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Résumé 

ADP-ribosylation factor-1 (ARF1) est une petite GTPase principalement connue pour son rôle 

dans la formation de vésicules au niveau de l’appareil de Golgi. Récemment, dans des cellules de 

cancer du sein, nous avons démontré qu’ARF1 est aussi un médiateur important de la signalisation 

du récepteur du facteur de croissance épidermique (EGFR) contrôlant la prolifération, la migration 

et l'invasion cellulaire. Cependant, le mécanisme par lequel l’EGFR active la GTPase ainsi que le 

rôle de cette dernière dans la régulation de la fonction du récepteur demeure inconnue. Dans cette 

thèse, nous avions comme objectifs de définir le mécanisme d'activation de ARF1 dans les cellules 

de cancer du sein hautement invasif et démontrer que l’activation de cette isoforme de ARF joue 

un rôle essentiel dans la résistance de ces cellules aux inhibiteurs de l'EGFR. Nos études 

démontrent que les protéines d’adaptatrices Grb2 et p66Shc jouent un rôle important dans 

l'activation de ARF1. Alors que Grb2 favorise le recrutement d’ARF1 à l'EGFR ainsi que 

l'activation de cette petite GTPase, p66Shc inhibe le recrutement du complexe Grb2-ARF1 au 

récepteur et donc contribue à limiter l’activation d’ARF1.  

De plus, nous démontrons que ARF1 favorise la résistance aux inhibiteurs des tyrosines kinases 

dans les cellules de cancer du sein hautement invasif. En effet, une diminution de l’expression de 

ARF1 a augmenté la sensibilité des cellules aux inhibiteurs de l'EGFR. Nous montrons également 

que de hauts niveaux de ARF1 contribuent à la résistance des cellules à ces médicaments en 

améliorant la survie et les signaux prolifératifs à travers ERK1/2, Src et AKT, tout en bloquant les 

voies apoptotiques (p38MAPK et JNK). Enfin, nous mettons en évidence le rôle de la protéine 

ARF1 dans l’apoptose en réponse aux traitements des inhibiteurs de l’EGFR. Nos résultats 

indiquent que la dépletion d’ARF1 promeut la mort cellulaire induite par gefitinib, en augmentant 

l'expression de facteurs pro-apoptotiques (p66shc, Bax), en altérant le potentiel de la membrane 

mitochondriale et la libération du cytochrome C.  

Ensemble, nos résultats délimitent un nouveau mécanisme d'activation de ARF1 dans les cellules 

du cancer du sein hautement invasif et impliquent l’activité d’ARF1 comme un médiateur 

important de la résistance aux inhibiteurs EGFR.  

 

Mots-clés : ARF1, EGFR, p66Shc, Grb2, Inhibiteurs des tyrosine kinases, résistance 
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Abstract 

The small GTPase ADP-ribosylation factor-1 (ARF1) has been well described for its role in 

regulating transport within the Golgi. Recently, in breast cancer cells, we have characterized ARF1 

as important mediator of epidermal growth factor receptor (EGFR) signals leading to cell 

proliferation, migration and invasion. However, the mechanisms regulating ARF1 activity 

downstream of the EGFR had yet to be defined. Here, we aim to characterize these mechanisms 

of ARF1 activation in invasive breast cancer cells and demonstrate that activated ARF1 plays an 

essential role in mediating the resistance of breast cancer cells to EGFR tyrosine kinase inhibitors.  

We show that the adaptor proteins Grb2 and p66Shc regulate EGF-dependent ARF1 activation. 

While Grb2 was shown to be essential in the recruitment of ARF1 to the EGFR as well as the 

activation of this small GTPase, p66Shc blocked the recruitment of this Grb2-ARF1 complex to 

the receptor and thus suppressed EGF-induced ARF1 activation.  

Additionally, we demonstrate that ARF1 promotes EGFR tyrosine kinase inhibitor resistance in 

invasive breast cancer cells. Indeed, the depletion of ARF1 was associated with an increased 

sensitivity to EGFR inhibition. We show that ARF1 promotes resistance by enhancing survival 

and proliferative signals through Erk1/2, Src and AKT, while blocking the apoptotic p38MAPK 

and JNK pathways. Furthermore, ARF1 was shown to stabilize EGFR dynamics (Expression, 

activation, dimerization and down-regulation) in response to treatment with EGFR inhibitors 

Finally, we highlight the role of ARF1 in mediating mitochondrial-dependent apoptosis in 

response to EGFR tyrosine kinase inhibitor treatment. The depletion of ARF1 was shown to 

promote gefitinib-induced cell death as measured by increase expression of pro-apoptotic factors 

(p66Shc, Bax), altered mitochondrial membrane potential and cytochrome C release. 

Together, our results delineate a novel mechanism of ARF1 activation in breast cancer cells and 

implicate ARF1 activity as an important mediator of EGFR inhibitor resistance further supporting 

the importance of targeting this GTPase in breast cancer patients.   

Keywords: ARF1, EGFR, p66Shc, Grb2, EGFR tyrosine kinase inhibitors, resistance  
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CHAPTER I. Introduction 

I.1 Cancer 

Alterations in a cell’s physiology are often associated with the development of disease, including 

cancer. Cancer is a complex pathology that effects multiple organ systems and tissues within the 

human body. While it is a dynamic disease, all cancers have similar properties and are 

characterized by an abnormal cell growth and increased capacity to invade both local and distant 

tissues. Many factors have been shown to contribute to the development of this disease. These 

include: tobacco/alcohol use, obesity, diet, physical inactivity as well as environmental and 

occupational risk factors. On a molecular level, cancer is caused by DNA damage. While DNA 

damage occurs in normal cells, cells have mechanisms to repair this damage. Furthermore, when 

these repair mechanisms fail, the cell undergoes programmed cell death, apoptosis, to ensure that 

cells with damaged DNA do not propagate. However, in cancer cells, DNA damage repair and cell 

death mechanisms are inhibited or impaired. This gives rise to a cancerous population of cells with 

mutated DNA. 

Throughout our body, genes play an important role in mediating the functions of normal cells such 

as cell growth, maturity and death. However, alterations in these genes as simple as a single 

nucleotide point mutation or as broad as a gain or loss of entire chromosomes are associated with 

the development of disease. Genetic alterations have been linked to the development of cancer. 

Three genetic alterations leading to cancer have been proposed: 1- Genomic amplification where 

a cell gains many copies of a small chromosomal locus. Examples include: amplification of the 

myc oncogene in a variety of tumors and HER2 in breast and ovarian cancer. 2- DNA mutations 

characterized by single nucleotide mutations and nucleotide deletions or insertions that alter the 

functionality or expression of their coded proteins. For instance, BRCA1 and BRCA2 mutations in 

breast and ovarian cancers or p53 mutations and 3- Translocation where two separate chromosomal 

regions become abnormally fused. The best known example is the BCR-ABL fusion protein in 

chronic myelogenous leukemia.     

There are two broad categories of genes that are affected by these alterations: 1- Oncogenes or 

genes known to cause cancer. While many oncogenes are expressed in normal/non-cancerous cells, 

cancer patients have been shown to have an abnormal increase in the expression or activity of these 

oncogenes. Furthermore, mutations in normal genes can alter the functionality of these genes and 
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promote oncogenesis. 2- Tumor suppressor genes or genes that generally inhibit the cell division 

and survival of cells that have damaged DNA. In cancer patients, these genes are disabled either 

through gene deletion or mutation. This allows for the growth and survival of cancer cells 

(Weinberg 1995).  

The majority of rapidly dividing cancer cells will form solid tumors in their target tissues. 

However, blood cancers, such as leukemia, generally do not form solid tumors. Tumors are 

considered to be malignant because they can invade into nearby tissues. Additionally, as the tumor 

grows, some cancerous cells can travel through either the circulatory or lymphatic systems and 

form tumors in distant organs and/or tissues. This is known as a metastasis. The development and 

progression of cancer is depicted in the Figure 1 below. 

 

Figure 1. Cancer development and progression 

Genetic alterations in normal cells results in the rapid division of cells and the formation of a primary tumor. As the 

tumor grows some cells transform into an invasive phenotype through a process known as epithelial-mesenchymal 

transformation. These cells can invade the basal membrane and enter the blood vessels, a process known as 

intravasation. Once in the circulatory system the tumor cell to transported to a distant organ or tissue. The cell exits 

the circulatory and invades this secondary site though a process known as extravasation. The tumor cell can now 

proliferation to form a secondary tumor or metastasis. Adapted from: (Freire-de-Lima 2014)  
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Within the last few decades, there has been an increased interest in cancer research and the 

development of therapeutics to counter this disease. Over these years, there has been significant 

progress which has led to the thorough characterization of the disease and the development of 

effective therapies. However, a large proportion of cancer patients are unresponsive to current 

available therapies and the majority of cancers remain incurable. Thus, it is important to further 

characterize the mechanisms that regulate the development and progression of cancer and to 

develop improved therapeutic agents. 

 

I.2 Breast cancer 

The genetic and cellular alterations described in the section above can result in the development 

of cancer in multiple organ systems. The most commonly affected tissues include: the lung, colon, 

breast and prostate (Canadian Cancer Society) In fact, breast cancer is the most commonly 

diagnosed cancer in Canadian women. It is estimated that in 2014, close to 24000 new cases of 

breast cancer were diagnosed. In fact, 1 in 9 women will be diagnosed with breast cancer within 

their lifetime and 1 in 30 women will succumb to the disease. However, improved diagnostics, 

screening techniques and therapeutics have decreased the overall mortality rate by almost 50% 

since 1986. Furthermore, approximately 90% of breast cancer patients survive for at least 5 years 

(Canadian Breast Cancer Foundation). 

Breast cancer is a heterogeneous disease that is generally classified into four subtypes; Luminal 

A, Luminal B, HER2-positive and Triple negative (Basal-like) breast cancers. However, a 5th 

subtype, Normal-like breast cancer, has emerged. This subtype is characterized by a genetic profile 

similar to that of normal breast tissue, small tumor size and good prognosis (Carey, Perou et al. 

2006). However, it is still unclear whether normal-like breast cancer is a distinct molecular subtype 

or just a collection of tumors that are difficult to classify in another subtype (Prat, Carey et al. 

2014). The classification of cancers into these subtypes is based on the expression of 

therapeutically important genetic markers such as the estrogen receptor (ER), progesterone 

receptor (PR) and the epidermal growth factor-2 receptor (HER2) (Yersal and Barutca 2014).  
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I.2.1 Luminal A/B breast cancer 

Luminal A breast cancer is the most common form of breast cancer, representing 50-60% of all 

diagnosed cases. Whereas. Luminal B breast cancer represents 15-20% of diagnosed cancers. 

These subtypes are characterized by a high ER and/or PR expression (Carey, Perou et al. 2006). 

In general, patients with luminal A/B breast cancer have a good prognosis, lower relapse rate and 

low incidence of metastatic disease (Kennecke, Yerushalmi et al. 2010). The primary difference 

between Luminal A and Luminal B breast cancer stems from the increased expression of 

proliferative genes in the Luminal B subtype (Reis-Filho, Weigelt et al. 2010). This increased 

proliferative index is associated with a worse prognosis, increased grade and aggressivity, higher 

recurrence and lower survival rate compared to Luminal A breast cancer (Ellis, Tao et al. 2008; 

Creighton 2012). Hormonal therapy is commonly used in the treatment of these subtypes (Ignatiadis 

and Sotiriou 2013). 

 

I.2.2 HER2-positive breast cancer 

The third subtype is known as HER2-positive breast cancer and is characterized by a high 

expression of the HER2 gene. It represents 15-20% of diagnosed breast cancers and is associated 

with a poor prognosis, high proliferative index and aggressivity and low survival rate when left 

untreated (Tsutsui, Ohno et al. 2003; Staaf, Ringner et al. 2010). However, these patients are 

generally responsive to HER2-directed therapies (Ross, Fletcher et al. 2003). In fact, 75-80% of 

women diagnosed with HER2-poistive metastatic breast cancer have been shown to be responsive 

HER2-inhibition when treated in combination with chemotherapy (Slamon, Leyland-Jones et al. 

2001). However, the overall survival of patients treated with HER2-targeted therapies after 

adjuvant chemotherapy was not different to that of patients left untreated (Piccart-Gebhart, Procter 

et al. 2005). Furthermore, there are many limitations to targeting the HER2 receptor. These 

limitations include: 1- Effective only in tumors expressing high levels of HER2 (low response rate 

in moderate and low HER2 expressing tumors) (Albanell, Codony et al. 2003), 2- Large proportion 

of patients develop resistance to HER2-targeted therapies (Romond, Perez et al. 2005) and 3- 

Generally an expensive therapy, but still considered cost-effective (Dedes, Szucs et al. 2007). 

Therefore, substantial work is required in this subtype to improve therapeutic outcomes.  
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I.2.3 Triple negative breast cancer 

The final subtype is known as triple negative breast cancer (TNBC) or basal-like breast cancer and 

is characterized by a low expression of ER, PR and HER2 receptor and a high expression of the 

epidermal growth factor receptor (EGFR). It represents 8-37% of diagnosed breast cancers. The 

discrepancies in TNBC diagnoses stem from inconsistencies amongst clinicians and diagnostic 

definitions. For example, some institutes combine TNBC and basal-like breast cancer in the same 

subgroup, whereas others separate the two. In this case, TNBC is defined as ER, PR and HER2 

negative and basal-like breast cancer as ER, PR, HER2 negative and either Cytokeratin5/6 or 

EGFR positive (Rakha, Elsheikh et al. 2009). The TNBC subtype is considered to have a poor 

prognosis, high incidence of metastasis, high proliferative index and aggressivity and poor survival 

rates (Heitz, Harter et al. 2009; Rakha, Elsheikh et al. 2009; Criscitiello, Azim et al. 2012). While 

targeted therapies are currently available for luminal and HER2-positive tumors, no targeted 

therapies are presently approved for the treatment of TNBC patients (Engebraaten, Vollan et al. 

2013).   

The TNBC subtype is known to be the most chemosensitive breast cancer subtype. Indeed, TNBC 

patients have increased sensitivity to chemotherapy compared to ER-positive breast cancers 

(Crown, O'Shaughnessy et al. 2012). This increased sensitivity has been shown to be the result of 

increased incidence of BRCA mutations in this subtype (Bhattacharyya, Ear et al. 2000; 

Moynahan, Cui et al. 2001).  However, little is known on which chemotherapeutic agents elicit the 

best response in these patients (Cleator, Heller et al. 2007).  In fact, there are no systematic 

therapeutic regiments recommended for the treatment of TNBC patients (Cleator, Heller et al. 

2007). Furthermore, the use of standard chemotherapeutics leaves these patients at an increased 

risk of both local and systemic relapse (Cleator, Heller et al. 2007). Additionally, while 

approximately half of patients have been reported to respond to chemotherapeutic treatment with 

either paclitaxel (a mitotic inhibitor of the taxane family of chemotherapies) or doxorubicin (an 

anthracycline involved in DNA intercalation), TNBC patients have been reported to develop 

resistance to these treatments (Bhattacharyya, Ear et al. 2000; Quinn, Kennedy et al. 2003). 

Therefore, further investigation is required to better define the therapeutic benefits of 

chemotherapies in TNBC patients. Emerging therapies are focused on targeting oncogenic 
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pathways such as the PI3K/AKT and Ras/MAPK pathways as well as receptor tyrosine kinases 

(RTKs) such as the EGFR, fibroblast growth factor receptor-2 (FGFR2) and vascular endothelial 

growth factor (VEGFR) (Cunningham, Humblet et al. 2004; Mendelsohn and Baselga 2006; 

Cleator, Heller et al. 2007; O'Shaughnessy 2010; Turner, Lambros et al. 2010; Zhao and Adjei 

2014). However, little clinical success has been demonstrated when targeting these factors. As our 

research is focused on the signals downstream of the EGFR, this family of RTKs and the 

therapeutic agents targeting it will be described in detail below. 

 

I.3 EGFR inhibitors 

The EGFR is a receptor tyrosine kinase (RTK) known to be expressed and activated in a variety 

of cancers. Upon ligand binding to the receptor, there is receptor dimerization and auto-

phosphorylation. This allows for the recruitment of adaptors and other signaling mediators to 

receptor leading to the activation of important signaling cascades involved in cancer cell 

proliferation, survival, migration and invasion. This receptor will be discussed in more detail in 

section I.5.1. With the majority of TNBC patients expressing higher levels of the EGFR, the EGFR 

is a potential therapeutic target in this breast cancer subtype. Research within the field of EGFR 

signal transduction has led to the development of targeted EGFR cancer therapeutics such as the 

monoclonal antibodies that target the extracellular domain of the receptor preventing ligand 

binding and receptor dimerization (Fan, Lu et al. 1994; Mendelsohn 1997). Secondly, small 

molecule tyrosine kinase inhibitors have also been synthesized that target the intracellular kinase 

domain of the EGFR and prevent ATP-binding (Ward, Cook et al. 1994) (Figure 2). Several of 

these EGFR inhibitors have been approved for the treatment of EGFR-overexpressing cancers, 

whereas many more are currently being tested in clinical trials. The two families of EGFR 

inhibitors will be discussed further below.  
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Figure 2. Targeting the EGFR 

EGFR activity plays an important role in cancer cells to promote the activation of signaling cascades involved in the 

induction of cell cycle progression, proliferation, differentiation, cell motility and angiogenesis. There are currently 

two therapeutic means of targeting the EGFR in cancer: 1- Monoclonal antibodies (denoted Mab) which block the 

activation of the EGFR by preventing the ligand from binding to its receptor and 2- Tyrosine kinase inhibitors (denoted 

TKI) which block the activation of the kinase domain of the EGFR by competing with ATP for the ATP-binding 

domain. Taken from: (Harari 2004). 

 

I.3.1 Monoclonal antibodies 

Monoclonal antibodies (Mab) block EGFR family signaling by interacting with the extracellular 

domain of the receptor and blocking the binding of its ligand. This, in turn, prevents receptor 

dimerization and the induction of EGFR-dependent signal transduction (Fan, Lu et al. 1994; 

Mendelsohn 1997). The most common Mab, trastuzumad, targets the HER2 receptor and is 

currently the only EGFR family Mab therapy approved for the treatment of breast cancer patients 

(Huston and George 2001). Treatment of patients with this Mab has been shown to have positive 

effects on patient outcome and decreased tumor cell survival, proliferation and angiogenesis 

(Hudziak, Lewis et al. 1989; Karamouzis, Konstantinopoulos et al. 2007). Unfortunately, Mabs 

against the EGFR have shown disappointing results. While treatment with the EGFR Mab, 

cetuximab, has been shown to have growth inhibitory effects in both breast cancer cell lines and 
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tumor xenographs (Masui, Kawamoto et al. 1984; Mendelsohn 1997), it was shown to have little 

to no effect in the treatment of breast cancer patients (Modi, D'Andrea et al. 2006).  

    

I.3.2 Tyrosine kinase inhibitors 

The second EGFR-targeted therapies, the tyrosine kinase inhibitors (TKi), were first identified in 

the late 1980s as a negative regulator of EGFR auto-phosphorylation and EGF-dependent cell 

proliferation (Yaish, Gazit et al. 1988). Today, multiple tyrosine kinase inhibitors have been 

synthesized and approved for the treatment of several cancers and target multiple RTKs, including 

the EGFR. Additionally, many other TKis are currently being developed and tested within the 

clinic. The EGFR TKis are members of class of compounds known as the 4-anilinoquinazolines 

(See Figure 4) and primarily act by competing with ATP for binding sites within the EGFR kinase 

domain (Ward, Cook et al. 1994). As shown in Figure 3, a hydrogen bond is formed between the 

Met793 residue within the hinge region of the ATP-binding site of the EGFR and gefitinib. This 

blocks the binding of ATP and the activation of the receptor (Eck and Yun 2010).  

TKis are more therapeutically advantageous than monoclonal antibodies because they are 

generally well tolerated and can be orally administered. Second, they have been shown to be active 

against the monoclonal antibody-resistant truncated form of HER2 (Xia, Liu et al. 2004). Finally, 

since the kinase domain of all members of the EGFR family are highly homologous, TKis can be 

designed to target multiple or all EGFR family members (Ekstrand, Longo et al. 1994) (Figure 3). 

The TKis currently approved for the treatment of cancer include: 

1- Gefitinib: a reversible, EGFR-specific inhibitor currently approved for the treatment of 

non-small cell lung cancer 

2- Erlotinib: a reversible, EGFR-specific inhibitor currently approved for the treatment of 

non-small cell lung cancer and pancreatic cancer 

3- Lapatinib: a dual inhibitor of EGFR and HER2 currently approved for the treatment of 

hormone-positive and HER2-positive breast cancer 

While significant therapeutic responses have been demonstrated in patients treated with these 

inhibitors, many of the patients develop TKi resistance upon continuous use of these inhibitors 

(Jackman, Pao et al. 2010). Furthermore, patients with mutations in either the EGFR and/or 

Ras/Raf have also been shown to be resistant to TKi treatment (Misale, Yaeger et al. 2012; Ohashi, 

Sequist et al. 2012; Yu, Arcila et al. 2013). 
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Figure 3. Crystalized structure of gefitinib binding the ATP-binding domain of the EGFR 

The kinase domain of the EGFR is composed of a C-terminal-lobe and an N-terminal-lobe connected by a hinge 

region. This hinge region comprises part of the ATP-binding site. A hydrogen bond is formed between the Met793 

residue of the EGFR and the quinazoline moiety of gefitinib, thus blocking ATP binding. Taken from: (Eck and Yun 

2010). 
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Figure 4. Chemical structures of EGFR tyrosine kinase inhibitors 

EGFR tyrosine kinase inhibitors are members of the class of compounds known as the 4-anilinoquinazolines that 

target the ATP-binding pocket of the kinase domain of the EGFR. The quinazaline core is essential for its inhibitory 

effects on the EGFR. Furthermore, modifications to this core have been essential in the development of both second 

generation reversible and irreversible inhibitors.  Adapted from: (van Montfort and Workman 2009; Hamed, Abou El 

Ella et al. 2013) 

 

  



11 
 

I.4 EGFR inhibitor resistance 

Even though the majority of TNBCs overexpress the EGFR, attempts at targeting this receptor in 

patients has shown limited success. One reason these patients lack a response to EGFRTKis stems 

from the development of drug resistance. This resistance can be innate to the patient’s cancer (i.e. 

mutations in the EGFR or downstream signaling mediators) known as intrinsic resistance or can 

be developed by the patient throughout the treatment regiment, known as acquired resistance. 

Since EGFRTKis are clinically approved for the treatment of lung cancer, it is important to note 

that the majority of studies in the literature examine EGFRTKi resistance in this cancer. However, 

key studies evaluating TKi resistance in breast cancer will be highlighted throughout this thesis. 

 

I.4.1 Intrinsic resistance 

Cancer cells have innate characteristics that make them resistant to the currently used therapeutics. 

In fact, approximately 50% of all cancer patients are resistant to chemotherapy before treatment 

(Lippert, Ruoff et al. 2008). This is known as intrinsic or primary resistance. The most common 

mechanisms of intrinsic EGFRTKi resistance include: EGFR mutations characterized by a loss in 

sensitivity to EGFRTKi treatment such as exon 20 insertions or duplications (Greulich, Chen et 

al. 2005; Yasuda, Kobayashi et al. 2012), the amplification of another RTK, cMET (Engelman, 

Zejnullahu et al. 2007) and altered survival (PIK3CA mutations) (Cizkova, Susini et al. 2012) and 

apoptotic (Bim expression) (Faber, Corcoran et al. 2011) pathways. As our research focuses 

primarily on the role of ARF1 in the development of acquired resistance to EGFRTKis, the 

remainder of this thesis will be dedicated to the description of important mechanisms of acquired 

resistance. 

 

I.4.2 Acquired resistance 

Acquired resistance or secondary resistance (Figure 5), unlike intrinsic resistance, occurs in 

patients that were previously responsive to therapy and is clinically defined as: a systematic 

progression of the disease after a complete or partial response or following a period of 6 months 

of stable disease in patients treated with a targeted therapy (Jackman, Pao et al. 2010). It is 

generally divided into two subgroups: 1- Genetic alterations in the primary oncogene that lead to 

increased downstream signaling. This normally occurs through either a secondary mutation in the 

target kinase (the EGFR) or amplification of the target kinase. Briefly, point mutations have been 
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identified in the EGFR that alter either the affinity of EGFRTKis for the receptor or enhance the 

activity of the receptor itself (Engelman and Janne 2008; Engelman and Settleman 2008; Sierra, 

Cepero et al. 2010). 2- Development of resistance that is independent of genetic changes in the 

EGFR, such as the activation of downstream signaling pathways or other receptors, changes in 

tumor histology, evasion of apoptosis and alterations in drug metabolism. Amplification of other 

members of the EGFR family as well as other RTKs such as cMET and AXL have all been 

implicated in the resistance to EGFRTKis. Additionally, up-regulation of signals through the 

Ras/MAPK and PI3K/AKT pathway also mediate resistance. Finally, epithelial-mesenchymal 

transformation (EMT), a process in which epithelial cancer cells transform into more invasive 

mesenchymal phenotype to evade the therapeutic effects of EGFRTKis (Engelman and Janne 

2008; Engelman and Settleman 2008; Ellis and Hicklin 2009; Sierra, Cepero et al. 2010). The 

importance of altered RTK expression and signaling, as well as the activation of downstream 

signaling cascades in the regulation of acquired resistance will be further discussed throughout this  

thesis.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Mechanisms of EGFRTKi resistance 

Acquired resistance plays an important role in the tumor response to EGFR inhibition. Four mechanisms of acquired 

resistance have been proposed: 1- Target modifications: Mutations in the EGFR itself enhance EGFR activation or 

block the binding of the inhibitor to the receptor, 2- Alternate pathway activation: The activation of other receptors 

(HER2, HER3, cMET, AXL) or signaling pathways (Ras/MAPK, PI3K/AKT) compensate for the loss of EGFR 

signals, 3- Evasion of apoptosis: modification in the tumor cell apoptotic machinery that prevents inhibitor-induced 
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cell death and 4- Histological transformation: processes such as epithelial-mesenchymal transformation that allow 

tumors cells to acquire new properties and decreased inhibitor sensitivity. Adapted from: (Chong and Janne 2013) 

 

I.5. Membrane receptors 

Membrane receptors act to relay signals between a cell and its environment. These receptors bind 

external stimuli such as peptides, hormones, growth factors and cytokines and relay their message 

to the nucleus through the activation of signaling pathways. Membrane receptors are generally 

divided into four families: 1- G-Protein-Coupled Receptors (GPCRs), 2- Catalytic Receptors 3- 

Channel-Linked Receptors, 4- Non-Catalytic Single Transmembrane Receptors. Briefly, GPCRs 

are a large superfamily of seven transmembrane receptors that relay their signals by binding 

guanine nucleotide-binding proteins (G-proteins). These G-proteins link the receptor to 

downstream effectors that regulate biological activities and cellular functions (Hamm 1998). 

Altered signaling through this receptor superfamily is associated with multiple diseases, including 

cancer. Secondly, the catalytic receptors are single transmembrane receptor that once bound to 

their ligand act directly as phosphorylating enzymes. In other words, these receptors possess 

enzymatic activity (Yarden and Ullrich 1988). This family is also implicated in the development 

and progression of cancer. As the EGFR is a member of this group of receptors, this family will 

be described in detail below. Next, the channel-linked receptors are generally hormone receptors 

that regulate the influx and efflux of ions through the cell membrane (Levitan 1988). Lastly, the 

non-catalytic receptors are best known to propagating signals downstream of the interleukins, 

peptides, hormones and neuronal cues. Like catalytic receptors, this family also consists of single 

transmembrane receptors. However, they do not possess catalytic activity and rely on interacting 

proteins to propagate its signals (Cooper and Qian 2008).  In summary, membrane receptors play 

important roles in the communication between a cell and its environment and the de-regulation of 

these receptors has been linked to disease development.    

 

I.5.1 Receptor tyrosine kinases 

The RTK family of receptors are catalytic receptors that possess intrinsic kinase activity. Protein 

kinases are enzymes that are involved in the phosphorylation of tyrosine, serine or threonine 

residues (Tsai and Nussinov 2013). Families of protein phosphatases act to dephosphorylate 

proteins making phosphorylation a reversible process (Alonso, Sasin et al. 2004). Phosphorylation 

and dephosphorylation are very important in the regulation of cellular activities (Shah, Shah et al. 
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2013). Kinases are classified as protein-serine/threonine kinases (385 members), protein-tyrosine 

kinases (90 members) and tyrosine-kinase-like proteins (44 members). Of the 90 protein-tyrosine 

kinases, 58 are receptor-tyrosine kinases (RTKs) (Manning, Whyte et al. 2002). Alterations in 

RTK activity, receptor overexpression, chromosomal translocation, gene amplification, mutations 

and impaired receptor downregulation have all been associated with the development of cancer 

(Abella and Park 2009; Tsai and Nussinov 2013). In fact, 30 of the identified RTKs have been 

implicated in cancer (Weinstein 2000).  

 

I.5.2 EGFR family 

The EGFR family of RTKs, the most characterized members of the catalytic receptors, is 

composed of four members: EGFR, HER2, HER3 and HER4, also depicted ErbB1, ErbB2, ErbB3 

and ErbB4 (Figure 6). These RTKs are ubiquitously expressed and play roles in the regulation of 

normal cell cycle progression, apoptosis, cell differentiation, development and gene transcription 

(Lemmon and Schlessinger 2010). The EGFRs are activated upon ligand binding. Presently, ten 

polypeptide growth factor ligands have been identified which include: EGF, amphiregulin (AR), 

transforming growth factor-(TGF), betacellulin (BTC), heparin-binding EGF-like growth factor 

(HB-EGF), epiregulin (EPR) and neuregulins 1-4 (NRG1-4), which include the heregulins (HRG) 

(Roskoski 2014). These ligands have been shown to activate specific EGFR family members and 

favor distinct receptor dimerization patterns. The EGFR members have been shown to mediate 

oncogenesis via several mechanisms that include receptor overexpression, mutations and ligand-

independent signaling (Burtness 2007). In addition, the expression of these receptors has been 

associated with a poor prognosis in most cancers. Indeed, the activity of EGFRs has been shown 

to promote cancer cell proliferation, survival, migration and invasion (Herbst 2004; Roskoski 

2014). 
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Figure 6. The EGFR family of receptor tyrosine kinases 

The EGFR family of receptors is composed of four members: EGFR, HER2, HER3 and HER4. The activation of this 

family of receptors is governed by ligand-dependent homo- or heterodimerization. There are currently 11 identified 

ligands with specificity for certain EGFR family members, as illustrated above. HER2 differs from other members in 

that it has no ligand-binding domain and its activation is dependent on the formation of heterodimers. All EGFRs, 

except HER3, have intracellular kinase activity required for the initiation of downstream signaling cascades. 

Therefore, HER3 is also dependent on heterodimerization to potentiate its signals. Adapted from: (Itamochi 2010) 

 

I.5.3 EGFR 

The EGFR was the first receptor to be demonstrated to possess kinase activity and is the RTK that 

has been the best characterized (Carpenter and Cohen 1990). Its role in the regulation of 

proliferation, apoptosis and metastasis has been well defined in several cancer models, as well as 

in cancer patients (Herbst 2004; Roskoski 2014). Over 80% of TNBC patients have elevated EGFR 

expression levels and the activity of this receptor has been shown to play an important role in the 

oncogenic properties of this breast cancer subtype (Siziopikou, Ariga et al. 2006; Engebraaten, 

Vollan et al. 2013; Roskoski 2014). This makes the EGFR and its downstream effectors potential 

therapeutic targets in this patient subpopulation. However, attempts at targeting the EGFR have 

had limited success.  
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I.5.3.1 EGFR structure 

The EGFR consists of an extracellular domain, a single transmembrane domain and an intracellular 

domain with protein kinase activity (Ullrich, Coussens et al. 1984) (Figure 7). The extracellular 

domain is glycosylated and consists of four domains: domain I through IV. Domains I and III 

mediate ligand binding, whereas, domains II and IV regulate receptor dimerization (Roskoski 

2014). The intracellular domain consists of a juxtamembrane domain, a protein kinase domain and 

a carboxyl-terminal tail. The juxtamembrane domain has been shown to play an essential role in 

the tyrosine phosphorylation of the EGFR without regulating receptor dimerization and ligand 

binding (He and Hristova 2012). However, this domain plays an important role in the stabilization 

of receptor dimers and promotes receptor activation (Jura, Endres et al. 2009).The protein kinase 

domain is required for the activity of the receptor and promotes the activation of downstream 

signaling effectors (Roskoski 2014). Finally, the C-terminal tail contains essential phosphorylation 

sites that recruit signaling adaptors and effectors, thus promoting the activation of downstream 

signals (Yarden and Sliwkowski 2001). Furthermore, this tail has also been shown to function in 

a negative-feedback loop required for receptor inactivation (Gajiwala 2013).   
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Figure 7. EGFR structure 

The EGFR is a single transmembrane receptor with an extracellular, transmembrane and intracellular domains. The 

extracellular domain mediates ligand binding through it’s I and III domains and receptor dimerization through its II 

and IV domains. The intracellular domain consists of a juxtamembrane domain that mediates receptor activation, 

dimerization and internalization, a kinase domain and c-terminal autophosphorylation domain that contains tyrosine 

residues that serve as recruitment sites for signaling mediators. Adapted from: (Bazley and Gullick 2005). 
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I.5.3.2 EGFR activation mechanism 

The EGFR receptor exists as a monomer at the plasma membrane. Upon ligand binding, a large 

conformational change occurs in the extracellular domain. This removes the dimerization 

autoinhibition in domain IV and promotes homo and heterodimerization of the EGFR. The 

juxtamembrane domain then promotes the phosphorylation of the activation segment of the protein 

kinase domain leading to kinase activation. The activated kinase domain tyrosine phosphorylation 

residues on the EGFR creating docking sites for the recruitment of signaling adaptors and effectors 

which initiate the activation of signaling cascades. The kinase domain can also directly 

phosphorylate and activate other siganling mediators to initiate downstream signals (Burgess, Cho 

et al. 2003; Nolen, Taylor et al. 2004; Lemmon and Schlessinger 2010). 

 

I.5.3.3 EGFR in resistance 

With expression levels of the EGFR being elevated in TNBC patients, it would be considered a 

good therapeutic target. However, the majority of these patients are unresponsive to EGFRTKis. 

The development of drug resistance is one explanation why TNBC patients do not respond to these 

therapies. While less common in breast cancer patients, mutations in the EGFR have been 

identified as key mediators of EGFRTKi treatment response in lung cancer patients. Indeed, a high 

proportion of lung cancer patients develop resistance through EGFR mutations such as 

EGFRT790M that increases the affinity of the kinase domain of the EGFR for ATP and in turn 

reduces the sensitivity of ATP-competitive reversible EGFRTKis (Yun, Mengwasser et al. 2008; 

Chong and Janne 2013). These mutations can be either acquired throughout the treatment or innate 

(Lee, Shin et al. 2013). However, in breast cancer patients, these mutations in the EGFR are very 

rare (Bhargava, Gerald et al. 2005) and downstream signaling mediators play a more important 

role in acquired resistance (Ferrer-Soler, Vazquez-Martin et al. 2007). Additionally, increase 

expression and the nuclear translocation of the EGFR have also been implicated in resistance 

(Brand, Iida et al. 2014; Lee, Seo et al. 2014). Indeed, the inhibition of the nuclear translocation 

of the EGFR significantly improved the response to EGFR inhibitors. Briefly, the endocytosis of 

the EGFR has been implicated in its translocation from the membrane into the nucleus. However, 

it remains unknown how the EGFR is transported from the vesicle into the nucleus. Once in the 

nucleus, EGFR acts as a transcriptional co-activator for various oncogenes implicated in resistance 

(Brand, Iida et al. 2014). Additionally, AKT, an importance mediator of resistance, has been shown 
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to Serine phosphorylation EGFR leading to its nuclear translocation (Huang, Chen et al. 2011). 

While alterations in EGFR-mediated signals influence patient response to EGFR inhibitors, other 

EGFR family members as well as other RTKs have also been implicated in the development of 

resistance. A description of these receptors can be found below. 

 

I.5.4 HER2 

This EGFR family member, like the EGFR, is also well characterized for its role in mediating 

breast oncogenesis. In fact, 20-30% of breast cancers have HER2 receptor overexpression or gene 

amplification. Additionally, HER2 expression is associated with a poor prognosis and increased 

cancer cell proliferation (Roskoski 2014). Unlike other EGFR family members, HER2 has no 

ligand and exerts its oncogenic properties through the heterodimerization with other EGFRs. While 

HER2 has been reported to dimerization with both EGFR and HER3, studies have shown that it 

favors HER3 heterodimer formation (Citri, Skaria et al. 2003). This would suggest that targeting 

HER2 could significantly reduce signals downstream of both the EGFR and HER3, making HER2 

a favorable therapeutic target. However, HER2 monoclonal antibodies have been shown to be most 

effective at inhibiting signals downstream of HER2 homodimers and to have no effect on the 

ability of HER2 to heterodimerize with the EGFR and HER3 (Ghosh, Narasanna et al. 2011). 

Additionally, the effectiveness of HER2-targeted therapies is hindered by the development of 

resistance (Rexer and Arteaga 2012). Therefore, there is significant room for improvement in the 

treatment regiments of HER2-positive breast cancer patients.   

Like EGFR, this receptor has also been implicated in the development of resistance to EGFRTKis. 

In fact, the amplification of HER2 is commonly found in EGFRTKi resistance lung cancer patients 

that do not develop mutations in the EGFR. Interestingly, 12% of EGFRTKi resistance lung tumors 

had amplified HER2 expression compared to only 1% in non-resistant tumors (Takezawa, 

Pirazzoli et al. 2012). Conversely, HER2 expression is linked to EGFRTKi sensitivity in breast 

cancer. However, over time, mutations in the ATP-binding pocket of the kinase domain of HER2 

have been observed and this leads to the development of acquired resistance in breast cancer 

(Piechocki, Yoo et al. 2007). Additionally, prolonged inhibitor treatment has been shown to 

enhance and stabilize HER2 heterodimerization with both EGFR and HER3 and potentiate 

downstream signaling (Jain, Penuel et al. 2010; DeFazio-Eli, Strommen et al. 2011). Together, 
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these findings demonstrate that HER2 mediates breast oncogenesis and that targeting this receptor 

could be important in the sensitivity of breast cancer patients to EGFR inhibitors. 

 

I.5.5 HER3 

The influence of the third member of this receptor family, HER3, in breast cancer has been less 

documented. However, 20-30% of invasive breast cancers have shown to overexpress the HER3 

receptor (Karamouzis, Badra et al. 2007). Also, HER3 has been linked to HER2 positivity and 

decreased incidence of metastasis. However, no true correlations between HER3 and patient 

survival have been made within the literature (Lemoine, Barnes et al. 1992; Gasparini, Gullick et 

al. 1994; Bieche, Onody et al. 2003). Like HER2, the oncogenic properties of HER3 is highly 

dependent on its heterodimerization with other EGFRs (Koutras, Fountzilas et al. 2010). In fact, 

HER2-HER3 heterodimerization has been associated with a high mitogenic potential (Citri, Skaria 

et al. 2003).  

Additionally, HER3 has been implicated in EGFRTKi resistance. Indeed, increased HER3 

expression is associated with decreased sensitivity to EGFRTKis (Stegeman, Kaanders et al. 2013; 

Nakata, Tanaka et al. 2014). Furthermore, increased HER3 activation, heterodimerization as well 

as decreased in activity of phosphatases targeting the HER3 have all been linked to acquired 

resistance to EGFR inhibitors (Koizumi, Shimoyama et al. 2005; Sergina, Rausch et al. 2007; Xia, 

Petricoin et al. 2013). Additionally, the pharmacological targeting of HER3 has been shown to 

overcome EGFRTKi resistance (Huang, Li et al. 2013). The increased activation and dimerization 

is explained by an altered localization of HER3 in lung cancer cells. Indeed, prolonged EGFR 

inhibition promoted the membrane localization of HER3 (Sergina, Rausch et al. 2007). 

Additionally, HER3 has been shown to promote resistance through the activation of the PI3K/AKT 

pathway. In fact, heterodimerization of HER3 with either mutant EGFR (T790M) or another RTK 

cMET have been shown to promote PI3K activation in lung cancer cells (Engelman, Mukohara et 

al. 2006; Engelman, Zejnullahu et al. 2007). While the functions of HER3 in breast cancer has yet 

to be fully elucidated, it has been demonstrated in the literature that HER3 exerts its oncogenic 

properties through it dimerization with HER2 and is an important mediator of EGFRTKi 

sensitivity. 
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I.5.6 HER4 

Of the four EGFR family members, the functions of HER4 in breast cancer are the least discussed. 

Its expression is detectable in approximately 50% of diagnosed breast cancers. However, unlike 

other EGFR family members, HER4 is associated with the inhibition of cellular proliferation and 

the induction of apoptosis (Sartor, Zhou et al. 2001; Naresh, Long et al. 2006). Interestingly, HER4 

has been demonstrate to localize to the mitochondria and enhance the release of cytochrome C to 

promote apoptosis (Naresh, Long et al. 2006). Additionally, HER4 expression has been correlated 

with a good prognosis, increased patient survival, ER positivity, decreased HER2 signaling and 

increased response to hormonal therapy (Knowlden, Gee et al. 1998; Tang, Concepcion et al. 1999; 

Bieche, Onody et al. 2003; Witton, Reeves et al. 2003; Barnes, Khavari et al. 2005; Naresh, Thor 

et al. 2008). Meanwhile, the role of HER4 in EGFRTKi resistance has yet to be evaluated within 

the literature. 

Together, the EGFR family of receptors are important mediators of oncogenesis and their activity 

and downstream signals have been implicated in the development of drug resistance. 

 

I.5.7 Other RTK family members in resistance 

While members of the EGFR family play an important role in mediating EGFRTKi resistance, 

other RTK family members have also been shown to compensate for the loss of EGFR signaling. 

First, the amplification cMET receptor, an oncogene overexpressed in breast cancer and associated 

with a poor prognosis, has been shown to promote EGFRTKi resistance in lung, brain and breast 

cancer cells (Engelman, Zejnullahu et al. 2007; Stommel, Kimmelman et al. 2007; Gastaldi, 

Comoglio et al. 2010; Raghav, Wang et al. 2012; Sohn, Liu et al. 2014). This receptor was shown 

to activate the PI3K pathway through the transactivation of HER3. Moreover the inhibition of this 

HER3 transactivation re-sensitized EGFRTKi resistance cells to EGFR inhibition (Engelman, 

Zejnullahu et al. 2007). Additionally, another RTK overexpressed in breast cancer and associated 

with a poor prognosis, AXL, has also been shown to mediate EGFRTKi resistance in both lung 

and breast cancer (Vuoriluoto, Haugen et al. 2011; Zhang, Lee et al. 2012; Byers, Diao et al. 2013; 

Meyer, Miller et al. 2013). Recently, AXL was shown to promote resistance by enhancing signals 

downstream of the EGFR. Indeed, the pharmacological inhibition or depletion of AXL 

significantly hindered the activation of the EGFR and its downstream signals. Furthermore, other 

RTKs such as the insulin growth factor-1 receptor (IGF1R) and fibroblast growth factor receptor 
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1 (FGFR1) have also been shown to be activated in EGFRTKi resistant cancer (Cortot, Repellin 

et al. 2013; Azuma, Kawahara et al. 2014). Inhibition of IGF1R was shown to prevent the 

development of EGFRTKi resistant lung cancer cells. (Cortot, Repellin et al. 2013) Whereas, the 

inhibition or depletion of FGFR1 was shown to decrease the activation of both AKT and ERK1/2, 

two important mediators of EGFRTKi resistance (Azuma, Kawahara et al. 2014).  

Altogether, mutations in the EGFR itself or increased signaling through other RTKs (HER2, 

HER3, cMET, AXL) promote resistance to EGFRTKis. Therefore, targeting signaling mediators 

downstream of these receptor could improve the response of patients to EGFR inhibition and delay 

the onset of resistance to these inhibitors. 

