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RÉSUMÉ

Cette thèse contribue a la recherche vers l’intelligence artificielle en utilisant des

méthodes connexionnistes. Les réseaux de neurones récurrents sont un ensemble de

modèles séquentiels de plus en plus populaires capable en principe d’apprendre des al-

gorithmes arbitraires. Ces modèles effectuent un apprentissage en profondeur, un type

d’apprentissage machine. Sa généralité et son succès empirique en font un sujet intéres-

sant pour la recherche et un outil prometteur pour la création de l’intelligence artificielle

plus générale.

Le premier chapitre de cette thèse donne un bref aperçu des sujets de fonds: l’intelligence

artificielle, l’apprentissage machine, l’apprentissage en profondeur et les réseaux de neu-

rones récurrents. Les trois chapitres suivants couvrent ces sujets de manière de plus en

plus spécifiques. Enfin, nous présentons quelques contributions apportées aux réseaux

de neurones récurrents.

Le chapitre 5 présente nos travaux de régularisation des réseaux de neurones récur-

rents. La régularisation vise à améliorer la capacité de généralisation du modèle, et joue

un role clé dans la performance de plusieurs applications des réseaux de neurones récur-

rents, en particulier en reconnaissance vocale. Notre approche donne l’état de l’art sur

TIMIT, un benchmark standard pour cette tâche.

Le chapitre 6 présente une seconde ligne de travail, toujours en cours, qui explore

une nouvelle architecture pour les réseaux de neurones récurrents. Les réseaux de neu-

rones récurrents maintiennent un état caché qui représente leurs observations antérieures.

L’idée de ce travail est de coder certaines dynamiques abstraites dans l’état caché, don-

nant au réseau une manière naturelle d’encoder des tendances cohérentes de l’état de son

environnement. Notre travail est fondé sur un modèle existant; nous décrivons ce travail

et nos contributions avec notamment une expérience préliminaire.

Mots clés: réseau de neurones, apprentissage machine, apprentissage profond,

régularisation, intelligence artificielle, apprentissage supervisé, apprentissage non

supervisé, reconnaissance vocale, modélisation du langage



ABSTRACT

This thesis represents incremental work towards artificial intelligence using connec-

tionist methods. Recurrent neural networks are a set of increasingly popular sequential

models capable in principle of learning arbitrary algorithms. These models perform deep

learning, a type of machine learning. Their generality and empirical success makes them

an attractive candidate for further work and a promising tool for creating more general

artificial intelligence.

The first chapter of this thesis gives a brief overview of the background topics: arti-

ficial intelligence, machine learning, deep learning, and recurrent neural nets. The next

three chapters cover these topics in order of increasing specificity. Finally, we contribute

some general methods for recurrent neural networks.

Chapter 5 presents our work on the topic of recurrent neural network regularization.

Regularization aims to improve a model’s generalization ability, and is a key bottleneck

in the performance for several applications of recurrent neural networks, most notably

speech recognition. Our approach gives state of the art results on the standard TIMIT

benchmark for this task.

Chapter 6 presents the second line of work, still in progress, exploring a new ar-

chitecture for recurrent neural nets. Recurrent neural networks maintain a hidden state

which represents their previous observations. The idea of this work is to encode some

abstract dynamics in the hidden state, giving the network a natural way to encode con-

sistent or slow-changing trends in the state of its environment. Our work builds on a

previously developed model; we describe this previous work and our contributions, in-

cluding a preliminary experiment.

Keywords: neural networks, machine learning, deep learning, regularization,

artificial intelligence, supervised learning, unsupervised learning, speech recogni-

tion, language modeling.



CONTENTS

RÉSUMÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . ix

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTER 1: INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Artificial Intelligence (AI) . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Machine Learning (ML) . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Deep Learning (DL) . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Recurrent Neural Networks (RNNs) . . . . . . . . . . . . . . . . . . . 5

CHAPTER 2: MACHINE LEARNING . . . . . . . . . . . . . . . . . . . 6

2.1 A simple example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 What is machine learning? . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 The data generating process . . . . . . . . . . . . . . . . . . . 8

2.2.2 Parametric and nonparametric ML . . . . . . . . . . . . . . . . 9

2.2.3 Supervised and unsupervised learning . . . . . . . . . . . . . . 10

2.2.4 Generative models . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.5 Cost functions . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.6 Types of SL: classification, regression, and structured output . . 13

2.2.7 Examples of UL: density estimation, clustering . . . . . . . . . 15



2.3 Optimization (minimizing cost) . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Generalization, overfitting and regularization . . . . . . . . . . . . . . 18

2.4.1 Early stopping . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.2 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.3 Occam’s razor and model complexity . . . . . . . . . . . . . . 20

2.4.4 Risk minimization . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.5 Bias and variance . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 The ML research process . . . . . . . . . . . . . . . . . . . . . . . . . 23

CHAPTER 3: DEEP LEARNING AND REPRESENTATION LEARNING 25

3.1 Artificial neural networks . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Biological inspirations and analogies . . . . . . . . . . . . . . 25

3.1.2 Neural net basics . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.3 Activation functions . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Features and representations . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Deep learning and representation learning . . . . . . . . . . . . 32

3.3 Some important deep learning techniques . . . . . . . . . . . . . . . . 34

3.3.1 Faster computers . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.2 Optimization techniques: stochastic gradient descent, momen-

tum, RMSProp, Adam . . . . . . . . . . . . . . . . . . . . . . 35

3.3.3 Deep learning regularization: dropout and batch normalization . 37

CHAPTER 4: RECURRENT NEURAL NETWORKS . . . . . . . . . . 39

4.1 Recurrent neural network architectures . . . . . . . . . . . . . . . . . . 41

4.1.1 Simple RNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.2 Long short-term memory . . . . . . . . . . . . . . . . . . . . . 41

4.1.3 Gated recurrent units . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.4 Deep RNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.5 Attention modules . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.6 Memory interfaces . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.7 Grammar cells . . . . . . . . . . . . . . . . . . . . . . . . . . 43

v



4.2 Regularization for recurrent neural networks . . . . . . . . . . . . . . . 44

CHAPTER 5: REGULARIZING RNNS BY STABILIZING ACTIVATIONS 45

5.1 Prologue to the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.4.1 Character-level language modelling on PennTreebank . . . . . 48

5.4.2 Phoneme recognition on TIMIT . . . . . . . . . . . . . . . . . 50

5.4.3 Adding task . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.4.4 Visualizing the effects of norm-stabilization . . . . . . . . . . . 53

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

CHAPTER 6: CONDITIONAL PREDICTIVE GATING PYRAMIDS . . 57

6.1 Predictive gating pyramids . . . . . . . . . . . . . . . . . . . . . . . . 57

6.1.1 Gated autoencoders . . . . . . . . . . . . . . . . . . . . . . . . 57

6.1.2 Predictive gating pyramids . . . . . . . . . . . . . . . . . . . . 58

6.2 Conditional predictive gating pyramids . . . . . . . . . . . . . . . . . . 59

6.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

CHAPTER 7: CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . 62

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

vi



LIST OF TABLES

2.I Different ways of defining supervised vs. unsupervised learning. . 10

2.II Encoding categories as mathematical objects . . . . . . . . . . . 14

5.I LSTM Performance (bits-per-character) on PennTreebank for dif-

ferent values of β . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.II Performance with and without norm-stabilizer penalty for differ-

ent activation functions. . . . . . . . . . . . . . . . . . . . . . . 50

5.III Performance (bits-per-character) of zero-bias IRNN with various

penalty terms designed to encourage norm stability. . . . . . . . . 50

5.IV Phoneme Error Rate (PER) on TIMIT for different experiment set-

tings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.V Phoneme Error Rate (PER) on TIMIT for experiments with more

norm-stabilizer regularization (β ). . . . . . . . . . . . . . . . . . 52



LIST OF FIGURES

2.1 Overfitting and Underfitting with polynomial regression . . . . . 19

3.1 The computation performed by a single neuron in a neural network. 26

3.2 An MLP with two hidden layers. . . . . . . . . . . . . . . . . . . 27

3.3 Neural net activation functions . . . . . . . . . . . . . . . . . . . 28

4.1 Unrolling a recurrent neural network. . . . . . . . . . . . . . . . 40

5.1 Learning Curves for LSTM with different values of β . . . . . . . 49

5.2 Average PER on TIMIT core test set for different combinations or

regularizers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3 Norm of LSTM hidden states and memory cells for different val-

ues of β across time-steps. . . . . . . . . . . . . . . . . . . . . . 53

5.4 Average log-norm of hiddens and average cost, as a function of

time-step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.5 Hidden norms for values from 0 to 400 of the norm-stabilizer vs.

a penalty on the initial and final norms . . . . . . . . . . . . . . . 55

5.6 Average forget gates (LSTM) and eigenvalues (IRNN) with and

without norm-stabilizer. . . . . . . . . . . . . . . . . . . . . . . 55

6.1 Conditional predictive gating pyramid trained on sine waves with

frequencies modulated by a random walk . . . . . . . . . . . . . 60



LIST OF ABBREVIATIONS

AE Autoencoder

AGI Artificial General Intelligence

AI Artificial Intelligence

ANN Artificial Neural Network

BLEU Bilingual Evaluation Understudy

BN Batch Normalization

CAD Computer Aided Design

CPGP Conditional Predictive Gating Pyramid

CTC Connectionist Temporal Classification

DL Deep Learning

DNN Deep Neural Network

FAI Friendly Artificial Intelligence

FGAE Factored Gated Autoencoder

FNN Feedforward Neural Network

GAE Gated Autoencoder

GOFAI Good Old-Fashioned Artificial Intelligence GPU



Graphics Processing Unit

GRU Gated Recurrent Unit

IRNN Identity Recurrent Neural Network

IRL Inverse Reinforcement Learning

LSTM Long Short-Term Memory

LM Language Model

ML Machine Learning

MLP Multi-Layer Perceptron

MSE Mean Squared Error

NaN Not a Number

NLP Natural Language Processing

NTM Neural Turing Machine

PGP Predictive Gating Pyramid

RL Reinforcement Learning

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent

SL Supervised Learning

SRNN Simple Recurrent Neural Network

SVM Support Vector Machine

TRec Threshold Rectified Linear Unit

UL Unsupervised Learning

x



ACKNOWLEDGMENTS

I would like to thank everyone who helped me onto the path that lead me to complete

this thesis, as well as those who made the journey more interesting, enjoyable, and/or

manageable. In reverse chronological order, I gratefully thank: My sister Gretchen for

proofreading. Alexandre de Brébisson for a great deal of help with the French text

of the Résumé. Celine Begin for helping me navigate the administrative procedures

of the university and the thesis process. My supervisors Yoshua Bengio and Roland

Memisevic for creating a collaborative and open research atmosphere in the lab and for

funding my studies and giving me the freedom to pursue interesting topics. Roland

in particular for frequent impromptu discussions and guidance on how to make things

actually work. Many amazing members of the LISA/MILA lab, including professors,

visitors, and staff, for many fascinating and/or entertaining discussions, and invaluable

help, advice, encouragement, and good times. The members of the RLLAB at McGill for

the same and for welcoming me to their lab for talks and reading groups, or just to hang

out and talk. The entire AI safety community for their work on this critical problem,

and for helping bring existential risk into mainstream discourse in the machine learning

community and society at large. Jelena Luketina in particular for inviting me to the 2015

CFAR reunion. All of my coauthors for the chance to work with and learn from them.

Laurent Dinh in particular for patiently teaching me quite a bit about machine learning

in the earlier stages of my degree. Daphne Koller and Andrew Ng for creating Coursera,

and Geoff Hinton for his Coursera course, without which I almost certainly would not

have heard about the phenomenon of Deep Learning in time to start this program when

I did. My Freshman year housing advisor at Reed, Hassan Ghani, for inspiring me

to seriously consider the possibility that artificial intelligence could be developed and

the ethical significance of such an occurrence. All of the wonderful teachers I’ve had

over the years who inspired me to keep studying. Finally, my family and friends for

everything they’ve done for me over the years.



CHAPTER 1

INTRODUCTION

The subject matter of this thesis is artificial intelligence (AI), specifically machine

learning (ML). More specifically, I focus on deep learning (DL) and in particular recur-

rent neural networks (RNNs). I’ll introduce these topics briefly before delving into more

detail in the following chapters, which provide the necessary background for the rest of

the thesis, as well as a brief overview of these topics.

I’ll attempt to describe the current state of AI, ML, DL, and RNN research, and how

they relate to one another, making an effort to be informative as to current practices and

recent trends. My goal is to give a glimpse of the world of artificial intelligence from the

perspective of a deep learning researcher at the beginning of 2016, a time when artificial

intelligence and deep learning are making headlines and capturing people’s attention

and imagination to an unprecedented extent. As such, broad statements about trends in

these fields should be taken as my personal impressions which I feel confident enough

to state as such. I hope that some degree of subjectivity can be accepted as a price for

this insider’s perspective, since I imagine it could be both interesting and informative to

someone unfamiliar with the field.

