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Résumé 

Les virus ont besoin d’interagir avec des facteurs cellulaires pour se répliquer et se propager 

dans les cellules d’hôtes. Une étude de l'interactome des protéines du virus d'hépatite C (VHC) par 

Germain et al. (2014) a permis d'élucider de nouvelles interactions virus-hôte. L'étude a également 

démontré que la majorité des facteurs de l'hôte n'avaient pas d'effet sur la réplication du virus. Ces 

travaux suggèrent que la majorité des protéines ont un rôle dans d'autres processus cellulaires tel que la 

réponse innée antivirale et ciblées pas le virus dans des mécanismes d'évasion immune.  

Pour tester cette hypothèse, 132 interactant virus-hôtes ont été sélectionnés et évalués par 

silençage génique dans un criblage d'ARNi sur la production interferon-beta (IFNB1). Nous avons 

ainsi observé que les réductions de l'expression de 53 interactants virus-hôte modulent la réponse 

antivirale innée. Une étude dans les termes de gène d'ontologie (GO) démontre un enrichissement de 

ces protéines au transport nucléocytoplasmique et au complexe du pore nucléaire. De plus, les gènes 

associés avec ces termes (CSE1L, KPNB1, RAN, TNPO1 et XPO1) ont été caractérisé comme des 

interactant de la protéine NS3/4A par Germain et al. (2014) et comme des régulateurs positives de la 

réponse innée antivirale. Comme le VHC se réplique dans le cytoplasme, nous proposons que ces 

interactions à des protéines associées avec le noyau confèrent un avantage de réplication et bénéficient 

au virus en interférant avec des processus cellulaire tel que la réponse innée. 

Cette réponse innée antivirale requiert la translocation nucléaire des facteurs transcriptionnelles 

IRF3 et NF-κB p65 pour la production des IFNs de type I. Un essai de microscopie a été développé 

afin d'évaluer l’effet du silençage de 60 gènes exprimant des protéines associés au complexe du pore 

nucléaire et au transport nucléocytoplasmique sur la translocation d’IRF3 et NF-κB p65 par un criblage 

ARNi lors d’une cinétique d'infection virale.  

En conclusion, l’étude démontre qu’il y a plusieurs protéines qui sont impliqués dans le 

transport de ces facteurs transcriptionnelles pendant une infection virale et peut affecter la production 

IFNB1 à différents niveaux de la réponse d'immunité antivirale. L'étude aussi suggère que l'effet de ces 

facteurs de transport sur la réponse innée est peut être un mécanisme d'évasion par des virus comme 

VHC. 

Mots-clés: Virus d’hépatite C, VHC, interactants virus-hôte, immunité innée antivirale, complexe du 

pore nucléaire, transport nucléocytoplasmique, criblage ARNi, translocation  nucléaire, IRF3, p65, 

microscopie, cinétique 



 

ii 

Abstract 

Viruses interact with cellular factors in order to successfully replicate and propagate in host 

cells. Germain et al. (2014) performed a proteomics analysis to elucidate viral-host interactors of 

hepatitis C virus (HCV). They found that the majority of host factors did not have an effect on viral 

replication, suggesting that these host proteins may be beneficial to the virus by affecting other cellular 

processes such as evading the innate antiviral immunity. 

To test that hypothesis, 132 virus-host interactors were selected and silenced by RNAi for their 

effect on inteferon-beta (IFNB1) production as a readout of the innate antiviral response. 53 were 

found to modulate the response with enrichment in the gene ontology (GO) terms related to 

nucleocytoplasmic transport and the nuclear pore complex. An interesting point is that the genes 

associated with these terms (CSE1L, KPNB1, RAN, TNPO1, and XPO1) were previously elucidated 

as HCV NS3/4A interactors by Germain et al. (2014), as well as positive regulators of the innate 

antiviral response. Although it is surprising that a cytoplasmic-replicating virus like HCV would 

interact with proteins associated with the nucleus, we proposed that viruses interact with these proteins 

for their benefit to interfere with the innate immune response.  

The innate antiviral response requires the nuclear translocation of IRF3 and NF-κB p65 for the 

production of type I interferons. As it is unclear which transporters or nucleoporins are involved, 60 

genes associated with the nuclear pore complex and nucleocytoplasmic transport were studied for their 

effect on the nuclear translocation of IRF3 and NF-κB p65 via a microscopy-based RNAi screen 

during a 10-hour viral infection time course.  

Overall, the study revealed that many of these proteins are involved in the trafficking of these 

transcription factors during a viral infection, and can affect the production of IFNB1 at different levels 

of the innate antiviral response. The study also suggests that the effect of these transport factors on the 

immune response may be an evasion mechanism for viruses such as HCV. 

Keywords: Hepatitis C virus, HCV, virus-host interactors, innate antiviral immunity, nuclear pore 

complex, NPC, nucleocytoplasmic transport, RNAi screen, nuclear translocation, IRF3, p65, 

microscopy, time course, kinetic 
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1.1 Hepatitis C Virus  

1.1.1 Epidemiology 

Hepatitis C virus (HCV) currently infects over 185 million individuals around the 

world [1]. The virus primarily infects hepatocytes, and only 20-30% of those individuals are 

able to clear the virus during the acute infection [2]. Persistence of the virus causes infected 

individuals to enter the chronic phase where their condition can lead to several different 

outcomes of liver disease such as cirrhosis and even hepatocellular carcinoma [2]. Therapies 

to counteract the virus have become more efficient in recent years, but there is still no cure for 

HCV globally due to treatment costs and the multiple genotypes of the virus that exist around 

the world (Figure 1.1) [1]. 

 

Figure 1.1: HCV Genotype Prevalence by WHO GBD Region  

This figure visually represents the amount of individuals affected by HCV per Global 

Burden of Disease (GBD) region, as well as which genotypes are most common in 

each area. Overall, genotype 1 is found in all regions, while the occurrence of the other 

genotypes varies. (Figure from Messina JP, et al., Hepatology, 2015) [1] 
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1.1.2 Virology 

1.1.2.1 Genome 

HCV, a member of the Flaviviridae family, is a positive-sense RNA virus, in which its 

single-stranded genome can be directly translated into a single polyprotein via the internal 

ribosome entry site (IRES) located on the 5' end of the virus coding sequence. This 

polyprotein is composed of 10 viral proteins, where the first cleavage by cellular proteases 

liberates core, E1, E2 and p7 proteins (Figure 1.2). The viral protein NS2 autocleaves itself 

from NS3, thus allowing the protease function of NS3 to then cleave the rest of the non-

structural (NS) proteins: NS4A, NS4B, NS5A, and NS5B [2-4].  

 

Figure 1.2: HCV Genome 

This figure shows the HCV genome, as well as which regions encode which proteins. 

 Scissors depict cleavage by cellular proteases, while the purple arrows depict cleavage 

 by the viral proteins. The role of each viral protein in the HCV life cycle is also 

 indicated. (Reprinted with permission from Lohmann V, et al., J Med Chem., 2014. 

Copyright 2014 American Chemical Society.) [4].  
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1.1.2.2 Life Cycle 

1.1.2.2.1 Viral Entry and Viral RNA Release 

Upon viral infection, HCV interacts with SR-BI, CD81, CLDN1 and OCLN on the 

surface of host cells via the envelope protein E2 and, through a pH-dependent mechanism, the 

virus is incorporated into the cell via clathrin-mediated endocytosis. Once the virus has 

entered the cell, its envelope fuses with an acidic endosomal compartment, releasing the viral 

RNA into the cytoplasm. (Figure 1.3) [3, 5].  

 

1.1.2.2.2 HCV RNA Translation and Polyprotein Processing 

The translation of HCV RNA is controlled by the IRES structure at the 5' non-

translated region (NTR) of the genome, recruiting the factors necessary for cap-independent 

translation. The viral RNA is translated into a single polyprotein, which is then cleaved into 10 

viral proteins by cellular and viral proteases. The mature proteins associate with ER 

membranes, as well as the region formed by NS4B called the membranous web, a 

compartment dedicated to HCV replication [3-5].  

 

1.1.2.2.3 Viral Replication  

HCV replication occurs within the membranous web, where the RNA polymerase 

NS5B will create negative RNA strands from the original positive RNA strand. The negative 

RNA strands will serve as template to further synthesize more positive-strand HCV RNA, 

which can then be translated into additional viral proteins or be packaged into newly-formed 

virions [3, 5].  
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1.1.2.2.4 Virion Assembly and Egress 

Virion assembly is initiated via the interaction between the core protein and HCV 

RNA. The core protein induces lipid droplet (LD) formation and associates with these 

structures, which serve as the platform for virus assembly [3, 5]. NS5A binds to the 3' NTR of 

HCV RNA and transports it from the membranous web to the lipid droplets, where NS5A also 

plays a role in infectious particle formation [6, 7]. NS2 is also thought to play a role in viral 

assembly by interacting with multiple HCV proteins, such as E2, p7, NS3 and NS5A, to 

properly orchestrate their roles in the vicinity of LDs [8, 9]. The newly-assembled virions, 

composed of HCV RNA, core, E1, and E2, bud from the cells using a mechanism similar to 

the VLDL secretion machinery. However, it is thought that while the viral particles go through 

this secretory pathway, p7 protects them by neutralizing acidic compartments in the cell for 

successful virion release [3, 5, 10].  

 

Figure 1.3: HCV Life Cycle 

This figure outlines the major steps of the HCV life cycle from viral entry to viral 

particle budding from the cell. (Figure from Kim CW, et al., Clin. Mol. Hepatol., 2013)  [3].  
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1.1.3 Models for the Study of HCV 

1.1.3.1 Replicon System 

The replicon system encodes the viral proteins NS3 to NS5B of the HCV genome for 

the study of HCV replication. The translation of the replicon is mediated by two IRES 

sequences on the 5’ end of the replicon: the first IRES is from HCV which drives the 

expression of the neomycin selection marker that is resistant against the cytotoxic compound 

G418, while the second IRES is from Encephalomyocarditis virus (EMCV) which drives the 

expression of the five viral proteins necessary for viral replication. The replicon also includes 

the firefly luciferase (fLuc) gene, whose expression is driven by the HCV IRES, to measure 

HCV replication by quantifying the luminescence produced. Having a quantifiable readout 

makes the replicon the model of choice for high-throughput RNAi and chemical screens to 

identify potential replication co-factors/restriction factors and stimulators/inhibitors, 

respectively. The replicon system known as Con1b signifies the replicon which contains the 

HCV 1b genotype. There are variations to the replicon system such as a monocistronic system, 

and an additional GFP within the NS3 to NS5B region to visually identify cells containing 

replication complexes in immunofluorescence microscopy. However, the replicon does not 

represent a complete viral infection [4].  

 

Figure 1.4: Replicon System for the Study of HCV 

This figure shows an example of a bicistronic replicon with two viral IRES: the first 

from HCV encoding the firefly luciferase promoter and selection marker, and the second from 

EMCV encoding NS3 to NS5B, the non-structural proteins of HCV important for viral 

replication.  (Adapted with permission from Lohmann V, et al., J Med Chem., 2014. Copyright 

2014 American Chemical Society.) [4].  

5’ 3’

HCV IRES

EMCV IRES



 

7 

1.1.3.2 JFH-1 System 

JFH-1 is a full-length virus that is able to replicate in cell lines, based on the HCV 2a 

genotype derived from a Japanese patient with fulminant hepatitis. To increase infectivity, 

multiple chimeras were created, one of which is JC1. JC1 is a chimeric HCV genome 

composed of J6 (encoding core to NS2 from another genotype 2a isolate), and JFH-1 

(encoding NS3 to NS5B), which yields a viral titer 1000 times more efficient than the original 

JFH-1 genome [4]. Just like in the replicon, JC1 has also been modified to contain a luciferase 

gene, in this case renilla luciferase (RLuc), to measure the effects on the entire HCV genome, 

which can be used in high-throughput RNAi and chemical compound screens, as well as other 

constructs containing fluorescent proteins for visualization in microscopy [4]. 

There have been many mutations in the JFH-1 system in order to boost viral titers, but 

permissive cell lines such as Huh-7.5 can also increase viral replication due to a point 

mutation in RIG-I, a cytoplasmic RNA sensor, which disrupts the activation of IRF3 for the 

production of ISGs to induce an antiviral state in the cell [11, 12].  

 

Figure 1.5: JFH-1 System for the Study of HCV 

Figure 1.5.a shows the original JFH-1 genome. Figure 1.5.b shows one of the many 

chimeric versions of JC1 with the viral proteins from J6 and JFH-1 in dark grey and grey, 

respectively. The particular JC1 chimera shown in (b) is called J6/JFH-1/p7RLuc2a due to the 

inclusion of a RLuc promoter between viral proteins p7 and 2a. (Adapted with permission 

from Lohmann V, et al., J Med Chem., 2014. Copyright 2014 American Chemical Society.) 

[4]. 

a

b
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1.1.3.3 Mouse Models 

Mice have been used as a model to study HCV infection in vivo. The first method, viral 

adaptation, exposes the virus to mouse cells, which causes mutations in E1 and E2 in order to 

adapt to the murine version of entry factors CD81 and OCLN. This mouse-adapted virus was 

then tested on immortalized mouse liver cell lines, where the entire life cycle of the virus 

successfully occurs. However, these were in cell lines with an impaired innate antiviral 

immunity. Since this method involves the virus adapting to murine cell entry factors, studying 

viral entry in this model may be influenced by the mutations required to effectively enter 

mouse cells [13].  

The second method uses mice transgenically-expressing HCV or human proteins in the 

liver. This type of study was used to understand the interactions between viral proteins and the 

effects on the host cell in an in vivo model. Expression of single viral proteins did not have an 

effect, but the expression of multiple proteins together caused hepatocellular carcinoma. The 

most well-known transgenic mice is the FL-N/35 mouse expressing the entire HCV 

polyprotein at close to physiological levels, where hepatic steatosis, increased liver fibrosis 

and increased risk of developing hepatocellular carcinoma was described. Another transgenic 

mice is the genetically-humanized mouse model, which involves the expression of human 

entry factors, such as CD81 and OCLN, delivered to the mouse via an adenoviral vector. The 

human wild-type virus is unable to replicate properly in murine liver cells unless the mouse is 

immune deficient, which then allows for a persistent infection. It is not yet known what kind 

of liver disease this mice develop due to this persistent infection [13]. 

The third method to study HCV in mice is the xenotransplantation model, which 

involves immunodeficient mice suffering from a liver injury. The immunodeficiency is 

required to prevent the rejection of the primary human hepatocyte transplantation, and the 

damaged liver is required for the human hepatocytes to have a growth advantage over the 

murine ones. This specific mouse model is the most used to study HCV, but this human-liver 

mouse chimera can only support the infection of HCV clones that are not based on JFH-1 [13]. 

Another mice model utilizing a human-liver chimera was the uPA-SCID mouse, which was 

homozygous for the uPA-transgene, the overexpression of which results in liver dysfunction. 

It was found that these mice were susceptible to HCV infection [14], whether it be based on 
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the JFH-1 system or from viruses derived from patients of all genotypes [15], allowing for the 

study of the entire HCV life cycle, as well as a model to test antiviral therapies. One method 

tries to overcome the immunodeficiency aspect of these mice models by engrafting human 

hepatocytes with human CD34
+
 hematopoietic stem cells. However, even though one group 

was able to demonstrate a T-cell response to HCV infection, viral RNA could not be detected 

and the immune activity of CD34
+
 hematopoietic stem cells is suboptimal,  thus making it too 

early to say whether this model will allow for the study of the adaptive immune response to 

HCV infection [13]. 

 

Figure 1.6: Mouse Models for the Study of HCV 

This figure shows the three different mouse models: viral adaptation, transgenic mice 

and xenotransplantation. Viral adaptation involves the wild-type HCV to adapt to murine entry 

factors in order to successfully replicate in immortalize mouse cell lines. Transgenic mice 

involve the expression of HCV proteins. One method involves the transmission of human 

Viral Adaptation Transgenic Mice Xenotransplantation
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entry factors, delivered by an adenovirus, to support wild-type HCV infection. The third 

model involves the transplantation of human hepatocytes in immunodeficient mice with a 

damaged liver to favour the growth of human hepatocytes in the mouse liver. Mouse models 

using human immune cells and the human-liver chimera are still not well-characterized for the 

study of HCV infection and the adaptive immunity [13]. Blue indicates murine cells or liver, 

while red and orange indicates human liver or human immune system.   

 

1.1.4 HCV-Host Interactors 

HCV requires cellular factors in order to effectively replicate, assemble, and propagate 

to other host cells for its infection. Several RNAi studies have implicated a multitude of host 

proteins to be pro-viral factors or restriction factors for the different steps of the HCV life 

cycle [16, 17], but not many have addressed whether these host factors interact with viral 

proteins to do so. Other studies have identified HCV-host interactors, but have not yet 

elucidated the importance of all identified interactions to the HCV life cycle [18, 19].  

 

Step of the 

Life Cycle 

HCV 

Genome 

Host 

Factor 

Effect of the 

Interaction 

Cell Entry E1 & E2 

CD81 

CDLN1 

OCLN 

SR-BI 

The E1E2 heterodimer interacts with cell surface 

receptors and tight junction proteins for HCV 

particle binding and entry into host cells [20] 

IRES-

mediated 

translation 

5' NTR miR-122 

miR-122 interacts with the 5' NTR of HCV to 

stimulate translation through the enhanced 

association of ribosomes with the viral RNA [21] 

Replication 3' NTR miR-122 
miR-122 interaction with the 3' NTR of HCV 

reduces viral RNA expression [22] 

Replication 5' NTR miR-122 
miR-122 interacts with the 5' NTR of the HCV 

genome to facilitate replication [23] 

Replication NS3/4A YBX1 
YBX1 interacts with NS3/4A and associates with 

viral RNA for replication [24, 25] 

Replication NS4B ATF6 
ATF6, part of the unfolded protein response, is 

induced by NS4B and limits viral replication [18] 

Replication NS5A 
Cyclophilin 

A 

Cyclophilin A interacts with NS5A for its PPIase 

activity [26, 27] 
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Replication NS5A FKBP8 NS5A interacts with FKBP8 and Hsp90 to form a 

complex that is important for RNA replication [28] Replication NS5A Hsp90 

Replication NS5A PI4K-IIIα 

NS5A interacts with PI4K-IIIα for proper 

membranous web formation by increasing levels of 

PI4P in this region [29-31] 

Replication NS5A Raf-1 

NS5A interacts with Raf-1, causing Raf-1 to 

phosphorylate. Inhibition of Raf-1 reduced viral 

replication [32] 

Replication NS5A TIP47 
NS5A interacts with TIP47 for efficient viral 

replication [33] 

Replication NS5A VAPA  
VAPA interacts with NS5A to positively regulate 

viral RNA replication [34] 

Replication NS5B 
Cyclophilin 

A 

Cyclophilin A is recruited to the replication 

complex by NS5B for its PPIase activity [35] 

Replication NS5B HNRNPA1 
HNRNPA1 interacts with NS5B, as well as the 5' 

and 3' NTR of HCV RNA for viral replication [36] 

Viral Particle 

Assembly 

Core 

NS3/4A 
YBX1 

In a complex with DDX6, C1QBP, IGF2BP2 and 

LARP1, YBX1, a NS3/4A interactor, is re-

localized to LDs by core to regulate the assembly 

of viral particles [24, 25] 

Viral Particle 

Assembly 

HCV 

RNA 
HNRNPK 

HNRNPK interacts with HCV RNA and co-

localizes with core protein and LDs for regulating 

viral RNA incorporation into virions [37] 

Viral Particle 

Assembly 
NS5A Rab18 

NS5A interacts with Rab18 to associate with LDs 

[38] 

 

Table 1.1: HCV-Host Interactors and their Effect on the HCV Life Cycle 

The above table is a non-exhaustive list of characterized HCV-host interactors and 

their implication at various stages of the viral life cycle.  
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1.1.4.1 HCV and the Nuclear Pore Complex and its Transporters 

Recent findings have implicated a relationship between the nuclear pore complex 

(NPC) and nucleocytoplasmic transporters with HCV proteins and viral replication. The first 

evidence of this is the existence of a nuclear localization signal and a XPO1-dependent nuclear 

export signal in the core protein, suggesting that the nucleocytoplasmic shuttling of core early 

in the HCV life cycle is important for viral replication [39, 40]. 

Neufeldt et al. demonstrated an increase in nucleoporins (Nups), components of the 

NPC, accumulating at infected areas in the cytoplasm during a HCV infection, which was 

supported by the overall increase in the mRNA levels of certain Nups during the infection. 

Several Nups, nucleocytoplasmic transporters and adaptors were identified to interact with 

HCV proteins, and elucidated to be important for viral infection. It was hypothesized that 

NPCs and nucleocytoplasmic transporters are beneficial to a cytoplasmic-replicating virus like 

HCV as it acts as a gate to different viral compartments, and protect the virus from being 

detected by cytoplasmic sensors, such as the pattern-recognition receptor RIG-I, of the innate 

antiviral immune response, and it would provide an explanation as to why several HCV 

proteins, such as core, NS2, NS3 and NS5A all encode nuclear localization signals [41]. This 

group then went on to demonstrate that the nuclear localization signals found in core and NS2 

were found to be important for early stages of viral replication, while those found in NS3 and 

NS5A were important for later stages of viral replication such as viral particle assembly and 

egress. These signals may either serve to allow these viral proteins to enter NPC-gated viral 

compartments or to hijack nucleocytoplasmic transporters as a mode of facilitated transport 

within the cytoplasm [42].   

Germain et al. (2014) identified several nucleocytoplasmic transporters, most of which 

were elucidated to interact with the NS3/4A protein of HCV such as KPNB1, RAN and 

TNPO1, which decreased viral replication when their individual gene expression was silenced. 

It was also suggested that NS3/4A can prevent the nuclear localization of STAT1 through its 

interaction with KPNB1, which is the main import carrier for STAT1, a novel viral immune 

evasion mechanism which supports the beneficial relationship between HCV and the NPC and 

its nucleocytoplasmic transporters [19]. 
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1.2 Nuclear Pore Complex and Nucleocytoplasmic Transporters 

1.2.1 Nucleocytoplasmic Transport 

The nuclear pore complex (NPC) is the main gateway between the nucleus and the 

cytoplasm. Small molecules and proteins less than 60 kDa can passively diffuse through the 

pore, while larger proteins require the help of transporters for active transport to enter the 

nucleus. In order to enter or exit the nucleus, these larger proteins must contain a nuclear 

localization signal (NLS) or a nuclear export signal (NES), respectively [43, 44].  

1.2.1.1 Protein Import 

In order to be imported into the nucleus, a protein is bound by a Karyopherin-α (Kapα) 

adaptor protein via its NLS, and both of these proteins are then bound by a Karyopherin-β 

(Kapβ) carrier protein, which mediates the nuclear transport. Once this import complex enters 

the nucleus, Ran-GTP binds to the Kapβ to dissociate the complex and release both the NLS-

containing protein and Kapα (Figure 1.7) [44].  

 

 

 

Figure 1.7: Protein Import  

The general principle of nuclear import of proteins is that a protein must contain a 

NLS, which will then be recognized by the Karyopherin-α (Kapα) adaptor protein. The 

Karyopherin-β (Kapβ) carrier protein forms a complex with the Kapα and its cargo to mediate 

the translocation of this import complex to the nucleus. The import complex is dissociated 

upon binding of RanGTP to the Kapβ import carrier. 
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1.2.1.1.1 Karyopherin-α Adaptors 

There exists seven different Kapα adaptor proteins, split into 3 subfamilies (α1, α2, and 

α3) based on their sequence homology. The α1 subfamily is composed of KPNA2 (importin-

α1) and KPNA7 (importin-α8); the α2 subfamily is composed of KPNA3 (importin-α4) and 

KPNA4 (importin-α3); and the α3 subfamily is composed of KPNA1 (importin-α5), KPNA5 

(importin-α6), and KPNA6 (importin-α7). The subfamilies range from α1, α3 to α2 in terms of 

lowest to highest sequence homology within each subfamily [45].  

In the literature, these Kapα adaptor proteins exist under a multitude of different names 

for each, such as in the case of KPNA1, previously known as NPI-1 due to its interaction with 

the nucleoprotein (NP) of the Influenza virus. The Kapα proteins are the most associated with 

nuclear import as over fifty cargoes have been identified over the years, whether it be for the 

nuclear translocation of transcription factors during an innate antiviral response or for entry 

into the nucleus by nuclear-replicating viruses like HIV-1 or Influenza virus [45].   

 

1.2.1.1.2 Karyopherin-β Import Carriers  

There are several Kapβ carriers involved in nuclear import (Figure 1.7) with the main 

one being KPNB1, also known as Importin-β. It is known to bind to classical NLSs (cNLSs) 

such as the monopartite-cNLS and the bipartite-cNLS, which contain one or two stretches of 

basic amino acids, respectively [46]. In the absence of Kapα, KPNB1 can mediate the nuclear 

transport of proteins containing an arginine-rich NLS [47].  

Another Kapβ import carrier is transportin 1 (TNPO1), which is known to bind to a 

non-classical NLS known as the PY-NLS, where the proline-tyrosine (PY) amino acids are 

preceded by either a hydrophobic or basic stretch of amino acid residues for binding by 

TNPO1 [48]. TNPO1 and TNPO2 are thought to be redundant transporters, as they both can 

interact and mediate the nuclear import of HNRNPA1 and HUR [49]. However, TNPO2 has 

been implicated in mRNA export with NXF1 [50]. TNPO3 is known to import serine/arginine-

rich (SR) proteins to the nucleus, hence its other name TRN-SR2 [51]. TNPO3 is also heavily 

implicated in HIV-1 replication such as interaction with the integrase protein for the nuclear 

import of the pre-integration complex [52, 53].   
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As shown in Figure 1.10, there are a variety of import carriers, which can specifically 

bind to certain cargoes. IPO4 has been noted to mediate FANCD2 nuclear import by 

interacting with C/EBPδ [54]. IPO7 is able to import supercoiled plasmid DNA (exogenous) 

and human mitochondrial DNA (endogenous) [55], as well as facilitate nuclear import of HIV-

1 viral DNA [56]. It can also act as an adaptor in the KPNB1/IPO7 complex for Histone H1 

nuclear import [57]. IPO8 is known for the import of the signal recognition particle 19 [58]. 

IPO8 also interacts with Argonaute 2 (Ago2) for cytoplasmic miRNA-guided gene silencing 

and the nuclear localization of Ago2 [59]. This IPO8-Ago2 is also important for the nuclear 

translocation of mature miRNAs [60]. IPO13, related to TNPO3 [61], is one of the few Kapβ 

carriers involved in both import and export, as it can import RBM8, but can also export 

translation initiation factor eIF1A [62, 63]. IPO13 can also interact with a sumoylated E2-

conjugating enzyme, Ubc9, to suppress auto-sumoylation of this complex [64].  

Import carriers can also have common cargo to transport to the nucleus, such as in the 

case of several ribosomal proteins which can interact with KPNB1, TNPO1, IPO5 and IPO7 

for nuclear import [65]. However, some ribosomal proteins like RPL7 and RPL12 can only be 

imported by IPO5 and IPO11, respectively [66, 67].  

Once the Kapβ import carriers have completed their function, they can automatically 

export back to the cytoplasm, independently of RanGTP, such as in the case of KPNB1 as part 

of its recycling mechanism to renew the formation of import complexes in the cytoplasm [68].  
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1.2.1.2 Protein Export 

A protein containing a nuclear export signal (NES) can be exported to the cytoplasm 

when it is bound to a Kapβ export carrier. The Kapβ carrier, bound by RanGTP, can then 

mediate the translocation of the export complex to the cytoplasm, where RanGTP will be 

hydrolyzed to RanGDP, with the help of RANBP1 and RANGAP1 (their functions explained 

in section 1.2.1.3 RAN Gradient), for the dissociation of the complex (Figure 1.8) [44].  

 

 

Figure 1.8: Protein Export 

The general principle of protein export is that a protein must contain a NES and be 

bound by a Kapβ export carrier. Once the Kapβ carrier is bound to RanGTP, it can then 

mediate the translocation of the protein from the nucleus to the cytoplasm. Once in the 

cytoplasm, the export complex is dissociated upon hydrolyzation of RanGTP to RanGDP, 

causing the Kapβ carrier to release its cargo. 

 

The main Kapβ export carrier is Exportin 1 (XPO1), also known as CRM1 

(chromosome region maintenance protein), which specifically recognizes leucine-rich NES 

[44]. Many studies have used the XPO1 inhibitor, Leptomycin B, to determine whether the 

export of a protein is dependent on XPO1 function [69]. One co-factor that can interact with 

XPO1 for XPO1-mediated protein export is RAN binding protein 3 (RANBP3) [70, 71], 

which can act as a scaffold for efficient export complex assembly as RANBP3 can interact 

with the guanine nucleotide exchange factor RCC1, responsible for the exchange of RanGDP 

to RanGTP that is necessary to complete the export complex and provide the energy to drive 

this transport mechanism [72].  
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Another export carrier is XPO6, which is known to specifically export profilin-actin 

complexes. These complexes are important for the proper cytoplasmic localization of NUTF2, 

a carrier which is responsible for recycling RanGDP back to the nucleus in order to restore 

RanGTP levels, via RCC1, for the formation of export complexes [73, 74].  

XPO7 is known to export proteins in a XPO1-independent manner, as it recognizes 

short linear sequences and folded motifs, where it interacts with basic residues for export [75]. 

XPOT is involved in the export of tRNAs [76], and can interact with the nucleoporins 

RANBP2 and NUP153, located on the cytoplasmic and nuclear side of the nuclear pore 

complex, respectively, as part of its ability to shuttle when bound to RanGTP [77].  

XPO4 is another Kapβ carrier known to function in both export and import as it can 

export eukaryotic translation initiation factor 5A and Smad 3 [78, 79], and can import the Sox 

family of transcription factors [80]. XPO5 is a Kapβ carrier that is also thought to be involved 

in both import and export of proteins, but has primarily been characterized in export as it can 

export dsRNA-binding proteins [81, 82], elongation factor 1A for translation [83], 60S subunit 

of the ribosome complex [84], and the export of pre-miRNA for regulating gene expression 

[85].  

After the dissociation of multiple import complexes in the nucleus, the accumulated 

Kapα adaptors are recycled back to the cytoplasm by CSE1L, also known as XPO2 or CAS, to 

renew the formation of import complexes (Figure 1.9) [44].  

 

 

Figure 1.9: Kapα Recycling 

Kapα adaptors are recycled back to the cytoplasm by CSE1L. RanGTP is hydrolyzed 

to RanGDP to dissociate CSE1L and the Kapα adaptor.  

CSE1L

NucleusCytoplasm NPC

CSE1L

RanGTP

Kapα
Kapα

RanGDP



 

18 

 

Figure 1.10: Phylogeny of Karyopherin-β subfamilies  

The above figure shows the evolution of the Karyopherin-β (Kapβ) carrier proteins 

with each colour (white, green, pink and blue) representing a different subfamily. The percent 

identity (%ID) column lists the sequence similarity of each member in comparison to their 

subfamily. The I/E column identifies which carriers are involved in import (I) and export (E). 

Some Kapβ proteins are so similar in multiple aspects of their sequences, such as domains, 

length and composition, that they are considered as paralogous pairs: TNPO1-TNPO2, IPO5-

RANBP6, IPO7-IPO8, TNPO3-IPO13, and XPO7-RANBP17 [61, 86, 87] (with the bolded 

protein of each pair corresponding to the figure above). (Figure adapted from O'Reilly AJ, et 

al., PLoS One, 2011) [86].  

XPO6

KPNB1

TNPO1

IPO5

IPO4

IPO9

IPO11

IPO8

CSE1L

TNPO3

XPO5

XPOT

XPO1

XPO4

XPO7



 

19 

1.2.1.3 RAN Gradient 

The RAN gradient is what determines the directionality of transport through the 

nuclear pore complex, where the nucleus contains a high concentration of RanGTP for export 

complexes, and the cytoplasm contains a high concentration of RanGDP waiting to be 

recycled by the carrier, nuclear transport factor 2 (NUTF2). Once in the nucleus, the GDP 

bound to RAN is exchanged for a GTP by the guanine nucleotide exchange factor RCC1 to 

renew the formation of export complexes (Figure 1.11), and the dissociation of import 

complexes [44].  

 

 

 

Figure 1.11: Recycling of RanGDP and the Renewal of RanGTP 

To prevent the accumulation of RanGDP after the dissociation of export complexes, 

NUTF2 binds to RanGDP and transports it back to the nucleus, where RCC1 can exchange the 

GDP to a GTP to continue the formation of export complexes and the dissociation of import 

complexes in the nucleus.  

 

The Ras-like nuclear protein (RAN) is the only member of the Ran family, which is 

part of the superfamily of GTP-binding proteins. This superfamily of proteins is known for 

their intrinsic GTPase activity, converting their GTP-bound active form to a GDP-bound 

inactive form [88, 89]. However, RAN is a weak GTPase and requires co-factors such as RAN 

binding protein 1 (RANBP1) and RAN GTPase-activating protein 1 (RANGAP1) to 

successfully hydrolyze RAN's GTP-bound form into a GDP-bound form for processes such as 

the dissociation of export complexes in the cytoplasm (Figure 1.8) [44, 90].  
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When import complexes are dissociated by the binding of RanGTP to Kapβ import 

carriers, these carriers can only be released from RanGTP when bound to RANBP1 such as in 

the case of CSE1L and TNPO1. KPNB1 requires the addition of a Kapα adaptor in order to be 

released from RanGTP. RANGAP1 prevents RanGTP from re-binding to these import carriers 

in the nucleus by hydrolyzing it to RanGDP [91].  

RANBP1 and RANGAP1 are both considered as nucleocytoplasmic shuttling proteins, 

as they both function in the dissociation of export complexes in the cytoplasm, and the release 

of Kapβ from RanGTP in the nucleus [92, 93]. 

 

1.2.1.4 mRNA Export 

Messenger RNAs (mRNAs) are other macromolecules which require an export 

pathway from the nucleus to the cytoplasm for the translation of mRNAs into mature proteins. 

The main carrier for mRNA export is nuclear RNA export factor 1 (NXF1), also known as 

TAP, specifically binds and exports RNA containing a constitutive transport element (CTE), 

originally found in the Mason Pfizer monkey virus [94]. The majority of mRNA is exported 

through the NXF1 pathway, where NXF1 forms a heterodimer with NUTF2-like export factor 

1 (NXT1) to interact with the phenylalanine-glycine (FG) repeats of several NPC proteins for 

proper mRNA export [95-97], and this heterodimer also functions to promote the translation of 

unspliced mRNA [98]. NXT2, a homologue of NXT1, is localized at the nuclear rim and can 

interact with NXF1 for mRNA export as well [99]. NXF1 can also export mRNA through a 

TNPO2-mediated pathway, which has a higher export rate than the NXF1 binding to Nups for 

mRNA export [50].  

The transcription-export (TREX) complex is important for mRNA export as the 

component ALY/REF can interact with NXF1 to expose its RNA-binding domain to increase 

the amount of mRNA that is bound, therefore increasing NXF1's RNA-binding affinity and 

increasing the amount of mRNA exported by NXF1. If components of the TREX complex are 

silenced, then the amount of mRNA bound is reduced, which will ultimately result in a mRNA 

export block [100, 101].  
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Other mRNA export factors are NXF2 and NXF3, where NXF2 can export 

cytoplasmic mRNAs by interacting with the cytoplasmic motor protein KIF17 [102]. NXF2 

can also form a heterodimer with NXT1 in order to interact with Nups, similar to NXF1 [103]. 

NXF3 is another nuclear mRNA export protein related to NXF1 and NXF2, but lacks the 

domain to bind to Nups. However, it does contain an XPO1-dependent nuclear export signal, 

so it can still export mRNA via XPO1 function [104].  

XPO1 can also mediate the export of certain mRNAs, but is not able to bind to mRNAs 

directly, such as in the case of the HIV-1 protein Rev which exports unspliced and partially 

spliced HIV-1 mRNA through its interaction with XPO1 [100]. NXT1 can also interact with 

XPO1 as a co-factor and is part of the terminal step of XPO1-mediated nuclear export for the 

release of XPO1 cargo to the cytoplasm, whether it be for mRNA or protein [105].  

