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RÉSUMÉ 

Les moteurs de recherche font partie de notre vie quotidienne. Actuellement, plus d’un 

tiers de la population mondiale utilise l’Internet. Les moteurs de recherche leur 

permettent de trouver rapidement les informations ou les produits qu'ils veulent. 

La recherche d'information (IR) est le fondement de moteurs de recherche modernes. 

Les approches traditionnelles de recherche d'information supposent que les termes 

d'indexation sont indépendants. Pourtant, les termes qui apparaissent dans le même 

contexte sont souvent dépendants. L’absence de la prise en compte de ces dépendances 

est une des causes de l’introduction de bruit dans le résultat (résultat non pertinents). 

Certaines études ont proposé d’intégrer certains types de dépendance, tels que la 

proximité, la cooccurrence, la contiguïté et de la dépendance grammaticale. Dans la 

plupart des cas, les modèles de dépendance sont construits séparément et ensuite 

combinés avec le modèle traditionnel de mots avec une importance constante. Par 

conséquent, ils ne peuvent pas capturer correctement la dépendance variable et la force de 

dépendance. Par exemple, la dépendance entre les mots adjacents "Black Friday" est plus 

importante que celle entre les mots "road constructions". 

Dans cette thèse, nous étudions différentes approches pour capturer les relations des 

termes et de leurs forces de dépendance. Nous avons proposé des méthodes suivantes: 

─  Nous réexaminons l'approche de combinaison en utilisant différentes unités 

d'indexation pour la RI monolingue en chinois et la RI translinguistique entre 

anglais et chinois. En plus d’utiliser des mots, nous étudions la possibilité 

d'utiliser bi-gramme et uni-gramme comme unité de traduction pour le chinois. 
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Plusieurs modèles de traduction sont construits pour traduire des mots anglais en 

uni-grammes, bi-grammes et mots chinois avec un corpus parallèle. Une requête 

en anglais est ensuite traduite de plusieurs façons, et un score classement est 

produit avec chaque traduction. Le score final de classement combine tous ces 

types de traduction. 

─  Nous considérons la dépendance entre les termes en utilisant la théorie d’évidence 

de Dempster-Shafer. Une occurrence d'un fragment de texte (de plusieurs mots) 

dans un document est considérée comme représentant l'ensemble de tous les 

termes constituants. La probabilité est assignée à un tel ensemble de termes plutôt 

qu’a chaque terme individuel. Au moment d’évaluation de requête, cette 

probabilité est redistribuée aux termes de la requête si ces derniers sont différents. 

Cette approche nous permet d'intégrer les relations de dépendance entre les 

termes. 

─  Nous proposons un modèle discriminant pour intégrer les différentes types de 

dépendance selon leur force et leur utilité pour la RI. Notamment, nous 

considérons la dépendance de contiguïté et de cooccurrence à de différentes 

distances, c’est-à-dire les bi-grammes et les paires de termes dans une fenêtre de 

2, 4, 8 et 16 mots. Le poids d’un bi-gramme ou d’une paire de termes dépendants 

est déterminé selon un ensemble des caractères, en utilisant la régression SVM. 

Toutes les méthodes proposées sont évaluées sur plusieurs collections en anglais et / 

ou chinois, et les résultats expérimentaux montrent que ces méthodes produisent des 

améliorations substantielles sur l'état de l'art. 

Mots-clés: recherche d'information, modèle de langue, unité de traduction, recherche 

d’information translinguistique, la théorie de Dempster-Shafer, dépendance de termes, 

modèle discriminant, force de dépendance. 
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ABSTRACT 

Search engine has become an integral part of our life. More than one-third of world 

populations are Internet users. Most users turn to a search engine as the quick way to 

finding the information or product they want.  

Information retrieval (IR) is the foundation for modern search engines. Traditional 

information retrieval approaches assume that indexing terms are independent. However, 

terms occurring in the same context are often dependent. Failing to recognize the 

dependencies between terms leads to noise (irrelevant documents) in the result. Some 

studies have proposed to integrate term dependency of different types, such as proximity, 

co-occurrence, adjacency and grammatical dependency. In most cases, dependency 

models are constructed apart and then combined with the traditional word-based 

(unigram) model on a fixed importance proportion. Consequently, they cannot properly 

capture variable term dependency and its strength. For example, dependency between 

adjacent words “black Friday” is more important to consider than those of between “road 

constructions”. 

In this thesis, we try to study different approaches to capture term relationships and 

their dependency strengths. We propose the following methods for monolingual IR and 

Cross-Language IR (CLIR): 

─ We re-examine the combination approach by using different indexing units for 

Chinese monolingual IR, then propose the similar method for CLIR. In addition to 

the traditional method based on words, we investigate the possibility of using 

Chinese bigrams and unigrams as translation units. Several translation models 
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from English words to Chinese unigrams, bigrams and words are created based on 

a parallel corpus. An English query is then translated in several ways, each 

producing a ranking score. The final ranking score combines all these types of 

translations. 

─ We incorporate dependencies between terms in our model using Dempster-Shafer 

theory of evidence. Every occurrence of a text fragment in a document is 

represented as a set which includes all its implied terms. Probability is assigned to 

such a set of terms instead of individual terms. During query evaluation phase, the 

probability of the set can be transferred to those of the related query, allowing us 

to integrate language-dependent relations to IR.  

─ We propose a discriminative language model that integrates different term 

dependencies according to their strength and usefulness to IR. We consider the 

dependency of adjacency and co-occurrence within different distances, i.e. 

bigrams, pairs of terms within text window of size 2, 4, 8 and 16.  The weight of 

bigram or a pair of dependent terms in the final model is learnt according to a set 

of features.  

All the proposed methods are evaluated on several English and/or Chinese 

collections, and experimental results show these methods achieve substantial 

improvements over state-of-the-art baselines.  

Keywords: Information retrieval, Language modeling, Translation unit, CLIR, 

Dempster-Shafer theory, Term dependency, Discriminative model, Dependency 

strength. 
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CHAPTER 1.  

INTRODUCTION 

1.1 Motivation and Problems 

Information retrieval (IR) plays an increasingly important role in people’s daily life 

and work. Nowadays, people tend to obtain information from information retrieval 

systems (search engines) rather than asking other people. According to Internet usages 

statistics1, the current world Internet users are 3.08 billion, 42% of world population. 

From year 2000 to 2015, the growth of Internet user number is 753%. 

As defined by (Mooers 1950), “Information retrieval is the name of process or method 

whereby a prospective user of information is able to convert his need for information into 

an actual list of citations to documents in storage containing information useful to him.” 

Here we note the user’s need for information (information need) as ܫ, the documents in 

storage (document collection) as ܥ, and the actual list of citations (ranked list) as ܮ. To 

use an IR system, a user should represent his information need to a query (ܳ), which is 

usually a short natural language sentence, a Boolean expression or just some keywords. 

The information retrieval process can be expressed as follows: 

ܫ ௨௦௘௥ሱۛ ሮ 	ܳ ூோ	௦௬௦௧௘௠	ሱۛ ۛۛ ۛۛ ሮۛ ܥ ௨௦௘௥ሱۛ ሮܮ 

                                                 

1 http://www.internetworldstats.com/stats.htm, 2015-07-29 
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The task of an IR system is to select documents that could be relevant to a user’s 

information need and present his/her in a ranked list. In its traditional setting, IR faces the 

following problems: 

─ How to represent the documents and queries in a retrieval model; 

─ How to understand a user’s query and guess the real information need from the 

query. 

In traditional IR environment, we usually assume that the query provided by a user is 

the only description available for the information need. So the focus is on determining the 

relevance of a candidate document to the query. In modern search engines, more 

information is gathered from a user in addition to the query, such as previous queries the 

user issued in the same session, documents he/she clicked on, documents the other users 

have clicked on for the same query in the past, etc. The additional information has been 

proven very helpful to better guess the user’s intent behind a query such as (Speretta & 

Gauch 2005), (Gao, He & Nie 2010). However, the new setting of search engine does not 

weaken the role of determining the relevance of a document to a query, i.e. the traditional 

document-query relationship. In search engines, the relationship between a document and 

a query is still the most important criterion to rank documents in the search result. In this 

thesis, we will work in the traditional setting, i.e. we assume that we only have a query 

without any peripheral information, and our task is to best rank documents according to 

the query. 

In the most common setting of IR, both user’s queries and documents in the collection 

are written in a natural language. To match documents and queries, we have to create an 

internal representation for them. The common approach is to use a set of independent 

words (or terms) to represent each of them.  Such an approach is commonly called a 

“bag-of-words” approach. A score function is defined between a document and a query 

according to how much their “bags of words” overlap – there are different ways to define 

such a function, as we will see in Chapter 2. 
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A key limitation, which is widely recognized in IR, is that the bag-of-words 

representation is unable to cope with the dependencies between words in a natural 

language sentence. For example, if a query about “computer architecture” is represented 

by two independent words – computer and architecture, it can match incorrectly a 

document talking about “the use of computer in architecture”. To cope with this problem, 

a large number of approaches have been proposed in the IR literature, ranging from the 

use of a phrase dictionary or phrase recognition rules (Evans & Zhai 1996), term 

proximity (Tao & Zhai 2007) (Zhao & Yun 2009), terms dependencies (Gao et al. 2004) 

(Turtle & Croft 1991) (Metzler & Croft 2007), and so on. We will provide a more 

detailed description of these methods in Chapter 2. Each of the methods can bring some 

improvement in retrieval effectiveness (i.e. the quality of the ranked list) compared to a 

bag-of-words approach. However, strong assumptions on the type of dependency 

between terms are usually assumed. For example, the approaches based on term 

proximity assume that if two query terms appear closely in a document, then its matching 

score should be increased. No special attention is paid on whether the closeness of 

occurrences of the two terms is necessary and useful for identifying relevant documents. 

