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Resume: 
 
La résonance magnétique cardiovasculaire sensible à l'oxygénation (OS-CMR) est devenue 
une modalité d'imagerie diagnostique pour la surveillance de changements dans 
l'oxygénation du myocarde. Cette technique offre un grand potentiel en tant qu'outil 
diagnostic primaire pour les maladies cardiovasculaires, en particulier la détection non-
invasive d'ischémie. Par contre, il existe plusieurs facteurs potentiellement confondants de 
cette technique, quelques-uns d'ordre méthodologique comme les paramètres de 
séquençage et d'autres de nature physiologiques qui sont peut compris. En raison des effets 
causés par le contenu tissulaire d'eau, l'état d'hydratation peut avoir un impact sur l'intensité 
du signal. Ceci est un des aspects physiologiques en particulier dont nous voulions quantifier 
l'effet confondant par la manipulation de l'état d'hydratation chez des humains et 
l'observation des changements de l'intensité du signal dans des images OS-CMR. 
 
Méthodes:  
In vitro: Du sang artériel et veineux de huit porcs a été utilisé pour évaluer la dilution en série 
du sang et son effet correspondant sur l'intensité du signal de la séquence OS. In vivo: Vingt-
deux volontaires en santé ont subi OS-CMR. Les concentrations d'hémoglobine (Hb) ont été 
mesurées au niveau de base et immédiatement après une l'infusion cristalloïde rapide de 
1000 mL de solution Lactate Ringer's (LRS). Les images OS-CMR ont été prises dans une vue 
mid-ventriculaire court axe. L'intensité du signal myocardique a été mesurée durant une 
rétention respiratoire volontaire maximale, suite à une période d'hyperventilation de 60 
secondes. Les changements dans l'intensité du signal entre le début et la fin de la rétention 
de la respiration ont été exprimés relativement au niveau de base (% de changement).  
 
Résultats:  
L'infusion a résulté en une diminution significative de l'Hb mesurée (142.5±3.3 vs. 128.8±3.3 
g/L; p<0.001), alors que l'IS a augmenté de 3.2±1.2%  entre les images du niveau de base en 
normo- et hypervolémie (p<0.05). L'IS d'hyperventilation ainsi que les changements d'IS 
induits par l'apnée ont été attenués après hémodilution (p<0.05). L'évaluation quantitative 
T2* a démontré une corrélation négative entre le temps de T2* et la concentration 
d'hémoglobine (r=-0.46, p<0.005).  
 
Conclusions:  
Il existe plusieurs éléments confondants de la technique OS-CMR qui requièrent de 
l'attention et de l'optimisation pour une future implémentation clinique à grande échelle. Le 
statut d'hydratation en particulier pourrait être un élément confondant dans l'imagerie OS-
CMR. L'hypervolémie mène à une augmentation en IS au niveau de base et atténue la réponse 
IS durant des manoeuvres de respiration vasoactives. Cette atténuation de l'intensité du 
signal devrait être tenue en compte et corrigée dans l'évaluation clinique d'images OS-CMR.  
 
Mots-cles: 
La résonance magnétique cardiovasculaire sensible à l'oxygénation; éléments confondants; 
l’hémoglobine; hémodilution 
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Abstract: 
 
Background:  
Oxygenation-sensitive cardiovascular magnetic resonance (OS-CMR) has become a feasible 
diagnostic imaging modality for monitoring changes of myocardial oxygenation. This 
technique has great potential for use as a primary diagnostic tool for cardiovascular disease, 
particularly non-invasive detection of ischemia. Yet, there are several potential confounding 
factors of this technique, some methodological, such as sequence parameters and others are 
physiological and not well understood. Due to T2 effects caused by tissue water content, the 
hydration status may impact signal intensity. This is one physiological aspect in particular 
that we aimed at quantifying the confounding effect by manipulating hydration status in 
humans and observing signal intensity (SI) changes in OS-CMR images.  
 
Methods:  
In vitro: Arterial and venous blood from eight swine were used to assess serial dilution of 
blood and it corresponding effect on OS sequence signal intensity. In vivo: Twenty-two 
healthy volunteers underwent OS-CMR. Hemoglobin (Hb) concentrations were measured at 
baseline and immediately following rapid crystalloid infusion of 1,000ml of Lactated Ringer’s 
solution (LRS). OS-CMR images were acquired in a mid-ventricular short axis view. 
Myocardial SI was measured during a maximal voluntary breath-hold, after a 60-second 
period of hyperventilation. SI changes were expressed relative to baseline (% change). 
 
Results:  
The infusion resulted in a significant decrease in measured Hb (142.5±3.3 vs. 128.8±3.3 g/L; 
p<0.001), while SI increased by 3.2±1.2% between baseline images at normo- and 
hypervolemia (p<0.05). Both hyperventilation SI and the SI changes induced by apnea were 
attenuated after hemodilution (p<0.05). Quantitative assessment showed a negative 
correlation between T2* and hemoglobin concentration (r=-0.46, p<0.005). 
 
Conclusions:  
There are several confounders to the OS-CMR technique that require attention and 
optimization for future larger scale clinical implementation. The hydration status in 
particular may be a confounder in OS-CMR imaging. Hypervolemia leads to an increase in SI 
at baseline and attenuates the SI response during vasoactive breathing maneuvers. This 
attenuation in signal intensity would need to be accounted for and corrected in clinical 
assessment of OS-CMR images. 
 
Keywords: 
Oxygenation-sensitive cardiovascular magnetic resonance; confounders; hemoglobin; 
hemodilution; breathing-maneuvers 
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1.0 Background 
 

Cardiovascular disease (CVD) remains today as the number one cause of death 

globally. Approximately 17.5 million deaths in 2012 were due to CVD. More specifically, an 

estimated 7.4 million of the total death due to CVD were caused by coronary artery disease 

(CAD)1. It is projected that death due to CVD will increase by 35% by the year 2030, and is 

projected to remain as the leading cause of death globally.  

In the United States, costs related to cardiovascular disease were an estimated $475 

billion in the year 2009. Interestingly, medical imaging for cardiovascular disease costs 

approximately $100 billion per year in the US. The growing burden of cardiovascular disease 

is evident as 29% of all imaging work is attributed to cardiovascular imaging2. The 

importance of imaging is two-fold: (1) it allows for the non-invasive assessment and 

diagnosis of disease severity, and (2) risk stratification of patients to guide treatment while 

also implementing imaging as a gatekeeper to invasive interventions. Currently, the most 

widely used imaging modalities are divided into functional imaging and anatomical imaging. 

The former allows for assessment of disease severity and consequences related to 

obstructive coronary disease, while the latter allows for the non-invasive visualization of the 

coronary tree3. 

2.0 Introduction to MRI 
 

A MRI system is comprised of three main electromagnetic components: a set of main 

magnet coils, three gradient coils and a radio-frequency transmitter coil. The main magnet 

coils generate a strong, constant magnetic field denoted as B0. B0 is measured in units of Tesla 

(T), where 1 Tesla is equal to approximately 20,000 times the earth’s magnetic field. A 
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coordinate reference system composed of three orthogonal axes (x, y, and z) is used to 

distinguish the magnetic field direction. The z-axis is by default chosen to be parallel to the 

direction of the main magnetic field, B04.  

The three gradient coils mounted inside the system can be rapidly switched on and 

off to generate a gradient magnetic field along the same direction as B0 with varying strength 

along the aforementioned three axes (x, y, or z) corresponding to which gradient coil is 

activated. Essentially, the gradient magnetic field is superimposed on the B0 field, yet its 

strength increases/decreases along the direction of the applied gradient field. Figure 1 

shows the positioning of the three gradient coils within the MRI system and a visualization 

of the magnetic field generated by these gradient coils. The steepness of the slope of the 

gradient reflects the strength of the gradient magnetic field, measured in millitesla per metre 

(mT/m).  

 

Figure 1: Visual representation of axial, coronal and sagittal slices, with dark purple color representing lower frequencies 
and pink representing higher frequencies5. 

 
The last electromagnetic component, the radiofrequency (rf) transmitter coil 

generates the rf magnetic field, often known as the B1 field. The rf field generates a field that 
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oscillates at a specific frequency determined by the field strength of the main magnet. The rf 

magnetic field is used in a pulsatile manner to elicit excitation in protons causing their 

resonating magnetic field vector to be flipped along the orthogonal axes. As the magnetic 

field vector begins to relax and return to its equilibrium position the rf receiving coil in turn 

detects this relaxation to generate signals that create a MR image5. 

2.1 MR Signal Generation 
 

The key to the generation of MR signals is the hydrogen nuclei, consisting of a single 

proton and electron. Hydrogen nuclei (protons) exhibit a phenomenon known as magnetic 

moment generated by an intrinsic property known as nuclear spin, giving the proton a small 

magnetic field with direction. Generally, these magnetic moments are randomly oriented in 

all directions, but when placed in the presence of an external magnetic field (like one 

generated by an MR system) these magnetic moments (spins) orient either parallel or anti-

parallel with the B0 field. An equilibrium state is quickly established where the excess 

magnetic moments aligning parallel with the B0 field (a few per million) as it is energetically 

favorable and create a net magnetization vector (NMV) (a net magnetic field) in the z-axis 

direction (and B0) (Figure 2). This net magnetization (M) at equilibrium is typically denoted 

as M04.  
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Figure 2: Illustration of net magnetization vector (NMV) formed from slight excess of protons aligned parallel (blue) to 
main magnetic field (B0) as opposed to anti-parallel (red)5. 

 
The rf magnetic field is applied as a pulse at a specific frequency, known as the Larmor 

frequency (ω0), to deliver energy to the population of protons at equilibrium. The Larmor 

frequency is determined by the Larmor equation: 

ω0 = γ × B0 

The constant γ is known as the gyromagnetic ratio with a value of 42.6 MHz/Tesla for the 

proton. The Larmor frequency, ω0, is proportional to the main magnet field strength, B0. 

Thus, for a 3 Tesla (3T) MR system the Larmor frequency is approximately 127.8 MHz. The 

Larmor frequency is also known as the resonant frequency, as this is the frequency at which 

protons within the MR system will absorb energy. 

The rf pulse is delivered at right angles to B0 and z-axis at the Larmor frequency 

causing the net magnetization M0 to be shifted from the z-axis into the x-y plane. The 

“excited” protons will now spin around the z-axis in a spiral pattern at a frequency known as 

the precession frequency (also equal to the Larmor frequency). The amount of time the rf 
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pulse is switched on will determine how far the net magnetization will be shifted, this is 

known as the flip angle. Once the net magnetization has been shifted by a prescribed angle 

(α) the net magnetization can be divided into two component vectors. The first component 

is along the z-axis, known as the longitudinal component, and the second is within the planes 

of the x and y axes, known as the x-y or transverse component. Different rf pulses at different 

prescribed angles is demonstrated in Figure 3. A 90° rf pulse essentially causes the net 

magnetization to be completely shifted from the z-axis (longitudinal component) to the x-y 

plane (transverse component). A 90° rf pulse is also known as a saturation pulse for this 

reason, as it leaves no longitudinal component immediately after the pulse, all of the net 

magnetization is shifted to the transverse component. 