DDX19B, the DEAD-box helicase also known as DBP5, is another important mRNA 

export factor, and requires GLE1L, bound to inositol hexakisphosphate, to increase DDX19B's 

RNA binding and ATPase activity [106, 107], while NUP214 can interact with DDX19B to 

regulate those same activities [108]. GLE1L is localized to the NPC by the cytoplasmic FG-

Nup NUPL2, and can also interact with NUP155 for mRNA export such as the export of 

HSP70 mRNA [109, 110]. 
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1.2.2 Structure of the Nuclear Pore Complex 

The nuclear pore complex (NPC) is a 125 MDa structure, and is embedded in the 

nuclear envelope (NE), a bilayer made up of the outer nuclear membrane and the inner nuclear 

membrane. Composed of 30 proteins known as nucleoporins (Nups), the NPC is made up of 

seven different parts: the cytoplasmic FG-Nups and filaments, the transmembrane-ring Nups, 

the outer-ring Nups, the linker Nups, the inner-ring Nups, the central FG-Nups, and the 

nuclear FG-Nups and the nuclear basket (Figure 1.12). These groups function in either the 

structural integrity of the NPC or in the regulation of macromolecular transport [43, 111-113].  

1.2.2.1 Cytoplasmic FG-Nups and Filaments 

The cytoplasmic phenylalanine-glycine (FG)-Nups and filaments are composed of 

NUPL2, RANBP2 (also known as NUP358), and NUP214 [112]. NUPL2 can bind to XPO1 to 

promote XPO1-dependent nuclear export, such as in the case of HIV-1 Rev export [114, 115].  

RANBP2 acts a docking site, promoting nucleocytoplasmic transport for specific 

transporters and cargos [116], such as TNPO1 nuclear import [117], KPNB1 nuclear import of 

cNLS-containing cargo [118, 119], and XPO1 nuclear export [120]. RANBP2 can also interact 

with NXF1, in complex with NXT1, for mRNA export [95], as well as interact with mRNAs 

part of the alternative mRNA nuclear export (ALREX) pathway to promote their translation 

[121]. RANBP2 is also thought to play a role in presenting misfolded and ubiquitinated 

proteins for proteasomal degradation [122], as its cyclophilin-like domain acts as a modulator 

for the ubiquitin-proteasome system and may contribute to the compartmentalization of 

properly-folded protein for turnover [123].   

RANBP2, part of the cytoplasmic filaments, is linked to the cytoplasmic side of the 

NPC by the NUP214/NUP88 complex [124], due to the association of NUP214 with the 

cytoplasmic ring [125]. NUP214 can also be found in the nucleus for its role in XPO1-

mediated protein export [126], when in complex with NUP88, such as the export of the pre-

ribosomal 60S subunit [127-129]. 
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1.2.2.2 Transmembrane-ring Nups 

The transmembrane-ring Nups, composed of NDC1, NUP210 and POM121, are all 

responsible for the anchoring of the NPC to the NE [130, 131]. NDC1 is important for NPC 

assembly as it can interact with Nups from different parts of the NPC such as NUP93 (linker 

Nup), NUP53 (central FG-Nup), and NUP205 (inner-ring Nup) [132, 133]. Out of the 

transmembrane-ring Nups, NDC1 is the one responsible for the targeting of ALADIN, a Nup 

thought to be associated with the outer-ring, to the NPC, where this interaction may be 

important for nuclear import selectivity [134, 135].  

In comparison to POM121, NUP210 is thought to be redundant in the function of NE 

formation [136]. POM121 is thought to be the most important of the transmembrane-ring 

Nups for NPC assembly at the membrane [137, 138]. POM121 is important for recruiting 

RANBP2 (cytoplasmic FG-Nups) and NUP62 (central FG-Nups) to the NPC for assembly 

[130]. POM121 is also important for linking the NUP160 (outer-ring Nup) subcomplex and 

the NUP155 (inner-ring Nup) subcomplex together for nuclear pore formation and attachment 

to the NE [139]. POM121 is also thought to interact with KPNA/KPNB1 import complex and 

several nucleoporins in a NLS-dependent manner, which is important for NPC assembly at the 

NE and structural integrity of the NPC [140].  

1.2.2.3 Outer-ring Nups 

The outer-ring Nups are composed of ALADIN, NUP37, NUP43, NUP75, NUP96, 

NUP107, NUP133, NUP160, SEC13 and SEH1 [112]. ALADIN is targeted to the NPC by the 

transmembrane-ring Nup NDC1, where this interaction may be important for nuclear import 

selectivity [134, 135]. The NUP107-160 complex, composed of all the outer-ring Nups, with 

the exception of ALADIN, is important for nuclear import of NLS-containing cargos, as well 

as the organization of other complexes of the NPC such as the transmembrane-ring Nups [112, 

141]. The NUP107 complex also plays a role in the diameter of the NPC, as it assembles into 

two reticulated rings, to accommodate the nucleocytoplasmic transport of large cargoes [142]. 

NUP107 itself is important for the proper assembly of multiple Nups to the NPC such as 

RANBP2, NUP214, NUP133, NUP153, and TPR [143, 144].  
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1.2.2.4 Linker Nups 

The linker region of the NPC is composed of NUP88 and NUP93, which can be found 

on both sides of the NPC [112]. NUP88 can interact with lamin A, and NUP214 for XPO1-

mediated export on the nuclear and cytoplasmic side of the NPC, respectively [128, 145]. 

NUP93 acts as a backbone to connect both the cytoplasmic and nuclear sides of the NPC, and 

in addition interacts with NUP205, NUP155 and NUP53 for proper NPC assembly, while 

recruiting NUP62 for nucleocytoplasmic transport-competent NPCs [146, 147]. The 

interaction between NUP93, NUP155 and NUP205 is known as the NUP93 subcomplex [148].  

1.2.2.5 Inner-ring Nups 

The inner ring of the NPC is composed of NUP155, NUP188 and NUP205 [112]. 

NUP155 interacts with NUP53 and NDC1 for NPC assembly [133, 149]. NUP188 is thought 

to regulate the movement of membrane proteins across the NPC [150], and can interact with 

FG-repeats and move through the NPC [151]. NUP155 and NUP205 interact with NUP93 and 

NUP53 for proper NPC assembly [146, 147].  

1.2.2.6 Central FG-Nups 

The central FG-Nups, composed of NUP53, NUP54, NUP58/NUP45, NUP62 and 

NUP98 [112]. NUP53 interacts and anchors the NUP93 subcomplex and interacts with NDC1 

for proper NPC assembly at the NE [133, 148]. NUP98 is a mobile Nup, and is important for 

RNA export as it can interact with RAE1, a mRNA export factor [152-155]. During TNPO1 

import, NUP98 competes for TNPO1 binding via its M9 motif, releasing the import cargo into 

the nucleus, and RanGTP bound to NUP98 dissociates it from TNPO1 [156]. NUP98, in 

complex with RANBP3, can act as a co-factor for XPO1-mediated export [157].  

Within the central FG-Nups is the NUP62 complex made up of NUP62, 

NUP58/NUP45 and NUP54, which are all implicated in nuclear import as they all encode for 

FGs. NUP58/NUP45 complex is responsible for adjusting the diameter of the central channel 

[158], increasing in size to allow for nucleocytoplasmic transport to pass through the NPC 

[159]. NUP58 can complex with KPNB1 for SRP1α nuclear import, while NUP62 can interact 

with NUTF2 for RanGDP nuclear import [160-163]. NUP62 can also interact with TNPO3 for 
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TNPO3-mediated nuclear import of serine/arginine-rich proteins [51]. NUP62 is also involved 

in export via interacting with NXT1 for NXF1-mediated mRNA export [97].  

1.2.2.7 Nuclear FG-Nups and the Nuclear Basket 

The nuclear FG-Nups and the nuclear basket are composed of NUP50, NUP153 and 

TPR [112]. Despite residing on the nuclear side of the NPC, NUP50 mediates XPO1-

dependent export [164]. NUP50, depending on its isoform, can regulate the speed of NLS-

cargo nuclear import, allowing CSE1L to properly dissociate the cargo from NUP50 for Kapα 

export [165, 166], such as in the case of KPNA1 and its cargo PB2 of influenza virus [167].  

NUP153 interacts with NUP50 as a scaffold, supporting the NUP50/Kapα for efficient 

nuclear import [168]. NUP153 interacts with KPNA2 for nuclear export [169], and it is also 

responsible for the export of multiple classes of RNAs (snRNA, mRNA and 5S rRNA), as 

well as XPO1-dependent export for viral proteins such as HIV-1 Rev and its dependent RNA 

export, without affecting tRNA export and KPNB1 recycling to the cytoplasm [170]. Due to 

NUP153's involvement in export, it is thought to be mobile within the NPC, as it also plays a 

role in import through interacting with TNPO1 via NUP153's M9 shuttling domain [171]. 

NUP153 facilitates cNLS-mediated import by interacting with Kapα in the classical 

Kapα/Kapβ nuclear import pathway [172].  

NUP153 interacts with TPR to localize it to the nuclear side of the NPC for the 

formation of the nuclear basket [173, 174]. TPR restricts the export of unspliced mRNAs via 

the NXF1-mediated mRNA export pathway [175, 176]. TPR is also thought to be involved in 

XPO1-dependent protein export [177].  
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Figure 1.12: Structure of the Nuclear Pore Complex 

The nuclear pore complex (NPC) is composed of roughly 30 proteins known as 

nucleoporins (Nups), which are divided into 7 groups based on their location in the structure. 

(Figure adapted from Grossman E, et al., Annu Rev Biophys., 2012) [112].  
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1.3 Viruses and the NPC & its Transporters 

Nucleoporins and nucleocytoplasmic transporters have been the target of a myriad of 

viruses for various reasons. Viruses that replicate in the nucleus usually target these proteins to 

enter and exit the nucleus for the life cycle and propagation of the virus.  

1.3.1 Nuclear-Replicating Viruses 

1.3.1.1 DNA Viruses 

The Herpesviridae family is composed of several dsDNA viruses such as Herpes 

simplex virus type 1 (HSV-1), Varicella-Zoster virus (VZV), Epstein-Barr virus (EBV), and 

Human cytomegalovirus (HCMV), which are also known as Human herpesvirus 1 (HHV-1), 

HHV-3, HHV-4, and HHV-5, respectively. In the life cycle of these viruses, the capsid injects 

the viral genome into the nucleus, where replication and transcription occurs [178]. Multiple 

viral proteins then work in concert to take over cellular processes such as transcription for 

viral gene expression and nucleocytoplasmic transport of viral factors [179]. The HSV-1 

proteins pUL25 and pUL36/pUL6, interact with the cytoplasmic FG-Nups NUP214 and 

NUPL2, respectively, for capsid import to the NPC, infection initiation, and viral DNA release 

into the nucleus [180]. ICP27 interacts with multiple export factors such as ALY/REF, NXF1 

and XPO1 for efficient viral RNA export through the NXF1- and XPO1-mediated pathways 

[181-185]. ICP27 also interacts with NUP62 to block KPNB1- and TNPO1-dependent import 

to favour the export of viral mRNAs [186]. VZV interacts with ALY/REF and NXF1 via its 

IE4 protein for viral mRNA export through the NXF1-mediated RNA export pathway [187]. 

VZV can also interact with KPNB1 and XPO1 via its ORF9 protein for nucleocytoplasmic 

shuttling [188]. EBV can interact with NUP62 and NUP153 via its BGLF4 kinase, which 

phosphorylates these Nups to increase nuclear import of non-NLS-containing viral proteins 

and block the import of host proteins [189]. EBV protein SM is exported by XPO1 to the 

cytoplasm for its activity of increasing the expression of intronless genes, such as certain EBV 

genes involved in lytic replication [190]. The viral protein UL84 of HCMV can interact with 

KPNA1, KPNA2, KPNA3 and KPNA4, in complex with KPNB1 and RAN, for nuclear 
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import [191], while the viral protein UL79 interacts with TNPO1 for its import to the nucleus 

[192].  

The Papillomaviridae family are also composed of dsDNA viruses of multiple types 

such as Human papillomavirus type 8 (HPV8), type 11 (HPV11) and type 16 (HPV16). HPV 

is internalized into cells via the L1 and L2 capsid proteins. The L2 minor capsid protein is 

responsible for the delivery of HPV viral DNA into the nucleus, while L1 remains at the 

endosome for degradation. The E2 protein binds to viral DNA and recruits the E1 helicase for 

viral DNA replication, while the E6 and E7 proteins are thought to promote cell proliferation 

[193, 194]. The L2 minor capsid protein uses IPO5 and TNPO1, as well as KPNB1 complexed 

with KPNA2, for viral DNA import in HPV11 and HPV16 [195, 196]. The E2 viral protein 

can also interact with KPNA1 and KPNA4 for nuclear import in HPV11 and HPV16 [197]. In 

HPV16, the E6 protein can enter the nucleus by interacting with KPNA2, in complex with 

KPNB1, and TNPO1 [198]. The E7 protein can mediate its nuclear transport by interacting 

with NUP62 in HPV8, HPV11 and HPV16, and NUP153 in HPV8 [199-201].  

Hepatitis B virus (HBV) from the Hepadnaviridae family is a dsDNA virus, utilizing 

the reverse transcriptase enzyme for the synthesis of DNA from the viral mRNA [202]. The 

HBV core protein is exported by NXF1 for viral DNA synthesis, while the X protein is 

exported by and sequesters XPO1 as part of its role to induce liver carcinogenesis in 

chronically-infected hepatocytes [203, 204]. The HBV capsid interacts with NUP153 to 

regulate viral release into the nucleus [205].  

1.3.1.2 RNA Viruses 

Influenza A virus (IAV) is one of the few negative-sense RNA viruses to replicate in 

the nucleus. The polymerase basic protein 1 (PB1), part of the viral RNA polymerase 

complex, is imported to the nucleus by IPO5 for the accumulation of viral RNA required for 

efficient viral growth [206, 207]. PB1 also interacts with NUP54 for viral polymerase 

transcription and viral replication [208]. The viral protein PB2 can interact with KPNA1 and 

KPNA2 for nuclear import  [209, 210], while the nucleoprotein (NP) interacts with KPNA2 

for nuclear import and with KPNA4 for the regulation of viral replication, independent of its 

import function [210, 211]. The viral protein NS1 complexes with NXF1 and its co-factors, 
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NXT1 and RAE1, to block mRNA export [212]. The NP and NS2 viral proteins of IAV 

interact with XPO1 for the export of viral ribonucleoprotein complexes (vRNPs) to the 

cytoplasm, disfavouring the export of other XPO1 substrates [213-215]. The viral protein NP 

can also be exported directly to the cytoplasm by interacting with XPO1 for viral replication 

[216]. NXF1 is thought to play a role in the viral RNA export of most late proteins [217]. The 

phosphorylation of RANBP3, a XPO1 co-factor [70], is required at early and late stages of 

viral infection for vRNP export [218].  

Human immunodeficiency virus type 1 (HIV-1) is retrovirus, which requires the use of 

the reverse transcriptase enzyme to convert its RNA genome into DNA for integration into the 

host genome. HIV-1 is part of a subgroup of retroviruses known as lentiviruses, as it can enter 

the nucleus through the NPC and infect non-dividing cells [219]. The pre-integration complex 

(PIC) of HIV-1 is able to enter the nucleus by using the viral protein integrase to interact with 

KPNA2, KPNA4 and TNPO3 [52, 53, 220, 221], as well as directly with the cytoplasmic FG-

Nup RANBP2 [222]. Vpr also helps with PIC docking at the NPC by interacting with NUP54 

and NUPL2 [223, 224]. HIV-1 also recruits other Nups and transporters such as NUP98 and 

IPO7 to facilitate with the nuclear import of its viral cDNA [56, 225]. The HIV-1 rev protein 

interacts with XPO1, NUP98 and NUP214 for the export of Rev and viral mRNA through the 

XPO1-dependent export pathway [226, 227], while suppressing the export of mRNAs by the 

NXF1 pathway [228].  

 

1.3.2 Cytoplasmic-Replicating Viruses 

Viruses that replicate in the cytoplasm do not require entry into the nucleus for its 

replication, but they can interact with nucleoporins and transporters to disrupt transport 

through the NPC to give the virus a growth advantage in the cell. 

1.3.2.1 DNA Viruses 

The Poxviridae family is the only viral family with a dsDNA genome to replicate in 

the cytoplasm. RNAi screens have elucidated multiple proteins from multiple functional 

groups which are important for cytoplasmic replication of Vaccinia virus (VACV), making the 
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requirement for NPC genes for replication to be unexpected. Out of the NPC and transporters 

elucidated to have an effect on VACV replication, NUP62 was shown to block viral 

morphogenesis when silenced [229].  

1.3.2.2 RNA Viruses 

The Picornaviridae family is composed of positive, single-stranded RNA viruses such 

as those from the Cardiovirus and the Enterovirus genus. The relationship between this viral 

family and the NPC, specifically, is that of nucleocytoplasmic transport disruption. 

Cardioviruses encode the Leader (L) protein, which has been shown to hyperphosphorylate 

multiple NPC proteins such as NUP62, NUP153 and NUP214 to inhibit protein import and 

export in Encephalomyocarditis virus (EMCV) [230], and NUP62 in Mengovirus, an EMCV 

subtype, to permeabilize the nuclear envelope and alter nucleocytoplasmic transport [231]. 

Enteroviruses encode the 2(A) protease, which can cleave NUP62, NUP98 and NUP153 in 

Poliovirus, and only NUP62 in Human rhinovirus, to disrupt nucleocytoplasmic trafficking 

like protein import and mRNA export [232-234]. 

The relationship between the Flaviviridae family and the NPC and its transporters, as 

seen with HCV in a previous section, is not well-understood. Other members such as Dengue 

virus have shown to interact with KPNB1 and XPO1 via its NS5 protein, suggesting that this 

nucleocytoplasmic shuttling is important for viral replication [235, 236]. Japanese encephalitis 

virus, another member, was shown to have increased replication when RANBP2 is silenced 

[237], which could suggest disrupting nucleocytoplasmic transport, such as protein import by 

KPNB1 [118], may provide a replication advantage in host cells.   

Negative-sense RNA viruses, such as Human respiratory syncytial virus (RSV) from 

the Paramyxoviridae family and Vesicular stomatitis virus (VSV) from the Rhabdoviridae 

family, can interact with the NPC and its transporters via its Matrix (M) protein. In the case of 

RSV, the M protein interacts with KPNB1 for nuclear import and XPO1 for nuclear export 

later in the infection to localize at regions of virus assembly for viral production [238, 239]. 

On the other hand, the M protein of VSV can interact with NUP98 and RAE1 to block mRNA 

export to inhibit host protein transcription [240-242], and can interact with RAN to block the 

nucleocytoplasmic transport of certain proteins and RNAs [243].  



 

31 

1.4 Innate Antiviral Immune Response 

1.4.1 Early Phase: Virus Recognition by PRRs 

The innate immunity involves the recognition of pathogen-associated molecular 

patterns (PAMPs) by pattern-recognition receptors (PRRs). In humans, there currently exist 

five different PRR pathways: Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), NOD-

like receptors (NLRs), C-type lectin receptors (CLRs) and cGAS/STING. However, only the 

TLR, RLR and cGAS/STING pathway contain receptors recognizing viral genomes, while the 

NLR and CLR pathways have receptors recognize other macromolecules such as bacterial 

peptidoglycans and carbohydrates on the surface of pathogens, respectively [244-246].  

 The TLR pathway consists of extracellular receptors ranging from TLR1 to TLR11. 

TLR3, TLR7, and TLR9 recognize viral dsRNA, ssRNA and CpG-DNA, respectively in 

endosomal compartments. Once the receptor recognizes the virus, TLR3 signals through the 

TRIF adaptor protein, while TLR7 and TLR9 signal through MYD88 for the innate antiviral 

response [244-246]. 

The RLR pathway is composed of two cytoplasmic sensors RIG-I, which recognizes 

short dsRNA and 5’ triphosphate dsRNA, and MDA5, which recognizes long dsRNA. RIG-I 

recognizes a multitude of viral RNA such as HCV and influenza virus. Sendai virus (SeV) is 

often used to specifically activate the RLR pathway via RIG-I sensing. When RIG-I and 

MDA5 sense viral RNA, their CARD domain becomes exposed and interacts with the CARD 

domain of MAVS, which causes MAVS to translocate to the mitochondria where it mediates 

its downstream signaling of the immune response [244-247]. 

In the cGAS/STING pathway, intracellular viral DNA is recognized by cyclic-GMP-

AMP (cGAMP) synthase (cGAS), which will then synthesize cGAMP. The newly-synthesized 

cGAMP binds to STING localized at the ER, where it then signals downstream for the innate 

antiviral immunity [248]. 
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1.4.2 Signaling Cascade 

The TLR pathway leads to two signaling cascades: one mediated by TLR3 via TRIF, 

and the other mediated by TLR7 and TLR9 (and all other TLRs) via the MYD88 adaptor 

protein. TRIF interacts with TRAF3, which signals TBK1 and IKKε to phosphorylate IRF3, 

which induces IRF3 nuclear translocation for the activation of type I interferons (IFNs). TRIF 

also interacts with TRAF6 for the activation and nuclear translocation of NF-κB by 

phosphorylation, and hence degradation, of the NF-κB inhibitor IκB by the IKK-α/β/γ 

complex. MYD88 also interacts with TRAF6 for NF-κB activation and nuclear translocation 

for the activation of cytokines. However, MYD88 interaction with TRAF3 leads to the 

activation of IRF7, via phosphorylation by the IKK-α/IRAK1 complex, for the production of 

IFNs, similar to IRF3 [244]. 

In the RLR pathway, MAVS at the mitochondria signals through both TBK1 and 

IKKε, as well as the IKK-α/β/γ complex for the nuclear translocation of both IRF3/7 and NF-

κB, respectively, for the production of IFNs and cytokines [244-247, 249]. 

 The cGAS/STING pathway involves the binding of cGAMP to STING at the ER, 

where it recruits TBK1 and IKK, similar to MAVS in the RLR pathway, for the activation and 

nuclear translocation of IRF3 and NF-κB for the production of IFNs [248].  

1.4.2.1 IRFs  

There are currently nine members of the Interferon-regulatory factors (IRFs) family of 

transcription factors [250], which play a variety of roles such as the induction of IFNs and 

ISGs, such as in the case of IRF3 and IRF9, respectively [251]. They are characterized as 

having a N-terminal DNA-binding domain, which recognizes and binds to ISRE DNA 

sequences [252].   

IRF1 was the first transcription factor found to bind to the PRDI domain on the IFNβ 

promoter [253, 254]. Upon IFN-α/β binding to their appropriate receptors, IRF1 expression is 

induced by the binding of the IFN-α-activated factor (AAF) complex, composed of STAT1 

homodimers, to the IFN-γ-activated sequence (GAS) promoter [251]. IRF1 binds to IFN-

stimulated regulatory element (ISRE) promoters for the expression of ISGs [251] such as PKR 
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and OAS [255, 256]. IRF1 can also activate IFNA4 expression, which is repressed by IRF3 

[257]. IRF2 shares many sequence similarities and binding capacities with IRF1, and thus acts 

as a negative regulator of IRF1 function, such as binding to ISRE promoters to block induction 

of ISGs by IRF1 [258, 259].  

IRF3 is activated through phosphorylation by multiple PRR pathways upon viral 

infection, where it translocates to the nucleus for the expression of type I interferons [244-

249]. IRF3 is part of the DRAF1 complex, along with CREB-binding protein and p300, which 

binds to the ISRE [260]. IRF3 can induce the expression of ISGs, such as ISG15 and IP-10, 

without the ISGF3 complex of the JAK/STAT pathway [251]. 

IRF4 is only expressed in the B-cells and T-cells of lymphoid tissues, and has a similar 

DNA-binding domain to IRF1 and IRF2 as it can bind to the ISRE [261, 262]. It is able to 

repress IFN-dependent and IRF1-dependent activity, but differs from that of IRF2 [263].   

IRF5 is activated via the TLR pathway through the MYD88 adaptor, where the 

translocation of IRF5 to the nucleus induces cytokine expression [264]. IRF6 sequence has the 

closest homology to IRF5 out of all the family members [265], and its only function to date is 

the positive regulation of nitric oxide synthase 2 (NOS2) transcription [266]. 

Upon IFN stimulation, IRF7 expression is induced by the ISGF3 complex binding to 

the ISRE promoter, where newly synthesized IRF7 is phosphorylated, similar to IRF3, for 

positive-feedback regulation on the expression of the IFN-α/β promoters with phosphorylated 

IRF-3 in the nucleus [251]. 

IRF8 expression is inducible by IFN-γ and is found in lymphoid tissues [267], where 

its activation is linked with T-cell activation [268]. IRF8 is able to bind to the ISRE only when 

complexed with IRF1 and IRF2, and acts as a negative regulator by blocking the binding of 

ISGF3 to this element [269].  

IRF9 is well-known as being part of the ISGF3 complex, with STAT1 and STAT2, 

which induces the expression via the ISRE promoter of other IRFs like IRF7 and ISGs such as 

OAS and PKR [251].  
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1.4.2.2 NF-κB 

There are currently five NF-κB transcription factors: p50/p105 (also known as NF-

κB1), p52/p100 (also known as NF-κB2), p65 (also known as RelA), c-Rel, and RelB. Out of 

the five transcription factors, p50 and p52 have to be processed into their active form from the 

p105 and p100 precursors, respectively, while the other three factors are already synthesized 

into their transcriptionally active form. As part of the Rel family of proteins, they all contain a 

Rel homology domain, which is responsible for their dimerization in the form of homo- or 

heterodimers, as well as their translocation to the nucleus and ability to bind to DNA [270].  

However, there are inhibitory NF-κB (IκB) proteins, which bind and cover the NLS of 

these family members to sequester them in the cytoplasm. Upon a viral infection, injury or 

stress, the NF-κB pathway is activated by the phosphorylation of IkB proteins, inducing their 

degradation, and releasing the NF-κB proteins, such as the p50/p65 and p50/c-Rel 

heterodimers, which can now translocate to the nucleus to promote the transcription of various 

factors involved in the innate antiviral response, inflammation and apoptosis [270, 271].  

 

1.4.3 Late Phase: Interferon Activation of the JAK/STAT Pathway 

Once type I interferons, such as IFNα and IFNβ, are produced, they are secreted and 

bind to IFNα receptors (IFNAR) in an autocrine and paracrine fashion. This activates the 

JAK/STAT pathway where STAT1 and STAT2 are phosphorylated on a tyrosine by JAK1 and 

TYK2. These STATs dimerize and associate with IRF9 to form the ISGF3 complex, which 

translocates to the nucleus and binds to the IFN-stimulated regulatory element (ISRE) 

promoter which drives the expression of other IRFs like IRF7 and interferon-stimulated genes 

(ISGs) such as OAS and PKR to induce an antiviral state in the infected cell and neighbouring 

cells [251, 272-274]. Transcription factors such as IRF3 can induce the expression of certain 

ISGs directly, such as ISG15 and IP-10, without having to signal through the JAK/STAT 

pathway [251]. Depending on the state of the cell, expressed ISGs such as TRAIL and XAF1 

may induce apoptosis if the cell is unable to adequately combat the viral infection [275].  
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1.4.3.1 Transcriptional Control by Type I Interferons 

Type I interferons have regulatory effects on the expression of factors associated with 

adaptive immunity such as increasing the expression of major histocompatibility antigens 

Class I and II via mRNA stabilization, which leads to the activation of macrophages, natural 

killer cells and cytotoxic T-cells and increase in antigen presentation [277]. These IFNs can 

also bind to specific receptors on CD8 T-cells to induce clonal expansion, differentiation and 

memory formation as a consequence of viral infections [278-280].  

These IFNs, such as IFNβ, can also regulate the inflammation pathway by increasing 

the mRNA stability of negative factors such as IL-1ra, and destabilize the TNF-α and IL-1β 

mRNA to create a negative feedback loop [281].  

1.4.3.2 Regulation of IFNβ Expression 

IFNβ is a type I interferon and its expression is induced by the binding of both IRF3 

and NF-kB p65 to the PRDIII domain and the PRDII domain, respectively, on the IFNB1 gene 

promoter [257, 282]. IRF1 can bind to the PRDI domain [253, 254], while ATF-2/c-Jun can 

bind to the PRDIV domain of this promoter [283, 284]. Once IFNβ binds to IFNAR to activate 

the production of ISGs via the JAK/STAT pathway, high levels of IRF7 is expressed, 

amplifying IFNβ expression during the late phase of the antiviral response [285].   

IFNβ expression is negatively regulated throughout the innate antiviral response to 

prevent prolonged activation. At the level of effector proteins in the signaling cascade of the 

antiviral response, TBK1 activity can be negatively regulated by CYLD deubiquitination, 

which removes lysine 63-linked ubiquitin chains [286, 287], and proteasomal degradation by 

the E3 ubiquitin ligase TRIP, which adds lysine 48-linked ubiquitin chains [288]. At the level 

of transcription factors, IRF3 activity is negatively regulated via degradation by the 

proteasome [289]. On the other hand, NF-kB induces the transcription of its inhibitor IkBα as 

a negative feedback mechanism to prevent prolonged NF-kB activity [290-292]. NF-kB and 

IkBα form a complex and are then exported to the cytoplasm by XPO1 via the NES of IkBα to 

completely abolish NF-kB activity until further stimulation [293, 294]. In the JAK/STAT 

pathway, SOCS expression inhibits STAT phosphorylation by JAK, preventing ISG induction 

by ISGF3 and the amplification of IFNβ expression by IRF7 [276].  
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1.4.3.3 Type III Interferons 

Another type of interferon that is activated in response to a viral infection is the type III 

interferons, which is composed of IFNλ1 (IL-29), IFNλ2 (IL-28A), and IFNλ3 (IL-28B) [295]. 

These interferons bind to the IFNλ receptor, which signals through the JAK/STAT pathway 

via phosphorylation of JAK1 and most importantly JAK2, in comparison to JAK1-only 

signaling in type I interferons [296]. The production of the type III interferons is induced by 

the RLR pathway, specifically in the localization of MAVS to peroxisomes [296], which 

differs from the localization of MAVS to the mitochondria for the signaling to produce type I 

interferons [297]. IRF3/7, and NF-κB are required for the induction of both types of 

interferons [298, 299], while AP-1 is only essential for type I interferons and dispensable for 

type III interferons [296]. The similarity between the players required for the induction of 

these two types of interferons, and the subsequent JAK/STAT signaling they induce, is 

reflected in the fact that there are no ISGs that are specifically associated to type III interferons 

[300, 301]. However, type I interferons, such as IFNα and IFNβ, are able to induce ISGs in 

greater magnitude with a bell curve effect over time, while type III interferons gradually 

induce ISG activation from a lower magnitude over a longer period of time [302]. 
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1.5 NPC and Transporters: Targets for Viral Immune Evasion  

As discussed in section 1.3, all different kinds of viruses, regardless if their genome is 

DNA- or RNA-based, interact with Nups and nucleocytoplasmic transporters for a variety of 

cellular processes such as viral entry into the nucleus for nuclear-replicating viruses or to 

disrupt normal nucleocytoplasmic transport to benefit viral replication of cytoplasmic-

replicating viruses. In section 1.4, the innate antiviral immunity was described and how 

important transcription factors such as IRF3, NF-κB, and STAT1 translocate to the nucleus for 

the induction of IFNs and ISGs, respectively upon a viral infection. Various viruses have 

developed ways to evade the innate immune response by disrupting the Nups and transporters 

required for the proper localization of proteins to induce an antiviral state in the cell.  

 

1.5.1 Positive ssRNA Viruses 

Positive single-stranded RNA viruses like those from the Nidovirales order can disrupt 

the transport of important innate antiviral factors to the nucleus to inhibit the production of 

ISGs. In the case of Porcine reproductive and respiratory syndrome virus (PRRSV), the viral 

protein Nsp1β degrades KPNA1, thus inhibiting ISGF3 nuclear import [303]. Another 

example is the SARS coronavirus (SARS-CoV), where the viral protein ORF6 tethers KPNB1 

to ER and Golgi membranes, hence blocking STAT1 nuclear import [304]. In the Flaviviridae 

family, the NS3/4A protease of HCV was suggested to interact with KPNB1 to prevent its 

interaction and nuclear translocation of STAT1 [19]. The NS5 protein of Dengue virus, 

another member of this family, can interact with a KPNA adaptor protein in complex with the 

KPNB1 carrier, for localization to the nucleus to reduce IL-8 in order to protect virus 

production [305]. In the Picornaviridae family, the 3C (protease) of the Foot-and-mouth 

disease virus induces KPNA1 degradation, blocking STAT1/2 nuclear import to inhibit the 

IFN response [306]. On the other hand, the Encephalomyocarditis virus can use its Leader 

protein to bind to RAN and completely disrupt nucleocytoplasmic transport causing the 

inhibition of IFN activity in the cell, as well as the efflux of nuclear proteins which can be 

used by the virus for replication [307].  
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1.5.2 Negative ssRNA Viruses 

Negative single-stranded RNA viruses such as those from the Mononegavirales order 

can interact with import adaptors to disrupt the innate antiviral response such as in the case of 

the W protein of Nipah virus interacting with KPNA3 and KPNA4 for its nuclear localization 

to inhibit the activation of the IRF3-responsive promoter [308], while the VP24 protein of 

Ebola virus can interact with KPNA1, KPNA5 and KPNA6 to disrupt their interaction with 

tyrosine-phosphorylated STAT1, thus blocking STAT1 nuclear import and inhibiting ISG 

production [309, 310]. The Y1 protein of Sendai virus is localized to the nucleus by a RAN-

dependent pathway, where it can inhibit ISG expression induced by IFN-α [311].   

 

1.5.3 Induced Nucleoporin Expression during an Innate Antiviral Response 

Although cytoplasmic-replication RNA viruses have developed ways to block the 

induction of an antiviral state primarily by inhibiting the nuclear localization of STAT1, the 

innate antiviral immune response can induce the expression of certain Nups to alleviate certain 

effects caused by the viral infection. During an infection by Vesicular stomatitis virus, the M 

protein targets NUP98 and RAE1 to block mRNA export. However, IFNs can induce the 

expression of the NUP98 gene, which encodes for both NUP96 and NUP98, and RAE1 to 

alleviate this mRNA export block [242, 312, 313]. NUP96 is thought to be important for the 

innate and adaptive immunity as mice with low expression of NUP96 were impaired in the 

induction of proteins following IFNα or IFNγ stimulation, resulting in mice which are more 

susceptible to viral infections [314].  
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1.6 Hypothesis & Objectives 

 

Hypothesis: 

The premise of my Master's project is based on the fact that viruses need to interact 

with host factors in order to promote their life cycle in the cell, while avoiding cellular 

responses that would interfere with that goal. In the case of HCV, a large number of virus-host 

interactions were elucidated with the majority not having an effect on viral replication 

(Germain et al., Mol. Cell. Proteomics 2014). This led us to postulate that these interactions 

may be beneficial to the virus by affecting other response and processes in the cell such as the 

innate antiviral immune response, metabolism and apoptosis.  

 

Objective: 

The objective of my project is to characterize HCV-host interactors that greatly 

modulate the innate antiviral immune response. The goal is to comprehend these viral-host 

interactions in order to uncover novel viral evasion mechanisms and apply it to other viral 

infections in the hopes of finding novel targets for panviral therapies. 

 

Aims: 

- To identify one or more proteins or a family/complex of proteins which greatly 

modulate the innate antiviral response when silenced from a selected list of HCV-host 

interactors 

- To determine the effect that this/these protein(s) have on the innate antiviral response 

during a SeV infection biochemically 

- To propose mechanisms that would explain the targeting of this/these proteins by 

viruses in the context of viral immune evasion 
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Chapter 2: A Microscopy-based RNAi Screen Identifies 

Key Nucleocytoplasmic Transporters that Control IRF3 

and NF-κB Nuclear Translocation and Innate Antiviral 

Responses Following Viral Infection. 
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This chapter features the article, currently under preparation, titled "A Microscopy-based 

RNAi Screen Identifies Key Nucleocytoplasmic Transporters that Control IRF3 and NF-

κB Nuclear Translocation and Innate Antiviral Responses Following Viral Infection." by 

Bridget Gagné, Martin Baril Ph.D., and Daniel Lamarre Ph.D. 

