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Résumé 

L'activité électrique du coeur est initiée par la génération spontanée de potentiels 

d'action venant des cellules pacemaker du noeud sinusal (SN). Toute dysfonction au niveau de 

cette région entraîne une instabilité électrique du coeur. La majorité des patients souffrant d'un 

noeud sinusal déficient nécessitent l'implantation chirurgicale d'un pacemaker électronique; 

cependant, les limitations de cette approche incitent à la recherche d'une alternative 

thérapeutique. La base moléculaire des courants ioniques jouant un rôle crucial dans l'activité 

du noeud sinusal sont de plus en plus connues. Une composante importante de l'activité des 

cellules pacemakers semble être le canal HCN, responsable du courant pacemaker If. Le 

facteur T-box 3 (Tbx3), un facteur de transcription conservé durant le processus de l'évolution, 

est nécessaire au développement du système de conduction cardiaque. De précédentes études 

ont démontré que dans différentes lignées cellulaires le Phorbol 12-myristate 13-acetate 

(PMA) active  l'expression du gène codant Tbx3 via des réactions en cascade partant de la 

protéine kinase C (PKC).  

L'objectif principal de cette étude est de tester si le PMA peut augmenter la fréquence 

et la synchronisation de l'activité spontanée du pacemaker biologique en culture. Plus 

précisément, nous avons étudié les effets de l'exposition chronique au PMA sur l'expression du 

facteur de transcription Tbx3, sur HCN4 et l'activité spontanée chez des monocouches de 

culture de myocytes ventriculaires de rats néonataux (MVRN). Nos résultats démontrent que 

le PMA augmente significativement le facteur transcription de Tbx3 et l'expression ARNm de 

HCN4, favorisant ainsi l'augmentation du rythme et de la stabilité de l'activité autonome. De 

plus, une diminution significative de la vitesse de conduction a été relevée et est attribuée à la 

diminution du couplage intercellulaire. La diminution de la vitesse de conduction pourrait 

expliquer l'effet négatif du PMA sur la synchronisation de l'activité autonome du pacemaker 

biologique. Ces résultats ont été confirmés par un modèle mathématique multicellulaire 

suggérant que des fréquences et résistances intercellulaires plus élevée pourraient induire une 

activité plus stable et moins synchrone. Cette étude amène de nouvelles connaissances très 

importantes destinées à la production d'un pacemaker biologique efficient et robuste. 
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Summary 

The normal heartbeat is initiated by the spontaneous generation of action potentials in 

pacemaker cells of the sinoatrial node (SAN) region. Dysfunction of this region leads to 

electrical instability of the heart. The majority of the patients with sinus node dysfunction 

require surgical implantation of electronic pacemaker devices; however, limitations of this 

therapeutic approach lead to a need to search for alternatives. To date, the molecular basis of 

the ionic currents which play pivotal role in SAN action potential has been discovered. It is 

thought that an important component of the pacemaker cells are HCN channels, responsible 

for the funny current (If) in the SAN. Meanwhile, T-box factor 3 known as an evolutionary 

conserved transcription factors is necessary for development of the conduction system. In 

previous studies, it has been shown that Phorbol 12-myristate 13-acetate (PMA) activates 

Tbx3 gene expression in a PKC-dependent manner in several cell lines. 

The main objective of this study is to test if PMA can increase the frequency and 

synchronization of spontaneous activity of cultured biopacemakers. More precisely, we 

studied the effects of chronic exposure to PMA on the expression of the Tbx3 transcription 

factor and HCN4 in neonatal rat ventricular myocytes monolayers and how spontaneous 

activity was altered. Our results show that PMA significantly increases the Tbx3 transcription 

factor and HCN4 mRNA expression favoring an increased in the rate and spatial-temporal 

stability of the spontaneous activity. In addition, a significant decrease in conduction velocity 

was found that is attributed to decrease electrical intercellular coupling of the cells. The 

decrease in the conduction velocity could explain the negative effect PMA has on 

synchronization of spontaneous activity of the biopacemaker. These findings are confirmed by 

a multicellular mathematical model implying that faster frequency and higher intercellular 

resistance of the pacemaker cells may lead to a more stable and less synchronous activity. This 

study provides important new knowledge to produce efficient and robust biological 

pacemakers. 

Keywords: biopacemaker, spontaneous activity, synchronization, spatial-temporal stability. 
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1 Introduction 

  Normal function of the heart is extremely dependent on the flawless activity of the 

sinoatrial node (SAN). Abnormal propagation from the sinoatrial node leads to serious 

arrhythmias called sick sinus syndrome (SND). Nowadays, the prevalence of SND is 

increasing. In spite of prominent developments of electrical pacemakers, there are a lot of 

shortcomings. The need to create alternative therapies and the biological pacemaker is among 

them. 

Different concepts will be presented in the introduction (Chapter 1). Starting with 

section 1.1, an overview of the heart physiology is introduced with a focus on the different cell 

types including the pacemaker cell. Primary pacemaker cells are located in the sinoatrial node 

(SAN, section 1.2) which is the structure responsible for initiating the normal heart beat.  

In brief, pacemaker cells differs from cardiomyocytes (CMs) having reduced 

maximum diastolic potential (MDP), slower action potential (AP) upstroke velocity, high 

intercellular resistance which leads to slow conduction velocity and spontaneous diastolic 

depolarization (DD) (Clocks, section 1.2.4). An important components of the pacemaker cells 

are HCN channels (Clocks, section 1.2.4) which conduct the funny current (If). Mutations or 

knockout of these proteins in human or mice linked to SND (Pathology of the rhythm, section 

1.2.5). Expression of HCNs is linked to T-box factor 3 (Tbx3) which is one of the 

evolutionary conserved transcription factors necessary for development of many tissues. 

Moreover, connexin 40 and 43 expressions were down regulated in ectopic Tbx3 activated 

embryonic atrial myocytes (Clocks, section 1.2.4).  

Probably, it happens because of the current-to-load mismatch between HCN over-

expressing cells and the surrounding tissue.  

The most important therapeutic approach to date for patients with bradycardia and 

unstable heart rate remains the electronic pacemaker (section 1.3.1). An alternative being 

developed, termed the biopacemaker, is based on generating pacemaking activity of cells 

through different approaches (presented in section 1.3.2). 
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Gene therapy is a key approach to modulate expression of proteins. Chemical 

conditioning can also be an interesting alternative to modulate transcription factors. Phorbol 

12-myristate 13-acetate (PMA, section 1.4) is an extracellular PKC activator which can 

activate the protein-1 (AP-1) family of transcription factors. In the previous studies, it has 

been shown that PMA activates Tbx3 gene expression in a PKC-dependent manner via the 

AP-1 transcription factors in several cell lines but its effect on spontaneous activity in 

cardiomyocytes remains unknown. 

A widely used cardiac model is rat ventricular myocytes (NRVMs) which have been 

shown to be useful a model system for analyzing states of cellular hypertrophy and contractile 

protein gene expression.  More interesting is that there is a transient regenerative phase in 

neonatal murine heart related to cardiomyocyte DNA-synthesis activity which declines during 

the first 1–2 weeks of life in rodents making this model a close relative to cardiomyocyte 

induced from pluripotent cells. (Biopacemakers, section 1.3.2).  

We hypothesized that chronic conditioning of neonatal cardiomyocytes with PMA 

could upregulate the Tbx3 and HCN channels expression and facilitates the development of 

the cardiomyocytes to the pacemaker cells (Project hypothesis, section 1.6).    

To test this hypothesis, we isolated ventricular cardiomyocytes from 1- to 3-day-old 

Sprague-Dawley rats. Cells were cultured in the pre-coated glass bottom dishes. Cultured 

dishes were exposed with PMA after 24h and the experiments were done 24h and 48 h after 

the start of conditioning with PMA (Article, section 2). The results of chronic exposure of the 

NRVMs with PMA showed an increase in expression of Tbx3 and HCN4 channels which was 

concordant with increasing the spatial-temporal stability of the spontaneous activity. In 

addition, the conduction velocity of the impulse propagation decreased providing an evidence 

of electrical uncoupling of the cells that led to decreased synchronization of the spontaneous 

activity. To confirm our experimental results, we implemented a mathematical model which 

mimics the PMA effect in increasing of cell spontaneous rate of activity and decreasing the 

electrical coupling in the experimental monolayers. The results of the computational model 

confirmed spatial-temporal stability and lower synchronous activity of our monolayers 

(Article, section 2).  
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In the last part of the thesis, the implication of our results on the biopacemaker 

approach is further discussed (Discussion and conclusion, section 3). 

1.1 Heart physiology 

1.1.1 Cardiomyocyte 

The human heart is built of different cell types including: cardiomyocytes, 

fibroblasts/myofibroblasts, vascular and immune cells, vascular smooth muscle cells and 

vascular endothelial cells (1). A cardiac myocyte is enclosed by a sarcolemma as cell 

membrane that contains a nucleus (2). Myocytes are composed of numerous mitochondria, and 

they supply the needed ATP for the contraction of muscles. In addition, cardiac muscles 

contain the machinery to perform the intact contraction including contractile proteins actin 

(thin filaments) and myosin (thick filaments) accompanied by troponin and tropomyosin as 

regulatory proteins (Fig. 1). Cardiac muscle has a striated shape, however the pattern is a little 

bit different with skeletal muscle (2). Cardiac myocytes composed of approximately 75% of 

normal heart tissue volume, but they occupy only 30–40% of the total cell population in the 

heart. The rest of the heart tissue comprises non-myocytes, including fibroblasts, as a 

predominant population and other cell types like vascular or endothelial smooth muscle cells 

(3). Cardiac Troponin-T (cTnT) could be used to identify the myocardial cells, as it is 

specifically expressed in the myocardium (4, 5). By differentiation of the cardiac chambers, 

the automaticity of the mature myocytes entirely disappears and they display a fast conduction 

velocity (6, 7). 

1.1.2 Pacemaker cells 

In addition to the contractile myocytes, there are other types of the excitable cells in the 

heart with specific electrophysiological characteristics privileged them to generate and 

propagate electrical pulses. The pacemaker cells and their related conduction system are 

composed of two main nodes called sinoatrial (SAN) and atrioventricular (AVN) nodes in 

addition to the specified conduction system. The features of the pacemaker cells and their 

electrical pathways will be discussed comprehensively in the following chapters. 
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Figure 1:  Schematic of sarcomeric structure. Actin and myosin filaments as contractile 

components and sarcomeric titin as a structural component are shown in the diagrammatic 

model. (Reproduced with permission from Liu H. et al. 2013 (8)) 

1.1.3 Fibroblasts 

Fibroblasts are defined as flat and spindle shaped cells with numerous protrusions 

arising from the cell membrane. One of the outstanding morphological features of the 

fibroblasts is the lack of a basement membrane, and it distinguishes these kinds of cells from 

the other cell types of the heart. Generally, fibroblasts play a critical role in chemical, 

mechanical, and electrical signaling in the heart, and any pathological change of these 

signaling pathways can lead to cardiac dysfunction (9). Normal development and aging 

increase the fibroblast contents (10, 11). In fact, 5–6% of the volume of the normal adult 

myocardium is composed of connective tissue which is in parallel with increasing the 

fibroblast contents during the life time, however the fraction of the connective tissue in 

sinoatrial node (SAN) is more than 50% in the adult human heart (12, 13). Although cardiac 

fibroblasts are basically unexcitable cells, they are able to affect the electrophysiological 

communication of myocytes as effective components (14). In spite of non-excitable properties, 
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these type of cells play an important role in electromechanical functions of the heart in 

addition to compose of the anatomical and biochemical integrity of the heart tissue. Discoidin 

domain receptor 2 (DDR2) is specific marker of the cardiac fibroblasts which is not expressed 

on other types of the cardiac cells (15). 

1.1.4 Spontaneous activity 

Cardiomyocytes development during embryonic period affects their electrical 

properties notably (16). Automaticity is a dominant aspect of cardiomyocytes in very early 

prenatal period. However it is going to disappear by transforming the cells into the ventricular 

myocytes. In the late embryonic period, sinoatrial node takes the responsibility of controlling 

the automaticity coincident with the complete differentiation of the cardiomyocytes to the 

working ventricular cells (17). Recent studies based on patch clamp techniques demonstrated 

increase in amplitude of several cardiac currents including the fast Na
+
 channel (18) current 

and the L-type Ca
2+ 

channel (19) current during the rat embryonic developing phase which is 

related to increase in their channel expression level. In addition, there are some reports 

corresponding with increasing the outward currents from the middle to late embryonic period. 

Maybe these increments are to be responsible for the interruption of automaticity of working 

ventricular myocytes. Some studies (20, 21) have reported an increment of the inwardly 

rectifying background K
+ 

current (IK1) in fetal working ventricular myocytes. Thereby, it could 

be proposed a hypothesis suggesting that the hyperpolarization effect of IK1 augmentation 

leads to the cessation of the spontaneous activity in fetal ventricular myocytes, nonetheless it 

would be beneficial to reduce or abolish some pacemaker inward currents. 

1.2 Sino-atrial node (SAN) 

1.2.1 Primary pacemaker cells 

In the mammalian heart, SAN is laid at the junction of the superior vena cava and right 

atrium. The size of the SAN in the adult human heart is 12–20 mm long and 2–6 mm wide 

which is detectable by its ellipsoidal shape and intramural position. The head of the node is 

located around 1 mm under the epicardium isolated by a layer of lipid and connective tissue 

(22). The head part of the SAN extends inferiorly for 10–20 mm stretching beneath the sulcus 
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terminalis till the crista terminalis and has multiple extensions into the bordering atrial 

myocardium, which composes the specialized sinoatrial conduction pathways (SACPs) (23) 

(Fig. 2). The sinoatrial node is the main commander of the human heart rhythmicity by 

producing and propagating the electrical impulses that plays a critical role in regularity of the 

heart beats (22). 

