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Abstract

We model social choices as acts mapping states of the world to (social) outcomes. A

(social choice) rule assigns an act to every profile of subjective expected utility preferences

over acts. A rule is strategy-proof if no agent ever has an incentive to misrepresent her beliefs

about the world or her valuation of the outcomes; it is ex-post effi cient if the act selected

at any given preference profile picks a Pareto-effi cient outcome in every state of the world.

We show that every two-agent ex-post effi cient and strategy-proof rule is a top selection: the

chosen act picks the most preferred outcome of some (possibly different) agent in every state

of the world. The states in which an agent’s top outcome is selected cannot vary with the

reported valuations of the outcomes but may change with the reported beliefs. We give a

complete characterization of the ex-post effi cient and strategy-proof rules in the two-agent,

two-state case, and we identify a rich class of such rules in the two-agent case.

JEL Classification: D71.

Keywords: Social choice under uncertainty, strategy-proofness, subjective expected utility.

1 Introduction

We address the problem of designing incentive-compatible rules for making social choices under

uncertainty. Following Savage (1954), we model such choices as acts mapping states of the world

to outcomes, and we assume that agents compare acts according to the subjective expected utility

they yield. Society chooses acts on the basis of the preferences of its members: a social choice

rule asks agents to report full-fledged preferences over acts, and assigns an act to every pref-

erence profile. If individual preferences are private information, it is important that a rule be

incentive-compatible. This paper focuses on the condition of strategy-proofness, which requires
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author also benefited from comments by H. Moulin. Many thanks to all of them. The research reported in this
paper was supported by a FRQSC grant.
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C.P. 6128, succursale Centre-ville, Montréal QC, H3C 3J7, Canada.
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that reporting one’s true preferences be a dominant strategy: no agent should ever have an in-

centive to misrepresent her beliefs about the world or her valuation of the outcomes. Because

subjective expected utility preferences form a restricted domain, the Gibbard-Satterthwaite theo-

rem (Gibbard (1973), Satterthwaite (1975)) does not apply. This raises the problem of describing

the set of strategy-proof social choice rules.

To the best of our knowledge, this problem has not been studied. The related literature

may be divided into three strands. The first strand is concerned with the problem of eliciting

an agent’s assessment of the likelihood of events in which she has no stake. The best known

incentive-compatible elicitation procedures are Savage’s (1971) proper scoring rules; see Gneiting

and Raftery (2007) for a survey of the literature on the topic. Other procedures include de Finetti’s

(1974) promissory notes method and Karni’s (2009) direct revelation mechanism. These methods

do not elicit the agent’s valuation of the outcomes and do not address the problem of choosing a

social act based on individual preferences.

The second relevant strand studies strategy-proofness in the context of risk, that is, when

society chooses lotteries rather than acts. The seminal contribution is due to Gibbard (1977),

who analyzes social choice rules asking agents to report their preferences over sure outcomes

only. Hylland (1980), Dutta, Peters and Sen (2007, 2008), and Nandeibam (2013) allow agents to

report full-fledged von Neumann-Morgenstern preferences over lotteries. A central finding in this

literature is that every strategy-proof and ex-post effi cient rule is a random dictatorship. Ex-post

effi ciency requires that the chosen lottery attaches zero probability to every Pareto-dominated sure

outcome. A random dictatorship selects each agent’s most preferred outcome with a probability

that does not depend on the reported preference profile.

Finally, let us mention that the issue of preference aggregation under uncertainty has received

a good deal of attention: see Hylland and Zeckhauser (1979), Mongin (1995), Gilboa, Samet and

Schmeidler (2004), and Gilboa, Samuelson and Schmeidler (2014), among others. This literature,

which is normative in nature, is not concerned with the incentive-compatibility issue and is there-

fore only tangentially related to our work. It shows that utilitarian aggregation of preferences is

problematic; it also questions the desirability of Pareto effi ciency when individual beliefs differ,

and proposes weakened versions of it.

In line with the literature on strategy-proofness under risk, we restrict attention to social choice

rules that are ex-post effi cient. Under uncertainty, ex-post effi ciency means that the act selected

at a given preference profile should recommend a Pareto-effi cient outcome in every state of the

world. The requirement does not imply (ex-ante) Pareto effi ciency.

Our results are restricted to the two-agent case. Proposition 1 establishes that every two-agent

strategy-proof and ex-post effi cient social choice rule must be a top selection: at every preference

profile, the chosen act must pick the most preferred outcome of some (possibly different) agent

in every state of the world. The analog of random dictatorship consists in exogenously assigning
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each state to an agent and picking each agent’s top outcome in the states assigned to her. A top

selection need not be a random dictatorship because the states in which an agent’s top outcome

is selected may vary with the reported preference profile.

Proposition 2 states that, in order to guarantee strategy-proofness, the states in which an

agent’s top outcome is selected cannot vary with the reported valuations of the outcomes.

On the other hand, it turns out that the beliefs of the agents can be used to assign states

to agents: the mechanism designer can exploit the differences in subjective probabilities so as to

have each agent select the outcome in states that she finds relatively more likely. This can be

done in at least two ways. A dictatorial assignment rule lets one agent select from an exogenous

menu the event that she considers most likely; the social choice rule then picks that agent’s top

outcome in every state in that event, and the other agent’s top outcome in the remaining states.

Under a consensual assignment rule, two non-nested events are exogenously selected. The first

is tentatively assigned to agent 1 and its complement is assigned to agent 2. However, if agent 1

reports that the second event is more likely than the first and agent 2 reports the opposite belief,

they exchange events. The social choice rule picks an agent’s reported top outcome in every state

in the event that the consensual assignment rule has assigned to her. Proposition 3 states that,

when there are only two possible states of the world, a two-agent social choice rule is strategy-proof

and ex-post effi cient if and only if it is a top selection generated by a dictatorial or consensual

assignment rule.

When the state space contains more than two states, Proposition 4 shows how the basic rules

just described can be combined to generate a rich family of fairly flexible and reasonably symmetric

two-agent strategy-proof and ex-post effi cient social choice rules.

A last and technical introductory remark is in order. The set of acts is a Cartesian product, and

subjective expected utility preferences over acts are additively separable. It is known that when

individual preferences over a product set of social alternatives are separable and form a suitably

rich domain, strategy-proof social choice rules are products of strategy-proof “sub-rules”defined

on the marginal profiles of preferences over the components of the social alternatives. Le Breton

and Sen (1999) offer general theorems of this type; earlier papers proving variants of the result

include Border and Jordan (1983), Barberà, Sonnenschein and Zhou (1991), and Barberà, Gul and

Stacchetti (1993). This decomposition property does not hold in our setting. The reason is that

subjective expected utility preferences do not form a rich domain. Le Breton and Sen’s (1999)

richness condition requires that for any collection of admissible preferences over the components of

the social alternatives there exists a preference over the social alternatives which induces marginal

preferences over components coinciding with the ones in that collection. Since in our setting all

the state-contingent preferences over outcomes induced by a subjective expected utility preference

over acts are the same, Le Breton and Sen’s condition is violated. It is this lack of richness that

allows one to define non-decomposable rules where beliefs affect the states where each agent’s top
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outcome is selected.