 

The first author (Bridget Gagné) performed all experiments, as well as the analysis of results 

and the making of all figures for this article. The designing of experiments and the writing of 

the article were primarily done by the first author, with valuable input, insight and revisions by 

Martin Baril and Daniel Lamarre. Data from the LC-MS/MS analysis was used from the 

article "Elucidating novel hepatitis C virus-host interactions using combined mass 

spectrometry and functional genomics approaches." by Germain et al. (Molecular and Cellular 

Proteomics, 2014).  
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SUMMARY 

 

The nuclear pore complex is the gate between the nucleus and the cytoplasm, and where 

nucleocytoplasmic transport of macromolecules occurs via Karyopherin-β carriers such as 

CSE1L, KPNB1, RAN, TNPO1, and XPO1. In this study, a first RNAi screen, assessing the 

role of HCV-host interactors in virus-mediated production of IFNB1, identified the NPC and 

protein import as the most enriched GO terms. In order to obtain a comprehensive 

understanding of the proteins that are affecting the nuclear translocation of the key 

transcription factors IRF3 and p65 regulating IFNB1 production, we performed a microscopy-

based RNAi screen targeting 60 nucleocytoplasmic transporters following SeV infection. Our 

kinetic screen allowed the classification of nucleoporins and nucleocytoplasmic transporters 

into three functional groups: reduced (25), delayed (4) or increased (2) nuclear translocation. 

Finally, knockdown of KPNB1, the hub protein highly targeted by viruses, led to a dramatic 

increase in SeV replication and earlier induction of apoptosis. Altogether, we identified key 

nucleocytoplasmic transporters as potential therapeutic targets for broad-spectrum antiviral 

therapies. 

 

KEYWORDS: Innate antiviral immunity; nuclear pore complex; NPC; nucleocytoplasmic 

transport; RNAi screen; microscopy screen; virus-host interaction; nuclear translocation; 

IRF3; p65; NF-κB; KPNB1. 
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INTRODUCTION 

 

The proteomic approach and functional RNAi screening of genes are used to elucidate virus-

host interactions, such as cellular factors that are required for viruses to survive and replicate 

in host cells. The nuclear pore complex (NPC), composed of 30 proteins known as 

nucleoporins (Nups), and nucleocytoplasmic transporters have been found to significantly 

affect viral replication in many RNA viruses studied using these extensive screens  [1-5]. 

Necessary interactions between viral proteins and NPC components and their transporters 

were seen in hepatitis C virus (HCV) [1, 6, 7], picornavirus [8], and HIV-1 [9, 10] to name a 

few.  Influenza A virus, one of the few negative-sense RNA viruses to replicate in the nucleus, 

uses IPO5 to targets its polymerase complex to the nucleus, complexes with NXF1 and its co-

factors to block mRNA export, and then uses XPO1 for the export of vRNPs to the cytoplasm 

[11-13]. In the case of HCV, the viral proteins core, NS2, NS3 and NS5A contain nuclear 

localization signals (NLS), and core is the only one to encode a XPO1-dependent nuclear 

export signal (NES) [14, 15], which suggests that the shuttling of core to the nucleus and back 

to the cytoplasm early in the HCV life cycle is important for viral replication [15]. Most 

recently, nuclear signals within core and NS2 were found to be important for early stages of 

viral replication, while NS3 and NS5A NLSs were important for later stages of viral 

replication such as assembly and egress [7].  There is also evidence that Nups accumulate in 

specific regions of the cytoplasm where HCV replication occurs, leading to the hypothesis that 

these Nups may be gating these viral compartments to favor viral replication and to prevent 

cytosolic RLR sensing following a viral infection [6, 7]. This hypothesis is supported by the 
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result that KPNB1, RAN and TNPO1, all involved with nucleocytoplasmic transport and 

elucidated to interact with NS3/4A, decrease HCV replication when silenced [1].  

 

Viruses are also able to persist with their infections by interacting with NPC and its 

nucleocytoplasmic transporters to evade the innate immune antiviral response, furthering viral 

growth advantage.  HCV NS3/4A was showed to bind KPNB1 and prevent the interaction 

with STAT1, the translocation of the ISGF3 complex to the nucleus and the production of 

ISGs [1]. Poliovirus and human rhinovirus encode a 2(A) protease, which is able to cleave 

NUP62, NUP98 and NUP153, disrupting nucleocytoplasmic trafficking such as protein import 

and mRNA export [16-19]. Nidovirales members can disrupt the transport of important innate 

antiviral factors to the nucleus to inhibit the production of ISGs such as in the case of Porcine 

reproductive and respiratory syndrome virus (PRRSV) degrading KPNA1, blocking ISGF3 

nuclear import, while SARS coronavirus (SARS-CoV) tethers KPNB1 to ER and Golgi 

membranes, blocking STAT1 nuclear import [20, 21]. Mononegavirales members can interact 

with import adaptors to disrupt the innate antiviral response such as in the case of Nipah virus 

interacting with KPNA3 and KPNA4 for its viral protein nuclear localization to inhibit the 

activation of the IRF3-responsive promoter [22], while Ebolavirus interacts with KPNA1, 

KPNA5 and KPNA6 to disrupt their interaction with tyrosine-phosphorylated STAT1 for 

nuclear import, inhibiting ISG production [23, 24]. 

 

The NPC is the only structure where nucleocytoplasmic transport of macromolecules occurs 

[25]. The nucleocytoplasmic transport of proteins consists of 5 major players: KPNB1 and 

TNPO1 for import, XPO1 and CSE1L for export, and RAN for the energy gradient of this 
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active process [26]. For protein import from the cytoplasm into the nucleus, proteins with a 

NLS are bound by a Karyopherin-α (Kapα) adaptor protein and then both the NLS-containing 

protein and the adaptor are bound by a Karyopherin-β (Kapβ) carrier protein, which mediates 

the nuclear import of this complex [26, 27]. The main Kapβ carrier proteins for import are 

KPNB1 and TNPO1, which recognize a classical and a PY-NLS motif, respectively [26, 28]. 

For protein export from the nucleus into the cytoplasm, a Kapβ carrier protein, bound to Ran-

GTP, binds directly to a protein containing a NES and transports this export complex to the 

cytoplasm. The main Kapβ carrier protein for export is XPO1, which binds to leucine-rich 

NES [26]. CSE1L is a Kapβ carrier protein involved in export, but for the recycling of Kapα 

adaptor proteins back to the cytoplasm for the formation of import complexes [26]. RAN, 

bound to either GDP or GTP, is important for establishing the energy gradient, giving 

directionality to the import and export pathways. The binding of Ran-GTP to the Kapβ of 

import complexes once they have entered the nucleus dissociates these complexes, while Ran-

GAP hydrolyzation of Ran-GTP to Ran-GDP, bound to the Kapβ of export complexes, causes 

the complex to dissociate. Ran-GDP is recycled back to the nucleus via NUTF2, where its 

GDP is exchanged for a GTP by RCC1 for the formation of export complexes [26]. 

 

In this study, HCV-host interactors identified by LC-MS/MS analysis were investigated on 

virus-mediated innate antiviral response of knockdown cells expressing an inducible IFNB1 

promoter-driven reporter.  Those with the greatest modulatory effects on IFNB1 production 

were enriched in GO Terms associated with the NPC and protein transport. Interestingly, these 

proteins were all elucidated to be NS3/4A interactors. The knockdown of KPNB1, the main 

Kapβ import carrier, showed the most significant decrease of ISG56 levels, which correlated 
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with a rapid and dramatic increase in viral protein levels.  As the NPC and its transporters are 

found to interact with proteins from many viruses, the comprehensive effect of knocking down 

Nups and nucleocytoplasmic transporters on the innate antiviral immunity was further 

investigated by studying their effect on the nuclear translocation of transcription factors IRF3 

and p65 required for IFNB1 production. Using a microscopy-based RNAi screen, we 

identified a major set of proteins that reduced the number of nuclei containing IRF3 and p65 

over the time course of 10 hours post infection, and decreased IFNB1 production upon 

knockdown. Key nucleocytoplasmic transporters decreasing nuclear translocation included the 

major players KPNB1 and TNPO1 for import, CSE1L for export and RAN for the energy 

gradient. Interestingly, we observed a second set of proteins that delayed, increased or had 

differential effect on IRF3 and p65 nuclear translocation, but reduced IFNB1 production upon 

knockdown suggesting a role in the transport of other factors during the innate antiviral 

response. Finally, abrogation of the innate antiviral response and dramatic increase of viral 

proteins in KPNB1 knockdown cells led to an earlier and significant induction of apoptosis, 

highlighting the link between the innate antiviral response and viral replication. 
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RESULTS 

 

Effect of viral-host interactor knockdown on the innate antiviral immunity 

As previously described by our group, HCV-host interactors were identified using an IP-based 

approach of six 3xFLAG-tagged HCV proteins (core, NS2, NS3/4A, NS4B, NS5A and NS5B) 

[1]. Host proteins interacting with these viral proteins were analyzed by LC-MS/MS with 426 

proteins being reproducibly detected with 2 or more peptides. Figure S1 shows the relative 

quantity of peptides found for 132 of these 426 proteins that were significantly enriched in one 

of the FLAG-IPs. However, only 13 of these 132 HCV interactors were described as 

modulators of the HCV replication and infection by Germain et al. (2014) [1], suggesting that 

these virus-host interactions may benefit the virus through the alteration of the innate antiviral 

immune response.  

 

To test this possibility, we used ~5 independent shRNA-expressing lentiviral particles to 

knockdown each gene encoding the 132 proteins shown in Figure S1. As described in Baril et 

al., the effect of these knockdowns on the innate antiviral immunity was measured using HEK 

293T and A549 cells stably expressing an inducible IFNB1 promoter driving the firefly 

luciferase reporter [29]. Infection of these cells with SeV activates the RLR pathway, 

ultimately leading to the nuclear translocation of the transcription factors AP-1, NF-κB and 

IRF3. These transcription factors will bind to the IFNB1 promoter and induce the transcription 

of firefly luciferase, which is monitored by luminescence to quantify the innate antiviral 

response. In parallel, HEK 293T cells stably expressing the firefly luciferase from a 

nonimmune-related endogenous elongation factor 1 alpha (EF1α, also known as EEF1A1) 
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promoter are used as a control to measure cellular fitness and assess potential non-specific 

effects of shRNAs. RNAi screening in HEK 293T cells identified 15 virus-host interactors 

acting as positive regulators (PR) and 20 acting as negative regulators (NR) of the innate 

antiviral immunity (Figure 1A). The second RNAi screening in A549 cells identified 12 PR 

and 17 NR of the innate antiviral immunity (Figure 1B). In total, 53 virus-host interactors, 

with 11 being common in both cell lines, specifically affected reporter expression from the 

IFNB1 promoter with at least two independent shRNAs, without affecting the constitutive 

expression of the EF1α promoter (see supplemental Table 2 for complete results of the 132 

genes). The effect of silencing these 53 genes in HCV replication and the innate antiviral 

immunity is summarized in Figure S2, where only 12 greatly affected both viral replication 

and the immune response. The other 41 genes affected solely the innate antiviral immunity, 

suggesting that HCV proteins may be interacting with these host factors to subvert the 

response.  

 

Gene Ontology enrichment 

To elucidate whether these 53 virus-host interactors, which affect the innate antiviral 

immunity, are associated with one another through a particular complex or process in the cell, 

Gene Ontology (GO) enrichment was performed. Table I lists 10 statistically significant 

enriched terms (p < 0.05) in descending order of the most enriched GO Terms with the list of 

genes associated with each term. The two most enriched terms are Protein Import into the 

Nucleus, docking (enriched 72 fold with four proteins: CSE1L, KPNB1, TNPO1, XPO1) and 

Nuclear Pore (enriched 23 fold with six proteins: CSE1L, KPNB1, LBR, RAN, TNPO1, 

XPO1). While it could seem peculiar that a cytoplasmic virus like HCV would interact with 
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proteins involved with the NPC, it was previously shown that some HCV proteins like NS3 

contained a NLS [7] and that the NPC could contribute to the compartmentalization of viral 

replication in the membranous web [6]. In addition, NS3/4A was shown to interact with 

KPNB1 to prevent STAT1 translocation to the nucleus following stimulation of the JAK-

STAT signaling pathway by Type I IFNs [1]. With the exception of LBR, all proteins 

associated with the NPC and nucleocytoplasmic transport were elucidated to interact with 

NS3/4A, which is the main player in the evasion of the innate antiviral immune response 

through the cleavage of important signaling adaptors such as MAVS in the RLR pathway [30, 

31] and TRIF in the TLR pathway [32]. 

 

Effect of silencing nucleocytoplasmic transporters on viral replication 

Viruses interact with host proteins to promote viral growth by either hijacking cellular 

machineries to facilitate their replication or by disrupting the innate immune responses. Since 

knockdown of the five nucleocytoplasmic transporters, elucidated from the LC-MS/MS 

analysis as HCV NS3/4A interactors, all negatively affected IFNB1 production, we wanted to 

assess their potential effect on viral replication. Knockdown of XPO1, CSE1L, RAN, KPNB1 

and TNPO1 in A549 (Figure 2) and HEK 293T (Figure S3) cells infected with SeV for 8 and 

24 hours showed that KPNB1 knockdown led to a drastic increase in SeV replication in both 

cell lines in comparison to NT. This increase in SeV replication by KPNB1 knockdown was 

accompanied by an almost complete inhibition of the antiviral response at 8 hours as measured 

by ISG56 protein induction in A549 (Figure 2) and 24 hours in HEK 293T cells (Figure S3). 

These results suggest that KPNB1 could be targeted by the virus to disrupt the innate antiviral 

immunity and to promote viral replication, a mechanism employed by HCV's NS3/4A in 
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which it prevents the nuclear translocation of STAT1 to the nucleus via its interaction with 

KPNB1 [1]. 

 

RNAi screen targeting the NPC and its transport proteins  

The interaction of the NPC and its transporters with HCV proteins combined with their effects 

on the innate antiviral immune response make this complex of proteins a study of interest to 

explore more fully [1, 6]. Due to their physiological role, we hypothesized that the observed 

effect of transporter proteins on the innate antiviral immunity was mediated by the regulation 

of the nuclear translocation of important transcription factors for the response. Although the 

nuclear translocation of IRF3 and p65 both occur after a phosphorylation event [27, 33], it is 

still not clear what kinds of interactions mediate this transport. IRF3 and p65 have both been 

shown to bind to more than one Kapα adaptor [34-37], but it has not been shown which Kapβ 

carrier or Nups are involved in this nuclear transport. 

 

To test our hypothesis, a microscopy-based RNAi screen was performed on 60 proteins 

associated with the NPC and nucleocytoplasmic transport, focusing on the nuclear 

translocation of IRF3 and p65, important transcription factors for the Type I interferon 

response. Figure 3A explains in detail how the RNAi microscopy-screen was done. In brief, 

A549 cells were plated in transparent 96-well plates and every well was infected with a single 

lentivirus-encoding shRNA (~5 independent shRNAs per gene for 60 genes) at a MOI of 10 

for four days to allow efficient knockdown of the targeted proteins. A control shRNA NT was 

included in each 96-well plate. Prior to fixation and permeabilization, cells were infected with 

SeV for 1, 3, 5, 8 or 10 hours, before nuclear labeling with Hoechst and antibody staining for 
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IRF3 or p65. Images of cells were captured in nine pre-determined fields for each well using 

an Operetta High Content Screening (HCS) Microscope. Images were then processed using 

Harmony software to delimitate the nuclear region and measure the fluorescence intensity of 

IRF3 or p65 within the nucleus. For each 96-well plate, a fluorescence cut-off was set to allow 

automated discrimination of cells with (green) or without (red) IRF3 or p65 nuclear staining 

(Figure 3A). This information allowed us to calculate the percentage of cells with IRF3 or p65 

nuclear staining and to evaluate the effect of each shRNA on the nuclear translocation of these 

two transcription factors following SeV infection. 

 

A representative time course experiment performed with the control shRNA NT showing the 

nuclear translocation of IRF3 or p65 over a 10-hour SeV infection is presented in Figure 3B. 

Graphic representation of these results can be plotted using the percentage of positive nuclear 

staining for IRF3 or p65 (Figure 3C). Over the course of a 10-hour SeV infection, we observed 

an increase in both IRF3 and p65 nuclear staining culminating to approximately 75% of 

positive cells at five hours post-infection, followed by a decrease to approximately 30% of 

positive cells at 10 hours. This microscopy kinetic was confirmed biochemically using cell 

fractionation and Western blot analysis (Figure 3D). Following SeV infection, we observed 

IRF3 phosphorylation on Ser386 starting at 1 hour, culminating at 5 hours and decreasing at 

10 hours post-infection, similar to the amount of total IRF3 observed in the nucleus at these 

time points. Phosphorylated forms of IRF3 can also be observed using the total IRF3 antibody 

in both cytoplasmic and nuclear fractions. Phosphorylation of the NF-κB negative regulator 

NFKBIA on Ser32, leading to its ubiquitination and degradation, increases gradually from 1 to 

10 hours post-infection. This degradation of NFKBIA allows p65 nuclear translocation, which 
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starts at 1 hour, culminates at 5 hours and decreases at 10 hours post-infection. This nuclear 

translocation of both IRF3 and p65 lead to the induction of antiviral response genes including 

ISG56 protein which is detectable starting at 3 hours post-infection. The cytoplasmic and 

nuclear fraction purity was confirmed by the strict histone 1 (H1) staining in the nucleus and 

constant p65 levels in the cytoplasm (coupled with the absence of p65 in the nucleus in the 

absence of SeV infection). Altogether, these biochemical observations correlated with the 

HCS imaging analysis, validating our approach to identify NPC components and their 

transporters in regulating the nuclear import of IRF3 and p65 transcription factors. 

 

Effects of NPC and transporter proteins knockdown on nuclear translocation of IRF3 

and p65 

Using this methodology, we were able to directly measure the effect of every RNAi targeting 

60 Nups and transporter proteins on the nuclear translocation of IRF3 and p65. As an example, 

three independent shRNA targeting KPNB1, which is the main Kapβ carrier for import, 

significantly affected nuclear translocation of both IRF3 and p65 when compared to the 

shRNA NT (Figure 4A). To facilitate their visualization and analysis, results obtained with the 

control shRNA NT were normalized to zero for every time point, allowing shRNA KPNB1 to 

be represented as relative percentage in the nucleus (Figure 4B). Using this representation, we 

showed that KPNB1 knockdown with three independent shRNAs leads to a strong decrease of 

IRF3 translocation to the nucleus at three and five hours post-infection, before coming back to 

normal level at eight and ten hours post-infection. A similar pattern is observed on p65 nuclear 

translocation, although with a less drastic decrease at three and five hours post-infection and 

culminating with increased p65 nuclear staining at eight and ten hours post-infection 
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compared to the shRNA NT. In addition, we used caspase-mediated poly [ADP-ribose] 

polymerase 1 (PARP1) cleavage, creating 89 kDa and 24 kDa fragments, to assess virus-

mediated apoptosis. We observed that the increased SeV replication observed in KPNB1 

knockdown A549 cells is accompanied with an earlier induction of apoptosis starting at 1 hour 

post-infection instead of 3 hours post-infection in the shRNA NT treated cells (Figure 4C). 

Altogether, these results demonstrate that KPNB1 knockdown blocks IRF3 and p65 

translocation to the nucleus, impairing the antiviral response, which in turns likely leads to 

increased viral replication and cellular apoptosis. 

 

Our RNAi screen allowed us to identified 33 Nups and transporter proteins for which 

knockdown with at least two independent shRNAs significantly affected nuclear translocation 

of IRF3 or p65 following SeV infection. Knockdown led to a decrease in translocation for 25 

genes, a delay in translocation for 4 genes (KPNA3, NUP43, NUPL2 and TNPO2), an 

increase in translocation for 2 genes (KPNA4 and XPO1) and differential effect on IRF3 and 

p65 for 2 genes (KPNA5 and RANBP3). We further divided these 33 nucleocytoplasmic 

transporters and Nups into subgroups according to their function and localization, 

respectively. In Figure 5, we observed that knockdown of KPNA1-6 led to a distinct 

phenotype for 5 out the 6 adaptors with a major decrease of p65 nuclear translocation at 3 

hours of SeV infection, with the exception of KPNA4. The effect of these adaptors on IRF3 is 

more variable as KPNA5 and KPNA4 delayed and increased translocation, respectively. The 

knockdown of KPNA5 shows a differential effect with a delay in translocation for IRF3 and a 

decrease in translocation for p65. In Figure 6, the functionally-grouped nucleocytoplasmic 

transporters mostly decrease the translocation of these transcriptions factors, which is expected 
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of the Kapβ carriers involved in import (IPO for importins and TNPO for transportins). 

However, TNPO2 knockdown demonstrated a delay in translocation for both factors, differing 

from TNPO1’s knockdown phenotype (Figures 5B and S5). This suggests that TNPO2 is not a 

redundant transporter of TNPO1, in contrast to previous reports concerning the transport of 

HNRNPA1 and HUR [38]. The knockdown of the main Kapβ carrier for export XPO1 

increased nuclear translocation of these factors, but with a transient increase for IRF3 and a 

sustained increase for p65 (Figures 5C and S6). Similar to KPNA5, RANBP3 knockdown 

caused a delay in IRF3 translocation and a transient decrease in p65, suggesting that RANBP3 

may be using KPNA5 as an adaptor due to the similar phenotype for both IRF3 and p65 

translocation (Figures 5C and S6). In Figure 6, the Nups are categorized by their localization 

in the NPC with the majority decreasing both IRF3 and p65 nuclear translocation, with the 

exception of NUPL2 (Figures 6A and S9) and NUP43 (Figures 6B and S10). NUPL2 

knockdown increases IRF3 translocation at very early stages of infection, and it correlates 

with XPO1 knockdown effect on IRF3 as NUPL2 promotes XPO1 function [39]. NUP43 

knockdown shows similar nuclear translocation phenotypes for both factors as seen in KPNA5 

and RANBP3 knockdown, suggesting that NUP43 may be involved in the import of this 

RANBP3-KPNA5 import complex through the NPC. 

 

Effects of NPC and transporter proteins knockdown on pIFNB1 induction following SeV 

infection 

In parallel to the microscopy screen, we performed an A549 pIFNB1-LUC screen to 

characterize the effect of every shRNA on the IFNB1 promoter induction following SeV 

infection. Our results showed that the majority of shRNAs significantly affecting the nuclear 
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translocation of IRF3 or p65 also decreased IFNB1 promoter induction 6 hours post-SeV 

infection (including XPO1 and KPNA4 that increased IRF3 and p65 nuclear levels). IFNB1 

promoter results are presented in histograms next to each nuclear translocation curves in 

Figures 4A, 5B and S4-S12 (complete results can be found in supplementary Table S4). These 

histograms also included the effect of every shRNA on the cellular proliferation and survival, 

which is the ratio of the total number of nuclei for every shRNA in our microscopy screen 

divided by the total number of nuclei for the control shRNA NT included in the same 96-well 

plate. This allows us to discriminate between general effects of these shRNAs on cellular 

fitness versus their actual role in the innate antiviral immunity. 
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DISCUSSION 

 

The goal of the study was to elucidate novel proteins, families or processes which affected the 

innate antiviral immunity from a subset of proteins previously elucidated to be interacting with 

one of six HCV proteins [1]. The main hypothesis was that viral-host interactors not affecting 

HCV replication when knocked down would instead affect the innate antiviral immunity, 

giving a plausible explanation to the virus-host interaction as the virus could be hijacking 

these host factors and interfering with their role in the immune response, thus allowing the 

virus a growth advantage in the cell [1]. From the viral-host interactors which greatly affected 

the innate antiviral response when knocked down, there was enrichment in the NPC term, 

more specifically in proteins involved in nucleocytoplasmic transport (Table I). This group of 

proteins leads to two distinct observations: the first being that, with the exception of LBR, 

these proteins were all elucidated to interact with NS3/4A (Figure S1); the second is that when 

knocked down during a viral infection, they all dramatically decreased the production of 

IFNB1 (Figure 1). As the viral life cycle of HCV takes place exclusively in the cytoplasm, it 

could seem surprising that HCV proteins interact with nucleocytoplasmic transporters [40]. 

However, many of the HCV proteins contain a NLS (core, NS2, NS3 and NS5A) and the core 

protein also contains a XPO1-dependent NES [14, 15], suggesting that shuttling of core in and 

out of the nucleus early in the HCV life cycle is important for viral replication [15]. There is 

also evidence which showed that Nups accumulate in specific regions of the cytoplasm where 

HCV replication occurs, leading to the hypothesis that these Nups may be gating these viral 

compartments to favor viral replication [7] and to prevent cytosolic RLR sensing following a 

viral infection [6]. This hypothesis is supported by the result that KPNB1, RAN and TNPO1, 
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all involved with nucleocytoplasmic transport and elucidated to interact with NS3/4A, were 

previously shown to decrease HCV replication [1]. For example, TNPO1 is well-known for 

mediating the nuclear import of HNRNPA1 through its M9 NLS [38, 41]. In the context of 

HCV, HNRNPA1 binds to the 5’ and 3’ UTR of HCV RNA [42], NS3/4A [43] and NS5B [42] 

and its silencing reduced viral replication [42, 44]. NS3/4A may be hijacking TNPO1 to cause 

cytoplasmic accumulation of HNRNPA1 leading to an increase in viral RNA translation from 

the HCV IRES [45], a mechanism that is also seen in HIV-1 [46]. It has also been shown that 

core and NS5A interact with KPNA1 [6], suggesting that CSE1L, which exports Kapα adaptor 

proteins back to the cytoplasm [26], could be required for the formation of viral protein import 

complexes in the cytoplasm. CSE1L was also shown to have an import function for the HIV-1 

Vpr protein bound to KPNA1, where it imports and dissociates this complex in the nucleus 

[47]. In this study, we have elucidated XPO1 as a NS3/4A interactor (Figure S1) and XPO1 

was previously shown to export both the core protein early in HCV infection [15] and DDX3X 

[48], which is targeted by core to lipid droplets [49, 50]. This suggests that XPO1 may be 

targeted by multiple HCV proteins over the course of HCV’s replication cycle. 

 

From the innate antiviral response stand point, we showed that, upon viral infection, reducing 

the expression of the main Kapβ nuclear import carrier KPNB1 reduces the nuclear 

translocation of IRF3 and p65, thus downregulating IFNB1 and ISG56 production. 

Importantly, KPNB1 knockdown led to a dramatic increase of SeV replication (Figures 2 and 

S3), supporting the hypothesis that affecting the innate antiviral response can directly impact 

viral replication. Interestingly, we observed an increase in KPNB1 protein level following SeV 

infection (Figure 4C) and previous report have shown that KPNB1 and other proteins involved 
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in nucleocytoplasmic transport such as RCC1, the Guanine Exchange Factor for RAN [51], 

were found to be overexpressed in hepatocellular carcinomas after liver transplantation due to 

chronic HCV infection [52]. Similarly to KPNB1, knockdown of CSE1L, which is involved in 

both import and export, as it exports Kapα adaptors for the formation of import complexes 

[26], also reduces the innate antiviral response. On the other hand, XPO1 is associated with 

protein export and has been shown to associate with DDX3X for nuclear export in the 

presence of HIV-1 rev protein [48]. Here we show that XPO1 knockdown leads to an 

accumulation of IRF3 and p65 in the nucleus (Figures 6C and S6), an observation in line with 

previously observed nuclear accumulation of p65 upon treatment with leptomycin B, a XPO1 

inhibitor [53]. Despite this nuclear accumulation of transcription factors, XPO1 knockdown 

led to a decrease IFNB1 and ISG56 induction following SeV infection. This might result from 

the depletion of DDX3X from the cytoplasm, where it associates with TBK1 and IKBKE to 

enhance the induction of the IFN promoter [54, 55]. In addition, XPO1 knockdown could 

reduce the type I IFN JAK-STAT amplification loop by blocking the nuclear export of IFN-α1 

mRNA [56, 57]. While TNPO1 is not known to bind to any effectors of the innate antiviral 

response, p65 was predicted to contain a hydrophobic PY-NLS that is recognized by TNPO1 

[28]. This could explain the decreased IFNB1 production upon TNPO1 knockdown, as well as 

the decrease in p65 nuclear translocation (Figure S5). 

 

In terms of adaptors, only KPNA3 and KPNA4 were determined to interact with the NLS of 

IRF3 in vitro [34], increasing the importance of determining how IRF3 enters the nucleus 

during a viral infection. Our results show that knocking down of the 6 Kapα adaptors 

individually led to distinct effects on IRF3 nuclear translocation. It seems that KPNA2, 3 and 
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5 are all involved with IRF3 nuclear import at the beginning of a viral infection, while KPNA1 

and KPNA4 seems to affect its export. Near the end of the time course, KPNA1 affects 

nuclear import, while KPNA4 and KPNA5 affect its export. KPNA2 and KPNA3 do not have 

major effects on the translocation at late time points, while KPNA6 barely affects the 

translocation at all (Figure 5). It may seem strange to say that adaptors which are only used in 

import could have an effect on the export of a protein; however, trafficking of proteins is more 

complicated than import to the nucleus and export to the cytoplasm. It is possible that adaptors 

affecting export are actually just not releasing the protein from the import complex in the 

nucleus, which would explain why we could see IRF3 in the nucleus, but if it is still bound to 

an adaptor protein, then it is not carrying out its function.  

 

KPNA1 (Importin α5), KPNA2 (Importin α1), KPNA3 (Importin α4), KPNA4 (Importin α3), 

KPNA5 (Importin α6) and KPNA6 (Importin α7) were all shown to be important for p65 

nuclear translocation following SeV infection or TNF-α stimulation [35-37]. Our results 

demonstrated that the knockdown of these 6 Kapα adaptor proteins did indeed all effect p65 

nuclear translocation, validating previous studies, with all except one showing the phenotype 

where p65 nuclear translocation dramatically decreased 3 hours of post-SeV infection (Figure 

5). An interesting observation from this data is that KPNA4 knockdown increased p65 nuclear 

translocation, however it is the adaptor that is most targeted whether by host proteins, viral 

infections and even a fungal metabolite in order to disrupt p65 nuclear import by either 

reducing the expression of KPNA4 [58] or preventing the interaction by binding to KPNA4 

[59] or to p65 [60], respectively. It is possible that KPNA4 is the main controller of p65 

import, as the knockdown of the other adaptors causes a decrease at one time point (3 hours), 
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but is quickly brought back to normal levels at the next time point (5 hours). When KPNA4 is 

silenced, the rest of the adaptors may be over-compensating, causing this increase of p65 

during the entire SeV infection time course.  

 

There is virtually no literature which suggests a carrier for IRF3 nuclear translocation during a 

viral infection. Our results show that the importins had a major effect on IRF3 import upon 

knockdown with IPO4 having a major effect towards the end of the time course, while IPO7 

and IPO8 had a general effect throughout the time course (Figures 6 and S4). TNPO1 and 

TNPO3 knockdown reduce IRF3 nuclear translocation throughout the time course, however 

TNPO2 knockdown increases nuclear translocation after the 5 hour time point, which suggests 

that carriers involved in the nucleocytoplasmic transport of IRF3 is not necessarily the same 

throughout the entire SeV infection (Figures 6 and S5).   

 

In terms of import carriers for p65, one study found KPNB1 to be the main import carrier via 

the p65 NLS [37], which is supported by our findings (Figure 4). Another identified carrier for 

p65 import was IPO8, which apparently transports this factor in a NLS-independent fashion 

[37], where in our results we see a decrease in nuclear translocation during the entire time 

course (Figures 6 and S4). IPO7 and TNPO1 also seem to be potential import carriers as their 

knockdown reduces p65 nuclear translocation (Figure 6), which supports the finding of a 

predicted NLS that is recognized by TNPO1 [28]. IPO4 and TNPO3 knockdown only seem to 

affect import at 3 hours of SeV infection, and IPO4 knockdown increases p65 translocation at 

the first hour of infection (Figure 6). TNPO2 knockdown, like in the case of IRF3 nuclear 

translocation, increases p65 nuclear import after the 5 hour time point (Figure 6).  
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As the main carrier for export, XPO1 was shown to bind to IRF3 NES and the use of 

leptomycin B, a XPO1 inhibitor, demonstrated an accumulation of IRF3 in the nucleus [34]. 

Our results supported this with XPO1 knockdown causing nuclear accumulation of IRF3 

during the early phase of the infection (Figures 6 and S6). RANBP3, a XPO1 cofactor for 

protein export [61, 62], increases nuclear translocation of IRF3 only at 8 hours of SeV 

infection. This is not the case of p65 nuclear translocation as RANBP3 knockdown affects 

only the nuclear import at 3 hours of SeV infection. It is not surprising that CSE1L 

knockdown would cause a dramatic decrease of nuclear IRF3 and p65 during the entirety of 

the SeV infection time course (Figures 6 and S6) as it is responsible for the export of Kapα 

back to the cytoplasm, and we have shown that the Kapα do play a role in the nuclear 

translocation of both factors (Figure 5).  

 

The knockdown of proteins, which are known to export mRNA, such as NXF1 (also known as 

TAP), seems to have an effect on the import of IRF3 and p65 into the nucleus (Figures 6 and 

S7). However, it is not clear whether this decrease in IRF3 and p65 is due to the fact that the 

export of their mRNAs are reduced, diminishing the amount of proteins translated, thus 

decreasing the amount that is able to enter the nucleus.  

 

The silencing of RAN affected both IRF3 and p65 nuclear translocation with a most drastic 

effect on IRF3 during 3 to 5 hours of SeV infection (Figure 6). This drastic effect may be due 

to two reasons: first, RAN in its GTP form is required to bind to import complexes to liberate 

NLS-containing proteins into the nucleus; second, CSE1L requires RanGTP to drive the 

export of Kapα back to the cytoplasm for the formation of import complexes [26]. NUTF2 and 
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RCC1 affect IRF3 nuclear import, but only at the beginning of the infection, as the 

knockdown of these two affect little during the last 2 hours of the time course (Figure 6). It 

seems that p65 nuclear import is most dependent on the availability of RanGTP in the nucleus 

as the knockdown of NUTF2, responsible for transporting RanGDP back to the nucleus, and 

RCC1, responsible for exchanging RanGDP for RanGTP, decrease p65 nuclear translocation 

just as much as RAN knockdown.  

 

Multiple nucleoporins had similar phenotypes when knocked down on the nuclear 

translocation of IRF3 and p65, where the majority had a major effect at 1, 3, and 5 hours of 

SeV infection and went back to normal levels at 8 and 10 hours of infection (Figure 7). 

NUP88 was previously shown to regulate NF-κB activity via its nucleocytoplasmic transport 

[63], which is supported by our findings with a significant decrease of p65 nuclear 

translocation at 3 hours of SeV infection (Figures 7C and S11). Interestingly, hepatocellular 

carcinomas have increased levels of NUP88 [64], which can cause constitutive activation of 

NF-κB in both the nucleus and cytoplasm [63].  

 

The only Nup with a distinct phenotype is NUPL2, which is known to promote protein export 

via XPO1 [39], and shows an increase at 1 and 10 hours of infection for IRF3 nuclear 

translocation, and 8 hours for p65 nuclear translocation (Figures 7 and S9). NUPL2 was found 

to interact with HIV-1 Vpr for docking at the nuclear envelope, suggesting that Vpr disrupts 

NUPL2 function to allow for the import of viral DNA into the nucleus [65].  
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Viruses, including HIV-1, have been shown to interact with NPC proteins such as NUP153 

and nucleocytoplasmic transporter TNPO3 to evade the innate immune response [66]. 