 

Figure 2:  Electrical system of the heart. In normal heart electrical pulses originate from 

SAN and propagate through the AVN to the His bundles and Purkinje fibers. (Reproduced 

with permission from Harvey et al. 2002 (24)) 

It is well known that the structure of the human and canine SAN is a complex multi-

compartment (25). The SAN of mammalians heart, is composed of clusters of developed 

cardiomyocytes, which are engulfed within the matrix of connective tissue including the 

mixture of fibroblasts and some kinds of connective proteins like collagen and elastin. Such a 

fibrotic structure insulates the pacemaker cells from the hyperpolarizing effect of the 

bordering atrial cells in addition to mechanical protection (23). 
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1.2.2 Secondary pacemakers (AVN and Purkinje fibers)  

In the intact heart, electrical impulse originates from the SAN and propagates to the 

surrounding atrial myocardium and reaches the atrioventricular node (AVN) after then 

electrical wave passes through the Purkinje bundles to depolarize the ventricles and initiate the 

contraction of the heart thus perform the pumping function (26). 

Anatomical position of the AVN is at the junction of the atrial and ventricular septum 

which is dubbed as the triangle of Koch (27) and it is bounded by tendon of Todaro, the 

coronary sinus ostium and the tricuspid valve. There are two different pathways which lead 

into the AVN the first one is transitional zone, fast pathway, and the second one is inferior 

nodal extension defined as slow pathways (28).  

As a matter of fact, there are two electrical pathways (29). The fast route of 

propagation passes through the atrial septum and transitional zone, indicating the normal 

route. On the other hand, there is another way to conduct the propagation wave from the SAN 

through the AVN using the terminal crest and inferior nodal extension (30). There is also a 

penetrating bundle, at the position distal to the AVN, engulfed in the central fibrous body and 

extrudes on the ventricular spectrum crest where the His bundle begins. The AVN plays 

critical roles in the heart. First of all, it serves as a conduction delay barrier which is essential 

to perform the atrial contraction before the ventricular one. Secondly, long refractory period of 

the AVN helps to block the high frequency activity in atrial arrhythmias to minimize the 

ventricular tachycardia. Furthermore, AVN has also a potential ability to emerge as a first 

initiation site when the normal activity of the SAN disappears to prevent the heart arrest (31). 

1.2.3 Rhythm 

In the intact physiological condition, the SAN which located in the right atrium 

initiates the rhythmic pacing discharge. Indeed, the SAN is a part of the intrinsic conduction 

system included in the heart. Cardiac activation starts with the SAN or pacemaker and 

propagates to the surrounding cells resulting in depolarization and contraction of the atrial 

tissue and extends in order of rate to the internodal pathway, the AVN (where the impulse is 

delayed), AV bundle, the left and right branches of the bundle of His and lastly the Purkinje 
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fibers, consequently leads to ventricular depolarization and contraction. Autonomous 

rhythmicity is one of the pivotal characteristic of the intrinsic conduction system, thereby in 

the absence of extrinsic neural or hormonal stimulation, the SAN enables to impulse with the 

pacing rate about 100 beats per minute (bpm). Nonetheless, the heart rate and cardiac output 

must be changed in response to the needs for oxygen and nutrients supply under varying 

conditions. In order to make an immediate response to be concordant with body’s request, it is 

vital to provide an interacting system to control the heart rate and contractility. The SAN has 

two regulating systems: the sympathetic and parasympathetic systems. The sympathetic 

nervous system releases norepinephrine (NE) while the parasympathetic nervous system 

releases acetylcholine (ACh). Adrenergic β1 receptors are expressed in the SAN, AVN, 

besides in atrial and ventricular cardiomyocytes. The activation of β1 receptors, mediating NE, 

increases intracellular calcium concentrations and calcium release by the sarcoplasmic 

reticulum (SR) which leads to increase in contractility as a consequence and increase AVN 

conduction velocity. Thus, sympathetic nervous system stimulation is responsible for: ―1) 

Positive chronotropic effect (increase in heart rate); 2) Positive inotropic effect (increase of 

contractility); and 3) Positive dromotropic effect (enhancement of conduction)‖ (32). 

The parasympathetic nervous system has limited modulatory effect on the heart in 

contrast to sympathetic activity. Acetylcholine, as a main neurotransmitter of the 

parasympathetic system, produces effects that are in opposite to the sympathetic activation 

which includes: negative chronotropic and dromotropic effect. However, there are a lot of 

controversies about the probable negative inotropic effects of parasympathetic stimulation, 

recent in vivo studies in the atrium may suggest otherwise (32). 

The catecholaminergic control of the heart rate and contractility is mediated by the G-

protein-cAMP-PKA signaling pathway (32). In fact, activation of β1-adrenoceptor as a G-

protein-coupled receptor (GPCR) is the source of the sympathetic stimulation-induced effects 

in the heart. NE binding to β1 receptors activates stimulatory G proteins (Gs) and consequently 

activates adenylyl cyclase (AC) which mediates dephosphorylation of ATP into cyclic 

adenosine monophosphate (cAMP). After then, cAMP accomplishes numerous functions and 

it plays an important role in regulating ion channels, transcription factors, or enzymes. 

Regarding to the cardiovascular system, protein kinase A (PKA) is the most important enzyme 
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activated by cAMP. In consequence, PKA phosphorylates proteins, such as contractile 

machinery including troponin C, I, and sarcoplasmic proteins and L-type Ca
2+

 channels 

(LTCC). In addition, cAMP binds directly to hyperpolarization-activated cyclic nucleotide-

gated (HCN) channels, thereby increasing the heart rate (33). 

G-protein-coupled receptor, muscarinic (M2) receptors in the heart, plays also a pivotal 

role in the parasympathetic system in the heart resulting from activation by ACh as a 

parasympathetic neurotransmitter. ACh binding to M2 receptors causes a conformational 

change within the Gi subunit of the receptor facilitating inhibitory activity of the G protein, 

consequently the disassociated αi subunit can bind to and inhibits AC. M2 receptors decrease 

cAMP formation due to negatively coupling to AC. As a result, M2 receptors inhibit PKA 

activity and have an opposite effect on ion channels, Ca
2+

 handling proteins, and contractile 

machinery, in contrast to sympathetic stimulation (32). 

1.2.4 Clocks 

Briefly, spontaneous excitation of ―pacemaker‖ cells in the sinoatrial node initiates the 

normal cardiac electrical activity. The activation wave then travels to the adjacent atrial 

myocytes through intercellular gap junctions, and finally causes atrial excitation. After then, 

the excitation wave passes via the atrioventricular node and the Purkinje fibers to the 

ventricles and leads to ventricular myocyte depolarization. The self-activating characteristic of 

the SAN is attributed to the precise contribution between sarcolemma and sarcoplasmic 

membranes ion channels regulation termed as membrane and calcium clocks, respectively. 

Inward or outward direction of ion currents is related to the electrochemical gradient of the 

corresponding ions. Normally, there is a linear relationship between current amplitude (I), 

membrane potential (V) and the conductivity (G) of the responsible ion channels. This relation 

is defined in equation form as ―I=VG (R as resistance is the reverse of conductivity: I=V/R 

[Ohm’s law])‖ (26), indicating that membrane potential changes affect the current amplitude. 

Nonetheless, there are types of membrane channels that show non-ohmically behavior called 

voltage-dependent channels. One such current that is important for the resting potential is the 

rectifying currents (IK1). The rectifying channels carry dynamic currents which vary 

nonlinearly at different membrane potentials. It is the interplay between inward and outward 
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currents that leads to the spontaneous formation of an action potential (26). It is believed that 

the cooperation of both the membrane and calcium clocks in SAN is responsible for the 

pacemaker cell activity with characteristics including:  

1- ―Reduced maximum diastolic potential (MDP)‖ (34). 

2- ―A slow action potential (AP) upstroke velocity‖ (34) which is regulated by the L-

type Ca
2+

 current, ICaL, in central sino-atrial nodal cells (35). 

3-High intercellular resistance (34). Indeed, the lack of fast-propagating connexins 

including Cx40 (Gja5) and Cx43 (Gja1), besides distribution of slow-propagating connexins 

such as Cx30.2 (Gjd3) and Cx45 (Gjc1) (36, 37) leads to the electrical uncoupling resulting in 

slow conduction velocity in SAN. 

4- ―Spontaneous diastolic depolarization (DD)‖ (34). The animal studies, in particular 

on rabbit heart demonstrated that there is a precise control system to depolarize the membrane 

potential over the activation threshold. 

Cellular processes are thus central to the spontaneous activity and interplay between 

membrane and intracellular calcium regulation would play a role. The differences between the 

membrane and calcium clocks are described below. 

1.2.4.1 Membrane clock 

According to the contribution of the variety of ionic currents in spontaneous 

pacemaking, and due to their time-dependent behavior and localization in the cell membrane, 

it has been dubbed ―the membrane clock‖(35). The hyperpolarization-activated cation current, 

or ―funny‖ current (If) is the dominant ionic current in the membrane clock (34).  

The membrane clock theory of pacemaking states that precise cooperation of time- and 

voltage-dependent membrane ion channels enhances diastolic depolarization from MDP to 

threshold potential which opens L-type voltage-dependent Ca
2+

 channels to create the upstroke 

phase of the action potential. Consequently,  activation of outward repolarizing potassium 

channels including transient outward (Ito), fast delayed rectifier (IKr), and slow delayed 

rectifier (IKs) K
+
 currents initiate repolarization phase by reducing the membrane potential to 

the maximum diastolic potential after then the next cycle starts again (35). 
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1.2.4.1.1 HCN channels 

Genes isoforms HCN1 through HCN4 are responsible to encode the voltage-gated ion 

channels (38, 39) although HCN2 and HCN4 are found in neonatal hearts. Different subunits 

possess various characteristics which proper them to do their biophysical duties such as 

phosphorylation by tyrosine kinases, voltage dependency and regulation by low molecular 

weight factors like phosphatidylinositol 4,5-bisphosphate (PIP2) and cAMP (40). Regulation 

of If by cAMP is one the most important features of the HCN channels with increment of the 

membrane resting potential thus increasing the current activation (41). Hence, rate of 

activation of the HCN4 channels is augmented with cAMP (42). Moreover, higher level of 

phosphorylation can increase the sensitivity of the cells to the β-adrenergic stimulation in 

which maximal conductance of the pacemaker cells increases in a voltage independent manner 

(41). Funny current is defined as a mixed inward Na
+
 and K

+
 current which is activated slowly 

at membrane potential range of -50 to -65 mV (43, 44). All of the channels in cardiac cells are 

activated by membrane depolarization except If known as funny current (35). 

1.2.4.1.2 CaT channels 

Transient type Ca
2+

 (CaT) channels, including Cav3.1 through Cav3.3, have been 

encoded by three different genes, CACNA1G through CACNA1I (45). The first hypothesis 

regarding the role of  ICaT in automaticity was described by Bean who proposed that fast Ca
2+

 

channels have more important effect on generating spontaneous activity, due to their 

activation kinetics at negative potentials, while the Na
+
 channels show inactivated behavior in 

less negative potentials (46). In addition, the previous studies on rabbit heart proved that ICaT 

block with 40 μM Ni
2+

 has a negative chronotropic effect on pacemaker cells as a result of 

decreasing the slope of the late phase of DD. These types of channels show activity in more 

negative activation potentials in comparison with L-type Ca
2+

 channels (47). 

1.2.4.1.3 CaL channels 

L-type Ca
2+

 (CaL) channels are other types of the calcium conductors defined as L-

type Ca
2+

 channels. They include of the variety of subunits such as α1-, β- and α2-δ (48). Their 

selectivity to the Ca
2+

 ions is dependent on α1-subunit of the channel pore. Such capability is 

due to the high affinity of the pore for Ca
2+

 ions (49). Different isoforms of the α1-subunit are 
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encoded by different genes resulting in various types of the channels such as Cav1.2 

(CACNA1C) and Cav1.3 (CACNA1D) which are presented in the human SAN. It is shown 

that Cav1.2 mRNA is expressed in atrial and nodal cells, whereas Cav1.3 is distributed much 

more in the SAN comparing in atrial myocytes (50, 51).  

Cav1.2 channels basically have some specific characteristics including requirement of 

higher membrane voltage for activation, long-lasting activity performance. In addition, lower 

concentrations of L-type calcium channel blockers including phenylalkylamines, 

dihydropyridines (DHP) and benzothiazepines would be able to block the channels (52-54). L-

type Ca
2+

 channels are targeted by hormones in spite of their voltage dependent characteristic 

(55). According to the Reuters studies (56), there is a correlation between increasing in ICaL 

and the positive effect of NE on cardiac muscle contraction. Recent investigations 

demonstrated that such inotropic effect occurs due to the up-regulation of intracellular cAMP 

levels as a consequence of β-adrenergic receptor stimulation resulting in activation of cAMP-

dependent protein kinase (PKA). In agreement with these studies, the experiments on guinea 

pig cardiomyocytes substantiated increment of action potential duration (57) and ICaL (58) due 

to the catalytic subunit of PKA. 

1.2.4.1.4 NaK pump 

Sarcolemmal NaK pump plays a critical role in regulation of the automaticity by 

carrying three Na
+
 ions outward and transporting two K

+
 ions inward the cells. The activity of 

the ATPase pump decreases the rate of the spontaneous activity by producing  a net outward 

and hyperpolarizing current (INaK or Ip) (59). NaK pump is highly sensitive to the intracellular 

Na
+
 concentration; thereby there is a close relationship between the activity of the pump and 

If-derived Na
+
 ions in SAN (60). Therefore, INaK has a pivotal role in maintaining the 

maximum diastolic potential (61). 

