

DR6 286—-

DcR1

DcR2 154

OPG

o

TNFa

o-oøG

oo

œ
1YF

œ
GcF

OOGŒGO
figure 1. Structural features of TNF receptors. There are two structural domains for
common TNF receptors. The cysteine nch domains (CRD) O) are located in the extra
cellular N-terminal portion. Several receptors aso have a death domain (DD) ( O)
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extracellular part have been shown to be involved in ligand binding (Locksley et al.,

2001).

The extracellular structure of TNFR SfPs can be best illustrated by TNFR and DR5.

These two receptors have been well studied for their crystal structure, which represents

common structural features of ail TNFR SFPs (Naismith et al., 1996; Hyrnoowitz et al.,

1999). for example, DR5 forms an extended rod-like shape consisting of 3 CRDs which

form the interface to bind its cognate ligand(s). DR5 had a total of 7 disulfide bridges: 6

are in CRD 2 and CRD3 (three for each) and I in C-terminal part. These disulfide bonds

form a structural scaffold and two patches formed are located there for ligand binding.

The combination of structural conservation and variable arnino acid sequences in the

ligand contacting region confer the ligand-binding specificity. Notably, the structure of

TNFR is rather flexible and can be optimized for its interaction with ligand through a

series ofhinging movements (Idriss and Naisrnith, 2000).

In addition to the membrane-bound form, many TNF receptors also exist in a soluble

form. These soluble molecules are, in many cases, generated by proteolytic cleavage of

ceil surface receptors. Soluble TNTR-I, TNFR-II, CD27, CD3O, CD4O, and fas are ail

generated in this fashion (Gruss and Dower, 1995). The only exception is 4-1BB, whose

soluble form is generated by alternative splicing (Grnss and Dower, 1995). The necessity

of the soluble forms of these receptors is not fully understood.

1.2.2. The biologicalfeatures of TNfR superfamity

The TNFR SFPs have emerged as prominent regulators of the immune system (Tracey

and Cerami, 1994). In the immune system, TNFR SfPs are well known for their critical
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roles in regulating immune responses such as celi activation, proliferation, differentiation,

apoptosis, immunoglobulin (1g) class switching, immune evasion, and immune

suppression (Smith et al., 1994; Aggarwai et al., 1996; Tewari and Dixit, 1996; Baker et

al., 1996; Locksley et al., 2001). Sorne SFPs are also involved in the generation and

developrnent of iymphoid organs (Matsumoto et aï., 1997).

The primary feature of TNFR superfamily members is ce!! death induction including

tumor killing and this effect was observed severa! decades ago (Carswell et al., 1975).

Many, if not ail, TNFR members are related to ce!! death induction. Members such as

TNF, Lia, CD3OL, CD95L, 4-1BBL are a!! capable of inducing cytotoxic ce!! death

(Gruss et al., 1996; Gruss and Dower, 1995). Probably this ability to induce ceil death is

one of the unique features with remarkab!e adaptive va!ue that TNT/TNFR SFPs have

developed (Gniss and Dower, 1995; Locksley et al., 2001). As will be detailed in the

next section, severa! TNF receptors contain a structure called “death domain” which is

responsible for ceil death induction and these receptors are termed “death receptors”

(DR). There are 8 receptors containing “death domain” in TNFR superfarni!y and at least

6 of them can induce apoptosis through activation of caspases (Screaton and Xu, 2000;

Raff, 1998). Meanwhile, other TNF/TNFR SFPs lacking death domains can potentially

modulate the response to DRs or directly influence ce!! deathlsurvival. for instance,

TNFR-II markedly enhances TNFR-I induced T celi death and CD4O can augment Fas

induced B celi death (Garrone et al., 1995; Chan et al., 2000b).

In contrast to the death induction feature of TNFR SFPs, it is interesting that they are also

closely related to !ymphocyte survival including T/B celi proliferation and differentiation

(Locks!ey et al., 2001). Indeed, the major docurnented function of TNFR SfPs is
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associated with lymphocyte survival. For instance, Blys (officiai symbol: TNFSFI3B, or

THANK, BAFF, see Table 2) expressed on activated dendritic celis can interact with the

TACI and BCMA receptors (both are TNFR members, see Table 1) on B ceils and

promote B ceil survival (Laabi and Stresser, 2000, Moore et al., 1999). Similarly, T ceil

activation is also regulated by TNF/TNFR SFPs. For instance, LT3R enhances T celi

activation and promotes T celi clone expansion by engaging with its ligand LIGHT

(Tamada et aÏ., 2002). Some other members such as CD4O and Fas may also stirnulate T

cell survival and proliferation by engaging with their receptors (Cayabyab et aÏ., 1994;

Suzuki et al., 199$).

In addition to modulating lymphocyte deathlsurvival, SFPs of this superfamily are also

associated with antigen presenting celis (APC) survival and maturation. For instance,

dendritic celis (DCs) are potent APCs for antigen presentation but fully differentiated and

mature DCs wilÏ undergo rapid apoptosis. The life span of mature DCs can be prolonged

substantially by TNF SFPs such as CD4OL, TNF, TRANCE (TNF related activation

induced cytokine) and recently identified member LIGHT (Wong et al., 1997; Tamada et

al., 2002).

Some, if not most, TNFR SfPs are involved in T celi costimulation. For example, both

TNFRJ and Fas can co-stimulate T celi activation under diffei-ent settings (Siegel et al.,

2000; Suzuki et aï., 2000A, 2000B). In addition, the SFPs such as 0X40, CD27, and 4-

1BB regulate the activation and expansion of CD4+ and CD$+ T celis responding to

dendritic ceils beanng their respective ligands. Costimulation effects were also observed

for LTR/LIGHT pair. It was found most likely that this pair provides costimulation for

T ceil activation and plays a critical role in T celi activation independent of B7/CD2$
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costimulation pathway (Tamada et al., 2000; Wang et al., 2001). Thus, it is suggested

that TNFR SFPs might be critically important in negative selection and determine the

activation and/or apoptosis of T celis (Sebzda et al., 1999; Wang et al., 2001).

Another welI-docurnented function of TNFR superfamily is to orchestrate permanent

lymphoid organ structure. A remarkable example is LTf3R that belongs to TNFR

superfamily and plays critical roles in the immune system. Several studies showed that

LTJ3W’ mice lacked lymph nodes (LN) and Peyer’s patch (PP) and displayed severe

disorganization of spienic architecture, featured by the absence of T/B celi segregation,

marginal zones, follicular dendritic ccli (FDC) networks, and germinal centers (GC) (De

Togni et al., 1994; Banks et al., 1995; Wu et al., 1999). Depletion ofRANK or RANKL

lead to the disappearance of ail peripheral and mesenteric lymph nodes while Peyer’s

patches remain intact and the spienic architecture is unaffected (Kim et al., 2000; Kong et

al., 1999; Dougall et al., 1999). Studies dernonstrated that the requirements for

RANX/RANKL and LTalj32 or LTR do flot compensate for each other. Ail these data

suggest that SFPs of TNFR superfamily are necessary for the formation and development

of lymphoid immune organs, sorne of them being indispensable.

In addition to critical functions in the immune system, other functions were also

identified for TNfR SFPs. For instance, Edar is a death domain containing protein and

recent studies indicate that this protein is important in the development of hair, teeth and

other ectodermal derivatives (Headon et al., 2001).

1.2.3. Subsets oJTNFR superfainiÏy
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Based on their structural and biological features, the TNFR sttperfarnily SFPs can be

further divided into different groups according to the presence of featured domains in the

intracellular portion of the receptor. The SFPs in the first group featured by a TNfR

associated factor (TRAF) binding domain that enabies coupling to TRAFs, that in tum

activate a signaling cascade that resuits in the activation of Nf-KB and initiation of

transcription (Rothe et ctÏ., 1995; Wallach et aÏ., 1999). The second group ofreceptors is

featured by a 60- amino acid globular structure named “death dornain” (DD) and these

death dornain-containing receptors are termed as death receptors (DRs) (Tartaglia et aï.,

1993; Itoh and Nagata 1993). The third group bas drawn more attention recentiy and

members of this group are designated as decoy receptors (DcRs) that include DcR1,

DcR2, DcR3/TR6 and OPG (Ashkenazi and Dixit, 1999). Ail members in this group

except DcR2 do not have cytoplasmic domain and thus they may act as inhibitors and

compete with other signal-transducing receptors for ligand binding (Ashkenazi and Dixit,

1999; Ashkenazi, 2002).

1.2.3.1. TRAf associated subgrottp

The TRAFs are adaptor ptoteins belonging to ring and zinc-linger proteins. The members

ofthis group are TNFRII, CD4O, CD3O, CD27, LTF3R, 4-YBB, 0X40, NGFR, HVEM,

GITR and RANK (as presented in Table 1). They bind directly to the receptor’s

cytoplasmic tau. They also bind to one another in homotypic and/or heterotypic

interactions. They are believed to convey certain signais in proliferative and pro

inflammatory responses. This is achieved, in large part, by activation of NF-KB, a

transcription factor involved in nurnerous proliferative and pro-inflarnmatory events
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(Jabara et al., 2002; Wallach et al., 1999; Harrop et al., 199$). So far at least 6 TRAFs

have been found to associate with non-DD TNF receptors (Locksley et aï., 2001). Most

TNFR SFPs have no death domains but contain a consensus motif which is capable of

binding to the TRAF proteins (Ye et al., 1999).

1.2.3.2. Death receptor subgroup

The above mentioned “death dornain” was first coined from studies of deletion

mutagenesis involving TNFR-I rnediated apoptotic celi death (Tartaglia et al., 1993).

The proteins harboring “death domains” were thus defined as death receptors (DRs) and

they form DR group within the TNFR superfamily (Ashkenazi and Dixit, 1999; Locksley

et aï., 2001). This death-domain-containing receptor subgroup now includes up to $

members: TNF-R1, Fas, and recently discovered DR3 (Chiimaiyan et al., 1996; Marsters

et al., 1996; Kitson et al., 1996; Bodmer et al., 1997; Screaton et al., 1997), DR4 (Pan et

aï., 1997), DR5 (Pan et al., 1997) and DR6 (Pan et al., 1998), EDAR (lucher et al.,

2000) and NGFR (Gruss, 1996). The typical conserved death dornain (DD) is a 6$ amino

acid segment located within the cytoplasmic region of the receptor. Upon ligation with

either cognate ligands or specific agonistic antibodies, death receptors can activate an

apoptotic signaling pathway (Nagata, 1997).

These death receptors have common structural features such as 2-6 CRDs in their

extracellular domains and an intracellular death domain. The death domain most likely

functions as a protein interaction dornain and provides docking sites for signaling

molecules, therefore enabling each receptor to couple to the caspase cascades which are

critical for the induction ofapoptosis.
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1.2.3.3. Decoy receptor subgroup

Another subgroup of the TNFR superfamily was termed “decoy molecule”. This decoy

receptor subgroup now includes DcR1 (decoy receptor 1, also known as TRID or TRAIL

R3) (Pan et al., 1997; Degi-Esposti et al., 1997; Sheridan et al., 1997; Pitti et al., 1998),

DcR2 (decoy receptor 2, also known as TRUNDD or TRAIL-R4) (Pan et al., 1998;

Degli-Esposti et al., 1997), DcR3 (TR6) (Pitti et al., 1999) and osteoprotegerin (OPG)

(Simonet et aÏ., 1997; Ashkenazi and Dixit, 1999). DcR1 and DcR2 are ceil surface

proteins whereas DcR3 and OPG are soluble molecules. Both DcR1 and DcR2 bind to

TRAIL with a similar affinity (Pan et al., 1997A; Pan et al., 1997B; Sheridan et al.,

1997). DcR1 is a glycosylphosphatidylinositol (GPI)-linked protein without an

intracellular death domain whereas DcR2 is a transmembrane receptor but with a partially

deleted death domain and accordingly, both are incapable of transmitting apoptotic

signais (Ashkenazi and dixit 1999; Deli-Esposti et al., 1999). The product of OPG is a

secreted protein that also binds to TRAIL but with much weaker affinity compared with

other receptors. DcR3 (TR6), as will be described in details below, is doser to OPG and

exists as a secreted protein (Pitti et al., 1998).

Both DcR1 and DcR2 are believed mainly to function as anti-apoptotic decoy receptors

that compete with DR4 and DR5 for TRAIL binding and consequently protect those

receptor-bearing ceils from TRAIL-induced apoptosis (Ashkenazi and dixit, 1998; Deli

Esposti et aÏ., 1999). DcR1 is a GPI-linked protein and its role in active signal

transduction has flot been fully eÏucidated. Ernerging evidence suggests that DcR2 may

be involved in activating signal transduction since it lias been shown to activate NF-icB in
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some systems (Degli-Esposti et al., 1997). In contrast, there are reports of failure of

DcR2 to activate Nf-KB in certain systems (Meng, 2000). Thus more studies are

necessary to explore the role of DcR1 and DcR2 in anti-apoptosis signal transduction and

in apoptosis.

1.2.3.4. General characteristics of TR 6

TR6 is a nove! TNF decoy receptor with the officiai designation of TNFR$F6B (see

Table 1). By screening expressed sequence tagged (EST) database, Pitti (1998) identified

a previously unknown fu!I-!ength cDNA from a human fetal lung library. This cDNA

showed homology to other TNFR superfamily members. The protein encoded by this

gene was then named decoy receptor 3 (DcR 3) (Pitti et ctl., 199$). This gene was also

independently identified by other groups and named TR6 (Yu et al., 1999) or M6$ (Bai et

al., 2000), respectively. The hurnan TR6 gene is mapped at position 20q13.3 (Pitti et al.,

199$), whi!st its mouse counterpart might not exist since a BLAST search of the mouse

genome did not reveal sequences with any significant homology. Since the position of

20q 13 is also named “cancer amplicon” where genes responsible for rnany types of

tumors are !ocated, TR6 may be a candidate gene associated with certain types of

malignancy (Kom et aÏ., 1999; Medeiros et aï., 1999; Stubbs et al., 1999; Savelieva et

al., 1997;Sonoda et aÏ., 1997; Sakakura et aï., 1999).

The fuIl-Iength open reading frame ofTR6 encodes 300 amino acid residues with the first

29 amino acid residues as signal sequence. The mature fonri ofTR6 has 271 amino acid

residues with no transmembrane region. There is only one potential N-!inked

glycosylation site at Asn-173. Like OPG, TR6 vas regarded as a soluble secreted protein.
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TR6 shares remarkable amino acid sequence homology with OPG (31%) and TNFR-II

(29%) but less liomology with Fas (17%) (Pitti et al., 1998). TR6 was reported to have

two complete and two incomplete cysteine-rich motifs, which is the hallmark of TNF

receptors.

The TR6 mRNA lias prorninent expression in lung and colon cancers, whereas it is

weakly detectable in several hematopoietic celi unes, and is hardly detectabÏe in many

tissue samples (Pitti et al., 199$). In the immune system, TR6 is highly expressed in both

lymph nodes and spleen, but the expression in thymus is weak (Pitti et al., 199$; Bai et

al., 2000). In addition, TR6 is expressed in an endothelial celi une and its expression is

inducible by phorbol 12-myristate 13-acetate (PMA) /ionomycin in Jurkat T leukernia

celis (Yu et al., 1999). Moreover, TR6 mRNA over-expression was reported in

gastrointestinal cancers but without gene amplification (Bai et al., 2000). Also, the

expression of TR6 can be detected in malignant glioma ceils as well as in human

glioblastomas. In addition to human tumors, the TR6 gene is also over-expressed in

silicosis or systemic lupus patients (Otsuki et aÏ., 2000).

Mild et al. investigated a large number of colorectal cancers and found nearly 63% (185

out of 294) of patients with DcR3 gene amplification (Mild et al., 2002). In another

study, it was found that TR6 was amplified and over expressed in EB virus- and human T

celi leukemia virus-I— associated lymphomas (Ohshima et aÏ., 2000). This expression

trend is also true at the protein level of TR6. For instance, TR6 protein was found over

expressed in human adenocarcinomas of the esophagus, stomach, colon, and rectum

while no gene amplification was detected (Bai et al., 2000). It was reported recently that

up to 73% (163 out of 223 patients) of colorectal patients showed up-regulated TR6
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protein level (Mild et aÏ., 2002). These data suggested that certain types of turnor as welÏ

as EBV and human T ce!! leukemia virus-1 may use TR6 to escape from immune

surveillance during lymphomagencsis, or that virus infected Ïymphoma ceils with TR6

expression might be selected during multi-step tumorigenesis (Ohshima et al., 2000).

Recent studies in our laboratory as well as in others suggested that TR6 over-expression

correlates with the grade of malignancy and could be used as diagnostic and prognostic

parameter (Wu et al., 2003; Roth et al., 2001).

1.2.3.5. The TR6 Ligands

The FasL (Fas ligand) was the first ligand identified for TR6 (Pitti et aï., 199$). FasL is

one ofthe major effectors ofcytotoxic T lymphocytes (CIL) and natural killer (NK) cells

and a major inducer of apoptosis. It is also involved in the establishment of peripheral

tolerance in the activation-induced celi death of lymphocytes (Zhang et al., 2000; Ju et

al., 1999). Moreover, the expression ofFasL in non-lymphoid and tumor cells contributes

to their maintenance (Nagata, 1997). LIGHT (also termed HVEM-L) is another cognate

ligand for TR6 (Yu et al., 1999). Very recently, another novel member of TNF ligand

superfamily TLÏA was found to be a third ligand for TR6 (Migone et aï., 2002). TL1A is

considered as the longer variant ofTLl and this molecule was designated as VEGI when

it was identified in endothelial ce!! DNA libraries (Zhai et al., 199$; Yue et al., 1999).

Studies at the mRNA level show that TLÏA is highly expressed in endothelial cells and is

inducible by TNF and IL-1. TL1A is the ligand for both DR3 and TR6 (Migone et al.,

2002). DR3 is a TNFR member and has the capability of inducing NF-icB activation and

apoptosis upon over-expression. DR3 shares another ligand TWEAK (or Apo3L) with a
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novel receptor TWEAK (Masters et aï., 1998; Wiley et ctl., 2001). But the relationship

between these proteins and the significance of their interactions have yet to be fully

studied

1.2.3.6. The identfled biotogicalfimctioizs oJTR6

It has been demonstrated that TR6 could neutralize the biologicai effects of FasL by

inhibiting fas-FasL interaction (Pitti et al., 1998). This decoy receptor substantialiy

biocks the FasL-induced apoptosis in Jurkat ceils as well as FasL-dependant NK celi

activity (Comol1y et al., 2001). These resuits suggest that TR6 could interact with FasL

under certain conditions and modulate immune responses, especially apoptosis mediated

by the Fas/FasL pathway.

TR6 can suppress LIGHT binding to both LTR and TR2 (Yu et al., 1999; Mauri et al.,

1998), and it is conceivable that such interference can inhibit LTf3R- and TR2-mediated

responses in immune ceils. It was demonstrated that TR6 can interact with LIGHT and

thus inhibit LIGHT —mediated cytotoxicity of H29 ceils. These resuits suggest that TR6

acts as a natural inhibitor of LIGHT mediated tumor celi killing.

In addition to modulation of immune responses, it was found in a recent study that TR6

profoundly modulates dendritic ceils LDCs) differentiation and maturation from CD14

monocytes (Hsu et al., 2002). Interestingly, it was reported that TR6 enhances

CD86/37.2 expression, whereas CD8O/B7.1, CD4O, CD54/ICAM-1, CDY.a and HLA

DR were ail repressed. In addition, DcR3-treated DCs dramatically enhanced 1L4

secretion by naïve T celis (CD4CD45RA), thus favoring Th2 dcvelopment.

The ligand TL1A can also function as a T ceil costimulator. The T ccli stimulation

induced by TL1A resuÏts in an increased responsiveness to IL-2 and other pro-
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inflammatory cytokines (Migone et al., 2002). TR6 competes with DR3 for TL1A

binding with similar affinity. Therefore, it is possible that TR6 may modulate the

duration and magnitude of immune responses mediated by DR3. Moreover, since DR3

can induce apoptosis, blocking the interaction between TL1A and DR3 by TR6 might

provide protection from apoptosis to certain types oftumors (Migone et al., 2002).

1.2.4. The other TNF receptors related with TR6

Obviously, TR6 may have important functions stili to be elucidated in cancer

development and in the immune system. In the latter, TR6 might compete with other TNf

receptors for core common ligands such as LIGHT and FasL and thus interfere with their

biological functions. Among all the possible TNFR SFPs that share LIGHT and FasL

with TR6, TR2 and Fas are predominantly expressed in the immune system and are

critically important in regulating immune responses. As such, to decipher the nature of

TR6, identify with which ligand TR6 interacts and the related receptor(s) such as TR2

and Fas will certainly help to better understand the underlying mechanisrns of the

regulatory roles of TR6 both in vitro and in vivo.

1.2.4.1. HVEM/TR2

The receptor herpes virus entry mediator (HVEM or TR2) is a recently discovered TNFR

superfamily member with broad tissue and cell type expression especially in the immune

system (Montgomery et cd., 1996; Kwon et al., 1997; Tan et aÏ., 1997). This molecule

was also identified by screening expressed sequence tag (EST) cDNA database for

sequence hornology with cysteine-rich motifs of the TNFR superfamily (Harrop et al.,
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1998). This molecule was discovered through its ability to mediate HSV infection. The

TR2 gene locates at chromosome lp36, a position close to other TNFR members such as

CD3O, 4-1BB, OX-40, and TNfR-II (Montgomery et al., 1996). Three ligands so far

have been defined for TR2: the HSV surface envelope glycoprotein gD, lymphotoxin a

(LT a) and the newly described TNF ligand family member LIGHT (Montgomery et al.,

1996; Mauri et aÏ., 1998).

The TR2 mRNA can be readily detected in lung, spleen, thymus, monocytes, dendritic

ceils, B and T lymphocytes, but not in liver, brain, and skeletal muscle (Morel et al.,

2000). Moreover, RNA analysis unveiled that most solid tumor unes do flot express TR2.

On the other hand, some hematopoietic celi lines do express TR2 (Kwon et al., 1997).

The full-length TR2 encodes a 283 amino acid protein. It is a type I transmembrane

protein containing a 50-amino acid cytoplasmic region without a death domain (Harrop et

al., 199$). At the protein level, expression studies indicated that TR2 protein has wide

distribution and can be readily detected by flow cytometric analysis in peripheral blood T

and B lymphocytes, NK ceils, and monocytes (Mord et al., 2000). Interestingly, it was

reported in a recent study that TR2 and one of its ligands LIGHT display reciprocal

expression at T ceil surfaces as detected by flow cytometric analysis (Mord et al., 2000).

LIGHT is hardly detectable in resting T celis, but its expression was enhanced tipon

activation (Morel et al., 2000). On the other hand, HVEM showed down-regulation upon

T ceil activation. Data from confocal microscopy and intracellular staining by flow

cytometry showed the existence of intracellular LIGHT in unprimed T ceils. After

activation, there is a pronounced induction of LIGHT both intracellularly and at the cell

surface. This suggests that de novo synthesis and redistribution of LIGHT both contribute
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to the enhancement of LIGHT expression at ceil surface. The detailed mechanism of

down-regulation of TR2 expression by LIGHT is stiil flot well understood.

The biological function of TR2 was an active area of investigation in the past few years.

Current evidence suggests that TR2 is closely associated with T ceil activation and a

number of T celi responses such as proliferation, cytokine production, and expression of

celi surface activation molecules (Hanop et al., 1998). LIGHT, as its ligand, stimulates

the proliferation of activated T ceils expressing TR2 (Harrop et aÏ., 1998), stimulates NF

iB activation, and induces apoptosis in celis expression both TR2 and LTR (Zhai et al.,

1998; Harrop et al., 1998). Recently, studies show that LIGHT can costimulate T celi

responses by interacting with TR2 (Kwon et al., 1997; Tamada et al., 2000A; Tamada et

al., 20003) and TR2 is critically important in T celi costimulation. T celi derived LIGHT

can readily deliver stimulation to TR2 on dendritic celis, that in tum up-regulate T ceil

activity (Shaikh et al., 2001). Moreover, TR2 on T cells can also receive LIGHT

stimulation directly from LIGHT expressing T ceils (Wang et al., 2001).

1.2.4.2. fas

Fas (also named APO-1 or CD95) is the primary receptor for fasL and this molecule is a

type I membrane protein belonging to the TNFR family (Suda et al., 1993). Fas is

abundantly expressed in various tissues and celi types (Suda et aÏ., 1993), especially

thymocytes, activated T cells and virus transformed T cells. Resting B cells do flot

express fas, but its expression can be induced by CD4O ligand or endotoxins (Briones et

al., 2002; Hahne et al., 1996). Fas has broad tissue distribution, but is most abundantly

expressed in the thymus, liver, heart and kidney (Itoh and Nagata, 1993). Cross-linking of
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Fas by an agonistic antibody or ligation by FasL will cause Fas clustering which is

necessary for receptor activation and death signal initiation (Kischkel, 1995).

1.3. TNf Ïigand superfamiÏy

As listed in Table 2, the mammalian TNF ligand superfamily also exhibited rapid

expansion in recent years and it currentÏy includes TNF Œ, LTA (lymphotoxin-Œ) or LTB

(lymphotoxin—t3), FasL, CD27L, CD3OL, CD4OL, 4-1BBL (Gruss et al., 1995), TRAIL

(Wiley et al., 1995), TRANCE/RANKL/OPGL (Lacey et al., 1998), TWEAK

(Chicheportiche et al., 1997); APRIL/TALL-2 (Hahue et aï., 199$; Shu et al., 1999),

AITRL (Kwon et al., 1999), VEG1 (Zhai et al., 1999), BAFF/TALL1 (Shu et al., 1999;

Schneider et cii., 1999), LIGHT (Mauri et al.,1998), TRANCE (Wong et al., 1997),

TLI/VEGI (Zhai et ai., 1999), TL1A(Migone et al., 2002), TL6/hGITRL (Kwon et al.,

1999). AIl these ligands share, to some extent, structural features, which might be

important for their functions. Meanwhile, these ligands, in a mechanism similar to other

cytokines and growth factors, exert their effects through receptor-ligand interactions that

induce downstream signal transduction events (Gntss and Dower, 1995).

1.3.1. The structuralfeatures of TNf ligands

The members of TNF ligand superfamily are highly diverse in sequence and have an

average of 20% (range from 12% to 36%) sequence homology in their extracellular

domain. These ligands exist mainly in membrane-bound forms and their biologically

active forms are trimeric/multirneric complexes (Gruss and Dower, 1995). Their

monomers are composed oftwo stranded beta pleated sheets (Armitage et aÏ., 1994; Lotz
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et al., 1996). TNF ligands are synthesized as type II transmembrane proteins

characterized by their extracellular C—terminus. The typical TNF ligand structure consists

of a short cytoplasmic segment (10-80 amino acid residues) and a relatively long

extracellular region (140-215 amino acid residues). Several members of this superfamily

have rnoderate-sized cytoplasmic regions. The cytoplasmic regions of TNF tigands are

not conserved among farnity members, but highly conserved across species. This cross

species conservation implicates sorne important biological functions such as signal

transduction for the cytoplasmic region (Smith, 1993), as also demonstrated for OX4OL

and CD4OL (Stuber et al., 1995; van Essen et ctl., 1995).

1.3.2. The Soluble form ofTNFLigands

Although members of the TNF ligand superfamily norrnally exist as trimeric or

multimeric membrane bound proteins, many of them are also expressed and functional in

a soluble forrn. For example, Fas ligand (Suda et al., 1993; Tanaka et al., 1995), TNF a

(Kriegler et al., 1988), CD4OL (Graf et al., 1995), OX 40L (Stuber and Strober, 1996),

CD27L (Lens et al., 1998), 4-1BBL (Salih et al., 2001), LIGHT (Harrop et al., 1998),

TRAIL (Wajant et aÏ., 1995) were ail found to exist in soluble forrns that are biologically

active. The release of soluble ligands from the celi surface is mediated by proteolytic

cleavage and likely regulates receptor/ligand interactions between ceils. Cleavage of

membrane-bound ligand to an active soluble forrn would alter both proxirnal and distal

cellular responses, including celi survival and costimulatoiy or inflarnrnatory responses.

Currently the mechanism of coexistence of both forms is not fully understood.

Interestingly, studies on TNFŒ discovered that while membrane-bound and soluble forms
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are both biologically active, soluble TNFŒ is more potent than the membrane-bound form

(Decoster et aÏ., 1995).

Lymphotoxin—beta (LT-f3) is an exception to this feature. It onÏy exists as a membrane

bound form (Browning et al., 1996). Human LT-3 (also narned as p33) is a 33 kDa

glycoprotein cloned from T celi hybridorna celi une. On the celi surface, LT forms a

trimeric complex with TNF 3 in either LT Œ2f3 1 (major form) or LT al J32 (minor form)

ratio (Hochman et al., 1995).

1.3.3. The biologicalfeatures oJTNf Ïigands

The TNF ligand SFPs play multiple roles in both innate and adoptive immune responses

(Smith et al., 1994), obviously through their interaction with TNFR SFPs. One

fundamental feature of TNF ligand superfamily is the biological activity related to T-cell

mediated immunity (Suda et al., 1993; Armitage et aÏ., 1993)

The ability to induce celi death (either necrosis or apoptosis) is the most thoroughly

investigated feattire of TNT ligands as established for TNF, LTa, CD3OL, 4-1BBL and

FasL (Gray et aÏ., 1984; Smith et aÏ., 1993; Alderson et al., 1994; Suda et al., 1993; Liu

et al., 1989; Gruss et aÏ., 1994). TNF ligands are also directly involved in lymphoid organ

generation and development. For instance, mice genetically deficient for LTalf32 do flot

develop secondary organs such as lymph nodes, or Peyer’s patches, and have defective

spleen structure and humoral immunity (Fu and Chaplin, 1999). Among these TNF

ligands, LIGHT and FasL will be discussed in details for their biological functions.

Interestingly, these two ligands also have the capability of reverse signaling and receptor

function.
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1.3.4. Reverse signaling

The reverse signaling phenomenon had been observed several ycars ago and recent

studies have provided more evidence for TNFR famiiy members’ reverse signaling

capability (Hsu et al., 2002; Suzuki et al., 1998). Members such as CD3OL, CD4OL,

TRANCE, TRAIL and DR4 are reported to transmit reverse signais into ligand bearing

celis. The reverse signaling of these ligands has important biological functions. For

instance, reverse signaling through CD4OL is associated with different immune responses

such as T celi costimulation and germinal center formation (Rooney et al., 2000).

Moreover, CD4OL is able to trigger brief CD4 T celi activation as weli as regulatory

cytokine product secretion and apoptosis (Blair et al., 2000). Cross-linking OX-40L on

CD4OL-stimulated B ceils resuits in enhanced B celi proliferation and down-reguiation of

the transcription factor B ceil iineage-specific activator protein (BSAP) ÇStuber et al.,

1995). More studies showed that CD4OL reverse signaling ieads to T celi costimulation

(van Essen et al., 1995). In addition, CD4OL reverse signaling was associated witli

protein tyrosine phosphorylation, Ca 2+ influx, and activation ofLck, protein kinase C, c

jun N terminal kinase, and p38 mitogen-activated protein kinase activation in EL-4

thyrnoma ceils (Brenrier et al., 1997a, Brenner et ai., 1997b). In a recent report, it was

further demonstrated that maximal proliferation of CTL requires reverse signaling via

Fas-L (Suzuki and Fink, 1998). In addition, reverse signaling through CD27/CD7O has

been demonstrated to induce pronounced proliferation of a subset of leukemic B celis, an

effect that is synergisticaliy enhanced by ligation of CD4O (Lens et aÏ., 1999). In a more

recent report, Chen demonstrated that TRANCE enhanced IfN y production in activated
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1h ceils (Chen et al., 2001). CD3OL cross-linking activates neutrophils (Wily et al.,

1996) and inhibits 1g class switching in B ceils (Cerutti et al., 2000). Crosslinking of

TRANCE enhances IFN ‘ secretion by Thl celis (Chen et al., 2001). Crosslinking of

TRAIL induces p38 mitogen activated protein kinase activation (Chou et al., 2001).

Studies on CD40L reveal that reverse signaling associated with TRAIL cross-Iinking also

induces p38 mitogen activated protein kinase activation (Brenner et al., 1997A). Taken

together, these findings illustrate the importance of reverse signaling in immune system

activation. It would be interesting to know whether bi-directional signaling also cxists

with other members of the TNF superfarnily. For example, we investigated the reverse

signaling properties ofTR6 via its ligands.

1.3.5. fas ligand

The Fas ligand (FasL or CD95L) belongs to TNF ligand superfamily (Suda et aÏ., 1993).

fasL is expressed as a trirneric molecule either in membrane-bound or soluble fomi. FasL

is predominantly expressed in activated T celis and natural killer (NK) ceils and also

expressed constitutively at immune privileged sites (Nagata, 1997; Oshimi et al., 1996;

Suda et al., 1993). It is a type II membrane protein and its extracellular region consists of

a 150 amino acid stretch displaying remarkably low homologies (20-25%) with other

members ofthis family. The cytoplasmic region ofFasL has 77 amino acid residues.

FasL-triggered apoptosis is the fundarnental regulatory factor for cell survival and

maintenance of normal inm-iune functions, and dysregulation of this system has been

shown to resuit in many hurnan pathological conditions such as SLE (Wu et al., 1996).

