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Résumé  

Selon l'OMS, la retard de croissance intra-utérine (RCIU; 10% en dessous du poids normal 

pendant la grossesse) affecte 5-10% des grossesses et est une cause principale de la morbidité et 

de la mortalité périnatales. Dans notre étude précédente sur un modèle de souris transgénique de 

prééclampsie (R
+
A

+
), nous avons constaté que l’entraînement physique (ExT) avant et pendant la 

grossesse réduisait la pression artérielle maternelle et empêchait la RCIU en améliorant le 

développement placentaire. Dans le cadre de mon projet, nous avons confirmé les bénifices de 

l’ExT dans un  modèle de RCIU (souris déficiente en p57
Kip2

 (p57
-/+

). Ainsi, nous avons observé 

la présence de RCIU, d’une masse placentaire réduite, d’une augmentation de la pathologie 

placentaire ainsi qu’une plus petite taille des portées chez les souris p57
-/+

 sédentaire. L’ExT 

prévient la RCIU ainsi que tous les paramètres mentionnés ci-haut.  Nous avons observé que 

l'expression du facteur de croissance de l’endothélium vasculaire, un régulateur clé de 

l'angiogenèse lors de la croissance placentaire, était réduite dans le placenta des souris p57
-/+

 et 

normalisée par l’ExT. Nous avons également trouvé que l'expression en ARN dans le placenta de 

2 facteurs inflammatoires (interleukine-1β et MCP-1) était augmenté chez les souris sédentaires 

p57
-/+ 

alors que ceci n’était pas présent chez les souris entraînées, ce qui suggère que 

l'inflammation placentaire peut contribuer à la pathologie placentaire. Toutefois, contrairement 

aux souris R
+
A

+
, le système rénine-angiotensine placentaire chez les souris p57

-/+
 était normale 

et aucun effet de l’ExT a été observé. Ces résultats suggèrent que l’ExT prévient la RCIU en 

normalisant la pathologie placentaire, l’angiogenèse et l’inflammation placentaire. 

Mots-clés: RCIU, entraînement physique, p57
Kip2

, angiogenèse, inflammation, système rénine-

angiotensine 
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Abstract 

Intrauterine growth restriction (IUGR) refers to the condition in which the baby's estimated 

weight is below the 10th percentile of babies of the same gestational age. It affects 5-10% of 

pregnancies and is a major cause of perinatal morbidity and mortality. In our previous studies in 

a transgenic preeclampsia mouse model (R
+
A

+
 mice), we found that exercise training (ExT) 

before and during pregnancy reduced maternal blood pressure (BP), and prevented IUGR by 

improving placental development. Here, we confirm the benefits of ExT in a mouse model of 

IUGR without preeclampsia (p57
kip2

 KO (p57
-/+

). We confirmed the presence of IUGR, reduced 

placental mass, increased placental pathology, smaller litter size and increased number of non-

viable pups per litter in sedentary p57
-/+

 mice. ExT prevented IUGR as well as normalized all the 

mentioned parameters. The expression of the vascular endothelial growth factor (VEGF), a key 

regulator of angiogenesis required for normal placental development, was reduced in pregnant 

p57
-/+

 mice and normalized by ExT. The expression of 2 inflammatory factors (interleukin-1β 

and MCP-1 mRNA) in placenta was elevated in KO sedentary mice and MCP-1 was normalized 

by ExT, proposing that placental inflammation may contribute to placental pathology. However, 

in contrast to R
+
A

+
 mice, the placental RAS in p57

-/+
 mice was found to be normal and there was 

no effect of ExT. Taken together, these results suggest that exercise training prevents intrauterine 

growth restriction by improving angiogenesis, placental alterations and placental inflammation. 

Key words: IUGR, Exercise training, Angiogenesis, Placenta, Inflammation, p57
kip2
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1. Intrauterine growth restriction (IUGR) 

1.1. Definition and epidemiology 

Intrauterine growth restriction (IUGR)/Fetal growth restriction (FGR) refers to a condition in 

which a fetus is unable to reach its genetically determined potential size. In fact, it is a 

pathological reduction in an expected pattern of fetal growth that occurs in utero. IUGR is thus a 

major cause of perinatal morbidity and mortality
1
. Traditionally, in North America the standard 

definition of IUGR is a birth weight below the 10th percentile for gestational age. However, 

adverse consequences and mortality are also increased in infants with birth weights between 10th 

and 15th percentile. Conversely, many neonates whose weights are below the 10th percentile are 

healthy which are known as small for Gestational Age (SGA) babies 
2
. Indeed, the SGA group 

includes fetuses that are constitutionally but not pathologically small and may reflect a normal 

pattern in a given population 
1
. Several definitions of IUGR are accepted in different areas of the 

world. In Europe, for example, an abdominal circumference (AC) below the 10th or 5th percentile 

is the preferred diagnostic criteria. Published definitions include: weight at birth <2500 g, EFW 

(estimated fetal weight) <10th percentile, AC <10th percentile, EFW <10th percentile with 

abnormal Doppler indices in the umbilical artery or middle cerebral artery, and AC <10th 

percentile with abnormal umbilical artery or middle cerebral artery Doppler studies. Other 

diagnostic criteria utilize the fetus as a control for itself 
3
, or use customized fetal growth standards 

4
.  

The prevalence of IUGR is about 5%-10% in the general obstetric population. Studies show that 

each year 18 million babies are born with low birth weight worldwide,  half of which are born in 
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Asia 
5
. Fetal Growth restriction is the second main cause of perinatal morbidity and mortality 

while prematurity is the leading cause 
6
.  

1.2. IUGR risk factors: 

Generally, the population at high risk for IUGR are women with low socioeconomic status, low weight 

before pregnancy, low weight gain during pregnancy, history of preterm delivery, stillbirth and 

previous pregnancies affected by IUGR 
7-11

. Other risk factors are described as follow (Table 1).  

1.2.1. Maternal nutrition 

The specific responses of fetal growth to acute under nutrition at different points in pregnancy are still 

unclear. One study on the birth reports during the  Dutch famine of 1944-1955 showed that only if the 

famine exposure happens late in pregnancy will result in low birth weight and declined crown-to-heel 

length 
12

In contrast another  revealed that, mothers of appropriate for gestational age (AGA) infants ate 

more servings of carbohydrate rich food and fruit, and were more likely to have taken folate and 

vitamin supplements than mothers of SGA infants at the time of conception. There was also an 

association between Iron supplementation when taken in the last month of pregnancy and  a diminished 

risk of SGA 
13

. These results suggest that malnutrition in early or late pregnancy may result in small for 

gestational age infants. 

1.2.2. Multiple births 

Newborns from multiple births are generally smaller than singletons. An analysis of birth weight and 

gestational age in twins and triplets in Norway showed that the intrauterine growth of both male and 

female twin diverged considerably from singletons starting at approximately 30 weeks of 

gestation 
14

.  Also monochorionic twins are twice more at the risk for IUGR compared to dichorionic 
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twins 
15

. In a retrospective study of multi-fetal pregnancies it was revealed that birth weight of 

quadruplets and quintuplets was significantly lower than triplets 
16

. 

1.2.3. Smoking 

Smoking has been considered as one of the important risk factors for IUGR. One study on the impact 

of maternal exposure to environmental tobacco smoke on IUGR in a sample of 6866 singleton births 

represented a significant decrease in the mean birth weight of infants of active smoking mothers. This 

reduction was minimal but still present for mothers who stopped smoking after recognizing their 

pregnancy. Also, environmental tobacco smoke exposure in 1797 of 5507 non-smoking mothers 

decreased the mean birth weight of their infants by 53g
17

. Another study in Sweden demonstrated that 

babies of smoking mothers were at an increased risk for decreased head circumference, <32 cm 
17, 18

.  

1.2.4. Adolescent pregnancies 

It is reported that infants of adolescent mothers experienced almost twice the rates of preterm delivery 

(21.3%) and low birth weight (12.6%) compared to older mothers aged between 20 and 39 years 
19

. 

Generally, adolescents most likely to become pregnant are those with insufficient nutritional status and 

unfavorable socio-economic status which may contribute to the higher rate of IUGR observed in this 

population 
20

.    

1.2.5. Substance abuse 

It is well known that alcohol and drug consumption are harmful to the developing embryo and fetus, 

and in the majority of cases cause IUGR. What we know as fetal alcohol syndrome includes pre- and 

postnatal growth deficiency, a “characteristic” facial appearance, microcephaly, mental retardation, and 

occasional major malformations 
21

.  In a 1-year study on all live singleton infants whose mothers were 

exposed to cocaine, it was observed that low birth weight (<2500 g) was more common among 

cocaine-exposed infants compared to non-exposed (31% versus 10%). In fact, cocaine use was 
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associated with a decrease in birth weight (154 g), length (1.02 cm), head circumference (0.69 cm), and 

duration of gestation (0.74 weeks). The birth-weight deficits were larger for infants born from mothers 

who used cocaine in combination with other drugs (195 g) and for infants born to mothers who 

specifically admitted using crack (200 g) 
22

. Another study in china showed that mothers who had 

abused narcotics and heroin had SGA babies in 27.5% of pregnancies. The babies born to drug addicted 

mothers were on average 629 g lighter which was significantly different from the infants of the non-

addicted mothers 
23

. 

1.2.6. Inter-pregnancy interval 

A shortened interval between pregnancies is associated with adverse perinatal consequences 
24

. A 

research in Utah, USA showed that infants conceived 18–23 months after a previous live birth had the 

lowest risks of negative perinatal outcomes. However, in this study shorter intervals were related to 

higher risks for low birth weight 
25

.  

1.2.7. High altitude 

High altitude seems to reduce birth weight independently of other factors. It was found in a study in 

Colorado that birth weights at high altitude (2744–3100 m) were reduced due to IUGR 
26

. The 

association between ethnicity and high altitude was also assessed in a study done in Tibet. Tibetans 

experience less altitude-associated IUGR than Chinese and have reduced levels of prenatal and 

postnatal mortality. When comparing the link between birth weight and altitude among these and other 

high-altitude populations, the results showed that those who have been living the longest at high 

altitude had the least altitude-associated IUGR. In general, the pregnant Tibetans had higher umbilical 

artery blood flow velocity and distributed a higher portion of common iliac blood flow to the umbilical 

artery compared to the Chinese women 
27

. This might propose the occurrence of an evolutionary 

adaptation 
28

. 
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1.2.8. Congenital infections 

Infections acquired in utero may often cause IUGR such as rubella 
29

, cytomegalovirus 
30

,  herpes virus 

31
 and toxoplasma gondi which is less common than the others 

32
. Moreover, HIV-Infected infants often 

suffer from IUGR 
33

.  

1.2.9. Genetic and chromosomal factors 

Chromosomal abnormalities are found in up to 7% of neonates with IUGR , which is over 10 times 

higher than in AGA (appropriate for gestational age) infants
34

 . Moreover, the genomic imprinting, 

through which several genes in the human genome are differentially expressed based on whether they 

are located on the maternal or paternal chromosome, may play a role in embryonic and fetal growth. 

This has led to the theory that genomic imprinting regulates embryonic and fetal growth 
35

. Silver-

Russell syndrome which represents an extreme syndrome of IUGR and dysmorphic features, as well as 

maternal uniparental disomy (UPD: the inheritance of both chromosomes of a chromosome pair from 

only one parent) of human chromosome 7 has been observed in approximately 10% of these cases 
36

. 

Other known imprinted genes where IUGR is the most common feature are maternal UDP14, maternal 

UDP20 and paternal UDP6q24 
37

. Also p57 
kip2

 which is a paternally imprinted gene 
38

 has been related 

to severe growth restriction 
39

.  

1.2.10. Preeclampsia and eclampsia 

FGR can be related to preeclampsia (PE) as a result of impaired trophoblast invasion into the placental 

bed. In normal pregnancy, occlusion of the spiral arterioles by the endovascular trophoblast at the 

implantation site and the anatomical destruction of the distal spiral arteriole contribute to improved 

uterine blood flow. Failed interstitial invasion of spiral arterioles may lead to failure in local angiogenic 

and systemic cardiovascular adaptation signals that could be the main reason for early onset of IUGR 

and PE 
40

. 
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Table 1: Fetal growth restriction risk factors 

 

Fetal 

 Aneuploidy (trisomy 13, 18 and 21, triploidy, uniparental disomy) 

 Fetal malformations (gastroschisis, omphalocele) 

 Multiple gestation 

 Infection (toxoplasmosis, rubella, cytomegalovirus, herpes) 

 

 

 

 

 

Maternal 

 Hypertension 

 Diabetes 

 Renal disease 

 Vascular disease 

 Inflammatory bowel disease 

 Hypoxia (pulmonary disease, cardiac disease) 

 Systemic lupus erythematosus, antiphospholipid syndrome 

 Thrombophilia (Factor V Leiden heterozygote, Prothrombin) 

 Genetic (for instance, gene G20210A heterozygote, MTHFR 

heterozygote) 

 Maternal uterine malformations (myomas, bicornuate, or septate uterus) 

 Residing at high altitude 

 

Placental 

 Placenta praevia 

 Placental tumors 

 Mosaicism 

 

 

Environmental 

 Low socioeconomic status     

 Malnutrition 

 Smoking 

 Alcohol 

 Drugs (cocaine, heroin, methadone, cocaine therapeutic agents) 
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1.3. Etiology 

Growth and development of the fetus/embryo are complex biological procedures which are 

affected by different factors such as genetic, epigenetic, maternal age, environmental factors, etc. 