1.2.4.1.5 K
+
 channels 

1.2.4.1.5.1 Transient outward potassium channels 

There are two different subtypes of transient outward current in the heart one of them 

passes K
+
 ions (Ito1) and other one conducts Cl

-
 ions (Ito2) (62). Distribution of three subunits 
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of the potassium transient channels has been recognized in human (50) and murine (51) SAN 

including Kv4.2, Kv1.4 and, in particular, Kv4.3. Fast activation and inactivation after 

depolarization kinetics is recognized as a specific feature of  K
+
 transient outward channels, 

therefore they play a critical role in early phase of repolarization of ventricular cells in most of 

mammals, except for guinea pig (63) and pig (64). There is a big difference in action potential 

kinetics and duration between epicardium and endocardium tissue which is attributed to the 

various density in distribution of K
+
 transient outward channels (65). 

1.2.4.1.5.2 Delayed rectifying channels 

These types of channels divided to two different components, rapid (IKr) and slow (IKs) 

components. They trend to pass the current inwardly rather than outward direction, duded as 

inward rectification. In rapid rectifying channels, very rapid inactivation of the channel occurs 

upon activation of the channel after membrane depolarization. Hence the effect of such a little 

amplitude of IKr on plateau phase of action potential would be very low. However, they play a 

significant role in late repolarization phase due to their recovery from inactivation which 

results in a huge amplitude of outward current. This outward current will be vanished 

gradually after slow deactivation of the channels (66).  

Another component of the rectifying channels which caused a lot of debates during the 

last decades was termed as slow component, IKs. The gene of the channel, called minK 

(KCNE1) was expressed on Xenopus oocytes in 1988 (67). The KCNQ1 subunit is the main 

component of delayed rectifying channels carrying the slow rectifying current in the heart. 

Thereby, they put their effect on the repolarization phase of cardiac action potential (68, 69). 

Due to the voltage gated characteristic of the channels, they activate gradually by augmenting 

membrane potential and result in increasing K
+
 current, then their slow inactivation kinetics 

leads to decrease the current progressively (70). Bounding an additional protein called A-

kinase anchor (AKAP), to the cytosolic surface of the KvLQT subunits would be able the 

channels to be regulated by PKA (71). Thereby, slow rectifying current would be increased 

following sympathetic stimulation (72) as a consequence of  stimulating their AKAP domain 

with PKA which is upregulated by β-adrenergic receptor activation (71). As a result of slow 

activation behavior, amplitude of IKs augments during the plateau phase of the action potential, 
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however it falls gradually when the membrane potential reach to 0 mV because of inactivation 

of the channel (73). 

1.2.4.1.5.3 Inwardly rectifying K
+
 channels 

There are only two subfamilies of the inwardly rectifying K
+
 channels expressed in 

heart cells (74). Kir2 channels including Kir2.1 and Kir2.2 which are responsible to IK1 (75, 

76) and Kir3 channels consist of Kir3.1 and Kir3.4 conducting IKACh. IK1 is remarkable in 

ventricular cardiomyocytes and IKACh, a receptor-activated Kir current, has been shown in 

atrial and SAN cells. In fact vagal nerve and AV node govern the heart rate by mediating the 

receptor activated channels (74). 

1.2.4.1.6 Sustained inward current 

Sustained inward current (Ist) has been found in rabbit SAN in 1995 (77). There is little 

information about the molecular structure of the channels. It is known as an inward current 

conducted by some types of channels which possess pharmacological features of voltage-gated 

Ca
2+

 channels such as reactivity to nicardipine and resistance to tetrodotoxin (TTX), whereas 

is permeable to Na
+
 ions. These channels are open in membrane potentials around –60 mV 

during depolarization phase of action potential (77). Activation of Ist around diastolic potential 

range proposes the role of sustained inward current in membrane depolarization (78). 

1.2.4.1.7 Tbx3 

Tbx3 is defined as one of the critical transcription factors of T-box family which plays 

a transcriptional repressor role during embryonic period (79, 80). It is established that 

homozygous mutations of Tbx3 in murine embryos would be lethal (81). Meanwhile, 

mammary gland abnormalities and limb deformations are reported due to the Tbx3-

heterozygous mutations. Moreover, haplo-insufficiency of Tbx3 causes the ulnar-mammary 

syndrome in human (82, 83). 

It needs to be mentioned tumorigenic effect of Tbx3 as well as its developmental role. 

There are obvious evidences regarding its expression in some types of malignancies such as 

melanoma, breast and bladder cancers, melanoma (84, 85). The origin of pacemaker activity is 

SAN and AVN in intact adult heart. One of the specific characteristics of these regions is slow 
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conduction velocity. The mechanism by which the SAN and AVN differentiate during 

embryonic period and perform their confined spontaneous activity has been the source of 

significant interest. Recently, progressive developments have been reported regarding the 

detection of new cellular mediators including transcription factors correlating with the 

differentiation regime of sinoatrial cells. Tbx3 is one of those pivotal structures which 

facilitate the SAN formation (6, 86-88). According to the Mommersteeg et al. investigations 

(88) the SAN stems from the inside region of the fetal heart. Tbx3 and HCN4 expression is 

one of the specific characteristic of the SAN region. This region is characterized by expression 

of the T-box transcription factor Tbx3 and the HCN4 ion channel gene. In addition Cx43 

which is lead to faster propagation in ventricular cells has not been expressed in embryonic 

SAN (Fig. 3). 

 

Figure 3: Schematic model of the embrionic heart presenting the various gene expression 

zones. Three-dimensional computational models of E14.5 wild-type embryos which present 

the heart lumen (red color) from two different prospective including dorsal view (top panels) 
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and right side view (bottom panels). Myocardium structure defined as Cx40-negative 

myocardium (gray areas) and Tbx3-positive myocardium (red areas) which is enclosed in the 

Cx40-negative myocardium. avc, atrioventricular canal; la/ra, left/right atrium; lsh/rsh, 

left/right sinus horn; san, sinoatrial node. (Reproduced with permission from Mommersteeg 

M.T. et al. 2007 (88)) 

1.2.4.2 Calcium clock 

According to the calcium clock theory, SAN cells possess an intracellular mechanism 

to modulate the Ca
2+

 release from sarcoplasmic reticulum (SR) which is termed local Ca
2+

 

releases (LCRs). In fact, there is a close interplay between LCR and membrane electrical 

polarization. The period between the previous peak of membrane Ca
2+

 release and the 

initiation of  sarcoplasmic Ca
2+

 release is named the local Ca
2+

 period (LCP) (Fig. 4) (35). 

 

 

Figure 4: SAN action potential traces underling the Ca
2+

 transactions. Normal action 

potential traces of SAN spontaneous activity labeled with different phases of the AP is shown 

in top red panel. Different components of the ―Ca
2+

 clock‖ are presented at the bottom. It 

should be noticed concurrency of phase 4 of AP indicating diastolic depolarization with LCR 

outflowed from the sarcoplasmic reticulum. Calcium emanating from SR increase suddenly as 

a result of Ca
2+

-induced Ca
2+

 release called whole cell Ca
2+

 transient. (Adapted from Monfredi 

O. et al. 2013 (35)) 

SR ryanodine receptors (RyRs) play an important role in creating local calcium sparks 

in sinoatrial cells (89, 90). Neural stimulation or Ca
2+

 overload has no effect on LCR. 

Generally, local Ca
2+

 release starts during the diastolic depolarization concomitant with 

dissipation of global action potential-induced Ca
2+

 transient. It is believed to lead to activation 

LCP 
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threshold of SR ryanodine receptors. Consequently, the signals called Ca
2+

-induced-Ca
2+

-

release goes up gradually which in turn leads to overall Ca
2+

 release of the SR, activating the 

Na
+
-Ca

2+
 exchanger, depolarizing the cell membrane and leading to activation of the action 

potential. Then, a new cycle begins with activation of ATPase pumps of the sarcoplasmic 

reticulum (SERCA) with replenishing the Ca
2+

 stores (Fig. 5) (35). Briefly, the reason of 

nomenclature of the SR as ―Ca
2+

 clock‖ is the periodic regime of LCR (91). 

 

Figure 5:  Schematic model of the calcium clock of the heart. RyRs and SERCA pump are 

the main components of the Ca
2+

 clock which are responsible to the release and restoring of 

the Ca
2+

 ions, respectively. (Reproduced with permission from Monfredi O. et al. 2013 (35)) 

1.2.4.2.1 SERCA 

Morphologically, the SERCA protein as a transmembrane protein is composed of 3 

different components. Its molecular weight is 110 kD. The calcium binding kinetics of the 

protein is related to the transmembrane part including 2 sites to bind Ca
2+

 ions (92).Another 

domain of the protein is cytoplasmic head. The head domain is divided to 3 separate units 

including actuator, phosphorylation and nucleotide domains. Each of them plays an important 

role in function of the pump. The actuator domain acts as a Ca
2+ 

binding site. While, junction 

of nucleotide and the phosphorylation domains facilitates ATP hydrolysis (93). SERCA is the 

most important pump in mammals facilitates refilling of the Ca
2+

 capacity of the SR (94). 

Indeed, it mediates around 92% of mouse and 70% of human cardiac Ca
2+

 removal, hence 

plays a remarkable role in heart contraction activity (94, 95). 
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1.2.4.2.2 RyR 

Ryanodine receptors (RyRs) are composed of four subtypes (96). They mediate the 

join of t-tubules and junctional SR in both cardiac and skeletal myocytes (97, 98). Mammalian 

tissues are composed of three subfamilies of ryanodine receptors. Skeletal muscles express 

ubiquitously RyR1 and heart cells are composed of RyR2 and RyR3 isoforms, however RyR3 

quantity in the heart is negligible and its function is not critical in cardiac cells function (99). 

RyRs are essential in cardiac automaticity, so that prenatal knockout of RyR2 could be fatal in 

mice embryos (100). Cardiac-specific RyR knockout mice in which RyR expression decreased 

around 50% show cardiomyopathy symptoms in addition to severe arrhythmias and 

bradycardia (101). RyR2 channels regulation is mediated by several parameters including 

Calmodulin (CaM), Ca
2+

 ions, phosphorylation, thiol oxidation and nitrosylation (102). 

1.2.4.2.3 NCX 

Na
+
/Ca

2+
 exchanger (NCX) is one of critical membrane components of the cardiac 

cells that regulates intracellular Na
+
 and Ca

2+
 concentrations. Indeed, NCX acts as a 

transporter passing 3 Na
+
 ions for outflowing 1 Ca

2+
 ion through the cell membrane (103). It is 

demonstrated even NCX contribution with the L-type Ca
2+

 current in regulating the 

subsarcolemmal Ca
2+

 concentration in up-regulated levels (104). Previous studies show the 

existence of a fuzzy space between the junctional SR and cytoplasmic layer. It could be a 

proper explanation for occurrence of calcium sparks in limited zones called ―diadic clefts‖ 

(105). Ca
2+

-induced Ca
2+

-release prominently is confined to the diadic clefts. It is concordant 

with the ubiquitous distribution of NCX in the T-tubular membranes (106). 

1.2.4.3 Multicellular spontaneous activity 

One of the important issues correspondent with proper function of the SAN is 

coordination of the dominant pacemaker cells with the surrounding tissue which is termed the 

source-sink relationship. Nonetheless, how the depolarizing ―source‖ current generated by the 

SAN propagates and activates the surrounding atrial tissue (current ―sink‖) remains to be 

resolved. It has been corroborated that the SAN is not functionally and anatomically 

continuous with the surrounding myocardium, but rather areas of functional or anatomical 

conduction block exist, providing discrete pathways at which SAN electrical pulses pass 
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through to activate the atrial myocardium (107). Previous studies in rabbit, canine, and human 

SAN have demonstrated the presence of such functional block and discrete exit pathways 

(108-110). Such source-sink mismatch facilitates electrical insulation of the SAN from the 

surrounding atrial myocardium. Histological studies over the years have failed to confirm 

proof of insulating fibrotic sheath surrounding the SAN in the human heart (111, 112) which 

could increase the probability of the existence of a functional barrier rather than anatomical 

mismatch. However a recent study showed that the SAN border is composed of fibrosis, fat, 

and/or discontinuous fibers between SAN and atria (113). It remains that various ion channel 

and gap junction expression in SAN would be extremely critical in performance of pacemaker 

cells (114). Therefore, three-dimensional architecture of SAN provides a complex structure 

comprised of central and peripheral or ―paranodal‖ components composed of variety of ion 

channels and gap junctions. It is shown that there is a significant difference between electrical 

characteristics and conduction properties of central and peripheral cells (Fig. 6) (31). 

 

Figure 6:  Different electrical features and various distributions of ion channels and gap 

junctions between central and peripheral cells of the SAN. Lack of the fast activating Na
+
 

channels in the central cells of the sinoatrial node disposes them to have a slow upstroke 

velocity than peripheral cells, in addition distribution of slow propagating connexin proteins 

like Cx45 decrease the conduction velocity of the wave propagation in the SAN. (Reproduced 

with permission from Park D.S. et al. 2011 (115)) 

Regarding the experimental and computational studies, heterogeneity of the pacemaker 

cells gives an eminent capability to the SAN to perform the normal pacemaking activity and 
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impulse conduction. To date, two different hypotheses have been proposed to explain the 

electrical machinery of the SAN. Boyett and colleagues proposed the ―gradient model‖ 

indicating that AP properties show a gradual transition from the central to peripheral SAN 

(116), whereas some of the other researchers proposed  ―mosaic model‖ suggesting that there 

are only a few different types of nodal cells which are interspersed with each other and with 

atrial cells (117). Apart from the cell heterogeneity model, it is well known that central SAN 

APs show slower rate of upstroke velocity, longer AP duration (APD), and lower potential 

level of negative maximum diastolic in comparison with peripheral SAN and atrial APs (118). 

These AP changes are contributed to the differential expression of several ion channels 

between these areas, as cited above (114). 

1.2.4.3.1 Gap junctions 

Conduction of impulse among heart muscles and consequently their coordinated 

contractions is highly dependent on the heart cells electrical association (119). 