 

Figure 3: Illustration of differing states of magnetization: a) equilibrium state in which net magnetization (M0) is aligned 
with the B0 field along the z-axis; b) an rf pulse applied resulting in a flip angle α (less than 90°) causing net magnetization 
to be shifted from longitudinal (z-axis) at equilibrium state; c) application of saturation rf pulse, resulting in 90° flip angle 
and complete shifting of M0 from longitudinal to transverse magnetization4. 

 
Radiofrequency excitation pulses with flip angles lower than 90° are also employed 

commonly allowing only a portion of the net magnetization to move from the longitudinal to 
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the transverse component. The major advantage of using a lower flip angle rf pulse is that it 

allows for a subsequent pulse to be applied close to the first pulse, as some of the 

magnetization still remains in the longitudinal component and can be shifted to the 

transverse component.  

Ideally, all protons once excited by a saturation rf pulse will precess and continue 

precession at the Larmor frequency before slowly spinning back towards the z-axis and 

equilibrium. are inhomogeneities within the magnetic field and MR environment that cause 

some protons to lose their ideal Larmor precession frequency and rotate/spin slightly 

slower or faster than other surrounding protons resulting in dephasing or loss of coherence, 

and ultimately rapid degeneration of signal. Particularly in T2 sequences, where the 

transverse relaxation vector is of importance, this loss of coherence can be overcome by 

applying a 180° re-focusing pulse following the 90° saturation pulse to rotate the net 

magnetization through 180°, which results in re-focusing of the spins and coherence. 

2.2 MR Signal Characteristics 
 

Following excitation by rf pulse, protons immediately begin to relax and return to a 

state of equilibrium in which the net magnetization vector returns to the longitudinal (z) 

axis. The relaxation process can be separated into two components, longitudinal (z) and 

transverse (xy) relaxation. Longitudinal relaxation, or recovery of the magnetization along 

the z-axis is commonly referred to as T1 relaxation. Transverse relaxation on the other hand 

refers to the decay of the x-y component of net magnetization as it rotates about the z-axis 

and consequently the decay of the MR signal. Transverse and longitudinal relaxation occurs 

simultaneously. 
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2.2.1 T1 Relaxation 
 

The T1 relaxation process is exponential and refers to the recovery of magnetization 

along the z-axis following a rf excitation pulse. T1 relaxation has a time constant known as 

T1 time, which occurs along the exponential recovery curve. The T1 time constant is a point 

along the exponential recovery curve when 63% of the original magnetization along the z-

axis at equilibrium has recovered4. Figure 4 shows an example of the exponential T1 

relaxation curve following a 90° rf pulse (saturation pulse). When a saturation pulse is 

applied, the net magnetization is immediately switched from z-axis (at equilibrium) to the 

xy (transverse) component, thus the magnetization for the z component is zero. The recovery 

of the magnetization for the z-component is rapid initially but slows as it approaches 

equilibrium. The recovery of the net magnetization along the z-axis following a saturation 

pulse is often appropriately known as saturation recovery. A short T1 time indicates faster 

recovery to equilibrium following an excitation pulse. The T1 time constant highlights 

important information about the characteristics of the tissues being imaged5.  
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Figure 4: Exponential T1 recovery curve, illustrating the recovery of net magnetization along the z-axis following 
application of 90° saturation rf pulse4. 

2.2.3 T2 Relaxation 
 

T2 relaxation or transverse relaxation is also an exponential process but unlike T1, 

which is an exponential recovery, T2 is an exponential decay of magnetization for the xy-

plane. The T2 time constant is a point along the exponential decay curve at which the 

magnetization has decayed to 37% of the amount immediately following the 90° rf pulse. 

This is more easily understood when remembering that net magnetization is the sum of 

individual magnetic spins of a population of protons. Immediately following the rf pulse the 

population of protons have their magnetization flipped into the xy plane and they rotate 

(precess) together in a coherent manner in phase. As they rotate, each magnetic spin points 

in the same direction, as their precession frequencies are identical, thus they point in the 
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same direction in the xy plane. At any given instant, the angle of the magnetic spin is known 

as the phase angle. Magnetic spins having similar phase angles are referred to as being “in 

phase”. Ideally, all spins would rotate with the same frequency as they approach equilibrium, 

thus resulting in a smooth exponential decay curve. In reality, following the rf pulse, the 

phase angles do not stay same, instead they begin to spread out, lose coherence and are 

referred to as being “out of phase”. The net magnetization, which is the sum of the individual 

magnetic moments, is thus reduced resulting in the rapid decay of signal. As the protons 

precess in the xy-plane, they rotate around the z-axis as they approach equilibrium, thus the 

T2 relaxation curve is an oscillating exponential decay curve, and the process of decay is 

known as free induction decay (FID) (Figure 5). There are two major contributors to loss of 

coherence and decay of signal in T2 relaxation, which will be briefly discussed here. 

 

Figure 5: T2 and T2* relaxation following 90° saturation rf pulse, illustrated with T2 and T2* exponential decay curves4. 
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The first cause of loss in coherence is due to the fact that although the population of 

protons will initially precess at the same frequency and be in phase, the magnetic spin of one 

atom can affect neighboring atoms. Due to the fact that protons are constituents of varying 

types of atoms, over time the phase angles of different protons will begin to differ in a 

random fashion. The net effect is the Larmor frequency of protons will begin to differ, 

ultimately causing loss of net magnetization in the xy-plane. This factor of the spin of one 

proton affecting neighboring protons is known as spin-spin interactions. Spin-spin 

interactions are of a random nature, thus the dephasing as a result of spin-spin interactions 

are not reversible4. 

The second contributor to loss of coherence is due to inhomogeneities in the applied 

B0 magnetic field. Local variations along the magnetic field will cause the Larmor frequency 

to vary between different locations, thus resulting in loss of coherence or dephasing. Protons 

at different locations will precess at different frequencies following excitation by rf pulse and 

therefore cause a deviation from the ideal T2 relaxation curve in the absence of field 

inhomogeneities. Unlike spin-spin interactions, inhomogeneities are fixed and therefore 

dephasing due to this factor is potentially reversible. The combination of T2 relaxation, as a 

result of spin-spin interaction, and decay due to magnetic field inhomogeneities is known as 

T2* relaxation. T2* relaxation determines the actual rate of FID and is also an exponential 

decay process with a time constant T2*, determined in the same fashion as the T2 time 

constant. 
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2.2.4 Significance of T1 and T2 Values 

 The T1 and T2 values obtained can shed important information about the tissue being 

imaged, in addition the unique properties of T1 and T2 imaging can be exploited for creating 

protocols for imaging specific diseases and disease processes. 

 As mentioned in Section 2.2.1 T1 Relaxation, T1 imaging involves measuring T1 

relaxation rate or time and the recovery of magnetization along the z-axis. This relaxation 

occurs when protons that have absorbed energy from the rf pulse release this energy to 

return to an equilibrium state. Thus, the rate at which energy is released by the excited 

protons is related to the relaxation rate. The tumbling rate, or the rate of molecular motion, 

of various molecules and macromolecules helps to determine whether energy exchange 

between neighbouring molecules is favourable. When the tumbling rate of a molecule is close 

to the Larmor frequency, energy exchange is most favourable, resulting in rapid relaxation 

or short T1 relaxation time4. T1 contrast images are generated by setting repetition time 

(TR) to be less than the total relaxation time of tissues. Thus, when the second rf pulse is 

applied, tissues that have recovered faster will have a large longitudinal component and 

therefore also a larger transverse component upon application of the second rf pulse. Fat, for 

example, loses transverse energy rapidly and has more rapid longitudinal recovery than 

water, therefore in T1 images fat has a large transverse component leading to high signal 

and consequently appearing bright on T1 contrast images. Water on the other hand, has a 

lower transverse component upon repeated rf pulse application, leading to lower signal and 

appearing darker on T1 contrast images. Contrast between fat and water can be improved 

by choosing an optimal TR so that the difference in the recovery of longitudinal component 

is the greatest5. Figure 6 demonstrates this concept, as can be seen, if TR is too long then both 
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fat and water will have fully recovered to B0 not allowing for any delineation between tissue 

types. 

 

Figure 6: T1 difference between fat and water and illustration of how TR can be manipulated to maximize contrast 
between different tissues with varying fat and water content5.  

 
 T2 relaxation rate is related to the amount of spin-spin interaction that occurs 

between molecules. When molecules are small, far apart and moving rapidly, such as free 

water, spin-spin interaction occurs less frequently and thus the T2 relaxation rate is slow, or 

T2 time is high4. T2 contrast is dependent on echo time (TE), which determines the amount 

of time allowed for decay of transverse magnetization before the signal is received. As 

discussed previously, due to low frequency of spin-spin interactions amongst water 

molecules, transverse magnetization decays slower and water has a larger signal, therefore 

appearing brighter on T2 images. On the other hand, decay of transverse magnetization is 

rapid in fat and thus fat appears dark on T2 images (Figure 7). 
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Figure 7: T2 differences between fat and water and illustration of how TE can be manipulated to maximize contrast 
between fat and water5. 

3.0 T2*, Susceptibility-Weighted Imaging (SWI), and 
BOLD/Oxygenation-Sensitive MR 

3.1 Origins of BOLD-sensitive imaging 
 

Ogawa et al.6 conducted a study on mice brains using high magnetic fields (7T and 

8.4T). The study was driven by the understanding that although MRI was quite good at 

distinguishing brain anatomy, it was no sensitive enough to detect normal metabolic changes 

in order to assess physiological events. Building on a previous study that presented the 

ability to measure blood flow using MR at 1.5T7; Ogawa et al., hypothesized that this 

technique could be exploited to understand brain physiology and metabolic activity since the 

latter is correlated with oxygen consumption and thus blood flow. The mice were ventilated 

to breathing various concentrations of oxygen, varying from anoxia to 100% oxygen. The 

images of the brain were first acquired when the animal was breathing 100% oxygen using 
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a gradient echo sequence. It was found that certain anatomical features were well defined 

but overall the contrast was quite poor. Interestingly, when the oxygen content in the 

breathing gas was reduced to 20%, there was a striking difference in the contrast, as many 

dark lines appeared within the image. It was also found that this change was reversible and 

the dark lines disappeared when oxygen content was increased. Using fixed slices of the 

brain and microscopy, and comparing with the dark lines produced in the images, it was clear 

that these lines were blood vessels. One of significant findings of this study was the 

conclusion that the contrast was generated by magnetic susceptibility due paramagnetic 

deoxyhemoglobin. This was deduced from the fact that when the anesthetized mice were 

sacrificed using carbon monoxide (which when bound to hemoglobin produced diamagnetic 

carboxyhemoglobin), most of the contrast seen from breathing 20% oxygen disappeared. On 

the other hand, when the animal was left under anoxic conditions, the contrast was very high. 

Another striking difference was seen when comparing spin echo and gradient echo 

sequences. It was noted that the contrast produced by the gradient echo was not present 

when using a spin echo sequence. This was further tested by use of concentric double tubes, 

where blood was placed in the center tube and saline in the outer. Both oxygenated and 

deoxygenated blood were examined using both sequences. As seen in (Figure 8), when 

examining oxygenated blood there was very little difference when comparing sequences. On 

the other hand, a noticeable difference was seen in the deoxygenated blood when comparing 

both sequences. 
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Figure 8: Oxygenated and deoxygenated blood compared using spin-echo and gradient-echo sequences6. 