2 Definitions

There is a finite set of agents N = {1, ..., n} with n ≥ 2, a finite set of states of the world

Ω = {ω1, ..., ωK} with K ≥ 2, and a finite set of outcomes X = {x1, ..., xM} with M ≥ 3. Subsets

of Ω are called events. The set of acts is F := XΩ. Agent i’s preference ordering <i over acts is
assumed to be of the subjective expected utility type: there exist a valuation function vi : X → R
and a subjective probability measure pi on the set of events such that for all f, f ′ ∈ F ,

f %i f ′ ⇔
∑
ω∈Ω

pi(ω)vi(f(ω)) ≥
∑
ω∈Ω

pi(ω)vi(f
′(ω)),

where we write ω instead of {ω} to alleviate notation. Of course, since the set of acts is finite, nei-
ther the valuation function vi nor the subjective probability measure pi representing the preference

ordering <i are determined uniquely.
Throughout the paper, we assume that <i is a linear ordering. Since the set of acts is finite,

this is not an outrageous assumption. It implies that for any (pi, vi) representing <i, (i) vi is
injective and (ii) pi is injective: for all E,E ′ ⊆ Ω, pi(E) = pi(E

′) ⇒ E = E ′. Because pi(∅) = 0,

it follows from (ii) that pi(ω) > 0 for all ω ∈ Ω. We further assume, without loss of generality,

that vi is normalized: minX vi = 0 < maxX vi = 1.We denote by V the set of normalized injective
valuation functions vi and by P the set of (necessarily positive) injective measures pi.
A (social choice) rule is a function ϕ : VN × PN → F . If (v, p) ∈ VN × PN and ω ∈ Ω, we

denote by ϕ(v, p;ω) the outcome chosen by the act ϕ(v, p) in state ω. We call v = (v1, ..., vn) ∈ VN

a valuation profile and p = (p1, ..., pn) ∈ PN a belief profile. A rule assigns an act to each

profile of valuations and beliefs. We emphasize that the chosen act is allowed to change when an

agent’s valuation function is replaced with another that induces the same ranking of the outcomes:

no information about individual preferences over acts is a priori discarded. Note also that, in

principle, our formulation allows a rule ϕ to choose different acts for profiles of valuations and

beliefs (v, p) and (v′, p′) that represent the same profile of preferences (<1, ...,<n). Of course,

the requirement of strategy-proofness defined below will rule this out: in effect, a strategy-proof

rule assigns an act to every profile of subjective expected utility preferences (<1, ...,<n) over acts.

With a slight abuse of terminology, we therefore call any (v, p) ∈ VN × PN a preference profile.
We denote the set of social choice rules by Φ(N).

As usual, v−i ∈ VN\{i} and p−i ∈ PN\{i} denote the valuation and belief sub-profiles obtained
by deleting vi from v and pi from p, respectively. A rule ϕ is strategy-proof if, for all i ∈ N, all
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(vi, pi), (v
′
i, p
′
i) ∈ V × P , and all (v−i, p−i) ∈ VN\{i} × PN\{i},∑

ω∈Ω

pi(ω)vi(ϕ(v, p;ω)) ≥
∑
ω∈Ω

pi(ω)vi(ϕ((v′i, v−i), (p
′
i, p−i);ω)).

This means that distorting one’s preferences —by misrepresenting one’s valuation function or one’s

beliefs— is never profitable. A weaker condition rules out misrepresentations of one’s valuation

function: ϕ is misvaluation-proof if, for all i ∈ N, all vi, v′i ∈ V , all v−i ∈ VN\{i}, and all p ∈ PN ,

∑
ω∈Ω

pi(ω)vi(ϕ(v, p;ω)) ≥
∑
ω∈Ω

pi(ω)vi(ϕ((v′i, v−i), p;ω)).

A rule ϕ is ex-post effi cient if for all (v, p) ∈ VN ×PN and all ω ∈ Ω, there is no x ∈ X such that

vi(x) > vi(ϕ(v, p;ω)) for all i ∈ N. This requirement does not imply that the acts chosen by ϕ are
(ex-ante Pareto) effi cient at all preference profiles.

3 Results

Throughout this section we assume that N = {1, 2} . For any vi ∈ V , let τ(vi) denote the unique

maximizer (or top) of vi in X. A rule ϕ ∈ Φ({1, 2}) is a top selection if ϕ(v, p;ω) ∈ {τ(v1), τ(v2)}
for all (v, p) ∈ V{1,2} × P{1,2} and all ω ∈ Ω.

Proposition 1. If a social choice rule ϕ ∈ Φ({1, 2}) is misvaluation-proof and ex-post effi cient,
then ϕ is a top selection.

All proofs are in the Appendix.

Proposition 1 says that misvaluation-proofness and ex-post effi ciency forbid choosing acts that

select “compromise outcomes”. Suppose that X = {a, b, c} and consider a preference profile (v, p)

such that v1(a) = v2(c) = 1, v1(b) = v2(b) = .99, v1(c) = v2(a) = 0, and p1(b) = p2(b) = .99.

By Proposition 1, the natural compromise b cannot be picked in any state of the world at this

profile. The only admissible form of compromise consists in allowing different agents to choose

the final outcome in different states of the world. An obvious corollary is that no two-agent

misvaluation-proof rule is (ex-ante Pareto) effi cient.

Proposition 1 implies that, if a two-agent social choice rule ϕ is strategy-proof and ex-post

effi cient, the state space must be partitioned into an event where agent 1 dictates the outcome

and a complementary event where agent 2 does: there exists a function σ : V{1,2} × P{1,2} → 2Ω

such that

ϕ(v, p;ω) =

{
τ(v1) if ω ∈ σ(v, p),

τ(v2) if ω ∈ {σ(v, p),

where {E denotes the complement of event E in Ω. The function σ is essentially unique: the event

σ(v, p) is uniquely defined at every profile (v, p) where τ(v1) 6= τ(v2); it is indeterminate if and
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only if τ(v1) = τ(v2). Proposition 1, however, is not a characterization result: it does not spell out

the restrictions that strategy-proofness implies on the function σ associated with ϕ. Our first step

in that direction is recorded in Proposition 2 below. It asserts that the valuation profile cannot

be used to partition the state space: the chosen partition may only depend upon the belief profile

p.1 Call a function s : P{1,2} → 2Ω an (Ω-) assignment rule.