Gap junctions are responsible for electrical communication among heart cells. These 

types of junctions are made up of a network of membrane proteins complexes named as 

connexons (120). The counterpart complexes from adjacent cells form head-to-head 

connections with each other, and therefore create gaps with 2-3 nm of diameter between every 

two neighbor cells. There are six protein subunits in each connexon that surround a central 

aqueous pore which is 1.5-2 nm in diameter. This pore is wide enough to allow ions, second 

messengers, and any molecule smaller than ~1 kDa to pass through and reach the cytosol of 

the neighboring cell (119). It has been shown that Cx43 (the principal connexin of the working 

myocardium) is not expressed at the center of the SAN while  there is expression of Cx45 and 

Cx30.2, however at the periphery of the SAN, Cx43 as well Cx45 is found (121) . It has been 

shown that in co-cultured cardiac fibroblasts (CFs) and cardiomyocytes (CMs) obtained from 

neonatal rat ventricles, both Cx43 and Cx45 are expressed (122). 

1.2.5 Pathology of the rhythm 

One of the congenital or acquired diseases of the SAN is sinus node dysfunction which 

is also called sick sinus syndrome (SSS). The clinical symptoms of SAN dysfunction include 
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bradycardia, pause, and arrest of sinus as well as tachy-brady syndrome. In addition, patients 

with permanent pacemaker implantation usually suffer from SAN dysfunction (123). It has 

been shown that sinoatrial node remodeling leading to heart failure and fibrillation of atrium is 

a potential factor involved in the formation of SAN dysfunction in some patients (124-126). 

Although SAN dysfunction is usually developed in older adults, it can occur at any age, as 

well. In fact, old age in addition to a couple of cardiovascular diseases is considered as risk 

factors for the formation of SA node dysfunction. Indeed, it has been shown that there is a 

positive correlation between the prevalence of cardiovascular disorders due to aging and the 

prevalence of clinical symptoms of sick sinus syndrome (127). 

1.3 Pacemakers 

Before the middle of 20th century, the mortality rate of patients with complete heart 

block was dramatically high (128). Although typical therapeutic approaches have shown 

encouraging results, numerous limitations remain to be solved (129). 

1.3.1 Electronic pacemakers 

It is well understood that the heart pacemaker cells are trigger the normal heartbeat, 

maintain the blood circulation, and adjust the rhythm of heart muscles contractions (130). Any 

disease that disables or damages pacemaker cells could result in circulatory collapse which 

must be compensated by the implantation of artificial electronic pacemaker (131). To date, a 

huge number of patients in the world are candidate for the treatment with artificial cardiac 

pacemaker devices annually, thereby artificial pacing (ACP) is considered as a safe and proper 

treatment strategy. Even though, patients treated by permanent pacemakers (PPM) and 

implantable cardioverter-defibrillators (ICD), associated or not with cardiac resynchronization 

therapy (CRT), show encouraging prognosis, cardiomyopathy has been reported in some cases 

due to the artificial anti-physiological ventricular activation induced by the ACP (132). In 

spite of prominent achievements in electronic pacemaker approaches, there are important 

drawbacks which need to be solved such as insufficient autonomic reactions, necessity for 

changing the battery due to its limited life, infections that might arise from the presence of 

pocket/lead, likely fractures of lead, electromagnetic interference, pacing-induced remodeling, 



 

22 

 

and troubles in dealing with pediatric patients (133). These complications highlight the 

interference of alternative methods compatible with the normal and physiological condition. 

1.3.2 Biopacemakers 

Recent studies on biological pacemakers have provided promising results to prevail the 

shortcomings of the electronic pacemakers. The SAN as a natural biopacemaker is an 

appropriate template to fabricate the biological pacemakers, since all types of the essential 

channels and transporters to produce the electrical impulse in mammals’ heart are included in 

the SA node myocyte membrane. Although direct applicability of gene/cell therapy to 

arrhythmia prevention and treatment is questionable yet, there are encouraging developments 

in gene and cell transfer techniques promising the feasibility to generate pacemaker cells and 

related conduction system to trigger and propagate the electrical impulses through the heart 

(129). The main approach in designing the biological pacemakers is efficiency in generating 

the heart beats and an optimal safety for the patients, even if the native SAN is not a perfect 

pacemaker necessarily. The final aim is to produce functional pacemaker cells by generating a 

net inward current during diastole. One of the methods is gene overexpression for specific 

proteins, however there are some other alternatives like overexpression of transcription factors 

to reprogram cardiac myocytes towards induced SAN cells (134) (Fig. 7). 

As mentioned above, the ratio of the net inward and outward currents determine the 

rate of diastolic depolarization. Indeed, any increase in outward currents due to the inward 

rectifier current IK1 decreases the rate of the spontaneous activity. Therefore, in atrial cells, a 

constant inwardly pacemaker current will induce the spontaneous activity in a faster rate 

comparing to the ventricular cells, considering the lower IK1 environment of the atrium versus 

ventricle. This is applicable in both single cells and multicellular preparations. In multicellular 

patterns, rate of pacemaker activity in pacemaker cells is affected by the electrical 

(hyperpolarizing) load generated by surrounding non-pacemaker syncytium (134). Ideal 

biological pacemaker possesses some characteristic including: 1) stability in generating 

spontaneous rhythm for whole life of the patients; 2) independency to the external 

management such as battery or electrode replacement; 3) effective competition in direct 

comparison with electronic pacemakers; 4) tolerance against inflammation/infection; 5) non-
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neoplastic; 6) capability to make rapid changes in heart rate in response to the physiological 

changes of the body condition; 7) generate electrical pulses propagating through an optimal 

pathway of activation to maximize efficiency of contraction and cardiac output; 8) possessing 

no arrhythmic potential; 9) performing a permanent effect rather than temporary palliation 

(129).  

 

 

Figure 7: Different gene therapy-based strategies. There are two different gene-therapy 

approaches including pacemaker function-related genes overexpression (left) and transcription 

factors overexpression (right). (Reproduced with permission from Boink G.J. et al. 2015 

(134)) 

1.3.2.1 Gene therapy 

Gene therapy is applied to remove a genetic problem or to promote the therapeutic 

process in target cells. To this point, related genes included in biological vectors (e.g. plasmid 

DNA or sRNA) are transferred to cells, tissues or organs (135). Gene therapy is applicable 

through different methods such as inducing the overexpression of a certain molecule, 
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manipulating the transporting paths of the host cells by means of decoy molecules, 

deactivating processes by the use of dominant negative molecules or small RNAs. It is also 

performed through the fixation of genes which have been affected by mutations/deletions or 

even by introduction of the genetically modified donor cells (136). One of the considerable 

differences between gene therapy and pharmaceutical treatment is that the gene therapy is able 

to exclusively change the disease mechanisms while pharmaceutical methods directly aim the 

symptoms and need long-term treatment. However, it should be taken into consideration that 

applying gene therapy with the goal of simulation of growth signaling pathways may increase 

the risk of overgrowth and tumorigenesis (137). One of the other aspects of gene therapy 

usage is in the field of biopacemaker generation. Some benefits of using gene transfer to 

generate biomedical pacemakers are high consistency of the generated pacemakers with 

sympathetic and parasympathetic stimuli, capacity of forming multiple initiation sites within 

the heart tissue, and permanent effect during the whole life-time. Related preliminary studies 

were mostly done in the area of inducting a single gene created according to the individual 

SAN ion channels (134). 

The genes expressing HCN channels were transferred to pigs and dogs by means of 

adenovirus and the result was the generation of a biopacemaker which was sensitive to β-

adrenergic modulation. However, significant variations of heart beating rate was diagnosed in 

biopacemaker rhythms which is considered as a disadvantage of this approach (138, 139).  

Adenoviral vectors possess strong capability in being transferred to cardiomyocytes, however 

these vectors can induce only transient gene expression, hence there is doubt about their 

efficacy as a potential therapeutic tool (140). Apart from adenoviral vectors, lentiviral vectors 

obtained from the human immunodeficiency virus-1 (HIV-1) are also potent to be introduced 

to cardiomyocytes (141, 142). However, a significant advantage of lentiviral comparing to 

adenoviral vectors is that lentiviral vectors are able to be merged with target cell genome. This 

exclusivity of lentiviral vectors allows them to insert long-term gene expression which makes 

them to be considered as a suitable candidate in treatment of chronic cases such as SAN 

dysfunction (143). 
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Generation of biological pacemaker function is possible through three approaches 

including increase of neurohormonal activity on heart rate (143, 144), decrease of the current 

of repolarization (145), and elevation of diastole inward current (146). 

1.3.2.2 Cell therapy 

Because of the lack of clear-cut successes with viral vectors for gene therapy in 

particular feeling of dismay associated to the transmission of viral based illnesses, other 

strategies of creating biological pacemakers have been revised (147). 

To this point, either of  human embryonic stem cells (hESCs) (which need to be 

differentiated into a pacemaker cell line through cell culture) (148), or adult human 

mesenchymal stem cells (hMSCs) could be used (149, 150). The main limitation of using 

hMSCs in the cell cultures is the need to prescribe the immunosuppressive medications in the 

animals and this is also a general problem with hESCs. Other issues which should be 

considered are the risk of evolving neoplastic cells or generation of the other cardiac cell types 

like ventricular myocytes rather than intact pacemaker cells (147). In contrary to hESCs, 

multipotent hMSCs do not have the essential subunits of ion channel and therefore are not able 

to produce cardiac action potential, however, the presence of gap junctions which are built up 

of Cx43 and Cx40 allow hMSCs to develop pathways for the flow of electric current among 

neighbor cells (151). 

The adult heart has been known as a postmitotic organ for years (152, 153). In fact, it 

was believed that heart endothelial, smooth muscle, and fibroblast cells could undergo mitosis 

whereas myocardium cells are fully differentiated and thus do not have the capacity of 

proliferation any more (152-154). However, it has been revealed that the adult heart include a 

population of stem and progenitor cells which are capable of proliferating to new 

cardiomyocytes (155-159). 

Cardiac cell therapy (CCT) is a newly introduced technique. ESCs can differentiate 

into cardiomyocytes. However, using human ESCs is complicated due to a couple of issues. 

First of all, since human ESCs must be derived from conception products, ethical permission 

is required. Secondly, immune system should be repressed as ESCs have allogenic effect. 

Thirdly, following the graft of ESC-derived cardiomyocytes into the host myocardium, there is 
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a high risk of grafted ESCs death due to ischemia. Fourthly, it has been shown that human 

ESCs are able to develop to teratomas. Taken together all the above difficulties, the necessity 

of applying undifferentiated cells, instead of ESCs, for CCT is evident. Considering that adult 

stem cells can be used as autologous counterparts and show plasticity nature, these cells could 

be interesting candidates. However, it is not yet confirmed and there are controversies 

concerning this idea (160-162). 

The most challenging issue in the therapeutic approach is to identify the ideal cells. 

Some of the key points which have to be taken into account are: 1) accessibility and 

capacitance of the source of cells 2) the period of time needed between yielding and 

differentiation of cells; and 3) consistency and efficiency of cells in the host organ (163). 

In order to reconstitute the damaged myocardium following infarcts in experimental 

animals, several types of cells have been used including embryonic stem cells, fetal myocytes, 

skeletal myoblasts, endothelial progenitor cells (EPCs), and mesenchymal or hematopoietic 

stem cells derived from bone marrow (164). 

Although embryonic stem cells are identified as the most favorable and appropriate 

source for cardiac cell therapy approaches, their disposition to generate teratomas is one of the 

important limitations for their use. Meanwhile, there are a lot of ethical controversies to use of 

human source embryonic cells in the field of clinical medicine. Furthermore, the necessity of 

using immunosuppressive medications in the patients treated by this technic is one the major 

drawbacks (165). To date, it is supposed that hematopoietic stem cells (HSCs) are the best 

option in terms of versatility which has been provided new insight into the subject of cardiac 

cell therapy. Hence, adult HSCs may possess the intrinsic potency to develop the new cell 

lines as well as embryonic stem cells.  

In spite of all endeavors, achieving the ideal approach to cellular therapy for 

myocardial injury is still a matter of debate (163). 

1.3.2.3 Re-expression of Tbx3 

In embryonic, post-natal, and adult heart Tbx3 is expressed in any member of the 

conduction system except from the Purkinje fibres (166). What Tbx3 does in the embryonic 

heart is that it inhibits the differentiation of sinus node and atrioventricular bundle into 
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myocardium and therefore allows these cells to become pacemaker (87, 167). One of the other 

roles of Tbx3 is that, in its high dosage, it promotes the functional development and post-natal 

homoeostasis of the heart conduction system (168). However in vivo culture, it has been 

shown that abnormal function of Tbx3 in embryonic atrial myocytes causes Gja5 and Gja1 

inhibition, HCN4 stimulation, and the development of pacemaker in abnormal places within 

atrial myocardium (87). Tbx3 is able to repress the gene expression of working myocardium, 

stimulate DD, change the basic mechanism of spontaneous function, and reduce the 

conduction velocity. In addition, Tbx3 inhibits the conduction of INa and IK1 among 

neighboring cells. Altogether, it can be concluded that Tbx3 has the capacity to change 

working myocardial phenotype to a pacemaker phenotype and thus scientists can benefit from 

this property of Tbx3 in developing biological pacemaker. The heart rate in HCN channel 

gene transferred cases is lower than the optimal rate. This suboptimal function may be due to 

the mismatch between the HCN over-expressed cells and the normal surrounding cells. The 

best solution to bypass this mismatch could be the expression of Tbx3 and HCN or other 

pacemaker genes, at the same time (34). 