41
. These factors can influence the size and efficiency of the placenta, uteroplacental transfer of 

nutrients and oxygen from mother to fetus, the endocrine environment of the fetus, and metabolic 

pathways 
42-44

. Normal fetal growth consists of two phases. The first phase or embryonic life 

which starts from fertilization till the end of the 8
th

 week includes proliferation, organization and 

differentiation of the embryo while the second phase, which we know as fetal life, starts at the end 

of week 8 and involves continuing growth and functional maturation of the different tissues and 

organs of the fetus 
45

. The maternal-fetal-placental unit acts in harmony to fulfil the needs of the 

fetus, while supporting the physiological changes of the mother. The fetus has an inherent growth 

potential which results in a healthy newborn with appropriate size in normal situation. Studies 

showed that in IUGR, placentation is impaired 
46, 47

.  Dysregulation of endocrine-related factors 

such as, growth factor deficiencies, mainly insulin and the insulin-like growth factors (IGF) or 

their signaling pathway, often induce IUGR 
45, 48

. Moreover, assessment of uterine, placental and 

umbilical blood flow shows that in growth restricted fetuses blood flows are decreased on both 

sides of the placenta. It is also reported that there is less placental exchange of essential nutrients 

such as amino acids in IUGR fetuses both in vitro and in vivo 
49

.  

1.3.1. Normal placentation 

Placentation starts with implantation of the blastocyst in the uterine epithelium and differentiation 

into embryonic and extra-embryonic tissues 
50

. The trophectoderm of the blastocyst is the 

epithelium that is responsible for development of the human placenta. In other word, it is 
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necessary for successful embryonic development as it is integral in the transfer of nutrients from 

the mother to the child. 
51

. Uteroplacental circulation is not fully established until the end of the 

first trimester. One proposed theory based on the observations of ex vivo histologic analysis of 

hysterectomy specimens of first-trimester placentas to explain the uteroplacental circulation states 

that trophoblasts invade decidual spiral arteries and form trophoblastic plugs. These trophoblastic 

plugs obstruct maternal blood flow into the intervillous space and prevent flow until the end of 

first trimester of pregnancy (10–12 weeks) 
52

. Thus, human placental development during the first 

ten weeks of gestation occurs in a low oxygen environment with a PO2 (oxygen pressure) 

measured at < 15 mmHg 
53

. The plugs then loosen and permit continuous maternal blood flow into 

the intervillous space 
52

. As a result, the low oxygen state changes and the pressure increases, so 

that the developing villous tree of the chorioallantoic placenta is then exposed to maternal blood 

with higher oxygen content.  

1.3.2. Placental dysfunction in IUGR 

Normal placental development is necessary for normal fetal growth. Failure of one or more of the 

components of the placentation process may result in pregnancy complications like preeclampsia, 

IUGR and placental abruption. There is considerable evidence showing that placentation is 

deficient in IUGR 
46, 47

. Histologically, the features that can be observed in placenta from IUGR 

fetuses include: damage to branching angiogenesis with long unbranched intermediate and 

terminal villi, altered cytotrophoblast proliferation, trophoblast apoptosis, fibrin deposition, 

syncytial knotting and bridging, and enhanced villous maturation 
54

. It is assumed that the reduced 

secretion of placental growth hormones (PGH) and IGF-1 which are some of the important 

determinants of fetal growth contribute to placental dysfunction 
55

 (Figure 1).  
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In IUGR, absence of endovascular trophoblast invasion of the myometrial segments of the spiral 

arterioles produces a high resistance vasculature in these arterioles. This lack of transformation 

leads to hypoperfusion, hypoxia, re-perfusion injury, oxidative stress and ultimately, to signs of 

villous tree maldevelopment in the second half of the pregnancy 
56

. Villous cytotrophoblasts in 

IUGR have an augmented sensitivity to cell death in hypoxic situations when compared to normal 

pregnancies 
57-59

. Although apoptosis is considered to be a normal part of villous trophoblast 

turnover and syncytiotrophoblast formation from cytotrophoblast 
60, 61

, in pregnancies complicated 

with IUGR this is augmented and produces an increase in syncytial knots 
62

. This is also the case 

in the villi in IUGR and has been detected by the expression of cleavage products of caspase 
62-64

. 

In IUGR, excess injury of the villous trophoblast layer decreases the functional mass of 

syncytiotrophoblast and restricts the capacity of the villi to transport nutrients. Furthermore, the 

microscopic injury has functional effects on placental permeability, as α-fetoprotein and small 

molecular weight compounds are able to pass between the maternal and fetal circulations 
65, 66

.  
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Figure 1: structure of placenta and placental villi 
67

.  
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1.3.3. Histopathology of placental injury 

There are several stimuli and mediators that may contribute to the observed injury to the 

chorioallantoic villi but the most important one is oxidative stress 
68

. Oxidative stress can be 

caused by ischemia in the placenta as a result of the insufficiently developed spiral arterioles. 

Indeed the production of reactive oxygen species (ROS) which promote oxidative stress 

contributes to tissue injury in many diseases including IUGR 
69

.  Studies show that the placentas of 

pregnancies complicated with IUGR demonstrate obvious signs of oxidative stress 
70

. Moreover, 

hypoxia, ischemia, or both may contribute to placental injury via mechanisms other than ROS 

generation, as variable organ blood flow also activates the complement cascade 
68, 71, 72

. 

Dysregulated complement activation in non-pregnant patients mediates immunological injury in 

the heart, lung and kidney, and recent data indicate that it also plays a role in abnormal human 

pregnancy 
73

. For example, the kidneys of women with preeclampsia show deposition of 

complement split products in their glomeruli 
74

.  

1.4. Classification 

Growth during intrauterine life occurs during different stages. For example, growth in length 

happens in early prenatal life (during the 3
rd

, 4
th

 and 5
th

 month) while weight gain develops later in 

prenatal life (during the last 2 months of gestation) 
45

. Depending on the time of adverse 

intrauterine environment, IUGR fetuses are classified as symmetric or asymmetric. In symmetric 

growth restriction, the entire fetus body is proportionally small (small weight, length, and head 

circumference). In this situation, the adverse environment has happened early in pregnancy which 

can be as a result of  genetic factors or congenital infections, syndromes, or toxic effects in early 

gestation 
75

. On the other hand, in asymmetrical IUGR, adverse intrauterine environment happens 
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later during gestation. In this case, most of the energy is conducted for the maintenance of vital 

organs such as the brain and heart whereas liver, muscle and fat are less developed which results in 

smaller weight but normal length 
76

. In asymmetrical IUGR , we observe normal head 

circumference but small abdominal circumference, skinny limbs, and thinned skin as a result of 

decreased liver size, muscle mass and subcutaneous fat77
. 

1.5. IUGR and diseases later in life 

Intrauterine life adapts the fetus to become mature and also overcome postnatal insults. During this 

period, the fetus goes through critical stages of tissue growth and elevated cell division. If the 

organism is affected in these critical periods it may have an important impact on organ development 

78
. It has been reported in animals and also in some human cases that IUGR is associated with 

increased prevalence of many adult diseases 
79

. In addition, results of a study by Park et al. 

demonstrated that low protein diet during pregnancy causes long-lasting changes in the liver and 

skeletal muscle mitochondria in the offspring 
80

. 

1.5.1. IUGR and metabolic syndrome 

According to the literature, there is an association between IUGR and the development of 

metabolic syndrome later in life, a condition associated with obesity, arterial hypertension, 

hypercholesterolemia, impaired glucose tolerance, and diabetes mellitus type 2 
81-90

. There is a 

hypothesis to explain this condition which is known as the thrifty phenotype or Barker’s 

hypothesis. It proposes that in the case of an impaired intrauterine environment, such as nutrient 

restriction, the intrauterine milieu creates a “reprogramming” of the endocrine–metabolic status of 

the fetus in order to reach short-term survival benefits, although, it may be harmful in the long 
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term 
81-84, 91, 92

. Barker was able to demonstrate that, the smaller the birth weight or the weight at 1 

year of age, the greater was the prevalence of metabolic syndrome in adult life.  

According to the thrifty phenotype, the connection of low birth weight and insulin resistance or 

diabetes in adulthood may be a result of fetal malnutrition due to poor nutritional reserves of the 

mother, not adequate flow of the blood in uterus, or destruction of nutrients in the placenta 
93

. 

Hypothalamic-pituitary-adrenal (HPA) axis overacts by changing its set point in response to the 

adverse intrauterine environment, which can lead to increased cortisol levels 
94-98

. This situation is 

similar to what can be seen with chronic stress 
96, 99

. The HPA over-activation has been observed 

in both experimental animals and newborns with IUGR and both showed elevated cortisol levels in 

umbilical cord blood 
100, 101

. This increase in cortisol during intrauterine life causes endothelial 

damage which contributes to the development of cardiovascular diseases. Furthermore, growth 

restricted babies have a reduced muscle mass and this deficiency will persist because the crucial 

period for muscle growth is at ∼30 weeks in utero, and there is little cell replication after birth. As 

such, if they gain weight rapidly in childhood, they are more likely to increase their fat mass rather 

than their muscle mass, leading to a disproportionately high fat mass in later life resulting in an 

increase in the development of obesity and insulin resistance 
85

. Ozanne et al. found decreased 

expression of specific insulin-signaling proteins, such as, protein kinase C (PKC) zeta, p85alpha, 

p110beta and GLUT4, in low birth weight subjects compared to controls 
102

 and it was also shown 

that, children born small for gestational age have reduced adiponectin levels, an adipokine with 

insulin-sensitizing and antiatherogenic properties 
103

, which may increase the risk for developing 

diabetes type 2.  

Moreover, studies in Europe, North America, and India have shown association between coronary 

heart disease and small size at birth 
104

, as well as a study in Finland which reported that the 
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cumulative incidence of hypertension requiring medication was 20.2% in those weighing <3 kg at 

birth compared to 12.3% in those weighing >4 kg 
105

.  

1.5.2. IUGR and reproduction problems 

Some studies have demonstrated a link between IUGR and adrenarche (early sexual maturation), 

elevated prevalence of functional ovarian hyper-androgenism as well as the development of polycystic 

ovary syndrome 
106-109

. Moreover, there has been reports of decreased uterine volume and smaller 

fraction of ovarian follicles in girls born with IUGR, 
110, 111

 which both may have a negative effect on 

fertility. Although it has not been clarified yet, there seems to be an association between IUGR and 

reproductive function  

 

1.6. Clinical diagnosis of IUGR: 

Abnormal fetal growth is suspected when there is a subnormal uterine size detected by abdominal 

palpation and direct measurement of the symphyseal-fundal distance 
112

. Indeed, abdominal palpation 

has a sensitivity of 30% for detecting SGA fetuses, while the symphysis-fundal distance has a 

sensitivity of 27-86% and specificity of 80–93% 
113

. Ultrasound has also been used for accurate 

pregnancy dating and for the diagnosis of IUGR, although it is reported that IUGR remains undetected 

in about 30% of routinely scanned cases and it is falsely detected in 50% of cases 
114

.  

1.6.1.  Serum biochemistry  

In SGA and IUGR affected pregnancies, biochemical markers have been proposed. An increased 

maternal Serum alpha-fetoprotein (AFP) is correlated with an elevated risk of low birth weight 
115

. Also 

low levels of maternal serum pregnancy-associated plasma protein A (PAPP-A) (at the lowest 5th 

percentile) are associated with higher risk of a SGA infant 
116

. There are also other placental markers 
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like human chorionic gonadotropin (hCG), ADAM12 (A Disintegrin and Metalloprotease), placental 

protein 13 (PP13), serum soluble Fas (sFas) and placental growth factor (PlGF), amongst others. 