RANBP2 was shown to reduce HIV-1 replication when silenced, and was important for HIV-1 

nuclear import [67]. However, RANBP2 silencing caused an increase in viral replication for 

Japanese encephalitis virus [68, 69]. NUP214 was determined to be a host factor for 

enterovirus 71 replication as the overexpression of this Nup increased viral replication [70]. In 

this context, our work does not only allow insight into this complex nucleocytoplasmic 

transport machinery by elucidating components involved in the nuclear translocation of IRF3 

and p65 transcription factors, but also identifies key host proteins targeted by viral evasion 

mechanisms as new potential therapeutic targets to treat a broad range of viral infections. 
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EXPERIMENTAL PROCEDURES 

Cell culture 

HEK 293T (Human Embryonic Kidney) cell lines were cultured in Dulbecco’s Modified 

Eagle’s Medium (DMEM, Wisent). A549 (human lung adenocarcinoma epithelial) cell lines 

were cultured
 
in Ham’s F-12 medium (Invitrogen). Both media were supplemented with 10%

 

fetal bovine serum, 100 units/ml penicillin, 100 µg/ml streptomycin
 
and 2 mM glutamine (all 

from Wisent) and 1% nonessential amino acids (Invitrogen) at 37 °C in an atmosphere of 5% 

CO2. Cell populations of HEK 293T and A549 stably harbouring the pIFNB1-LUC and of 

HEK 293T stably harbouring the pEF1α-LUC used in the screens were produced after 

selection with 200μg/ml of hygromycin B (Wisent) and were previously described [29]. 

Transfections were performed with linear 25 kDa polyethylenimine (PEI) (Polysciences, Inc) 

at 3 μg PEI to 1 μg DNA ratio.  

Expression vectors 

RAN cDNA was purchased from GE Dharmacon/Open Biosystems. Following PCR-

amplification, PCR product was cloned using Pfl23II/NotI enzymes into pcDNA3.1_FLAG-

MCS(MB) expression vector [31]. 3xFLAG-NS3/4A, FLAG-XPO1 and MYC-NS3/4A have 

been described before [1]. All constructs were verified by Sanger sequencing and subsequent 

Western Blot analysis. 

Lentiviral shRNA library production 

From MISSION TRC lentiviral library (Sigma-Aldrich), 132 MS hits were selected and 

shRNA were produced as follows: five different shRNA-expressing lentiviruses per gene were 

produced individually in HEK 293T cells (2x10
4
) that are plated one day prior to transfection. 

Transfections were performed using a Biomek FX (Beckman Coulter) enclosed in a class II 
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cabinet according to MISSION® Lentiviral Packaging Mix protocol (SHP001). Viruses were 

collected at 24 and 48 hours post transfection and were pooled prior to freezing. A non-target 

sequence (NT) shRNA-expressing control lentivirus and 4% of random samples of each plate 

were used to measure lentiviral titers for quality control purposes. Titers were determined by 

limiting dilution assays using HeLa cells. Briefly, samples were diluted in complete DMEM 

(1:400 or 1:10,000) and added to HeLa cells. Media was changed at day 3 and 5 with complete 

DMEM containing 1 μg/ml puromycin (Wisent). After four days of selection, cells were 

stained with 1.25% crystal violet and plaque-forming units (PFU) were counted to determine 

viral titer. 

Large-scale shRNA production 

293T cells were transfected with pRSV-REV, pMDLg/pRRE, pMD2-VSVg [71] and various 

shRNA-expressing pLKO.1-puro constructs (Sigma-Aldrich) using linear 25 kDa PEI 

(Polysciences, Inc) at 3 μg PEI to 1 μg DNA ratio. 48 hours after transfection, cell media was 

collected, filtered (0.45 μm filter), and aliquoted. Multiplicity of infection (MOI) was 

determined using limiting dilution assays as described in previous section. 

Firefly luminescence assay 

For screening, cells were seeded in white 96-well plates at a density of 5,000 HEK 293T 

pIFNB1_LUC, 5,000 A549 pIFNB1_LUC and 1,250 HEK 293T pEF1α-LUC in 100 μl of 

complete phenol-red free DMEM containing 4 μg/ml polybrene. Infection with lentivirus 

encoding shRNA were carried out immediately after cell seeding at a MOI of 10 and 

incubated for three days at 37 °C in an atmosphere of 5% CO2. Cells were infected with 100 

HAU/ml of SeV (Cantell Strain, Charles River Labs) for 6 hours for A549 and 16 hours for 

HEK 293T cells before cell lysis and firefly luminescence reading in a 100 mM Tris acetate, 



 

67 

20 mM Mg acetate, 2 mM EGTA, 3.6 mM ATP, 1% Brij 58, 0.7% β-mercaptoethanol and 45 

μg/ml luciferine pH 7.9 buffer. All infections were performed in an enclosed class II cabinet. 

Operetta microscopy  

A549 cells were plated on clear 96-well plates at a density of 1000 cells in 100 µl complete 

Ham’s F-12 medium containing 4 μg/ml polybrene. Infection with lentivirus encoding shRNA 

(five individual shRNAs per gene) were carried out immediately after cell seeding at a 

multiplicity of infection (MOI) of 10 and incubated for four days at 37 °C in an atmosphere of 

5% CO2. As control the MISSION® shRNA NT clone (Sigma SHC002) was included in each 

96-well plate. Cells were infected with 100 HAU/ml of SeV (Cantell Strain, Charles River 

Labs) for 0, 1, 3, 5, 8 or 10 hours before being fixed with 4% paraformaldehyde-containing 

PBS for 20 minutes at room temperature and then permeabilized in 0.2% Triton X-100/PBS 

for 15 minutes. Blocking was made in PBS with 10% normal goat serum, 5% bovine serum 

albumin (BSA) and 0.02% sodium azide for 45 minutes at room temperature. Following three 

rapid washes, cells were labelled with mouse anti-IRF3 (SL-12; Santa Cruz Biotechnology) or 

rabbit anti-p65 (C-20; Santa Cruz Biotechnology) primary antibodies diluted in 5% 

BSA/0.02% sodium azide/PBS for 2 hours. Wells were washed three times in PBS and then 

labelled with anti-mouse AlexaFluor 488 or anti-rabbit AlexaFluor 488 secondary antibodies 

(Invitrogen) diluted in 5% BSA/0.02% sodium azide/PBS for 1 hour. Cells were extensively 

washed and incubated with Hoechst dye (Invitrogen) at a final concentration of 1μg/mL in 

PBS. Images of cells were captured in nine predetermined fields for each well (Operetta High 

Content Screening Microscope; Perkin Elmer) and images were processed using Harmony 

(Perkin Elmer). Cut-off for nuclear staining for IRF3 and p65 were between 230 to 300 and 

515 to 735, respectively. Percentage of cells with IRF3 or p65 nuclear staining was calculated 
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by dividing the number of nuclei where nuclear fluorescence was higher than the cut-off for 

IRF3 or p65 staining by the total number of nuclei stained by Hoechst for the nine fields. The 

effect of a shRNA on cell proliferation and survival was evaluated by dividing the total 

number of nuclei in the nine fields of the five time points and dividing it by the total number 

of nuclei in the nine fields of the six time points of the shRNA NT control well included in 

every 96-well plate. 

Western Blot analysis 

Cells were washed twice with ice-cold phosphate-buffered saline (PBS; Wisent), harvested 

and lysed in 10mM Tris-HCl, 100mM NaCl, 0.5% Triton X-100, pH7.6 with EDTA-free 

Protease Inhibitor Cocktail (Roche). Cell lysates were clarified by centrifugation at 13,000 g 

for 15 min at 4 °C and subjected to sodium dodecyl sulfate-polyacrylamide gel (SDS-PAGE). 

Western Blot analysis was performed using the following antibodies: ACTIN was purchased 

from Chemicon International (Billerica, MA MAB1501R); FLAG was purchased from Sigma 

(St-Louis, MO, USA, F3165); CSE1L, IRF3 P-386, KPNB1 and TNPO1 were purchased from 

Abcam (Toronto, Ontario, Canada, ab96755, ab76493, ab2811, and ab10303); H1, p65, RAN 

and XPO1 were purchased from Santa Cruz Biotechnology (Dallas, TX, sc-8030, sc-8008, sc-

58467, and sc-74454); IRF3 was purchased from Phoenix Airmid Biomedical (Oakville, ON, 

18781); ISG56 was purchased from Novus Biologicals (Oakville, ON, NBP1-32329); 

NFKBIA P-32 was purchased from Cell Signaling Technology, Inc, (Danvers, MA, 2859). 

The antibody for PARP1 and Sendai Virus was a kind gift from MJ. Hébert and M. Servant, 

respectively. HRP-conjugated secondary antibodies were from Bio-Rad. The 

chemiluminescence reaction was performed using the Western Lighting Chemiluminescence 

Reagent Plus (PerkinElmer).  
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Co-immunoprecipitation 

For co-immunoprecipitation, FLAG-tagged protein expressing cells were harvested and lysed 

as described above. Resulting cell extracts were adjusted to 1 mg/ml and subjected to IP as 

follows: pre-clearing of the lysates was done by incubating lysates with 40 μl of 50:50 slurry 

of immunoglobulin G-Sepharose (GE Healthcare) prepared in the lysis buffer with IgG beads 

for 1 hour. Pre-cleared lysate were immunoprecipitated by adding 20 μl of M2 anti-FLAG 

affinity gel (Sigma-Aldrich) prepared in TBS buffer (50 mM Tris-HCl, 150 mM NaCl, pH 

7.4) overnight as described by the manufacturer. Immunoprecipitates were washed five times 

in lysis buffer. Elution was performed using 250 ng/μl purified FLAG peptide for 45 min at 4 

°C (Sigma-Aldrich). Eluates were analyzed by Western Blotting. 

Nuclear and Cytoplasmic Extraction 

Nuclear and cytoplasmic extraction was performed on 4,000,000 A549 cells that were 

previously plated on 100 mm plates, infected with lentivirus encoding shRNA NT or KPNB1 

(TRCN0000123189) at a MOI of 10 for three days and infected with SeV for 0, 1, 3, 5, 8 and 

10 hours prior to harvesting. Nuclear and cytoplasmic fractions were prepared with NE-PER™ 

Nuclear and Cytoplasmic Extraction Reagents (Thermo Scientific) according to the 

manufacturer protocol. 

Functional enrichment analysis 

DAVID database was used for functional annotation [72, 73]. DAVID functional annotation 

chart tool was used to perform Gene Ontology biological process and InterPro protein domain 

analysis. Terms with a p-value smaller than 5x10
-2

 were considered as significantly 

overrepresented.  
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Figure 1. Knockdown of host proteins interacting with HCV modulates innate antiviral 

immunity 

Heat map visualization of the IFNB1 promoter activity following 53 gene hits whose silencing 

significantly inhibited SeV-mediated antiviral immunity (log2 scale). shRNA screens were 

performed on HEK 293T (A) and A549 (B) cells stably expressing the firefly luciferase under 

the control of the IFNB1 promoter. Results were normalized according to cells treated with 

shRNA NT (negative control set to 1 - black) based on an average of two independent 

experiments. The following criteria were applied to select hits: at least two shRNAs per gene 

with > 25 % effect on IFNB1 promoter activity without affecting nonimmune-related 

endogenous promoter EF1α promoter activity. Hits are clustered by their corresponding viral 

binding-partners, and the last two digits of hits name correspond to the shRNA TRC number. 
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Figure 2. Effect of silencing nucleocytoplasmic transporters on ISG56 induction and SeV 

replication 

Immunoblot analysis of A549 cells infected with SeV for 8 or 24 hours following knockdown 

of XPO1, CSE1L, RAN, KPNB1 and TNPO1 for three days. shRNA NT is used as a control. 
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Figure 3. Microscopy-based shRNA screen to observe IRF3 and p65 nuclear 

translocation. 

(A) Overview of the shRNA microscopy-screen. A549 cells were plated in 96-well plates and 

infected with a single lentivirus-encoding shRNA (~5 independent shRNAs per gene for 60 

nucleocytoplasmic transporters) at a MOI of 10 for four days. A control shRNA NT was 

included in each 96-well plate. Cells were infected with SeV for 1, 3, 5, 8 or 10 hours before 

fixation, permeabilization, Hoechst nuclear labeling and antibody staining of IRF3 or p65 with 

Alexa Fluor 488 (green). Images of cells were captured in nine pre-determined fields for each 

well using an Operetta High Content Screening Microscope. Images were processed using 

Harmony software to delimitate the nuclear region and measure the fluorescence intensity of 

IRF3 or p65 within the nucleus. For each 96-well plate, a fluorescence cut-off was set to allow 

automated discrimination of cells with (green) or without (red) IRF3 or p65 nuclear staining 

and to calculate the percentage of cells with IRF3 or p65 nuclear staining for each shRNA. (B) 

Representative time course imaging performed with the control shRNA NT showing the 

nuclear translocation of IRF3 or p65 over a 10-hour SeV infection (one representative out of 

nine field images). (C) Graphic representation of the microscopy image-based analysis 

showing the percentage of cells with positive nuclear staining for IRF3 or p65. Over the 

course of a 10-hour SeV infection, we observe an increase in both IRF3 and p65 nuclear 

staining culminating with approximately 75% of positive cells at five hours post infection, 

followed by a decrease to approximately 30% of positive cells at 10 hours. (D) Immunoblot 

analysis of total cell lysate, cytoplasmic extract and nuclear extract of A549 cells infected with 

lentivirus encoding shRNA NT at a MOI of 10 for three days and infected with SeV for 0, 1, 

3, 5, 8 and 10 hours prior to harvesting. 
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Figure 4. KPNB1 knockdown impairs IRF3 and p65 nuclear translocation and pIFNB1 

induction, while increasing SeV viral replication and apoptosis. 

(A) Three independent shRNA targeting KPNB1 significantly affected nuclear translocation of 

both IRF3 (left panel) and p65 (middle panel) when compared to the shRNA NT. The effect of 

these shRNA-mediated knockdowns on SeV induced IFNB1 promoter activity was measured 

in A549 cells stably expressing the firefly luciferase under the control of the IFNB1 promoter 
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(right panel). In addition, the effect of a shRNA on cell proliferation and survival was 

evaluated using images from the microscopy screen (see Fig. 3) by dividing the total number 

of nuclei for a given shRNA and dividing it by the total number of nuclei for the shRNA NT 

control (right panel). (B) Alternative representation of results presented in (A) using relative 

percentage in the nucleus obtained after normalization of the control shRNA NT to zero for all 

time points. (C) Immunoblot analysis of A549 cells infected with SeV for 1, 3, 5, 8 or 10 

hours following transduction with shRNA NT (control) or shRNA targeting KPNB1 for three 

days. PARP1 cleavage (arrows) is used as apoptosis readout. 
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Figure 5. Effect of silencing KPNA adaptors on IRF3 and p65 nuclear translocation. 

Relative percentage of cells containing IRF3 and p65 in the nucleus after normalization of the 

control shRNA NT to zero for all time points, as described in Figure 4. Results are presented 

as average of all shRNAs for each KPNA gene (A) and as individual shRNA for KPNA1-6 

(B). The effect of shRNA-mediated knockdown on SeV induced IFNB1 promoter activity and 

on cell proliferation and survival were calculated as described in Figure 4A (right panel). 
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Figure 6. Effect of silencing different transporter groups on IRF3 and p65 nuclear 

translocation. 

Importins (IPO4, IPO7, IPO8), transportins (TNPO1, TNPO2, TNPO3), as well as proteins 

involved in protein export (XPO1, CSE1L, RANBP3), mRNA export (NXT1, NXT2, NXF1, 

NXF2) and the RAN gradient (RAN, NUTF2, RCC1) were knocked down. Results are 

presented as the average of all shRNAs in relative percentage of cells containing IRF3 and p65 

in the nucleus after normalization of the control shRNA NT to zero for all time points, as 

described in Figure 5A. Individual shRNA results on IRF3 and p65 nuclear translocation, 

IFNB1 promoter activity and cell proliferation and survival are described in Figures S4-S8. 
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Figure 7. Effect of silencing Nups on IRF3 and p65 nuclear translocation. 

Cytoplasmic FG-Nups and filaments (RANBP2, NUP214, NUPL2), outer-ring Nups (NUP43, 

NUP107, NUP160), linker Nups (NUP93, NUP88) and central FG-Nups (NUP54, NUP35, 

NUPL1) were knocked down. Results are presented as the average of all shRNAs in relative 

percentage of cells containing IRF3 and p65 in the nucleus after normalization of the control 

shRNA NT to zero for all time points, as described in Figure 5A. Individual shRNA results on 

IRF3 and p65 nuclear translocation, IFNB1 promoter activity and cell proliferation and 

survival are described in Figures S9-S12. 
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Table 1. Gene ontology (GO) terms enrichment of HCV-host interactors affecting the 

innate antiviral immunity 

GO biological process (BP), molecular functions (MF) and cellular compartment (CC) terms 

significantly enriched (p < 0.05) are indicated with their respective list of genes and fold 

enrichment. The GO terms incorrectly list XPO1 as being involved in protein import, when it 

is the main carrier for protein export.  

 

 

 

 

 

 

 

GO TERM Gene Count Genes
Fold

Enrichment
p  value

Protein Import into Nucleus, Docking (BP) 4 CSE1L, KPNB1, TNPO1, XPO1 72 0.00002

Nuclear Pore (CC) 6 CSE1L, KPNB1, LBR, RAN, TNPO1, XPO1 23 0.000005

Translation Elongation (BP) 7 RPL10, RPL15, RPL29, RPL3, RPL7A, RPS7, UBC 21 0.00000073

Protein Import into Nucleus (BP) 5 CSE1L, KPNB1, RAN, TNPO1, XPO1 18 0.00016

Ribonucleoprotein Complex (CC) 11
ACTB, DICER1, RPL10, RPL15, RPL29, 

RPL3, RPL7A, RPS7, UBC, XPO1, YBX1
6.5 0.0000038

RNA Processing (BP) 6 DICER, RBM10, RPS7, WDR77, YBX1, ZRANB2 3.4 0.029

Nucleoplasm (CC) 8 ACTB, CSNK2A1, KPNB1, PRKDC, RAN, RUVBL2, UBC, XPO1 2.8 0.021

Cell Cycle (BP) 7 PHGDH, PPM1G, PSME3, RAN, SPIN1, TRIP13, UBC 2.8 0.035

Membrane-enclosed Lumen (CC) 13
ACTB, C1QBP, CACYBP, CSNK2A1, KPNB1, PRKDC, 

RAN, RPL3, RPS7, RRP12, RUVBL2, UBC, XPO1
2.1 0.011

Nucleotide Binding (MF) 14
ACTB, ATP6V1A, CSNK2A1, CKB, DICER1, GNAI3, MTHFD1, 

PHGDH, PKM2, PRKDC, RAN, RBM10, RUBVL2, TRIP13
1.9 0.018
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Figure S1. Host proteins specifically associated with HCV proteins 

Heat map visualization of the 132 host protein quantities significantly enriched in one of the 

six experimental IPs of HCV proteins (3xFLAG-Core, -NS2, -NS3/4A, -NS4B, -NS5A and –

NS5B), modified from Germain et al. (2014) [1]. Proportions of presence for each of the six 

experimental conditions are represented for host proteins hits (Σ six conditions = 1 for each 

host protein). The proteins are ordered from greatest to lowest proportion in their respective 

viral protein enrichment groups as determined by LC-MS/MS. The darker color correlates 

with the absence of the host protein in the condition, and brighter green indicates a high 

prevalence of the host protein in the condition (log2 scale). 
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Figure S2. Venn Diagram of Virus-Host Interactors Greatly Modulating HCV 

Replication and the Innate Antiviral Immune Response 

A Venn diagram representation of the effect of gene silencing on the 53 virus-host interactors 

greatly affecting the innate antiviral immune response in comparison to their effect on HCV 

replication. Only 12 out of the 53 interactors met the stringent criteria of Germain et al. (2014) 

[1] for having a major effect on viral replication, while the rest affected the immune response.  
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Figure S3. Effect of nucleocytoplasmic transporters knockdown on SeV replication. 

Immunoblot analysis of HEK 293T cells infected with SeV for 8 or 24 hours following 

knockdown of XPO1, CSE1L, RAN, KPNB1 and TNPO1 for three days. shRNA NT is used 

as a control. 
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Figure S4. Effect of silencing importins on IRF3 and p65 nuclear translocation, pIFNB1 

induction and cellular fitness. 

Effect of IPO4, IPO7 and IPO8 knockdown on the relative percentage of nuclei with IRF3 and 

p65 staining after normalization of the control shRNA NT to zero for all time points. The 

effect of these knockdowns on SeV induced IFNB1 promoter activity was measured in A549 
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cells stably expressing the firefly luciferase under the control of the IFNB1 promoter (right 

panel). In addition, the effect of a shRNA on cell proliferation and survival was evaluated 

using images from the microscopy screen. 
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Figure S5. Effect of silencing transportins on IRF3 and p65 nuclear translocation, 

pIFNB1 induction and cellular fitness. 

Effect of TNPO1, TNPO2 and TNPO3 knockdown on the relative percentage of nuclei with 

IRF3 and p65 staining, IFNB1 promoter activity and cellular fitness, as described in Figure S4. 
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Figure S6. Effect of silencing proteins involved in protein export on IRF3 and p65 

nuclear translocation, pIFNB1 induction and cellular fitness. 

Effect of XPO1, CSE1L and RANBP3 knockdown on the relative percentage of nuclei with 

IRF3 and p65 staining, IFNB1 promoter activity and cellular fitness, as described in Figure S4. 
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Figure S7. Effect of silencing proteins involved in mRNA export on IRF3 and p65 

nuclear translocation, pIFNB1 induction and cellular fitness. 

Effect of NXT1, NXT2, NXF1 and NXF2 knockdown on the relative percentage of nuclei 

with IRF3 and p65 staining, IFNB1 promoter activity and cellular fitness, as described in 

Figure S4. 
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Figure S8. Effect of silencing proteins involved in the RAN gradient on IRF3 and p65 

nuclear translocation, pIFNB1 induction and cellular fitness. 

Effect of RAN, NUTF2 and RCC1 knockdown on the relative percentage of nuclei with IRF3 

and p65 staining, IFNB1 promoter activity and cellular fitness, as described in Figure S4. 
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Figure S9. Effect of silencing cytoplasmic FG-Nups and filaments on IRF3 and p65 

nuclear translocation, pIFNB1 induction and cellular fitness. 

Effect of RANBP2, NUP214 and NUPL2 knockdown on the relative percentage of nuclei with 

IRF3 and p65 staining, IFNB1 promoter activity and cellular fitness, as described in Figure S4. 
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Figure S10. Effect of silencing outer-ring Nups on IRF3 and p65 nuclear translocation, 

pIFNB1 induction and cellular fitness. 

Effect of NUP43, NUP107 and NUP160 knockdown on the relative percentage of nuclei with 

IRF3 and p65 staining, IFNB1 promoter activity and cellular fitness, as described in Figure S4. 
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Figure S11. Effect of silencing linker Nups on IRF3 and p65 nuclear translocation, 

pIFNB1 induction and cellular fitness. 

Effect of NUP93 and NUP88 knockdown on the relative percentage of nuclei with IRF3 and 

p65 staining, IFNB1 promoter activity and cellular fitness, as described in Figure S4. 
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Figure S12. Effect of silencing central FG-Nups on IRF3 and p65 nuclear translocation, 

pIFNB1 induction and cellular fitness. 

Effect of NUP54, NUP35 and NUPL1 knockdown on the relative percentage of nuclei with 

IRF3 and p65 staining, IFNB1 promoter activity and cellular fitness, as described in Figure S4. 
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Table S1. Absolute and Relative Quantities of Host Proteins in the 6 HCV Protein 

Conditions 

This table contains the results of the LC-MS/MS analysis with the absolute quantities, as well 

as the relative quantities of host proteins in the 6 viral protein conditions which are visually 

represented in Figure S1. This data is modified from Germain et al. (2014) [1]. 
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Table S2. Effect of the 132 Virus-Host Interactors on the Innate Antiviral Immunity 

This table contains the results of the RNAi screen on the 132 virus-host interactors and the 

effects of their gene silencing on the innate antiviral immunity. The average of 2 separate 

experiments is shown for the HEK 293T and A549 cell lines. Ef1α is used as a measurement 

of cellular fitness to eliminate shRNAs with non-specific effects and prioritizing genes 

affecting only the IFNB1 promoter. 
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Table S3. Effect of Silencing Nucleoporins and Nucleocytoplasmic Transporters on IRF3 

and p65 Nuclear Translocation 

This table contains the results of the RNAi screen of the 60 Nucleoporins and 

nucleocytoplasmic transporters and their effect on the nuclear translocation of IRF3 and p65 

during a 10-hour SeV infection time course. Non-target (NT) values are in absolute 

percentages, while all other values are presented in relative percentage.  
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Table S4. Effect of Silencing Nucleoporins and Nucleocytoplasmic Transporters on 

pIFNB1 promoter and Cellular Fitness 

This table contains the results of the RNAi screen of the 60 nucleoporins and 

nucleocytoplasmic transporters and their effect on the pIFNB1 promoter and cellular fitness. 

Results on the promoter are represented in percentage of promoter inhibition from 2 separate 

experiments. Cellular fitness is represented in percentage of cell survival for each time point 

of the SeV infection.  
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Chapter 3: Discussion 
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3.1 Investigation of HCV-Host Interactors in the Modulation of 

the Innate Antiviral Response 

The current study endeavored to determine whether HCV-host interactors elucidated 

by Germain et al. (Mol. Cell. Proteomics 2014) had an effect on the innate antiviral response 

[19]. Many of the host proteins identified were previously known to interact with other 

viruses, suggesting that a restricted number of host proteins or families are hijacked to benefit 

their life cycle, either as cofactors to enhance replication or as restriction factors to evade the 

innate antiviral response.  

Based on the hypothesis that viruses could interact with host factors for evasion 

mechanisms, 132 genes were silenced from 426 proteins identified by Germain et al. (2014) 

(Figure S1) to measure their effect on the innate immune response by measuring IFNB1 

production. This assay used SeV infection to induce the response in two cell lines, HEK 293T 

and A549, which both contained a stably integrated IFNB1 promoter linked to a firefly 

luciferase gene. A stable cell line that expressed a firefly luciferase gene under a Ef1α 

promoter was also used as a control to measure cellular fitness and specificity for the effects of 

the silenced genes on the IFNB1 promoter. From this assay, 53 genes had a significant effect 

on the response with 12 previously identified for having an effect on HCV replication when 

silenced as shown in the study by Germain et al. (2014) (Figure S2). The other 41 genes 

affected the SeV-mediated IFNB1 production in one or both cell lines (HEK 293T and A549), 

supporting the hypothesis that virus-host interactions not having an effect on viral replication 

could be involved in the modulation of the innate antiviral response. 

Of the 53 genes affecting the innate antiviral immunity, host factors elucidated to 

interact with a viral protein were almost evenly split into positive regulators (inhibit when 

silenced) and negative regulators (stimulate when silenced) of the immune response (Figure 

1). The only exception are NS5B-host interactors as there are more of these proteins 

considered as negative regulators (12 in yellow) than positive regulators (5 in blue) of the 

innate immune response.  

 When comparing the innate immune modulators in HEK 293T and A549 cell lines 

(Figure 3.1), 11 common interactors were identified including NS3/4A interactors COPB1 and 
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TNPO1 (positive regulators), and NS5B interactors CKB, NIP30 and RPL29 (negative 

regulators). Other common interactors have different effects on the different cells lines 

(WDR77 as a core interactor, BCLAF1, MAP3K7IP1, UBC and YBX1 as NS3/4A interactors,  

and FKBP5 as a NS5B interactor) (see Figure 1).  

Finally, in order to better understand which cellular processes may be targeted by the 

virus to reduce the innate immune response by an immune evasion mechanism, Gene 

Ontology (GO) enrichment was performed on the 53 interactors. This resulted in "protein 

import into the nucleus, docking" and the "nuclear pore" as the GO terms with the highest 

enrichment (Table I). Interestingly, the proteins associated with these terms were all, except 

one, elucidated to interact with NS3/4A (CSE1L, KPNB1, RAN, TNPO1 and XPO1), which is 

well-known for its role in evading the antiviral response by cleaving key adaptors MAVS and 

TRIF of the RLR and TLR pathways, respectively [315, 316]. Upon further inspection, these 

five genes were found to be positive regulators in the innate antiviral immunity RNAi screen 

(Figure 1), while KPNB1, RAN, and TNPO1 were all previously determined to play a role in 

HCV replication by Germain et al. (2014) [19]. These results strongly suggest that the proteins 

associated with nucleocytoplasmic transport and the nuclear pore complexes are targeted by 

multiple viruses to reduce the innate antiviral response through their modulation of IFNB1 

production.  
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Figure 3.1: Silencing of Host Interactors in Modulation of SeV-mediated Innate 

Response of Different Human Cell Lines 

The figure above presents the total number of HCV-host interactors, which modulate 

the innate antiviral response in two cell lines in a pie chart where 11 interactors were common 

in both cell lines to affect the response in a positive or negative manner.  
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3.2 Validation of the Interactors on the Innate Antiviral Response 

The five interactors CSE1L, KPNB1, RAN, TNPO1 and XPO1 were further 

investigated by first demonstrating the reduced expression of proteins by efficient knockdown 

in A549 and HEK 293T cell lines. In the HEK 293T cell line, the silencing of the five genes 

confirmed the reduction of ISG56 expression at 8 hours, which continued at 24 hours of 

infection with KPNB1 silencing resulting in no ISG56 expression (Figure S3). In A549, 

ISG56 levels are also reduced in RAN and KPNB1 silencing, while unexpectedly CSE1L 

silencing increased expression at 8 hours post-infection. A different phenotype is observed at 

24 hours post-infection, in which ISG56 expression was slightly increased in XPO1, CSE1L 

and TNPO1 silencing, while RAN and KPNB1 knockdown remained at levels similar to the 

control (Figure 2).  

We then investigated the silencing of these genes on SeV infection. Interestingly, 

KPNB1 silencing was able to rapidly induce the expression of viral protein at 8 hours of 

infection in A549, while all silenced genes at 24 hours post-infection had an overall increase 

in viral protein expression (Figure 2). In HEK 293T cells, the rapid induction of viral protein 

expression was confirmed in KPNB1 silenced cells, in addition with CSE1L knockdown 8 

hours post-infection. At 24 hours, the viral expression is slightly diminished in XPO1, RAN, 

and TNPO1 silenced cells, with an increase still prominent in KPNB1 knockdown cells 

(Figure S3).  

The innate antiviral response differs between the two cells lines as the kinetics in A549 

occur quicker than in HEK 293T cells with 8 hours post-infection in A549 is comparable to 24 

hours-post infection in HEK 293T cells. At 24 hours, the first wave of the response is already 

over in A549 cells, which explains why the expression of ISG56 seems to be more or less 

normalized among the different gene silencing (Figure 2), while a distinct difference in ISG56 

expression can still be seen in HEK 293T cells at 24 hours post-infection (Figure S3).  

Overall, the data suggest that these proteins involved in nucleocytoplasmic transport do 

have an effect on the innate antiviral response as revealed by the reduced levels of ISG56 

proteins at variable time in both cell lines, which explain the rapid expression of SeV proteins, 

especially in the case of KPNB1 silencing. However, further mechanistic studies were 
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required in order determine at which stage of the response, such as viral sensing, signaling 

cascade, and nuclear translocation of transcription factors, these proteins act upon to affect 

IFNB1 production and the ISG56 response. 

3.3 Epistatic Studies of the Interactors on the Innate Antiviral 

Response 

To determine at what level of the innate immune response these nucleocytoplasmic 

transporters could be affecting, an epistatic assay was performed in order to gain mechanistic 

insight at each step of the pathway and to rule out any indirect effects, such as the inhibition of 

early steps of SeV infection, to decrease the innate antiviral response. Preliminary studies 

were performed with the five interactors. 

XPO1 silencing decreased IFNB1 production when infected with SeV in both HEK 

293T and A549 cells. Stimulating downstream of the pathway by overexpressing MAVS, the 

key adaptor in the RLR pathway, still had reduced levels of IFNB1 when XPO1 was silenced 

in comparison to the NT control. These reduction effects are not due to cellular fitness as 

shown by the EF1α promoter (Figure 3.2). Despite the overexpression of IRF3(5D), a 

constitutively active form of IRF3 which translocates to the nucleus, XPO1 silencing still 

reduced IFNB1 production. However, silencing of XPO1 had no effect on ISG56 expression 

when stimulated with IFN-α, a type I interferon, and overexpression of IRF3(5D) (Figure 3.3). 

Since ISG56 is an IRF3-dependent ISG, this suggests that the reason overexpression of 

IRF3(5D) did not restore IFNB1 levels is due to NF-κB p65 being affected by XPO1 

silencing, as both IRF3 and p65 are required for sufficient activation of the transcription of the 

IFNB promoter [257]. This may seem to contradict the results shown in Figure S6, where 

XPO1 knockdown increases p65 nuclear translocation (Figure S6) and should therefore 

increase IFNB1 expression. However, the nuclear localization of NF-κB p65 activates not only 

IFNB1 transcription, but also the transcription of IκB proteins as a negative feedback 

mechanism to regulate NF-kB p65 activity through binding and export to the cytoplasm [294]. 

In the context of XPO1 silencing, it has been shown using the XPO1 inhibitor Leptomycin B 

that IκB:NF-κB complexes accumulate in the nucleus, which lead to a reduction in NF-κB 

activity [292]. 
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Figure 3.2: Epistatic study of XPO1 Silencing on the Innate Antiviral Response (1) 

This figure shows the effect of XPO1 silencing on the innate antiviral response at the 

level of SeV infection and MAVS overexpression. XPO1 shRNA 86 is the same shRNA used 

in Figure 2. Data is the average of triplicate wells per condition with corresponding errors 

bars.  

 

Figure 3.3.: Epistatic study of XPO1 Silencing on the Innate Antiviral Response (2) 

This figure shows the effect of XPO1 silencing on the innate antiviral response at the 

level of SeV infection, IFN-α stimulation and IRF3(5D) overexpression in IFNB1 and ISG56 
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promoter readouts. XPO1 shRNA 86 is the same shRNA used in Figure 2. Data is the average 

of triplicate wells per condition with corresponding errors bars. 

The silencing of CSE1L reduces IFNB1 production in HEK 293T cells and A549 cells 

upon SeV infection. In HEK 293T cells, stimulating downstream by overexpressing Poly I:C, 

a viral dsRNA mimetic recognized by RIG-I [317], still leads to reduced IFNB1 levels when 

CSE1L is silenced. However, CSE1L knockdown has no effect on the IFNB1 promoter when 

MAVS is overexpressed (Figure 3.4), and when IRF3(5D) is overexpressed (Figure 3.5) 

suggesting that CSE1L is acting between RIG-I sensing and signaling by MAVS.  However, 

ISG56 expression was decreased when stimulated with IFN-α stimulation and IRF3(5D) 

overexpression when CSE1L is silenced, which is the complete opposite to the effect shown in 

XPO1 knockdown for this promoter (Figure 3.3). This suggests that CSE1L may be affecting 

ISG56 expression via the JAK/STAT pathway as the ISGF3 complex, composed of STAT1, 

STAT2 and IRF9, and can also induce the expression of ISG56 by binding to the ISRE during 

this second phase of the antiviral response [318]. Although IRF3 and p65 translocation to the 

nucleus is reduced upon CSE1L knockdown during a SeV infection in A549 cells, it cannot be 

said for sure that it is also the case in HEK 293T cells, and would have to be investigated 

further.  
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Figure 3.4: Epistatic study of CSE1L Silencing on the Innate Antiviral Response (1) 

This figure shows the effect of CSE1L silencing on the innate antiviral response at the 

level of SeV infection, Poly I:C overexpression, and MAVS overexpression. CSE1L shRNA 

90 is the same shRNA used in Figure 2. Data is the average of triplicate wells per condition 

with corresponding errors bars. 