Proposition 2. If a social choice rule ϕ ∈ Φ({1, 2}) is strategy-proof and ex-post effi cient, then
there exists a unique Ω-assignment rule s such that, for all (v, p) ∈ V{1,2} ×P{1,2} and all ω ∈ Ω,

ϕ(v, p;ω) =

{
τ(v1) if ω ∈ s(p),
τ(v2) if ω ∈ {s(p).

(1)

When (1) holds, we say that s is associated with, or generates, ϕ. We are now left with the

task of identifying the restrictions that strategy-proofness of a social choice rule ϕ implies on

its associated assignment rule s. With a slight abuse of terminology, let us call s : P{1,2} → 2Ω

strategy-proof if misrepresenting one’s belief never allows one to obtain an event that one judges

more likely:

p1(s(p1, p2)) ≥ p1(s(p′1, p2)) for all p1, p
′
1, p2 ∈ P ,

p2({s(p1, p2)) ≥ p2({s(p1, p
′
2)) for all p1, p2, p

′
2 ∈ P.

If ϕ is strategy-proof, its associated assignment rule s must also be strategy-proof.2 Conversely,

if an Ω-assignment rule s is strategy-proof, it is clear that the two-agent top-selection rule ϕ it

generates is strategy-proof.3

There are two basic types of strategy-proof Ω-assignment rules. The first type uses the beliefs

of (at most) one agent. That agent receives from an exogenous menu the event that she reports

to be the most likely; the complement of that event is then assigned to the other agent. Formally,

an Ω-assignment rule s is dictatorial if there exists a nonempty collection E of non-nested events
such that s(p) maximizes p1 over E for all p ∈ P{1,2} (in which case agent 1 is called a dictator) or

{s(p) maximizes p2 over
{
{E : E ∈ E

}
for all p ∈ P{1,2} (in which case agent 2 is called a dictator).

The range of such an assignment rule is E ; its size may be as large as the maximal number of
1More precisely: the assignment σ(v, p) cannot vary with v at any profile (v, p) where τ(v1) 6= τ(v2). If τ(v1) =

τ(v2), the assignment σ(v, p) could be affected by a change in v that leaves τ(v1), τ(v2) unchanged. But since
τ(v1) = τ(v2), this is immaterial: σ can always be replaced with an assignment function that is constant in v and
generates the same social choice rule ϕ.

2The problem of describing the strategy-proof assignment rules is mathematically equivalent to the problem of
describing the stratgy-proof procedures for allocating strictly desirable indivisible objects to agents with additive
preferences over sets of such objects. Some such procedures have been studied in the literature (see, e.g., Pápai
(2007)) but no general characterization is known.

3This converse statement does not extend to more than two agents.
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non-nested events.4 As usual, dictatorship is understood to hold on the range of the rule. If E
contains a single event, then s is constant and both agents are (trivial) dictators.

The second basic type of strategy-proof Ω-assignment rule uses the beliefs of both agents.

Two non-nested events are exogenously selected from the state space. The first event is assigned

to agent 1 and its complement is assigned to agent 2 unless agent 1 reports that she finds the

second event more likely than the first and agent 2 reports the opposite belief. In that case the

second event is assigned to agent 1 and its complement is assigned to agent 2. We call such rules

consensual assignment rules. Formally, s is consensual (with default B) if there exist two non-

nested events A,B ⊆ Ω such that for all (p1, p2) ∈ P{1,2} we have s(p1, p2) = A if p1(A) > p1(B)

and p2({A) > p2({B), and s(p1, p2) = B otherwise. The range of a consensual Ω-assignment rule

is of size two.

Our next result is a complete characterization of the two-agent strategy-proof and ex-post

effi cient social choice rules for the particular case where the state space is of size two.

Proposition 3. Suppose Ω = {ω1, ω2}. A social choice rule ϕ ∈ Φ({1, 2}) is strategy-proof
and ex-post effi cient if and only if there exists a dictatorial or consensual Ω-assignment rule

s : P{1,2} → 2Ω such that, for all (v, p) ∈ V{1,2} × P{1,2} and all ω ∈ Ω,

ϕ(v, p;ω) =

{
τ(v1) if ω ∈ s(p),
τ(v2) if ω ∈ {s(p).

The important point is that the mechanism designer is allowed to use the agents’beliefs to

determine in which state their top outcome is selected. This leads to possible Pareto improvements

with respect to the less sophisticated rules where the states in which each agent’s top outcome

is selected are fixed exogenously. For instance, consider the social choice rule ϕs generated by

the consensual assignment rule s(p1, p2) = {ω2} if p1(ω2) > p1(ω1) and p2(ω2) < p2(ω1), and

s(p1, p2) = {ω1} otherwise: an agent’s top outcome is selected in the event bearing her name
unless both agents prefer to swap their “endowment events”. This social choice rule Pareto-

dominates the rule ϕ(v, p;ωi) = t(vi) where an agent’s top outcome is always selected in the event

bearing her name.

Let us now return to state spaces of arbitrary size. Dictatorial Ω-assignment rules are fairly

flexible (in the sense that their range may be large) but they are exceedingly asymmetric. Con-

sensual rules are more symmetric (as they use both agents’beliefs) but they are extremely rigid

(since their range contains only two events). When there are more than two states, these two

basic types of rules can be combined to produce more balanced procedures. For each event Ωt in

an exogenously specified partition of Ω, the mechanism designer may use a different dictatorial

or consensual Ωt-assignment rule to assign the states belonging to that event. Because subjective

4By a theorem of Sperner (1928), this number is
(

K
bK/2c

)
.
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expected utility preferences are separable, the resulting social choice rule will be strategy-proof.

Formally, fix a partition {Ω1, ...,ΩT} of Ω. For t = 1, ..., T, let Pt denote the set of injective
probability measures on 2Ωt . If p ∈ P{1,2} and i ∈ {1, 2} , define pi,t ∈ Pt by

pi,t(E) =
pi(E)

pi(Ωt)
for all E ∈ 2Ωt

and pt = (p1,t, p2,t) : this is the profile of conditional probability measures on 2Ωt generated by p.

An Ωt-assignment rule is a function st : (Pt){1,2} → 2Ωt . Extending our earlier terminology, we call

st dictatorial if there exists a nonempty collection Et of non-nested subsets of Ωt such that st(pt)

maximizes p1,t over Et for all pt ∈ (Pt){1,2} or {tst(pt) maximizes p2,t over
{
{tE : E ∈ Et

}
for all

pt ∈ (Pt){1,2} (where {tE := Ωt \ E). We call st consensual (with default B) if there exist two
non-nested sets A,B ⊆ Ωt such that for all pt ∈ (Pt){1,2} we have st(pt) = A if p1,t(A) > p1,t(B)

and p2,t({tA) > p2,t({tB), and st(pt) = B otherwise.