Recently it was reported that DcR3 cornpetitively bind to FasL, and therefore block the
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fas/FasL engagement which ultimately resulted in the blockage of apoptosis (Pitti et al.,

1998).

The interaction of Fas-L with the extracellular ligand-binding dornain of the Fas receptor

can induce Fas trimerization and activate of the apoptotic celi death pathway. In addition,

the Fas/f as-L system plays a critical role in CIL activity and regulation of immune

response amplitude (Nagata, 1997). This Fas-L induced celi death utilized by CTL

system could be involved in the immune response against tumor celis and other cytotoxic

activities. The expression of FasL in the plasma membrane of numerous turnor ceils

allows them to kili Fas bearing immune celis in vitro (Nagata, 1997). These observations

have suggested that tumor celis may use FasL to induce a specific immune tolerance.

However, in the in vivo setting, FasL expression rather induces tumor celi rejection. The

quantity and the environment of FasL expressed on turnor celis could determine whether

tumor ceils are toÏerated or rejected (Suzuki et al., 2000)

1.3.6. LIGHT

LIGHT is a recently identified and characterized core member of TNF ligand

superfamily. The term “LIGHT” stands for “homologous to lymphotoxins, showing

inducible expression, and competing with HSV glycoprotein D for herpes virus entiy

mediator, a receptor expressed by T lymphocytes” (Mauri et al., 1998; Harrop et al.,

1998). The standardized symbol of LIGHT is TNFSF14 (refer to Table 2 and Lockslay et

aÏ., 2001). Since LIGHT can competitively block the engagement ofHSV glycoprotein D

to HVEM, it was also named HVEM ligand (HVEM-L) (Hanop et aï., 199$).
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The LIGHT gene maps on human chromosome 19, adj acent to other TNF ligands such as

CD27L, 4-1BBL (Granger et aÏ., 2001). The primary structure of LIGHT as predicted

from the cDNA sequence contains 240 amino acid residues, no predicted signal cleavage

site, and a stretch of 22 hydrophobic residues as a transmembrane region, characteristic

of a type 2 transmembrane protein. The extracellular dornain of LIGHT consists of a

short membrane extension of 39 arnino acid residues close to the receptor-binding

domain. There is only one N-linked glycosylation site identified for LIGHT that lies

within the major receptor-binding loop (A-A’Ç3 strand) (Harrop et al., 1998).

LIGHT is closely related to LTŒ and LTf3 according to amino acid sequence homologies

and shares receptor specificity but is genetically different. The similanty of LIGHT to

lymphotoxins outside the scaffold regions is reflected in the conservation of tyrosine 173

located in the D-E loop, a contacting region ofLTa for TNFR (Banner, 1993). Structural

study indicates that LIGHT has a secondary structure of anti-parallel 3 sandwich

conformation that favors the formation of a homotrimer structure.

Ibis is also suggested by sequence homology studies in the TNF ligand family (Rooney

et al., 2000B). Species conservation between human and mouse LIGHT is 76% (Mauri et

aÏ., 1998). LIGHT exhibits significant sequence homology with the C-terminal receptor

binding domains of LTf3 (34% identity), Fas ligand (30%), 4-1BB ligand (29%), TRAIL

(28%), LTa (27%), TNF (27%), and CD4OL (26%). No sequence homology is found

with HSV-1 envelope glycoprotein D. Sequence homology is mainly limited to residues

forming the J3 sandwich structure and assembling as a trimer.
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1.3.6.1. LIGHT expression cmd distribution

It was found that LIGHT mRNA was abundantly expressed in spleen and lymph nodes,

but weakly in peripheral blood, thymus, appendix, and in bone marrow as well. Visceral

organs, heart, colon, small intestine, lung, and liver also exhibit weak expression. Reports

about LIGHT expression in the brain are conflicting (Harrop et al., 1998; Mauri et al.,

1998). LIGHT expression in T ceils requires activation stimuli similar to those for LTŒ

and LTD. Monocytes and granulocytes may also express LIGHT (Zhai et al., 1998). But

these resuits have not been well confirmed at protein level (Harrop et al., 1998).

Mitogen-activated CD4 and CD8 T cell subpopulations from peripheral blood have

readily detectable LIGHT mRNA. LIGHT can be detected on the surface of activated T

cells (Mauri et ciL, 1998), macrophages and immature dendritic cells (Tamada et al.,

2000). Also, activated T celis do not appear to produce soluble LIGHT. However, while

LIGHT was expressed by HEK 293 cells, its observed molecular mass was 28-29 kDa

while the molecular mass of LIGHT from activated II-23 T celI une was 30 kDa. The

analysis of a truncated fomi of LIGHT (at position G85) suggests that a soluble form of

LIGHT protein retains receptor-binding activity (Harrop et al., 1998). lii contrast to LTŒ

or LTD, LIGHT is also expressed by the monocytic cell line THP-1 following activation

by phorbol ester (Zhai et al., 1998).

for the II-23 T ceIl hybridoma (CD4 T celis), both phorbol ester (PMA) and ionomycin

are required for the enhanced expression of LIGHT, while PMA is sufficient for LTŒI3

complex (Yu et al., 1999; Kuprash et al., 1996; Zhai et al., 1998). Other reagents that

activate T ceils, such as PHA or anti-CD3, or specific antigens, induce the expression of

LIGHT.
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These resuits suggested that LIGHT had a broader tissue expression pattem than LTŒ and

LTJ3 which are limited to activated T and B lymphocytes and NK celis. Although it is

wel! accepted that activated T ceil and dendntic ce!! have ce!! surface LIGHT expression,

recent findings in our laboratory suggested that LIGHT indeed can 5e detected at resting

T ceil surface without activation (Shi et al., 2002).

1.3.6.2. The receptors ofLIGHT

Three receptors from TNFR superfarni!y have been identified for LIGHT: LT R on

stromal ceils, HVEM (herpes virus entry mediator, also know as HveA) on T ceils (Mauri

et aï., 1998), and the soluble receptor TR6/DcR3 (Pitti et al., 1998;Yu et aÏ., 1999).

1.3.6.3. The biologicalfiinctions ofLIGHT

LIGHT has been intensive!y studied for its functions. Accumu!ating evidence suggests

that LIGHT p!ays critical roles in regulating immune responses by interacting witli

HVEM, LTj3R and possibly with TR6 as well.

f irst, LIGHT is demonstrated as a novel costimu!atory rno!ecu!e for T ce!! activation,

which directly resu!ts in increased T ceil pro!iferation, enhanced Thi type cytokine

production, and NF-kB trans!ocation. Moreover, the LIGHT triggered T ce!l activation

was found independent of the 37/CD28 pathway (Tamada et al., 2000A; Tamada et al.,

2000B).

In addition to induction of T celI activation, LIGHT a!so regulates antigen presenting celi

(APC) development. For instance, DCs are APCs most potent in initiating primary T ce!!

responses. It was found that blockade of LIGHT can inhibit the optimal induction of

FACULTÉ DES ÉTUDES SUPÉRIEURES UNIVERSITÉ DE MONTRÉAL XIAOCHUN WAN 30



primary T ceil responses by ailogeneic DCs, suggesting that LIGHT is a pivotai

costimulator for DC triggered stimulation of primary T ccli responses and the

costimulation is rnost likely through HVEM (TR2) (Tamada et al., 2000) on DCs. In one

report, it was found that LIGHT signaling via HVEM was in cooperation with CD4O

signaling for DC maturation. The DCs then achieves activation and thus are able to elicit

an enhanced anti-tumoral CTL response (Mord et al., 2001).

LTÇR is one of the receptor of LIGHT that piays a major role in the formation of

secondary lyrnphoid tissue during embryogenesis (Futterer, 199$). Both LTŒ1 and

LTI3W’ mice showed disappearance of lymph nodes (LN) and Peyer’s patches (PP) and a

severe disorganization of spienic structure (Fu et al., 1999; De Togni et al., 1994). To

study whether T ccii derived LIGHT and its interaction with LTf3R are sufficient to

support the fonriation of lymphoid tissues, LIGHT transgenic (LIGHT Tg) mice were

deveioped and backcrossed with either LTŒ or LTW’ mice (Wang et al., 2002). The

resuits showed that LIGHT—complemented LTŒ mice (LIGHT Tg!LTŒj dispiay

recovery of secondary lymphoid tissues and restoration of spienic architecture. In

addition, blockade of endogenous LIGHT activity in LTt3R mice give risc to more

severe disturbed spienic structure, suggesting the importance of LIGHT in the

developrnent and maintenance ofthe lyrnphoid organs and tissues (Wang et al., 2002).

LIGHT couid trigger apoptosis in some types of tumors both in vitro and in vivo. One

important supporting experiment is that LIGHT gene transfected into a human breast

carcinorna une resuited in the compiete inhibition of tumor development in T ceil

deficient athymic nude mice (Zhai, et aÏ., 1998; Harrop et aï., 199$). It was found that

gene transfection of LIGHT mediates turnor rejection through the generation of tumor
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specific CTL. This was supported by data showing that blockade of LIGHT ameliorates

acute graft-versus host disease (GVHD) by anergizing host-specific CTL (Tarnada et ctl.,

2000). However, the in vivo effects of LIGHT, particularly on T celis, can only be well

understood by using LIGHT transgenic (LIGHT Tg) and/or kiiockout (KO) animais.

1.3.6.4. LIGHT transgenic and knockout mouse models

Shaikh et aï., generated T ce!! LIGHT transgenic (Tg) mice and found that LIGHT Tg

mice displayed abnormal !yrnphoid organ structure, chaotic lymphocyte distribution in

addition to organ inflammation and destruction (Shaikh et al., 2001). T ceils from LIGHT

Tg mice exhibit an abnormally activated phenotype and elevated Thl cytokine activity

(Wang et al., 2001). Wang et aï., also found that LIGHT Tg mice exhibited an unusually

enlarged T celi compartrnent and a hyper-activated peripheral T ce!l population. In

addition, LIGHT Tg mice spontaneous!y develop severe autoimmune disease

characterized by !ymphadenopathy, glomemlonephritis, splenomega!y, enhanced !eve!s

of autoantibodies and severe lymphocytes infiltration of different peripheral tissues.

Blockade of LIGHT activity by HVEM-Ig decreases the severity of T ce!!-mediated

disease. Using the same model, it was found that LIGHT might be one of the important

costimulatory molecules functioning in the T-T celis interaction and activation required

for the complete expansion of peripheral T celis. The dysregu!ation or over-expression of

LIGHT may play an important ro!e in the pathogenesis of T celi mediated chronic

inflammation and autoimmunity. Moreover, the in vivo data showed that LIGHT is

sufficient to cause the activation and expansion of peripheral T ce!!s that subsequently

lead to the breakdown ofperipheral tolerance (Wang et al., 2001).
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These findings together suggested a profound role for endogenous LIGHT in regulating

T celi activation, presumably through costimulation to TR2 on T ceils. Moreover, these

findings aiso indicated a critical roic for LIGHT as an important T ceil costimulatory

TNF ligand in T celi activation and expansion, the dysregulation of LIGHT leading to

aitered T celi homeostasis, breakdown ofperipherai tolerance and autoimrnune diseases.

A logical question: what are the consequences of LIGHT knockout in animais? One

study from LIGHT deficient (LIGHTj mice showed that lymphoid organs are largely

intact and function norrnally as T ceiis and APCs do. But CTL (CD8) induction and

cytokines related to CTL deveiopment were reduced from LIGHT’ mice (Tamada et al.,

2002). By using LIGHT’ mice in an allograft rejection study, it was found that the mean

allograft survival tirne of LIGHT mice is only slightly prolonged whist in combination

with CsA, the survival tirne is significantly enhanced compared with normal LIGHT’

mice (Ye et aÏ., 2002). Scheu et al., found that LIGHT’ mice actuaiiy deveiop intact

lymphoid organs whereas LIGHT’ LT’ double deficient mice have low percentage of

mesenteric iymph nodes. Interestingiy, in the LIGHT, CD28’ allogeneic skin graft

rejection mice model, it was found that LIGHTCD28’ showed a skin survival of 19 d,

i.e. 6 days (d) longer than single deficient or WT mice. This suggested that LIGHT

together with CD28 plays important role in aÏÏo-graft rejection. The reason couid be the

reduced development of cytotoxic T lymphocytes as shown in the followup MLR study

on LIGHT’ mice (Schew et al., 2002).

These resuits suggested that LIGHT is necessary for activation of CD8 but flot CD4 T

lymphocytes (Tarnada et aÏ., 2002). This may be further implicated in the decrease of

allogeneic CTL activities and the delay of ailogeneic graft rejection. Together, these
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resuits suggested that LIGHT and its receptor TR2 may contribute to the organogenesis

of secondary lymphoid tissues and the important involvement of T celi costimulation in T

ceil mediated immune responses.

1.4. Interaction of TNF SfF Ïigands with their receptors

The biological function of TNFR!TNF ligand SFPs as well as their associated diseases

are dependent on an essential signaling stoichiometry. Signaling is assumed to be

achieved by ligand-induced trimerization of the monomeric receptor chains. This was

demonstrated by crystallography of the extracellular ligand binding domain bound to LT

CL (TNF f3) which showed a three to three syrnmetry of the ligand-receptor complex

(Banner et aÏ., 1993). The X-ray structure for both TNF a and TNF [3 unveiled that both

proteins exist as a “triangular colle” trimer tEck et al., 1992) and the ligand trimer binds

three receptor molecules, one at each of three TNF monomer-monomer interfaces

(Banner et al., 1993). The trimeric ligand makes contacts within the CRD 2-CRD 3

region and thus forms a hexameric complex unit containing three receptors and a ligand

trimer. Substantial data indicates that other TNF cytokine-receptor interact similarly to

this typical, obligatory 3:3 symmetry and lead to receptor activation (Idriss and Naismith,

2000).

1.5. TNfR SfF signaling

The last few years have witnessed a proliferation in the knowledge of the proteins

participating in the signaling of the TNF system. TNF receptors are activated by

interacting with their specific ligands followed by receptor trimerization or
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oligomerization and ultirnateiy iead to either apoptosis or survival of receptor-bearing

ceils according to different stimuli. The general deathlsurvivai signaling pathways can be

best iilustrated by TNT a and LT Œ which were intensiveiy studied in the past severat

years for their signaling events.

TNF a and LT a mediate their effects via two receptors: TNFR-I and TNfR-ll. These

iigands interact with both receptors as homo-trimers and induce receptor trimerization

which is pivotai for receptor activation (Nagata, 1997; Ashkenazi and Dixit, 1999).

TNFR-II has no intracellular death domain and is generaliy flot implicated in apoptotic

signais. Therefore, TNFR-I is the main receptor responsible for mediating the apoptotic

signais ofTNf receptor-ligand system (Nagata, 1997; Ashkenazi and Dixit, 1999). Upon

activation, TNFR-I recruits the intraceliuiar adaptor molecule termed “TNFR-associated

death domain protein” (TRADD). TRADD is a death domain containing adaptor

molecule which further recruits another death dornain containing protein narned FADD

(fas —associated death dornain protein) (Chiimaiyan et aï., 1995; Boidin et al., 1996). The

interactions among these adaptor molecuies and TNFR-I occur through their respective

death domains, ieaving the N-terminal death effector domain of FADD free to further

interact with the domain ofproximai pro-caspase 8 or 10. Recntitment ofproximai pro

caspase at the receptor site induces its oiigomerization-mediated activation (Ashkenazi

and Dixit, 1999). Upon activation, the proximai caspases further activate the downstream

caspases such as caspase 3, 6 and 7, also termed the executioner caspases. Once the

executioner caspases are activated, the apoptotic signai flows further downstream leading

to the cieavage of death substrates and eventually ceii demise (as shown in Figure 2).
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As presented in Figure 2, in addition to the apoptotic direction, TNFR-I also relays

signais that impinge upon celi survival. For instance, TRADD also recruits TRAF1 and

TRAF2, the adaptor molecules that lead to activation of JNK (Jun N-terminal kinase) and

NF-icB (Ashkenazi and Dixit, 1999). These TRAFs have been shown to bind to TNFR-I

and prevent TNTŒ induced activation of caspase $ at the receptor site. TRAFs also serve

to function in a positive feedback loop to further promote NF-icB activation and generate

survival signais. Recruitrnent of TRADD and FADD at the receptor site also promotes

interaction with another death domain containing molecule RIP. RTP has been shown to

interact with RAIDD to activate caspase 2 in order to mediate apoptotic signais (Wang et

al., 1999). Thus TNFR-I activation involves a complex series of interactions with

intracellular molecules to mediate apoptotic and survival signals.

Ail the other cytokine-receptor pairs of the TNF superfarnily have sirnilar signaling

events of TNF/TNFR pairs as illustrated in Figure 2 and the signaling is very rapid and

highly specific. For instance, Fas is activated by interaction with its ligand Fas-L. Just

like any other ligand in this family, FasL binds to Fas as a homotrimer and activates its

cognate receptor Fas (Nagata, 1997; Ashkenazi and Dixit, 1999). The basic paradigm of

Fas activation is similar to that ofTNFR-I except that Fas does not bind with TRADD but

directly recruit FADD.

It is worth to mention that mitochondria have an important role in apoptotic-signaling

pathway initiated by TNF receptors. The apoptotic signaling can trigger the release of

apoptotic factors from the mitochondrial intermembrane space (Gurp et aÏ., 2003). These

apoptotic factors include cytochrome C (Li et al., 2000), AIF (Wang et al., 2002),

endonuclease G (Li et aÏ., 2001; Ohsato et aÏ., 2002), Smac/DIALO (Verhagen et al.,
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2000; Du et al., 2000), Omi/HtrA2 (faccio et cd., 2000), and ACBP (Melloni et aï.,

2000). Cytochrome C induces caspase activation by binding to Apaf-1 whereas

Smac/DIABLO and Omi/HtrA can neutralize IAP’s inhibition of caspases. AW and

endonuclease G are mainly involved in caspase-independent nuclear DNA degradation

(Zamzami et al., 2001).

The release of cytochrome C leads to the formation of apoptosome which include Apaf-1

and caspase 9. Apoptosorne is closely associated to the downstream activation of

caspases 3, 6 and 7 (Creagh et al., 2003). It is believed that the cytochrome C dependent

apoptosome formation is flot an essential trigger for apoptosis but rather an amplifier of

the caspase activation cascade (Joza et al., 2001; Green, 2003).

1.6. Hypotheses

As described in the above sections, a complex picture of TR6 receptor-ligand interactions

emerged as illustrated in figure 3. TR6 recognizes three confirmed ligands: LIGHT,

FasL, and TL1 and each of these lias more than one receptor as well. The first ligand

fasL lias two receptors: Fas and TR6. Another ligand LIGHT has 3 confirmed receptors:

LTI3R, HVEM (TR2) and TR6. LTf3R can interact with its ligands: TNF u and LT u.

TL1 is the third ligand of TR6 and it has two receptors: TR6 and DR3. DR3 also binds to

TRAIL. Consequentïy, the resulting complex pattem suggests a highly sophisticated

cytokine-receptor system.
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The focus ofour study is the role ofTR6 in immune regulation. Since LTR and TL1 are

flot expressed in the immune system, our study focuses on the interaction among TR6,

LIGHT, fas, FasL and HVEM. We fonTtulated the following hypotheses.

(1). TR6 modutates inuntine responses szcch as T cet! costimuÏatioit by interrupting

several pairs of TNfSf and TNfRSf interactions

It has been confirmed that both LIGHT and FasL are involved in T ccli costimulation.

For LIGHT, the costimulation is achieved by interaction with TR2 (Tamada et aÏ., 2000);

for Fas-L, costimulation is achieved through interaction with Fas (Suzuki et a!., 2000).

Therefore, we speculate that TR6 (in soluble form) might be able to modulate T ceil

activation by interfering with these two TNF ligand-receptor pairs.

(2). TR6 011 solid phase ntight trigger reverse signa!ing through the !igand(s)

As mentioned before, some TNF ligands might have reverse signaling properties. Since

TR6 binds to FasL and LIGHT, it is possible that solid phase TR6 rnight act on these

ligands to costimulate T celis through reverse signaling.
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Article 1:

Modulation of T-ceIl responses to alloantigens by TR6/DcR3

Xiaochun Wan, Jun Zhang, Theodora W. Salcedo, Stephen U]Irich, Bugen Hu,
Theresa Gregorlo, Ping Feng, Shijie Qi, Huifang Chen, Yun Hee Cho, Yuling Li,
Paul A. Moore and Jiangping tYu

Journal of Cllnîcal Investigation, June 2001, Volume 107, Number 11, 1459-1468

Note: In this paper, as co-flrst authors, Jun Zhang and Theodora W. Salcedo contributed
in recombinant proteins and other related reagents preparation. In addition, they also
performed some important experiments as shown figure 1, 2 and 3 and Table 1 and 2.
The remaining works such as resuits shown in figure 4, 5 and 6 were performed by
Xiaochun Wan.
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TR6 (DcR3) is a new member ofthe TNF receptor (TNFR) family that lacks a transmembrane domain

in its sequence, indicating that it is a secreted molecule. TR6 can bind to FasL and prevent FasL

induced apoptosis; it can also associate with LIGHT, another TNF family member. Tise role ofTR6

in immune responses was investigated in this study. According to flow cytometry, recombinant

human TR6-fc bïnds to human LIGHT expressed on 293 cells or on activated human T ceils and

competes with the LIGHT receptor TR2 for the binding to LIGHT on these ceils. Human TR6 could

cross-react with mouse LIGHT in immunoprecipitation. TR6-Fc also downregulates cytotoxic T lym

phocyte activity in vitro and graft-versus-host responses in mice. Moreover, TR6-Fc modulates lym

phokine production by alloantigen-stimulated mouse T ceils. TR6-Fc ameliorated rejection response

to mouse heart allograft. These resuits indicate that TR6 can dampen T-cell responses to alloanti

gens. Such regularory effects ofTR6 probably occur via interference with interaction between pairs

ofrelated TNF and TNFR family members, LIGHT/TR2 being one ofthe possible candidate pairs.

J. Clin. Invest. 107:1459—1468 (2001).

Introduction
TR6 (also called DcR3) is a new member of the TNF

recepuor (TNFR) family. TR6 lacks an apparent trans

membrane domain in its sequence anti is likely a secret-

cd protein (1). The mRNA ofTR6 is expressed at high

levels in several normal human tissues such as the

stomach, spinal cord, colon, iymph node, anti spleen (1,

2), whereas its mRNA expression in the thymus is weak,

and in peripheral blood lymphocytes is undetectable.

Recombinant TR6 fused wiuh an IgGi fc domain can

inhibit tise interaction between Pas anti FasL anti pre

vent FasL-induced apoptosis in lymphocytes anti 5ev-

eral tumor cdl unes (1). Tise latter suggests that certain

tumors may escape FasL-dependent immunocytotoxic

attack by overexpressing TR6.

TR6 can also bind to LIGHT, which is a member of

tise TNF family (3). LIGHT is a type II transmembrane

protein, anti its protein is expressed on activated T celis

(4) and immature dendritic cells (5). It is a figand for

bouh TR2/HVEM and LTR (4). LIGHT was found to

induce apoptosis in celis expressing both TR2 and

LTR, but flot in ceïLs expressing only TR2 or only

LT1. Ç6. However, a recent report by Rooney et aL (7

raiseti doubt about this conclusion by showing that

LTI3R is necessary and sufficient for LIGHT-mediated

apoptosis of tumor celis. In any case, as LTf3R is not

expressed on lymphocytes (8), LIGHT lias no demon

strated or perceived apoptotic effect on these cells.

Recent studies show that LIGHT can modulate T-ecu

responses via TR2, which is constitutively expressed at

both protein anti mRNA leveis in most lymphocyte

subpopulauions including CD4 anti CD8 T cells (9, 10).

Soluble LIGHT enhances a three-way MLR (11).

LIGHT expressed on COS celis or anchored on solid

phase augments T-ecu proliferation anti lymphokine

production (5, 12). Molecules that can presumably

interfere with the interaction between LIGHT anti TR2

were found to downreguÏate T-ceÏl responses. For

example, an antagonistic mAb againsu TR2 reptesses

puoliferation and lymphokine production by CD4

T cells (9); soluble recombinant TR2-Fc inhibits a

three-way MLR (9, 10) or dendritic cell—srimulaued

alloresponse of tise T cells (5); soluble LT3R-Fc inhibits

solid-phase LIGHT-augmented T-cell puolifetation

(12); anti in vivo administration ofLT3R-Fc leads to

arnelioration of mouse graft-versus-host disease (12).

June 2001 \ Volume 207 \ Number Il
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Article 2:

A TNf Family Member LIGHT Transduces Costimulatory Signais into Human T
Ceils

Xiaochun Wan, Jun Zhang, HongYu Luo, GuiXiu Shi, Kapnik E, Kim Sonhoo,
Kanakaraj P, Jiangping Wu.

Journal of Immunology 2002 Dec 15;169(12):6$13-6821

Note: In this paper, as co-first author, Jun Zhang was responsible for experiments
involving Thi and Th2 ceil surface staining and cytokine tests as shown in Figure 3 and
Figure 4. Ail the remaining works were performed Xiaochun Wan.
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The Journal of Immunology

A TNF Family Member LIGHT Transduces Costimulatory
Signais into Human T Ceils’

Xiaochun Wan,2* Jun Zhang,2 flongyu Luo,* Guixin Shi,* Elena Kapnik, Sunghee Kim,
Palanisamy Kanakaraj, and Jiangping Wu3*t

DcR3/TR6 is a secreted protein belonging to the TNFR timiiy. It binds to Fas ligand, LIGHT, and TLIA, ail of whicli arc TXF
famity members. LIGHT is expressed on activated T ceils. Its known reccptors are TR2 and LT3R on the ccli surface, and TR6
in solution. In the present study, we report soluble TR6-Fc or solid-pliase TR6-Fc costimulated proliferafion, iymphokine pro
duction, and cytotoxicity of human T celis in the presence of 1CR ligation. Thesc cosfimuiating cffccts were blocked by soluble
LIGHT but flot by soluble Fas-Fc. TR6-Fc could also cffcctiveiy costimulate gM/gld mouse T celis. tVe furthcr dcmonstratcd that
TR6 bound to both Thl and Th2 celis, according to flow cytornetry, and that the association was inhibited by soluble LIGHT.
Cross-iinking Thi and Th2 cclls with solid-phase TR6-Fc along sitti o suboptimal concentration of anti-CD3 enhanccd prolifcr
afion of both Thi and Th2 ceils, and augmentcd Thi but not T1i2 iymphokine production. Thcsc data suggcst that TR6 dclivcrs
costiniulation tlirough its Iigand(s) on the T ccli surface, and at least the major part of such costimuiation is via LIGHT. The
Journal of Iininuiiology, 2002, 169: 6813—6821.

M embcrs of the TNF family play important roles in di
verse celiutar functions, such as proliferation. diff’cr
entiation, cytokine production, apoptosis, 1g class

switchinu, and T cdl costimulation (l—3). Most of them (cxccpt
Iymphotoxin u, which is entirely sccretcd) arc type Il membrane
proteins, and can excrt their cffect through ecu-ecu contact (I).
Many members, such as TNF-a (4), CD4O ligand (CD4OL)4 (4),
Pas ligand (fasL) (5), and TNF-related activation-inducecl cyto
kine (TRANCE) (6) can be clcaved from ccli surfaces. The cleavcd
parts of these members have demonstratcd (as in the case of
TNF-a) or conceivablc biological fonctions that involvc interac
tion with their respective receptors.

LIGI-IT/TL5 is a ncw member of the TNF family (7), with its
protein cxpressed on activatcd T celis (7) and immature dendritic
ceils (8). Ccli surface LIGHT can be cleaved by matrix metallo
proteinase (9). ut is a ligand for TR2/Herpesviws entry mediator,
lymphotoxin /3 reccptor (LT/3R), and DcR3/TR6, ail of which are
TNFR family members (7, 10, 11). Recent studies show that
LIGHT can costimulate T ccli responses via TR2, which is con
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stututively expresscd at both protcin and mRNA levels in most
lymphocyte subpopulations, inciuding CD4 and CD8 T cells (12,
13). LIGHT, expressed on COS cells or anchored on o solid phase,
augments T ccli prolifcration as well as iymphokine production (3,
8). Moiecules that lresumably interfere with 0w interaction be
twcen LIGHT and TR2 con down-regulatc T ccli responses: sol
uble recombinant TR2-Fc inhibits a threc-way MIR (13) or dcn
dritic ccil-stimttlatcd alioresponse of T cclls (8), an antagonistic
mAb against TR2 represscs prohferation and lymphokine produc
tion by CD4 T cells (12), soluble LT/3R-Fc suppresses solid-phase
LIGIIT-augmented T ccli proliferation (3), and in vivo adminis
tration of LT3R-Ec ieads to amclioration of mouse graft-vs-host
disease (3). Taken together, these pieces of evidence show that
LIGHT acts on TR2 as o costimulator of T ccli activation. More
ovcr, LIGI-IT can induce apoptosis in cells expressing both TR2
and LT/3R (14), althrntgh Rooncy et al. (15) rcportcd that LT/3R is
necessary and suffictent for L1GHI-mediated apoptosis in tumor
celis. Because LT/3R is not cxpressed on lymphocytes (16),
LIGI-IT is unlikcly to cause apoptosis in these cclls.

TR6 is a new member ofthc TNFR family. Human 1R6 lacks
an apparent transmcmbrane domain in its scqucnce, and is a se
creted protein (10, 17). In the immune system, TR6 mRNA is
cxprcssed at high lcveis in lymph nodes and the spleen (17, 1$),
whiie its expression in the thymus and PBIs is weak or undetect
abic, rcspcctively. TR6 has threc known ligands, i.e., fasL,
LIGHT. and TUA. TR6 con bind to FasI and inhibit thc interac
tion bctwcen fas and FasL. Consequently, fasL-induced apoptosis
of lymphocytes and ofscveral tumor ccii unes con be repressed by
TR6 (17). ‘FR6 con also bind to LIGI-iT (10, 11). We have recently
reported that human TR6-Fc con competc with TR2 for binding to
LIGHT on human T celis, supprcss CIL and Iymphokine produc
tion in mousc lymphocytes, and inhibit mouse heart allograft re
jection (10). These Ondings have t’aised the possibility that TR6
inhibits LIGHT-triggered costimulation via TR2 in T ceiis. The
third known ligand ofTR6 s TIIA, which isa ncw member ofthc
TNF farniiy, and is predominantly exprcsscd on endotheliai cclls
(19). TR6 can repress TL1A-augmented lymphokine secretion and
thc graft—vs-host rcsponsc (19).

Copyright © 2002 hy The Aincricun Association of Immuttologists. Inc. 0022- t 767/02,S(12M(J



6814 REVERSE SIGNALING TKROUGH LIGHT INTO T CELLS

Our currcnt study lias rcveaied another layer of compiexity in
the interactions betwecn TR2, TR6, and LIGI-IT. We present cvi
dcnce in this study that TR6 ligand on the ccii surface actuaiiy
transduces costimulating signais into T cclis, and cnhances T ccli
responscs to mitogens and ailoantigens. At ieast a part of such
reverse signaling \vas mcdiated by LIGHT. Thus, aithough u h
gand, LIGHT can function as a receptor as weII. The biological
significance cf this finding is discusscd.

Materials and Methods
Recoo,binant Jwoteins and niA bs

Recombinant TR6-Fc, TR6, TRi l-Fc. LIGFIT. and FasL werc prcpared as
described in our previous publications (10, 20).

mAbs (clones I 7B07 and SK9E2) againsi TR6 werc prepared as fol
lows. BALB/c mice werc immunizcd i.p. with 50 g/lOt) iI ofTR6 emul
siflcd in 100 sI of CFA. Three additional se, injections of 25 p.g of TR6
in IFA wcrc given at 2-wk intervals. The animais were rested fora month
before recciving the final i.p. boosi of 25 g of TR6 in P85. Fout days
luter, spienocytes from une of the immunized mice wete fused with 2 X
io P3 X 63Ag$.653 plusmacytomu ceils using polyethylcnc glycol 1500
(Roche Applied Sciences, Indianapolis, IN) according to the manufactur
cr’s instructions. After fusion, Oie cells were resuspended in 400 ml of
hypoxanthine/arninopterin/thymidinc medium supplcmetitcd with 20%
FCS and 4% oC hybridoma supplement (Roche Applied Sciences). and
distrihutcd into 96-well plates (200 Rl/welI). Hybridomas were screened
for specific Ah production by ELISA using TR6-coated plates. Positive
hybridoma supematants were checked for 1g isotypes using amuse lso-strip
kit (Roche Applied Sciences). mAb affinity tvas ranked by ELISA accord
ing te an approach described earlier (21). 1-lybridomas producing high
affinity mAbs were cloned by limiting dilution. Cloned hybridorna cells
wcre injected in pristine-primed BALB/c mice (3 X lOt’cclls/mouse) for
ascites production. lite Abs were putified fient the ascites by protein G
allinity chromatography using Oie Acta fast protcin liquid chrornaiography
system (Amersham Pharmacia Biotech. Piscataway, N]).