 

Figure 3.5: Epistatic study of CSE1L Silencing on the Innate Antiviral Response (2) 
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This figure shows the effect of CSE1L silencing on the innate antiviral response at the 

level of SeV infection, IFN-α stimulation and IRF3(5D) overexpression in IFNB1 and ISG56 

promoter readouts. CSE1L shRNA 90 is the same shRNA used in Figure 2. Data is the 

average of triplicate wells per condition with corresponding errors bars. 

 

In the case of RAN silencing, IFNB1 production and ISG56 expression is reduced no 

matter what the stimulation or overexpression of the different levels of the response (Figure 

3.6 and 3.7). This may be due to RAN's role in both protein import and export, which could be 

affecting any number of proteins and may be the reason for this effect on the response.  

 

Figure 3.6: Epistatic study of RAN Silencing on the Innate Antiviral Response (1) 

This figure shows the effect of RAN silencing on the innate antiviral response at the 

level of SeV infection and MAVS overexpression. RAN shRNA 29 is the same shRNA used 

in Figure 2. Data is the average of triplicate wells per condition with corresponding errors 

bars. 
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Figure 3.7: Epistatic study of RAN Silencing on the Innate Antiviral Response (2) 

This figure shows the effect of RAN silencing on the innate antiviral response at the 

level of SeV infection, IFN-α stimulation and IRF3(5D) overexpression in IFNB1 and ISG56 

promoter readouts. RAN shRNA 29 is the same shRNA used in Figure 2. Data is the average 

of triplicate wells per condition with corresponding errors bars. 

KPNB1 silencing decreased IFNB1 expression at every level of the response until 

IRF3(5D) overexpression, but the effect remains inconclusive due to differential effect 

between the two shRNAs. Since the shRNA used in Figure 2 is shRNA 89, this would suggest 

that the reduction of IFNB1 by KPNB1 silencing can be rescued by the overexpression of 

IRF3(5D). Based on the shRNA 89, the effect on ISG56 expression is inconclusive due to the 

error bars, and would require further validation (Figure 3.8).  
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Figure 3.8: Epistatic study of KPNB1 Silencing on the Innate Antiviral Response 

This figure shows the effect of KPNB1 silencing on the innate antiviral response at the 

level of SeV infection, IFN-α stimulation and IRF3(5D) overexpression in IFNB1 and ISG56 

promoter readouts. KPNB1 shRNA 89 is the same shRNA used in Figure 2. Data is the 

average of triplicate wells per condition with corresponding errors bars. 

 

For TNPO1 silencing, IFNB1 production is at every level of the response until 

IRF3(5D) overexpression level of the response. The ISG56 expression induced by IFN-α 

stimulation is also reduced when TNPO1 is silenced, but the effect on IRF3(5D) on ISG56 

expression is inconclusive during TNPO1 knockdown (Figure 3.9). These preliminary results 

suggest that TNPO1 knockdown is affecting other transcription factors required for IFNB1 

promoter activation, such as NF-κB p65, as IRF3(5D) overexpression does not rescue the 

phenotype, and has an inconclusive effect on the ISG56 promoter. This result is supported by 

the decrease in IRF3 and p65 nuclear translocation upon TNPO1 knockdown in A549 cells 

(Figure S5). 
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Figure 3.9: Epistatic study of TNPO1 Silencing on the Innate Antiviral Response 

This figure shows the effect of TNPO1 silencing on the innate antiviral response at the 

level of SeV infection, IFN-α stimulation and IRF3(5D) overexpression in IFNB1 and ISG56 

promoter readouts. TNPO1 shRNA 85 is the same shRNA used in Figure 2. Data is the 

average of triplicate wells per condition with corresponding errors bars. 

 

Overall, preliminary data with the five interactors affecting the innate antiviral 

response are consistent with modulation at the level of nuclear translocation, which could 

involve IRF3, NF-κB p65 and/or ISGF3.  
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3.4 Development of a Screen to Measure IRF3 and p65 Nuclear 

Translocation during Viral Infection 

Previous results show that the five proteins associated with nucleocytoplasmic 

transporters had an effect on IFNB1 production (Figure 1), ISG56 expression and SeV 

replication (Figure 2). Preliminary data suggested that this effect on the innate antiviral 

response may be at the level of nuclear translocation of transcription factors such as IRF3 and 

NF-κB p65, which are required for the production of IFNs such as IFNβ [244]. The goal was 

to develop an assay that allowed us to gain mechanistic insight on the modulation of these key 

transcription factors by directly evaluating their nuclear translocation during the innate 

antiviral response.  

The result is the development of a microscopy-based assay, where the nuclear 

translocation of IRF3 and p65 can be measured over a 10-hour viral infection time course. 

Since nuclear translocation can involve multiple players such as a variety of transporters and 

nucleoporins for proper entry into the nucleus, the number of genes studied was expanded to 

cover approximately 60 genes to better understand the mechanism by which IRF3 and p65 

enter and exit nucleus. The cell line of choice was A549 as four of the five nucleocytoplasmic 

transporters were found as positive regulators in the primary screen, and the knockdown of 

these genes were also validated in this cell line (Figure 2). In addition, the rapidity of the 

response upon infection and the large cytoplasm of these cells facilitate the quantitative and 

qualitative measurement of the nuclear translocation of these transcription factors over time.  

The IRF3 and p65 nuclear translocation observed in the microscopy-based assay over a 

10-hour SeV infection time course (Figure 3C) was validated biochemically using 

nuclear/cytoplasmic fractionation (Figure 3D), where the increase of IRF3 and p65 in the 

nucleus matched the results generated by the microscopy assay (Figure 3B). In addition, the 

phosphorylation of IRF3 and the NF-κB inhibitor NFKBIA were also a measure of the 

induction of the innate antiviral response and the nuclear translocation of IRF3 and p65, 

respectively (Figure 3D). The validity of the microscopy using a biochemical method 

increased the confidence of using this assay to a medium throughput level of RNAi screening.  
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This microscopy-based screen has several strengths: the first is being able to normalize 

the data from well to well. Since the number of nuclei may not be equal from well to well, the 

analysis uses the percentage of nuclei, instead of the total number of nuclei containing these 

transcription factors. This analysis makes the results in duplicate wells, as well as from plate 

to plate, consistent and reproducible.  

Another strength is that the threshold level set can be visually confirmed using the 

software as nuclei that do not make the cut are marked in red, and nuclei that are above the 

threshold are marked in green. This allows for better fine tuning of the threshold, instead of 

setting the levels to completely remove background levels of uninfected cells. Overall, the 

main strength of this technique is that hundreds of genes can be studied at once using a low 

number of cells (in the thousands) in 96-well and even 384-well plates with the ability to look 

at hundreds of cells per field, and quantifying phenotypes using software. The standard 

immunofluorescence technique requires hundreds of thousands of cells, but only allows for 

twenty to fifty cells to be visualized at once depending on the magnification, and phenotypes 

cannot be quantified without being biased. Our study looked only at the nuclear translocation 

of IRF3 and p65 using Hoechst for nuclear staining. However, with the proper compartment 

staining, the study of any protein to any compartment, such as the mitochondria or lipid 

droplets, could be studied with proper optimization. 

There were weaknesses to this assay as IRF3 and p65 nuclear translocation were 

looked at separately, as staining these two proteins at once would cause their signals to bleed 

into one another, making it difficult to accurately measure their signals separately. Another 

limitation is the staining: in the case of p65, which is stained in the cytoplasm of uninfected 

cells, some cells contain so much p65 staining in the cytoplasm that it bleeds into the 

boundary delineated by the Harmony software as the nucleus, where the staining ends up 

hitting the threshold and this nuclei is counted as containing p65 in the nucleus, when it is not 

the case upon visual inspection. This limitation is due to having only the staining of the nuclei 

by Hoechst and not having another staining, such as Phalloidin, for the cytoplasm [319]. This 

double compartment staining would allow for the measurement of the fluorescence intensity in 

each compartment for each cell [41], completely avoiding false positives measured due to 

single-compartment staining. If these weaknesses were to be overcome, more complex data 
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could be generated such as which nuclei contain both IRF3 and p65 and which contain only 

one or the other, as well as the fluorescence intensity in both the nuclei and cytoplasmic 

compartments for an overall picture of the nuclear translocation of these factors.  

We performed a microscopy-based RNAi screen to study approximately sixty genes 

involved in the nuclear pore complex from the seven different sections of the pore: 

cytoplasmic FG-Nups and filaments, transmembrane-ring Nups, outer-ring Nups, linker Nups, 

inner-ring Nups, central FG-Nups, and the nuclear FG-Nups and the nuclear basket (Figure 7, 

S9 to S12). Genes involving nucleocytoplasmic transport were also studied such as those 

involved in protein import (adaptors, importins, transportins), protein export, mRNA export 

and the establishment of the RAN energy gradient (Figures 5, 6, S4 to S8). The screen allowed 

for the identification of several Nups and transporters involved in the import and export of 

IRF3 and p65 at different time points of the infection.  

The novelty of this assay is the combination of microscopy (qualitative) and medium 

throughput RNAi screen results (quantitative) to measure the phenotype of IRF3 and p65 

nuclear translocation over time, a valuable readout of the innate antiviral response. The 10-

hour time course allows for the measurement of IRF3 and p65 nuclear translocation at the 

start, peak and end of the first wave of the innate antiviral response. The measurement of IRF3 

and p65 in the nucleus is reproducible from well to well from plate to plate, allowing for all 

the genes studied to be compared together and not only within the plate the shRNA was placed 

in. The validation of the microscopy results using a biochemical method increases the 

significance and confidence of the results obtained by the analysis program.  
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3.5 Microscopy Results: IRF3 and p65 Translocation 

In this microscopy RNAi screen, the 58 genes studied for their effect on the nuclear 

translocation of IRF3 and p65 were divided into their functional and structural groups of 

nucleocytoplasmic transporters and nucleoporins, respectively. The article identified 33 genes, 

in which 25 had an overall decrease, 4 had a delay, 2 had an increase and 2 others had 

differential effects when silenced on the nuclear translocation of IRF3 and p65. 

The Kapα adaptor proteins had varying effects on IRF3 nuclear translocation. For p65 

nuclear translocation, 5 out of 6 of these adaptors decreased this factor's translocation 

significantly at 3 hours post-infection by 2 or more shRNAs per gene (Figure 5). The only 

adaptor that did not have this phenotype is KPNA4, whose silencing increased IRF3 and p65 

nuclear localization overall. Interestingly, KPNA4 has been targeted by a cellular protein 

[320], an active metabolite [321], a fungal metabolite [322], and a virus [323], in order to 

affect its interaction with p65 and prevent nuclear translocation, which suggests that KPNA4 

may be an import adaptor for this transcription factor for a different mechanism. Based on the 

data shown in Figure 5, one possible explanation for the increase in both transcription factors 

when KPNA4 is silenced may be due to a compensatory mechanism by the other 5 adaptors to 

import p65 in the absence of KPNA4, as these other adaptors have been shown to bind to p65 

[270, 324-326]. The reverse could be said for the significant decrease at 3 hours post-infection 

of p65 by the silencing of the 5 other adaptors, as it would suggest these 5 participate in the 

nuclear translocation of p65 early in the antiviral response, while KPNA4 handles the import 

during the latter half of the response. In terms of IFNB1 production at 6 hours post-infection, 

it was significantly decreased when KPNA2, KPNA3, and KPNA5 were silenced (Figure 5B), 

which could be attributed to these 3 genes decreasing both IRF3 and p65 nuclear translocation 

at 3 hours post-infection (Figure 5B). KPNA1 and KPNA4 had different effects between 

shRNAs, while KPNA6 had only a slight decrease on IFNB1 production when these genes 

were silenced. Further validation would be required on the shRNAs' efficacy to knockdown 

their target gene to eliminate shRNAs with off-target effects for these 3 genes, and then 

determine if there is causality between the effect of the shRNA on IRF3 and p65 nuclear 

translocation and IFNB1 production or if other factors that require these adaptors are at play.   
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The next group are the proteins involved in protein import. Silencing of KPNB1, the 

main import carrier, decreased nuclear translocation of IRF3 and p65 in the first five hours of 

SeV infection (Figure 4), which explains the negative effect on ISG56 expression with shRNA 

89 at 8 hours post-infection (Figure 2) and IFNB1 production at 6 hours post-infection (Figure 

4). The microscopy results show that IRF3 and p65 nuclear localization return to normal levels 

despite the silencing of KPNB1, suggesting that the effects on ISG56 expression and IFNB1 

production is due to the negative effect on IRF3 and p65 nuclear translocation early in the 

innate antiviral response prior to these readouts at 8 and 6 hours post-infection, respectively. 

The KPNB1 knockdown induces an earlier induction of apoptosis as seen by the cleavage of 

PARP1 (Figure 4C), suggesting that the weakened innate response leads to a greater 

infectivity of SeV and thus activate other cellular processes in attempts to restrict the spread of 

the virus. This is further supported by the decrease in IFNB1 production upon knockdown of 

KPNB1 by shRNA 89 (also used in Figure 4C) and shRNA 90, where both shRNAs showed a 

decrease in cell survival (Figure 4A). It is plausible that shRNA 91 may not be as effective in 

knocking down KPNB1 as the previous two shRNAs, as there is a significant error bar when 

looking at the decrease in IFNB1 production, thus no negative effect on cell survival (Figure 

4A). This would need to be confirmed by measuring the mRNA levels of KPNB1 upon 

knockdown by the three different shRNAs. Overall, the data confirm that KPNB1 plays a key 

role in the nuclear import of IRF3 and p65 in the rapid establishment of the innate response to 

prevent the accumulation of viral protein, and in turn subdue viral replication and propagation.  

Out of the importins, the paralogous pair IPO7 and IPO8 had an overall negative effect 

on the translocation of both transcription factors when silenced, which suggests that the 

similarities between these two can go as far as their effect on cargoes (Figure 6A). 

Interestingly, KPNB1 and IPO8 were determined to be involved in p65 nuclear import in a 

NLS-dependent and independent manner, respectively, during a TNF-α stimulation [325]. 

IPO7 and IPO8 silencing also greatly decreased IFNB1 production, which could be attributed 

to their effect on nuclear translocation of the transcription factors, especially in the case of 

shRNA 74 (green) of IPO7 and shRNA 52 of IPO8 (Figure S4). IPO7 is specifically targeted 

by HIV-1 to facilitate nuclear import of viral DNA for efficient HIV-1 replication [56, 327]. 

IPO4 silencing specifically decreased IRF3 nuclear transport, and not p65, especially during 
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the second half of the infection (5 to 10 hours), which suggests that different import carriers 

can be used at different times of the infection for IRF3 and p65 nuclear transport and may 

relate to how quick these carriers are in the transport of their cargo. IPO7 and IPO8 silencing 

does not reduce cell survival because they are not the main import carriers like KPNB1, and 

their functions could be compensated by other import carriers. The IFNB1 production was 

reduced in two out of three shRNAs used to silence IPO4, which could be due to the reduced 

translocation of p65 to the nucleus at 3 hours post-infection and IRF3 at 5 hours post-

infection. A possible explanation as to shRNA 89 having a dramatic increase on IFNB1 

expression may be due to its minimal negative effect at 3 hours post-infection and greater 

positive effect at 5 hours post-infection on p65 nuclear translocation, in comparison to shRNA 

88 and shRNA 91 (Figure S4).  

The transportins, also associated with protein import, also had an effect on IRF3 and 

p65 nuclear translocation. TNPO1 and TNPO2 were determined to be paralogous pairs, like 

IPO7 and IPO8 [61]. TNPO1 overall decreased nuclear translocation of both IRF3 and p65 

during the entire time course (Figure 6B), which correlates with the reduced expression of 

IFNB1 (Figure S5). On the other hand, TNPO2 increased IRF3 and p65 nuclear localization 

during the second half of the infection (Figure 6B), which suggest that it could have a role in 

export late in the innate immune response or there may be a compensation mechanism for its 

role in mRNA export by other export factors [50]. The effect of silencing TNPO2 on IFNB1 

production is different between the two shRNAs, but do show a correlation with the first 5 

hours of the infection as shRNA 70 decreases the nuclear translocation of both transcription 

factors, hence the decrease in IFNB1 production. The other shRNA 69 shows minimal effect 

on nuclear translocation with the exception of an increase in p65 nuclear translocation at 5 

hours post-infection (Figure S5). TNPO3 is thought to have a role in both import and export 

[86], but our study reveals that its silencing has an effect on IRF3 nuclear translocation only, 

similar to TNPO1. This suggests that the involvement of TNPO3 with the nuclear import of 

the HIV-1 pre-integration complex [52, 53] may have a secondary effect of disrupting IRF3-

dependent innate antiviral responses. However, when TNPO3 is silenced, only shRNA 33 

shows a correlation between decreased nuclear translocation of transcription factors IRF3 and 

p65 in the first 5 hours of infection, and a reduction in IFNB1 production (Figure S5). The 
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other 2 shRNAs have variable negative effects on nuclear translocation, but do not correlate 

with IFNB1 production, which suggests that further validation is required. 

KPNB1 and TNPO1 knockdown have similar effects on the reduction of ISG56 levels 

(Figures 2 and S3), decrease in IRF3 and p65 nuclear translocation at 5 hours post-infection, 

and a reduction in IFNB1 expression (Figures 4B and S5). However, TNPO1 knockdown does 

not increase SeV protein expression, in comparison to KPNB1 knockdown (Figures 2 and S3). 

It would be interesting to see whether TNPO1 knockdown has a similar phenotype to KPNB1 

knockdown on PARP1 cleavage (Figure 4C) to determine whether the induction of apoptosis 

is due to the reduced activity of the innate antiviral response or the increase in viral protein 

expression or the combination of both. 

Carriers involved in protein export had significant effects in IRF3 and p65 nuclear 

translocation. The main export carrier, XPO1 increased nuclear translocation of IRF3 early in 

the infection (1 and 3 hours) when silenced, while this silencing increased nuclear localization 

of p65 for the entire time course (Figure 6C). Both these transcription factors were shown to 

be exported by XPO1 through the use of the inhibitor Leptomycin B [328, 329]. The brief 

effect XPO1 silencing had on IRF3 nuclear localization may explain our preliminary data 

where the ISG56 promoter remained unchanged in comparison to the control (Figure 3.3). 

However, IFNB1 production is still reduced (Figure 3.2) upon XPO1 silencing despite the 

overall increase of p65 in the nucleus, which may be due to p65 transcription of its inhibitor 

IκBα, which binds to p65 to regulate its expression by exporting it to the cytoplasm for 

degradation [330-332]. However, IκBα-p65 export is mediated by XPO1, thus XPO1 silencing 

or inhibition using Leptomycin B blocks this export [329, 333].  

The other export carrier is CSE1L, which is involved in the export of Kapα adaptors 

back to the cytoplasm as a recycling mechanism for the formation of import complexes [44]. 

Therefore, it is expected that nuclear import of IRF3 and p65 would be decreased when 

CSE1L is silenced, as these two transcription factors require import adaptors to enter the 

nucleus (Figure 6C), and explains the decrease in IFNB1 production (Figure S6) and the 

increase in viral protein expression in SeV in A549 and HEK 293T cells similar to KPNB1 

silencing (Figures 2 and S3). However, it does not explain the increase in ISG56 levels in 

A549 cells at 8 hours and 24 hours post-infection (Figure 2). It has been shown in HEK 293 
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cells that overexpression of ISG56 reduces the activation of transcription factors induced by a 

SeV infection such as IRF3, NF-kB p65, and the IFNB1 promoter [334] by negatively 

regulating TBK1 activation by MAVS [335]. If this evidence is applicable to A549 cells, then 

CSE1L knockdown, through an unknown mechanism, causes a dramatic increase in ISG56 

expression at 8 hours post-infection in comparison to normal levels (Figure 2), which results 

in a decrease in IRF3 and p65 nuclear translocation, due to lack of activation, and thus the 

decrease in IFNB1 expression (Figure S6). 

The factors involved in mRNA export overall seem to have negative effect on the 

nuclear translocation of both transcription factors over the time course of the infection (Figure 

6D), which could suggest that possibly the mRNA export of these transcription factors are 

decreased, which by consequence leads to less of these factors in the cytoplasm to be 

translocated to the nucleus. NXF1 and NXT1 had the greatest effects on the translocation with 

NXT1 surprisingly having a greater overall effect than by NXF1, the main mRNA export 

factor. NXT1’s main role is to bind to the FG repeats of Nups to mediate the mRNA export by 

NXF1 [95-97], suggesting that interacting with the NPC is vital for efficient mRNA export 

through the central channel. A possibility why the NXF1 silencing does not affect the nuclear 

translocation of IRF3 and p65 as much as NXT1 may be due to NXF2 or even NXF3 

compensation for the lack of NXF1, especially since NXF2 can form a heterodimer with 

NXT1 [103] and NXF3 can utilize XPO1 for mRNA export [104]. NXF1, NXT1 and NXT2 

silencing decreased IFNB1 production, which correlates with the decrease in the two 

transcription factors (Figure S7). However, NXF2 silencing has no effect on IFNB1 

production, which suggests the effect of NXF2 silencing on the nuclear translocation of IRF3 

and p65 early in the response may be compensating in order for IFNB1 production to remain 

at normal induction levels. 

The RAN gradient is the most important regulator of nucleocytoplasmic transport, so it 

is not surprising that silencing RAN has a major negative effect on the translocation of both 

factors (Figure 6E). This may be the reason how EMCV, a virus of the cytoplasmic-replicating 

picornaviruses, by binding to RAN via its Leader protein, can disrupt nucleocytoplasmic 

transport, and thus successfully inhibit IFN activity to evade the innate antiviral response 

[307]. An interesting note is that NUTF2 and RCC1 have similar effects to one another on the 
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translocation of these transcription factors with IRF3 being less affected by the silencing than 

p65. NUTF2 is responsible for recycling RanGDP back to the nucleus, and RCC1 is 

responsible for exchanging the GDP to GTP for the formation of export complexes and the 

dissociation of import complexes [44], therefore the lack of RanGDP or RanGTP in the 

nucleus can affect nuclear transport, especially for p65. The silencing of these genes involved 

in the RAN gradient decrease IFNB1 production to similar levels (Figure S8), suggesting that 

this process is important for ensuring proper nucleocytoplasmic transport of factors important 

for IFNB1 production.  

The cytoplasmic FG-Nups and filaments overall had a negative effect on the 

translocation of both transcription when they are silenced, except for NUPL2, whose protein 

export activity via XPO1 [114, 115] was shown in the nuclear retention of IRF3 in the first 

hour of infection and p65 during the last half of the infection (Figure 7A). RANBP2 is the 

main docking site for several import carriers [116-119], and XPO1 and NXF1-mediated export 

[95, 120]. However, if RANBP2 did play a significant role, its silencing should block all 

import of these transcription factors, however it seems that RANBP2 acts as a facilitator of 

nucleocytoplasmic transport. The silencing of cytoplasmic FG-Nups had an overall decrease in 

IFNB1 production, which correlates with the overall negative effect on nuclear translocation 

of the transcription factors (Figure S9). Interestingly, HIV-1 targets all of these Nups where 

NUPL2 aids in the nuclear docking of a viral protein [224], RANBP2 is involved in the 

nuclear import of the pre-integration complex [222], and NUP214 is recruited by Rev for 

XPO1-mediated Rev export [227].  

The outer-ring Nups tested all belong to the NUP107-160 complex, which are involved 

in the nuclear import of NLS-containing cargoes [112], as well as regulating the diameter of 

NPCs [142]. This explains the significant decrease in the nuclear translocation of both 

transcription factors in the nucleus, especially during the first half (1 to 5 hours) of infection 

(Figure 7B), which correlates with the decrease in IFNB1 production (Figure S10). These 

results suggest that not only is nuclear import affected, but the diameter of the pore may not be 

of adequate size when these Nups are silenced, physically blocking their nuclear entry.  

The linker Nup NUP93 is extremely important for the proper assembly of the NPC, 

especially the recruitment of NUP62 for transport competency in these structures. It is not a 
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surprise that the silencing of this Nup would decrease the translocation of both transcription 

factors (Figure 7C), as well as the IFNB1 production (Figure S11) which was previously 

shown in Baril et al. [336]. Nup88 silencing decreases IRF3 and p65 nuclear translocation 

early in the response (Figure 7C), which corresponds to the reduction in IFNB1 (Figure S11). 

Interestingly, NUP88 is known to mediate XPO1 export with NUP214 [128], which 

previously discussed decrease IFNB1 production when silenced.  

The central FG-Nups are extremely important in nucleocytoplasmic transport. The 

nucleoporins that are part of the NUP62 complex (NUP54, and NUPL1 which encodes 

NUP58/NUP45) significantly reduce nuclear translocation of both transcription factors when 

they are silenced, in comparison to NUP35 which does not have such a strong phenotype 

(Figure 7D). These decreases in nuclear translocation of IRF3 and p65 correspond with the 

decrease in IFNB1 production for these Nups (Figure S12).  

Overall, silencing of Nups reduced the translocation of both transcription factors 

during the first five hours of infection (Figure 7), while nucleocytoplasmic transporters had 

differential effects, depending on their function (Figure 6).  
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3.6 Perspectives 

Future works would require validation experiments for the microscopy results, as well 

as experiments to elucidate the mechanism by which selected hits affect the nuclear transport 

of IRF3 and p65 and IFNB1 production. This would provide details as to why certain 

transporters and Nups are targeted by viruses to evade the innate antiviral response and 

promote their viral replication and growth in the cell.  

The validation of the efficacy of the knockdown by shRNAs by measuring mRNA 

levels via qPCR is essential to making sure that the shRNA is specifically affecting the 

expression of the gene of interest, and not an off-target effect.  Once that is validated, rescue 

experiments would be performed by overexpressing the gene of interest and see if it rescues 

the phenotype for IFNB1 expression, as well its effect on IRF3 and/or p65 nuclear 

translocation, which would confirm that the effect is due to this gene and not an off-target 

effect by the shRNA. Another experiment would be to determine if there is redundancy 

between transporters and between nucleoporins in their respective functional and structural 

groups by knocking down the genes two at a time by shRNA. Also, measuring viral protein 

and ISG56 expression, which was done on the five main nucleocytoplasmic transporters, 

would help to isolate key factors like KPNB1 when silenced.  

Another important point to determine is if IRF3 and p65 are actually cargoes of certain 

transporters or Nups to explain their effect on the translocation of these transcription factors. 

An 10-hour SeV infection time course would be required where co-immunoprecipitations 

using FLAG-tagged IRF3 and p65, as well as endogenous IPs to measure physiological levels 

of these transcription factors to determine at which point during the innate antiviral response 

do these transcription factors interact with Nups or transporters to enter and exit the nucleus. 

This would also show the dynamics of the transport and elucidate time-sensitive players.  

Another experiment would be to validate the microscopy results from the Kapα adaptor 

proteins, where each one would be silenced and determine whether the other adaptors can 

compensate for the lack of the other for the nuclear transport of IRF3 and p65.  

There was one study that proposed the idea that transporters may be interacting with 

their cargoes, but not through a NLS or NES, which was the case for a p65 study where it was 
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determined that IPO8 and XPO7 were involved in the nuclear import of p65 in a NLS-

independent manner [325]. This can be done by using peptides containing a NLS or NES 

which can compete for the binding of transporters to IRF3 or p65. If the NLS or NES peptides 

do not prevent binding of a transporter to these transcription factors, then it would be plausible 

that the interaction is not based on these signals, but could be through special structural 

domains or motifs.  

Another experiment of interest would be to use different stimulations to promote the 

translocation of IRF3 and p65 to the nucleus. In the case of p65, TNF-α stimulation induces 

nuclear translocation of this factor within an hour [325], in comparison to SeV infection which 

requires at least five hours for peak p65 translocation into the nucleus in A549 cells. This can 

provide another layer of transport dynamics and may elucidate transporters which move faster 

than others in terms of cargo transport.  

The understanding of the mechanistic details of these transporters and nucleoporins in 

how they affect the nucleocytoplasmic transport of IRF3 and p65 during the innate antiviral 

response can be brought over to other times of viral infections such as in HIV-1 and Influenza 

A virus (IAV), two RNA viruses which require entry into the nucleus for viral replication. In 

terms of evading the innate antiviral response by targeting Nups and transporters, this would 

allow us to identify similarities between RNA viruses in general, and differences between 

viruses that replicate in the nucleus (HIV-1, IAV) and viruses that replicate in the cytoplasm 

(HCV, SeV).  

In order to come full circle with this study, it is important to validate the relationship 

between the innate antiviral response and the NPC and its transporters in the context of a HCV 

infection in liver cells. The composition of the NPC and its transporters differ from one cell 

line to another [337] and one context to another [338], and therefore the dynamics between 

this complex and the innate response in A549 cells upon SeV infection cannot be comparable 

to that in Huh7 cells upon HCV infection. However, the goal of the study is to determine 

complexes or processes that can be utilized by a wide variety of viruses to circumvent the 

innate antiviral response, in which the NPC and its transporters are a plausible target based on 

the results of this study and in the literature.   
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Conclusion 

This project started from the hypothesis that viral-host interactors are playing a role in 

the evasion of the innate antiviral response as part of a mechanism by the virus for conferring 

a growth advantage. This led to the identification of proteins involved in nucleocytoplasmic 

transport, which had a modulatory effect on viral replication as well as on the innate antiviral 

response.  

Further mechanistic studies determined that the effect of these proteins on the innate 

antiviral response may be due to their effect on the nuclear translocation of key transcription 

factors. The development of a microscopy-based RNAi screen assessed multiple genes 

associated with transport, as well as the nuclear pore complex, to determine that indeed these 

proteins do affect the transport of these factors during a viral infection. This supports the fact 

this family of proteins is targeted by many types of viruses for the evasion of the immune 

response. 

The research in this Master’s thesis has paved a new road in understanding the 

mechanisms by which transcription factors such as IRF3 and NF-kB p65 enter and exit the 

nucleus, as part of the first phase of the innate antiviral response, in relation to the 

nucleoporins and nucleocytoplasmic transporters which mediate trafficking across the nuclear 

pore complex. These results are a valuable stepping stone in understanding the dynamics of 

the innate immune response through the trafficking of the nuclear localization of these 

transcription factors, as well as a starting point to study the trafficking of these factors during 

the response in the context of other viral infections for the goal of elucidating novel panviral 

targets for future therapeutics.  

 



 

i 

 

Bibliography 

1. Messina JP, Humphreys I, Flaxman A, Brown A, Cooke GS, Pybus OG, et al. Global 

distribution and prevalence of hepatitis C virus genotypes. Hepatology. 2014. doi: 

10.1002/hep.27259. PubMed PMID: 25069599. 

2. Horner SM. Activation and evasion of antiviral innate immunity by hepatitis C virus. 

Journal of molecular biology. 2014;426(6):1198-209. doi: 10.1016/j.jmb.2013.10.032. 

PubMed PMID: 24184198. 

3. Kim CW, Chang KM. Hepatitis C virus: virology and life cycle. Clinical and molecular 

hepatology. 2013;19(1):17-25. doi: 10.3350/cmh.2013.19.1.17. PubMed PMID: 23593605; 

PubMed Central PMCID: PMC3622851. 

4. Lohmann V, Bartenschlager R. On the history of hepatitis C virus cell culture systems. 

Journal of medicinal chemistry. 2014;57(5):1627-42. doi: 10.1021/jm401401n. PubMed 

PMID: 24164647. 

5. Chevaliez S, Pawlotsky JM. Virology of hepatitis C virus infection. Best practice & 

research Clinical gastroenterology. 2012;26(4):381-9. doi: 10.1016/j.bpg.2012.09.006. 

PubMed PMID: 23199498. 

6. Foster TL, Belyaeva T, Stonehouse NJ, Pearson AR, Harris M. All three domains of 

the hepatitis C virus nonstructural NS5A protein contribute to RNA binding. Journal of 

virology. 2010;84(18):9267-77. doi: 10.1128/JVI.00616-10. PubMed PMID: 20592076; 

PubMed Central PMCID: PMC2937630. 

7. Appel N, Zayas M, Miller S, Krijnse-Locker J, Schaller T, Friebe P, et al. Essential 

role of domain III of nonstructural protein 5A for hepatitis C virus infectious particle 

assembly. PLoS pathogens. 2008;4(3):e1000035. doi: 10.1371/journal.ppat.1000035. PubMed 

PMID: 18369481; PubMed Central PMCID: PMC2268006. 

8. Jirasko V, Montserret R, Lee JY, Gouttenoire J, Moradpour D, Penin F, et al. 

Structural and functional studies of nonstructural protein 2 of the hepatitis C virus reveal its 

key role as organizer of virion assembly. PLoS pathogens. 2010;6(12):e1001233. doi: 

10.1371/journal.ppat.1001233. PubMed PMID: 21187906; PubMed Central PMCID: 

PMC3002993. 

9. Popescu CI, Callens N, Trinel D, Roingeard P, Moradpour D, Descamps V, et al. NS2 

protein of hepatitis C virus interacts with structural and non-structural proteins towards virus 

assembly. PLoS pathogens. 2011;7(2):e1001278. doi: 10.1371/journal.ppat.1001278. PubMed 

PMID: 21347350; PubMed Central PMCID: PMC3037360. 

10. Lindenbach BD, Rice CM. The ins and outs of hepatitis C virus entry and assembly. 

Nature reviews Microbiology. 2013;11(10):688-700. doi: 10.1038/nrmicro3098. PubMed 

PMID: 24018384; PubMed Central PMCID: PMC3897199. 

11. Blight KJ, McKeating JA, Rice CM. Highly permissive cell lines for subgenomic and 

genomic hepatitis C virus RNA replication. Journal of virology. 2002;76(24):13001-14. 

PubMed PMID: 12438626; PubMed Central PMCID: PMC136668. 

12. Sumpter R, Jr., Loo YM, Foy E, Li K, Yoneyama M, Fujita T, et al. Regulating 

intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through 

a cellular RNA helicase, RIG-I. Journal of virology. 2005;79(5):2689-99. doi: 



 

ii 

10.1128/JVI.79.5.2689-2699.2005. PubMed PMID: 15708988; PubMed Central PMCID: 

PMC548482. 

13. Vercauteren K, de Jong YP, Meuleman P. HCV animal models and liver disease. 

Journal of hepatology. 2014;61(1 Suppl):S26-33. doi: 10.1016/j.jhep.2014.07.013. PubMed 

PMID: 25443343. 

14. Mercer DF, Schiller DE, Elliott JF, Douglas DN, Hao C, Rinfret A, et al. Hepatitis C 

virus replication in mice with chimeric human livers. Nat Med. 2001;7(8):927-33. doi: 

10.1038/90968. PubMed PMID: 11479625. 

15. Bukh J, Meuleman P, Tellier R, Engle RE, Feinstone SM, Eder G, et al. Challenge 

pools of hepatitis C virus genotypes 1-6 prototype strains: replication fitness and pathogenicity 

in chimpanzees and human liver-chimeric mouse models. J Infect Dis. 2010;201(9):1381-9. 

doi: 10.1086/651579. PubMed PMID: 20353362; PubMed Central PMCID: PMC2941994. 

16. Li Q, Zhang YY, Chiu S, Hu Z, Lan KH, Cha H, et al. Integrative functional genomics 

of hepatitis C virus infection identifies host dependencies in complete viral replication cycle. 

PLoS pathogens. 2014;10(5):e1004163. doi: 10.1371/journal.ppat.1004163. PubMed PMID: 

24852294; PubMed Central PMCID: PMC4095987. 

17. Ng TI, Mo H, Pilot-Matias T, He Y, Koev G, Krishnan P, et al. Identification of host 

genes involved in hepatitis C virus replication by small interfering RNA technology. 

Hepatology. 2007;45(6):1413-21. doi: 10.1002/hep.21608. PubMed PMID: 17518369. 

18. Randall G, Panis M, Cooper JD, Tellinghuisen TL, Sukhodolets KE, Pfeffer S, et al. 

Cellular cofactors affecting hepatitis C virus infection and replication. Proceedings of the 

National Academy of Sciences of the United States of America. 2007;104(31):12884-9. doi: 

10.1073/pnas.0704894104. PubMed PMID: 17616579; PubMed Central PMCID: 

PMC1937561. 