 

I.6 Signaling adaptors 

Activated RTKs are linked to their downstream signaling pathways through the recruitment of 

adaptor and effector proteins. Briefly, the autophosphorylation of the EGFR or the 

transphosphorylation of tyrosine residues by other kinases such as Src within the c-terminal tail of 

the EGFR create docking sites for adaptor proteins including Grb2 and Shc (Rozakis-Adcock, 

McGlade et al. 1992; Biscardi, Maa et al. 1999; Roskoski 2014). The recruitment of these adaptors 

has been shown to greatly increase the ability of the EGFR to phosphorylate and activate its 

downstream signaling mediators (Rojas, Yao et al. 1996; Migliaccio, Mele et al. 1997). 

Furthermore, adaptors assist in the assembly of spatially organized signaling cascades leading to 

the induction of important physiological responses such as cell proliferation, survival, migration 

and invasion (Hsieh, Yang et al. 2010). In this next section, we will discuss the importance of 

adaptor proteins as mediators of signals downstream of the EGFR and their influence in the 

development of breast cancer. 

 

I.6.1 Grb2 

The best characterized adaptor recruited to the EGFR is Grb2. It is classically known to link 

activated RTKs to the Ras/MAPK pathway. Grb2 is constitutively bound to the Ras guanine 

exchange factor (GEF) son of sevenless (SOS). Upon RTK activation, the Grb2/SOS complex is 

recruited to the receptor bringing SOS into close proximity with the GTPase Ras. This leads to 

Ras activation and the initiation of the Ras/MAPK pathway (van der Geer, Hunter et al. 1994; 

Kairouz and Daly 2000). As Grb2 has been previously reported to recruit a GEF to the EGFR 
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leading to the activation of the small GTPase Ras, we highlight the importance of Grb2 in the 

activation of other small GTPases, ARF1 and ARF6, in Chapter II.  Grb2 has also been shown to 

interact with other important signaling mediators such as Grb2-associated binding protein-1 

(Gab1) which recruits phosphatidylinositol-4, 5-biphosphate 3 kinases (PI3K) to RTKs leading to 

its activation (Ong, Hadari et al. 2001).  

The role of Grb2 in breast cancer remains controversial. An increased protein and mRNA 

expression of Grb2, as well as an amplification of the GRB2 gene locus have been observed in 

breast cancer cells and primary breast tumors (Daly, Binder et al. 1994; Verbeek, Adriaansen-Slot 

et al. 1997; Yip, Crew et al. 2000). Additionally, depletion of Grb2 is associated with a decreased 

ERK1/2 activation in breast cancer cells and delayed onset of mammary tumors induced by the 

polyomavirus middle T antigen suggesting that Grb2 may play an important role in mammary 

oncogenesis (Gale, Kaplan et al. 1993; Suen, Bustelo et al. 1993). However, Grb2 has also been 

shown to negatively regulate signals downstream of the EGFR (Li, Couvillon et al. 2001; Haines, 

Minoo et al. 2009; Belov and Mohammadi 2012). Indeed, the tyrosine phosphorylation of Grb2 

by the EGFR itself and the prolactin receptor, an important mediator of breast development and 

oncogenesis, has been shown to attenuate its interaction with SOS and thus block the activation 

Ras downstream of the EGFR (Li, Couvillon et al. 2001; Haines, Minoo et al. 2009). Additionally, 

Grb2 has been shown to recruit the ubiquitin ligase, Casitias B-lineage Lymphoma protein (Cbl), 

to the EGFR leading to receptor ubiquination and its down-regulation (Belov and Mohammadi 

2012).  On the same note, recent attempts at targeting Grb2 in cancer have had little to no 

therapeutic effects (Dharmawardana, Peruzzi et al. 2006).  

Together, Grb2 has been shown in the literature to be recruited to activated RTKs and promote the 

activation of signaling cascades. However, its role in breast cancer is still controversial.  

 

I.6.1.1 Grb2 structure 

The adaptor Grb2 consists of a Src Homology 2 (SH2) domain flanked by two Src Homology 3 

(SH3) domains (van der Geer, Hunter et al. 1994) (See Figure 8). Grb2 interacts with tyrosine 

phosphorylated residues such as those on the EGFR through its SH2 domain and proline-rich 

motifs such as those present on SOS through its SH3 domains (Lowenstein, Daly et al. 1992; van 

der Geer, Hunter et al. 1994; Kairouz and Daly 2000). Other proteins known to interact with the 

SH2 domain of Grb2 include: other RTKs and the adaptor Shc (Lowenstein, Daly et al. 1992; 
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Rozakis-Adcock, McGlade et al. 1992). Whereas, Grb2 binds proteins such as dynamin, a GTPase 

involved in endocytosis and Cbl, an E3 ubiquitin protein ligase involved in EGFR down-regulation 

through its SH3 domains (Lowenstein, Daly et al. 1992; Sparks, Rider et al. 1996; Yamazaki, Zaal 

et al. 2002). 

 

 

 

 

 

 

 

Figure 8. Grb2 structural domains 

The adaptor protein Grb2 contains a SH2 domain flanked by two SH3 domains. Classically, Grb2 is recruited to the 

activated EGFR through its SH2 domain. This recruits the exchange factor SOS, bound to its SH3 domain, leading to 

the activation of Ras/MAPK pathway. Other important signaling mediators such as the Gab1 and Shc family of 

adaptors as well as the ligase Cbl have all been shown to interact with Grb2. Adapted from: (Skolnik, Lee et al. 1993). 

 

I.6.2 Shc family of adaptors 

Another important family of adaptors characterize for their role downstream of RTKs is the Shc 

family of adaptors. It was first identified in a screen for novel SH2-containing proteins. 

Interestingly, Shc adaptors were discovered due to their high homology (~60%) with the tyrosine 

kinase, Src (Pelicci, Lanfrancone et al. 1992). They are best known for their role in mediating the 

activation of the Ras/MAPK and the PI3K/AKT pathways (Ravichandran 2001). Presently, four 

members of this family of adaptors have been identified and are designated: ShcA, ShcB, ShcC 

and ShcD (Wills and Jones 2012). While ShcB and ShcC are generally expressed within the central 

nervous system (CNS), ShcA is more ubiquitously expressed and highly expressed in epithelial 

cells (Pelicci, Lanfrancone et al. 1992; Nakamura, Sanokawa et al. 1996; O'Bryan, Songyang et al. 

1996; Pelicci, Dente et al. 1996). Within the CNS, ShcB and ShcC have been shown to promote 

the activation of the Ras/MAPK pathway downstream of both the EGFR and Trk receptors, a 

family of neurotrophins important for the survival of neurons (Sakai, Henderson et al. 2000). This 

suggests that ShcB/C exert similar effects in CNS as ShcA does in both the CNS and epithelium 

(van der Geer, Hunter et al. 1994; Sakai, Henderson et al. 2000). As for ShcD, it has been shown 

SH3 SH2 SH3 Grb2 
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to be expressed in the CNS, muscle, epithelia and bone precursors. However, its role in these 

tissues has yet to be thoroughly characterized (Hawley, Wills et al. 2011; Wills and Jones 2012). 

Collectively, the Shc family of adaptors are important regulators of signals downstream of RTKs 

in a variety of tissues within the human body. As our research focusses on the role of Shc adaptors 

in mediating ARF1 activity in breast cancer cells, the structure of the ShcA isoforms as well as 

their functions and role in breast cancer will be detailed below. 

 

I.6.2.1 ShcA isoform structures 

The ShcA family is composed of three isoforms: p66Shc, p52Shc and p46Shc. While the three 

isoforms originate from the same gene, their expression are governed by different transcriptional 

initiation sites as well as translational start sites (Luzi, Confalonieri et al. 2000). Structurally, the 

three isoforms high homology, with differences only present within their N-terminus, and are 

composed of a protein tyrosine binding domain (PTB), a collagen homology domain (CH1) and a 

SH2 domain (Migliaccio, Mele et al. 1997) (Figure 9). Both the PTB and SH2 domains of ShcA 

interact with phosphotyrosine residues and have been implicated in its receptor recruitment 

(Pelicci, Lanfrancone et al. 1992; van der Geer, Wiley et al. 1996; Ravichandran 2001). The PTB 

and SH2 domains are connected via a CH1 domain which is rich in proline motifs and known to 

interact with SH3-containing proteins such as Src (Migliaccio, Mele et al. 1997; Luzi, Confalonieri 

et al. 2000; Ravichandran 2001). Additionally, three tyrosine residues (Y239, Y240 and Y317 in 

p52Shc) are phosphorylated upon the engagement of ShcA to an activated RTK. Two of these 

residues (Y239 and Y240) are known to be phosphorylated by Src, whereas the kinase involved in 

Y317 phosphorylation has yet to identified (Ravichandran 2001). The phosphorylation of these 

residues has been implicated in the interaction between Grb2 and Shc (van der Geer, Wiley et al. 

1996). Indeed, mutation of these residues to alanine blocked the interaction between these two 

adaptors. 

The expression and structure of the p66Shc isoform differs from the other two ShcA isoforms. 

While p52/46Shc has been reported to be ubiquitously expressed, p66Shc is specifically expressed 

within the epithelium (Pelicci, Lanfrancone et al. 1992). This isoform also differs from the other 

two isoforms in that it consists of an additional CH domain (CH2). The CH2 domain is best 

characterized for its functions in mediating oxidative stress upon the phosphorylation of serine 36 

(Migliaccio, Giorgio et al. 1999). Oxidative stress, hydrogen peroxide treatment or irradiation, 
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promotes the serine phosphorylation of the CH2 domain leading to cellular apoptosis. Indeed, 

inhibition of this phosphorylation or the depletion of p66Shc attenuate oxidative stress-induced 

cell death. Interestingly, the knockout of p66shc in mice was shown to enhance the resistance of 

mice to the treatment with paraquat, an herbicide known to be highly toxic to both humans and 

animals. Moreover, the lifespan of these knockout mice was prolonged by 30% (Migliaccio, 

Giorgio et al. 1999). This suggested that p66Shc plays an important role in the aging process.   

On another note, p66Shc also has a functional cytochrome C-binding domain (CB) involved in the 

production of reactive oxygen species (ROS). While the CB domain is also present in the p52Shc 

isoform, it has been shown to be functionally inactive (Giorgio, Migliaccio et al. 2005). Briefly, 

ROS-dependent apoptosis is attenuated in p66Shc knockout mice. Interestingly, p66Shc was 

shown to have redox activity and reduces oxygen to hydrogen peroxide. This leads to the 

production of ROS and the induction of apoptosis. The redox activity was shown to be dependent 

on its CB domain and its interaction between cytochrome C (CytC) and p66Shc. 

Altogether, the three ShcA isoforms have been shown to be recruited to the EGFR and Grb2 to 

mediate signals leading to Ras/MAPK activation (Migliaccio, Mele et al. 1997). However, the 

CH2 and CB domains present in p66Shc regulate the isoform-specific properties of this adaptor, 

oxidative stress-induced apoptosis through its CH2 domain (Migliaccio, Giorgio et al. 1999) and 

ROS production and apoptosis through its CB domain (Giorgio, Migliaccio et al. 2005). Finally, 

p66Shc has been shown to mediate aging and age-related diseases (Migliaccio, Giorgio et al. 

1999).   

 

 

 

 

 

 

 

 

 

 

 

 



27 
 

 

 

 

 

 

 

 

 

 

Figure 9. Shc isoforms 

All three Shc isoforms (p52Shc, p46Shc and p66Shc) have been shown to be recruited to the EGFR via their protein 

tyrosine binding domain (PTB) and associate with the adaptor protein Grb2 via three tyrosine residues in their collagen 

homology 1 domain (CH1). Furthermore, the three isoforms can interact with tyrosine phosphorylated substrates 

through their SH2 domain. p66Shc differs from the other two isoforms in that it has an additional CH domain (denoted 

CH2). The phosphorylation of serine 36 in this domain is associated with the mitochondrial translocation and apoptotic 

functions of this isoform. It also has a cytochrome c-binding domain (CB) that is present but inactive in p52Shc. This 

domain allows p66Shc to associate with cytochrome c in the mitochondria and mediate the production of reactive 

oxygen species (ROS). Adapted from: (Alam, Rajendran et al. 2009) 

       

I.6.2.2 p52Shc 

Of all the ShcA isoforms, p52Shc is the best characterized for its role in mammary oncogenesis. 

Clinical studies have demonstrated that increased phosphorylation of Y317 in the CH1 domain of 

p52Shc is associated with advanced disease and increased risk of relapse in breast cancer patients. 

Additionally, blocking the recruitment of p52Shc to RTKs significantly delayed mammary tumor 

onset and progression. Furthermore, preventing the interactions between Grb2 and p52Shc by 

mutating the tyrosine residues within the CH1 domain of p52Shc was also associated with reduced 

tumorgenesis. Finally, p52Shc has been shown to promote cell proliferation, migration and 

invasion, as well as tumor angiogenesis (Dankort, Maslikowski et al. 2001; Saucier, Khoury et al. 

2004; Lucs, Muller et al. 2010). Therefore, this Shc isoform has been well established for its role 

in the promotion of cellular malignancy. 
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I.6.2.3 p46Shc 

While p46Shc and p52Shc are considered to have redundant cellular functions, the literature has 

described some minor differences between the two isoforms. First, p46Shc has a mitochondrial-

targeting domain that isn’t present in p52Shc and p66Shc. Indeed, p46Shc has been shown to 

localize to the mitochondrial matrix (Ventura, Maccarana et al. 2004). However, its role within the 

mitochondria has yet to be defined  Secondly, the affinity of the PTB domain of p46Shc for 

phosphotyrosine residues has been shown to be 10 times lower than that of p52Shc (Ravichandran 

2001). Interestingly, while the PTB-dependent tyrosine phosphorylation of p46Shc downstream of 

the EGFR has shown to be similar to that of p52Shc, p46Shc is unable to be phosphorylated by 

both the insulin receptor and the polyoma middle T antigen (Okada, Yamauchi et al. 1995). 

However, the differences in PTB-dependent phosphorylation amongst Shc isoforms need further 

investigation. Finally, the region of the CH1 domain of p52Shc and p66Shc known to interact with 

Src is not present in p46Shc (Sato, Nagao et al. 2002).  Indeed, both the in vitro and in vivo 

activation of Src was regulated by the expression of p52Shc and p66Shc, but not p46Shc. While 

the literature may suggest that p52Shc and p46Shc play redundant roles within the cell, the 

differences between the two isoforms discussed in this section would suggest that p46Shc may 

have distinct functions. Therefore, future studies are required to better characterize the importance 

of p46Shc in mediating RTK signaling as well as cancer development and progression. 

 

I.6.2.4 p66Shc 

The p66Shc isoform contains the same PTB, SH2 and CH1 domains present in p52Shc and 

p46Shc. However, p66Shc differs from the other two isoforms in that it has an additional CH 

domain (CH2) and a functional CB domain (Giorgio, Migliaccio et al. 2005). Unlike p52Shc and 

p46Shc, the expression of p66Shc is cellular specific (Pelicci, Lanfrancone et al. 1992). This 

isoform is absent in the brain, most hematopoietic cell lines and peripheral blood lymphocytes. 

Additionally, its expression varies in different cancer cell lines as observed by an increased 

expression in invasive prostate and breast cancer cells and a reduced expression in HER2-postive 

breast cancer cells (Xie and Hung 1996; Stevenson and Frackelton 1998; Jackson, Yoneda et al. 

2000; Veeramani, Igawa et al. 2005). All three isoforms have been shown to be recruited to 

activated RTKs and associate with the adaptor Grb2 (Migliaccio, Mele et al. 1997; Migliaccio, 

Giorgio et al. 1999). However, while p52Shc and p46Shc have been shown to promote the 
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activation of the MAPK pathway, p66Shc exerts a negative regulation on RTK-induced MAPK 

activation (Migliaccio, Mele et al. 1997). In fact, it has been demonstrated downstream of both the 

EGFR and the insulin growth factor-1 receptor (IGF1R) that p66Shc sequesters the Grb2/SOS 

complex away from Ras, thus blocking the activation of the Ras/MAPK pathway (Okada, Kao et 

al. 1997; Xi, Shen et al. 2010). This would suggest that p66Shc is an important mediator of the 

signals activated by the EGFR and may also play an important function in mediating signals 

downstream of this receptor. Since we and others have highlighted the importance of ADP-

ribosylation factors (ARF) in mediating signals downstream of the EGFR, we will describe the 

importance of p66Shc in mediating the activity the small GTPases, ARF1 and ARF6, in breast 

cancer cells in Chapter II. Furthermore, p66Shc associates with Src kinase, another important 

mediator of RTK signaling, and impairs the activity of this kinase (Xi, Shen et al. 2010). Together, 

these findings highlight the role of p66Shc as a negative regulator of RTK-dependent signals. 

The role of p66Shc in cancer is not well understood. While one would assume that p66Shc would 

have tumor suppressor properties since it negatively regulates RTK signaling, p66Shc has been 

associated with a poor prognosis in gastric, colorectal and prostate cancer (Lee, Igawa et al. 2004; 

Liu, Xie et al. 2014). Additionally, p66Shc has been shown to promote the invasion of both prostate 

cancer cells as well as hormone-sensitive breast cancer cells (Lee, Igawa et al. 2004; Rajendran, 

Thomes et al. 2010). Conversely, the expression of p66Shc in breast cancer patients has been 

associated with a good prognosis and reduced risk a disease relapse in addition to an increased 

response to hormonal therapies (Davol, Bagdasaryan et al. 2003; Frackelton, Lu et al. 2006). This 

would suggest that the functions of p66Shc in oncogenesis may be cancer specific. However, 

further investigation of the role of p66Shc in cancer is needed. Here, in this thesis, we will highlight 

the importance of p66Shc in mediating TNBC cell proliferation and migration, implicating the 

small GTPases, ARF1 and ARF6. 
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I.6.2.5 Mitochondrial p66Shc 

The tumor suppressive properties of p66Shc may also stem from its role in apoptosis. While the 

majority of p66Shc has a cytosolic localization, a subpopulation of p66Shc has been shown to 

localize within the inter-membrane space of the mitochondria. It has been reported that MEK, JNK 

and protein kinase C beta (PKC) dependent phosphorylation on Serine 36 in its CH2 domain 

induces the mitochondrial localization of p66Shc (Okada, Kao et al. 1997; Orsini, Migliaccio et 

al. 2004). Since we found that ARF1 mediates gefitinib-dependent JNK and ERK activity (Chapter 

III), we depict an interplay between in ARF1 and p66Shc in the regulation of mitochondrial 

apoptosis. (See Chapter IV).  In the mitochondria, p66Shc is maintained in an inactive state through 

its association with heat shock protein 70 (Hsp70) (Orsini, Migliaccio et al. 2004). In response to 

apoptotic signals (growth factor deprivation, chemotherapeutic treatment, oxidative stress), 

p66Shc is released from Hsp70 and promotes the production of reactive oxygen species (ROS) via 

the reduction of oxygen through its association with CytC (Orsini, Migliaccio et al. 2004; Giorgio, 

Migliaccio et al. 2005). This results in the opening of mitochondrial pores, the release of 

cytochrome c and the activation of caspase-dependent apoptosis (Orsini, Migliaccio et al. 2004) 

(See Figure 10). 

Together, the literature suggests that p66Shc has two roles within the cells: 1- A cytoplasmic 

population that mediates RTK signaling and 2- A mitochondrial population that regulates cellular 

apoptosis. On the same note, the migratory properties of p66Shc may be mediated by the 

cytoplasmic pool. Whereas, it regulates cell death through its mitochondrial localization. 
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Figure 10. The role of p66Shc in the mitochondria 

In response to external stimuli, p66Shc is serine phosphorylated. This allows for its translocation into the mitochondria 

where it forms an inactive complex with mitochondrial heat shock protein 70 (MTHSP70), transporter outer membrane 

complex (TOM) and transporter inner membrane complex (TIM). In response to an apoptotic signal, p66Shc is 

released from this complex, binds and oxidizes cytochrome c and catalyzes the reduction of O2 to H2O2. H2O2 opens 

the mitochondrial permeability transition pore (PTP) leading to the release of pro-apoptotic factors and the induction 

of apoptosis. Adapted from: (Cosentino, Francia et al. 2008). 

 

I.6.2.6 p66Shc in resistance 

Since p66Shc is an important mediator signals downstream of the EGFR, it would be of interest to 

determine its role in mediating EGFRTKi resistance. However, few studies have evaluated the role 

of p66Shc in mediating drug resistance. It has been shown that taxol, a taxane chemotherapeutic 

agent known to disrupt the microtubules, promotes the MEK-dependent serine phosphorylation of 

the CH2-domain of p66Shc (Yang and Horwitz 2000). This serine phosphorylation is required for 

p66Shc dependent apoptosis (Rajendran, Thomes et al. 2010). Thus, taxol sensitivity may be 

regulated by the expression of p66Shc. Additionally, the expression of p66Shc has been shown to 
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be required for the induction of apoptosis in response to several apoptosis-inducing agents 

suggesting the p66Shc may sensitize cells to apoptotic inducers and signals (Clark, Faisal et al. 

2010; Xiao and Singh 2010; Borkowska, Sielicka-Dudzin et al. 2012; Sakao and Singh 2012). 

While Shc proteins have been linked to the activation of the Ras/MAPK pathway, a key regulator 

of EGFRTKi resistance, the role of each Shc isoform in resistance has yet to be evaluated. 

However, one could hypothesize that apoptotic signals downstream of EGFR inhibition may be 

moderated by p66Shc expression and activity and we will highlight a possible role in for p66Shc 

in breast cancer cell sensitivity to EGFR inhibitors in Chapter IV.   

 

I.7 Ras GTPase superfamily 

Small GTP-binding proteins (GTPase) are important mediators of cellular function such as cell 

proliferation, cytoskeletal regulation, membrane trafficking and nucleo-cytoplasmic trafficking. 

They have been shown to play important roles in multiple physiological events including: 

embryogenesis, as well as cellular growth, polarity, adhesion, migration and differentiation. 

Disruption and/or alternation of the normal functions of these GTPases are linked to the 

development of multiple pathologies, which include several cancers (Williams and Rottner 2010). 

Therefore, GTPases are of great research interest.  

Of the small GTPases, the Ras GTPase superfamily is best characterized for their roles in both 

normal cellular physiology and cancer. This superfamily is composed of low molecular weight 

(~20 KDa) monomeric GTP-binding/hydrolyzing proteins. They are considered active when 

bound to GTP and inactive when bound to GDP. The transition from inactive to active states acts 

as a switch that transduces extracellular signals to intracellular responses such as cell proliferation, 

survival, migration and invasion. The deregulation of several members of these GTPases have 

been associated with oncogenesis as well as the development of other pathological diseases (Goitre, 

Trapani et al. 2014). The superfamily has been divided into five major families: 

A) Ras GTPases: Mediators of organism development, proliferation, differentiation and 

survival (Haigis, Kendall et al. 2008; Karnoub and Weinberg 2008). 

B) Rho GTPases: Regulators of cytoskeletal organization, cell polarity, cell cycle progression 

and gene expression (Heasman and Ridley 2008). 

C) Rab GTPases: Regulators of intracellular vesicular transport and the trafficking of proteins 

(Zerial and McBride 2001; Grosshans, Ortiz et al. 2006). 
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D) ARF GTPases: Mediators of vesicular transport and cytoskeletal organization (Donaldson 

and Jackson 2011). 

E) Ran GTPases: Regulators of nucleo-cytoplasmic transport of RNA and proteins (Moore 

1998). 

Since our research is focused on the ARF GTPases subfamily, the characteristics and 

functionalities of these members of the Ras GTPase superfamily will be thoroughly discussed 

below. 

 

I.7.1 ADP Ribosylation Factors (ARFs) 

The ARF family of GTPases, and the interest of our laboratory, are low molecular weight proteins 

that were originally identified for their role as a cofactor for cholera-toxin-catalyzed ADP-

ribosylation of the  subunit of heterotrimetric G proteins (Kahn and Gilman 1986). In this pivotal 

study, cholera toxin-mediated ADP ribosylation of Gs, G protein subunit involved in signaling 

through the cyclic AMP (cAMP), was shown to be dependent on the presence of a lipid membrane, 

nicotinamide adenine dinucleotide (NAD), GTP and a membrane-bound cofactor (Moss and 

Vaughan 1977; Enomoto and Gill 1979; Nakaya, Moss et al. 1980). This cofactor was coined 

ADP-ribosylation factor (ARF). This cofactor was latter purified from both bovine brain and rabbit 

liver and was shown to bind radiolabeled GDP and GTP suggesting that it had GTPase activity 

(Kahn and Gilman 1986). More recently, ARF proteins have been implicated in membrane 

trafficking and the maintenance of organelle structure (Donaldson and Jackson 2000). While, these 

GTPases are ubiquitously expressed, the unique cellular distribution (Golgi vs. plasma membrane) 

and interactions with effector molecules play an important role in defining the function of each 

ARF protein within the cell (D'Souza-Schorey and Chavrier 2006). There are 6 mammalian ARF 

proteins that have been identified and divided into three classes based on sequence homology: 

Class I (ARF1-3), Class II (ARF4, 5) and Class III (ARF6) (Donaldson and Jackson 2000). Class 

I ARF proteins control the assembly of vesicles in the secretary pathway and activate lipid-

modifying enzymes (Bonifacino and Glick 2004). However ARF2 is not present in humans. 

Meanwhile, the functions of Class II ARFs have yet to be fully elucidated. However, ARF5 may 

regulate early Golgi transport and recruitment of coat components to the trans-Golgi membrane 

(Claude, Zhao et al. 1999; Takatsu, Yoshino et al. 2002). As for ARF6 (Class III), it regulates 
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endosomal membrane trafficking and modifies to the actin cytoskeleton (D'Souza-Schorey, Li et 

al. 1995; Peters, Hsu et al. 1995). 

 

I.7.2 ARF structure 

The ARF proteins are characterized by central switch domains (Switch I and Switch II) and an N-

terminal amphipathic domain (See Figure 11) (Donaldson and Jackson 2011). They are unique to 

other small GTPases in that these proteins undergo two conformational changes in response to its 

GTP loading. Like other GTPases, the Switch I and Switch II domains undergo a conformational 

change which allows for its association with effector molecules. However, a second 

conformational change has been described in the amphipathic N-terminal domain of ARF 

GTPases. This promotes the membrane association of ARF proteins (Randazzo, Terui et al. 1995; 

Antonny, Beraud-Dufour et al. 1997; Pasqualato, Renault et al. 2002). These studies demonstrated 

that upon GTP loading of ARF proteins, the N-terminal helix is release from the protein core which 

allows its hydrophobic residues to interact with the membrane phospholipids, both at the plasma 

membrane as well as within the Golgi (Antonny, Beraud-Dufour et al. 1997). Therefore, GTP-

loading promotes both the recruitment of signaling effectors and the transition from a cytosolic 

localization to membrane structures (Antonny, Beraud-Dufour et al. 1997; Donaldson and Jackson 

2011). Additionally, ARF GTPases are myristoylated at their N-terminus. This myristoylation, an 

irreversible addition of a lipid, myristoyl group to the N-terminal glycine residues, is important for 

both the membrane recruitment and biological activity of these GTPases (Randazzo, Terui et al. 

1995; Chavrier and Menetrey 2010). Both the membrane localization and N-terminal 

myristoylation play an important role in mediating the loading of GTP to ARF proteins. Indeed, a 

higher affinity for GTP was observed for myristoylated ARFs in the presence of phospholipids 

compared to this myristoylated GTPase in the absence of phospholipids (Randazzo, Terui et al. 

1995).  Together, the GTP-loading of ARF GTPases is dependent on multiple processes that 

include a conformational change in the interswitch domains, membrane localization and n-terminal 

myristoylation. 
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Figure 11. The structure of ARF GTPases 

The above figure depicts the 3D structure of inactive, GDP-bound (Left side) and active, GTP-bound (Right side) 

ARF6. In its GDP-bound state, the interswitch domain (Red) of ARF proteins is retracted and fastened by its N-

terminal helix (Yellow). When activated, a large conformational change involving a two residue -strand shift results 

in an exposed conformation. The W/GG/R signature stabilizes this conformation and this allows the nucleotide-

binding site to detect interactions with the N-terminal of the ARF GTPase. Adapted from: (Kahn, Cherfils et al. 2006). 

 

I.7.3 ARF activation 

Like all small GTPases, ARF proteins are considered in their active state when bound to GTP and 

their inactive state when GDP-bound. The transition from inactive to active state is moderated by 

guanine exchange factors (GEFs) and the inactivation of ARF proteins is regulated by GTPase 

activating proteins (GAPs) (Figure 12). Furthermore, the membrane association of ARF proteins 

is essential for their activation (Antonny, Beraud-Dufour et al. 1997). While several ARF-specific 

GEFs and GAPs have been shown to interact with one or more ARF protein, in vitro, in vivo 

analysis has demonstrated that distinct ARFGEFs and ARFGAPs mediate the GDP/GTP transition 

of individual ARF GTPases (Jackson and Casanova 2000; Randazzo and Hirsch 2004). Listed 

below is a brief description of the identified ARFGEFs and ARFGAPs. 
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Figure 12. Regulation of ARF activity 

ARF GTPases are considered inactive when bound to GDP and active when loaded with GTP. In response to 

extracellular signals, guanine exchange factors (GEF) mediate the enzymatic reaction that removes the GDP from 

small GTPase and adds GTP. Conversely, GTPase activating proteins (GAP) reduce GTP-bound ARF GTPases to the 

inactive GDP-bound form. Upon ARF activation (GTP-loading), the GTPase associates and mediates its effector 

molecules leading to the initiation of downstream signaling. Interestingly, GAPs can act like effectors. This is 

implicated in a negative feedback loop that regulates ARF activity. Adapted from: (Otey, Goicoechea et al. 2009) 

 

I.7.3.1 ARFGEFs 

All ARFGEFs contain a conserved Sec7 domain that catalyzes the GDP release and GTP binding 

on their target ARF protein. Briefly, the Sec7 domain is named for its homology with the yeast 

protein Sec7p, which was identified in a screen for protein secretion defects. There are presently 

15 identified ARFGEFs in humans divided in 5 families based on overall structure and domain 

organization: 1- Golgi Brefeldin A (BFA)-resistance factor 1/BFA-inhibited GEF (GBF/BIG), 2- 

ARF nucleotide binding site opener (ARNO/Cytohesin), 3- Exchange factor for ARF6 (EFA6), 4- 

BFA-resistant ARFGEF (BRAG) and 5- F-box only protein 8 (FBX8) (Casanova 2007). The 

GBF/BIG GEFs are localized to the Golgi and regulate the activity of both class I and class II 

ARFs (Togawa, Morinaga et al. 1999). Whereas, the cytohesins are primarily localized to the cell 
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periphery and can be recruited to the plasma membrane through their PH domain. While this 

subtype of GEF favors the activation of Class I ARFs, it has been reported to also mediate ARF6 

activity (Klarlund, Guilherme et al. 1997; Frank, Upender et al. 1998; Venkateswarlu, Gunn-

Moore et al. 1998; Santy and Casanova 2001). The third and fourth GEF subgroups, EFA6 and 

BRAG, are localized to the plasma membrane and selectively activate ARF6 (Franco, Peters et al. 

1999; Someya, Sata et al. 2001). Finally, the functions of FBX8 remain uncharacterized (Casanova 

2007). Of interest, Cytohesin 2 (ARNO) has been demonstrated to mediate the dimerization of the 

EGFR. Indeed, the overexpression of Cytohesin 2 was shown to enhance EGFR signals in lung 

cancer cells (Bill, Schmitz et al. 2010). This would suggest that the activity of ARF GTPase may 

also mediate EGFR dynamics. While we have shown that ARF1 does not affect the activity, 

localization and internalization of the EGFR upon EGF stimulation (Boulay, Cotton et al. 2008), 

we highlight the importance of ARF1 in mediating EGFR internalization and degradation in breast 

cancer cells treatment with the EGFR inhibitor, gefitinib, in Chapter III of this theses. Moreover, 

we also show that ARF1 also mediates the activation and dimerization of EGFR family members 

in cells threated with this inhibitor (Chapter IV).   

 

I.7.3.2 ARFGAPs 

ARFGAPs catalyze the release of GTP from their target ARF isoform. Briefly, At least 24 

ARFGAPs have been identified in humans and are divided into two subfamilies: 1- ARFGAP1 

type and 2- AZAP type (Inoue and Randazzo 2007). The ARFGAP1s are divided into three 

subtypes: 1- ARFGAPs which mediate Golgi functions by acting on the ARF1 isoform (Tanigawa, 

Orci et al. 1993; Cukierman, Huber et al. 1995), 2- SMAPs which are both ARF1 and ARF6 GAPs 

and have been shown to mediate ARF6-dependent endocytosis (Tanabe, Torii et al. 2005; 

Natsume, Tanabe et al. 2006) and 3- GITs which regulate ARF6 activity, membrane trafficking 

and focal adhesions (Hoefen and Berk 2006). The AZAPs are divided into four subtypes: 1- ASAPs 

which mediate ARF1 activity, focal adhesions, invadopodia and podosomes (Randazzo, Andrade 

et al. 2000; Oda, Wada et al. 2003), 2- ACAPs which are ARF6 GAPs involved in cytokinesis, 

cell migration and actin cytoskeleton remodeling (Jackson, Brown et al. 2000), 3- ARAPs 

characterized for their role in mediating ARF1, 5 and 6 activity as well as membrane protrusions 

(Krugmann, Anderson et al. 2002; Krugmann, Andrews et al. 2006; Yoon, Miura et al. 2006) and 
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4- AGAPs that regulate ARF1 activity and may serve as a link between the endocytic pathway and 

the actin cytoskeleton (Nie, Stanley et al. 2002; Nie, Fei et al. 2005).   

Together, the activation and inactivation of ARF GTPases are complex mechanisms involving the 

interplay of several GEFs and GAPs. However, understanding these mechanisms could help 

identify new therapeutic targets and develop novel cancer therapies. 

 

I.7.3.3 Brefeldin A – ARFGEF inhibitor 

There are currently developed ARF inhibitors available. Of these inhibitors, Brefeldin A (BFA), 

an ARF inhibitor of fungal origin is the best characterized within the literature. Structural studies 

have demonstrated that BFA binds the interface between ARF-GDP and the Sec7 domain of BFA-

sensitive GEFs locking ARFs in an inactive state (Peyroche, Antonny et al. 1999; Renault, Guibert 

et al. 2003). Its actions are specific to Class I ARFs, specifically ARF1, as the activation of ARF6 

is unaffected by BFA treatment (Menetrey, Macia et al. 2000). Physiologically, BFA has been 

shown to block the secretion of newly synthesized proteins from the endoplasm reticulum. This 

stems from morphological changes in the Golgi leading to its disassembly (Fujiwara, Oda et al. 

1988; Lippincott-Schwartz, Yuan et al. 1989; Klausner, Donaldson et al. 1992). This process has 

been shown to have cytotoxic effects on several cancer cell lines (Ishii, Nagasawa et al. 1989).  

Indeed, BFA treatment induced the cellular death of lung, bladder, skin and gastric carcinoma 

cells, as well as in cellular models of leukemia. While this inhibitor has shown to be effective in 

the laboratory, multiple factors have hindered its progression into clinical trials. For instance, it 

has been associated with a poor solubility in biological fluids, an undesirable pharmacokinetic 

profile and neurotoxicity in animal models. This neurotoxicity was shown to originate from its 

ability to dissemble the Golgi (Dinter and Berger 1998; Kikuchi, Shinpo et al. 2003).  However, 

its apoptotic properties have been shown to be independent of its actions within the Golgi 

(Lippincott-Schwartz, Glickman et al. 1991). While this inhibitor is plagued by its non-specificity 

and toxicity, it remains a useful tool used within a laboratory setting to evaluate the functions of 

ARF GTPases.  

Overall, the activation of ARF GTPase is dynamic involving the interplay of ARFGEFs and GAPs. 

While inhibitors have been developed to regulate the activity of these GTPases, the 

pharmacological properties and toxicity have hindered their clinical applications. Therefore, 

extensive research is required to improve the understanding of the mechanisms of ARF activation 
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and to develop improved therapeutic tools. A novel mechanism of both ARF1 and ARF6 activation 

will be discussed in Chapter II and a thorough description of these two ARF isoforms is found 

below.    

 

I.7.4 ARF1 

Within the literature, the ARF isoforms, ARF1 and ARF6, are the best described. Here, I will 

provide a detailed description of ARF1. Whereas, ARF6 will be discussed in the next section 

(I.7.5). GDP-bound ARF1 is generally localized in the cytosol, whereas, activated ARF1 is 

primarily found in the Golgi. It is here where this ARF isoform regulates the secretion between 

this organelle and the endoplasmic reticulum. Briefly, the secretory pathway allows for the 

transport of proteins, carbohydrates and lipids within the cell. This pathway is made up of primarily 

the endoplasmic reticulum, the Golgi and the plasma membrane. The secretory cargo (proteins) 

are synthesized within the endoplasmic reticulum and are transported to the Golgi for further 

processing and maturation. The matured cargo is sorted and packaged within the trans-Golgi and 

then transported to their target location (i.e. plasma membrane) (Lippincott-Schwartz, Roberts et 

al. 2000). Within the Golgi, ARF1 mediates the recruitment of the vesicle coating protein complex, 

coat protein complex 1 (COPI), to the pre- and cis-Golgi structures. Briefly, there are two types of 

vesicles that mediate transport between the Golgi and the endoplasmic reticulum, COPII and 

COPI. While COPII vesicles are required for the concentration and export of secretory cargo from 

the endoplasmic reticulum (Kuehn, Herrmann et al. 1998; Matsuoka, Morimitsu et al. 1998), COPI 

vesicles mediate the retrograde transport of recycled cargo returning from the Golgi to the ER 

(Letourneur, Gaynor et al. 1994; Pelham 1994; Cosson and Letourneur 1997). Therefore, ARF1 is 

an important regulator of the transport from the Golgi back to the endoplasmic reticulum 

(Pepperkok, Whitney et al. 2000). Additionally, this GTPase recruits the adaptor proteins of 

clathrin-coated vesicles (AP1, AP3 and AP4) and the ubiquitous coat protein (GGA3) to the trans-

Golgi and endosomal membrane (Bonifacino and Glick 2004). AP1 and AP4 are implicated in the 

bidirectional transport between the trans-Golgi and endosomes (Bonifacino and Traub 2003; Hirst, 

Irving et al. 2013), whereas, AP3 mediates the transport between the endosomes and the lysosome-

related organelles (Dell'Angelica 2009). Meanwhile, GGA3 mediates clathrin assembly, 

intracellular transport and plasma membrane trafficking (Puertollano and Bonifacino 2004). Of 

interest, GGA3 has also been implicated in RTK internalization. Indeed, GGA3 was shown to 
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associate with the cMET receptor and promote the internalization and recycling of this receptor 

(Parachoniak, Luo et al. 2011). Therefore, ARF1 may mediate the internalization of RTKs through 

its regulation of GGA3.  

In addition to its role in vesicle secretion, activated ARF1 has also been shown to stimulate the 

assembly of both spectrin and the actin cytoskeleton on the Golgi membrane (Godi, Santone et al. 

1998; Fucini, Navarrete et al. 2000). Spectrin, involved in the maintenance of the Golgi 

organization and possibly vesicle secretion, is assembled through the ARF1-dependent activation 

of type I phosphatidylinositol-4-phosphate-5-kinase (PIP5K) (Godi, Santone et al. 1998; Jones, 

Morris et al. 2000). Whereas, actin cytoskeleton assembly was shown to be mediated by actin-

related proteins 2- and 3- (Arp2/3) dependent actin polymerization involving the activity of 

CDC42 and its downstream effector Wiskott-Aldrich syndrome protein (WASP) (Chen, Lacomis 

et al. 2004; Matas, Martinez-Menarguez et al. 2004). Together, within normal cells, ARF1 plays 

an important role in Golgi function and organization. 

 

I.7.5 ARF6 

Unlike ARF1, ARF6 does not play a regulatory role in the Golgi. Instead, this ARF isoform is 

localized to the plasma membrane and endosomal compartments and regulates membrane 

trafficking and actin cytoskeletal remodeling. Briefly, the endocytic pathway is involved in the 

uptake of macromolecules within the cell. Endocytosis is the process through which material from 

the cells environment or plasma membrane are internalized into the cell. Upon internalization, the 

cargo is transported within endosomes to the lysosome for degradation or recycled back to the 

plasma membrane or the trans-Golgi (Besterman and Low 1983; Soldati and Schliwa 2006; Mayor 

and Pagano 2007). In the endocytic pathway, ARF6 regulates phospholipid metabolism by 

activating both type I PIP5K and phospholipase D (PLD). This leads to the accumulation of PI (4, 

5) P2 and the induction of clathrin-mediated endocytosis (Brown, Gutowski et al. 1993; Honda, 

Nogami et al. 1999; Wenk and De Camilli 2004). This process has been implicated in the 

internalization of GPCRs (Claing, Chen et al. 2001). ARF6 also mediates clathrin-independent 

endocytosis. Here, the inactivation of this GTPase promotes the trafficking throughout this 

pathway (Brown, Rozelle et al. 2001; Donaldson 2003). Additionally, ARF6 controls endosomal 

recycling (D'Souza-Schorey, van Donselaar et al. 1998).  
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ARF6 also modulates the actin cytoskeleton to form pseudopods, membrane ruffles, comet-tails 

on endosomes, structures involved in driving movement, as well as promote cell spreading, cell 

migration and phagocytosis (D'Souza-Schorey and Chavrier 2006). These processes are governed 

by the control of Rac1 activation by ARF6 (Radhakrishna, Al-Awar et al. 1999; Boshans, Szanto 

et al. 2000). Furthermore, ARF6-dependent Rac1 activity is correlated with a decreased Rho 

activity (Boshans, Szanto et al. 2000). This is important to promote cellular motility. This ARF 

isoform has also been shown to modulate the cytoskeleton through its regulation of the proteasome. 

However, the connection between the proteasome and actin remodeling has yet to be well defined 

(Rangone, Pardo et al. 2005; D'Souza-Schorey and Chavrier 2006). Finally, ARF6 remodels the 

actin cytoskeleton by regulating the lipid metabolism of PI(4,5)P2 through the activation of both 

PLD and PIP5K (Hilpela, Vartiainen et al. 2004). 

Altogether, in normal cells, ARF1 plays an important role in mediating the secretory pathway, 

whereas, ARF6 regulates the endocytic pathway. Moreover, ARF6 also mediates the organization 

of the actin cytoskeleton. This suggests that these two ARF isoforms have distinct functions within 

the cell. 

 

I.7.6 ARF GTPases and breast cancer 

While ARF1 and ARF6 exert distinct functions within non-cancerous cells, we and others have 

demonstrate that within invasive breast cancer cells, these two GTPases, both exert similar 

oncogenic properties. Recently, our laboratory has demonstrated that ARF1 is activated 

downstream of the EGFR in invasive breast cancer cells (MDA-MB-231, SKBR3, HCC70 cells) 

(Boulay, Cotton et al. 2008; Haines, Saucier et al. 2014). We have shown that ARF1 signaled 

through the PI3K/AKT pathway and mediated breast cancer cell proliferation, migration and 

invasion (Boulay, Cotton et al. 2008; Schlienger, Campbell et al. 2014). More specifically, ARF1 

regulated cell proliferation by the induction cell-growth arrest and cellular senescence via a 

retinoblastoma protein (Rb)-dependent mechanism (Boulay, Schlienger et al. 2011). Whereas, the 

ARF1-dependent control of cell migration and invasion acted through the regulation of the small 

GTPases Rac1 and RhoA/C, respectively (Lewis-Saravalli, Campbell et al. 2013; Schlienger, 

Campbell et al. 2014). Furthermore, ARF1 has been demonstrated to mediate cancer cell invasion 

downstream of another RTK, ephrin-B1 (Tanaka, Sasaki et al. 2007). Additionally, 

pharmacologically targeting ARF1 with BFA has been shown to be cytotoxic in several cancer 
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cells. However, the poor bioavailability of this ARF1 inhibitor has hindered their progression into 

clinical trials (Ohashi, Iijima et al. 2012). We also have preliminary data that suggests that ARF1 

expression is increased in patients with invasive TNBC and HER2-positive breast cancer 

(unpublished data). Additionally, ARF1 has also been shown to be overexpressed in both in gastric 

and ovarian carcinomas (Bani, Nicoletti et al. 2004; Tsai, Lin et al. 2012). 