I mostly use the “companionate we” for the rest of the thesis, occasionally slipping

back into first-person singular for opinionative remarks. We assume some familiarity

with calculus, linear algebra, probability, statistics, computer science, and graph theory.

We attempt to be quite general in our definitions, but some of our terminology may be

used in a more (or less) restrictive way in practice, depending on context.



1.1 Artificial Intelligence (AI)

We define artificial intelligence as the study of intelligent behaviour 1. We distin-

guish narrow AI from artificial general intelligence (AGI). Narrow AI is about solving

specific tasks which are considered indicative of intelligence. AGI is about solving in-

telligence. We will discuss what intelligence is in the next chapter, but to give some

intuition: an entity which reaches or surpasses human performance in every task might

be said to demonstrate AGI.

For some researchers, the goal of AI is to understand the common principles under-

lying all intelligent behaviour. For others, the goal is the creation of intelligent agents,

and understanding the principles of intelligence is unnecessary, unimportant, or impossi-

ble. Historically, there has been a categorization of AI researchers into “scruffies”, who

view intelligence as a collection of (possibly problem specific) hacks, 2 and “neats”,

who believe in elegant and principled approaches. Similarly, I consider both engineer-

ing (scruffy) and science (neat) to be important components of AI research, and also

juxtapose empirical (scruffy) and theoretical (neat) aspects of the study of intelligence.

While Russell and Norvig reference the victory of the neats (since 1987) [56], I view the

field as progressing via a continuous interaction of engineering, experiment, and theory.

The importance of efficient hardware and software implementations makes engineering

a constant influence on which methods are adapted and developed. The inventiveness

and intuition of experimenters continues to produce unexpected breakthroughs result-

ing in new peaks in performance and efficiency. And theory continues to inform every

researcher’s intuition and practice.

1 AI is generally thought of as trying to create real (not simulated) intelligence; In this spirit, Hauge-
land [22] proposed renaming it “synthetic intelligence”. I prefer to think of it as a search for principles
underlying intelligent behaviour (and/or its creation).

2 A similar idea in neuroscience is the “massive modularity” hypothesis, which views the brain as a
diverse collection of specialized modules rather than a general purpose learning machine.

2



1.2 Machine Learning (ML)

Machine learning is the dominant paradigm of modern artificial intelligence research.

Although the field has often been more focused on narrow AI, interest in AGI has been

increasing recently. The intuition of machine learning, from an AI perspective, is that

intelligent behaviour can be learned from data. The AI designer becomes responsible for

choosing the rules which govern the learning process, rather than directly specifying the

rules that govern behaviours.

ML applies statistical tools to data to solve tasks, rather than to understand the data.

ML also views its tools more algorithmically, and is interested in what is possible given a

budget of computational resources, whereas statisticians are focused on what is possible

in principle given a budget of statistical resources (i.e. data).

A type of ML that is particularly relevant to AI is Reinforcement Learning (RL). It

has been argued [39, 62] that RL is the correct framework for AGI. RL formulates the

problem of an agent interacting with an environment and seeking to maximize lifetime

utility, or reward. In RL, learning is, by definition, goal-directed, and the AI designer

becomes responsible for specifying the goals of the AI via a reward function.

While using ML may allow us to program an algorithm that generates desirable be-

haviour, it does not always give us a satisfactory understanding of how this behaviour

is generated. Indeed, the algorithms learned by ML are usually opaque, meaning that

they defy human understanding to some extent. Machine learning researchers often aim

to understand the algorithms which govern the learning process instead, but even at this

higher-level, deep understanding remains elusive for many popular techniques, including

much of deep learning.

1.3 Deep Learning (DL)

Deep learning is now the dominant paradigm in many areas of machine learning.

Deep learning is perhaps best thought of as a trend in the machine learning community

towards renewed interest in artificial neural networks (ANNs). Artificial neural networks

(often simply called “neural networks” or “neural nets”) are simple models that can learn

3



complicated functions, and are loosely inspired by the networks of actual neurons and

synapses that exist in the brain.

Most neural nets can be represented by a directed graph, called the computational

graph 3. Each node or unit in this graph represents a neuron, and is computed as a func-

tion of its parents. The roots and leaves are called input and output units, respectively,

and all the rest are hidden units. The hidden units are organized into (hidden) layers

composed of units with the same distance from the roots 4. ANNs with multiple hidden

layers are called deep neural nets (DNNs).

Some theory and intuitions exist motivating DL methods [5], for instance, they are

known to be universal function approximators [27]. Their recent popularity, however,

can largely be attributed to their empirical triumphs. Despite the success of a few fairly

simple models and learning principles across a wide range of tasks, to me, DL has a

distinctly “scruffy” feel, and I’ve sometimes whinged that the field is too focused on

engineering as opposed to science. Researchers from other areas of ML may find DL

unprincipled, but DL researchers may retort that DL is necessary to make things work,

and so cannot be abandoned in favor of methods that have nicer theoretical properties,

but fail to perform (rather theoreticians should focus on understanding the methods that

work instead of those that are easy to prove things about). Moreover, theories based

on incorrect simplifying assumptions may give only the illusion of understanding. For

example, much theory assumes that the model has been specified correctly (i.e. has

the correct functional form); in practice this can assume an unrealistic amount of prior

knowledge.

A recent trend in ML is combining deep learning and reinforcement learning (pro-

ducing deep reinforcement learning). ANNs have a long history of being used to ap-

proximate functions of interest in RL (e.g. value function, policy, or model), going back

to Tesauro [65]. Many researchers at the forefront of this work today are cautiously

optimistic that deep RL can be used to create AGI (i.e. that no further conceptual break-

3 Some neural nets, such as Boltzmann machines, contain undirected edges; we do not consider them
in this thesis.

4 We define this distance as the maximum distance across all roots, although typically they would be
equal.

4



throughs are required).

1.4 Recurrent Neural Networks (RNNs)

Recurrent Neural Nets differ from other ANNs (called feedforward nets (FNNs)) in

that their computational graph contains cycles, the edges of which are called recurrent

connections. RNNs are a natural model for sequential data. A single RNN can process

multiple sequences of any length, and the lengths of the sequences can be different.

Recently, RNNs have shown great promise in natural language processing (NLP) and

speech recognition applications. Recurrent Neural Networks are more powerful than

feedforward nets [59], capable, in fact, of simulating a universal Turing machine [61].

Recurrent Neural Networks are especially suited for real-world RL tasks, because

their behaviour is a function of all of their previous inputs (or observations in RL termi-

nology). This is important because in general the t-th element of an input sequence does

not contain a complete representation of the state of the world at time t. For instance, a

camera on the front of a robot will not detect something behind it. But just like a human,

an RNN could remember what it had seen, then turn around and gather more information

about its environment.

5



CHAPTER 2

MACHINE LEARNING

Modern machine learning differs from classical AI (sometimes called “Good Old-

Fashioned AI (GOFAI)”) in two big ways. One that we’ve already mentioned is learning

instead of directly programming behaviours. The other is by focusing on probability

instead of logic 1.

Machine Learning has been successful in many areas, such as Computer Vision,

where GOFAI has failed. We postulate several reasons for this:

• The desired behaviours are too complicated for humans to code directly.

• The details of how the behaviours are generated are beyond humans’ (conscious)

knowledge.

• The knowledge involved is inherently probabilistic or fuzzy, and not well repre-

sented by dichotomies between true and false.

• There is too much relevant knowledge for it to be represented as logical statements

and rules of inference/deduction.

Nonetheless, it is quite possible that logic and symbolic representations have a large role

to play in AI; after all, they play a significant role in many parts of human intelligence.

2.1 A simple example

Much of machine learning can be thought of as designing algorithms that use data to

make predictions. For instance, we might want to know what the value of the S&P500

1 This is closely related to representation, a topic we return to in section 3.2. Classical approaches rep-
resented concepts using specific symbols, such as words, properties, and relationships. Modern machine
learning uses a bottom-up approach, where concepts are represented in terms of the data; for instance
neural networks represent concepts via patterns of activity distributed across nodes in a graph. I think
this is closer to how the brain operates, and we do not have so-called “grandmother cells”, corresponding
uniquely to specific concepts.



(a stock market index) will be at some point in the future. A human making such a

prediction might consider all sorts of different sources of information:

• the current value of the S&P500

• past values of the S&P500

• indicators of the state of financial markets, such as stock charts and indexes

• media articles about the state of financial markets

• their belief about trends in the global economy

Similarly, an algorithm could attempt to use this kind of data when trying to predict the

future value of the S&P500. For instance, the algorithm can use a formula to make its

predictions; specifically, we could predict the value of the S&P500 at some future time t

seconds in the future, based on t and its the current price, pnow.

prediction = pnow +θ t

Where θ is a real number, to be specified. We could then try to find the best values of θ

by looking at what values do the best job of predicting past data.

The form of this equation and the choice of which data is used to make the prediction

reflect our prior assumptions about the way the world operates. This equation essentially

says that the value of the S&P500 will increase or decrease steadily (linearly) with time,

and all the other factors we’ve mentioned have no use in determining the future value.

This is probably not the case, and such a simple equation might not be very useful for

active investing, but it could perhaps be useful, e.g. for planning for retirement.

Making some prior assumptions is essential to making machine learning problems

tractable, and having a good prior is essential to getting useful results. Imagine trying

to predict changes in the stock market based on the outcome of the super-bowl; such a

strategy seems patently absurd 2!

2 ...and yet a striking correlation exists which is famous enough to have its own wikipedia page:
https://en.wikipedia.org/wiki/Super_Bowl_indicator
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2.2 What is machine learning?

Machine learning algorithms aim to discover generalizable patterns in data. For-

mally, we consider data living in some space X , and devise a machine learning algo-

rithm to produce some function f : X → Y . We can view the algorithm as searching

for an appropriate function f within some space of functions F . This search process is

called learning or training, and algorithms which perform such a search are learning

algorithms.

We call F the hypothesis class, as it represents the set of allowed hypotheses about

what patterns exist in the data. The space of functions considered is shaped and often

further restricted by a model. In the process of specifying a model, prior assumptions

about which types of functions yield good solutions are formalized mathematically, giv-

ing the model an inductive bias. The inductive bias tells a model how to generalize

to unseen data; without some prior assumptions, the problem of learning is ill-posed,

since the value of the function at some unobserved point could be anything in its range.

A model may give good results because the hypotheses it encodes are correct, but good

results may also be due to other reasons, such as making good use of the data and compu-

tational resources available. For instance, a model of a weighted coin toss could involve

the force applied by the tosser, which is certainly one of the factors determining the re-

sult. But fewer tosses and less computation would be required to learn a simpler model

which imagines that the coin has a fixed probability of being heads. Inductive biases can

reflect specific knowledge of the task at hand, called domain knowledge; but they can

also reflect more generic ideas about the nature of the universe or of learning. The most

common inductive bias in ML is locality, which states that similar inputs should produce

similar outputs.

2.2.1 The data generating process

In many cases, learning is performed on a finite dataset D of data points. Models

typically make some basic assumptions about the data generating process, that is, the

real-world process which generates the data that the algorithm observes. A common
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assumption is that the data being modeled is independently and identically distributed

(i.i.d.). That is, we assume that each data point is independently sampled from the same

data distribution.

This assumption allows us to think of our data as multiple objects inhabiting a space

of data points, rather than a single object inhabiting a space of datasets. Successive

screenshots from a video game are typically highly correlated and hence not i.i.d. But

if we consider the entire video of the screen during a complete game to be one data

point, then these data points might be i.i.d. (although not if the player was changing

their strategy between games).

The i.i.d. assumption can never be guaranteed to hold in the real world, where data is

sampled from a partially observed environment. There could always be some part of the

data generating process that is unknown to us; for instance, a video game’s programmers

might have the game change in a predictable way each time it is played. More generally,

there might be very complicated relations of cause and effect that are currently unknown

to us, and thus appear as noise in our dataset, but which could in principle be modeled.

2.2.2 Parametric and nonparametric ML

A common way of restricting the space of functions considered is to specify a func-

tional form with some free variables, θ , called parameters, and search for parameter

values that yield a good function. This parametric approach contrasts with nonpara-

metric approaches, which adjust the number of parameters throughout learning in a data-

dependent way. In addition to parameters, models often have hyperparameters, which

are free variables that are not learned, but rather specified in advance by the model de-

signer. Choosing hyperparameters can be thought of as part of the process of specifying

the model. An example hyperparameter is the number of units in the first hidden layer

of an MLP (see section 3.1.2 and figure 3.2 for MLPs).
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2.2.3 Supervised and unsupervised learning

Machine learning is typically broken down into three subfields: supervised learning

(SL), unsupervised learning (UL), and reinforcement learning (RL), although this cat-

egorization is imperfect. Ignoring reinforcement learning for the time being, there are at

least two ways of distinguishing supervised and unsupervised learning: in terms of the

kind of function learned, or in terms of the data used.