19. Germain MA, Chatel-Chaix L, Gagne B, Bonneil E, Thibault P, Pradezynski F, et al. 

Elucidating novel hepatitis C virus-host interactions using combined mass spectrometry and 

functional genomics approaches. Molecular & cellular proteomics : MCP. 2014;13(1):184-

203. doi: 10.1074/mcp.M113.030155. PubMed PMID: 24169621; PubMed Central PMCID: 

PMC3879614. 

20. Douam F, Lavillette D, Cosset FL. The mechanism of HCV entry into host cells. 

Progress in molecular biology and translational science. 2015;129:63-107. doi: 

10.1016/bs.pmbts.2014.10.003. PubMed PMID: 25595801. 

21. Henke JI, Goergen D, Zheng J, Song Y, Schuttler CG, Fehr C, et al. microRNA-122 

stimulates translation of hepatitis C virus RNA. The EMBO journal. 2008;27(24):3300-10. 

doi: 10.1038/emboj.2008.244. PubMed PMID: 19020517; PubMed Central PMCID: 

PMC2586803. 

22. Jopling CL, Schutz S, Sarnow P. Position-dependent function for a tandem microRNA 

miR-122-binding site located in the hepatitis C virus RNA genome. Cell host & microbe. 

2008;4(1):77-85. doi: 10.1016/j.chom.2008.05.013. PubMed PMID: 18621012; PubMed 

Central PMCID: PMC3519368. 

23. Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P. Modulation of hepatitis C 

virus RNA abundance by a liver-specific MicroRNA. Science. 2005;309(5740):1577-81. doi: 

10.1126/science.1113329. PubMed PMID: 16141076. 

24. Chatel-Chaix L, Melancon P, Racine ME, Baril M, Lamarre D. Y-box-binding protein 

1 interacts with hepatitis C virus NS3/4A and influences the equilibrium between viral RNA 



 

iii 

replication and infectious particle production. Journal of virology. 2011;85(21):11022-37. doi: 

10.1128/JVI.00719-11. PubMed PMID: 21849455; PubMed Central PMCID: PMC3194978. 

25. Chatel-Chaix L, Germain MA, Motorina A, Bonneil E, Thibault P, Baril M, et al. A 

host YB-1 ribonucleoprotein complex is hijacked by hepatitis C virus for the control of NS3-

dependent particle production. Journal of virology. 2013;87(21):11704-20. doi: 

10.1128/JVI.01474-13. PubMed PMID: 23986595; PubMed Central PMCID: PMC3807372. 

26. Yang F, Robotham JM, Grise H, Frausto S, Madan V, Zayas M, et al. A major 

determinant of cyclophilin dependence and cyclosporine susceptibility of hepatitis C virus 

identified by a genetic approach. PLoS pathogens. 2010;6(9):e1001118. doi: 

10.1371/journal.ppat.1001118. PubMed PMID: 20886100; PubMed Central PMCID: 

PMC2944805. 

27. Grise H, Frausto S, Logan T, Tang H. A conserved tandem cyclophilin-binding site in 

hepatitis C virus nonstructural protein 5A regulates Alisporivir susceptibility. Journal of 

virology. 2012;86(9):4811-22. doi: 10.1128/JVI.06641-11. PubMed PMID: 22345441; 

PubMed Central PMCID: PMC3347344. 

28. Okamoto T, Nishimura Y, Ichimura T, Suzuki K, Miyamura T, Suzuki T, et al. 

Hepatitis C virus RNA replication is regulated by FKBP8 and Hsp90. The EMBO journal. 

2006;25(20):5015-25. doi: 10.1038/sj.emboj.7601367. PubMed PMID: 17024179; PubMed 

Central PMCID: PMC1618089. 

29. Reiss S, Rebhan I, Backes P, Romero-Brey I, Erfle H, Matula P, et al. Recruitment and 

activation of a lipid kinase by hepatitis C virus NS5A is essential for integrity of the 

membranous replication compartment. Cell host & microbe. 2011;9(1):32-45. doi: 

10.1016/j.chom.2010.12.002. PubMed PMID: 21238945; PubMed Central PMCID: 

PMC3433060. 

30. Berger KL, Kelly SM, Jordan TX, Tartell MA, Randall G. Hepatitis C virus stimulates 

the phosphatidylinositol 4-kinase III alpha-dependent phosphatidylinositol 4-phosphate 

production that is essential for its replication. Journal of virology. 2011;85(17):8870-83. doi: 

10.1128/JVI.00059-11. PubMed PMID: 21697487; PubMed Central PMCID: PMC3165839. 

31. Tai AW, Salloum S. The role of the phosphatidylinositol 4-kinase PI4KA in hepatitis C 

virus-induced host membrane rearrangement. PloS one. 2011;6(10):e26300. doi: 

10.1371/journal.pone.0026300. PubMed PMID: 22022594; PubMed Central PMCID: 

PMC3192179. 

32. Burckstummer T, Kriegs M, Lupberger J, Pauli EK, Schmittel S, Hildt E. Raf-1 kinase 

associates with Hepatitis C virus NS5A and regulates viral replication. FEBS letters. 

2006;580(2):575-80. doi: 10.1016/j.febslet.2005.12.071. PubMed PMID: 16405965. 

33. Vogt DA, Camus G, Herker E, Webster BR, Tsou CL, Greene WC, et al. Lipid droplet-

binding protein TIP47 regulates hepatitis C Virus RNA replication through interaction with 

the viral NS5A protein. PLoS pathogens. 2013;9(4):e1003302. doi: 

10.1371/journal.ppat.1003302. PubMed PMID: 23593007; PubMed Central PMCID: 

PMC3623766. 

34. Evans MJ, Rice CM, Goff SP. Phosphorylation of hepatitis C virus nonstructural 

protein 5A modulates its protein interactions and viral RNA replication. Proceedings of the 

National Academy of Sciences of the United States of America. 2004;101(35):13038-43. doi: 

10.1073/pnas.0405152101. PubMed PMID: 15326295; PubMed Central PMCID: 

PMC516513. 



 

iv 

35. Liu Z, Yang F, Robotham JM, Tang H. Critical role of cyclophilin A and its prolyl-

peptidyl isomerase activity in the structure and function of the hepatitis C virus replication 

complex. Journal of virology. 2009;83(13):6554-65. doi: 10.1128/JVI.02550-08. PubMed 

PMID: 19386705; PubMed Central PMCID: PMC2698523. 

36. Kim CS, Seol SK, Song OK, Park JH, Jang SK. An RNA-binding protein, hnRNP A1, 

and a scaffold protein, septin 6, facilitate hepatitis C virus replication. Journal of virology. 

2007;81(8):3852-65. doi: 10.1128/JVI.01311-06. PubMed PMID: 17229681; PubMed Central 

PMCID: PMC1866118. 

37. Poenisch M, Metz P, Blankenburg H, Ruggieri A, Lee JY, Rupp D, et al. Identification 

of HNRNPK as regulator of hepatitis C virus particle production. PLoS pathogens. 

2015;11(1):e1004573. doi: 10.1371/journal.ppat.1004573. PubMed PMID: 25569684; 

PubMed Central PMCID: PMC4287573. 

38. Salloum S, Wang H, Ferguson C, Parton RG, Tai AW. Rab18 binds to hepatitis C virus 

NS5A and promotes interaction between sites of viral replication and lipid droplets. PLoS 

pathogens. 2013;9(8):e1003513. doi: 10.1371/journal.ppat.1003513. PubMed PMID: 

23935497; PubMed Central PMCID: PMC3731246. 

39. Suzuki R, Sakamoto S, Tsutsumi T, Rikimaru A, Tanaka K, Shimoike T, et al. 

Molecular determinants for subcellular localization of hepatitis C virus core protein. Journal of 

virology. 2005;79(2):1271-81. doi: 10.1128/JVI.79.2.1271-1281.2005. PubMed PMID: 

15613354; PubMed Central PMCID: PMC538550. 

40. Cerutti A, Maillard P, Minisini R, Vidalain PO, Roohvand F, Pecheur EI, et al. 

Identification of a functional, CRM-1-dependent nuclear export signal in hepatitis C virus core 

protein. PloS one. 2011;6(10):e25854. doi: 10.1371/journal.pone.0025854. PubMed PMID: 

22039426; PubMed Central PMCID: PMC3200325. 

41. Neufeldt CJ, Joyce MA, Levin A, Steenbergen RH, Pang D, Shields J, et al. Hepatitis 

C virus-induced cytoplasmic organelles use the nuclear transport machinery to establish an 

environment conducive to virus replication. PLoS pathogens. 2013;9(10):e1003744. doi: 

10.1371/journal.ppat.1003744. PubMed PMID: 24204278; PubMed Central PMCID: 

PMC3814334. 

42. Levin A, Neufeldt CJ, Pang D, Wilson K, Loewen-Dobler D, Joyce MA, et al. 

Functional characterization of nuclear localization and export signals in hepatitis C virus 

proteins and their role in the membranous web. PloS one. 2014;9(12):e114629. doi: 

10.1371/journal.pone.0114629. PubMed PMID: 25485706; PubMed Central PMCID: 

PMC4259358. 

43. Allen TD, Cronshaw JM, Bagley S, Kiseleva E, Goldberg MW. The nuclear pore 

complex: mediator of translocation between nucleus and cytoplasm. Journal of cell science. 

2000;113 ( Pt 10):1651-9. PubMed PMID: 10769196. 

44. Cook A, Bono F, Jinek M, Conti E. Structural biology of nucleocytoplasmic transport. 

Annu Rev Biochem. 2007;76:647-71. doi: 10.1146/annurev.biochem.76.052705.161529. 

PubMed PMID: 17506639. 

45. Pumroy RA, Cingolani G. Diversification of importin-alpha isoforms in cellular 

trafficking and disease states. The Biochemical journal. 2015;466(1):13-28. doi: 

10.1042/BJ20141186. PubMed PMID: 25656054. 

46. Cingolani G, Bednenko J, Gillespie MT, Gerace L. Molecular basis for the recognition 

of a nonclassical nuclear localization signal by importin beta. Molecular cell. 

2002;10(6):1345-53. PubMed PMID: 12504010. 



 

v 

47. Palmeri D, Malim MH. Importin beta can mediate the nuclear import of an arginine-

rich nuclear localization signal in the absence of importin alpha. Molecular and cellular 

biology. 1999;19(2):1218-25. PubMed PMID: 9891056; PubMed Central PMCID: 

PMC116051. 

48. Lee BJ, Cansizoglu AE, Suel KE, Louis TH, Zhang Z, Chook YM. Rules for nuclear 

localization sequence recognition by karyopherin beta 2. Cell. 2006;126(3):543-58. doi: 

10.1016/j.cell.2006.05.049. PubMed PMID: 16901787; PubMed Central PMCID: 

PMC3442361. 

49. Rebane A, Aab A, Steitz JA. Transportins 1 and 2 are redundant nuclear import factors 

for hnRNP A1 and HuR. Rna. 2004;10(4):590-9. PubMed PMID: 15037768; PubMed Central 

PMCID: PMC1370549. 

50. Shamsher MK, Ploski J, Radu A. Karyopherin beta 2B participates in mRNA export 

from the nucleus. Proceedings of the National Academy of Sciences of the United States of 

America. 2002;99(22):14195-9. doi: 10.1073/pnas.212518199. PubMed PMID: 12384575; 

PubMed Central PMCID: PMC137860. 

51. Lai MC, Lin RI, Tarn WY. Transportin-SR2 mediates nuclear import of 

phosphorylated SR proteins. Proceedings of the National Academy of Sciences of the United 

States of America. 2001;98(18):10154-9. doi: 10.1073/pnas.181354098. PubMed PMID: 

11517331; PubMed Central PMCID: PMC56931. 

52. Christ F, Thys W, De Rijck J, Gijsbers R, Albanese A, Arosio D, et al. Transportin-

SR2 imports HIV into the nucleus. Current biology : CB. 2008;18(16):1192-202. doi: 

10.1016/j.cub.2008.07.079. PubMed PMID: 18722123. 

53. Levin A, Hayouka Z, Friedler A, Loyter A. Transportin 3 and importin alpha are 

required for effective nuclear import of HIV-1 integrase in virus-infected cells. Nucleus. 

2010;1(5):422-31. doi: 10.4161/nucl.1.5.12903. PubMed PMID: 21326825; PubMed Central 

PMCID: PMC3037538. 

54. Wang J, Sarkar TR, Zhou M, Sharan S, Ritt DA, Veenstra TD, et al. CCAAT/enhancer 

binding protein delta (C/EBPdelta, CEBPD)-mediated nuclear import of FANCD2 by IPO4 

augments cellular response to DNA damage. Proceedings of the National Academy of 

Sciences of the United States of America. 2010;107(37):16131-6. doi: 

10.1073/pnas.1002603107. PubMed PMID: 20805509; PubMed Central PMCID: 

PMC2941265. 

55. Dhanoya A, Wang T, Keshavarz-Moore E, Fassati A, Chain BM. Importin-7 mediates 

nuclear trafficking of DNA in mammalian cells. Traffic. 2013;14(2):165-75. doi: 

10.1111/tra.12021. PubMed PMID: 23067392; PubMed Central PMCID: PMC3672689. 

56. Zaitseva L, Cherepanov P, Leyens L, Wilson SJ, Rasaiyaah J, Fassati A. HIV-1 

exploits importin 7 to maximize nuclear import of its DNA genome. Retrovirology. 2009;6:11. 

doi: 10.1186/1742-4690-6-11. PubMed PMID: 19193229; PubMed Central PMCID: 

PMC2660290. 

57. Jakel S, Albig W, Kutay U, Bischoff FR, Schwamborn K, Doenecke D, et al. The 

importin beta/importin 7 heterodimer is a functional nuclear import receptor for histone H1. 

The EMBO journal. 1999;18(9):2411-23. doi: 10.1093/emboj/18.9.2411. PubMed PMID: 

10228156; PubMed Central PMCID: PMC1171324. 

58. Dean KA, von Ahsen O, Gorlich D, Fried HM. Signal recognition particle protein 19 is 

imported into the nucleus by importin 8 (RanBP8) and transportin. Journal of cell science. 

2001;114(Pt 19):3479-85. PubMed PMID: 11682607. 



 

vi 

59. Weinmann L, Hock J, Ivacevic T, Ohrt T, Mutze J, Schwille P, et al. Importin 8 is a 

gene silencing factor that targets argonaute proteins to distinct mRNAs. Cell. 

2009;136(3):496-507. doi: 10.1016/j.cell.2008.12.023. PubMed PMID: 19167051. 

60. Wei Y, Li L, Wang D, Zhang CY, Zen K. Importin 8 regulates the transport of mature 

microRNAs into the cell nucleus. The Journal of biological chemistry. 2014;289(15):10270-5. 

doi: 10.1074/jbc.C113.541417. PubMed PMID: 24596094; PubMed Central PMCID: 

PMC4036152. 

61. Quan Y, Ji ZL, Wang X, Tartakoff AM, Tao T. Evolutionary and transcriptional 

analysis of karyopherin beta superfamily proteins. Molecular & cellular proteomics : MCP. 

2008;7(7):1254-69. doi: 10.1074/mcp.M700511-MCP200. PubMed PMID: 18353765; 

PubMed Central PMCID: PMC3837465. 

62. Mingot JM, Kostka S, Kraft R, Hartmann E, Gorlich D. Importin 13: a novel mediator 

of nuclear import and export. The EMBO journal. 2001;20(14):3685-94. doi: 

10.1093/emboj/20.14.3685. PubMed PMID: 11447110; PubMed Central PMCID: 

PMC125545. 

63. Grunwald M, Lazzaretti D, Bono F. Structural basis for the nuclear export activity of 

Importin13. The EMBO journal. 2013;32(6):899-913. doi: 10.1038/emboj.2013.29. PubMed 

PMID: 23435562; PubMed Central PMCID: PMC3604722. 

64. Grunwald M, Bono F. Structure of Importin13-Ubc9 complex: nuclear import and 

release of a key regulator of sumoylation. The EMBO journal. 2011;30(2):427-38. doi: 

10.1038/emboj.2010.320. PubMed PMID: 21139563; PubMed Central PMCID: 

PMC3025465. 

65. Jakel S, Gorlich D. Importin beta, transportin, RanBP5 and RanBP7 mediate nuclear 

import of ribosomal proteins in mammalian cells. The EMBO journal. 1998;17(15):4491-502. 

doi: 10.1093/emboj/17.15.4491. PubMed PMID: 9687515; PubMed Central PMCID: 

PMC1170780. 

66. Chou CW, Tai LR, Kirby R, Lee IF, Lin A. Importin beta3 mediates the nuclear import 

of human ribosomal protein L7 through its interaction with the multifaceted basic clusters of 

L7. FEBS letters. 2010;584(19):4151-6. doi: 10.1016/j.febslet.2010.08.044. PubMed PMID: 

20828572. 

67. Plafker SM, Macara IG. Ribosomal protein L12 uses a distinct nuclear import pathway 

mediated by importin 11. Molecular and cellular biology. 2002;22(4):1266-75. PubMed 

PMID: 11809816; PubMed Central PMCID: PMC134630. 

68. Kose S, Imamoto N, Tachibana T, Yoshida M, Yoneda Y. beta-subunit of nuclear 

pore-targeting complex (importin-beta) can be exported from the nucleus in a Ran-

independent manner. The Journal of biological chemistry. 1999;274(7):3946-52. PubMed 

PMID: 9933584. 

69. Kudo N, Wolff B, Sekimoto T, Schreiner EP, Yoneda Y, Yanagida M, et al. 

Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1. Exp 

Cell Res. 1998;242(2):540-7. doi: 10.1006/excr.1998.4136. PubMed PMID: 9683540. 

70. Lindsay ME, Holaska JM, Welch K, Paschal BM, Macara IG. Ran-binding protein 3 is 

a cofactor for Crm1-mediated nuclear protein export. The Journal of cell biology. 

2001;153(7):1391-402. PubMed PMID: 11425870; PubMed Central PMCID: PMC2150735. 

71. Englmeier L, Fornerod M, Bischoff FR, Petosa C, Mattaj IW, Kutay U. RanBP3 

influences interactions between CRM1 and its nuclear protein export substrates. EMBO 



 

vii 

reports. 2001;2(10):926-32. doi: 10.1093/embo-reports/kve200. PubMed PMID: 11571268; 

PubMed Central PMCID: PMC1084078. 

72. Nemergut ME, Lindsay ME, Brownawell AM, Macara IG. Ran-binding protein 3 links 

Crm1 to the Ran guanine nucleotide exchange factor. The Journal of biological chemistry. 

2002;277(20):17385-8. doi: 10.1074/jbc.C100620200. PubMed PMID: 11932251. 

73. Stuven T, Hartmann E, Gorlich D. Exportin 6: a novel nuclear export receptor that is 

specific for profilin.actin complexes. The EMBO journal. 2003;22(21):5928-40. doi: 

10.1093/emboj/cdg565. PubMed PMID: 14592989; PubMed Central PMCID: PMC275422. 

74. Park SH, Park TJ, Lim IK. Reduction of exportin 6 activity leads to actin accumulation 

via failure of RanGTP restoration and NTF2 sequestration in the nuclei of senescent cells. Exp 

Cell Res. 2011;317(7):941-54. doi: 10.1016/j.yexcr.2010.12.023. PubMed PMID: 21195711. 

75. Mingot JM, Bohnsack MT, Jakle U, Gorlich D. Exportin 7 defines a novel general 

nuclear export pathway. The EMBO journal. 2004;23(16):3227-36. doi: 

10.1038/sj.emboj.7600338. PubMed PMID: 15282546; PubMed Central PMCID: 

PMC514512. 

76. Kutay U, Lipowsky G, Izaurralde E, Bischoff FR, Schwarzmaier P, Hartmann E, et al. 

Identification of a tRNA-specific nuclear export receptor. Molecular cell. 1998;1(3):359-69. 

PubMed PMID: 9660920. 

77. Kuersten S, Arts GJ, Walther TC, Englmeier L, Mattaj IW. Steady-state nuclear 

localization of exportin-t involves RanGTP binding and two distinct nuclear pore complex 

interaction domains. Molecular and cellular biology. 2002;22(16):5708-20. PubMed PMID: 

12138183; PubMed Central PMCID: PMC133969. 

78. Lipowsky G, Bischoff FR, Schwarzmaier P, Kraft R, Kostka S, Hartmann E, et al. 

Exportin 4: a mediator of a novel nuclear export pathway in higher eukaryotes. The EMBO 

journal. 2000;19(16):4362-71. doi: 10.1093/emboj/19.16.4362. PubMed PMID: 10944119; 

PubMed Central PMCID: PMC302028. 

79. Kurisaki A, Kurisaki K, Kowanetz M, Sugino H, Yoneda Y, Heldin CH, et al. The 

mechanism of nuclear export of Smad3 involves exportin 4 and Ran. Molecular and cellular 

biology. 2006;26(4):1318-32. doi: 10.1128/MCB.26.4.1318-1332.2006. PubMed PMID: 

16449645; PubMed Central PMCID: PMC1367208. 

80. Gontan C, Guttler T, Engelen E, Demmers J, Fornerod M, Grosveld FG, et al. Exportin 

4 mediates a novel nuclear import pathway for Sox family transcription factors. The Journal of 

cell biology. 2009;185(1):27-34. doi: 10.1083/jcb.200810106. PubMed PMID: 19349578; 

PubMed Central PMCID: PMC2700522. 

81. Brownawell AM, Macara IG. Exportin-5, a novel karyopherin, mediates nuclear export 

of double-stranded RNA binding proteins. The Journal of cell biology. 2002;156(1):53-64. 

doi: 10.1083/jcb.200110082. PubMed PMID: 11777942; PubMed Central PMCID: 

PMC2173575. 

82. Gwizdek C, Ossareh-Nazari B, Brownawell AM, Evers S, Macara IG, Dargemont C. 

Minihelix-containing RNAs mediate exportin-5-dependent nuclear export of the double-

stranded RNA-binding protein ILF3. The Journal of biological chemistry. 2004;279(2):884-

91. doi: 10.1074/jbc.M306808200. PubMed PMID: 14570900. 

83. Bohnsack MT, Regener K, Schwappach B, Saffrich R, Paraskeva E, Hartmann E, et al. 

Exp5 exports eEF1A via tRNA from nuclei and synergizes with other transport pathways to 

confine translation to the cytoplasm. The EMBO journal. 2002;21(22):6205-15. PubMed 

PMID: 12426392; PubMed Central PMCID: PMC137205. 



 

viii 

84. Wild T, Horvath P, Wyler E, Widmann B, Badertscher L, Zemp I, et al. A protein 

inventory of human ribosome biogenesis reveals an essential function of exportin 5 in 60S 

subunit export. PLoS Biol. 2010;8(10):e1000522. doi: 10.1371/journal.pbio.1000522. PubMed 

PMID: 21048991; PubMed Central PMCID: PMC2964341. 

85. Bennasser Y, Chable-Bessia C, Triboulet R, Gibbings D, Gwizdek C, Dargemont C, et 

al. Competition for XPO5 binding between Dicer mRNA, pre-miRNA and viral RNA 

regulates human Dicer levels. Nature structural & molecular biology. 2011;18(3):323-7. doi: 

10.1038/nsmb.1987. PubMed PMID: 21297638; PubMed Central PMCID: PMC3595992. 

86. O'Reilly AJ, Dacks JB, Field MC. Evolution of the karyopherin-beta family of 

nucleocytoplasmic transport factors; ancient origins and continued specialization. PloS one. 

2011;6(4):e19308. doi: 10.1371/journal.pone.0019308. PubMed PMID: 21556326; PubMed 

Central PMCID: PMC3083441. 

87. Chook YM, Suel KE. Nuclear import by karyopherin-betas: recognition and inhibition. 

Biochimica et biophysica acta. 2011;1813(9):1593-606. doi: 10.1016/j.bbamcr.2010.10.014. 

PubMed PMID: 21029754; PubMed Central PMCID: PMC3135726. 

88. Takai Y, Sasaki T, Matozaki T. Small GTP-binding proteins. Physiol Rev. 

2001;81(1):153-208. PubMed PMID: 11152757. 

89. Wennerberg K, Rossman KL, Der CJ. The Ras superfamily at a glance. Journal of cell 

science. 2005;118(Pt 5):843-6. doi: 10.1242/jcs.01660. PubMed PMID: 15731001. 

90. Weis K. Regulating access to the genome: nucleocytoplasmic transport throughout the 

cell cycle. Cell. 2003;112(4):441-51. PubMed PMID: 12600309. 

91. Bischoff FR, Gorlich D. RanBP1 is crucial for the release of RanGTP from importin 

beta-related nuclear transport factors. FEBS letters. 1997;419(2-3):249-54. PubMed PMID: 

9428644. 

92. Matunis MJ, Wu J, Blobel G. SUMO-1 modification and its role in targeting the Ran 

GTPase-activating protein, RanGAP1, to the nuclear pore complex. The Journal of cell 

biology. 1998;140(3):499-509. PubMed PMID: 9456312; PubMed Central PMCID: 

PMC2140169. 

93. Plafker K, Macara IG. Facilitated nucleocytoplasmic shuttling of the Ran binding 

protein RanBP1. Molecular and cellular biology. 2000;20(10):3510-21. PubMed PMID: 

10779340; PubMed Central PMCID: PMC85643. 

94. Kang Y, Bogerd HP, Yang J, Cullen BR. Analysis of the RNA binding specificity of 

the human tap protein, a constitutive transport element-specific nuclear RNA export factor. 

Virology. 1999;262(1):200-9. doi: 10.1006/viro.1999.9906. PubMed PMID: 10489353. 

95. Levesque L, Bor YC, Matzat LH, Jin L, Berberoglu S, Rekosh D, et al. Mutations in 

tap uncouple RNA export activity from translocation through the nuclear pore complex. 

Molecular biology of the cell. 2006;17(2):931-43. doi: 10.1091/mbc.E04-07-0634. PubMed 

PMID: 16314397; PubMed Central PMCID: PMC1356601. 

96. Matzat LH, Berberoglu S, Levesque L. Formation of a Tap/NXF1 homotypic complex 

is mediated through the amino-terminal domain of Tap and enhances interaction with 

nucleoporins. Molecular biology of the cell. 2008;19(1):327-38. doi: 10.1091/mbc.E07-03-

0255. PubMed PMID: 17978099; PubMed Central PMCID: PMC2174195. 

97. Levesque L, Guzik B, Guan T, Coyle J, Black BE, Rekosh D, et al. RNA export 

mediated by tap involves NXT1-dependent interactions with the nuclear pore complex. The 

Journal of biological chemistry. 2001;276(48):44953-62. doi: 10.1074/jbc.M106558200. 

PubMed PMID: 11579093. 



 

ix 

98. Jin L, Guzik BW, Bor YC, Rekosh D, Hammarskjold ML. Tap and NXT promote 

translation of unspliced mRNA. Genes & development. 2003;17(24):3075-86. doi: 

10.1101/gad.1155703. PubMed PMID: 14701875; PubMed Central PMCID: PMC305259. 

99. Herold A, Suyama M, Rodrigues JP, Braun IC, Kutay U, Carmo-Fonseca M, et al. 

TAP (NXF1) belongs to a multigene family of putative RNA export factors with a conserved 

modular architecture. Molecular and cellular biology. 2000;20(23):8996-9008. PubMed 

PMID: 11073998; PubMed Central PMCID: PMC86553. 

100. Carmody SR, Wente SR. mRNA nuclear export at a glance. Journal of cell science. 

2009;122(Pt 12):1933-7. doi: 10.1242/jcs.041236. PubMed PMID: 19494120; PubMed 

Central PMCID: PMC2723150. 

101. Viphakone N, Hautbergue GM, Walsh M, Chang CT, Holland A, Folco EG, et al. 

TREX exposes the RNA-binding domain of Nxf1 to enable mRNA export. Nat Commun. 

2012;3:1006. doi: 10.1038/ncomms2005. PubMed PMID: 22893130; PubMed Central 

PMCID: PMC3654228. 

102. Takano K, Miki T, Katahira J, Yoneda Y. NXF2 is involved in cytoplasmic mRNA 

dynamics through interactions with motor proteins. Nucleic acids research. 2007;35(8):2513-

21. doi: 10.1093/nar/gkm125. PubMed PMID: 17403691; PubMed Central PMCID: 

PMC1885657. 

103. Kerkow DE, Carmel AB, Menichelli E, Ambrus G, Hills RD, Jr., Gerace L, et al. The 

structure of the NXF2/NXT1 heterodimeric complex reveals the combined specificity and 

versatility of the NTF2-like fold. Journal of molecular biology. 2012;415(4):649-65. doi: 

10.1016/j.jmb.2011.11.027. PubMed PMID: 22123199; PubMed Central PMCID: 

PMC3265607. 

104. Yang J, Bogerd HP, Wang PJ, Page DC, Cullen BR. Two closely related human 

nuclear export factors utilize entirely distinct export pathways. Molecular cell. 2001;8(2):397-

406. PubMed PMID: 11545741. 

105. Black BE, Holaska JM, Levesque L, Ossareh-Nazari B, Gwizdek C, Dargemont C, et 

al. NXT1 is necessary for the terminal step of Crm1-mediated nuclear export. The Journal of 

cell biology. 2001;152(1):141-55. PubMed PMID: 11149927; PubMed Central PMCID: 

PMC2193657. 

106. Alcazar-Roman AR, Tran EJ, Guo S, Wente SR. Inositol hexakisphosphate and Gle1 

activate the DEAD-box protein Dbp5 for nuclear mRNA export. Nature cell biology. 

2006;8(7):711-6. doi: 10.1038/ncb1427. PubMed PMID: 16783363. 

107. Weirich CS, Erzberger JP, Flick JS, Berger JM, Thorner J, Weis K. Activation of the 

DExD/H-box protein Dbp5 by the nuclear-pore protein Gle1 and its coactivator InsP6 is 

required for mRNA export. Nature cell biology. 2006;8(7):668-76. doi: 10.1038/ncb1424. 

PubMed PMID: 16783364. 

108. von Moeller H, Basquin C, Conti E. The mRNA export protein DBP5 binds RNA and 

the cytoplasmic nucleoporin NUP214 in a mutually exclusive manner. Nature structural & 

molecular biology. 2009;16(3):247-54. doi: 10.1038/nsmb.1561. PubMed PMID: 19219046. 

109. Rayala HJ, Kendirgi F, Barry DM, Majerus PW, Wente SR. The mRNA export factor 

human Gle1 interacts with the nuclear pore complex protein Nup155. Molecular & cellular 

proteomics : MCP. 2004;3(2):145-55. doi: 10.1074/mcp.M300106-MCP200. PubMed PMID: 

14645504. 

110. Kendirgi F, Rexer DJ, Alcazar-Roman AR, Onishko HM, Wente SR. Interaction 

between the shuttling mRNA export factor Gle1 and the nucleoporin hCG1: a conserved 



 

x 

mechanism in the export of Hsp70 mRNA. Molecular biology of the cell. 2005;16(9):4304-15. 

doi: 10.1091/mbc.E04-11-0998. PubMed PMID: 16000379; PubMed Central PMCID: 

PMC1196339. 

111. Hoelz A, Debler EW, Blobel G. The structure of the nuclear pore complex. Annu Rev 

Biochem. 2011;80:613-43. doi: 10.1146/annurev-biochem-060109-151030. PubMed PMID: 

21495847. 

112. Grossman E, Medalia O, Zwerger M. Functional architecture of the nuclear pore 

complex. Annu Rev Biophys. 2012;41:557-84. doi: 10.1146/annurev-biophys-050511-102328. 

PubMed PMID: 22577827. 

113. Cautain B, Hill R, de Pedro N, Link W. Components and regulation of nuclear 

transport processes. The FEBS journal. 2015;282(3):445-62. doi: 10.1111/febs.13163. 

PubMed PMID: 25429850. 

114. Waldmann I, Spillner C, Kehlenbach RH. The nucleoporin-like protein NLP1 (hCG1) 

promotes CRM1-dependent nuclear protein export. Journal of cell science. 2012;125(Pt 

1):144-54. doi: 10.1242/jcs.090316. PubMed PMID: 22250199. 

115. Farjot G, Sergeant A, Mikaelian I. A new nucleoporin-like protein interacts with both 

HIV-1 Rev nuclear export signal and CRM-1. The Journal of biological chemistry. 

1999;274(24):17309-17. PubMed PMID: 10358091. 

116. Walde S, Thakar K, Hutten S, Spillner C, Nath A, Rothbauer U, et al. The nucleoporin 

Nup358/RanBP2 promotes nuclear import in a cargo- and transport receptor-specific manner. 

Traffic. 2012;13(2):218-33. doi: 10.1111/j.1600-0854.2011.01302.x. PubMed PMID: 

21995724. 

117. Hutten S, Walde S, Spillner C, Hauber J, Kehlenbach RH. The nuclear pore component 

Nup358 promotes transportin-dependent nuclear import. Journal of cell science. 2009;122(Pt 

8):1100-10. doi: 10.1242/jcs.040154. PubMed PMID: 19299463. 

118. Hamada M, Haeger A, Jeganathan KB, van Ree JH, Malureanu L, Walde S, et al. Ran-

dependent docking of importin-beta to RanBP2/Nup358 filaments is essential for protein 

import and cell viability. The Journal of cell biology. 2011;194(4):597-612. doi: 

10.1083/jcb.201102018. PubMed PMID: 21859863; PubMed Central PMCID: PMC3160583. 

119. Delphin C, Guan T, Melchior F, Gerace L. RanGTP targets p97 to RanBP2, a 

filamentous protein localized at the cytoplasmic periphery of the nuclear pore complex. 

Molecular biology of the cell. 1997;8(12):2379-90. PubMed PMID: 9398662; PubMed Central 

PMCID: PMC25714. 

120. Singh BB, Patel HH, Roepman R, Schick D, Ferreira PA. The zinc finger cluster 

domain of RanBP2 is a specific docking site for the nuclear export factor, exportin-1. The 

Journal of biological chemistry. 1999;274(52):37370-8. PubMed PMID: 10601307. 

121. Mahadevan K, Zhang H, Akef A, Cui XA, Gueroussov S, Cenik C, et al. 

RanBP2/Nup358 potentiates the translation of a subset of mRNAs encoding secretory 

proteins. PLoS Biol. 2013;11(4):e1001545. doi: 10.1371/journal.pbio.1001545. PubMed 

PMID: 23630457; PubMed Central PMCID: PMC3635865. 

122. Ferreira PA, Yunfei C, Schick D, Roepman R. The cyclophilin-like domain mediates 

the association of Ran-binding protein 2 with subunits of the 19 S regulatory complex of the 

proteasome. The Journal of biological chemistry. 1998;273(38):24676-82. PubMed PMID: 

9733766. 

123. Yi H, Friedman JL, Ferreira PA. The cyclophilin-like domain of Ran-binding protein-2 

modulates selectively the activity of the ubiquitin-proteasome system and protein biogenesis. 



 

xi 

The Journal of biological chemistry. 2007;282(48):34770-8. doi: 10.1074/jbc.M706903200. 

PubMed PMID: 17911097. 

124. Bernad R, van der Velde H, Fornerod M, Pickersgill H. Nup358/RanBP2 attaches to 

the nuclear pore complex via association with Nup88 and Nup214/CAN and plays a 

supporting role in CRM1-mediated nuclear protein export. Molecular and cellular biology. 

2004;24(6):2373-84. PubMed PMID: 14993277; PubMed Central PMCID: PMC355853. 

125. Walther TC, Pickersgill HS, Cordes VC, Goldberg MW, Allen TD, Mattaj IW, et al. 

The cytoplasmic filaments of the nuclear pore complex are dispensable for selective nuclear 

protein import. The Journal of cell biology. 2002;158(1):63-77. doi: 10.1083/jcb.200202088. 

PubMed PMID: 12105182; PubMed Central PMCID: PMC2173022. 