Similar to ARF1, ARF6 has also been implicated in breast cancer. It has been shown to signal 

downstream of the EGFR through the MAPK pathway (Tague, Muralidharan et al. 2004; 

Morishige, Hashimoto et al. 2008). It promotes breast cancer cell proliferation, migration, 

invasion, adhesion, angiogenesis and metastasis (Sabe 2003; Sabe, Hashimoto et al. 2009; 

Hashimoto, Hashimoto et al. 2011; Knizhnik, Kovaleva et al. 2012). Furthermore, the expression 

of ARF6, its GEF, GEP100 (BRAG2), and a downstream effector, AMAP1, have all been 

associated with a poor prognosis in breast, lung and head and neck cancer patients (Sabe, 

Hashimoto et al. 2009; Oka, Uramoto et al. 2014; Sato, Hatanaka et al. 2014). Additionally, they 

have also been linked to cancer reoccurrence following surgery to partially remove the affected 

region of the breast, known as breast conservative therapy (Kinoshita, Nam et al. 2013).  

In summary, in normal cells, ARF1 regulates the secretory pathway within the Golgi and ARF6 

mediates the endocytic pathway and actin cytoskeletal organization at the plasma membrane. 

However, in breast cancer cells both isoforms are localized to the plasma membrane and mediate 

oncogenic processes such as cell proliferation, migration and invasion. 

  

I.7.7 Other ARF isoforms 

While less characterized in the literature, interesting findings have been documented for other ARF 

isoforms (ARF3-5). Similar to ARF1, ARF3 has been shown to localize to the Golgi. However, it 

selectively localizes the trans-Golgi (Manolea, Chun et al. 2010). Whereas, ARF1 is not 

specifically localized to this region of the Golgi. Additionally, ARF3, along with ARF4, has been 

recently shown to mediate the integrity of recycling endosomes (Kondo, Hanai et al. 2012; Nakai, 

Kondo et al. 2013). Meanwhile, ARF4 and ARF5 have been shown to localize to the endoplasmic 

reticulum-Golgi intermediate compartment (ERGIC) and mediate COPI vesicle formation within 

the Golgi (Chun, Shapovalova et al. 2008; Popoff, Langer et al. 2011). 

Of these three ARF isoforms, ARF4 is of most interest in terms of cancer. Para-

methoxyamphetamine (PMA), a selective serotonin releasing agent, has been shown to enhance 
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the expression of ARF4 in glioblastoma cells. This increased ARF4 expression was associated 

with enhanced migration of these cells (Jang, Jang et al. 2012). Thus, ARF4 expression in 

glioblastoma cells exerts similar effects that ARF1 and ARF6 have been shown to exert in breast 

cancer cells. Additionally, ARF4 has been shown to promote the survival of glioblastoma cells. 

This was measured by a decrease in apoptotic signals through p38MAPK and JNK, decreased 

mitochondrial translocation of Bax, CytC release and caspase 3 activity. Also, a decrease in ROS 

production, a mediator of mitochondrial apoptosis, was observed in ARF4 overexpressing cells 

(Woo, Eun et al. 2009). Interestingly, we observed a similar role for ARF1 in mediating gefitinib-

induced apoptosis in breast cancer cells (See Chapter IV). 

Altogether, ARF1/6 and ARF4 mediate important oncogenic processes in breast cancer cells and 

glioblastoma cells, respectively (Boulay, Cotton et al. 2008; Sabe, Hashimoto et al. 2009; Woo, 

Eun et al. 2009; Jang, Jang et al. 2012; Haines, Saucier et al. 2014). This suggests that targeting 

the ARF family of GTPase may have significant therapeutic benefits in cancer patients. However, 

further characterization of these GTPases is needed. Since ARF GTPases have been implicated in 

the activation of classical signaling cascades, we will discuss the important signaling pathways 

involved in breast oncogenesis in detail below. 

 

I.8 Signal transduction 

Cells are highly responsive to their environment and transduce external stimuli into internal 

cellular responses. This process has been coined signal transduction. The majority of signal 

transduction cascade originate at the membrane through an interaction between an external 

stimulus such as a ligand, growth factor, hormone or inhibitor with a membrane-bound receptor, 

in our case the EGFR (Figure 13). The signal is then relayed through the cell via second 

messengers, adaptors and other signal mediators to the nucleus where it promotes the transcription 

of target genes. Phosphorylation is the major means through which signals are propagated from 

the receptor to nucleus. The disruption of normal signal transduction cascades has been well 

documented to play a role in oncogenesis. Described below are signaling pathways that mediate 

cellular responses in breast cancer. Furthermore, inhibitors of these signaling cascades as well as 

their role in EGFRTKi resistance are also discussed. 
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Figure 13. Signaling cascades activated downstream of the EGFR in cancer 

Upon the activation of the EGFR, several signaling cascades can be initiated. 1- The Ras/MAPK (ERK1/2) pathway 

identified in a variety of oncogenic processes such as cell motility and cell cycle progression; 2- The PI3K/AKT 

pathway best characterized for its role in cancer cell survival; 3- Src kinase, a non-receptor tyrosine kinase, known to 

activate multiple signaling cascades such as the Signal transducer and activator of transcription (STAT) pathway to 

promote cell survival and proliferation. Additionally, Src kinase has been reported to tyrosine phosphorylate the EGFR 

to enhance receptor activation; 4- p38MAPK pathway and 5- JNK pathway are both known to regulate apoptosis, cell 

differentiation and cell cycle progression. Adapted from: (Nyati, Morgan et al. 2006; Roberts and Der 2007; Wagner 

and Nebreda 2009) 
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I.8.1 Ras/ERK1/2 pathway 

Signal transduction is an essential in coordinating the normal functions within a cell. Over decades 

of research in cell signaling, the Ras/MAPK pathway has emerged as a central mediator of cell 

growth and survival. The extracellular-regulated kinases 1 and 2 (ERK1/2) or the mitogen-

activated protein kinase (MAPK) pathway is activated upon RTK activation (Shaw and Cantley 

2006). Classically, the adaptor Grb2 is recruited to an activated receptor bringing the GEF, SOS, 

into the proximity of the small GTPase Ras (Downward 2003; Shaw and Cantley 2006; Katz, Amit 

et al. 2007). Activated Ras interacts and activates RAF protein kinases, which in turn 

phosphorylate the MAPK kinases, MEK1 and MEK2 (Downward 2003; Katz, Amit et al. 2007). 

These MEK isoforms then activate ERK1 and ERK2 leading to their translocation into the nucleus 

where they promote the transcription of genes involved in cell proliferation, survival, migration 

and invasion (Downward 2003; Katz, Amit et al. 2007). In cancer, activation of the MAPK 

pathways occurs in response to constitutive activation of the EGFR as a result of somatic 

mutations, gene amplification and/or autocrine/paracrine signaling (Downward 2003; Katz, Amit 

et al. 2007). Additionally, mutations in other components of this signaling cascade such as the 

RAS, BRAF and MEK genes have also been implicated in cancer (Katz, Amit et al. 2007). However, 

mutations of these signaling mediators are rarely present in breast cancer patients (Normanno, 

Tejpar et al. 2009; Neuzillet, Tijeras-Raballand et al. 2014). The constitutive activation of this 

signaling cascade is commonly found in several cancers and has been shown to promote multiple 

oncogenic responses such as the transformation of mammalian cells, uncontrolled cell proliferation 

and resistance to apoptosis. Indeed, the inhibition of this pathway, either in vitro or in vivo, has 

been shown attenuate tumor growth, reduce cancer cell invasiveness and induce apoptosis (Wang, 

Boerner et al. 2007). Therefore, this pathway is an interesting therapeutic target in human 

malignancies.   
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I.8.1.1 MEK inhibitors 

Since the Ras/MAPK pathway is often activated in cancer patients and plays an important role in 

cancer development and progression (McCubrey, Steelman et al. 2007), this pathway is a 

therapeutic target in cancer patients. Several MEK inhibitors are currently in development. In fact, 

some MEK inhibitors have been shown to be good potential therapies for some cancers, especially 

BRaf-mutated melanomas and BRaf/KRas-mutated colorectal cancers (Wang, Boerner et al. 

2007). The benefit of these inhibitors is that unlike most kinase inhibitors, the majority of MEK 

inhibitors do not target the ATP-binding site, conferring high specificity (Wu and Park 2015). 

Instead, these inhibitors target the region around the ATP-binding site and lock MEK in a 

conformation that is unable to associate with ERK and activate it (Chappell, Steelman et al. 2011). 

Additionally, while EGFR inhibitors lose their activity in tumors with EGFR, Ras or Raf 

mutations, MEK inhibitors retain their activity (Wu and Park 2015). Indeed, co-treatment of 

EGFR-mutated lung cancer cells with an EGFR and MEK inhibitor re-sensitized cells to EGFR 

inhibition, induced apoptosis and attenuate tumor growth in vivo (Huang, Lee et al. 2013). 

Moreover, MEK inhibitors have also shown to reduce tumor growth of both KRas- and BRaf-

mutant cancers (Hatzivassiliou, Haling et al. 2013). While MEK is a promising target in cancer, 

recent clinical trials have failed. The primary reasons for their poor success include a low 

bioavailability, rapid drug metabolism, increased toxicity and the development of drug resistance 

(Rinehart, Adjei et al. 2004; LoRusso, Krishnamurthi et al. 2010; Wagle, Emery et al. 2011). 

Therefore, targeting upstream mediators leading to ERK1/2 activation in cancer cells may have 

therapeutic benefits. Interestingly, the ARF proteins have recently been shown to mediate the 

activation of this pathway, see Chapter III, (Morishige, Hashimoto et al. 2008) and thus the 

pharmacological inhibition of this family of GTPases may show important biological responses in 

cancer patients. However, substantial research is required to better characterize the therapeutic 

benefits of targeting ARF GTPases. 

 

 

 

 

 



47 
 

 

I.8.1.2 ERK1/2 pathway and EGFRTKi resistance 

The activation of the ERK1/2 pathway, an important mediator of oncogenesis, has been shown to 

be elevated in cancers that are resistant to EGFR inhibition (Chong and Janne 2013). Moreover, 

with the emergence of the importance of KRas mutations in the development of EGFRTKi 

resistance, there are presently clinical studies evaluating the efficacy and safety of targeting the 

MEK kinases in EGFRTKi-resistant cancers (Brand, Iida et al. 2011). However, KRas mutations 

are relatively rare in triple negative breast cancer patients. Yet, these patients are known to have 

an increased signaling through the MEK kinases that occurs through EGFR-independent 

mechanisms (Hoeflich, O'Brien et al. 2009; Mirzoeva, Das et al. 2009). Indeed, EGFRTKi-

resistant cancers have increased and persistent MEK/ERK1/2 activity (McCubrey, Steelman et al. 

2007). Furthermore, the treatment of gefitinib-resistant breast cancer cells with persistent ERK 

activation with a MEK inhibitor restored gefitinib sensitivity (Normanno, Campiglio et al. 2008). 

In this study, the overexpression of activated ERK1 was associated with the development of 

gefitinib resistance in breast cancer cells. In fact, the IC50 of gefitinib increased by approximately 

5-fold in these cells. In addition, the combinational therapy of EGFR and MEK inhibitors has also 

been shown to be effective in the treatment of EGFRTKi-resistant colorectal and lung cancer cells 

(Ercan, Xu et al. 2012; Troiani, Napolitano et al. 2014). 

Altogether, the Ras/MAPK pathway plays an important role in mediating cancer cell proliferation 

and survival. Inhibitors to this pathway are currently under development and being tested within 

clinical trials. However, there are many limitations to the uses of these inhibitors. Finally, 

increased activation of this pathway is associated with resistance to EGFR inhibitors and the 

treatment of EGFR inhibitor-resistant cancers with MEK inhibitors can re-sensitize cells to EGFR 

inhibition.  
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I.8.2 PI3K/AKT pathway 

Another important pathway well characterized for its role in oncogenesis, is the PI3K/AKT 

pathway. It is best known for its role in the cancer cell survival, but has been implicated in other 

oncogenic processes. The phosphatidylinositol-4, 5-biphosphate 3 kinases (PI3K) are a family of 

kinases that phosphorylate the 3’-hydroxyl group of phosphoinositides (Yuan and Cantley 2008). 

They are activated upon RTK activation. Briefly, the SH2 domain of the p85 regulatory subunit of 

PI3K binds to the phosphorylated tyrosine residues of RTKs and/or adaptor proteins recruited to 

RTKs (Carpenter, Auger et al. 1993; Lam, Carpenter et al. 1994). This activates the p110 catalytic 

domain of PI3K which phosphorylates PIP2 to form PIP3. Protein phosphatase and known tumor 

suppressor (PTEN) negatively regulates the conversion of PIP2 to PIP3. Protein kinase B (AKT) is 

recruited to PIP3 via its pleckstrin homology (PH) domain and is activated by 3-phosphoinositide-

dependent kinase 1 (PDK1) and/or the second mammalian target of rapamycin (mTor) complex 

(mTORC2) (Massacesi, Di Tomaso et al. 2016). Activated AKT has been shown to primarily 

mediate cell survival (Datta, Dudek et al. 1997). In cancer, mutations or amplification of the PI3K 

catalytic gene PIK3CA and/or AKT and the loss of PTEN are commonly associated with 

mitogenesis. In fact, mutations in the PIK3CA gene have been identified in approximately a quarter 

of breast cancer patients (Liu, Cheng et al. 2009). Moreover, the activation of the PI3K/AKT 

pathway mediates breast cancer cell survival, migration, motility and the formation of metastasis 

in animal models of breast cancer (Arboleda, Lyons et al. 2003; Hutchinson, Jin et al. 2004). 

Indeed, the overexpression of AKT2 was shown to promote the invasiveness of both breast cancer 

and ovarian cancer cells. This invasiveness was hindered upon the treatment of PI3K inhibitors or 

by the overexpression of PTEN (Arboleda, Lyons et al. 2003). Moreover, the co-expression of 

HER2 and AKT1 produced mammary tumors in mice earlier than mice that only overexpressed 

HER2. However, these tumors were found to be less invasive compared to HER2-alone tumors 

(Hutchinson, Jin et al. 2004). This would suggest that while AKT2 promotes cancer cell invasion, 

the oncogenic properties of AKT1 are restricted to the induction of tumor cell proliferation. 

Furthermore, we have shown that ARF1, an important mediator of breast cancer cell proliferation, 

migration and invasion, signals through AKT activation (Boulay, Cotton et al. 2008; Lewis-

Saravalli, Campbell et al. 2013; Schlienger, Campbell et al. 2014). This would suggest that ARF1 

could activate both AKT1 (proliferation) and AKT2 (invasion). However, further examination is 

required. 
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I.8.2.1 PI3K inhibitors  

With the PI3K/AKT pathway being the most frequently activated pathway in cancer, there are 

have been many attempts at targeting this pathway in patients. In fact, 30-50% of breast tumors 

have increased activation of this pathway. However, the importance of PI3K activation is more 

prevalent in ER-positive breast cancer compared to TNBC (Bachman, Argani et al. 2004; Cerami, 

Gao et al. 2012). With such an important role in a variety of cancers, this pathway is the focus of 

many clinical trials. Indeed, clinical trials for inhibitors of PI3K, AKT and mTORC2 are currently 

underway (Bauer, Patel et al. 2014). Furthermore, inhibitors of mTORC1 are approved for the 

treatment of several cancers (Bauer, Patel et al. 2014). While mTORC1 inhibitors have had clinical 

success, other than in hematologic malignancies, targeting upstream modulators such as PI3K and 

AKT has shown disappointing results (Bauer, Patel et al. 2014). The main reason for the lack of 

effectiveness of these inhibitors in the treatment of cancer is the doses required to significantly 

modulate this pathway in cancer patients, are associated with relatively severe adverse effects. 

Thus, drug tolerability is a major pillar for PI3K inhibitors (Bauer, Patel et al. 2014). However, 

the efficacy of these inhibitors in the treatment of either PI3KCA mutant or PTEN deficient breast 

cancer has been promising (DeGraffenried, Fulcher et al. 2004; Elkabets, Vora et al. 2013). While 

PTEN deficient breast cancer cells were shown to be highly dependent on the PI3K/AKT pathway 

for growth and survival, these cells were the most susceptible to PI3K inhibition (DeGraffenried, 

Fulcher et al. 2004). Additionally, PI3KCA mutant breast cancer cells with increased TORC1 

activity were shown to have reduced activity both in vitro and in vivo cancer cell proliferation upon 

TORC1 inhibitor treatment (Elkabets, Vora et al. 2013). Therefore, while inhibition of the 

PI3K/AKT pathway is plagued by issues with drug toxicity, certain populations of breast cancer 

patients may benefit from the use of these inhibitors.   
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I.8.2.2 PI3K pathway and EGFRTKi resistance 

The role of the PI3K/AKT pathway in EGFRTKi resistance is less clear compared the Ras/MAPK 

pathway. It is suggested that mutations in the catalytic domain of PI3K (PI3KCA) may promote 

intrinsic resistance to EGFRTKis (Engelman, Mukohara et al. 2006). In this study, signaling 

through the HER3/PI3K/AKT axis was implicated in resistance to the EGFR inhibitor, gefitinib, 

in lung cancer cells. Additionally, the overexpression of PI3KCA in these cells blocked gefitinib-

induced apoptosis. Whereas, the inhibition of PI3K signals, sensitized cells to EGFR inhibition. 

However, the importance of PI3KCA mutations in EGFRTKi-resistant patients has yet to be well 

defined (Sequist, Waltman et al. 2011). Conversely, in vitro studies have mapped the important 

mutations involved in resistance to the exon 20 kinase domain of PI3KCA (Engelman, Mukohara 

et al. 2006). In addition to the PI3KCA mutation, loss of PTEN has also been associated with 

intrinsic resistance (Sos, Koker et al. 2009). Here, PTEN is shown to be essential for the inhibition 

of signals downstream of mutant/erlotinib-resistant-EGFR. Moreover, increased signaling from 

mutant-EGFR was observed in PTEN-depleted cells. Yet, again, the importance of activating 

mutations and PTEN expression in resistance needs to be validated in the clinic. Thus, the 

importance of the PI3K/AKT pathway in mediating intrinsic EGFRTKi resistance requires further 

examination.  

An increased activation of this pathway has also been linked to acquired resistance. However, this 

activation has been shown to result from increased signaling through other RTKs such as HER3, 

cMET and IGF1R (Engelman, Zejnullahu et al. 2007; Frolov, Schuller et al. 2007; Zhang, 

Moerkens et al. 2011).  In gefitinib-resistant lung cancer cells, amplification of cMET promoted 

the activation of HER3 and in turn downstream signals though PI3K/AKT (Engelman, Zejnullahu 

et al. 2007). Additionally, the expression, activation and dimerization of HER3 was shown to 

promote resistance to erlotinib in pancreatic cancer cells (Frolov, Schuller et al. 2007). Finally, 

IGF1R has been shown to promote resistance in breast cancer cells by enhancing signals through 

both the ERK1/2 and PI3K/AKT pathways (Zhang, Moerkens et al. 2011). In breast cancer, a 

decreased resistance to hormonal therapy was observed in patients co-treated with PI3K inhibitors 

(Provenzano, Kurian et al. 2013). Yet, its importance in EGFRTKIs resistance has yet to be 

examined. While trials examining the efficacy of the co-treatment of these inhibitors with 

EGFRTKis are currently underway, the combinational toxicity of these two families of inhibitors 

may hinder the success of these trials. 
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In summary, like the Ras/MAPK pathway, this pathway also plays an important role in mediating 

oncogenic signals and promoting resistance to EGFR inhibitors. However, the success of inhibiting 

this pathway in cancer patients has been limited. 

 

I.8.3 p38MAPK pathway  

Another signaling cascade known to regulate by EGFR signaling, as well as EGFR inhibitors, is 

the p38MAPK pathway. The p38MAPK family consists of four isoforms: p38MAPK, 

p38MAPK, p38MAPK and p38MAPKWhile both p38MAPK and p38MAPK are 

ubiquitously expressed, the expression of the two other isoforms is tissue specific (Johnson and 

Lapadat 2002). In response to external signals, p38MAPKs are activated via phosphorylation by 

the MEK kinase, MKK3, MKK4 and MKK6 (Dong, Davis et al. 2002; Vander Griend, 

Kocherginsky et al. 2005; Cuadrado and Nebreda 2010). Once phosphorylated, p38MAPKs can 

translocate to the nucleus where they phosphorylate transcription factors involved in cell apoptosis, 

cell cycle arrest, survival, proliferation, migration and invasion (Bhowmick, Zent et al. 2001; 

Olson and Hallahan 2004; Wada and Penninger 2004). More specifically in breast cancer, activated 

p38MAPK is associated with increased invasion and metastasis, increased expression of EGFR 

and HER2 and resistance to hormonal therapy (Gutierrez, Detre et al. 2005; Han, Zeng et al. 2007). 

Indeed, a strong correlation between tamoxifen-resistance and the activation of p38MAPK was 

observed in tissues isolated from breast cancer patients. Moreover, cells collected from tamoxifen-

resistant xenograft tumors also had elevated p38MAPK activity (Gutierrez, Detre et al. 2005).   

 

I.8.3.1 p38MAPK inhibitors  

Since p38MAPK has both the properties of a tumor suppressor (cell cycle arrest and apoptosis) as 

well as a role in promoting cancer progression (cellular migration), it still remains controversial 

whether this pathway should be targeted in cancer patients. However, p38MAPK inhibitors are 

currently available. Two families of p38MAPK inhibitors have been synthesized: 1- Inhibitors that 

directly target the ATP-binding site of the kinase domain, 2- Inhibitors that indirectly block the 

binding of ATP to the kinase domain (Yong, Koh et al. 2009). While both types of inhibitors have 

been shown to effectively inhibit the kinase activity of p38MAPK, only the inhibitors that 

indirectly block the binding of ATP to the kinase domain have been shown to have target 

specificity (Karaman, Herrgard et al. 2008). Preclinical studies have demonstrated the efficacy of 
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p38MAPK inhibitors in both cancer and inflammation. In inflammation, p38MAPK inhibitors 

have been shown to down-regulate an inflammatory response as measured by a decreased cytokine 

production and C-reactive protein release as well as a diminished leukocyte response (Branger, 

van den Blink et al. 2002). Alternatively, in squamous cell carcinoma cells, p38MAPK inhibition 

mediated cell survival, proliferation and invasion (Junttila, Ala-Aho et al. 2007). Additionally, its 

inhibition has been shown to sensitize colon cancer cells to growth inhibition and apoptosis, while 

sensitizing gastric cancer cells to chemotherapy (Lim, Lee et al. 2006; Guo, Ma et al. 2008). In 

fact, the treatment of resistant gastric cancer cells with a p38MAPK inhibitor enhanced their 

response to chemotherapeutic agents. While the inhibition of p38MAPK is associated with anti-

tumorigenic properties, other studies have shown that treatment with these inhibitors can block the 

induction of apoptosis and thus promote oncogenesis (She, Bode et al. 2001; Bradham and McClay 

2006). Interestingly, the depletion of p38MAPK phosphatases, thus increasing p38MAPK activity, 

was associated with a decrease in both HRAS and HER2-driven tumors. Moreover, the 

pharmacological inhibition of p38MAPK was shown to promote mammary-tumor formation 

(Bulavin, Phillips et al. 2004). Additionally, the inhibition of p38MAPK was shown to block the 

taxol-dependent apoptosis of HeLa cells. In fact, activating p38MAPK in these cells can enhance 

taxol-induced cell death by approximately 25-fold (Deacon, Mistry et al. 2003).  Even though the 

role of p38MAPK in cancer remains controversial, clinical trials using p38MAPK inhibitors are 

currently underway. However, safety issues have plagued their success (Yong, Koh et al. 2009).  

 

I.8.3.2 p38MAPK pathway and EGFRTKi resistance 

As p38MAPK has been previously reported to play a pro-apoptotic function in cancer cells, it 

could be assumed that cellular apoptosis induced by EGFR inhibitors may be dependent on this 

pathway. However, the activation of p38MAPK has yet to be directly linked to EGFRTKi 

resistance. Meanwhile, it has been previously shown to mediate resistance to other 

chemotherapeutics such as cisplatin (Hernandez Losa, Parada Cobo et al. 2003). Indeed, the 

treatment of several human cancer cell lines with p38MAPK inhibitors reduced the sensitivity of 

these cells to cisplatin-induced apoptosis suggesting that p38MAPK is required for the 

chemosensitivity of these cells. Moreover, p38MAPK has been shown to mediate chemotherapy-

induced EGFR internalization (Zwang and Yarden 2006). Briefly, p38MAPK has been shown to 

phosphorylate a threonine residue on the EGFR leading to its internalization. Thus, p38MAPK 
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may mediate resistance by controlling the availability of the EGFR. Furthermore, p38MAPK has 

also been linked to other important mediators of drug resistance such as p53 and c-ABL (Pandey, 

Raingeaud et al. 1996; Sanchez-Prieto, Rojas et al. 2000). In response to genotoxic stress, 

p38MAPK has been shown to directly associated with p53 leading to its serine phosphorylation. 

This promotes the apoptotic-inducing functions of p53 (Sanchez-Prieto, Rojas et al. 2000). While 

it seems that p38MAPK would be a prime candidate mediating EGFRTKi sensitivity, further 

investigation is required to better understand its role in mediating drug resistance.  

Altogether, the role of p38MAPK and the use of p38MAPK inhibitors in cancer remains 

controversial. Some studies suggest that the inhibition of p38MAPK signals diminish the 

progression and spread of cancer. Whereas, others suggest that blocking this pathway could 

promote the survival of cancer cells. Furthermore, the role of this MAPK in EGFRTKi resistance 

has yet to be evaluate. However, in Chapter III, we will highlight an important role for this pathway 

in mediating gefitinib sensitivity in breast cancer cells depleted of the small GTPase ARF1. 

 

I.8.4 JNK pathway 

Another well characterized signaling pathway known to mediate cancer cell survival is the c-Jun 

NH2-terminal kinase (JNK) pathway. There have currently been three JNK genes: JNK1, JNK2 

and JNK3, which encode for 10 identified JNK isoforms (Zhou, Li et al. 2015). While JNK1 and 

JNK2 are ubiquitously expressed, JNK3 is primarily found in the brain, testis and heart. Like all 

MAPKs, the JNK isoforms are activated by MEK kinases, specifically MKK4 and MKK7 

(Derijard, Raingeaud et al. 1995; Tournier, Whitmarsh et al. 1997). Activated JNK is translocated 

to the nucleus where it phosphorylates the proto-oncogene, c-Jun, which exerts its cellular response 

(Hibi, Lin et al. 1993; Derijard, Hibi et al. 1994).  While transient JNK activation is associated cell 

survival, prolonged JNK activation has been shown to phosphorylate the anti-apoptotic factor Bcl2 

and induce apoptosis (Bassik, Scorrano et al. 2004; Ventura, Hubner et al. 2006). Briefly, 

phosphorylation of Bcl-2 diminishes its ability to lower intracellular concentrations of calcium. 

This in turn leads to increased calcium-dependent death stimulation and the induction of apoptosis 

(Bassik, Scorrano et al. 2004).  In breast cancer, JNK has been associated with a tumor suppressor 

function. Indeed, depletion of JNK1 and JNK2 in the mammary gland of mice was associated with 

an enhanced tumor development (Cellurale, Weston et al. 2010). Therefore, like the p38MAPK 

pathway, activation of JNK is associated with the induction of apoptosis. 
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I.8.4.1 JNK inhibitors 

While JNK is best known for its role in promoting cell death, there have also been reports that 

JNK activation can enhance cancer cell survival (Ventura, Hubner et al. 2006). Therefore several 

JNK inhibitors have been developed and characterized for their effectiveness in cancer treatment. 

However, the majority of these inhibitors have low kinase specificity and do not affect the 

phosphorylation of downstream targets of JNK (Bennett, Sasaki et al. 2001). While others, require 

very high doses to mediate JNK activity (Gaillard, Jeanclaude-Etter et al. 2005). To date, no JNK 

inhibitors have been used in the clinic. However, their efficacy have been demonstrated in a variety 

of cell-based and animal models (Bubici and Papa 2014). In breast cancer, JNK2-specific kinase 

inhibitors have been shown to block the migration of polyoma middle T antigen mammary tumor 

cells (Kaoud, Mitra et al. 2011). Moreover, drugs targeting JNK1 blocked the formation of liver 

tumors (Hui, Zatloukal et al. 2008). Indeed, the inhibition or depletion of JNK1 was shown to 

mediate the proliferation of liver cancer cells by affecting the expression of p21, a cell cycle 

inhibitor. Therefore, while JNK is an important mediator of apoptosis, it can also promote pro-

oncogenic processes such as cancer cell migration and proliferation. Thus, the development of 

JNK-targeting therapeutics may elicit interesting responses in cancer patients.    

 

I.8.4.2 JNK pathway and EGFRTKi resistance 

JNK activation has been shown to play an essential role in the induction of chemotherapeutic-

induced cell death/apoptosis (Sunters, Madureira et al. 2006). It was shown in breast cancer cells 

that JNK was required for taxol-induced apoptosis by promoting FOXO3a nuclear translocation. 

FOXO3a is an important apoptotic trigger. Thus, JNK could promote apoptosis by mediating its 

nuclear transport. Additionally, JNK activation has been implicated in resistance by mediating 

EGFR expression (Kim, Park et al. 2009). More specifically, JNK activation was shown to down-

regulate EGFR expression upon gefitinib treatment via the induction of cyclooxygenase-2 (COX-

2). Thus, JNK activation plays an important role in mediating gefitinib sensitivity leading to the 

induction of apoptosis.  

In summary, like for p38MAPK, the role for JNK in cancer and drug resistance remains 

controversial and requires further investigation. The inhibitors of this pathway currently available 

are inefficient. Therefore, the development of improved tools to characterize the importance of 

JNK in cancer and apoptosis are necessary. 
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I.8.5 Src kinase 

Src kinase is one of the oldest oncogenes studied and was identified and sequenced in the mid-

1970s (Stehelin, Guntaka et al. 1976).  They are members of the non-receptor tyrosine kinase 

family and consists of nine members: Src, Lyn, Fyn, LCK, HCK, FGR, BLK, YRK and YES. 

These kinases have been shown to play an important role in mediating signal transduction. Of 

these, Src kinase is the best characterized and its role in oncogenesis has been well defined 

(Roskoski 2015). In fact, several cancers exhibit increased Src expression and activity (Liu, 

Kovacevic et al. 2015). Furthermore, this kinase has been linked to cancer cell proliferation, 

survival, migration, invasion and angiogenesis (Roskoski 2015). Src is activated upon the 

dephosphorylation of the auto-inhibitory tyrosine 530 residue which leads to the 

autophosphorylation of tyrosine 419 within its catalytic domain (Roskoski 2015). Its activation 

has been shown to be mediated by multiple factors including RTK activation (Parsons and Parsons 

1997). Interestingly, Src has also been to shown to promote EGFR activation by tyrosine 

phosphorylating specific residues within its intercellular domain (Biscardi, Maa et al. 1999).  

Indeed, Src was shown to directly associated with the EGFR and phosphorylate tyrosine 845 on 

the receptor. This phosphorylation has been shown to enhance the activation of signals 

downstream of the EGFR. In fact, the overexpression of a mutant form the EGFR that cannot for 

phosphorylated on this residue by Src was shown to have decreased signaling. Thus, Src may 

promote its oncogenic properties through increased EGFR activation. In addition, Src activates the 

Ras/MAPK, Stat and PI3K/AKT pathways, three pathways shown to mediate oncogenic cellular 

responses (Martin 2001). Altogether, the literature demonstrates an important role for Src in 

mediating oncogenesis. This makes this kinase a potential therapeutic target in cancer patients. 
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I.8.5.1 Src kinase inhibitors 

Several Src kinase inhibitors have been developed with dasatinib being the most commonly used. 

Dasatinib is a dual Src kinase/ BCR-ABL inhibitor effective in the treatment of chronic myeloid 

leukemia and Philadelphia chromosome positive acute lymphoblastic leukemia. However, its 

therapeutic benefits in these two diseases stems from its actions on BCR-ABL and not Src 

(Lindauer and Hochhaus 2014). With Src being overexpressed in approximately 80% of TNBCs 

(Tryfonopoulos, Walsh et al. 2011), there have been many attempts of targeting Src in these 

patients. However, clinical trials using dasatinib in the treatment of invasive breast cancer have 

demonstrated disappointing results (Herold, Chadaram et al. 2011). In fact, a phase II trial using 

dasatinib treatment as a single agent showed that treatment of this inhibitor had no effect in patients 

with metastatic breast cancer.  Conversely, another Src kinase/BCL-ABL inhibitor, bosutinib, has 

shown effective activity in another trial (Campone, Bondarenko et al. 2012).  However, it was only 

shown to be effective in hormone-positive breast cancer patients. Therefore, this compound needs 

to be thoroughly tested in all breast cancer populations.   

 

I.8.5.2 Src kinase and EGFRTKi resistance 

Since Src kinase is an important regulator of signals downstream of activated EGFR, it is easily 

speculated that this kinase may mediate the resistance of cancer cells to EGFRTKis. Indeed, an 

increased Src activity in EGFR-inhibitor resistant lung cancer and colon cancer cells has been 

documented (Lu, Li et al. 2007; Wheeler, Iida et al. 2009). Additionally, Src-dependent tyrosine 

phosphorylation of the EGFR, a process known to enhance EGFR signaling, was also enhanced in 

these cells (Wheeler, Iida et al. 2009). It has been previously shown that Src-dependent EGFR 

tyrosine phosphorylation can potentiate EGFR activation and signaling (Biscardi, Maa et al. 1999). 

Thus, Src can promote resistance by directly increasing the activation state of the receptor itself. 

More interestingly, treatment with a Src inhibitor can re-sensitize resistant cells to EGFR inhibition 

(Lu, Li et al. 2007; Wheeler, Iida et al. 2009). Indeed, increased cellular apoptosis was observed 

in gefitinib-resistant cells co-treated with an EGFR and Src inhibitor compared to just the EGFR 

inhibitor alone. Src has also been shown to promote the nuclear translocation of the EGFR which 

mediates the transcription of genes involved in resistance (Lin, Makino et al. 2001; Li, Iida et al. 

2009). The nuclear accumulation of the EGFR has been associated with acquired resistance to the 

monoclonal antibody, cetuximab. Interestingly, treatment of non-small cell lung cancer cells with 
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the Src inhibitor, dasatinib, blocked the cetuximab-dependent nuclear sequestering of the EGFR 

(Li, Iida et al. 2009). Clinicians have recognized the importance of Src kinase in mediating the 

resistance to EGFRTKis. In fact, currently, the Src inhibitor, dasatinib, is being test in clinical 

trials of EGFR-inhibitor resistant colon, head and neck and lung cancers. 

Src kinase is the first true oncogene and has been linked to many oncogenic processes as well as 

the development of EGFRTKi resistance. Pharmacological inhibition of the kinase activity of Src 

has been shown to have therapeutic benefits and re-sensitized EGFRTKi-resistant cancers to 

EGFR inhibition. However, larger and more specific clinical trials are required to further 

characterize these inhibitors. 

Altogether, signal transduction is the process that transmits signals from the cell surface (receptor) 

to gene transcription (nucleus). De-regulation of these signaling networks are associated with the 

development of cancer as well as other pathologies. While we discuss each signaling cascade 

individually, it is important to understand that signal transduction is a complex notion involving 

the interplay and crosstalk between multiple signaling cascades. Therefore, it is best to discuss 

signal transduction in terms of a signaling network and not a single signaling pathway. This can 

explain why pharmacologically targeting a signal cascade has shown limited success in cancer 

patients and why future therapeutics are moving towards targeting multiple pathways in 

congruence. In this thesis, we will highlight the ARF GTPase family as key mediators of signaling 

networks leading to cell proliferation, migration and EGFRTKi resistance.  Thus, targeting these 

small GTPases may lead to the inhibition of multiple oncogenic signaling cascades as well as 

blocking physiological events such as cancer cell proliferation, migration and invasion. 

 

I.9 Cell death 

The process of cell death plays an important role in disease. For example, in conditions such as 

Parkinson’s disease, stroke and congestive heart disease, cell death is associated with loss of 

organ/tissue functionality and ultimately death. In this case therapeutics are used to prevent cell 

death. Conversely, in cancer, therapeutics are designed to promote the induction of cell death. 

Within the literature, three mechanisms of cell death have been described: 1- necrosis (death of a 

portion of tissue differentially affected by a local injury), 2- apoptosis (a genetically programmed 

mechanism that allows cells to commit suicide) and 3- autophagy (digestion of cellular constituents 

by enzyme of the same cell) (Henriquez, Armisen et al. 2008; He and Klionsky 2009; Hotchkiss, 
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Strasser et al. 2009). Since EGFR inhibitors have been reported to promote apoptosis in cancer 

cells, the remainder of this chapter of my thesis will describe this mode of cell death in more detail. 

 

I.9.1 Apoptosis 

Apoptosis is important process that ensure organism survival by eliminating damaged or infected 

cells. Apoptosis is generally accompanied by several distinct morphology events such as 

cytoplasmic shrinkage, chromosomal condensation and membrane blebbing as well as 

biochemical features such as the activation of the enzymatic caspases (Kerr, Wyllie et al. 1972; 

Galluzzi, Lopez-Soto et al. 2016). Altered apoptotic signaling has been linked to several 

pathologies such as cancer (Hotchkiss, Strasser et al. 2009). In fact, malignant cells are more 

resistant to apoptotic signals. This stems from the de-regulation of signals through the two 

apoptotic activating pathways (Brown and Attardi 2005; Pandey, Prasad et al. 2016). These 

pathways are known as: (See Figure 14) 1- The extrinsic pathway involving the activation of death 

receptors which recruit and activate caspases 3, 8 and 10 leading to DNA fragmentation, nuclear 

fragmentation and membrane blebbing and 2- The intrinsic pathway involving the Bcl-family-

regulated release of CytC from the mitochondria leading the activation of caspases 3 and 9 

(Duprez, Wirawan et al. 2009). Work depicted in this thesis will focus on intrinsic or 

mitochondrial-dependent apoptosis. 
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Figure 14. Intrinsic versus extrinsic apoptotic pathways 

There are two major pathways that mediate apoptosis: 1- The extrinsic pathway that involves the induction of cell 

death in response to extracellular signals. Briefly, death ligands bind death receptors at the plasma membrane resulted 

in the recruitment of a death-inducing complex that plays a primary role in the activation of caspases 8 and 10.  These 

initiator caspases activate effector caspases 3, 6 and 7 which cleave their substrates and induce apoptotic cell death; 

2- The intrinsic pathway which incorporates death signals from within the cell, usually involving the mitochondria. In 

this pathway, the imbalance and activation of Bcl family members mediate the membrane potential of the mitochondria 

leading to the opening of pores within mitochondrial outer membrane. This allows for the efflux of pro-apoptotic 

regulators (Cytochrome c and APAF-1) leading to the formation of the apoptosome and the activation of caspase 9. 

Caspase 9 activates the effector caspases leading to substrate cleavage and the induction of apoptosis. Adapted from: 

(Duprez, Wirawan et al. 2009) 
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I.9.2 The mitochondria 

Apoptosis is commonly mediated by the integrity of the mitochondria, small organelles that play 

an essential role in the control of cell life and death. They are responsible for the cells energy 

production through the tricarboxylic acid (TCA) cycle and oxidative phosphorylation. In addition 

to its role in energy production, the mitochondria mediate the synthesis of other important factors 

such as lipids, pyrimidines, heme moieties, some amino acids and other biomolecules. It is also 

the major intracellular source of reactive oxygen species (ROS). This organelle controls cell fate 

by; 1- mitochondrial outer membrane permeabilization leading to cell death by apoptosis, 2- 

mitochondrial permeability transition leading to cell death by necrosis, 3- controlling the cellular 

energy supply and 4- participating in the synthesis of essential molecules such as lipids and 

nucleotides (Green, Galluzzi et al. 2014). The mitochondria play a limiting role in the induction of 

apoptosis, as cells depleted of mitochondria are resistant to apoptotic signals (Tait, Oberst et al. 

2013). The process of mitochondrial-dependent apoptosis will be further discussed below. 

 

I.9.3 The mitochondria and Cancer 

Since cancer cells need to evade apoptosis and alter their cellular respiration to survive, two 

cellular functions mediated by the mitochondria, it is highly likely that this organelle plays a role 

in oncogenesis. In fact, mitochondrial dysfunction is associated with the development and 

maintenance of several cancers including breast cancer (Wallace 2012). In response to hypoxia 

(low oxygen supply), cancer cells favor anaerobic glycolysis by shutting down mitochondrial 

functions (Zong, Rabinowitz et al. 2016). In fact, mutations in both mitochondrial DNA and enzymes 

have been identified in cancer patients. The majority of these mutations inhibit oxidative 

phosphorylation, the mitochondrial process involved in the production of ATP (Wallace 2012). In 

addition to altered mitochondrial respiration, cancer patients have been shown to have altered 

cellular metabolism and resistance to mitochondrial apoptosis (Zong, Rabinowitz et al. 2016).  

Furthermore, increase mitochondrial ROS production modulates important signaling cascades 

involved in mitogenesis (Wallace 2012). In summary, the mitochondria are organelles that play an 

important role in the induction of apoptosis and oxidative phosphorylation. To survive in low 

oxygen environments, cancer cells alter the functions of the mitochondria to evade apoptosis and 

favor anaerobic glycolysis as a mode of energy production.   

 



61 
 

I.9.4 Bcl Family 

Multiple factors mediate the induction of apoptosis within the mitochondria. A group of these 

factors are known as the Bcl family of proteins, named after B-cell lymphoma 2 (Bcl2), are well 

characterized for their role in mediating cell death. This family consists of three subgroups: 1- 

BH3-only proteins (E.g. Bim) which consist of a single BH3 domain and act as initiators of 

apoptosis by either blocking the pro-survival Bcl members or directly activating the pro-apoptotic 

Bcl members (Kuwana, Bouchier-Hayes et al. 2005; Czabotar, Lessene et al. 2014), 2- Pro-

survival Bcls (E.g. Bcl2) which are localized to the mitochondria and act by blocking the activation 

and oligomerization of pro-apoptotic Bcl members (Ku, Liang et al. 2011; Czabotar, Lessene et 

al. 2014) and 3- Pro-apoptotic effector proteins (E.g. Bax) that accumulate in the mitochondria in 

response to cytotoxic signals where they oligimerize and form pores in the mitochondrial 

membrane (Czabotar, Lessene et al. 2014). In the presence of an apoptotic signal, there is an 

accumulation of BH3-only proteins which either promote the activation and mitochondrial 

translocation of pro-apoptotic Bcls or inhibit the pro-survival Bcls. This allows for the 

oligomerization of apoptotic Bcls and the formation of pores within the outer mitochondrial 

membrane (OMM) and the initiation of caspase-dependent apoptosis (Suzuki, Youle et al. 2000; 

Czabotar, Lessene et al. 2014). Of interest, in Chapter IV, we present results demonstrating that 

ARF1 favors the actions of the anti-apoptotic Bcl factors to prevent cell death induced by the 

EGFRTKi, gefitinib.  Therefore, controlling the interplay of Bcl family members could be 

beneficial in the treatment of cancers by favoring the actions of both the initiators of apoptosis and 

the pro-apoptotic effectors or by blocking the actions of the anti-apoptotic members. In fact, 

multiple Bcl inhibitors are currently being developed and characterized. 
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I.9.5 Mitochondrial membrane potential 

The Bcl family described in the section above, exert the actions on apoptosis by mediating pore 

formation within the mitochondrial membrane. These pores alter the membrane potential of the 

mitochondria. The alterations in mitochondrial membrane potential have been proposed as an 

apoptotic mechanism (Figure 15). In normal physiological conditions, polarization of the outer 

mitochondrial membrane (OMM) opens the permeability transition pore complex (PTPC) and 

allows for the transport of metabolites, ions and other factors between the cytosol and the 

mitochondrial matrix. This process is important in the maintenance of mitochondrial functions 

(Kroemer, Galluzzi et al. 2007). However, in the presence of apoptotic signals, this controlled pore 

opening found in normal conditions is altered. It was originally proposed that the depolarization 

of the OMM results in a prolonged opening of the PTPC. This allows for the release of pro-

apoptotic factors such as CytC (Shimizu, Narita et al. 1999; Kroemer, Galluzzi et al. 2007). 