Preparation cind ctdtui’e cf PBMCv, T ceils, Titi cell,ç, Th2 colis,
cind moitse spleen ceils

Aduit PBMCs were preparcd by Lymphoprep gradient (Nycomed. Olso,
Noi-ay), and T celis were prcpared front PBMC by shecp RBC rosetiing
as described eisewhere (22), or by negative selection (deletion of celis
positive for CDI lb. CDI6, CDI9. CD36. and CD56) with magnetic beads
(Miltenyt Biotec. Auburn, CA) according te the rnanufitcttirer’s instruc
tiens, lite mouse mononuclear spleen cells were prcpared by lysing RBCs
in the total spleen ceils with 0.84% NI-14C1. The cells svere ctilturcd in
RPMI 1640 supplementcd with 10% FCS, c-glutamiite, and aittibiotics.
RPMI 164f), FCS, pcnicillin-streptontycin, and c-glutaminc were pur
chascd front Lifc Technologies (Burlingion, Oniario. Canada). [‘FllThy
midine uptake svas measured as descdbed previously (22. 23).

For Titi attd 1h2 ccii generation. cord bloed mononuclear cells wcrc
isolaicd by dcnsity gradient on 1-listopaque-l077 (Signta-Aldrich. St.
Louis, MO). Monocytes from cord blood ntonenuclear cells were deleted
by culture dish adhesion for I h at 37°C, and tlte resulting lymphocyte
fraction svas cultured wittt 2 g/mi PElA (Sigma-Aldrich) in the presence
oflh l/Th2 polanzing Abs and cytokines. lit I differentiation svas triggered
by addition ef5 ng/ml IL-12 and 5 g!rnl anti-IL-4; 1h2 differentiation svas
initiatcd hy addition of 5 ng/ml IL-4, 5 jsg/ml anti-IL-12, aitd 5 g/m1
anti-IFN-y. After 72 h. celis wcre culWred in medium containing 5 ng!mi
IL-2. Afier an additional Il—14 days of culture, >99% of the ceils were
CD3” T celis according te fiow cytometiy analysis; their Titi and Th2
phenoiype svas confirmed by their lymphokine production profile, Tiiese
ceils were washed once with serunt-free RPMI ntcdiunt and starved in
lL-2-frec medium for 3 h. Tltcy were then cultured at l—2 X 10° ceils/well
in 96-wefl plates. which were coated with anti-TCRo (3 cg/ml) itt com
bination with vartous arnounts of solid-phase TR6-Fc. Proliferation of
these celis svas rneasured by [3HJthymidinc uptake 2—3 days tater. lite
ittAbs used in titis section were fiom BD PharMiitgeit (Sait Diego. CA),
and ILs were from R&D Systems (Minneapolis, MN).

Ls’mphokiite cisstiys

Flou’ cytoniet!y

liii or 1h2 ceils (I X 1 if’) witttout furtiter stimulation, or stimuluted with
sohd-phase CD3, were stained with TR6-Fc t 15 ng/sumple) followed by
goat Fiai,’), anti-iturnan IgG-PE f Souihern Bioiechnoiogy Associates. Bir
rninghant, AL). in sente sampies, TR6 without the Fc tag. LIGHT, or
anti-1R6 mAb svus preseitt as an inhibitor (5 j±gisampie) during the stain
ing process. lite ceils wcre wushed and resuspended in buffer contaitting
0.5 .cg/ml propidium iodide; propidiunt iodide-negutive live celis were
gated and anuiyzed by flow cyiometry.

Cvtotoxic T oeil cissag

CIL activiiy of ytSl ceils ts’as assayed as foiiows, Hurnan PBMC (4 X iOt
eells/200 piiwell) wcrc stimuiated with mitomycin C-ireated Daudi celis
(0.7 X 10° cells!well) in round-bottont 96-well plates in Oie presence oC iO
Uimi IL-2 for 6 days. Normai Ituman igG (20 ig/ml), 1R6-Fc (20 ig/ml),
or LIGFII (10 ig/ittl) was added te the culture in tite bcginiting. On day 6,
ceils given the sante treatment in lite 96-weli plate were pooled attd
ceuitted, aitd titeir CIL activity was ntcasured by u standard 4-h °‘Cr
release assay using °‘Cr-labeled Daudi cells (1.5 X I if celis/wcli) as tar
gets al diffcrent E:T ratios, le test ihe effcct cf soiid-phase TR6-Fc, lite
‘otind-bettom wells were precoated with 1R6-Ec (0.5 j.tg/50 p]!wefi) ut
4°C evemiglit and washed with PBS. PBMC (4 X iO cclls/250 sLweli)
and miternycin C-treatcd stimuiator Daudi cells (0.7 X 10° cells/sseli) svere
cuitured in these wells svith IL-2 (10 UIntl) in the absence or preseitce cf
soluble LIGHT (20 cgImi). On day 3, 7f) ii culture supcrnatant/well svas
replaeed with fresit reguiar ntedium. Ail the other procedures et lite CTL
assay wcre the sanie as described above. excepi that the °tCr-relcasc assay
was cenducied on day 5 instead cf day 6.

lite lysis pci’ceittagc cf the test santples ovas calcuiated as foliows:

cpm efthe test sample — cpm of spentaneous release
/o lysis =

cprn cf ntaximal release — epm et spontaneeus release

For a T ccli CIL activity, PBMCs front doner A svere used as responder
cetis, und ntitomycin C-treated PBMCs front donor B were used as stim
ulaters. PBMCs front dottor B without milomycin C treatment were aIim
ulaied with solid-phase unti-CD3 and anti-CD28, aitd used as target celis
en day 6 for the 4-h °‘Cr-release ussay. Ail tite other procedures were the
sanie as describcd above.

Resuits
TR6—Fc enhonced pi’ollfitratio,i c.if’ PB4tC stinutiateci bv
suboptinial concentra rions f lnitogc’ns

We made ait intriguing discoverv in the ccttrse cf our study on the
role ofTR6 in immune regulation: soluble TR6-Fc augrncnted re
spense of human PBMC stirnulated with different concentrations
ofPKA (0.05, 0.1, 0.5, and t p.g/ml) in tite presence ofTR6-Fe (20
.cg/mi) (Fig. lA). TR6-Fc grcatly enhattced the PBMC prolifera
tien when PHA vas ut suboptirnal concentrations (0.1 and 0.5
(.Lg/ml). Using a suboptimal concentration of PI-lA (0.2 .rg/ntl), we
fui’thcr demonstrated that soluble TR6-Fc ceuld enhancc PBMC
proliferation in a dose-dependent tiiantier from 0.3—30 j.cg/ml (Fig.
18). Te ensure that the cffect cf TR6-Fc plus PI-lA was net due te
u shift itt proliferation kittetics comparcd tvith that cf PI-lA or
TR6-Fc stitrntiation aJonc. PBMC stimulated with PHA (0.2 sg/
mi), TR6-Fc (10 j.cg/mi). or both tvere harvested at 48, 72, and
96 h. The result (Fig. 1C) showed tltat at no tirne points did
TR6-Fc or suboptimai PHA alone lead te sigttificant proliferatien,
unlike PHA plus TR6-Fc, ruling eut a possible kinetic sltift. Sol
uble TR6-Fc (10 sg/mi) also augrnented suboptimal soluble anti
CD3 (100 ttg/mI)-stintulated proliferatioti, as shewn in Fig. ID.
The results of this section demonstrate that TR6-Fc can stirnulate
PBMC and T ceils, likely via its ccli sctrface hgand(s).

TR6 can intcract with two ligands on the T ccli surface, LIGHT
and FasL (11, 17). The third TR6 ligand, TLIA, bas littlc expres
sioti in T eeils (19), and thus is net relevant in our systetil. To
identii’ whether LIGHT or FasL was respensibie fer receiving
TR6 stimulation, we added soluble LIGI-IT (10 j.cg/ml) or Fas-Fc
(10 j.tg/mi) te T cells stimulatcd with a sctboptimal conceittratioti
cf PI-lA (0.2 Lg/ml) itt combinatien with sehd-phase TR6-fc (Fig.

IL-2. IL-5. IL-6, IL-10. IFN-y, INF-a, and GM-CSF in culture superna
tants wcre nteasured by commercial ELISA kits fient R&D Systems.
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was mcasured. B. Effect of various doses of TR6-Fc on PBMC stimulated with a suboptirnal dose of PHA. TRG-Fc in solution svas used at 0.3, I. 3, 10,
and 30 tLg/rnl, ‘hile PHA was used at a suboptirnal dose of 0.2 ig/ml. [3H]Thymidinc uptake by the relis vas measured at 48 and 72 h. C, Proliferation
kinetics ofPBMC stimulated by TR6-Fc and e suboptirnal dose oC PHA. PBMC were stirnulated with 10 rg/ml TR6-Fc in solution along with 0.2 ug/mlPI-lA. The proliferation of these cells ‘as measured ut 4$, 72, and 96 h. D, Effect of TR6-Fc on PBMC stirnulaled with a suboptimal concentration of
anti-CD3. PBMC were stimulated with TR6-Fc (10 jLg!ml) in solution and a suhoptimal concentration of soluble anti-CD3 (50 ng/rnl). Cr11 proliferationvas measured at 48, 72, and 96 h. E, Soluble LIGHT inhibited solid-phase TRO-promoted proliferation of PHÀ-stirnulated T cells. t-Iuman T ceils were
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and buffer in the second coating; TR2-Fc: wells coated with anti-CD3 in the first coating and TR2-Fc in the second coating. [3H)Thyrnidine uptake between48 and 64 h after initiation of culture vas rneasured. H. Comparison of solid-phase TR6-Fc vs TR6 without Ec for their stimulation efficacy of T cellproliferation. TR6-fc, TR6, or a conirol fusion protein TRI I-Fc svas directly coated on wells (1 ug.’50 pi/well during coating). PBMC werc caltured in
these wells in Ihe absence or presence of a suboptintal concentration of PI-lA (0.2 .ug/tnl). [3H]thymidine uptake between 56 and 72 h after initiation of
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lE). The solid-phase TR6-Fc in this experiment vas preparcd by
coating the culture wells with nonneutralizing anti-TR6 rnAb
(clone l7B07) followed by TR6-Fc. [3H]Thymidine uptake tvas
measured 72 h later. Solid-phase TR6 enhanccd T ccli prolifcration
in the presence ofsuboptimal PI-lA concentration, indicating that it
delivers a costimulation signai through its binding partners on T
celis. TR6 has two known hands on T ccli surface, LIGHT and
FasL. ldeally. to identii’ which ligand tvas involved in the process,
soluble LIGHT and FasL shouid be used as blockers in the culture.
The former vas used for this purpose. 1-lowever, because exoge
nous FasL in solution might lead to apoptosis of activated T cells,
it could flot be used as a blocker for this purpose. Thus. we used
soluble fas-Fc, which would bind to FasL and block the interac
tion between Fasl. and TR6. The result showed that LIGHT but not
Fas-Fc inhibited the proliferation, suggesting that LIGHT is a
likely molecule through which TR6 induces activation of T ceils.

One could argue that soluble LIGHT might block the binding of
TRÔ to fasL, and soluble fas might have lower affinity than TR6
in FasL binding (although thcre is no evidence for this assumption)
and thus eannot effectively compete with TR6 for binding to FasL.
With such assumptions, whether it is the LIGHT that transduccd
siznals into the celis remains in doubt. To gain additional evidence
for LIGI-IT-mediated reverse signaling, solid-phase TR6 vas used
to stimulate gldigld mouse spleen ceils, which have nonfunctional
FasL. J-luman TR6 can effcctiveiy bind to mouse FasL (data not
shown) and LIGHT (10). gk//g/d spleen ceils responded well to
solid-phasc TR6 stimulation (Fig. IF). suggesting that the major
part of thc reverse signaling is not via FasL. Solid-phasc TR2,
whieh binds to LIGHT but not FasL, costimulatcd mousc T cdl
proliferation when they were triggcred by suboptimal solid-phasc
anti-CD3 (Fig. 1G). Taken together, these data ffirther indicate that
LIGI-IT is the main molecule mediating the TR6-triggercd reverse
signaltng.

To compare the cfficacy of dimeric TR6-Fc vs monomcric TR6
without Fc on T ccii stimulation, and to test the hypothesis whether
thc observed stimulatoiy effcct ofTR6-Fc vas due to bloeking of
a putative ncgative rcgulatory autocrine loop by TR6-Fe or TR6
ieakcd into solution (sec Discussion for futiher elaboration), wc
coated these moleculcs directly on wells (I ig/50 sl/weii during
coating). PBMCs wcre ctdtured in thcse wells in the preswc of a
suboptimal concentration of PHA (0.2 sg/ml) for 72 h, and thy
midine uptake tvas measurcd. As shown in Fig. 1H, TR6-Fc but
not TR6 could enhance T cdl prolifcration. This showed that thc
power of cross-linking is correlated to the efficacy of TR6 stimu
lation. Morcover, this indicates that the existence of a negative
regulatoiy loop is unlikely, because if so, monomeric TR6 without
Fc Ieakcd into solution should more effectively enhance T cdl
proliferation than dimeric TR6-Fc.

TR6—Fc costiniuiation lad to augmentation oJ lymphokine
production by PBMC

1-luman PBMCs were cultured in the presence of a suboptimal
concentration ofPHA (0.2 ig/ml), PI-lA plus TR6-Fc (20 sg/ml).
or PHA plus eontrol recombinant protein TRII-Fc (20 sg/ml).
The cytokines secretcd into the supernatants at 24, 48, ancl 72 h
were tested with ELISA and the results are presented in Fig. 2A.
Because NIA tvas used at a suboptimal concentration, it induced
minimal cytokine production. When TR6-Fc vas added to the cul
ture, il drastically indueed production of cytokines such as IL-2,
IL-6, IL-10, GM-CSF, IFN-y, and TNF-a. In contrast, control pro
tein TRI I -Fc in combination with PI-lA did flot augment eytokine
production. Some Th2-type cytokincs, such as IL-4 and IL-5, werc
of veiy low levels in this system, and no changes wcre dctccted

(data not shown). Thus, costimulation from TR6-Fc lcd to aug
mentcd cytokine production in PBMC.

To assess whether the effect of TR6 tvas directiy on T cells,
TR6-enhanced lymphokine production tvas testcd in purified T
cells, which tvere stimulated with a suboptimal concentration of
solid-phase anti-CD3 aiong with solid-phase TR6-Fc anchored in
dircctly t’ia anti-human igG. Solid-phase TR6 significantly en
haneed thc TNF-cs and IFN-y production at 48 h by T celis (Fig.
1B, top tuo panels), as with total PBMC. Soluble LIGHT, but not
a control protein, TRI I-fc, prevented the augmentation of lym
phokine production. This suggests that costimulation of TR6 is
delivered to the T celis through a ccli surface TR6 ligand, with
LIGHT being a likely candidate. When stimulated with a subop
timal concentration of PHA in solution and solid-phase TR6, these
T celis aiso augmented IL-2 and GM-CSF production, compared
with PHA stimulation alone (Fig. 2B, bottom two pcmels).

TR6 bound to LIGHT expressed on Thi and Th2 ceils

LIGHT expression is up-reguiated on aetivated T cells (7): we
showed previously that TR6 spccifically bound to LIGHT cx
pressed on those ceils (10). In this study, we examined LIGHT
expression and association of TR6 with LIGHT on Th I and Th2
cells. These cells were stimulated with solid-phase anti-CD3 over
night. As shown in Fig. 3, ,ow J, TR6-Fc bound to anti-CD3-
aetivated Thi and Th2 cells (shaded areas), but not to oncs tvithout
activation (sohd lines). Unlabeied soluble TR6 (Fig. 3, row 2 with
out thc Fc tag) and anti-TR6-mAb (Fig. 3. bottant ,ma) inhibitcd
the TR6 staining, indicating that the binding was not nonspecific.
Soluble LIGI-IT (Fig. 3, cou’ 3) cffcctively bloeked the staining of
TR6-f e. These rcsults stiggest that the ligand of TR6 (likeiy
LIGI-lT) is expressed on aetivatcd ThI and Th2 celis.

TR6 costbnulotion On Thi and Th2 cdl protijèration and
iviuphokine production

Wc next assessed whether TR6 ditfl.rentially promoted Thl or Th2
function. In the presence of suboptimal solid-phase anti-TCRaf3.
solid-phase TR6 stimulated proliferation of both Thi and Th2 ecils
similariy and dose-dependently (Fig. 4, A and B); TR6-fe aione
without anti-TCR signaling had no effect on these cells (data not

shown). As these Thl and Th2 celis were >99% put-e T celis, this
expedment excluded the possibility that the effect of TR6 was
indirect via dendritic celîs or monocytes/macrophagcs. TR6 ncu
tralizing mAb (clone SK9E2) suppressed TR6-enhanced Thi and
Th2 proliferation in a dose-dcpcndent manner, while control
mouse lgG had no effeet (Fig. 4, C and D), indicating that the effect
ofTR6 is speciOc.

As TR6 showed no differential effect on proliferation ofThl and
1h2, we next examined its effect on iymphokine production by
these cells 48 h after restimulation (Fig. 4, E and F). As controls,
anti-CD28 and suboptimai anti-TCRci on the solid phase resulted
in dramatic IFN-y production by Thl but not Th2 celis (74,936 ±
56 vs 72 ± 23 pg/ml), and marked IL-5 production by Th2 but not
ThI ceils (586.9 ± 16.5 vs 1.1 ± 0.14 pg/mI), confirniing the Thl
and Th2 phenotype of the cells. When sohd-ph:tse TR6-fc vas
used aiong with anti-TCRc43, it sigmficantly increased IfN-y pro
duction by Thl ceils (42,587 ± 4,535.2 pg/ml), eompared with
anti-TCRa stimulation alune (8,064.5 ± 223 pg/ml); this aug
mentation vas biocked by anti-TR6 mAb in a dose-dcpendcnt
manner, showing the speeiflcity of the 1R6 stimulation (Fig. 4E).
IL-5 production by the ThI cells was negligible (<5—10 pg/ml)
with such stimulation, as expccted, sinee IL-5 is a Th2 iympho
kine. Th2 cells stimulated with TR6-Fc and anti-TCRcr produced
httle IFN-y (<30 pg/ml), as expccted, since IFN-y is a ThI lym
phokine; however, they also faiied to produce Th2 lymphokinc
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FIGURE 2. TR6-Fc strongly augmented cytokine production by PlIA
stimulated PBMC and anti-CD3-stimulated T celk .4, Human PBMC wore
culturcd in the presence ofa suboptimal concentration of PHA (0.2 jig/ml).
PHA plus soluble TR6-Fc (20 ig/ml). or PHA plus control recombinant
protein TRÏÏ-Fc (20 ig!mI). TOc cytokines secreted into tOc supernatants
al 24.48, and 72 h were tested with ELISA. Samples wcre in duplicate. and
tOc menus SD of lyrnphokine levels are shown. TOc cxperiments were
conductcd at lcast twice with similar rcsults. A representative set of data is
prescnted. B, Peripheral blond T ceils were cultured in wclls coated with
TR6-Fc and a suboptimal concentration of anti-CD3 (top puneI.s. In some
culture, tOc T ceils were cultured in the presence of a suboptirnal concen
tration ut PHA (0.2 pgiml) in wells coated with TR6-Fc (bottoin panels).
To prepare soiid-phase anti-CD3, the wells of 96-weil plates were cnated
overnight at 4°C with 2.5 ng/50 l/weil anti-CD3 (OKT3) in PBS. To
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FIGURE 3. LIGI-IT was tOc major TR6-Fc ligand on activatcd TOI and
Th2 cells. Human Thi and Th2 ceils were polarized for 13 days, and
reactivated with solid-phase anti-CD3 (clone UCHTI, I jsg/ml for cnating)
ovcroight. Binding of TR6-Fc (15 ng!samplc) with thcse cells (I X I0’
cells/sarnplc) vas detected by mw cytornetry using PE-conjugated goat
anti-human IgG. Soluble TR6 without tOc Fe tag and LIGHT was used as
inhibitors (5 j.tg/sarnple) during tOc staining, as indicated. Soiid lines: relis
without anti-CD3 reactivation; shaded arca: cells reactivated with solid
phase anti-CD3 nvemight.

IL-5 (Fig. 4F). Thc resuits ofthis section show that TR6 cnstimu
iatinn preferentially augments Thi but not Th2 ccii function in
ternis of production of certain Iymphokines, althnugh it stimulated
sirnilar proliferalion responses of both ccli types.

TR6 cind LIGHT on CTL developntent

b ftirther asscss thc functional consequence nf TR6 cnstimula
tion, we cxamined thc CTL dcvclopment of PBMC in the presence
of soluble TR6-Fc. As TR6 expresses in many gastrointestinai tu-
mors (Ref. 17 and our unpuNishcd observations), and —10% of
hurnan intestitial intraepithclial T cells are y3 T cells, wc decided
to examine the ctfcct ofTR6 on CTL activity of y6 T cells. For this
puipose, Daudi cells, which arc known to elicit massive expansion
ofVy9V62 T cefls and are recognized in a TCR-depcndent fashion
by these T cells (24—26), tvcre uscd as both stimutators and targets.
As shown in f ig. SA, y5 CTL activity was enhanced by soluble
TR6-Fc but not normal IgG, in agreement with tOc proliferation
and cytokine stttdies shown in figs. 1 and 2. Wc further dcmon
stratcd that soluble LIGI-1T signiflcantly inhibited unmanipulated
(wtlhout involvemcnt of TR6) CTL activity (Fig. 58), sugges6ng
tOc tmpnrtance of LIGHT reverse signaling in u y8 CTL response.

prepare solid.phase TR6. tOc wciis wcre flrst coatcd overnight at 4°C with
anti-human IgG (250 ng/50 iil/well) in PBS, fnilowcd by TR6-Fc (250
ngiSO jil/weil) in PBS at room temperature for 6 h. Soluble LIGHT or
controi recombinant protein TRi l-Fc (10 g/mi for both) svas added In
some cultures, as indicated. The culture supcrnatants were harvesird ut
48 h and assayed for TNF-a and IFN-y (top panels), or harvested ut 24, 48,
and 72 h for IL-2 and GM-CSf (hnttom panels). Sampies were in dupli
cate. The experirnents were perfomted more than twice, and means ± SD
of n reprcseutative experirnent are shown.
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FIGURE 4. Etïects of TR6 costimulation on pto
liferation and lymphokinc production ofThl ami Th2
ceils. Th I and Th2 celis werc cuitured in the presence
of subopiimal solid-phase anti-TCRap and var,ous
arnounts of solid-phase TR6. To prepare solid-phase
anii-TCRa and TR6, the wells of 96-weli plates
were first coated overnight at 4°C with 50 rl/well
PBS containing 250 ng goal anti-human lgG and 250
ng goat anti-mouse lgG. After washing. the wells
were incubated with 50 pi PBS containing 3 pg/rnl
anti-TCRcs ami various concentrations of TR6-Fc,
as indicated. In some wells. humun lgG svas used in
place of TR6-Ec as a control. i and B, Solid-phase
TR6 enhanced Thi ami Th2 proliferation dose-depen
dently. Ccli prolifettion vas measured by [3HJthy-
midine uptake 2 days after initiation of culture.
Means ± SD of triplicate are shown. Similar resuits
were ohtained in three experimenis. C and D. Anti
TR6 mAb neutralized the enhancing effect of solid
phase TR6 on Thl and Th2 proliferation. ThI and
Th2 ceils were stimulated with a suboptimal concen
tration of solid-phase anti-TCRa and an optimal
concentration of solid-phasc TR6-Fc (20 j.tg/ml dur
ing coating). Anti-TR6 mAb (clone EO,) of various
concentrations, as indicatcd. was added W the culture;
normal mouse lgG I was used as a control. [31-ljThv—
midine uptake 2 days after initiation of culture was
rneasured in tdplicate, and means ± SD are shown.
Similar results were obtaincd in ihree experintents.
The two bottom curves with hollow symbols in each
panel were sampies stirnulaied with anti-TCRa in
the absence ofsolid-phase TR6. E and F, Differential
effccts oC solid-phase TR6 on ThI and Th2 cylokine
production. Supernatants from samples of C and D
were collected 4$ h after initiation oU culture, and
their IFN-y (E) and IL-5 (F) levels were determined
by ELISA.
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Morcovcr, solid-phase TR6-Fc similarly cnhanced y5 CTL activ
ity, like soluble 1R6-Fc, and such enhancement could be neutral
ized by soluble LIGHT (f ig. 5C), suggesting that LIGHT is the
likcly moleculc that TR6 interacts with, and that cross-linking
LIGHT costirnulatcs T cclls in yl CIL dcvelopment. We also
demonstrated that solid-phasc TR.6 could augment a I cdl CIL,
using T ccli blasts as target colIs (Fig. 5D). Tise revclation ofsuch
effcct of TR6 under physiological conditions is discusscd Inter.

Discussion
In this study, we report that soluble TR6-f e enhanced T cdl pro
liferation, cytokine production, and CIL dcvelopment, which
could be blocked by soluble LIGHT. Moreover, TR6-Fc-enhanced
proliferation could also bc observed in gÏd/g/d T cells. Such co
stimulation preferentially promoted TitI but not Th2 cclls in their
lymphokinc production. Binding studies showcd that the associa
tion betwcen TR6 and both ThI and Th2 cells cottld be inhibited
by LIGHT. Taken together, these results indicate that the ligand of
TR6 on T cells actually receives costimulating signais, anti LIGI-lT
ts likely tnvolved in thc process.

Wc werc initially perplexed by tise finding thnt soluble TR6-Fc
enhanced proliferation and cytokine production in suboptimally
mitogen-stimuiated PBMC. Is this bccause TR6 cross-rcacts with
other mcmbcrs of the TNF family and thus blocks their putative
negative effcct on T cells via their receptors? So far, no TNFR
members, including Fas and TR2. arc known to transducc negative

signaIs into T cclls to inhibit their activation. Thcreforc, no mattcr
lsow weII TR6-Fc cross-reacts with other TNf members, no pos
itive signais will be gcnerated. Thus, we are left with n more plau
sible mechanisns: TR6-Fc cross-Imks its ligand on the T ccli sur
face. and tise ligand revcrsely transduces costirnulating signaIs into
T cells. In this model, soluble TR6, although a TNf R nsember
functions as n ligand, while its ligand functions as a receptor. How
plausible is this reverse signahng hypothesis? We established a
more clear-cut system by putting TR6 on the solid phase to sec
whether it could trigger T ccli activation. In this system, tise pos—
sibility that TR6 functioned as n blockcr to repress tise putative
inhibitory interactions bctwcen any TNF nsembers and TNFR
members vas exciuded, as TR6 was flot in solution, and its total
amount vas minute. In tise presence of TCR cross-linking (e.g.,
PHA in Fig. lE, anti-CD3 in Fig. 28, anti-TCRm in Fig. 4. or
alloantigens in f ig. 5, C and D), solid-plsase TR6-fc augmetsted T
ccli proliferation, lymphokine production, and CIL developnsent,
confirming that TR6 can reversely and directly costimulate T ceils.
Soluble LIGI-IT inhibitcd TR6-enhanced proliferation (fig. lE)
and lymphokine production (Fig. 28), and repressed CIL devel
opment (Fig. 5, C atsd D). Morcover, LIGHT inhibited the binding
between TR6 and activatcd Thi or Th2 colis (fig. 3). It is ac
knowledged that the use of soluble LIGHT as a blocker cannot
prove convincingly tisat LIGHT mediates tise reverse signaling,
because one eouid reasonably argue tlsat soluble LIGhT bas
blocked the binding site ofTR6 to fasL, wlsich is also capable of

-. 2ta,0-

isejo- - - - -

tRIO
10 20

t
os
z.

F

75-j

25

.—nIi—litl, iiit, Il cofltrllt nhI(. tii’nii)



Tise Journal of lrnrnunology 6819

Effcctortfargct Ratios
FIGURE 5. ÉWect of LIGHT reverse signaling on CTL developmenLA, Soluble 1R6-Fc enhanced y8 CIL developmenL Human PBMCs were
stitssulated with mitornycin C-treated Daudi cells fa B cdl lyrnphorna ccii me) for 6 days. 1R6-Fc (20 ig/ml) or normal hurnan lgG (NH lgG. as a control,
20 ig!nsl) was added 10 the culture in thebeginning. CIL activily in tIse stirnulated clls svas measured on day 6 by a standard 4-h 5tCrrelease assay, using
Daudi cells as targets on day 6. Percentage of targct cdl lysis s shown. Ihe experiments were perfomsed twice with similar results, and the data of a
representative cxpchment arc prescnted. B, Soluble LIGHT inhibiled y6 CIL development. Ihe experiment svas performed as describcd above, but in the
absence of soluble TR6-Fc. Soluble LIGI-IT (10 j.cg/ml) vas added in the beginning of tise culture. C, Solid-phase TR6-enhanced y6 CIL activity and
soluble LIGHT neutralized such enhancement. Ihe expehment svas perfornied as described in A, with following modifications, lite round-bottont wells
wcre precoated with IR6-Fc ((1.5 tg!50 jiLwcll) ovcnsight at 4°C and then washed wilh PBS. CeNs secte cultured in these wells containing 250 .rl medium
tu the absence or presence of 20 g/rnl soluble LIGFII. On day 3 ofthe culture, 70 IiI ofsupernatants per well wcre replaced with fresh complete medium.
Tise 51Cr-teiease assay svas cotsducted on day 6. D, Solid-phase TR6 enhanccd cs CIL activity. Ihc experiment was perforrned as described in A. except
that mitomycin C-treated PBMC from a second individual svas used as stirnulators. These ?BMCs without mitomycin C-treatrnent were stimulated with
solid-phase anti-CD3 attd anti-CD2$ for 6 days. and svere thcn used as target cells in tise standard 4-h 51Cr-t’eiease assay.

reverse signaling (27—29). To addrcss this concerts, we uscd solid
phase TR6 to costiniulate gld/gld mouse T celis, which have mu
tatcd nonfstnctional FasL, in thc presence ofsolid-phase anti-CD3.
At 0.5 jig/ml of anti-CD3, wild-type and gld/g/tI spleen ceNs sim
tlarly augmented proliferation in the presence of TR6; although at
lower anti-CD3 concentrations, gld/gld splcets ceils respotsdcd
somewhat less well. We are flot sure whether such a difference is
due tu tise involvement of FasL, but it is obviotts that 1R6 eould
significantly costimulate T celis in the absence offunctional FasL.
Moreover, TR2, which binds LIGHT but flot FasL, could aiso eu
stimulate mouse T celis in the presence of suboptimal anti-CD3.
Our must recent study revealed that tise major ccli sttrface ligand
that TR6 bitsds was LIGHT, because TR6 bound weli to wiid-type
T ceils but bat most of such binding in LIGHT gene knockout T
cclls (data flot shown). Taken together, these data suggest that a
TR6 ligand on tise T ceH surface eau revcrsely receive costimula
tion signais from its receptors, and that at Ieast a niajor portion of
such costimuiation is via LIGI-IT. With that said, wc catsnot mie
out tise possibility that a small fractton of tise reverse costtmulation
might also be mediated by fasL, or other so far uncharactcrizcd
TR6 ligand(s) on the T ccli surface. As TLIA, the most recently

discovered ligand ofTR6, ts flot expressed on lymphocytes (19), it
ts thtts unltkely tu be involved in such reverse signaliflg.

Reverse signalitsg through ligands is flot a far-fetched concept.
Several TNF members on ccii sctrfaces can revcrseiy transdttce
signais into ceils as with LIGHT. Lanier and colleagues (30) and
Gray and colieagues (31) showed that CD4OL transdtices costimu
lation signais into T ceils. Wiley et al. (32) reported that CD3O
ligand cross-iinking activates neutrophils, and Cerutti et al. (33)
showed that such reverse signaling inhibits 1g class switch in B
celis. Reverse signaling through nsensbt’ane TNf-u confcrs resis
tance of monocytes and flsacrophagcs tu LPS (34). Cross-iinking of
TRANCE enhances IFN-y secretion by activated Tisi cells (35).
Reverse signaltng through FasL can promote maximal prolifera
tiots ofCD8 cytotoxic T celis (27—29). Cross-linking ofTRAIL by
its solid-phasc death reccptor 4 incrcases IFN-y production and T
ccli proiifcratiofl (36). in the case ofCD4OL, its ligation results in
general protein tyrosine phosphot’viatiots, Ca2 itsflux, and activa
tion of Lck, protcin kinase C, c-Jun N-terminai kinase, and p38
mitogen-activated proteifl kinase in EL4 thyoma celis (37, 38).
TRAIL cross-hnking also induces p38 mitogen-activated protein
kinase activation (36). Thereforc, it shouid flot be surpdsing tisat
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LIGE-II can aiso rcccive signais from its rcccptors. Tbe rnechanisrn
of signal transduction via LIGI-IT is unknown at this time. LIGHT
bas a short and featureless cytoplasmic tau (7). Thereforc, the sig
naling viH must Iikeiy depend on molecules it associates with.