However, studies have shown that all of these markers are below the detection rate warranted for large 

population screening 
117-122

. In low-risk populations, a combination which includes PP13, PAPP-A, 

ADAM12, activin A, or inhibin A, measured in the first or early second trimester and uterine artery 

Doppler in the second trimester, reveal sensitivities of 60%–80% and specificities >80%. Studies are 

still required to estimate the full potential of evaluating combining multiple markers and ultrasound in 

screening for IUGR. 

1.6.2. Uterine artery doppler:   

Since the 1980s, many progresses have been made in the utilisation of uterine artery Doppler in 

obstetrical practice, particularly, in the detection of maternal perfusion abnormalities in PE and IUGR 

123-125
. Since trophoblastic invasion was thought to be completed by the second trimester of pregnancy, 

most of the studies were performed between 20 and 24 weeks of gestation. However, some believe that 

trophoblastic invasion peaks in the first trimester, so it would be more appropriate to screen for growth 

restriction in that period 
126

. Although, the sensitivity of this test is not that high (24% and 16% 

according to some reports) 
127, 128

, women with a high uterine artery resistance index (RI), are 5.5 times 

more likely to have IUGR 
128

. In more recent studies, they attempted to add serum biochemistry factors 

like PAPPA in order to increase detection rates. Unfortunately, sensitivity of these tests still remains 

low 
117, 129

.  
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1.7. Evaluating fetal wellbeing 

1.7.1. Fetal heart rate monitoring    

Fetal heart rate analysis is extensively used to detect pregnancies at high risk. It aims to determine fetal 

well-being by estimating the fetal heart rate baseline, variability, and periodic changes. A normal 

reactive test is likely to reflect adequate oxygenation of the fetal central nervous system. Since it is 

interpreted by visual inspection, it is prone to a significant intra-observer and inter-observer variation 

and therefore, there is a high rate of false positive. In premature fetuses, particularly those with IUGR, 

interpretation is challenging 
130

. Computerized fetal heart rate analysis was introduced to decrease 

discrepancies in the interpretation. However, it was showed that the results from computerised 

cardiotocographic analysis agreed closely with visual assessment 
113

.  

1.7.2. Biophysical profile 

Ensuring fetal well-being and determining the optimal timing for delivery of an IUGR fetus is the 

primary goal of fetal specialists. However, the optimal method to use for fetal testing is also debatable; 

in the United States, the most frequently used test is the biophysical profile, whereas in Europe, 

cardiotocography (computerized fetal heart rate monitoring) is the preferred method 
131

. 

The fetal biophysical profile (BPP) is a method for assessing fetal asphyxia and/or chronic hypoxia and 

is the most acceptable method of fetal well-being evaluation in the North America. It consists of a 

number of measurements including the amniotic fluid volume, fetal tone, fetal movements, fetal 

breathing movements, and fetal heart rate monitoring. In a normal situation, each parameter has a value 

of two out of total points of ten 
132-134

.  
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1.7.3. Doppler velocimetry of blood flow 

Doppler blood flow has significantly changed the management of IUGR. We use it to assess vascular 

resistance and end organ function. There are three types: Doppler assessment of the umbilical artery 

(UA), middle cerebral artery (MCA) and ductus venous (DV). When the UA blood flow from the fetus 

to the placenta is determined, the placental vessel resistance can be evaluated. MCA detects fetal 

cerebral blood flow and DV reflects alterations in fetal cardiac function. In severe cases of IUGR the 

DV is abnormal 
135, 136

. UA is the most frequently used Doppler test in women diagnosed with IUGR. It 

has the ability to distinguish IUGR caused by placental problems from SGA fetuses.  Indeed, 

monitoring IUGR pregnancies with UA Doppler decreases the mortality rate and lowers the need for 

antepartum admissions, labor induction, and Caesarean deliveries 
137, 138

, as when IUGR is diagnosed, 

clinical management is performed by more frequent surveillance of fetal weight (every 2 weeks), along 

with UA and if available MCA and DV and in case of observation of adverse  conditions like no 

change in fetal growth and decline in amniotic fluid index or fetal tone or gross movements more 

intensive surveillance (e.g., 2 to 3 times per week) or admission to hospital and delivery planning will 

be considered 
139

. 

 

1.7.4. Histopathological and molecular diagnostics 

Currently, sampling of amniotic fluid, fetal blood, maternal blood, and feto-placental or 

transabdominally obtained placental tissues is possible. Placental villi from human IUGR pregnancies 

show distinctive alterations in “hypoxic trophoblast signature transcripts”, for example, upregulation of 

transcripts for VEGF, connective tissue growth factor, follistatin-related protein, N-Myc downstream-

regulated gene1, and adipophilin (ADRP), and downregulation of human placental lactogen and 

PHLDA2 
140

 have been shown. For instance, dysregulation of transcripts like CRH, IGF1, IGF2, 
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AGTR1, leptin, and sFlt have also been described 
141

. These techniques are novel; nevertheless, the 

potential combination of fetal biophysical testing and informatics-based molecular analysis may prove 

useful in the future management of IUGR 
11

. 

1.8. Clinical management of IUGR  

Currently, there are no standard prenatal therapies which are designed to specifically improve fetal 

growth or reverse the complications of IUGR. For management of IUGR, It is important to improve 

nutrition, stop smoking, avoid drug use, and control maternal disorders such as hypertension and renal 

dysfunction. If there is an infectious disease, it should be treated. Sonography is essential to identify 

fetal malformations particularly if lethal and offer fetal karyotyping. Previous studies demonstrated that 

administration of glucose or amino acids, and low-dose aspirin to the mother did not show a significant 

impact on perinatal outcomes 
142-144

. It was also observed that smoking cessation and antimalarial 

therapy appeared to prevent IUGR, but they were not effective if IUGR was already established. 

Particularly, some studies propose that balanced energy/protein supplements may be beneficial in 

reducing the risk of IUGR 
145, 146

. Experimental evidence from humans and animal models indicate that 

amino acid transport from mother to fetus and fetal amino acid metabolism are disturbed in IUGR 
147

. 

As we know, accretion of amino acids into proteins is an essential component of fetal growth. 

Therefore, maternal protein supplementation to improve fetal growth is an attractive therapeutic option, 

especially when fetal growth is failing. Although this is supported by some studies 
148-150

, there have 

been some reports of adverse effects of protein supplementation on pregnancies with an increased risk 

of preterm and SGA delivery. Human trials generally show that increased maternal energy intake (in 

the context of malnutrition), without high amounts of dietary protein, improve fetal weight (though not 

necessarily lean mass) without significant adverse effects 
151

.  
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Timing the delivery of the growth restricted fetus is important. Currently there is no test which dictates 

the optimum time of delivery. When IUGR pregnancy is at full term (≥37 weeks), delivery is favored 

as there is no evidence that delaying delivery has benefits 
152, 153

. At 34 to 37 weeks, the rate of 

significant neonatal morbidity is low, therefore, delivery is not a complex issue 
154

. IUGR at 34 or more 

weeks gestation (late onset) is typically characterized by milder placental dysfunction and often may 

not produce an elevation in the umbilical artery Doppler resistance indexes 
155

.  When IUGR is 

detected before 34 weeks of gestation, decision to deliver is more difficult and is individualized 
156

. 

Delivery of the IUGR fetus before 34 weeks gestation is associated with high rates of newborn 

morbidity and mortality. In the absence of clear indications for delivery, the emphasis should be on 

safely prolonging the pregnancy 
156-158

.  The decreased perinatal mortality that is found for each week 

that the IUGR fetuses remains in utero should be taken into account when a decision to deliver babies 

with less than 30 weeks age is made 
157

. Factors like abnormal biophysical or modified biophysical 

profile score, oligohydramnios, repetitive FHR (fetal heart rate) decline are strong indicators that 

delivery is reasonable or warranted when IUGR is identified at or after 34 weeks of gestation. Also, a 

decrease in maternal perception of fetal movement indicates the need for further evaluation of the fetus 

159
.   

After 34 weeks, the IUGR fetus in a singleton or twin pregnancy that develops either oligohydramnios 

or AEDF (Absent end diastolic flow) in the UA should be delivered proximate to the diagnosis of these 

complications. In singleton pregnancies in which the IUGR fetus has normal amniotic fluid volume, 

Doppler studies, and biophysical testing, the fetus is likely constitutionally small and may be managed 

expectantly until 38-39 weeks. If Doppler testing becomes abnormal indicating a placental etiology, 

delivery by 36-37 weeks is reasonable. In any of these scenarios, biophysical (weekly BPP or twice 

weekly modified BPP) and Doppler testing is warranted until delivery. When it comes to mode of 

delivery, there is contradictory evidence in the literature regarding the best mode of delivery of the 
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growth-restricted fetus. A vaginal delivery is rarely attempted when biophysical assessment of fetal 

status is not reassuring before labor because there is an increased risk of fetal hypoxia. Even when 

biophysical parameters are reassuring, clinicians vary in their decisions 
156

. One study indicated that 

caesarean delivery for SGA fetuses was associated with a lower rate of respiratory distress syndrome, 

neonatal seizures, and death, but these trends were not statistically significant 
160

. Certainly, other 

factors such as the gestational age, cervical status, fetal presentation, and maternal medical 

complications may influence the choice of delivery 
50

.  
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2.  Exercise training 
 

2.1. Exercise training and normal pregnancies 

Regular exercise training for non-pregnant women has many benefits which are well recognized. 

Studies have shown no harm in doing exercise for the pregnant women and the fetus 
161

.  However, 

there are theoretic concerns regarding the effects of exercise during pregnancy, which are listed below. 

 

2.1.1. Theoretic concerns regarding the effects of exercise on pregnancy 

2.1.1.1. Teratogenic effect: One of the concerns about exercise during pregnancy is increasing the 

risk of teratogenic effect 
162

. As far as we know, the metabolic rate increases during both 

exercise and pregnancy which results in higher heat production. Normally, fetal temperature 

is 0.5 to 1.0°C above maternal levels as a result of fetoplacental metabolism which 

generates additional heat. Theoretically, by doing exercise training during pregnancy, an 

increase in maternal core temperature may decrease fetal heat dissipation to the mother. 

Some data suggest a teratogenic potential when maternal temperatures rise above 39.2°C 

(102.6°F), especially in the first trimester 
162

. According to these studies, pregnant women 

should perform exercise in thermoneutral conditions. However human studies are limited.  

2.1.1.2. Hemodynamic:  During exercise training, blood is diverted from abdominal viscera, 

including the uterus, to supply exercising muscle. The splanchnic blood flow can decrease 

to 50 percent and makes theoretic concerns about fetal hypoxemia 
163

. However, 

measurements of the effect of exercise on fetal heart rate showed either no significant 

change or short-term increases of five to 15 beats per minute 
164

. There is report of fetal 

bradycardia during vigorous exercise in untrained women performing near maximal 
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capacity which was resolved in less than two minutes. In the same women, submaximal 

exercise up to 70 percent of maximal aerobic capacity did not induce any fetal bradycardia 

165, 166
.  

2.1.1.3. Energy demand: Both exercise and pregnancy are associated with high energy 

consumption. The competing energy demands of the exercising mother and the growing 

fetus raise the theoretic concern that excessive exercise might adversely affect fetal 

development. However, in clinical studies, there has been no significant difference in 

maternal weight during the first and second trimester of gestation among women who train 

during pregnancy compared to sedentary women. At the same time, some data propose that 

continuous exercise in the second and third trimesters is related with reduced maternal and 

fetal weight gain 
167

, However, the overall weight gain during pregnancy remains well 

within normal limits in exercising mothers 
168

. Apparently, if pregnant women adjust their 

calorie intake to their energy demand, there should not be less fetal weight gain. 

2.1.1.4. Oxygen demand:  During pregnancy and exercise, adaptive changes happen in the pulmonary 

system. Pregnant and non-pregnant women have an equivalent respiratory frequency while 

resting. However, mild increases in tidal volume and oxygen consumption are noted in pregnant 

women probably as an adaptive mechanism to the increased oxygen requirement of the fetus 
169

. 

With mild exercise, pregnant women have a greater increase in respiratory frequency and 

oxygen consumption to meet their greater oxygen demand. As exercise increases to moderate 

and maximal levels, they show a reduction in respiratory frequency, lower tidal volume and 

maximal oxygen consumption. The oxygen demand at high levels of activity seems to 

overwhelm the adaptive changes that occur at rest. This may be because of the obstructive 

effect of an enlarged uterus on diaphragmatic movement. However, several studies have shown 

a decreased maximal voluntary exercise performance in pregnant women 
170, 171

. 
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2.1.1.5. Labor and outcomes: There are some theoretic concerns about premature labor in women who 

exercise in late pregnancy. It is well known that exercise training increases circulating levels of 

norepinephrine and epinephrine 
162

. Norepinephrine increases both the strength and the 

frequency of uterine contractions. Nevertheless, epinephrine has an inhibiting effect on uterine 

activity. Runners often have complaints of contractions during exercise, but actual 

measurements with external tokodynamometry have not indicated consistent changes in uterine 

contractility. Moreover, there is no evidence that supports an elevation in preterm labor related 

to exercise training 
172

, also, no significant difference in maternal weight gain, infant birth 

weight, length of gestation, length of labor or Apgar scores was found 
173

.  