126. Boer J, Bonten-Surtel J, Grosveld G. Overexpression of the nucleoporin CAN/NUP214 

induces growth arrest, nucleocytoplasmic transport defects, and apoptosis. Molecular and 

cellular biology. 1998;18(3):1236-47. PubMed PMID: 9488438; PubMed Central PMCID: 

PMC108836. 

127. Roloff S, Spillner C, Kehlenbach RH. Several phenylalanine-glycine motives in the 

nucleoporin Nup214 are essential for binding of the nuclear export receptor CRM1. The 

Journal of biological chemistry. 2013;288(6):3952-63. doi: 10.1074/jbc.M112.433243. 

PubMed PMID: 23264634; PubMed Central PMCID: PMC3567648. 

128. Hutten S, Kehlenbach RH. Nup214 is required for CRM1-dependent nuclear protein 

export in vivo. Molecular and cellular biology. 2006;26(18):6772-85. doi: 

10.1128/MCB.00342-06. PubMed PMID: 16943420; PubMed Central PMCID: PMC1592874. 

129. Bernad R, Engelsma D, Sanderson H, Pickersgill H, Fornerod M. Nup214-Nup88 

nucleoporin subcomplex is required for CRM1-mediated 60 S preribosomal nuclear export. 

The Journal of biological chemistry. 2006;281(28):19378-86. doi: 10.1074/jbc.M512585200. 

PubMed PMID: 16675447. 

130. Stavru F, Nautrup-Pedersen G, Cordes VC, Gorlich D. Nuclear pore complex assembly 

and maintenance in POM121- and gp210-deficient cells. The Journal of cell biology. 

2006;173(4):477-83. doi: 10.1083/jcb.200601002. PubMed PMID: 16702234; PubMed 

Central PMCID: PMC2063858. 

131. Hallberg E, Wozniak RW, Blobel G. An integral membrane protein of the pore 

membrane domain of the nuclear envelope contains a nucleoporin-like region. The Journal of 

cell biology. 1993;122(3):513-21. PubMed PMID: 8335683; PubMed Central PMCID: 

PMC2119659. 

132. Mansfeld J, Guttinger S, Hawryluk-Gara LA, Pante N, Mall M, Galy V, et al. The 

conserved transmembrane nucleoporin NDC1 is required for nuclear pore complex assembly 

in vertebrate cells. Molecular cell. 2006;22(1):93-103. doi: 10.1016/j.molcel.2006.02.015. 

PubMed PMID: 16600873. 

133. Eisenhardt N, Redolfi J, Antonin W. Interaction of Nup53 with Ndc1 and Nup155 is 

required for nuclear pore complex assembly. Journal of cell science. 2014;127(Pt 4):908-21. 

doi: 10.1242/jcs.141739. PubMed PMID: 24363447. 

134. Yamazumi Y, Kamiya A, Nishida A, Nishihara A, Iemura S, Natsume T, et al. The 

transmembrane nucleoporin NDC1 is required for targeting of ALADIN to nuclear pore 

complexes. Biochemical and biophysical research communications. 2009;389(1):100-4. doi: 

10.1016/j.bbrc.2009.08.096. PubMed PMID: 19703420. 

135. Kind B, Koehler K, Lorenz M, Huebner A. The nuclear pore complex protein 

ALADIN is anchored via NDC1 but not via POM121 and GP210 in the nuclear envelope. 



 

xii 

Biochemical and biophysical research communications. 2009;390(2):205-10. doi: 

10.1016/j.bbrc.2009.09.080. PubMed PMID: 19782045. 

136. Antonin W, Franz C, Haselmann U, Antony C, Mattaj IW. The integral membrane 

nucleoporin pom121 functionally links nuclear pore complex assembly and nuclear envelope 

formation. Molecular cell. 2005;17(1):83-92. doi: 10.1016/j.molcel.2004.12.010. PubMed 

PMID: 15629719. 

137. Bodoor K, Shaikh S, Enarson P, Chowdhury S, Salina D, Raharjo WH, et al. Function 

and assembly of nuclear pore complex proteins. Biochemistry and cell biology = Biochimie et 

biologie cellulaire. 1999;77(4):321-9. PubMed PMID: 10546895. 

138. Funakoshi T, Maeshima K, Yahata K, Sugano S, Imamoto F, Imamoto N. Two distinct 

human POM121 genes: requirement for the formation of nuclear pore complexes. FEBS 

letters. 2007;581(25):4910-6. doi: 10.1016/j.febslet.2007.09.021. PubMed PMID: 17900573. 

139. Mitchell JM, Mansfeld J, Capitanio J, Kutay U, Wozniak RW. Pom121 links two 

essential subcomplexes of the nuclear pore complex core to the membrane. The Journal of cell 

biology. 2010;191(3):505-21. doi: 10.1083/jcb.201007098. PubMed PMID: 20974814; 

PubMed Central PMCID: PMC3003318. 

140. Yavuz S, Santarella-Mellwig R, Koch B, Jaedicke A, Mattaj IW, Antonin W. NLS-

mediated NPC functions of the nucleoporin Pom121. FEBS letters. 2010;584(15):3292-8. doi: 

10.1016/j.febslet.2010.07.008. PubMed PMID: 20624389. 

141. Harel A, Orjalo AV, Vincent T, Lachish-Zalait A, Vasu S, Shah S, et al. Removal of a 

single pore subcomplex results in vertebrate nuclei devoid of nuclear pores. Molecular cell. 

2003;11(4):853-64. PubMed PMID: 12718872. 

142. Bui KH, von Appen A, DiGuilio AL, Ori A, Sparks L, Mackmull MT, et al. Integrated 

structural analysis of the human nuclear pore complex scaffold. Cell. 2013;155(6):1233-43. 

doi: 10.1016/j.cell.2013.10.055. PubMed PMID: 24315095. 

143. Boehmer T, Enninga J, Dales S, Blobel G, Zhong H. Depletion of a single nucleoporin, 

Nup107, prevents the assembly of a subset of nucleoporins into the nuclear pore complex. 

Proceedings of the National Academy of Sciences of the United States of America. 

2003;100(3):981-5. doi: 10.1073/pnas.252749899. PubMed PMID: 12552102; PubMed 

Central PMCID: PMC298712. 

144. Boehmer T, Jeudy S, Berke IC, Schwartz TU. Structural and functional studies of 

Nup107/Nup133 interaction and its implications for the architecture of the nuclear pore 

complex. Molecular cell. 2008;30(6):721-31. doi: 10.1016/j.molcel.2008.04.022. PubMed 

PMID: 18570875; PubMed Central PMCID: PMC2446439. 

145. Lussi YC, Hugi I, Laurell E, Kutay U, Fahrenkrog B. The nucleoporin Nup88 is 

interacting with nuclear lamin A. Molecular biology of the cell. 2011;22(7):1080-90. doi: 

10.1091/mbc.E10-05-0463. PubMed PMID: 21289091; PubMed Central PMCID: 

PMC3069011. 

146. Grandi P, Dang T, Pane N, Shevchenko A, Mann M, Forbes D, et al. Nup93, a 

vertebrate homologue of yeast Nic96p, forms a complex with a novel 205-kDa protein and is 

required for correct nuclear pore assembly. Molecular biology of the cell. 1997;8(10):2017-38. 

PubMed PMID: 9348540; PubMed Central PMCID: PMC25664. 

147. Sachdev R, Sieverding C, Flotenmeyer M, Antonin W. The C-terminal domain of 

Nup93 is essential for assembly of the structural backbone of nuclear pore complexes. 

Molecular biology of the cell. 2012;23(4):740-9. doi: 10.1091/mbc.E11-09-0761. PubMed 

PMID: 22171326; PubMed Central PMCID: PMC3279400. 



 

xiii 

148. Hawryluk-Gara LA, Shibuya EK, Wozniak RW. Vertebrate Nup53 interacts with the 

nuclear lamina and is required for the assembly of a Nup93-containing complex. Molecular 

biology of the cell. 2005;16(5):2382-94. doi: 10.1091/mbc.E04-10-0857. PubMed PMID: 

15703211; PubMed Central PMCID: PMC1087243. 

149. Hawryluk-Gara LA, Platani M, Santarella R, Wozniak RW, Mattaj IW. Nup53 is 

required for nuclear envelope and nuclear pore complex assembly. Molecular biology of the 

cell. 2008;19(4):1753-62. doi: 10.1091/mbc.E07-08-0820. PubMed PMID: 18256286; 

PubMed Central PMCID: PMC2291426. 

150. Theerthagiri G, Eisenhardt N, Schwarz H, Antonin W. The nucleoporin Nup188 

controls passage of membrane proteins across the nuclear pore complex. The Journal of cell 

biology. 2010;189(7):1129-42. doi: 10.1083/jcb.200912045. PubMed PMID: 20566687; 

PubMed Central PMCID: PMC2894445. 

151. Andersen KR, Onischenko E, Tang JH, Kumar P, Chen JZ, Ulrich A, et al. Scaffold 

nucleoporins Nup188 and Nup192 share structural and functional properties with nuclear 

transport receptors. eLife. 2013;2:e00745. doi: 10.7554/eLife.00745. PubMed PMID: 

23795296; PubMed Central PMCID: PMC3679522. 

152. Griffis ER, Xu S, Powers MA. Nup98 localizes to both nuclear and cytoplasmic sides 

of the nuclear pore and binds to two distinct nucleoporin subcomplexes. Molecular biology of 

the cell. 2003;14(2):600-10. doi: 10.1091/mbc.E02-09-0582. PubMed PMID: 12589057; 

PubMed Central PMCID: PMC149995. 

153. Griffis ER, Altan N, Lippincott-Schwartz J, Powers MA. Nup98 is a mobile 

nucleoporin with transcription-dependent dynamics. Molecular biology of the cell. 

2002;13(4):1282-97. doi: 10.1091/mbc.01-11-0538. PubMed PMID: 11950939; PubMed 

Central PMCID: PMC102269. 

154. Pritchard CE, Fornerod M, Kasper LH, van Deursen JM. RAE1 is a shuttling mRNA 

export factor that binds to a GLEBS-like NUP98 motif at the nuclear pore complex through 

multiple domains. The Journal of cell biology. 1999;145(2):237-54. PubMed PMID: 

10209021; PubMed Central PMCID: PMC2133102. 

155. Ren Y, Seo HS, Blobel G, Hoelz A. Structural and functional analysis of the 

interaction between the nucleoporin Nup98 and the mRNA export factor Rae1. Proceedings of 

the National Academy of Sciences of the United States of America. 2010;107(23):10406-11. 

doi: 10.1073/pnas.1005389107. PubMed PMID: 20498086; PubMed Central PMCID: 

PMC2890840. 

156. Fontoura BM, Blobel G, Yaseen NR. The nucleoporin Nup98 is a site for GDP/GTP 

exchange on ran and termination of karyopherin beta 2-mediated nuclear import. The Journal 

of biological chemistry. 2000;275(40):31289-96. doi: 10.1074/jbc.M004651200. PubMed 

PMID: 10875935. 

157. Oka M, Asally M, Yasuda Y, Ogawa Y, Tachibana T, Yoneda Y. The mobile FG 

nucleoporin Nup98 is a cofactor for Crm1-dependent protein export. Molecular biology of the 

cell. 2010;21(11):1885-96. doi: 10.1091/mbc.E09-12-1041. PubMed PMID: 20375145; 

PubMed Central PMCID: PMC2877646. 

158. Melcak I, Hoelz A, Blobel G. Structure of Nup58/45 suggests flexible nuclear pore 

diameter by intermolecular sliding. Science. 2007;315(5819):1729-32. doi: 

10.1126/science.1135730. PubMed PMID: 17379812. 

159. Solmaz SR, Blobel G, Melcak I. Ring cycle for dilating and constricting the nuclear 

pore. Proceedings of the National Academy of Sciences of the United States of America. 



 

xiv 

2013;110(15):5858-63. doi: 10.1073/pnas.1302655110. PubMed PMID: 23479651; PubMed 

Central PMCID: PMC3625290. 

160. Hu T, Guan T, Gerace L. Molecular and functional characterization of the p62 

complex, an assembly of nuclear pore complex glycoproteins. The Journal of cell biology. 

1996;134(3):589-601. PubMed PMID: 8707840; PubMed Central PMCID: PMC2120945. 

161. Paschal BM, Gerace L. Identification of NTF2, a cytosolic factor for nuclear import 

that interacts with nuclear pore complex protein p62. The Journal of cell biology. 

1995;129(4):925-37. PubMed PMID: 7744965; PubMed Central PMCID: PMC2120498. 

162. Ribbeck K, Lipowsky G, Kent HM, Stewart M, Gorlich D. NTF2 mediates nuclear 

import of Ran. The EMBO journal. 1998;17(22):6587-98. doi: 10.1093/emboj/17.22.6587. 

PubMed PMID: 9822603; PubMed Central PMCID: PMC1171005. 

163. Bayliss R, Ribbeck K, Akin D, Kent HM, Feldherr CM, Gorlich D, et al. Interaction 

between NTF2 and xFxFG-containing nucleoporins is required to mediate nuclear import of 

RanGDP. Journal of molecular biology. 1999;293(3):579-93. doi: 10.1006/jmbi.1999.3166. 

PubMed PMID: 10543952. 

164. Guan T, Kehlenbach RH, Schirmer EC, Kehlenbach A, Fan F, Clurman BE, et al. 

Nup50, a nucleoplasmically oriented nucleoporin with a role in nuclear protein export. 

Molecular and cellular biology. 2000;20(15):5619-30. PubMed PMID: 10891499; PubMed 

Central PMCID: PMC86026. 

165. Ogawa Y, Miyamoto Y, Asally M, Oka M, Yasuda Y, Yoneda Y. Two isoforms of 

Npap60 (Nup50) differentially regulate nuclear protein import. Molecular biology of the cell. 

2010;21(4):630-8. doi: 10.1091/mbc.E09-05-0374. PubMed PMID: 20016008; PubMed 

Central PMCID: PMC2820426. 

166. Matsuura Y, Stewart M. Nup50/Npap60 function in nuclear protein import complex 

disassembly and importin recycling. The EMBO journal. 2005;24(21):3681-9. doi: 

10.1038/sj.emboj.7600843. PubMed PMID: 16222336; PubMed Central PMCID: 

PMC1276725. 

167. Pumroy RA, Nardozzi JD, Hart DJ, Root MJ, Cingolani G. Nucleoporin Nup50 

stabilizes closed conformation of armadillo repeat 10 in importin alpha5. The Journal of 

biological chemistry. 2012;287(3):2022-31. doi: 10.1074/jbc.M111.315838. PubMed PMID: 

22130666; PubMed Central PMCID: PMC3265882. 

168. Makise M, Mackay DR, Elgort S, Shankaran SS, Adam SA, Ullman KS. The Nup153-

Nup50 protein interface and its role in nuclear import. The Journal of biological chemistry. 

2012;287(46):38515-22. doi: 10.1074/jbc.M112.378893. PubMed PMID: 23007389; PubMed 

Central PMCID: PMC3493896. 

169. Moroianu J, Blobel G, Radu A. RanGTP-mediated nuclear export of karyopherin alpha 

involves its interaction with the nucleoporin Nup153. Proceedings of the National Academy of 

Sciences of the United States of America. 1997;94(18):9699-704. PubMed PMID: 9275187; 

PubMed Central PMCID: PMC23253. 

170. Ullman KS, Shah S, Powers MA, Forbes DJ. The nucleoporin nup153 plays a critical 

role in multiple types of nuclear export. Molecular biology of the cell. 1999;10(3):649-64. 

PubMed PMID: 10069809; PubMed Central PMCID: PMC25193. 

171. Nakielny S, Shaikh S, Burke B, Dreyfuss G. Nup153 is an M9-containing mobile 

nucleoporin with a novel Ran-binding domain. The EMBO journal. 1999;18(7):1982-95. doi: 

10.1093/emboj/18.7.1982. PubMed PMID: 10202161; PubMed Central PMCID: 

PMC1171283. 



 

xv 

172. Ogawa Y, Miyamoto Y, Oka M, Yoneda Y. The interaction between importin-alpha 

and Nup153 promotes importin-alpha/beta-mediated nuclear import. Traffic. 2012;13(7):934-

46. doi: 10.1111/j.1600-0854.2012.01367.x. PubMed PMID: 22510057. 

173. Hase ME, Cordes VC. Direct interaction with nup153 mediates binding of Tpr to the 

periphery of the nuclear pore complex. Molecular biology of the cell. 2003;14(5):1923-40. 

doi: 10.1091/mbc.E02-09-0620. PubMed PMID: 12802065; PubMed Central PMCID: 

PMC165087. 

174. Krull S, Thyberg J, Bjorkroth B, Rackwitz HR, Cordes VC. Nucleoporins as 

components of the nuclear pore complex core structure and Tpr as the architectural element of 

the nuclear basket. Molecular biology of the cell. 2004;15(9):4261-77. doi: 10.1091/mbc.E04-

03-0165. PubMed PMID: 15229283; PubMed Central PMCID: PMC515357. 

175. Coyle JH, Bor YC, Rekosh D, Hammarskjold ML. The Tpr protein regulates export of 

mRNAs with retained introns that traffic through the Nxf1 pathway. Rna. 2011;17(7):1344-56. 

doi: 10.1261/rna.2616111. PubMed PMID: 21613532; PubMed Central PMCID: 

PMC3138570. 

176. Rajanala K, Nandicoori VK. Localization of nucleoporin Tpr to the nuclear pore 

complex is essential for Tpr mediated regulation of the export of unspliced RNA. PloS one. 

2012;7(1):e29921. doi: 10.1371/journal.pone.0029921. PubMed PMID: 22253824; PubMed 

Central PMCID: PMC3258255. 

177. Frosst P, Guan T, Subauste C, Hahn K, Gerace L. Tpr is localized within the nuclear 

basket of the pore complex and has a role in nuclear protein export. The Journal of cell 

biology. 2002;156(4):617-30. doi: 10.1083/jcb.200106046. PubMed PMID: 11839768; 

PubMed Central PMCID: PMC2174070. 

178. Henaff D, Radtke K, Lippe R. Herpesviruses exploit several host compartments for 

envelopment. Traffic. 2012;13(11):1443-9. doi: 10.1111/j.1600-0854.2012.01399.x. PubMed 

PMID: 22805610. 

179. Boehmer PE, Nimonkar AV. Herpes virus replication. IUBMB Life. 2003;55(1):13-22. 

doi: 10.1080/1521654031000070645. PubMed PMID: 12716057. 

180. Pasdeloup D, Blondel D, Isidro AL, Rixon FJ. Herpesvirus capsid association with the 

nuclear pore complex and viral DNA release involve the nucleoporin CAN/Nup214 and the 

capsid protein pUL25. Journal of virology. 2009;83(13):6610-23. doi: 10.1128/JVI.02655-08. 

PubMed PMID: 19386703; PubMed Central PMCID: PMC2698519. 

181. Koffa MD, Clements JB, Izaurralde E, Wadd S, Wilson SA, Mattaj IW, et al. Herpes 

simplex virus ICP27 protein provides viral mRNAs with access to the cellular mRNA export 

pathway. The EMBO journal. 2001;20(20):5769-78. doi: 10.1093/emboj/20.20.5769. PubMed 

PMID: 11598019; PubMed Central PMCID: PMC125682. 

182. Chen IH, Sciabica KS, Sandri-Goldin RM. ICP27 interacts with the RNA export factor 

Aly/REF to direct herpes simplex virus type 1 intronless mRNAs to the TAP export pathway. 

Journal of virology. 2002;76(24):12877-89. PubMed PMID: 12438613; PubMed Central 

PMCID: PMC136725. 

183. Chen IH, Li L, Silva L, Sandri-Goldin RM. ICP27 recruits Aly/REF but not 

TAP/NXF1 to herpes simplex virus type 1 transcription sites although TAP/NXF1 is required 

for ICP27 export. Journal of virology. 2005;79(7):3949-61. doi: 10.1128/JVI.79.7.3949-

3961.2005. PubMed PMID: 15767397; PubMed Central PMCID: PMC1061567. 

184. Tian X, Devi-Rao G, Golovanov AP, Sandri-Goldin RM. The interaction of the cellular 

export adaptor protein Aly/REF with ICP27 contributes to the efficiency of herpes simplex 



 

xvi 

virus 1 mRNA export. Journal of virology. 2013;87(13):7210-7. doi: 10.1128/JVI.00738-13. 

PubMed PMID: 23637401; PubMed Central PMCID: PMC3700301. 

185. Soliman TM, Silverstein SJ. Herpesvirus mRNAs are sorted for export via Crm1-

dependent and -independent pathways. Journal of virology. 2000;74(6):2814-25. PubMed 

PMID: 10684298; PubMed Central PMCID: PMC111772. 

186. Malik P, Tabarraei A, Kehlenbach RH, Korfali N, Iwasawa R, Graham SV, et al. 

Herpes simplex virus ICP27 protein directly interacts with the nuclear pore complex through 

Nup62, inhibiting host nucleocytoplasmic transport pathways. The Journal of biological 

chemistry. 2012;287(15):12277-92. doi: 10.1074/jbc.M111.331777. PubMed PMID: 

22334672; PubMed Central PMCID: PMC3320978. 

187. Ote I, Lebrun M, Vandevenne P, Bontems S, Medina-Palazon C, Manet E, et al. 

Varicella-zoster virus IE4 protein interacts with SR proteins and exports mRNAs through the 

TAP/NXF1 pathway. PloS one. 2009;4(11):e7882. doi: 10.1371/journal.pone.0007882. 

PubMed PMID: 19924249; PubMed Central PMCID: PMC2775670. 

188. Cai M, Wang S, Xing J, Zheng C. Characterization of the nuclear import and export 

signals, and subcellular transport mechanism of varicella-zoster virus ORF9. The Journal of 

general virology. 2011;92(Pt 3):621-6. doi: 10.1099/vir.0.027029-0. PubMed PMID: 

21106804. 

189. Chang CW, Lee CP, Su MT, Tsai CH, Chen MR. BGLF4 kinase modulates the 

structure and transport preference of the nuclear pore complex to facilitate nuclear import of 

Epstein-Barr virus lytic proteins. Journal of virology. 2015;89(3):1703-18. doi: 

10.1128/JVI.02880-14. PubMed PMID: 25410863; PubMed Central PMCID: PMC4300756. 

190. Boyle SM, Ruvolo V, Gupta AK, Swaminathan S. Association with the cellular export 

receptor CRM 1 mediates function and intracellular localization of Epstein-Barr virus SM 

protein, a regulator of gene expression. Journal of virology. 1999;73(8):6872-81. PubMed 

PMID: 10400785; PubMed Central PMCID: PMC112772. 

191. Lischka P, Sorg G, Kann M, Winkler M, Stamminger T. A nonconventional nuclear 

localization signal within the UL84 protein of human cytomegalovirus mediates nuclear 

import via the importin alpha/beta pathway. Journal of virology. 2003;77(6):3734-48. PubMed 

PMID: 12610148; PubMed Central PMCID: PMC149505. 

192. Wang L, Li M, Cai M, Xing J, Wang S, Zheng C. A PY-nuclear localization signal is 

required for nuclear accumulation of HCMV UL79 protein. Medical microbiology and 

immunology. 2012;201(3):381-7. doi: 10.1007/s00430-012-0243-4. PubMed PMID: 

22628116. 

193. Doorbar J, Quint W, Banks L, Bravo IG, Stoler M, Broker TR, et al. The biology and 

life-cycle of human papillomaviruses. Vaccine. 2012;30 Suppl 5:F55-70. doi: 

10.1016/j.vaccine.2012.06.083. PubMed PMID: 23199966. 

194. Doorbar J. Molecular biology of human papillomavirus infection and cervical cancer. 

Clin Sci (Lond). 2006;110(5):525-41. doi: 10.1042/CS20050369. PubMed PMID: 16597322. 

195. Bordeaux J, Forte S, Harding E, Darshan MS, Klucevsek K, Moroianu J. The l2 minor 

capsid protein of low-risk human papillomavirus type 11 interacts with host nuclear import 

receptors and viral DNA. Journal of virology. 2006;80(16):8259-62. doi: 10.1128/JVI.00776-

06. PubMed PMID: 16873281; PubMed Central PMCID: PMC1563822. 

196. Darshan MS, Lucchi J, Harding E, Moroianu J. The l2 minor capsid protein of human 

papillomavirus type 16 interacts with a network of nuclear import receptors. Journal of 



 

xvii 

virology. 2004;78(22):12179-88. doi: 10.1128/JVI.78.22.12179-12188.2004. PubMed PMID: 

15507604; PubMed Central PMCID: PMC525100. 

197. Bian XL, Wilson VG. Common importin alpha specificity for papillomavirus E2 

proteins. Virus research. 2010;150(1-2):135-7. doi: 10.1016/j.virusres.2010.02.011. PubMed 

PMID: 20193720; PubMed Central PMCID: PMC2859985. 

198. Le Roux LG, Moroianu J. Nuclear entry of high-risk human papillomavirus type 16 E6 

oncoprotein occurs via several pathways. Journal of virology. 2003;77(4):2330-7. PubMed 

PMID: 12551970; PubMed Central PMCID: PMC141087. 

199. Onder Z, Moroianu J. Nuclear import of cutaneous beta genus HPV8 E7 oncoprotein is 

mediated by hydrophobic interactions between its zinc-binding domain and FG nucleoporins. 

Virology. 2014;449:150-62. doi: 10.1016/j.virol.2013.11.020. PubMed PMID: 24418548; 

PubMed Central PMCID: PMC3894589. 

200. McKee CH, Onder Z, Ashok A, Cardoso R, Moroianu J. Characterization of the 

transport signals that mediate the nucleocytoplasmic traffic of low risk HPV11 E7. Virology. 

2013;443(1):113-22. doi: 10.1016/j.virol.2013.04.031. PubMed PMID: 23725695; PubMed 

Central PMCID: PMC3758764. 

201. Eberhard J, Onder Z, Moroianu J. Nuclear import of high risk HPV16 E7 oncoprotein 

is mediated by its zinc-binding domain via hydrophobic interactions with Nup62. Virology. 

2013;446(1-2):334-45. doi: 10.1016/j.virol.2013.08.017. PubMed PMID: 24074597; PubMed 

Central PMCID: PMC3789256. 

202. Summers J, Mason WS. Replication of the genome of a hepatitis B--like virus by 

reverse transcription of an RNA intermediate. Cell. 1982;29(2):403-15. PubMed PMID: 

6180831. 

203. Li HC, Huang EY, Su PY, Wu SY, Yang CC, Lin YS, et al. Nuclear export and import 

of human hepatitis B virus capsid protein and particles. PLoS pathogens. 

2010;6(10):e1001162. doi: 10.1371/journal.ppat.1001162. PubMed PMID: 21060813; 

PubMed Central PMCID: PMC2965763. 

204. Forgues M, Marrogi AJ, Spillare EA, Wu CG, Yang Q, Yoshida M, et al. Interaction of 

the hepatitis B virus X protein with the Crm1-dependent nuclear export pathway. The Journal 

of biological chemistry. 2001;276(25):22797-803. doi: 10.1074/jbc.M101259200. PubMed 

PMID: 11287420. 

205. Schmitz A, Schwarz A, Foss M, Zhou L, Rabe B, Hoellenriegel J, et al. Nucleoporin 

153 arrests the nuclear import of hepatitis B virus capsids in the nuclear basket. PLoS 

pathogens. 2010;6(1):e1000741. doi: 10.1371/journal.ppat.1000741. PubMed PMID: 

20126445; PubMed Central PMCID: PMC2813275. 

206. Deng T, Engelhardt OG, Thomas B, Akoulitchev AV, Brownlee GG, Fodor E. Role of 

ran binding protein 5 in nuclear import and assembly of the influenza virus RNA polymerase 

complex. Journal of virology. 2006;80(24):11911-9. doi: 10.1128/JVI.01565-06. PubMed 

PMID: 17005651; PubMed Central PMCID: PMC1676300. 

207. Hutchinson EC, Orr OE, Man Liu S, Engelhardt OG, Fodor E. Characterization of the 

interaction between the influenza A virus polymerase subunit PB1 and the host nuclear import 

factor Ran-binding protein 5. The Journal of general virology. 2011;92(Pt 8):1859-69. doi: 

10.1099/vir.0.032813-0. PubMed PMID: 21562121. 

208. Tafforeau L, Chantier T, Pradezynski F, Pellet J, Mangeot PE, Vidalain PO, et al. 

Generation and comprehensive analysis of an influenza virus polymerase cellular interaction 



 

xviii 

network. Journal of virology. 2011;85(24):13010-8. doi: 10.1128/JVI.02651-10. PubMed 

PMID: 21994455; PubMed Central PMCID: PMC3233135. 

209. Tarendeau F, Boudet J, Guilligay D, Mas PJ, Bougault CM, Boulo S, et al. Structure 

and nuclear import function of the C-terminal domain of influenza virus polymerase PB2 

subunit. Nature structural & molecular biology. 2007;14(3):229-33. doi: 10.1038/nsmb1212. 

PubMed PMID: 17310249. 

210. Gabriel G, Herwig A, Klenk HD. Interaction of polymerase subunit PB2 and NP with 

importin alpha1 is a determinant of host range of influenza A virus. PLoS pathogens. 

2008;4(2):e11. doi: 10.1371/journal.ppat.0040011. PubMed PMID: 18248089; PubMed 

Central PMCID: PMC2222953. 

211. Sasaki Y, Hagiwara K, Kakisaka M, Yamada K, Murakami T, Aida Y. Importin 

alpha3/Qip1 is involved in multiplication of mutant influenza virus with alanine mutation at 

amino acid 9 independently of nuclear transport function. PloS one. 2013;8(1):e55765. doi: 

10.1371/journal.pone.0055765. PubMed PMID: 23383277; PubMed Central PMCID: 

PMC3559588. 

212. Satterly N, Tsai PL, van Deursen J, Nussenzveig DR, Wang Y, Faria PA, et al. 

Influenza virus targets the mRNA export machinery and the nuclear pore complex. 

Proceedings of the National Academy of Sciences of the United States of America. 

2007;104(6):1853-8. doi: 10.1073/pnas.0610977104. PubMed PMID: 17267598; PubMed 

Central PMCID: PMC1794296. 

213. Elton D, Simpson-Holley M, Archer K, Medcalf L, Hallam R, McCauley J, et al. 

Interaction of the influenza virus nucleoprotein with the cellular CRM1-mediated nuclear 

export pathway. Journal of virology. 2001;75(1):408-19. doi: 10.1128/JVI.75.1.408-419.2001. 

PubMed PMID: 11119609; PubMed Central PMCID: PMC113933. 

214. Neumann G, Hughes MT, Kawaoka Y. Influenza A virus NS2 protein mediates vRNP 

nuclear export through NES-independent interaction with hCRM1. The EMBO journal. 

2000;19(24):6751-8. doi: 10.1093/emboj/19.24.6751. PubMed PMID: 11118210; PubMed 

Central PMCID: PMC305902. 

215. Chase GP, Rameix-Welti MA, Zvirbliene A, Zvirblis G, Gotz V, Wolff T, et al. 

Influenza virus ribonucleoprotein complexes gain preferential access to cellular export 

machinery through chromatin targeting. PLoS pathogens. 2011;7(9):e1002187. doi: 

10.1371/journal.ppat.1002187. PubMed PMID: 21909257; PubMed Central PMCID: 

PMC3164630. 

216. Yu M, Liu X, Cao S, Zhao Z, Zhang K, Xie Q, et al. Identification and characterization 

of three novel nuclear export signals in the influenza A virus nucleoprotein. Journal of 

virology. 2012;86(9):4970-80. doi: 10.1128/JVI.06159-11. PubMed PMID: 22345439; 

PubMed Central PMCID: PMC3347336. 

217. Read EK, Digard P. Individual influenza A virus mRNAs show differential 

dependence on cellular NXF1/TAP for their nuclear export. The Journal of general virology. 

2010;91(Pt 5):1290-301. doi: 10.1099/vir.0.018564-0. PubMed PMID: 20071484; PubMed 

Central PMCID: PMC3052562. 

218. Predicala R, Zhou Y. The role of Ran-binding protein 3 during influenza A virus 

replication. The Journal of general virology. 2013;94(Pt 5):977-84. doi: 10.1099/vir.0.049395-

0. PubMed PMID: 23303829. 



 

xix 

219. Matreyek KA, Engelman A. Viral and cellular requirements for the nuclear entry of 

retroviral preintegration nucleoprotein complexes. Viruses. 2013;5(10):2483-511. doi: 

10.3390/v5102483. PubMed PMID: 24103892; PubMed Central PMCID: PMC3814599. 

220. Gallay P, Hope T, Chin D, Trono D. HIV-1 infection of nondividing cells through the 

recognition of integrase by the importin/karyopherin pathway. Proceedings of the National 

Academy of Sciences of the United States of America. 1997;94(18):9825-30. PubMed PMID: 

9275210; PubMed Central PMCID: PMC23276. 

221. Ao Z, Danappa Jayappa K, Wang B, Zheng Y, Kung S, Rassart E, et al. Importin 

alpha3 interacts with HIV-1 integrase and contributes to HIV-1 nuclear import and replication. 

Journal of virology. 2010;84(17):8650-63. doi: 10.1128/JVI.00508-10. PubMed PMID: 

20554775; PubMed Central PMCID: PMC2919037. 

222. Zhang R, Mehla R, Chauhan A. Perturbation of host nuclear membrane component 

RanBP2 impairs the nuclear import of human immunodeficiency virus -1 preintegration 

complex (DNA). PloS one. 2010;5(12):e15620. doi: 10.1371/journal.pone.0015620. PubMed 

PMID: 21179483; PubMed Central PMCID: PMC3001881. 

223. Popov S, Rexach M, Ratner L, Blobel G, Bukrinsky M. Viral protein R regulates 

docking of the HIV-1 preintegration complex to the nuclear pore complex. The Journal of 

biological chemistry. 1998;273(21):13347-52. PubMed PMID: 9582382. 

224. Le Rouzic E, Mousnier A, Rustum C, Stutz F, Hallberg E, Dargemont C, et al. 

Docking of HIV-1 Vpr to the nuclear envelope is mediated by the interaction with the 

nucleoporin hCG1. The Journal of biological chemistry. 2002;277(47):45091-8. doi: 

10.1074/jbc.M207439200. PubMed PMID: 12228227. 

225. Ebina H, Aoki J, Hatta S, Yoshida T, Koyanagi Y. Role of Nup98 in nuclear entry of 

human immunodeficiency virus type 1 cDNA. Microbes and infection / Institut Pasteur. 

2004;6(8):715-24. doi: 10.1016/j.micinf.2004.04.002. PubMed PMID: 15207818. 

226. Askjaer P, Jensen TH, Nilsson J, Englmeier L, Kjems J. The specificity of the CRM1-

Rev nuclear export signal interaction is mediated by RanGTP. The Journal of biological 

chemistry. 1998;273(50):33414-22. PubMed PMID: 9837918. 

227. Zolotukhin AS, Felber BK. Nucleoporins nup98 and nup214 participate in nuclear 

export of human immunodeficiency virus type 1 Rev. Journal of virology. 1999;73(1):120-7. 

PubMed PMID: 9847314; PubMed Central PMCID: PMC103815. 

228. Taniguchi I, Mabuchi N, Ohno M. HIV-1 Rev protein specifies the viral RNA export 

pathway by suppressing TAP/NXF1 recruitment. Nucleic acids research. 2014;42(10):6645-

58. doi: 10.1093/nar/gku304. PubMed PMID: 24753416; PubMed Central PMCID: 

PMC4041468. 

229. Sivan G, Martin SE, Myers TG, Buehler E, Szymczyk KH, Ormanoglu P, et al. Human 

genome-wide RNAi screen reveals a role for nuclear pore proteins in poxvirus morphogenesis. 

Proceedings of the National Academy of Sciences of the United States of America. 

2013;110(9):3519-24. doi: 10.1073/pnas.1300708110. PubMed PMID: 23401514; PubMed 

Central PMCID: PMC3587217. 

230. Porter FW, Palmenberg AC. Leader-induced phosphorylation of nucleoporins 

correlates with nuclear trafficking inhibition by cardioviruses. Journal of virology. 