1.3.2.4 Monolayer of neonatal cardiomyocytes as a biopacemaker model 

Mammalian cardiomyocytes mostly terminate their differentiation after birth. Fully 

differentiated cardiomyocytes are not able to proliferate any more although they can keep their 

hypertrophic growth during the whole life-time. Cardiomyocytes undergo synchronized 

changes during differentiation. These changes include a decrease in the expression level of cell 

division and embryonic markers in CMs (169), an increase in the expression of CM 

differentiation genes; and development of sarcomeres which are involved in the formation of 

the myoskeletal system in CMs. Other compartments involved in establishment of mechanical 

and electrical communication between adjacent CMs are intercalated discs, which consist of 

gap junctions, adherents junctions and desmosomes (170, 171). After birth, heart tissue 

becomes stiffer through an increase in the level and cross-linking of the extracellular matrix 

(ECM) proteins (172-174). During the first 1-2 weeks of murine postnatal life, heart 

undergoes a temporary regenerative phase, before the reduction in the DNA-synthesis of 

cardiomyocytes (175, 176) and  this regenerative period disappears during the first week after 

birth (177). In addition, appearance of binuclear cardiomyocyte happens in mice and rats 



 

28 

 

during early postnatal life (169, 176). Accordingly, neonatal rat ventricular myocytes 

(NRVMs) are ideal models for in vivo studies of heart cellular electrophysiology. It has been 

shown that following a confluent monolayer culture of NRVMs, these cells undergo 

spontaneous beating for up to 40 days (178, 179). Interestingly, monolayer culture of NRVMs 

show a more efficient electrophysiological property comparing to isolated single cells which 

could be due to the physical communication among neighboring cells and wave front 

distribution (180). 

1.4 Phorbol 12-myristate 13-acetate (PMA) 

As mentioned above, there is a clear link between Tbx3 and expression of key players 

of the membrane clock and some studies suggested that PMA could interact with Tbx3 as we 

will discussed below.  

1.4.1 PMA link with Tbx3 

There are clear evidences regarding the significant level of Tbx3 expression with PMA 

in human PNT1A and MRC-5 cell lines. The results confirmed that PMA significantly 

increases Tbx3 expression as a consequence of upregulating some of the AP-1 subfamilies 

proposing the role of PMA signaling pathway in Tbx3 modulation which is correspondent 

with increment of Tbx3 in both of the tested cell lines (181). 

1.4.2 Structural and physiological features 

Molecular construction of phorbol esters are built of the tetracyclic diterpene carbon 

pivot termed as tigliane which is the alcohol part of the phorbol esters. Tigliane is composed 

of 4 components including A, B, C, and D subunits. These compounds are responsible for 

hydroxylation of the basic structure at bonding positions to acid moieties (182). PMA is 

known as an activator of the certain types of protein kinase C (PKC) such as the Ca
2+

-

dependent or classical PKC (cPKC) (α, βI, βII and γ) isoforms as a Ca
2+

-dependent subtypes 

and the novel PKC (nPKC) isozymes (δ, ε, η, θ and µ) which have no Ca
2+

-binding domain. 

The novel isozymes are regulated by phosphatidylserine (PS), 1, 2-diacylglycerol (DAG) and 

unsaturated fatty acids instead of Ca
2+

 ions (183). Indeed, PMA mimics DAG role to activate 
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two of the three protein kinase C isozymes via the tandem cysteine-rich repeat of their C1 

domains (184, 185). It is well identified that, PMA increases target-gene expression of a 

transcription factor family called the activator protein-1 (AP-1) (186, 187). AP-1 transcription 

factors (Fos, Fra-1, Fra-2, FosB, c-Jun, JunB and JunD) mediate some cell signaling 

procedures like differentiation, proliferation, cellular malignancy and apoptosis (188, 189). 

PMA can activate AP-1 factors by mediating the PKC dependent transcriptional activation. 

According to the Kieser et al. studies (190) performed on NIH3T3 cells, the JunB promoter 

targeted by the PKC-θ isoform can directly target the JunB promoter. There is another report 

which presents PKC-ε upregulatory effect on JunB via the mitogen-activated protein kinase 

signaling pathway (191). Hence, PMA regulating mechanism of AP-1 is strongly dependent 

on the different PKC isoforms (181).  

PMA governs also some other transcription factors like ETS and GATA family 

through the MAP kinase pathway (192, 193). 

Recently, it has been demonstrated that PMA differentiates Mesenchymal stem cells 

(MSCs) to the cardiogenic cells through the PKC pathway. The sudden death ratio in infarcted 

rats which were grafted by these treated cells decreased significantly (194). 

1.4.3 Pathophysiological effects 

There are several reports regarding the detrimental effects of phorbal esters. It was 

shown that 12-O-Tetradecanoyl-phorbol-13-acetate (TPA) has tumorigenic properties due to 

the alteration of the biochemical pathways correspondent to the proliferation of the cells 

following the augmentation of PKC and ornithine decarboxylase (ODC) activity, increment of 

DNA synthesis, prostaglandin synthesis, and by oxidative stress generation (195). 

According to the investigations on blood cells, PMA is defined as a mitogen of B type 

cells which leads to chronic lymphocytic leukemia (CLL) (196,197) in which PMA 

differentiates B cells independent of a T cells (197). Murine skin cells treatment with TPA has 

shown to cause a series of biochemical alterations such as sustained epidermal hyperplasia, 

formation of dark basal keratinocytes, formation of free radical oxygen in epidermis, 

augmentation of epidermal cyclooxygenase and ODC activity and lipoxygenase activities 

(198). Collagen production increased in intestinal fibrosis model mice treated with PMA due 
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to the  activation of nuclear factor-kappa-B (NFκB) through the PKC mediating manner (199). 

PMA conditioning of A549 cell lines showed a significant increase in producing inflammatory 

factors like Interleukin 6 IL-6 (200).  

Furthermore, there are various reports related to the toxicity symptoms in the animals 

consuming the plants enriched of ester components. In addition, ester components has been 

used against different species of mollusks (182). 

1.5 HCN blockers 

The crucial role of the funny current in generating the diastolic depolarization phase of 

the action potential in SAN makes HCN channels interesting pharmacological targets. It is 

supposed that the HCN blockers are able to reduce the heart tissue damages as a result of 

oxygen insufficiency. There is several types of HCN blockers termed as specific ―heart rate 

lowering‖ drugs used in experimental and therapeutic treatments (201). Ivabradine has been 

considered as a unique drug with least side effects and highest selectivity to the channels (43). 

Ivabradine blocks the open channels, since its binding sites are exposed in opening phase of 

the channel (202). In addition, the use-dependent manner of the drug predisposes it as an 

excellent candidate in therapeutic approaches (203).   

1.6 Project hypothesis 

Our hypothesis is that PMA can favor re-expression of Tbx3 inducing an increase in 

HCN expression thus augmenting the membrane clock in cultured neonatal cardiomyocytes. 

The increased membrane clock activity would lead to increased and stabilized rate of 

spontaneous activity with greater synchronization in multicellular monolayers. 
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Abstract 

The study of collective behaviour of interconnected elements is important to the 

general theory of reaction-diffusion systems and is applicable to different areas of science 

from physics to physiology. The cardiac tissue is such a biological system with interconnected 

cells responsible for spontaneous and propagating electrical activity crucial to the normal heart 

function. Spontaneous electrical activity, designated the ―membrane‖ or ―voltage‖ clock, is the 

result of a delicate balance between inward and outward currents resulting from the activity of 

several voltage-dependent ion channels. Primary cultures of isolated neonatal ventricular 

cardiomyocytes revealed the existence of both pacemaker (PM) cells and resting excitable 

cells. The transcription factor T-box3 is central to the developing sinus node and 

atrioventricular unit, allowing these cells to develop a pacemaker phenotype. Re-expression of 

Tbx3 has been shown to be induced by Phorbol 12-myristate 13-acetate (PMA) in breast 

cancer cells. Here, we show that chronic exposure to PMA can modulate the multicellular 

spontaneous activity of neonatal cardiomyocytes through expression of T-box3 leading to 

higher expression of HCN4 and decreased conduction velocity. The increased activity of the 

voltage clock yields faster rate and more stable spatial-temporal spontaneous activity but 

decreased synchronization of activation in our experiments. Simulations confirm the 

synergistic role of increase cellular spontaneous activity rate and decreased intercellular 

coupling of sample mean rate of activity. Although decreasing the intercellular coupling helps 

spontaneous activation it has a deleterious effect on synchronization. This knowledge could be 

important in the process of creating optimized and robust biological pacemakers, an 

alternative to electronic pacemakers in the treatment of bradycardia. 

Introduction 

The study of collective behaviour of interconnected elements is important to the 

general theory of reaction-diffusion systems and is applicable to different areas of science 

from physics to physiology (1-4). Diverse behaviours can be observed in networks of 

connected elements including a variety of synchronous regimes, pattern formation, spiral wave 

propagation, and spatial-temporal chaos. The cardiac tissue is such a biological system with 
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interconnected cells responsible for spontaneous and propagating electrical activity crucial to 

the normal heart function. Spontaneous activity can be physiologically necessary (sinoatrial 

node as the primary pacemaker site, atrioventricular node, and Purkinje fibers) (5) or 

detrimental (ectopic activity leading to arrhythmia genesis) (6). Spontaneous electrical 

activity, designated the ―membrane‖ or ―voltage‖ clock, is the result of a delicate balance 

between inward and outward currents resulting from the activity of several voltage-dependent 

ion channels (5). An increase in membrane potential (slow diastolic depolarization) above 

threshold initiates an action potential through the sequential opening and closing of membrane 

ionic channels, generating membrane currents that trigger contraction of the cell (7). HCN 

forming the funny current (If), L-type Ca
2+

 channels, T-type Ca
2+

 channels, and delayed 

rectifier K
+
 channels are among the ion channels expressed at the cardiomyocyte plasma 

membrane that contribute most to the membrane clock (8). If is believed to be a key player in 

pacemaker driving capabilities (9). In the intracellular space, Ca
2+

 cycling contributes to 

activation through Ca
2+

 release and reuptake from the sarcoplasmic reticulum and membrane 

flux via the Na
+
/Ca

2+
 exchanger, and has been designated the ―calcium‖ clock (10).  

An example of physiologically-relevant system is the monolayer cultures of neonatal 

rat ventricular myocytes (NRVMs) that is often used as experimental models to study 

multicellular cardiac electrophysiology (11-14). These monolayers usually exhibit electrical 

spontaneous activity (15-17), defined as the ability to generate action potentials without 

external (electrical, mechanical, or chemical) stimulations. Primary cultures of isolated 

NRVMs revealed the existence of pacemaker (PM) cells and resting excitable cells (18). Thus, 

it is highly probable that monolayers of NRVMs are heterogeneous networks of these two cell 

types. The spontaneous beating rate in these cultures is reportedly modulated by plating 

density (19). Understanding the impact of density and spatial distribution of PM cells on 

automaticity of the global cardiac network is highly relevant to several clinical situations, such 

as the reliability of heart activation by the sinoatrial node (SAN) and the initiation of 

arrhythmias by cells susceptible to delayed afterdepolarizations. When the heart is being 

activated, the SAN PM cells act as initial depolarising current sources and the surrounding 

myocardial cells as related sinks. Considering the electrotonic depression of the SAN by 

electrical connection with the myocardium, the number of PM cells must be large enough to 
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initiate this activation (20, 21). We recently showed that a clear non-linear dependency of 

spontaneous multicellular activity (occurrence and amplitude of spontaneous period) on the 

spatial pattern of pacemaker cells exists (20).   

As a matter of fact, the spontaneous rate and minimum diastolic potential of the SAN 

dramatically increase when it is isolated from atrial tissue (22). This knowledge is used in the 

process of creating biological pacemakers, an alternative to electronic pacemakers in the 

treatment of bradycardia (23). Indeed, to create a sustained PM function in canine ventricle, 

xenografted cell–containing fluid injected in the left ventricular myocardium must contain at 

least 700,000 adult human mesenchymal stem cells, and consist of ~40% PM cells (24). This 

is a clear example of where the number of PM cells is important, and must be locally high 

enough to activate the surrounding tissue.  

Monolayer cultures of NRVMs may provide a useful biological tool to investigate the 

role of PM-cell–cluster patterns on automaticity and therefore gain better understanding of 

clinical issues, including creation of biopacemakers (25). However, the seeding process is 

random and the final spatial distribution of the 2 cell types is unknown. Experimental 

assessment of density and spatial distribution of PM cells within a monolayer remains an 

unsolved problem. Mathematical modelling may help gain insight into the complex source–

sink mechanism behind the effects of PM cell clusters on the spontaneous behaviour of the 2D 

network. Rather than concentrating on PM cell aggregate spatial characteristics, simulation 

studies on monolayers of excitable cells have predominantly focussed on ion channel 

properties (26, 27), effects of coexistence of non-excitable cells (17, 28, 29), intercellular 

electrical connectivity (30-33), or sink (cells clamped at steady state potential) and break 

(regions with no conductivity) densities (34).  

T-box factor 3 (Tbx3) is a transcription factor required for development of many 

tissues. Tbx3 is specifically expressed in components of the cardiac conduction system at 

different development stages (35). In the embryonic heart, Tbx3 suppresses differentiation into 

excitable contractile cardiomyocytes in the developing sinus node and atrioventricular unit, 

allowing these cells to develop the pacemaker phenotype (36, 37). Moreover, ectopic 

activation of Tbx3 in embryonic atrial myocytes in vivo resulted in induction of HCN4, and 



 

36 

 

the formation of ectopic pacemaker sites within the atrial myocardium (37). Tbx3 can also 

reprogram differentiated adult cardiomyocytes to a phenotype with pacemaker properties (38).   

Re-expression of Tbx3 induced by Phorbol 12-myristate 13-acetate (PMA) has been 

shown to occur in breast cancer cells (39). On the other end, PMA applied to cardiomyocytes 

is known to induce the expression of immediate early genes (40) and secondary response 

genes such as atrial natriuretic factor (41), β-myosin heavy chain (42, 43), and α-skeletal actin 

(44). PMA exposure also increases the overall cell protein expression (45) yet decreases the 

expression level and function of the sarcoplasmic reticulum Ca
2+

-ATPase in NRVMs (46-48). 

PMA exposure for 48–72 h increased the membrane current through the Na
+
/Ca

2+
 exchanger 

but downregulated the transient outward and delayed rectifier K
+
 currents (49). 