 

Ogawa further built on this research in a subsequent study by directly modifying 

blood oxygen levels and observing the effect on oxygenation-sensitive MRI8. The term BOLD 

(blood oxygenation level-dependent) contrast was coined for the technique of assessing 

oxygenation using MRI. It was determined that BOLD contrast was ultimately a result of the 

balance of 2 factors: oxygen supply (blood flow) and oxygen extraction by tissues 

(metabolism). The study found that there was a blood flow-dependent loss in BOLD contrast, 

as observed when animals were switched from breathing 100% oxygen to 10% CO2/90% O2. 

It was observed that blood CO2 increased from 50 to 80 mmHg, which would subsequently 

cause an increase in blood flow and thus a greater supply of oxygen to the brain. Thus the 

increased flow, in the absence of increased metabolic activity led to a decrease in 

deoxyhemoglobin concentration and thus loss of contrast. In addition, the group assessed 

changes in contrast due to insulin-induced hypoglycemia. It was found that following insulin 
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injection, BOLD contrast was greatly reduced. Although there was a slight increase in blood 

flow due to hypoglycemia, it was concluded that the loss of contrast could not be entirely due 

to flow but also due to decreased metabolism. The study provided the groundwork for the 

idea that BOLD imaging could be used for in vivo brain mapping to detect local changes in 

metabolic activity by tracking changes in blood oxygenation due to increased or decreased 

oxygen consumption. 

3.2 Oxygenation-sensitive cardiac imaging (OS-CMR) 

3.2.1 Pre-clinical studies 
 

One of the first studies to translate the research of Ogawa to cardiac imaging was done 

by Atalay et al. in 19939. In the study, four New Zealand white rabbits were sacrificed and 

the hearts were harvested. The hearts were perfused using varying oxygen saturation 

perfusate (bovine blood) with a Langendorff apparatus. The goal was to use high-field 

strength (4.7T) MR and susceptibility-dependent imaging to determine if myocardial 

oxygenation could be measured. Five to nine images were acquired for each heart using 

varying range of hemoglobin concentrations, with the first and last images being taken using 

perfusate that was fully saturated. The results were very promising, as the group observed 

that signal intensity (SI) varied linearly with perfusate oxygenation level, leading to the 

conclusion that the difference between signal intensity was due to paramagnetic effects of 

deoxyhemoglobin.   

Wendland et al., also in 199310, used a rat model to show that apnea or varying lengths 

resulted in changes in susceptibility-dependent MR myocardial signal intensity. The group 

performed 45 and 90 second periods of apnea by shutting off the ventilator after 6 or 7 
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images had been obtained and then continued imaging during apnea. Blood samples were 

obtained prior to and following apnea and analyzed using a blood gas analyzer. There was a 

significant decrease in myocardial signal intensity from baseline associated with the two 

different periods of apnea. Likewise, there was a significant decrease in pO2 and O2 

saturation associated with apnea. The study concluded that it was feasible to use MR to 

measure changes in myocardial SI associated with apnea and consequently perturbations in 

local myocardial deoxyhemoglobin concentrations. 

Following these two animal studies, many questions still remained about the 

potential confounding factors of blood flow and volume differences in varying vessels of the 

heart to influence SI in oxygenation-sensitive imaging. Li et al., attempted to tackle these 

issues in a study using thirteen healthy human volunteers11. The purpose of the study was 

to assess changes in myocardial signal intensity due to two pharmacological agents: 

dipyridamole and dobutamine. These drugs were chosen as both cause increase in 

myocardial blood flow but utilize different mechanisms to do so. Dipyridamole is a potent 

coronary vasodilator, leading to a 3- to 4-fold increase in flow but causes very little change 

to myocardial oxygen consumption12. Thus, with no change in oxygen demand, but an 

increase in supply, venous blood oxygenation is generally increased. On the other hand, 

dobutamine is a potent beta1-agonist leading to an increase in myocardial oxygen 

consumption, and thus consequently leading to an increased oxygen demand and myocardial 

perfusion. In the case of dobutamine, venous blood oxygenation does not change as the 

increase in oxygen consumption is balanced with the increase in oxygen supply. The imaging 

was done using a 1.5T MRI system and a gradient-echo sequence. The group found that 

dipyridamole induced blood flow velocity to increase by 124±27% and T2* (SI) increase of 
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46±22%. Contrastingly, dobutamine caused a 41±25% increase in coronary flow, and 

correspondingly no increase in SI (-5±19%). As hypothesized, the increase in blood flow due 

to dipyridamole, with no resultant increase in oxygen demand, resulted in increased 

concentration of oxyhemoglobin to deoxyhemoglobin, thereby reducing susceptibility 

effects and leading to an increase T2*. Similarly, the injection of dobutamine led to an 

increase in oxygen demand, but with resulting balanced oxygen supply, there was no change 

in concentration of deoxyhemoglobin, and thus no change in T2*. This study was of major 

importance as it helped to exclude various factors such as blood volume and velocity as 

potential confounder to oxygenation-sensitive imaging and paved the way for future studies 

using the technique. 

In 2005, Shea et al., conducted a study to assess the feasibility of using a T2-prepared 

steady-state free precession BOLD imaging sequence for detecting SI changes in a stenosis 

model13. The group argued for the use of a T2 sequence as opposed to the traditionally used 

T2*-weighted sequence highlighting that T2* sequences were much more susceptible to 

local field inhomogeneities and that T2-weighted sequences were less susceptible to motion 

artifact and produced better signal-to-noise ratios.  

Building on the findings of Li et al., Vöhringer et al., conducted a study to assess 

feasibility of SSFP BOLD-CMR to accurately detect changes of myocardial oxygenation in 

vivo14. The study utilized a canine model to assess the hypothesis using selective 

intracoronary vasodilation. A 1.5T MRI system was used and single mid-ventricular short-

axis slice was used for images. The sequence used for imaging was a T2*-sensitive cine SSFP 

(TR/TE: 5.8ms/2.9ms, flip angle = 90°). Acetylcholine was infused into the left circumflex 

artery (LCX) at three increasing doses: 0.1 µg/min (Ach1), 1 µg/min (Ach2), and 10 µg/min 
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(Ach3). Similarly, adenosine was infused at 3 increasing rates: 30 µg/min (Ade1), 150 

µg/min (Ade2), and 300 µg/min (Ade3). The imaging protocol was as follows: BL1, Ach1-3, 

BL2, Ade1-3, and BL3 (where BL was baseline). The study observed a significant increase in 

LCX blood flow associated with drug-induced vasodilation in addition to no significant 

change in flanking repeated baseline measurements. Blood flow increase was dose-

dependent, but was associated with progressively smaller increases in coronary sinus 

oxygen saturation (SvO2). Interestingly, the group found a correlation (r2 = 0.84, p<0.001) 

and exponential relationship when comparing SvO2 and LCX flow, with SvO2 approaching a 

horizontal asymptote around 87% when mean arterial oxygen saturation reached 96.7% 

(Figure 9, left). Most importantly, it was observed that there was a linear relationship 

between SvO2 and SI generated from oxygenation-sensitive CMR (Figure 9, right). The study 

was one of the first to compare use of a T2*-sensitive SSFP BOLD sequence to compare 

changes in SI associated with intracoronary vasodilators. Interestingly, the group suggested 

the potential for use of this sequence for assessment of myocardial ischemia, by 
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extrapolating the linear correlation graph into ischemic range. 

3.2.2 Clinical Studies 
 

Wacker et al., completed one of the first studies assessing OS-CMR in a CAD patient 

population15. The study was composed of 16 healthy volunteers, with no previous history of 

cardiovascular disease, and 16 patients, with known single-vessel CAD with >70% stenosis 

on coronary angiogram. Imaging was completed using a 1.5T MRI system using a segmented 

gradient echo pulse sequence. Images were acquired at baseline and repeatedly following 

dipyridamole infusion every minute until heart rate returned to baseline level. In the 

volunteers, T2* SI increased significantly by 10±5% following dipyridamole infusion. 

However, in the patients, even under rest conditions, regions with reduced T2* SI could be 

identified, and corresponded with areas of wall motion abnormalities. Two of the patients 

from the study underwent PCTA and CABG, and were re-assessed following their respective 

procedures (10 weeks and 20 week, respectively). It was found that regions that previously 

Figure 9: LEFT: Comparing coronary sinus oxygen saturation (SvO2) and LCX (left coronary artery) blood flow; RIGHT: Linear 
correlation of SvO2 and signal intensity generated by oxygenation-sensitive CMR14. 
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showed marked reductions in T2* compared with normal myocardium, were less 

pronounced following interventions. 

In the same year (2003), Friedrich et al. conducted a study with 25 patients to 

compare stress-induced angina OS-CMR results with results generated by quantitative 

angiography and thallium single-photon emission computed tomography (SPECT)16. 

Imaging was completed using a 1.5T MRI system and a single-slice T2*-sensitive gradient-

echo planar imaging pulse sequence for OS images. Quantitative angiography indicated that 

23 of the 25 patients had coronary stenoses >50%, additionally 10 of these patients had 

stenoses >75% (severe). Oxygenation-sensitive CMR results showed a mean SI change of 

+0.94±0.67% for segments with no stenosis, +0.27±0.63% for segment associated with 

stenosis <50%, and +0.84±0.76% for segments related to stenosis of 50-75%. Most 

interestingly, segments associated with a stenosis >75% showed a significant mean change 

of -2.33±0.99%. The study identified an optimal cutoff value of 1.2% for SI change to 

delineate segments related with <75% or ≥75% stenosis. Using 1.2% as a cutoff value, OS-

CMR displayed a sensitivity of 88% and specificity of 47%. Similar results were found when 

assessing SPECT data, although there was no significant correlation between the results from 

OS-CMR and SPECT. The group concluded that for the patient population studied, OS-CMR 

compared favorably with thallium SPECT, and given the fact that OS-CMR directly measures 

tissue oxygenation, it could have promise for clinical use.  

Manka et al. built on previous research and conducted a patient study using a 3T MRI 

system to assess the ability of OS-CMR to detect stress-inducible myocardial ischemia17. The 

study was composed of forty-six patient with suspected or known CAD who underwent OS-

CMR imaging prior to clinically-indicated coronary angiography. Quantitative coronary 
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angiography was used as the standard of reference and defined 3 types of segments: 1) 

normal segments (segments in patients with no CAD), 2) ischemic segments (supplied by 

coronary arteries with >50% stenosis), and 3) non-ischemic segments (supplied by coronary 

artery without significant stenosis in patients with significant CAD). At rest, ischemic 

segments of the myocardium showed much lower T2* than normal segments and non-

ischemic segments (26.7±11.6 ms, 31.9±11.9 ms, and 31.2±12.2 ms, respectively). During 

adenosine-induced stress, T2* values increased significantly in normal segments (37.2±14.7 

ms), but did not increase significantly in non-ischemic and ischemic segments when 

comparing rest and stress. The group also calculated global T2* values and found that in 

patients without significant CAD, T2* changed significantly between rest and stress 

(32.2±3.5 ms vs. 37.4±6.3 ms, respectively). Contrastingly, in patients with significant CAD, 

global T2* value showed no significant difference between rest and stress (30.3±5.3 ms vs. 