Wc recently reported that human TRÔ-Fc could bmd to mouse
LIGHT, and that httman TR6-Fc inbibited CIL in vitro and allo
graft rejcction in vivo in mice (10). In that paper, the proposed
mecbanisms ofthosc observations were that TR6 blockcd the co
stimulation from TR6 to TR2, or reversely from TR2 to LIGHT
(10), or both, although at that time, solid evidence of reverse sig
naling through LIGHT tvas nul available. Our cuiTent findings
have fulfihied une ofour initial predictions that the inhibitory effect
ofhuman TR6 in the mouse system shouid be attributed tu TR6’s
interference with the bidirectional costimulation between TR2 and
LIGI-IT. However, huw can we explain the seemingly opposite
effects of soluble buman TR6-Fc on human and mouse T ccli re
sponses? The Ec portion used in TR6-Fc and TRI l-fc was mu
tated to eliminate FcyR binding, and TR6-fc ducs not bind to
eithcr human or mouse Fc7R-bearing eefls (data not shown).
Thercfore, tbe opposite effects of TR6-Fc cannot be explained by
ils effective anchoring, or the lack of it, un feyR in the human vs
mouse systems, respectively. Rather, this might be a resuit of dif
ferent affinity of human TR6 for human and mouse LIGI-IT. De-
cause TR6-Fc is a dimer (data not sbown), in theoiy it can play
dual roles whcn addcd itou solution: as an inhibitor blocking the
bidirectional interaction bctwcen TR2 and LIGHT, or as a co
stimulator cross-linking LIGI-IT. The former inhibits T ccli re
sponse while tlw latter enhances it. Its final cffect should be the
sum of these two opposite functions, which migbt have different
affinity reqttirements. In the hurnan system, we behcve that higher
affinity betwcen TR6 and LIGI-IT tips the balance toward costirnu
lation; in the mouse system, putative lowcr affinity bctwccn human
TR6 and mouse LIGHT does net result in sufficient LIGHT cross
linking, but might be enough for TR6 tu interferc with the binding
between TR2 and LIGHT. further studies are nceded tu examine
this hypotbesis.

When a stimulatory effect of a moiecule is feund, wc aiways
bave to distingtHsh betwcen two pussibilities: the said molecule
indecd bas a positive effect. or inhibits an existing negative rcgu
iatory ioop. Dues 1R6 block an existing negative autocrine loup in
which LIGHT acts as a receptor? This possibility is best argued
against by the fact that in our model, solid-phase TR6-Fc cuuld
stimulate T ceils. Whcn TR6-Fc vas used tu coat the plate, ai
though a concentration of l—2 j.rg/iOO l/tveil vas used, only a
very small fraction of it actualiy tvent ente the plate, and >99.9%
of the protein vas washcd away after the ceating prucess. Tbus,
not >2 ng ofTR6-Fc was actuaiiy coated on a weli. If we consider
hotv small a fraction of Ibis will leak into solution, it is uniikeiy
sucb e minute amount of soluble TR6-Fc couid interfere with an
autocrinc loup. Can TR6-f e un tbe soiid phase block an autocrine
loup? We are net aware uf any example in an experimentai system
that this can be achieved. Because a ccli is a three-dimensional
entity, sohd-pbase TR6-f e can only interfere with a part ofthe ccli
surface that bas contact with the weii. Therefore, the sulid-phase
TR6-f e cannut prevent the interaction between a putative soluble
suppressive autocrine and LIGI-iT on must parts ofthe ccli surface
that are net in contact with TR6-fc. Consequently. must LIGHT
molecuies un a cdl surface shuuid stili rcccive negative signais
frem the putative suppressive autocrine, if there is une. Therefore,
it is vcry difficult tu expiain the positive effect ofsolid-phase TR6-
Fc. In addition, if soiid phase TR6-fc wcre tu interfere with tbe
negative regulatory loup by leaking itseif into solution, TR6 with
eut Fe (hkcly monumers) should be more efficient te do so, and
cunseqtientiy enhance T ccli proliferation better than TR6-Ec. This

vas obvieusiy not the case. because wc shuwed that TR6 without
fc en sohd phase even failed tu effectively augment T ceH prolif
eration (Fig. 1H). The iow efflciency cf TR6 withuut Fc in this
experiment might be due te its munomer format, which is less
potent in cross-Iinking LIGHT than the dimeric format cf TR6-Ec.
Data from hterature do not support the negative ioep theety. lt bas
been shuwn that L1GHT transgenic mice overcxpressing LIGHT
un T cclls have enhanced immune respense (39, 40, tu be detailed
in the next paragraph). Ibis result dues net fit tu thc medel in
whicb LIGHT transduces negative signais intu T ceils, because if
su, thc LIGHT transgenic mice shuuld have suppressed immune
response instead. Lastiy. there are —4—5 TNf famiiy mcmbers
capable of transducing signais intu ceiis, but none of thcm trans
duces a negati\c ene. Based un these arguments, it is cenciuded
tbat TR6 excrts ils effect by stimuiating T cefls via LIGI-IT, but flot
by interfering with a putative negative autocrine luop.

As mentiuned abeve, LIGHT uverexprcssiun in the T ceH cern
partment in LIGHT transgenic mice rcsuits in prefeund inflamma
tion and develepment of auteimmune syndromes (39, 40); T cefls
overexpressing LIGHT have an activatcd phenutype (39). Proba
biy. such up-regulated immune respense uf T cefls is due te stim
ulation of TR2/Hempesvirus entry mediator un dendritic celis by T
celI-derived LIGI-IT, and the dendritic ceils in turc augment T ccli
activiW; TR2 on T cefls can also reccive LIGHT stimulation di
rectly from their fellew T ceils (40). l-Iewcvcr, it is entirciy pos
sible that overexpressed LIGI-IT un thc T cefls receives stimulation
rcverscly from TR2 expressed en uther T ceiis, and such stimula
tion augments their rcsponsivencss tu TCR hgatien.

What is the biolegical significance ef reverse signahng thruugb
LIGHT? We found that the reverse signaling tbreugh LIGHT pref
erentialiy premutcs Thi but net Th2 ccli cytukinc production. In
agreement with this finding, a reccnt report demenstrated that mu
cosal T celis everexpressing LIGFIT show enhanced Thi cytekine
production (39). Because CTL differentiation dcpcnds un Thl cy
tokines, it is net sumprising that CIL activity tvas augrnented after
custimulation tbruugh LIGHT by TR6-Fc. It is werth mnentiening
that soluble LIGHT inhibitcd CTL activity (without TR6-Fc stim
ulation) (Fig. 5C). Ibis finding tinderscores the importance of
LIGE-II costimulatiun in CIL develupment. I-Iarrup et al. (41) no
ticed that et an intermcdiate concentration LIGI-IT premotes MLR.
but it fails to do su et a higbcr concentration (10 g/mi). Such a
biphased respense probabiy rcflects e shift from custimulation
through TR2 by soluble LIGHT tu inhibition uf TR2-LIGHT
bidirectienal custimulation, depending un the concentration cf
LIGI-IT. Ibis result is consistent with our reverse signaiing theoiy
and flndings. Wc specuiate tbat in vivo, the biuiogicai fonction ef
endugenous soluble LiGHT. whicb comes frem cdl surfaces after
shedding (9), might be stimuiatomy or inhibitory, depending on ils
local concentration and status cf aggregatiun. Because dendritic
cclls aise express LIGHT, TR2 un the T ccli surface migbt activatc
dendritic ceils through LIGI-IT tu modtilate their APC function. If
se, this will represent e new mechanism fer T ccli and dendritic
ccli interaction and cooperation. In tbis study, we used recombi
nant TR6-f e as an artificiel binding partner for LIGHT. In vive,
molecuies that can trigger LIGHT signaiing are probably ceH
surface TR2 or LTf3R. The endegcnous TR6 might act as an
inhibitor tu the bidirectional cestimulatien behveen TR2 and
LIGHT, or fonction as a custimtmlating facter tu LIGHT, dcpending
en wbcther il cxists as munemers, or as trimers like other cdl
surface TNFR family membcrs. This aspect is worth ffirthcr
investigation. If the endogenous TR6 functiens as an inhibitur,
thcn gastreintestinai tumers secreting TR6 viIl certainly gain
survivai advantage by interfering with y as weii as a T ccli
CIL activitics.
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Our stcidy rcvealcd a nove! phcnomcnon of reverse signaling
through a ce!! surface TR6 ligand, most !ikely LIGI-IT. Increasing
cases of such bidircctiona! signal transduction between receptors
and ligands have bccn found in biologica! systems. We can takc
advantage of such a phenomenon by using a soluble ligand (or
receptor) to b!ock signaling in both directions and thus modulate
biologica! responses. However, we must be aware that soluble li
gands (or receptors) vill necd to be monomer without aggrcgation
or ce!! surface anchoring capabilities to be reliable antagonists, or
cisc they wi!! become agonists for one of the directions.

Acknow)edgments
We thank Ovid Du Silva, Reviscur-Redacleur, Research Support Office.
Rcsearch (‘enter, Center Hospitalier de i’Universite de Montreai for the
editoria! assistance. We also thank JeW Carrel for ho tcchnical assistance.
and Drs. Thcodora Salcedo and Paul À. Moore for critical reviewing the
rnanuscript.

Relèrences
1. Aggarwal, B. B., and K. Natat’ajan. 1996. Tumor necrosis factors: dcvelopmcnts

during 16e Iast decade. Eue. Cv/oh Inc Ne,w. 7.93.
2. I3azzoni, F.. and B. Bcutler. 1996. The lumor nccrosis Cictor ligand asd receptar

families. !s Engi. J. Med. 334:1717.
3. Tamada, K., K. Shiniozaki, A. L Cisaposal, G. Zhtx. G. Siea, D. Flics. T. Bosse,

H. Hsu, Y. X. Fu, S. Nagata, et al. 2000. Modulation of T-ccll-medjatcd immu
sity in tumor and g,aft—vcrsus-host disease moUds through thc LIGHT co—stim—
ulatory pathway. Nu!. iliet/. 6:283.

4. Black, R. A.. C’. T. Rauch, C. J. Kozlosky. J. J. Peschon. J. L. Slack.
M. F. Wolfson, B. J. Castncr. K. L. Stocking. P. Reddy. S. Srinivasan. ci al. 1997.
A metalioprocinasc disintegrin that releascs tumour-necrosis factor-a from celis.
‘Ai!iire 385: 729.

5. Kayagaki, N A. Kawasaki. T. Ebata, II. Ohmoto. S. Ikeda, S. Inoue, K. Yosltino.
K. Okumura, and H. Yagita. 1995. Metattoproteinase-nicdiated release ofliuman
Fas ligand. .1. Exp. lIed. 182:1777.

6. Lum, L.. B, R. Wong, R. Josien, J. D. Bechercr, H. Erdjumest-Bromagc,
J. SchlondortE P. Tempst, Y. Choi. and C. P. Blohcl. 1999. Evidence fors role
of s tumor necrosis factor-a (TNF-a)-convertisg enzyme-ltkc protcasc in shcd
ding of TRANCE, ii TNF family membcr involvcd in ostenclastogenesis and
dendritic ccli stirvivai. .1. Bio?. Cheni. 274:136/3.

7. Mauri, D. N., R. Ebner, R. I. Montgomery, K. D. Kochel, T. C. Chcuns, G. L. Yu.
S. Ruben, M. Murplw, R. J. Eisenberg. G. H. Cohen. et al. 1998. LIGHT, a new
member of tise TNF supcrfamilv. and lymphotf)sin o are ligasds for herpessirus
cntry mediator. 1mnuuiit’ 8:21.

8. Tantada, K., K. Shimozaki, A. I. Chapoval, Y. Zhai. J. Su, S. F. C’hen,
S. L. Hsieh, S. Nagaia, J. Ni, and L. Chcn. 200(1. LIGHT, a TNF-like inolecule,
costimulaies T ccli proliferation and is rcquirecl for dendritic ccll-mediatcd allo
geneic T ccli response. I hnn,unol. 164:4105.

9. MercI, Y., J. M. Schiano de Colella. J. Harrop, K. C. Decn, S. D. Holmes.
T. A. Wattam. S. S. Khandekar, A. Tninch, R. W. Ssvee(, J.A. Gastaul, et al.
2000. Reciprocal Cxpressi0fl of lIte TNF family receplor ltcrpes virus cntxy me
diator md its ligand LIGHT on actisatcd T cells: LIGHT dosvs-regulaizs ils osen
receplor. J. Immune?. 165:4397.

10. Zhang. J.. T. W. Salcedo, X. Watt. S. Ullrich, B. Hu. T. Gregorio, P. Feng. S. Qi,
H. Cites. Y. FI. Cho, et al. 2001. Modulation ofT-ccli responscs 10 alloantigetts
by TR6/DcR3. J. Clin. hivesl. 107:1459.

Il. Yu, K. Y., B. Kwoit, J. Ni. Y. Zhax, R. Ehncr, and B. S. Ksson. 1999. A nesvlv
idcntifled tncmber of tumor necrosis factor rcccptor superfainily (TR6) sup-
presses LIGHT-mediaicd apopiosis. 1 13mo?. Chez,,. 274:13733.

12. Flarrop, J. A., M. Reddy, K. Dede, M. Brigham-Burkc, S. Lyn, K. B. Tan.
C. Silvennan, C. Eichman, R. DiPrinzio, J. Spampanato, et ai. 1998. Antibodics
(o TR2 (herpcsvirus cati-y mediator), a ttew member 0f (6e TNF rcceptor super
fansily, biock T ccli prolifcraiion, expression of activation markcrs. and produc
lioti of evtokines. .1. hnntuntsl. /6?:? 786.

13. Ksvon, B. S., K. B. Tas. J. Ni, K. O. Oh, Z. FI. Lec, K. K. Kit,,, Y, J. Kim,
S. Wang, R. Getttz. G. L. Yu. et al. 1997. A ncwly idcntifled member of (he tussor
necrosis titctor receptor supcrfamily with t svide tissue distribution and invoive
nient in lymphocyte activation, J. Poil. Chenz. 272:14272.

14. Zhai, Y., R. Gso, T. L. 1-Isu, G. L. Yu, J. Ni, B. S. Ksvon, G. W. Jiang, J. Lu.
J. Tan, M. Ugusttis, cl ai. 998. L1GHT, a nove1 ligand for lvmpho(oxin Q re
ceptor and TR2IHVEM induees apoptosis and suppresses in vivo tussor forma-
lion via gene transfcr. J. Clxii. btve.sf. /02:1142.

15. Rooney. I K. D. Butrovich. A. A. Glass. S. Borboroglu. C..A. Benediet,
J. C. Whiibeck, G. H. Cohen, R. J. Eisenberg, and C. F. ‘/are. 20110. Titc lyns
pltotoxin-Q receptor is necessarp and sufficient for LIGI-IT-mediatcd apoptosis of
tuttior ceils. J. Plot. Client. 275:143(1 7.

16. Brosvning. J. L., I. D. Sizisg, P. I.awtcmn, P. R. Bourdon. P. D. Reniiert,
G. R. Majcaa, C. M, Ambrose, C. Hession, K. Miatkowski. D. .A. Griffiihs, et ai.

(997. Characlcrization of lymplicitoxin-nQ complexes on the surface of nlouse
lymphocytes. J. Immune?. /59:3288.

17. Pitli, R. M., S. A. Marsters, D. A. Lasvrencc. M. Roy, F. C. Kischkel, P. Dosvd,
A. Huang, C. J. Donahuc. S. \V. Shcovood, D. T. Baldwin. et ai. 1998. Genomic
amplification ofa decoy recepior for Fas ligatid in lung and colon cancer. Nuime
3 96:699.

18. Bai, C.. B. Connoiiy, M. L. Metzker. C. A. Hilliard, X. Lis, V. Sandig,
A. Sodenuan, S. M. Galloway, Q. Lis, C. P. Atistin, attd C. T. Caskcy. 2000.
Oscrcxpression of M68/DeR3 in huntan gaslrointcstinal iraet tumors independcnt
ofgcsc amplification and ils location in a four-gene ciuster. Pisse. Nom?. .4 catI. Set.
US-t 97:1230.

9. Migose, T-S.. J. Zhang, X. Luo, L. Zhuang, C. Chen, B. I’Iu, J. S. Hong.
J. W. Pcrrs, S. F. Chcn. J. X. H. Zhou, et al. 2002. TLIA isa navet ligand for
DR3 and TR6/DcR3 and fusetions as a T cdl coslimulator. hnm,,n,n’ /6:479.

20. Consoliy. K.. Y. H. Cho, R. Duan. J. Fikes. T. Gregorto, D. W. LaFleur,
Z. Okoye, T. W. Saieedo, G. Santiago, S. Ullrich, cl al. 2001. In vivo inhibition
of Fs,s ligatsd-mediatcd kitting by TRf’, a Pas ligand decoy receptor. J. Pharmu
col. E.v0. 1h cm. 298:25.

21. Heyniugen. V. V.. B. J. H. Broek, and S. V. Flcyningen. 1983. A simple method
for rasking the affinilies of itiosocional antibodies. .1 fm,tntu,iol. Mei?,ods 62:147.

22. Luo, H., FI. Chctt, P. Dalozc. J. Y. Chaos, G. SI. Louis, and J. Vu. 1992. Inhi
bition of in vitro immunoglobulit, production by rapatnyciti. Transplaniaiion 53:
1071.

23. Luo, FI.. H. Chcn, P. Dalozc, G. Si. Louis, and J. tVu. 1993. Anli-CD2S anti
aitlihody- and IL-4-induced humas T cdl proliikration is settsilivc to rapamyctn.
(‘liii. E.rj.m. lntntt,no?, 94:3 71.

24. Davocteau, F., M. A. Peyrat. M. M. Hallct. J. Gaschet, I. 1-loude, R. Vivien,
H. Vie, and M. Bontieville. 1993. Close correlalion beissecn Daudi and myeo
bactcrial antigen recognition by Ituman y8 T cclls and expressiotl 0f V9JPCIy/
V2DJC6-eseodcd T cdl teceplors. j. jmnmiium,oI, 151:1211.

25. Bukosvski, J. F., C. T. Monta, Y. Tanaka, B. R. Bloom, M. B. Brenner, and
H. Band. 1995, Vy2VS2 TCR-dependest recognition 0f non-peptide antigcns and
Daudi nAIs analyzed by TCR gene (ransfer. J. hnmuno?. 154:996.

26. Fisch, P.. M. Malkovsky, S. Kovats. E. Stums, E. Braakman. B. S. Kletn,
S. D. Voss, L. W. Morrisse, R. DeMars, and W. J. Weicit. 1990. Recognition by
huttian VI/V62 T ceils of a GroEL homolog on Daudi Bttrkitt’s iytstpboma
cells. Science’ 250:1269.

27. Suzuki, I.. and P. J. fink. 998. Maximal proiifcration of cytotovic T lympho
cytes requires reverse signating througit Fas ligatid. J. titi. Akd. 187:123.

25. Suzuki. 1., and P. J. Fittk. 2000. The dual functions of Fas tigattd in the regulation
of peripheral CDs and CD4” T cefls. Pioc. Nuit. .-lcad. Sel. USA 97:1707.

29. Suzuki, I., S. Mania, T. E. Boursalian, C. Becrs. and P. J. Fink. 2000. Pas ligand
coslimuia(es thc in vivo proliferation of CDS’ T cclls. J. Inimnunri?. /65:5537.

30. Casssbvab. M., J. H. PhIlips, and L. L. Laitier. (994. CD4O preferentially co
stimulates activatiot, of CD4” T iyniphocytes. J. hxmunol. 152:1523.

31. van Essen. D., FI. Kikutani. asd D. Gray. (995. CD4I) ligand-transduced co
stimulation of T celis in thc deseiopment of helper function. Nu!ure 378:620.

32. Wiley. S. R., R. G. Goodwin. and C. A. Smith. 1996. Reverse sigualing via CD3O
ligand. .1 hnnuimto?. 157:3635.

33. Cemiti, A., A. Schaffer, R. G. Goodsvin, S. Shah. I-I. Zau, S. Ely, and P. Casali.
2000. Engagement of CDI 53 (C’D30 Ogand) hy CD3O T cells inhibits class
swilch DNA reeombination and antihody production in humas IgD”IgM B
ccits. I Imm,iunol. 165:786.

34. Eissncr, G., S. Kircliner, FI. Lisdncr, W. Koich, P. Jasosctt, M. Greli,
P. Schcttrich, R. Andreescts, and E. tloller. 2000. Rcvetse signaliitg througli
transmembrane TNP confers resistance 10 lipopoiysacetiarudc in humas mono
cytes and macrophages. J. hmummunol. 164:6193.

35. Cheit. N. J,, M. W. Fluang, and S. L. Flsich. 2001. Enhanced secrction of IFN-y
by activatcd Thi eetls oceurs via reverse signating hrougit TNF-relalcd activa
tion—isdticcd cytokine. I hnnumno?, 166:270.

36. Cttou, A. H.. FI. F. Isai, L. L. Lin, S. L. Hsieh, P. I. Hsu, and P. N. Hst,. 200!.
Enhasced prolifcralion anit increased IFN-y production in T cctts hy signal trans
duccd ihrough TNF-relaied apopiosis-inducing Itgand. J. Immune?. 167:1347.

37. Brenner, B., U. Koppenhoclkr, A. Lepple-Wienhues, FI. Grassme, C. Motter,
C. P. Speer. F. Lasg, and E. Gulbins, 997. The CD4O ligand dircctty activates
T-lymphocytes via lyrositic phosphotylalion dependcst PKC activation. Piochent.
Bioph,i’s. Re.m. Co,mt,mttin. 239:11.

38. Bresncr, B., U. Koppenhoefcr, I-I. Grassnse. J. Kun, F. Lang, and E. Guibins,
1997. Evidence fora nove1 function ofthc CD4O higand as a signallittg molecule
in T-lymphocytes. FEBS Le!!. 4/7:30?.

39. Shaiklt, R. B,. S. Sastee. S. W. Grangcr. K. Buirovich, T. Clieung,
M. Kroncnberg, FI. Chcroulre, and C. F. Ware. 2001. Constitutive expression of
LIGHT on T celts leads 10 lymphocyte aclivation. isflamntation. asd tissue de
siriiclion. I hx,nunol, 167:6330.

40, Wang. .1., J, C. Lo, A. Poster, P. Yu. H. M. Chen. Y. Wang, K. Tamada. L. Chett,
and Y. X. Fu. 2001. The rcguiatmon of T cdl hotiteostasis atid autoimmutiity by
T cetl-derised LIGHT. J. Clin. tnresl. 11)8:1 771.

41. Ftarrop, J. A., P. C’. McDotsncll. M. Brigham-Btirkc. S. D. Lyti, J. Miston,
K, B. Tan, K. Dede, J. Spampaiiato, C. Silvcrstatt, P. Heitsicy, et al. 1998. Her
pcsvirus cnhly mediator ligand (FIVEM-L), s nove! ligand for HVEMrIR2, stim
ulaies prolifcration of T celis and inhihils HT29 ccli growih. I Bio?. Client.
273:27548.



Article 3:

DcR3/TR6 Modulates Immune Ceil Interactions

Xiaochun Wan, Guixïu Shi, Jun Zhang, and Jïangping Vu

Journal of Cellular Biochemistry 89 (3): 603-6 12, 2003

Note: In this paper Guixiu Shi performed experiments as shown in Figure 5. Ail the
remaining works were performed by Xiaochun Wan

FACULTÉ DES ÉTUDES SUPÉRIEURES UNIVERSITÉ DE MONTRÉAL XIAOCHUN WAN 63



Journal of Cellular Biochemistry 89:603—612 (2003)

DcR3/TR6 Modulates Immune Celi Interactions
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Abstract DcR3/TR6, a secreted protein, isa member ofTNF receptor family. Its Iigands include FasL, LIGHT, and
TLA, ail TNF family members. TR6 can interfere with FasL- or LTR-mediated apoptosis; t can also inhibit T-ceII
costimulation by blocking the two-way signaling between TR2 and LIGHT, and the one-way signaling from TL A to DR3.
In this study, we discovered that 1R6 was secreted by peripheral blood mononuclear ceils tPBMC) stimulated by T-cell
mitogens. It inhibited actin polymerization of T celis upon mitogen stimulation, and repress T-cell pseudopodium
formation, which is known to be important for cell—celi interaction. As a consequence, T-cell aggregation stimulated by
alloantigens, anti-CD3 or PHA was suppressed by either soluble or solid phase TR6-Fc. This resu It suggests that TR6 might
regulate T-cel I interaction with other cel Is such as antigen-presenting cel Is (APC) or their fellow T ceils by preventing them
from forming inseparable ccli clusters, which are undesirabie for the progression of immune responses. J. Celi. Biochem.
89: 603—61 2, 2003. © 2003 WiIey-Liss, Inc.

Key words: TR6/DcR3; LIGHT; ccli aggregation; actin polymerization

DcR3/TR6, a soluble factor due to its lack of
the transmembrane domain, belongs to the
TNFR family. TR6 can hind to TNF family
members FasL [Pitti et al., 1998], LIGHT [Yu
et al., 1999], and TL1A [Migone et al., 2002].
Binding of TR6 to FasL blocks Fas-mediat
ed apoptosis. Moreover, since LIGHT and its

JiangpingWu isa National Research Scholar of Fonds de la
recherche santé du Québec.
Grant sponsor: Canadian Institutes of Health Research;
Grant numbers: M0P57697, PPP57321; Grant sponsor:
Canadian Institute oC Health Research/Canadian Blood
Service; Grant sponsor: Heart and Stroke Foundation of
Quebec; Grant sponsor: Roche Organ Transplantation
Research Foundation (ROTRF), Switzerland; Grant num
ber: 474950960; Grant sponsor: Juvenile Diabetes
Research Foundation International; Grant sponsor: Kidney
Foundation of Canada; Grant sponsor: J-Louis Levesque
Foundation (to JW).
*Correspondence to: Dr. Jiangping Wu, Laboratory of
Transplantation Immunology, Research Center, CHUM,
Notre Dame Hospital, DeSeve Pavilion, Room Y-5612, 1560
Sherbrooke Street East, Montreal, Quebec H2L 4M1,
Canada. E-mail:

Received 19 December 2002; Accepted 20 February 2003
DOl 10.1002/jcb.10523

© 2003 WiIey-Liss, Inc.

receptor HveA trigger bi-directional costimula
tion of T ceils [Zhang et al., 2001; Shi et al.,
2002], LIGHT bindingby TR6 can interfere with
such costimulation and consequently inhibit
T-cell activation [Zhang et al., 2001]. Similarly,
the interaction between TR6 and TL1A disrupts
T-cell costimulation by TL1A through its recep
tor DR3 [Migone et al., 2002], and resuits in
abated T-cell responses [Migone et al., 2002].
Due to probably a combination ofthese mechani
sms, in vivo administration of TR6 reduces
graft-versus-host diseases, and inhibits heart
allograft rejection [Zhang et al., 2001]. It is
conceivable that TR6-secreting tumors utilize
these mechanisms to avoid apoptosis, and
that TR6 plays an importance regulatory role
in normal immune responses.

In the course of our study on the immune
regulatory role of TR6, we found that TR6
secretion by leukocytes was significantly en
hanced during mitogen activation of T celis. In
the presence of soluble or solid phase TR6, T
celis could no longer form typical clumps upon
mitogen stimulation, and their pseudopodium
formation was inhibited. These findings re
vealed a so-far undocumented TR6 function on
T celis.
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MATERIALS AND METHODS

Recombinant Proteins

The preparation of recombinant proteins
TR6-Fc, TR6, and TR11-Fc was described in
our previous publication [Zhang et al., 2001].
TR11 (GITR) [Ronchetti et al., 2002] and Fc
fusion protein TRi 1-Fc had no effect on T-cell
aggregation, compared with PBS or normal
human IgG, and was thus used as a control
protein for TR6-Fc.

Lymphocyte Preparation and Culture

Peripheral blood mononuclear ceils (PBMC)
were prepared by Lymphoprep gradient
(NYCOMED, Oslo, Norway), and T ceils were
obtained from PBMC by sheep red blood celi
rosetting [Luo et al., 1993], orby negative select
ion (deletion ofcells positive for CD11b, CD16,
CD19, CD36, and C056) with magnetic beads
according to the manufacturer’s instructions
(Miltenyi, Auburn, CA).

Mouse spleen celis were prepared by lysing
red blood ceils ftushed out of the spleen [Luo
et al., 2001]. Spleen T celis were purified by
deleting 1g-positive and adhesion ceils with T
ceil columns according to the manufacturer’s in
structions (Cedarlane, Hornby, Ont., Canada).

Ail ceils were cultured in RPMI 1640 sup
plemented with 10% FCS, L-glutamine, and
antibiotics. RPMI 1640, FCS, penicillin—strep
tomycin, and L-glutamine were purchased
from Life Technologies, Inc. (Burlington, Ont.,
Canada). 3H-thymidine uptake was measured
as described previously [Luo et al., 1993; Luo
et al., 2001].

Mixed lymphocyte Reaction (MIR)

For human MLR, PBMC were isolated from
two healthy volunteer donors (donors A and B).
PBMC from donor B were pre-treated with
mitomycin C, and were used as stimulators.
The celis from donors A and B were then mixed
at 1:1 ratio and cultured at a final concentration
of S x 106 cells/2 ml!well in 24-well plates.
Ceils from donors A and B were also incubated
alone as controls. For mouse MLR, BALB/c
spleen ceils were pre-treated with mitomycin C,
and were used as stimulators. C57BL/6 and
BALB/c spleen celi were then mixed at 1:1 ratio,
and cultured in 24-well plates at 8 x 106 ceils!
2 ml/well.

TR6 ELISA

Anti-TR6 mAb (clone 17B07) was described in
our previous publication [Zhang et al., 2001].
The TR6 polyclonal antibody was purified from
antisera generated from rabbits immunized
with four synthetic peptides that spanned the
TR6 protein sequence: V30-R46, R64-Q89,
E240-R258, and R284-L297 (amino acid posi
tions were relative to the start methionine).
Rabbit antisera were purified on a TR6-coupled
Affi-GellO column. The specificity of the TR6
polyclonal antibody was demonstrated in the
ELISA by testing cross-reactivity to recombi
nant OPG and HveA, the two TNF receptor
family members most closely related to TR6.
Neither OPG nor HveA was detectable in the
TR6 ELISA. The preparation of recombinant
TR6 was described in detail previously [Zhang
et al., 2001]. The protocol of TR6 ELISA is as
follows. Ninety-six-well Nunc Maxisorb plates
were coated overnight with anti-TR6 mAb in
0.05 M NaHCO3 buffer (3 tg/ml, 100 p.l/well) at
4°C. After washing with buffer A (PBS contain
ing 0.1% Tween-20), the plates were blocked
with 3% BSA in PBS (250 pi/well) for 1 h at
room temperature. Serum samples were diluted
when necessary in buffer B (PBS containing
0.1% Tween-20 and 1% BSA), and incubated
overnight in the mAb coated plates at 4°C. The
plates were washed and reacted with biotiny
lated rabbit anti-TR6 Ab (0.125 tg/ml in buffer
B, 100 il/vell) at room temperature for 2h. They
were then washed and reacted with streptavi
din-peroxidase (1:2,000 v/v in buffer B, Vector
Laboratories, Burlingame, CA). After additional
washes, a freshly prepared color development
mixture (1:1 v/v mixture of tetramethyl benzi
dine solution and H202 solution, TMB Micro
well Peroxidase Substrate System, Kirkegard &
Ferry, Gaithersburg, MD) was added to the
plates (100 tl/well). The reaction was stopped
after 20 min at room temperature with 0.1 N
H2$04 (100 iil/well), and 0D450 , was subse
quently measured. Recombinant human TR6
was used as standards. ELISA sensitivity was
below 10 pglml.

Flow Cytometry and Confocal Microscopy

Human T ceils were cultured overnight in the
presence ofTR6-Fc. They were reacted with 1 ig
anti-CD3 in 100 jil cold PBS for 30 min on ice,
and after washing, with 0.5 ig of goat anti
human IgG for another 30 min. The cells were
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then washed with cold PBS, and transferred to
warm PBS at 37°C for 5 min. For F-actin
staining, 1 x 106 of the CD3-crosslinked T ceils
were fixedwith 3.7% formalin for 30 min atroom
temperature and stained with Alexa Fluor-488-
conjugated phalloidin (Molecular Probes,
Eugene, OR). The celis were analyzed with a
Coulter Epics-XL ftow cytometer and a confocal
microscope. Digital images were processed with
Photoshop (Adobe, Seattie, WA).

RESU LIS

Human PBMC Secrete TR6 After
Mitogen Activation

Although TR6 is produced by some tumors, its
possible secretion by leukocytes has not been
investigated. As our recent study showed that
TR6 could regulate T-cell activation and in vivo
immune responses [Zhang et al., 2001], it is
logical to ask whether leukocyte could secrete
TR6. We developed sensitive ELISA for this
purpose. Human PBMC were cultured in the
absence or presence of a mitogen, PHA, and TR6
was measured in the supernatants after 48 h.
TR6 was detectable in unstimulated culture at
about 100 pg/ml. With PHA (2 jig/ml) stimula
tion, the TR6 level showed a sixfold increment,
and reached 620 pg/ml (Fig. 1), suggesting that
leukocyte-secreted TR6 might participate in
immune regulation.