In some cases, for example for the query “using database in commerce”, it is unnecessary 

that two terms “database” and “commerce” should appear closely in relevant documents 

– the word “commerce” could appear at the beginning of a document to specify the 

commerce area, while “database” appears at several different places in the document to 

describe the technical details. Imposing proximity between the words will penalize 

unduly the document. We observe the same limitation for the other approaches, which 

use other assumptions. 

In reality, dependencies between words vary from query to query. Two adjacent words 

in a query can be strongly dependent in a query, while completely independent in another. 

The usefulness of incorporating a dependency into the retrieval function also varies from 

query to query. Even if a strong semantic dependency is observed in a query, it may not 

always be the case that we have to favor documents in which the dependent words are 

connected. For example, it is quite obvious that there is a strong semantic dependency 

between words in the query “death due to cancer” (a query used in TREC experiments). 
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However, it is found that requiring “death” to appear closely to “cancer” does not 

improve the retrieval result; rather it hurts it1. As a matter of fact, when term proximity is 

imposed as a retrieval criterion, we obtain lower effectiveness than the bag-of-words 

approach. This example shows that an intuitively strong dependency may not be helpful 

for IR.  

In summary, a simple assumption of term dependency and its usefulness to IR may not 

reflect the complex nature of them. Dependencies are variable, so is their usefulness in IR. 

It is the problem that we will address in this thesis: to cope with the variable 

dependencies that may exist between query terms.  

1.2 Our Approaches: Relating Dependent Terms 

In the thesis, we focus on relating terms in the representations of documents and 

queries and in IR models (i.e. matching functions). We assume that words (terms) in a 

query may be dependent (thus different from a bag-of-words approach) in some way. 

From a linguistic point of view, two words may be grammatically, e.g. a noun may 

depend on a verb. They can be semantically dependent as in “death due to cancer”, in 

which “cancer” is a cause of death. 

In the history of IR, there have been a number of attempts to incorporate grammatical 

and semantic dependencies (Lafferty, Sleator & Temperle 1992), (Rio 2009). For 

semantic dependencies, the most critical aspect is the difficulty to determine the precise 

semantic relation between words. Up to now, there is still no reliable tool capable of 

determine such relations in large domains. The existing tools can usually determine a 

small number of semantic relations in limited domains (Salton, Yang & Yu 1975), 

(Miller 1995). The use of such tools for IR is premature. 

                                                 

1 It is easy to understand the problem by imagining a potential relevant document for the query. In such a 
document, one can talk about the problems of cancers, including a paragraph providing statistics of death. 
However, words "death" and "cancer" may appear at some distance (i.e. not at proximity).  
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Even if we want to know the exact semantic relation between words in the ideal case, 

in many applications such as IR, we do not need to do it. In most cases, it suffices that we 

know if two words in a query are dependent. If they are, one can favor documents in 

which the two words appear to be in relation. In other words, we do not need to explicitly 

create a semantic interpretation for the dependent words, but merely to determine the 

likelihood that two words may be dependent. To do this, the use of grammatical 

dependencies may seem a reasonable approach. If a grammatical dependency is detected 

between a pair of words, one may assume that there is a possible semantic dependency 

between them. Therefore, it could be required that the same (or similar) dependency 

appears in a retrieved document. 

However, the above approach has not been successful in IR. In an early study,  (Fagan 

1987) showed that it is not effective to use noun phrases in IR. In other words, the 

grammatical dependencies within noun phrases do not bring any significant improvement 

in retrieval effectiveness, compared to a bag-of-words approach. On the other hand, he 

showed that statistical dependencies (or phrases) can improve retrieval effectiveness. By 

statistical dependency, we mean groups of words that appear together often in the 

collection. This type of “phrase” could be a correct noun phrase (such as “computer 

science”), but can also be ungrammatical group of words. For example, “Xbox NBA” 

extracted from “Xbox NBA game sale” is not a grammatically correct phrase, but it can 

be useful for IR. The reason of this is that a document containing the “phrase” (even 

ungrammatical) has a higher chance to be relevant to the query. For example, it may 

contain “Xbox NBA download”, which is a sign that the document can be highly relevant. 

This example shows that the relevance of a document does not require the words in a 

query to be connected by the same grammatical relation in the document as in the query. 

Statistical dependencies focus on frequent co-occurrences of terms. If two terms co-

occur often in a collection (or in a language), there is a chance that they form a well-

defined concept together, and should be considered as a phrase. This type of dependency, 

compared to linguistically motivated ones, has the advantage that it has a broader 

coverage (all possible co-occurrences are candidates), less prone to errors of the tools, 
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and requires less complex processing. Its effectiveness has also been proven in IR. As a 

matter of fact, most recent dependency-based retrieval models rely on statistical 

dependencies. Therefore, we will limit ourselves to statistical dependencies in this thesis. 

Throughout this thesis, we will use dependency to mean a certain statistical relationship 

between terms. In particular, we will consider the two following dependencies: 

─ The dependency between words in a fixed expression (such as “black Monday”), 

which require the words to appear together and in the same order. We will call it 

bigram dependency. Note that one can extend this type of dependency to longer 

n-grams, but this is at the cost of a much higher complexity. So, our investigation 

will be limited mainly to bigrams. 

─ The proximity dependency. It requires the terms to appear at proximity, i.e. within 

a small text window. This type of dependency covers a much wider range of 

relations such as variants of expression (“house construction” vs. “construction of 

houses”) or contextual dependency (e.g. between “program” and “Java” in “a 

program for sorting words in Java”). We will call this type of dependency co-

occurrence dependency.  

These two types of dependencies cover most of the attempts in IR. Our assumption in 

this thesis is that if two terms a and b appear in a query, then we have three situations: 

1. a and b are not dependent, and they can be used in a bag of words. 

2. a and b are strongly dependent and they form a fixed expression. In this case, they 

should be considered as a bigram. 

3. a and b has a loose contextual dependency that require them to appear at proximity. 

Each of the cases creates a different type of index. Case 1 corresponds to the 

traditional bag-of-words index. Case 2 uses word bigrams (or n-grams) as indexing units. 

Case 3 uses free groups of 2 words as indexing units. 
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The problem we investigate is to define an appropriate retrieval model to capture the 

three above cases. We will describe three different ways to do it, which differ on the 

following aspects: 

─ whether to create separate indexes or a unique index for different types of units, 

─ whether to determine the strength of a dependency according to the query. 

The research path we will describe in this thesis is as follows:  

Combining different indexes 

We first assume that different types of indexing units have been extracted from a 

document and a query (e.g. words and phrases), and attempt to use different indexes to 

produce a combined ranking function. The idea of this attempt is to see if a document and 

a query can be represented in multiple ways, and a ranking score based on multiple 

representations is better than using a single representation.  

We will show that this is the case. The experiments will be carried out on Chinese. 

This choice is made because of the more critical aspect of indexing units in Chinese. In 

most European languages, it is shown that a bag-of-words provides a decent level of 

effectiveness (even though it is improvable). The use of more complex units such as 

phrase is often perceived as an optional add-on. The situation in Chinese is different: 

Chinese text is a sequence of characters and it has no a native notion of words. Words 

have to be determined by an automatic segmenter, which produces one, but not the 

unique, sequence of words for a sentence. There is an acute need to take into account 

words as well as the constituent characters. So, to combine different indexing units 

(segmented word and n-gram characters) in Chinese language is more important for 

overcoming the word segmentation problem. 
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A representation incorporating dependent units 

In our second approach, rather than creating different indexes using different types of 

indexing units, we create a single representation for document and for query, which 

integrate different types of indexing units. In the representation, the indexing units are 

dependent. For example, a phrase is considered dependent on its constituent words. This 

approach is more principled than the former. We use Dempster-Shafer theory of evidence 

as the basis of our representation: A phrase and its constituent words are grouped into the 

same set of elements within which some dependencies are assumed. For example, when 

an occurrence of computer architecture is observed, we consider it as representing three 

possible terms: computer, architecture and computer-architecture, which form a set. 

Probability is assigned to the whole term set instead of to each term. This solves an 

important problem of probability assignment when they are considered independent: the 

probability mass assigned to computer should overlap with that of computer-architecture. 

To determine the score of a document facing a query, we will consider the possible 

relations between a term set of the document and a term set of the query. Several transfer 

function are defined to estimate the match between term sets. 