In terms of the function learned, (un)supervised learning can be thought of as learn-

ing something about an (un)conditional probability distribution (see Table 2.I) 3. In su-

pervised learning, the conditional probability distribution can be used to make predic-

tions about the value of Y for any particular value of X , e.g. by sampling from the

conditional distribution, or taking the argmax 4.

In terms of data, (un)supervised learning uses (un)labeled data. A data point x is

unlabeled by default, and becomes labeled when a (typically human) labeler assigns a

label y to it, creating a labeled pair {x,y}.

Table 2.I: Different ways of defining supervised vs. unsupervised learning.

defined by supervised learning (SL) unsupervised learning (UL)
function learned P(Y |X) P(X)

data used labeled unlabeled

The uses are related: generally with labeled data, the target (i.e. what we try to

predict) is the label that the labeler assigned. But we can also simply treat the label

as part of the data and perform unsupervised learning on the labeled pairs. Similarly,

with unlabeled multi-dimensional data, we can treat some subset of the dimensions as
3 For convenience, we allow generalized functions, such as the Dirac delta function in our definition

of a probability distribution.
4 The argmax is the argument of a function which produces a maximum valued output:

argmax( f ) = x : f (x)≥ f (x′)∀x′ ∈ X

(we can break ties by ordering the inputs and using this and the original ordering to induce a new strict
ordering on f ’s outputs). In the case of a finite vector, the argmax is usually taken to be the first index
containing its maximum value.
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targets and learn their conditional distribution given the values of the other dimensions.

For example, given a dataset of unlabeled images, we might use the pixel values in the

bottom half of each image as a target, and try to predict them from the pixels in the top

half of the same image. In this thesis, we use the terms to refer to the type of function

learned, unless otherwise specified.

2.2.4 Generative models

A generative model can be used to produce samples from a learned probability distri-

bution, often a non-trivial or even intractable task. Conventionally, generative modeling

refers to UL, and "conditional generative modeling" to SL.

Supervised learning is sometimes distinguished from conditional generative mod-

eling, although as we’ve defined supervised learning, it covers both definitions. The

distinction is about whether the target is a value y ∈ Y (supervised learning) , or a distri-

bution P(Y ) (conditional generative modeling).

As a simple example, consider a labeled dataset with 10 identical data points, 3

of which are labeled 0, and 7 of which are labeled 1. An idealized supervised learner

aiming to minimize errors would learn to output 1 for this example, whereas an idealized

conditional generative model would learn a Bernoulli distribution with parameter p = .7.

A conditional generative model might be more appropriate in many cases; for in-

stance in the task of machine translation, there may exist several good translations of

a given document. While even then we might be satisfied with a model that gives us

one very good translation, there are applications where we are interested in producing

multiple outputs for each input. For instance, we might like a model that can generate

many songs in the style of a given artist.

2.2.5 Cost functions

We typically use some scalar cost function, L : F → R to evaluate candidate func-

tions, aiming to find functions with progressively lower cost as learning progresses. The

cost function should reflect the ability of the learned function to perform some task of
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interest, We generally think of the cost as a known function that can be computed.

2.2.5.1 Choice of cost function

It can be extremely difficult to devise a cost function that does a good job of cap-

turing all the relevant aspects of a task. Using translation as an example, the best way

of evaluating the quality of translation is to let human experts specify the cost for each

French/English pair of documents. But the function which human experts implement is

unknown, and it is impractical to have humans evaluating a function’s outputs in real-

time. In practice, a cost for this task is typically computed using the Bilingual Evalu-

ation Understudy (BLEU) score, a function which compares the algorithm’s translation

to some previously completed expert translations. There are known issues with using

BLEU as a cost function, but it is widely used nonetheless, because it is easy to compute

from a dataset of French and English versions of the same documents.

2.2.5.2 Cost functions for AGI

An unconstrained search for an algorithm with low cost can return unexpected solu-

tions, which may have undesirable behaviours, if the cost does not properly reflect ev-

erything that is or isn’t considered desirable 5. As AI becomes more powerful, the choice

of cost becomes increasingly important, since more extreme solutions can be found. For

instance, Bostrom [8] argues that obvious choices of cost for achieving seemingly in-

nocuous goals like optimizing paperclip production could lead to disastrous outcomes in

which an advanced AI transforms all available resources into paperclip manufacturing

facilities, including all of the earth and humanity. More generally, instrumental ratio-

nality refers to the tendency of an advanced AI to develop certain instrumental goals,

such as self-preservation, rationality, and resource acquisition, regardless of the termi-

nal goals encoded in its cost function. An AGI which is much more intelligent than any

5 The classic example here is Bird and Layzell [7], in which an evolutionary algorithm designed to
create an oscillator in a computer chip instead created a radio and amplified radio signals carrying os-
cillations. The authors of [7] concluded by highlighting the practical impossibility of simulating such a
result.
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human could plausibly find ways of accomplishing its goals in the face of human oppo-

sition, thus it should have a cost function which not only captures the important aspect

of a single task, but rather all the complexities of human values. The problem of find-

ing a cost function that reflects human values has been termed Friendly AI (FAI) [77].

Different humans have very different values, of course; coherent extrapolated volition

[76] is one idea about how to resolve this issue. While I consider these issues critically

important to the field of AI and humanity in general, they are out of the scope of this

thesis, and rarely considered in current practice. In this work, we pursue the standard re-

search paradigm of minimizing the cost, without considering whether it is an appropriate

measure of performance for real world applications.

2.2.5.3 Inverse reinforcement learning

A cost function encoding human values could potentially be learned from data such

as human behaviour and cultural artifacts. One proposed way to learn human values

is inverse reinforcement learning (IRL) [55? ] 6. Inverse reinforcement learning al-

gorithms observe some behaviour and seek to uncover the reward function motivating

that behaviour. IRL could be used to learn about human values by observing human be-

haviour. There are many outstanding problems in IRL which would be relevant to such

a project.

2.2.6 Types of SL: classification, regression, and structured output

2.2.6.1 Classification

A classic example of a classification task is to correctly label pictures of different an-

imals with the name of the animal. In classification problems, the targets express which

of a set of categories (e.g. “dog”, “cat”, “pig”, ...) the inputs belong to. The number of

categories, k, is typically finite and can thus be identified with the integers {1,2, ...,k}.
Another common way to represent categories in a classification problem is called the

6 I’ve imprecisely conflated cost with reward in this discussion; while there is a significant difference
between these concepts, a reward function can be translated into a cost function, given a perfect model of
the world.
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one-hot encoding. Here, we represent each category by a different k-dimensional binary

vector with a 1 in one dimension and 0s in all the others (see table 2.II).

Table 2.II: Encoding categories as mathematical objects

categories integer encoding one-hot encoding
“cat” 1 {1,0,0, ...}
“dog” 2 {0,1,0, ...}
“pig” 3 {0,0,1, ...}

... ... ...

A common cost function for classification problems is called categorical cross-

entropy. This is the cross entropy between the target and the prediction, considered

as categorical (a.k.a “multinoulli”) distributions. Cross entropy is defined as:

H(p,q) =−
∫

p(x) logq(x)dx

which in the categorical case simply becomes − logq(t) where t is the target category;

this is also called the negative log-likelihood 7. The special case in which there are two

categories is called binary classification.

2.2.6.2 Regresssion

In regression tasks, the targets are real-valued vectors (typically finite-dimensional).

The example of predicting the value of the S&P500, from the beginning of this chapter,

is a regression problem. The example of predicting the pixel values of the top half of

an image given the bottom half is as well. A common cost function for regression is

the mean squared error (MSE), given by the (average) squared distance between each

prediction and its corresponding target:

MSE(X ,Y ) = E( f (x)− y)2

7A likelihood is simply a probability distribution at some point in its domain, considered as a function
of the parameters of the distribution.
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2.2.6.3 Structured output

Structured output refers to problems where the space of targets is structured (e.g. not

categorical or scalar real-values). Predicting the pixel values of the top half of an image

given the bottom half is a structured output problem, since the values of nearby pixels in

images are correlated. Predicting multiple categorical variables is also a structured out-

put problem (for instance, predicting which animal is in a picture, and which direction it

is facing). Predicting a graph, e.g. a parse tree is another example.

2.2.7 Examples of UL: density estimation, clustering

2.2.7.1 Density estimation

Density Estimation involves learning a function that maps inputs to their probability

mass or density. Such a function can be used, e.g. in structured prediction to “clean

up” the outputs of a supervised learning model. For instance, in translation, if we have a

small number of documents translated from French to English (labeled data), but a much

larger number of documents in English (unlabeled data), we can learn a translation model

using SL on the labeled data, and learn a language model to perform density estimation

on the unlabeled data. The language model simply tells us how probable each English

sentence is, so we can use this to select translations of a given French sentence that make

more sense in English. Concretely, we might use the translation model to generate a list

of candidate translations and then choose the one which is the most probable English

sentence.

2.2.7.2 Clustering

A standard example of unsupervised learning is clustering. An exception to our

definition of unsupervised learning above, Clustering methods don’t necessarily learn a

probability distribution. Rather, they learn a function that assigns data points to corre-

sponding clusters. Clusters can be thought of as an equivalence relation over data points;

data points which are assigned to the same cluster are meant to be similar in some sense.
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For instance, customers of some company might be clustered together based on their

consumer habits and advertisements designed for each cluster.

One popular method for clustering is called k-means clustering. In k-means clus-

tering, we decide in advance the number of clusters, k, and assign them each some point

in data space. Then we assign data points to the nearest cluster, then move each cluster

to the mean of the points assigned to it. We repeat this process until the assignments and

means stop changing, which is guaranteed to happen after a finite number of iterations.

2.3 Optimization (minimizing cost)

We’ve defined learning as a search process over a space of functions. We call the

process of searching for functions that minimize the cost function optimization, and a

technique for performing optimization an optimizer 8.

We view this search process as constructing sequence F = f1, f2, ... of candidate

functions, from which we take the element with minimum cost.

When the space F is finite, it is possible to search using brute-force; this is also

called exhaustive search. When F is infinite, a simple strategy would be to place a

probability distribution on F , and then sample functions from it; this is called random

search.

Random search and exhaustive search are quite limited. Better search methods are

the main thing that makes machine learning techniques seem intelligent. For exam-

ple, the game of Go is the best-known classic game in which AI has not achieved

super-human performance 9, and has received a large amount of attention among AI

researchers. Because there is a maximum number of turns in a game of Go, and a finite

number of possible moves per game, there are a finite number of possible games, and a

finite number of strategies. Thus the best strategy could be found via exhaustive search.

However, the number of strategies is also significantly larger than the number of parti-

8 This is inspired by the idea of finding a local or global optimum (in this case a minimum) of the cost
function, although in practice we are simply trying to improve upon the best function found so far, and
don’t necessarily care if we have reached an optimum.

9 Although recently, ? ] demonstrated significant progress, and super-human performance appears
immanent.
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cles in the known universe, so this exhaustive search could not be performed in practice

using current technology.

A more interesting idea is local search, which we can think of as taking small steps

through the space of functions, and adding the function at each step to the sequence

F . This requires F to have some structure; for instance if F is parametrized by k real

numbers, then we can think of the space of functions as Rk; we will assume this is

the case from here on. Local search methods include hill-climbing (adjusting a single

parameter at each step in a way that decreases cost), and gradient descent.

Gradient descent uses the gradient of the cost with respect to the parameters: dL
dθ

, to

find the direction of steepest descent. A learning rate, αt helps determine the step-size,

and can be constant, changed according to some predetermined schedule, or chosen by

some more sophisticated method that aims to find the optimal step-size, such as a line

search 10. The formula for gradient descent, then, is:

θt+1 = θt−αt
dL

dθt
(2.1)

Gradient descent methods are far and away the most popular way of optimizing

ANNs. Initialization (how the first candidate function is chosen) is often important in

local search, and has been shown to play a critical role in deep learning. Another natu-

ral idea is to use multiple paths, initialized at different locations, to search the space of

functions.

Local search is an example of an iterative method, in which each new function is

expected to be an improvement over all previous functions considered. Consistently

decreasing the cost at each time-step is an attractive property, but may not be enough

to find a good solution. The best solutions are global minima, functions whose cost

is minimal. A simple property that guarantees convergence to a global minimum is

10 When training ANNs, it is common for the experimenter to tune the learning rate interactively. This
is part of what has been called the “black art” of deep learning, since experienced researchers are often
better at making these adjustments.
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convexity. A function f : X → R is convex if

f (tx1 +(1− t)x2)≤ t f (x1)+(1− t) f (x2), ∀x1,x2 ∈ X ,∀t ∈ [0,1].