30.7±5.5ms, respectively). The study concluded that it was feasible to use 3T OS-CMR to 

differentiate normal, ischemic and non-ischemic myocardial segments. Additionally, the 

study showed the ability of OS-CMR to non-invasively identify patients with significant CAD. 

Another study conducted in the same year, Karamitsos et al., attempted to elucidate 

the interplay of ischemia, perfusion, and oxygenation in CAD using OS-CMR18. The study 

assessed twenty-two patients with CAD, defined as at least one stenosis >50% on 

quantitative coronary angiography (QCA). In addition, they study assessed ten healthy, age-

matched volunteers. The patients and volunteers underwent OS-CMR using a 3T MRI system 

at rest and during adenosine-induced stress. The imaging was completed using a single mid-

ventricular slice and a T2-prepared ECG-gated SSFP sequence (TR: 2.86ms, TE: 1.43ms; flip 

angle: 44°). Patients and volunteers also underwent a PET scan using oxygen-15-labeled 
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water, again at rest and stress. PET scans were used as a method to measure myocardial 

blood flow (MBF) and coronary flow reserve (CBF). Using QCA as the gold standard, cut-off 

values were established for both PET and OS-CMR. A cut-off value of stress MBF 

≤2.45mL/min/g was determined for segments that were supplied by significantly stenosed 

vessels (79% sensitivity, 84% specificity). Similarly, for OS-CMR after stress, <3.74% change 

in SI defined segments supplied by stenosed vessels (sensitivity: 67%, specificity: 88%). The 

group also noted good agreement between the two techniques on a per-subject basis. The 

study found, in CAD patients, there was a dissociation in a significant proportion of 

myocardial segments between regional blood flow (perfusion) and oxygenation. It was noted 

that 40% of segments with impaired hyperemic blood flow, as assessed with PET, showed 

normal oxygenation at stress. Conversely, in 88% of segments where hyperemic blood flow 

was above the cut-off value, oxygenation was also normal. The significant contributions of 

this study was the notion that reduced blood flow and perfusion at stress within segments 

classified as having significant stenosis (using QCA), do not necessarily display reduced 

oxygenation. It also highlighted the potential for OS-CMR to play a gatekeeper role for 

invasive interventions by determining hemodynamic significance of stenosis by assessing 

changes in oxygenation. In 2012, the same research group, building on the previous results, 

conducted a study comparing the same OS-CMR sequence (T2-prepared SSFP) to first-pass 

perfusion images at rest and stress in sixty patients with suspected CAD19. All patients were 

scheduled for elective angiography as part of routine clinical care. Using QCA as a reference, 

it was found that 68% of patients had significant CAD. For identifying significant stenosis 

using OS-CMR it was noted that the technique displayed an accuracy of 86%, a sensitivity of 

92% and a specificity of 72%. When using perfusion as the reference standard, OS-CMR 
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(using a cut-off value of 2.64% change in SI) displayed a diagnostic accuracy of 84%, 

sensitivity of 92% and specificity of 72% for identifying significant coronary stenosis. The 

group concluded once again that hypoperfusion may not necessarily indicate deoxygenation 

and cellular ischemia, noting that OS-CMR achieved favorable accuracy for identifying 

significance of CAD. 

Walcher et al., also in 2012, aimed to validate BOLD-CMR by comparing it against the 

invasively measured gold-standard, fractional flow reserve (FFR)20. The study assessed 

thirty-six patients with angina pectoris and suspected CAD using a 1.5T system. For BOLD 

imaging, a T2-prepared SSFP sequence was utilized (TR: 2.6 ms; TE: 1.3 ms, flip angle: 90°), 

and images acquired in 3 short-axis slices (apical, midventricular, and basal). BOLD imaging 

protocol was completed both at rest and following adenosine-infusion. For FFR 

measurements, a value ≤0.80 during adenosine infusion was chosen as a cut-off value for 

identifying coronary stenoses causing ischemia. The group found that BOLD-CMR values and 

invasively-measured FFR values were highly correlated. It was found that BOLD-SI of 

myocardial segments supplied by coronary arteries with FFR≤0.80 were significantly lower 

than those segments supplied by arteries with FFR>0.80. It was concluded that BOLD-CMR 

could serve as an alternative to first-pass perfusion for the detection of hemodynamically 

significant CAD. 

3.2.3 OS-CMR and Blood Gas Manipulation 
 

For OS-CMR to have clinical potential it requires some mechanism of inducing cardiac 

stress, as seen in the various aforementioned clinical studies. The pharmacological stress 

agent most commonly used for CMR is adenosine. Karamitsos et al., conducted a study with 
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351 consecutive patients with suspected or known CAD21. There were no serious adverse 

events observed in this study, but in four patient the scan had to be stopped during 

adenosine at the subjects’ request. Most striking was the occurrence of chest pain, 

breathlessness, and flushing, headache or dizziness which occurred in 57%, 45% and 43% 

of patients, respectively. This highlights the underlying issue that although adenosine is 

tolerated, in almost half of all patients that receive intravenous adenosine infusion, there is 

discomfort. In addition, in 2013, the U.S. Food and Drug Administration (FDA) released a 

safety announcement regarding the rare but serious risk of heart attack and death related to 

the use of adenosine and regadenoson22. This underscores the need for viable alternatives 

to pharmacological stress agents, such as adenosine, if possible. 

Carbon dioxide is a potent vasodilator that has been examined in the brain, and more 

recently heart, to show that even small increases induced by breath-holding can increase 

cerebral and myocardial blood flow23–26. Guensch et al., showed this effect of increased 

myocardial blood flow using a swine model27. The authors utilized a T2*-weighted SSFP 

sequence and a 1.5T MRI system. The group induced 60-second breath-holds in nine 

anesthetized swine and acquired OS-CMR images throughout the breath-hold. Blood samples 

were taken immediately prior to and following the breath-hold and analyzed using a blood 

gas analyzer to assess changed in blood gases due the breath-hold. A strong linear 

correlation (r=0.90, p=0.010) between change in paCO2 and change in myocardial SI was 

found. The study indicated the potential for CO2 manipulation, such as breath-holding, to be 

used in combination with OS-CMR for diagnostic imaging. 

Guensch et al., building on previous animal study, conducted a study with healthy 

human volunteers to assess the feasibility of using OS-CMR combined with breathing 
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maneuvers to elicit changes in myocardial blood flow and consequently myocardial signal 

intensity28. The study recruited eight healthy volunteers and six aquatic athletes to perform 

various breathing maneuvers. The eight volunteers performed a free maximal breath-hold 

and 2 sets of hyperventilation of 1 and 2 min each. The aquatic athletes performed a timed 

60-second breath-hold and a maximal breath-hold. The identical imaging parameters were 

used. The study found that free maximal breath-holds resulted in a significant increase 

(8.2%) in myocardial SI, and conversely, hypoventilation by 120 seconds of hyperventilation 

led to a significant decrease (7.5%) in myocardial SI. The major contribution of this study 

was observed changes in myocardial SI due to hyperventilation, which could be observed 

using OS-CMR. The decrease in pCO2 as a result of hyperventilation, lead to vasoconstriction, 

decrease in myocardial blood flow and consequently a drop in SI. This study highlighted the 

potential for combining hyperventilation and apnea to produce changes in myocardial signal 

intensity for clinical use of OS-CMR sequences, especially if the change produced by 

breathing maneuvers could be comparable to adenosine.  

Most recently, Fischer et al., compared the vasodilatory potential of the 

aforementioned breathing maneuvers to adenosine using OS-CMR imaging29. The study 

recruited twenty healthy volunteers who underwent OS-CMR imaging using a 3T MRI 

system. A balanced steady-state free precession (bSSFP) sequence was used (TE/TR: 

1.70/3.4 ms, flip angle: 35°). The volunteers performed a combined 60 second 

hyperventilation followed by maximal voluntary breath-hold maneuver. A single 

measurement was acquired prior to hyperventilation and imaging was acquired 

continuously during the breath-hold. In addition, the volunteers performed a maximal 

breath-hold (without hyperventilation). Lastly, the volunteers received adenosine infusion 



27 
 

(140µg/kg/min), where image acquisition took place immediately before and 3.5 minutes 

after beginning of the infusion. It was found that pharmacological vasodilation with 

adenosine resulted in an increase of 3.9±6.5% in myocardial SI. Contrastingly, 

hyperventilation produced a significant decrease (-10.6±7.8%) in SI, and the following 

maximal breath-hold produced an increase (14.8±6.6%) in SI. The maximal breath-hold 

without hyperventilation produced an increase in SI similar to that of adenosine (3.1±3.9%). 

The study concluded that combination of hyperventilation and maximal breath-hold 

produced a much larger change in myocardial oxygenation than standard dose of adenosine, 

as assessed by OS-CMR. This study is of major importance as it shows that breathing 

maneuvers could serve as a viable alternative to the use of adenosine. Breathing maneuvers 

not only produces a much larger change in signal intensity, but are safer, more efficient and 

less costly and thus may be a much better tool, when combined with OS-CMR, for assessing 

coronary vasomotor response. This study also assessed the tolerance of breathing 

maneuvers compared to adenosine infusion, using self-reported discomfort levels associated 

with both. It was found that breathing maneuvers were much better tolerated as no subject 

reported that the maneuvers were difficult or inconvenient.  

4.0 Potential Confounders of OS-CMR 

4.1 Artifacts 

 The homogeneity of the B0 magnetic field is critical component in acquiring images 

without signal loss or artifact. The B0 homogeneity of an empty magnet is very high, but this 

homogeneity is greatly reduced when a patient is inside the bore due to susceptibility. 

Magnetic susceptibility refers to the ability of an object placed in the magnetic field to 
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become magnetized itself. Depending on the type of material, air, water, and different 

biological tissues, this susceptibility can vary greatly. Additional magnetic fields produced 

by the objects themselves cause inhomogeneity in the B0 field and result in susceptibility 

artifacts. Most importantly, variations causes by susceptibilities are proportional to field 

strength, therefore making susceptibility artifacts much more pronounced at 3T than 1.5T30.  

One of the major benefits of using a 3T system, increased signal-to-noise-ratio (SNR), 

also leads to increased artifact-to-noise-ratio (ANR). In regards to bSSFP sequences, they are 

sensitive to off-resonance effects, which often results in banding artifacts in the acquired 

image. Additionally, artifacts from pulsatile flow are also increased when using 3T31. 

Correction for artifacts and sequence optimization to minimize artifacts still remains a major 

limitation of 3T OS-CMR. Shimming techniques are often employed to correct for field 

inhomogeneities in the magnetic field. 

4.1.1 Lung-heart interface susceptibility artifacts 

 Atalay et al. noted that significant magnetic field inhomogeneities were observed 

surrounding the myocardium at magnetic field strengths 1.5T and greater32. These artifacts 

were most frequent along inferoapical myocardial region. The group assessed (using an 

animal model) various sources for the origin of the artifact and concluded that the interface 

between the myocardium and the lungs was the primary cause of these artifacts. 

Additionally, the group acquired images post-euthanasia at three different TEs, and filled the 

chest cavity with aqueous CuS04 solution, in attempt to remove air in the chest cavity as a 

confounding factor in artifact generation. Figure 10a shows the image acquired with a TE of 

4.7 ms, where the edges of the right and left lung can be seen generating triangular-shaped 
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artifacts. These artifacts became larger with increasing TE (Figure 10b and c). Finally, when 

the lung was resected the artifact in the myocardium was no longer observed (Figure 10d). 