Here, we show that chronic exposure to PMA can modulate the multicellular 

spontaneous activity of neonatal cardiomyocytes through expression of Tbx3 leading to higher 

expression of HCN4 and decreased conduction velocity. The increased activity of the voltage 

clock yields faster rate and more stable spatial-temporal spontaneous activity. Simulations 

confirm the synergistic role of increase cellular spontaneous rate and decreased intercellular 

coupling of sample mean rate of activity. Although decreasing the intercellular coupling helps 

spontaneous activation it has a deleterious effect on synchronization.  

Methods 

Cell isolation and culture 

The use and care of the animals in these experiments were approved by Montreal Heart 

Institute Animal Research Ethics Committee and were concordant with the Canadian Council 

on Animal Care guidelines. 1- to 3-day-old Sprague-Dawley rats were decapitated. Isolation 

was done following the protocol of the neonatal cardiomyocyte isolation kit (Worthington, 

Lakewood, NJ, USA). In brief, beating hearts were extracted immediately and immersed in 

ice-cold Ca2+- and Mg
2+

-free Hank’s balanced salt solution. Ventricular muscle was excised 

and tissue was minced on ice into 1–3mm pieces. The mixture was exposed to enzymatic 

digestion (50 μg/mL trypsin and 136 μg/mL collagenase) to release cardiomyocytes. Isolated 

cells were counted at a density of 3 × 10
6
 cells mL

−1
. After isolation, cells were plated at a 
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density of 9 × 10
5
 cells per 20 mm diameter well glass-bottom culture dishes (D29-20-0-N, In 

vitro Scientific, Sunnyvale, CA) pre-coated with 0.2% porcine-derived gelatin (G1890, Sigma-

Aldrich, Oakville, Ontario, Canada) and 0.00125% fibronectin solution (F1141, Sigma-

Aldrich). Cells were cultured in an incubator (37°C, 5% CO2) in phenol-free Dulbecco’s 

modified Eagle’s medium (DMEM, 319-050-CL, Wisent, St-Bruno, Canada) with 1% 

penicillin/ streptomycin (P/S, 450-201-EL, Wisent) and 10% foetal bovine serum (FBS, 

SH30396.03, Fisher Scientific). After 24h foetal bovine serum was removed of the culture 

medium and 1μM Phorbol 12-myristate 13-acetate (PMA, P8139, Sigma-Aldrich) was added 

for samples in PMA group. The dishes were incubated for an additional 48h. Samples for the 

control group (CTL) were also cultured in parallel without PMA. Herein, the specified time 

points (either at 24h and 48h) corresponds to the time following complete removal of FBS and 

start of chronic exposure to PMA in the PMA group. 

Videomicroscopy 

Method and analysis of videomicroscopy (VM) study was done as previously 

described (50). Here recordings of 30 s duration after changing to DMEM without PMA were 

performed at two time points specifically at 24h and 48h post PMA, to determine the mean 

spontaneous frequency (<freq>) and temporal standard deviation of interbeat period (std(T)). 

Moreover, acute effect of ivabradine (SML0281, Sigma-Aldrich) dissolved in pure 

dimethyl sulfoxide (DMSO, 4-X-5, ATCC, Manassas, VA) with the concentration of 3μM 

(51) was tested to evaluate the spontaneous frequency variations in PMA-48h group. 

Optical mapping setup 

For the optical mapping experiments, the membrane potential dye FluoVolt (F-10488, 

Life Technologies, Carlsbad, CA) was used to stain cells for fluorescence imaging 

experiments. To prepare the solution, 5 μg of FluoVolt™ dye 1000X (Component A) was 

dissolved in 50 μL of 100X PowerLoad™ concentrate (Component B) which were supplied 

with the kit. The dissolved dye was added to 5mL DMEM. Post-cultured dishes were loaded 

with 200 μL/well of staining solution and incubated for 30 min. The dye was then washed out 

with DMEM and replaced with fresh DMEM. 
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Mapping experiments were performed with an in-house setup using a high-speed CCD 

camera system (80 × 80 pixels, RedShirtImaging, LLC, Decatur, GA). The dye received 

filtered excitation light from a quartz tungsten halogen lamp (Oriel Instruments, Stratford, 

CT). The filters used for excitation and emission were λexcitation ≈ 480 ± 20 nm (Chroma 

Technology, Bellows Falls, VT) and λemission ≈ 535 ± 25 nm (Semrock, Rochester, NY), 

respectively. The system was set to image a field of view of ~4 cm
2
 and the acquisition frame 

rate was 500 Hz for all experiments. Optical mapping (OM) acquisitions were acquired in both 

spontaneous and point stimulation mode to evaluate spontaneous frequencies (SF), activation 

patterns, voltage threshold, and conduction velocity (CV). The recording period for each 

acquisition was 15 s.  

Stimulation setup and protocol 

Point stimulation was done for evaluation of conduction velocities. The point electrode 

consisting of a 1 mm diameter wire (AS633, Cooner wire, Chatsworth, CA) inserted inside a 

syringe needle which serves as a ground. The wire tip was the anode and the syringe tip the 

cathode. The programmable voltage source and setup used has been previously described (52).  

Pacing at CL of 500, 750, 1000, 1250, and 1500 ms was done at 48h post-PMA for both CTL 

and PMA groups after positioning the electrode at the border of the sample with a voltage 1.5 

x threshold. 

Optical mapping data analysis 

A custom analysis software was developed in Matlab (R2008, MathWorks, Natick, 

MA). Each video file was first spatially (gaussian lowpass filter with size of 7 × 7 pixels and 

standard deviation of 2.5) and temporally (110 Hz lowpass filter, 60 Hz band-stop filter, 5-

sample window moving average smoothing) filtered. Then a mask was applied to only 

consider the pixels with action potential optical signal. The first time derivative of 

fluorescence (dF/dt) was used to detect activation times (s), propagation times (ms, activation 

times minus by the time of 1
st
 activation site of the beat) and spontaneous cycle lengths (ms). 

CV (cm/s) was estimated by Bayly’s method (53).  
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Further analysis was performed in post-processing. The activation delay (δact in s/cm), 

characterizing how neighboring sites are synchronized, was assessed by calculating the inverse 

of the conduction velocity in spontaneously beating monolayer. To evaluate the spatial 

stability of the first initiation site, shift of the first initiation site was calculated by Euclidian 

distance on a beat-to-beat basis for each recording. First initiation sites were defined as 

centroid of pixel clusters having the lowest activation times for a given beat. Furthermore, to 

characterize the stability of the propagation pattern, the average interbeat propagation pattern 

difference (ms) was also calculated from the beat-to-beat difference of the normalized 

activation maps (activation maps where the mean of each map was substracted).  

qPCR method 

For quantitative real-time PCR, total RNA from freshly isolated CMs was extracted 

using RNeasy Mini kits (Qiagen) from 48h post-PMA and related control samples. The purity 

and concentration of RNA were assessed using a Nanodrop spectrophotometer. Next, reverse 

transcription was performed using iScript kits (Bio-Rad) according to manufacturer’s 

instructions. Primers (Table 1) and 1μg of cDNA were used for PCR amplification in a final 

volume of 20 μl. qPCR was performed on a Stratagene MX3000 system using iTaq fast Syber 

Green with ROX (Bio-Rad) and values were normalized to the geometric mean of 

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) Gapdh, hypoxanthine guanine 

phosphoribosyl transferase (HPRT) and Beta-2 microglobulin (β2M) expressions. 

Statistical analysis 

All data reported are means±SEM. Statistical significance was determined for all 

individual data points and fitting parameters using one-way ANOVA unless stated otherwise. 

Analyses were performed in R (version 3.1.3). A p value of less than 0.05 was considered 

statistically significant. 

Mathematical model 

A discrete monolayer of cardiac cells has been implemented with a 6-neighbor 

connectivity unless at the boundary where the number is decreased to between 2 and 5 
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depending on the position at the boundary (see suppl. fig. 1). The coupling coefficient between 

the cells (ζcell) is constant and uniform throughout the 2D layout. Two different ζcell were 

simulated corresponding to the control condition (CTL: ζcell = 4.0) and decreased coupling 

(Rincreased : ζcell = 2.47). Assuming a cell dimension of 30 m (54), the control condition yields 

an effective CV of ~20 cm/s while the decreased coupling results in a CV of ~15 cm/s. 

The ionic model that was implemented is based on the Luo-Rudy model and was used 

as in these studies (29, 33). This choice was based on simplicity of the model (limited number 

of variables and parameters) and that spontaneous activity can be easily induced by applying a 

bias current (Ibias) in the voltage ordinary differential equation. Spontaneous activity first 

appears for Ibias slightly greater than 2.5 with a long period (Tcell > 2 s) up to Ibias = 4.7 A/cm
2
. 

The minimum period of activity is found around Ibias = 4.04 A/cm
2 

with period of ~0.54 s 

(see suppl. fig. 2 for details on the bifurcation). We assumed that our cultures are based on the 

co-existence of two populations of cardiomyocytes corresponding to resting but excitable cells 

and pacemaker cells (PMs, spontaneously beating cells) as studied previously (20). Here, two 

sets of Ibias values were used in two groups of simulation. In CTL, Ibias = 0 A/cm
2 

for resting 

but excitable cells and Ibias = 3 A/cm
2 

for pacemaker cells. To mimic very simplistically an 

increase in spontaneous activity through increased funny current (group labeled Ratefaster), all 

Ibias values have been offset by 0.5 such that Ibias = 0.5 A/cm
2 

for resting but excitable cells 

and Ibias =3.5 A/cm
2 

for PM cells. 

The spatial distribution of the PM cells within a 200×200 cell layout has been done 

using a stochastic algorithm (55, 56). In summary, the starting point was an empty lattice of 

dimension 200×200 cardiomyocytes. For the first iteration, an initial PM cell was randomly 

seeded in one of the available sites. The status of a site containing a PM cell was referred to as 

a PM site. During the second and following iterations, a random number p (0≤p≤1) was drawn 

from a uniform distribution and compared with a user-defined iteration-independent parameter 

pthr (0≤pthr≤1) that decided whether the new PM cell would or would not be in contact an 

existing cluster (a group of one or more interconnected PM cells). Here, all samples were 

created using pthr = 0.3
1/4

 as it is at the transition between low and high minimal density for 

multicellular spontaneous activity to occur and PM cell density of 30% (20).  
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The model was numerically integrated using a forward Euler numerical scheme with 

time step of 10 s with a simulation time of 10 s. A total of 100 simulations per group were 

used as a final set of in silico data. Four different groups were simulated: CTL, Ratefaster, 

Rincreased, and combined Ratefaster + Rincreased. 

Results 

Increased frequency and temporal stability of spontaneous activity 

The temporal dynamic of spontaneous contraction was studied by videomicroscopy at 

24h and 48h post-PMA (labeled PMA-24h and PMA-48h) with equivalent control (CTL-24h 

and CTL-48h). PMA increased the number of samples with spontaneous activity. At 24h, 89% 

of samples had spontaneous activity in CTL compared to 94 % with PMA (the ratio of the 

samples with spontaneous activity is 280/312 in CTL and 289/305 in PMA groups, p<0.05). 

This difference between the groups increased more importantly at 48h with 49 % for CTL 

compared to 95 % with PMA (the ratio of the samples with spontaneous activity is 131/265 in 

CTL and 242/253 in PMA groups p<0.0001). The distributions of frequencies are presented in 

fig. 1A which show that PMA has an increased frequency of activity compared to CTL with 

some samples having very rapid activity (>3 Hz). With time, PMA keeps the monolayer 

spontaneous activity relatively stable while a clear bimodal distribution of spontaneous 

activity is found in CTL with one at low frequency activity and others with high frequency. 

We label the high frequency (>3Hz) activity as reentrant based on a previous study (50). In 

total, 43% of total samples corresponded to reentrant activity in control compared to 0.4% 

with PMA. After removal of the samples with reentrant activity, a mean frequency of 

1.09±0.03 Hz compared to 1.57±0.03 Hz with PMA at 24h (the ratio of samples without 

reentry is 248/280 in CTL and 248/289 in PMA groups). The changes became more important 

at 48h where the frequency is now of 0.55±0.06 Hz in CTL compared to 1.30±0.03 Hz in the 

PMA group (the ratio of samples without reentry is 74/131 in CTL and 241/242 in PMA 

groups p<0.0001). Temporal stability of spontaneous (but not reentrant activity) was evaluated 

and is presented in panel B. A clear significant increased stability in the PMA group is found 

(red points) at both time points while the stability in the control group decreases with time 
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(24h: average of 0.26±0.03 s in CTL-24h vs. 0.05±0.004 s with PMA-24h, p < 0.0001 ; 48h: 

average of 1.99±0.27 s in CTL-48h vs 0.06±0.01 s in PMA-48h, p < 0.0001). An example of a 

videomicroscopy signal is shown in panel C for spontaneous activity in CTL (top), having a 

clear variation in the interbeat intervals, and for a sample in PMA group (bottom) with clear 

fast and stable contractile activity (<freq> of 0.56 Hz in CTL vs. 1.3 Hz with PMA; std(T) of 

0.75 s in CTL vs. 0.02 s with PMA). 

Spontaneous activity was also studied by optical mapping at 48h post-PMA. 

Evaluation of the rate of activity resulted in an average decrease in period of activity with 

PMA compared to control (fig. 2A; pre-stim 3.1±0.5 s in CTL-48h vs. 2.6±0.1 s in PMA-48h, 

p < 0.05; post-stim 3.3±0.4 s in CTL-48h vs. 2.4±0.2 s in PMA-48h, p < 0.05), a characteristic 

that correlates with the videomicroscopy data. A note that the protocol of electrical stimulation 

used to measure conduction properties (see method section) did not significantly affect the 

spontaneous rate (pre-stimulation vs. post-stimulation bars in panel A). Examples of 

spontaneous activity are presented in panel B for a CTL sample (top, blue line) and PMA 

sample (bottom, red line). Similarly to the videomicroscopy data, the activity in CTL-48h is 

slower with greater interbeat interval than in the PMA-48h sample. 