A great deal of optimization research focuses on the convex case, which has a well-

developed theory. Non-convex optimization is not understood nearly as well, although

the success of deep learning has generated some interest. Methods developed for convex

optimization are often used in non-convex optimization, despite the lack of theoretic

guarantees that they enjoy in the convex case.

We say an optimizer converges if the sequence of functions it produces is convergent.

When convergence to a global optimum cannot be proven, it is often possible to prove

convergence to a local optimum, but local optima may be very suboptimal. Recent work

[10] in deep learning suggests this may not be the case for DNNs, however.

The geometry of function space and parameter space may not correspond exactly; the

natural gradient can correct for this discrepancy, but can also be more costly to compute.

Techniques for approximating the natural gradient have been used successfully in DL.

2.4 Generalization, overfitting and regularization

A machine learning algorithm finds a function that does a good job of explaining the

data it has observed, as measured by the cost. This function reflects the mathematical

patterns that it has found in its observations. But apparent patterns are often coincidental,

a result of random chance that doesn’t properly reflect the data generating process. 11.

We don’t want our model to focus on such patterns; in other words, we want it

to generalize to new data generated by the same process as its previous observations,

not just memorize the right answers for the training set. Informally, a function which

performs well on inputs that it has encountered, but fails to generalize well is said to be

overfitting. The not-quite-opposite problem of underfitting occurs when a function fails

11 Apophenia is the human tendency to perceive patterns in random data [74]. One notable example
is the clustering illusion, in which randomly distributed points appear to form clumps or clusters. His-
torically, Londoners developed theories about bombing patterns in WWII. The clustering illusion has also
been offered (controversially) as an explanation for apparent regional clusters of cancer cases [12]
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to capture important patterns in the data it has encountered.

My favorite example for explaining overfitting and underfitting is polynomial regres-

sion. In this setting, our model is an n-th degree polynomial. A higher degree polynomial

can do a better job, even fitting the training data perfectly when n−1 equals the number

of data points, but this almost always is due to extreme overfitting; see figure 2.1.

Figure 2.1: Polynomial regression: The degree 1 polynomial (left) is too simple and
underfits. The degree 15 polynomial (right) is too complicated and overfits. The degree
4 polynomial (middle) strikes a good balance between overfitting and underfitting. This
figure is taken from [50].

2.4.1 Early stopping

One popular way of preventing overfitting with a finite dataset is early stopping.

To perform early stopping, we randomly split our dataset into a three sets, called the

training, validation, and test sets. We only train our model using the training set and

perform model selection by evaluating cost on the validation set. Only once we have

settled on a model and trained it (optionally using the validation set, as well) do we

evaluate on the test set. The cost on the test set is then an unbiased evaluation of the

trained model’s performance on unseen data from the data generating process.

2.4.2 Regularization

Early stopping is a form of regularization. A regularizer is a technique for prevent-

ing overfitting in a model by expressing a preference among hypotheses. A common
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form of regularizer adds a regularization term depending only on the hypothesis (and

not the data) to the cost function.

The choice, made when selecting a model, of which hypotheses to consider, im-

plicitly expresses a very strong prior, namely absolute certainty that the hypotheses not

considered are incorrect. Just like the choice of model, regularization techniques express

an inductive bias. Unlike model selection, regularization makes a ML algorithm favor

certain hypotheses a priori, without completely removing any from consideration. Most

regularizers introduce a new scalar hyperparameter specifying how strong the penalty

should be, in effect expressing the confidence we have in the motivating inductive bias.

2.4.2.1 L1 and L2 regularization

Besides early stopping, another common way of regularizing is to encourage the pa-

rameters to be small. For real-valued parameters, larger values typically correspond to

more extreme hypotheses, which are more likely to be overfit. The most common regu-

larizers of this form penalize the L1 or L2 norm of the (real-valued) parameter vectors.

The L1 penalty has a tendency to encourage sparsity, meaning a large number of pa-

rameters are chosen to be 0. This means the trained model can often be compressed by

removing these parameters.

When training a model with gradient descent, early stopping can be viewed as an

adaptive form of L2 regularization, which chooses the strength of the penalty based on

the validation cost 12.

These penalties have been used for neural nets, but are less common since the inven-

tion of dropout regularization [25].

2.4.3 Occam’s razor and model complexity

Perhaps the most general prior is a preference for simpler models. Occam’s Ra-

zor states that between two theories which explain our observations, we should choose

the simpler theory. More specifically, there is a trade-off between how well a pattern

12 This also requires reparametrizing so that all parameters are initialized to 0.
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explains the data, and how simple the model is 13. As suggested by the polynomial

example, a simpler hypothesis often does a better job of generalizing. While regulariza-

tion expresses a preference among hypotheses, we can also enforce a hard limit on the

complexity of the hypotheses we consider. Removing more complex hypotheses from

consideration should reduce overfitting, but what we ultimately care about in machine

learning is generalization, not simplicity. Simplicity can also hurt generalization; if we

do not consider the correct hypothesis because it is too complex, then our model is bound

to underfit.

The concept of model complexity or model capacity corresponds to (inverse) sim-

plicity in the sense of Occam’s Razor. A model with more parameters is often more

complex, but more sophisticated methods of evaluating complexity may be necessary;

models can be over-parametrized, meaning equivalent to a model with fewer parame-

ters. A simple example is the function f (x) = θ1θ2x, with parameters θ1,θ2 ∈ R; any

such function could also be expressed with a single real-valued parameter θ = θ1θ2. In

fact, considering the same function, now with θ1 ∈ [0,1], θ2 ∈ {−1,1}, this model is

less expressive than the model given by f (x) = θx, where θ can take on any real value,

despite having more parameters.

There are more sophisticated theoretical notions of complexity, such as minimum

description length (MDL), which measures how many bits it takes to encode a complete

description of a model, and VC dimension, which measures how many points a binary

classification model can shatter, i.e. classify correctly for any possible labeling, but

there is no universally applicable method of comparing model complexity in practice.

When we have little prior knowledge about the data generating process, limiting

the complexity of the model can be one of the best ways to prevent overfitting. For

instance, a smaller neural network (i.e. one with fewer parameters) sometimes gives

better performance, even with early stopping.

13 One way of formalizing this trade-off is Bayesian Model Comparison.
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2.4.4 Risk minimization

We’ve defined learning as a search for functions with low cost. The principle of

risk minimization states that the cost we should seek to minimize should depend on

the data generating process, not the observed data. Since the data generating process is

generally unknown, this cost cannot be evaluated directly. Structural risk minimization

(SRM) provides a theoretical justification for using the cost on the training data (called

the empirical risk) as a proxy for risk The trick is to control model complexity using

the VC dimension. Specifically, the risk can be bounded (with some probability) by

the empirical risk and the VC confidence. The VC confidence is a function of the VC

dimension and the desired confidence that the bound holds (more confidence results in a

looser bound).

Support Vector Machines (SVMs) are a popular algorithm based on the principles

of SRM. Calculating the VC dimension for ANNs is not straightforward or common in

current practice.Early stopping is similar in spirit to SRM, however; the complexity of

an ANN generally increases through training, as it has more time to grow its parameter

values 14.

2.4.5 Bias and variance

Formally, we can view overfitting and underfitting as describing the bias and variance

of the outputs of a learning procedure as a function of the training data. We view the

learned function as a statistical estimator of a true function, and ask ourselves: if we

were to receive a new dataset from the same generating process, how would our results

change? High variance means that the function learned would be very different if it

were trained on another dataset. High bias means that the result is suboptimal in some

consistent way, regardless of what training data has been observed. This decomposition

demonstrates how overfitting and underfitting are not opposites: a particularly bad model

(e.g. with high complexity and a poor inductive bias) can suffer from both, whereas a

good model will not suffer too much from either, given sufficient training data. When
14 ANN parameters are usually initialized to values close to 0. Absent any regularization, the parameters

generally grow throughout training.

22



there is not enough data to observe the trends one hopes to learn about, it is still possible

to have a good model, with sufficient prior knowledge; in the limit of no data, this means

knowing the correct function in advance.

2.5 The ML research process

The process of ML research tends to progress as follows:

repeat

choose: task, training cost, evaluation cost, model, learning algorithm

train the model using the learning algorithm and training cost

compute the evaluation cost of the learned function

until satisfied or out of time/patience

Depending on the goal of the research project, frequently only one of the task, cost

functions, model, or learning algorithm will be manipulated in the research loop, while

the others are held fixed. It is important to remember that components can interact to

determine which function is learned, however.

It is common to use good results from previous work as a baseline to compare

against. Common research objectives are:

• evaluating the generality of a method (by comparing across tasks)

• finding which of several methods performs better on a specific task

• gauging the robustness of one component to changes in the others (e.g. asking:

how does my learning algorithm work with a different model?)

This approach has the advantage of allowing relatively straightforward comparison

of different methods. However, each time we repeat the process, the learning algorithm

starts over from scratch. This contrasts sharply with the life-long learning that animals

exhibit, and that is desirable for many systems in practice. There is some work that

attempt to transfer knowledge across tasks, but very few projects simulate an ongoing

perpetual learning process. Also, as mentioned above, for real systems, it is necessary
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to consider the appropriateness of the evaluation cost as a measure of task performance;

the algorithm with the best evaluation cost might not be the one you want to use in your

real-world system.
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CHAPTER 3

DEEP LEARNING AND REPRESENTATION LEARNING

The phrase “deep learning” has been the subject of some controversy [59]. Bengio

[5] defines depth via “the number of levels of composition of non-linear operations in the

function learned”; According to this definition, which we call the technical definition,

training any model with depth greater than one is deep learning. In practice, the phrase

has been applied imprecisely to a wide range of work, starting with deep belief networks

(DBNs) [24]. Most but not all of this work uses deep artificial neural networks (ANNs).

In this chapter, we’ll describe feedforward ANNs (FNNs) and their relation to rep-

resentation learning. We’ll also cover some of the most basic and important methods of

deep learning.

3.1 Artificial neural networks

3.1.1 Biological inspirations and analogies

Artificial neural networks (ANNs) encompass a variety of machine learning models

inspired by neuroscientific knowledge of how real biological neurons work 1. In partic-

ular, the activation of the “neurons” in an ANN can be thought of as representing the

firing rate of a biological neuron 2.

ANNs are, however, a gross simplification of biological neural networks. There

are many different types of neurons and neurotransmitters in the brain, with different

properties. But the most glaring difference in my mind is that ANNs operate in discrete

1 ANNs are usually referred to simply as “neural nets” by deep learning researchers, but should be dis-
tinguished from the biological neural networks that exist in the brain, as well as spiking neural networks,
a more detailed model inspired by biological neural networks that operates in continuous time.

2 Neurons are believed to communicate via binary electro-chemical signals called action potentials,
or spikes; the firing rate is the number of spikes per unit of time. Some neuroscientists believe that all
the information a neuron transmits is encoded in the firing rate, but assessing this claim is not straightfor-
ward, and others believe the precise timing of the spikes also carries information. In particular, how to
convert a spike-train (a signal of electric potential at the neuronal membrane) into a signal specifying the
instantaneous firing rate is controversial [75].



time; I know of no justification for modeling a biological neural network this way, other

than convenience.

3.1.2 Neural net basics

An ANN is a weighted (directed or undirected) graph, whose nodes represent neu-

rons (and are often called units), and whose edges represent synapses and are called

weights or connections. The ANN architectures we consider in this thesis are directed

graphs with inputs as roots and outputs as leaves. Each neuron is computed as a (possibly

random, but usually deterministic) function of its parents.

Each neuron computes its activation as a function of its parents’ activations. The

activations are transient and input-dependent; they are not parameters. The parameters

of the network determine which functions the neurons compute. The activation of a

neuron is typically computed as a linear function (i.e. a weighted sum) of its inputs

(called the preactivation) followed by a nonlinearity; see figure 3.1 for a depiction of

this computation.

Figure 3.1: The computation performed by a single neuron in a neural network. This
figure is adapted from [73].

In the most basic standard ANN architecture, called the multi-layer perceptron

(MLP), neurons are organized into fully connected layers, which share parents and chil-

dren (see figure 3.2). Since each unit typically has a (nonlinear) activation function, σ ,
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(also called a nonlinearity), each layer of units increases the depth of the architecture.

Figure 3.2: The computational graph of an MLP with two hidden layers and three output
units. This figure is adapted from [58].

The weights on an ANN specify the strength of the connections between neurons. We

typically add a constant bias term to the preactivation of each neuron; this is equivalent

to giving all neurons a parent with a fixed activation of 1. The weights for each layer are

organized into a weight matrix, with rows corresponding to parents and columns, chil-

dren. Each entry in this matrix then corresponds to one edge of the computational graph.