However, more recently another mechanism of mitochondrial apoptosis has been proposed. In this 

case, hyperpolarization of the OMM leads to the closure of the PTPC. This results in the 

accumulation of factors within the mitochondria leading to mitochondrial swelling. 

Consequentially, the OMM bursts under pressure and pro-apoptotic factors are released (Vander 

Heiden, Chandel et al. 2000; Kroemer, Galluzzi et al. 2007). This would suggest that both the 

depolarization and hyperpolarization of the OMM could promote the induction of apoptosis and 

that the actions of Bcl members could mediate the polarization state of the OMM. 
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Figure 15. Mediation of apoptosis by mitochondrial membrane potential 

In physiological conditions, interactions between the permeability transition pore complex (PTPC), hexokinase (green 

circle) and cyclophilin D (yellow circle) result in the opening of the PTPC, the polarization of the outer mitochondrial 

membrane (OMM) and the influx and/or efflux of metabolites (purple). The mitochondrial membrane potential can 

influence the induction of apoptosis 2-fold: 1- Depolarization of the OMM prolongs the opening of the PTPC allowing 

for the release of pro-apoptotic factors (cyan circles) into the cytosol. 2- Hyperpolarization of the OMM closes the 

PTPC leading to the accumulation of factors in the mitochondrial. This results in the swelling of the mitochondria, 

bursting of the OMM and the release of pro-apoptotic factors. Adapted from: (Kroemer, Galluzzi et al. 2007) 
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I.9.6 Cytochrome C 

The opening of pores within the mitochondrial membrane results in the release of pro-apoptotic 

factors that lead to the activation of proteolytic enzymes within the cytosol of the cell. One of these 

pro-apoptotic factors released from the mitochondria is cytochrome C (Cytc). It is a heme-protein 

localized between the outer and inner membrane of the mitochondria that mediates both cellular 

respiration and apoptosis (Ow, Green et al. 2008). In respiration, it functions to transfer electrons 

from complex III to complex IV of the respiratory chain (Lenaz and Genova 2010). In apoptosis, 

CytC is released into the cytosol through pores within the mitochondrial membrane. Interestingly, 

we found that CytC release in response to gefitinib treatment of breast cancer cells is mediated by 

the expression of the small GTPase ARF1 (See Chapter III). Once in the cytosol and in the presence 

of ATP, it promotes the activation and oligomerization of the adaptor-molecule-apoptosis-

protease-activating-factor-1 (APAF-1) which forms the complex known as the apoptosome. Each 

apoptosome can recruit and activate the proteinase activity of seven caspase 9 molecules. This 

promotes apoptosis (Zhou, Chou et al. 1999; Twiddy, Brown et al. 2004; Garrido, Galluzzi et al. 

2006).  

 

I.9.7 Caspases 

The formation of the apoptosome upon CytC release from the mitochondrial leads to the activation 

of caspases, a family of endoproteases that hydrolyze peptide bonds that are involved in both 

apoptosis (caspases 3, 6, 7, 8 and 9) and inflammation (caspases 1, 4, 5, 12). These enzymes exist 

as inactivate monomers and generally require both dimerization and prodomain cleavage for 

activation. Briefly, in inflammation, caspases play an essential role in the cleavage and activation 

of pro-inflammatory cytokines such as, IL-1 and IL-18 (Martinon and Tschopp 2004). In 

apoptosis, initiator caspases are activated by either the extrinsic (caspase 8) or intrinsic (caspase 

9) pathways. These initiator caspases activate executioner caspases (caspases 3, 6 and 7) which 

demolish important structural proteins and activate other enzymes involved in apoptosis. While 

caspases mediate key oncogenic processes, they are rarely mutated in cancer. In fact, in cancer, 

the deregulation of these enzymes is commonly the result of mutations in their upstream regulators 

(McIlwain, Berger et al. 2013). Furthermore, the inactivation of a single caspase is not sufficient 

to inhibit apoptosis. Thus, malignant cells survive by inhibiting upstream mediators of multiple 

caspases.  
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Together, the mitochondria is an important mediator of apoptosis in both normal and cancer cells. 

Cancer cells evade apoptosis by countering the mitochondrial functions by acting on the expression 

and activity of Bcl family members, controlling the mitochondria membrane potential and CytC 

release and by mediating the activity of the caspase enzymes. Interestingly, therapeutics and 

mechanisms that counter these properties in cancer cells, re-sensitize malignant cells to apoptotic 

signals. 

 

I.9.8 Apoptosis and resistance 

The evasion of apoptosis is considered an important mechanism through which cancer cells 

develop resistance to EGFRTKis (Chong and Janne 2013). It is well documented that EGFR 

inhibitors activate mitochondrial apoptosis. Indeed, the treatment with EGFRTKis activates the 

pro-apoptotic factors Bax and Bak and decreases the expression of the anti-apoptotic Bcl2 

(Hopfner, Sutter et al. 2004; Ling, Lin et al. 2008). While the literature suggests that decreased 

expression or polymorphisms in the pro-apoptotic BIM gene are associated with acquired 

resistance (Faber, Corcoran et al. 2011; Ng, Hillmer et al. 2012), little is known on the mechanisms 

through which resistant cells evade apoptosis. It has been suggested that the EGFR may have 

effects directly on the mitochondria. In fact, inhibitor treatment has been shown to translocate 

EGFR into this organelle (Cao, Zhu et al. 2011). Furthermore, EGFR was shown to sequester the 

pro-apoptotic p53 up-regulated modulator of apoptosis (PUMA) away from the mitochondria and 

block its function (Zhu, Cao et al. 2010). Additionally, gefitinib-mediated alterations in 

mitochondrial membrane potential were shown to be essential for the induction of apoptosis 

(Hopfner, Sutter et al. 2004). It has been also suggested that cells may escape apoptosis through 

increased upstream survival signals such as the AKT/mTor pathway or through mutations in or 

loss of PTEN (Bianco, Shin et al. 2003; Chong and Janne 2013).  

Altogether, apoptosis is a complex process involving the mitochondria. Cancer cells can evade the 

induction of apoptosis by altering multiple mitochondrial functions. Cancer cells can also develop 

resistance to cancer therapeutics by moderating the apoptotic pathways. Therefore, blocking 

survival mechanisms utilized by cancer cells can re-sensitize these cells to apoptotic signals and 

cancer therapeutics such as EGFRTKis. Chapter IV of this thesis to dedicated to characterizing the 

importance of ARF1 in mediating the anti-apoptotic signals present in breast cancer cells treated 
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with gefitinib. Findings from this chapter suggest that targeting this GTPase could re-sensitize 

resistant cancer cells to EGFR inhibition.  
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I.10 Study objectives and hypothesis 

A high proportion of TNBC patients have an increased expression of the EGFR. However, 

attempts at targeting the EGFR in these patients have shown limited success. Therefore, it is 

important to identify and characterize novel therapeutic targets in this breast cancer subtype. To 

date, we have demonstrated that the small GTPase ARF1, a possible TNBC therapeutic target, 

signals downstream of the EGFR in invasive breast cancer cells to mediate proliferation, migration 

and invasion (Boulay, Cotton et al. 2008; Boulay, Schlienger et al. 2011; Schlienger, Campbell et 

al. 2014). However, we have yet to identify important mediators of ARF1 activation in breast 

cancer cells and characterize the mechanism through which ARF1 is recruited to the EGFR and 

activated. Here, in our first article (Chapter II), we hypothesized that adaptor proteins known to be 

recruited to the activated EGFR such as Grb2 and Shc may play an important role in the regulation 

of ARF1 activity. It has been previously shown that ARF6 was recruited to the EGFR through a 

direct interaction with the EGFR and an ARF6GEF (Morishige, Hashimoto et al. 2008). 

Interestingly, the sites on the EGFR shown to interact with this GEF were known interaction sites 

for the adaptors Grb2 and Shc.  Indeed, we show that Grb2 was essential for both ARF1 and ARF6 

activity downstream of the EGFR. Whereas, the Shc isoform, p66Shc, attenuated ARF1 activation 

by blocking the recruitment of the ARF1/Grb2 complex to the receptor, while potential signals 

through the ARF6-Ras/MAPK signaling axis leading to cell proliferation and migration.  

Next, our second article (Chapter III), evaluated the importance of ARF1 in modulating EGFRTKi 

sensitivity in EGFR-positive breast cancer cells. Since ARF1 acts as a signaling switch 

downstream of the EGFR, known to be involved in EGFRTKi resistance, we proposed that the 

depletion or pharmacological inhibition of ARF1 could block these signals and re-sensitize cells 

to EGFR inhibition. We hypothesized that breast cancer cells evade the cytotoxic properties of 

EGFRTKis by increasing survival signals through ARF1 activation. Actually, ARF1 was shown 

to promote resistance by enhancing survival signals while blocking pro-apoptotic events. 

Additionally, we showed that ARF1 was essential in stabilizing EGFR expression in response to 

gefitinib treatment by blocking p38MAPK-dependent receptor internalization and degradation. 

Finally, in Chapter IV, we further highlight the importance of ARF1 in mediate gefitinib sensitivity 

and demonstrate that ARF1 may play a role within the mitochondria and mediate p66Shc activity 

in this organelle.  Since the adaptor p66Shc has been shown to be an important regulator of 

mitochondria-dependent apoptosis and we showed that this adaptor mediates ARF1 activity, an 
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important regulator of EGFRTKi resistance, we proposed to determine the interplay between 

ARF1 and p66Shc in mediating EGFRTKi-induced cell death. Indeed, p66Shc was shown to be 

required for gefitinib sensitivity. Furthermore, we highlight a novel role for ARF1 as a mediator 

of mitochondrial integrity. The depletion of ARF1 was associated with an up-regulation of 

gefitinib-mediated mitochondrial-dependent apoptosis as measured by p66Shc-mitochondrial 

translocation, mitochondrial membrane hyperpolarization and CytC release. We also demonstrate 

that ARF1 plays a key role mediating the dimerization and activation of EGFR family members. 

Subsequently, we demonstrated a role for this small GTPase in the induction of EGFRTKi 

resistance.  

Currently, there is a lack of effective treatment options available for TNBC patients. In fact, there 

are no targeting therapies accepted for the treatment of this subtype of breast cancer. Therefore, it 

is essential to characterize and identify novel therapeutic targets in this cancer population. We have 

characterized the small GTPase ARF1 as an important mediator of signals leading to cell 

proliferation, migration and invasion in a cellular model of TNBC. Furthermore, ARF1 was shown 

to be activated downstream of the EGFR, a receptor overexpressed in TNBC patients. Here, we 

delineate the mechanism leading to the EGFR-dependent ARF1 activation, implicating the adaptor 

proteins Grb2 and p66Shc. Furthermore, we demonstrate that the activation of ARF1 mediates the 

resistance to EGFR inhibitors, commonly found in TNBC patients. Therefore, pharmacologically 

inhibited this GTPase in TNBC patients could block tumor cell proliferation, migration and 

invasion, while sensitizing these tumors to EGFR inhibition. 
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activation of the GTPases ARF1 and ARF6 in invasive breast cancer 

cells 

 

 

 

Published in the journal: Journal of Biological Chemistry. 2014; 289, 5687-5703 

Eric Haines#, Caroline Saucierɸ & Audrey Claing# 

  

 

From the #Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, 

Quebec H3C 3J7 and the ɸDépartement d'Anatomie et de Biologie Cellulaire, Université de 

Sherbrooke, Sherbrooke, Quebec, Canada J1E 4K8  

 

 

Short title: p66Shc mediates ARF activation in breast cancer cells 

 

 

 

Author contributions: 

EH: experimental conception, experimental execution, data analysis and writing  

CS: experimental conception. 

AC: experimental conception and writing 

 

 

 

 



70 
 

II.1 Abstract 

Signals downstream of growth factor receptors play an important role in mammary carcinogenesis. 

Recently, we demonstrated that the small GTPases ARF1 and ARF6 were shown to be activated 

downstream of the epidermal growth factor receptor (EGFR) and act as a key regulator of growth, 

migration, and invasion of breast cancer cells. However, the mechanism via which the EGFR 

recruits and activates ARF1 and ARF6 to transmit signals has yet to be fully elucidated. Here, we 

identify adaptor proteins Grb2 and p66Shc as important regulators mediating ARF activation. We 

demonstrate that ARF1 can be found in complex with Grb2 and p66Shc upon EGF stimulation of 

the basal-like breast cancer MDA-MB-231 cell line. However, we report that these two adaptors 

regulate ARF1 activation differently, with Grb2 promoting ARF1 activation and p66Shc blocking 

this response. Furthermore, we show that Grb2 is essential for the recruitment of ARF1 to the 

EGFR, whereas p66Shc hindered ARF1 receptor recruitment. We demonstrate that the negative 

regulatory role of p66Shc stemmed from its ability to block the recruitment of Grb2/ARF1 to the 

EGFR. Conversely, p66Shc potentiates ARF6 activation as well as the recruitment of this ARF 

isoform to the EGFR. Interestingly, we demonstrate that Grb2 is also required for the activation 

and receptor recruitment of ARF6. Additionally, we show an important role for p66Shc in 

modulating ARF activation, cell growth, and migration in HER2-positive breast cancer cells. 

Together, our results highlight a central role for adaptor proteins p66Shc and Grb2 in the regulation 

of ARF1 and ARF6 activation in invasive breast cancer cells. 
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II.2 Introduction 

The epidermal growth factor receptor (EGFR), one of the best characterized tyrosine kinase 

receptors, has been shown to be highly expressed in certain breast cancer patients (1). Activation 

of this receptor by the binding of a variety of ligands, including the epidermal growth factor (EGF), 

has been implicated in breast cancer cell proliferation, survival, migration, and invasion (2). Upon 

binding of EGF, the EGFR can homodimerize or heterodimerize with other EGFR family 

members, ErbB2 and/or ErbB3 (3-5). This leads to the autophosphorylation of several tyrosine 

residues on the intracellular domains of the receptor. These residues serve as docking sites for a 

variety of adaptor proteins that are essential for the initiation of downstream signaling (6-8), such 

as the phosphoinositide 3-kinase (PI3K) and mitogen-activating protein kinase (MAPK) pathways 

(2, 9, 10).  

One family of adaptors that are recruited to the EGFR are the Src homology 2 domain-containing 

proteins (Shc), which consists of four members, ShcA, -B, -C, and –D (11-15). Although ShcB 

and -C have been shown to be primarily present within the central nervous system and ShcD has 

only been identified in mice, ShcA is ubiquitously expressed and has been implicated in breast 

cancer (11-13, 15). ShcA consists of three isoforms: p46Shc, p52Shc, and p66Shc, which result 

either from alternative translational initiation sites (p46Shc and p52Shc) or mRNA splicing 

(p66Shc) (16, 17). Although ShcA is generally considered as an adaptor protein mediating EGFR-

dependent activation of the MAPK pathway (16), the function of each isoform, especially p66Shc, 

in different physiological and pathological settings, remains controversial. Like p52Shc, p66Shc 

has also been reported to be recruited to the EGFR and associate with Grb2 upon stimulation (16). 

However, unlike the other Shc isoforms, p66Shc blocked the recruitment of Grb2 to the EGFR and 

insulin-like growth factor receptor. It was proposed that p66Shc may complete for similar binding 

sites on the EGFR. Furthermore, a non-receptor pool of p66Shc may sequester Grb2 away from 

the EGFR. This was shown to lead to an inhibition of the Ras/MAPK pathway (18, 19). 

Furthermore, the expression of p46Shc and p52Shc was shown to be elevated in tumors isolated 

from transgenic breast cancer mouse models, whereas p66Shc levels were undetectable (20, 21). 

In fact, recent studies have reported that p66Shc expression in breast cancer patients may be 

predictive of node negativity, reduced disease stage, and decreased incidence of patient relapse 

(22, 23). However, the same group demonstrated that p66Shc expression was associated with a 

poor prognosis in colorectal cancer patients (24). Interestingly, p66Shc expression has been 
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demonstrated to be up-regulated by steroid hormones in differentiated hormone-sensitive cancer 

cells and elevated in the highly invasive breast cancer MDA-MB-231 cell line, as well as in 

invasive prostate cancer cells (25-27) suggesting a role for this isoform in cancer progression. 

Moreover, LNCaP cell proliferation and motility was shown to be significantly hindered upon the 

depletion of p66Shc (27). In summary, the role of p66Shc in cancer remains highly controversial 

and the exact role for p66Shc in invasive breast cancer has yet to be examined. Recently, members 

of the ADP-ribosylation factor (ARF) family of small GTPases have been shown to be activated 

downstream of the EGFR in highly invasive breast cancer cells such as MDA-MB-231, MDA-

MB-435, and SKBR3. Moreover, these ARF proteins play an essential role in the proliferation, 

migration, and invasion of these cells (28, 29). Briefly, ARFs are members of the Ras superfamily 

of small monomeric G proteins and consist of six isoforms divided into three distinct classes: Class 

I, consisting of ARF1–3, which is known to regulate the secretory pathway; Class II, ARF4 and 

ARF5, in which their role has yet to be fully elucidated; and Class III, ARF6, known to modulate 

intracellular trafficking between the plasma membrane and the endosomes and play an essential 

role in the organization of the actin cytoskeleton (30). In breast cancer, isoforms ARF1 and ARF6 

have been the best characterized. Both GTPases play critical roles in the proliferation and 

migration of invasive breast cancer cells (28, 29). Although ARF6 has been shown to exert its 

oncogenic properties via the ERK1/2 pathway, we demonstrated that ARF1 signals primarily via 

the PI 3-kinase/AKT signaling axis (28, 29, 31). Little is known on the molecular mechanism 

downstream of the EGFR that leads to activation of ARFs. It was suggested that for ARF6, the 

guanine nucleotide exchange factor GEP100 (BRAG2) directly bound to the EGFR to mediate the 

activation of this small GTPase (32). However, it is important to define whether classical adaptor 

proteins contribute to regulate ARF activation.  

Here, for the first time, we show that the adaptor proteins p66Shc and Grb2 are key proteins 

controlling EGF-dependent ARF1 and ARF6 activation in invasive breast cancer cells. We 

demonstrate that whereas p66Shc attenuates ARF1 activation, it potentiates ARF6 activation. 

Furthermore, we demonstrate that another adaptor, Grb2, is essential for the activation of both 

ARF1 and ARF6. More specifically, we show that p66Shc mediates ARF1 activation by blocking 

recruitment of the Grb2-ARF1 complex to the EGFR. Conversely, we demonstrate that p66Shc 

potentiates ARF6 activation by favoring its Grb2-dependent recruitment to the EGFR.  

http://www.jbc.org/content/289/9/5687.long#ref-28
http://www.jbc.org/content/289/9/5687.long#ref-29
http://www.jbc.org/content/289/9/5687.long#ref-28
http://www.jbc.org/content/289/9/5687.long#ref-29
http://www.jbc.org/content/289/9/5687.long#ref-31
http://www.jbc.org/content/289/9/5687.long#ref-32
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II.3 Materials and Methods 

 

Reagents and Antibodies 

Lipofectamine 2000TM was purchased from Invitrogen. EGF was purchased from Fitzgerald 

Industries International, Inc. (Concord, MA). Monoclonal antibodies used in the study were ARF1 

(Sigma), p66Shc (Invitrogen), ARF6 (Santa Cruz Biotechnology, Dallas, TX), and 

phosphotyrosine (Millipore, Billerica, MA). Polyclonal antibodies used were EGFR, HER2, Pan-

actin, pERK1/2, pAKT, AKT (Cell Signaling, Danvers, MA), ARF1 (Proteintech Group, Chicago, 

IL), Grb2, HA tag, H-Ras, ERK1/2 (Santa Cruz Biotechnology), and Shc (BD Transduction 

Laboratories, Mississauga, Ontario, Canada). Other reagents used were goat anti-mouse antibody-

horseradish peroxidase and goat anti-rabbit antibody-horseradish peroxidase (R & D Systems, 

Minneapolis, MN) and protein G-agarose plus beads (Santa Cruz Biotechnology).  

 

DNA Plasmids and siRNAs 

HA-p66Shc cloned into a pcDNA3 vector was a gift from Dr. Nagamine (Friedrich Miescher 

Institute for Biomedical Research, Basel, Switzerland) (33). Double-stranded scrambled with 19-

nucleotide duplex RNA and 2-nucleotide 3′-dTdT overhangs were previously described (34). The 

19-nucleotide sequence for the human Grb2 siRNA target was 5′-GAA AGG AGC TTG CCA 

CGG G-3′. The 21-nucleotide sequence for the human p66Shc siRNA target was 5′-GAA UGA 

GUC UCU GUC AUC GUC-3′ as previously described (33). All siRNA include 2-nucleotide 3′-

dTdT overhangs and were purchased from Dharmacon Inc. (Lafayette, CO).  

 

Cell Culture and Transfection   

 MDA-MB-231, SkBr3, and MCF7 cells were maintained at 37 °C, 5% CO2 in Dulbecco's 

modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum (FBS). HCC70 

cells were maintained at 37 °C, 5% CO2 in Roswell Park Memorial Institute medium (RPMI) 

supplemented with 10% FBS. Cells were transfected with plasmid cDNA and/or siRNA using 

Lipofectamine 2000 according to the manufacturer's instructions. Briefly, for overexpression 

experiments, cells were mock transfected or transfected with                                            HA-

p66Shc cDNA for 6 h prior to being serum starved overnight and then stimulated with EGF for 

the indicated time points. In siRNA experiments, MDA-MB-231 cells were transfected with 50 

http://www.jbc.org/cgi/redirect-inline?ad=Invitrogen
http://www.jbc.org/cgi/redirect-inline?ad=Invitrogen
http://www.jbc.org/content/289/9/5687.long#ref-33
http://www.jbc.org/content/289/9/5687.long#ref-34
http://www.jbc.org/content/289/9/5687.long#ref-33


74 
 

nm siRNA for 72 h, serum-starved overnight, and then stimulated with EGF for the indicated time 

points.  

 

Co-immunoprecipitation and Western Blot Analysis 

Serum-starved cells from confluent 10-cm dishes were harvested in 500 μl of lysis buffer (20 mm 

Tris-HCl, pH 8, 1% Triton X-100, 10% glycerol, 140 mm NaCl, 5 mm EDTA, 1 nm sodium 

orthovanadate (Na3VO4)) complemented with protease inhibitors aprotinin (5 μg/ml), benzamidine 

(150 μg/ml), leupeptin (5 μg/ml), pepstatin (4 μg/ml), and phenylmethylsulfonyl fluoride (20 

mg/ml). Cell lysates were solubilized at 4 °C for 30 min and total soluble proteins were run on 

polyacrylamide gels and transferred onto nitrocellulose membranes. The transferred proteins were 

detected using specific primary antibodies (see each experiment for details). Secondary antibodies 

were all horseradish peroxidase-conjugated, and chemiluminescence was used to detect protein 

expression. The quantification of the digital images obtained was performed using ImageQuant 

TL (GE Healthcare Life Sciences). For immunoprecipitation experiments, lysates from the serum-

starved cells described above were incubated with agitation with the indicated antibodies and 

protein G-agarose plus beads at 4 °C for 3 h. Proteins were eluted in SDS-sample buffer by heating 

to 65 °C for 15 min. Protein interactions and receptor phosphorylation were assessed by Western 

blot analysis.  

 

ARF Activation Assay  

Cells were plated into 10-cm dishes, transfected for the indicated times, and serum-starved 

overnight. Cells were then stimulated with EGF (10 ng/ml) at 37 °C for the indicated times, and 

the activation of ARF1 was measured as previously described (34). Briefly, cells were lysed in 

400 μl of ice-cold lysis buffer E(pH 7.4, 50 mm Tris-HCl, 1% Nonidet P-40, 137 mm NaCl, 10% 

glycerol, 5 mm MgCl2, 20 mm NaF, 1 mm NaPPi, 1 mm Na3VO4, and the protease inhibitors: 

aprotinin (5 μg/ml), benzamidine (150 μg/ml), leupeptin (5 μg/ml), pepstatin (4 μg/ml), and 

phenylmethylsulfonyl fluoride (20 mg/ml)). Samples were spun for 5 min at 10,000 rpm. GST-

GGA3-(1–316) (35) coupled to glutathione-Sepharose 4B was added to each tube, and the samples 

were rotated at 4 °C for 45 min. Proteins were eluted in 20 μl of SDS-sample buffer by heating to 

65 °C for 15 min. The detection of ARF1-GTP or ARF6-GTP was performed by immunoblot 

analysis using specific antibodies to ARF1 and ARF6, respectively.  

http://www.jbc.org/content/289/9/5687.long#ref-34
http://www.jbc.org/content/289/9/5687.long#ref-35


75 
 

Ras Activation Assay 

Cells were plated into 6-well plates, transfected for the indicated times, and serum-starved 

overnight. Cells were then stimulated with EGF (10 ng/ml) at 37 °C for the indicated times, and 

the activation of Ras was measured. Briefly, cells were lysed in 200 μl of ice-cold lysis buffer E 

(pH 7.4, 50 mm Tris-HCl, 1% Nonidet P-40, 137 mm NaCl, 10% glycerol, 5 mm MgCl2, 20 mm 

NaF, 1 mm NaPPi, 1 mm Na3VO4, and the protease inhibitors: aprotinin (5 μg/ml), benzamidine 

(150 μg/ml), leupeptin (5 μg/ml), pepstatin (4 μg/ml) and phenylmethylsulfonyl fluoride (20 

mg/ml)). Samples were spun for 5 min at 10,000 rpm. GST-Raf-binding domain coupled to 

glutathione-Sepharose 4B was added to each tube, and the samples were rotated at 4 °C for 45 

min. Proteins were eluted in 20 μl of SDS-sample buffer by heating to 65 °C for 15 min. The 

detection of Ras-GTP was performed by immunoblot analysis using a specific antibody to H-Ras.  

 

Cell Counting Assay 

Cells were transiently transfected with 50 nm scrambled siRNA or p66Shc siRNA for 48 h for 

knockdown experiments or an empty vector or HA-p66Shc cDNA for 24 h for overexpression 

experiments, trypsinized, and an equal cell number (1 × 104 cells) were reseeded in a 6-cm dish 

for 24, 48, and 72 h. For each indicated time point, cells were trypsinized, stained with trypan blue, 

and live cells were manually counted.  

 

Cell Viability Assay  

Cells were transiently transfected with 50 nm scrambled siRNA or p66Shc siRNA for 48 h for 

knockdown experiments or an empty vector or HA-p66Shc cDNA for 24 h for overexpression 

experiments, trypsinized, and equal cell numbers (1000 cells) were reseeded in a 96-well plate for 

72 h. Cells were then stained with thiazolyl blue tetrazolium bromide (Sigma) for 2 h before being 

solubilized in 20% SDS, 50% dimethylformamide solution overnight. Absorbance was measured 

at 570 nm with a reference wavelength at 450 nm using a plate reader.  
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Cell Migration Assay 

Cells were transiently transfected with 50 nm scrambled siRNA or p66Shc siRNA for 72 h or an 

empty vector or HA-p66Shc cDNA for 24 h. Cells were then seeded onto Boyden Chambers (8 

μm pores) (Corning, New York) and incubated with or without EGF (10 ng/ml) for 6 h at 37 °C. 

Cells were fixed in 4% paraformaldehyde and stained with crystal violet for 16 h. Cells present in 

the upper chamber were removed with a cotton swab and the migrated cells, present in the lower 

chamber, were quantified by manual counting. Images were acquired using an epifluorescent 

inverted microscope (Carl Zeiss Axio Observer A1) with ZEN Pro 2011 software Blue edition.  

 

Statistical Analysis 

Statistical analysis was performed using either a one-way or two-way analysis of variance followed 

by a Bonferroni's multiple comparison test using GraphPad Prism (version 5, San Diego, CA).  
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II.4 Results 

 

p66Shc Modulates ARF1 Activation in Invasive Breast Cancer Cells 

Knowing that ARF1 is activated downstream of the EGFR, we sought to determine whether key 

adaptor proteins, such as Grb2 and Shc, may play a role in the recruitment of this GTPase to the 

activated receptor. Therefore, we first evaluated the expression levels of Grb2 and the three 

isoforms of ShcA (p46Shc, p52Shc, and p66Shc) in the non-invasive MCF7 cells (low EGFR, 

ARF1/ARF6-expressing) and the invasive MDA-MB-231 cell line (high EGFR, ARF1/ARF6-

expressing) (Fig. 1A). Although we observed no significant difference in expression of Grb2, 

p46Shc, and p52Shc between the two cell types, p66Shc was found to be present only in the MDA-

MB-231 cells. This is in accordance with previously published data highlighting an increased 

expression of p66Shc in this invasive breast cancer cell line (26). We next evaluated whether ARF1 

could form a complex with p66Shc. As shown in Fig. 1B, ARF1 co-immunoprecipitated p66Shc 

and this association was enhanced upon EGF stimulation. Additionally, we detected an association 

between ARF1 and Grb2 and p52Shc, but not p46Shc. These associations were also enhanced by 

EGF treatment. Because the function of p66Shc still remains ill-defined in breast cancer and this 

isoform is specifically expressed in MDA-MB-231 breast cancer cells, we further examined the 

role of this Shc isoform in the activation process of ARF proteins. Therefore, we next assessed the 

importance of p66Shc in the regulation of EGF-induced ARF1 activation. To do this, we measured 

the levels of GTP-bound ARF1 in EGF-stimulated MDA-MB-231 cells that were either transfected 

with scrambled or p66Shc siRNA. As shown in Fig. 1C, EGF induced the activation of ARF1 in 

cells transfected with a control siRNA. However, a significant increase in ARF1 activation was 

observed in cells where endogenous expression of p66Shc was reduced suggesting that this Shc 

isoform, in MDA-MB-231 cells, might act to limit ARF1 activation. For all experiments described 

in this study, we observed an average inhibition of p66Shc expression by 67%, when cells were 

transfected with a specific siRNA. To further evaluate the role of p66Shc, we next overexpressed 

an HA-tagged p66Shc in MDA-MB-231 cells. In these conditions, activation of ARF1 was 

significantly decreased (Fig. 1D), further supporting the role of p66Shc in controlling ARF1 

activation downstream of the EGFR. Next, we confirmed our finding in another basal-like breast 

cancer cell model, the HCC70 cell line (Fig. 1E). Indeed, similar to what was observed in MDA-

MB-231 cells, ARF1 activation was significantly reduced when p66Shc was overexpressed 

http://www.jbc.org/content/289/9/5687.long#F1
http://www.jbc.org/content/289/9/5687.long#ref-26
http://www.jbc.org/content/289/9/5687.long#F1
http://www.jbc.org/content/289/9/5687.long#F1
http://www.jbc.org/content/289/9/5687.long#F1
http://www.jbc.org/content/289/9/5687.long#F1
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compared with control cells. In summary, high expression of p66Shc in invasive breast cancer 

cells acts to negatively regulate ARF1 activation, upon EGF stimulation.  

 

p66Shc Regulates the Activation of the Ras/MAPK and AKT Pathways 

To further characterize the regulation of signaling cascades downstream of the EGFR, we next 

aimed to define the role of p66Shc on the regulation of ARF-dependent signals such as the PI 3-

kinase and MAPK pathways (29). First, we determined whether p66Shc mediated the activation 

of another small GTPase known to be activated by the EGFR, Ras (36). To do this, we measured 

the levels of GTP-bound Ras in EGF-stimulated MDA-MB-231 cells that were either transfected 

with scrambled or p66Shc siRNA (Fig. 2A). Interestingly, knockdown of p66Shc significantly 

decreased Ras activation compared with control cells. Next, we compared the Ras activation 

profile to that of ERK1/2 activation. As shown in Fig. 2A, whereas the initial activation of ERK1/2 

by EGF stimulation was diminished by depletion of p66Shc, no significant alterations in ERK 

activation were observed during later time points. These findings differ from previous observations 

in other cell types in which p66Shc has been shown to negatively regulate the activation of both 

Ras and ERK1/2 (16, 19, 37, 38). No significant effects on AKT phosphorylation were observed 

in p66Shc knockdown cells. To further evaluate the role of p66Shc in regulation Ras/MAPK 

activation in MDA-MB-231 cells, we next overexpressed a HA-tagged p66Shc in these cells. 

Surprisingly, overexpression of p66Shc resulted in a significant increase in the basal activation of 

both Ras and ERK1/2 (Fig. 2B). However, a significant decrease in Ras and MAPK activation that 

is consistent with previous reports was observed at later time points (16, 19, 37, 38). Additionally, 

we observed a delay in the phosphorylation of AKT in cells overexpressing p66Shc compared with 

control cells. Together, our results demonstrate that p66Shc mediates important signaling cascades 

known to be regulated by ARF proteins.  
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p66Shc Mediates Breast Cancer Cell Growth and Migration 

Because ARF1 and p66Shc have been previously reported to mediate cell growth and migration 

(29, 37, 39, 40), we next evaluated the physiological role of p66Shc in MDA-MB-231 cells. First, 

we evaluated the importance of p66Shc expression in cell proliferation using a cell counting assay. 

As shown in Fig. 3A, knockdown of p66Shc, by siRNA significantly reduced both the basal and 

EGF-mediated growth rate of MDA-MD-231 cells at both 48 and 72 h compared with the control 

scrambled siRNA-transfected cells. Next, we overexpressed p66Shc in MDA-MB-231 cells and 

evaluated cell growth at 24, 48, and 72 h (Fig. 3B). A significant decrease in basal and EGF-

dependent cell growth was observed in cells overexpressing HA-p66Shc for all tested time points. 

More interestingly, the EGF-independent cell number of HA-p66Shc overexpressing cells was 

found to be lower than the cell number originally seeded. This would suggest that overexpression 

of p66Shc may induce MDA-MB-231 cell death. We further confirmed the above regulation of 

cell growth using a 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide cell viability 

assay. Although no significant difference in basal cell growth was observed in p66Shc siRNA-

transfected cells compared with control, EGF-induced cell growth was significantly reduced upon 

p66Shc knockdown (Fig. 3C). Additionally, we also observed a decrease in both basal and EGF-

dependent proliferation in HA-p66Shc overexpressing conditions (Fig. 3D). Together, our results 

show that whereas p66Shc plays an important role in breast cancer cell growth, elevated expression 

of p66Shc may promote cell death.  

Next, we examined the role of p66Shc in cellular migration using Boyden chambers. As illustrated 

in Fig. 3E, EGF induced the migration of control MDA-MB-231 cells. However, EGF-mediated 

migration was significantly reduced upon the depletion of p66Shc. Furthermore, we were able to 

enhance the basal, but not EGF-dependent, migration of MDA-MB-231 cells by overexpressing 

p66Shc (Fig. 3E). Together, our results demonstrate that p66Shc is an important mediator of 

invasive breast cancer cell growth and migration.  
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p66Shc Regulates ARF1 Activity, Cell Growth, and Migration of HER2-positive Breast Cancer 

Cells 

Thus far, we have demonstrated that p66Shc is an important regulator of the growth and migration 

of triple negative breast cancer cells. Moreover, we show that p66Shc is an important mediator of 

signaling events downstream of the EGFR such as ARF1 and Ras/MAPK activation and AKT 

phosphorylation. However, triple negative breast cancer represents only ∼15% of all breast cancer 

cases (41). Therefore, we next evaluated the role of p66Shc in a more prominent cellular model of 

HER2 positive breast cancer, the SKBR3 cell line. In fact, approximately, 20–40% of breast cancer 

patients have an amplified HER2 receptor expression (42). First, we assessed the expression of 

p66Shc in SKBR3 cells (HER2 and EGFR positive) compared with MDA-MB-231 cells (HER2 

negative and EGFR positive). As shown in Fig. 4A, MDA-MB-231 cells express high levels of 

p66Shc compared with SKBR3 cells. These findings are in accordance with previously published 

observations showing that p66Shc expression is negatively correlated with expression of the HER2 

receptor (43). Furthermore, we previously reported that SKBR3 cells were shown to have a higher 

expression level of ARF1 compared with MDA-MB-231 cells (29). Comparable expression of 

EGFR, Grb2, and ARF6 were observed for both cell lines. Next, we examined the effect of 

overexpressing HA-tagged p66Shc on ARF1 activation in this cell type (Fig. 4B). In control cells, 

EGF stimulation induced the activation of ARF1. Interestingly, overexpression of p66Shc was 

shown to also reduce the activation of ARF1 further emphasizing the role of p66Shc as a negative 

regulator of ARF1 activation. Knowing that p66Shc influenced ARF1 activation in these cells and 

that we previously found that the proliferation and migration of SKBR3 cells was dependent on 

ARF1 expression (29), we next assessed the physiological role of p66Shc in this HER2 positive 

background. First, we evaluated its regulation of SKBR3 cell growth. As shown in Fig. 4D, EGF 

stimulation of control cells significantly promoted proliferation. Whereas, cells overexpressing 

p66Shc were shown to have an increased growth rate after 24 h. However, a significant decrease 

in both basal and EGF-dependent cellular growth was observed by 72 h. Second, we assessed the 

migration of mock-transfected or p66Shc overexpressing SKBR3 cells in the absence and presence 

of EGF stimulation (Fig. 4E). EGF was shown to enhance the migration of control SKBR3 cells. 

Interestingly, both EGF-independent and -dependent migration was enhanced in cells 

overexpressing p66Shc. Together, our results demonstrated that whereas p66Shc negatively 

regulated EGF-mediated signaling cascades such as ARF1 activation and cellular growth in HER2 
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positive breast cancer cells, it significantly enhanced cellular migration. These findings would 

suggest that p66Shc would be positively acting on other key proteins mediating this important 

cellular response.  

p66Shc Attenuates the Recruitment of ARF1 to the EGFR 

Having characterized the role of p66Shc in mediating ARF1 activation, cell growth, and cell 

migration in both a cellular model of triple negative and HER2 positive breast cancer, we next 

sought to delineate the mechanism via which p66Shc regulated ARF1 activation. Because p66Shc 

is endogenously expressed and ARF1 activation has been previously described in MDA-MB-231 

cells, we used this cellular model to characterize the mechanism of negative regulation of ARF1 

activity by p66Shc. First, we asked whether this ARF isoform was recruited to the EGFR in 

p66Shc-depleted cells (Fig. 5A). To do this, we immunoprecipitated EGFR from lysates of cells 

either transfected with control scrambled or p66Shc siRNA and immunodetected associated ARF1 

using specific antibodies. EGF induced the recruitment of ARF1 to the EGFR in control siRNA 

cells. However, knockdown of p66Shc resulted in an increased EGFR recruitment of ARF1 

suggesting that p66Shc blocks ARF1 receptor recruitment. To further confirm these results, we 

either mock transfected MDA-MB-231 cells or overexpressed HA-tagged p66Shc. As shown in 

Fig. 5B, the overexpression of p66Shc significantly attenuated the EGFR recruitment of ARF1 

compared with the mock transfected condition. Together, our findings suggest that p66Shc 

attenuates ARF1 activation by blocking the recruitment of this GTPase to the EGFR.  

 

Recruitment of the Grb2-ARF1 Complex to the EGFR is attenuated by p66Shc 

It has been previously demonstrated that p66Shc can block the recruitment of Grb2 to the EGFR 

and insulin-like growth factor receptor leading to decreased receptor signaling (18, 19). Therefore, 

we next evaluated whether in our cellular model p66Shc could block the recruitment of Grb2 to 

the EGFR thereby impacting the recruitment and activation of ARF1. In MDA-MB-231 cells 

transfected with a control siRNA or p66Shc-specific siRNA, we immunoprecipitated the EGFR 

and examined Grb2 (Fig. 6A). As expected Grb2 was recruited to the EGFR upon its activation in 

control cells. However, the recruitment of Grb2 to the EGFR was enhanced upon knockdown of 

p66Shc. Furthermore, reduced expression of p66Shc was associated with a delay in the activation 

of the EGFR compared with control conditions (Fig. 6A). Here, EGF was shown to transiently 

induce tyrosine phosphorylation of the EGFR at 1 and 2 min before returning to basal levels by 5 
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min. A significant increase in EGFR tyrosine phosphorylation was observed at 1 min compared 

with p66Shc overexpressing cells, and this increase was maintained above basal levels for up to 

15 min. We also observed an enhanced recruitment of endogenous p66Shc to the EGFR that was 

maintained throughout the 60 min of stimulation in cells overexpressing HA-p66Shc (Fig. 6B). 

Together, these results suggest that p66Shc may block activation and receptor recruitment of ARF1 

by blocking Grb2 recruitment to the EGFR. Furthermore, p66Shc and Grb2 may compete for 

similar binding sites on the EGFR and thus the Grb2-ARF1 complex would not be recruited to the 

receptor because Grb2 binding sites, on the receptor, are occupied by p66Shc.  

 

Grb2 Is Essential for the Recruitment of ARF1 to the EGFR and Activation of GTPase 

With evidence demonstrating that p66Shc blocks the recruitment of Grb2 to the EGFR, we next 

examined the influence of p66Shc on association between ARF1 and Grb2. Here, we 

immunoprecipitated ARF1 from lysates obtained from either scrambled or p66Shc siRNA-

transfected cells and measured the level of associated Grb2 (Fig. 7A). Interestingly, knockdown of 

p66Shc resulted in an increased association between Grb2 and ARF1 compared with control cells. 

Alternatively, we next determined the influence of Grb2 on interaction between p66Shc and ARF1. 

To do this, we immunoprecipitated ARF1 from lysates obtained from cells depleted of Grb2. As 

shown in Fig. 7B, the association between p66Shc and ARF1 was decreased in cells depleted of 

this adaptor. For this study, the average percent inhibition of Grb2 expression of siRNA was 95%. 

Together, our results suggest that regulation of ARF1 activation by p66Shc may stem from its 

negative effect on the Grb2/ARF1 interaction. Our results further suggest that the formation of a 

complex between p66Shc and ARF1 may occur indirectly, via the adaptor Grb2.  

Subsequently, we sought to determine whether Grb2 was essential for ARF1 activation and the 

recruitment of this GTPase to the EGFR. As shown in Fig. 7C, depletion of Grb2 significantly 

suppressed EGF-induced ARF1 activation compared with control conditions further suggesting 

that p66Shc may inhibit ARF1 activation by blocking the actions of Grb2. Next, we determined 

whether Grb2 was required for the recruitment of ARF1 to the EGFR. To do this, we 

immunoprecipitated the EGFR from cells either transfected with scrambled or Grb2 siRNA and 

immunodetected the presence of ARF1. As shown in Fig. 7D, EGF- induced recruitment of ARF1 

to the EGFR in control conditions. However, the recruitment of this ARF isoform to the receptor 
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was significantly blocked in cells depleted of Grb2. Together, these findings highlight the 

importance of Grb2 in receptor recruitment and activation of ARF1.  

 

ARF6 Activation and Its Recruitment to the EGFR Is Potentiated by p66Shc 

Because ARF6 has also been shown to be activated downstream of the EGFR (29, 31), we next 

examined whether p66Shc could regulate ARF6 activation in highly invasive breast cancer cells. 

First, EGF stimulation promoted GTP loading on this other ARF isoform in control MDA-MB-

231 cells (Fig. 8A). Although, knockdown of p66Shc expression attenuated ARF6 activation. The 

contribution of p66Shc in ARF6 activation was confirmed by overexpressing HA-tagged p66Shc. 