Re-expression of Tbx3 and HCN4 stabilizes the spontaneous activity of the 

monolayer 

Evaluation of expression of Tbx3 and HCN4 at the mRNA level was done by qPCR 

and is shown in figs. 3 A and B. A trend for increased in Tbx3 mRNA is found with PMA at 

48h compared to CTL (p=0.07). However, there is a significant increase of ~75% in HCN4 

mRNA expression at PMA-48h (p<0.02). To test for the role of HCNs in the spontaneous 

activity with PMA, the effect on the frequency of activity under pharmacological block by 

Ivabradine was tested. Addition of Ivabradine resulted in a significant and clear decreased of 

spontaneous rate from 1.2±0.2 Hz to 0.68±0.05 Hz in paired samples (p<0.05, paired t-test). 

The mean frequency with Ivabradine is close to the mean in CTL of 0.55±0.06 Hz as 

presented in the previous section. 
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Conduction velocity is decreased with chronic exposure to PMA 

Conduction properties were evaluated using local bipolar stimulation at 48h. Treatment 

with PMA resulted in 1.44 fold increase of voltage threshold for initiation of propagating 

waves with a CL of 1000 ms (fig. 4A; 3.9±0.2 V vs. 5.6±0.3 V, p < 0.01).  The median of 

spatial CV obtained for different CL (between 500 ms to 1500 ms) was always lower in the 

PMA group than in CTL (group effect, p < 0.01, two-way repeated measurement ANOVA) 

independently of the CL (see fig. 4B). Examples of cumulative spatial CV distribution are 

shown in fig. 4C highlighting the shift to lower CV by PMA. Activation maps used to 

calculated the spatial CV distribution are shown in panel D for a CTL sample and panel E for 

a PMA-48h samples with the monolayers paced from the bottom of the dish (blue colors) and 

the propagation going upward to the top. 

Chronic treatment with PMA also stabilizes the pattern of activity 

Visual inspection of the sequence of activation maps obtained by timing of optical 

mapping data shows that the number of activation sites is higher in CTL compared to PMA at 

48h as shown in fig. 5A (pre-stim.: 1.8±0.3 site in CTL-48h vs. 1.00±0.03 site in PMA-48h, p 

< 0.05; post-stim.: 1.8±0.2 site in CTL-48h vs. 1.2±0.2 site in PMA-48h, p < 0.05). Measuring 

the distance between 1
st
 activation sites in a sample and calculating the mean (<d>) gives an 

approximation of the spatial stability of the activity. The result is presented in panel C which 

shows that <d> is significantly higher in CTL (<d> = 3.7±0.9 mm in CTL-48h vs. 0.8±0.2 mm 

in PMA-48h) which highlights the greater competition between slow pacemaking sites in 

control. The greater changes in the position of 1
st
 activation sites (focal sites) also results in 

more variation of the activation patterns measured by difference in sequential normalized 

activation maps (<t,act>= 19.0±5.2 ms in CTL-48h vs. 8.7±1.9 ms in PMA-48h, panel D). 

Focal sites are usually located close to the boundaries of the monolayer (20, 27, 50). Chronic 

exposure to PMA does not seem to clearly change that behavior as the cumulative distribution 

of 1
st
 activation sites are similar between the two groups (fig. 5B, blue line for CTL and red 

line for PMA). 
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Representative examples are presented in fig. 6 and fig. 7 respectively for a control and 

a PMA samples. The CTL example has a slow and more unstable temporal activity (see the 

optical voltage trace in panel A). Two activations maps corresponding to the beats labeled B 

and C in panel A are respectively shown in fig. 6B and 6C. A clear change in pacemaker 1
st
 

activation sites can be seen with a bottom left site around t=6.1 s and the following beat 

initiating from the top right section at t = 8.3 s. The example for the PMA group had a faster 

and more stable temporal dynamics (see fig. 7A). Two activation maps are shown 

corresponding to the beats labeled B and C in panel A. All the beats have highly similar maps 

as the ones shown in fig. 7B and C with a bottom 1
st
 activation site followed by upward 

activation.  

So far, chronic treatment by PMA increased not only the frequency but also the 

temporal and spatial stability of spontaneous activity. However, it remains to investigate how 

it affects the synchronization of the pacemaking activity. The activation delay (δact) measured 

during spontaneous activity has been calculated and is presented in fig. 5E. The result is a 

significant increase in activation delay in the PMA group compared to CTL (δact = 0.09±0.01 

s/cm for CTL compared to δact = 0.15±0.01 s/cm for PMA, p<0.05). A perfectly synchronized 

pacemaker monolayer would have δact = 0 s/cm because all cells would activate at the same 

time. Here, chronic exposure to PMA, although clearly increasing the rate and stability of 

activity, shows a decrease in synchronization. 

Simulations of multicellular pacemaking activity 

One question remains on the possible respective effects of increased cellular 

automaticity and decrease coupling between cells.  Simulations of 4 groups was done: CTL, 

Ratefaster, Rhigher, Ratefaster + Rhigher (groups are detailed in the method section). The percentage 

of simulations having spontaneous activity is of 49% in CTL while the Ratefaster group had 

100%, Rhigher has 91% and the combined group had 100%. 

Results of mean period (<T>) for all groups are shown in fig. 8A with means of 

1.22±0.03 s (CTL), 0.78±0.01 s (Ratefaster), 1.04±0.02 s (Rhigher), and 0.67±0.01 s (Ratefaster + 

Rhigher). Apart from the period of activity, the temporal dynamics is exactly the same for all 

groups with a std(T) around ~0.4 ms per group (below the 1 ms sampling interval that was 
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recorded during simulations) as depicted in fig. 8B. Examples of APs (the last 5 s of 

simulations) for all groups are shown in fig. 8C which highlights the change in rate of activity 

between the groups and highly stable interbeat intervals even in the CTL group.  

The spatial-temporal activity of simulations shows similarities with experiments with 

as expected greater density of 1
st
 activation sites near the borders (fig. 9A). However, a slight 

increase in the density a little further away of the borders are found for all groups other than 

CTL. Highly stable beating pattern are found in all groups which is shown by the limited 

<t,act> values of less than 1 ms (panel B). The synchronisation of spontaneous activity was 

evaluated in simulations as a total time needed to activate all cells for each beat (labeled delay, 

fig. 9C). Groups where the intercellular coupling was decreased to mimic a slower CV showed 

an increase in activation delay consistent with experiments. Examples of activation maps for a 

specific distribution of spontaneous cell (shown on the left of panel D) are presented on the 

right of panel D.  

Discussion and conclusion 

This study is the first to our knowledge to look at the effect of PMA for re-expression 

of Tbx3 on multicellular cardiomyocyte monolayer spontaneous activity. We found that 

chronic exposure to PMA is increasing the frequency of spontaneous activity in NVRM 

monolayers (fig. 1A) which correlates with an increase in Tbx3 and HCN4 mRNA (fig. 3A 

and B respectively) and a decrease in conduction velocity (fig. 4B). Thus, as with breast 

cancer cells (39), PMA modulates Tbx3 expression in NRVMs. PMA has been proposed as a 

modulator of stem cell differentiation to a cardiomyocyte phenotype (57) and helped restore 

electromechanical function post-infarct cell therapy (58). The spread of the samples 

distribution of spontaneous frequency is also found to be decreased in the PMA-48h group 

compared to the CTL-48h. The same is found is simulations where Ibias was increased (to 

mimic an increased single spontaneous rate induced by higher funny current). Only a slight 

decrease in period of activity was found with only a decrease in intercellular coupling. The 

combination of a cellular faster rate combined with the decreased intercellular coupling 

yielded the narrower dispersion of the distribution of mean period of activity.  
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Ivabradine has been shown to reduce the slope of diastolic depolarization by specific 

use-dependent intracellular blockade of the funny current without affecting either Ca
2+

 

currents nor the delayed K
+
 current (59). Block by Ivabradine significantly decreased the rate 

of spontaneous activity (PMA-48h group, fig. 3C) pushing towards the idea that increased 

funny current level through higher expression of HCN proteins would be an important factors 

inducing the increase in rate in our experiments and thus augmenting the voltage clock action 

(8).  

T-box transcription factor Tbx3 has been shown to reprogram mature cardiomyocytes 

into pacemaker-like cells (38). An important documented change was a reduced intercellular 

coupling through connexin down-expression. The decrease in intercellular coupling would 

reduce the conduction velocity (60, 61) which is concordant with the decreased conduction 

velocity found in our PMA-treated samples compared to CTL (fig. 4B-E). However, decreased 

intercellular coupling has also been associated to higher risk of reentrant activity (62) which is 

not the case here with PMA where the ratio of reentry-like rapid activity was highly 

diminished.  This aspect would indicate that factors other than coupling may be important in 

the initiation of reentry that is lost with the increased rate of spontaneous activity with PMA.  

Monolayer cultures of NRVMs may provide a useful biological tool to investigate the 

role of PM-cell–cluster patterns on automaticity and therefore gain better understanding of 

clinical issues, including creation of biopacemakers (25). However, the seeding process is 

usually random, the impact of culture environment unknown, and thus the real spatial 

distribution of the two cell types remains to be uncovered. As such, the stochastic variability 

of PM cells in the monolayer could explain, at least in part, the variability in spontaneous 

mean rate of activation observed in CTL since both the experimental (fig. 1A) and modeling 

(fig. 8A) data correlate on that point. One would expect that an overall increase in HCNs 

proteins and funny current amplitude could not only favor the rate but also the synchronization 

of the activity. However, a marker of synchronization, the activation delay (fig. 5E) is 

increased which would indicate a lesser synchronized spontaneous activity. 

Similar to previous experimental and modeling data (20, 27, 50), the new results 

confirmed that initiation sites of spontaneous activity are mostly located at the edge of the 

monolayer (fig. 5B). This finding may be explained by the source–sink mechanism (63, 64) 
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and the position of large PM cluster. At the edge, which has no-flux boundary conditions, PM 

cells are effectively connected with fewer resting excitable cardiomyocytes; as such, they are 

less electrotonically depressed and possess increased capacity to initiate activation. However, 

a theoretical monolayer composed of only identical PM cells could be synchronized and have 

simultaneous activation times. In this case, the mapping analysis would detect a single large 

cluster of 1
st
 activation sites with centroid at the center of the monolayer. Such a behaviour 

would modify the sites distribution from the border to within the center region which is 

however not the case here in the PMA group (fig. 5B). Propagation in monolayer spontaneous 

regimes like we found here are by definition phase waves because of the spontaneous 

dynamics. It remains to see if phase waves can be found in uniform and homogeneous PM cell 

monolayers as it can occur in interconnected chemical oscillators (2) and in ventricular tissue 

exhibiting early after depolarization (65).  

The increase in rate of activity correlates with an increased temporal stability (less 

variation in inter-beat intervals).  This result is concordant with the idea of decreased slow 

diastolic depolarization of the cell membrane being more sensitive to noise (66). However, the 

intrinsic rate also correlates with spatial stability (more stable 1
st
 activation sites and activation 

maps as highlighted in fig. 5). Indeed the competition of different spatial pacemaker sites are 

significantly decreased with PMA compared to control (fig. 5A). Those characteristics are key 

for a robust biopacemaker function where activity will be strong enough to damp the neighbor 

stochastic modulation. Simulations for the CTL group did not reproduce experimental 

variations in the 1
st
 initiation sites which indicates that temporal and spatial stability are more 

linked to cellular temporal randomness than a spatial distribution stochastic process. For 

example, Ponard et al (27) found this type of temporal instabilities when incorporating a 

stochastic change in cellular properties. While increased membrane noise level has been 

shown to statistically augment the mean rate of activation (67), it remains to investigate how 

temporal noise and spatial stochastic distribution of PM cells can affect multicellular 

pacemaker activity. These knowledge could be important in the process of creating optimized 

and robust biological pacemakers, an alternative to electronic pacemakers in the treatment of 

bradycardia (23). 
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Figure captions 

Fig. 1: Videomicroscopy data showing increased frequency and temporal stability of 

spontaneous activity by PMA. A) Distribution of spontaneous frequency for both CTL (blue 

line) and PMA (red line) at 24h post-PMA start (top) and 48h post-PMA start (bottom). B) 

Temporal variation in period of activity is evaluated by the temporal standard deviation of the 

period T (std(T) ) at 24h post-PMA and 48h post-PMA (with control group at the same time 

points).  C) Examples at 48h post-PMA of composite videomicroscopy data showing peaks 

with slower and more varying contractile activity in control (CTL-48h, top) and faster and 

more stable activity with PMA (PMA-48h, bottom). 

Fig. 2: Period of spontaneous activity is decreased by PMA at 48h. A) Average period 

of activity <T> is higher in CTL-48h compared to PMA-48h. Similar results are observed 

before (pre-stim) or after the pacing protocol for conduction velocity study (post-stim). B) 

Examples of normalized optical AP recording in control (CTL-48h, top) with slower and 

irregular dynamic compared to a PMA recording (PMA-48h, bottom) with faster and regular 

activity. 

Fig. 3: Fold-change increased by PMA in mRNA expression of A) T-box 3 and B) 

HCN4. Re-expression of T-box 3 results in increased HCN4 expression correlating with 

increased frequency of spontaneous frequency of the monolayer. C) Pharmacological block 

with Ivabradine (3 mol/L) yielded to a significant decrease of spontaneous frequency 

measured by videomicroscopy (p<0.05, paired t-test).  