This allows the computations each layer of neurons performs to be written compactly as:

h = σ(Wx+b)

where h are the activations of the child layer, x the parents’ activations, and the param-

eters are W and b: the weight matrix and vector of bias terms, respectively (σ is the

layer’s activation function). When we have have more than two layers, we denote the in-

put layer as x, the output layer, y, and the i-th hidden layer as hi. We index nonlinearities

and parameters similarly, so we can write the computation a FNN with l hidden layers

performs in closed form as follows:
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y = σy(Wyhl +by) (3.1)

y = σy(Wyσl(Wlhl−1 +bl)+by) (3.2)

y = σy(Wyσl(Wlσl−1(Wl−1(...σ1(W1x+b1)...+bl−1)+bl)+by) (3.3)

For layers that are not fully connected (i.e. missing some edges between the parent

and child layers), we can simply set the corresponding entries of the weight matrices

to 0. Computational graphs are sometimes depicted with nodes representing layers as

opposed to individual units.

3.1.3 Activation functions

Nonlinear activation functions are what make deep nets deep architectures. The com-

position of linear (or affine) functions is itself a linear (or affine) function, so without

nonlinearities, stacking multiple layers is redundant. The output nonlinearity must be

compatible with the cost function, and the choice of hidden layer activation functions

can have a dramatic effect on performance. Some activation functions, such as the soft-

max, cannot be computed elementwise.

Figure 3.3: Common activation functions for neural nets, and the TRec activation func-
tion with threshold 1.
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3.1.3.1 Logistic sigmoid

The classical activation function is the logistic sigmoid (usually just called sigmoid),

given by:

sigmoid(x) =
1

1+ e−x

The range of the sigmoid is (0,1), and it is the default choice of output nonlinearity in bi-

nary classification, where we typically interpret the output as representing the parameter

of a Bernoulli distribution.

3.1.3.2 Hyperbolic tangent

The hyperbolic tangent (tanh) function is another s-shaped curve, but its range is

(−1,1). This activation function was traditionally used for recurrent connections, where

it was found to outperform sigmoid. The equation for tanh is:

tanh(x) =
1− e−2x

1+ e−2x

3.1.3.3 Softmax

The softmax activation function is used almost exclusively in the output layer. It

converts a set of real numbers into the parameters of a categorical distribution, in such a

way that increasing the preactivation of a unit always increases its activation (i.e. it is

monotonic in every component). This is accomplished by first converting all the preac-

tivations into positive real numbers with the exponential function, and then normalizing

the result to sum to 1:

softmax(x j) =
ex j

∑
K
k=1 exk
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3.1.3.4 Rectified linear and variants

Widespread use of the rectified linear (ReLU) activation function is one of the more

recent trends in training neural nets. This function is computed as

ReLU(x) = max(0,x)

ReLU generally significantly outperforms so called saturating nonlinearities, such as

sigmoid and tanh 3. This may be because the gradients for saturating nonlinearities

become very small when they are saturating (i.e. near their asymptotes). Since weights

tend to increase during training, preactivations would typically increase as well, pushing

these units into their saturating regime. For ReLU, negative preactivations give a gradient

of 0, but in practice this doesn’t seem to be as much of an issue; since activations are

input-dependent, most units should be active (i.e. non-zero) for some inputs, in which

cases they have a significant gradient.

Due to its empirical success, several variants of ReLU have been explored [14, 23,

35, 40]. In this thesis, we use the TRec activation function [35], which is used without

bias parameters, and instead has a “threshold” hyperparameter (set to 1 in the original

paper and 0 in this thesis). The activation is then just given by:

TRec(x) = x(x > thresh).

3.2 Features and representations

The way data is presented to a learning algorithm, called a representation, has a large

effect on results. Informally, we think of different mathematical objects as representing

the same data. Formally, any (potentially random) function of a dataset can be thought

of as transforming the dataset into a new representation. A feature map or feature detec-

tor is a function that computes a new representation for each data point independently.

The dimensions of such a representation are called features (although this term is also

3 Having bounded activations is desirable in many settings, however, and so saturating nonlinearities
remain widely used.
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commonly used to refer to feature maps). Not all representations can be decomposed

in this way, however; for instance, a dataset of M N-dimensional real vectors might be

transformed by subtracting the global mean of all MN scalar values from each vector.

The process of using feature maps to create a new representation of a data point is called

feature extraction.

There is no single metric for the quality of a given representation, and in practice,

quality is task-dependent. Nonetheless, there are several ways in which representations

can be evaluated, and proven to be more or less useful.

• human-interpretability: Facilitating human understanding or visualization is use-

ful. Descriptive statistics is mostly used for this purpose. Projecting high-dimensional

data into 2-dimensional space for visualization using t-SNE [68] is one example.

• independence of features: Statistically independent features can be thought of as

disentangling underlying factors of variation, i.e. the higher-level concepts that

are important for understanding the world. The idea of natural kinds in philoso-

phy expresses a similar idea. A classic example is expression and pose for pictures

of human faces.

• compression: Compression of data reduces storage and communication costs.

• sparsity: A sparse representation, with fewer active components, could greatly

reduce computation, and facilitate compression.

• performance in pipeline: Often, the ultimate measure of the utility of a represen-

tation is simply the performance in some task of interest we get using that repre-

sentation. We call the entire system including the transformation of raw data into

a new representation and the algorithm that learns to perform the task a pipeline.

Machine learning practitioners often use domain knowledge to specify the choice of

representation directly, a process called feature engineering. Using machine learning

to search for good representations is called representation learning 4. Bengio et al. [6]
4 Unfortunately, the acronym RL in ML is already claimed by reinforcement learning. Still, sometimes

RL is used to refer to representation learning, but I avoid it.
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argue that generic inductive biases for representation learning are important for develop-

ing more general AI, and give several examples of such inductive biases, some of which

can be used to motivate deep learning techniques. Powerful and generic representation

learning techniques would allow an algorithm to learn task-relevant representations with

minimal human guidance.

While most common representation learning techniques learn feature maps, the fea-

ture learning process typically depends very much on the entire dataset, since we want

the features to do a good job of representing any data that is likely to be sampled from

the data distribution.

3.2.1 Deep learning and representation learning

In ANNs, every unit/neuron represents a feature map. Most of the power of DNNs

comes from the representations they learn. DNNs learn a feature hierarchy, where

higher order features (those computed after the first hidden layer) are computed as a

function of features from the layer below. In most recent work, all features are learned

jointly using supervised learning and SGD. The top layers of DNNs generally use the

same basic linear classification or regression functions as previous methods; DNNs out-

perform other methods because they have better features.

A DNN learns a representation that is both deep and distributed [6]. These character-

istics of their architecture encode a prior almost as generic as locality, but considerably

more powerful.

Traditional clustering techniques (see 2.2.7.2) have a many-to-one mapping from

inputs to features, and are not distributed. Distributed representations represent different

inputs with a combination or code of features, as opposed to just one. This is related

to the independence prior we mentioned above; different aspects of an input can often

be varied (almost) independently. For instance we could represent a car in terms of

its color, condition, etc. As a human, when we see a model of car we’ve never seen

before, it might be somewhat surprising, but seeing that same model in a different color

or condition afterwards is not. As this example is meant to demonstrate, distributed

representations allow for non-local generalization.
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Distributed representations can be very expressive with a small number of features,

giving a richer description of each input, and making nuanced distinctions between sim-

ilar inputs. If we think of binary features, there are exponentially many more combina-

tions of features than there are individual features.

A deep representation composes features in a hierarchy, allowing higher-level fea-

tures to reuse the same lower-level features. This can also result in exponential gains

in efficiency, since each path through the hierarchy (from inputs to outputs) represents

a different computation [6]. A classic example with vision is edges being composed

into objects. Most objects can be represented well as a combination of many edges in

specific locations, so low level features which say where there exist edges of each ori-

entation and thickness in an image is useful regardless of the image content. Likewise,

an object, which is a high-level feature, could be in any location and still have similar

semantics, although it would contain a completely different set of edges. So the mapping

of feature containment is many-to-one in both directions. This example demonstrates the

synergy between deep and distributed representations.

3.2.1.1 Unsupervised and semi-supervised deep representation learning

Representations can be learned with UL or SL. Early successes of deep learning

(e.g. Hinton et al. [24]) combined UL and SL; this is known as semi-supervised learn-

ing. In modern work, supervised learning predominates. In 2015, new semi-supervised

learning techniques with impressive results [45, 53] renewed interest in this topic. There

is vastly more unlabeled than labeled data, making semi-supervised learning very attrac-

tive 5.
5 Some prominent researchers also believe that most human learning is unsupervised, although I think

reinforcement learning better explains the way humans learn. The disagreement may be partially semantic;
most people seem to agree on the importance of having a good model of the world. The question is how
do humans learn what information is important to represent? There is much too much information to
represent everything, and I believe that reward signals are a main determinant of what humans remember
or forget.
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3.2.1.2 Autoencoders and PCA

A classic unsupervised representation learning algorithm is principal component

analysis (PCA). PCA finds the most important directions in the data space by perform-

ing an eigen-decomposition of the empirical covariance matrix, X . This is equivalent to

finding a linear projection, W , into a lower-dimensional space such that reconstructing

the data as W TWX minimizes reconstruction error. This linear projection provides a

compressed representation of the data. PCA can often reduce the dimensionality of data

points by half or more with almost no reconstruction error.

An autoencoder (AE) is a feedforward neural net where the targets are the inputs.

Autoencoders can be thought of as a non-linear version of PCA. The simplest autoen-

coder is the bottleneck autoencoder, which uses a hidden representation with less dimen-

sions than its inputs. This prevents it from learning the identity mapping, and makes the

connection with PCA clear; with one hidden layer, the bottleneck AE reconstruction be-

comes W T σ(WX). Other kinds of autoencoders can learn overcomplete representations

(with more hidden than input dimensions), and use regularization (such as a sparsity

penalty on the hidden activations) to avoid learning the trivial identity map.

An autoencoder is often viewed as the composition of an encoder, which transforms

data into some representation, and a decoder which transforms points in representation

space back into the original data space. Generative models such as the variational au-

toencoder (VAE) [34] and nonlinear independent component estimation (NICE) [11] can

be described in this way. These models aim to transform the data distribution into a rep-

resentation where features are independent; samples can then be generated by sampling

in the representation space and decoding.

We will return to autoencoders in Chapter 6, where we propose an RNN architecture

involving AEs.

3.3 Some important deep learning techniques

In this section, we cover a few popular techniques of deep learning. These are stan-

dard elements of the deep learning toolkit that all DL researchers should be familiar
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with. While the basic models and techniques of deep learning have existed since at

least the 1980s, and much of the progress made since then can be attributed to faster

computers and larger datasets, there are some new techniques which have seen rapid

and widespread adoption due to their generality, simplicity, and ability to significantly

improve performance and/or cut down on training time.

3.3.1 Faster computers

One of the key events in the history of deep learning is the adoption of graphics

processing units (GPUs) for training DNNs. GPUs are massively parallel processors

developed for video games and other graphics intensive processes, such as computer

aided design (CAD). By themselves, GPUs tend to give a speed-up of 10-50x over CPUs.

In industrial applications it is common to use hundreds of Graphics Processing Units

(GPUs) to train a network in parallel with near linear speed-up. Someone who started

training a model in the year 2000 could potentially start training all over again today and

overtake the older model by tomorrow. But optimization of state of the art models can

still takes days to weeks on state of the art hardware.

3.3.2 Optimization techniques: stochastic gradient descent, momentum, RMSProp,

Adam

Optimization of DNNs is poorly understood, and it is not clear why training models

takes so long. If we understood what the obstacles to optimizing DNNs were, it is

possible they could be trained much faster.

DNNs are almost always trained with methods based on gradient descent (section 2.1).

Gradient descent can be seen as approximating a function by its first-order Taylor series

expansion. Since this approximation is generally not accurate, we can only trust it lo-

cally, and so we make a small change to the parameters and re-evaluate the gradient.

Using a higher-order Taylor series expansion allows us to better approximate a func-

tion; this is the motivation for second-order methods. For reasonably sized DNNs, com-

puting the second derivative at a point (called the Hessian) is computationally infeasible,
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but some methods attempt to approximate it.

While the techniques presented here are popular today, they could very well be re-

placed by new methods at any time. Optimization is an active area of research in deep

learning. New optimizers are regularly devised, and theoretical work attempts to un-

derstand the nature of the neural net optimization problems, e.g. the shape of the cost

surface. Some researchers are also exploring methods of improving optimization via

smarter initialization or parametrizations. Batch normalization (BN) [29] (see 3.3.3) is

an example of the latter which has resulted in much faster optimization as well improving

performance.