Proposition 4. Let {Ω1, ...,ΩT} be a partition of Ω. For each t = 1, ..., T, let st : (Pt){1,2} → 2Ωt

be a dictatorial or consensual Ωt-assignment rule. For all (v, p) ∈ V{1,2} × P{1,2} and all ω ∈ Ω,

let

ϕ(v, p;ω) =

{
τ(v1) if ω ∈ ∪Tt=1st(pt),

τ(v2) otherwise.

The social choice rule ϕ ∈ Φ({1, 2}) so defined is strategy-proof and ex-post effi cient.

The proof follows directly from Proposition 3 and the fact that subjective expected utility

preferences are additively separable; we therefore omit it.

To illustrate the richness of the class identified in Proposition 4 and the flexibility of some of

the rules it contains, we describe two examples for the case of 4 states of the world. It will be

convenient to write pik instead of pi(ωk) and ϕ(v, p;ω) = i instead of ϕ(v, p;ω) = τ(vi).

Example 1. The exogenous partition of the state space is {Ω1,Ω2} = {{ω1, ω2} , {ω3, ω4}} . The
Ω1-assignment rule s1 has agent 1 dictate over E1 = {{ω1} , {ω2}} and the Ω2-assignment rule s2

has agent 2 dictate over E2 = {{ω3} , {ω4}} . The resulting social choice rule ϕ is shown in the
table below.

p11 > p12 p11 < p12

p23 < p24 (1, 2, 1, 2) (2, 1, 1, 2)

p23 > p24 (1, 2, 2, 1) (2, 1, 2, 1)

The first cell means that (ϕ(v, p;ω1), ϕ(v, p;ω2), ϕ(v, p;ω3), ϕ(v, p;ω4)) = (τ(v1), τ(v2), τ(v1), τ(v2))

whenever p1(ω1) > p1(ω2) and p2(ω3) < p2(ω4).

Example 2. The exogenous partition of the state space is {Ω1,Ω2} = {{ω1, ω2} , {ω3, ω4}} . The
Ω1-assignment rule s1 is consensual with default {ω1} , the Ω2-assignment rule s2 has agent 2

dictate over E2 = {{ω3} , {ω4}} . The resulting social choice rule ϕ is shown below; its range is the
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same as in the previous example but the rule uses more information.

p11 > p12 p11 < p12

p21 < p22 and p23 < p24 (1, 2, 1, 2) (1, 2, 1, 2)

p21 < p22 and p23 > p24 (1, 2, 2, 1) (1, 2, 2, 1)

p21 > p22 and p23 < p24 (1, 2, 1, 2) (2, 1, 1, 2)

p21 > p22 and p23 > p24 (1, 2, 2, 1) (2, 1, 2, 1)

4 Concluding comments

Our results are obviously a very small step towards a complete characterization; we hope they will

stimulate more research on what appears to be a diffi cult problem.

In the two-agent case, we conjecture that all ex-post effi cient strategy-proof rules are of the

type described in Proposition 4.

The n-agent case is wide open. We do not know whether Proposition 1 generalizes. An n-agent

ex-post effi cient and strategy-proof rule can be shown to be a top selection in the particular case

where it is restricted to use only the agents’beliefs and their preference orderings over outcomes:

this is the analog of Gibbard’s (1977) assumption in the setting of lotteries. Rules of the variety

described in Proposition 4 can be defined; they are strategy-proof if, for each component of the

underlying partition of the state space, the corresponding assignment rule involves only two agents.

5 Appendix

5.1 Proof of Proposition 1

Fix a misvaluation-proof and ex-post effi cient rule ϕ ∈ Φ({1, 2}) and a belief profile p = (p1, p2) ∈
P{1,2}. For any w ∈ V{1,2} and A ⊆ X, define ΩA(w) = {ω ∈ Ω | ϕ(w, p;ω) ∈ A} . This is the set
of states for which the act chosen at the profile (w, p) picks an outcome in A. We write Ωa(w),

Ωab(w), Ωabc(w) instead of Ω{a}(w), Ω{a,b}(w), Ω{a,b,c}(w).

Lemma 1. Let a, b, c ∈ X be three distinct outcomes.

(i) If (v1, v2), (w1, w2) ∈ V{1,2} are such that

1 = v1(a), 1 = v2(b) > v2(a) > v2(x) for all x ∈ X \ {a, b} ,
1 = w1(c), 1 = w2(b) > w2(c) > w2(x) for all x ∈ X \ {b, c} ,

then Ωb(v1, v2) = Ωb(w1, w2).
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(ii) If (v1, v2), (w1, w2) ∈ V{1,2} are such that

1 = v2(a), 1 = v1(b) > v1(a) > v1(x) for all x ∈ X \ {a, b} ,
1 = w2(c), 1 = w1(b) > w1(c) > w1(x) for all x ∈ X \ {b, c} ,

then Ωb(v1, v2) = Ωb(w1, w2).

Proof. We only prove statement (i); up to a permutation of the agents, the proof of statement
(ii) is identical. Fix (v1, v2), (w1, w2) ∈ V{1,2} satisfying the premises of statement (i). If 0 <

ε1, ε2, δ1, δ2 < 1, construct (vε11 , v
ε2
2 ), (wδ11 , w

δ2
2 ) ∈ V{1,2} such that

1 = vε11 (a) > 1− ε1 = vε11 (c) > vε11 (x) > 0 = vε11 (b) for all x ∈ X \ {a, b, c} ,
1 = vε22 (b) > ε2 = vε22 (a) > vε22 (x) for all x ∈ X \ {a, b} ,
1 = wδ11 (c) > 1− δ1 = wδ11 (a) > wδ11 (x) > 0 = wδ11 (b) for all x ∈ X \ {a, b, c} ,
1 = wδ22 (b) > δ2 = wδ22 (c) > wδ22 (x) for all x ∈ X \ {b, c} .

Step 1. By ex-post effi ciency,

Ωab(v1, v2) = Ωab(v
ε1
1 , v

ε2
2 ) = Ωbc(w1, w2) = Ωbc(w

δ1
1 , w

δ2
2 ) = Ω (2)

and

Ωabc(w
δ1
1 , v

ε2
2 ) = Ω. (3)

for all ε1, ε2, δ1, δ2 ∈ (0, 1).

Step 2. By misvaluation-proofness and (2),

Ωx(v1, v2) = Ωx(v
ε1
1 , v

ε2
2 ) for x = a, b and all ε1, ε2 ∈ (0, 1),

Ωx(w1, w2) = Ωx(w
δ1
1 , w

δ2
2 ) for x = b, c and all δ1, δ2 ∈ (0, 1).

Step 3. Because Ω is finite and p1, p2 are injective, we have

min
E,E′⊆Ω:
E 6=E′

|pi(E)− pi(E ′)| =: αi > 0 for i = 1, 2. (4)

We claim that

Ωb(w
δ1
1 , v

α2
2 ) = Ωb(w

α1
1 , vα22 ) whenever 0 < δ1 < α1, (5)

and

Ωb(w
α1
1 , vε22 ) = Ωb(w

α1
1 , vα22 ) whenever 0 < ε2 < α2. (6)

10



Suppose not.