2.2. Positive effects of exercise training on normal pregnancies 

2.2.1. Maternal wellbeing 

 Generally speaking, recent proofed guidelines indicate that regular maternal exercise is an 

important component of a healthy pregnancy 
174

. Exercise training has been reported to have a 

positive effect on the experience of discomfort during pregnancy. In a study, women who 

exercised during three months before pregnancy felt during the first trimester than those who 

did not exercise (such as having less musculoskeletal discomfort, mood stability and decreased 

dyspnea, etc). Exercise in the first and second trimesters was associated with feeling better in 

the third trimester 
175

. Another study on the effect of structured non-endurance antepartum 

exercise on pregnancy outcomes showed no adverse effect labor outcomes in the exercising 

group. They had significantly shorter first and second stages of labor compared to the sedentary 

group and they were less likely to need oxytocin augmentation and had spontaneous vaginal 

deliveries 
176

. According to another study, continuing weight-bearing exercise during pregnancy 

helps to maintain the mother’s fitness in the long-term and also reduces cardiovascular risks in 



 
 

37 
 

the premenopausal period 
177

. It has also been proved that women with structured, supervised 

exercise training during gestation have 15% reduced risk for C-section compared to the non-

trained group of study 
178

. In the context of a normal and healthy pregnancy, the American 

College of Obstetrics and Gynecology (ACOG) guidelines encourages continuation of pre-

pregnancy exercise activities and recommend that sedentary women start exercising during 

pregnancy. The intensity, duration and frequency of exercise should start at a level that does not 

result in pain, shortness of breath or excessive fatigue. Exercise may then progress at a rate that 

avoids significant discomfort. Patients should be counseled to perform frequent self-

assessments of physical conditioning and well-being, including hydration, caloric intake, 

quality of rest and presence of muscle or joint pain. It should be emphasized that decreases in 

exercise performance are common, especially later in pregnancy. The goal is to obtain the 

maximal benefits of the mentioned benefits derived from exercise, while ensuring that there is 

no adverse effects on the mother or the fetus (Table 2) 
179

. Also according to ACOG, regardless 

of physiological alterations during pregnancy which allow for the increased metabolic demands 

of the mother and fetus, women can benefit from regular exercise training during gestation as it  

has been demonstrated to result in marked maternal benefits including improved maternal 

cardiovascular and metabolic adaptations 
180

, limited pregnancy weight gain 
181

, decreased 

musculoskeletal discomfort 
182

, mood stability 
183, 184

 and decreased risk of dyspnea 
185

. Many 

studies have reported elevated levels of stress and depressed mood during pregnancy. One study 

evaluated the outcomes of leisure time physical activity (LTPA) during pregnancy and its 

association to psychological well-being. When comparing exercisers to non-exercisers in each 

trimester, they found that exercisers had significantly less depressed mood, daily hassles, state-

anxiety and pregnancy-specific stress in the first and second trimester. Women who exercised in 

the third trimester reported less anxiety in that trimester compared to non-exercisers. The results 
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showed that in healthy pregnant women, even low-intensity regular aerobic exercise may be 

potentially effective as a low-cost method of enhancing psychological well-being 
186

. There is 

also data demonstrating improved placental development with exercise training. Although  

exercise during pregnancy can cause an intermittent reduction in oxygen and substrate delivery 

to the fetus while performing exercise, but it is probable that regular sessions of exercise 

training improves oxygen and substrate delivery at rest 
187

. Women who start training in early 

pregnancy have elevated placental volumes and growth rates 
188

, as well as a decreased fraction 

of non-functional tissue and an increased volume of villous tissue 
189

. 

2.2.2. Fetal benefits 

 Some reported fetal benefits include decreased fat mass, improved stress tolerance and 

advanced neurobehavioural maturation 
190

. Barakat et al. reported that low intensity resistance 

training performed during the second and third trimester of pregnancy does not have a negative 

impact on the newborn's body size or overall health 
191

. 

2.2.3. Preeclampsia and gestational diabetes 

Several studies have found a reduced frequency of PE and pregnancy-induced hypertension 

(PIH) in women who participated in low- and moderate-intensity during physical activities 
180, 

192, 193
. In addition, epidemiological studies demonstrated that exercise training may be 

advantageous in prevention of gestational diabetes (GDM), specifically in obese women with 

BMIs that are more than 33 
194

. The prevalence of GDM in Canada may be higher than 

previously thought, ranging up to 4% in the general population 
195

 and as high as 18% in the 

Aboriginal population 
196, 197

. Exercise is currently considered a complementary therapy for 

women with GDM. The Canadian Diabetes Association (CDA) recommends physical activity 

for women with GDM; however, the frequency, intensity, type, and duration of activity should 
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be based on each individual’s condition 
195

. The ACOG (2001) recommends that women with 

GDM who lead an active lifestyle be encouraged to continue an exercise program approved for 

pregnancy. These vague recommendations make it difficult for health professionals to give 

proper advice other than to increase physical activity. In one study where they examined the 

etiology of GDM in Saskatchewan, it was found that women who were the most physically 

active had the lowest prevalence of GDM 
196

. It was also demonstrated that women who 

participated in any recreational physical activity within the first 20 weeks of gestation 

experienced a 48% reduction in the risk of GDM 
198

.  

2.2.4. Obesity 

Generally, exercise training can decrease the risk of obesity. Women who are overweight or 

obese have an increased risk of complications, including polycystic ovarian syndrome (PCOS) 

199
, menstrual irregularity, and infertility 

200
, that reduce the probability of conception. Clark et 

al. showed that regular exercise training is effective in restoring fertility in obese women 
201

. In 

addition, overweight and obese women have an increased risk of maternal and fetal 

complications such as gestational diabetes, preeclampsia, increased risk for delivering at or 

before 32 weeks gestation, which contribute to longer hospitalization 
202

 and higher delivery 

costs 
203

. In fact, the risk of maternal and fetal complications increases with the degree of 

obesity. The incidence of preeclampsia doubles with every 5–7 kg/m2 increase in pre-

pregnancy BMI 
204

. The risk of gestational diabetes also increases progressively in overweight, 

obese, and morbidly obese women 
205, 206

. Overweight and obese women are more likely to 

deliver large for gestational age and macrosomic infants 
207

. Infants of obese women are more 

likely to experience neonatal intensive care unit admission 
208

 and caesarean section 
203

. In fact, 

infants from morbidly obese mothers (BMI ≥ 40 kg/m2) are twice as likely to demonstrate fetal 

distress and low APGAR (activity, pulse, grimace, appearance, and respiration) scores 
206

. 
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Regular exercise training, which includes exercise conducted before and during pregnancy, may 

act through several mechanisms to prevent obesity-related pregnancy complications. First, 

performing exercise before pregnancy may induce weight loss, resulting in a healthier BMI, 

which may prevent the risk of the obesity-related complications described above. Second, it has 

been suggested that regular aerobic exercise initiated during pregnancy may prevent gestational 

diabetes and preeclampsia 
209

. Lowering the incidence of these 2 conditions among overweight 

and obese women may also prevent the resulting complications and adverse pregnancy 

outcomes associated with them. Third, exercise during pregnancy may assist women in 

preventing excessive weight gain 
210

. Excessive gestational weight gain is associated with 

increased post-partum weight retention, and hence prenatal exercise may also be beneficial to 

facilitate return to pre-pregnancy weight after delivery 
211

. 

2.3. General recommendations for exercise in pregnancy and post-

partum period according to ACOG 

 Recreational and competitive athletes with uncomplicated pregnancies can remain active 

during pregnancy and should modify their usual exercise routines as medically 

indicated. The information on strenuous exercise is scarce; however, women who 

engage in such activities require close medical supervision.  

  Previously inactive women and those with medical or obstetric complications should be 

evaluated before recommendations for physical activity during pregnancy are made. 

Exercise during pregnancy may provide additional health benefits to women with 

gestational diabetes. 

 A physically active woman with a history of or at risk for preterm labor or fetal growth 

restriction should be advised to reduce her activity in the second and third trimesters. 
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Table 2: Recommendations for sport activities during pregnancy 

  

 

Activities to encourage 

 Walking 

 Stationary cycling 

 Low-impact aerobics 

 Swimming 

 

 

Activities to discourage 

 Contact sports (increased risk of abdominal trauma) 

 Hockey (field and ice) 

 Boxing 

 Wrestling 

 Football 

 Soccer 

 

 

High risk sports(increased 

potential for falls/ 

trauma) 

 Gymnastics 

 Horseback riding 

 Skating 

 Skiing (snow and water) 

 Hang gliding 

 Vigorous racquet sports 

 Weight lifting 

 Scuba diving 
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2.4. Exercise training and IUGR: 

Based on the reported data, the link between exercise training during pregnancy and birth weight is 

evident. Although there are studies stating that there is no relationship between maternal physical 

activity and fetal birth weight 
161

, others have suggested that babies from recreational athletes have 

lower body fat compared with offspring of sedentary mothers 
161

. It has been shown that the rate of 

macrosomia and gestational diabetes in women who performed submaximal intensity exercise starting 

from week 6-8 of gestation is lower than the control group. The results also demonstrated that 

participation in moderate-intensity aerobic exercise did not increase the risk of IUGR 
175

. Interestingly, 

Dr. Lavoie’s group has demonstrated that IUGR in the context of preeclampsia can be prevented by 

exercise training when performed both before and during gestation in different mouse models of this 

disease. This was related to a reduction in blood pressure and placental development normalisation in 

the exercise group compared to sedentary counterparts 
212, 213

. 

2.5. Hypothesized protective mechanisms implicated in the prevention 

of IUGR by exercise training 

2.5.1. Enhanced placental development and vascularity 

Abnormal placental development is a central cause of fetal growth-restriction. Insufficient trophoblastic 

invasion of the uterine spiral arteries in early pregnancy may contribute to an incomplete loss of 

sensitivity to vasoconstrictors in utero-placental vessels, causing intermittent hypoxia and reperfusion 

68
.  Conversely, regular physical activity in early pregnancy stimulates placental growth. Women who 

start training in early pregnancy have elevated placental volumes and growth rates 
188

, as well as a 

decreased fraction of non-functional tissue and an increased volume of villous tissue 
189

. Interestingly, 

these adaptations are still noticeable at term even if the mother stopped training by 20 weeks gestation, 
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indicating that early pregnancy is a critical period for placental development. Additionally, if the 

mother continues to exercise until term a slightly additional increase in placental volume and surface 

area will be observed 
189

. Improved placental growth and vascularity enhances its perfusion and 

transport capacity, and this may prevent reductions in fetal substrate and oxygen supplies during 

intermittent decreases in placental blood flow which may be associated with IUGR 
188

. 

2.5.2. Prevention and/or reduction of oxidative stress 

Regular physical training in non-pregnant rats, has been shown to augment antioxidant defense systems 

in heart, liver and muscle, which restricts cellular damage caused by oxidative stress related to acute 

bouts of exercise. Also, studies in animal models have shown that exercise training up-regulates 

antioxidants in skeletal muscles and  growing evidence indicates that endurance exercise training 

promotes an elevation in both total SOD (superoxide dismutase) and GPX (glutathione peroxidase) 

activity in skeletal muscles. In this regard, it appears that high-intensity exercise training is generally 

more effective then low-intensity exercise in the up-regulation of muscle SOD and GPX activities 
214, 

215
. In a study consisting of a 16 week aerobic exercise training program with an individualized 

intensity in healthy men and women, the activity of superoxide dismutase in erythrocytes (E-SOD), 

glutathione peroxidase in whole blood (GSH-Px), and glutathione reductase in plasma (P-GR) were 

measured and GSH-Px and  P-GR activity were found to be increased without any alteration in E-SOD 

activity 
216

. In another study among a large group of Spanish women, with two categories of leisure 

time physical activity according to their intensity: low (<=6 METs) and high (>6 METs), a direct 

relationship between the amount and intensity of regular leisure physical activity and endogenous 

antioxidant enzymes was observed. Low intensity exercise training was associated with high SOD 

levels and high intensity exercise with high peroxidase levels. These results suggest a modulatory 

effect of leisure physical activity intensity on the anti-oxidative balance 
217

. Although no differences 

could be observed in erythrocyte antioxidant enzyme activities (SOD, glutathione peroxidase, and 
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catalase) between active and sedentary pregnant women before delivery, SOD and catalase activities 

were dramatically elevated 1 h post-partum in trained women which seemed to inhibit labor-induced 

increases in malondialdehyde (an indicator of lipid peroxidation) 
218

. These results propose that regular 

exercise training may enhance maternal antioxidant responses to augmented oxidative stress in normal 

pregnancies 
218

, which may prevent or improve endothelial dysfunction and thus IUGR. Indeed, in 

experimental animal models of atherosclerosis, hypercholesterolemia, hypertension, and diabetes, 

associations between oxidative stress and impaired endothelial function have been demonstrated 
219-221

. 