Modeling variable term dependences according to their utilities in IR 

The question that remains unanswered in the second approach is how to determine the 

dependency between different elements in a representation. In the second approach, we 

use heuristics to define it. In our third approach, we explicitly incorporate different types 

of dependencies, and we measure their strength according to their potential contribution 

to retrieve relevant documents. 

Another problem with Dempster-Shafer model is that it can only capture relations of 

terms within a term set, and does not allow terms in different sets to be dependent. For 

example the word sequence a	b	c	d	e are grouped into two term sets: (a	b	c)∗	 and (d	e)∗, 
the model cannot capture the relations between a and d or between c and d etc., which 

could be useful for IR (contextual dependencies).  
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We propose a more flexible approach in which we explicitly capture two types of 

dependencies: bigram dependency and co-occurrence dependency. In addition, we 

assume that a specific dependency between a pair of terms may have a degree of 

contribution to the matching function, depending on the query and on the terms in the 

dependency. Therefore, we use a machine learning approach (regression) to learn the 

weigh importance of a dependency based on a set of features. 

This final approach has been tested on both English and Chinese collections. 

The three approaches are described in the three following chapters, which are 

composed of published papers and a submission to a journal (under way): 

─ Chapter 3: Using Unigram and Bigram Language Models for Monolingual and 

Cross-language IR, InfoScale (Shi, Nie & Bai 2007) 

─ Chapter 4: Relating Dependent Indexes Using Dempster-Shafer Theory, CIKM 

(Shi, Nie & Cao 2008). 

─ Chapter 5: Using Various Term Dependencies According to Their Utilities, CIKM 

(Shi & Nie 2010A), Modeling Variable Dependencies between Characters in 

Chinese Information Retrieval, AIRS (Shi & Nie 2010B), Coping with Different 

Types of Term Dependencies in Information Retrieval (under way). 

1.3 Contributions 

In this thesis, the central problem we address is the representation of documents and 

queries beyond bag of words. We consider that words in a document and a query can be 

dependent, which requires them to be used connected in some way in the matching 

process. This is a central problem in IR. In this thesis, we propose a series of approaches, 

which brings some original solutions to the problem. The contributions of this thesis are 

as follows: 
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─ We show that an IR system that combines with different indexes works better 

than with a single index. 

─ We propose an integrated representation based on Dempster-Shafer theory of 

evidence that includes different types of indexing units. This is a new type of 

document representation. 

─ We define an IR model in which dependencies are explicitly represented and 

weighted according to their possible contribution to the retrieval process. This 

approach is a significant extension of the existing retrieval models. 

This series of approaches and experiments will clearly show the importance of taking 

term dependencies into account. They also show that dependencies should not be used in 

a uniform way, rather they should be incorporated into the retrieval process according to 

their possible impact on the latter. 

1.4 Organization of the Thesis 

This is a thesis composed by articles. Therefore, the three chapters that describe the 

proposed approaches form the main part of the thesis. To make the thesis understandable 

for people not familiar to IR, we will provide some introductory material. In particular, 

before the three chapters, we will briefly describe the area of IR and the main approaches 

used currently.  

Although we will include the articles in the same form as they are, we will add some 

introduction before and some discussion after it. 

Finally, a chapter of conclusion will contain discussions on the series of approaches 

and experiments presented in the thesis. 

The thesis is organized as follows: 
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In the Chapter 2, we will first introduce the basic concepts and processing of 

information retrieval; then, we describe the traditional IR models and related works. 

In Chapter 3, we will define and test a simple way to combine different indexes in IR. 

The experiments are conducted on Chinese monolingual IR and cross-language IR 

between English-Chinese. 

In Chapter 4, we relate dependent indexing units using Dempster-Shafer theory.    

In Chapter 5, we propose a model based on discriminative model framework to 

integrate different types of term dependencies and to weight them according to their 

potential impact on retrieval effectiveness. 

The general discussions and finally conclusions will be presented in Chapter 6.  
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CHAPTER 2.  

STATE-OF-THE-ART OF IR 

Information retrieval can be defined as follows (Manning & Schütze 1999): 

Information retrieval (IR) is finding material (usually documents) of an unstructured 

nature (usually text) that satisfies an information need from within large collections 

(usually stored on computers). 

To enable the system finding relevant materials (documents), we have to create a set 

of basic operations on documents and queries, and to define a matching score between 

them. In this section, we will first define the basic operations needed in all IR systems. 

Some evaluation measures used in the area will be defined to quantify the quality of a 

system. Then a set of retrieval models related to our work will be described.  

2.1 The Basic Processing of IR  

A typical IR system is shown in Figure 2-1. The main processes aim to create the 

representation of the document, the representation of the query, and the definition of a 

matching score between them. 
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Figure 2-1. Information retrieval processes 

The document representation is called indexing process. In this process, we need to 

determine the indexing units first, which are words (or word stems) for most European 

languages. For some East-Asian languages such as Chinese and Japanese, the indexing 

units could be segmented words or character n-grams (we will see more details on the 

processing of Chinese texts in Chapter 3). 

A document written in a natural language has to undergo the following processes: 

─ Removing common terms (called stopwords) that do not bear specific meaning. 

These words usually correspond to functional words in a language, such as 

prepositions, articles, etc.  

─ Word stemming or lemmatization. The goal of this step is to discard the small 

differences in word form that do not change much the meaning. For example, the 

plural and singular forms of a word have the same meaning. Stemming removes 

some suffixes of words and only the word stem is kept. For example, the words 
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“information”, “informing”, “informed” can be transformed to the stem “inform”. 

Two stemming algorithms are widely used in IR: Porter stemming (Porter 1980) 

and Krovetz stemming (Krovetz 1993). Lemmatization tries to convert a word 

form to its citation form (Hajič & Hladká 1998), (Kanis & Müller 2005). For 

example, the word “informed” and “informing” are transformed to their citation 

verb form “inform”, while “information” to its root form “information”. This 

requires that the grammatical category of the word to be known, thus a part-of-

speech (POS) tagging. In practice, no clear difference is observed between the 

two processes. Morphological analysis only produces at most very modest 

benefits for retrieval (Manning, Raghavan & Schute 2008). So the simpler 

stemming is usually used in IR. A processed word is called term in IR. 

─ The last step for document processing is to create an index. Once a set of terms 

has been identified in the previous processes, one can create a set of terms to 

represent the document. For the sake of retrieval efficiency, one usually creates an 

inverted index, which maps a term to a set of documents that contain it. Using the 

inverted index, the retrieval operation with a query can be implemented as finding 

the corresponding sets of documents, then merging them. 

Document indexing also involves term weighting – to associate a weight to each term 

in the index. The weight of a term will influence the matching score. The best known 

weighting schema in IR is ݂ݐ-݂݅݀ weighting (see Section 2.3.1). As term weighting is 

dependent on the retrieval model used, we will describe it in IR models. 

Once a matching score is obtained for each document, with respect to a query, the 

documents are ranked in the reverse order of the score and presented to the user (e.g. 

organized in pages of 10 results in search engines). 
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2.2 Information Retrieval System Evaluation 

A crucial problem in IR is to know if the ranked list of documents correspond to what 

the user is looking for. We need to define some measures to reflect the quality of a 

retrieval system or method.  

Usually two aspects are used to compare IR systems: efficiency and effectiveness. 

Efficiency measures how much computational resource the system requires. The resource 

includes CPU time, memories, storage of hard disk. On the other hand, effectiveness 

measures to what extent the retrieved documents satisfied the user’s need. In most cases, 

we focus on effectiveness in IR, as this is the aspect the most difficult to improve. 

To evaluate an IR system in effectiveness, we need a test collection on which the 

system is run: 

─ a document collection; 

─ a set of retrieval queries; and 

─ the relevance judgments, telling if (and possibly how much) a document is 

relevant to a query. 

The basic evaluation measures are precision and recall, defined as follows: 

─ Precision ( ܲ ) is the fraction of retrieved documents that are relevant: ܲ݊݋݅ݏ݅ܿ݁ݎ = (ݏ݉݁ݐ݅	݀݁ݒ݁݅ݎݐ݁ݎ)#(݀݁ݒ݁݅ݎݐ݁ݎ	ݏ݉݁ݐ݅	ݐ݊ܽݒ݈݁݁ݎ)# =  (݀݁ݒ݁݅ݎݐ݁ݎ|ݐ݊ܽݒ݈݁݁ݎ)ܲ
─ Recall ( ܴ ) is the fraction of relevant documents that are retrieved: ܴ݈݈݁ܿܽ = (ݏ݉݁ݐ݅	ݐ݊ܽݒ݈݁݁ݎ)#(݀݁ݒ݁݅ݎݐ݁ݎ	ݏ݉݁ݐ݅	ݐ݊ܽݒ݈݁݁ݎ)# =  (ݐ݊ܽݒ݈݁݁ݎ|݀݁ݒ݁݅ݎݐ݁ݎ)ܲ

A good IR system should have both high precision and recall. However, the system 

with high precision usually has low precision, while a system with high recall usually has 

low precision. A single measure F-measure is defined to trade off precision versus recall: 
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ܨ = ଶߚ) + 1)ܲ ⋅ ଶܲߚܴ + ܴ  

when ߚ = 1, we have the following common form of ܨଵ measure: 

ଵܨ = ఉୀଵܨ = 2	ܲ ⋅ ܴܲ + ܴ  

As the result of an IR system is a ranking list, we do not have fixed set of retrieved 

documents (thus fixed precision and recall). To evaluate a ranked list, we use a form of 

average precision.  