The conclusion was reached that the large difference in magnetic susceptibility between air 

and tissue was the primary reason, as the artifact disappeared with lung resection. 

 

 

Figure 10: Post-euthanasia images with chest cavity filled with aqueous CuS04. Images a-c show the effect of varying TE on 
the image distortions, while d shows the effect of partially resecting the lungs on apical artifacts. RL: right lung; LL: left 
lung32. 

4.1.2 Metal implants 

 Metal implants, specifically ferromagnetic implants, are a contraindication for MR 

imaging in patients. Nijveldt et al., demonstrated that CMR at 3.0T was feasible in patients 

treated with stenting33. Although image quality was sufficient, quantitative assessment was 

less reliable than 1.5T due to dark band, flow and stent artifacts. The group concluded that 

further optimization of the sequences was necessary for clinical use34. 

 Generally, the risks associated with ferromagnetic implants are migration, induction 

of an electrical current and heating, all of which are described by Levine et al. in “Safety of 

Magnetic Resonance Imaging in Patients with Cardiovascular Devices”35. Ferromagnetic 

objects experience an attractive force in the presence of a magnetic field, as a result, these 
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devices may be moved, rotated, dislodged, or accelerated toward the magnet. This migration 

of implanted devices has the potential to cause significant patient injury. During the course 

of an MR examination, rf pulses transmit energy to the body of the patient. Some metallic 

devices can act as an “antenna” causing concentration of rf energy and thus leading to 

excessive localized heating. Induction of electrical currents in implantable devices is possible 

due the use of gradient magnetic fields, which are rapidly turned on and off during image 

acquisition. Levine et al. found that although current-generation scanners may not directly 

excite cardiomyocytes, there is potential for induced currents to cause arrhythmias. 

 In addition to posing risk to the patient or the MR system, metallic implants may have 

a significant effect on the quality of images obtained. The most prevalent image artifact 

associated with metallic objects is loss of signal due to more rapid dephasing of spins. Thus, 

near metal objects there is loss of signal and black areas on the acquired image36. Although 

many implanted cardiac devices/objects are safe for imaging, the potential artifacts 

produced by these devices may pose as confounders for widespread clinical use of OS-CMR 

to accurately assess myocardial oxygenation. 

4.2 Fluid Status 

4.2.1 Physiological Impact 
 

Numerous studies have been completed to assess the effects of acute hemodilution 

on animal and human physiology. In addition to examining physiological changes associated 

with hemodilution, a handful of studies have been conducted to visualize changes that occur 

during hemodilution utilizing magnetic resonance imaging. Understanding the underlying 

physiological changes is important to build understanding of results produced in MR studies. 
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Chapler and Cain summarized cardiac-specific physiological changes associated with 

isovolemic hemodilution or acute anemia from various studies using a dog model37. The 

hemodilution was usually completed by infusing 6% dextran (molecular weight between 

60,000 and 75,000) in saline, while simultaneously removing arterial blood. Focusing on the 

cardiovascular system, one of the most prominent changes associated with hemodilution 

was the increased cardiac output. One of the factors explaining this rise in cardiac output is 

the relationship between magnitude of rise in cardiac output and reduction in blood 

viscosity38. A decrease in viscosity leads to a reduced cardiac afterload and increasing venous 

return39,40. Hatcher et al. (1959) showed that sympathectomy led to a reduced cardiac output 

response following rapid hemodilution. Similarly, in conscious dogs with denervated hearts, 

a smaller rise in cardiac output was seen following hemodilution when compared with 

control animals with intact innervation41.  

Another, potential explanation for increased cardiac output was related to changes in 

venomotor tone42. Chapler et al. noted a shift of blood volume from peripheral to central 

following hemodilution, by assessing weight changes in the dog hind-limbs43. The hypothesis 

was that the shift in blood volume would increase venous return and thus cardiac output. It 

was postulated that the volume shift was driven by alpha-adrenergic-mediated increase in 

venomotor tone. Blocking alpha-adrenergic receptors led to a reduced cardiac output 

response. Utilizing previously known information about aortic chemoreceptor stimulation 

in causing various peripheral circulatory effect, including veno-constriction, Szlyk et al. 

carried out another study, where aortic chemoreceptors were surgically denervated44. The 

major finding was that hemodilution-driven cardiac output response was reduced by 50% 

in the denervated group when compared to control animals. The last item discussed in 
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Chapler and Cain’s review paper is redistribution of blood flow to meet increased oxygen 

demands as a result of anemia caused by hemodilution. Race et al. conducted a study with 

progressive hemodilution in anesthetized dogs until hematocrit was reduced to 10-20%45.  

The study noted that cardiac output increase was 100% while coronary blood flow was 

closer to 250% increase. Interestingly, vertebral, lower aortic and mesenteric arterial flow 

were also increased proportionally to the increase in cardiac output, while on the other hand, 

renal, hepatic, and carotid artery flows did not have a proportional increase. 

4.2.2 Acute Hemodilution and MR 
 

Combining oxygenation-sensitive MR with knowledge of physiological changes 

elicited by acute hemodilution, allows for understanding the impact of hemodilution and  

fluid status on signal intensity. This principle has been demonstrated in several neurological 

BOLD studies using animal models. Understanding that arterial and venous hemoglobin 

were major determinants of BOLD contrast, Lin et al. (1998) sought to assess how changing 

the factor that causes the magnetic susceptibility, hemoglobin concentration, would alter the 

MR signal intensity46. The group assessed the effect of mild and moderate acute 

hemodilution, resulting in hematrocrit (HCT) reductions from baseline values of 

approximately 25% (mild) and 37% (moderate). Their pertinent imaging parameters were: 

TR = 83ms; TE = 40ms; and flip angle = 40°. The results from the study showed a reduced 

R2* for mild hemodilution and an even greater reduction in R2* (inverse of T2*, 1/T2*) for 

the moderate hemodilution group. The group concluded that intravoxel concentration of 

deoxyhemoglobin was the main contributing factor causing changes in signal intensity. It 

was shown that the increase in signal intensity (or reduction in R2*) was proportional to the 
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decrease in HCT by hemodilution.  

Levin et al. (2001) continued to build on the studies showing changes in MR signal 

intensity associated with acute hemodilution, by taking it one step further and assessing the 

BOLD fMRI activation changes as a result of hemodilution47. The group primarily assessed 

BOLD percent activation (BPA) in response to photic stimulation in 24 subjects (15 females, 

9 males). All subjects had baseline blood hematocrit measured. In addition, in the 9 male 

subjects, BPA was measured twice; before and after rapid infusion of 1L normal saline. This 

subgroup study was done to assess the effect of acute hemodilution on stimulation-based 

BPA changes. The pertinent imaging parameters were: TR = 1000-2000 ms, TE = 40ms, flip 

angle = 66°. When assessing the differences in just baseline HCT (without any hemodilution) 

and BPA, the study showed a significant dependence of BPA on HCT. At baseline, there was 

also a sex-specific difference in BPA, with males showing a 20% greater BPA than women 

(5.8±2.1 vs. 4.6±1.1, p<0.05). Lastly, for the subgroup study with hemodilution using 1L 

rapid infusion saline, a 6% decrease in HCT was observed (44.6±3.6% vs. 42.0±2.4%, 

p<0.05). Correspondingly, there was a statistically significant 8% reduction in BPA as a result 

of hemodilution. The group concluded that the extent of BOLD signal changes due to 

activation were highly dependent on hematocrit, and in addition that these activation based 

signal changes were attenuated when hematocrit is lowered due to acute hemodilution with 

saline. 

To date, no studies have been done to apply the findings from neurological BOLD 

studies to assess the effects of hemodilution on oxygenation-sensitive CMR. This would have 

significant implications for the future clinical use of OS-CMR in varied patient populations, 

especially those that display altered fluid status, such as patients with heart failure and/or 
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anemia. The study described in this manuscript was an initial attempt to quantify the effect 

of acute hemodilution on changes in myocardial signal intensity within healthy human 

volunteers using a 3T MRI system. The goal of the study was to assess hemoglobin 

concentration as a potential confounder in OS-CMR. This was completed by first assessing, 

in vitro, the effect of serial blood dilutions on signal intensity in a 3T environment, followed 

by an in vivo study. 

4.3 Acquisition Parameters 
 
 Another potential confounding factor for clinical implementation of OS-CMR is the 

lack of standardization of MR parameters. The body of research is still relatively young and 

rapidly growing in OS-CMR, thus there will be need in the near future to create a 

standardized protocol with specified parameters in order to easily compare research and 

results generated by the use of this sequence. 

 The first issue to assess magnetic field strength. Although most recent publications in 

OS-CMR/BOLD-CMR have been completed using a 3T MRI system, it is worth noting that 

previous studies have elucidated the large difference in oxygen sensitivity when comparing 

both 1.5T and 3T. The major contributing factor is that T2* relaxation is reduced when going 

from 1.5T to 3T by a factor of 248. The significance of this reduction in T2* time at a higher 

field strength is that oxygenation sensitive effect is increased. Dharmakumar et al., using a 

canine model, found a three-fold increase in oxygen sensitivity at 3T compared to 1.5T using 

identical sequence parameters49. Given the fact that 3T imaging provides increased oxygen 

sensitivity, the comparison of MR sequence parameters as a potential confounding factor will 

be limited to studies done using a 3T MRI system.  
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4.3.1 Echo Time (TE), Repetition Time (TR), Flip Angle (FA) 

 Table 1 outlines several studies completed in the last few years using oxygenation-

sensitive imaging at 3T, the sequence parameters used in each study are also outlined. 

 

Table 1: Sequence details and parameters of clinical studies using oxygenation-sensitive CMR at 3T 

Author Year Sequence Model 
TR 

(ms) 
TE 

(ms) 

Flip 
Angle 
(α) 

Dharmakumar et al.49  2008 T2-prepared 
SSFP 

Canine 5.20 2.60 60 

Jahnke et al.17  2009 3D T2-
prepared 
segmented GE 

CAD Patients 2.00 1.50 30 

Karamitsos et al.50  2010 T2-prepared 
SSFP 

CAD Patients/ 
Healthy 
Volunteers 

2.86 1.43 44 

Arnold et al.19  2012 T2-prepared 
SSFP 

CAD Patients/ 
Healthy 
Volunteers 

2.86 1.43 44 

Karamitsos et al.51  2012 T2-prepared 
SSFP 

Syndrome X  
Patients/ 
Healthy 
Volunteers 

2.86 1.43 44 

Karamitsos et al.52  2013 T2-prepared 
SSFP 

HCM/Athletes
/Healthy 
Volunteers 

2.86 1.43 44 

Fischer et al.29  2014 bSSFP Healthy 
Volunteers 

3.40 1.70 35 

 

It can be deduced from Table 1 that currently there is no standardized protocol for 

optimized OS-CMR image acquisition. Gradient echo (GRE) sequences can be made more 

sensitive to T2* decay by adjusting echo time (TE), repetition time (TR) and flip angle53. 