Case 1: Statement (5) is false.
Since p1 is injective, (i) there exists δ1 ∈ (0, α1) such that p1(Ωb(w

δ1
1 , v

α2
2 )) > p1(Ωb(w

α1
1 , vα22 ))

or (ii) there exists δ1 ∈ (0, α1) such that p1(Ωb(w
δ1
1 , v

α2
2 )) < p1(Ωb(w

α1
1 , vα22 )).

Suppose (i) holds. Fix agent 2’s valuation at vα22 . Let agent 1’s true valuation be wδ11 . Reporting

truthfully gives a utility not higher than 1 − p1(Ωb(w
δ1
1 , v

α2
2 )) while reporting wα11 yields at least

[1− p1(Ωb(w
α1
1 , vα22 ))] (1− δ1). The utility gain from misrepresenting is at least

[1− p1(Ωb(w
α1
1 , vα22 ))] (1− δ1)−

[
1− p1(Ωb(w

δ1
1 , v

α2
2 ))

]
=

[
p1(Ωb(w

δ1
1 , v

α2
2 ))− p1(Ωb(w

α1
1 , vα22 ))

]
− [1− p1(Ωb(w

α1
1 , vα22 ))] δ1

≥ p1(Ωb(w
δ1
1 , v

α2
2 ))− p1(Ωb(w

α1
1 , vα22 ))− δ1

≥ α1 − δ1

> 0,

contradicting misvaluation-proofness.

If (ii) holds, a similar contradiction is obtained when agent 1 has valuation wα11 and reports

wδ11 .

Case 2: Statement (6) is false.
Interchanging the roles of the agents and using the fact that p2 is injective, a completely

symmetric argument delivers again a contradiction to misvaluation-proofness.

Step 4. We claim that Ωb(w
α1
1 , vα22 ) = Ωb(v1, v2).

Let agent 2’s reported valuation be vα22 ; this is fixed throughout the proof of Step 4.

Suppose agent 1’s true valuation is vε11 , where 0 < ε1 < 1. By (2) in Step 1,

Ωab(v
ε1
1 , v

α2
2 ) = Ω

and by Step 2,

Ωx(v
ε1
1 , v

α2
2 ) = Ωx(v1, v2) for x = a, b.

Truthfully reporting vε11 yields the utility p1(Ωa(v
ε1
1 , v

α2
2 )) = p1(Ωa(v1, v2)). Reporting wα11 yields

p1(Ωa(w
α1
1 , vα22 ))+ p1(Ωc(w

α1
1 , vα22 ))(1− ε1). Misvaluation-proofness thus requires p1(Ωa(v1, v2)) ≥

p1(Ωa(w
α1
1 , vα22 ))+ p1(Ωc(w

α1
1 , vα22 ))(1 − ε1). None of the three events in this inequality changes

with ε1. Therefore, letting ε1 → 0 yields p1(Ωa(v1, v2)) ≥ p1(Ωac(w
α1
1 , vα22 )). Since by Step 1

Ωab(v1, v2) = Ω = Ωabc(w
α1
1 , vα22 ), we get

p1(Ωb(v1, v2)) ≤ p1(Ωb(w
α1
1 , vα22 )). (7)

Next, suppose agent 1’s true valuation is wα11 . Truth-telling yields a utility of at most 1 −

11



p1(Ωb(w
α1
1 , vα22 )).Reporting vε11 , 0 < ε1 < 1, gives (1−α1)p1(Ωa(v

ε1
1 , v

α2
2 )) = (1−α1) [1− p1(Ωb(v

ε1
1 , v

α2
2 ))] =

(1 − α1) [1− p1(Ωb(v1, v2))]. Misvaluation-proofness therefore requires 1 − p1(Ωb(w
α1
1 , vα22 )) ≥

(1− α1) [1− p1(Ωb(v1, v2))] , that is,

p1(Ωb(v1, v2)) ≥ p1(Ωb(w
α1
1 , vα22 ))− α1

1− α1

> p1(Ωb(w
α1
1 , vα22 ))− α1. (8)

Combining inequalities (7) and (8) gives

p1(Ωb(w
α1
1 , vα22 ))− α1 < p1(Ωb(v1, v2)) ≤ p1(Ωb(w

α1
1 , vα22 )).

By definition of α1, this means that Ωb(w
α1
1 , vα22 ) = Ωb(v1, v2).

Step 5. We claim that Ωb(w
α1
1 , vα22 ) = Ωb(w1, w2).

Let agent 1’s reported valuation be fixed at wα11 .

Suppose agent 2’s true valuation is wδ22 , where 0 < δ2 < 1. By Step 2,

Ωx(w
α1
1 , wδ22 ) = Ωx(w1, w2) for x = b, c, (9)

hence by Step 1,

Ωbc(w
α1
1 , wδ22 ) = Ω. (10)

Truthfully reportingwδ22 yields the utility p2(Ωb(w
α1
1 , wδ22 )) + p2(Ωc(w

α1
1 , wδ22 ))δ2 = p2(Ωb(w1, w2))

+ p2(Ωc(w1, w2))δ2 because of (9). Reporting v
α2
2 yields at least p2(Ωb(w

α1
1 , vα22 ))+ p2(Ωc(w

α1
1 , vα22 ))δ2.

Misvaluation-proofness thus requires p2(Ωb(w1, w2)) +p2( Ωc(w1, w2))δ2 ≥ p2(Ωb(w
α1
1 , vα22 )) + p2(Ωc

(wα11 , vα22 ))δ2. None of the four events in this inequality changes with δ2. Therefore, letting δ2 → 0

yields

p2(Ωb(w1, w2)) ≥ p2(Ωb(w
α1
1 , vα22 )). (11)

Next, suppose agent 2’s true valuation is vε22 . Truth-telling yields a utility of at most p2(Ωb(w
α1
1 , vα22 ))

+ [1− p2(Ωb(w
α1
1 , vα22 )]α2. Reporting w

α2
2 gives at least p2(Ωb(w

α1
1 , wα22 )) = p2(Ωb(w1, w2)), where

the equality holds by Step 2. Misvaluation-proofness thus requires p2 (Ωb (wα11 , vα22 )) + [1−
p2(Ωb (wα11 , vα22 )]α2 ≥ p2(Ωb(w1, w2)). Because none of the three events in this inequality varies

with ε2, letting ε2 → 0 gives

p2(Ωb(w
α1
1 , vα22 )) ≥ p2(Ωb(w1, w2)). (12)

Inequalities (11), (12) and the fact that p2 is injective give Ωb(w
α1
1 , vα22 ) = Ωb(w1, w2).