11-Point Average Precision (Salton & McGill 1983)  

The idea is to go through the ranked documents one by one. At each point, the 

documents included up to that point are used to obtain a value of precision and recall. We 

then have a set of points that define a curve of precision and recall. We then determine 

the corresponding precisions at 11 recall points: 0.0, 0.1, …, 1.0.  To do this, some 

interpolations are required (as the determined points are not necessarily on these recall 

values). At the end, the average of the 11 precision values is calculated.  

Precision@N and Mean Average Precision (MAP) (Buckley & Voorhees 2000), (Kraaij, 

Nie & Simard 2003) 

Precision@N corresponds to precision at ranking point N. This is often used to reflect 

the quality of an IR system among the top results, for example precision@5, 

precision@10. Average Precision (ܲܣ, also called un-interpolated average precision) is 

calculated by averaging the precision at each point of retrieved document rank.  

For a set of queries, we use the mean of the average precision scores for each query. It 

is defined as follows, where ܯ is the number of test queries, ௝ܰ the number of relevant 

documents for the query ݆, and ݎ௜,௝ is the total relevant items in top ݅ retrieval of query ݆: 
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ܲܣܯ = ෍ܯ1 1ܰ௝෍ݎ௜,௝	݅ேೕ
௜ୀଵ

ெ
௝ୀଵ  

 is calculated using all the points in the ranking list, where we find a relevant ܲܣܯ

document. The average of the precision at all these points is calculated. This is the most 

common measure used in TREC experiments, in which binary relevance judgments are 

made (relevant or irrelevant). This will be our main evaluation measure in this thesis. 

 Järvelin & Kekäläinen) (ܩܥܦ normalized) and NDCG (discounted cumulative gain) ܩܥܦ

2000) (Järvelin & Kekäläinen 2002) 

When graded relevant judgments are given, for example, 4 (perfect), 3 (very good), 2 

(good), 1 (fair) and 0 (bad), we use ܩܥܦ (Discounted Cumulative Gain) or its normalized 

form ܰܩܥܦ to evaluate the result. This measure is commonly used in search engines. 

The basic ideal of ܩܥܦ is: 

(1) highly relevant documents are more valuable  

(2) the greater is the ranked position of a relevant document, the less valuable is it for 

the user 

Given a set of relevant judgment values ݈݁ݎଵ, ,ଶ݈݁ݎ . . . , ,ே at different rank positions 1݈݁ݎ 2, . . . ,   :is calculated as ܩܥܦ ,ܰ

ܩܥܦ = ଵ݈݁ݎ +෍ ଶ݃݋௜݈݈݁ݎ ݅ே
௜ୀଶ  

Usually, we do not consider the full list of ranked documents and only consider the top ݊ documents. Then the ܩܥܦ@݊ only considers the relevant documents among the top-݊ 

results. 



 

18 

 

 of the ideal ranked ܩܥܦ is a normalized measure using the (ܩܥܦ Normalized) ܩܥܦܰ

list (i.e. the best ranking list achievable for the query) as the normalization factor, i.e. ܰܩܥܦ@݊	 = ݈ܽ݁݀ܫ	/	݊@ܩܥܦ	 −  .݊@ܩܥܦ

  

2.3 Information Retrieval Models 

A large number of retrieval models have been developed in the literature: Boolean 

models (Lancaster & Fayen 1973) (Baeza-Yates & Ribeiro-Neto 1999) (Kraft & Buell 

1983), vector space models (Salton, Wong & Yang 1975) (Salton & McGill 1983), 

probabilistic models  (Robertson & Sparck Jones 1976) (Salton, Fox & Wu 1983) (Turtle 

& Croft 1990) (Robertson & Walker 1994) (de Campos, Fernández-Luna & Huete 2000), 

language models (Ponte & Croft 1998) (Miller, Leek & Schwartz 1999) (Song & Croft 

1999) (Zhai & Lafferty 2001), and the variations based on above models. We do not 

intend to provide a complete description of all these models in this section. Rather we 

will describe only vector space model (which is widely used in IR), language model 

(which are the basic models we use in our work), Markov random field model and 

proximity model (which are as our baseline models), and few recent dependency models.  

2.3.1 Vector Space Model 

The vector space model (VSM) (Salton, Wong & Yang 1975) (Salton & McGill 1983) 

was first introduced and used in SMART system by G. Salton in late 1960s (Salton & 

Lesk 1965). It is the most popular and widely used model in information retrieval. In 

VSM, the query and documents are presented as vectors ሬܳԦ  and ܦఫሬሬሬԦ , where the ሬܳԦ ,ଵ,௤ݓ}= ,ଶ,௤ݓ … , ሬሬԦ௝ܦ ,{௧,௤ݓ = ,ଵ,௝ݓ} ,ଶ,௝ݓ … ,  ௜,௝ is the term weight. The degree ofݓ ௧,௝}, andݓ
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the document ܦ௝ related to the query Q is as the correlation between the vectors ܦሬሬԦ௝ and ሬܳԦ, 
such as the angle formed by the vectors as: 

,௝ܦ൫݁ݎ݋ܿܵ ܳ൯ = ߠݏ݋ܿ = ሬሬԦ௝ܦ ⋅ ሬܳԦ|ܦሬሬԦ௝|| ሬܳԦ| = ∑ ∑௜,௤௜ටݓ௜,௝ݓ ௜,௝ଶ௜ݓ ට∑ ௜,௤ଶ௜ݓ  

There are many term weighting schemes (Manning, Raghavan & Schute 2008) to 

measure the term importance in the vectors. The most common and effective one is ݂ݐ-݂݅݀ weighting, i.e. ݓ௜௝ = ݐ ௜݂,௝ ⋅ ݅݀ ௜݂, where ݐ ௜݂,௝ = ;௜ݐ)ܿ ௜ݐ ௝) is term frequency of termܦ  in document ݆  and ݅݀ ௜݂ = log	 ேௗ௙೟೔  is inverse document frequency of term ݐ௜  in the 

whole collection. ݀ ௧݂೔ is the number of documents which include the term ݐ௜ and ܰ is the 

total number of documents in the collection. Both ݂ݐ  and ݂݅݀  have many variants in 

calculation, such as ݐ ௜݂,௝ = 0.5 + 0.5 ௖(௧೔;஽ೕ)୫ୟ୶೟ ௖(௧;஽ೕ) ݐ , ௜݂,௝ = ඥܿ(ݐ௜; 	(௝ܦ and  ݅݀ ௜݂ =
ݔܽ݉ ቆ0, ௟௢௚ቀேିௗ௙೟೔ቁௗ௙೟೔ ቇ, ݂݅݀_݅ = 1 + log	( ேଵାௗ௙೟೔) . 
2.3.2 Basic Language Models 

A statistical language model (LM) is a probability distribution over a sequence of 

words that attempts to reflect how this sequence occurs as a sentence of a natural 

language. LMs have been successfully used in many fields of natural language processing 

such as speech recognition, machine translation, handwriting recognition, as well as 

information retrieval. The language modeling approach for IR was first introduced by 

(Ponte & Croft 1998) and successfully applied to many information retrieval problems 

(Miller, Leek & Schwartz 1999), (Song & Croft 1999), (Zhai & Lafferty 2001), (Bai et al. 

2005). 
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The basic language modeling approach builds a probabilistic language model from 

each document ܦ , and documents ranking based on the probability of the model 

generating the query. It also called query likelihood scoring method. 

,ܳ)݁ݎ݋ܿܵ (ܦ = (஽ߠ|ܳ)ܲ =ෑܲ(ݍ௜|ߠ஽)௠
௜ୀଵ  

Another approach of using LM in IR is that we can make a language model from both 

the document and query, and then ranking the documents according to the difference of 

these two language models. The Kullback-Leibler (KL) divergence method is commonly 

used for measure this difference:  

,ܳ)݁ݎ݋ܿܵ (ܦ = (ொߠ||஽ߠ)ܮܭ =෍ܲ(ߠ|ݐ஽) ⋅ log ௧∈௏(஽ߠ|ݐ)ܲ(ொߠ|ݐ)ܲ  

In both above language models, smoothing play a very important role. The 

unsmoothed model is the maximum likelihood estimate by relative counts as   

ெܲ௅(ߠ|ݐ஽) = ;ݐ)ݐ݊ݑ݋ܿ ∑(ܦ ;ᇱݐ)ݐ݊ݑ݋ܿ ௧ᇱ∈௏(ܦ  

where ܸ is the set of all terms in the vocabulary. A term which does not occur in a 

document will be assigned zero probability. Consequently, all documents which contain 

only partial query terms will get the equal result as zero.  