TR6 Inhibits Leukocyte Aggregations in MIR

During our study of TR6’s effect on T-cell
activation, we noticed, unexpectedly, that solu
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Fig. 1. TR6 s secreted by activated T celis. Human peripheral
blood mononuclear celis CPBMC) were cultured for 48 h in 24-
well plates at 4 x 106/2 ml/well in the presence of PHA 12 pg/ml).
The culture supernatants were harvested and tested for TR6 levels
by ELISA. The means + SD of duplicate samples are shown. The
experiments were performed more than twice, and results from a
representative one are shown.

ble TR6 strongly inhibited ceil aggregation in
the MLR. As illustrated in Figure 2A, human
PBMC from donors A or B alone showed no
apparent aggregation in culture. In MLR, the
ceils formed clumps, starting from 6 h and last
ing for up to 6 days. Soluble TR6-Fc (10 ig/ml)
completely suppressed clump formation at 16 h.
The suppression was obvious at about 6 h after
the initiation of culture when untreated MLR or
a control recombinant protein TRi 1-Fc-treated
MLR started displaying clumps and lasted for at
least 72 h (data not shown).

Human TR6-Fc was also effective in inhibit
ing clump formation of mouse MLR, as depicted
in Figure 2B. This was not surprising because
human TR6 binds mouse LIGHT and FasL
[Zhang et al., 2001].

TR6 Directly Prevents T Celis From
Aggregation Formation

We next tested whether TR6 could inhibit
clump formation when T ceils were activated by
mitogens other than alloantigens. When PBMC
were stimulated by PHA (0.2 figIml) or anti-CD3
(0.5 jig/ml), they readily formed clumps in 4 h,
and the clumps lasted for 3—5 days. Figure 3A
documents dumping at 16 h. Clump formation
was significantly inhibited in the presence of
TR6-Fc (10 jg/ml), but a control fusion protein,
TR11-Fc, had no such outcome. To prove that
the effect occurred directly on T celis but not via
other celi populations in PBMC, purifled T celis
were similarly treated with PIlA in the presence
or absence of TR6-Fc (Fig. 3B). Again, TR6-Fc
but not TR11-Fc drastically suppressed the ceil
clustering, suggesting that TR6 acts directly on
T celis to prevent their aggregation upon
mitogen stimulation.

Anti-Aggregation Effect Can 5e Achieved by Solid
Phase TR6, and is Likely Mediated by LIGHT

TR6 can bind to FasL and LIGHT, both of
which are capable of reverse signaling [Suzuki
and Fink, 1998; 5h et al., 2002]. To identify
which of the two was involved in mediating the
inhibitory effect on T-cell aggregation, soluble
LIGHT and Fas were tested as blocking
reagents. Like soluble TR6-Fc, TR6-Fc on solid
phase via plate-bound goat anti-human IgG
inhibited T-cell aggregation (Fig. 4). Soluble
LIGHT (10 pg/ml) but not Fas (10 tg/m1)
potently neutralized the inhibitory effect of
solid phase TR6, while LIGHT by itself had
no influence on ceil aggregation. These data
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Uncoated

Fig. 4. Effect of solid phase TR6-Fc, soluble Fas and soluble
LIGHT on T-cell aggregation. To prepare solid phase TR6-Fc,
NUNC 96-well-plates were coated overnight at 4°C with 5 pg/ml
goatanti-human lgG (Southern Biotechnology, Birmingham, AL)
in PBS at 50 pl/well. After washing, the plates were incubated
with TR6-Fc or TRi 1 -Pc (hoth at 10 pg/ml) in P85 aS 37°C for 2h.
T cells were cultured in these wells in the presence of PHA
(0.2 pg/ml), soluble Pas (5 pg/ml), or soluble LIGHT 15 pg/ml), as
indicated. Photos were taken 48 h after culture. Uncoated: wel s
were not coated with any reagents; TR6-Ec-coated: wells were
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coated with goat anti-human lgG followed by TR6-Fc; uncoa
ted— LIGHT: T cells were cultured in uncoated wells in the
presence of soluble LIGHT; uncoated — PHA: T cells were
cultured in uncoated wells in the presence of PHA; TR6-Fc-
coated — PHA: cells were cultured in TR6-Pc-coated wells in tbe
presence of PHA; TR6-Fc-coated —* PHA + Pas: cells were
cultured in TR6-Ec-coated wells in the presence of PHA and
Pas; TR6-Fc-coated — PHA + LIGHT: cells were cultured in TR6-
Fc-coated wells in the presence of PHA and LIGHT.
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suggest that LIGHT mediates the effect ofTR6
in preventing T-cell aggregation.

TR6 Inhibits Actin Polymerization and
Pseudopodium Formation of T Celis Upon

T-CeII Receptor (TCR) Ligation

T-cell aggregation upon mitogen stimulation
is a process requiring cytoskeleton reorganiza
tion followedby cellular morphological changes.
We examined the actin polymerization of T celis
with TR6 pre-treatment. T ceils were cultured
overnight in the presence ofTR6-Fc or TR11-Fc
(both at 10 pg/ml) in serum-free medium, and
then crosslinked with anti-CD3. The actin
polymerization of these ceils was analyzed by
phalloidin staining using flow cytometry, and
cell morphology was examined under a confocal
microscope. The actin in T celis activated by
CD3 crossiinking rapidiy underwent polymer
ization as evidenced by a significant increase in
the intensity of phalloidin staining accompa
nied by protrusion ofpseudopodia within 5 min
(Fig. 5). TR6 pretreatment strongly inhibited
the increment ofphalloidin staining (Fig. 5A,B),
and pseudopodium formation also was re
pressed (Fig. 5B,C). Thus, TR6 pre-treatment
likeiy affected an event upstream of actin
polymerization, and this might be responsible
for the observed inhibition ofT-cell aggregation.

DISCUSSION

In this study, we reported, for the first time,
that TR6 was secreted by leukocytes after T-cell
activation, and revealed a previously undocu
mented function of TR6 in regulating T-cell
interaction with other leukocytes.

Celi aggregation during T-ceil activation was
inhibited by soluble and solid phase TR6.
However, T-cell proliferation was enhanced in
the presence of soiid phase TR6 in combination
with suboptimal TCR ligation [Zhang et al.,
2001], indicating adequate T-cell activation
under such conditions. During T-celi activation,
essential signais are transduced into ceils
within several minutes [Gil et ai., 2002]. The
inhibition of T-celi aggregation severai hours
after their activation did not interfere with
their proliferation, impiying that the normaily
observed T-cell aggregation after mitogen sti
mulation in in vitro culture is not an essential
part of the activation program.

The likely mechanism of TR6’s inhibitory
effect on T-cell aggregation is reverse signaiing

through LIGHT. Ceil surface LIGHT, and
several other TNF family members, such as
CD4OL [Van Essen et al., 1995], CD3OL [Wiley
et al., 1996; Cerutti et al., 2000], TNF-Œ [Eissner
et al., 2000], TRANCE [Chen et al., 2001], FasL
[Suzuki and Fink, 2000; Suzuki et al., 2000],
and TEAIL [Chou et al., 2001], can transduce
signais into T ceils [Serrador et al., 1998]. We
recently found that crosslinkingofLlGHTleads
to inhibition of p38 IVIAPK activation and actin
polymerization in T ceils upon chemokine
stimulation (data not shown). This is in keeping
with the inhibitory impact of TR6 on T-celi
aggregation, since such an effect aiso depends
on actin polymerization. Currentiy, there are
three known TR6 ligands, i.e., LIGHT, FasL,
and TL1A. Since TL1A is mainiy expressed
on endotheliai celis [Migone et al., 2002], but not
on T celis, it is not relevant to this study. We
tested soluble Fas and LIGHT as competitors to
soiid phase TR6 to assess their invoivement.
Soluble FasL was not used for this purpose
because of its potentiai apoptosis-inducing
effect on activated T celis. LIGHT but not Fas
reversed the TR6 effect, suggesting that TR6
inhibits T-celi aggregation via LIGHT reverse
signaling. We cannot totally exciude the possi
bility that a so-far uncharacterized TR6 iigand
X on T-celi surface aiso mediates the anti
agression effect of TR6, but this ligand X and
LIGHT must have an identical binding site to
TR6, and consequentiy LIGHT can competi
tively inhibit ligand X’s binding to TR6. How
ever, evidence for the existence ofsuch a ligand
is lacking.

We showed that, iike soiid phase TR6-Fc,
soluble TR6-Fc was also capable of preventing
T-cell aggregation. It is possible that only low
degree crosslinking of TR6 ligands by dimeric
TR6-Fc or the aggregated form of TR6-Fc in
solution is sufficient to trigger such an effect.

T-celi actin polymerization was inhibited
downstream of ligand engagement by TR6-Fc.
Such inhibition was probabiy a cause ofrepres
sed T-ceil pseudopodium formation. The signal
ing pathway through which TR6 affects actin
poiymerization is currentiy under investiga
tion. It has been reported that the formation of
uropods, which are rear-end pseudopodia, is
essentiai for T-cell aggregation after mitogen
stimulation [Serrador et al., 1998]. Thus, the
reduced formation of pseudopodia in TR6-
treated T ceils iikely contributes to poor forma
tion ofT-celi aggregation.
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Fig. 5. TR6-Fc inhibits anti-CD3-induced T-cell aCtin poly
merization and pseudopodium formation. T ceils were cultured
overnight in medium in the absence (Med ON), or presence of
TRi 1 -Fc (TRi 1, ON; 10 pg/ml) or TR6-Fc (TR6, ON; 10 ag/ml).
Afterwashing, the colis were crosslinked with anti-CD3 for 5 mm,
as indicated. Ail the experiments were performed more than
twice, and results from a representative one are shown. A: Flow
cytometry analysis of F-actin. F-actin staining of T ceils culWred
overnight in medium without anti-CD3 simulation was used as a
negative control, with its F-actin intensity (shaded area) set at 0%.
F-actin staining (solid unes) of ceils receiving different pre

treatments followed by anti-CD3 crosslinking s shown. Percen
tage of ceils positive for F-actin staining above the control
staining is shown. AIl three panels are in log scale. B: Confocal
microscopy of T-cell morphology. The same set of T cells, as
described in (A), was examined by confocal microscopy.
C: Quantitative assessment of T-cell pseudopodium formation.
The cells in (B) were quantified for pseudopodium formation.
Three randomly selected view fields (containing about 80—100
cel Is per field) per sample were examined, and the means ± SD of
the percentages of pseudopodium-positive celis among total
cells of the three flelds are shown.
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What is the physiological significance ofTR6
inhibitingT-cell aggregation? When T-cell activ
ation is initiated, T ceils in lymphoid organs
need to interact with antigen-presenting celis
(APC). In addition, close T cell—T ceil coopera
tion is also required for optimal CD4 responses
and for C04 celis to help CD8 cells through local
lymphokine secretions. Such T cell—T cell co
operation has been reported in the case of
LIGHT and HveA [Tamada et al., 2000],
members of TNF and TNFR families, respec
tively, which are both expressed on T ceils, and
their interaction leads to optimal T-cell
responses. A recent study has shown that T
cells recognizing the self-MHC present
increased response to foreign antigens [Wulfing
et al., 2002], and obviously, the self-MHC could
be ones from a fellow T ceil. This validates the
concept of T cell—T cell collaboration. However,
the T cell—APC and T cell—T cell interactions
need to be terminated once their purposes are
served. Probably, TR6 secreted by T celis helps
to dislodge, or prevent T celis from having
prolonged engagement with APC and/or other
T ceils. In in vitro culture, endogenous TR6 in
the supernatant reached 620 pg/ml, but cell
aggregation was not inhibited. It is possible
that a higher TR6 concentration is required,
because exogenous TR6 at 10 .tg/ml was needed
for such an effect. In lymphoid organs in vivo,
T cells are tightly packed at a density much
higher than in in vitro culture. Therefore, TR6
concentration high enough to dislodge T celis
from APC or other T celis is probably achievable
locally.
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III. Discussion

In this project, the role of TR6 in immune regulation was investigated. In the mouse system,

soluble TR6 suppressed IL-2, IL-5 and GM-CSF secretion by mitogen-activated T celis, and

downregulated cytotoxic T-cell activity in vitro. In vivo, soluble TR6 could suppress the

graft versus host disease (GVHD) and allograft rejection. In the human system, solid phase

TR6, in the presence of suboptimal soÏid phase anti-CD3, significantly costimulated T celis

in terms ofproliferation and cytokine production. Blocking studies using soluble LIGHT and

Fas indicated that LIGHT likely mediated the costimulation. This has revealed a novel

mechanism of TR6 in triggering reverse signaling through a ligand, LIGHT. Based on this

finding, it is Iikely that the suppressive effect of soluble TR6 in the mouse system is, in part,

due to its interference with the two-way costirnulation between HveA and LIGHT.

Intriguingly, soluble TR6 augmented T-cell proliferation, lymphokine production and

cytotoxic T-cell activity in the human system. The opposite effects of soluble TR6 in the

human and mouse systems are probably due to different affinity of TR6 to human and mouse

LIGHT (to be elaborated beÏow). We also found after T-cell activation, T ceils augmented

their TR6 secretion. Interestingly, both soluble and solid-phase TR6 were able to suppress

mitogen-induced T-celÏ aggregation. T ceils pretreated with TR6 had reduced actin

polymerization and pseudopodium formation, which are both important for the celi-celi

interaction. These resuits suggest that TR6 might regulate the duration of T-cell interaction

with other celis, and allow T cells to disengage from antigen presenting ceils or neighboring

T celis once the interaction becomes unnecessary.
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111.1. Monomer TR6 withottt aggregation is reqtdred to inhibit hurnan T-cetl responses

Our findings have confirmed one of our hypotheses that the inhibitory effect of human TR6

in the mouse system shouïd be attributed to TR6’s interference with the bi-directional

costimulation between HveA and LIGHT. However, how do we explain the seemingly

opposite effects of soluble human TR6-Fc on human and mouse T-cell responses? In the

mouse system, soluble TR6-Fc inhibited CTL in vitro and allograft rejection in vivo. In

contrast, in the human system, soluble TR6-Fc actually enhanced T-cells proliferation,

cytokine production, and CTL activity. Theoretically, such a difference miglit be caused by

the Fc tau ofthe recombinant protein. As the Fc tau used is ofhuman IgG1 origin, it can bind

human fc’R on B celis and monocytes/macrophages. Consequently, the soluble TR6-fc in

the human system might become membrane-bound, and costimulate T celis via the reverse

signaling through LIGHT. On the other hand, human IgGi does not bind well to mouse fcyR,

and remains in solution. This allows it to block the two-way costimulation between LIGHT

and HveA. However, the Fc portion of TR6-Fc and other Fc-containing recombinant proteins

(including the control recombinant proteins) used in our study was mutated to elirninate its

FcyR binding capability. We confirmed that TR6-fc did not bind to human or mouse fcyR

bearing celis (data flot shown). Therefore, there lias to be another explanation for the opposite

effects of TR6-fc in the hurnan and mouse system. As TR6-fc is a dimer, and it might also

form aggregates in solution like any other proteins, it may play a dual role in solution: as an

inhibitor blocking the bi-directional interaction between HveA and LIGHT, or as a co

stimulator cross-linking LIGHT. The former inhibits T-cell responses and the latter enhances

it. The end-result should be the sum of these two opposite effects, which may have different

affinity requirements. In the human system, the higher affinity between TR6-fc (dimers, and
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possibly some aggregated form) and LIGHT might result in sufficient LIGHT cross-linlcing

and consequently costimulation, and this effect might ovenvhelm the possible TR6 effect on

the interference of the LIGHT and HveA interaction. In the mouse system, the putative lower

affinity between human TR6 and mouse LIGHT might not be sufficient for LIGHT cross

linking, but TR6-Fc can stili interfere with the interaction between HveA and LIGHT. In this

case, the blocking effect overwhelms the effect of crosslinking, hence downregulating the T

celi response. Further studies are needed to examine this hypothesis. If this is true, we have

to use oniy the soluble monomer form of TR6 without aggregation for the purpose of

downregulating human T-cell responses in therapeutic applications.

111.2. The biologicat significance of TR6’s inhibition on T-cell aggregation

We have shown that TR6 strongly inhibited T-cell aggregation. This inhibition was

accompanied by suppression of actin poÏymerization, and T-cell pseudopodium formation.

Interestingly, we found that whule T-cell-T-cell interaction was inhibited, T-cell proliferation

was flot. This suggests that the T-cell aggregation we observe in vitro during mitogen

stimulation is not a necessity, at least not a necessity for the later part ofT-cell activation. In

vivo, after T-cell activation, which might only require several minutes (Gil et al., 2002), the

activated T cells need to dissociate from APC or neighboring T celis to disseminate into

circulation for their effector function; TR6 secreted locally by activated T celis might serve

this purpose.

111.3. The in vivo role of TR6 in immune responses
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We have shown that activated lymphocytes secreted TR6. What is the function of such

endogenous TR6 in immune responses in addition to terminating T-cell aggregation as

discussed above? The answer is highly dependent on the format of the secreted TR6, i.e.,

monomers, or trimers as other surface TNfR family members, or aggregates. If it is in the

form of monomers, then the overail effect of TR6 should be suppressive to immune

responses, because it can conceivably inhibit the two-way costimulation between FasL and

Fas (Suzuki et aÏ., 2000), and between LIGHT and HveA; it might also repress the

stimulatory effect ofTL1A to DR3 on T ceils. We believe this is the likely scenario, because

it fits to our perception that TR6-secreting tumors use this molecule to downregulate tumor

surveillance, and it is compatible with our results with the mouse system. $uch

downregulation by TR6, which is secreted after the activation is achieved, in an immune

response might be one of the built-in check-and-balance mechanisms in the immune system

to reign in or to terminate on-going immune responses. On the other hand, if the endogenous

TR6 is a trimer or easily forms aggregates which are capable of crosslinking LIGHT or FasL

and trigger their reverse signaling, it might have an enhancing role in the immune response.

Obviously, our next task is to determine the format of endogenous TR6 to fully understand

its role in immune regulation.

In the mouse model, in vivo administration of human TR6 led to downregulation of GVHD

and allograft rejection. We initially attributed these effects mainly to the blocking of

stimulation from LIGHT to HveA. Our subsequent finding of the reverse costimulation

through LIGHT suggests that TR6 could block the two-way costimulation between LIGHT

and HveA. However, these are not the only mechanisms involved. Recent study by Migone

et al., has shown that TL1A, which is mainly produced by endothelial celis, can bind to DR3
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and enhance T-cell response to IL-2 (Migone et al., 2002); TR6 can bind to IL1A and

repress the enhanced T-cell response. It is possible that during allograft rejection, local

inflammation stimulates TLIA secretion by endothelial celis, and the administered TR6

blocks the effect of TL1A in enhancing T-cell responses. This could be an additional

mechanism for the observed effect ofTR6 in vivo (Shi et al., 2003, in press). Moreover, we

recently discovered that TR6 could also inhibit T-ceIl chemotaxis in vitro and in vivo. Such

an effect could also play a role to prevent T ceils migration to the alloantigen site in the

activation and effector phases. In addition, blocking of FasL and Fas interaction by TR6

could in theory inhibit T-cell costimulation via fas (Suzuki et al., 199$), or reversely via

fasL (Suzuki et al., 2000); it rnight protect vascular endotheliaÏ celis from fas-mediated

apoptosis during graft rejection (Akyurek et al., 1998). Therefore, the in vivo beneficial

effects ofTR6 during allograft rejection are multifaceted.

In spite of the possible multiple effects of TR6 on T-cell function, prolongation of allograft

survival with in vivo administration of TR6 in mice was moderate. Several factors might be

responsible for this. First, the half-life of the TR6-Fc used was only about 20 min (data flot

shown). Such a short haif-life is mainly due to the insect celi origin ofthe recombinant TR6-

fc, with an unusually high content ofmannose. According to our calculation, within 4 h (12

half-lives) after TR6 administration, the serum TR6 level is below the effective in vitro

concentration (10 p.g/ml). Therefore, for most part of the day, the recipient is under no

protection from this immune modulator. Secondly, LIGHT and HveA two-way costimulation

is only one of the costimulation pathways T ceils use to achieve full activation. Many other

costimulation pathways such as CD28 (Chen et aÏ., 1992), OX-40 (Godfrey et al., 1994),

CD4O (Dune et al., 1994), 4-1BB (Shuford et al., 1997), are flot blocked. Moreover, strong
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TCR stimulation, such as that triggered by alloantigens is probably less dependent on

costimulation (Wang et al., 2000). Conceivably, a combination of these factors led to the

moderate prolongation of graft survival. In the future, TR6 with a longer haif life will be

better in a drug combination rather than as a stand-alone medication to achieve

immunosuppression. TR6’s effect on inhibiting Fas-mediated apoptosis suggests that it miglit

be more useful in treating chronic rejection, in which vasculopathy caused by fas-mediated

apoptosis of endothelial celis and vascular smooth muscle ceils plays a major role (Akyurek

et aï., 1998).

111.4. TR6 in tunzorigenesis

Tumor ceils might produce many immunosuppressive factors, such as TGF-, IL-10,

DF3/MUC1, in order to obtain survival advantages (Gimmi et al., 1996). TR6 could be

another immune modulator, as this gene has increased expression in some malignant tissues

(Pitti et al., 1998) and its protein product is over-expressed in human adenocarcinomas ofthe

esophagus, stomach, colon, and rectum (Bai et al., 2000).

Is the overexpression of TR6 in tumors a consequence of malignancy, in which chaotic gene

amplification occurs, or causative of tumorigenesis? It is evident that some tumor ceils have

TR6 gene amplification (Oshima et aï., 2000; Mild et al., 2002). But another report lias

shown that tumors overexpress TR6 without gene amplification (Bai et aï., 2000). Recent

studies in our laboratory have shown that TR6 gene amplification could be observed in about

40% of liver carcinomas but not in gastric carcinomas (Wu et al., 2003), in spite of TR6

overexpression in 70-80% of these turnors. This indicates that different types of tumors have

different mechanisms to upregulate TR6 expression, and in most cases, upregulation is flot
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the consequence of gene amplification, hence unlikely the consequence of rnalignancy. Then,

does TR6 have a causative role in tumorigenesis?

TR6 interacts with FasL, LIGHT, and TL1A and can block Fas-, LTR- and/or DR3-

mediated apoptosis (Zhang et al., 2001, Shi et aÏ., 2002; Migone et aÏ., 2002). Thus, TR6

might protect turnor ceils from apoptosis mediated by these molecules. As DR3 is rnainly

expressed in lymphoid ceils and some other ceils of hematopoietic origin (Migone et al.,

2002), TR6’s effect on DR3 in relation to tumorigenesis might be restricted to some

leukemia. In our study, we have demonstrated that TR6 interferes with the interaction

between LIGHT and HveA, and inhibits their bi-directional costimulation of T celis.

Additionally, Hsu (2002) reported that soluble TR6 regulates dendritic celi differentiation,

which, in retum, drives T ceils into the Th2 phenotype. Moreover, a recent study from our

laboratoiy bas demonstrated a novel function for TR6 in inhibiting T-cell chemotaxis in vitro

and in vivo in mice (Shi et aÏ., 2003, in press). The relevance of such an effect in

turnorigenesis is evidenced by our finding that gastric turnor patients with high serum TR6

levels had lower levels of infiltrating lymphocytes in the tumor mass (Wu et al., 2003). It is

conceivable that such an effect will reduce the chance of T ceils to interact with turnors both

during activation and effector phases. These TR6 effects on T cells rnight collectively

dampen the immune surveillance in vivo. We propose the following model for the role of

TR6 in tumorigenesis: fast proliferating cells, such as epithelial cells or hepatocytes in liver

cirrhosis, undergo malignant mutation by chance, and at the same time upregulate their TR6

expression by an as yet non-elucidated mechanisrn; TR6 secreted by these malignant cells

protect them from apoptosis and help them to evade immune surveillance; these ceils gain

survival advantages and eventually develop into tumors. In this scenario, TR6 by itself does
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flot cause the tumor, but functions as a tumor facilitator. Additional study is warranted to

prove this hypothesis.

111.5. The signficance ofozir study

We explored the biological function of TR6 and reveaied previously undocumented features

of this molecule in the immune system. We are the first to demonstrate the reverse signaling

property of TR6 through its ligand(s). In this case, its ligand LIGHT functions like a receptor

and transduces signais into LIGHT-expressing T celis upon TR6 ligation. Reverse signaling

through LIGHT aliows HveA-expressing T ceils to stimulate LIGHT-expressing T ceils, and

such two-way stimulation provides a theoretical base for T-cell-T-cell cooperation, which is

not a well-studied aspect of T-cell biology. The application value of this finding is to use

soluble monomer TR6 to downregulate undesirable immune responses by blocking the two

way costimulation between HveA and LIGHT. We have indeed demonstrated that this can be

achieved in the in vivo mouse model of GVHD and allograft rejection, although other

mechanisms might also contribute to the observed immune downregulation.

111.6. Future perspectives

Several points are worth exploring further in TR6 studies. Using blocking studies, we have

demonstrated that the reverse signaling triggered by TR6 was mainly mediated by LIGHT,

although we cannot absolutely mie out the involvement of fasL, which is also able to

reverse-signal, or other so-far unidentified ligands of TR6 in this process. Using LIGHT and

FasL knockout mice will convincingly resoïve this issue.
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The fact that TR6 is upregulated in some types of tumor celis indicates the roles of TR6 in

facilitating tumorigenesis. Using the sensitive TR6 ELI$A as described in the third article,

we have found that serum TR6 is a very reliable parameter for tumor diagnosis, according to

a 1 94-patient clinical study. Currently, additional multicentre trials are under way to further

validate this test for routine clinical use. Using TR6 transgenic mice, we are in the process of

confirming the facilitator rote ofTR6 in tumorigenesis.

We have found that soluble TR6 in the mouse system can reduce GVHD and graft rejection,

but the effect was moderate. This might be due to the short haif-life of the TR6 (jroduced in

insect celis) used, and due to the existence of other costimulating pathways. Stable

monomeric TR6 in combination with other immunosuppressants might be more effective in

treating undesirable immune responses.

These additional basic and clinical investigations will enhance our understanding of the

intricate interactions between TR6, LIGHT, HveA, FasL, fas, DR3 and TL1A, and make the

“bad” molecule TR6 work for a good cause.

FACULTÉ DES ÉTUDES SUPÉRIEURES UNIVERSITÉ DE MONTRÉAL XIAOCHUN WAN 83



W REFERENCES

FACULTÉ DES ÉTUDES SUPÉ1JEuIS UNIVERSITÉ DE MONTRÉAL XIAOCHUN WAN 84



Reference

1. Adams, A. B., C. P. Larsen, T. C. Pearson, and K. A. Neweli. The role ofTNF

receptor ai-ui TNf superfamily molecules in organ transplantation. Am. I

Transplant. 2:12-18, 2002

2. Aggarwal, B. B. and K. Natarajan. Tumor necrosis factors: developments

during the last decade. Eur.Cytokine Netw. 7:93-124, 1996

3. Akyurek, L. M., C. Jolinsson, D. Lange, P. Georgii-Hemming, E. Larsson, B.

C. Felistrom, K. Funa, and G. Tufveson. Tolerance induction ameliorates

allograft vasculopathy in rat aortic transplants. Influence offas-mediated

apoptosis. JClin.Invest 101:2889-2899, 1998

4. Alderson, M. R, C. A. Smith, T. W. Tough, T. Davis-Smith, R. J. Armitage,

B. Falk, E. Roux, E. Baker, G. R. Sutherland, and W. S. Din. Molecular and

biological characterization ofhurnan 4-1BB and its ligand. Eur.ilmrnunol.

24:2219-2227, 1994

5. Alimzhanov, M. B., D. V. Kuprasli, M. H. Kosco-Vilbois, A. Luz, R. L.

Turetskaya, A. Tarakhovsky, K. Rajewsky, S. A. Nedospasov, and K. Pfeffer.

Abnormal development of secondai-y lymphoid tissues in Iymphotoxin beta

deficient mice. Proc.Natl.Acad.Sci. US.A 94:9302-9307, 1997

6. Allison, J. P. CD28-B7 interactions in T-ceÏl activation. Curr.Opin.Imrnunol.

6:414-419, 1994

7. Amiot, f., C. fitting, K. J. Tracey, J. M. Cavaillon, and F. Dautry.

Lipopolysaccharide-induced cytokine cascade and lethality in LT alpha/TNF

aipha-deficient mice. Mot.Med. 3:864-875, 1997

8. Anderson, D. M., E. Maraskovsky, W. L. Billingsley, W. C. Dougail, M. E.

Tometsko, E. R. Roux, M. C. Teepe, R. F. DuBose, D. Cosman, and L.

Galibert. A homologue ofthe TNf receptor and its ligand enhance T-cell growth

and dendritic-ceil function. Nature 390:175-179, 1997

9. Armitage, R. J. Tumor necrosis factor receptor superfamily members and their

Iigands. Curr. Opin.Imniunol. 6:407-413, 1994

10. Ashkenazi, A., S. A. Marsters, D. J. Capon, S. M. Chamow, I. S. Figari, D.

Pennica, D. V. Goeddel, M. A. Palladino, and D. H. Smith. Protection against

endotoxic shock by a tumor necrosis factor receptor immunoadhesin.

Froc.Natl.Acad.ScLU$.A 88:10535-10539, 1991

11. Aslikenazi, A. and V. 1’I. Dixit. Death receptors: signaling and modulation.

Science 281:1305-130$, 199$

FACULTÉ DES ÉTUDES SUPÉRIEURES UNIVERSITÉ DE MONTRÉAL XIAOCHUN WAN $5



12. Aslikenazi, A. and V. M. Dixit. Apoptosis control by death and decoy receptors.

Cztrr. Opin. Ceit Biot. 11:255-260, 1999

13. Ashkenazi, A. Targeting death and decoy receptors of the tumour-necrosis factor

superfamily. Nat.Rev.Cancer 2:420-430, 2002

14. Bai, C., B. Connolly, M. L. Metzker, C. A. Hilliard, X. Liu, V. Sandig, A.

Soderman, S. M. Galloway, Q. Liu, C. P. Austin, and C. T. Caskey.

Overexpression ofM68/DcR3 in human gastrointestinal tract tumors independent

ofgene amplification and its location in a four-gene cluster.

Proc.NatÏ.Acad.Sci. U.S.A 97:1230-1235, 2000

15. Banchereau, J., F. Bazan, D. Blanchard, F. Briere, J. P. Galizzi, C. van

Kooten, Y. J. Liu, F. Rousset, and S. Saeland. The CD4O antigen and its ligand.

Anrnt.Rev.Irnrnunoï. 12:881-922, 1994

16. Banks, T. A., B. T. Rouse, M. K. Kerley, P. J. Blair, V. L. Godfrey, N. A.

Kukiin, D. M. Bouley, J. Thomas, S. Kanangat, and M. L. Mucenski.

Lymphotoxin-alpha-deflcient mice. Effects on secondary lymphoid organ

deveîopment and humoral immune responsiveness. llmmunol. 155:1 685-1693,

1995

17. Banner, D. W., A. D’Arcy, W. Janes, R. Gentz, H. J. Schoenfeld, C. Broger,

H. Loetscher, and W. Lesslauer. Ciystal structure ofthe soluble human 55 kd

TNF receptor-human TNF beta complex: implications for TNF receptor

activation. Ceil 73:43 1-445, 1993

18. Baum, P. R., R. B. Gayle, III, F. Ramsdell, S. Srinivasan, R. A. Sorensen, M.

L. Watson, M. F. Seldin, E. Baker, G. R. Sutherland, K. N. Clifford.

Molecular characterization ofmurine and human 0X40/0X40 ligand systems:

identification of a human 0X40 ligand as the HTLV- 1 -regulated protein gp34.

EMBOI 13:3992-4001, 1994

19. Baum, P. R., R. B. Gayle, III, F. Ramsdell, S. Srinivasan, R. A. Sorensen, M.

L. Watson, M. F. Seldin, K. N. Clifford, K. Grabstein, M. R. Alderson, and.

Identification of 0X40 ligand and preliminary characterization of its activities on

0X40 receptor. Circ.Shock 44:30-34, 1994

20. Bayes, M., A. J. Hartung, S. Ezer, J. Pispa, I. Thesleff, A. K. Srivastava, and

J. Kere. The anhidrotic ectodermaï dysplasia gene (EDA) undergoes alternative

spiicing and encodes ectodysplasin-A with deletion mutations in collagenous

repeats. Httm.MoLGenet. 7:1661-1669, 1998

21. Bazzoni, F. and B. Beutier. The tumor necrosis factor ligand and receptor

families. NEngl.i lied. 334:1717-1725, 1996

22. Beg, A. A. and D. Baltimore. An essential role for Nf-kappaB in preventing

TNF-alpha-induced ceil death. Science 274:782-784, 1996

FACULTÉ DES ÉTUDES SUPÉRIEURES UNIVERSITÉ DE MONTRÉAL XIAOCHUN WAN 86



23. Bennett, B. L., R. Cruz, R. G. Lacson, and A. M. Manning. Interleukin-4

suppression of tumor necrosis factor alpha-stimulated E-selectin gene

transcription is mediated by STAT6 antagonism ofNF-kappaB. J.Biol.Chem.

272:10212-10219, 1997

24. Beutler, B. and A. Cerami. The biology of cachectin/TNf--a primary mediator

ofthe host response. Anntt.Rev.Irnmunol. 7:625-655, 1989

25. Blair, P. J., J. L. Riley, D. M. Harlan, R. Abe, D. K. Tadaki, S. C. Hoffmann,

L. White, T. Francomano, S. J. Perfetto, A. D. Kirk, and C. H. June. CD4O

ligand (CD 154) triggers a short-term CD4(+) T ceil activation response that

resuits in secretion of immunomodulatory cytokines and apoptosis. iExp.Med.