Steps 4 and 5 together establish that Ωb(v1, v2) = Ωb(w1, w2).�
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Lemma 2. Let a, b, c ∈ X be three distinct outcomes. If (v1, v2), (w1, w2) ∈ V{1,2} are such that

1 = w1(c), 1 = v1(a) > v1(c) > v1(x) for all x ∈ X \ {a, c} ,
1 = w2(c), 1 = v2(b) > v2(c) > v2(x) for all x ∈ X \ {b, c} ,

then Ωc(v1, w2) ∩ Ωc(w1, v2) = ∅.

Proof. Let (v1, v2), (w1, w2) ∈ V{1,2} satisfy the assumptions of the lemma. Let (ṽ1, ṽ2) ∈ V{1,2}

be such that

1 = ṽ1(a) > ṽ1(b) > ṽ1(x) for all x ∈ X \ {a, b} ,
1 = ṽ2(b) > ṽ2(a) > ṽ2(x) for all x ∈ X \ {a, b} .

By statement (i) in Lemma 1, Ωb(w1, v2) = Ωb(ṽ1, ṽ2). Since by ex-post effi ciency Ωbc(w1, v2) =

Ωab(ṽ1, ṽ2) = Ω, it follows that

Ωc(w1, v2) = Ωa(ṽ1, ṽ2).

By statement (ii) in Lemma 1, Ωa(v1, w2) = Ωa(ṽ1, ṽ2). Since by ex-post effi ciency Ωac(v1, w2) =

Ωab(ṽ1, ṽ2) = Ω, it follows that

Ωc(v1, w2) = Ωb(ṽ1, ṽ2),

and therefore Ωc(v1, w2) ∩ Ωc(w1, v2) = ∅.�

Proof of Proposition 1. For any v = (v1, v2) ∈ V{1,2} such that τ(v1) = τ(v2), ex-post effi ciency

directly implies that ϕ(v, p;ω) = τ(v1) = τ(v2) for all ω ∈ Ω. From now on, fix two arbitrary

distinct outcomes a, b, let V(a) = {v1 ∈ V | τ(v1) = a} and V(b) = {v2 ∈ V | τ(v2) = b} . We will
show that Ωab(v) = Ω for all v ∈ V(a)× V(b).

Fix c ∈ X \ {a, b} . Let V∗(acb) ⊆ V(a) be the set of all valuation functions v1 such that

1 = v1(a) > v1(c) > 1− α1 > v1(x) > 0 = v1(b) for all x ∈ X \ {a, b, c} , (13)

and let V∗(bca) ⊆ V(b) be the set of all valuation functions v2 such that

1 = v2(b) > v2(c) > 1− α2 > v2(x) > 0 = v1(a) for all x ∈ X \ {a, b, c} . (14)

Step 1. We show that there exist Ω∗a, Ω∗b , Ω∗c ⊆ Ω such that

Ωx(v) = Ω∗x for all v ∈ V∗(acb)× V∗(bca) and x = a, b, c. (15)

Suppose not. Without loss of generality, assume Ωx(v1, v2) 6= Ωx(v
′
1, v2) for some v1, v

′
1 ∈
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V∗(acb), some v2 ∈ V∗(bca), and some x ∈ {a, b, c} ; the other possible cases are similar. Because

v1 and v′1 rank a, b, c in the same order and Ωabc(v1, v2) = Ωabc(v
′
1, v2) = Ω by ex-post effi ciency,

misvaluation-proofness implies that Ωx(v1, v2) 6= Ωx(v
′
1, v2) for all x ∈ {a, b, c} .

Let v1(c) = 1− δ1, v
′
1(c) = 1− δ′1, where by assumption 0 < δ1, δ

′
1 < α1. Suppose, without loss

of generality, that p1(Ωb(v1, v2)) > p1(Ωb(v
′
1, v2)) (the case p1(Ωb(v1, v2)) < p1(Ωb(v

′
1, v2) is treated

symmetrically). By definition of α1, p1(Ωb(v1, v2)) − p1(Ωb(v
′
1, v2)) ≥ α1. Fix agent 2’s valuation at

v2. If agent 1’s valuation is v1, reporting truthfully gives a utility not higher than 1−p1(Ωb(v1, v2))

while reporting v′1 yields at least [1− p1(Ωb(v
′
1, v2))] (1−δ1). The utility gain from misrepresenting

is at least

[1− p1(Ωb(v
′
1, v2))] (1− δ1)− [1− p1(Ωb(v1, v2))]

= [p1(Ωb(v1, v2))− p1(Ωb(v
′
1, v2))]− [1− p1(Ωb(v

′
1, v2))] δ1

≥ p1(Ωb(v1, v2))− p1(Ωb(v
′
1, v2))− δ1

≥ α1 − δ1

> 0,

contradicting misvaluation-proofness. This proves Step 1.

Step 2. By ex-post effi ciency, Ω∗abc = Ω. We show that Ω∗ab = Ω, that is, Ωab(v) = Ω for all

v ∈ V∗(acb)× V∗(bca).

Let v = (v1, v2) ∈ V∗(acb)×V∗(bca). Let v1(c) = 1−δ1 and v2(c) = 1−δ2, where by assumption

0 < δ1 < α1 and 0 < δ2 < α2.

Step 2.1. Let w1 ∈ V be such that 1 = w1(c) > w1(a) > w1(x) for all x ∈ X \ {a, c} . We claim
that

Ωc(w1, v2) = Ω∗ac. (16)

Fix agent 2’s valuation at v2. For 0 < ε < 1, let wε1 ∈ V be such that

1 = wε1(c) > 1− ε = wε1(a) > wε1(x) > 0 = wε1(b) for all x ∈ X \ {a, b, c} .

By ex-post effi ciency, Ωbc(w
ε
1, v2) = Ωbc(w1, v2) = Ω whenever 0 < ε < 1. Using these equalities,

misvaluation-proofness directly implies that Ωx(w
ε
1, v2) = Ωx(w1, v2) for x = b, c.

If agent 1’s valuation iswε1, preventing her from reporting v1 requires p1(Ωc(w1, v2)) ≥ p1(Ωc(v1, v2))+

p1(Ωa(v1, v2))(1− ε) = p1(Ω∗c) + p1(Ω∗a)(1− ε). Letting ε→ 0 gives

p1(Ωc(w1, v2)) ≥ p1(Ω∗ac). (17)

If agent 1’s valuation is v1, truth-telling yields a utility of p1(Ω∗a)+p1(Ω∗c)(1−δ1) while reporting

14



w1 gives at least p1(Ωc(w1, v2))(1− δ1). Applying misvaluation-proofness and letting δ1 → 0 gives

p1(Ω∗ac) ≥ p1(Ωc(w1, v2)). (18)

Since p1 is injective, (17) and (18) imply (16).