2.5.3. Reduction of inflammation 

There are many evidences supporting the anti-inflammatory effect of regular exercise training 
222

 in 

non-pregnant individuals and patients with heart failure 
223

 and coronary artery disease 
224

. It has been 

shown in healthy men and women that plasma levels of sTNF-R1, sTNF-R2, (soluble tumor necrosis 

factor receptors 1, 2) interleukin-6, and C-reactive protein are decreased with physical training 
225

. 

Exercise training can also attenuate interleukin-1, interleukin-6, and interferon-γ, while increasing the 

anti-inflammatory cytokine interleukin-10 
224

. Since there have been reports of increased inflammatory 

factors in IUGR, such as IL6 
226

, if exercise training has similar anti-inflammatory effects in pregnant 

women, this could prevent or decrease the inflammatory response that may contribute to the 

development of IUGR.  

2.5.4. Improving of endothelial dysfunction 

It is proved that regular exercise training improves endothelial function in non-pregnant individuals 

with endothelial dysfunction 
227

, plus, it can favorably modify some risk factors of endothelium 

dysfunction like blood pressure 
228

. Aerobic exercise has been demonstrated to raise local endothelium-

dependent dilation in patients with endothelial dysfunction caused by aging 
229

 and type2 diabetes 
230

. It 

has also been shown that in heart failure patients large muscle mass exercise improves systemic 
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endothelial function which was measured by assessing the response to acetylcholine (ACh) and sodium 

nitroprusside (SNP) 
230

. If similar results are observed in women at risk for IUGR, training-induced 

correction of disease-related endothelial dysfunction may prevent the main pathological process 

leading to this disease. 

3. Animal models of IUGR 

Many of our knowledge regarding the short- and long-term effects of IUGR comes from animal 

studies. A number of animal models of maternal malnutrition and placental insufficiency have been 

developed over recent years to investigate the causes and consequences of IUGR. A variety of species 

have been studied, including: rodents, sheep and primates; and both, maternal dietary manipulations or 

surgical interventional techniques have been employed 
231-237

. We use animal models as they better 

reproduce the human condition compared to in vitro studies. However, in spite of the advances made 

using “in vitro” models to study some aspects of pregnancy, the IUGR condition as a whole is more 

properly represented in vivo. Still other features of pregnancy, such as the development of the 

uteroplacental circulation, fetal growth velocity and fetal development have no in vitro counterpart. 

Moreover, when new therapies arrive, although they are first tested extensively in vitro, they must 

present a clean reproductive toxicology panel in vivo 
238

 before they can be considered for use in 

humans, hence animal experiments are necessary. The majority of experimental fetal growth restriction 

studies are performed in rats and mice 
239

 (Table 3).  We chose to study a mouse model because in 

mice, environment and genetic background can be easily controlled. Furthermore, their gestation has 

many characteristics which are common to human pregnancy 
240

, which makes them a good model of 

the disease. Generally, animal models of IUGR fall into three categories when divided by method of 

intervention: fetal intervention, maternal intervention and genetic models. 
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3.1 Fetal intervention models: 

The hypoxic chick is the primary model of fetal intervention 
241-243

.  Since many IUGR in human 

pregnancies are caused by placental insufficiency, there is no change in the health status of the mother. 

As such, the main advantage of this model is the ability to investigate the effects of hypoxia in the fetus 

in isolation, without any maternal effects. 
244

. 

3.2. Maternal interventions 

3.2.1. Surgical methods 

There is a range of maternal interventions for inducing IUGR in animal models. The most frequent and 

oldest intervention is uterine artery ligation which was first introduced by Wigglesworth. In this 

method, the uterine arteries of the pregnant rat are permanently ligated near the cervical end of the 

arterial arcade at day 17 of pregnancy.  It causes utero-placental insufficiency which involves altered 

intrauterine environment characterized by hypoxia, reduced growth factor  and hypoglycemia 
245

. 

Uterine artery ligation has been shown in other species to cause IUGR like guinea pigs and sheep 
246-

250
. Similarly, uterine artery embolization in sheep also results in IUGR 

251-253
. Although these methods 

induce IUGR, the lack of an intact uteroplacental circulation in these models makes them less useful 

for testing maternal therapies that target uterine blood flow or the placental barrier directly.  

Since bilateral uterine artery ligation obstructs blood supply, 30% of the fetuses die or go through 

partial resorption 
254

. As a result, it causes severe maternal outcomes such as necrotic uterus, ectopic 

pregnancy, abortion, etc. Therefore unilateral ligation is preferred to provide chronic placental 

insufficiency. This procedure in guinea pigs is performed at mid-gestation. In about one-third of the 

cases, fetal death occurred, in another third, fetuses with less than 60% of normal weight were observed 

and in the remainder all fetuses were in the normal weight range. It produces fetuses that are growth 
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restricted and chronically hypoxic 
248

.  A related intervention is sheep, carunclectomy, in which the 

maternal portion of the placentome – the multiple contact points between maternal and fetal blood 

circulations in the placenta – are surgically removed from the uterus prior to pregnancy. This creates 

IUGR in about half of pregnancies 
255

.   

3.2.2. Nutrient restrictions 

Interventions such as calorie intake restriction can cause IUGR and the effect depends on which 

trimester of the pregnancy this occurs.  A good example of this is the growth restrictions which 

occurred during World War II Dutch famine. This study was done to examine the effects of maternal 

intrauterine undernutrition on offspring birth weights in a cohort of women born between August 1944 

and April 1946 in Amsterdam, The Netherlands 
256

.  The decrease in the offspring's birth weights was 

associated with famine exposure during the third trimester of pregnancy 
257, 258

. This phenomenon has 

been reproduced in several models involving rat, guinea pig, rabbit, and sheep 
259-264

.  

Interestingly, it was reported that overfeeding in an adolescent pregnant ewe also results in IUGR. In 

that study, the animals were split into 2 groups which were offered either a high or low quantity of a 

complete diet which consisted of 30% coarsely milled hay, 50% barley, 10% molasses, 9% fishmeal, 

0.3% salt, 0.5% dicalcium phosphate and 0.2% of a vitamin-mineral supplement and had an average 

dry matter of 86%.  Although not examined, it was suggested that when nutrient intakes are high, blood 

flow to support maternal tissue synthesis is maintained at the expense of utero-placental blood flow, 

resulting in reduced placental growth and functional development 
265

. In fact, in human adolescents 

studies has been shown that continuing maternal growth at the time of conception is associated with a 

significant but modest reduction in birthweight (about 100 g) in both primiparous and multiparous 

mothers 
266

.  
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Moreover, nutrient restriction such as low protein or low sodium diets, have also been shown to affect 

the growth of the fetus using animal models 
267-269

. Fernandez-Twinn et al. investigated the role of the 

endocrine system in IUGR induced by low protein (LP) diet in rat model by measuring circulating 

levels of several endocrine factors such as progesterone, insulin, prolactin in both maternal and fetal 

plasma. They found that the LP mothers were hyperglycaemic at day 14 of pregnancy and this was 

accompanied by an increase in their circulating insulin levels. Prolactin levels were also raised 

significantly in the LP dams on day 14 of gestation compared with the controls, whereas progesterone 

levels were reduced. Also, a significant decrease in maternal leptin levels was observed at gestation on 

day 21. It has been suggested that maternal low protein intake during pregnancy affects nutrient 

delivery to the fetus by downregulation of specific amino acid transport proteins 
270

. In a study on male 

offspring of rat dams, it was shown that early growth restriction due to maternal protein restriction 

leads to the development of diabetes later in life 
271

. 

3.3. Environmental restrictions 

Environmental factors have also been shown to influence pregnancy outcome. For instance, low birth 

weight lambs born from sheep raised in hot conditions, a heat stress model of IUGR was developed. In 

this technique, animals are placed in a special chamber with daytime heat temperature of ∼40 °C for 18 

hours and ∼35 °C for 6 hours each night with the humidity of 40-45%, from day 39 to 125 of gestation 

and studied in a normo-thermic environment at day 135. With this method, average fetal weight was 

decreased significantly to 53% of the control group 
272

. Affected fetuses showed symptoms of brain 

sparing (which is a physiological mechanism used by the fetus to increase delivery of oxygenated 

blood to the brain at the expense of other organs), and umbilical and uterine blood flow were decreased 

159, 272
.  
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3.4. Genetic interventions 

Generally, genetic models of IUGR have been created in mice 
273

, due to the richness of the molecular 

information available in this species and accessible embryonic stem cells. Early knockout models were 

overly severe, and resulted in embryonic lethal phenotypes. For instance, systemic disruption of Tissue 

Factor (also known as platelet tissue factor), factor III, thrombokinase, or CD142, resulted in fatal 

wasting of mouse offspring after embryonic day 9.5 
274

. Also, heterozygous knocking out the vascular 

endothelial growth factor (VEGF), a signal protein which is vital for angiogenesis, produces an 

embryonic lethal phenotype 
275

. Alternative mouse models are now available, with conditional or 

tissue-restricted knockout of specific genes such as the placental specific insulin-like growth factor 2 

(IGF2) knockout mouse model. In this model, a transcript of the gene which is expressed only in the 

placental labyrinthine trophoblast cells is deleted 
276

. This causes impaired placental growth from 

embryonic day 12, and growth restriction in 96% of fetuses by embryonic day 16. Birth weight is 

approximately 69% of wild type, although the pups did exhibit postnatal catch up growth. In fact, 

impaired placental growth is seen earlier in gestation than reduced fetal growth, perhaps as a result of 

escalated placental System A activity which may contribute to maintaining fetal growth (system A 

transporter facilitates uptake of small non-essential neutral amino acids such as alanine, glycine, and 

serine 
277

). When it becomes closer to term, the knockout placentas remain smaller, the System A 

activity is nearer to normal and there is less passive permeability as well, all of which contribute to the 

IUGR phenotype 
276

. In contrast, in humans, the level of system A activity is associated with severity of 

IUGR 
49

. 

Another mouse model is the systemic, knockout of endothelial nitric oxide synthase (eNOS) gene, an 

enzyme which converts arginine to nitric oxide (NO) which is responsible for vasodilation 
278

.  This 

results in impaired uterine artery function and reduced placental System A amino acid transporter 
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activity. An asymmetric growth and a reduction in extraction of oxygen by the fetus are observed in 

this model 
278

.  