3.3.2.1 Stochastic gradient descent (SGD)

The standard technique for optimizing ANNs is (mini-batch) stochastic gradient de-

scent (SGD). SGD is a classic technique which replaces the gradient of the training cost

with a stochastic estimate given by the cost of a single randomly sampled data point.

For training ANNs, a mini-batch of, e.g. 128 examples, is used instead of just one,

and the mini-batches are sampled without replacement. Algorithmically, this amounts

to repeatedly shuffling the data, then looping over the entire training set; each repeat is

called an epoch. Minibatch sizes typically range from around 16 to 128, with batch-size

up to about 1000 being used in some settings. Smaller batch-size often results in bet-

ter performance, but below 128 examples usually starts to slow down training time for

computational reasons. As with regular (“full-batch”) gradient descent, the learning rate

is often decreased as training progresses. Other optimization hyper-parameters may also

be adjusted automatically or by a researcher during training.

3.3.2.2 Momentum

Momentum is another classic technique [52], with an intuitive physical explanation:

We simply think of our steps in parameter space as changes in velocity instead of po-

sition, and add some friction to exponentially decay the influence of past steps. This
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results in the following update rule:

vt+1 = γvt +
dL

dθt
(3.4)

θt+1 = θt−αvt+1 (3.5)

Here v represents the velocity, and γ ∈ [0,1] is the decay due to friction. A related

method is called Nesterov’s accelerated gradient [46] (or “Nesterov momentum” in the

DL community), and can be seen as an approximate second-order method.

3.3.2.3 RMSProp and Adam

RMSProp [66] is another heuristic method that can be seen as using approximate

second-order information. It was motivated as a mini-batch version of RProp [54], a

method that only uses the sign of the gradient. While this changes the direction of

steepest descent, it can help avoid plateaus in parameter space, where the gradient in one

direction dominates, necessitating smaller step-sizes and slowing training. RMSProp

simulates RProp using mini-batches by dividing the gradient for each parameter by a

decaying average of its norms.

Adam [33] is a recently developed optimizer that has quickly become one of the

standard tools of DL. It can be viewed as combining RMSProp and momentum (although

they are both computed on the gradient rather than being applied sequentially). Adam

goes one step further than RMSProp+momentum by correcting for the bias they exhibit

as estimators of the gradient’s distribution’s (second and first, respectively) moments.

3.3.3 Deep learning regularization: dropout and batch normalization

Dropout [25] is one of the most powerful and popular regularizers for feedforward

neural networks. Dropout consists of multiplicative noise applied to a neural network’s

units, and can be viewed as training an ensemble of networks that share parameters.

Traditionally this noise would be Bernoulli (so some units are “dropped out” of the com-

putational graph at random), but this has been generalized to other noise distributions,
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e.g. Gaussian [63].

Recently, batch normalization (BN) [29] has challenged dropout’s position as the

pre-eminent ANN regularizer. Batch normalization is motivated by the desire to reduce

internal covariate shift. Covariate shift refers to changes in the distribution P(X) over

inputs between training and test time. The idea of internal covariate shift is that the

distribution of inputs to each layer of a network change throughout training. Applying

BN is thought to help with optimization by allowing the network to keep the distribution

of inputs to each layer approximately constant during training. What is surprising is that

it also tends to have a regularization effect. This is particularly surprising since BN does

not restrict the model’s capacity. Thus we can view this regularization as due entirely to

the effect BN has on the optimization process.
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CHAPTER 4

RECURRENT NEURAL NETWORKS

All the work in this thesis deals with Recurrent Neural Networks. Recurrent Neural

Networks (RNNs) are a type of ANN strongly associated with Deep Learning. In par-

ticular, RNNs using Long-Short-Term Memory (LSTM-RNNs, or simply LSTMs) have

recently become very popular in a variety of machine learning tasks.RNNs are precisely

those ANNs whose computational graphs contain cycles, called recurrent connections

(acyclic ANNs are referred to as feedforward networks (FNNs)).

RNNs take as input a sequence x with an arbitrary number of terms (each term, xt

being a vector in some finite dimensional space). RNNs process their inputs sequen-

tially and recursively, computing a new hidden-state, ht , (a fixed-length vector) after

each subsequent term is processed. RNNs naturally handle sequences of variable length

by repeatedly using the same transition function to compute ht+1 from ht and xt+1. The

transition function can also depend on the time-step, for instance there could be a dif-

ferent transition function for even and odd time-steps. The hidden state can be seen as a

compressed representation of the input sequence up to time t.

For a given input RNN is unrolled into a feedforward net by specifying a number

of time-steps (see 4.1). The cycles in an RNN represent the dependencies of ht+1 on

ht in the transitions function; their computations specify how the current hidden state

influences the next hidden state. Unrolling creates an acyclic computational graph that

explicitly represents the hidden states at each time-step and the recurrent connections

between them.

RNNs may also compute an output vector at each time-step and/or after processing

a complete input sequence. These outputs can be a function of the hidden-state at that

time-step and/or preceding time-steps. In examples of previous work:

• The final hidden-state was used as a compressed representation of the input se-

quence [64]



Figure 4.1: Unrolling a simple recurrent neural network for three time-steps. Left: the
original computational graph, including a cycle. Right: the unrolled, acyclic graph. We
use the same input, output, and transition (Wh) matrices at each time-step. This figure
represents the traditional RNN architecture.

• The state at each time-step was used to predict an aligned time-series [15]

• An “attention mechanism” was used to create a soft mapping of terms in the inputs

sequence to terms in an (unaligned) output sequence [3]

• The same attention mechanism is used to predict an output with the same number

of terms as the input [70]

This thesis includes two threads of work on RNNs. The first work introduces and

evaluates a novel regularization technique for RNNs. This work is currently under review

for the 2016 International Conference on Learning Representations. The second work,

in progress, develops a novel RNN architecture for supervised learning in the case where

both inputs and targets are sequences.
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4.1 Recurrent neural network architectures

4.1.1 Simple RNNs

Without qualification, “recurrent neural network” is often taken to refer to a specific

architecture of RNN, where the transition function computes an affine transformation

followed by a nonlinearity. We refer to this architecture, which also includes an output

map composed of affine transformation and nonlinearity, as a simple RNN (SRNN).

These operations are parametrized by eight matrices Wx,Wh,Wy and biases bh,by, as

follows:

ht+1 = σh(Whht +Wxxt+1) (4.1)

yt+1 = σy(Wyht+1) (4.2)

(4.3)

Traditionally, the nonlinearity σh was chosen to be the hyperbolic tangent function

(tanh), while σy is task dependent. More recently, using a rectified linear (ReLU) non-

linearity for σh was shown to be give much better performance on some tasks, provided

the matrix Wh is initialized as the identity or a multiple thereof [38].

4.1.2 Long short-term memory

The currently dominant RNN architecture, Long Short-Term Memory, or LSTM

[26], is significantly more complicated. In LSTM, the hidden state as we’ve defined it

is decomposed as ht = h̃t ,ct , where h̃t is commonly (and confusingly) called the hidden

state and ct are called memory cells. There are several variants of the LSTM architecture,
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the equations below describe the variant currently considered standard.

it+1 = tanh(Whiht +Wxixt+1 +bi) (4.4)

mt+1 = sigm(Whmht +Wxmxt+1 +bm) (4.5)

ft+1 = sigm(Wh f ht +Wx f xt+1 +b f ) (4.6)

ot+1 = sigm(Whoht +Wxoxt+1 +bo) (4.7)

ct+1 = ft+1ct + it+1mt+1 (4.8)

ht+1 = ot+1tanh(ct) (4.9)

yt+1 = σy(Wyht+1) (4.10)

(4.11)

Here “sigm” stands for the sigmoid nonlinearity. The first four computations represent

(in order) the input, input-modulation, forget, and output gates. After computing the

gates, the memory cells and then the rest of the hidden state are computed.

LSTM networks typically outperform SRNNs by a significant margin.

4.1.3 Gated recurrent units

A somewhat simpler architecture with similar features to LSTM was proposed by

Cho et al. [9]. This architecture, called Gated Recurrent Unit (GRU) has shown similar

performance to LSTM on nearly every task where they have been compared. GRU, like

LSTM, uses multiplicative gating to construct a new candidate hidden state, and has

an element-wise reset gate which determines how much of the previous hidden state is

preserved, similarly to the forget gate in LSTM. Unlike LSTM, GRU has no explicit

memory cells, which makes it faster to compute.

4.1.4 Deep RNNs

While unrolled RNNs are already arbitrarily deep, the computations performed at

each time-step are not. Stacked-RNNs [15, 60] have recently become the default ar-

chitecture for Speech Recognition as well as Machine Translation and other NLP tasks.
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Pascanu et al. [49] also proposed several other methods for making the computation

performed at each time-step deep.

4.1.5 Attention modules

Graves [16] used a differentiable form of attention over an input sequence of char-

acters to generate handwriting from a string of text. Following quickly on the heals of

the first successful application of RNNs to Machine Translation [9, 64], Bahdanau et al.

[3] demonstrated the utility of attention mechanisms for the same task; in this case, the

attention was applied to the hidden states of an “encoder” RNN. The attention module

produces a glimpse [3] or reading [2] of the input, with some aspects captured at higher

resolutions. In a static model, an attention module would simply learn a prior over where

important information is located, but a sequential model can use these readings to inform

future decisions of where to attend.

4.1.6 Memory interfaces

Several recent works [18, 19, 32, 36, 72] have used RNN architectures involving

more durable forms of memory inspired by computer architectures or data-structures.

These models frequently use attention mechanisms to focus on various parts of their

memory. These innovations provide tremendous advantages over architectures with tran-

sient memory dynamics (such as SRNN or LSTM) in several toy-tasks such as learning

algorithms for sorting [18]. Large improvements on real-world tasks has not yet been

observed, although Kumar et al. [36] do report state-of-the-art performance on several

datasets.

4.1.7 Grammar cells

Michalski et al. [44] propose a novel RNN structure involving gating that models

transitions between states as opposed to modelling the states directly. These transitions

are assumed to be linear, but the model learns a product of experts, allowing it to repre-

sent exponentially many linear maps and decide which one to apply. In Chapter 6 of this
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thesis, we describe this model in detail and propose a novel generalization for supervised

learning.

4.2 Regularization for recurrent neural networks

Since our main contribution is a regularization technique for RNNs, we provide a

summary of previous regularization techniques that have been applied to RNNs. As

with other ANNs, RNNs are almost always trained with early stopping, but can also

frequently benefit from additional regularization. Traditional regularizers, such as L1

and L2 penalties can of course be applied to RNNs, but in contemporary work, this is

uncommon.

Additive Gaussian weight noise has also been a popular regularizer for RNNs [16].

As the name suggests, this amounts to adding random noise to the weights of a net-

work at each training step. More recently, dropout and batch normalization have been

applied to RNNs (see the previous chapter for a discussion of these techniques). Ap-

plying dropout in RNNs is straightforward, but Pham et al. [51] found that this makes

training difficult and suggest only noising the weights between successive layers at the

same time-step (“up the stack”), not between time-steps (“forward through time”). This

idea was produced independently and popularized by Zaremba et al. [78]). Just like with

dropout, applying BN to RNNs is straightforward, but has only been shown to work

when applied up the stack and not forward through time [1, 37].

None of the regularizers we’ve mentioned so far were designed with RNNs in mind.

Designing a regularizer specifically for RNNs is the motivation of the work we present

in the next chapter.
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CHAPTER 5

REGULARIZING RNNS BY STABILIZING ACTIVATIONS

5.1 Prologue to the paper

This paper was joint work with Roland Memisevic. It has been submitted as a con-

ference paper to the International Conference on Learning Representations, 2016, and

been favorably reviewed 1. I proposed the idea, performed the experiments, and wrote

the article. Roland provided some seed code, provided useful discussions, and advised

on what to focus on in the experiments and write-up.

Our contribution is to propose and validate a novel approach to regularization for re-

current neural networks (RNNs). Deep learning models are often heavily over-parameterized,

and require some form of regularization (e.g. early stopping) for most applications. Reg-

ularization can sometimes be foregone for large enough datasets. But it remains crucially

important for real-world tasks such as speech recognition.

The most commonly used regularization methods for RNNs are not specific to RNNs

or even sequential models. We view this as an opportunity to devise regularizers that tar-

get RNNs in particular. We consider stability of the hidden state norms as a regulariza-

tion objective, and demonstrate that it can improve performance substantially and out-

performs previously used regularization techniques on the popular TIMIT benchmark.

Our experiments demonstrate the promise of this technique and suggest further work

on devising regularizers specific to sequential models such as RNNs could be a very

fruitful avenue of research. Much exploration remains to be done in this space of ideas.