Smoothing is the technique which adjusts of the maximum likelihood estimator by 

taking off some probabilities from presented words and assigning it (a small probability) 

to the absent terms. Not only the smoothing methods generally prevent zero probabilities, 

but they also attempt to improve the accuracy of the model as a whole. As listed in (Chen 

& Goodman 1999), numerous smoothing algorithms are studied in many nature language 

processing tasks such as Jelinek-Mercer smoothing, Katz smoothing, Witten-Bell 

smoothing, Absolute discounting, Church-Gale smoothing, Dirichlet prior smoothing etc. 
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Recent studies of smoothing methods in information retrieval show that smoothing 

play a very important role for IR and the retrieval performance is highly sensitive to the 

setting of smoothing parameters. The following three smoothing methods are commonly 

used for IR, which generally perform well (Zhai & Lafferty 2001): 

─ Absolution discounting: 

௔ܲ௕௦(ߠ|ݐ஽) = 	max	(ܿ(ݐ; (ܦ − ,ߜ |ܦ|(0 + ߜ |ܦ|௨௡௜௤|ܦ| ெܲ௅(ߠ|ݐ஼௢௟௟) 
─ Jelinek-Mercer: 

௃ܲெ(ߠ|ݐ஽) = (1 − (ߣ ெܲ௅(ߠ|ݐ஽) + ߣ ெܲ௅(ߠ|ݐ஼௢௟௟) 
─ Dirichlet smoothing: 

஽ܲ௜௥(ߠ|ݐ஽) = ;ݐ)ܿ (ܦ + ߤ ெܲ௅(ߠ|ݐ஼௢௟௟)|ܦ| + ߤ  

where ߠ஼௢௟௟ is collection model, ܿ(ݐ;  is the |ܦ|  ,in document ݐ is the number of term (ܦ

total number of terms in document, |ܦ|௨௡௜௤ is the number of unique term in document, 

and ߜ, ,ߣ ߤ  is the empirical parameters of absolution discounting, Jelinek-Mercer, and 

Dirichlet smoothing respectively. 

2.3.3 Proximity Models 

Both vector space model and unigram language model assume terms are statistically 

independent, as well as the order in which the terms appear in the document is lost. 

Recently, some studies have been conducted to capture the terms dependence. One of 

approaches is using proximity which represents the closeness or compactness of the 

query terms appearing in a document. The studies (Hawking & Thistlewaite 1995), 
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(Rasolofo & Savoy 2003), (Tao & Zhai 2007), (Zhao & Yun 2009) already show 

incorporating proximity factor can improve the effectiveness and performance of IR. 

Basically, two approaches are used to measure the proximity: span-based and 

pairwise-based proximity distance measures. The proximity factors are combined with or 

integrated into the general IR models such as Okapi BM25 (Robertson & Walker 1994) 

and LM (Ponte & Croft 1998). The span-based approach measures the length of shortest 

document segment that covers all the query terms. While, the pairwise-based approach 

defines the pairwise distances between individual term occurrences, and then aggregates 

them to an overall proximity value.   

Tao and Zhai (Tao & Zhai 2007) compared several proximity measures including 

span-base measure, minimum pair distance ݐݏ݅ܦ݊݅ܯ = min௤భ,௤మ∈ொ∩஽ ,ଵݍ)ݏ݅ܦ ;ଶݍ 	(ܦ , 
average pair distance ݐݏ݅ܦ݀ݒܣ = ଶ௡(௡ିଵ) ∑ ,ଵݍ)ݏ݅ܦ ;ଶݍ 		௤భ,௤మ∈ொ∩஽(ܦ , and maximum pair 

distance ݐݏ݅ܦݔܽܯ = max௤భ,௤మ∈ொ∩஽ ,ଵݍ)ݏ݅ܦ ;ଶݍ 	(ܦ . It shows the ݐݏ݅ܦ݊݅ܯ  measure 

performs best and the proximity model significantly improves the retrieval performance 

over LM and Okapi BM25. 

Zhao and Yun (Zhao & Yun 2009) proposed a proximity language model which 

integrated the proximity into the KL divergence language modeling framework based on 

Dirichlet prior smoothing. The document model is defined as: 

௣ܲ௥௢௫(ݐ|ܳ, (஽ߠ = ;ݐ)ܿ (ܦ + ,ݐ)ݔ݋ݎܲߣ ܳ) + ߤ ெܲ௅(ߠ|ݐ஼௢௟௟)|ܦ| + ∑ ,௜ݐ)ݔ݋ݎܲߣ ܳ) +|௏|௜ୀଵ ߤ  

where ߣ  is proximity weight parameter and ܲݐ)ݔ݋ݎ, ܳ)  is term proximity defined 

according to pairwise distance measures. Their result shows an empirical better 

performance than the basic language model and combination approaches of using 

proximity. In their results, the proximity based on summed of pair distance (ܲ_ܵݔ݋ݎܲ݉ݑ) 

and on minimum pair distance (ܲ_ݔ݋ݎܲ݊݅ܯ) performs much better than on average pair 

distance (ܲ_ݔ݋ݎܲ݃ݒܣ), and the ܲ_ܵݔ݋ݎܲ݉ݑ performs a little better than ܲ_ݔ݋ݎܲ݊݅ܯ. 
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This is one of our baseline models in this thesis. 

2.3.4 Markov Random Field Models 

Markov Random Field models are developed to extend the classical language models 

so that some term dependencies can be taken into account. As we will see in more details 

in this section, these models integrate three components: the traditional unigram model, a 

model considering the sequence of words, and a model considering the co-occurrences of 

terms within a text window. By adding the two latter components, the models are capable 

of strengthening the matching score of a document if it contains the same expression 

(sequence of words) as in the query, or if the query terms appear at proximity. 

A Markov random field, also called Markov network or directed graphical model, is 

a graphical model in which a set of random variables have a Markov property described 

by an undirected graph. Nodes in the graph represent random variables, and edges define 

dependencies between the random variables. Formally, a Markov network consists of: 

─ An undirected graph ܩ	 = 	 (ܸ, 	ݒ where each vertex ,(ܧ ∈ ܸrepresents a random 

variable in V and each edge {ݑ, {ݒ 	∈ ܧ	  represents a dependency between the 

random variables u and v. 

─ A set of functions ௞݂ (also called factors or clique factors and sometimes features), 

where each ௞݂ has the domain of some clique (or subclique) k in G. Each ௞݂ is a 

mapping from possible joint assignments (to the elements of k) to non-negative 

real number. 

The joint distribution (or Gibbs measure) represented by a Markov network is given 

by: 

ܲ(ܺ = (ݔ = 1ܼෑ ௞݂(ݔ{௞})௞  
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where ݔ{݇} is the state of the random variables in the ݇-th clique, and the product runs 

over all the cliques in the graph. Here, ܼ is the partition function, so that 

ܼ = ෍ෑ ௞݂(ݔ{௞})௞௫∈௑	  

In practice, a Markov network is often conveniently expressed as a log-linear model 

by means of introducing feature functions  ߶௞, given by 

௞݂ = exp	ቀݓ௞߶௞൫ݔ{௞}൯ቁ 

so that 

ܲ(ܺ = (ݔ = 1ܼ exp	൭෍ݓ௞߶௞൫ݔ{௞}൯௞ ൱ 

Metzler and Croft (Metzler & Croft 2005) proposed a Markov random field model for 

IR. They try to capture term dependencies by integrating ordered and unordered term 

groups into the model.  As shown in Figure 2-2, a graph G consists of query nodes ݍ௜ 
(each representing a term) and a document node D.  

Figure 2-2. Markov Random Field models: Sequential Dependence Model (MRF-SD, left) 
and Full Dependence Model (MRF-FD, right) 

They defined three types of potential functions: 

─ on clique of single terms, ܶ (each clique contains a single term and the document 

D),  

─ on ordered term clique, ܱ (a clique containing contiguous terms in ܳ and ܦ), and 

D

q1 q2 q3 

D 

q1 q2 q3 
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─ on unordered term clique, ܷ (a clique containing a non-contiguous set of query 

terms and ܦ).  

The ranking function is defined as following: 

(ܳ|ܦ)ܲ =୰ୟ୬୩ ෍ (ீ)௖݂(ܿ)௖∈஼ߣ =෍்்݂ߣ (ܿ)௖∈் +෍ߣை ை݂(ܿ)௖∈ை +෍ߣ௎ ௎݂(ܿ)௖∈௎  

A MRF model requires the setting of three parameters: ߣ௖, ௎ߣ	௢ andߣ . It is usually 

done through cross validation – a set of judged queries is used to set the parameters, 

which are then used to test on new queries. In practice, it is shown that the setting of the 

parameter respectively at 0.85, 0.1 and 0.05 usually produce good results on different test 

collections. 

MRF model is another baseline model we compare to in the thesis.  

2.3.5 Other Dependency Models 

Some new dependency models are proposed recent years (Park, Croft & Smith 2011), 

(Zhao, Huang & He 2011), (Bendersky & Croft 2012), (Hou et al. 2013), (Zhao & Huang 

2014), (Zhao, Huang & Ye 2014). The methods of capturing the dependency vary from 

term proximity, concept hypergraph, information geometry to quasi-synchronous. 