Generally, increasing TE increases the T2* sensitivity of a GRE sequence. Additionally, 

keeping the flip angle low allows the magnetization in the longitudinal vector to remain close 

to fully relaxed. This also reduces T1 effects, making T2* effects more dominant54. Lastly, 
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increasing TR also reduces the T1 effects. Unfortunately, bSSFP sequences are more prone 

to banding artifacts when longer TRs are employed. Dharmakumer et al. tested the effects of 

a short TR (3.5ms) and long TR (6.0ms) SSFP BOLD imaging by assessing two features: (i) 

endocardial blur and (ii) myocardial inhomogeneity. The group found that although there 

was no statistically significant difference in image quality, the shorter TR (3.5ms) 

consistently achieved lower scores when assessing endocardial blur and myocardial 

inhomogeneity (scored 1-5, 1 = best and 5 = worst)55. Another important point to consider 

is that flip angle often needs to be adjusted in a 3T environment, as SAR (specific absorption 

rate) is often exceeded at 3T48. Specific absorption rate refers the amount of energy that is 

deposited or transferred to the object being imaged in a scanner due to use of RF excitation 

pulses. In order to minimize global and local rises in body temperature, patient safety 

guidelines and regulatory policies have established threshold values for SAR. Application of 

the same acquisition parameters used in a 1.5T scan results in a four-fold increase in SAR at 

3T. Thus, possible solutions to minimize SAR are to decrease the flip angle or increase TR, 

the latter of which would result in flow artifacts and myocardial inhomogeneities as 

previously discussed56. 

5.0 Methods: 

5.1 In vitro calibration study 
 
The presence of various BOLD studies conducted in 3T environments with slight variations 

in acquisition techniques within each study warranted the use of an in vitro model for 

calibration. The use of an in vitro model allows for better control of confounding factors by 

limiting them to gain a clearer understanding of BOLD effects. 
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Preparation 

Blood samples were acquired from eight swine utilized in a different study. Before 

the animals were sacrificed, 50-mL of arterial and venous blood was acquired.  

 

Experimental Protocol 

Thirteen heparinized 10-mL syringes were prepared to complete serial dilutions of 

the arterial and venous blood with saline. The following table outlines the targeted blood 

concentrations. All volumes are listed in mL. 

Table 2: Blood dilution protocol for arterial and venous blood using saline 

Syringe Arterial Blood Samples 

Concentration 
[Hct] 

Volume 
[blood] 

Volume 
[saline] 

1 (A100) 100% 10 0 
2 (A90) 90% 9 1 
3 (A80) 80% 8 2 
4 (A70) 70% 7 3 
5 (A60) 60% 6 4 
6 (A50) 50% 5 5 

7 0% 0 10 
 Venous Blood Samples 
 Concentration 

[Hct] 
Volume 
[blood] 

Volume 
[saline] 

8 (V100) 100% 10 0 
9 (V90) 90% 9 1 

10 (V80) 80% 8 2 
11 (V70) 70% 7 3 
12 (V60) 60% 6 4 
13 (V50) 50% 5 5 

 

Once all dilutions were complete, 1-mL was transferred from each syringe to 3-mL 

heparinized blood gas analysis tubes.  All syringes were emptied of air and capped to limit 

any confounding interactions of the blood with the environment. Blood gas analysis was 

completed using an ABL80 FLEX blood gas analyzer (Radiometer, Denmark) to acquire oxy- 
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and deoxyhemoglobin concentrations, hematocrit, and oxygen saturation values. 

 

Magnetic Resonance Imaging Protocol 

All 10-mL syringes were places in a test tube rack and the rack was then submersed 

in a water tub. The water tub was placed on the MRI table. Imaging was performed in a 

clinical 3-T scanner (MAGNETOM Skyra 3T; Siemens, Erlangen, Germany) using an 18-

channel cardiac coil. Imaging was performed so that the B0 axis was perpendicular to the 

long axis of the syringes. An oxygenation-sensitive bSSFP sequence was used with the 

following parameters – voxel size: 1.5x1.5x10.0 mm; slice thickness: 10.0mm; bandwidth: 

1302Hz; TR: 3.49ms; TE: 1.57ms, flip angle: 35 degrees. 

 

Image Analysis 

All images were analyzed using certified software (cvi42, Circle Imaging, Calgary, AB, 

Canada). Manual contour tracing was employed to acquire the signal intensity from each 

tube of blood.  

 

Statistical Analysis 

 All variables were checked for Gaussian distribution using the D’Agostino-

Pearson omnibus normality test. Student’s t tests were performed to compare all signal 

intensity values between venous and arterial blood (unpaired/paired for those that passed 

normality, Mann-Whitney/Wilcoxon for those that failed normality). To test correlation 

between quantitative variables, Pearson correlation coefficients were determined. Linear 

regression was also performed on venous and arterial blood to compare hemoglobin 
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concentration and OS-SI. 

All statistical analysis was performed using Prism 6 (GraphPad Software Inc., 

California, USA). All variables are presented as means ± standard error of mean. 

5.2 In vivo volunteer study 
 
Participants 

We studied 22 healthy volunteer subjects over the age of 18 years with no prior 

known history of cardiovascular, cerebral, or respiratory disease. All participants were 

recruited through public advertisement. Participants were required to provide informed 

consent and complete questionnaire upon arrival to the hospital to ensure absence of 

contraindications for MRI. In addition, participants were instructed to refrain from 

consumption of caffeinated beverages and alcohol in the 12 h prior to MRI examination. 

Smoking was amongst the criteria for exclusion from the study, as well as pregnancy. 

 

Experimental Protocol 

Prior to start of MRI examination, an IV catheter (18G) was placed in the forearm for 

blood sampling and delivery of crystalloid solution. A 5mL blood sample was acquired 

following placement of IV catheter. The blood sample was assessed for hemoglobin 

concentration (g/L) and hematocrit (%). In addition, resting heart rate and non-invasive 

blood pressure measurements were recorded in a supine position. An alarm bell was 

provided and heart rate was monitored during the scan. 

Following baseline (normovolemic) blood sampling, baseline images were acquired. (5-8 

minutes) of 1L crystalloid solution (Lactated Ringer’s Solution) was rapidly infused within 
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5-8 min with a pressure bag via the IV-line. Another 5mL blood sample was acquired after 

aspiration of residual Ringer’s Solution in the catheter. Normovolemic imaging protocol was 

repeated in the hypervolemic state, but functional imaging was placed at the end of the 

protocol, as opposed to the beginning. 

 

Cardiovascular Magnetic Resonance 

Imaging was performed in a clinical 3-T scanner (MAGNETOM Skyra 3T; Siemens, 

Erlangen, Germany) using an 18-channel cardiac coil. All images were acquired during 

breath-holds at end-expiration. Left-ventricular (LV) function was assessed using a standard 

ECG-gated balanced steady-state free precession (bSSFP) sequence in six long-axis slices 

with LV-centred radial positioning (slice thickness: 8mm; TR: 3.26ms; TE: 1.43ms). OS-CMR 

images were acquired in one mid-ventricular short-axis slice using a bSSFP sequence. 

Shimming was always performed along with frequency scouts if required. 

 

OS-CMR Protocol 

At end-expiration of a single breath-hold (baseline) a oxygenation-sensitive cine was 

acquired using a retrospective ECG-gated bSSFP cine sequence (slice thickness: 10.0mm; TR: 

3.49ms; TE: 1.57ms, flip angle: 35 degrees). Subjects were then asked to hyperventilate for 

60 seconds at a rate of approximately 35 breaths per minute. A metronome was utilized to 

ensure consistency of hyperventilation for all subjects. Following hyperventilation, 

volunteers were asked to perform a maximal breath-hold at end-expiration, and images 

(using the same oxygenation-sensitive sequence as baseline, but with multiple 

measurements) were acquired continuously throughout the breath-hold. Volunteers used 
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the alarm bell to signal when they could no longer perform the breath-hold, and scanning 

was stopped. 

 

Image Analysis 

All images were analyzed using certified software (cvi42, Circle Imaging, Calgary, AB, 

Canada). Left-ventricular function was assessed by use of manual endo- and epicardial 

contours at systole and diastole of the six long-axis views. For OS-CMR images, manual endo- 

and epicardial contour tracing was completed in an end-systolic frame. Mean and segmental 

myocardial signal intensity (SI) was automatically generated by the software following 

contour tracing. All SI values were expressed as percent change (ΔSI[%]) between two 

images.  

𝛥𝑆𝐼 (%) =  
𝑆𝐼(𝑝𝑜𝑠𝑡 𝑚𝑎𝑛𝑒𝑢𝑣𝑒𝑟) − 𝑆𝐼(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)

𝑆𝐼(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)
∗ 100 

 

For images acquired continuously during maximal breath-hold, the first image (taken 

immediately following hyperventilation) was used as the reference for calculating ΔSI[%]. 

Specifically, change in SI was assessed between single breath-hold baseline images at 

normovolemia and hypervolemia; as well, differences between end-hyperventilation, peak 

(max), and end-breath-hold SI changes were examined. 

 

Statistical Analysis 

All quantitative variables were checked for Gaussian distribution using the 

D’Agostino-Pearson omnibus normality test. Student’s t tests were performed to compare all 
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signal intensity values between time points (unpaired/paired for those that passed 

normality, Mann-Whitney/Wilcoxon for those that failed normality). To test correlation 

between quantitative variables, Pearson correlation coefficients were determined. 

All statistical analysis was performed using Prism 6 (GraphPad Software Inc., 

California, USA). All variables are presented as means ± standard error of mean. 

6.0 Results: 

6.1 Hemodilution in vitro study 

6.1.1 Blood Analysis 
 

All blood analysis values are summarized in Table 2 (Appendix - A). When comparing 

undiluted venous and arterial blood (V100 and A100, respectively) there was no significant 

difference between the signal intensity produced (246.5±25.4 vs. 410.0±98.3, respectively; 

p = 0.13). Conversely, when comparing venous and arterial blood at other dilutions (90, 80, 

70, 60, and 50) the mean SI values were significantly different. Hemoglobin concentrations 

(g/L)(Figure 11) and hematocrit (%) were not significantly different when comparing 

arterial and venous blood at each serial dilution level.  
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Figure 11: Tukey plot of hemoglobin concentration (g/L) for all dilutions of arterial and venous blood (V50 had an outlier 
point). A100 = Arterial 100% sample – no dilution, A90 = Arterial 90% sample (9mL of arterial blood and 1mL of LRS), 
similar dilution model followed for venous samples (V100, V90, etc.) 

6.1.2 Oxygenation-Sensitive MR Correlations 
 

A statistically significant correlation was found between %-change in SI and change 

in hemoglobin concentration when assessing all arterial and venous blood serial dilutions (r 

= -0.6651, p<0.001; r = -0.5485, p<0.005, respectively, Figure 12). Linear regression showed 

that slope was significantly non-zero for both arterial and venous blood. 
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Figure 12: Linear regression analysis of arterial and venous blood %-SI change correlated to change in hemoglobin 
concentration (g/L) 

 

Deoxyhemoglobin concentration (g/L) was determined using percentage deoxyhemoglobin 

of total hemoglobin (FHHb %) as measured by the blood gas analyzer. The change in venous 

blood deoxyhemoglobin concentration was significantly correlated with %-change in SI (r = 

-0.6515, p<0.001). In addition, venous oxygen saturation (SvO2) was positively correlated 

with %-change in SI (r= 0.6767, p<0.001). 