191:651-660, 2000

26. Bodmer, J. L., K. Burns, P. Schneïder, K. Hofmann, V. Steiner, M. Thome,

T. Bornand, M. Hahne, M. Schroter, K. Becker, A. Wilson, L. E. French, J.

L. Browning, H. R. MacDonald, and J. Tschopp. TRAMP, a nove! apoptosis

mediating receptor with sequence homology to tumor necrosis factor receptor 1

and Fas(Apo-11CD93). Immunity. 6:79-88, 1997

27. Boldin, M. P., T. M. Goncharov, Y. V. Goltsev, and D. Wallach. Involvement

of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNf

receptor-induced ce!! death. Celi 85:803-815, 1996

28. Bondeson, J., K. A. Browne, F. M. Brennan, B. M. Foxwell, and M.

Feldmann. Selective regulation ofcytokine induction by adenoviral gene transfer

of IkappaBaipha into human macrophages: lipopo!ysaccharide-induced, but flot

zymosan-induced, proinflammatoiy cytokines are inhibited, but IL-10 is nuc!ear

factor-kappaB independent. llmmunol. 162:2939-2945, 1999

29. Bowman, M. R., 1’1. A. Crimmins, J. Yetz-Aldape, R. Kriz, K. Kelleher, and

S. Herrmann. The c!oning ofCD7O and its identification as the ligand for CD27.

ihnmunol. 152:1756-1761, 1994

30. Brenner, B., U. Koppenhoefer, H. Grassme, J. Kun, f. Lang, and E. Gulbins.

Evidence for a novel function ofthe CD4O ligand as a signal!ing molecule in T

lymphocytes. fEBS Lett. 417:301-306, 1997

31. Brenner, B., U. Koppenhoefer, A. Lepple-Wienhues, H. Grassme, C. Muller,

C. P. Speer, F. Lang, and E. Gulbins. The CD4O !igand directly activates T-

lymphocytes via tyrosine phosphorylation dependent PKC activation.

Biochem.Biophys.Res. Commun. 239:11-17, 1997

32. Briones, J., J. Timmerman, and R. Levy. In vivo antitumor effect ofCD4OL-

transduced tumor ce!!s as a vaccine for B-cell !ymphoma. Cancer Res. 62:3 195-

3199, 2002

FACULTÉ DES ÉTUDES SUPÉRIEURES UNIVERSITÉ DE MONTRÉAL XIAOCHUN WAN 87



33. Brockhaus, M., H. J. Schoenfeld, E. J. Schlaeger, W. Hunziker, W. Lesslauer,

and H. Loetscher. Identification oftwo types oftumor necrosis factor receptors

on human ceil unes by monoclonal antibodies. Froc.NatLAcad.Sci. U$.A

87:3127-3131, 1990

34. Browning, J. L., M. J. Androlewicz, and C. F. Ware. Lymphotoxin and an

associated 33-kDa glycoprotein are expressed on the surface of an activated

human T ceil hybridoma. llmmunot. 147:1230-1 237, 1991

35. Browning, J. L., A. Ngam-ek, P. Lawton, J. DeMarinis, R. Tizard, E. P.

Chow, C. Hession, B. O’Brine-Greco, S. F. Foley, and C. F. Ware.

Lymphotoxin beta, a novel member of the TNF family that forms a heteromeric

complex with lymphotoxin on the celi surface. Celi 72:847-856, 1993

36. Browning, J. L., I. Dougas, A. Ngam-ek, P. R. Bourdon, B. N. Ehrenfels, K.

Miatkowski, M. Zafari, A. M. Yampaglia, P. Lawton, W. Mefer, and.

Characterization of surface lymphotoxin forms. Use of specific monoclonal

antibodies and soluble receptors. llmmunol. 154:33-46, 1995

37. Browning, J. L., K. Miatkowski, I. Sizing, D. Griffiths, M. Zafari, C. D.

Benjamin, W. Meier, and F. Mackay. Signaling through the lymphotoxin beta

receptor induces the death ofsome adenocarcinoma turnor unes. iExp.Med.

183:867-878, 1996

38. Buster, B. L., K. A. Mattes, and W. M. Scheld. Monoclonal antibody-mediated,

complernent-independent binding ofhuman tumor necrosis factor-aipha to

primate erythrocytes via complement receptor 1. ilnfect.Dis. 176:1041-1046,

1997

39. Callard, R., A. J. George, and J. Stark. Cytokines, chaos, and complexity.

Irnmunity. 11:507-513, 1999

40. Camerini, D., G. Walz, W. A. Loenen, J. Borst, and B. Seed. The T ceil

activation antigen CD27 is a member ofthe nerve growtli factor/tumor necrosis

factor receptor gene family. llmmunot. 147:3165-3169, 1991

41. Carswett, E. A., L. J. Old, R. L. Kassel, S. Green, N. fiore, and B.

Williamson. An endotoxin-induced serum factor that causes necrosis ofturnors.

Proc.Natl.Acad.Sci. U.S.A 72:3666-3670, 1975

42. Cayabyab, M., J. H. Phillips, and L. L. Lanier. CD4O preferentially

costimulates activation of CD4+ T lymphocytes. llmmunol. 152:1523-1531,

1994

43. Cerutti, A., A. Schaffer, R. G. Goodwin, S. Shah, H. Zan, S. EIy, and P.

Casali. Engagement of CD 153 (CD3O Iigand) by CD3O+ T celis inhibits class

switch DNA recombination and antibody production in human IgD+ IgM+ B

cells. ilminunol. 165:786-794, 2000

FACULTÉ DES ÉTUDES SUPÉRIEURES UNIVERSITÉ DE MONTRÉAL XIAOCHUN WAN 88



44. Chan, f. K., H. J. Chun, L. Zheng, R. M. Siegel, K. L. Bui, and M. J.

Lenardo. A domain in TNF receptors that mediates ligand-independent receptor

assembly and signaling. Science 288:2351-2354, 2000

45. Chan, F. K. and M. J. Lenardo. A crucial role for p80 TNF-R2 in amplifying

p60 TNf-R1 apoptosis signais in T lymphocytes. Eur.ihnmunol. 30:652-660,

2000

46. Chaudhary, P. M., M. Eby, A. Jasmin, A. Bookwatter, J. Murray, and L.

Hood. Death receptor 5, a new member ofthe TNfR family, and DR4 induce

FADD-dependent apoptosis and activate the NF-kappaB pathway. hnmunity.

7:821-830, 1997

47. Chen, L., S. Ashe, W. A. Brady, I. Helistrom, K. E. Helistrom, J. A.

Ledbetter, P. McGowan, ami P. S. Linsley. 1992. Costimulation ofantitumor

immunity by the 37 counterreceptor for the T lymphocyte molecules CD28 and

CTLA-4. Ceil 71:1093-1102

48. Chen, N. ami E. H. Field. Enhanced type 2 and diminished type Ï cytokines in

neonatal tolerance. Transplantation 59:933-941, 1995

49. Chen, N. J., M. W. Huang, and S. L. Hsieh. Enhanced secretion of IFN-gamma

by activated Thi celis occurs via reverse signaling through TNF-related

activation-induced cytokine [In Process Citation]. ilmmtmol. 166:270-276, 2001

50. Chicheportiche, Y., P. R. Bourdon, H. Xu, Y. M. ilsu, H. Scott, C. Hession, I.

Garcia, and J. L. Browning. TWEAK, a new secreted ligand in the tumor

necrosis factor family that weakly induces apoptosis. i3iol.Chem. 272:3240 1-

32410, 1997

51. Chikanza, I. C., P. Roux-Lombard, J. M. Dayer, and G. S. Panayl. Tumour

necrosis factor soluble receptors behave as acute phase reactants following

surgeiy in patients with rheumatoid arthritis, chronic osteomyelitis and

osteoarthritis. Clin.Exp.Immunol. 92:19-22, 1993

52. Chinnaiyan, A. M., K. O’Rourke, M. Tewarï, and V. M. Dixit. fADD, a novel

death domain-containing protein, interacts with the death domain offas and

initiates apoptosis. Ceit 81:505-5 12, 1995

53. Chïnnaiyan, A. M., K. O’Rourke, G. L. Yu, R. H. Lyons, M. Garg, D. R.

Duan, L. Xïng, R. Gentz, J. Ni, ami V. M. Dixit. Signal transduction by DR3, a

death domain-containing receptor related to TNfR-1 and CD95. Science 274:990-

992, 1996

54. Chou, A. H., H. F. Tsai, L. L. Lin, S. L. Hsieh, P. I. Hsu, and P. N. Hsu.

Enhanced proliferation and increased IFN-gamma production in T cells by signal

transduced through TNF-reiated apoptosis-inducing ligand. ihninztizol. 167:1347-

1352, 2001

FACULTÉ DES ÉTUDES SUPÉRIEURES UNIVERSITÉ DE MONTRÉAL XIAOCHUN \VAN $9



55. Clark, L., M. Wei, G. Cattoretti, C. Mendelsohn, and B. Tycko. The Tnfrhl

(Tnfrsf23) gene is weakly imprinted in several organs and expressed at the

trophoblast-decidua interface. BMC. Genet. 3:11, 2002

56. Cobbold, S. and H. Waldmann. Infectious tolerance. Cztrr. Opin.Imrnttnol.

10:518-524, 1998

57. Cocks, B. G., M. R. de Waal, J. P. Galizzi, J. E. de Vries, and G. Aversa. IL-

13 induces proliferation and differentiation of human B ceils activated by the

CD4O ligand. Int.Immunol. 5:657-663, 1993

58. Connolly, K., Y. H. Cho, R. Duan, J. Fikes, T. Gregorio, D. W. LaFfeur, Z.

Okoye, T. W. Salcedo, G. Santiago, S. Ullrich, P. Wei, K. Wïndle, E. Wong,

X. T. Yao, Y. Q. Zhang, G. Zheng, and P. A. Moore. In vivo inhibition offas

Ïigand-rnediated killing by TR6, a fas ligand decoy receptor. I Pharmacol. Exp.

Ther. 298:25-33, 2001

59. Corcoran, A. E., B. J. Scallon, H. Trinh, Y. Chernajovsky, J. Ghrayeb, and

M. Feldmann. Minimal tumor necrosis factor receptor binding protein: optimum

biological activity ofa truncated p55 soluble tumor necrosis factor receptor-IgG

fusion protein. Eur.Cytokine Netw. 9:255-262, 1998

60. Creagh, E. M., H. Conroy, and S. J. Martin. Caspase-activation pathways in

apoptosis and immunity. hnmttnolRev. 193:10-2 Ï, 2003

61. Cusson, N., S. Oikemus, E. D. Kilpatrick, L. Cunningham, and M. Kelliher.

The death domain kinase RIP protects thymocytes from tumor necrosis factor

receptor type 2-induced cell death. iExp.Med. 196:15-26, 2002

62. Dale, D. C., W. C. Lues, C. Llewellyn, and T. H. Price. Effects ofgranulocyte

macrophage colony-stimulating factor (GM-CSF) on neutrophil kinetics and

function in normal human volunteers. Am.iHematol. 57:7-15, 1998

63. Daliman, M. J., C. P. Larsen, and P. J. Morris. Cytokine gene transcription in

vascularised organ grafts: analysis using semiquantitative polymerase chain

reaction. iExp.Med. Ï 74:493-496, 1991

64. Daviet, L., M. Erard, D. Dorin, M. Duarte, C. Vaquero, and A. Gatignol.

Analysis ofa binding difference between the two dsRNA-binding domains in

TRBP reveals the modular function of a KR-helix motif. Eur.iBiochern.
267:2419-243 1, 2000

65. De Togni, P., J. Goeliner, N. H. Ruddle, P. R. Streeter, A. Fick, S.

Mariathasan, S. C. Smith, R. Canson, L. P. Shornick, J. Strauss

Schoenberger, and . Abnormal development ofperipheral lymphoid organs in

mice deficient in lymphotoxin. Science 264:703-707, 1994

FACULTÉ DES ÉTUDES SUPÉRIEURES UNIVERSITÉ DE MONTRÉAL XIAOCHUN WAN 90



66. De Wazieres, B., V. Spehner, S. Harraga, F. Laplante, F. Corallo, C. Bloy, J.

L. Dupond, D. A. Vuitton, and E. Seules. Alteration in the production offree

oxygen radicals and proinflammatory cytokines by peritoneal and alveolar

macrophages in olU mice and immunomodulatory effect of RU 41740

administration. Part I: Effect of short and repetitive noise stress.

InzmitnopharmacoÏogy 39:51-59, 1998

67. Decoster, E., B. Vanhaesebroeck, P. Vandenabeele, J. Grooten, and W. Fiers.

Generation and biological characterization of membrane-bound, uncleavable

murine tumor necrosis factor. iBiol.Chem. 270:18473-18478, 1995

68. Degil-Esposti, M. A., W. C. Dougail, P. J. Smolak, J. Y. Waugh, C. A. Smith,

and R. G. Goodwin. The novel receptor TRAIL-R4 induces NF-kappaB and

protects against TRAIL-mediated apoptosis, yet retains an incomplete death

domain. Immunity. 7:813-820, 1997

69. Degli-Esposti, M. A., P. J. Smolak, H. Walczak, J. Waugh, C. P. Huang, R. F.

DuBose, R. G. Goodwin, and C. A. Smith. Cloning and characterization of

TRAIL-R3, a novel member ofthe emerging TRAIL receptor family. J.Exp.Med.

186:1165-1170, 1997

70. Deng, L., C. Wang, E. Spencer, L. Yang, A. Braun, J. You, C. Slaughter, C.

Pïckart, ami Z. J. Chen. Activation ofthe IkappaB kinase complex by TRAF6

requires a dimeric ubiquitin-conjugating enzyme complex and a unique

polyubiquitin chain. CeÏl 103:351-361, 2000

71. Desaï-Mehta, A., L. Lu, R. Ramsey-Goldman, and S. K. Datta.

Hyperexpression of CD4O ligand by B and T celis in human lupus and its role in

pathogenic autoantibody production. iClin.Invest 97:2063-2073, 1996

72. Dick, A. D., P. G. McMenamin, H. Korner, B. J. Scallon, J. Glirayeb, J. V.

Forrester, and J. D. Sedgwick. Inhibition oftumor necrosis factor activity

minimizes target organ damage in experimental autoimmune uveoretinitis despite

quantitatively normal activated T celi traffic to the retina. Eur.J.Irnmunol.

26:1018-1025, 1996

73. Ujamali, A. and J. S. Odorico. Fas-mediated cytotoxicity is flot required for

rejection ofmurine nonvascuïarized heterotopic cardiac allografts.

Transplantation 66:1793-1801, 1998

74. Dougail, W. C., M. Glaccum, K. Charrier, K. Rohrbach, K. Brasel, T. De

Smedt, E. Daro, J. Smith, M. E. Tometsko, C. R. Maliszewski, A. Armstrong,

V. Shen, S. Bain, D. Cosman, D. Anderson, P. J. Morrissey, J. J. Peschon,

and J. Schuh. RANK is essential for osteoclast and lymph node development.

GenesDev. 13:2412-2424, 1999

FACULTÉ DES ÉTUDES SUPÉRIEURES UNIVERSITÉ DE MONTRÉAL XIAOCHUNWAN 91



75. Du, C., M. Fang, Y. Li, L. Li, and X.Wang. Smac, a mitochondrial protein that

promotes cytochrome c-dependent caspase activation by eliminating IAP

inhibition. Cet! 102:33-42, 2000

76. Duan, H. and V. M. Dixit. RAIDD is a new ‘death’ adaptor molecule. Nature

385:86-89, 1997

77. Dune, F. H., T. M. Foy, S. R. Masters, J. D. Laman, and R. J. Noelle. The role

of CD4O in the regulation of humoral and cell-mediated immunity.

Immunol.Today 15:406-411, 1994

7. Duval, D., B. Reinhardt, C. Kedinger, and H. Boeuf. Role ofsuppressors of

cytokine signaling (Socs) in leukemia inhibitory factor (LIF) -dependent

embryonic stem celi survival. FASEB1 14:1577-1584, 2000

79. Eck, M. J., M. Ultsch, E. Rinderknecht, A. M. de Vos, and S. R. Sprang. The

structure of human lymphotoxin (tumor necrosis factor-beta) at 1.9-A resolution.

iBiol.Chern. 267:2119-2122, 1992

80. Edwards, R. H., M. J. Selby, P. D. Garcia, and W. J. Rutter. Processing ofthe

native nerve growth factor precursor to form biologically active nerve growth

factor. iBiol.Chem. 263:6810-6815, 1988

81. Eissner, G., S. Kirchner, H. Lindner, W. Kolch, P. Janosch, M. Greli, P.

Scheurich, R. Andreesen, and E. Houer. Reverse signaling through

transmembrane TNF confers resistance to lipopolysaccharide in human

monocytes and macrophages. Jimmunol. 164:6193-6198, 2000

82. Emery, J. G., P. McDonnell, M. B. Burke, K. C. Deen, S. Lyn, C. Silverman,

E. Dul, E. R. Appelbaum, C. Eichman, R. DiPninzio, R. A. Dodds, I. E.

James, M. Rosenberg, J. C. Lee, and P. R. Young. Osteoprotegerin is a

receptor for the cytotoxic ligand TRAIL. JBioÏ.Chem. 273:14363-14367, 1998

83. Engelmann, H., H. Holtmann, C. Brakebuscli, Y. S. Avni, I. Sarov, Y.

Nophar, E. Hadas, O. Leitner, and D. Wallach. Antibodies to a soluble form of

a tumor necrosis factor (TNf) receptor have TNF-like activity. iBiol. Chem.

265:14497-14504, 1990

84. Englaro, W., P. Bahadoran, C. Bertolotto, R. Busca, B. Derijard, A. Livolsi,

J. F. Peyron, J. P. Ortonne, and R. Ballottï. Tumor necrosis factor alpha

mediated inhibition ofmelanogenesis is dependent on nuclear factor kappa B

activation. Oncogene 18:1553-1559, 1999

85. Ettinger, R., S. H. Munson, C. C. Chao, M. Vadeboncoeur, J. Toma, and H.

O. McDevitt. A critical role for lymphotoxin-beta receptor in the development of

diabetes in nonobese diabetic mice. JExp.Med. 193:1333-1340, 2001

FACULTÉ DES ÉTUDES SUPÉRIEURES UNIVERSITÉ DE M0NTRÉAL XIAOCHUN WAN 92



$6. Faccio, L., C. Fusco, A. Chen, S. Martinotti, J.V. Bonventre, ami A. S.

Zervos. Characterization of a novel human serine protease that has extensive

homology to bacterial heat shock endoprotease HtrA and is regulated by kidney

ischemia. JBioÏ. Chem. 275:2581-2588, 2000

87. fouad, A. F. IL-1 alpha and TNF-alpha expression in early periapical lesions of

normal and immunodeficient mice. J.Dent.Res. 76:1548-1554, 1997

8$. Frankenberger, M., T. Sternsdorf, H. Pechumer, A. Pforte, and H. W.

Ziegler-Heitbrock. Differential cytokine expression in human blood monocyte

subpopulations: a polymerase chain reaction analysis. Blood 87:373-377, 1996

$9. Fu, Y. X. ami D. D. Chaplin. Development and maturation ofsecondary

lymphoid tissues. Annu.Revimmunol. 17:399-433, 1999

90. Fujisawa, H., B. Wang, S. Kondo, G. M. Shivji, and D. N. Sauder.

Costimulation with ultraviolet B and interleukin- 1 alpha dramatically increase

tumor necrosis factor-aipha production in human dermal fibroblasts. llnterferon

CytokineRes. 17:307-3 13, 1997

91. Fujita, E., Y. Kouroku, Y. Miho, T. Tsukahara, S. Ishiura, and T. Momol.

Wortmannin enhances activation ofCPP32 (Caspase-3) induced by TNF or anti

Fas. CellDeath.Dffer. 5:289-297, 199$

92. Fuss, I. J., W. Strober, J. K. Dale, S. Fritz, G. R. Pearistein, J. M. Puck, M. J.

Lenardo, and S. E. Straus. Characteristic T helper 2 T celi cytokine

abnormalities in autoimmune lymphoproliferative syndrome, a syndrome marked

by defective apoptosis and humoral autoimmunity. Jlmmunol. 158:1912-1918,

1997

93. Futterer, A., K. Mink, A. Luz, M. H. Kosco-Vilbois, and K. Pfeffer. The

lymphotoxin beta receptor controls organogenesis and affinity maturation in

peripheral lyrnphoid tissues. Irnmunity. 9:59-70, 1998

94. Garrone, P., E. M. Neïdhardt, f. Garcia, L. Galibert, C. van Kooten, and J.

Banchereau. Fas ligation induces apoptosis ofCD4O-activated human B

lymphocytes. J.Exp.Med. 182:1265-1273, 1995

95. Gatanaga, T., C. D. Hwang, M. Gatanaga, F. Cappuccini, R. S. Yamamoto,

and G. A. Granger. The regulation ofTNF receptor mRNA synthesis, membrane

expression, and release by PMA- and LPS-stimulated human monocytic THP-1

cells in vitro. Celtlrnntunol. 138:1-10, 1991

96. Gauchat, J. F., S. Henchoz, G. Mazzei, J. P. Aubry, T. Brunner, H. Blasey, P.

Life, D. Talabot, L. Flores-Romo, J. Thompson, and . Induction ofhuman IgE

synthesis in B cells by mast cells and basophils. Nature 3 65:340-343, 1993

FACULTÉ DES ÉTUDES SUPÉRIEURES UNIVERSITÉ DE MONTRÉAL XIAOCHUNWAN 93



97. Gauchat, J. F., S. Henchoz, D. Fattah, G. Mazzei, J. P. Aubry, T. Jomotte, L.

Dash, K. Page, R. Solari, D. Aldebert, and . CD4O ligand is functionally
expressed on human eosinophils. Eur.ilrnmunoÏ. 25:863-865, 1995

9$. Geraghty, R. J., C. Krummenacher, G. H. Cohen, R. J. Eisenberg, and P. G.

Spear. Entry of alphaherpesviruses mediated by poliovirus receptor-related
protein 1 and poliovirus receptor. Science 280:1618-1620, 1998

99. Gersuk, G. M., C. Beckham, M. R. Loken, P. Kiener, J. E. Anderson, A.
Farrand, A. B. Troutt, J. A. Ledbetter, and H. J. Deeg. A role for tumour
necrosis factor-aipha, fas and fas-Ligand in marrow failure associated with
myelodysplastic syndrome. Br.iHaematol. 103:176-188, 1998

100. Gil, D., W. W. Schamel, M. Montoya, F. Sanchez-Madrîd, and B. Alarcon.
Recruitment ofNck by CD3 epsilon reveals a ligand-induced conformational
change essential for T celi receptor signaling and synapse formation. Ceil
109:901-912, 2002

101. Gimmi, C. D., B. W. Morrïson, B. A. Mainprice, J. G. Gribben, V. A.
Boussiotis, G. J. Freeman, S. Y. Park, M. Watanabe, J. Gong, D. F. Hayes, D.
W. Kufe, and L. M. Nadier. Breast cancer-associated antigen, Df3/MUC1,
induces apoptosis ofactivated human T ceils. Nat.Med. 2:1367-1370, 1996

102. Godfrey, W. R, F. F. Fagnoni, M. A. Harara, D. Buck, and E. G. Engleman.
Identification ofa human OX-40 ligand, a costimulator of CD4+ T celis with
homology to tumor necrosis factor. J.Exp.Med. 180:757-762, 1994

103. Goodwin, R. G., W. S. Din, T. Davis-Smitli, D. M. Anderson, S. D. Gimpel, T.
A. Sato, C. R. Maliszewski, C. I. Brannan, N. G. Copeland, N. A. Jenkins,
and . Molecular cloning ofa ligand for the inducible T celi gene 4-1BB: a
member of an emerging family of cytokines with homology to tumor necrosis
factor. Eur.ihnrnunol. 23:2631-2641, 1993

104. Graf, D., U. Kortliauer, H. W. Mages, G. Senger, and R. A. Kroczek. Cloning
ofTRAP, a ligand for CD4O on human T celis. Eur.JlrnmunoÏ. 22:3191-3194,
1992

105. Graf, D., S. Muller, U. Korthauer, C. van Kooten, C. Weise, and R. A.
Kroczek. A soluble form ofTRAP (CD4O ligand) is rapidly released after T celi
activation. Eztr.ilrnmunol. 25:1749-1754, 1995

106. Granger, S. W. and C. F. Ware. Turning on LIGHT. iClin.Invest 108:1741-
1742, 2001

107. Gravestein, L. A., B. Blom, L. A. Nolten, E. de Vries, H. G. van der, F.
Ossendorp, J. Borst, and W. A. Loenen. Cloning and expression ofmurine
CD27: comparison with 4-ÏBB, another lymphocyte-specific member of the nerve
growth factor receptor family. Eur.ilrnmunol. 23:943-950, 1993

FACULTÉ DES ÉTUDES SuPÉRIEuIS UNIVERSITÉ DE MONTRÉAL XIAOCKU WAN 94



108. Gray, P. W., B. B. Aggarwal, C. V. Benton, T. S. Bringman, W. J. Henzel, J.

A. Jarrett, D. W. Leung, B. Moffat, P. Ng, L. P. Svedersky, and . Cloning and

expression of cDNA for human lymphotoxin, a lymphokine with tumour necrosis

activïty. Nature 312:721-724, 1984

109. Green, D. R. Overview: apoptotic signaling pathways in the immune system.

Immttnol Rev. 193:5-9, 2003

110. Green, D. R. and C. F. Ware. Fas-ligand: privilege and peril. Froc. Nati. Acad.

Sci. U.S.A 94:5986-5990, 1997

111. Green, D. R. and J. C. Reed. Mitochondria and apoptosis. Science 281:1309-

1312, 1998

112. Grenet, J., V. Valentine, J. Kitson, H. Li, S. N. Farrow, and V. J. Kidd.

Duplication ofthe DR3 gene on human chromosome lp36 and its deletion in

human neuroblastoma. Genomics 49:325-393, 1998

113. Gross, J. A., J. Johnston, S. Mudri, R. Enselman, S. R. Dillon, K. Madden,

W. Xu, J. Parrish-Novak, D. Foster, C. Lofton-Day, M. Moore, A. Littau, A.

Grossman, H. Haugen, K. foley, H. Blumberg, K. Harrison, W. Kindsvogel,

and C. H. Clegg. TACI and BCMA are receptors for a TNF homologue

implicated in B-cetl autoimmune disease. Nature 404:995-999, 2000

114. Gruss, H. J. and S. K. Dower. Tumor necrosis factor ligand superfamily:

involvement in the pathology ofmalignant lymphomas. Blood 85:3378-3404,

1995

115. Gruss, H. J. and S. K. Dower. The TNF ligand superfamily and its relevance for

human diseases. Cytokines Mol. Ther. 1:75- 105, 1995

116. Gruss, H. J. Molecular, structural, and biological characteristics ofthe tumor

necrosis factor ligand superfamily. fnt.i Clin.Lab Res. 26:143-159, 1996

117. Haline, M., T. Renno, M. Schroeter, M. Irmier, L. Frencli, T. Bornard, H. R.

MacDonald, and J. Tschopp. Activated B celis express ftrnctional Fas ligand.

Eur.ilmmztnoÏ. 26:721-724, 1996

118. Hahne, M., T. Kataoka, M. Schroter, K. Hofmann, M. Irmier, J. L. Bodmer,

P. Schneider, T. Bornand, N. Hotier, L. E. French, B. Sordat, D. Rimoldi,

and J. Tschopp. APRIL, a new ligand of the tumor necrosis factor family,

stimulates tumor ceil growth. iExp.Med. 188:1185-1190, 1998

119. Harakawa, N., M. Sasada, A. Maeda, K. Asagoe, M. Nohgawa, K. Takano, Y.

Matsuda, K. Yamamoto, and M. Okuma. Random migration of

polymorphonuclear leukocytes induced by GM-CSF involving a signal

transduction pathway different from that offMLP. iLeukoc.Biol. 61:500-506,

1997

FACULTÉ DES ÉTUDES SUPÉRIEURES UNIVERSITÉ DE MONTRÉAL XIAOCHUN \VAN 95



120. Harrop, J. A., P. C. McDonnell, M. Brigham-Burke, S. D. Lyn, J. Minton, K.

B. Tan, K. Dede, J. Spampanato, C. Silverman, P. Hensley, R. DiPrinzio, J.

G. Emery, K. Deen, C. Eichman, M. Chabot-Fletcher, A. Truneh, and P. R.

Young. Herpesvirus entry mediator ligand (HVEM-L), a novel ligand for

HVEM/TR2, stimulates proliferation of T celis and inhibits HT29 celi growth.

iBiol.Chem. 273:27548-27556, 1998

121. Harrop, J. A., M. Reddy, K. Dede, M. Brigham-Burke, S. Lyn, K. B. Tan, C.

Silverman, C. Eichman, R. DiPrinzio, J. Spampanato, T. Porter, S. Holmes,

P. R. Young, and A. Truneh. Antibodies to TR2 (herpesvirus entry mediator), a

new member of the TNF receptor superfamily, block T ccli proliferation,

expression of activation markers, and production of cytokines. ilmmztnol.

161:1786-1794, 1998

122. Headon, D. J., S. A. Emmal, B. M. Ferguson, A. S. Tucker, M. J. Justice, P.

T. Sharpe, J. Zonana, and P. A. Overbeek. Gene defect in ectodermal dyspiasia

implicates a death domain adapter in development. Nature 414:913-916, 2001

123. Hïkichî, Y., H. Matsui, I. Tsuji, K. Nishi, T. Yamada, Y. Shintani, and H.

Onda. LIGHT, a member ofthe TNF superfamily, induces morphoÏogical

changes and delays proliferation in the human rhabdomyosarcoma ceil une RD.

Biochenz.Biophys.Res. Commun. 289:670-677, 2001

124. Hirokawa, J., S. Sakaue, Y. Furuya, J. Ishil, A. Hasegawa, S. Tagami, Y.

Kawakami, M. Sakai, S. Nishi, and J. Nishihira. Tumor necrosis factor-aipha

regulates the gene expression of macrophage migration inhibitory factor through

tyrosine kinase-dependent pathway in 3T3 -Li adipocytes. iBiochem. (Tokyo,)

123:733-739, 1998

125. Hochman, P. S., G. R. Majeau, F. Mackay, and J. L. Browning.

Proinflammatory responses are efficiently induced by homotrimeric but not

heterotrimeric lymphotoxin ligands. ihflainm. 46:220-234, 1995

126. Hohmann, H. P., R. Remy, M. Brockhaus, and A. P. van Loon. Two different

ccli types have different major receptors for human tumor necrosis factor (TNf

alpha). iBiol.Cheni. 264:14927-14934, 1989

127. Hollenbaugh, D., L. S. Grosmaire, C. D. Kullas, N. J. Chalupny, S. Braesch

Andersen, R. J. Noelle, I. Stamenkovic, J. A. Ledbetter, and A. Aruffo. The

human T celi antigen gp39, a member of the TNF gene family, is a ligand for the

CD4O receptor: expression ofa soluble form ofgp39 with B celi co-stimulatory

activity. EMBO 1 11:4313-4321, 1992

12$. Holler, N., R. Zaru, O. Mïcheau, M. Thome, A. Attinger, S. Valituttï, J. L.

Bodmer, P. Schneider, B. Seed, and J. Tschopp. fas triggers an alternative,

caspase-8-independent ccli death pathway using the kinase RIP as effector

molecule. Nat.Immunol. 1:489-495, 2000

FACULTÉ DES ÉTUDES SUPÉRIEURES UNIVERSITÉ DE MONTRÉAL XIAOCHUN WAN 96



129. Howard, S. T., Y. S. Chan, and G. L. Smitli. Vaccinia virus homologues ofthe

Shope fibroma virus inverted terminal repeat proteins and a discontinuous ORF

related to the tumor necrosis factor receptor family. Virology 180:633-647, 1991

130. Hsu, H., H. B. Shu, M. G. Pan, and D. V. Goeddel. TRADD-TRAF2 and

TRADD-fADD interactions define two distinct TNf receptor 1 signal
transduction pathways. Celi 84:299-308, 1996

131. Hsu, T. L., Y. C. Chang, S. J. Chen, Y. J. Liu, A. W. Chiu, C. C. Chïo, L.

Chen, and S. L. Hsieh. Modulation ofdendritic celi differentiation and

maturation by decoy receptor 3. Jlmmunol. 168:4846-4853, 2002

132. Hu, F. Q., C. A. Smîth, and D. J. Pickup. Cowpox virus contains two copies of

an early gene encoding a soluble secreted form ofthe type II TNF receptor.
Virology 204:343-356, 1994

133. Ru, S., K. Tamada, J. Ni, C. Vincenz, and L. Chen. Characterization of
TNfRSF 19, a novel member of the tumor necrosis factor receptor superfamily.