As illustrated in Fig. 8B, overexpression of p66Shc increased ARF6 activation. In fact, the 

potentiated activation of ARF6 was shown to be independent of EGF stimulation as observed by 

a significant increase in ARF6 activation at the basal level that was not altered upon EGF 

stimulation. Next, we examined the role of p66Shc in mediating ARF6 activation in the HER2 

positive breast cancer SKBR3 cell line (Fig. 8C). Similar to what was observed in MDA-MB-231 

cells, a significant increase in basal ARF6 activation was observed in SKBR3 cells overexpressing 

HA-p66Shc compared with control conditions. Together, our results demonstrate that activation 

of both ARF1 and ARF6 are regulated by p66Shc. However, whereas p66Shc blocked both the 

basal and EGF-dependent activation of ARF1, it significantly increased EGF-independent ARF6 

activation.  

We next examined the role of p66Shc in the recruitment of ARF6 to the EGFR. As seen in Fig. 

8D, EGFR stimulation of control cells induced the recruitment of this ARF isoform to the EGFR. 

However, knockdown of p66Shc expression reduced the ability of this ARF isoform to associate 

with the receptor. In contrast, overexpression of p66Shc resulted in an increased recruitment of 

ARF6 to the EGFR (Fig. 8E). This recruitment to the EGFR, in cells overexpressing p66Shc, was 

shown to be independent of EGF stimulation as an increased association with the EGFR was 

equally observed in untreated and EGF-treated cells. Collectively, our results illustrate that 

whereas p66Shc attenuates ARF1 activation by blocking its recruitment to the EGFR, ARF6 

activation and recruitment to the activated receptor is dependent on p66Shc.  
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Grb2 Is Required for Activation of ARF6 and Its Recruitment to the EGFR 

We next examined whether Grb2 was also required for ARF6 activation. Interestingly, similar to 

what was observed for ARF1, the depletion of Grb2 was associated with a decreased activation of 

ARF6 (Fig. 9A), suggesting that the activation process of both ARF isoforms requires this adaptor. 

Last, we evaluated the role of Grb2 in recruitment of ARF6 to the EGFR. Once again, as observed 

for ARF1, depletion of Grb2 was associated with a diminished association between the receptor 

and ARF6 (Fig. 9B). These data show that Grb2 is essential for activation and EGFR recruitment 

of both ARF isoforms. To further define the role of p66Shc in the activation process of ARF6, we 

examined its ability to regulate the Grb2/ARF6 interaction. As illustrated in Fig. 9C, depletion of 

p66Shc blocked the ability of ARF6 to associate with Grb2 suggesting that Grb2-dependent 

recruitment of ARF6 to the EGFR may be acting through p66Shc. Together, our results suggest 

that Grb2 is required for activation and receptor recruitment of ARF6 and that this small GTP-

binding protein is in complex with Grb2 via its association with p66Shc.  

Altogether, these results demonstrate that the adaptor proteins p66Shc and Grb2 regulate both 

ARF1 and ARF6 activation. We show that ARF1 is recruited to the EGFR and activated through 

its association with Grb2. Furthermore, we demonstrate that p66Shc decreases the activation of 

ARF1 by blocking recruitment of the Grb2-ARF1 complex to the EGFR. Additionally, we 

demonstrate that ARF6 activation and EGFR recruitment are dependent on both p66Shc and Grb2, 

where in which ARF6 is recruited to the EGFR via Grb2 by means of its association with p66Shc. 
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II.5 Discussion 

 

Because ARF1 and ARF6 are small GTPases activated downstream of the EGFR in invasive breast 

cancer cells, we aimed at defining the molecular mechanisms by which EGF stimulation leads to 

their activation. Classically, stimulation of the EGFR by its ligands results in the engagement of 

adaptor proteins assuring downstream signaling. Here, we show that p66Shc and Grb2 play an 

important role in the recruitment of ARF1 and ARF6 to the EGFR as well as in the activation 

process of these small GTP-binding proteins. Specifically, we demonstrate that Grb2 is essential 

for GTP loading of the two ARF isoforms, whereas p66Shc has opposite effects on ARF1 and 

ARF6 activation, attenuating ARF1 and potentiating ARF6, respectively.  

The role of p66Shc in breast cancer remains highly controversial and not fully understood. In the 

highly invasive MDA-MB-231 cell line, expression of p66Shc is elevated similar to what we have 

observed for ARF1 and ARF6, suggesting a possible role for this adaptor in breast cancer 

progression. Using knockdown and overexpression approaches, we have shown that p66Shc limits 

ARF1 activation and recruitment of this GTPase to the EGFR. Alternatively, we have 

demonstrated that p66Shc enhances ARF6 activation. We propose that this may represent another 

mechanism through which p66Shc acts as a key mediator of breast cancer progression.  

Although p66Shc has been reported to influence cellular growth and migration on a variety of cell 

types (37, 39, 40, 44, 45), we demonstrate for the first time its physiological role in invasive breast 

cancer cells. We show that knockdown of p66Shc significantly attenuates the growth of MDA-

MB-231 cells. It has been previously reported that depletion of p66Shc in normal bronchial cells 

lead to cell growth arrest by increasing the expression of the cyclin-dependent kinase 4 inhibitor, 

p16, and by decreasing phosphorylation of the retinoblastoma protein, a key cell cycle regulator 

(37). Interestingly, we observed a similar profile (increased p16 expression, decreased 

retinoblastoma protein phosphorylation) when we transfected p66Shc siRNA in MDA-MB-231 

cells (data not shown) suggesting that this adaptor may play an important role in mediating cell 

cycle progression. Surprisingly, we also observed reduced proliferation in cells overexpressing 

p66Shc. It has been previously reported that increased expression of p66Shc is associated with the 

induction of apoptosis (46–49). In our experiments, we observed a decreased expression of pro-

apoptotic factors in p66Shc knockdown cells (data not shown).  

We also demonstrated that cellular migration of MDA-MB-231 and SKBR3 cells was regulated 

by p66Shc. Although depletion of p66Shc significantly blocked cell migration, an enhanced effect 
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was observed in cells overexpressing p66Shc. To this day, the role of p66Shc, in cancer cell 

migration, remains controversial. Although this Shc isoform has been shown to induce the 

migration of prostate and colorectal cancer cells, it was reported to suppress the migration of lung 

cancer cells (37, 40). We have previously demonstrated that ARF1 is essential for the migration 

of both MDA-MB-231 and SKBR3 cells (29). However, we report here that a negative regulator 

of ARF1 enhances cellular migration. We hypothesize that p66Shc may promote migration 

through an ARF1-independent pathway such as via activation of the ARF6/Ras/MAPK pathway. 

A signaling cascade also implicated in the induction of breast cancer cell migration (32). 

Additionally, p66Shc has been shown to induce migration via the activation of another small 

GTPase, Rac1 (39). Recently, we have demonstrated that Rac1 was a downstream effector of 

ARF1 signals in MDA-MB-231 cells and the overexpression of a constitutively active form of 

Rac1 could reverse the inhibitory effect of ARF1 depletion on cell migration (50). Therefore, 

p66Shc may promote cell migration via the activation of Rac1. Together, our findings demonstrate 

that p66Shc is a key regulator of breast cancer cell growth and migration and may play an 

important role in breast cancer progression.  

The majority of mechanistic studies have examined the signaling role of p52Shc. Upon EGFR 

stimulation, this Shc isoform is recruited to the receptor and assembled into a complex with Grb2 

(51–53). However, p66Shc has also been reported to be recruited to both EGFR and Grb2 (16). In 

smooth muscle cells, p66Shc sequesters Grb2 away from the insulin-like growth factor receptor 

and EGFR blocking the activation of downstream signals (18, 54). Here, we show that p66Shc can 

also block the recruitment of Grb2 to the EGFR in invasive breast cancer cells. Additionally, unlike 

p46Shc and p52Shc, which activate ERK1/2 when overexpressed in HeLa cells, the 

overexpression of p66Shc has been shown to have little effect on ERK1/2 activation (16). 

Meanwhile, p66Shc was shown to block ERK1/2 activation in a variety of other cell lines such as 

mouse renal proximal tube cells, mouse splenic T cells, and porcine smooth muscle cells (18, 47, 

54). In MDA-MB-231 cells, overexpression of p66Shc potentiated the basal ERK1/2 

phosphorylation, a process we and others have shown to be mediated by ARF6 (29, 31). 

Furthermore, this increase in basal ERK activation correlated with an increase in Ras activation. 

We therefore propose that this increase in Ras/ERK activation observed in p66Shc overexpressing 

cells stems from an increased ARF6 activation. Interestingly, overexpression of p66Shc was 

shown to block the activation of both Ras and ERK1/2 following prolonged stimulation with EGF 
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(15–60 min). Our findings also show that p66Shc can negatively regulate AKT phosphorylation, 

an effect previously described in a variety of cell types (55, 56). This attenuation of AKT 

phosphorylation has been associated with the apoptotic properties of p66Shc (56), thus suggesting 

a possible role for p66Shc in mediating MDA-MB-231 cell survival. Together, our data reveals a 

mechanism through which p66Shc attenuates ARF1/AKT activation by blocking the recruitment 

of Grb2 to the EGFR and potentiates basal ARF6/Ras/ERK activation by promoting the receptor 

recruitment of ARF6.  

Similar to p66Shc, the role of the adaptor Grb2 in breast cancer is ill-defined. The expression of 

Grb2 has been shown to be elevated in primary breast tumors (57) as well as in estrogen receptor 

positive breast cancer cells (58). In our experiments, we observed a slightly higher expression of 

Grb2 in MCF7 cells (prototypical estrogen receptor positive cell line) compared with the MDA-

MB-231 cells (prototypical triple negative cell line). Although it has previously been reported that 

overexpression of this adaptor alone is insufficient to transform cells, Grb2 is well known to 

promote the activation of the Ras/MAPK pathway (59–61). Furthermore, delayed Poly Middle T 

Antigen-induced mammary tumor formation was observed in Grb2 knock-out mice suggesting a 

role for this adaptor in mammary tumorgenesis (62). Here, we show that Grb2 is essential for the 

activation of both ARF1 and ARF6 and thus may contribute in mediating the cellular responses 

associated with activation of this GTPase: proliferation, migration, and invasion.  

It was proposed that GEP100 (BRAG2), an ARF GEF, could directly interact with the 

phosphorylated Tyr-1068 and Tyr-1086 residues on the EGFR through its PH domain and 

therefore act as an intermediate mediating ARF activation following EGF stimulation (32). 

Interestingly, we show that overexpression of p66Shc enhances total phosphorylation of the 

EGFR, including residues Tyr-1068 and Tyr-1086 (data not shown). This suggests that p66Shc 

may enhance ARF6 activation by potentiating the tyrosine phosphorylation of the EGFR. The 

conclusions demonstrated by Morishige and colleagues (32) were obtained from in vitro evidences, 

where phosphopeptides that mimicked residues Tyr-1068 and Tyr-1086 of EGFR could directly 

interact with the PH domain of GEP100 (63). In vivo, these two phosphorylated residues have been 

characterized as Grb2 binding sites (64, 65). Here, we show that classical EGFR adaptors do play 

an important role in the activation process of ARF1 and ARF6 similar to what has been reported 

for other GEFs. Namely, Grb2 is well known to interact with the GEF Sos to promote its 

recruitment to the EGFR (66, 67). Through its PH domain, SOS interacts with the plasma 
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membrane, where it activates the small GTPase Ras (67, 68). Interestingly, we show here that 

p66Shc also plays a role in mediating Ras activation, possibly by regulating the recruitment of a 

GEF. Additionally, Grb2 has also been reported to recruit another PH domain containing GEF, 

Vav2, to HER2 to promote activation of both Ras and Rac1 (69). Together, this suggests that Grb2 

may play a conserved role in the recruitment of GEFs to the EGFR. Furthermore, p66Shc may also 

modulate ARF1 activation selectively by either blocking the recruitment of ARF1/GEFs or 

promoting the recruitment of ARF6/GEFs. Additionally, p66Shc may function to regulate the 

association of ARF GTPases with their GEFs. This adaptor may promote ARF6/GEF interactions 

and dissolve ARF1/GEF interactions. Altogether, the recruitment of GEFs and ARF activation 

may be mediated by both EGFR tyrosine phosphorylation and adaptor recruitment.  

Altogether, we demonstrate a role for adaptor proteins p66Shc and Grb2 in mediating EGF-

induced ARF1 and ARF6 activation, as well as their recruitment to the EGFR. More specifically, 

whereas we demonstrate that p66Shc negatively regulates ARF1 signals, ARF6 activation was 

potentiated by this adaptor. Furthermore, we show that the adaptor Grb2 plays an essential role in 

the activation of both ARF1 and ARF6. We propose that p66Shc blocks recruitment of the ARF1-

Grb2 complex to the EGFR by either competing with Grb2 for common recruitment sites on the 

receptor or by sequestering Grb2 away from it. This could allow for an increased recruitment of 

p66Shc/ARF6 to the EGFR and increased ARF6 activation. Based on our findings, we propose the 

following model of ARF activation in MDA-MB-231 cells (Fig. 10). When the expression levels 

of Grb2 and p66Shc are in equilibrium, ligand binding induces the activation of the EGFR leading 

to its autophosphorylation. This first event allows recruitment of the adaptor Grb2. Grb2 acts to 

recruit ARF1 to the EGFR where it becomes activated by a guanine nucleotide exchange factor 

leading to activation of the PI3K/AKT pathway. Grb2 also recruits ARF6 to the EGFR, via 

p66Shc, resulting in its activation and engagement of the Ras/ERK1/2 pathway. Additionally, 

p66Shc acts as a negative regulator of ARF1 activation. Together these two pathways promote 

breast cancer cell growth and migration. In conditions where levels of p66Shc are reduced, ARF6 

is no longer recruited to Grb2 or the EGFR, thus blocking the activation of both ARF6 and 

Ras/MAPK. In turn, an enhanced recruitment of the Grb2-ARF1 complex to the EGFR is observed 

promoting ARF1 activation. Together, this leads to a reduction in cell growth and migration. Upon 

overexpression of p66Shc, Grb2 and ARF1 are no longer recruited to the EGFR leading to a 

diminished ARF1 activation and a delayed phosphorylation of AKT. Conversely, receptor 
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recruitment and activation of ARF6 are potentiated resulting in a basal increase of Ras/MAPK 

activation, migration, and the induction of cell death. When Grb2 levels are depleted, ARF1 and 

the p66Shc-ARF6 complex cannot be recruited to the EGFR and thus neither GTPase are activated.  

In conclusion, we demonstrate for the first time the importance of adaptor proteins in the regulation 

of ARF activity in invasive breast cancer cells. More importantly, we demonstrate that certain 

adaptors (Grb2) can have similar effects on the activation of different ARF isoforms and others 

(p66Shc) can have opposing effects. Thus, characterization of the signaling mechanisms leading 

to breast cancer cell proliferation, migration, and invasion can help discover more specific and 

effective therapeutic targets. 
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II.6 Figure Legends 

 

FIGURE 1. p66Shc negatively regulates ARF1 activation. A, the endogenous expression of Shc 

isoforms (p46Shc, p52Shc, and p66Shc), Grb2, EGFR, ARF1, ARF6, and actin were measured by 

Western blot (IB, immunoblot) analysis of lysates obtained from either confluent MCF7 or MDA-

MB-231 cells. B, endogenous ARF1 was immunoprecipitated from lysates obtained from serum-

starved MDA-MDA-231 cells that were stimulated with EGF (10 ng/ml) for the given time points 

and associated Shc isoforms and Grb2 were detected by Western blot analysis. The upper arrow 

indicates the p66Shc isoform, the middle arrow the p52Shc, and the lower arrow the p46Shc. 

Results presented are representative of three independent experiments and the inputs represent 5% 

of the total protein present in each sample. The quantifications of each experiment are presented 

as fold-increase over basal and are normalized to total protein content. C, MDA-MB-231 cells 

transfected with a scrambled (CTL) or p66Shc siRNA were stimulated with EGF (10 ng/ml) for 

the indicated times. Cells were lysed, and a GST pulldown assay using GST-GGA3 coupled to 

glutathione-Sepharose 4B beads was used to capture activated ARF1. Endogenous levels of 

activated ARF1 and the total protein levels of ARF1 in cell lysates were assessed by Western blot 

analysis. Additionally, Western blot analysis was used to confirm the depletion of p66Shc. Results 

presented are representative of three independent experiments and the inputs represent 5% of the 

total protein present in each sample. The quantifications of each experiment are presented as fold-

increase over basal, are normalized to total protein content and are the mean ± S.E. with (*) p < 

0.05 and (***) p < 0.001, compared with the control condition. D, MDA-MB-231 cells transfected 

with an empty vector (CTL) or HA-p66Shc were stimulated with EGF (10 ng/ml) for the indicated 

times. Endogenous levels of activated ARF1 and total protein levels of ARF1 were captured and 

detected as in C. Western blot analysis was used to confirm the overexpression of HA-p66Shc. 

Results presented are representative of three independent experiments and the inputs represent 5% 

of the total protein present in each sample. The quantifications of each experiment are presented 

as fold-increase over basal, are normalized to total protein content and are the mean ± S.E. with 

(*) p < 0.05 and (***) p < 0.001. E, HCC70 cells were transfected and stimulated as in D. 

Endogenous levels of activated ARF1 and total protein levels of ARF1 were captured and detected 

as in C. Western blot analysis was used to confirm the overexpression of HA-p66Shc. Results 

presented are representative of three independent experiments and the inputs represent 5% of the 
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total protein present in each sample. The quantifications of each experiment are presented as fold-

increase over basal, are normalized to total protein content, and are the mean ± S.E. with (***) p 

< 0.001.  

 

FIGURE 2. p66Shc regulates activation of the Ras/MAPK and AKT pathways. A, MDA-MB-

231 cells transfected with a scrambled (CTL) or p66Shc siRNA were stimulated with EGF (10 

ng/ml) for the indicated times. Cells were lysed, and a GST pulldown assay using the GST-Raf 

binding domain coupled to glutathione-Sepharose 4B beads was used to capture activated Ras. 

Endogenous levels of activated Ras and the total protein levels of Ras in cell lysates were assessed 

by Western blot analysis. Activated ERK1/2 and AKT were assessed by measuring 

phosphorylation levels of these proteins using phosphospecific antibodies. Equal total protein 

expression of ERK1/2 and AKT was confirmed by Western blot (IB, immunoblot) analysis. The 

depletion of p66Shc was confirmed using a monoclonal antibody against p66Shc. Results 

presented are representative of three independent experiments and the inputs represent 5% of the 

total protein present in each sample. The quantifications of each experiment are presented as fold-

increase over basal, are normalized to total protein content, and are the mean ± S.E. with (**) p < 

0.01 and (***) p < 0.001. B, MDA-MB-231 cells transfected with an empty vector (CTL) or HA-

p66Shc were stimulated with EGF (10 ng/ml) for the indicated times. Ras, ERK1/2, and AKT 

activation were assessed as in A. Results presented are representative of three independent 

experiments and the inputs represent 5% of the total protein present in each sample. The 

quantifications of each experiment are presented as fold-increase over basal, are normalized to 

total protein content, and are the mean ± S.E. with (*) p < 0.05, (**) p < 0.01, and (***) p < 0.001.  
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FIGURE 3. p66Shc mediates MDA-MB-231 cell growth and migration. A, MDA-MB-231 

cells transfected with a scrambled (CTL) or p66Shc siRNA were left untreated or stimulated with 

EGF (10 ng/ml) for the indicated times. Cell numbers were determined by a trypan blue exclusion 

assay via manual counting. Results presented are representative of three independent experiments. 

The quantifications of each experiment are presented as fold-increase over basal and are the mean 

± S.E. with (*) p < 0.05 and (***) p < 0.001. B, MDA-MB-231 cells transfected with an empty 

vector (CTL) or HA-p66Shc were left untreated or stimulated with EGF (10 ng/ml) for the 

indicated times. Cell numbers were determined as in A. The quantifications of each experiment are 

presented as fold-increase over basal and are the mean ± S.E. with (**) p < 0.01 and (***) p < 

0.001. C, MDA-MB-231 cells were transfected and stimulated as in A. Cell growth at 72 h was 

determined via a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay as described 

under “Experimental Procedures.” The quantifications of each experiment are presented as fold-

increase in absorbance over basal absorbance and are the mean ± S.E. with (***) p < 0.001. D, 

MDA-MB-231 cells were transfected and stimulated as in B. Cell growth was determined as in C. 

The quantifications of each experiment are presented as fold-increase in absorbance over basal 

absorbance and are the mean ± S.E. with (**) p < 0.01 and (***) p < 0.001. E, MDA-MB-231 cells 

were transfected as in A. Cells were then seeded onto Boyden chambers and stimulated or not with 

EGF (10 ng/ml). Migration was assessed after 6 h. Results presented are representative of three 

independent experiments. The quantifications of each experiment are presented as fold-increase 

over basal and are the mean ± S.E. with (***) p < 0.001. F, MDA-MB-231 cells were transfected 

as in B and migration was assessed as described in E. Results presented are representative of three 

independent experiments. The quantifications of each experiment are presented as fold-increase 

over basal and are the mean ± S.E. with (***) p < 0.001. The depletion of p66Shc and the 

overexpression of HA-tagged p66Shc was confirmed by Western blot analysis for all physiological 

assays. IB, immunoblot.  
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FIGURE 4. Signals downstream of the HER2 receptor are mediated by p66Shc. A, the 

endogenous expression of p66Shc, Grb2, EGFR HER2, ARF1, ARF6, and actin were measured 

by Western blot (IB, immunoblot) analysis of lysates obtained from either confluent SKBR3 or 

MDA-MB-231 cells. B, SKBR3 cells transfected with an empty vector (CTL) or HA-p66Shc were 

stimulated with EGF (10 ng/ml) for the indicated times. Cells were lysed, and a GST pulldown 

assay using GST-GGA3 coupled to glutathione-Sepharose 4B beads was used to capture activated 

ARF1. Endogenous levels of activated ARF1 and the total protein levels of ARF1 in cell lysates 

were assessed by Western blot analysis. Additionally, Western blot analysis was used to confirm 

the overexpression of HA-p66Shc. Results presented are representative of three independent 

experiments and the inputs represent 5% of the total protein present in each sample. The 

quantifications of each experiment are presented as fold-increase over basal, are normalized to 

total protein content, and are the mean ± S.E. with (**) p < 0.01. C, SKBR3 cells transfected as in 

A were left untreated or stimulated with EGF (10 ng/ml) for the indicated times. Cell numbers 

were determined by a trypan blue exclusion assays via manual counting. Results presented are 

representative of three independent experiments. The quantifications of each experiment are 

presented as fold-increase over basal and are the mean ± S.E. with (***) p < 0.001. D, SKBR3 

cells were transfected as in A. Cells were then seeded onto Boyden chambers and stimulated or not 

with EGF (10 ng/ml). Migration was assessed after 6 h. Results presented are representative of 

three independent experiments. The quantifications of each experiment are presented as fold-

increase over basal and are the mean ± S.E. with (*) p < 0.05 and (**) p < 0.01.  
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FIGURE 5. The recruitment of ARF1 to the EGFR is attenuated by p66Shc. A, MDA-MB-

231 cells transfected with a scrambled (CTL) or p66Shc siRNA were stimulated with EGF (10 

ng/ml) for the indicated times. Cells were lysed and endogenous EGFR was immunoprecipitated 

(IP). Associated ARF1 was detected by Western blot (IB, immunoblot) analysis. Western blot 

analysis was also used to confirm the total protein expression of ARF1 and EGFR as well as the 

depletion of p66Shc. Results presented are representative of three independent experiments and 

the inputs represent 5% of the total protein present in each sample. The quantifications of each 

experiment are presented as fold-increase over basal, are normalized to total protein content, and 

are the mean ± S.E. with (*) p < 0.05. B, MDA-MB-231 cells transfected with an empty vector 

(CTL) or HA-p66Shc were stimulated with EGF (10 ng/ml) for the indicated times. The 

immunoprecipitation of endogenous EGFR was performed as described in A. The overexpression 

of HA-p66Shc was confirmed by Western blot analysis. Results presented are representative of 

three independent experiments and the inputs represent 5% of the total protein present in each 

sample. The quantifications of each experiment are presented as fold-increase over basal, are 

normalized to total protein content, and are the mean ± S.E. with (**) p < 0.01 and (***) p < 0.001.  

 

FIGURE 6. p66Shc blocks the recruitment of Grb2 to the activated EGFR. A, MDA-MB-231 

cells transfected with a scrambled (CTL) or p66Shc siRNA were stimulated with EGF (10 ng/ml) 

for the indicated times. Cells were lysed and endogenous EGFR was immunoprecipitated (IP). 

Associated Grb2 was detected by Western blot (IB, immunoblot) analysis. The tyrosine 

phosphorylation of the EGFR was detected using a phospho-specific monoclonal antibody against 

phosphorylated tyrosine residues. Western blot analysis was used to confirm the protein expression 

of Grb2 and EGFR and the depletion of p66Shc. Results presented are representative of three 

independent experiments and the inputs represent 5% of the total protein present in each sample. 

The quantifications of each experiment are presented as fold-increase over basal, are normalized 

to total protein content, and are the mean ± S.E. with (*) p < 0.05 and (**) p < 0.01. B, MDA-MB-

231 cells transfected with an empty vector (CTL) or HA-p66Shc were stimulated with EGF (10 

ng/ml) for the indicated times. The immunoprecipitation of endogenous EGFR was done using a 

polyclonal antibody to the EGFR and associated p66Shc and Grb2 were detected using a 

monoclonal antibody to p66Shc and a polyclonal antibody to Grb2. Western blot analysis was used 

to confirm the protein expression of p66Shc, Grb2, and EGFR. The tyrosine phosphorylation of 
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the EGFR was detected as described in A. The overexpression of HA-p66Shc was confirmed by 

Western blot analysis. Results presented are representative of three independent experiments and 

the inputs represent 5% of the total protein present in each sample. The quantifications of each 

experiment are presented as fold-increase over basal, are normalized to total protein content, and 

are the mean ± S.E. with (**) p < 0.01 and (***) p < 0.001.  

 

FIGURE 7. Grb2 is essential for activation and EGFR recruitment of ARF1. A, MDA-MB-

231 cells transfected with a scrambled (CTL) or p66Shc siRNA were stimulated with EGF (10 

ng/ml) for the indicated times. Cells were lysed and endogenous ARF1 was immunoprecipitated 

(IP). Associated Grb2 was detected by Western blot analysis. Western blot (IB, immunoblot) 

analysis was used to confirm total expression levels of Grb2 and ARF1 and the depletion of 

p66Shc. Results presented are representative of three independent experiments and the inputs 

represent 5% of the total protein present in each sample. The quantifications of each experiment 

are presented as fold-increase over basal, are normalized to total protein content, and are the mean 

± S.E. with (***) p < 0.001. B, MDA-MB-231 cells transfected with a scrambled (CTL) or Grb2 

siRNA were stimulated with EGF (10 ng/ml) for the indicated times. Cells were lysed and 

endogenous ARF1 was immunoprecipitated. Associated p66Shc was detected by Western blot 

analysis. Western blot analysis was also used to confirm the protein expression of p66Shc and 

ARF1 as well as the depletion of Grb2. Results presented are representative of three independent 

experiments and the inputs represent 5% of the total protein present in each sample. The 

quantifications of each experiment are presented as fold-increase over basal, are normalized to 

total protein content, and are the mean ± S.E. with (*) p < 0.05 and (***) p < 0.001. C, MDA-MB-

231 cells transfected with a scrambled (CTL) or Grb2 siRNA were stimulated with EGF (10 ng/ml) 

for the indicated times. Cells were lysed, and a GST pulldown assay using GST-GGA3 coupled to 

glutathione-Sepharose 4B beads was used to capture activated ARF1. Endogenous levels of 

activated ARF1 and the levels of ARF1 protein in total cell lysates were assessed by Western blot 

analysis. Additionally, Western blot analysis was used to confirm the depletion of Grb2. Results 

presented are representative of three independent experiments and the inputs represent 5% of the 

total protein present in each sample. The quantifications of each experiment are presented as fold-

increase over basal, are normalized to total protein content, and are the mean ± S.E. with (*) p < 

0.05 and (***) p < 0.001. D, MDA-MB-231 cells were transfected and stimulated as in A. Cells 
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were lysed and endogenous EGFR was immunoprecipitated. Associated ARF1 was detected by 

Western blot analysis. Western blot analysis was also used to confirm expression levels of ARF1 

and EGFR as well as the depletion of Grb2. Results presented are representative of three 

independent experiments and the inputs represent 5% of the total protein present in each sample. 

The quantifications of each experiment are presented as fold-increase over basal, are normalized 

to total protein content, and are the mean ± S.E. with (***) p < 0.001.  

 

FIGURE 8. p66Shc enhances ARF6 activation and the recruitment of this GTPase to the 

EGFR. A, MDA-MB-231 cells transfected with a scrambled (CTL) or p66Shc siRNA were 

stimulated with EGF (10 ng/ml) for the indicated times. Cells were lysed, and a GST pulldown 

assay using GST-GGA3 coupled to glutathione-Sepharose 4B beads was used to capture activated 

ARF6. Endogenous levels of activated ARF6 and the levels of ARF6 protein in total cell lysates 

were assessed by Western blot (IB, immunoblot) analysis. Additionally, the Western blot analysis 

was used to confirm the depletion of p66Shc. Results presented are representative of three 

independent experiments and the inputs represent 5% of the total protein present in each sample. 

The quantifications of each experiment are presented as fold-increase over basal, are normalized 

to total protein content, and are the mean ± S.E. with (**) p < 0.01 and (***) p < 0.001. B, MDA-

MB-231 cells transfected with an empty vector (CTL) or HA-p66Shc were stimulated with EGF 

(10 ng/ml) for the indicated times. Endogenous levels of activated ARF6 were captured and 

detected as in A. Western blot analysis was used to confirm the overexpression of HA-p66Shc. 

Results presented are representative of three independent experiments and the inputs represent 5% 

of the total protein present in each sample. The quantifications of each experiment are presented 

as fold-increase over basal, are normalized to total protein content, and are the mean ± S.E. with 

(***) p < 0.001. C, SKBR3 cells transfected with an empty vector (CTL) or HA-p66Shc were 

stimulated with EGF (10 ng/ml) for the indicated times. Endogenous levels of activated ARF6 

were captured and detected as in A. Western blot analysis was used to confirm the overexpression 

of HA-p66Shc. Results presented are representative of three independent experiments and the 

inputs represent 5% of the total protein present in each sample. The quantifications of each 

experiment are presented as fold-increase over basal, are normalized to total protein content, and 

are the mean ± S.E. with (**) p < 0.01. D, MDA-MB-231 cells were transfected and stimulated as 

in A. Cells were lysed and endogenous EGFR was immunoprecipitated (IP). Associated ARF6 was 
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detected by Western blot analysis. Western blot analysis was also used to confirm the protein 

expression of ARF6 and EGFR as well as the depletion of p66Shc. Results presented are 

representative of three independent experiments and the inputs represent 5% of the total protein 

present in each sample. The quantifications of each experiment are presented as fold-increase over 

basal, are normalized to total protein content, and are the mean ± S.E. with (***) p < 0.001. E, 

MDA-MB-231 cells were transfected and stimulated as in B. The immunoprecipitation of 

endogenous EGFR was completed as described in D. The overexpression of HA-p66Shc was 

confirmed by Western blot analysis. Results presented are representative of three independent 

experiments and the inputs represent 5% of the total protein present in each sample. The 

quantifications of each experiment are presented as fold-increase over basal, normalized to total 

protein content, and are the mean ± S.E. with (***) p < 0.001.  

 

FIGURE 9. Grb2 is also essential for ARF1 activation and its recruitment to the EGFR. A, 

MDA-MB-231 cells transfected with a scrambled (CTL) or Grb2 siRNA were stimulated with EGF 

(10 ng/ml) for the indicated times. Cells were lysed, and a GST pulldown assay using GST-GGA3 

coupled to glutathione-Sepharose 4B beads was used to capture activated ARF6. Endogenous 

levels of activated ARF6 and the levels of ARF6 protein in total cell lysates were assessed by 

Western blot (IB, immunoblot) analysis. Additionally, Western blot analysis was used to confirm 

the depletion of Grb2. Results presented are representative of three independent experiments and 

the inputs represent 5% of the total protein present in each sample. The quantifications of each 

experiment are presented as fold-increase over basal, are normalized to total protein content, and 

are the mean ± S.E. with (*) p < 0.05 and (***) p < 0.001. B, MDA-MB-231 cells were transfected 

and stimulated as in A. Cells were lysed and endogenous EGFR was immunoprecipitated (IP). 

Associated ARF6 was detected by Western blot analysis. Western blot analysis was also used to 

confirm the protein expression of ARF6 and EGFR as well as the depletion of Grb2. Results 

presented are representative of three independent experiments and the inputs represent 5% of the 

total protein present in each sample. The quantifications of each experiment are presented as fold-

increase over basal, are normalized to total protein content, and are the mean ± S.E. with (**) p < 

0.01 and (***) p < 0.001. C, MDA-MB-231 cells transfected with a scrambled (CTL) or p66Shc 

siRNA were stimulated with EGF (10 ng/ml) for the indicated times. Cells were lysed and 

endogenous ARF6 was immunoprecipitated. Associated p66Shc was detected by Western blot 
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analysis. Western blot analysis was also used to confirm the protein expression of p66Shc and 

ARF6 as well as the depletion of p66Shc. Results presented are representative of three independent 

experiments and the inputs represent 5% of the total protein present in each sample. The 

quantifications of each experiment are presented as fold-increase over basal, are normalized to 

total protein content, and are the mean ± S.E. with (***) p < 0.001.  

 

FIGURE 10. Model of ARF1 and ARF6 activation downstream of the EGFR in MDA-MB-

231 cells. A, in normal conditions, the expression of the adaptors p66Shc and Grb2 is at 

equilibrium. Upon activation of the EGFR, Grb2 is recruited to the EGFR. This leads to the 

recruitment of ARF1 and the activation of this GTPase. Furthermore, Grb2 recruits the p66Shc-

ARF6 complex to the EGFR leading to the activation of ARF6. B, the depletion of p66Shc is 

associated with an increased recruitment of Grb2 and ARF1 to the EGFR and an increase in ARF1 

activation. Alternatively, a decrease in ARF6 activation stemming from a decreased EGFR 

recruitment of this GTPase was observed upon the depletion of p66Shc. C, when p66Shc levels 

are elevated, the recruitment of Grb2 and ARF1 to the EGFR is blocked and the activation of ARF1 

is significantly decreased. Additionally, elevated p66Shc levels increased the recruitment of ARF6 

to the EGFR resulting in an increase in ARF6 activation. D, the depletion of Grb2 blocks the 

recruitment of ARF1 to the EGFR and blocks ARF1 activation. In these conditions, p66Shc is no 

longer recruited to the EGFR. This leads to the attenuation of ARF6 activation and recruitment to 

the EGFR.  
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III.1 Abstract 

The clinical use of EGFR-targeted therapy, in triple negative breast cancer patients, has been 

limited by the development of resistance to these drugs. Although activated signaling molecules 

contribute to this process, the molecular mechanisms remain relatively unknown. We have 

previously reported that the small GTPase ADP-Ribosylation Factor 1 (ARF1) is highly expressed 

in invasive breast cancer cells and acts as a molecular switch to activate EGF-mediated responses. 

In this study, we aimed at defining whether the high expression of ARF1 limits sensitivity of these 

tumor cells to EGFR inhibitors, such as gefitinib. Here, we show that the knock down of ARF1 

expression or activity decreased the dose and latency time required by tyrosine kinase inhibitors 

to induce cell death. This may be explained by the observation that the depletion of ARF1 

suppressed gefitinib-mediated activation of key mediators of survival such as ERK1/2, AKT and 

Src, while enhancing cascades leading to apoptosis such as the p38MAPK and JNK pathways, 

modifying the Bax/Bcl2 ratio and cytochrome c release. In addition, inhibiting ARF1 expression 

and activation also results in an increase in gefitinib-mediated EGFR internalization and 

degradation further limiting the ability of this receptor to promote its effects. Interestingly, we 

observed that gefitinib treatment resulted in the enhanced activation of ARF1 by promoting its 

recruitment to the receptor AXL, an important mediator of EGFR inhibition suggesting that ARF1 

may promote its pro-survival effects by coupling to alternative mitogenic receptors in conditions 

where the EGFR is inhibited. Together our results uncover a new role for ARF1 in mediating the 

sensitivity to EGFR inhibition and thus suggest that limiting the activation of this GTPase could 

improve the therapeutic efficacy of EGFR inhibitors.  
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III.2 Introduction 

The triple negative breast cancer (TNBC) subtype is characterized by the lack of expression of the 

estrogen, progesterone and HER2 receptors. Approximately 15-20% of global breast cancers are 

diagnosed as TNBC (1). This breast cancer subtype is considered to have an aggressive phenotype 

with high histological grade and metastatic potential (2,3). Moreover, disease recurrence has been 

shown to occur earlier in TNBC patients (4). This results in an overall poor patient prognosis (5). 

Since, current cytotoxic chemotherapeutics have shown to be effective only in a small proportion 

of patients (6), there are present attempts to identify and characterize agents that therapeutically 

target specific oncogenic factors. 

The epidermal growth factor receptor (EGFR) is highly expressed in the majority of TNBC 

patients (7) and is associated with a poor prognosis making this receptor tyrosine kinase (RTK) a 

potential therapeutic target for the treatment of this aggressive form of breast cancer (7,8). Since 

the EGFR and HER2 are the two EGFR family members best characterized for their role in cancer, 

the majority of drugs targeting the EGFR family blocks these two members. There are two 

predominant types of EGFR-targeted therapies: monoclonal antibodies targeting the extracellular 

domain of the receptor and tyrosine kinase inhibitors targeting the kinase activity of the receptor 

(9,10). However, little to no therapeutic benefits have been observed in recent attempts at targeting 

the EGFR in TNBC patients (11,12). The development of EGFR inhibitor resistance (either innate 

or acquired) has been shown to play a major impact on the lack of response observed in these 

patients (13). Multiple mechanisms of resistance such as mutations in the EGFR itself and its 

downstream signaling effectors, increased expression of receptor tyrosine kinases (RTKs) (EGFR, 

HER2-3, AXL, cMET), and activation of other signaling regulators (Src, ERK1/2, AKT) have 

been described in the literature (12,14-19). Inhibiting these mechanisms of acquired resistance is 

an effective strategy to improve the sensitivity of these patients to EGFRTKis (20-22). In fact, the 

inhibition of the ERK1/2 pathway, as well as the AXL and cMET receptors have been shown to 

decrease cell growth and tumor formation of gefitinib-resistant cancer cells (20-22). However, the 

underlying mechanisms of acquired EGFRTKi resistance in highly invasive breast cancer cells 

have yet to be fully characterized. 

Recently, we demonstrated that ADP-Ribosylation Factors 1 (ARF1), one of the six identified 

ARF isoform (ARF1 to 6) members of the superfamily of Ras GTPases, is activated downstream 
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of the EGFR in MDA-MB-231 cells, a cellular model of TNBC (23). ARF proteins are broadly 

known for their role in vesicular trafficking, membrane lipid remodeling and reorganization of the 

actin cytoskeleton. Of the ARF isoforms, ARF1 and ARF6 are the best characterized. Like all 

GTPases, these proteins are inactive when bound to GDP, but become active when GTP is loaded 

by specific guanine nucleotide exchange factors (GEF).  While ARF1 was first identified as a key 

regulator of Golgi trafficking, in the most invasive breast cancer cell lines, we reported that this 

ARF isoform was overexpressed and localized to the plasma membrane where it could be activated 

by the EGFR to control signaling to the PI3K survival pathway (23). We further demonstrated that 

activation of this protein following EGF stimulation is dependent upon the recruitment of the 

classical EGFR adaptor proteins, Grb2 and p66Shc (24). Depletion of ARF1 markedly impairs 

migration, invasion and proliferation of highly invasive breast cancer cells (23,25,26).  

In this study, we aimed at defining whether this small GTP-binding protein could also play a role 

in mediating the sensitivity of TNBC cells to EGFR tyrosine kinase inhibitors (EGFRTKis) since 

it is activated by the EGFR and acts to regulate numerous downstream signaling events 

coordinating key physiological responses characteristic of tumor cells and associated with 

invasiveness. Here, we report that ARF1 plays a key role in mediating EGFRTKi sensitivity. The 

knockdown or inhibition of this GTPase activity significantly improved the sensitivity of breast 

cancer cells to gefitinib. Our results suggest that targeting this key protein in combination with 

EGFR inhibitors may enhance their effectiveness and efficiency.  
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III.3 Materials and Methods 

 

Reagents and Antibodies  

Lipofectamine 2000™ was purchased from Invitrogen (Burlington, Ontario, Canada). Epidermal 

growth factor was purchased from Fitzgerald Industries International, Inc. (Concord, MA). 

Inhibitors used were gefitinib (Biovision Inc. Milpitas, CA), tivantinib (Selleckchem, Houston, 

TX), R428 (Abmole Bioscience, Houston, TX), lapatinib, MG132, PD0325901, PP2, LY294002 

and SB220025 (Sigma-Aldrich, Oakville, Ontario, Canada). Polyclonal antibodies used were 

EGFR, HER2, HER3, HER4, AXL, cMET, pAXL, pcMET, pErk1/2, pAKT, AKT, pSrc, 

pp38MAPK, p38MAPK, pJNK, JNK, pan-actin, Bax, Bcl2, Cytochrome C, CoxIV (Cell 

Signaling, Danvers,  MA), ARF1 (Proteintech Group, Chicago, IL), HA-Tag, Erk1/2 (Santa Cruz 

Biotechnology, Dallas, TX). Monoclonal antibodies used were pan-PY (Santa Cruz 

Biotechnology), Src (Millipore, Etobicoke, Ontario, Canada). Other reagents used were goat anti-

mouse antibody-horseradish peroxidase and goat anti-rabbit antibody-horseradish peroxidase (RD 

Systems, Minneapolis, MN) and Protein G-Agarose Plus beads (Santa Cruz Biotechnology).  

 

DNA Plasmids and siRNAs 

HA-tagged ARF1WT and ARF1WTMut cDNAs were cloned into a pcDNA3 vector, the double-

stranded scrambled with 19-nucleotide duplex RNA and 2-nucleotide 3′ dTdT overhangs, ARF1 

siRNA was previously described (Cotton, Boulay et al. 2007; Boulay, Cotton et al. 2008; 

Schlienger, Campbell et al. 2014)(Boulay, et al. 2008; Cotton, et al. 2007; Schlienger, et al. 

2014)(23,25,54). All siRNAs include 2-nucleotide 3’ dTdT overhangs and were purchased from 

Dharmacon Inc. (Lafayette, CO). 

 

Cell Culture and Transfection  

MDA-MB-231, MCF7, SKBR3, MDA-MB-157 cells were maintained at 37°C, 5% CO2 in 

Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum (FBS). 

HCC70 cells were maintained at 37°C, 5% CO2 in Roswell Park Memorial Institute medium 

(RPMI) supplemented with 10% FBS. Cells were transfected with siRNA or plasmid DNA using 

Lipofectamine 2000™ according to the manufacturer’s instructions. Briefly, cells were transfected 
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with 25 nM siRNA for 72 hours prior to treatment with inhibitors at indicated concentrations and 

for indicated time points. 

 

Co-immunoprecipitation and Western Blot Analysis 

Cells from confluent 10 cm dishes were harvested in 700 μl of Lysis buffer (20 mM Tris-HCl pH 

8, 1% Triton X-100, 10% glycerol, 140 mM NaCl, 5 mM EDTA, 1 nM sodium orthovanadate 

(Na3VO4) complemented with the protease inhibitors aprotinin (5 μg/ml), benzamidine (150 

μg/ml), leupeptin (5 μg/ml), pepstatin (4 μg/ml) and phenylmethylsulfonyl fluoride (20 mg/ml). 