Although we compare different architectures, tasks, and regularization penalties on the

sequence of hidden states, many more experiments can and should be done. Whether

through experiment or theory, a better understanding of the reasons behind the success

of this regularizer would be welcome.

1 The three reviewers gave it scores of 6, 7, and 8 out of 10.



5.2 Abstract

We stabilize the activations of Recurrent Neural Networks (RNNs) by penalizing the

squared distance between successive hidden states’ norms. This penalty term is an ef-

fective regularizer for RNNs including LSTMs and IRNNs, improving performance on

character-level language modelling and phoneme recognition, and outperforming weight

noise and dropout. We achieve state of the art performance (17.5% PER) for RNNs on

the TIMIT phoneme recognition task, without using beam search or an RNN transducer.

With this penalty term, IRNN can achieve similar performance to LSTM on language

modelling, although adding the penalty term to the LSTM results in superior perfor-

mance. Our penalty term also prevents the exponential growth of IRNN’s activations

outside of their training horizon, allowing them to generalize to much longer sequences.

5.3 Introduction

Overfitting in machine learning is addressed by restricting the space of hypotheses

(i.e. functions) considered. This can be accomplished by reducing the number of pa-

rameters or using a regularizer with an inductive bias for simpler models, such as early

stopping. More effective regularization can be achieved by incorporating more sophisti-

cated prior knowledge. Keeping an RNN’s hidden activations on a reasonable path can

be difficult, especially across long time-sequences. With this in mind, we devise a regu-

larizer for the state representation learned by temporal models, such as RNNs, that aims

to encourage stability of the path taken through representation space. Specifically, we

propose the following additional cost term for Recurrent Neural Networks (RNNs):

β
1
T

T

∑
t=1

(‖ht‖2−‖ht−1‖2)
2

Where ht is the vector of hidden activations at time-step t, and β is a hyperparameter

controlling the amounts of regularization. We call this penalty the norm-stabilizer, as

it successfully encourages the norms of the hiddens to be stable (i.e. approximately

constant across time). Unlike the “temporal coherence” penalty of Jonschkowski and
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Brock [31], our penalty does not encourage the state representation to remain constant,

only its norm.

In the absence of inputs and nonlinearities, a constant norm would imply orthogo-

nality of the hidden-to-hidden transition matrix for simple RNNs (SRNNs). However, in

the case of an orthogonal transition matrix, inputs and nonlinearities can still change the

norm of the hidden state, resulting in instability. This makes targeting the hidden acti-

vations directly a more attractive option for achieving norm stability. Stability becomes

especially important when we seek to generalize to longer sequences at test time than

those seen during training (the “training horizon”).

The hidden state in LSTM [26] is usually the product of two squashing nonlinearities,

and hence bounded. The norm of the memory cell, however, can grow linearly when the

input, input modulation, and forget gates are all saturated at 1. Nonetheless, we find that

the memory cells exhibit norm stability far past the training horizon, and suggest that

this may be part of what makes LSTM so successful.

The activation norms of simple RNNs (SRNNs) with saturating nonlinearities are

bounded. With ReLU nonlinearities, however, activations can explode instead of sat-

urating. When the transition matrix, Whh has any eigenvalues λ with absolute value

greater than 1, the part of the hidden state that is aligned with the corresponding eigen-

vector will grow exponentially to the extent that the ReLU or inputs fails to cancel out

this growth.

Simple RNNs with ReLU [38] or clipped ReLU [21] nonlinearities have performed

competitively on several tasks, suggesting they can learn to be stable. We show, however,

that IRNNs performance can rapidly degrade outside of their training horizon, while

the norm-stabilizer prevents activations from exploding outside of the training horizon

allowing IRNNs to generalize to much longer sequences. Additionally, we show that this

penalty results in improved validation performance for IRNNs. Somewhat surprisingly,

it also improves performance for LSTMs, but not tanh-RNNs.

To the best of our knowledge, our proposal is entirely novel. Pascanu et al. [48]

proposed vanishing gradient regularization, which encourages the hidden transition to

preserve norm in the direction of the cost derivative. Like the norm-stabilizer, their cost
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depends on the path taken through representation space, but the norm stabilizer does not

prioritize cost-relevant directions, and accounts for the effects of inputs as well. A hard

constraint (clipping) on the activations of LSTM memory cells was previously proposed

by [57]. Hannun et al. [21] use a clipped ReLU, which also has the effect of limiting

activations. Both of these techniques operate element-wise however, whereas we target

the activations’ norms. Several other works have used penalties on the difference of

hidden states rather than their norms [31, 71]. Other regularizers for RNNs that do not

target norm stability include weight noise [30], and dropout [47, 51, 78].

5.4 Experiments

5.4.1 Character-level language modelling on PennTreebank

We show that the norm-stabilizer improves performance for character-level language

modeling on PennTreebank [41] for LSTM and IRNNs, 2 but not tanh-RNNs. We

present results for β ∈ {0,50,500}. We found that values of β > 500 could slightly im-

prove performance, but also resulted in much longer training time on this task. Schedul-

ing β to increase throughout training might allow for faster training. Unless otherwise

specified, we use 1000/1600 units for LSTM/SRNN, and SGD with learning rate=.002,

momentum=.99, and gradient clipping=1. We train for a maximum of 1000 epochs and

use sequences of length 50 taken without overlap. When we encounter a NaN in the

cost function, we divide the learning rate by 2, and restart with the previous epoch’s

parameters.

For LSTMs, we either apply the norm-stabilizer penalty only to the memory cells, or

only to the hidden state (in which case we remove the output tanh, as in [13]). Although

Greff et al. [20] found the output tanh to be essential for good performance, removing

it gave us a slight improvement in this task. We compare to tanh and ReLU (with and

without bias), with a grid search across cost weight, gradient clipping, and learning rate.

For simple RNNs, we found that the zero-bias ReLU (i.e. TRec [35] with threshold

0) gave the best performance. The best performance for ReLU activation functions is

2As in Le et al. [38], we initialize Whh to be an identity matrix in our experiments
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obtained with the penalty applied. For tanh-RNNs, the best performance is obtained

without any regularization. Results are better with the penalty than without for 9 out of

12 experiment settings.

Figure 5.1: Learning Curves for LSTM with different values of β . Penalty is applied to
the hidden state (Left), or the memory cells (Right).

5.4.1.1 Alternative costs

We compare 8 alternatives to the norm-stabilizer cost on PennTreeBank for IRNNs

without biases (see Table 5.III), using the same setup as in 5.4.1. These include relative

error, L1 norm, absolute difference, and penalties that don’t target successive time-steps.

The following two penalties performed very poorly and were not included in the table:

|∆‖ht‖2 |, ‖ht‖2
2. We find that our proposal of penalizing successive states’ norms gives

the best performance, but some alternatives seem promising and deserve further inves-

Table 5.I: LSTM Performance (bits-per-character) on PennTreebank for different values
of β .

β = 0 β = 50 β = 500
penalize hidden state 1.47 1.41 1.39
penalize memory cell 1.49 1.42 1.40
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tigation. In particular, the relative error could be more appropriate; unlike the norm-

stabilizer cost, it cannot be reduced simply by dividing all of the hidden states by a

constant. The value 5 was chosen as a target for the norms based on the value found by

our proposed cost; in practice it would be another hyperparameter to tune. The success

of the other regularizers which encourage (L2) norm stability indicates that our inductive

bias in favor of stable norms is useful.

Table 5.II: Performance with and without norm-stabilizer penalty for different activation
functions. Gradients are clipped at 1 in the first and third, and 106 in the second and
fourth columns.

lr = .002,gc = 1 lr = .002 lr = .0002,gc = 1 lr = .0002
tanh, β = 0 1.71 1.55 2.15 2.15
tanh, β = 500 1.57 2.70 1.79 1.80
ReLU, β = 0 1.78 1.69 1.93 1.93
ReLU, β = 500 1.74 1.73 1.65 2.04
TRec, β = 0 1.62 1.63 1.95 1.88
TRec, β = 500 1.48 1.49 1.56 1.56

Table 5.III: Performance (bits-per-character) of zero-bias IRNN with various penalty
terms designed to encourage norm stability.

(∆ht)
2 (∆‖ht‖2)

2 (
∆‖ht‖2
‖ht‖2

)2 (∆‖ht‖1)
2 (‖h‖2−5)2 (‖h0‖2−‖hT‖2)

2

β = 50 1.84 1.60 2.96 1.49 3.81
β = 500 2.19 1.48 1.50 3.18 1.50 1.54

5.4.2 Phoneme recognition on TIMIT

We show that the norm-stabilizer improves phoneme recognition on the TIMIT dataset,

outperforming networks regularized with weight noise and/or dropout. For these experi-

ments, we use a similar setup to the previous state of the art for an RNN on this task [15],

with CTC [17] and bidirectional LSTMs with 3 layers of 500 hidden units (for each di-

rection). We train with Adam [33] using learning rate=.001, and gradient clipping=200.
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Unlike Graves et al. [15], we do not use beam search or an RNN transducer. We early

stop after 25 epochs without improvement on the development set.

We apply norm-stabilization to the hidden activations (in this case we do use the

output tanh as is standard) with β ∈ {0,50,500}, and use standard deviation .05 for

weight noise, and p=.5 for dropout. We try all pair-wise combinations of the regular-

ization techniques. We run 5 experiments for each of these 10 settings, and report the

average phoneme error rate (PER). Combining weight noise and norm-stabilization gave

poor performance, with some networks failing to train, these results are omitted. Adding

dropout had a minor effect on results. Norm-stabilized networks had the best perfor-

mance (see figure 5.2 and table 5.IV). Inspired by these results, we decided to train

larger networks with more regularization, and observed further performance improve-

ments (see table 5.V). We also used a higher “patience” for our early stopping criterion

here, terminating after 100 epochs without improvement. Unlike previous experiments,

we only ran one experiment with each of these settings. The network with 1000 hidden

units and β = 1000 achieved dev/test PER of 16.7%/17.5%. This is the state of the art

test set performance for RNNs on this task, although Tóth [67] achieved 13.9%/16.7%

using convolutional neural networks.

Figure 5.2: Average PER on TIMIT core test set for different combinations or regular-
izers. The norm-stabilizer (β ) shows a clear positive effect on performance. Weight
noise (WN) also improves performance but less so. Combining weight noise with norm-
stabilization gives poor results.
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Table 5.IV: Phoneme Error Rate (PER) on TIMIT for different experiment settings, av-
erage of 5 experiments. Norm-stabilized networks achieve the best performance. The
regularization parameters are: β - norm stabilizer, p - dropout probability, σ - standard
deviation of additive Gaussian weight noise.

β = 0
σ = 0
p = 0

β =
50
σ = 0
p = 0

β =
500
σ = 0
p = 0

β = 0
σ =
.05
p = 0

β = 0
σ = 0
p = .5

β =
50
σ = 0
p = .5

β =
500
σ = 0
p = .5

β = 0
σ =
.05
p = .5

test 21.8 20.7 19.0 21.5 21.9 20.9 19.4 21.1
dev 19.6 18.6 16.9 19.1 19.5 18.5 17.0 18.9

Table 5.V: Phoneme Error Rate (PER) on TIMIT for experiments with n hidden units
and more norm-stabilizer regularization (β ). Networks regularized with weight noise
σ = .05 when β = 0.

β = 0
n =
750

β =
500
n =
750

β =
1000
n = 750

β =
1500
n = 750

β = 0
n =
999

β =
500
n =
999

β =
1000
n = 999

β =
1500
n = 999

test 21.9 18.8 18.6 18.0 21.8 19.5 17.5 18.6
dev 19.6 16.8 16.2 16.2 19.1 17.4 16.7 16.7

5.4.3 Adding task

The adding task [26] is a toy problem used to test an RNN’s ability to model long-

term dependencies. The goal is to output the sum of two numbers seen at random time-

steps during training; inputs at other time-steps carry no information. Each element of

an input sequence consists of a pair {n, i}, where n ∈ [0,1] is chosen at uniform random

and i ∈ {0,1} indicates which two numbers to add. We use sequences of length 400. In

Le et al. [38], none of the models were able to reduce the cost below the “short-sighted”

baseline set by predicting the first (or second) of the indicated numbers (which gives

an expected cost of 1
12 ) for this sequence length. We are able to solve this task more

successfully. We use uniform initialization in [−.01, .01], learning rate=.01, gradient

clipping=1. We compare across nine random seeds with and without the norm-stabilizer

(using β = 1). The norm-stabilized networks reduced the test cost below 1
12 in 8/9 cases,

averaging .059 MSE. The unregularized networks averaged .105 MSE, and only outper-
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formed the short-sighted baseline in 4/9 cases, also failing to improve over a constant

predictor in 4/9 cases.

5.4.4 Visualizing the effects of norm-stabilization

To test our hypothesis that stability helps networks generalize to longer sequences

than they were trained on, we examined the costs and hidden norms at each time-step.