Genomics 62:103-107, 1999

134. Idriss, R. T. and J. H. Naismith. TNf alpha and the TNf receptor superfamily:

structure-function relationship(s). Microsc.Res. Tech. 50:184-195, 2000

135. Itoh, N., S. Yonehara, A. Ishii, M. Yonehara, S. Mizushima, M. Sameshima,

A. Hase, Y. Seto, and S. Nagata. The polypeptide encoded by the cDNA for
human ceil surface antigen Fas can mediate apoptosis. CeÏÏ 66:233-243, 1991

136. Itoli, N. and S. Nagata. A novel protein domain required for apoptosis.
Mutational analysis ofhuman fas antigen. J.BiotChern. 268:10932-10937, 1993

137. Jabara, H., D. Laouini, E. Tsitsikov, E. Mizoguchi, A. Bhan, E. Castigli, F.
Dedeoglu, V. Pivnïouk, S. Brodeur, and R. Geha. The binding site for TRAF2
and TRAF3 but flot for TRAf6 is essential for CD4O-mediated immunoglobulin
class switching. hnmtcnity. 17:265-276, 2002

138. Jenkins, M. K. The ups and downs of T celi costimulation. Immunity. 1:443-446,
1994

139. Jiang, Y., J. D. Woronicz, W. Liu, and D. V. Goeddel. Prevention of
constitutive TNF receptor 1 signaling by silencer ofdeath domains. Science
283:543-546, 1999

140. Johnson, R. M. and P. G. Spear. Herpes simplex virus glycoprotein D mediates
interference with herpes simplex virus infection. I Virol. 63:819-827, 1989

141. Joza, N., S. A. Susin, E. Daugas, W. L. Stanford, S. K. Cho, C. Y. Li, T.

Sasaki, A. J. Elia, H. Y. Cheng, L. Ravagnan, K. F. Ferri, N. Zamzami, A.

Wakeham, R. Hakem, H. Yoshida, Y.Y. Kong, T. W. 1Iak, J. C. Zuniga

FACULTÉ DES ÉTUDES SUPÉRIEURES UNIVERSITÉ DE MONTRÉAL XIAOCHUN WAN 97



Pflucker, G. Kroemer, and J. M. Penninger. Essential role ofthe mitochondrial

apoptosis-inducing factor in programmed celi death. Natttre 410:549-554, 2001

142. Ju, S. T., K. Matsui, and M. Ozdemirli. Molecular and cellular mechanisms

regulating T and B celi apoptosis through Fas/FasL interaction. Int.Rev.Irnrnunol.

18:485-513, 1999

143. June, C. H., J. A. Bluestone, L. M. Nadter, and C. B. Thompson. The B7 and

CD28 receptor families. Irnmunol.Today 15:321-331, 1994 V

144. Kayagaki, N., M. Yan, D. Seshasayee, H. Wang, W. Lee, D. M. french, I. S.

Grewal, A. G. Cochran, N. C. Gordon, J. Yin, M. A. Starovasnik, and V. M.
Dixit. BAFF/BLyS Receptor 3 Binds the B Ceil Survival Factor BAFf Ligand
through a Discrete Surface Loop and Promotes Processing ofNF-kappaB2.
Immunity. 17:515, 2002

145. Kelliher, M. A., S. Grimm, Y. Ishida, f. Kuo, B. Z. Stanger, and P. Leder.

The death domain kinase RIP mediates the TNF-induced NF-kappaB signal.
Invnunity. 8:297-303, 1998

146. Kettritz, R., M. L. Gaido, H. Haller, F. C. Luft, C. J. Jennette, and R. J. Falk.

Interletikin-8 delays spontaneous and tumor necrosis factor-alpha-mediated

apoptosis ofhurnan neutrophuls. Kidney Int. 53:84-9 1, 1998

147. Kim, D., R. E. Mebius, J. D. MacMicking, S. Jung, T. Cupedo, Y.
Castellanos, J. Rho, B. R. Wong, R. Josien, N. Kim, P. D. Rennert, and Y.

Choi. Regulation ofperipheral lymph node genesis by the tumor necrosis factor
family member TRANCE. iExp.Med. 192:1467-1478, 2000

148. Kim, N., P. R. Odgren, D. K. Kim, S. C. Marks, Jr., and Y. Choi. Diverse
roles ofthe tumor necrosis factor family member TRANCE in skeletal physiology
revealed by TRANCE deficiency and partial rescue by a lymphocyte-expressed
TRANCE transgene. Froc.Natl.Acad.Sci. US.A 97:10905-10910, 2000

149. Kischkel, F. C., S. Hellbardt, I. Behrmann, M. Germer, M. Pawiita, P. H.
Krammer, and M. E. Peter. Cytotoxicity-dependent APO-1 (fas/CD95)-
associated proteins form a death-inducing signaling complex (DISC) with the
receptor. EMBO 1 14:5579-5588, 1995

150. Kitson, J., T. Raven, Y. P. Jiang, D. V. Goeddel, K. M. Giles, K. T. Pun, C. J.
Grinham, R. Brown, and S. N. Farrow. A death-domain-containing receptor
that mediates apoptosis. Natttre 384:372-375, 1996

151. Knigge, H., M. M. Simon, S. C. Meuer, M. D. Kramer, and R. Wallich. The
outer surface lipoprotein OspA of Borrelia burgdorferi provides co-stimulatory

signais to normal human peripheral CD4+ and CD8+ T lymphocytes.

Eur.Ilmmunol. 26:2299-2303, 1996

FACULTÉ DES ÉTUDES SUPÉRIEURES UNIVERSITÉ DE MONTRÉAL XIAOCHUN WAN 98



152. Kong, Y. Y., H. Yoshida, I. Sarosi, H. L. Tan, E. Tïmms, C. Capparelli, S.

Morony, A. J. Oliveira-dos-Santos, G. Van, A. Itie, W. Khoo, A. Wakeham,

C. R. Dunstan, D. L. Lacey, T. W. Mak, W. J. Boyle, and J. M. Penninger.

OPGL is a key regulator of osteoclastogenesis, lymphocyte development and

lymph-node organogenesis. Nature 397:315-323, 1999

153. Kong, Y. Y., U. feige, I. Sarosi, B. Bolon, A. Tafuri, S. Morony, C.

Capparelli, J. Li, R. Elliott, S. McCabe, T. Wong, G. Campagnuolo, E.

Moran, E. R. Bogoch, G. Van, L. T. Nguyen, P. S. Ohashi, D. L. Lacey, E.

Fish, W. J. Boyle, and J. M. Penninger. Activated T ceils regulate bone loss and

joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature

402:304-309, 1999

154. Koni, P. A., R. Sacca, P. Lawton, J. L. Browning, N. H. Ruddle, and R. A.

Flaveil. Distinct roles in lymphoid organogenesis for Ïymphotoxins alpha and

beta revealed in lymphotoxin beta-deficient mice. Immunity. 6:49 1-500, 1997

155. Korn, W. M., T. Yasutake, W. L. Kuo, R. S. Warren, C. Collins, M. Tomita,

J. Gray, and f. M. Waldman. Chromosome arm 20q gains and other genomic

alterations in colorectal cancer metastatic to liver, as analyzed by comparative

genomic hybridization and fluorescence in situ hybridization. Genes
Chromosomes. Cancer 25:82-90, 1999

156. Kriegler, M., C. Perez, K. Defay, I. Albert, and S. D. Lu. A novel form of

TNf/cachectin is a ceil surface cytotoxic transmembrane protein: ramifications

for the complex physiology ofTNF. Ceil 53:45-53, 1988

157. Kuprash, D. V., O. A. Osipovich, D. K. Pokholok, M. B. Alïmzhanov, A.

Biragyn, R. L. Turetskaya, and S. A. Nedospasov. functional analysis ofthe

lymphotoxin-beta promoter. Sequence requirements for PMA activation.

llmmunol. 156:2465-2472, 1996

158. Kwon, B., K. Y. Yu, J. Ni, G. L. Yu, I. K. Jang, Y. J. Kim, L. Xing, D. Liu, S.

X. Wang, and B. S. Kwon. Identification ofa novel activation-inducible protein

of the tumor necrosis factor receptor superfamily and its ligand. iBiol. Chem.

274:6056-6061, 1999

159. Kwon, B. S., C. A. Kozak, K. K. Kim, and R. T. Pickard. Genornic

organization and chromosomal localization ofthe T-cell antigen 4-133.

llmmunol. 152:2256-2262, 1994

160. Kwon, B. S., K. B. Tan, J. Ni, K. O. Oh, Z. H. Lee, K. K. Kim, Y. J. Kim, S.

Wang, R. Gentz, G. L. Yu, J. Harrop, S. D. Lyn, C. Silverman, T. G. Porter,

A. Truneh, and P. R. Young. A newly identified member ofthe tumor necrosis

factor receptor superfamily with a wide tissue distribution and involvement in

lymphocyte activation. iBiol. Chem. 272:14272-14276, 1997

FACULTÉ DES ÉTUDES SUPÉRIEURES UNIVERSITÉ DE MONTRÉAL XIAOCHUN WAN 99



161. Laabi, Y. and A. Strasser. Immunology. Lymphocyte survival--ignorance is

BLys. Science 289:883-884, 2000

162. Lacey, D. L., E. Timms, H. L. Tan, M. J. Kelley, C. R. Dunstan, T. Burgess,

R. Elliott, A. Colombero, G. Ellîott, S. Scully, H. Hsu, J. Sullivan, N.

Hawkins, E. Davy, C. Capparelli, A. Eh, Y. X. Qian, S. Kaufman, I. Sarosi,

V. Shalhoub, G. Senaldi, J. Guo, J. Delaney, and W. J. Boyle. Osteoprotegerin

ligand is a cytokine that regulates osteoclast differentiation and activation. CelÏ

93:165-176, 1998 V

163. Lawton, P., J. Nelson, R. Tizard, and J. L. Browning. Characterization ofthe

mouse lymphotoxin-beta gene. J.Imrnunol. 154:239-246, 1995

164. Lazdins, J. K., M. Greil, M. R. Walker, K. Woods-Cook, P. Scheurich, and

K. Pfizenmaier. Membrane tumor necrosis factor (TNF) induced cooperative

signaling of TNFR6O and TNFR8O favors induction of celi death rather than virus

production in HIV-infected T celis. J.Exp.Med. 185:81-90, 1997

165. Leeuwenberg, J. F., M. A. Dentener, and W. A. Buurman. Lipopolysaccharide

LPS-mediated soluble TNf receptor release and TNF receptor expression by

monocytes. Role ofCDl4, LPS binding protein, and bactericidal/permeability

increasing protein. ihnmunot. 152:5070-5076, 1994

166. Lens, S. M., K. Tesselaar, M. H. van Oers, and R. A. van Lier. Control of

lymphocyte function through CD27-CD7O interactions. Semin.Irnmunol. 10:491 -

499, 1998

167. Li, K., Y. Li, J. M. Shelton, J. A. Richardson, E. Spencer, Z. J. Chen, X.

Wang, ami R. S. Williams. Cytochrome c deficiency causes embryonic lethality

and attenuates stress-induced apoptosis. Ceil 101:389-399, 2000

16$. Li, L.Y., X. Luo, and X.Wang. Endonuclease G is an apoptotic DNase when

released from mitochondria. Nature 4 12:95-99, 2001

169. Li, X. C., Y. Li, I. Dodge, A. D. Wells, X. X. Zheng, L. A. Turka, and T. B.

Strom. Induction of allograft tolerance in the absence ofFas-mediated apoptosis.

ilmmunoÏ. 163:2500-2507, 1999

170. Liebmann, P. M., G. Reibnegger, M. Lehofer, M. Moser, P. Purstner, H.

Mangge, and K. Schauenstein. Circadian rhythm ofthe soluble p75 tumor

necrosis factor (sTNf-R75) receptor in humans--a possible explanation for the

circadian kinetics of TNR-alpha effects. Int.ImnzunoÏ. 10:1393-1396, 199$

171. Linshey, P. S. and J. A. Ledbetter. The role ofthe CD28 receptor during T ceil

responses to antigen. Anntt.Rev.ImrnunoÏ. 11: 191-212, 1993

FACULTÉ DES ÉTUDES SUPÉRIEURES UNIVERSITÉ DE MONTRÉAL XIAOCHUN WAN 100



172. Liu, Y., P. Warïng, ami A. Muilbacher. Alloreactive cytotoxic T ceils induce

DNA fragmentation in peritoneal macrophages: evidence for target celi killing by

cytotoxic T celis in vivo. Eur.ilrnmunot. 19:1153-1155, 1989

173. Locksley, R. M., N. Killeen, and M. J. Lenardo. The TNf and TNf receptor

superfamilies: integrating mammalian biology. Celi 104:487-501, 2001

174. Loenen, W. A., L. A. Gravestein, S. Beumer, C. J. Melief, A. Hagemeijer, and

J. Borst. Genomic organization and chromosomal localization ofthe human

CD27 gene. ilmntttnol. 149:3937-3943, 1992

175. Loo, D. T., N. J. Chalupny, J. Bajorath, W. W. Shuford, R. S. Mittier, and A.

Aruffo. Analysis of4-1BBL and laminin binding to murine 4-1BB, a member of

the tumor necrosis factor receptor superfamily, and comparison with human 4-

133. iBioLCÏzern. 272:6448-6456, 1997

176. Lotz, M., M. Setareh, J. von Kempis, and H. Schwarz. The nerve growth

factor/tumor necrosis factor receptor family. iLeukoc.Biol. 60:1-7, 1996

177. Lynch, C. N., Y. C. Wang, J. K. Lund, Y. W. Chen, J. A. Leal, and S. R.

Wiley. TWEAK induces angiogenesis and proliferation ofendothelial ceils.

iBiol.Chem. 274:8455-8459, 1999

17$. Mackay, F., J. L. Browning, P. Lawton, S. A. Shah, M. Comiskey, A. K.

Bhan, E. Mizoguchi, C. Terhorst, and S. J. Simpson. Both the Iymphotoxin

and tumor necrosis factor pathways are involved in experimental murine models

of colitis. Gastroenterology 115:1464-1475, 1998

179. Marsters, S. A., A. D. Frutkin, N. J. Simpson, B. M. fendly, and A.
Ashkenazi. Identification ofcysteine-rich domains ofthe type 1 tumor necrosis

factor receptor involved in ligand binding. iBiol.Chem. 267:5747-5750, 1992

180. Marsters, S. A., J. P. Sheridan, C. J. Donahue, R. M. Pitti, C. L. Gray, A. D.

Goddard, K. D. Bauer, and A. Ashkenazi. Apo-3, a new member of the tumor

necrosis factor receptor family, contains a death domain and activates apoptosis

andNF-kappaB. Curr.Biol. 6:1669-1676, 1996A

181. Marsters, S. A., R. M. Pitti, C. J. Donahue, S. Ruppert, K. D. Bauer, and A.

Aslikenazi. Activation ofapoptosis by Apo-2 ligand is independent offADD but

blocked by CrmA. Curr.Biol. 6:750-752, 1996B

182. Marsters, S. A., J. P. Sheridan, R. M. Pitti, A. Huang, M. Skubatch, D.

Baldwin, J. Yuan, A. Gurney, A. D. Goddard, P. Godowski, and A.
Ashkenazi. A novel receptor for Apo2L/TRAIL contains a truncated death

domain. Curr.Biol. 7:1003-1006, 1997A

183. 1’Iarsters, S. A., T. M. Ayres, M. Skubatch, C. L. Gray, M. Rothe, and A.

Ashkenazi. Herpesvirus entry mediator, a member of the tumor necrosis factor

FACULTÉ DES ÉTUDES SUPÉRIEURES UNIVERSITÉ DE MONTRÉAL XIAOCHUN WAN 101



receptor (TNfR) family, interacts with members of the TNfR-associated factor

family and activates the transcription factors NF-kappaB and AP-1. iBiol.Chem.

272:14029-14032, 19973

184. Masïhi, K. N., K. Madaj, H. Hintelmann, G. Gast, and Y. Kaneko. Down

regulation of tumor necrosis factor-aipha, moderate reduction of interleukin

1 beta, but flot interleukin-6 or interleukin- 10, by glucan immunomodulators

curdian sulfate and lentinan. Int.ilmmunopharmacol. 19:463-468, 1997

185. Matsui, H., Y. Hikïchi, I. Tsuji, T. Yamada, and Y. Shïntanï. LIGHT, a

member ofthe tumor necrosis factor ligand superfamily, prevents tumor necrosis

factor-alpha-mediated human primaiy hepatocyte apoptosis, but not Fas-mediated

apoptosis. J.Biol.Chem. 277:50054-5006 1, 2002

186. Matsumoto, M., S. Mariathasan, M. H. Nahm, F. Baranyay, J. J. Peschon,

and D. D. Chaplin. Role oflymphotoxin and the type I TNF receptor in the

formation of germinal centers. Science 271:1289-1291, 1996

187. Mauri, D. N., R. Ebner, R. I. Montgomery, K. D. Kochel, T. C. Cheung, G. L.

Yu, S. Ruben, M. Murphy, R. J. Eisenberg, G. H. Cohen, P. G. Spear, and C.

F. Ware. LIGHT, a new member ofthe TNF superfamily, and lymphotoxin alpha

are ligands for herpesvirus entry mediator. Immztnfly. 8:21-30, 1998

188. I’1elloni, E., M. Averna, F. Salamino, B. Sparatore, R. Minafra, and S.

Pontremoli. Acyl-CoA-binding protein is a potent m-calpain activator. J

Biol.Chem. 275:82-86, 2000

189. Meng, X. W., M. J. Fraser, J. M. Fetier, and J. B. Ziegler. Caspase-3 activates

endo-exonuclease: further evidence for a role ofthe nuclease in apoptosis.

Apoptosis. 5:243-254, 2000

190. Messmer, U. K., V. A. Briner, and J. Pfeilschifter. Basic fibroblast growth

factor selectively enhances TNF-alpha-induced apoptotic celi death in glomerular

endothelial ceils: effects on apoptotic signaling pathways [In Process Citation].

JAnz.Soc.Nephrol. 11:2199-2211, 2000

191. Migone, T. S., J. Zhang, X. Luo, L. Zhuang, C. Chen, B. Hu, J. S. Hong, J.

W. Perry, S. F. Chen, J. X. Zhou, Y. H. Cho, S. Ullrïch, P. Kanakaraj, J.

Carreli, E. Boyd, H. S. Olsen, G. Hu, L. Pukac, D. Liu, J. Ni, S. Kim, R.

Gentz, P. Feng, P. A. Moore, S. M. Ruben, and P. Wei. TL1A is a TNf-like

ligand for DR3 and TR6/DcR3 and functions as a T celi costimulator. Immtutity.

16:479-492, 2002

192. Mild, G., F. Bachmann, J. L. Boulay, K. Gtatz, U. Laffer, A. Lowy, U.

Metzger, J. Reuter, L. Terracciano, R. Herrmann, and C. Rochlitz. DCR3

locus is a predictive marker for 5-fluorouracil-based adjuvant chernotherapy in

colorectal cancer. Int.i Cancer 102:254-257, 2002

FACULTÉ DES ÉTUDES SUPÉRIEURES UNIVERSITÉ DE MONTRÉAL XIAOCHUN WAN 102



193. Mohier, K. M., P. R. Sleath, J. N. Fitzner, D. P. Cerretti, M. Alderson, S. S.

Kerwar, D. S. Torrance, C. Otten-Evans, T. Greenstreet, K. Weerawarna,

and . Protection against a lethal dose of endotoxin by an inhibitor of tumour

necrosis factorprocessing. Nature 370:218-220, 1994

194. Montgomery, R. I., M. S. Warner, B. J. Lum, and P. G. Spear. Herpes

simplex virus-1 entry into celis mediated by a novel member ofthe TNf/NGf

receptor family. Ceil 87:427-43 6, 1996

195. Moore, P. A., O. Belvedere, A. Orr, K. Pieri, D. W. Lafleur, P. Feng, D.

Soppet, M. Charters, R. Gentz, D. Parmelee, Y. Li, O. Galperina, J. Gin, V.

Roschke, B. Nardelli, J. Canreli, S. Sosnovtseva, W. Greenfield, S. M. Ruben,

H. S. Otsen, J. Fikes, and D. M. Hilbert. BLyS: member ofthe turnor necrosis

factor family and B lymphocyte stirnulator. Science 285:260-263, 1999

196. Moreau, E., J. Philippe, S. Couvent, and G. Leroux-Roels. Interference of

soluble TNF-alpha receptors in immunological detection oftumor necrosis factor

alpha. CÏin.Chem. 42:1450-1453, 1996

197. Morel, Y., J. M. Schiano de Colella, J. Harrop, K. C. Deen, S. D. Holmes, T.

A. Wattam, S. S. Khandekar, A. Truneh, R. W. Sweet, J. A. Gastaut, D.

Olive, and R. T. Costello. Reciprocal expression ofthe TNF family receptor

herpes virus entry mediator and its ligand LIGHT on activated T ceils: LIGHT

down-regulates its own receptor. ihnnutnot. 165:4397-4404, 2000

198. Monta, A., M. Grewe, S. Grether-Beck, S. Olaizola-Horn, and J. Krutmann.

Induction ofproinflammatory cytokines in human epidermoid carcinoma cells by

in vitro ultraviolet Al irradiation. Photochem.FhotobioÏ. 65:630-635, 1997

199. Munphy, P. T. and R. M. Hutchinson. Interleukin-4 and tumour necrosis factor

alpha produce non isotype specific partial differentiation ofperipheral blood B

cells in myeloma. Leuk.Lyrnphorna 28:377-382, 1998

200. Muzio, M., A. M. Chinnaiyan, F. C. Kischkel, K. O’Rourke, A. Shevchenko,

J. Ni, C. Scaffidi, J. D. Bretz, M. Zhang, R. Gentz, M. Mann, P. H. Krammer,

M. E. Peter, and V. M. Dixit. fLICE, a novel FADD-homologous ICE/CED-3-

like protease, is recruited to the CD95 (fas/APO-1) death--inducing signaling

complex. Ce!! 85:817-827, 1996

201. Nagahira, K., Y. fukuda, T. Nasu, H. Kawashima, C. Noguchi, T. Kurihara,

S. Oikawa, and T. Nakanishi. Construction and expression of a mouse-human

chimeric antibody against human tumor necrosis factor-aipha. ImmunoÏ.Lett.

64:139-144, 1998

202. Nagata, S. Apoptosis by death factor. Ce!1 88:355-365, 1997

FACULTÉ DES ÉTUDES SUPÉRIEURES UNIVERSITÉ DE MONTRÉAL XIAOCHUN WAN 103



203. Naismith, J. H., T. Q. Devine, T. Kohno, and S. R. Sprang. Structures ofthe

extracellular domain of the type I tumor necrosis factor receptor. $frtcctztre.

4:1251-1262, 1996

204. Natoli, G., A. Costanzo, A. lanni, D. J. Templeton, J. R. Woodgett, C.

Balsano, and M. Levrero. Activation of SAPKJJNK by TNF receptor 1 through

a noncytotoxic TRAF2-dependent pathway. Science 275:200-203, 1997

205. Nooijen, P. T., A. M. Eggermont, L. Schalkwijk, S. Henzen-Logmans, R. M

de Waal, and D. J. Ruiter. Complete response of melanoma-in-transit metastasis

after isolated limb perfusion with tumor necrosis factor alpha and meiphalan

without massive tumor necrosis: a clinical and histopathological study ofthe

delayed-type reaction pattern. Cancer Res. 58:4880-4887, 199$

206. Nophar, Y., O. Kemper, C. Brakebusch, H. Englemann, R. Zwang, D.

Aderka, H. Holtmann, and D. Wallach. Soluble forms oftumor necrosis factor

receptors (TNf-Rs). The cDNA for the type I TNF-R, cloned using amino acid

sequence data of its soluble form, encodes both the ceIl surface and a soluble form

ofthe receptor. EMBOI 9:3269-3278, 1990

207. Ohsato, T., N. Ishihara, T. Muta, S.Umeda, S. Ikeda, K. Mihara, N.

Hamasaki, ami D. Kang. Mammalian mitochondrial endonuclease G. Digestion

ofR-loops and localization in intermembrane space. Eur.JBiochem. 269:5765-

5770, 2002

208. Olishima, K., S. Haraoka, M. Sugihara, J. Suzumiya, C. Kawasaki, M.

Kanda, and M. Kikuchi. Amplification and expression ofa decoy receptor for

fas ligand (DcR3) in virus (EBV or HTLV-I) associated lympliomas. Cancer Lett.

160:89-97, 2000

209. Oshimi, Y., S. Oda, Y. Honda, S. Nagata, and S. Miyazaki. Involvement offas

ligand and fas-mediated pathway in the cytotoxicity ofhuman natural killer celis.

ihnmunol. 157:2909-2915, 1996

210. Otsuki, T., A. Tomokuni, H. Sakaguchi, T. Aikoh, T. Matsukï, Y. Isozaki, F.

Hyodoh, H. Ueki, M. Kusaka, S. Kita, and A. Ueki. Over-expression ofthe

decoy receptor 3 (DcR3) gene in peripheral blood mononuclear cells (PBMC)

derived from silicosis patients. Clin.Exp.Irnrnunol. 119:323-327, 2000

211. Pan, G., J. Ni, Y. f. Wei, G. Yu, R. Gentz, and V. M. Dixit. An antagonist

decoy receptor and a death domain-containing receptor for TRAIL. Science

277:815-818, 1997A

212. Pan, G., K. O’Rourke, A. M. Chinnaiyan, R. Gentz, R. Ebner, J. Ni, and V.

M. Dixit. The receptor for the cytotoxic ligand TRAIL. Science 276:111-113,

1997B

FACULTÉ DES ÉTUDES SuPÉIuEUIES UNIVERSITÉ DE MONTRÉAL XIAOCHUN \VAN 104



213. Pan, G., J. Ni, G. Yu, Y. F. Wei, and V. M. Dixit. TRUNDD, a new member of

the TRAIL receptor family that antagonïzes TRAIL signalling. FEBSLett.

424:41-45, 199$A

214. Pan,G., J. H. Bauer, V. Haridas, S. Wang, D. Liu, G. Yu, C. Vincenz, B. B.

Aggarwal, J. Ni, and V. M. Dixit. Identification and functional characterization of

DR6, a novel death domain-containing TNF receptor. FEBSLett. 431:351-356,

1998B

215. Peng, X., D. M. Mosser, M. W. Adier, T. J. Rogers, J. J. Meissier, Jr., and T.

K. Eisenstein. Morphine enhances interleukin- 12 and the production of other pro

inflammatory cytokines in mouse peritoneal macrophages tIn Process Citation].

J.Leukoc.Biol. 68:723-728, 2000

216. Pennica, D., J. S. Hayflick, T. S. Bringman, M. A. Palladino, and D. V.

Goeddel. Cloning and expression in Escherichia cou ofthe cDNA for murine

tumor necrosis factor. Froc.Natl.Acad.Sci. U.S.A 82:6060-6064, 1985

217. Piccotti, J. R., S. Y. Chan, A. M. VanBuskirk, E. J. Eichwald, and D. K.

Bishop. Are Th2 helper T lymphocytes beneficial, deleterious, or irrelevant in

promoting allograft survival? Transplantation 63:619-624, 1997

218. Pietravalle, F., S. Lecoanet-Henchoz, H. Blasey, J. P. Aubry, G. Elson, M. D.

Edgerton, J. Y. Bonnefoy, and J. F. Gauchat. Human native soluble CD4OL is

a biologically active trimer, processed inside microsomes. iBiol.Chern.

271:5965-5967, 1996

219. Pietravalle, F., S. Lecoanet-Henchoz, J. P. Aubry, G. Elson, J. Y. Bonnefoy,

and J. F. Gauchat. Cleavage ofmembrane-bound CD4O ligand is not required

for inducing B celi proliferation and differentiation. Eur.ifmmunol. 26:725-72$,

1996

220. Pinchuk, L. M., S. J. Kiaus, D. M. Magaletti, G. V. Pinchuk, J. P. Norsen,

ami E. A. Clark. functional CD4O ligand expressed by human blood dendritic

cells is up-regulated by CD4O ligation. ilinrnunol. 157:4363-4370, 1996

221. Pitti, R. M., S. A. Marsters, S. Ruppert, C. J. Donahue, A. Moore, and A.

Ashkenazi. Induction ofapoptosis by Apo-2 ligand, a new member of the tumor

necrosis factor cytokine family. iBiol.Chern. 27 1:12687-12690, 1996

222. Pitti, R. M., S. A. Marsters, D. A. Lawrence, M. Roy, f. C. Kischkel, P.

Dowd, A. Huang, C. J. Donahue, S. W. Sherwood, D. T. Baldwin, P. J.

Godowski, W. I. Wood, A. L. Gurney, K. J. Hillan, R. L. Cohen, A. D.

Goddard, D. Botstein, and A. Ashkenazi. Genomic amplification ofa decoy

receptor for Fas ligand in lung and colon cancer. Nature 3 96:699-703, 199$

FACULTÉ DES ÉTUDES sUPÉRIEUIS UNIVERSITÉ DE MONTRÉAL XIAOCHUNWAN 105



223. Porter, M. H., M. Arnold, ami W. Langlians. TNF-alpha tolerance blocks LPS

induced hypophagia but LPS tolerance fails to prevent TNf-alpha-induced

hypophagia. Am.iFhysiol 274:R74 1 -R745, 1998

224. Porteu, F., M. Brockhaus, D. Wallach, H. Engelmann, and C. F. Nathan.

Human neutrophil elastase releases a ligand-binding fragment from the 75-kDa

tumor necrosis factor (TNF) receptor. Comparison with the proteolytic activity

responsible for shedding ofTNF receptors from stimulated neutrophuls.

iBiol.Chem. 266:18846-18853, 1991

225. Posavad, C. M. and K. L. Rosenthal. Herpes simplex virus-infected human

fibroblasts are resistant to and inhibit cytotoxic T-lymphocyte activity. I Virot.

66:6264-6272, 1992

226. Probert, L. and K. Setmaj. TNf and related molecules: trends in neuroscience

and clinical applications. INeuroimmttnoÏ. 72:113-117, 1997

227. Probert, L, H. P. fugster, K. Akassoglou, J. Bauer, K. Frei, H. Lassmann,

and A. Fontana. TNFRI signalling is critical for the development of

demyelination and the limitation ofT-cell responses during immune-rnediated

CNS disease [In Process Citation]. Brain 123 (Pt 10):2005-2019, 2000

228. Raff, M. Ceil suicide for beginners. Nature 396:119-122, 1998

229. Rahman, I. Regulation of nuclear factor-kappaB, activator protein-1, and

glutathione levels by tumor necrosis factor-aipha and dexamethasone in alveolar

epithelial ceils [In Process Citation]. Biochem.PÏzarmacol. 60:1041-1049, 2000

230. Regnier, C. H., H. Y. Song, X. Gao, D. V. Goeddet, Z. Cao, and M. Rothe.

Identification and characterization of an IkappaB kinase. Celi 90:373-383, 1997

231. Reïner, S. L. and R. M. Locksley. The regulation of immunity to Leishmania

major. Annu.Rev.Imnzunol. 13:151-177, 1995

232. Reiter, I., G. Schwamberger, and B. Krammer. Effect ofphotodynamic

pretreatment on the susceptibility of murine tumor ceils to macrophage antitumor

mechanisms. Photochenz.Photobiot. 66:384-388, 1997

233. Rennert, P. D., J. L. Browning, R. MeNus, F. Mackay, and P. S. Hochman.

Surface lymphotoxin alpha!beta complex is required for the development of

peripheral lymphoid organs. iExp.Med. 184:1999-2006, 1996

234. Romagnani, S. The Thl/Th2 paradigm. ImrnunoÏ.Today 18:263-266, 1997

235. Rooney, I. A., K. D. Butrovich, A. A. Glass, S. Borboroglu, C. A. Benedïct, J.

C. Whitbeck, G. H. Cohen, R. J. Eisenberg, and C. F. Ware. The

lymphotoxin-beta receptor is necessary and sufficient for LIGHT-mediated

apoptosis oftumor celis. IBioÏ.Chem. 275:14307-143 15, 2000

FACULTÉ DES ÉTUDES SUPÉRIEURES UNIVERSITÉ DE MONTRÉAL XIAOCHUN WAN 106



236. Roth, W., S. Isenmann, M. Nakamura, M. Platten, W. Wïck, P. Kleihues, M.

Bahr, H. Oligaki, A. Ashkenazi, and M. WeIIer. Soluble decoy receptor 3 is

expressed by malignant gliomas and suppresses CD95 ligand-induced apoptosis

and chemotaxis. Cancer Res. 61:2759-2765, 2001

237. Rothe, M., M. G. Pan, W. J. Henzel, T. M. Ayres, and D. V. Goeddel. The

TNfR2-TRAF signaling complex contains two novel proteins related to

baculoviral inhibitor of apoptosis proteins. CelI 83:1243-1252, 1995

238. Rothe, M., V. Sarma, V. M. Dixit, and D. V. Goeddel. TRAF2-mediated

activation ofNf-kappa B by TNF receptor 2 and CD4O. Science 269:1424-1427,

1995

239. Sakakura, C., T. Mon, T. Sakabe, Y. Ariyama, T. Shinomiya, K. Date, A.

Hagiwara, T. Yamaguchi, T. Takahashi, Y. Nakamura, T. Abe, and J.

Inazawa. Gains, losses, and amplifications ofgenomic materials in primary

gastric cancers analyzed by comparative genomic hybridization. Genes

Chronzosornes.Cancer 24:299-305, 1999

240. Sali h, H. R., H. M. Schmetzer, C. Burke, G. C. Starling, R. Dunn, R. Peika

Fleischer, V. Nuessier, and P. A. Kiener. Soluble CD 137 (4-1BB) ligand is

released following leukocyte activation and is found in sera of patients with

hematological malignancies. llmmunol. 167:4059-4066, 2001

241. Santee, S. M. and L. B. Owen-Schaub. Human tumor necrosis factor receptor

p75780 (CD 1 20b) gene structure and prornoter characterization. iBiol. Client.