Although most successful attempts to consider term dependencies do not consider 

syntactic dependencies, there are some attempts trying to take advantage of syntactic 

structure. Park et al. (Park, Croft & Smith 2011) propose a term dependence model by 

using a quasi-synchronous stochastic process. Both query and documents are represented 

as syntactic dependency trees. The IR score function integrates a measure based on the 

distance between a query tree ஼ܶ  and a document tree ஽ܶ . Four types of syntactic 

dependencies are considered: parent-child, ascendant-descendant, siblings, and c-

commanding. Their final model is a linear interpolated model of the quasi-synchronous 
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model and the sequential dependence Markov Random Field model – ܵܯܦ (Metzler & 

Croft 2005). Their results show that the syntactic tree structure can significantly improve 

over the baseline ܵܯܦ. 

In addition to the dependencies between a pair of terms (sometimes called first-order 

dependencies), researchers have also been interested in using higher-order dependencies, 

i.e. more complex dependencies among more than 2 terms. 

Bendersky and Croft (Bendersky & Croft 2012) propose a representation of 

dependencies using hypergraph. A vertex in a query hypergraph corresponds to an 

individual query concept, and a dependency between a subset of these vertices is modeled 

through a hyperedge. The importance of a concept is determined by features derived from 

frequencies in collections. There experimental results show that for verbose natural 

language queries (description field of the TREC topics), the proposed retrieval 

framework significantly improves the retrieval effectiveness of several state-of-the-art 

retrieval methods. 

Hou et al. (Hou et al. 2013) proposed another approach to cope with pure high-order 

dependencies using information geometry. Pure high-order dependencies are those that 

cannot be reduced to first-order dependencies. These high-order dependencies (a set of 

terms) are incorporated into the ܦܨ-ܨܴܯ  model (Metzler & Croft 2005). Their 

experimental results show that the orders of dependencies of 2 and 3 are main 

contributors to the improvement over the unigram model. The order n greater than 3 do 

not bring benefit to the IR system. 

Zhao, Huang and He (Zhao, Huang & He 2011) (Zhao, Huang & Ye 2014) proposed a 

different way, called Cross Term model (CRTER), to cope with term dependencies. They 

consider dependent terms to form a Cross Term. The more the terms appear close to each 

other, the stronger the cross term is weighted (according to several decaying functions 

such as Gaussian function, triangle function, etc.). Such weight is incorporated into the 

traditional 25ܯܤ weighting scheme, by considering a cross term as a new type of term. 
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The final score function is a combination between the traditional 25ܯܤ score of words 

and the new 25ܯܤ score based on cross-terms. When cross-terms of size 2 are used, this 

corresponds to: 

(ܦ)ܴܧܴܶܥ = (1 − ,௜ݍ)ݓ෍(ߣ (ܦ + ,௜,௝ݍ)ଶݓ෍ߣ ௜,௝௜(ܦ  

where ݍ௜,௝ is a cross-term, w is the score by a traditional model (e.g. 25ܯܤ) and w2 is that 

with cross-terms, and λ a combination parameter. In addition to cross-terms of size 2 (i.e. 

first-order dependencies), N-gram Cross-Term ݍ௜భ,௜మ,…,௜೙ (i.e. cross-terms of larger size) is 

also considered in (Zhao, Huang & Ye 2014). Such a cross-term is weighted by a 

distance metric and a kernel function as: ݈݁݊ݎ݁ܭ(ଵଶ ,௞భ,௜೔ݏ݋݌൫ݐݏ݅݀ ,௞మ,௜మݏ݋݌ …  .(௞೙,௜೙൯ݏ݋݌
The final model is defined recursively as below: 

(ܦ)௡ܴܧܴܶܥ = (1 − (ܦ)௡ିଵܯܧܴܶܥ(௡ߣ + ,௡ݎ݁ݐݎܥ)௡ݓ௡ߣ (ܦ)ଶܴܧܴܶܥ (ܦ = (1 − (ܦ,݉ݎ݁ݐ)ݓ(ଶߣ + ,ଶݎ݁ݐݎܥ)ଶݓଶߣ  (ܦ
where ߣଶ   .௡are combination parameters (between 0 to 0.2 in their experiments)ߣ…

In their implementation, the score functions ݓ and ݓ௜  are either based on BM25 or 

language models. Their experiments show that ܴܧܶܧܥଶ஻ெଶହ  with BM25 weighting 

produces significant improvements over the traditional 25ܯܤ model with words, and is 

comparable to the state-of-the-art probabilistic proximity approaches; the ܴܧܶܧܥଶ௅ெ 

leads to an improvement over basic Dirichlet LM (in some collections are significant) 

and is comparable to MRF model (Metzler & Croft 2005) and PLM model (Lv & Zhai 

2009). 

The ܴܧܴܶܥ௡ model, in particular ܯܧܴܶܥଷ (trigram cross-term model) improves ܴܧܴܶܥଶ slightly in most cases, but the improvements of ܴܧܴܶܥଷ over ܴܧܴܶܥଶ is lower 

than the improvements of ܴܧܴܶܥଶ over 25ܯܤ. On the other hand, with the increase of n 
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in ܴܧܴܶܥ௡  model, the computational complexity grows exponentially. Therefore, the 

practical gain using cross-terms of size larger than 2 is limited. 

In (Zhao & Huang 2014), a weight of term proximity ݂(ݍ௜,  :௝) is also incorporatedݍ

(ܦ)ݔ݋ݎ݈ܴܲ݁ = (1 − ,௜ݍ)ݓ෍(ߜ (ܦ + ߜ ⋅ ,௜ݍ)݂ ,௜,௝ݍ)ଶݓ௝)෍ݍ ௜,௝௜(ܦ  

where ݂൫ݍ௜, ௝൯ݍ = ଵ|௧௢௣஽௢௖| ∑ ∑ ,௜ݍ)݈ܴ݁ ,௝ݍ ஽∈௧௢௣஽௢௖௤೔,௤ೕ(ܦ  is the average contextual 

relevance value of term proximity between ݍ௜ and ݍ௝ among the top ranked documents 

(pseudo relevant documents). This additional weighting captures the importance of the 

dependency between a pair of term, which goes into the same direction as our model 

presented in Chapter 5.  

The above dependency models proposed new ways to incorporate term dependencies 

in IR models and extends the previous models to high-order term dependencies. The 

experiments generally confirm that the most useful dependencies for IR are first-order 

dependencies. Therefore, in our study, we will focus first-order dependencies only.   

2.3.6 Discussions 

As we can see through the description in this chapter, existing models either do not 

consider dependencies between terms, or consider them in a simplistic manner.  

Proximity models assume that any pair of terms appearing in a query is required to 

appear closely. Although this requirement is reasonable for many queries, there are still 

many cases where two query terms do not have to appear in a relevant document. For 

example, for the query “download acrobat reader”, the word “download” can appear quite 

far away from “acrobat reader” in a relevant document1 – it is often a “download” button 

                                                 

1 An example is the official website of Acrobat downloading: http://get.adobe.com/reader/otherversions/ 
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in a different sub-window. Considering the proximity of “download” and the two other 

words will penalize this document. On the other hand, in this same example, it is 

reasonable to consider the proximity between “acrobat” and “reader”. This example 

shows that the requirement to consider term similarity in a document varies according to 

the terms.  

The MRF models have similar limitations, as dependencies are assumed uniformly 

between all terms in a query. The parameters that we generally use to combine the three 

components are set to maximize the average effectiveness on different queries. However, 

one can easily imagine that one query may require a strong emphasis on dependency 

components, while another query does not require them at all.  

The above problem is what we aim to solve in this thesis (Chapter 5) – to capture 

various dependencies between terms and to incorporate them into a retrieval model 

according to their usefulness for IR. 

In the following chapters, we will describe a series of attempts in this direction. 

In Chapter 3, we describe a naïve integration of different types of indexing units and 

test the approach in Chinese IR. The goal is to show that if we rely on multiple types of 

indexes among which phrases are represented, we can reach higher retrieval effectiveness. 

We choose to test the approach on Chinese IR because the problem is more pervasive in 

Chinese than in other languages, as Chinese language lacking a set of standard words. 

In Chapter 4, we attempt to integrate multiple types of indexing units in the same 

representation, in order to cope with the possible relations among them. 

In Chapter 5, we describe an approach to extend the MRF models by incorporating a 

measure to assess the importance of a dependency for a query.  
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CHAPTER 3.  

USING DIFFERENT UNITS FOR CHINESE 

MONOLINGUAL AND CROSS-LANGUAGE IR 

Introduction to the chapter 

In this chapter, we consider one way to capture the possible dependencies between 

terms. The basic idea is to create several indexes using different types of indexing units. 

For example, in English, if we use both single word and multiple-word phrase, then we 

can create two separate indexes, one for words and one for phrases. Two ranking scores 

for a document are determined using the different indexes. These scores are then 

combined to produce the final score. 

This is a simple way to cope with term dependencies, namely the dependencies within 

a phrase are considered, as a phrase is considered as a single unit in the phrase index. We 

consider here IR in Chinese, in which we are faced with a big problem of “phrase”, as 

Chinese is not written as separated words but as a continuous string of characters (or 

ideograms). A crucial problem is to decide what indexing units to use. The problem of 

coping with different indexing units in Chinese is more pervasive than in most European 

languages. In the latter, even if we do not consider phrases and only use words, we can 

usually obtain quite good results (the bag-of-words approaches are still considered the 

state-of-the-art). In Chinese, however, if we only use single characters, the result is not 

necessarily good. In this chapter, we use Chinese as the support language to show the 

necessity of combining different types of indexing units. 
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This chapter is a paper published at the Proceedings of the 2nd International 

Conference on Scalable Information Systems: (Shi, Nie & Bai 2007). 