Lysates were solubilized at 4°C for 30 minutes and total soluble proteins were run on 

polyacrylamide gels and transferred onto nitrocellulose membranes. Proteins were than detected 

using indicated specific primary antibodies. Secondary antibodies were all horseradish peroxidase-

conjugated, and chemiluminescence was used to visualize protein expression. The quantification 

of the digital images obtained was performed using ImageJ 1.46o software (National Institutes of 

Health, USA). For immunoprecipitation experiments, cell lysates described above were agitated 

with indicated antibodies and protein G-Agarose plus beads at 4°C for 3 hours. Proteins were 

eluted in SDS-sample buffer by heating to 65°C for 15 minutes. Protein interaction and tyrosine 

phosphorylation were measured by western blot analysis.  

 

ARF Activation Assay 

Cells were left untreated or treated with indicated concentrations of gefitinib for indicated time 

points. Activated ARF1 was measured as previously described (54). Briefly, cells were lysed in 

400 μl of Lysis buffer E (pH 7.4, 50 mM Tris HCl, 1% NP-40, 137 mM NaCl, 10% glycerol, 5 

mM MgCl2, 20 mM NaF, 1 mM NaPPi, 1 mM Na3VO4 and the protease inhibitors: aprotinin (5 

μg/ml), benzamidine (150 μg/ml), leupeptin (5 μg/ml), pepstatin (4 μg/ml) and 

phenylmethylsulfonyl fluoride (20 mg/ml)). GST-GGA3-(1–316) (55) coupled to glutathione-

Sepharose 4B was added to each sample. The samples were then rotated at 4°C for 45 minutes. 

Proteins were eluted in 20 μl of SDS-sample buffer by heating to 65°C for 15 minutes. The 

detection of ARF1-GTP or ARF6-GTP was performed by western blot analysis using specific 

antibodies to ARF1 and ARF6, respectively.  
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Mitochondrial Fractionation  

MDA-MB-231 cells were treated with indicated concentrations of gefitinib for 72 hours. Cells 

were collected and sonicated in CHM buffer (10mM Tris-HCl pH 6.7, 10mM KCl, 150mM 

MgCl2). 0.25M sucrose was added and cells were spun at 1000g for 10 min and supernatant was 

collected as cytoplasmic fraction. Pellet was resuspended in SM buffer (10 mM Tris-HCl pH 6.7, 

0.15M MgCl2, 0.25M sucrose) and spun 15 minutes at 5000g. Mitochondrial pellet was lysed in 

MLB buffer (50 mM Tris-HCl, pH 7.4, 150mM NaCl, 2mM EDTA, 2mM EGTA, 0.2% Triton X 

100, 0.3% NP-40). Cytoplasmic and mitochondrial Cytochrome C expression was assessed by 

western blot analysis.  

 

Membrane extraction 

MDA-MB-231 cells were treated with indicated with gefitinib (10 M) for indicated time points. 

Membrane extracts were isolated as previously described (56). Briefly, cells were harvested in an 

ice-cold hypotonic lysis buffer (10 mm Tris, pH 7.4, 1.5 mm MgCl2, 5 mm KCl, 1 mm 

dithiothreitol, 0.2 mm sodium orthovanadate, leupeptin (10 μg/ml), 4-(2-

aminoethyl)benzenesulfonyl fluoride (400 μm), NaF (1 mm), pepstatin 1 μg/ml, aprotinin 1 

mg/ml). Cells homogenates were centrifuged at 700 × g for 10 min to pellet nuclei and intact cells. 

Supernatants were spun at 100,000 × g for 30 min at 4 °C to collect the membrane pellet. The 

pellet was lysed in hypotonic lysis buffer supplemented with 1% Nonidet P-40 before being spun 

at 100,000 × g for 30 min at 4 °C. The expression of the EGFR in the supernatant was assessed by 

western blot analysis. 

 

Cell Viability Assay  

MTT assay was used as a measure of cell viability/death. Cells were transfected with CTL siRNA, 

ARF1 siRNA or ARF6 siRNA for 24 hours. Cells were then trypsinized and plated at confluency 

on a 96-well plate in medium supplemented with 10% FBS overnight. The next day, cells were 

left untreated or treated in serum free medium with the specified concentrations of inhibitor for 

12, 24, 48 or 72 hours, as indicated. Following the treatment, cells were stained with Thiazolyl 

Blue Tetrazolium Bromide (5 mg/ml) (Sigma-Aldrich) for 2 hours. The produced formazan 

product was than solubilized overnight in 20% SDS/50% Dimethyl-formamide solution (pH 4.7). 

Absorbance was measured at 570 nm with a reference wavelength at 450 nm using a plate reader. 
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Cell counting assay used an equal cell number (1 × 104 cells) seeded in a 6-cm dish for 24h. For 

each indicated treatment, cells were trypsinized, stained with trypan blue, and live cells were 

manually counted.  

 

Statistical Analysis 

Statistical analysis was performed using either a one-way analysis of variance (ANOVA) followed 

by Tukey’s multiple comparison test or a two-way ANOVA followed by a Bonferroni’s multiple 

comparison test using GraphPad Prism version 5 (San Diego, CA). The calculation of IC50 were 

also performed using GraphPad Prism version 5. CalcuSyn (Biosoft, Cambridge, Great Britain, 

UK) utilizing the Chou-Talalay combination index equation was used to calculate synergic 

relationships between tested inhibitors. 
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III.4 Results 

 

ARF1 knockdown sensitizes breast cancer cells to gefitinib treatment.  

We have recently identified ARF1 as a key downstream effector of EGFR signals (23,24) and 

asked whether this small GTP-binding protein could mediate the sensitivity of breast cancer cells 

to EGFRTKis.  We first used gefitinib-resistant TNBC cells that highly express the EGFR and 

ARF1 (24) to examine the role of this small GTP-binding protein in mediating gefitinib sensitivity. 

In control conditions, MDA-MB-231 cell were found resistant to gefitinib when doses effective in 

other cell lines were used (0.1, 1, 10 M) (27,28). A modest decrease in viability was however 

observed when these cells were treated with high doses of this inhibitor (25, 50 M) as measured 

by MTT assay (24 hours) (Figure 1A). This is consistent with previously published findings that 

demonstrated that MDA-MB-231 cells are considered resistant to this EGFRTKi (29-31). When 

levels of ARF1 proteins were knocked down using two different siRNAs, gefitinib significantly 

reduced viability at a dose as low as 1 M and this effect was maintained throughout all tested 

doses (1-50 M). The IC50 for gefitinib treatment were 34.4 M in control cells and 19.1 and 16.7 

M in ARF1 siRNA #1 and ARF1 siRNA #2 transfected cells, respectively (Table 1). A second 

approach was used to confirm these results. Counting of the cells also showed that depletion of 

ARF1 was an effective strategy to sensitize cells to gefitinib (Figure 1B). To demonstrate that the 

effects we observed were specific, we next performed a rescue experiment and overexpressed an 

ARF1 cDNA mutant (ARF1Mut) that contained the same sequence as the wild type ARF1, but 

was not targeted by the siRNA. As shown in Figure 1C and D, the enhanced sensitivity to gefitinib 

observed in ARF1-depleted cells was reversed upon the overexpression of ARF1Mut. Finally, the 

effect of gefitinib (10 M) was further examined at varying times of exposure. As illustrated in 

Figure 1F, the knockdown of ARF1 potentiated the effect of this inhibitor in all examined time 

points (12 – 72 hours). Together these results suggest that ARF1 depletion not only improves the 

efficacy of gefitinib to kill tumor cells, but reduces the minimal required dose of this inhibitor to 

mediate its effects. 

To further investigate the role of ARF1 in mediating the resistance of TNBC to EGFRTKi, we 

used two other cell lines, HCC70 and MDA-MB-157. Depletion of this ARF isoform significantly 

enhanced gefitinib sensitivity in these cells (Supplemental Figures 1A, B, and Table 1). 
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Furthermore, to demonstrate that the effects of ARF1 depletion was not specific to TNBC cells, 

we next examined gefitinib sensitivity in a cellular model of HER2-positive breast cancer that also 

expresses high levels of the EGFR and ARF1 (24), but are non-resistant to this RTKi (28). In 

control SKBR3 cells, increasing concentrations of gefitinib induced cell death (IC50: 1.1 M). 

However, this response was potentiated in cells depleted of ARF1 (IC50: 0.5 M) (Supplementary 

Figure 1C; Table 1). In contrast, our data indicate that while the ER-positive, low EGFR/ARF1 

expressing MCF7 cells were sensitive to EGFR inhibitors, the knockdown of this ARF isoform 

had no effect on gefitinib sensitivity (24) (Supplementary Figure 1D; Table 1). All doses used in 

these experiments significantly inhibited EGF-dependent EGFR, ERK1/2 and AKT activation in 

all tested cell types (Supplementary Figure 2).  

To further demonstrate the importance of ARF1 in mediating gefitinib sensitivity, we used the 

gefitinib-responsive MCF7 cell line that express low levels of ARF1 and transfected them with an 

HA-Tagged ARF1 cDNA. In these experiments, overexpression of this ARF had a reduced 

sensitivity to gefitinib treatment compared to control cells (Figure 1E). The IC50 for gefitinib 

treatment were 20.2 M in control cells and 60.9 M in ARF1 overexpressing cells, respectively 

(Table 1).  These results were confirmed using a cell counting assay (Supplemental Figure 1E). 

This further supports the importance of ARF1 in mediating the sensitivity of breast cancer cells to 

EGFR inhibition. 

Because compounds blocking ARF1 activity as well as mutants mimicking the inactive and active 

forms of ARF1 have been useful in demonstrating the function this small GTPase plays in cells, 

we further examined sensitivity to RTKis using these alternative approaches. First, treatment of 

the MDA-MB-231 cells with Brefeldin A (BFA, 10 nM), an ARFGEF inhibitor (32), induced 50% 

cell death due to the induction of apoptosis, a well-documented effect of this compound (33). 

However, BFA treatment markedly potentiated the effect of gefitinib as indicated in Supplemental 

Figure 3A. The IC50 of gefitinib was 26.6 M in control conditions and 13.7 M in BFA/gefitinib 

co-treated cells. The indicated dose of BFA blocked gefitinib-induced ARF1 activation as well as 

down-regulation of ERK1/2 and AKT activation (Data not Shown). Using the Chou-Talalay 

combination index equation, we determined a synergic relationship between gefitinib and BFA 

(Supplemental Figure 3B) (34,35). Additionally, the overexpression of a constitutively inactive 

ARF1 mutant (ARF1TN), but not an active form (ARF1QL) significantly enhanced gefitinib 
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sensitivity of MDA-MB-231 cells (Supplementary Figure 3C). Together, these findings 

demonstrate that the activity of ARF1 is essential in mediating gefitinib sensitivity of invasive 

breast cancer cells.  

To better understand the role of ARF1 in mediating resistance to RTKi in general, we examined 

other EGFR and RTK inhibitors. Control and ARF1-depleted MDA-MB-231 cells were treated 

first with lapatinib, a dual EGFR/HER2 inhibitor, for 24 hours at doses ranging from 0.1 to 50 M 

(Figure 1G). While this drug induced approximately 50% cell death in control cells at a 

concentration of 10 M, a similar effect was observed in ARF1-depleted conditions, but at a dose 

of 1 M. The IC50 for lapatinib was therefore 9.7 M in control conditions and 2.5 M in ARF1 

knockdown cells (Table 1). Because lapatinib blocks the kinase activity of both EGFR and HER2, 

we evaluated the sensitivity of HER2-positive, low EGFR expressing SKBR3 breast cancer cells 

to this inhibitor (Figure 1H). In this cell line, ARF1-depletion was also associated with an increased 

sensitivity to lapatinib treatment (IC50: 23.6 M for controls versus 8.4 M for ARF1 depleted 

cells; Table 1). Finally, we observed that ARF1-depletion had no effect on the sensitivity of MDA-

MB-231 to both tivantinib and R428, cMet and AXL inhibitors, respectively (Supplemental Figure 

1F, Table 1). Altogether, our results demonstrate that ARF1 plays a key role in mediating the 

sensitivity of TNBC and HER2-positive breast cancer cells to EGFRTKi, but not all RTK 

inhibitors.  

 

ARF1 promotes gefitinib-mediated survival signals while blocking apoptosis.  

Next, we sought to define the molecular mechanisms by which ARF1 mediated resistance. It is 

generally accepted that activation of certain signaling mediators such as ERK1/2 and Src 

contribute to EGFRTKi sensitivity, although the exact mechanism remains unclear (16,19). We 

therefore next examined the activation of these signaling pathways in gefitinib-treated, ARF1-

depleted cells. Drug treatment for up to 72 hours induced the activation of both ERK1/2 and Src 

in control cells (Figure 2A). ARF1 depletion however delayed these signaling events. While 

gefitinib treatment of control cell was associated with a decreased AKT activation over time, this 

inhibition was more substantial and occurred earlier in cells depleted of ARF1 (24 hours vs. 48 

hours in control cells) demonstrating that cell survival is mostly affected in gefitinib-treated and 

ARF1 knocked down conditions. Next, we evaluated whether the overexpression of ARF1 in the 
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non-invasive and low ARF expressing MCF7 cells could modulate the activation of ERK1/2 and 

AKT activation upon gefitinib treatment (Figure 2B). As shown in Figure 2B, gefitinib only 

slightly enhanced ERK1/2 activation while inhibiting AKT phosphorylation. Interestingly, 

overexpression of ARF1 markedly enhanced the effect of this EGFRTKi on the MAPK pathway 

while blocking the inactivation of the survival pathway further supporting a role for ARF1 as a 

key mediator regulating survival signals upon gefitinib treatment. 

The co-administration of specific inhibitors of the MAPK and PI3K/AKT pathways, in 

combination with EGFRTKis, was reported to be an effective strategy to improved clinical 

outcomes (36-38). Here, we therefore examined whether the depletion of ARF1 could further 

enhance the synergy between gefitinib and a MEK (PD0325901), a PI3Kinase (LY294002) and a 

Src kinase inhibitor (PP2). While all the inhibitors, when used alone, significantly reduced the 

viability of MDA-MB-231 cells, their effects were not altered by the depletion of ARF1 (Figure 

2C). Interestingly, co-treatment with gefitinib was an effective strategy to improve their efficacy. 

Namely, the depletion of ARF1 significantly enhanced the effects of the co-treatment of gefitinib 

and the MEK inhibitor as well as the Src inhibitor, but not the PI3Kinase (Figure 3C). The Chou-

Talalay combination index equation (34,35) highlighted a synergic relationship between gefitinib 

and each of the inhibitors tested. However, the synergy between gefitinib and the inhibitors was 

not enhanced in ARF1-depleted cells (Data not shown) suggesting that the depletion of ARF1 has 

an additive effect, and not a synergic effect, on these co-treatments.  

We next confirmed our findings using the ARF inhibitor. While treatment with the MEK inhibitor 

alone or in combination with gefitinib significantly enhanced cell death, no effect was observed 

when the cells were treated with PD0325901 in combination with BFA or in combination with 

both gefitinib and BFA (Supplementary Figure 3D). Treatment with the PI3K inhibitor, alone or 

in combination with gefitinib or BFA, significantly enhanced cell death (Supplemental Figure 3E). 

However, no significant increase was observed in cells treated with the combination of gefitinib, 

BFA and LY294002 compared to cells treated only with gefitinib in combination with BFA. 

Finally, we evaluated these inhibitor combinations with the Src kinase inhibitor (Supplementary 

Figure 3F). PP2 alone, and in combination with gefitinib or BFA, considerably promoted cellular 

death compared to control conditions. More importantly, the co-treatment of gefitinib, BFA and 

the Src kinase inhibitor robustly induced cell death compared to cells treated with only gefitinib 



128 
 
 

and BFA. Together, our results suggest that targeting ARF1 can enhance the sensitivity to gefitinib 

alone, but it can also enhance the effect of co-treatment of this EGFRTKi with other clinically 

relevant inhibitors such as the Src kinase inhibitors. 

With ARF1 promoting the activation of survival cascades in gefitinib treated MDA-MB-231 cells, 

we next examined the importance of this GTPase in the induction of gefitinib-mediated apoptotic 

signals. Both p38MAPK and JNK have been shown to play an important role in promoting the 

activation of apoptotic pathways and blocking the survival pathway (39,40). Therefore, we next 

investigated the role of ARF1 in mediating the activation of these pathways, upon gefitinib 

treatment. As shown in Figure 3A, control cells treated with gefitinib-induced the activation of 

both p38MAPK and JNK. Interestingly, the activation of these kinases was augmented in ARF1-

depleted cells compared to control conditions suggesting that ARF1 may prevent gefitinib-

dependent activation of these apoptotic pathways. Alternatively, we examined activation of these 

pathways in control and ARF1 overexpressing MCF7 cells. As illustrated in 3B, ARF1 

overexpression reduced gefitinib-induced activation of the apoptotic p38MAPK and JNK 

pathways compared to control conditions.  

To confirm the role of ARF1 in regulating apoptotic pathways, we next examined the expression 

profile of specific markers. As shown in Figure 3C, we found that the Bax to Bcl2 protein 

expression ratio, an indicator of apoptosis, was significantly increased only in ARF1-depleted cells 

treated with gefitinib. Additionally, knockdown of ARF1 was associated with an increased release 

of Cytochrome C from the mitochondria into the cytoplasm (Figure 3D).  

Altogether, these results suggest that high ARF1 expression, in highly invasive breast cancer cells, 

regulates anti-apoptotic pathways while promoting signals leading to cell survival. 
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ARF1 is essential for gefitinib-induced EGFR function.  

In our attempt to further understand the role ARF1 plays in EGFRTKi resistance, we focused on 

the function of the receptor itself. An increased expression and activation of the EGFR and other 

members of the EGFR family has been reported to limit EGFRTKi sensitivity (10,17,41). Here, 

we examined the expression of these receptors upon gefitinib treatment (10 M) for up to 72 hours. 

In control MDA-MB-231 cells, an increase in EGFR expression was observed following 12 and 

24 hours of treatment with the inhibitor, followed by a return to basal EGFR expression by 48 

hours (Figure 4A). Meanwhile, the expression levels of HER2 were reduced whereas HER3 levels 

remained unaffected by gefitinib treatment. However, we were unable to detect HER4 expression 

in MDA-MB-231 cells. In ARF1-depleted conditions, gefitinib treatment did not increase EGFR 

expression. Following a 48 and 72 hours exposure, EGFR expression was however found reduced 

compared to basal. Similarly, a decrease in HER2 expression at both 48 and 72 hours was also 

observed in cells depleted of ARF1 compared to control cells. No difference in HER3 expression 

was observed. These results suggest that the high expression of ARF1 may act to limit sensitivity 

to gefitinib by decreasing the expression levels of both EGFR and HER2. 

Next, we examined the expression of EGFR family members in MCF7 cells. In control conditions, 

gefitinib treatment increased both EGFR and HER3 expression. However, a reduced HER2 

expression was observed upon gefitinib treatment (Figure 4B). While a basal increase in EGFR 

and HER3 expression was detected in cells overexpressing ARF1, this ARF isoform was shown 

to only enhance gefitinib-mediated HER3 expression in this cell line. Moreover, the gefitinib-

induced reduction in HER2 was reduced in ARF1-expressing MCF7 cells. No effect of ARF1 and 

gefitinib treatment on HER4 expression was observed. This further demonstrates the importance 

of ARF1 in mediating the expression of EGFR family members and that ARF1 may regulate 

gefitinib sensitivity in MCF7 cells by promoting signals downstream of HER2 and HER3. 

We next confirmed our finding using the ARF inhibitor. As shown in Supplemental Figure 3G, 

the treatment of MDA-MB-231 cells with gefitinib was associated with an increased expression 

of EGFR and a decreased HER2 expression. More interestingly, when cells were co-treated with 

gefitinib and BFA, a significant reduction in EGFR expression levels was observed. Furthermore, 

the rate of reduction in HER2 expression was enhanced in BFA/gefitinib co-treated cells compared 

to cells treated with gefitinib alone. Together, these results demonstrate that ARF1 plays an 
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important role in mediating the expression of the EGFR and HER2 in gefitinib treated breast cancer 

cells. 

Knowing that the depletion of ARF1 enhanced the gefitinib-dependent downregulation of the 

EGFR, we next examined whether treatment with this EGFRTKi enhanced receptor 

internalization. As shown in Figure 5A, gefitinib treatment promoted the internalization of the 

EGFR in control cells. Interestingly, this response occurred much faster (5 minutes compared to 

30 minutes in control cells) in ARF1-depleted cells suggesting that ARF1 may mediate gefitinib 

sensitivity by controlling the membrane levels of the EGFR. Next, we investigated whether the 

internalized EGFR was targeted for degradation. To do this, we utilized the proteosomal inhibitor, 

MG132. As depicted in Figure 5B, the downregulation of EGFR expression in ARF1-depleted 

cells treated with gefitinib was partially recovered upon proteosomal inhibition. These results 

suggest that ARF1 may block the degradation of the EGFR in response to gefitinib treatment and 

thus reduce the sensitivity of these cells to EGFR inhibition. 

Because ARF1-depletion enhanced gefitinib mediated p38MAPK activation (Figure 3A) and this 

specific MAPK has been previously reported to promote the internalization of the EGFR through 

the threonine phosphorylation of residue T669 on the receptor (42), we next examine this 

molecular event. While gefitinib treatment enhanced the threonine phosphorylation of the EGFR 

in control cells, an increased phosphorylation was observed in ARF1-depleted conditions (Figure 

5C). These observations suggest that ARF1 may act to block the p38MAPK-dependent 

internalization of the EGFR and thus reduce the sensitivity of these cells to EGFR inhibition. 

Finally, we determined whether the activation of p38MAPK was essential in mediating the 

cytotoxic properties of gefitinib in ARF1-depleted MDA-MB-231 cells. As shown in Figure 5D, 

we examined the induction of death in cells treated with the p38MAPK inhibitor, SB220025, alone 

or in combination with gefitinib. No difference in cell death was observed between ARF1-depleted 

and control cells treated with the p38MAPK inhibitor alone. As expected, treatment with gefitinib 

alone induced a 30% higher incidence of cell death in ARF1-depleted cells compared to control 

conditions. Remarkably, this gefitinib-dependent cell death in ARF1 knockdown MDA-MB-231 

cells was decreased upon the co-treatment with the p38MAPK inhibitor further emphasizing the 

importance of this ARF isoform in mediating signals through the p38MAPK pathway leading to 

EGFR internalization and the induction of apoptosis.  
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Together our results suggest that ARF1 mediates gefitinib sensitivity by blocking the 

internalization and degradation of the EGFR through a p38MAPK-dependent mechanism. 

 

Gefitinib promotes the activation of ARF1 by enhancing its recruitment to the RTK AXL.  

Now that we have demonstrated that ARF1 plays an essential role in mediating gefitinib 

sensitivity, we asked whether gefitinib could in turn modulate the activity of the small GTPase. As 

shown in Figure 6A, treatment of MDA-MB-231 cells with this inhibitor resulted in an increased 

ARF1 activation. Similar effects were observed in HCC70 and MDA-MB-157 cells (Figure 6B, 

C).  

We next asked how gefitinib promoted the activation of ARF1 in MDA-MB-231 cells. As the 

expression and activity of other RTKs such as HER2, cMet and AXL have all been implicated in 

gefitinib resistance (13,18,29), we determined whether gefitinib treatment could enhance the 

recruitment of ARF1 to these receptors. Indeed, gefitinib treatment was associated with an 

enhanced recruitment of ARF1 to HER2, cMet and AXL, but not to the EGFR (Figure 6D). This 

would suggest that upon gefitinib treatment, other mitogenic receptors may promote ARF1 

activation. Therefore, we first attempted to examine the necessity of these RTK in mediating 

gefitinib-induced ARF1 activation using pharmacological inhibitors. As shown in Figure 6E, the 

dual inhibition of EGFR and HER2 by lapatinib resulted in a similar degree of ARF1 activation 

compared to gefitinib treatment alone suggesting that HER2 is not required for gefitinib-mediated 

ARF1 activity. Additionally, tivantinib treatment alone was unable to promote the activation of 

this ARF isoform. Furthermore, this cMet inhibitor was unable to block gefitinib-induced ARF1 

activation suggesting that cMet is not required for gefitinib-dependent ARF1 activation. 

Interestingly, like in the EGFR inhibitor treatment, the AXL inhibitor, R428, was effective to 

enhance ARF1 activity. But, more importantly, this inhibitor blocked gefitinib-induced ARF1 

activation. Together, these findings suggest that in gefitinib treated invasive breast cancer cells, 

ARF1 is activated via its recruitment to AXL. 

Finally, we determined whether ARF1 depletion could enhance the efficacy of co-inhibiting other 

RTKs with the EGFR. As previously shown, ARF1 depletion enhanced the efficacy of both 

gefitinib- and lapatinib-, but not tivantinib- and R428-treated MDA-MB-231 cells (Figure 6F). 

Interestingly, a significant increase in cellular death was observed in ARF1-depleted cells co-
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treated with gefitinib and tivantinib compared to control conditions. However, in cells co-treated 

with the AXL inhibitor, R428, and gefitinib, the depletion of ARF1 was shown to have no effect 

further suggesting that ARF1 is signaling downstream of AXL in gefitinib treated cells. 

These data therefore provides a mechanism by which activation of ARF1 may contribute to 

potentiate survival and signaling of mitogenic receptors in conditions where cells are treated with 

EGFRTKi. By continuously activating intermediates regulating EGFR expression, internalization 

and signaling ARF contributes to EGFRTKi resistance of highly invasive breast cancer cells.   
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III.5 Discussion 

 

 

Although inhibitors of mitogenic receptor activity remains a therapy of choice to treat cancer, the 

development of resistance to these drugs, by numerous tumor cells, has greatly limited their broad 

use in patients. The research of strategies to overcome resistance has identified key events 

contributing together to this cellular response. However, the identification of the most upstream 

events and master regulators as well as the mechanisms whereby they mediate resistance have yet 

to be elucidated.  

We have recently demonstrated that ARF1 is highly expressed in the most invasive types of breast 

cancer cells and that stimulation of the EGFR leads to activation of this molecular switch and 

ultimately proliferation, migration and invasion, by a mechanisms involving the recruitment of 

classical adaptor proteins (23-25). Here, we show a novel role for ARF1 in mediating EGFRTKi 

sensitivity of these tumor cells. The depletion or inhibition of this ARF isoform significantly 

enhanced the sensitivity of resistant invasive breast cancer cells to the EGFRTKi, gefitinib. In 

these conditions, clinically relevant doses of this inhibitor now become effective in inducing 

signals leading to cell death. We show that upon gefitinib treatment ARF1 is activated upon its 

recruitment to the receptor AXL. This promotes the activation of survival signals through ERK1/2, 

Src and AKT, while, blocking apoptotic signals through the p38MAPK and JNK pathways. 

Additionally, we demonstrate that ARF1 plays an important role in the internalization and 

degradation of the EGFR observed upon gefitinib treatment. Indeed, enhanced signals through the 

p38MAPK pathway enhanced the internalization and in turn, the degradation of EGFR in gefitinib-

treated, ARF1-depleted cells (Figure 7). From these data, we can conclude that ARF1 is an 

important regulator of EGFRTKi sensitivity in invasive breast cancer cells and its inhibition could 

improve therapeutic outcomes in patients treated with these drugs. 

Acquired resistance is a major factor that markedly reduces the efficacy of EGFRTKis in the 

clinical setting (5,14,43). A variety of mechanisms have been proposed to mediate this response 

of tumor cells. Firstly, modified expression and activation of the EGFR as well as mutations within 

the receptor have all been implicated in this process (44). It was reported that a point mutation 

(T790M), present within the kinase domain and targeted by EGFRTKis, significantly inhibited the 

functionality of these inhibitors.  This mutation is commonly found in EGFRTKi treated patients 
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(44). In this study, we have primarily used the MDA-MB-231 cell model, which does not possess 

this mutation (45). Our data indicate that treatment with gefitinib increased EGFR expression 

without affecting its activation. Interestingly, the depletion of ARF1 blocked this augmentation in 

EGFR expression and promoted its internalization and degradation.  

It has also been proposed that EGFR family members can compensate for the loss of EGFR signals 

(44). In our cell model, EGFR, HER2 and HER3, but not HER4 are expressed. While EGFR 

expression was increased by gefitinib treatment, gefitinib decreased HER2 expression while not 

affecting HER3. However, a significant decrease in HER2 expression was observed in cells 

depleted of ARF1, and treated with gefitinib. Thus, ARF1 may block EGFRTKi sensitivity and 

promote resistance by stabilizing the expression both EGFR and HER2. It is important to note that 

other tyrosine kinase receptors have also been shown to be implicated in acquired resistance. For 

instance, the amplification of both the cMET and AXL receptors as well as their ligands hepatocyte 

growth factor (HGF) and Gas6, respectively, has been reported in EGFRTKi resistant cancers 

(18,44). In our experiments, no observable increase in cMET or AXL expression was detected in 

gefitinib-resistant MDA-MB-231 cells (Data not shown). We did however observe an increased 

activity of these two receptors, but this activation was shown to be independent of ARF1 

expression. Additionally, we demonstrated that ARF1 is activated downstream of AXL in 

gefitinib-treated cells. Thus, ARF1 may mediate EGFR inhibitor sensitivity by propagating signals 

downstream of activated AXL. Others have also reported that an increased activation of the insulin 

growth factor receptor (IGFR) and the fibroblast growth factor receptor (FGFR) are associated 

with acquired resistance (44,46). Therefore, it would be of interest to examine the role of ARF1 

downstream of these RTKs. 

In addition to altered RTK signals, the activation of downstream key pathways have also been 

implicated in EGFRTKi resistance. In fact, point mutations in either Ras or PTEN, resulting in the 

constitutive activation of both the Ras/ERK1/2 and the PI3Kinase/AKT pathways, have been 

linked to drug resistance (47,48). Independent of these mutations, it has been shown that ERK1/2 

can be reactivated via either a HER2- or Src-dependent mechanism; whereas, PI3Kinase/AKT 

activation has been primarily shown to be dependent of signals from either HER3 or MET receptor 

(19,44). In our gefitinib-insensitive MDA-MB-231 cells, we observed an increase ERK1/2 and Src 

activation and this activation was significantly reduced by ARF1 depletion. Furthermore, while 
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gefitinib treatment was shown to reduce AKT phosphorylation in control cells, this decreased 

activation was found to be more pronounced in ARF1 depleted cells. This suggests that ARF1 may 

play an important role in drug sensitivity by activating survival pathways in TNBC cells.  

Also, we observed an increase in p38MAPK and JNK activity in cells depleted of ARF1.  The 

activation of these pathways have been linked to the gefitinib-induced cell death (49). Therefore, 

the increased gefitinib-sensitivity we observed in ARF1-depleted cells may stem from the enhance 

activation of these pathways. Furthermore, p38MAPK has been reported to promote the 

internalization of the EGFR, another mechanism known to promote EGFR inhibitor sensitivity of 

lung cancer cells (42,50). Indeed, for the first time in breast cancer cells, we observed an enhanced 

EGFR internalization in ARF1-depleted cells treated with gefitinib. Therefore, ARF1 may 

mediated gefitinib sensitivity by blocking p38MAPK signals to apoptosis and EGFR 

internalization 

Although ARF1 plays key roles in physiology and diseases, successfully targeting small GTP-

binding proteins as therapeutics targets remains a challenge. The design of molecular tools or drugs 

that specifically block the ability of a small G protein to become activated and interact with their 

effectors is of great interest (51,52). For ARF1, only a few inhibitors have been characterized in 

the literature (53). All of which have their limits regarding their potential use as therapeutics. 

Nevertheless, our demonstration that ARF1 is a key mediator of EGFRTKi sensitivity further 

support the relevance of studying the mechanisms by which ARF and other GTPases might control 

such phenomenon. Additionally, our demonstration that ARF1, namely, plays pleiotropic roles in 

tumorgenesis (23,25,26) further supports the benefits of targeting this ARF isoform as an anti-

cancer treatment. Here, we demonstrate that the small GTPase ARF1, a downstream molecular 

switch activated by the EGFR, is a key player in mediating the sensitivity of invasive breast cancer 

cells to the EGFRTKi, gefitinib. Our results suggests that while inhibiting ARF1 alone may have 

some therapeutic benefits such as reduced cancer cell proliferation, migration and invasion (23,25), 

a strategy where ARF1 would be inhibited together with EGFRTKis could serve to improve 

efficacy of a compound such as gefitinib by increasing its cellular sensitivity as well as possibly 

decreasing the incidence of acquired resistance.  
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III.6 Figure Legends 

 

Figure 1: ARF1 mediates gefitinib sensitivity in invasive breast cancer cells. A, Percent cell 

death was assessed by a MTT assay in MDA-MB-231 cells that were transfected with CTL or 

ARF1 siRNA and then treated 24 hours with indicated concentrations of gefitinib. Western blot 

analysis confirmed the depletion of ARF1. B, Percent cell death was assessed by a cell counting 

assay in MDA-MB-231 cells that were transfected with CTL or ARF1 siRNA and then treated 24 

hours with indicated concentrations of gefitinib. C, Percent cell death was assessed by a MTT 

assay in MDA-MB-231 cells that were transfected with CTL siRNA, ARF1 siRNA alone or ARF1 

siRNA and ARF1Mut cDNA and then treated 24 hours with indicated concentrations of gefitinib. 

Western blot analysis confirmed the depletion of ARF1 and the expression of HA-tagged 

ARF1Mut. D, Percent cell death was assessed by a cell counting assay in MDA-MB-231 cells that 

were transfected with CTL siRNA, ARF1 siRNA alone or ARF1 siRNA and ARF1Mut cDNA and 

then treated 24 hours with indicated concentrations of gefitinib. E, Percent cell death was assessed 

by a MTT assay in MCF7 cells that were transfected with CTL or HA-tagged ARF1 cDNA and 

then treated 24 hours with indicated concentrations of gefitinib. Western blot analysis confirmed 

the expression of HA-tagged ARF1. F, Percent cell death of MDA-MB-231 cells that were 

transfected with CTL or ARF1 siRNA and then treated with 10 M gefitinib for indicated time 

points as assessed by a MTT assay. G, Percent cell death was assessed by a MTT assay in MDA-

MB-231 cells that were transfected with CTL or ARF1 siRNA and then treated 24 hours with 

indicated concentrations of lapatinib. H, Percent cell death of SKBR3 cells as assessed as in (G). 

For all experiments, data shown are mean ± Standard error the mean (SEM). Significance was 

measured by a two-way ANOVA with n=3; (*) P < 0.05, (**) P < 0.01, (***) P < 0.001. 
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Figure 2 : Gefitinib-induced survival signaling is altered in ARF1 depleted cells. A, Western 

blot analysis utilizing phospho-specific antibodies was used to measure the activation of ERK1/2, 

AKT and Src in cell lysates obtained from MDA-MB-231 cells that were transfected with CTL or 

ARF1 siRNA and then treated with 10 M gefitinib for the indicated time points. Data is presented 

as mean fold over basal activation ± SEM with n=3. Significance was measured by a two-way 

ANOVA; (*) P < 0.05, (**) P < 0.01, (***) P < 0.001.  B, Western blot analysis utilizing phospho-

specific antibodies was used to measure the activation of ERK1/2 and AKT in cell lysates obtained 

from MCF7 cells that were transfected with CTL or HA-tagged ARF1 cDNA and then treated with 

10 M gefitinib for 24 hours. Data is presented as mean fold over basal activation ± SEM with 

n=3. Significance was measured by a two-way ANOVA; (*) P < 0.05. C, MDA-MB-231 percent 

cell death was assessed via a MTT assay in cells that were transfected with CTL or ARF1 siRNA 

and then treated with either PD0325901 (10 M), LY294002 (15M) or PP2 (1 M) alone or in 

combination with gefitinib (10 M) for 24 hours. Data shown are mean ± SEM. Significance was 

measured by a two-way ANOVA with n=3; (*) P < 0.05, (***) P < 0.001. 

 

Figure 3 : Enhanced gefitinib-mediated apoptotic signals in ARF1 depleted cells. A, Western 

blot analysis utilizing phospho-specific antibodies was used to measure the activation of 

p38MAPK and pJNK in cell lysates obtained from MDA-MB-231 cells that were transfected with 

CTL or ARF1 siRNA and then treated with 10 M gefitinib for the indicated time points. Data is 

presented as mean fold over basal activation ± SEM with n=3. Significance was measured by a 

two-way ANOVA; (*) P < 0.05, (**) P < 0.01, (***) P < 0.001. B, Western blot analysis utilizing 

phospho-specific antibodies was used to measure the activation of p38MAPK and pJNK in cell 

lysates obtained from MCF7 cells that were transfected with CTL or HA-tagged ARF1 cDNA and 

then treated with 10 M gefitinib for 72 hours. Data is presented as mean fold over basal activation 

± SEM with n=3. Significance was measured by a two-way ANOVA; (*) P < 0.05, (***) P < 

0.001. C, The expression of Bcl-2 and Bax was measured by western blot analysis in cell lysates 

obtained from MDA-MB-231 cells that were transfected with CTL or ARF1 siRNA and then left 

untreated or treated with 10 M gefitinib for 72 hours. Data is presented as the mean ratio of Bax 

expression over Bcl-2 expression ± SEM with n=3. Significance was measured by a two-way 

ANOVA; (**) P < 0.01. D, The cytoplasmic and mitochondrial expression of Cytochrome C were 
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measured by western blot analysis in cell lysates obtained from MDA-MB-231 cells that were 

transfected with CTL or ARF1 siRNA and then left untreated or treated with 10 M gefitinib for 

72 hours. Data is presented as mean fold Cytochrome C release ± SEM with n=3. Significance was 

measured by a two-way ANOVA; (**) P < 0.01.  

 

Figure 4 : Gefitinib-induced EGFR family member expression is mediated by ARF1 

expression. A, The protein expression of EGFR, HER2, HER3 and HER4 was assessed in lysates 

obtained from MDA-MB-231 cells that were transfected with CTL or ARF1 siRNA and then 

treated with 10 M gefitinib for the indicated time points using western blot analysis. Data is 

presented as mean fold over basal ± SEM with n=3. Significance was measured by a two-way 

ANOVA; (*) P < 0.05, (**) P < 0.01, (***) P < 0.001. B, Western blot analysis was used to 

measure the expression of EGFR, HER2, HER3 and HER4 in cell lysates obtained from MCF7 

cells that were transfected with CTL or HA-tagged ARF1 cDNA and then treated with 10 M 

gefitinib for 72 hours. Data is presented as mean fold over basal expression ± SEM with n=3. 

Significance was measured by a two-way ANOVA; (*) P < 0.05, (**) P < 0.01, (***) P < 0.001. 

 

Figure 5 : Gefitinib-dependent EGFR internalization and degradation is enhanced by ARF1 

depletion. A, The protein expression of EGFR was assessed in membrane extracts obtained from 

MDA-MB-231 cells that were transfected with CTL or ARF1 siRNA and then treated with 10 M 

gefitinib for the indicated time points using western blot analysis. Data is presented as mean fold 

over basal ± SEM with n=3. Significance was measured by a two-way ANOVA; (***) P < 0.001. 

B, The protein expression of EGFR was assessed in lysates obtained from MDA-MB-231 cells 

that were transfected with CTL or ARF1 siRNA and then treated with 10 M gefitinib alone, 1 

M MG132 alone or the combination of gefitinib (10 M)  and MG132 (1 M)  for 24 hours using 

western blot analysis. Data is presented as mean fold over basal ± SEM with n=3. Significance 

was measured by a two-way ANOVA; (***) P < 0.001. C, The threonine phosphorylation of the 

EGFR was assessed in lysates obtained from MDA-MB-231 cells that were transfected with CTL 

or ARF1 siRNA and then treated with 10 M gefitinib for 72 hours using a phospho-specific 

antibody. Data is presented as mean fold over basal ± SEM with n=3. Significance was measured 

by a two-way ANOVA; (**) P < 0.01. D, MDA-MB-231 percent cell death was assessed via a 
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MTT assay in cells that were transfected with CTL or ARF1 siRNA and then treated with 

SD220025 (100 nM) alone or in combination with gefitinib (10 M) for 24 hours. Data shown are 

mean ± SEM. Significance was measured by a one-way ANOVA with n=3; (**) P < 0.01.  

 

Figure 6: Gefitinib promotes ARF1 activation through the recruitment of this GTPase to 

AXL. A, MDA-MB-231 cells were treated with indicated concentrations of gefitinib for 1 hour. A 

GST-GGA3 pulldown assay was used to capture activated ARF1 from cell lysates. Endogenous 

levels of activated ARF1 and the total protein levels of ARF1 were assessed by western blot 

analysis. Data shown are mean ± SEM. Significance was measured by a one-way ANOVA with 

n=3; (***) P < 0.001. B, HCC70 cells were treated with indicated concentrations of gefitinib for 1 

hour. ARF1 activation was assessed as described in (A). Data shown are mean ± SEM. 

Significance was measured by a one-way ANOVA with n=3; (*) P < 0.05, (**) P < 0.01. C, MDA-

MB-157 cells were treated with indicated concentrations of gefitinib for 1 hour. ARF1 activation 

was assessed as described in (A). Data shown are mean ± SEM. Significance was measured by a 

one-way ANOVA with n=3; (*)) P < 0.05, (***) P < 0.001. D, Co-immunoprecipitation 

experiments were used to assess the recruitment of ARF1 to the EGFR, HER2, cMet and AXL in 

MDA-MB-231 cells treated with gefitinib (10 M) for 1 hour. Data is presented as mean receptor 

recruitment ± SEM with n=3. Significance was measured by a two-way ANOVA; (*) P < 0.05, 

(**) P < 0.01, (***) P < 0.001. E, MDA-MB-231 cells were treated with gefitinib (10 M), 

lapatinib (10 M), tivantinib (10 M) and R428 (1 M) alone or tivantinib (10 M) and R428 (1 

M) in combination with gefitinib (10 M) for 1 hour. ARF1 activation was assessed as described 

in (A). Data shown are mean ± SEM. Significance was measured by a one-way ANOVA with n=3; 

(**) P < 0.01, (***) P < 0.001. F, Percent cell death was assessed by a MTT assay in MDA-MB-

231 cells that were transfected with CTL or ARF1 siRNA and then treated 24 hours with gefitinib 

(10 M), lapatinib (10 M), tivantinib (10 M)  and R428 (1 M)  alone or tivantinib (10 M)  

and R428 (1 M)  in combination with gefitinib (10 M). 
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Figure 7: The role of ARF1 in mediating gefitinib sensitivity in breast cancer cells. A, Upon 

treatment with the EGFRTKi, gefitinib, ARF1 is recruited to the RTK, AXL, leading to the 

activation of this GTPase. Activated ARF1 promotes signals through the proliferative/survival 

pathways, ERK1/2, Src and AKT. Furthermore, ARF1 attenuates gefitinib-induced apoptotic 

signals through p38MAPK and JNK activation. Additionally, the actions of ARF1 on the 

p38MAPK mediate the internalization and degradation of the EGFR. Altogether, ARF1 mediates 

gefitinib sensitivity in breast cancer cells by promoting cell survival and EGFR stability.  
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III.7 Tables 

 

Table 1: Effect of ARF1 depletion on the IC50 of EGFRTKis in breast cancer cells. The IC50 

for control cells or ARF1 knockdown cells treated with either gefitinib, tivantinib, R428 or 

lapatinib for 24 hours. Data shown are mean values. Significance was measured using an unpaired, 

two-tailed T-test with n=3; (*) P < 0.05, (**) P < 0.01, (***) P < 0.001. 
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III.8 Supplementary data 

 

Supplementary Figure 1 : ARF1 mediates the sensitivity of breast cancer cells to EGFR 

inhibitors. A, Percent cell death was assessed by a MTT assay in HCC70 cells that were 

transfected with CTL or ARF1 siRNA and then treated 24 hours with indicated concentrations of 

gefitinib. Western blot analysis confirmed the depletion of ARF1. B, Percent cell death of MDA-

MB-157 cells as assessed as in (A). C, Percent cell death of SKBR3 cells as assessed as in (A). D, 

Percent cell death of MCF7 cells as assessed as in (A). E, Percent cell death was assessed by a cell 

counting assay in MCF7 cells that were transfected with CTL or HA-ARF1 cDNAs and then 

treated 24 hours with gefitinib (25 M). F, Percent cell death was assessed by a MTT assay in 

MDA-MB-231 cells that were transfected with CTL or ARF1 siRNA and then treated 24 hours 

with indicated concentrations of either tivantinib or R428. For all experiments, data shown are 

mean ± Standard error the mean (SEM). Significance was measured by a two-way ANOVA with 

n=3; (*) P < 0.05, (**) P < 0.01, (***) P < 0.001. 