Step 2.2. Let w2 ∈ V be such that 1 = w2(c) > w2(b) > w2(x) for all x ∈ X \ {b, c} . We claim
that

Ωc(v1, w2) = Ω∗bc. (19)

Up to a permutation of players 1 and 2 and a permutation of outcomes a and b, the proof is

identical to that of (16) and therefore omitted.

Step 2.3. From (16) and (19) we obtain Ω∗c ⊆ Ω∗ac ∩ Ω∗bc = Ωc(w1, v2) ∩ Ωc(v1, w2). By Lemma 2,

Ωc(w1, v2) ∩ Ωc(v1, w2) = ∅. Therefore Ω∗c = ∅, hence Ω∗ab = Ω.

Step 3. We show that Ωab(v) = Ω for all v ∈ V∗(acb)× V(b) and for all v ∈ V(a)× V∗(bca).

Let v = (v1, v2) ∈ V∗(acb) × V(b); the case v ∈ V(a) × V∗(bca) is similar. Let v1(c) = 1 − δ1,

0 < δ1 < α1. Let C denote the set of outcomes other than a and b which are ex-post effi cient at v.

If C = ∅, ex-post effi ciency directly implies Ωab(v) = Ω. Assume from now on that C 6= ∅. Define
max {v2(x) | x ∈ C} = 1− k and note that v2(a) < 1− k < 1.

For 0 < δ2 < α2, let u
δ2
2 ∈ V be such that

1 = uδ22 (b) > uδ22 (c) ≥ uδ22 (x) ≥ 1− δ2 > 0 = uδ22 (a) for all x ∈ C.

Since (v1, u
δ2
2 ) ∈ V∗(acb) × V∗(bca), Steps 1 and 2 imply Ωx(v1, u

δ2
2 ) = Ω∗x for x = a, b and

Ωab(v1, u
δ2
2 ) = Ω∗ab = Ω.

Fix agent 1’s valuation at v1. If agent 2’s valuation is u
δ2
2 , truth-telling yields p2(Ω∗b) while

reporting v2 gives at least p2(Ωb(v1, v2))+ p2(ΩC(v1, v2))(1− δ2). Applying misvaluation-proofness

and letting δ2 → 0 gives

p2(Ω∗b) ≥ p2(Ωb∪C(v1, v2)). (20)

If agent 2’s valuation is v2, preventing her from reporting uδ22 , 0 < δ2 < α2, requires

p2(Ωb(v1, v2)) + p2(ΩC(v1, v2))(1− k) + [1− p2(Ωb∪C(v1, v2))] v2(a) (21)

≥ p2(Ω∗b) + [1− p2(Ω∗b)] v2(a).

Because v2(a) < 1−k, (21) implies p2(Ωb∪C(v1, v2)) ≥ p2(Ω∗b). Hence, from (20), p2(Ωb∪C(v1, v2)) =

p2(Ω∗b). Since 1 − k < 1, (21) then implies p2(ΩC(v1, v2)) = 0. Since p2 is injective we get

ΩC(v1, v2) = ∅, hence by ex-post effi ciency Ωab(v1, v2) = Ω.

Step 4. We show that Ωab(v) = Ω for all v ∈ V(a)× V(b).
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Simply repeat the argument in Step 3 with the set V(a)× V(b) instead of V∗(acb)× V(b), the

set V∗(acb)× V(b) instead of V∗(acb)× V∗(bca), and the word “Step 3”instead of “Step 2”.�

5.2 Proof of Proposition 2

Let ϕ ∈ Φ({1, 2}) be a strategy-proof and ex-post effi cient rule and let σ : V{1,2} × P{1,2} → 2Ω

be an assignment rule associated with ϕ. We claim that σ is generically constant in v in the sense

that

σ((vi, v−i), p) = σ((v′i, v−i), p)

for all p ∈ P{1,2}, i ∈ {1, 2} , v−i ∈ V, and vi, v′i ∈ V such that τ(vi) 6= τ(v−i) and τ(v′i) 6= τ(v−i).

Fix p ∈ P{1,2} and i ∈ {1, 2} , say i = 1. Fix v2 ∈ V and let v1, v
′
1 ∈ V be such that

τ(v1) 6= τ(v2) and τ(v′1) 6= τ(v2). Since p and v2 are fixed throughout the proof, we drop them

from our notation. Thus we must prove that

σ(v1) = σ(v′1). (22)

Step 1. We prove that (22) holds if τ(v1) = τ(v′1).

Let τ(v1) = τ(v′1) = a and τ(v2) = b. By our normalization convention, v1(a) = v′1(a) = 1 >

v1(b), v′1(b).

To prevent agent 1 from reporting v′1 when her true valuation is v1, we must have

p1(σ(v1)) + [1− p1(σ(v1))] v1(b) ≥ p1(σ(v′1)) + [1− p1(σ(v′1))] v1(b)

or equivalently

[p1(σ(v1))− p1(σ(v′1))] ≥ [p1(σ(v1))− p1(σ(v′1))] v1(b),

which implies

p1(σ(v1)) ≥ p1(σ(v′1)).

By a symmetrical argument, preventing agent 1 from reporting v1 when her true valuation is

v′1 requires the opposite weak inequality.

Hence p1(σ(v1)) = p1(σ(v′1)) and (22) follows because p1 is injective.

Step 2. We prove that (22) holds if τ(v1) 6= τ(v′1) and v1(τ(v′1)) and v′1(τ(v1)) are suffi ciently

close to 1. More precisely, let a, a′, b be three distinct outcomes and recall the definition

α1 := min
E,E′∈Ω:E 6=E′

|p1(E)− p1(E ′)| .
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Suppose τ(v1) = a, τ(v′1) = a′, τ(v2) = b. Let ε be such that

0 < ε < α1(1−max {v1(b), v′1(b)})

and suppose v1(a′) = v′1(a) = 1− ε. We claim that σ(v1) = σ(v′1).

To see why, suppose p1(σ(v′1)) > p1(σ(v1)). By definition of α1, there exists a number δ such

that

p1(σ(v′1))− p1(σ(v1)) = δ > α1 > 0.

By reporting v′1 when her true valuation is v1, agent 1 gains

[p1(σ(v′1))v1(a′) + (1− p1(σ(v′1)))v1(b)]− [p1(σ(v1)) + (1− p1(σ(v1)))v1(b)]

= [p1(σ(v′1))v1(a′)− p1(σ(v1))] + [p1(σ(v1))− p1(σ(v′1))] v1(b)

= p1(σ(v′1))(1− ε)− p1(σ(v1))− δv1(b)

= δ(1− v1(b))− εp1(σ(v′1))

> α1(1− v1(b))− ε
> 0,

violating strategy-proofness.

If p1(σ(v′1)) < p1(σ(v1)), a symmetrical argument shows that agent 1 gains by reporting v1

when her true valuation is v′1.