271:21151-21159, 1996

242. Sato, T., K. Asamitsu, J. P. Yang, N. Takahashi, T. Tetsuka, A. Yoneyama,

A. Kanagawa, and T. Okamoto. Inhibition ofhuman immunodeficiency virus

type 1 replication by a bioavaiÏable serine/threonine kinase inhibitor, fasudil

hydrochioride. AID$ Res.Httm.Retroviruses 14:293-298, 1998

243. Savelieva, E., C. D. Belair, M. A. Newton, S. DeVries, J. W. Gray, F.

Waldman, and C. A. Reznikoff. 20q gain associates with immortalization:

20q13.2 amplification correlates with genome instability in human papillomavinis

16 E7 transformed hurnan uroepithelial celis. Oncogene 14:55 1-560, 1997

244. Schen, S., J. Alferink, T. Potzel, W. Barchet, U. Kallnke, and K. Pfeffer.

Targeted disruption of LIGHT causes defects in costimulatory T ceil activation

and reveals cooperation with lymphotoxin beta in mesenteric lymph node genesis.

JExp.Med. 195:1613-1624, 2002

245. Schneider, P., F. Mackay, V. Steiner, K. Hofmann, J. L. Bodmer, N. Houer,

C. Ambrose, P. Lawton, S. Bixier, H. Acha-Orbea, D. Valmori, P. Romero,

C. Werner-Favre, R. H. Zubler, J. L. Browning, and J. Tschopp. BAfF, a

FACULTÉ DES ÉTUDES SUPÉRIEURES UNIVERSITÉ DE MONTRÉAL XIAOCHUN WAN 107



novel ligand ofthe tumor necrosis factor family, stimulates B ceil growth.

iExp.Med. 189:1747-1756, 1999

246. Schorle, H., T. Holtschke, T. Hunig, A. Schimpi, and I. Horak. Development

and function of T celis in mice rendered interleukin-2 deficient by gene targeting.

Natitre 352:621-624, 1991

247. Schwartz, R. H. Costimulation of T lymphocytes: the role ofCD28, CTLA-4,

and B7/BB 1 in interleukin-2 production and immunotherapy. Ceil 71:1065-1068,

1992

248. Screaton, G. and X. N. Xu. T ceil Iife and death signalling via TNf-receptor

family members. Curr.Opiiz.ImmunoL 12:316-322, 2000

249. Screaton, G. R., X. N. Xu, A. L. Olsen, A. E. Cowper, R. Tan, A. J.

McMichael, and J. I. Beli. LARD: a new lymphoid-specific death domain

containing receptor regulated by alternative pre-mRNA splicing.

Froc.Natt.Acad.Sci. U.S.A 94:4615-4619, 1997

250. Sebzda, E., S. Mariathasan, T. Ohteki, R. Jones, M. F. Bachmann, and P. S.

Ohashi. Selection oftlie T ceil repertoire. Annu.Rev.IrnrnztnoÏ. 17:829-874, 1999

251. Seckinger, P., S. Isaaz, and J. M. Bayer. Purification and biologic

characterization of a specific tumor necrosis factor alpha inhibitor. iBiol. Chem.

264:11966-11973, 1989

252. Seltz, C. S., R. A. Freiberg, K. Hinata, and P. A. Khavari. NF-kappaB

determines localization and features ofcell death in epidermis. iCÏinJnvest

105:253-260, 2000

253. Serrador, J. M., M. Nieto, J. L. Alonso-Lebrero, M. A. de! Pozo, J. Calvo, H.

Furthmayr, R. Schwartz-Albîez, F. Lozano, R. Gonzalez-Amaro, P. Sanchez

Mateos, and F. Sanchez-Madrid. CD43 interacts with moesin and ezrin and

regulates its redistribution to the uropods of T lymphocytes at the cell-cell

contacts. BÏood9l:4632-4644, 1998

254. Shaikh, R. B., S. Santee, S. W. Granger, K. Butrovich, T. Cheung, M.

Kronenberg, H. Cheroutre, and C. F. Ware. Constitutive expression of LIGHT

on T celis leads to lymphocyte activation, inflammation, and tissue destruction.

ilmmttnoÏ. 167:6330-633 7, 2001

255. Sheikh, M. S. and A. J. Fornace, Jr. Death and decoy receptors and p53-

mediated apoptosis. Leztkemia 14:1509-1513, 2000

256. Sheridan, J. P., S. A. Marsters, R. M. Pitti, A. Gurney, M. Skubatch, B.

Baldwin, L. Ramakrishnan, C. L. Gray, K. Baker, W. I. Wood, A. B.

Goddard, P. Godowski, and A. Ashkenazi. Control ofTRAIL-induced

FACULTÉ DES ÉTUDES SUPÉRIEURES UNIVERSITÉ DE MONTRÉAL XIAOCHUNWAN 108



apoptosis by a family of signaling and decoy receptors. Science 277:818-821,

1997

257. 5M, G., H. Luo, X. Wan, T. W. Salcedo, J. Zhang, and J. Wu. Mouse T celis

receive costimuiatory signais from LIGHT, a TNF famiiy member. Btood

100:3279-3286, 2002

258. Shi, G., Y. Wu, J. Zhang, and J. Yu. Death Decoy Receptor TR6/DcR3 Inhibits

T Ccii Chemotaxis In Vitro and In Vivo. Jlmmunol. 2003 (In press)

259. Shirai, T., H. Yamaguchi, H. Ito, C. W. Todd, and R. B. Wallace. Cloning ami

expression in Escherichia cou ofthe gene for human tumour necrosis factor.

Natitre 313:803-$06, 1985

260. Shu, H. B., M. Takeuchi, and D. V. Goeddel. The tumor necrosis factor receptor

2 signai transducers TRAf2 and c-IAP 1 are components of the tumor necrosis

factor receptor 1 signaiing complex. Froc.Natl.Acad.Sci. US.A 93:13973-1397$,

1996

261. Shu, H. B., W. H. Hu, and H. Jolinson. TALL-1 is a novel member of the TNF

famiiy that is down-reguiated by mitogens. iLettkoc.Biol. 65:680-683, 1999

262. Shuford, W. W., K. Klussman, D. D. Tritchler, D. T. Loo, J. Chalupny, A. W.

Siadak, T. J. Brown, J. Emswller, H. Raecho, C. P. Larsen, T. C. Pearson, J.

A. Ledbetter, A. Aruffo, and R. S. Mittier. 1997. 4-1BB costimuiatory signais

preferentially induce CD$+ T ceil proliferation and iead to the amplification in

vivo ofcytotoxic T ccli responses. iExp.Med. 186:47-55

263. Sica, G. L., G. Zhu, K. Tamada, D. Liu, J. Ni, and L. Chen. RELT, a new

member ofthe tumor necrosis factor receptor superfamily, is selectively

expressed in hematopoietic tissues and activates transcription factor NF-kappaB.

Blood 97:2702-2707, 2001

264. Siegel, R. M., F. K. Chan, H. J. Chun, and M. J. Lenardo. The multifaceted

role offas signaling in immune celi homeostasis and autoimmunity.

Nat.Irnmunol. 1:469-474, 2000

265. Simonet, W. S., D. L. Lacey, C. R. Dunstan, M. Kelley, M. S. Chang, R.

Luthy, H. Q. Nguyen, S. Wooden, L. Bennett, T. Boone, G. Shimamoto, M.

DeRose, R. Elliott, A. Colombero, H. L. Tan, G. Trail, J. Sullivan, E. Davy,

N. Bucay, L. Renshaw-Gegg, T. M. Hughes, D. Hill, W. Pattison, P.

Campbell, W. J. Boyle, and . Osteoprotegerin: a novel secreted protein involved

in the regulation ofbone density. Ceil 89:309-319, 1997

266. Sjoholm, A. Effects oftransforming growth factor beta, tumor necrosis factor

alpha and interferon gamma on pancreatic islet beta-ceil responsiveness to

transforming growth factor aipha. Biosci.Rep. 16:415-423, 1996

FACULTÉ DES ÉTUDES SUPÉRIEURES UNIVERSITÉ DE MONTRÉAL XIAOCHUN WAN 109



267. Smith, C. A., T. Davis, D. Anderson, L. Solam, M. P. Beckmann, R. Jerzy, S.

K. Dower, D. Cosman, and R. G. Goodwin. A receptor for tumor necrosis factor

defines an unusual family of cellular and viral proteins. Science 242:1019-1023,

1990

268. Smith, C. A., H. J. Gruss, T. Davis, D. Anderson, T. Farrah, E. Baker, G. R.

Sutherland, C. I. Brannan, N. G. Copeland, N. A. Jenkins, and . CD3O

antigen, a marker for Hodgkin’s lymphoma, is a receptor whose ligand defines an

emerging family of cytokines with homology to TNf. CelÏ 73:1349-1360, 1993

269. Smith, C. A., T. Farrah, and R. G. Goodwin. The TNf receptor superfarnily of

cellular and viral proteins: activation, costimulation, and deatli. Celi 76:959-962,

1994

270. Smith, R. A. and C. Baglioni. The active form oftumor necrosis factor is a

trimer. iBiol.Chem. 262:6951-6954, 1987

271. Soligo, D., D. G. Lambertenghi, N. Quirici, F. Servida, L. Caneva, and G.

Lamorte. Expansion ofdendritic ceils derived from human CD34+ celis in static

and continuous perfusion cultures. Br.iHaematol. 101:352-363, 1998

272. Sonoda, G., J. Palazzo, M. S. du, A. K. Godwin, M. Feder, M. Yakushiji, and

J. R. Testa. Comparative genomic hybridization detects frequent

overrepresentation ofchromosomal material from 3q26, $q24, and 20q13 in

human ovarian carcinomas. Genes Chro,nosoines.Cancer 20:320-328, 1997

273. Srfvastava, A. K., J. Pispa, A. J. Hartung, Y. Du, S. Ezer, T. Jenks, T.

Shimada, M. Pekkanen, M. L. Mïkkola, M. S. Ko, I. Ihesleff, J. Kere, and D.

Schiessinger. The Tabby phenotype is caused by mutation in a mouse homologue

ofthe EDA gene that reveals novel mouse and human exons and encodes a

protein (ectodysplasin-A) with coïlagenous domains. Proc.NatLAcad. Sci. U S.A

94:13069-13074, 1997

274. Stanger, B. Z., P. Leder, T. H. Lee, E. Kim, and B. Seed. RTP: a novel protein

containing a death domain that interacts with Fas/APO- 1 (CD95) in yeast and

causes ccli death. Ceil 81:513-523, 1995

275. Storz, P., H. Doppler, A. Wernig, K. Pfizenmaier, and G. Muller. Cross-talk

mechanisms in the development of ïnsulin resistance ofskeletal muscle cells

palmitate rather than tumour necrosis factor inhibits insulin-dependent protein

kinase B (PKB)/Akt stimulation and glucose uptake. Eur.iBiochent. 266:17-25,

1999

276. Stubbs, A. P., P. D. Abel, M. Golding, G. Bhangal, Q. Wang, J. Waxman, G.

W. Stamp, and E. N. Lalani. Differentially expressed genes in hormone

refractory prostate cancer: association with chromosomal regions involved with

genetic aberrations. Am.iFathol. 154:1335-1343, 1999

FACULTÉ DES ÉTUDES SUPÉRIEURES UNIVERSITÉ DE MONTRÉAL XIAOCHUNWAN 110



277. Stuber, E., M. Neurath, D. Calderhead, H. P. Feu, ami W. Strober. Cross

linking of 0X40 ligand, a member of the TNF/NGF cytokine family, induces

proliferation and differentiation in murine splenic B celis. Immunity. 2:507-521,

1995

27$. Stuber, E. and W. Strober. The T celÏ-B celi interaction via 0X40-OX4OL is

necessary for the T celi-dependent humoral immune response. iExp.Med.

183:979-989, 1996

279. Suda, T., T. Takahashi, P. Goistein, and S. Nagata. Molecular cloning and

expression of the Fas ligand, a novel member of the tumor necrosis factor famlly.

Ce1175:1169-1178, 1993

280. Suzuki, I. and P. J. Fink. Maximal proliferation ofcytotoxic T lymphocytes

requires reverse signaling through Fas ligand. iExp.Med. 187:123-128, 199$

281. Suzuki, I., S. Martin, T. E. Boursalian, C. Beers, and P. J. Fink. fas ligand

costimulates the in vivo proliferation of CD8+ T ceils. llmmunol. 165:5537-

5543, 2000

282. Suzuki, I. and P. J. Fink. The dual functions offas ligand in the regulation of

peripheral CD8+ and CD4+ T ceils. Proc.NatÏ.Acad.Sci.U.S.A 97:1707-17 12,

2000

283. Takeda, K., S. Iwamoto, H. Sugimoto, T. Takuma, N. Kawatani, M. Noda, A.

Masaki, H. Morise, H. Arimura, and K. Konno. Identity ofdifferentiation

inducing factor and tumour necrosis factor. Nature 323:338-340, 1986

284. Tamada, K., K. Shimozaki, A. I. Chapoval, G. Zhu, G. Sica, D. Flies, T.

Boone, H. Hsu, Y. X. Fu, S. Nagata, J. Ni, and L. Chen. Modulation ofT-cell

mediated immunity in tumor and graft-versus-host disease models through the

LIGHT co-stimulatory pathway. Nat.Med. 6:283-289, 2000A

285. Tamada, K., K. Shimozaki, A. I. Chapoval, Y. Zhai, J. Su, S. F. Chen, S. L

Hsieh, S. Nagata, J. Ni, and L. Chen. LIGHT, a TNF-like molecule,

costimulates T celi proliferation and is required for dendritic cell-mediated

allogeneic T ceil response. llmmimol. 164:4105-4110, 2000B

286. Tamada, K., J. Ni, G. Zhu, M. Fiscetla, B. Teng, J. M. van Deursen, and L.

Chen. Cutting edge: selective impairment of CD8+ T ccli function in mice

lacking the TNf superfamily member LIGHT. iI,nmunot. 168:4832-4835, 2002A

287. Tamada, K., H. Tamura, D. Flies, Y. X. Fu, E. Celîs, L. R. Pease, B. R.

Blazar, and L. Chen. Blockade ofLIGHT/LTbeta and CD4O signaling induces

allospecific T cdl anergy, preventing graft-versus-host disease. iClin.Invest

109:549-557, 2002B

FACULTÉ DES ÉTUDES SUPÉRIEURES UNIVERSITÉ DE MONTRÉAL XIAOCHUN WAN



288. Tan, K. B., J. Harrop, M. Reddy, P. Young, J. Terrett, J. Emery, G. Moore,

and A. Truneh. Characterization ofa novel TNF-like ligand and recently
described TNF ligand and TNF receptor superfamily genes and their constitutive

and inducible expression in hematopoietic and non-hematopoietic ceils. Gene
204:35-46, 1997

289. Tanaka, M., T. Suda, T. Takahashi, and S. Nagata. Expression ofthe
functional soluble form ofhuman fas ligand in activated lymphocytes. EMBOJ.

14:1129-1135, 1995

290. Tanaka, M., T. Itai, M. Adachi, and S. Nagata. Downregulation offas ligand

by shedding. Nat.Med. 4:31-36, 1998

291. Tartagila, L. A. and D. V. Goeddel. Two TNF receptors. I,nmunoL Today

13:151-153, 1992

292. Tartagila, L. A., D. V. Goeddel, C. Reynolds, I. S. figari, R. F. Weber, B. M.

Fendly, and M. A. Palladino, Jr. Stimulation ofhurnan T-cell proliferation by
specific activation ofthe 75-kfla tumor necrosis factor receptor. ihnrnunol.

15 1:4637-4641, 1993

293. Tartaglia, L. A., T. M. Ayres, G. H. Wong, and D. V. Goeddel. A novel
domain within the 55 kd TNf receptor signais ce!! death. Ce!! 74:845-$53, 1993

294. Tewari, M. and V. M. Dixit. Recent advances in tumor necrosis factor and CD4O
signa!ing. Curr. Opin. Genet.Dev. 6:39-44, 1996

295. Thompson, J. S., S. A. Bixier, F. Qian, K. Vora, M. L. Scott, T. G. Cachero,

C. Hession, P. Schneider, I. D. Sizing, C. Mullen, K. Straucli, M. Zafari, C. D.

Benjamin, J. Tschopp, J. L. Browning, ami C. Ambrose. BAFF-R, a newly
identified TNF receptor that specificaily interacts with BAFF. Science 293:2 108-

2111, 2001

296. Thornberry, N. A. and Y. Lazebnik. Caspases: enemies within. Science
281:1312-1316, 1998

297. Ting, A. T., F. X. Pimentel-Muinos, and B. Seed. RIP mediates tumor necrosis
factor receptor 1 activation ofNf-kappaB but flot Fas/APO-l-initiated apoptosis.
EMBOI 15:6189-6196, 1996

298. Tracey, K. J. and A. Cerami. Tumor necrosis factor: a p!eiotropic cytokine and
therapeutic target. Annu.Rev.Med. 45:491-503, 1994

299. Treton, D., F. Valensi, X. Troussard, G. Gras, G. Flandrin, P. Galanaud, and

Y. Richard. Cytokine response of B lymphocytes from spienic !ymphoma with
villous lymphocytes: correlation with TNF-R1I (p75) and CD lic expression.

He,natol.Cell Ther. 3 8:345-352, 1996

FACULTÉ DES ÉTUDES SUPÉRIEURES UNIVERSITÉ DE MONTRÉAL XIAOCHUNWAN 112



300. Tucker, A. S., D. J. Headon, P. Schneider, B. M. ferguson, P. Overbeek, J.

Tschopp, and P. T. Sharpe. Edar/Eda interactions regulate enamel knot

formation in tooth morphogenesis. Development 127:4691-4700, 2000

301. Ullrich, A., A. Gray, C. Berman, ami T. J. Pull. Human beta-nerve growth

factor gene sequence highly homologous to that ofmouse. Nature 303:821-$25,

1983

302. Upton, C., A. M. DeLange, and G. McFadden. Tumorigenic poxviruses:

genomic organization and DNA sequence of the telomeric region of the Shope

fibroma virus genome. Virology 160:20-30, 1987

303. Van Gurp, M., N. Festjens, G. van Loo, X. Saelens, and P. Vandenabeele.

Mitochondrial intermembrane proteins in ccli death. Biochein.Biophys.Res

Commun. 304:487-497, 2003

304. Van Essen, D., H. Kikutani, and D. Gray. CD4O ligand-transduced co

stimulation of T ceils in the development of helper function. Nature 378:620-623,

1995

305. Van Arsdale, T. L. and C. F. Ware. TNF receptor signal transduction. Ligand

dependent stimulation of a serine protein kinase activity associated with

(CD 1 20a) TNFR6O. ilmmunoÏ. 153:3043-3050, 1994

306. Verhagen, A. M., P. G. Ekert, M. Pakusch, J. Siike, L. M. Connoily, G. E.

Reid, R. L. Moritz, R. J. Simpson, and D. L. Vaux. Identification ofDIABLO,

a mammalian protein that promotes apoptosis by binding to and antagonizing IAP

proteins. Celi 102:43-53, 2000

307. Wallach, D., E. E. Varfolomeev, N. L. Malinin, Y. V. Goltsev, A. V.

Kovalenko, ami M. P. Boldin. Tumor necrosis factor receptor and Fas signaling

mechanisms. Annu.Rev.Immunol. 17:33 1-367, 1999

308. Wan, X., J. Zhang, H. Luo, G. Shi, E. Kapnik, S. Kim, P. Kanakaraj, and J.

Wu. A TNf FamiÏy Member LIGHT Transduces Costimulatory Signais into

Human T Celis. llmmunol. 169:6813-6821, 2002

309. Wang, A. M., A. A. Creasey, M. B. Ladner, L. S. Lin, J. Strickier, J. N. Van

Arsdell, R. Yamamoto, and D. F. Mark. Molecular cloning ofthe

complementary DNA for human tumor necrosis factor. Science 228:149-154,

1985

310. Wang, C. Y., M. W. Mayo, and A. S. Baldwin, Jr. TNF- and cancer therapy

induced apoptosis: potentiation by inhibition ofNf-kappaB. Science 274:784-

787, 1996

FACULTÉ DES ÉTUDES SUPÉRIEURES UNIVERSITÉ DE MONTRÉAL XIAOCHUNWAN 113



311. Wang, B., R. Maile, R. Greenwood, E. J. Cottïns, and J. A. Frelinger. 2000.

Naive CD8+ T celis do flot require costimulation for proliferation and
differentiation into cytotoxic effector ceils. llmmunol. 164:1216-1222.

312. Wang, J., J. C. Lo, A. Foster, P. Yu, H. M. Chen, Y. Wang, K. Tamada, L.

Chen, and Y. X. Fu. The regulation of T ccli homeostasis and autoirnmurnty by

T cell-derived LIGHT. iClin.hzvest 108:1771-1780, 2001A

313. Wang, J., T. Chun, J. C. Lo, Q. Vu, Y. Wang, A. Foster, K. Roca, M. Chen,

K. Tamada, L. Chen, C. R. Wang, and Y. X. Fu. The critical role of LIGHT, a

TNf family member, in T celi development. ihnmunoï. 167:5099-5105, 2001B

314. Wang, J., A. Foster, R. Chïn, P. Yu, Y. Sun, Y. Wang, K. Pfeffer, and Y. X.

Fu. The complementation of lymphotoxin deficiency with LIGHT, a newly

discovered TNF family member, for the restoration of secondary lymphoid
structure and function. Ettr.J.Immunol. 32:1969-1979, 2002

315. Wang, X., C. Yang, J. Chai, Y. Shi, and D. Xue. 2002. Mechanisms ofAIF
mediated apoptotic DNA degradation in Caenorhabditis elegans. Science
298:1587-1592, 2002

316. Ware, C. F., P. D. Crowe, M. H. Grayson, M. J. Androlewicz, and J. L.

Browning. Expression of surface lymphotoxin and tumor necrosis factor on
activated T, B, and natural killer celis. J.hnrntmol. 149:3881-3888, 1992

317. Ware, C. F., S. VanArsdale, and T. L. VanArsdale. Apoptosis mediated by the

TNF-related cytokine and receptor families. iCettBiochein. 60:47-55, 1996

318. Wiley, S. R., K. Schooley, P. J. Smolak, W. S. Din, C. P. Huang, J. K. Nicholi,

G. R. Sutherland, T. D. Smith, C. Ranch, C. A. Smith, and . Identification and

characterization ofa new member ofthe TNF family that induces apoptosis.

Intmunity. 3:673-682, 1995

319. Wiley, S. R., R. G. Goodwin, and C. A. Srnith. Reverse signaling via CD3O

ligand. ilmmttnoÏ. 157:3635-3639, 1996

320. Wiley, S. R., L. Cassiano, T. Lofton, I. Davis-Smith, J. A. Wink]es, V.

Lindner, H. Lin, T. O. Daniel, C. A. Smith, and W. C. Fanslow. A novel TNF

receptor family member binds TWEAK and is implicated in angiogenesis.
I1?tfllUflity. 15:837-846, 2001

321. Williams-Abbott, L., B. N. Walter, T. C. Cheung, C. R. Goh, A. G. Porter,

and C. f. Ware. The lymphotoxin-alpha (LTalpha) subunit is essential for the

assernbly, but flot for the receptor specificity, ofthe membrane-anchored

Llalpha I beta2 heterotrimeric ligand. iBioÏ. Chem. 272:19451-19456, 1997

322. Wong, B. R., J. Rho, J. Arron, E. Robinson, J. Orlinick, M. Chao, S.

Kalachikov, E. Cayani, F. S. Bartlett, III, W. N. Frankel, S. Y. Lee, and Y.

FACULTÉ DES ÉTUDES SuPÉRIEUiES UNIVERSITÉ DE MONTRÉAL XIAOCHUNWAN 114



Choi. TRANCE is a novel ligand of the tumor necrosis factor receptor family that

activates c-Jun N-terminal kinase in T ceils. JBiol.Chem. 272:25190-25194, 1997

323. Wu, J., J. Wilson, J. He, L. Xiang, P. H. Schur, and J. D. Mountz. Fas ligand

mutation in a patient with systemic lupus erythematosus and lymphoproliferative

disease. I Cliiz.Invest 98:1107-1113, 1996

324. Wu, Q., Y. Wang, J. Wang, E. O. Hedgeman, J. L. Browning, and Y. X. fu.

The requirement of membrane lymphotoxin for the presence of dendritic ceils in

lymphoid tissues. JFxp.Med. 190:629-638, 1999

325. Wu, Q., B. Salomon, M. Chen, Y. Vang, L. M. Hoffman, J. A. Bluestone, and

Y. X. fu. Reversai of spontaneous autoimmune insulitis in nonobese diabetic

mice by soluble lympliotoxin receptor. IExp.Med. 193:1327-1332, 2001

326. Vu, Y., B. Han, H. Shen, M. Lin, P. Moore, J. Zhang, and J. Wu. The clinical

significance of detecting elevated serum DcR3/TR6/M68 in malignant tumor

patients. Int. J. Can. 105:724-732, 2003

327. Wulfing, C., C. Sumen, M. D. Sjaastad, L. C. Wu, M. L. Dustin, and M. 14.

Davis. Costimulation and endogenous MHC Ïigands contribute to T ceil

recognition. Nat.Immunol. 3:42-47, 2002

32$. Xïa, X. Z., J. Treanor, G. Senaldi, S. D. Khare, T. Boone, M. Kelley, L. E.

Theill, A. Colombero, I. Solovyev, f. Lee, S. McCabe, R. Elliott, K. Miner, N.

Hawkins, J. Guo, M. Stolina, G. Yu, J. Wang, J. Delaney, S. Y. Meng, W. J.

Boyle, and H. Hsu. TACI is a TRAF-interacting receptor for TALL- 1, a tumor

necrosis factor famiÏy member involved in B celi regulation. iExp.Med 192:137-

143, 2000

329. Yamada, K., M. Yamakawa, Y. 1mai, and M. Tsukamoto. Expression of

cytokine receptors on follicular dendritic celis. Blood 90:4832-4841, 1997

330. Ye, Q., C. C. Fraser, W. Gao, L. Wang, S. J. Busfie]d, C. Vang, Y. Qiu, A. J.

Coyle, J. C. Gutierrez-Ramos, and W. W. Hancock. Modulation of LIGHT

HVEM costimulation prolongs cardiac allograft survival. IExp.Med. 195:795-
800, 2002

331. Ye, X., P. Mehien, S. Rabizadeh, T. VanArsdale, H. Zhang, H. Shin, J. J.

Wang, E. Leo, J. Zapata, C. A. Hauser, J. C. Reed, and D. E. Bredesen.

TRAF family proteins interact with the common neurotrophin receptor and
modulate apoptosis induction. IBioÏ. Chem. 274:30202-30202, 1999

332. Yeh, W. C., A. Shahinian, D. Speiser, J. Kraunus, f. Bilhia, A. tVakeham, J.

L. de la Pompa, D. ferrick, B. Hum, N. Iscove, P. Ohashi, M. Rothe, D. V.

Goeddel, and T. W. Mak. Early lethality, functional NF-kappaB activation, and

increased sensitivity to TNF-induced ceil death in TRAF2-deflcient mice.

Intmunity. 7:715-725, 1997

FACULTÉ DES ÉTUDES SUPÉRIEURES UNIVERSITÉ DE MONTRÉAL XIAOCHUN WAN 115



333. Yeh, W. C., J. L. Pompa, M. E. McCurracli, H. B. Shu, A. J. Elia, A.

Shahinian, M. Ng, A. Wakeham, W. Khoo, K. Mitcheli, W. S. Et Deiry, S. W.

Lowe, D. V. Goeddel, and T. W. Mak. fADD: essential for embryo

development and signaling from some, but flot ail, inducers of apoptosis. Science

279:1954-1958, 1998

334. Yu, K. Y., B. Kwon, J. Ni, Y. Zhai, R. Ebner, and B. S. Kwon. A newly

identified member of tumor necrosis factor receptor superfamily (TR6) suppresses

LIGHT-mediated apoptosis. iBiol. Chem. 274:13733-13736, 1999

335. Yuan, J. Transducing signais oflife and death. Cttrr.Opin.CellBiol. 9:247-251,

1997

336. Yue, T. L., J. Ni, A. M. Romanic, J. L. Gu, P. Keller, C. Wang, S. Kumar, G.

L. Yu, T. K. Hart, X. Wang, Z. Xïa, W. E. DeWoif, Jr., and G. Z. Feuerstein.

TL 1, a novel tumor necrosis factor-like cytokine, induces apoptosis in endothelial

ceils. Involvement of activation of stress protein kinases (stress-activated protein

kinase and p38 mitogen-activated protein kinase) and caspase-3-like protease.

iBioLChem. 274:1479-1486, 1999

337. Zamzami, N. and G. Kroemer. The mitochondrion in apoptosis: how Pandor&s

box opens. Nat.Rev.MoÏ.CellBiol. 2:67-7 1, 2001

338. Zhai, Y., R. Guo, T. L. Hsu, G. L. Yu, J. Ni, B. S. Kwon, G. W. Jiang, J. Lu,

J. Tan, M. Ugustus, K. Carter, L. Rojas, F. Zhu, C. Lin coin, G. Endress, L.

Xing, S. Wang, K. O. Oh, R. Gentz, S. Ruben, M. E. Lippman, S. L. Hsieh,

and D. Yang. LIGHT, a novel ligand for lymphotoxin beta receptor and

TR2/HVEM induces apoptosis and suppresses in vivo tumor formation via gene

transfer. iClin.Invest 102:1142-1 151, 1998

339. Zhai, Y., J. Ni, G. W. Jiang, J. Lu, L. Xing, C. Lincoin, K. C. Carter, F.

Janat, D. Kozak, S. Xu, L. Rojas, B. B. Aggarwal, S. Ruben, L. Y. Li, R.

Gentz, and G. L. Yu. VEGI, a novel cytokine ofthe tumor necrosis factor

family, is an angiogenesis inhibitor that suppresses the growth of colon

carcinomas in vivo. FASEB1 13:18 1-189, 1999

340. Zhang, J., J. X. Gao, K. Salojin, Q. Shao, M. Grattan, C. Meagher, D. W.

Laird, and T. L. Deïovitch. Regulation offas ligand expression during

activation- induced celi death in T ceils by p38 mitogen-activated protein kinase

and c-Jun NH2-terminal kinase. iExp.Med. 191:1017-1030, 2000

341. Zhang, J., T. W. Salcedo, X. Wan, S. Ultrich, B. Hu, T. Gregorio, P. Feng, S.

Qi, H. Chen, Y. H. Cho, Y. Li, P. A. Moore, and J. Wu. Modulation ofT-cell

responses to alloantigens by TR6/DcR3. iClin.Invest 107:1459-1468, 2001

342. Zheng, X. X., A. W. Steele, W. W. Hancock, K. Kawamoto, X. C. Li, P. W.

Nickerson, Y. Li, Y. Tian, and T. B. Strom. IL-2 receptor-targeted cytolytic IL-

FACULTÉ DES ÉTUDES SUPÉRIEURES UNIVERSITÉ DE MONTRÉAL XIAOCHUN WAN 116



21fc fusion protein treatment blocks diabetogenic autoimmunity in nonobese

diabetic mice. llmmunol. 163:4041-4048, 1999

343. Zhu, J., H. Huang, L. Guo, T. Stonehouse, C. J. Watson, J. Ru-Li, and W. E.

Paul. Transient inhibition ofinterleukin 4 signaling by T celi receptor ligation [In

Process Citation]. iExp.Med. 192:1125-1134, 2000

FACULTÉ DES ÉTUDES SUPÉRIEURES UNIVERSITÉ DE MONTRÉAL XIAOCHUN WAN 17



V. Appendix

FACULTÉ DES ÉTUDES SUPÉRIEURES UNIVERSITÉ DE MONTRÉAL XIAOCHUN WAN 118



zz
P

B
M

C
uo

A
.

Hzo

Ç
)

QFcIj)

—

S
tain

ed
w

ith
:

T
R

6-F
C

fig
u

re
1.

M
utated

F
c

does
flot

bind
to

hum
an

P
B

M
C

.
B

oth
T

R
6

and
T

R
6-fc

w
ere

biotinylated
before

ceil

surface
staining.

H
um

an
PB

M
C

s
w

ere
first

stained
w

ith
biotinylated

T
R

6
(panel

A
)

and
T

R
6-Fc

(panel
3),

follow
ed

by
streptavidin-PE

.
T

hese
resuits

indicate
that

m
utated

Fc
portion

ofT
R

6-F
c

has
no

binding
w

ith
Fcy

receptor.
Q

.—
HQEu

C

T
R

6

T
R

O
-

F
R

O
verlay



Appendix

4

r -0.49 Spearman correlation
3 p=o.0083

n=28

t .—

—— 2

- ,,

• •

0 100 200 300

Serum TR6 (pg/ml)

Figure 2. Gastric cancer lymphocyte infiltration is inversely correlated to serum
TR6 levels. Human gastric cancer samples were stained with HE, and lymphocyte
infiltration was serni-quantified from grade 1 to 4.
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