 

Supplementary Figure 2 :  Gefitinib blocks EGF-dependent activation of the EGFR, ERK1/2 

and AKT. A, EGFR activation was assessed by immunoprecipitating the EGFR and 

immunoblotting with a phospho-specific antibody against total phospho-tyrosine sites (pan-PY) 

using lysates obtained from MDA-MB-231 cells that were left untreated or treated with indicated 

concentrations of gefitinib for 1 hour before being stimulated with EGF (10 ng/ml) for 1 minute. 

Activation of ERK1/2 and AKT were measured by western blot analysis using phospho-specific 

antibodies. B, The activation of EGFR, ERK1/2, and AKT in HCC70 cells was assessed as 

described in (A). C, The activation of EGFR, ERK1/2, and AKT in MDA-MB-157 cells was 

assessed as described in (A). D, The activation of EGFR, ERK1/2, and AKT in SKBR3 cells was 

assessed as described in (A). E, The activation of EGFR, ERK1/2, and AKT in MCF7 cells was 

assessed as described in (A) 
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Supplementary Figure 3 : The ARF inhibitor, brefeldin A, sensitizes MDA-MB-231 cells to 

EGFR inhibition. A, Percent cell death was assessed by a MTT assay in MDA-MB-231 cells that 

were left untreated or treated 24 hours with BFA (10 nM) alone, indicated concentrations of 

gefitinib alone or the combination of BFA (10 nM) and indicated concentrations of gefitinib. Data 

shown are mean ± SEM. Significance was measured by a two-way ANOVA with n=3; (*) P < 

0.05, (**) P < 0.01. B, The combination indexes (CI) for the co-treatment of BFA and gefitinib 

were calculated using the Chou-Talalay combination index equation. CI values below 1 (dotted 

line) are indicative of a synergic relationship. Western blot analysis confirmed the efficacy of BFA 

in inhibiting ARF1 activity. C, Cell viability was assessed by a MTT assay in MDA-MB-231 cells 

that were transfected with CTL vector, ARF1WT, ARF1QL or ARF1TN cDNAs and then treated 

24 hours with indicated concentrations of gefitinib. Western blot analysis confirmed the expression 

of the HA-Tagged ARF1 cDNAs. For all experiments, data shown are mean ± Standard error the 

mean (SEM). Significance was measured by a two-way ANOVA with n=3; (**) P < 0.01. D, 

MDA-MB-231 percent cell death was assessed via a MTT assay in cells that were left untreated 

(DMSO) or treated with either BFA (0.01 M) alone, gefitinib (10 M) alone or the combination 

of BFA and gefitinib in the presence or absence of PD0325901 (10 M) for 24 hours. Data shown 

are mean ± SEM. Significance was measured by a two-way ANOVA with n=3; (**) P < 0.01, 

(***) P < 0.001. E, MDA-MB-231 percent cell death was assessed via a MTT assay in cells that 

were left untreated (DMSO) or treated with either BFA (0.01 M) alone, gefitinib (10 M) alone 

or the combination of BFA and gefitinib in the presence or absence of LY294002 (15M) for 24 

hours. Data shown are mean ± SEM. Significance was measured by a two-way ANOVA with n=3; 

(*) P < 0.05, (**) P < 0.01, (***) P < 0.001. F, MDA-MB-231 percent cell death was assessed via 

a MTT assay in cells that were left untreated (DMSO) or treated with either BFA (0.01 M) alone, 

gefitinib (10 M) alone or the combination of BFA and gefitinib in the presence or absence of PP2 

(1 M) for 24 hours. Data shown are mean ± SEM. Significance was measured by a two-way 

ANOVA with n=3; (*) P < 0.05, (**) P < 0.01. G, The protein expression of EGFR and HER2 

was assessed in lysates obtained from MDA-MB-231 cells that were left untreated, treated with 

gefitinib (10 M) alone or the combination of BFA (0.01 M)  and gefitinib (10 M)  using 

western blot analysis. Data is presented as mean fold over basal ± SEM with n=3. Significance 

was measured by a two-way ANOVA; (*) P < 0.05, (***) P <0.001. 
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IV.1 Abstract 

The majority of triple negative breast cancer (TNBC) patients have an increased epidermal growth 

factor receptor (EGFR) expression. However, pharmaceutically targeting this receptor, within this 

cancer population, has shown limited success. The patient response to EGFR tyrosine kinase 

inhibitors has been shown to be mediated by an innate insensitivity to these inhibitors as well as 

the development of resistance. Recently, we have demonstrated that the small GTPase ARF1 

mediates signals downstream of the EGFR leading to cell proliferation, migration and invasion. 

Furthermore, this GTPase was shown to regulate the gefitinib sensitivity of TNBC cells. Here, we 

further characterize the importance of ARF1 in mediate gefitinib sensitivity and implicate this 

GTPase in the development of resistance. First, we demonstrate that p66Shc, a key mediator of 

ARF1 activity, and another ARF isoform, ARF6, also regulate gefitinib sensitivity. Next, we show 

that ARF1 regulates mitochondrial-dependent apoptosis in gefitinib treated cells. Indeed, reduced 

mitochondrial Bcl2 expression, increased mitochondrial p66Shc translocation, mitochondrial 

membrane hyperpolarization and caspase cleavage were observed in ARF1-depleted cells upon 

gefitinib treatment. Subsequently, we show that ARF1 mediates the gefitinib-dependent activation 

and dimerization of EGFR family members, important processes implicated in the sensitivity of 

cancer cells to EGFR inhibition. Finally, we show that a gefitinib-resistant cell population has 

elevated ARF1 activity and that the depletion of this GTPase can re-sensitize these cells to EGFR 

inhibition. Together, we further demonstrate the importance of ARF1 in mediating the response of 

TNBC cells to gefitinib treatment and highlight novel mechanisms, both through receptor 

dimerization and mitochondrial-dependent apoptosis, utilized by ARF1 to regulate gefitinib 

sensitivity. These findings further emphasize the importance of targeting ARF1 to improve the 

response of TNBC patients to EGFR inhibitors. 
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IV.2 Introduction 

With 15-20% of global breast cancers being diagnosed as triple negative breast cancer (TNBC), 

an aggressive cancer with high metastatic potential, there are present attempts to identify novel 

therapeutic targets and improve currently available therapies (1-3). While current 

chemotherapeutics have shown some success in the treatment of TNBC, only a small portion of 

patients respond to these agents, whereas other develop drug resistance (4). Therefore, it is 

essential to better understand the mechanisms underlying the response to TNBC therapeutic 

agents. This could help improve the efficacy and response rate to these agents. 

One oncogenic factor, the epidermal growth factor receptor (EGFR), has been shown to be elevated 

in these patients (5). Moreover, it is associated with a poor prognosis making it an interesting 

therapeutic target in this breast cancer subpopulation (5, 6). However, clinical trials targeting this 

receptor, either using tyrosine kinase inhibitors or monoclonal antibodies, have shown limited 

success (7, 8). This lack of response is associated, in part, by the development of drug resistance, 

a process well documented in lung cancer patients, but less understood in breast cancer (9). Briefly, 

multiple mechanisms of resistance of have been proposed which include: modifications to the 

EGFR that counter the effects of the drug, altered signaling through other receptors and signaling 

cascades (HER2-3, AXL, cMET, ERK1/2, Src and AKT), evasion of apoptosis and, finally, 

histological changes in the cancer cell phenotype (epithelial-mesenchymal transformation) (7, 10-

16). 

Recently, we have implicated the small GTPase, ADP-Ribosylation Factor 1(ARF1) as a key 

mediator of EGFR inhibitor sensitivity in breast cancer cells. We had previously shown that this 

GTPase, a member of the Ras superfamily of GTPases, mediates important signals downstream of 

the EGFR leading to cell proliferation, migration and invasion (17-19). Additionally, we showed 

that the depletion of ARF1 sensitized the gefitinib-resistant MDA-MB-231 cell line to EGFR 

inhibition. Moreover, ARF1 was shown to promote survival signals and EGFR stability while 

blocking apoptotic signals in gefitinib treated cells. However, further investigation into the role of 

this ARF isoform in EGFR inhibitor sensitivity and resistance is required. 

In this study, we aimed to further characterize the mechanism through which ARF1 mediates 

gefitinib sensitivity and to define whether this small GTP-binding protein could also play a role in 

mediating the resistance of TNBC cells to EGFR tyrosine kinase inhibitors (EGFRTKis). Here, 
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we report that ARF1 plays a key role in mediating EGFRTKi sensitivity by regulating important 

mitochondrial dynamics that control cell survival as well as mediating EGFR family dimerization 

and activation. Furthermore, we show that a key regulator of ARF1 activity, p66Shc (20), and 

another ARF isoform, ARF6, also play a role in mediating gefitinib sensitivity. Finally, we 

demonstrate that ARF1 also regulates the development of EGFRTKi resistance.  Our results 

suggest that targeting this key protein in combination with EGFR inhibitors may enhance their 

effectiveness and efficiency and in turn prevent the development of drug resistance in TNBC 

patients.  



166 
 
 

 

IV.3 Materials and Methods 

 

Reagents and Antibodies 

Lipofectamine 2000™ was purchased from Invitrogen (Burlington, Ontario, Canada). Epidermal 

growth factor was purchased from Fitzgerald Industries International, Inc. (Concord, MA) and 

heregulin was purchased from Sigma-Aldrich (Oakville, Ontario, Canada). Polyclonal antibodies 

used were EGFR, HER2, HER3, pErk1/2, pAKT, AKT, pp38MAPK, p38MAPK, pJNK, JNK, 

pan-actin, Bim, Bcl2, CoxIV, Caspase 3, Caspase 9 (Cell Signaling, Danvers, MA), ARF1 

(Proteintech Group, Chicago, IL) HA-Tag, Erk1/2 (Santa Cruz Biotechnology, Dallas, TX). 

Monoclonal antibodies used were pan-PY (Santa Cruz Biotechnology). Other reagents used were 

goat anti-mouse antibody-horseradish peroxidase and goat anti-rabbit antibody-horseradish 

peroxidase (RD Systems, Minneapolis, MN) and Protein G-Agarose Plus beads (Santa Cruz 

Biotechnology). 

  

DNA Plasmids and siRNAs 

HA-tagged p66Shc, p66ShcS36A and p66ShcS36D cDNAs were cloned into a pcDNA3 vector 

and previously described (21, 22), the double-stranded scrambled with 19-nucleotide duplex RNA, 

ARF1 siRNA and ARF6 siRNA were previously described (Cotton, Boulay et al. 2007; Boulay, 

Cotton et al. 2008; Schlienger, Campbell et al. 2014). All siRNAs include 2-nucleotide 3’ dTdT 

overhangs and were purchased from Dharmacon Inc. (Lafayette, CO). 

 

Cell Culture and Transfection 

MDA-MB-231, MCF7, SKBR3, MDA-MB-157 cells were maintained at 37°C, 5% CO2 in 

Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum (FBS). 

HCC70 cells were maintained at 37°C, 5% CO2 in Roswell Park Memorial Institute medium 

(RPMI) supplemented with 10% FBS. Cells were transfected with siRNA or plasmid DNA using 

Lipofectamine 2000™ according to the manufacturer’s instructions. Briefly, cells were transfected 

with 25 nM siRNA for 72 hours or indicated cDNAs for 48 hours prior to treatment with inhibitors 

at indicated concentrations for indicated time points. 
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Co-immunoprecipitation and Western Blot Analysis 

Cells from confluent 10 cm dishes were harvested in 700 μl of Lysis buffer (20 mM Tris-HCl pH 

8, 1% Triton X-100, 10% glycerol, 140 mM NaCl, 5 mM EDTA, 1 nM sodium orthovanadate 

(Na3VO4) complemented with the protease inhibitors aprotinin (5 μg/ml), benzamidine (150 

μg/ml), leupeptin (5 μg/ml), pepstatin (4 μg/ml) and phenylmethylsulfonyl fluoride (20 mg/ml). 

Lysates were solubilized at 4°C for 30 minutes and total soluble proteins were run on 

polyacrylamide gels and transferred onto nitrocellulose membranes. Proteins were than detected 

using indicated specific primary antibodies. Secondary antibodies were all horseradish peroxidase-

conjugated, and chemiluminescence was used to visualize protein expression. The quantification 

of the digital images obtained was performed using ImageJ 1.46o software (National Institutes of 

Health, USA). For immunoprecipitation experiments, cell lysates described above were agitated 

with indicated antibodies and protein G-Agarose plus beads at 4°C for 3 hours. Proteins were 

eluted in SDS-sample buffer by heating to 65°C for 15 minutes. Protein interaction and tyrosine 

phosphorylation were measured by western blot analysis. 

  

ARF Activation Assay 

Cells were left untreated or treated with indicated concentrations of gefitinib for indicated time 

points. Activated ARF1 or ARF6 were measured as previously described (23). Briefly, cells were 

lysed in 400 μl of Lysis buffer E (pH 7.4, 50 mM Tris HCl, 1% NP-40, 137 mM NaCl, 10% 

glycerol, 5 mM MgCl2, 20 mM NaF, 1 mM NaPPi, 1 mM Na3VO4 and the protease inhibitors: 

aprotinin (5 μg/ml), benzamidine (150 μg/ml), leupeptin (5 μg/ml), pepstatin (4 μg/ml) and 

phenylmethylsulfonyl fluoride (20 mg/ml)). GST-GGA3-(1–316) (24) coupled to glutathione-

Sepharose 4B was added to each sample. The samples were then rotated at 4°C for 45 minutes. 

Proteins were eluted in 20 μl of SDS-sample buffer by heating to 65°C for 15 minutes. The 

detection of ARF1-GTP or ARF6-GTP was performed by western blot analysis using specific 

antibodies to ARF1 and ARF6, respectively.  
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Mitochondrial Fractionation  

MDA-MB-231 cells were treated with indicated concentrations of gefitinib for 72 hours. Cells 

were collected and sonicated in CHM buffer (10mM Tris-HCl pH 6.7, 10mM KCl, 150mM 

MgCl2). 0.25M sucrose was added and cells were spun at 1000g for 10 min and supernatant was 

collected as the cytoplasmic fraction. Pellet was resuspended in SM buffer (10 mM Tris-HCl pH 

6.7, 0.15M MgCl2, 0.25M sucrose) and spun 15 minutes at 5000g. Mitochondrial pellet was lysed 

in MLB buffer (50 mM Tris-HCl, pH 7.4, 150mM NaCl, 2mM EDTA, 2mM EGTA, 0.2% Triton 

X 100, 0.3% NP-40). Cytoplasmic and mitochondrial protein expression was assessed by western 

blot analysis. 

  

Mitochondrial Membrane Potential 

MDA-MB-231 cell membrane potential was assessed using JC-1 dye according to manufacturer’s 

instructions. Briefly, 15,000 cells were plated on a 96-well plate and allowed to adhere overnight. 

Cells were treated with gefitinib (10 M) for indicated time points. Cells were than washed with 

Dilution buffer, stained with 20 mM JC-1 for 10 minutes at 37°C, and washed twice in Dilution 

buffer. Fluorescence was measured using a plate reader (Excitation 475nm and Emission 590nm). 

   

Cell Viability Assay  

MTT assay was used as a measure of cell viability/death. Cells were transfected with CTL siRNA, 

ARF1 siRNA, ARF6 siRNA and p66Shc siRNA or p66Shc cDNAs for 24 hours. Cells were then 

trypsinized and plated at confluency on a 96-well plate in medium supplemented with 10% FBS 

overnight. The next day, cells were left untreated or treated in serum free medium with the 

specified concentrations of inhibitor for 12, 24, 48 or 72 hours, as indicated. Following the 

treatment, cells were stained with Thiazolyl Blue Tetrazolium Bromide (5 mg/ml) (Sigma-Aldrich) 

for 2 hours. The produced formazan product was than solubilized overnight in 20% SDS/50% 

Dimethyl-formamide solution (pH 4.7). Absorbance was measured at 570 nm with a reference 

wavelength at 450 nm using a plate reader.  
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Cell Migration Assay 

Cells were transiently transfected with 50 nm scrambled siRNA or ARF1 siRNA for 72 h. Cells 

were then seeded onto Boyden Chambers (8 μm pores) (Corning, New York) and incubated with 

or without EGF (10 ng/ml) or HRG (100 ng/ml) for 6 h at 37 °C. Cells were fixed in 4% 

paraformaldehyde and stained with crystal violet for 16 h. Cells present in the upper chamber were 

removed with a cotton swab and the migrated cells, present in the lower chamber, were quantified 

by manual counting. Images were acquired using an epifluorescent inverted microscope (Carl 

Zeiss Axio Observer A1) with ZEN Pro 2011 software Blue edition.  

 

Gefitinib-Resistant Clone Isolation 

MDA-MB-231 cells were grown in media supplemented with 5 M gefitinib (MDA-MB-231Gres) 

or DMSO (MDA-MB-231CTL) as control for 4 weeks. Cells that survived the 4 weeks of 

treatment and proliferated in the presence of gefitinib were considered to be gefitinib-resistant. 

Cells were maintained in medium supplemented with 10% FBS and 5 M gefitinib or DMSO for 

the entirety of the experiments.  

 

Statistical Analysis 

Statistical analysis was performed using either a one-way analysis of variance (ANOVA) followed 

by Tukey’s multiple comparison test or a two-way ANOVA followed by a Bonferroni’s multiple 

comparison test using GraphPad Prism version 5 (San Diego, CA). The calculation of IC50 were 

also performed using GraphPad Prism version 5.  
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IV.4 Results 

 

The adaptor p66Shc mediates gefitinib sensitivity in breast cancer cells.  

The adaptor p66Shc has been shown to play an important role in mediating signals in response to 

oxidative stress and regulating mitochondrial functions leading to apoptosis. Additionally, this 

adaptor is a key mediator of signals downstream of the EGFR leading to Ras/MAPK activation 

(25, 26). Recently, we have shown that this adaptor attenuates EGF-induced ARF1 activation in 

invasive breast cancer cells by interfering with the recruitment of ARF1 to the EGFR (20). Since, 

we have shown that the activity of ARF1 mediates gefitinib sensitivity, we asked whether p66Shc, 

a key regulator of ARF1 activation, could also influence the sensitivity of these cells to EGFR 

inhibition. To do this, we depleted MDA-MB-231 cells of p66Shc using siRNA and assessed cell 

viability using a MTT assay following 72 hours of gefitinib (10 M) treatment (Figure 1A). 

Interestingly, a decreased sensitivity to gefitinib was observed in p66Shc-depleted cells compared 

to control conditions. Since p66Shc-depleted cells have elevated ARF1 activity and the expression 

of ARF1 reduces the sensitivity of MDA-MB-231 cells to EGFR inhibitors, it is possible that 

p66Shc may mediate gefitinib sensitivity through its actions on ARF1 activity. However, it 

remains possible that p66Shc actions on gefitinib sensitivity are independent of ARF1; as p66Shc 

has been shown to mediate signals through oxidative stress and apoptosis. Thus, p66Shc may 

mediate gefitinib sensitive through its regulation of oxidative stress. Next, we overexpressed an 

HA-tagged p66Shc cDNA in these cells and measured cell viability (Figure 1B). The 

overexpression of p66Shc, associated with decreased ARF1 activity, was associated with an 

increased gefitinib-induced cell death further emphasizing the importance of ARF1 and mediators 

of its activity in the regulation of EGFR inhibitor sensitivity. 

Additionally, we overexpressed two mutant forms of p66Shc that have altered serine 

phosphorylation on residue S36, HA-p66ShcS36A and HA-p66ShcS36D (Figure 1B). The 

phosphorylation of this serine residue has been implicated in the ability of p66Shc to translocate 

into the mitochondria and to mediate the induction of apoptosis (22}. Interestingly, unlike for wild-

type p66Shc, the overexpression of both mutant forms of this adaptor were unable to promote 

gefitinib sensitivity suggesting that the mitochondrial targeting and/or apoptotic properties of 

p66Shc are required to induce gefitinib-dependent cell death. 



171 
 
 

Together, our results show that a key mediator of ARF1 activity can also regulate gefitinib 

sensitivity further highlight the importance of this GTPase in EGFR inhibition. Additionally, we 

show that the targeting of p66Shc as well as its apoptotic properties may be required for this 

adaptor to mediate EGFR inhibitor sensitivity. 

 

ARF1 mediates mitochondrial-dependent apoptosis induced by gefitinib treatment.  

Since p66Shc mediates mitochondrial dynamics leading to the induction of apoptosis and this 

adaptor mediates ARF1 activity (20, 22), we proposed that there may by an interplay between 

these two molecules that mediates mitochondrial functions in gefitinib-treated breast cancer cells. 

First, we examined the translocation of these two factors in MDA-MB-231 cells treated with 

gefitinib (10 M) for 72 hours (Figure 2). While p66Shc was observed in isolated mitochondrial 

fractions, gefitinib treatment did not enhance the mitochondrial expression levels of this adaptor. 

Interestingly, we observed an increased ARF1 mitochondrial translocation upon gefitinib 

treatment and this was shown to be specific to this ARF isoform as gefitinib did not promote the 

mitochondria targeting of ARF6. Thus, suggesting that upon gefitinib treatment, ARF1 can 

translocate to the mitochondria and mediate the induction of apoptosis. However, we did observed 

some cytoplasmic contamination in our mitochondria extracts. Thus, ARF1 expression may stem 

from cytoplasmic contaminants. Interestingly, ARF1 has been previously shown to localize to 

mitochondrial-endoplasmic reticulum interface and mediate the transport between the two 

organelles and maintain mitochondrial functionality (27). However, here, we show for the first 

time that ARF1 can translocate to the mitochondria in cancer cells upon EGFR inhibition. 

Next, we sought to characterize the functions of ARF1 in the mitochondria. To do this, we first 

depleted MDA-MB-231 cells of ARF1 and measured the expression of important mediators of 

mitochondrial integrity, p66Shc, Bcl2 and Bim (Figure 3). Interestingly, the depletion of ARF1 

was associated with an enhanced p66Shc mitochondrial translocation suggesting that gefitinib 

could induce apoptosis in ARF1-depleted cells through a p66Shc-dependent mechanism. This 

increased mitochondrial influx of p66Shc correlated with an increased expression of the apoptotic 

initiator Bim and a decreased expression of the anti-apoptotic factor Bcl2 further highlighting the 

importance of ARF1 in blocking gefitinib-induced apoptosis of breast cancer cells. Together, these 

findings could suggest that ARF1 plays an important role in maintaining the cytosolic pool of 
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p66Shc and decreases the sensitivity to gefitinib by blocking the mitochondrial functions of 

p66Shc.  

Since these apoptotic factors have been shown to promote cell death by mediate the opening of 

pores within the outer mitochondrial membrane which regulates the mitochondrial membrane 

potential (22, 28), we next assessed changes in mitochondrial membrane potential upon gefitinib 

treatment using the fluorescent marker, JC-1. Briefly, this marker has been shown to be an 

indicator of mitochondrial health and its accumulation within the mitochondrial is dependent on 

the organelle’s membrane potential. While membrane depolarization is associated with increased 

green fluorescence, hyperpolarization is associated with red fluorescence (29).  As shown in Figure 

4A, gefitinib treatment of control cells exerted a slight hyperpolarization of the outer mitochondrial 

membrane, an indication of the induction of apoptosis. Whereas, in ARF1-depleted cells this 

hyperpolarization was significantly increased suggesting that ARF1 controls the induction of 

apoptosis upon gefitinib treatment. 

Finally, we determined whether the activity of both initiator and effector caspases were enhanced 

by gefitinib treatment of ARF1-depleted cells (Figure 4B). Indeed, an increase in cleavage of both 

caspase 3 and 9 were observed in ARF1 knockdown cells compared to controls further 

emphasizing the importance of ARF1 in mediating gefitinib sensitivity and mitochondrial 

apoptosis. 

Altogether, our findings demonstrate that gefitinib treatment of MDA-MB-231 cells promotes the 

mitochondrial translocation of ARF1. Furthermore, this GTPase is important in mediating the 

mitochondrial expression of p66Shc, Bcl2 and Bim. Moreover, we observed a hyperpolarization 

of the outer mitochondrial membrane as well as increased cleavage of both caspase 3 and 9 in 

ARF1-depleted cells compared to controls upon EGFR inhibition. This highlights a novel 

mechanism through which this ARF isoform mediates the sensitivity of breast cancer cells to 

EGFR inhibitors implicating the mitochondria. 

 

Another ARF GTPase, ARF6, mediates gefitinib sensitivity.  

Now that we have implicated ARF1 as a mediator of gefitinib sensitivity in breast cancer cells, we 

asked whether another ARF isoform, ARF6, implicated in signals downstream of the EGFR (30) 

could also regulate the inhibition of this receptor. Therefore, we depleted MDA-MB-231 cells of 
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ARF6 using siRNA and measured cell viability upon the treatment of indicated concentrations of 

gefitinib (Figure 5A). Similar to what we observed in ARF1 knockdown cells, the depletion of 

ARF6 was also associated with an increased sensitivity to EGFR inhibition compared to control 

cells. Indeed, compared to control cells, cells depleted of ARF6 showed increased sensitivity to 

gefitinib treatment at all doses above 1 M. This further emphasizes the therapeutic benefit of 

targeting the ARF family of GTPases in breast cancer patients. It also suggests that not only 

member of the ARF GTPase, but at least two function to mediate the sensitivity to EGFR 

inhibitors. 

As we demonstrated that ARF1 is activated in gefitinib treated cells and that this activation is 

important in mediating the sensitivity of cells to this inhibitor, we next determined if gefitinib 

treatment also promoted ARF6 activation (Figure 5B). Interestingly, lower doses of gefitinib 

shown to activate ARF1, blocked the activation of ARF6. However, increased doses of gefitinib 

were able to promote ARF6 activation. But, this increased ARF6 activity was shown not to be 

significant. Interestingly, this decreased ARF6 activity correlated with an increased gefitinib 

sensitivity. Thus suggesting that the blockade of ARF6 may mediate the response to this drug. 

However, it still remains plausible that the expression of ARF6 alone and not its activity may be 

required to mediate gefitinib sensitivity. 

In summary, both ARF1 and ARF6 regulate the sensitivity of invasive breast cancer cells to EGFR 

inhibitors. However, while all tested concentrations of gefitinib enhanced ARF1 activity, only high 

doses of this inhibitor were sufficient to activate ARF6.  

 

ARF1 is essential for gefitinib-induced EGFR activation and dimerization.  

Since an increased activation of EGFR family members has been associated with reduced 

sensitivity to EGFR inhibitors (7, 31, 32) and we have demonstrated that gefitinib mediates the 

expression of both EGFR and HER2 in breast cancer cells, we next determined the activation state 

of EGFR family members (EGFR, HER2 and HER3). Control and ARF1-depleted MDA-MB-231 

cells were treated with the inhibitor for 24 hours. Gefitinib (10 M) had no effect on the ligand-

independent activation of HER2 in control conditions (Figure 6A, C). However, a decrease in 

HER3 tyrosine phosphorylation was observed. In ARF1 knockdown cells, a decrease in tyrosine 

phosphorylation of all three EGFR family members was noted following gefitinib treatment. Thus, 



174 
 
 

ARF1 depletion is associated with both a decrease in EGFR family member expression and 

activation, which may explain the importance of ARF1 in mediating gefitinib sensitivity. 

Since EGFR heterodimerization with other EGFR family members has also been associated with 

acquired resistance to EGFRTKis (33), we next examined EGFR dimerization patterns in gefitinib-

treated cells. As shown in Figure 6B and D, treatment of control cells with gefitinib (10 M) for 

24 hours enhanced EGFR-HER2 heterodimer formation. In addition, this dimerization was 

attenuated by ARF1 depletion. Furthermore, gefitinib treatment alone, ARF1 depletion alone or 

gefitinib-treatment of ARF-depleted cells all decreased the heterodimerization between EGFR and 

HER3. ARF1 depletion also resulted in an increase of HER2-HER3 dimerization, which was 

attenuated in cells treated with gefitinib. Together, these results suggest that ARF1 depletion is 

associated with a decreased EGFR expression, activation and heterodimerization.  

Knowing that ARF1 mediates the dimerization of EGFR family members and that EGF, which 

favors EGFR homodimers or HER2 heterodimers, promotes ARF1 activation, we next asked 

whether ligands that favor HER3 signaling could also promote ARF1 activity (Figure 7). To do 

this, we treated MDA-MB-231 with heregulin (HRG), a ligand known to promote HER3 

heterodimerization with both EGFR and HER2 (34), and measured ARF1 activity using a classical 

GST-GGA3 pulldown activation assay. As shown in Figure 7A, Unlike EGF which exerted a 

prolonged activation of ARF1, HRG only induced a transient activation of ARF1 in MDA-MB-

231 cells at 5 minutes. A similar activation pattern for EGF and HRG was observed in the HER2 

positive SKBR3 breast cancer cell line (Figure 7B). Interestingly, the hormone responsive MCF7 

cells which express higher HER3 levels compare to EGFR, showed a more rapid and longer 

activation of ARF1 upon HRG stimulation compared to EGF (Figure 7C). Together, we 

demonstrate that both EGF and HRG can activate the small GTPase ARF1 and that this ligand-

dependent activation profile is mediated by EGFR family member expression. 

As we have demonstrated that EGF mediates MDA-MB-231 cell proliferation and migration 

through the activation of ARF1 (17), we next asked if HRG could also promote these physiological 

cellular responses. As shown in Figure 8A, EGF, but not HRG, induced the proliferation of MDA-

MB-231 cells and as previously reported EGF-mediated cell growth was hindered upon the 

depletion of ARF1 (17). Meanwhile, in MCF7 cells (Figure 8B), the proliferation of control cells 

was induced by HRG and not EGF. Interestingly, we were able to block HRG-dependent 
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proliferation of these cells by depleting ARF1 suggesting that ARF1 can mediate both EGF and 

HRG-induced cell proliferation. Next, we examined the migration of both MDA-MB-231 and 

MCF7 cells in response to both EGF and HRG stimulation, Figures 8C and 8D, respectively. EGF 

stimulation was shown to promote the migration of both cell lines, whereas, HRG only promoted 

that migration of MCF7 cells. Furthermore, the HRG-induced MCF7 cell migration was 

significantly higher than that of EGF stimulated cells. Interestingly, ARF1-depletion was shown 

to attenuate EGF-dependent MDA-MB-231 cell migration, but not in EGF stimulated MCF7 cells. 

Additionally, HRG-induced MCF7 migration was attenuated in cell depleted of ARF1 suggesting 

that both EGF and HRG-induced ARF1 activation play an important role in mediating cellular 

proliferation and migration. 

Altogether, ARF1 can be activated downstream of multiple EGFR family members upon ligand 

stimulation and this GTPase plays an important role in mediate gefitinib sensitivity by governing 

the activation and dimerization of this receptor family. 

 

ARF1 depletion re-sensitizes resistant cells to gefitinib treatment.  

Thus far, our results have demonstrated that the depletion of ARF1 enhances the sensitivity of 

invasive breast cancer cells to gefitinib. We therefore sought to determine whether ARF1 may play 

a role in the acquired resistance to EGFRTKis in an isolated MDA-MB-231 gefitinib-resistant cell 

line (MDA-MB-231Gres). Clinically, acquired resistance is defined as a lack of therapeutic 

response to EGFRTKis in a patient that previously responded for a period greater than 6 months 

(35) . Therefore, we attempted to mimic this clinical situation by treating parental MDA-MB-231 

cells with an effective dose of gefitinib (5 M) for a month until cells became completely 

unresponsive to the cytotoxic properties of the treatment and began to survive and proliferate in 

the presence of this inhibitor. These cells were considered to have developed acquired resistance 

to gefitinib (MDA-MB-231Gres). Control parental MDA-MB-231 cells were treated with DMSO 

vehicle for a similar time period (MDA-MB-231CTL). These cells were non-resistant to high 

doses of gefitinib. First, we examined the expression and activation of ARF1 in our isolated clones. 

In control cells, EGF stimulation enhanced ARF1 activation, but this response was abolished in 

resistant clones (Figure 9A). Interestingly, the basal activity of ARF1 was significantly enhanced 

in MDA-MB-231Gres cells suggesting that mechanisms leading to enhanced ARF1 activation may 
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contribute to acquired gefitinib-resistance. Furthermore, in these cells, EGF stimulation was 

unable to promote phosphorylation of its receptor (Figure 9B). We next determined whether the 

depletion of ARF1 in MDA-MB-231Gres cells could sensitize these clones to gefitinib-induced 

cell death. As expected, ARF1 depletion in control DMSO-treated cells increased gefitinib 

sensitivity compared to non-depleted control cells (Figure 9C). This increased sensitivity was 

associated with a decreased IC50 in ARF1-depleted cells (IC50: 5.5 M) compared to control 

conditions (IC50: 25.4 M). By definition, the MDA-MB-231Gres cells were shown to have a 

decreased sensitivity to all examined gefitinib doses as measured by an increased IC50 of 72.1 M 

(compared to 25.4 M in non-resistant cells). More importantly, we observed that the depletion of 

ARF1, in these resistant clones, re-sensitized the cells to gefitinib treatment as measured by an 

increased cell death induced by the drug. This was marked by a significant decrease in the IC50 of 

resistant cells from 72.1 M in non-depleted to 16.8 M in ARF1-depleted conditions. Together, 

our results demonstrate that gefitinib resistant cells have an increased ARF1 activation and that 

this ARF isoform is required for gefitinib resistance. 

The acquisition of EGFRTKi resistance is often associated with altered receptor function and 

signaling profile. In fact, resistance has been associated with an increased Src, AKT and ERK1/2 

signaling in a variety of cancer cell types (7, 10-16). First, we examined expression of the EGFR 

family members in MDA-MB-231CTL and MDA-MB-231Gres cells transfected with either CTL 

or ARF1 siRNA (Figure 10A). While the expression of HER2 and HER3 was found to be higher 

in the resistant clones compared to controls, EGFR expression was unaffected. More interestingly, 

whereas the depletion of ARF1 had no effect on receptor expression in control clones, a significant 

reduction in EGFR (55%), HER2 (50%) and HER3 (73%) was observed in gefitinib-resistant cells 

suggesting that ARF1 depletion restores gefitinib sensitivity by regulating expression of EGFR 

family members present in this cell line. Furthermore, we examined the expression of two other 

RTKs previously reported to be increased in EGFRTKi-resistant cells, AXL and cMET (14, 36). 

In our gefitinib-resistant cell model, we were unable to detect any difference in the expression 

profile of those RTKs (Figure 10A). Additionally, the depletion of ARF1 in either control or 

gefitinib resistant clones had no effect on both AXL and cMET expression. However, a detectable 

increase in AXL and cMET activity was observed. This activity was independent of ARF1 

expression (Figure 10A). Together, our results demonstrate that gefitinib resistance is associated 
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with increased ARF1 activation and expression of EGFRs and that the depletion of ARF1 is 

associated with a decreased expression of these receptors without affecting other RTKs. 

Next, we analyzed the activation of signaling cascades in our gefitinib-resistant clones compared 

to control cells. Interestingly, an increase in AKT and p38MAPK signals, but not ERK1/2, Src and 

JNK was detected in resistant clones (Figure 10B). While the depletion of ARF1 in control clones 

had no effect on all examined signaling proteins, a significant reduction in both AKT and 

p38MAPK activation was observed in MDA-MB-231Gres cells depleted of ARF1. This result 

suggests that ARF1 may play a role in the maintenance of EGFRTKi resistance by promoting the 

activation of survival signals through the AKT and p38MAPK pathways. Together, our results 

demonstrate that in gefitinib resistant invasive breast cancer cells, ARF1 is over-activated and 

associated with an increased EGFRs expression and enhanced AKT and p38MAPK signaling. We 

propose that all these changes regulated by ARF1 expression contribute to promote gefitinib resistance. 

Since the therapeutic benefits of targeting these signaling cascades in EGFRTKi resistant cancer 

has been previously shown (37-39), we finally aimed to determine whether the depletion of ARF1, 

in our gefitinib-resistant clones, could sensitize these cells to inhibition of other signaling 

mediators such as ERK1/2, AKT, Src and p38MAPK. We therefore measured the viability of 

control and gefitinib-resistant cells that were transfected with either a control or ARF1 siRNA 

upon 24 hours of inhibitor treatment. In control clones, ARF1 depletion did not enhance the 

efficacy of all tested inhibitors (Figure 10C). However, the depletion of ARF1, in gefitinib-

resistant clones, significantly enhanced death of cells treated with the MEK, PI3Kinase and 

p38MAPK, but not the Src inhibitors. Together, our results demonstrate that ARF1 may promote 

gefitinib resistance by moderating important signaling effectors that are known to play an 

important role in acquired resistance. Furthermore, ARF1 depletion can enhance the effects of 

inhibitors of these pathways in gefitinib-resistant breast cancer cells. 

I propose to further characterize the gefitinib-resistant clones. It would be of interest to examine 

the activity of other ARF isoforms such as ARF6. Additionally, the role p66Shc plays in these 

clones in mediating their resistant will also be important to evaluate.  
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IV.5 Discussion 

 

Our laboratory has well characterized the small GTPase ARF1 as a key mediator of signals 

downstream of the EGFR leading to breast cancer cell proliferation, migration and invasion (17-

20). More recently we implicated this ARF isoform in the sensitivity of these cells to EGFR 

inhibitors. Here, we further characterize ARF1 as an important regulator of gefitinib sensitivity in 

TNBC cells and show that it acts as a signaling switch that promotes resistance to EGFR inhibition. 

First, we demonstrate that a regulator of ARF1 activity, p66Shc, is also an essential in gefitinib 

sensitivity. Indeed, the overexpression of p66Shc, associated with decrease ARF1 activity, 

enhanced the sensitivity of MDA-MB-231 to gefitinib treatment. Moreover, decreased sensitivity 

was observed when cells were depleted of p66Shc, a condition shown to augment ARF1 activation. 

Additionally, we showed that another ARF isoform, ARF6, could also mediate EGFR inhibitor 

sensitivity. Next, we highlight a role for ARF1 in controlling mitochondrial functionality upon 

gefitinib treatment. This GTPase was shown to localize to the mitochondria in gefitinib-treated 

cells and the depletion of ARF1 enhanced gefitinib-induced apoptosis as measured by increase 

p66Shc and Bim mitochondrial translocation, decreased mitochondrial Bcl2, hyperpolarization of 

the mitochondrial membrane and increase caspase activity. Subsequently, we further demonstrate 

that ARF1 control the signaling dynamics of EGFR family members by both regulating their 

activity and dimerization. Finally, using an isolate cell line that showed resistance to gefitinib, we 

showed that depletion of ARF1 in these cells could re-sensitize them to EGFR inhibition 

implicating ARF1 in both gefitinib sensitivity and resistance in TNBC cells. 

The adaptor p66Shc has been previously shown to negatively regulate RTK signaling. Indeed, its 

overexpression has been associated with decreased signaling through the Ras/MAPK pathway 

(25). Additionally, this adaptor has been implicated in the induction of apoptosis in response to 

cytotoxic agents (40-42). Recently, we demonstrated that p66Shc blocks the activation of ARF1 

downstream of the EGFR by interfering with the recruitment of a Grb2-ARF1 complex to the 

receptor (20). Subsequently, we demonstrated that the activity of ARF1 is essential in mediating 

the sensitivity of breast cancer cells to EGFR inhibitors. Therefore, mediators of its GTPase 

activity should sensitize these cells to EGFR inhibition. Here, we show that p66Shc is required for 

gefitinib-induced breast cancer cell death. Indeed, the overexpression of this Shc isoform 
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sensitized cells to EGFR inhibitor treatment. However, further investigation into the mechanism 

through which p66Shc regulated gefitinib-induced cell death and whether this mechanism is 

dependent on the activity of ARF1 is required.  

Interestingly, the mitochondrial translocation of p66Shc through serine phosphorylation of this 

adaptor has been implicated in the induction of apoptosis (22). We show that ARF1-depletion 

enhances the mitochondrial translocation of p66Shc. Furthermore, gefitinib treatment of ARF1 

knockdown cells was associated with increased JNK activation, a serine kinase previously 

implicated in the phosphorylation of p66Shc (22, 26). Furthermore, when mutant forms of p66Shc 

that have altered serine phosphorylation on residue 36 were overexpressed in MDA-MB-231 cells, 

gefitinib sensitivity was no longer enhanced. Interestingly, blockade of the serine phosphorylation 

of p66Shc has been shown to block its mitochondrial transport (22) further emphasizing the 

importance of mitochondrial p66Shc in gefitinib sensitivity. 

Knowing that ARF1 mediated the translocation of p66Shc into the mitochondria, we next asked 

whether this ARF isoform could also localize within this organelle upon gefitinib treatment. 

Interestingly, it has been recently shown that ARF1 can localize within an endoplasmic reticulum-

mitochondria complex where it mediates the transport between the two organelles and maintains 

mitochondrial hemostasis and functionality (27). Here, we show that gefitinib treatment enhanced 

the translocation of ARF1 to the mitochondria. Moreover, this was shown to be specific to this 

ARF isoform as gefitinib did not mediate the mitochondrial localization of ARF6. While our data 

suggests that ARF1 plays a role in mediating cell death and that gefitinib promotes its 

mitochondrial translocation, we have yet to identify and characterize the role of this GTPase within 

the mitochondria of our cellular model. Further studies are required to better understand this novel 

functionality of ARF1 in gefitinib treated cells and whether this ARF1 population plays a role in 

mediated the sensitivity and/or resistance of these cells to EGFR inhibition. 

To further characterize the mitochondrial functions of ARF1, we next examined mitochondrial 

dynamics in gefitinib-treated cells depleted of ARF1. Interestingly, the mitochondrial expression 

of Bim, an apoptotic initiator was enhanced. Whereas, the expression of Bcl2, an inhibitor of 

apoptosis, was reduced. Furthermore, we observed a hyperpolarization of the outer membrane of 

the mitochondria, a process involved in mitochondrial swelling and the induction of apoptosis (43). 

Finally, inhibitor treatment of ARF1-depleted cells was associated with both Cytochrome C release 
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from the mitochondria and the activation of caspase 3 and 9. Together, this data suggests that 

ARF1 may play a role in stabilizing the mitochondria and blocks the induction of mitochondrial-

dependent apoptosis. However, whether ARF1 is acting upstream of the mitochondria or within 

the mitochondria to mediate these effects requires further investigation. 

It has also been proposed that other EGFR family members can compensate for the loss of EGFR 

signals (36). Indeed, increased signaling through both HER2 and HER3 have been associated with 

EGFR inhibitor insensitivity and resistance. In our cell model, ARF1 depletion also significantly 

reduced HER2 activation upon gefitinib treatment. Additionally, the depletion of this small 

GTPase was associated with a reduction in the heterodimerization of HER2 with HER3. We have 

previously demonstrated that ARF1 stabilizes the expression of both EGFR and HER2 without 

effecting HER3 levels. This downregulation was associated with an increased degradation of these 

receptors in ARF1-depleted cells Thus, ARF1 may promote EGFRTKi resistance by stabilizing 

the expression and activation of both EGFR and HER2, as well as promoting HER2 

heterodimerization. 

The development of resistance to EGFR inhibitors can significantly hinder their therapeutic 

benefits. Multiple mechanisms have been implicated in the development of resistance. These 

include: mutations in the EGFR itself (5), increased signaling through other RTKs (HER2-3 AXL, 

cMET) (14, 44), altered downstream signaling through ERK1/2 and/or AKT, evasion of apoptosis 

and the induction of epithelial-mesenchymal transformation (44). Here, we show that gefitinib-

resistant breast cancer cells have elevated ARF1 activity. Interestingly, the knockdown of this 

GTPase re-sensitized cells to EGFR inhibition. Furthermore, the depletion of ARF1 in these cells 

significantly reduced the expression of EGFR family members (EGFR, HER2 and HER3) resulting 

in decreased survival signals through AKT activation.  