6.2 Acute hemodilution in vivo study 

6.2.1 Blood Analysis 
 

There was a significant difference in hemoglobin concentration at baseline 

(142.8±3.2 g/L) and following acute hemodilution (129.1±3.2 g/L; p<0.001). Similarly, there 

was a significant difference in hematocrit between normovolemia (baseline) and 

hypervolemia (42.09±0.86 % vs. 38.25±0.84 %, p<0.001). 
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6.2.2 Volunteer Demographics 
 

In total 24 volunteers were recruited, two volunteers were excluded due to 

claustrophobia and an undisclosed medical condition. Twenty-two volunteers completed the 

study. Eleven out of 22 (50%) volunteers were male and the other 11 were female. The mean 

age of all volunteers was 28.1±1.4 years (Figure 13). The average age of all male participants 

was 29.0±1.8 years. The average age of all female participants was 27.3±2.3 years. There was 

no significant difference in age between male and female participants. 

 

Figure 13: Age distribution of 11 male (blue), 11 female (red) and all 22 volunteers (black). 

6.2.3 Cardiac function 
 

Changes in cardiac function due to acute hemodilution with rapid infusion of 1L LRS 

are listed in Table 3. There was a significant increase in end-diastolic volume following 

hemodilution (142.5±8.0 vs. 147.3±7.9 mL, p<0.01). Stroke volume also displayed a 

significant increase following hemodilution (89.0±4.7 vs. 93.7±4.3 mL, p<0.005). Similarly, 

cardiac output had a significant increase from normovolemia to hypervolemia (5710±330 

vs. 6177±323 mL/min, p<0.005). Interestingly, there was no significant change in heart rate, 

but the rate-pressure product increased significantly (8012±366 vs. 8733±345, p<0.001). 
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Table 3: Cardiac function parameters before and after acute hemodilution with 1L LRS 

Cardiac Parameter Normovolemia Hypervolemia p-value 

End-Diastolic Volume (mL) 142.5 ± 8.0 147.3 ± 7.9 p<0.01 

End-Systolic Volume (mL) 53.5 ± 4.1 53.5 ± 4.2 N.S. 

Stroke Volume (mL) 89.0 ± 4.7 93.7 ± 4.3 p<0.005 

Ejection Fraction (%) 63.1 ± 1.3 64.3 ± 1.3 N.S. 

Cardiac Output (mL) 5710 ± 330 6177 ± 323 p<0.005 

HR (beats/min) 64.3 ± 1.7 65.8 ± 1.6 N.S. 

Rate-Pressure Product 8012 ± 366 8733 ± 345 p<0.001 

Systolic Myocardial Mass (g) 115.8 ± 7.2 114.4 ± 6.9 N.S. 

 
 

6.2.4 Baseline OS-CMR Correlations 
 

When comparing single-breath-hold baseline images (SSFP cine) at normovolemia 

and hypervolemia, there was a significant difference in %-change SI (3.2±1.2%, p<0.05). 

Comparison of %-change SI and change in hemoglobin concentration showed no correlation 

for baseline images. 

When comparing oxygenation-sensitive maps (T2*) at normovolemia and 

hypervolemia, there was no significant difference in T2* time (32.75±0.52 vs. 32.74±0.53 

ms). Interestingly, there was a statistically significant negative correlation between T2*-time 

and hemoglobin concentration (r = -0.46, p<0.005). 

6.2.5 Activation-dependent response 
 

Five different time points were analyzed to assess the activation-dependent response. 

Once the maximal breath-hold was started and continuous imaging began, the first systolic 

image was analyzed to represent changes in myocardial oxygenation after hyperventilation. 



47 
 

During the breath-hold, four time points were analyzed: 30-sec into the breath-hold, the 

peak SI, average SI during plateau, and end breath-hold SI. Signal intensities assessed during 

the breath-hold at 30-seconds, peak, plateau, and end-BH, were all analyzed as a percent-

change in SI from the SI determined at end-hyperventilation. 

At normovolemia, there was a drop in SI after hyperventilation of 11.89±1.59%, 

decrease. At hypervolemia, there a reduction of -8.57±1.52% in SI following hyperventilation 

(Figure 14a). The reduction in SI following hyperventilation was significantly different 

(p<0.05) between normovolemia and hypervolemia. 

There was a positive percent-change in SI (increase in SI) at the 30-second time point, 

which was showed a trend of being different between normovolemia and hypervolemia 

(11.70±1.93% vs. 8.26±1.59%, respectively; p=0.06; Figure 14b). The percent-change 

between end-hyperventilation and the peak SI reached during the breath-hold was 

significantly different between normovolemia and hypervolemia (14.55±1.92% vs. 

11.58±1.69%, respectively; p<0.05; Figure 14c). Similarly, when comparing percent-change 

in SI from end-hyperventilation to the plateau SI during the breath-hold, there was a 

significant difference between the two fluid states (10.68±1.79% at normovolemia vs. 

6.71±1.66% at hypervolemia; p<0.05; Figure 14d). Lastly, percent-change in SI calculated at 

the end of the maximal breath-hold was also significantly different between normovolemia 

and hypervolemia (6.76±1.74% vs. 2.37±1.25%, respectively; p<0.01; Figure 14e). Figure 15 

shows the percent-change in SI observed throughout the entire breath-hold (averaged for all 

volunteers) at both normovolemia and hypervolemia. 
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Figure 14: A) %-change in SI from baseline following hyperventilation; B) %-change in SI from end-hyperventilation to 30-
seconds into maximal voluntary breath-hold; C) %-change in SI from end-hyperventilation to peak signal intensity produced 
during maximal breath-hold; D) %-change in SI from end-hyperventilation to plateau (average SI of plateau period following 
peak SI) during breath-hold; E) %-change in SI from end-hyperventilation to end of maximal breath-hold; *p<0.05. 



49 
 

 

Figure 15: Non-linear regression model of %-change in SI over entire breath-hold for all volunteers at normovolemia (blue) 
and hypervolemia (red). 

 

In addition, breath hold times were assessed to look at the mean time elapsed to reach 

peak SI, as well as total breath hold time. The mean time to reach peak SI was not significantly 

different between normovolemia and hypervolemia (34.15±2.73 vs. 29.99±2.46, Figure 

16a). On the other hand, the total breath-hold time was significantly decreased following 

acute hemodilution, from 83.38±5.79 seconds to 68.66±4.76 seconds (p<0.001), Figure 16b. 
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Figure 16: A) Average time elapsed to reach peak SI during maximal voluntary breath-hold at normovolemia and 
hypervolemia; B) Average total length of maximal voluntary breath-hold at normovolemia and hypervolemia; *p<0.05. 

7.0 Discussion: 

7.1 Fluid Status as Confounder 

7.1.1 In Vitro Study 
 

When assessing the porcine blood using an oxygenation-sensitive SSFP sequence, the 

significant correlation of both arterial and venous blood SI change to hemoglobin 

concentration change showed that the serial dilution led to a change in blood oxygenation 

and thus OS-SI. The difference in the correlation coefficient between arterial and venous 

blood is explained by the fact that venous blood contains deoxyhemoglobin, which acts as a 

perturbing agent to decrease T2* time. In arterial blood, the change in SI is largely due to 

dilution by saline, without any additional confounders affecting T2* time.  

Previous studies, such as Lin et al. (1998) observed that the increase in SI (or 

reduction in R2*) following hemodilution was correlated with decrease in hematocrit, but 

these studies did not look at deoxyhemoglobin fraction directly. Our results highlighted a 

significant correlation between increase in signal intensity and decrease in 

deoxyhemoglobin concentration (r = -0.6515), indicative that the SSFP sequence used is 
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feasible to detect significant changes in SI due to hemodilution, although in vivo such severe 

hemodilution would not be observed. The maps showed a significant correlation between an 

increase in SI and decrease deoxyhemoglobin concentration, but did not show a significant 

correlation between decrease of total hemoglobin concentration and increase in SI. The 

maps are a quantitative assessment (T2* time) as opposed to the SSFP results, which are 

expressed as a percent change in SI compared to the undiluted V100 sample.  

Direct correlation of SSFP SI and hemoglobin or deoxyhemoglobin concentration is 

not possible as SI values produced by an SSFP sequence is highly variable and can be affected 

by field inhomogeneities. This is the reason why SSFP SI values are represented as a percent-

change in SI value as opposed to absolute T2* values, as this allows for comparing changes 

in SI during the breath-hold maneuver directly to the SI at the beginning of the maneuver. 

Thus this would control for any large variance due to changes in field inhomogeneities. No 

previous studies have assessed quantitative map data from a 3T MRI to correlate absolute 

T2* values with hemoglobin or deoxyhemoglobin concentrations.  

The major limitation of our in vitro study was small sample size (n=5) used for 

assessment with the SSFP sequence. Further, only four out of the five pigs’ blood samples 

were analyzed using maps, as one pig’s data was excluded due to artifacts. A larger study 

would be necessary to corroborate our conclusions and correlations between decrease 

deoxyhemoglobin concentration and increase in T2*. 

In addition, the SI generated when the imaging plane was longitudinal to the blood 

tubes was compared with data when the plane was transverse (Figure 17). This was done to 

assess any potential changes in SI that may be elicited by the orientation of the tubes, as was 

assessed in the study by Ogawa et al.8  



52 
 

 

 

 

There was no significant difference (p = 0.243) in SI between the longitudinal and transverse 

imaging protocols. This is in agreement with the findings of Ogawa et al., where blood 

capillary tubes were used and at much higher magnetic field strengths (7 and 

8.4T){Ogawa:1990vb}-ERROR. Although, there was no significant difference between the 

two imaging planes, there are more noticeable artifacts present in the center of the tubes in 

the transverse plane, which creates a difficulty when drawing the manual contours for 

analysis. Artifacts were also present in the longitudinal plane, seen as dark vertical lines 

inside the tubes, but did not represent a significant portion of the contour volume, unlike the 

transverse images. 

7.1.2 In Vivo Study 
 
 Blood analysis was the first method used to assess effective acute hemodilution 

following rapid infusion of 1L LRS. The significant reduction in hemoglobin (-9.6 ±2.3%) and 

Figure 17: (Top left) arterial blood and (bottom left) venous blood imaged in a longitudinal imaging plane 
(perpendicular to B0 magnetic field); (right) venous and arterial blood, respectively, imaged in a transverse 
plane (parallel to B0 magnetic field). 
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hematocrit (-9.1 ±2.1%) following rapid infusion indicated that acute hemodilution was 

effective. Among all male volunteers, the mean hemoglobin concentration at hypervolemia 

was 136.4 ±4.2 g/L. Among all female volunteers, the mean hemoglobin concentration at 

hypervolemia was 120.5 ±3.8 g/L. In comparison with laboratory reference values for adults, 

normal hemoglobin concentration is between 135-175 g/L for men and 120-160 g/L for 

women57. Generally, the lower limits of the aforementioned hemoglobin ranges for men and 

women are also used as cut-off values to indicate anemia. In the population of heart failure 

(HF) patients, it has been found that anywhere between 9.0% to 79.1% of patients present 

with anemia58. Although the reasons for anemia in HF patients is generally multi-faceted, one 

possible factor is that plasma volume expansion leads to anemia59. This highlights one 

potential patient population in which fluid status would need to be corrected for when 

considering oxygenation-sensitive CMR scan results. 