Fig. 4: Decreased conduction velocity (CV) under programmed stimulations with 

chronic exposure to PMA. A) The threshold voltage for bipolar stimulation when pacing at a 

cycle length (CL) of 1000 ms is higher in the PMA group compared to the control group at 

48h post-PMA. B) Mean CV values obtained at different pacing CL ranging from 500 ms to 

1500 ms always showing higher CVs in control (black bars) compared to PMA group (white 

bars) at 48h-post PMA. C) Cumulative density distribution of local CV amplitude obtained for 

a control (blue line) and a PMA   sample (red line) paced at CL = 750 ms showing a shift to 

lower CVs with PMA. D) The respective control and PMA activation maps used to estimate 

the local CVs are shown in panel D (CTL-48h) and panel E (PMA-48h). 
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Fig. 5: Spatial stability of spontaneous activity is increased by chronic exposure to 

PMA. A) Visual examination of optical activation maps shows that the average number of 

activation sites is higher in control (CTL-48h, black bars) compared to PMA groups (PMA-

48h, white bars). B) Cumulative distribution of 1
st
 initiation sites from the center of the dishes 

to the outside border showing that most of the sites are most often found closer to the border 

for either the control (CTL-48h, blue line) and PMA group (PMA-48h, red line). Inset: 

Positions of 1
st
 initiation sites for the control (blue points) and PMA (red points) used to 

calculate the cumulative distributions. C) Average of the mean distance between 1
st
 initiation 

sites per recording is significantly higher in control compared to chronic exposure to PMA. D) 

Significant decrease in the mean difference activation maps between beats from control (CTL-

48h, black bar) versus PMA (PMA-48h, white bar). E) The local activation delay is increased 

by PMA (PMA-48h, white bar) compared to control (CTL-48h, black bar). 

Fig. 6: An example of spontaneous activity in control. A) Optical AP recording 

(measured as normalized fluorescence changes in the dashed square in panel B) over a 15 s 

duration showing slow and unstable period of activity. B) Activation map of the beat labeled 

by a B in panel A with initiation site from the bottom left of the map. C) Activation map for 

the following beat with focal site coming from the top portion of the sample. 

Fig. 7: Similar to fig. 6 but for spontaneous activity in the PMA group. A) The optical 

signal shows a regular and faster rate of activity than in control. All beats within the recording 

were consistent and starting from the same initiation site. Two maps are shown corresponding 

to the APs labeled (B) and (C) respectively in panel B and C.  

Fig. 8: Simulation results highlighting the role of increased cellular spontaneous 

activity or/and increased intercellular conductance on multicellular global activity. A) Plot of 

average (over time) period of spontaneous activity has a slower period and sparser set of 

values in control (CTL, blue points). Increasing the cellular individual spontaneous activity 

(Ibias = 3.5 instead of 3.0 in control) decreases the mean and range of multicellular period of 

activity (gray points). Decreasing intercellular electrical coupling of the monolayer only 

slightly decreased the period of activity and range of period of the set (Rhigher, green points). 

Combination of the two changes (increasing Ibias and decreasing coupling) although not 

strongly changing the minimum period of the set has a strong effects on sparsity resulting on a 
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more dense set of periods. B) Temporal standard deviation of the period of activity (std(T)) for 

the 4 groups of simulations highlighting the highly stable activity that remains in all groups 

contrary to experiments. C) Examples of activity in the region of 1
st
 activation (continuous 

line) and in a region without spontaneous cells (dashed line). Groups: CTL (top left), Ratefaster 

(top right), Rhigher (bottom left), and combined Ratefaster + Rhigher (bottom right). 

Fig. 9: Spatial characteristics of spontaneous activity in simulations. A) Cumulative 

density distribution of the 1
st
 initiation site position. B) Average of the difference between 

activation maps which is very low independently of the groups. C) Overall delay for total 

activation of the monolayer. D) Example of spatial distribution of spontaneous cells (black) 

within surrounded by excitable but not spontaneous cells (white) each cells having a 6-

neighbor connectivity is shown on the left. On the right, last full activation maps from a 10 s 

simulations for each group. The colorscale shows the time of activation from the 1
st
 initiation 

time (in blue) to 45 ms later. 

Supplementary fig. 1: Schematic of the 2D layout of cells with a neighborhood of 6 

cells. Numbers from 1 to 5 correspond different cases at the boundaries having a decreased 

number of neighbors (1: 3 cells, 2: 4 cells, 3: 2 cells, 4: 5 cells, and 5: 3 cells).  

Supplementary fig. 2: Bifurcation of the Luo-Rudy model as a function of the bias 

current Ibias. A) Period of activity (T) showing apparition of spontaneous activity around 2.56 

with long period of activity (T=2000 ms) that is decreasing with disappearance with Ibias = 4.7. 

B) Minimum and maximum transmembrane voltage V showing highest amplitude for low Ibias 

that decreases with increasing bias current. Bistability is found for 4.47  Ibias  4.7. Black dots 

correspond to the fixed point of the system and unstable fixed points are shown by red circles. 

Supplementary fig. 3: Subset of 6 different stochastically generated spatial distribution 

of PM cells that are part of the complete simulated data set.  
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Table and figures 

Table 1: List of primers  

Gene name & Symbol Forward Primer Sequences (5’-3’) Reverse Primer Sequences (5’-3’) 

HCN4 CCCGCCTCATTCGGTACATT AGGTTCACGATGCGTACCAC 

Tbx3 CAGTACCTTCCGCACATACC CCTGCCATTGCCAGTATCTC 

GAPDH GCATCTTCTTGTGCAGTGCC GAGAAGGCAGCCCTGGTAAC 

HPRT TTGGTCAAGCAGTACAGCCC GTCTGGCCTGTATCCAACACT 

β2M CCGTGATCTTTCTGGTGCTT GTGGAACTGAGACACGTAGC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

59 

 

 

 Figure 1

 

 

  



 

60 

 

 

 

 

Figure 2 

 

                                                                                       

 

                          

  



 

61 

 

                                                               

 

 Figure 3 

 

 

 

 

 



 

62 

 

 

Figure 4 
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3 DISCUSSION AND CONCLUSION 

The present investigation illustrates the effect of PMA on NRVM monolayers which is 

a well-accepted model in the cardiovascular field (178, 179). This is in part possible because 

neonatal murine cardiac cells have a transient regenerative phase (177) which results in some 

differentiation capability of the cultured cells. In addition, monolayer sheets of NRVMs are 

more interesting than isolated single cells since cell–to-cell electrical coupling and impulse 

propagation can be studied (180). Initiation of the propagating wave is a pivotal and intrinsic 

characteristic of the pacemaker cells exciting the excitable myocardium. Characteristics of 

spontaneous activity and ways to control them are central to the creation of a biopacemaker 

patch. As such, the project focused on a pharmacological method to increase the spontaneous 

activity of the postnatal cardiomyocytes by favoring differentiation to a pacemaker cell 

phenotype.  

3.1 PMA increases the rate of spontaneous activity through Tbx3 

re-expression 

The main objective of the study was to test if phorbol 12-myristate 13-acetate (PMA) 

can be used as a modulator of spontaneous activity of neonatal cardiomyocyte monolayers, 

since PMA has been shown to activate Tbx3 in breast cancer cells (181). Tbx3 is an essential 

transcription factor to suppress differentiation of the working myocardium and reprogram the 

cells to possess pacemaker phenotypes in the embryonic heart (167). According to previous 

studies, ectopic activation of Tbx3 in embryonic atrial myocytes resulted in induction of 

HCN4 channel expression (87) as a dominant isoform of the HCN channels in SAN cells 

(204-206). The funny current has been proposed to be crucial for generating the slow diastolic 

depolarization leading over the activation threshold of the pacemaker cells (44). Accordingly, 

overexpression of the HCN channels would be expected to increase the rate of spontaneous 

activity. We have found that chronic conditioning of the NRVMs with PMA increases 

spontaneous frequency of the cultured monolayers (figs. 1A and 2A in Chapter 2) as a 

consequence of increasing Tbx3 and HCN4 mRNA expression which is also shown in our 

study (fig. 3A and B, respectively). To evaluate the effect of PMA on HCN4 overexpression, 



 

72 

 

inhibition of the channels by ivabradine (3μM) was tested (203). Ivabradine has been shown to 

specifically block HCN channels. It was found that the rate of the spontaneous activity was 

significantly reduced by ivabradine when tested in the PMA-48h group (fig. 3C). The results 

are consistent with our findings where overexpression of HCN4 leading to increased  funny 

current levels would be at least in part inducing the faster rate of activation by chronic 

exposure to PMA.    

In order to create a model of the monolayers exposed to PMA, a simple simulation 

model with two main parameters leading to either a faster cellular rate of the activity or 

decreased coupling (higher resistance) between cells was used. Results of the mathematical 

model showed that the frequency of the spontaneous activity increased when increasing the 

bias current as to mimic the funny current augmentation in the experimental samples; however 

the effect of decrease in coupling of the cells has a slight effect on spontaneous activity rate. 

Increasing the bias current and coupling resistance simultaneously gives the minimum 

variability in mean period of activity similar in a way to our experimental data (fig. 8A). 

3.2 PMA modulates the spatial-temporal activity in multicellular 

patches 

Temporal and spatial stability is one of the key properties of biopacemakers which is 

extremely important to provide the regular and constant pacing in order to drive cardiac 

rhythmic contractions (207). Regarding to our observations, chronic exposure of the NRVMs 

to PMA leads to enhanced temporal stability of the spontaneous activity in the cultured 

monolayers. Moreover, comparing the spontaneous activity patterns of both groups (figs. 1C 

and D) demonstrates a clear stability of the interbeat intervals as an indication of the regularity 

in PMA samples (fig. 1B). In addition, spatial stability of PM sites increased in PMA group as 

a consequence of fewer (fig. 5A) and closer (fig. 5C) 1
st
 initiation sites. It is accompanied by 

less variability of activation maps in PMA group (fig. 5D). Temporal stability of the PMA 

exposed cells may be due to either a decreased sensitivity to membrane noise due to the 

steeper diastolic depolarization slope (208) or to their spatial stability. In fact, a lesser number 

of focal sites (1
st
 initiation sites) correlates with a decreased in std(T) and thus a more stable 

interbeat interval.  
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Spatial distribution of the focal sites (1
st
 initiation sites) tends to be at the border layer 

of the plated region (fig. 5B) which is concordant with previous studies (209-211). The best 

explanation for such finding would be the source-sink mechanism (212, 213). In essence, 

neighbouring the PM cells with less resting cells protect them from the electrotonic effect 

during the slow diastolic depolarization.  Cells that are less coupled to neighbors will be less 

affected by diffusion current, hence resulting in MDP increases comparing to the central active 

cells. Nonetheless mathematical models of only PM cells hypothesize the synchronous activity 

of the neighbouring cells. In such simulation model a large clusters of 1
st
 initiation sites 

located at the central position of the monolayers would drive the other parts which is far from 

our observations. Such behaviour may occur due to the heterogeneous distribution of the 

active and quiescent cells in our cultures and that also match the modeling results. 

Although the PM cells in both experimental and mathematical models are both 

probably distributed randomly (fig. 9D), the variation of temporal and spatial stability is 

negligible among simulation groups as opposed to our experimental findings where temporal 

stability and changes in focal sites can be found indicating the role of another factor. Such 

factor could be cellular stochastic temporal noise (211) in addition to spatial random 

distribution of PM cells. 

Meanwhile, the number of spontaneous reentry-like rapid activity substantially 

decreased with PMA which is favouring the cells to create cultured biopacemaker patch 

without arrhythmic activity. It could be explained somehow with increasing the number of the 

inactivated Na
+
 channels as a consequence of decreased MDP leading to prolong effective 

refractory period (ERP), since shortening of ERP may give rise to relevance of functional 

reentry in cardiac tissue (31, 214). Another possibility may be through the spatial homogeneity 

of cell connectivity. According to the Gompertz cell growth mechanism (215), higher 

morphological homogeneity of the cultured cells could be present in the PMA group because 

of the PMA hypertrophic effect (216). Overexpression of the growth factors by PKC 

activation could favor smaller cells to grow faster leading to more homogeneous cell size 

population and thus filling better the 2D space, favoring neighboring cells to form gap 

junctions. Visual inspection of the samples seemed to show monolayers with higher density of 

the cells in PMA group (data not shown) which would point towards this possibility. 
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3.3 The increase in frequency of spontaneous activity does not 

yield greater synchronization 

A biopacemaker patch needs to be able to overcome the electrotonic propagation and 

depolarize the resting cells of the heart to which it is coupled. A more robust (less sensitive to 

surrounding less polarized cardiomyocytes) and more synchronized activation (all the PM 

cells activating at the same time) would theoretically favor the driving capability of the 

multicellular pacemaker. However, even if the pacemaking phenotype seemed to be facilitated 

by PMA, synchronization of the activation measured is decreased in both experimental and 

modeling data (corresponding to an increased activation delay in figs. 5E and 9C).  In normal 

SAN cells, pulse propagation velocity is slower than the ventricular cells (34). Slow 

conduction velocity of the pacemaker cells predisposes them as a proper current source to 

stimulate the peripheral tissue. According to our results, CV decreased in PMA group 

independently of the CL (fig. 4B). Such effect correlates with decrease in coupling of the cells 

as a consequence of electrical uncoupling achieved through the down-regulation of fast-

propagating connexin proteins (36, 217) due to the effect of Tbx3 expression (34). In addition, 

PMA increased the amplitude of applied voltage to stimulate the cells (fig. 4B) which may be 

due to the hypertrophic effect of PMA on cardiomyocytes (218) which could also induce in 

increase time to polarize the membrane. 

3.4 CONCLUSION 

Limitations of electronic pacemakers could be bypassed if a regain in function of the 

sinus node normal automaticity or an alternative biological pacemaker was created either in 

situ or through a patch. The knowledge gathered by this project could be important in the 

process of creating optimized and robust biological pacemakers patches, an alternative to 

electronic pacemakers (219). Although stability was clearly increased by PMA possibly 

through re-expression of Tbx3 here, the added partial uncoupling correlating with the slower 

conduction velocity would be detrimental to synchronization within the patch. It remains to 

investigate if a more homogeneous population of PM cells could counteract this effect. 
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