 

Table 3: Some IUGR animal model species 

Animal species Advantage Disadvantage 
 

 

 

 

 

 

Mouse 

 Small size and social nature 

→ easy to maintain and 

relatively inexpensive 

 Short gestation →less time 

and expense 

 Small size → makes it hard 

to manipulate surgically 

 Imaging the fetus and 

placenta is challenging 

 Less common laboratory 

animal so specific 

reagents/equipment more 

expensive Differences 

between human and mouse 

physiology, though 

generally well characterized 

and understood 

    

 

Rat 

 Short gestation, large litters 

 Large enough for complex 

surgical intervention 

 Useful for intergeneration 

studies especially cognitive 

 More expensive due to size 

increase over mice 

 

 

 

Guinea pig 

 Haemomonochorial 

placenta and Extensive 

trophoblast invasion 

 Longer gestation → better 

for therapeutic evaluation 

 brain development more 

like human than other 

rodents 

 Longer gestation, larger 

animal, smaller litters thus 

more expensive 

 Less common laboratory 

animal so specific 

reagents/equipment → 

more expensive 

 

 

 

 

 

Sheep 

 sampling from both sides of 

the placental barrier in un-

anaesthetised and 

unstressed animal possible 

 Sheep conceptus 

physiology relevant to 

human fetal physiology 

 Consistent gestation with 

predominantly singleton 

pregnancies 

 Good tolerance for in utero 

manipulation 

 Placentation is not closely 

similar to human 

 Large animal facility 

needed 

 

 

Non-human primates 

 Genetically, closest model 

to human 

 Pregnancy characterised by 

trophoblast invasion of the 

spiral arteries 

 Longer gestation, larger 

animal, smaller litters → 

more expensive 

 Less common laboratory 

animal so specific 

reagents/equipment → 

more expensive 
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3.5. P57 
kip2

 knock-out mouse model: 

P57 
kip2

 is a paternally imprinted gene 
38

, meaning that only the maternal allele is expressed and it is 

present both in humans and mice. It can bind with different cyclin-cdk complexes and inhibit their 

kinase activity in vitro. P57 
kip2

 belongs to the Cip/Kip family, and shares homology with p21
Cip1

 and 

p27
Kip1

 at the N-terminal domain (cdk-binding/inhibitory domain). Conversely, it distinguishes itself 

from p21
Cip1

 and p27
Kip1

 by its unique domains: a proline-rich domain and an acidic domain in mouse 

P57
kip2

, and a PAPA domain in human P57 
kip2

 
279, 280

. The p57
kip2

 molecule is expressed in a tissue-

specific manner in the placenta, skeletal muscle and heart. It can also be found in some other tissues 

like central nervous system and cartilage 
279-282

. Although there is a wealth of information proposing 

that p57
kip2

 may be associated with tumor suppression, the data provided by Takahashi et al. showed 

that p57
kip2

 plays an essential role in mouse fetal development. Their results showed that p57
Kip2

 may 

function in the proper development of labyrinthine and spongiotrophoblasts by pathways that are not 

involved with regulation of cdk activities. Moreover, there was no cancer predisposition in the mutant 

mice so far examined, suggesting that loss of p57
kip2

 is not simply responsible for tumorigenesis 
283

. On 

the other hand, there have been some reports of its role as a tumor suppressor. Mutations of this gene 

were observed among BWS (Beckwith–Wiedemann syndrome) patients. A reduction in its expression 

in most of the cases of Wilms' tumour tissues, adrenal tumour tissues, and cultured adrenocortical cells 

was also reported 
284-286

.  

Generally, imprinted genes, including IGF-II, H19 and p57
Kip2

, are related with trophoblastic disease 

287-290
. Mice deficient in the p57

Kip2
 gene (p57KIP2−/−) have shown  altered cell proliferation and 

differentiation leading to abdominal muscle defects; cleft palate; endochondral bone ossification 

defects with incomplete differentiation of hypertrophic chondrocytes resulting in dyspnea, renal 

medullary dysplasia; adrenal cortical hyperplasia and cytomegaly; and lens cell hyperproliferation and 
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apoptosis. Most of the p57
Kip2

-deficient mice died within 24 h after birth, while about 10% of them 

survived beyond the weaning period. Surviving mice exhibited severe growth restriction, immaturity of 

testes and uterus, and vaginal atresia 
39, 281, 282

. Kanayama's group reported that mice that are 

heterozygote for a p57
kip2

 gene deletion (p57−/+) presented with PE-like symptoms 
291

. A clear 

disruption of normal architecture as well as an abnormal fibrin deposition in p57
kip2

 mutant placentas 

was observed by Knox et al 
292

. They also reported a significant decrease in the thickness of the 

labyrinth layer and evidence of extensive calcifications, indicative of decreased utero-placental blood 

flow 
293

. In addition, there was evidence of infarction, fibrin extravasation and fibrinoid necrosis 

throughout the labyrinth of mutant placentas as well as increased numbers of nucleated RBCs are also 

identified 
292

.  Conversely, that group as well as ours have found that the p57
kip2

 deficient mouse model 

does not develop preeclampsia features as it was observed by Kanayama group 
291

. We did however 

find that there was an increased placental pathology, smaller litters 
294

 and incidence of IUGR. 
39

. 

Furthermore, the p57
Kip2

 mutant mouse has gained strong support from the high incidence of placental 

abnormalities which is considered to be one of the main etiologies of IUGR. As such, we chose to use 

this model to determine the impact of exercise training on the development of IUGR. 
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Condensation: Exercise training can prevent intrauterine growth restriction via improvement of 

placental pathology, angiogenesis and inflammation.  

 

Short title: Exercise training prevents IUGR 
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Abstract  

Background: According to the WHO, intrauterine growth restriction (10% below normal fetal weight 

for gestational age) affects 5-10% of human pregnancies and is a major cause of perinatal morbidity 

and mortality worldwide. Preeclampsia, pregnancy induced hypertension and proteinuria, is one of the 

major risk factors for IUGR. In our previous study on preeclampsia mouse model (mice which 

overexpress human renin and human angiotensinogen), we found that exercise training before and 

during pregnancy reduced maternal blood pressure, and prevented IUGR by improving placental 

development.  

Objective: The aim of this study was to investigate the beneficial effects of exercise training on 

intrauterine growth restriction in an animal model without preeclampsia. 

Study design: In this study, we used heterozygous knockout mice of the p57
kip2

 gene which is a cyclin-

dependent kinase inhibitor that regulates the cell cycle of trophoblastic cells and as such, normal 

placental development. To investigate the role of exercise training we placed mice in cages with free 

access to an exercise wheel 4 weeks prior to and throughout pregnancy. At the end of gestation, mice 

were sacrificed to harvest and weigh fetus and placentas. All data are expressed as means ± SE. One-

way ANOVA was used to determine the impact of exercise and genotype on most parameters, followed 

by Tukey’s post hoc test when an interaction was detected. Placental pathology scores were analyzed 

by non-parametric Kruskal-Wallis-tests. 

Results: We confirmed the presence of IUGR in sedentary p57
kip2

 knockout mice, reduced placental 

mass, increased placental alteration as well as smaller litter size with increased numbers of necrotic 

pups. Exercise training prevented intrauterine growth restriction as well as normalized litter size and 

placental mass and alterations. The expression of the vascular endothelial growth factor, a key regulator 

of angiogenesis required for normal placental development, was reduced in pregnant knockout 
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sedentary mice and was normalized by exercise training. In contrast to data reported in our 

preeclampsia model, the placental renin-angiotensin system in the
 
knockout mice was found to be 

normal and was unaffected by exercise training. Interestingly, we found that inflammatory markers in 

the placenta (interleukin-1β and monocyte chemoattractant protein-1 mRNA) were elevated, in 

sedentary knockout mice, which suggests that placental inflammation may contribute to the placental 

pathology in this model, whereas this was not present in the trained mice.  

Conclusion: Taken together, these results suggest that exercise training prevents intrauterine growth 

restriction by improving angiogenesis, placental alterations and placental inflammation.  

 

Key words: Exercise training, intrauterine growth restriction, p57 gene, knockout mice, placental 

pathology, angiogenesis, inflammatory factors 
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INTRODUCTION 

Preeclampsia and intrauterine growth restriction (IUGR). Preeclampsia is characterized by the new 

occurrence of high blood pressure (BP) and proteinuria, placental pathology and inflammation, and 

IUGR (reviewed in 
295, 296

). IUGR refers to a condition in which the estimated weight of the fetus is less 

than 10% of what is expected for its gestational age with abdominal circumference below the 2.5th 

percentile 
297

. It affects 5-10% of human pregnancies and is a major cause of perinatal morbidity and 

mortality worldwide 
298

. According to the WHO, each year approximately 18 million (14%) babies are 

born with IUGR and they account for 60-80% of neonatal deaths
5, 299

. IUGR places the fetus at risk of 

death and disease later in life such as, hypertension, cardiovascular disorders and renal disease 
300-302

.  

The factors that increase the risk of IUGR in humans include poor maternal nutrition, preeclampsia, 

genetic and chromosomal factors (e.g. maternal and paternal imprinted genes, including p57
kip2

) 
34, 40

, 

IUGR and still birth in previous pregnancies 
7-10, 24

. Currently, there are no standard prenatal therapies 

which are designed to specifically improve fetal growth or reverse the complications of IUGR. The 

only therapeutic avenues to prevent or minimize IUGR is by improving maternal nutrition, smoking 

cessation, avoidance of drugs and control of maternal conditions such as hypertension and renal failure 

142, 143
. Our research has focussed on the use of exercise training (ExT) to prevent and/or improve 

IUGR 
212

. 

 

ExT impact on placental development. Human placental cell proliferation is enhanced in placentas 

from active women during normal pregnancy compared to their sedentary counterparts 
303

. Placentas 

from exercise trained mothers are larger and show less alteration 
304

. Moreover, ExT during pregnancy 

was shown to decrease reactive oxygen species generation in human placenta which leads to reduced 

oxidative stress 
305

. It was also reported that ExT increases circulating vascular endothelial growth 

factor (VEGF) in pregnant rats which is important in placental angiogenesis 
306

. 
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Mouse models of preeclampsia and IUGR.  

R
+
A

+
 transgenic mice. The study of IUGR is challenging in humans as when it is detected, the 

pregnancy is likely to be interrupted if growth restriction is severe or if the babies are mature enough to 

have a better chance of developing ex utero. Our lab characterized a unique transgenic mouse model of 

preeclampsia (mice which overexpress human renin and human angiotensinogen – R
+
/A

+
 mice) in 

which placental pathology and IUGR were observed 
307

. Local renin-angiotensin systems (RAS), in the 

placental and in the aorta, were found to be compromised in these mice, as well as placental 

angiogenesis. ExT improved both maternal and fetal outcomes mainly via normalization of placental 

and aortic RAS as well as angiogenic factors 
212

. However, IUGR may have been improved indirectly 

in these mice, by decreasing BP as it correlates with adequate placental blood perfusion needed for 

normal placental development 
213

. 

 

p57
kip2

knockout mouse model (p57
-/+

). P57
Kip2

 (also called cyclin-dependent kinase inhibitor 1C 

(CDKN1C), p57 and Kip2) is a universal inhibitor of cyclin-dependent kinases. P57
Kip2

 is a protein 

inhibitor that negatively regulates cell proliferation (arrests the cell cycle in G1 phase) and is encoded 

by an imprinted gene. Mutations in p57 are associated with loss of cell cycle control and increased risk 

of childhood cancers and congenital cellular overgrowth disorders, so it is a tumor suppressor candidate 

280
. Takahashi et al. 2000 generated a  mouse model (p57

Kip2-/+
) with a heterozygous deletion of this 

gene 
39

. It was reported by Kanayama’s group that, when p57
-/+ 

females were bred with p57
-/+

 males, 

they developed preeclampsia like symptoms including hypertension, proteinuria, thrombocytopenia and 

placental alterations 
291

. Conversely, our research team and others have not been able to confirm 

preeclampsia like symptoms in this mouse model, however, we did confirm placental alterations, 

IUGR, reduced litter size and increased number of non-viable pups 
292, 294

. The goal of the present study 
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was to investigate the beneficial effects of ExT on IUGR without the presence of preeclampsia. 

 

MATERIALS AND METHODS 

Animals. Our experiments were performed on heterozygous p57
kip2

 knockout (KO) mice which were 

provided by Dr. Keiichi I. Nakayama from Kyushu University, Fukuoka, Japan 
308

. These animals were 

bred and maintained by backcrossing with C57BL/6 mice (strain code 027, Charles River, St.-Constant, 

Quebec, Canada) as described previously 
294

. Mouse genotype was determined, as done previously by 

Takahashi et al. 
39

. All animals, including the breeders, had access to water and standard Japanese 

laboratory chow [CA-1 Japanese (JPN); CLEA Japan, Tokyo, Japan ad libitum. Mice in these 

experiments were 12–15 weeks of age and their care met the standards set forth by the Canadian 

Council on Animal Care for the use of experimental animals. All procedures were approved by the 

Animal Care Committee of the CHUM Research Centre. To investigate IUGR, female p57
-/+ 

or wild-

type (p57
+/+

) mice were time-mated with identical genotype male.  

 

Exercise training (ExT). To investigate the role of ExT in our animal model, we put female p57
-/+

 mice 

in cages with free access to a running wheel starting at 4 weeks prior to pregnancy, as described 

previously 
212, 213

. Each cage was connected to a computer and the number of wheel revolutions was 

counted to confirm running status (Compte-tour5, Aquila, Boucherville, Qc, Canada). The data were 

then compiled and analyzed as done previously in different mouse models of preeclampsia 
212, 213

.  

 

Tissue collection and histology. On day 18 of gestation, mice were anesthetized with 

ketamine/xylazine. Placentas and fetus were collected and weighed individually. Non-viable fetuses did 

not have a detectable placenta.  Placentas were then flash-frozen in liquid nitrogen or placed overnight 
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in 4% paraformaldehyde for fixation. The next day fixed placentas were rinsed with phosphate buffer 

and embedded in paraffin. Placentas were cut cross-sectionally using a microtome. Sections were 

stained with hematoxylin-phloxine-saffron to assess overall placental morphology. Embedding, 

sectioning, and staining were performed by the Histology Platform of the Research Institute in 

Immunology and Cancerology at the Université de Montréal.  