We conclude that p1(σ(v1)) = p1(σ(v′1)) and (22) follows because p1 is injective.

Step 3. To complete the proof of (22) in full generality, construct w1, w
′
1 ∈ V such that τ(w1) =

τ(v1), τ(w′1) = τ(v′1), and

w1(τ(w′1)) = w′1(τ(w1)) = 1− ε

for some ε such that 0 < ε < α1(1−max {w1(τ(v2)), w′1(τ(v2))}).
By Step 1, Step 2, and Step 1 again, σ(v1) = σ(w1) = σ(w′1) = σ(v′1). This proves that σ is

generically constant in v.

The proof is now completed by appealing to Proposition 1. Every two-agent strategy-proof

and ex-post effi cient rule ϕ is a top selection and we may assume, without loss of generality,

that the assignment rule σ associated with ϕ is constant in the reported valuations. Indeed, if

σ depends upon the valuations when their tops coincide, it can be replaced with a (necessarily

unique) function s partitioning Ω on the basis of the reported belief profile only.�
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5.3 Proof of Proposition 3

Proof of the “if” statement. The proof of the “if” part of Proposition 3 does not require

the assumption that the state space is of size two. Let the Ω-assignment rule s : P{1,2} → 2Ω be

dictatorial or consensual and define the social choice rule ϕ ∈ Φ({1, 2}) by

ϕ(v, p;ω) =

{
τ(v1) if ω ∈ s(p),
τ(v2) if ω ∈ {s(p).

Step 1. We check that s is strategy-proof.
This is obvious if s is dictatorial. If s is consensual, there exist non-nested events A,B such

that

s(p) =

{
A if p1(A) > p1(B) and p2({A) > p2({B),

B otherwise.

Let us check that agent 1 cannot profitably manipulate s at p by reporting p′1. The proof is similar

for agent 2.

Note that the range of s is {A,B} . If s(p) = A and s(p′1, p2) = B, then p1(s(p)) = p1(A)

> p1(B) = p1(s(p′1, p2)).Suppose next that s(p) = B and s(p′1, p2) = A. The second equality

implies p2({A) > p2({B), and the first then implies p1(A) < p1(B). It follows that p1(s(p)) =

p1(B) > p1(A) = p1(s(p′1, p2)).

Step 2. We check that ϕ is strategy-proof.
Let (v, p) ∈ V{1,2} ×P{1,2}. We check that agent 1 cannot profitably manipulate ϕ at (v, p) by

reporting (v′1, p
′
1). The proof is similar for agent 2. Agent 1’s expected utility from ϕ(v, p) is

p1(s(p))v1(τ(v1)) + [1− p1(s(p))] v1(τ(v2)).

Her expected utility from ϕ((v′1, p
′
1), (v2, p2)) is

p1(s(p′1, p2))v1(τ(v′1)) + [1− p1(s(p′1, p2))] v1(τ(v2))

≤ p1(s(p′1, p2))v1(τ(v1)) + [1− p1(s(p′1, p2))] v1(τ(v2))

≤ p1(s(p))v1(τ(v1)) + [1− p1(s(p))] v1(τ(v2)),

where the second inequality holds because p1(s(p′1, p2)) ≤ p1(s(p)) by strategy-proofness of s and

v1(τ(v1)) = 1 ≥ v1(τ(v2)).

Proof of the “only if”statement.
Let Ω = {ω1, ω2} and let ϕ ∈ Φ({1, 2}) be a strategy-proof and ex-post effi cient social choice

rule. By Proposition 2, there exists an Ω-assignment rule s such that, for all (v, p) ∈ V{1,2}×P{1,2}
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and all ω ∈ Ω,

ϕ(v, p;ω) =

{
τ(v1) if ω ∈ s(p),
τ(v2) if ω ∈ {s(p).

Because ϕ is strategy-proof, s must be strategy-proof.

Since s is strategy-proof, the events belonging to its range must be non-nested. Since Ω =

{ω1, ω2} , it follows that |Rs| = 1 or |Rs| = 2. If |Rs| = 1, then s is trivially dictatorial. If

|Rs| = 2, then Rs = {{ω1} , {ω2}} and we distinguish two cases.

Case 1: s is constant in p1 or p2.

Assume without loss of generality that s is constant in p2.We claim that agent 1 is a dictator.

Suppose not: there exists q ∈ P{1,2} such that, say, s(q) = {ω1} and q1(ω1) < q1(ω2). Since s

is strategy-proof, s(p1, q2) = {ω1} for all p1 ∈ P, that is, s(., q2) is a constant function of p1 at

q2. Since by assumption s(p1, .) is a constant function of p2 at every p1, it follows that s(., .) is

constant, contradicting the fact that Rs = {{ω1} , {ω2}}.

Case 1: s is varies with p1 and p2.

Then we may assume without loss of generality that there exist p1, p
′
1, p2, p

′
2 ∈ P such that

s(p) = {ω1} and s(p′1, p2) = s(p1, p
′
2) = {ω2} . (23)

Since s is strategy-proof, (23) implies that for all q1, q2 ∈ P ,

s(q1, p2) =

{
{ω1} if q1(ω1) > q1(ω2),

{ω2} if q1(ω1) < q1(ω2),
(24)

s(p1, q2) =

{
{ω1} if q2(ω1) < q2(ω2),

{ω2} if q2(ω1) > q2(ω2),
(25)

where we recall that the event assigned to agent 2 at (p1, q2) is Ω\s(p1, q2). To complete the proof,

we now check that

s(q1, q2) =

{
{ω1} if q1(ω1) > q1(ω2) and q2(ω1) < q2(ω2),

{ω2} if q1(ω1) < q1(ω2) or q2(ω1) > q2(ω2).

If q1(ω1) > q1(ω2) and q2(ω1) < q2(ω2), then (24) and (25) imply s(q1, p2) = s(p1, q2) = {ω1} .
Strategy-proofness then implies s(q1, q2) = {ω1} . Indeed, if s(q1, q2) = {ω2} , then q1(s(p1, q2)) =

q1(ω1) > q1(ω2) = q1(s(q1, q2)) and agent 1 has an incentive to manipulate s at (q1, q2) (and agent

2 has a similar incentive).

Next, suppose that q1(ω1) < q1(ω2) or q2(ω1) > q2(ω2). Without loss of generality, assume the

first inequality. From (24),

s(q1, p2) = {ω2} . (26)
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Since from (23) s(p1, p2) = {ω1} and s(p1, p
′
2) = {ω2} , Strategy-proofness implies

p2(ω1) < p2(ω2).

It follows from this inequality and (26) that s(q1, q2) = {ω2} : if s(q1, q2) = {ω1} , then p2(s(q1, q2)) =

p2(ω1) < p2(ω2) = p2(s(q1, p2)) and agent 2 has an incentive to manipulate s at (q1, p2) by reporting

q2�.
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