2009;83(4):1941-51. doi: 10.1128/JVI.01752-08. PubMed PMID: 19073724; PubMed Central 

PMCID: PMC2643766. 

231. Bardina MV, Lidsky PV, Sheval EV, Fominykh KV, van Kuppeveld FJ, Polyakov VY, 

et al. Mengovirus-induced rearrangement of the nuclear pore complex: hijacking cellular 



 

xx 

phosphorylation machinery. Journal of virology. 2009;83(7):3150-61. doi: 

10.1128/JVI.01456-08. PubMed PMID: 19144712; PubMed Central PMCID: PMC2655543. 

232. Park N, Skern T, Gustin KE. Specific cleavage of the nuclear pore complex protein 

Nup62 by a viral protease. The Journal of biological chemistry. 2010;285(37):28796-805. doi: 

10.1074/jbc.M110.143404. PubMed PMID: 20622012; PubMed Central PMCID: 

PMC2937907. 

233. Park N, Katikaneni P, Skern T, Gustin KE. Differential targeting of nuclear pore 

complex proteins in poliovirus-infected cells. Journal of virology. 2008;82(4):1647-55. doi: 

10.1128/JVI.01670-07. PubMed PMID: 18045934; PubMed Central PMCID: PMC2258732. 

234. Castello A, Izquierdo JM, Welnowska E, Carrasco L. RNA nuclear export is blocked 

by poliovirus 2A protease and is concomitant with nucleoporin cleavage. Journal of cell 

science. 2009;122(Pt 20):3799-809. doi: 10.1242/jcs.055988. PubMed PMID: 19789179. 

235. Johansson M, Brooks AJ, Jans DA, Vasudevan SG. A small region of the dengue 

virus-encoded RNA-dependent RNA polymerase, NS5, confers interaction with both the 

nuclear transport receptor importin-beta and the viral helicase, NS3. The Journal of general 

virology. 2001;82(Pt 4):735-45. PubMed PMID: 11257177. 

236. Rawlinson SM, Pryor MJ, Wright PJ, Jans DA. CRM1-mediated nuclear export of 

dengue virus RNA polymerase NS5 modulates interleukin-8 induction and virus production. 

The Journal of biological chemistry. 2009;284(23):15589-97. doi: 10.1074/jbc.M808271200. 

PubMed PMID: 19297323; PubMed Central PMCID: PMC2708855. 

237. Zhang LK, Chai F, Li HY, Xiao G, Guo L. Identification of host proteins involved in 

Japanese encephalitis virus infection by quantitative proteomics analysis. Journal of proteome 

research. 2013;12(6):2666-78. doi: 10.1021/pr400011k. PubMed PMID: 23647205. 

238. Ghildyal R, Ho A, Wagstaff KM, Dias MM, Barton CL, Jans P, et al. Nuclear import 

of the respiratory syncytial virus matrix protein is mediated by importin beta1 independent of 

importin alpha. Biochemistry. 2005;44(38):12887-95. doi: 10.1021/bi050701e. PubMed 

PMID: 16171404. 

239. Ghildyal R, Ho A, Dias M, Soegiyono L, Bardin PG, Tran KC, et al. The respiratory 

syncytial virus matrix protein possesses a Crm1-mediated nuclear export mechanism. Journal 

of virology. 2009;83(11):5353-62. doi: 10.1128/JVI.02374-08. PubMed PMID: 19297465; 

PubMed Central PMCID: PMC2681974. 

240. von Kobbe C, van Deursen JM, Rodrigues JP, Sitterlin D, Bachi A, Wu X, et al. 

Vesicular stomatitis virus matrix protein inhibits host cell gene expression by targeting the 

nucleoporin Nup98. Molecular cell. 2000;6(5):1243-52. PubMed PMID: 11106761. 

241. Rajani KR, Pettit Kneller EL, McKenzie MO, Horita DA, Chou JW, Lyles DS. 

Complexes of vesicular stomatitis virus matrix protein with host Rae1 and Nup98 involved in 

inhibition of host transcription. PLoS pathogens. 2012;8(9):e1002929. doi: 

10.1371/journal.ppat.1002929. PubMed PMID: 23028327; PubMed Central PMCID: 

PMC3460625. 

242. Faria PA, Chakraborty P, Levay A, Barber GN, Ezelle HJ, Enninga J, et al. VSV 

disrupts the Rae1/mrnp41 mRNA nuclear export pathway. Molecular cell. 2005;17(1):93-102. 

doi: 10.1016/j.molcel.2004.11.023. PubMed PMID: 15629720. 

243. Her LS, Lund E, Dahlberg JE. Inhibition of Ran guanosine triphosphatase-dependent 

nuclear transport by the matrix protein of vesicular stomatitis virus. Science. 

1997;276(5320):1845-8. PubMed PMID: 9188527. 



 

xxi 

244. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 

2010;140(6):805-20. doi: 10.1016/j.cell.2010.01.022. PubMed PMID: 20303872. 

245. Takeuchi O, Akira S. Innate immunity to virus infection. Immunol Rev. 

2009;227(1):75-86. doi: 10.1111/j.1600-065X.2008.00737.x. PubMed PMID: 19120477. 

246. Chow J, Franz KM, Kagan JC. PRRs are watching you: Localization of innate sensing 

and signaling regulators. Virology. 2015. doi: 10.1016/j.virol.2015.02.051. PubMed PMID: 

25800355. 

247. Seth RB, Sun L, Chen ZJ. Antiviral innate immunity pathways. Cell research. 

2006;16(2):141-7. doi: 10.1038/sj.cr.7310019. PubMed PMID: 16474426. 

248. Cai X, Chiu YH, Chen ZJ. The cGAS-cGAMP-STING pathway of cytosolic DNA 

sensing and signaling. Molecular cell. 2014;54(2):289-96. doi: 10.1016/j.molcel.2014.03.040. 

PubMed PMID: 24766893. 

249. Chiang JJ, Davis ME, Gack MU. Regulation of RIG-I-like receptor signaling by host 

and viral proteins. Cytokine & growth factor reviews. 2014;25(5):491-505. doi: 

10.1016/j.cytogfr.2014.06.005. PubMed PMID: 25023063. 

250. Taniguchi T, Ogasawara K, Takaoka A, Tanaka N. IRF family of transcription factors 

as regulators of host defense. Annu Rev Immunol. 2001;19:623-55. doi: 

10.1146/annurev.immunol.19.1.623. PubMed PMID: 11244049. 

251. Taniguchi T, Takaoka A. The interferon-alpha/beta system in antiviral responses: a 

multimodal machinery of gene regulation by the IRF family of transcription factors. Current 

opinion in immunology. 2002;14(1):111-6. PubMed PMID: 11790540. 

252. Honda K, Yanai H, Takaoka A, Taniguchi T. Regulation of the type I IFN induction: a 

current view. Int Immunol. 2005;17(11):1367-78. doi: 10.1093/intimm/dxh318. PubMed 

PMID: 16214811. 

253. Fujita T, Sakakibara J, Sudo Y, Miyamoto M, Kimura Y, Taniguchi T. Evidence for a 

nuclear factor(s), IRF-1, mediating induction and silencing properties to human IFN-beta gene 

regulatory elements. The EMBO journal. 1988;7(11):3397-405. PubMed PMID: 2850164; 

PubMed Central PMCID: PMC454838. 

254. Miyamoto M, Fujita T, Kimura Y, Maruyama M, Harada H, Sudo Y, et al. Regulated 

expression of a gene encoding a nuclear factor, IRF-1, that specifically binds to IFN-beta gene 

regulatory elements. Cell. 1988;54(6):903-13. PubMed PMID: 3409321. 

255. Kirchhoff S, Koromilas AE, Schaper F, Grashoff M, Sonenberg N, Hauser H. IRF-1 

induced cell growth inhibition and interferon induction requires the activity of the protein 

kinase PKR. Oncogene. 1995;11(3):439-45. PubMed PMID: 7543195. 

256. Benech P, Vigneron M, Peretz D, Revel M, Chebath J. Interferon-responsive 

regulatory elements in the promoter of the human 2',5'-oligo(A) synthetase gene. Molecular 

and cellular biology. 1987;7(12):4498-504. PubMed PMID: 2830497; PubMed Central 

PMCID: PMC368134. 

257. Schafer SL, Lin R, Moore PA, Hiscott J, Pitha PM. Regulation of type I interferon 

gene expression by interferon regulatory factor-3. The Journal of biological chemistry. 

1998;273(5):2714-20. PubMed PMID: 9446577. 

258. Harada H, Fujita T, Miyamoto M, Kimura Y, Maruyama M, Furia A, et al. Structurally 

similar but functionally distinct factors, IRF-1 and IRF-2, bind to the same regulatory 

elements of IFN and IFN-inducible genes. Cell. 1989;58(4):729-39. PubMed PMID: 2475256. 

259. Tanaka N, Kawakami T, Taniguchi T. Recognition DNA sequences of interferon 

regulatory factor 1 (IRF-1) and IRF-2, regulators of cell growth and the interferon system. 



 

xxii 

Molecular and cellular biology. 1993;13(8):4531-8. PubMed PMID: 7687740; PubMed 

Central PMCID: PMC360068. 

260. Weaver BK, Kumar KP, Reich NC. Interferon regulatory factor 3 and CREB-binding 

protein/p300 are subunits of double-stranded RNA-activated transcription factor DRAF1. 

Molecular and cellular biology. 1998;18(3):1359-68. PubMed PMID: 9488451; PubMed 

Central PMCID: PMC108849. 

261. Eisenbeis CF, Singh H, Storb U. Pip, a novel IRF family member, is a lymphoid-

specific, PU.1-dependent transcriptional activator. Genes & development. 1995;9(11):1377-

87. PubMed PMID: 7797077. 

262. Matsuyama T, Grossman A, Mittrucker HW, Siderovski DP, Kiefer F, Kawakami T, et 

al. Molecular cloning of LSIRF, a lymphoid-specific member of the interferon regulatory 

factor family that binds the interferon-stimulated response element (ISRE). Nucleic acids 

research. 1995;23(12):2127-36. PubMed PMID: 7541907; PubMed Central PMCID: 

PMC306999. 

263. Yamagata T, Nishida J, Tanaka S, Sakai R, Mitani K, Yoshida M, et al. A novel 

interferon regulatory factor family transcription factor, ICSAT/Pip/LSIRF, that negatively 

regulates the activity of interferon-regulated genes. Molecular and cellular biology. 

1996;16(4):1283-94. PubMed PMID: 8657101; PubMed Central PMCID: PMC231112. 

264. Takaoka A, Yanai H, Kondo S, Duncan G, Negishi H, Mizutani T, et al. Integral role 

of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature. 

2005;434(7030):243-9. doi: 10.1038/nature03308. PubMed PMID: 15665823. 

265. Barnes B, Lubyova B, Pitha PM. On the role of IRF in host defense. J Interferon 

Cytokine Res. 2002;22(1):59-71. doi: 10.1089/107999002753452665. PubMed PMID: 

11846976. 

266. Ratovitski EA. DeltaNp63alpha/IRF6 interplay activates NOS2 transcription and 

induces autophagy upon tobacco exposure. Arch Biochem Biophys. 2011;506(2):208-15. doi: 

10.1016/j.abb.2010.11.020. PubMed PMID: 21129360. 

267. Driggers PH, Ennist DL, Gleason SL, Mak WH, Marks MS, Levi BZ, et al. An 

interferon gamma-regulated protein that binds the interferon-inducible enhancer element of 

major histocompatibility complex class I genes. Proceedings of the National Academy of 

Sciences of the United States of America. 1990;87(10):3743-7. PubMed PMID: 2111015; 

PubMed Central PMCID: PMC53979. 

268. Nelson N, Kanno Y, Hong C, Contursi C, Fujita T, Fowlkes BJ, et al. Expression of 

IFN regulatory factor family proteins in lymphocytes. Induction of Stat-1 and IFN consensus 

sequence binding protein expression by T cell activation. Journal of immunology. 

1996;156(10):3711-20. PubMed PMID: 8621906. 

269. Bovolenta C, Driggers PH, Marks MS, Medin JA, Politis AD, Vogel SN, et al. 

Molecular interactions between interferon consensus sequence binding protein and members 

of the interferon regulatory factor family. Proceedings of the National Academy of Sciences of 

the United States of America. 1994;91(11):5046-50. PubMed PMID: 8197182; PubMed 

Central PMCID: PMC43928. 

270. Fagerlund R, Melen K, Cao X, Julkunen I. NF-kappaB p52, RelB and c-Rel are 

transported into the nucleus via a subset of importin alpha molecules. Cellular signalling. 

2008;20(8):1442-51. doi: 10.1016/j.cellsig.2008.03.012. PubMed PMID: 18462924. 

271. Mercurio F, Manning AM. Multiple signals converging on NF-kappaB. Curr Opin Cell 

Biol. 1999;11(2):226-32. PubMed PMID: 10209157. 



 

xxiii 

272. Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nature reviews 

Immunology. 2014;14(1):36-49. doi: 10.1038/nri3581. PubMed PMID: 24362405; PubMed 

Central PMCID: PMC4084561. 

273. Levy DE, Darnell JE, Jr. Stats: transcriptional control and biological impact. Nature 

reviews Molecular cell biology. 2002;3(9):651-62. doi: 10.1038/nrm909. PubMed PMID: 

12209125. 

274. Takaoka A, Yanai H. Interferon signalling network in innate defence. Cellular 

microbiology. 2006;8(6):907-22. doi: 10.1111/j.1462-5822.2006.00716.x. PubMed PMID: 

16681834. 

275. Chawla-Sarkar M, Lindner DJ, Liu YF, Williams BR, Sen GC, Silverman RH, et al. 

Apoptosis and interferons: role of interferon-stimulated genes as mediators of apoptosis. 

Apoptosis. 2003;8(3):237-49. PubMed PMID: 12766484. 

276. Yoshimura A, Naka T, Kubo M. SOCS proteins, cytokine signalling and immune 

regulation. Nature reviews Immunology. 2007;7(6):454-65. doi: 10.1038/nri2093. PubMed 

PMID: 17525754. 

277. Khabar KS, Young HA. Post-transcriptional control of the interferon system. 

Biochimie. 2007;89(6-7):761-9. doi: 10.1016/j.biochi.2007.02.008. PubMed PMID: 

17408842; PubMed Central PMCID: PMC1994070. 

278. Curtsinger JM, Valenzuela JO, Agarwal P, Lins D, Mescher MF. Type I IFNs provide 

a third signal to CD8 T cells to stimulate clonal expansion and differentiation. Journal of 

immunology. 2005;174(8):4465-9. PubMed PMID: 15814665. 

279. Kolumam GA, Thomas S, Thompson LJ, Sprent J, Murali-Krishna K. Type I 

interferons act directly on CD8 T cells to allow clonal expansion and memory formation in 

response to viral infection. J Exp Med. 2005;202(5):637-50. doi: 10.1084/jem.20050821. 

PubMed PMID: 16129706; PubMed Central PMCID: PMC2212878. 

280. Thompson LJ, Kolumam GA, Thomas S, Murali-Krishna K. Innate inflammatory 

signals induced by various pathogens differentially dictate the IFN-I dependence of CD8 T 

cells for clonal expansion and memory formation. Journal of immunology. 2006;177(3):1746-

54. PubMed PMID: 16849484. 

281. Jungo F, Dayer JM, Modoux C, Hyka N, Burger D. IFN-beta inhibits the ability of T 

lymphocytes to induce TNF-alpha and IL-1beta production in monocytes upon direct cell-cell 

contact. Cytokine. 2001;14(5):272-82. doi: 10.1006/cyto.2001.0884. PubMed PMID: 

11444907. 

282. Garoufalis E, Kwan I, Lin R, Mustafa A, Pepin N, Roulston A, et al. Viral induction of 

the human beta interferon promoter: modulation of transcription by NF-kappa B/rel proteins 

and interferon regulatory factors. Journal of virology. 1994;68(8):4707-15. PubMed PMID: 

8035474; PubMed Central PMCID: PMC236410. 

283. Du W, Maniatis T. An ATF/CREB binding site is required for virus induction of the 

human interferon beta gene [corrected]. Proceedings of the National Academy of Sciences of 

the United States of America. 1992;89(6):2150-4. PubMed PMID: 1532252; PubMed Central 

PMCID: PMC48614. 

284. Panne D, Maniatis T, Harrison SC. Crystal structure of ATF-2/c-Jun and IRF-3 bound 

to the interferon-beta enhancer. The EMBO journal. 2004;23(22):4384-93. doi: 

10.1038/sj.emboj.7600453. PubMed PMID: 15510218; PubMed Central PMCID: 

PMC526468. 



 

xxiv 

285. Zhang L, Pagano JS. Structure and function of IRF-7. J Interferon Cytokine Res. 

2002;22(1):95-101. doi: 10.1089/107999002753452700. PubMed PMID: 11846980. 

286. Zhang M, Wu X, Lee AJ, Jin W, Chang M, Wright A, et al. Regulation of IkappaB 

kinase-related kinases and antiviral responses by tumor suppressor CYLD. The Journal of 

biological chemistry. 2008;283(27):18621-6. doi: 10.1074/jbc.M801451200. PubMed PMID: 

18467330; PubMed Central PMCID: PMC2441564. 

287. Friedman CS, O'Donnell MA, Legarda-Addison D, Ng A, Cardenas WB, Yount JS, et 

al. The tumour suppressor CYLD is a negative regulator of RIG-I-mediated antiviral response. 

EMBO reports. 2008;9(9):930-6. doi: 10.1038/embor.2008.136. PubMed PMID: 18636086; 

PubMed Central PMCID: PMC2529351. 

288. Zhang M, Wang L, Zhao X, Zhao K, Meng H, Zhao W, et al. TRAF-interacting protein 

(TRIP) negatively regulates IFN-beta production and antiviral response by promoting 

proteasomal degradation of TANK-binding kinase 1. J Exp Med. 2012;209(10):1703-11. doi: 

10.1084/jem.20120024. PubMed PMID: 22945920; PubMed Central PMCID: PMC3457734. 

289. Lin R, Heylbroeck C, Pitha PM, Hiscott J. Virus-dependent phosphorylation of the 

IRF-3 transcription factor regulates nuclear translocation, transactivation potential, and 

proteasome-mediated degradation. Molecular and cellular biology. 1998;18(5):2986-96. 

PubMed PMID: 9566918; PubMed Central PMCID: PMC110678. 

290. O'Dea E, Hoffmann A. The regulatory logic of the NF-kappaB signaling system. Cold 

Spring Harb Perspect Biol. 2010;2(1):a000216. doi: 10.1101/cshperspect.a000216. PubMed 

PMID: 20182598; PubMed Central PMCID: PMC2827908. 

291. Algarte M, Nguyen H, Heylbroeck C, Lin R, Hiscott J. IkappaB-mediated inhibition of 

virus-induced beta interferon transcription. Journal of virology. 1999;73(4):2694-702. 

PubMed PMID: 10074115; PubMed Central PMCID: PMC104025. 

292. Rodriguez MS, Thompson J, Hay RT, Dargemont C. Nuclear retention of 

IkappaBalpha protects it from signal-induced degradation and inhibits nuclear factor kappaB 

transcriptional activation. The Journal of biological chemistry. 1999;274(13):9108-15. 

PubMed PMID: 10085161. 

293. Huang TT, Miyamoto S. Postrepression activation of NF-kappaB requires the amino-

terminal nuclear export signal specific to IkappaBalpha. Molecular and cellular biology. 

2001;21(14):4737-47. doi: 10.1128/MCB.21.14.4737-4747.2001. PubMed PMID: 11416149; 

PubMed Central PMCID: PMC87155. 

294. Arenzana-Seisdedos F, Turpin P, Rodriguez M, Thomas D, Hay RT, Virelizier JL, et 

al. Nuclear localization of I kappa B alpha promotes active transport of NF-kappa B from the 

nucleus to the cytoplasm. Journal of cell science. 1997;110 ( Pt 3):369-78. PubMed PMID: 

9057089. 

295. Odendall C, Kagan JC. The unique regulation and functions of type III interferons in 

antiviral immunity. Curr Opin Virol. 2015;12:47-52. doi: 10.1016/j.coviro.2015.02.003. 

PubMed PMID: 25771505. 

296. Odendall C, Dixit E, Stavru F, Bierne H, Franz KM, Durbin AF, et al. Diverse 

intracellular pathogens activate type III interferon expression from peroxisomes. Nat 

Immunol. 2014;15(8):717-26. doi: 10.1038/ni.2915. PubMed PMID: 24952503; PubMed 

Central PMCID: PMC4106986. 

297. Seth RB, Sun L, Ea CK, Chen ZJ. Identification and characterization of MAVS, a 

mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell. 

2005;122(5):669-82. doi: 10.1016/j.cell.2005.08.012. PubMed PMID: 16125763. 



 

xxv 

298. Onoguchi K, Yoneyama M, Takemura A, Akira S, Taniguchi T, Namiki H, et al. Viral 

infections activate types I and III interferon genes through a common mechanism. The Journal 

of biological chemistry. 2007;282(10):7576-81. doi: 10.1074/jbc.M608618200. PubMed 

PMID: 17204473. 

299. Osterlund P, Veckman V, Siren J, Klucher KM, Hiscott J, Matikainen S, et al. Gene 

expression and antiviral activity of alpha/beta interferons and interleukin-29 in virus-infected 

human myeloid dendritic cells. Journal of virology. 2005;79(15):9608-17. doi: 

10.1128/JVI.79.15.9608-9617.2005. PubMed PMID: 16014923; PubMed Central PMCID: 

PMC1181545. 

300. Dumoutier L, Tounsi A, Michiels T, Sommereyns C, Kotenko SV, Renauld JC. Role of 

the interleukin (IL)-28 receptor tyrosine residues for antiviral and antiproliferative activity of 

IL-29/interferon-lambda 1: similarities with type I interferon signaling. The Journal of 

biological chemistry. 2004;279(31):32269-74. doi: 10.1074/jbc.M404789200. PubMed PMID: 

15166220. 

301. Doyle SE, Schreckhise H, Khuu-Duong K, Henderson K, Rosler R, Storey H, et al. 

Interleukin-29 uses a type 1 interferon-like program to promote antiviral responses in human 

hepatocytes. Hepatology. 2006;44(4):896-906. doi: 10.1002/hep.21312. PubMed PMID: 

17006906. 

302. Olagnier D, Hiscott J. Type I and type III interferon-induced immune response: it's a 

matter of kinetics and magnitude. Hepatology. 2014;59(4):1225-8. doi: 10.1002/hep.26959. 

PubMed PMID: 24677190. 

303. Wang R, Nan Y, Yu Y, Zhang YJ. Porcine reproductive and respiratory syndrome 

virus Nsp1beta inhibits interferon-activated JAK/STAT signal transduction by inducing 

karyopherin-alpha1 degradation. Journal of virology. 2013;87(9):5219-28. doi: 

10.1128/JVI.02643-12. PubMed PMID: 23449802; PubMed Central PMCID: PMC3624296. 

304. Frieman M, Yount B, Heise M, Kopecky-Bromberg SA, Palese P, Baric RS. Severe 

acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering 

nuclear import factors on the rough endoplasmic reticulum/Golgi membrane. Journal of 

virology. 2007;81(18):9812-24. doi: 10.1128/JVI.01012-07. PubMed PMID: 17596301; 

PubMed Central PMCID: PMC2045396. 

305. Pryor MJ, Rawlinson SM, Butcher RE, Barton CL, Waterhouse TA, Vasudevan SG, et 

al. Nuclear localization of dengue virus nonstructural protein 5 through its importin 

alpha/beta-recognized nuclear localization sequences is integral to viral infection. Traffic. 

2007;8(7):795-807. doi: 10.1111/j.1600-0854.2007.00579.x. PubMed PMID: 17537211. 

306. Du Y, Bi J, Liu J, Liu X, Wu X, Jiang P, et al. 3Cpro of foot-and-mouth disease virus 

antagonizes the interferon signaling pathway by blocking STAT1/STAT2 nuclear 

translocation. Journal of virology. 2014;88(9):4908-20. doi: 10.1128/JVI.03668-13. PubMed 

PMID: 24554650; PubMed Central PMCID: PMC3993825. 

307. Porter FW, Bochkov YA, Albee AJ, Wiese C, Palmenberg AC. A picornavirus protein 

interacts with Ran-GTPase and disrupts nucleocytoplasmic transport. Proceedings of the 

National Academy of Sciences of the United States of America. 2006;103(33):12417-22. doi: 

10.1073/pnas.0605375103. PubMed PMID: 16888036; PubMed Central PMCID: 

PMC1567894. 

308. Shaw ML, Cardenas WB, Zamarin D, Palese P, Basler CF. Nuclear localization of the 

Nipah virus W protein allows for inhibition of both virus- and toll-like receptor 3-triggered 



 

xxvi 

signaling pathways. Journal of virology. 2005;79(10):6078-88. doi: 10.1128/JVI.79.10.6078-

6088.2005. PubMed PMID: 15857993; PubMed Central PMCID: PMC1091709. 

309. Reid SP, Valmas C, Martinez O, Sanchez FM, Basler CF. Ebola virus VP24 proteins 

inhibit the interaction of NPI-1 subfamily karyopherin alpha proteins with activated STAT1. 

Journal of virology. 2007;81(24):13469-77. doi: 10.1128/JVI.01097-07. PubMed PMID: 

17928350; PubMed Central PMCID: PMC2168840. 

310. Xu W, Edwards MR, Borek DM, Feagins AR, Mittal A, Alinger JB, et al. Ebola virus 

VP24 targets a unique NLS binding site on karyopherin alpha 5 to selectively compete with 

nuclear import of phosphorylated STAT1. Cell host & microbe. 2014;16(2):187-200. doi: 

10.1016/j.chom.2014.07.008. PubMed PMID: 25121748; PubMed Central PMCID: 

PMC4188415. 

311. Irie T, Yoshida A, Sakaguchi T. Clustered basic amino acids of the small sendai virus 

C protein Y1 are critical to its RAN GTPase-mediated nuclear localization. PloS one. 

2013;8(8):e73740. doi: 10.1371/journal.pone.0073740. PubMed PMID: 23951363; PubMed 

Central PMCID: PMC3739745. 

312. Fontoura BM, Blobel G, Matunis MJ. A conserved biogenesis pathway for 

nucleoporins: proteolytic processing of a 186-kilodalton precursor generates Nup98 and the 

novel nucleoporin, Nup96. The Journal of cell biology. 1999;144(6):1097-112. PubMed 

PMID: 10087256; PubMed Central PMCID: PMC2150585. 

313. Enninga J, Levy DE, Blobel G, Fontoura BM. Role of nucleoporin induction in 

releasing an mRNA nuclear export block. Science. 2002;295(5559):1523-5. doi: 

10.1126/science.1067861. PubMed PMID: 11809937. 

314. Faria AM, Levay A, Wang Y, Kamphorst AO, Rosa ML, Nussenzveig DR, et al. The 

nucleoporin Nup96 is required for proper expression of interferon-regulated proteins and 

functions. Immunity. 2006;24(3):295-304. doi: 10.1016/j.immuni.2006.01.014. PubMed 

PMID: 16546098. 

315. Baril M, Racine ME, Penin F, Lamarre D. MAVS dimer is a crucial signaling 

component of innate immunity and the target of hepatitis C virus NS3/4A protease. Journal of 

virology. 2009;83(3):1299-311. Epub 2008/11/28. doi: 10.1128/JVI.01659-08. PubMed 

PMID: 19036819; PubMed Central PMCID: PMC2620913. 

316. Li K, Foy E, Ferreon JC, Nakamura M, Ferreon AC, Ikeda M, et al. Immune evasion 

by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor 

protein TRIF. Proceedings of the National Academy of Sciences of the United States of 

America. 2005;102(8):2992-7. doi: 10.1073/pnas.0408824102. PubMed PMID: 15710891; 

PubMed Central PMCID: PMC548795. 

317. Tamassia N, Le Moigne V, Rossato M, Donini M, McCartney S, Calzetti F, et al. 

Activation of an immunoregulatory and antiviral gene expression program in poly(I:C)-

transfected human neutrophils. Journal of immunology. 2008;181(9):6563-73. PubMed PMID: 

18941247. 

318. Fensterl V, Sen GC. The ISG56/IFIT1 gene family. J Interferon Cytokine Res. 

2011;31(1):71-8. doi: 10.1089/jir.2010.0101. PubMed PMID: 20950130; PubMed Central 

PMCID: PMC3021354. 

319. Schoenenberger CA, Buchmeier S, Boerries M, Sutterlin R, Aebi U, Jockusch BM. 

Conformation-specific antibodies reveal distinct actin structures in the nucleus and the 

cytoplasm. J Struct Biol. 2005;152(3):157-68. doi: 10.1016/j.jsb.2005.09.003. PubMed PMID: 

16297639. 



 

xxvii 

320. Theiss AL, Jenkins AK, Okoro NI, Klapproth JM, Merlin D, Sitaraman SV. Prohibitin 

inhibits tumor necrosis factor alpha-induced nuclear factor-kappa B nuclear translocation via 

the novel mechanism of decreasing importin alpha3 expression. Molecular biology of the cell. 

2009;20(20):4412-23. doi: 10.1091/mbc.E09-05-0361. PubMed PMID: 19710421; PubMed 

Central PMCID: PMC2762146. 

321. Agrawal T, Gupta GK, Agrawal DK. Calcitriol decreases expression of importin 

alpha3 and attenuates RelA translocation in human bronchial smooth muscle cells. Journal of 

clinical immunology. 2012;32(5):1093-103. doi: 10.1007/s10875-012-9696-x. PubMed PMID: 

22526597; PubMed Central PMCID: PMC3444658. 

322. Perez M, Soler-Torronteras R, Collado JA, Limones CG, Hellsten R, Johansson M, et 

al. The fungal metabolite galiellalactone interferes with the nuclear import of NF-kappaB and 

inhibits HIV-1 replication. Chem Biol Interact. 2014;214:69-76. doi: 

10.1016/j.cbi.2014.02.012. PubMed PMID: 24631022. 

323. Taylor SL, Frias-Staheli N, Garcia-Sastre A, Schmaljohn CS. Hantaan virus 

nucleocapsid protein binds to importin alpha proteins and inhibits tumor necrosis factor alpha-

induced activation of nuclear factor kappa B. Journal of virology. 2009;83(3):1271-9. doi: 

10.1128/JVI.00986-08. PubMed PMID: 19019947; PubMed Central PMCID: PMC2620888. 

324. Fagerlund R, Kinnunen L, Kohler M, Julkunen I, Melen K. NF-{kappa}B is 

transported into the nucleus by importin {alpha}3 and importin {alpha}4. The Journal of 

biological chemistry. 2005;280(16):15942-51. doi: 10.1074/jbc.M500814200. PubMed PMID: 

15677444. 

325. Liang P, Zhang H, Wang G, Li S, Cong S, Luo Y, et al. KPNB1, XPO7 and IPO8 

mediate the translocation ofNF-kappaB/p65 into the nucleus. Traffic. 2013;14(11):1132-43. 

doi: 10.1111/tra.12097. PubMed PMID: 23906023. 

326. Cunningham MD, Cleaveland J, Nadler SG. An intracellular targeted NLS peptide 

inhibitor of karyopherin alpha:NF-kappa B interactions. Biochemical and biophysical research 

communications. 2003;300(2):403-7. PubMed PMID: 12504098. 

327. Ao Z, Huang G, Yao H, Xu Z, Labine M, Cochrane AW, et al. Interaction of human 

immunodeficiency virus type 1 integrase with cellular nuclear import receptor importin 7 and 

its impact on viral replication. The Journal of biological chemistry. 2007;282(18):13456-67. 

doi: 10.1074/jbc.M610546200. PubMed PMID: 17360709. 

328. Kumar KP, McBride KM, Weaver BK, Dingwall C, Reich NC. Regulated nuclear-

cytoplasmic localization of interferon regulatory factor 3, a subunit of double-stranded RNA-

activated factor 1. Molecular and cellular biology. 2000;20(11):4159-68. PubMed PMID: 

10805757; PubMed Central PMCID: PMC85785. 

329. Tam WF, Lee LH, Davis L, Sen R. Cytoplasmic sequestration of rel proteins by 

IkappaBalpha requires CRM1-dependent nuclear export. Molecular and cellular biology. 

2000;20(6):2269-84. PubMed PMID: 10688673; PubMed Central PMCID: PMC110843. 

330. Scott ML, Fujita T, Liou HC, Nolan GP, Baltimore D. The p65 subunit of NF-kappa B 

regulates I kappa B by two distinct mechanisms. Genes & development. 1993;7(7A):1266-76. 

PubMed PMID: 8319912. 

331. Chiao PJ, Miyamoto S, Verma IM. Autoregulation of I kappa B alpha activity. 

Proceedings of the National Academy of Sciences of the United States of America. 

1994;91(1):28-32. PubMed PMID: 8278379; PubMed Central PMCID: PMC42879. 

332. Saccani S, Marazzi I, Beg AA, Natoli G. Degradation of promoter-bound p65/RelA is 

essential for the prompt termination of the nuclear factor kappaB response. J Exp Med. 



 

xxviii 

2004;200(1):107-13. doi: 10.1084/jem.20040196. PubMed PMID: 15226358; PubMed Central 

PMCID: PMC2213320. 

333. Johnson C, Van Antwerp D, Hope TJ. An N-terminal nuclear export signal is required 

for the nucleocytoplasmic shuttling of IkappaBalpha. The EMBO journal. 1999;18(23):6682-

93. doi: 10.1093/emboj/18.23.6682. PubMed PMID: 10581242; PubMed Central PMCID: 

PMC1171731. 

334. Li Y, Li C, Xue P, Zhong B, Mao AP, Ran Y, et al. ISG56 is a negative-feedback 

regulator of virus-triggered signaling and cellular antiviral response. Proceedings of the 

National Academy of Sciences of the United States of America. 2009;106(19):7945-50. doi: 

10.1073/pnas.0900818106. PubMed PMID: 19416887; PubMed Central PMCID: 

PMC2683125. 

335. Zhou X, Michal JJ, Zhang L, Ding B, Lunney JK, Liu B, et al. Interferon induced IFIT 

family genes in host antiviral defense. Int J Biol Sci. 2013;9(2):200-8. doi: 10.7150/ijbs.5613. 

PubMed PMID: 23459883; PubMed Central PMCID: PMC3584916. 

336. Baril M, Es-Saad S, Chatel-Chaix L, Fink K, Pham T, Raymond VA, et al. Genome-

wide RNAi screen reveals a new role of a WNT/CTNNB1 signaling pathway as negative 

regulator of virus-induced innate immune responses. PLoS pathogens. 2013;9(6):e1003416. 

doi: 10.1371/journal.ppat.1003416. PubMed PMID: 23785285; PubMed Central PMCID: 

PMC3681753. 

337. Ori A, Banterle N, Iskar M, Andres-Pons A, Escher C, Khanh Bui H, et al. Cell type-

specific nuclear pores: a case in point for context-dependent stoichiometry of molecular 

machines. Mol Syst Biol. 2013;9:648. doi: 10.1038/msb.2013.4. PubMed PMID: 23511206; 

PubMed Central PMCID: PMC3619942. 

338. Culjkovic-Kraljacic B, Baguet A, Volpon L, Amri A, Borden KL. The oncogene eIF4E 

reprograms the nuclear pore complex to promote mRNA export and oncogenic transformation. 

Cell Rep. 2012;2(2):207-15. doi: 10.1016/j.celrep.2012.07.007. PubMed PMID: 22902403; 

PubMed Central PMCID: PMC3463940. 

 



 

xxix 

Annex 1: Elucidating novel hepatitis C virus-host 

interactions using combined mass spectrometry and 

functional genomics approaches. 

 

This annex is to state that I contributed to the paper "Elucidating novel hepatitis C 

virus-host interactions using combined mass spectrometry and functional genomics 

approaches." by Germain et al., published in the peer-review journal "Molecular & Cellular 

Proteomics" in 2014. As second co-author, I performed the experiments and contributed to the 

explanation for the results shown in Figure 9 and Figure S4. 

 

 

 



 

 

 