Placental alterations were characterized by five criteria: necrosis, hyalinization, microcalcification, 

cytotrophoblastic island loss, and loss of labyrinthine trophoblast structure, as described previously 
212, 

213, 294
. For each criterion, changes were assigned a score from 0 to 3, where 0 was the absence of, 1 

was mild, 2 was moderate, and 3 was severe alteration. All scores were summed up for a total 

evaluation of the placental pathology present. The pathologist scoring the placentas was blinded to the 

genotype and training status of the mothers. 

To evaluate the impact of maternal genotype and exercise training on placental and fetal growth, we 

calculated total fetal and placental mass by adding the weights of all placentas and fetuses from each 

litter.  

Real-time PCR. Total RNA was extracted from placentas with Trizol (Invitrogen, Burlington, Ontario, 

Canada) according to the manufacturer’s protocol. Removal of genomic DNA from total RNA and 

reverse transcription was carried out as described previously 
212, 294

. Real-time PCR (qPCR; Rotor Gene 

RG-3000; Corbett Research) was performed using Faststart SYBR Green Master fluorescent dye (04 

673 492 001; ROCHE) and specific primers for vascular endothelial growth factor (VEGF), 

Interleukin-1β (IL-1β) as well as Monocyte chemoattractant protein-1 (MCP-1). Gene levels were 

expressed as values relative to S16. PCR Primer sequences are presented in Table 1. 

Western Blot. Proteins were extracted from homogenized tissue using RIPA lysis buffer containing 50 

mM HEPES pH 7.5, 137 mM NaCl, 1 mM MgCl2, 1 mM CaCl2, 2 mM Na3VO4, 10 mM Na₄P₂O₇, 

10 mM NaF, 2 mM EDTA, 1% NP-40, 34µg/mL PMSF, and added protease inhibitor cocktail tablets 
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(11 836 153001; ROCHE). Protein concentrations were assessed by the Bradford method (500-0006; 

Bio-Rad) Placental protein samples were separated by electrophoresis and transferred onto 

nitrocellulose membranes. RAS proteins were detected with Anti-Mas receptor (Alomone Labs, 

Jerusalem, Israel) and anti-human/mouse angiotensin-converting enzyme 2 (ACE2; R&D systems, 

MN, USA), using enhanced chemiluminescence West Pico kits (34080; Thermo-Scientific, MA, USA). 

Total protein content was calculated using the Image-J software (NIH) according to protein band 

intensity, and was normalized to α-tubulin protein expression (ab4074; Santa Cruz Biotechnology, 

Texas, USA).  

Drugs. The following drugs were purchased for mouse anesthesia: ketamine (Bimeda-MTC, 

Cambridge, Ontario, Canada) and xylazine (Bayer, Toronto, Ontario, Canada).  

Statistical analysis. All data were expressed as means ± SE. One-way ANOVA was used to determine 

the impact of ExT and genotype on most parameters, followed by Tukey’s post hoc test when an 

interaction was detected. Placental pathology scores were analyzed by non-parametric Kruskal-Wallis-

tests. 

 

RESULTS 

Maternal weight gain. In our previous study of p57 KO mice, we found that maternal weight at the end 

of pregnancy was not significantly different from WT mice 
294

. The present study confirmed that 

maternal weight was not different between the three groups of mice (Table 2). 

 

IUGR is prevented by ExT. In previous studies in p57 KO mice, fetal mass was found to be 

significantly decreased and correlated with increased placental alterations 
39, 294

. In the present study we 

confirmed a significant reduction in total fetal mass in p57
-/+

 sedentary litters compared to their WT 
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counterparts (p<0.01) which was completely normalized by ExT (Table 3; p<0.05).  

 

Litter size and non-viable pups are normalized by ExT. We previously reported that litter size was 

reduced and the number of non-viable pups was significantly increased in p57 KO mice compared to 

WT mice 
294

. The litter sizes in the present study varied from 8-12 pups in WT, 3-7 pups in KO 

sedentary and 6-11 pups in KO ExT (Table 3). Hence, ExT normalized litter size in p57 KO mice 

(p<0.05) whereas non-viable pup number was no longer significantly different from the WT.  

 

Placental pathology and mass is normalized by ExT. We previously reported that p57
-/+

 KO mice 

exhibited placental pathology and, as a result, decreased placental mass 
294

. In the present study, we 

confirmed that p57
-/+

 KO mice had increased placental alterations which mainly resulted from 

cytotrophoblastic island loss (CIL) (p<0.005) and an increased total placental alteration in KO 

sedentary mice (p<0.01; Table 4). We also found that, as previously reported, placental mass was 

decreased in the KO mice. Interestingly, ExT completely normalized CIL (p<0.001) and total placental 

alterations where no longer different from the WT animals (Table 4). Consequently, placental mass 

was normalized (Table 3; p<0.05). The other placental alteration criteria (necrosis, hyalinization, 

microcalcification and loss of labyrinthine trophoblast structure) were not significantly altered by the 

genotype nor by ExT (Table 4).  

 

Placental angiogenesis in p57 KO mice is normalized by Ext. We found that VEGF expression is 

reduced in p57 KO sedentary mice (p<0.005) compared to WT sedentary mice, and that ExT 

normalized VEGF mRNA expression (Figure 1; p<0.005).  

 

Placental inflammation in p57 KO mice is normalized by Ext. In the present study, we measured 



 
 

64 
 

mRNA expression of 2 inflammatory factors. We found that placental IL-1β and monocyte 

chemoattractant protein-1 (MCP-1) mRNA expression were significantly increased in the p57 KO 

sedentary vs. WT sedentary by 70% and 68% respectively (Figure 2A and 2B; p<0.05). ExT 

normalized the MCP-1 expression levels (Figure 2B; p<0.02), while IL-1ß was no longer different 

from the WT mice (Figure 2A).  

 

Local placental RAS and Ext. We previously found that in a preeclampsia mouse model, placental 

RAS, both MAS-receptor and ACE2 protein, was found to be decreased and ExT was able to partially 

normalize these effects as MAS-R was reduced by ACE2 was unchanged 
212

. In contrast, in the present 

study, we found no difference in the above 2 components of the local placental RAS between p57 KO 

sedentary and WT mice (Figure 3). In addition, ExT had no effect on the expression of ACE2 and 

MAS-R (Figure 3).  

 

COMMENT 

In this second study on the p57
Kip2-/+

 mouse model, in agreement with our previous study 
294

, we 

confirmed the presence of IUGR, increased placental alterations as well as decreased placental mass 

and litter size and increased number of non-viable pups. We found that, similarly to what we previously 

found in preeclampsia animal models 
212, 213

, ExT in the p57
Kip2-/+ 

mice had significant beneficial effects 

by normalizing the above placental and fetal parameters.  

In R
+
A

+
 mice, the beneficial effects of ExT on preeclampsia may have resulted from regulation 

of the local renin-angiotensin system (RAS) 
212

. Indeed, a decrease in the protein expression of Mas-R 

and ACE2 in placenta of preeclamptic mice was reported 
212

 which would reduce the effects and 

production of Angiotensin-(1-7) whose effects oppose those of Angiotensin II which has been 
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implicated in the development of placental alterations through mediation of oxidative stress, 

inflammation and vasoconstriction 
309-311

. In contrast, the local placental RAS was not found to be 

impaired in p57
Kip2-/+

 mice, perhaps because preeclampsia was not present, nor was it affected by ExT. 

This suggests that the placental alterations observed in this model are not as a result of modulation in 

the RAS. Also, in p57
Kip2-/+ 

mice, the beneficial effects of ExT on pup and fetal parameters cannot be 

explained by improvements in maternal BP as it was the case in other preeclampsia mouse models as 

we had previously demonstrated 
212, 213

.  

We suggest that the IUGR and reduced litter size observed in p57
Kip2-/+

 sedentary mice, as well 

as the significant elevation in the number of non-viable fetuses, result from placental insufficiency, as 

the placental mass was clearly reduced and placental alterations were evident. We also noted 

significant improvement in placental mass, as well as in placental alterations in the trained mice, which 

is in line with our hypothesis that ExT improves placental function and development.  

 

The noticeable decline in angiogenesis, as assessed by VEGF gene expression, in the placentas 

of the p57
Kip2-/+ 

sedentary mice, is in accordance with previous data from our laboratory and others 

which have shown a correlation between decreases in placental VEGF expression levels and IUGR 
312-

314
. The reduction in the placental VEGF level is typically associated with increased soluble fms-like 

tyrosine kinase (sFlt-1) expression and preeclamptic syndrome, and is considered a biomarker for 

predicting preeclampsia 
315

. Therefore, we propose that the reduced expression of VEGF in the placenta 

of p57
Kip2-/+ 

mice could be responsible for the impaired development of vessels and villi of the 

placentas, as observed histologically by the increased CIL, which would lead to placental insufficiency. 

Interestingly, the VEGF expression was completely normalized by ExT in our study. It appears that 

regular maternal exercise is beneficial for placental and fetal growth as it diverts blood toward muscle 

and skin and thus creates a short-lived hypoxic environment which is needed for the secretion of VEGF 
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316, 317
. Hence, the fact that ExT upregulated VEGF expression, increased placental mass and prevented 

placental pathology is in line with the literature regarding the benefits of ExT on placental perfusion 

and development in normal pregnancy 
188, 209

.  

Along with other reports of increased inflammatory factors in IUGR 
226

, we found increased 

gene expression of IL-1β. Abnormally high placental and serum levels of IL-1β are associated with 

pregnancy complication, such as preeclampsia and IUGR 
318

. This, along with the increase in MCP-1 

observed in our study, may result in a proinflammatory environment. IL-1ß has been demonstrated to 

promote functional changes in endothelial cells which include oxidative stress, secretion of 

vasoconstrictors as well as microthrombis and infarction which may all contribute to a dysfunctional 

placenta 
319

. In addition, as low grade inflammation has been related to insulin resistance in other 

tissues 
320

, it may also contribute to the development of IUGR in our model by reducing availability of 

nutrients to the placenta and as a result, the fetus. Interestingly, maternal ExT normalized MCP-1 and 

prevented the increase in IL-1ß. This is in line with previous studies which have shown that ExT can 

reduce pro-inflammatory factors in a non-pregnant state 
321

. 

ExT before and throughout pregnancy has been shown to increase the villous area and vascular 

volume in the human placenta, suggesting improved placental perfusion and transport capacity 
189

. In 

our study, we demonstrated that trained mice had significantly increased total placental and fetal mass 

by 55% and 46%, respectively, which may result from an increased trophoblast function stimulated by 

ExT (Figure 4). 

Cardiovascular benefits associated with voluntary ExT in rodents have been demonstrated, such 

as increased VO2max and diminished adverse vessel remodeling 
322-325

, and similar improvements have 

been observed in humans with aerobic exercise programs 
326

. This suggests that the beneficial effects of 

ExT on IUGR described in our mouse models may be translatable to the clinic to pregnant women, 

although studies will need to be conducted to confirm this finding. Furthermore, the molecular 
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mechanisms by which ExT can protect against IUGR and placental pathology require further 

investigation. IUGR can results from complications due to several diseases and syndromes, such as 

preeclampsia 
40

. and infections like rubella 
29

, cytomegalovirus 
30

 and herpes virus 
31

. As no specific 

treatment for IUGR and placental pathology are currently available in medical practices, our study, 

which shows the beneficial effects of exercise training on this condition, is an important advance.  
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TABLES 

Table 1: Primer sequences 

Primers  Forward (5ʹ-3ʹ) Reverse (5ʹ-3ʹ) 

   S16 ATC TCA AAG GCC CTG GTA GC ACA AAG GTA AAC CCC GAT CC 

VEGF CAG GCT GCT GTA ACG ATG AA  GCA TTC ACA TCT GCT GTG CT  

IL-1β CCT TCC AGG ATG AGG ACA TGA AAC GTC ACA CAC CAG CAG GTT 

MCP-1 ATT GGG ATC ATC TTG CTG GT CCT GCT GTT CAC AGT TGC C 

 

 

Table 2: Maternal weight is similar in sedentary and trained mice 

Training Mother’s 

genotype 

Maternal weight(g) 

(baseline) 

Maternal weight(g) 

(end of gestation) 

Sedentary 

p57
 +/+

 21.4±0.6 37.0±1.6 

p57
+/-

 19.8±0.7 34.0±1.3 

ExT p57
+/- 

21.0±0.9 36.3±1.3 

 

N=6-7/group; values are expressed as mean ± SE. 