Together, our finding further emphasize the importance of ARF isoforms and mediators of their 

activity in the sensitivity to gefitinib treatment via both a mitochondrial dependent mechanism and 

the regulation of EGFR dimerization and activation. Furthermore, ARF1 activity governs the 

development of resistance to these inhibitors. Therefore, targeting this ARF isoform in TNBC 

could help improve the therapeutic outcome of patients treated with EGFR inhibitors. 
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IV.6 Figure Legends 

 

Figure 1: p66Shc mediates gefitinib sensitivity of MDA-MB-231) cells. A, Percent cell death 

was assessed by a MTT assay in MDA-MB-231 cells that were transfected with CTL or p66Shc 

siRNA and then treated 72 hours with gefitinib (10 M). Data shown are mean ± SEM. 

Significance was measured by a T-test with n=3; (***) P < 0.001. B, Percent cell death was 

assessed by a MTT assay in MDA-MB-231 cells that were transfected with CTL, p66Shc, 

p66ShcS36A or p66ShcS36D cDNAs and then treated 24 hours with gefitinib (10 M). Data 

shown are mean ± SEM. Significance was measured by a one-way ANOVA with n=3; (**) P < 

0.01. 

 

Figure 2: Gefitinib induces the translocation of ARF1 into the mitochondria. A, Cytoplasmic 

and mitochondrial extracts were isolated from MDA-MB-231 cells that were treated with gefitinib 

(10 M) for 72 hours. Expression levels of ARF1, ARF6, p66SHC, JNK and Bcl2 were assessed 

by western blot analysis. Actin was used as a marker of cytoplasmic fractions and CoxIV as a 

marker of mitochondrial extracts. Data shown are mean ± SEM. Significance was measured by a 

two-way ANOVA with n=3; (**) P < 0.01, (***) P < 0.001. 

 

Figure 3: ARF1 is required for p66Shc translocation into the mitochondria. A, Mitochondrial 

extracts were isolated from MDA-MB-231 cells that were transfected with CTL or ARF1 siRNA 

before being treated with gefitinib (10 M) for 72 hours. Expression levels of ARF1, p66SHC, 

Bcl2 and Bim were assessed by western blot analysis. CoxIV was used as a marker of 

mitochondrial extracts. Data shown are mean ± SEM. Significance was measured by a two-way 

ANOVA with n=3; (*) P < 0.05, (**) P < 0.01, (***) P < 0.001. 

 

Figure 4: ARF1 depletion promotes gefitinib-induced mitochondrial apoptosis. A, 

Mitochondrial membrane potential was measured in MDA-MB-231 cells that were transfected 

with CTL or ARF1 siRNA treated with gefitinib (10 M) for indicated times. JC-1 oligomerization 

was used as a measure of membrane hyperpolarization. Data shown are mean ± SEM. Significance 

was measured by a two-way ANOVA with n=2; (**) P < 0.01, (***) P < 0.001.  



182 
 
 

 

Figure 5: ARF6 depletion enhances gefitinib sensitivity. A, Cell viability was assessed by a 

MTT assay in MDA-MB-231 cells that were transfected with CTL or ARF6 siRNA and then 

treated 24 hours with indicated concentrations of gefitinib. Data shown are mean ± SEM. 

Significance was measured by a two-way ANOVA with n=3; (*) P < 0.05, (**) P < 0.01. Western 

blot analysis confirmed the depletion of ARF6.  B, MDA-MB-231 cells were treated with indicated 

concentrations of gefitinib for 1 hour. A GST-GGA3 pulldown assay was used to capture activated 

ARF6 from cell lysates. Endogenous levels of activated ARF6 and the total protein levels of ARF6 

were assessed by western blot analysis. Data shown are mean ± SEM. Significance was measured 

by a one-way ANOVA with n=3; (**) P < 0.01, (***) P < 0.001. 

 

Figure 6: ARF1 depletion mediates gefitinib-dependent EGFR activation and dimerization. 

A, EGFR, HER2 and HER3 activation was assessed by immunoprecipitating the indicated 

receptors and immunoblotting with a phospho-specific antibody against total phospho-tyrosine 

sites (pan-PY) using lysates obtained from MDA-MB-231 cells that were transfected with CTL or 

ARF1 siRNA and then treated 24 hours with 10 M gefitinib. B, Co-immunoprecipitation 

experiments were used to assess EGFR family member heterodimerization using the cell lysates 

described in (A). C, Quantification of receptor tyrosine phosphorylation in (A). Data is presented 

as mean percent decrease in receptor tyrosine phosphorylation ± SEM with n=3. Significance was 

measured by a two-way ANOVA; (***) P < 0.001. D, Quantification of receptor dimerization in 

(B). Data is presented as mean percent decrease of dimerization for EGFR/HER2 and EGFR/HER3 

and mean percent increase of dimerization for HER2/HER3 dimers ± SEM with n=3. Significance 

was measured by a two-way ANOVA; (*) P < 0.05, (**) P < 0.01. 
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Figure 7: Heregulin-induced ARF1 activation.  A-C, MDA-MB-231, SKBR3 or MCF7 cells, 

respectively, were stimulated with either EGF (10 ng/ml) of HRG (100 ng/ml) for the indicated 

times. Cells were lysed, and a GST pulldown assay using GST-GGA3 coupled to glutathione-

Sepharose 4B beads was used to capture activated ARF1. Endogenous levels of activated ARF1 

and the total protein levels of ARF1 in cell lysates were assessed by western blot analysis.  

 

Figure 8: ARF1 is required for heregulin-induced proliferation and migration.  A, MDA-MB-

231 cells were left untreated or stimulated with EGF (10 ng/ml) or HRG (100 ng/ml) for 24 hours. 

Cell growth was determined by MTT assay. Results presented are representative of three 

independent experiments. The quantifications of each experiment are presented as fold-increase 

over basal and are the mean ± S.E. with (***) p < 0.001. B, MCF7 cells were left untreated or 

stimulated with EGF (10 ng/ml) or HRG (100 ng/ml) for 24 hours. Cell growth was determined as 

in (A). The quantifications of each experiment are presented as fold-increase over basal and are 

the mean ± S.E. with (*) p < 0.05. C, MDA-MB-231 cells were seeded onto Boyden chambers and 

stimulated or not with EGF (10 ng/ml) or HRG (100 ng/ml). Migration was assessed after 6 h. 

Results presented are representative of three independent experiments. The quantifications of each 

experiment are presented as fold-increase over basal and are the mean ± S.E. with (***) p < 0.001. 

D, MCF7 cells were treated and migration was assessed as described in (C). Results presented are 

representative of three independent experiments. The quantifications of each experiment are 

presented as fold-increase over basal and are the mean ± S.E. with (***) p < 0.001.  

 

Figure 9 : Gefitinib resistance is abolished upon ARF1 depletion. A, Control-DMSO (CTL) or 

gefitinib-resistant (GRes) clones were left untreated or treated with EGF (10 ng/ml) for 1 minute 

and a GST-GGA3 pulldown assay assessed ARF1 activation. Data shown are mean ± SEM. 

Significance was measured by a two-way ANOVA with n=3; (**) P < 0.01. B,  EGFR activation 

was assessed by immunoprecipitating the EGFR and immunoblotting with a phospho-specific 

antibody against total phospho-tyrosine sites (pan-PY) using lysates obtained from CTL or GRes 

clones that were left untreated or treated with EGF (10 ng/ml) for 1 minute. Data shown are mean 

± SEM. Significance was measured by a two-way ANOVA with n=3; (***) P < 0.001. C, Percent 

cell death of MDA-MB-231CTL and MDA-MB-231Gres clones that were either transfected with 
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CTL or ARF1 siRNA and then treated 24 hours with indicated concentrations of gefitinib was 

assessed by a MTT assay. Data shown are mean ± SEM. Significance was measured by a two-way 

ANOVA with n=3; (*) P < 0.05, (**) P < 0.01, (***) P < 0.001.  * Indicative of significance 

between CTL siRNA and ARF1 siRNA in non-resistant cells. # Indicative of significance between 

non-resistant and resistant cells transfected with CTL siRNA. ɸ Indicative of significance between 

CTL siRNA and ARF1 siRNA in resistant cells. 

 

Figure 10: The receptor and signaling profile of gefitinib resistant cells is regulated by ARF1. 

A, The protein expression of EGFR, HER2, HER3, cMET and AXL as well as the activation of 

cMET and AXL was assessed in lysates obtained from in cell lysates obtained from Control-

DMSO (CTL) or gefitinib-resistant (GRes) clones that were transfected with CTL or ARF1 siRNA 

by western blot analysis. Data is presented as mean percent decrease in receptor 

expression/activation ± SEM with n=3. Significance was measured by a two-way ANOVA; (***) 

P < 0.001.  B, Western blot analysis was utilized to measure the activation of ERK1/2, AKT, Src, 

JNK and p38MAPK in cell lysates obtained from Control-DMSO (CTL) or gefitinib-resistant 

(GRes) clones that were transfected with CTL or ARF1 siRNA. Data is presented as mean percent 

decrease in pathway activation ± SEM with n=3. Significance was measured by a two-way 

ANOVA; (*) P < 0.05, (***) P < 0.001. C, Cell viability of CTL and GRes clones that were either 

transfected with CTL or ARF1 siRNA and then treated 24 hours with either PP2 (1 M), 

PD0325901 (10 M), LY294002 (15M) or SB220025 (100 nM) was assessed by a MTT assay. 

Data shown are mean ± SEM. Significance was measured by a two-way ANOVA with n=3; (*) P 

< 0.05, (**) P < 0.01.  
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CHAPTER V: Discussion 

As no targeted therapies are currently available for the treatment of TNBC and many of these are 

unresponsive or develop resistance to treatments with classical chemotherapeutics, it is essential 

to identify and characterize novel malignancy-inducing targets within this breast cancer 

population. This study investigated the mechanisms leading to the activation of the small GTPases 

ARF1 and ARF6 downstream of the EGFR in cellular models of TNBC and their implications in 

gefitinib sensitivity and resistance. We show that the adaptor proteins, Grb2 and p66Shc, mediate 

the recruitment of ARF GTPases to the EGFR and their activation. Next, we highlight the 

importance of ARF1 in the regulation of EGFR inhibitor sensitivity and resistance in TNBC cells. 

ARF1 was shown to mediate these processes by promoting cell survival, implicating novel actions 

within the mitochondria, and by stabilizing the expression and activity of EGFR family members. 

Our findings and their therapeutic implications will be further discussed in this section.  

 

V.1 Adaptor proteins modulate EGFR-dependent ARF activation in breast cancer cells 

Adaptor proteins play essential roles in the propagation of signals originating from RTKs. They 

have been well characterized for their roles in the recruitment of signaling mediators such as Gab1, 

SOS and PI3K to RTKs (van der Geer, Hunter et al. 1994; Kairouz and Daly 2000; Ong, Hadari et 

al. 2001). This allows for the initiation of important signaling cascades such as the Ras/ERK1/2 

and PI3K/AKT pathways (van der Geer, Hunter et al. 1994). Indeed, the depletion of adaptor 

proteins such as Grb2 and Shc is linked to decreased ligand-dependent signals downstream of RTK 

activation (Gale, Kaplan et al. 1993; Sweet and Tzima 2009). Here, we demonstrate that these 

adaptor proteins also mediate the activation of the ARF family of small GTPases. Interestingly, 

we found that Grb2 as well as the Shc isoform, p66Shc, associate with ARF1 upon EGF stimulation 

of MDA-MB-231 cells. Moreover, the depletion of these two adaptor proteins altered the 

activation state of ARF1. While Grb2 was shown to be essential for ARF1 activation, p66Shc 

attenuated the activation of this GTPase. Additionally, we showed that Grb2 also promoted the 

activation of ARF6. However, unlike ARF1, p66Shc was shown to also to be essential for ARF6 

activation. 

Since these adaptors are best characterized for their recruitment to the EGFR, we next determined 

whether they mediated the recruitment of ARF proteins to this receptor. Grb2 was shown to be 
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required for the recruitment of both ARF1 and ARF6 to the EGFR. Whereas, p66Shc blocked the 

ability of Grb2 to recruit ARF1 to the EGFR, but enhanced the association between EGFR and 

ARF6. These findings are consistent with previously published findings that demonstrated that 

p66Shc blocks the recruitment of Grb2 to both the EGFR and IGF1R by either competing for 

similar binding sites on the receptors or by sequestering Grb2 away from the receptors (Okada, 

Kao et al. 1997; Xi, Shen et al. 2010). Thus, we propose that upon EGFR activation, Grb2 recruits 

ARF1 and an unidentified guanine exchange factor (GEF) to the receptor to induce the GTPase 

activity of ARF1. Meanwhile, p66Shc acts to block ARF1 activation by blocking the recruitment 

of this Grb2-ARF1 complex to the receptor. Additionally, p66Shc can enhance the EGFR 

recruitment and activation of ARF6 (Chapter II, Fig. 10).  

Recent findings from our lab and others have demonstrated that ARF1 and ARF6 play redundant 

roles in mediating signals downstream of the EGFR leading to breast cancer cell proliferation, 

migration and invasion (Boulay, Cotton et al. 2008; Sabe, Hashimoto et al. 2009; Boulay, 

Schlienger et al. 2011; Schlienger, Campbell et al. 2014). Our findings demonstrate that in 

conditions in which ARF1 activity is inhibited (i.e. high p66Shc expression), we observe an 

increased activation of ARF6. Furthermore, an increase cellular migration was observed in p66Shc 

overexpressing MDA-MB-231 cells. This could suggest that these two GTPases may act as 

compensatory mechanism utilized by cancer cells to proliferate and survive. Therefore, it may be 

essential to target both of these ARF isoforms in breast cancer patients. Furthermore, it would 

important to characterize the role of other ARF isoforms in breast cancer as ARF4 has been 

implicated in the migration of glioblastoma cells. 

Here, we show that the activation and receptor recruitment of ARF6 is dependent on both the 

adaptors Grb2 and p66Shc. Interestingly, the tyrosine residues 1068 and 1086 on the EGFR, key 

recruitment sites for the adaptor Grb2, were previously shown to promote the EGF-dependent 

activation of ARF6 in invasive breast cancer cells. In this study, it was shown that the ARFGEF, 

GEP100 (BRAG2), could directly interact with these tyrosine residues through its PH domain. 

These conclusions were obtained in an in vitro binding assay that illustrated that phosphopeptides 

that mimicked tyrosine 1068 and 1086 could associate with GEP100 (Morishige, Hashimoto et al. 

2008). However, in an in vivo setting, these residues are known to recruit Grb2 (Batzer, Rotin et 

al. 1994; Ono and Kuwano 2006). This would suggest that Grb2 promotes ARF6 activation by 
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recruiting this GTPase and possibly a GEF to the EGFR via its interactions with these tyrosine 

residues within the cytoplasmic tail of the receptor.  

Grb2 is classically known to recruit GEFs to GTPases to promote their activity. Indeed, Grb2 

brings the GEF, SOS, in the proximity of Ras GTPase leading to its activation (Chardin, Camonis 

et al. 1993; Li, Batzer et al. 1993). Furthermore, Grb2 has also been shown to recruit the GEF 

Vav2 to the HER2 receptor to promote both Ras and Rac1 activity (Bourguignon, Zhu et al. 2001). 

Thus, we propose that Grb2 may also utilize a similar mechanism in the recruitment of an ARFGEF 

to ARF proteins at the EGFR to promote their activation. However, this Grb2-dependent GEF 

remains to be identified. 

  

V.2 p66Shc modulates breast cancer cell migration and apoptosis  

Within the literature, the role p66Shc is cellular specific. While in prostate cancer and hormone-

responsive breast cancer cells, p66Shc has been implicated in cell migration (Lee, Igawa et al. 

2004; Rajendran, Thomes et al. 2010), p66Shc has shown play a role in the induction of apoptosis 

in other cellular systems (Orsini, Migliaccio et al. 2004; Giorgio, Migliaccio et al. 2005). 

Additionally, p66Shc has been implicated in tumor initiation but also as an important tumor 

suppressor when in complex with p53 (Beltrami, Valtorta et al. 2013). Here, we show that p66Shc 

via the activation of the ARF6-Ras-MAPK pathway promotes the migration of invasive breast 

cancer cells. However, its overexpression was observed to be associated with cellular death. 

Moreover, the depletion of p66Shc was associated with a reduced sensitivity of MDA-MB-231 

cells to EGFR inhibition. Thus, we propose a dual role for p66Shc in breast cancer cells: 1- As an 

inducer of cell migration via the activation of ARF6 and 2- As a promoter of apoptosis via its 

inhibition of ARF1. 

The migratory role of p66Shc has been linked to its ability to activate Rac1, promote ROS 

production and induce Ras/MAPK signaling (Bhat, Baba et al. 2014). Interestingly, we also 

demonstrate that p66Shc signals through the Ras/MAPK pathway to promote cell migration. 

Furthermore, we recently have implicated both ARF1 and ARF6 in the activation of Rac1 (Cotton, 

Boulay et al. 2007; Lewis-Saravalli, Campbell et al. 2013). Thus, p66Shc may mediate Rac1-

dependent migration via the activation of ARF6.  ARF6 has also been implicated in the production 

of ROS. Indeed, ARF6 is required for vascular endothelial growth factor (VEGF)-induced Rac1 
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activation and ROS production in endothelial cells (Ikeda, Ushio-Fukai et al. 2005). Moreover, the 

migration of MDA-MB-231 cells has been shown to be dependent on ROS production. In fact, the 

inhibition of ROS has been shown to block the migration of these cells (Liu, Cui et al. 2014). Thus, 

p66Shc may promote MDA-MB-231 cell migration by enhancing ROS production. Finally, 

p66Shc may induce cellular migration via the activation of the MAPK pathway either via Rac1 

(Bhat, Baba et al. 2014), as previously demonstrated, or through ARF6 activation, shown in this 

thesis. The importance of p66Shc-induced Erk1/2 activity is highlighted by a decreased migration 

of p66Shc overexpressing cells when treated with a MEK inhibitor (Natalicchio, Laviola et al. 

2004). Together, these observations implicate p66Shc as an important mediator of migration. 

The second function of p66Shc described in the literature is its role in mediating oxidative stress 

and apoptosis. This adaptor, when serine phosphorylated within its CH2 domain, can translocate 

to the mitochondria. Here, in combination with an apoptotic signal, it interacts with cytochrome C 

which allows for the reduction of oxygen and the production of mitochondrial ROS. This ROS 

production opens pores within the outer mitochondrial membrane leading to the release of pro-

apoptotic factors and the induction of apoptosis (Orsini, Migliaccio et al. 2004; Giorgio, 

Migliaccio et al. 2005). Interestingly, the depletion of ARF1 enhanced gefitinib-induced activation 

of JNK, a serine kinase previously demonstrated to phosphorylate p66Shc and promote its 

translocation into the mitochondria (Orsini, Migliaccio et al. 2004; Giorgio, Migliaccio et al. 2005; 

Smith, Norton et al. 2005). Furthermore, as shown in Chapter IV, the depletion of ARF1 enhanced 

the translocation of p66Shc into the mitochondrial where it regulated the mitochondrial membrane 

potential and the release of the pro-apoptotic factor, cytochrome C. This would suggest that 

p66Shc may mediate the sensitivity of MDA-MB-231 cells to gefitinib-treatment. Indeed, 

depletion of p66Shc significantly reduced cellular death in response to EGFR inhibition (See 

Chapter IV).  

Together these findings would suggest that p66Shc plays an important role in the regulation of 

both cell migration and survival in invasive breast cancer cells. They also suggest that these roles 

are mediated by ARF6 and ARF1, respectively. With p66Shc-mediated ARF6 activation 

promoting cell migration and ARF1 blocking the apoptotic properties of p66Shc to promote cell 

survival.   
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V.3 ARF1 mediates sensitivity and resistance of breast cancer cells to EGFR inhibition 

Mechanisms of resistance regulating EGFR inhibitors have been well documented in lung cancer. 

Amplification of other RTKs such as cMET, AXL, ERBB2 and ERBB3 have all been shown to 

decrease the sensitivity of lung cancer cells to EGFR inhibition (Chong and Janne 2013). In fact, 

gefitinib treatment promotes both cMET and AXL activation leading to increased AKT 

phosphorylation and decreased drug cytotoxicity (Rho, Choi et al. 2014). Furthermore, cMET has 

been shown to associate with both inactive EGFR and HER3 leading to the activation of the 

PI3K/AKT pathway (Engelman, Zejnullahu et al. 2007; Gusenbauer, Vlaicu et al. 2013; Meyer, 

Miller et al. 2013). However, many of these mechanisms aren’t present in breast cancer patients.  

While gefitinib has been shown to increase the activity of cMET in MDA-MB-231 cells, co-

treatment of cells with gefitinib and a cMET inhibitor did not significantly enhance cellular death 

(Sohn, Liu et al. 2014). Additionally, EGFR inhibition was observed to enhance PI3K signals in 

TNBCs. Yet, inhibition of the PI3K/AKT pathway had no effect on the cytotoxic properties of 

gefitinib (Yi, Hong et al. 2013). These findings suggest that other mechanisms may be regulating 

the sensitivity of breast cancer cells to EGFR inhibition. Here, we show that the small GTPase 

ARF1 is recruited to AXL, cMET and HER2 upon gefitinib treatment. However, the inhibition of 

two of these receptors (cMET and HER2) did not mediate the gefitinib-dependent activation of 

ARF1. Conversely, inhibition of the other RTK, AXL, significantly impaired the activity of this 

GTPase suggesting that gefitinib promotes the activity of ARF1 through this receptor.  

Additionally, we show that either the depletion or the pharmacological inhibition of ARF1 

significantly enhanced the sensitivity of invasive breast cancer cells to gefitinib treatment. 

Moreover, the overexpression of ARF1 in MCF7 cells reduced gefitinib sensitivity. ARF1 

depletion was also shown to decrease signals downstream of these receptors involved in gefitinib 

sensitivity such as ERK1/2 and AKT. This would suggest that ARF1 activity may govern the 

sensitivity of TNBCs to EGFR inhibition and that targeting this GTPase could improve the efficacy 

of these inhibitors. 

Recently, another RTK, AXL, was shown to play a central role in mediating sensitivity of TNBCs 

to EGFR inhibitors. It was demonstrated that AXL can bind and transactivate the EGFR as well as 

other RTKs such as cMET and PDGFR. Additionally, the depletion of AXL significantly reduced 

EGF-dependent signals to ERK1/2, Src and AKT activation (Meyer, Miller et al. 2013). Together, 
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these results suggest that AXL may regulate the sensitivity of cells to EGFR inhibition by 

regulating the activity of the EGFR and its downstream signaling effectors. Interestingly, we 

observed an enhanced AXL activation upon gefitinib treatment in our cellular system. 

Additionally, gefitinib promoted the recruitment of ARF1 to AXL and that the activity of AXL 

was essential in the gefitinib-dependent activation of this GTPase. Together, we demonstrate that 

AXL may play an important role in the regulation of gefitinib sensitivity by mediating the activity 

of ARF1 in MDA-MB-231 cells. 

We also demonstrated that ARF1 depletion, as well as pharmacological inhibition, promoted the 

gefitinib-dependent down-regulation of the EGFR and HER2 as measured by a decreased protein 

expression, activation and heterodimerization. Interestingly, defects in EGFR internalization and 

degradation have been linked to EGFRTKi resistance. In effect, gefitinib has been shown to impair 

EGFR endocytosis and delay the trafficking of this receptor to the lysosomes, as well as trap RTKs 

in early endosomes (Nishimura, Bereczky et al. 2007; Nishimura, Yoshioka et al. 2008). Moreover, 

resistant cells have shown to have a steady-state EGFR expression when treated with gefitinib 

compared to the internalized and degraded receptor observed in non-resistant cells. This stable 

EGFR expression is associated with an increased heterodimerization with either HER2 or HER3 

and drug resistance (Wheeler, Huang et al. 2008). We show that ARF1-depletion decreased the 

expression and dimerization of the EGFR family members. Thus, suggesting that ARF1 may 

promote resistance by stabilizing the EGFR. Indeed, inhibition of the proteasome partially restored 

EGFR expression suggesting that ARF1 mediates the degradation of EGFR. However, 

transcriptional regulation EGFR expression by ARF1 cannot be ruled out. The importance of ARF 

proteins in mediating receptor signaling is further highlighted by role of ARFGAPs in mediating 

the endocytosis, trafficking and degradation of RTKs, as well as ARF6-dependent endocytosis of 

GPCRs (Claing, Chen et al. 2001; Kon, Kobayashi et al. 2014). Additionally, the ARFGEFs, 

cytohesins, have been shown to promote EGFR dimerization (Bill, Schmitz et al. 2010). Therefore, 

we hypothesize that ARF1, like ARF6, ARFGAPs and ARFGEFs, may play an important role in 

the membrane dynamics of the EGFR and thus mediates gefitinib sensitivity and resistance by 

maintaining EGFR signals at the plasma membrane. 

Finally, our work highlights a role for ARF1 in the propagation of survival signals and an inhibition 

of apoptotic signals in gefitinib-resistant breast cancer cells. Indeed, the knockdown of ARF1 was 
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associated with a decreased gefitinib-dependent activation of ERK1/2, AKT and Src and increased 

signaling via the JNK and p38MAPK pathways. Up regulation of ERK1/2, PI3K/AKT and Src 

signals have all been implicated in promoting resistance and sensitivity to EGFR inhibition 

(McCubrey, Steelman et al. 2007; Engelman and Settleman 2008; Wheeler, Iida et al. 2009). 

Moreover, the pharmacological inhibition of these three signaling cascades have been associated 

with improved therapeutic outcomes in EGFRTKi resistant cancers (Wheeler, Iida et al. 2009; 

Brand, Iida et al. 2011; Chong and Janne 2013). Meanwhile, the cytotoxic properties of gefitinib 

have been linked to increased signaling via both p38MAPK and JNK (Kim, Park et al. 2009; Ko, 

Chiu et al. 2013). Thus, increased signaling through these pathways in ARF1-depleted cells treated 

with gefitinib is suggestive of increased cellular death. Indeed, increased expression of 

mitochondrial apoptotic markers (Bim, p66Shc), cytoplasmic-released CytC, mitochondrial 

membrane hyperpolarization and caspase cleavage was observed in ARF1-depleted cells upon 

gefitinib treatment. 

Together, our findings demonstrate that ARF1 has a dimensional regulation of EGFRTKi 

sensitivity by: 1- Propagation of signals downstream of alternate RTKs such as AXL, 2- EGFR 

stabilization, activation and dimerization and 3- Activation of survival signals while inhibiting 

apoptotic signals.      

 

V.4 ARF1 and oncogene addiction and shock 

Weinstein proposed that cancer cells can become “addicted” to an oncogene. In other words, a 

cancer cell becomes physiologically dependent on the continued activity and/or expression of an 

oncogene for the maintenance of their malignant phenotype (Weinstein 2002). A good example of 

oncogene addiction is described for the myc oncogene in hematopoietic cells or HRas in 

melanoma. Indeed, switching off these genes results in both growth arrest and apoptosis (Chin, 

Tam et al. 1999; Felsher and Bishop 1999). This would suggest that identifying and targeting a 

cancer’s addiction could have substantial therapeutic benefits (Weinstein 2002). This can be seen 

in cancer cells with mutations in the EGFR gene that cause increased expression or activity. These 

mutations enhance tumor growth but also sensitize cancer cells to EGFR inhibition (Gazdar, 

Shigematsu et al. 2004). As we show that ARF1 modulates both the response of breast cancer cells 

to EGFR inhibition as well as the growth and survival of these cells, we propose that triple negative 
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breast cancer cells may be “addicted” to the GTPase ARF1. Furthermore, the mediation EGFR 

dynamic by ARF1 could promote EGFR addiction in breast cancer cells. Therefore, making ARF1 

an important therapeutic target in these cancer patients. 

Another hypothesis, the oncogenic shock hypothesis, states that the same oncogene can promote 

proliferation and survival at the same time as paradoxically activating signals leading the induction 

of apoptosis. Furthermore, it is the length of activation in response to an oncogenic inhibitor that 

governs the cellular response. In other words, proliferative/survival signals upon oncogenic 

inhibition are rather short, whereas, the apoptotic signals in response to this inhibition are longer-

lived. Therefore, the cellular response would be the induction of apoptosis. This can explain the 

development of resistance to EGFR inhibition. In this case the rapid inhibition of the EGFR 

receptor would only affect the proliferative/survival signals while allowing the apoptotic signals 

to prevail. However, the ability of EGFR signals to rapidly reset and re-promote survival signals, 

observed in resistant cells, would counter the apoptotic signals, allow the cells to survive and result 

in the development of drug resistance (Pagliarini, Shao et al. 2015). We observe this process in 

our cellular model. Indeed, gefitinib treatment of MDA-MB-231 cells was associated with a rapid 

inhibition of AKT. Meanwhile, apoptotic signals through p38MAPK and JNK were unaffected or 

moderately elevated. Interestingly, this “oncogenic shock” was shown to be enhanced in cells 

depleted of ARF1 compared to control conditions. This was observed by a shorter-lived AKT 

activation and an increased and prolonged p38MAPK and JNK activation. This is marked by the 

attenuation of survival signals (ERK1/2, AKT, Src) without the inhibition of apoptosis 

(p38MAPK, JNK) leading to cell death. 

Together, our results would suggest that triple negative breast cancer cells are addicted to the 

expression and activity of ARF1 and that ARF1 may mediate the sensitivity of these cells to EGFR 

inhibition by favoring this receptor’s signals to proliferative and survival over its apoptotic signals. 

Moreover, therapeutically targeting this GTPase would block cell proliferation and survival as well 

as enhance apoptotic signaling.   
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V.5 A role for mitochondrial ARF1 in regulating gefitinib sensitivity 

The small GTPase, ARF1, plays an essential role in membrane trafficking via the recruitment of 

coat proteins and the modulation of lipid-modifying enzymes (Godi, Santone et al. 1998; Jones, 

Morris et al. 2000; Bonifacino and Glick 2004). It is best characterized for its role within the Golgi 

(Bonifacino and Glick 2004). However, we have recently demonstrated that ARF1 also plays an 

important role at the plasma membrane (Boulay, Cotton et al. 2008). Thus, ARF1 is essential in 

the modulation signals originating from membrane structures. We hypothesized that ARF1 may 

also play a role at the mitochondrial membrane. Actually, the yeast (saccharomyces cervisiae) 

ARFGAP, Gcs1p, and ARFGEF, GBF1, have been shown to localize to the mitochondria and play 

a role in the maintenance of mitochondrial morphology, dynamics and homeostasis (Huang, Chen 

et al. 2002; Ackema, Hench et al. 2014). More recently, both yeast and Caenorhaditis elegan ARF1 

were shown to be present in the mitochondria and to regulate mitochondrial homeostasis. 

Additionally, the knockdown of GBF1 in these model system was associated with mitochondrial 

abnormalities. The mitochondrial importance of ARF1 was confirmed in mammalian cell systems 

(Ackema, Hench et al. 2014). We show that ARF1 can localize to mitochondria, as measured by 

ARF1 expression within mitochondrial extracts isolated from MDA-MB-231 cells (See Chapter 

IV), upon gefitinib treatment. As the cytotoxic properties of gefitinib are mediated by 

mitochondrial-dependent apoptosis (Wu, Min et al. 2011) and ARF1 significantly reduced the 

sensitivity of breast cancer cells to gefitinib, ARF1 may promote resistance to EGFR inhibition by 

acting within the mitochondria or at the mitochondrial membrane. However, the role of 

mitochondrial ARF1 within our cellular model of EGFRTKi resistance needs to be further 

investigated.  

ARF1 has also been shown to regulate mitochondrial functionality through its actions on the ER-

mitochondria encounter structure complex (ERMES) which connects the endoplasmic reticulum 

to the mitochondria (Kornmann, Osman et al. 2011; Ackema, Hench et al. 2014). It consists of 4 

components: 1- outer mitochondrial membrane proteins Mdm10 and 2- Mdm34, 3- endoplasmic 

reticulum membrane protein, Mmm1 and 4- the cytoplasmic protein Mdm12. This complex 

mediates multiple mitochondrial functions such as mitochondrial motility, genome replication, 

mitochondrial protein import, calcium transport and phospholipid homeostasis. Morphological 

defects are observed upon mutation or depletion of ERMES members (Kornmann and Walter 
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2010). Loss of ARF1 has been shown to disrupt the ERMES complex, impairing lipid transport 

between the mitochondria and endoplasmic reticulum leading to mitochondrial fragmentation and 

degradation (Ackema, Hench et al. 2014). Thus, ARF1 may counter the cytotoxic effects of 

gefitinib by stabilizing this ERMES complex and promoting mitochondrial homeostasis.  

 

V.6 ARF1 promotes mitochondrial-dependent apoptosis 

EGFR inhibition is associated with both mitochondrial-independent and –dependent apoptosis 

(Hofer and Frei 2007). Increased ROS production, p38MAPK/JNK activation, Bax activation and 

mitochondrial localization, increased caspase activity and decreased signals through ERK1/2 and 

AKT have all been linked to EGFRTKi-dependent cell death (Janmaat, Kruyt et al. 2003; Ariyama, 

Qin et al. 2006; Qian, Li et al. 2009; Palanivel, Kanimozhi et al. 2014). Interestingly, we show that 

the depletion of ARF1 enhanced that majority of these apoptotic characteristics associated with 

EGFRTKi mediated apoptosis. Indeed, we observed a decreased signaling via the ERK1/2 and 

AKT pathways, increased p38MAPK/JNK activation and elevated Bax to Bcl2 ratio, indicative of 

apoptosis. Furthermore, as discussed above in detail, ARF1 depletion may also enhance the pro-

apoptotic activity of p66Shc (Chapter IV).   

The pharmacological inhibition of ARF1 activity has been demonstrated to induce the apoptosis 

of both corneal and cancer cells (Dai, Liu et al. 2012; Ohashi, Iijima et al. 2012). Moreover, the 

overexpression of an inactive form of ARF1, ARF1TN, blocked cadmium-induced proximal 

tubule cell death (Wolff, Lee et al. 2011). While we have demonstrated that ARF1 promotes the 

activation of the cell survival, PI3K/AKT, pathway in breast cancer cells (Boulay, Cotton et al. 

2008), the role of this GTPase in mediating apoptosis has yet to be characterized. Meanwhile, 

another ARF isoform, ARF4, has been shown to promote glioblastoma cell survival by blocking 

the activation of pro-apoptotic signals via the p38MAPK and JNK pathways. Additionally, ARF4 

overexpression was shown to decrease the mitochondrial translocation of Bax1, the cytoplasmic 

release of CytC and the activation of caspase 3 (Woo, Eun et al. 2009). Interestingly, we found 

that ARF1 depletion was associated with an enhanced gefitinib-induced CytC release, 

mitochondrial membrane hyperpolarization and a decrease mitochondrial expression of Bcl2 

(Chapter III & IV). Thus, suggesting that both ARF1 and ARF4 may play important roles in the 

regulation of mitochondrial functions leading to the induction of apoptosis.  
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V.7 Conclusion 

In this study, we demonstrated that the adaptor proteins Grb2 and p66Shc are important mediators 

of ARF activation downstream of the EGFR in invasive breast cancer cells. Grb2 was shown to be 

essential for the activation and EGFR recruitment of both ARF1 and ARF6. Meanwhile, p66Shc 

promoted the activation of ARF6 while blocking EGF-dependent ARF1 activation. We showed 

that p66Shc mediated ARF1 activation by blocking the recruitment of the Grb2-ARF1 complex to 

the EGFR. Additionally, we highlight a role for ARF1 in mediating the EGFR inhibitor resistance 

and sensitivity in breast cancer cells. We show that ARF1 maintains EGFR expression, activation 

and dimerization in cells treated with gefitinib. Furthermore, ARF1 promoted gefitinib-induced 

proliferative/survival signals while inhibiting pro-apoptotic signals. Finally, we determined that 

ARF1 regulates mitochondrial-dependent apoptosis in response to EGFR inhibition. Briefly, 

depletion of ARF1 enhanced gefitinib-induced p66Shc mitochondrial translocation, mitochondrial 

membrane hyperpolarization and CytC release. 

These results demonstrate the importance of adaptor proteins in mediating EGF-dependent ARF 

activity. The characterization of the signaling mechanisms leading to breast cancer cell 

proliferation, migration, and invasion, such as ARF activation, can allow for the discovery of novel 

breast cancer therapeutics and improve current therapies. Additionally, we illustrate that ARF1 is 

important mediator of EGFRTKi sensitivity and resistance in breast cancer cells. This would 

suggest that targeting ARF1 could improve the therapeutic response of breast cancer patients to 

EGFR inhibitors. Furthermore, ARF1 activity could be utilized as an indicator of patient response 

to EGFR inhibition. Together, our finding highlight ARF1 as an important regulator of breast 

cancer development, progression and therapeutic response.   
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CHAPTER VI: Future perspectives 

 

VI.1 Characterize the inhibitory role of p66Shc on ARF1 activation 

In Chapter II, we highlight the role of p66Shc in the negative regulation of ARF1 receptor 

recruitment and activation. We propose that p66Shc blocks ARF1 activation by interfering with 

the Grb2-dependent recruitment of ARF1 to the EGFR. However, it would be of interest to further 

characterize this mechanism. First, I propose to identify whether p66Shc interacts directly with 

ARF1 and where on p66Shc ARF1 associates. I would hypothesize that this interaction would be 

dependent on the CH2 domain of p66Shc since both p52Shc and p46Shc were shown not to 

associate with ARF1. Secondly, I propose to identify the regions of p66Shc that are essential in 

the regulation of ARF1 activity, If p66Shc blocks ARF1 activation through its regulation of Grb2, 

then mutating the tyrosine residues within the CH1 domain of p66Shc required for its association 

with Grb2 should reverse its negative regulation of ARF1 activity. Finally, we show that ARF1 

mediates the mitochondrial translocation of p66Shc. Thus, it would be interesting to determine the 

mechanisms through which ARF1 mediates the functions of p66Shc. Moreover, we could 

determine whether mitochondrial p66Shc mediates ARF1 activity within this organelle. This 

thorough characterization of the negative regulation of ARF1 activity could lead to the 

development of therapeutics the effectively and specifically inhibit the oncogenic properties of 

ARF1 in breast cancer, while sparing the essential functions of ARF1 within the Golgi of non-

cancerous cells. 

 

VI.2 Identify the GEFs and GAPs involved in p66Shc-mediated ARF activation 

 ARF activation is primarily mediated by guanine exchange factors (GEFs) and GTPase activating 

proteins (GAPs). While GEP100 has been shown to be required for EGF-dependent activation of 

ARF6 (Sabe, Hashimoto et al. 2009), the GEF responsible for ARF1 activation downstream of the 

EGFR has yet to be identified. As Grb2 has been characterized for its role in recruitment of the 

GEF SOS to the EGFR leading to Ras activation (van der Geer, Hunter et al. 1994; Kairouz and 

Daly 2000), it would be interesting to determine whether Grb2 plays a similar role leading to the 

activation of ARF1. Moreover, p66Shc may block ARF1 activation by either blocking the 

recruitment of a GEF or promoting the recruitment of a GAP. Thus, understanding the important 
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GEFs and GAPs involved in p66Shc-mediated ARF activation could identify novel therapeutics 

in TNBC patients. 

 

VI.3 Determine the role of ARF1 in gefitinib-induced EGFR down-regulation 

In Chapter III, we argue that the depletion of ARF1 enhances the sensitivity of breast cancer cells 

to gefitinib treatment by down-regulating the expression, activation and dimerization of the EGFR. 

However, mechanism through which ARF1 mediates EGFR dynamics is not clear. The two major 

means that ARF1 may mediate EGFR expression include: 1- transcriptional regulation and 2- 

receptor degradation. We show that proteosomal inhibition blocks the ability of gefitinib to down-

regulate EGFR expression in ARF1 depleted cells. Additionally, preliminary data not presented in 

this thesis suggest that the depletion of ARF1 favors the rapid activation and internalization of the 

EGFR. It would be of interest to monitor the trafficking of the EGFR upon gefitinib treatment of 

ARF1-depleted cells. This would allow us to determine whether the rapidly internalized receptor 

is sent to lysosomes and degraded or recycled back to the membrane. It has been previously 

demonstrated that the degradation of the EGFR can sensitize resistant-lung cancer cells to EGFR 

inhibition (Nishimura, Bereczky et al. 2007; Nishimura, Yoshioka et al. 2008). Thus, this would 

help better demonstrate the importance of ARF1 in mediating drug resistance. We show that the 

treatment of MDA-MB-231 cells with a proteosomal inhibitor can partially restore EGFR 

expression. This would suggest that ARF1 could transcriptionally mediate EGFR expression as 

well as regulating EGFR degradation. Additionally, an altered localization of the EGFR, either to 

the nucleus or mitochondria, has been proposed as a mechanism of EGFRTKi resistance (Cao, 

Zhu et al. 2011; Brand, Iida et al. 2014). Together, these experiments would demonstrate that 

targeting ARF1 could not only block the oncogenic properties of ARF1, but also effect another 

important mediator of oncogenesis in TNBC, the EGFR.   
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VI.4 Characterize the role of ARF1 within the mitochondria 

Recently, ARF1 has been shown in yeasts and c elegans to localize to the mitochondrial and 

mediate the transport between this organelle and the endoplasmic reticulum (Ackema, Hench et 

al. 2014). Interestingly, we show that in breast cancer cells treated with gefitinib ARF1 translocates 

to the mitochondria. However, we have yet to characterize the mitochondrial functions of this 

small GTPase. It would be interesting to determine whether ARF1 mediates the ERMES complex 

in breast cancer cells and what are the oncogenic properties of this complex as well as the interplay 

between the mitochondria and the endoplasmic reticulum. Furthermore, the mechanism through 

which ARF1 is transported into the mitochondria and what is regulating its mitochondrial activity 

also needs to be elucidated.  Preliminary sequence homology analyses suggest that ARF1 may 

possess a mitochondrial targeting sequence. However, these results need to be further accessed. 

As we have shown that p66Shc mediates ARF1 activity downstream of the EGFR, we hypothesize 

that mitochondrial p66Shc could also mediate ARF1 activity in the mitochondria. Thus, p66Shc 

may mediate gefitinib-induced apoptosis by regulating the activity of mitochondrial ARF1. Finally 

and most importantly, I propose to characterize the importance of mitochondrial ARF1 in 

mediating resistance to EGFR inhibition in TNBC cells. We will determine whether it is 

specifically this mitochondrial pool of ARF1 that mediates resistance and design means of 

specifically inhibiting this small pool of ARF1 by targeting its mitochondrial regulators. This 

would allow us to improve the therapeutics efficacy of EGFRTKis in these patients by targeting 

ARF1 without the negative effects associated with targeting ARF1 within the Golgi.   

 

VI.5 Identify and characterize novel ARF1 inhibitors 

Even though there is growing evidence demonstrating the importance of ARF GTPases in 

mediating cancer development and progression, there are currently no clinical trials underway 

testing ARF inhibitors. The lack of interest in targeting ARF proteins stems from results obtained 

testing the ARFGEF inhibitor, BFA. This inhibitor has been associated with a poor solubility in 

biological fluids, undesirable pharmacokinetic profile and neurotoxicity in animal models. 

Additionally, BFA toxicity was shown to originate from its ability to dissemble the Golgi (Dinter 

and Berger 1998; Kikuchi, Shinpo et al. 2003). However, its apoptotic properties have been shown 

to be independent on its actions within the Golgi (Lippincott-Schwartz, Glickman et al. 1991). 



214 
 
 

Using small inhibitor screens, we could identify novel ARF inhibitors with improved solubility 

and reduced toxicity. Our results, thus far, would suggest that these inhibitors would inhibit breast 

cancer cell proliferation, migration and invasion while decreasing the resistance of these cells to 

EGFR inhibition.     
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