 In addition, potential factors that could have affected hemodilution and decrease in 

hemoglobin were assessed such as: gender, age, body mass index (BMI), and body surface 

area (BSA). In terms of gender, there were 11 total male volunteers (52.8%) and 10 total 

female volunteers (47.6%). Hemoglobin change (g/L) was compared between males and 

females and no significant difference was found between the groups.  When comparing the 

age of the male versus female participants there was no significant difference and there was 

no correlation between age and amount of hemodilution. Body mass index, was calculated 

by taking mass in kilograms and dividing by the squared-height of the participant (in 

meters). There was no significant correlation between BMI and level amount of decrease in 

hemoglobin following hemodilution. It should be noted that other studies have shown that 

the limitation of BMI, as it is strongly influenced by age and gender, which is not taken into 
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account in the formula for calculatio. Body surface area was determined using the Mosteller 

equation60 and showed no significant correlation with change in hemoglobin concentration 

following hemodilution. 

 Although no correlation was found between ΔSI and hemoglobin concentration when 

utilizing the SSFP sequence, the use of the quantitative T2* mapping sequence showed a 

significant negative correlation (r=-0.4650, p<0.05) between hemoglobin concentration and 

T2* time (ms)(Figure 18). 

 

Figure 18: Negative correlation observed between T2* time (ms) of the myocardium and hemoglobin concentration (g/L) 
when utilizing a T2* quantitative mapping sequence.  

 
This finding is in agreement with current understandings of susceptibility-weighted imaging, 

as a decrease in hemoglobin concentration (and consequently deoxyhemoglobin 

concentration) should result in increased T2* relaxation time. The change in T2* was not 

significantly different when comparing normovolemia and hypervolemia, but in a clinical 

setting with more severe cases of hemodilution or anemia, this change could be significant 

and important factor to consider in patient diagnosis. The mean T2* relaxation time at 
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normovolemia was 32.76 ±0.54 ms, which was slightly lower than some published values 

61,62, and slightly higher than other published values at 3T47. This variation in results could 

have been due to differences in the image acquisition parameters. Although flip angle was 

generally similar, between 30-35 degrees, the echo train length in our sequence was 3, 

opposed to 8 in the other studies referenced. 

In the assessment of the activation-dependent response (HVBH), it was observed that 

there were significant changes in OS-SI(%). At normovolemia a mean decrease of 11.68 

±1.65% from baseline was observed immediately following 60-sec of hyperventilation. This 

decrease following hyperventilation was similar to and even slightly larger than seen in 

other healthy volunteer studies29. The mean maximal change in SI following hyperventilation 

was 13.71 ±1.82%. This peak change is very similar to that seen in the Fischer, et al. study 

(14.8 ±6.6%)29, following an identical breathing-maneuver protocol. The time elapsed to 

reach the maximal change in SI was 34.03 ±2.86 seconds, which was slightly less than that 

observed in the aforementioned study (40 seconds). 

Five time points (end-HV, 30sec, peak, plateau, end-BH) were compared at 

normovolemia and hypervolemia for the assessing the change in activation-dependent 

response due to acute hemodilution. It was observed that at each time point there was a 

reduction in ΔSI (%) following acute hemodilution. At baseline, there was a 3.2±1.2% 

(p<0.05) increase in SI following hemodilution. This can be explained by the fact that a 

decrease in hemoglobin due rapid acute hemodilution, results in decreased concentration of 

deoxyhemoglobin and thus an increase in T2* relaxation time. This increase in T2* relaxation 

time is reflected in higher SI values obtained following hemodilution. When comparing the 

peak change in SI at both fluid states, it was observed that there was a significant decrease 
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in %-change from end-hyperventilation (14.55±1.92% at normovolemia vs. 11.58±1.69% at 

hypervolemia; p<0.05). This decrease reflects a -20.41% reduction in the peak SI change 

following hemodilution. In the study by Levin et al, volunteers underwent fMRI both prior to 

and following rapid hemodilution with 1L saline. A 6% reduction in hematocrit was observed 

and 8-31% reduction in BOLD percent activation (BPA). BOLD percent activation was 

measured in response to photic stimulation. In our study, instead of photic stimulation, 

breathing-maneuvers were utilized as a method to measure the activation-dependent 

response. The aforementioned study assessed the brain and was completed at 1.5T, 

therefore it is difficult to directly compare results, but our study results indicates similar 

changes in signal intensity with similar changes in hematocrit due to acute hemodilution. 

Breath-hold capacity, assessed by measuring total breath-hold time, was significantly 

reduced following acute hemodilution. At normovolemia, the mean breath-hold time was 

79.62 ±4.63 seconds, while at hypervolemia BH time was reduced by -16.63 ±0.62% to 66.38 

±4.39 seconds. The reduction in hemoglobin concentration following hemodilution results 

in a decrease in total oxygen-carrying capacity. During the voluntary apnea maneuver, 

chemoreceptors in the carotid arteries and brain detect carbon dioxide and oxygen levels to 

trigger involuntary reaction to breathe63. Thus, following hemodilution, the decreased 

oxygen levels could cause an earlier trigger to breathe. 

7.2 Other Confounding Factors 

 Inconsistencies in image acquisition parameters remains a prominent confounding 

factor of future clinical use of OS-CMR. As outlined in Table 1 of recent OS-CMR studies 

conducted in both patients and volunteers, there is a varying range of TE, TR, and flip angles 
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employed.  Standardization of image acquisition parameters is necessary to enable direct 

comparison of OS-CMR studies in the future. In addition, the use of different acquisition 

parameters leads to varying cut-off values for delineation of normal and abnormal results in 

patient populations. Clinical implementation of OS-CMR as a routine diagnostic tool will 

require standardization of imaging protocol and acquisition parameters to generate clear 

cut-off criteria. 

 Image quality is another potential hurdle for clinical implementation of OS-CMR. In 

our study, only short-axis mid-ventricular slice was acquired and assessed, resulting in 

adequate image quality and minimal exclusion due to artifacts. Artifacts were motion-

artifacts and usually present in the first systolic image during the maximal breath-hold 

following hyperventilation. Nonetheless, other studies have noted that apical slices and the 

inferolateral segments generally have poor image quality and consequently need to be 

excluded from analysis64. This may be the reason why many clinical studies that have been 

completed generally limit acquisition and analysis to only the mid-ventricular slice. 

Although, the use of a single slice may be sufficient for proof-of-concept studies, clinical use 

of OS-CMR will require coverage of the entire myocardium to ensure that distal coronary 

disease is not overlooked. 

7.3 Limitations 

Several limitations for the in vitro and in vivo study require discussion. The main 

limitation of the in vitro experiment was the small sample size (n=6). The results showed 

consistency but image quality was a notable issue. The dark line artifacts throughout the test 

tubes presented a challenge for image analysis and signal intensity measurements.  Future 
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in vitro studies assessing varying hemoglobin concentrations and its effect on OS-SI at 3T 

will require further optimization of acquisition parameters to minimize artifacts. 

The in vivo assessment of hemodilution as a potential confounder of OS-CMR also has 

the limitation of small sample size. Sample size calculations were based on previous brain 

study data that displayed a mean OS-SI change of approximately 5.0±3.1% following 

hemodilution. In this study the mean OS-SI change at baseline was considerably lower 

(3.2±1.2%) following hemodilution and thus a future study with a larger sample size may 

lead to more significant results. One of the most important limitations of the in vivo study is 

the use of breathing maneuvers to assess OS-SI changes associated with the activation-

dependent response. The hyperventilation and breath-hold maneuvers are highly dependent 

on volunteer compliance and thus cannot be entirely reliable. The use of a metronome to 

pace the hyperventilation rate helped to mitigate, to some degree, variations that could occur 

between volunteers. Unfortunately, there is no tool to ensure volunteers complete a breath-

hold that is truly reflective of their maximal breath-hold capacity, thus this is entirely 

dependent on individual compliance. All volunteers, completed a practice HVBH maneuver 

prior to entering the scanner to ensure that a minimum one minute breath-hold could be 

comfortably completed. This was not completed in a supine position and thus the change in 

position once imaging began and the exposure to a novel environment and tight space of the 

MRI bore may have affected breath-hold capacity. For future studies, it may be beneficial to 

complete the breathing maneuvers twice and average the results to mitigate these issues, 

although in a clinical setting with patients, this may not always be feasible. 

Additionally, the hemodilution itself could have caused confounding factors. The 

rapid hemodilution, which could mimic acute anemia and associated effects, could have 
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resulted in increased cardiac output and proportionate increase in coronary blood flow. This 

would have resulted in a higher BOLD signal intensity than would be expected if this 

confounding increase in cardiac output were not present.  

8.0 Conclusion 
 
 The in vitro and in vivo studies completed for this project highlight the need for 

further studies to accurately assess potential confounding factors in the use of OS-CMR. 

Previous studies have shown the feasibility and improved accuracy of using non-invasive 

imaging such as OS-CMR as a viable alternative to other imaging modalities. Nonetheless, 

there is evidence, based on this study, to suggest that hemodilution or changes in hemoglobin 

concentration play a confounding role in the analysis and assessment of OS-SI changes. 

Hypervolemia leads to an increase in SI at baseline and attenuates the SI response during 

vasoactive breathing maneuvers. This attenuation in signal intensity would need to be 

accounted for and corrected in clinical assessment of OS-CMR images, especially in patient 

populations where changes in fluid status are prevalent, such as heart failure patients. In 

addition, a future study with a larger sample size, including patients, may be beneficial to 

derive a correction factor to correct for changes in OS-SI due to changes in hemoglobin 

concentration. Lastly, the clinical implementation of OS-CMR for use in varied patient 

populations will require standardization of acquisition parameters to ensure easy 

comparison of clinical studies, and consequently to create clear diagnostic criteria and 

guidelines for the use of OS-CMR. 
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10.0 Appendices 

10.1 Appendix A - Tables 
 
Table 4: Summary of blood analysis results for in vitro study. FHHb(%): Deoxyhemoglobin amount as a percentage of total 
hemoglobin.  

 Total Hb Conc. 
(g/L) 

A100 92.0 ±2.8 
A90 81.0 ±2.6 
A80 75.2 ±5.5 
A70 65.0 ±4.8 
A60 60.6 ±2.7 FHHb (%) DeoxyHb Conc. 

(g/L) 
SvO2 (%) 

A50 45.8 ±3.2 

V100 93.8 ±3.1 34.7 ±4.8 32.7 ±5.1 64.3 ±4.9 
V90 87.2 ±4.0 33.8 ± 3.6 29.4 ±3.2 65.2 ±3.6 
V80 79.0 ± 4.3 32.7 ±4.1 25.8 ±3.3 66.2 ±4.2 
V70 72.2 ±5.7 31.4 ±3.9 22.5 ±2.9 67.6 ±4.1 
V60 68.8 ±5.3 29.3 ±4.4 20.9 ±4.5 69.7 ±4.5 
V50 47.2 ±2.3 26.4 ±4.4 12.2 ±1.5 72.7 ±4.5 
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Volunteer Consent Form (French) 
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