 

 



 
 

69 
 

Table 3: ExT normalizes IUGR, placental mass and litter size 

Training status Mother’s genotype Fetal mass (mg) Placental mass (mg) Pups/litter Non-viable fetuses 

Sedentary 

p57
+/+

 6.7± 0.4 1.6 ± 0.1 9.6 ± 0.6 0 ± 0 

p57
+/-

 3.9 ± 0.5
†
 0.6 ± 0.1

†
 5.6 ± 0.6

†
 0.8±0.2

†
 

ExT p57
+/-

 5.8 ± 0.7
*
 1.0 ± 0.1

*
 8.2 ± 0.9* 0.4±0.2 

 

Values are expressed as mean ± SE. * p<0.05 significantly different from KO sedentary; † p<0.05 significantly different from p57 
+/+

 mice.  
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Table 4: Exercise training normalizes placental pathology observed in p57 -/+ (KO) mice 

 

 

 

Placental scores for each parameter are expressed as median and 75th percentile. CIL, cytotrophoblastic island loss; LLTS, loss of 

labyrinthine trophoblast structure;   Mdn, median; Total Pathology is the average value of all the different pathologies measured. * p<0.05 

significantly different from KO sedentary; † p<0.05 significantly different from p57 
+/+

 mice 

 

 

 

  Necrosis Hyalinization Microcalcification CIL LLTS 

Total 

Pathology 

Training 

status 

Mother’s 

genotype 

N Mdn 75% Mdn 75% Mdn 75% Mdn 75% Mdn 75% Mdn 75% 

Sedentary 

p57
+/+

 11 0 1 0 1 0 0 0 0 0 1 1 3 

p57
+/-

 10 0 1 1 2 2 2 1 † 2 1 1 4 † 7 

ExT p57
+/-

 10 1 1 0 2 1 1 0 * 0 0 1 2 4 
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FIGURE LEGENDS 

 

Figure 1.  Placental VEGF mRNA expression is normalized in p57
+/-

 mice by ExT.   

We found a significant decrease in VEGF in KO sedentary compared to WT sedentary group 

while ExT normalized this parameter (n= 10-14/ group). Values are expressed as mean ± SE. * 

p<0.05 significantly different from KO sedentary; † p<0.05 significantly different from p57 
+/+

 

mice. VEGF, vascular endothelial growth factor; KO, knockout; ExT, exercise training 

Figure 2.  Inflammatory factors are increased with IUGR and normalized by ExT. We 

found that both interleukin-1ß (IL-1ß; panel A) and the monocyte chemoattractant protein-1 

(MCP-1; panel B) mRNA expression were significantly increased in the placenta of p57 
-/+

 mice. 

Conversely, ExT normalized MCP-1 expression (B) and IL-1ß (A) was no longer significantly 

different from the WT mice. Values are expressed as mean ± SE, n=10-13/ group. * p<0.05 

significantly different from KO sedentary; † p<0.05 significantly different from p57 
+/+

 mice. 

ExT, exercise training; KO, knockout; WT, wild-type. 

 

Figure 3. Local placental RAS is similar in not modulated in our mouse model and by ExT.   

Placental Mas receptor (Mas-R) and angiotensin-converting enzyme 2 (ACE2) protein were 

similar in all groups. Values are expressed as mean ± SE, n=6-8/ group. RAS, renin-angiotensin 

system; KO, knockout; ExT, exercise training; WT, wild-type. 

 

Figure 4. Mechanisms implicated in the effects of ExT on fetal outcome.  
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Discussion 

To our knowledge, we are the first group to study the effects of exercise training (ExT) on 

intrauterine growth restriction (IUGR). Our mouse model was heterozygous knockout (KO) of 

p57
kip2

 gene (p57
-/+

). Indeed, the homozygous deletion of this gene is lethal 
281

. P57
kip2 

which is a 

paternally imprinted gene 
38

 was shown to have an essential role in the proper development of 

labyrinthine and spongiotrophoblasts 
283

. It was demonstrated by Kanayama et al that p57
-/+

 mice 

show preeclampsia-like symptoms such as hypertension, proteinuria, thrombocytopenia, and 

excess trophoblast proliferation. 
291

. Nonetheless, our research team and others have not found 

this syndrome in p57
-/+ 

mice 
292, 294

 and instead in our previous study on p57
-/+

 mice we observed 

placental pathology and intrauterine growth restriction 
294

. In fact, existence of placental 

pathology such as altered cytotrophoblast proliferation, trophoblast apoptosis, fibrin deposition, 

syncytial knotting and bridging, and enhanced villous maturation were reported by other groups 

in IUGR babies 
54

.  

In the present study, we confirmed the presence of IUGR in this mouse model as the average 

fetal weight in the sedentary p57
-/+

 litters was significantly decreased by 41% compared to the 

control group. We suggest that the remarkable growth restriction observed in this mouse model 

and the reduced litter size as well as the significant elevation in the number of nonviable fetus, 

are as a result of placental insufficiency, because similar changes to fetal weights were found in 

placenta as the average placental weight was decreased by 40%. Along with this observation in 

placenta, we noted an augmentation in cytotrophoblastic island loss in the placenta of sedentary 

KO mothers compared to their wild-type counterparts. Other placenta criteria, consisting 

microcalcification, necrosis, cytotrophoblastic island loss, hyalinization and loss of labyrinthine 
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trophoblastic structure, were not significantly changed, although tended to increase, suggesting 

the observed placental pathology in this mouse model is mainly due to the cytotrophoblastic loss. 

In addition, the total placental pathology was noticeably increased in the KO mice. Interestingly, 

all the mentioned fetal and placental parameters were significantly improved with ExT, except 

for the number of non-viable fetuses. These results propose that ExT can improve IUGR via 

increasing the placental mass, and reducing the placental pathology. However, ExT may not 

prevent fetal death, although it was tended to be decreased.  These findings were in line with the 

literature stating Women who start training in early pregnancy have elevated placental volumes 

and growth rates 
188

, as well as a decreased fraction of non-functional tissue and an increased 

volume of villous tissue 
189

 and also with our previous study on the transgenic preeclampsia 

mouse model (R+A+) where a significant improvement of the placental pathology  as well as an 

increase in placental mass in the trained mice was identified 
212

. However, this might not be the 

direct effect of exercise training as we noticed a reduction in blood pressure as well as 

modulation of some of the renin-angiotensin system (RAS) components, like decreased Mas 

receptor (Mas-R) and angiotensin converting enzyme 2 (ACE2) in the placentas of pre-eclamptic 

mice and their normalization in the trained mice 
212

. This would increase the sensitivity and 

production of Angiotensin-(1-7) whose effects oppose those of Angiotensin II (AngII), which is 

development of placental alterations through mediation of oxidative stress, inflammation and 

vasoconstriction 
309-311

.  

In the present study, we also evaluated some components of the renin-angiotensin system (RAS) 

in the placenta. Interestingly, no difference in the placental Mas R and ACE2 protein expression 

between the KO and WT mice was observed, which proves that local placental RAS was not 

impaired in these mice, and it was not modulated by ExT which shows that the beneficial effects 
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of ExT on maternal and pup parameters cannot be explained by improvements in the local 

placental RAS. 

Placentation includes extensive angiogenesis in maternal and fetal placental tissues, 

accompanied by a marked increase in uterine and umbilical blood flows 
327-330

. Vascular growth, 

or angiogenesis, is indeed a major component of the increase in placental blood flow throughout 

gestation 
327, 331, 332

 and thus, reduced placental vascular development and increased vascular 

resistance have been associated with early embryonic mortality 
333, 334

. 

Vascular endothelial growth factor (VEGF) is a homodimeric glycosylated heparin-binding 

glycoprotein 
335, 336

. It is particularly known to promote angiogenesis and also can promote 

activation of eNOS (endothelial nitric oxide synthase) in uterine artery endothelium 
337

.  

VEGF is expressed in several organs such as the heart, kidney, brain and lung. It has also been 

identified in endometrium 
338

 and in the placenta it has been identified in cytotrophoblast in first 

trimester and then in syncytiotrophoblast throughout the remainder of pregnancy 
339

. 

It was shown by Lyall et al and that VEGF expression in placental villous tissue in pre-eclampsia 

and intrauterine growth restriction is suppressed 
340

.  In view of the placental pathological 

features of IUGR, especially impaired vascular development, and the known angiogenic effects 

of VEGF, we were interested to measure expression of this gene in placentas of our study 

groups. The noticeable decline that we observed in the level of VEGF gene expression in 

placentas of the p57
-/+ 

sedentary mice was in line with the other studies that found the correlation 

between decrease in the VEGF level and IUGR 
312, 340

. The reduction in the VEGF level is 

typically associated with an increase in soluble fms-like tyrosine kinase (sFlt-1) expression and 

decline in the amount of VEGF may cause pre-eclamptic syndrome features. Also, VEGF is an 

angiogenic growth factor which is expressed in a temporal and spatial manner throughout 
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gestation 
339

 it is possible that the reduced VEGF expression observed in this study is linked to 

the abnormal vascular development in IUGR. Therefore, we propose that the reduced expression 

of VEGF in placenta may be responsible for the impaired development of vessels and villi of the 

placentas from IUGR pregnancies, which leads to placental insufficiency. 

VEGF is known to be upregulated by hypoxia 
341

, hence, it would seem likely that if the 

placentas in the present study, were hypoxic then upregulation of VEGF would be anticipated.  

 Interestingly, the VEGF expression was completely normalized by exercise training in our 

study. It appears that exercise training may provide the hypoxic environment for the placenta 

which is needed for the secretion of angiogenic factors, like VEGF 
317

. Thus, the fact that the up-

regulation of VEGF and placental alteration were increased and reduced respectively by training 

is in line with the literature regarding the benefits of exercise training on placental perfusion and 

development in normal pregnancy.  

Abnormally high placental and serum levels of IL-1β are associated with pregnancy 

complication, such as preeclampsia and IUGR 
318

. Along with other reports of increased 

inflammatory factors in IUGR 
226

, we found increased gene expression of interleukin-1β (IL-1β). 

IL-1β is a member of the interleukin 1 family of cytokines. This cytokine is an important 

mediator of the inflammatory response, and is involved in a variety of cellular activities, 

including cell proliferation, differentiation, and apoptosis. There is data showing that IL-1β can 

destroy the cell-cell junction in placenta 
342

. Moreover, increased level of IL-1β in the placenta of 

pre-term mice was found 
343

. According to one study, increased systemic maternal or placental 

IL-1β level was shown to contribute to insulin resistance 
344

. Thus, the significantly elevated 

levels of IL-1β observed in our study may attenuate the effects of maternal insulin on placental 

function and consequently reduces the fetal growth.  

https://en.wikipedia.org/wiki/Interleukin_1_family
https://en.wikipedia.org/wiki/Cytokine
https://en.wikipedia.org/wiki/Inflammatory_response
https://en.wikipedia.org/wiki/Apoptosis
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We also studied the mRNA gene expression of MCP-1 (monocyte chemoattractant protein-1) 

which is a known chemoattractant responsible for the migration of monocytes/macrophages and 

involved in the pathogenesis of chronic inflammation 
345

 
346

. IL-1β is known to induce MCP-1 

synthesis and also it is upregulated by MCP-1
346

. Our data is in line with the literature because 

along with the increase in IL-1β, we also detected a rise in the placental MCP-1 mRNA 

expression, suggesting that increased inflammation is another possible mechanism for the 

decreased placental sufficiency observed in the p57
Kip2-/+ 

mouse
 
model. MCP-1 expression was 

completely normalized by ExT. This data proves that ExT could partially control inflammation 

in the placenta of our mouse model.  

ExT before and throughout pregnancy has been shown to increase the villous area and 

vascular volume in the human placenta, suggesting improved placental perfusion and transport 

capacity 
189

. We have shown that all our trained mice had significantly increased total placental 

and fetal mass by 46% and 55%, respectively, which may result from an increased trophoblast 

function stimulated by ExT.  

Cardiovascular benefits associated with voluntary ExT in rodents have been demonstrated, such 

as increased VO2max, diminished BP as well as diminished adverse vessel remodeling 
322-325

, 

and similar improvements have been observed in humans with aerobic exercise programs 
326

. 

This suggests that the beneficial effects of ExT on IUGR described in our mouse models may be 

translatable to the clinic for pregnant women, although studies will need to be conducted to 

confirm this finding. Furthermore, the molecular mechanisms by which exercise training can 

protect against IUGR and placental pathology require further investigation. IUGR can results 

from complications due to several diseases and syndromes, such as preeclampsia 
40

. and 

infections like rubella 
29

 cytomegalovirus 
30

 and herpes virus 
31

 No specific treatment for IUGR 
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and placental pathology are currently in medical practices. Our study, which shows the beneficial 

effects of exercise training on this situation, is an important advance. 
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