3.1 Introduction 

Traditional information retrieval (IR) approaches usually assume that index terms are 

independent. Both documents and queries are represented by a set of independent terms. 

For example, “computer architecture” is represented by two independent terms – 

computer and architecture. It is obvious that in this simple representation, the strong 

dependency between terms vanished and the meaning of “computer architecture” is not 

represented precisely. The same assumption is also used for cross language information 

retrieval (CLIR). A more often used method of CLIR is using a statistical translation 

model (TM) for query translation. It trains a TM for each term from parallel corpus first. 

The query term is then represented by the top translation words in TM individually. 

While we do this kind of query translation, the dependency of query terms is lost. 

For the Chinese language IR, this problem is more serious. A Chinese text consists of 

a sequence of Chinese characters without natural word boundaries. Although a single 

Chinese character has a meaning and can be a single-character word, more often it is 

combined with other characters in a multi-character word. Another way to capture the 

relation of Chinese characters is to using bigram or trigram. Therefore, in the current 

Chinese IR models, two general families of approaches have been proposed to cut 

Chinese text into indexing units: using characters (mainly character unigrams and 

bigrams) and using words, such as in (Chien 1995), (Liang, Lee & Yang 1996) and 

(Kwok 1997). Words and bigrams are representations of relating Chinese characters. 

When a Chinese text forms to words and bigrams, the relationship of component 

characters has been captured. Several studies have compared the effectiveness of these 

two types of indexing units in Chinese IR (Luk, Wong & Kwok 2002), (Nie, Brisebois & 

Ren 1996), (Nie et al. 2000). They all show that words and bigrams can achieve 
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comparable performances, and have produced higher retrieval effectiveness than 

unigrams.  

However, both words and bigrams may encounter the problems of segmentation 

ambiguity and failure of match the slight different word. For example, for the sequence 

发展中国家 (developing country), it is well possible that it is segmented inconsistently 

into 发展 (development) 中 (middle) 国家 (country) or 发展 (development) 中国 (China) 

家 (family), depending on the segmentation method used and the context. Moreover, two 

different words do not always have different meanings. They can be related, especially 

when the words share some common characters such as 办公室 (office) and 办公楼 

(office building).  To avoid these problems, unigrams are usually considered as the index. 

In this case, documents can match when they share characters with a query. 

The previous studies have been carried out using different retrieval models: vector 

space model, probabilistic model, etc. No comparison has been made using language 

modeling (LM). In this study, we will re-examine the problem of indexing units for 

Chinese IR within the LM framework, and investigate the combination approach for 

different units.  

For Chinese CLIR, only words have been used as translation units. No study has 

investigated the possibility of using n-grams of Chinese characters as translation units or 

their combination with words. The main focus in this chapter is to investigate the impact 

of using different Chinese units in CLIR. We will compare different approaches to query 

translation using different translation units.  

Our experiments on several large (NTCIR and TREC) test collections will show that 

in both Chinese monolingual and cross-language IR, it is much better to combine words 

(bigrams) with unigrams. The combination mode benefits from both independent 

character model (unigram) and dependent character models (word and bigram). For CLIR, 

consider co-occurrence term in TM, we can get future improvement. 
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The remaining of the chapter is organized as follows. In Section 3.2, we will describe 

the background of our study. Some related work will be described. Section 3.3 will 

describe our approaches using different index and translation units for Chinese IR and 

CLIR. Section 3.4  describes the experimental setting and results. Conclusions and future 

work will be given in Section 3.5. 

3.2 Background 

3.2.1 Chinese Word Segmentation 

Unlike most Indo-European languages, a Chinese text is written as a continuous 

sequence of Chinese characters without natural delimiters such as spaces. Therefore, 

before further linguistic analysis on a Chinese text, the text has to be first segmented into 

a sequence of words. The main difficulties of word segmentation are word boundaries 

ambiguities (a sentence can be segmented into several different sequences of legitimate 

words) and unknown words. Many segmentation approaches have been proposed and 

most of them are published a decade ago. Basically, they fall into the category of 

dictionary-based method, statistically-based method, or the hybrid of these two methods.  

The dictionary-based approach uses a lexical dictionary and the greedy longest match 

algorithm to segment the text. This approach is simple and efficient. The segmentation 

quality often depends on the completeness of the dictionary. However, we are hardly 

supposed to have a truly complete Chinese dictionary. Some studies (Liang & Zhen 

1991), (Yao, Zhang & Wu 1990) (Nie, Jin & Hannan 1994) try to improve the quality by 

adding a set of heuristic rules, such as rules to deal with numbers, dates and proper names. 

These rules are incorporated into the segmentation process to detect the out-of-

vocabulary words (unknown words). However, the longest match algorithm cannot solve 

ambiguities. For example, the sentence “太阳能发光” (The Sun can shine) has two 

segmentations: 太阳能 (solar energy)／发光 (shine) and 太阳(the Sun)／能(can)／发光
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(shine). The algorithm always chooses the result with the longest words (the former), 

which is wrong in this case. 

Statistical approaches do not require a dictionary. Instead, they need a great amount 

training data. Various statistical models are proposed for segmentation from n-gram 

language model (Teahan et al. 2000), hidden Markov model (Sproat & Shih 1990) 

(Zhang et al. 2003), maximum entropy model (Xue 2003), conditional random fields 

model (Peng, Feng & McCallum 2004) to self-supervised EM model (Peng & 

Schuurmans 2001) (Huang et al. 2003) and pragmatic mathematical framework model 

(Gao et al. 2005). Both supervised learning (Teahan et al. 2000) and unsupervised 

learning (Peng & Schuurmans 2001) have been used.  

More specifically, given a sequence of Chinese characters ܥ = ܿଵܿଶ … ܿ௡	, we wish to 

segment the characters sequence into words ܹ = ଶݓଵݓ ௠ݓ… . There can be different 

ways to segment the sequence, corresponding to different word sequences ܹ௜ ଶ௜ݓଵ௜ݓ= ௠೔௜ݓ… . The goal of segmentation model is to find the most likely word sequence ෡ܹ  

among all possible candidates ܹ௜:  
෡ܹ = 	 arg	maxௐ೔ ܲ(ܹ௜|ܥ) 

The statistical segmentation model in (Chiang et al. 1992) is define as 

ܲ൫ܹ௜หܥ൯ =ෑ ௜ܲ(݈௞, .௞|݈ଵ݈ଶݓ . ݈௞ିଵ, .ଶݓଵݓ . ,௞ିଵ,݉௜ݓ ,ܥ ݊) ௜ܲ(݉|ܥ, ݊)௠೔
௞ୀଵ 	

≈ෑ ௜ܲ(ݓ௞|݈௞ିଵ) ௜ܲ(݉|݊)௞  

where ݈௞ denotes the k-th possible word length. 

In the hidden Markov model of (Zhang et al. 2003), classes of segmented words are 

introduced. We denote the sequence of classes by ܶ௜ = 	 ଵ௜ݐ ଶ௜ݐ . . ௠೔௜ݐ  , where ݐ௞௜  is a 
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corresponding class of ݓ௞௜  (9 classes are defined according to lexicon). The final decision 

is made by: 

෡ܹ = arg	maxௐ೔ 	ܲ൫ܹ௜, ܶ௜หܥ൯ = arg	maxௐ೔ ܲ൫ܹ௜หܶ௜൯ܲ൫ܶ௜൯	
= arg	maxௐ೔ ෑܲ(ݓ௞|ݐ௞)ܲ(ݐ௞|ݐ௞ିଵ)௠೔

௞ୀଵ  

Peng, Feng and McCallum (Peng, Feng & McCallum 2004) defined a conditional 

random fields model for Chinese word segmentation. The probability ܲ(ܹ௜|ܥ) is defined 

as a set of feature functions: 

ܲ൫ܹ௜หܥ൯ = 1ܼ exp൭෍෍ߣ௞ ௞݂(ݓ௧ିଵ,ݓ௧, ,ܥ ௞(ݐ
௡
௧ୀଵ ൱ 

where ߣ௞ is the learning weight of feature ௞݂. 