Comparing identical SRNNs trained with and without norm-stabilizer penalty, we

found LSTMs and RNNs with tanh activation functions continued to perform well far be-

yond the training horizon. Although the activations of LSTM’s memory cells could po-

tentially grow linearly, in our experiments they are stable. Applying the norm-stabilizer

does significantly decrease their average norm and the variability of the norm, however

(see figure 5.3). IRNNs, on the other hand, suffered from exploding activations, resulting

in poor performance, but the norm-stabilizer effectively controls the norms and main-

tains a high level of performance; see figure 5.4. Norm-stabilized IRNNs’ performance

and norms were both stable for the longest horizon we evaluated (10,000 time-steps).

Figure 5.3: Norm (y-axis) of LSTM hidden states (Left) and memory cells (Right) for
different values of β , across time-steps (x-axis). The blue curve at the top is when
β = 0. Non-zero values dramatically reduce the mean and variance of the norms. LSTM
memory cells have the potential to grow linearly, but instead exhibit natural stability.

For more insight on why the norm-stabilizer outperforms alternative costs, we ex-

amined the hidden norms of networks trained with values of β ranging from 0 to 800

on a dataset of 1000 length-50 sequences taken from wikipedia [28]. When we penalize
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the difference of the initial and final norms, or the difference of the norms from some

fixed value, increasing the cost results in norms that grow less, but it does not change

the shape of the norms; they still begin to explode within the training horizon (see fig-

ure 5.5). For the norm-stabilizer, however, increasing the penalty significantly delayed

(but did not completely eradicate) activation explosions on this dataset.

We also noticed that the distribution of activations was more concentrated in fewer

hidden units when applying norm-stabilization on PennTreebank. Similarly, we found

that the forget gates in LSTM networks had a more peaked distribution (see figure 5.6),

while the average across dimensions was lower (so the network was forgetting more on

average at each time step, but a small number of units were forgetting less). Finally, we

found that the eigenvalues of regularized IRNN’s hidden transition matrices had a larger

number of large eigenvalues, while the unregularized IRNN had a much larger number

of eigenvalues closer to 1 in absolute value (see figure 5.6). This supports our hypothesis

that orthogonal transitions are not inherently desirable in an RNN. By explicitly encour-

aging stability, the norm-stabilizer seems to favor solutions that maintain stability via

selection of active units, rather than restricting the choice of transition matrix.
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Figure 5.4: Top: average logarithm of hidden norms as a function of time-step. Bottom:
average cost as a function of time-step. Solid blue - β = 500, dashed red - β = 0.
Notice that IRNN’s activations explode exponentially (linearly in the log-scale) within
the training horizon, causing cost quickly go to infinity outside of the training horizon
(50 time-steps).

Figure 5.5: Hidden norms as a function of time-step for values from 0 to 400 of the
norm-stabilizer (Left and Center) vs. a penalty on the initial and final norms (Right).
The norm-stabilizer delays the explosion of activations by changing the shape of the
curve, extending the flat region.

Figure 5.6: Left: sorted distribution of average forget-gates for different memory cells
in LSTM. Right: sorted absolute value of eigenvalues of Whh in IRNN. Blue - β = 0,
Green - β = 500
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5.5 Conclusion

We introduced norm-based regularization of RNNs to prevent exploding or vanish-

ing activations. We compared a range of novel methods for encouraging or enforcing

norm stability. The best performance is achieved by penalizing the squared difference

of subsequent hidden states’ norms. This penalty, the norm-stabilizer, improved perfor-

mance on the tasks of language modelling and addition tasks, and gave state of the art

RNN performance on phoneme recognition on the TIMIT dataset.

Future work could involve:

• Exploring the relationship between stability and generative modelling with RNNs

• Applying norm-regularized IRNNs to more challenging tasks

• Applying similar regularization techniques to feedforward nets
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CHAPTER 6

CONDITIONAL PREDICTIVE GATING PYRAMIDS

This chapter contains a brief report on some work in progress. We explore the idea of

directly modelling dynamics as part of the hidden state in an RNN. Our first step in this

direction is to extend the model of Michalski et al. [44] to handle supervised learning.

The original motivation of this work was speech synthesis, that is, creating a con-

ditional generative model of speech conditioned on content (and possibly other factors,

such as characteristics of the speaker). Speech is encoded as a very high-dimensional

sequence of real-valued audio samples, e.g. 16000/s. At the level of audio samples or

frames of several samples (e.g. 160), speech exhibits slowly-changing dynamics. This is

especially true of voiced speech (e.g. of vowels), which contains a periodic signal whose

frequency changes slowly.

6.1 Predictive gating pyramids

6.1.1 Gated autoencoders

A gated autoencoder (GAE) [42, 43] takes two separate inputs, x and y, and uses

its hidden units (called mapping units) to model the relationship between them 1. For

instance, for a pair of images, the hidden state might represent “rotated by 30 degrees

clockwise”. Since the representation only represents the relationship between images,

and not the images themselves, such a representation can be used as a conditional gen-

erative model to predict what an arbitrary image would look like when rotated by 30

degrees.

Concretely, we can consider relationships in terms of multiplicative interactions, and

create a new representation for a pair of inputs given by the pairwise products of their

dimensions (i.e. outer product of the vectors x and y). A gated autoencoder can be

1 “Gating” in DL just refers to multiplication. We can view one of the inputs to a multiplication
operation as a gate valve in a faucet. How far this gate is opened determines how much information from
the other input is able to “flow” through. The analogy fails somewhat in that the two inputs are symmetric.



viewed as a regular autoencoder taking these outer products as inputs. If we flatten the

outer product into a vector, then we have a weight matrix as usual, otherwise, we have a

weight tensor, since each mapping unit takes a matrix as input.

6.1.1.1 Factored gated autoencoders

Gated models are often factored to reduce the number of parameters [43]. This in-

volves replacing the pairwise product of input dimensions with an element-wise product

of features extracted from the inputs. The features are represented as another layer of

hidden units. This is equivalent to factoring the weight tensor into a product of three ma-

trices, and results in the following equation for the mapping units, h (with� representing

elementwise multiplication):

h = σ(Wh f (Wf xx�Wf yy)) (6.1)

The reconstruction of y given x and h is given by:

y =W T
f y(Wf xx�W T

h f h) (6.2)

While the number of parameters of a gated model is quadratic in the input dimension,

for a factored gated autoencoder (FGAE), it is linear in the input dimension (and the

number of features).

6.1.2 Predictive gating pyramids

Predictive Gating Pyramids (PGPs) [44] use FGAEs to model the relationship be-

tween successive time-steps in an input sequence. In the case of speech, these time-steps

would be frames of audio samples. Once we have inferred the relationship between

two successive frames, we can predict future frames by assuming the same relationship

holds, i.e. that the first-order dynamics (or “abstract velocity”) are constant. In the im-

age example, this would allow us to create a video of an object rotating at some constant

angular velocity.
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PGPs stack the architecture of the FGAE to model n-th order dynamics, e.g. “abstract

acceleration”. While the first-order dynamics represented the relationship between input

frames, the second-order dynamics represent the relationship between relationships, and

so on. With second-order dynamics, we could create a video of an object rotating with

constant angular acceleration, so that the rotation slows down and eventually changes

direction.

To the extent that the PGP is able to capture the true dynamics of the system it

models, it can generalize perfectly simply by keeping the n-th order dynamics constant.

However, for signals whose dynamics do not change smoothly or predictably, a more

powerful model is needed.

6.2 Conditional predictive gating pyramids

PGPs were introduced for unsupervised learning; we extend them to perform super-

vised learning by adding inputs which directly affect the hidden state. Since the hidden

state represents the dynamics up to level n, the inputs affect the outputs indirectly by

changing which transition is applied. We call this model the conditional predictive gat-

ing pyramid (CPGP). Unlike PGPs, CPGPs can handle arbitrary changes to the dynam-

ics, so long as these changes can be predicted from their inputs.

As a proof of concept, we experiment with modelling a sine wave whose frequency

changes according to a random walk. We use a soft one-hot encoding of the frequency as

an input to the model, and frames of 10 audio samples as outputs. For this experiment,

we use a 3-layer PGP (with abstract velocity, acceleration, and jerk). Our inputs affect

the jerk units additively via a 1-layer neural network with sigmoid nonlinearity. We find

that the model is able to learn this task and to generalize to new frequencies and beyond

the training horizon (see 6.1). The model was trained for about a week, and showed no

sign of nearing convergence or overfitting at that point.
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Figure 6.1: Conditional predictive gating pyramid trained on sine waves with frequencies
modulated by a random walk. Blue is the ground truth sequence, green is the model’s
prediction. The frequency is input in a soft one-hot encoding. The model was trained on
sequences half this length, but generalizes well to longer sequences at test time.

6.3 Future work

Much remains to be done. As a first step, more experiments are needed, especially

comparing CPGPs with other models. Practically speaking, finding a way to significantly

decrease the training time for PGP/CPGP would be helpful.

In terms of applications:

• Although we worked on applying this technique to the problem of speech synthe-

sis, our results there were invalidated by bugs in the code.

• We also began work using CPGPs as a model of the environment 2; we believe

this could be a good fit, in particular for robotics tasks.

There are also many avenues to explore with the PGP family of models.

• We would like to construct a generative PGP with proprioception, the ability to

look at its outputs and learn how to change its dynamics in order to avoid a com-

pounding of errors. We proposed the forward-down-up procedure in which the

top-level dynamics are re-inferred at each time-step based on what was just gener-

ated, as one approach to proprioception. Another is to use the CPGP architecture

taking the previously generated output as input.

• The input model for CPGP could be made recurrent, so that inputs can be used to

directly manipulate dynamics at future time-steps.
2In RL, a model predicts the next state (and possibly reward) from previous state and action
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• We could also learn a representation for the outputs, which could also be recurrent.

• We could explore the role of factoring and consider partially factored architectures

which learn multiple “channels” of features to represent their inputs. Each channel

would be multiplied elementwise with all the other channels in the representation

of the other input.

Furthermore, this particular architecture is just one approach to the general idea of

modelling dynamics. Dynamics play an important role in describing most real-world

systems; for instance a complete description of a pendulum requires both position and

velocity.

While here we learn representations of the dynamics, this might not be necessary.

We could also fix some dynamic elements and produce the hidden state directly via their

dynamics, using new information (e.g. from the inputs, or the results of computations

being performed by the evolution of the hidden state) to change the influence of each of

these dynamic elements. It would also be interesting to view these dynamic elements

as a memory reservoir external to the hidden state, with the dynamics serving a clock-

like function. The network would then interact with this memory reservoir via some

interface, as in the models from section 4.1.6. More speculatively, the network could

potentially learn how to “program” the dynamics of the memory reservoir, as well.
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CHAPTER 7

CONCLUSION

In this thesis, I introduced the field of deep learning and discussed some of the key

conceptual elements and practices of contemporary deep learning research. My main

goal was to provide an unique and personal overview of deep learning and representa-

tion learning, and their relevance to the goals of artificial intelligence research. In order

to make this work accessible and useful, I aimed to explain fundamental machine learn-

ing concepts at a high-level of abstraction and precision. I also attempted to motivate

the now common perspective that learning plays a central role in intelligence. I placed

special emphasis on recurrent neural networks, one of the most popular and powerful

families of deep learning models, and the subject of my highlighted research contribu-

tions: norm-stabilization, a successful and novel approach to regularization in recurrent

neural networks, and conditional predictive gating pyramids, a supervised learning ver-

sion of an existing recurrent model.

As I write this thesis, the popularity of deep learning within the artificial intelligence

research community continues its spectacular ascent. Meanwhile, artificial intelligence

itself is an increasingly hot topic in society at large, thanks in part to the successes of

deep learning (although it remains to be seen how far deep learning techniques can take

us towards general artificial intelligence). In my experience, more people are aware

of the idea that artificial intelligence could pose an existential risk to humanity than

recognize the terms “deep learning” or “machine learning”. With this in mind, I hope

that my thesis can help educate people about the current state and direction of artificial

intelligence research.

In particular, I view the rise of machine learning, and now deep learning as part of an

historic progression in artificial intelligence towards approaches that can make more de-

cisions with less human input and oversight. Reinforcement learning and unsupervised

learning, which require less human supervision than the presently popular supervised

learning techniques, are commonly thought to be the next frontiers in artificial intelli-



gence research. Ultimately, learning to learn (“meta-learning”) may result in algorithms

capable of performing the challenging intellectual tasks involved in current research and

implementation, leaving humans (hopefully) the role of deciding the purpose or goal

of a learning algorithm, which will itself give rise to interesting intellectual and ethical

challenges. How we approach this task of setting goals for the intelligent systems we

create may ultimately be the most important project for the field of artificial intelligence.
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