In the self-supervised EM model of (Huang et al. 2003), two lexicons are used: core 

lexicon ଵܸ (may be empty at the beginning) and candidate lexicon ଶܸ which contains all 

other candidate words that are not in the core lexicon. The probability distribution Θ = ௝ߠ|௝ߠ} = ܲ൫ݓ௝൯, ݆ = 1,… | ଵܸ|}  and Φ = {߶௝|߶௝ = ܲ൫ݓ௝൯, ݆ = 1,… | ଶܸ|}  are defined 

over above lexicons. Then, the segmentation becomes: 

෡ܹ = 	 arg	maxௐ೔ ܲ൫ܹ௜หܥ; Θ,Φ൯ = arg	maxௐ೔ ܲ(ܹ௜,  (Θ,Φ|ܥ
The Joint likelihood is defined as: 

ܲ൫ܹ௜หܥ|Θ,Φ൯ = ෑܲߣ൫ݓ௝భ൯ෑ(1 − ௝మ൯ெమݓ൫ܲ(ߣ
௝మୀଵ

ெభ
௝భୀଵ  

where ܯଵand ܯଶare number of words in V1, and V2  and ߣ is the weight of the core 

lexicon.  
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The probability distribution Θ  and Φ  are learned from training corpus by EM 

algorithm and update Q function is given by  

ܳ(݇, ݇ + 1) =෍ܲ(ܹ|ܥ;ௐ Θ୩,Φ୩)log	(P൫W, CหΘ୩ାଵ,Φ୩ାଵ൯) 
First, run EM process on training ܥଵ until it stabilizes. Then, repeat forward selection 

(move ܯ	 highest probability words from 	 ଶܸ to ଵܸ ) and backward selection (move ܯ	lowest probability words from	 ଵܸto ଶܸ) on validation corpus ܥଶ to get the best accuracy. 

This process is iterated until certain accuracy threshold is reached.  

Previous studies on Chinese word segmentation showed that segmentation accuracy in 

Chinese is usually higher than 90% (Chen & Kiu 1992), (Li et al. 1991), (Yao, Zhang & 

Wu 1990). This accuracy is shown to be satisfactory for IR (Nie, Brisebois & Ren 1996). 

In addition, (Peng et al. 2002) and (Huang et al. 2003) showed a non-monotonic 

relationship between retrieval performance and segmentation accuracy. In the experiment 

of (Huang et al. 2003), a segmentation accuracy of 70%-80% can archive best IR 

performance and a higher segmentation accuracy leads to decreases in the IR 

performance. The reason is that the high accuracy segmentation may identify longer 

words, which are less useful than shorter words (Wu 2003) (Gao et al. 2005). Our 

experiment will also confirm this. 

Therefore, in our study, we will not strive to increase Chinese word segmentation 

accuracy. We will simply choose a common word segmentation method, and we will use 

other means to improve Chinese IR effectiveness: Besides using word segmentation, we 

also use n-grams. This has been proven effective in previous studies (Huang et al. 2000). 

Later in this Chapter, we will investigate how different types of Chinese indexing 

units can impact the IR performance and how they can be combined. 
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3.2.2 Cut Chinese Text into Index Unit 

Chinese IR has been studied for more than one decade. The difference from IR in 

English and in Chinese lies in the fact that word boundaries are not marked in Chinese. In 

order to index a Chinese text, the latter has to be cut into indexing units. The simplest 

method is to use single characters (unigrams) or all adjacent overlapping character pairs 

(bigrams), such as in (Chien 1995), (Liang, Lee & Yang 1996).  Another method is to 

segment Chinese sentences into words, as in (Kwok 1997). 

A Chinese word is composed of one, two, or more Chinese characters. Nie et al. (Nie 

et al. 2000) shows that the average length of Chinese words is 1.59 characters. It means 

that most Chinese words have only one or two characters. So, by considering bigrams, 

most Chinese words can be correctly covered. Although some longer words cannot be 

represented accurately by bigrams, the extension from bigrams to longer n-grams has a 

cost: there will be much more n-grams to be stored as indexes, and the complexity both in 

space and retrieval time will increase substantially. Therefore, limiting n-grams to length 

2 is a reasonable compromise. So, besides words, we will consider only unigrams and 

bigrams. 

Using a word segmentation method, a sentence can be transformed into a sequence of 

words. Then the same word-based method used for European languages can also be used 

for Chinese. For example, the sentence “国企增加研发投资” (National enterprises 

increase the investment in R&D) can be segmented into: “国企／增加／研发／投资”.  

However, this example also shows an important problem: the same meaning can be 

expressed in multiple ways. For example, 研发 （R&D）can be expressed as 研究和开

发 (research and development). If only 研发 is used as index, then it will not be able to 

match against 研究和开发. This problem is similar to that of abbreviation in European 

languages (such as “R&D”). We argue here that the phenomenon is more frequent in 

Chinese. Very often new abbreviations are easily created. For example, 国营企业 
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(national enterprises) can be abbreviated to 国企  (as in our example). In addition, 

Chinese also has a large number of similar words to express the same meaning. For 

example, 增大, 猛增, 递增, 加大, etc. can all express the same (or a similar) meaning as 

(to) 增加 (increase). A strategy that only uses words as indexing units will very likely 

miss the corresponding words.  

We notice in the above example of “increase” that many similar Chinese words share 

some common characters. Therefore, a natural extension to word-based indexing of 

documents and queries is to add characters as additional indexing units. By adding 国, 企, 

增, 加, 研, 发 as additional indexes, we will create partial matches with other words 

expression “national enterprises”, “increase” and “R&D”, thereby increase recall. 

Although this approach is unable to cover all the alternative expressions, it has been 

shown to be effective for Chinese IR (Luk, Wong & Kwok 2002), (Nie et al. 2000).  

An alternative to word segmentation is to cut a Chinese sentence into overlapping 

bigrams such as: 国企／企增／增加／加研／研发／发投／投资. Compared to word 

segmentation, this approach has the advantage that no linguistic resource (such as 

dictionary) is required. In addition, new words can be better represented. For example, 

suppose 新译林 is a new word (possibly the name of a magazine), which is not stored in 

the dictionary. Then it is likely segmented into three separate characters 新／译／林 

using a word segmentation approach. If we use bigrams, the sequence 新译／译林 will 

be generated. These latter can better reflect the sequence 新译林 than the three separate 

characters.  

A possible problem with bigrams is that many of them do not correspond to valid 

semantics. In the earlier example, 企增, 加研 and 发投 do not correspond to any valid 

meaning. However, it can be expected that their frequency of occurrences in documents 

will be much lower than the valid parts 国企, 增加, 研发 and 投资. Therefore, there is a 

natural selection of valid bigrams by the corpus statistics. 



 

39 

 

The above observation has been made in several previous studies (Luk, Wong & 

Kwok 2002), (Nie et al. 2000). However, words and bigrams have often been used as two 

competitive approaches instead of combining them. In (Nie et al. 2000), it is found that 

the most effective approach is to segment sentences into words but also add the 

characters. For example, the sequence 国企增加研发投资 is segmented into 国企／增加

／研发／投资／国／企／增／加／研／发／投／资. The addition of single characters 

(or unigrams) allows us to extend the words to related ones. 

Several studies have compared the effectiveness of these two types of indexing units 

in Chinese IR (Luk, Wong & Kwok 2002), (Nie, Brisebois & Ren 1996), (Nie et al. 

2000). In this chapter, we will re-examine the problem of indexing units for Chinese IR 

within the LM framework, and investigate the combination approach for different units. 

3.2.3 Using Parallel Corpus for CLIR 

Cross-language information retrieval (CLIR) is becoming increasingly important due 

to the rapid development of the Web. As the query and the documents are written in 

different languages, the main problem of CLIR is the automatic translation between 

query and document languages. The basic approach is to translate the query from a 

source language to a target language. There are three main techniques for query 

translation: using a machine translation (MT) system, using a bilingual dictionary, and 

using a statistical model trained on parallel texts. It has been shown that when used 

correctly, these approaches can lead to comparable retrieval effectiveness (Gao et al. 

2001), (Gao et al. 2002), (Jin & Chai 2005), (Kraaij, Nie & Simard 2003), (Nie et al. 

1999). However, for CLIR involving Chinese, words are usually used as translation units. 

Although n-grams of characters have been found to be reasonable alternatives to words in 

indexing (Luk, Wong & Kwok 2002), (Nie, Brisebois & Ren 1996), no previous study 

has investigated the possibility of using Chinese character n-grams as translation units. In 

this study, we will investigate into this issue. Our investigation will make use of a parallel 

corpus.  
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Parallel texts are texts in one language accompanied by their translations in another 

language. Parallel corpora containing such texts have been used for CLIR in different 

manners.  

A simple method is used in (Davis & Ogden 1997), (Yang et al. 1998): a source 

language query is first used to retrieve source language documents in the parallel corpus; 

then the parallel texts in target language corresponding to the top retrieval results are used 

to extract some target language words; these latter are considered as a “translation” of the 

query. This method works in a way similar to “pseudo-relevance feedback” in 

information retrieval.  

A more often used method trains a statistical translation model (TM) from a parallel 

corpus. (Nie et al. 1999) is among the first ones to use this method for CLIR. They build 

a probabilistic translation model from a parallel corpus. The top translation words 

proposed by the TM are kept as the translation of a query. This study showed that the 

retrieval effectiveness obtained is very close to that using a good MT system (Systran). A 

series of other papers, such as (Gao et al. 2001),  (Gao et al. 2002), (Jin & Chai 2005), 

follow the same direction to integrate TM to CLIR. In particular, (Kraaij, Nie & Simard 

2003) has tested the integration of query translation into a global language model. They 

showed that this integrated approach outperforms the existing machine translation system 

(Systran). 

A translation model is a mathematical model, which gives the conditional probability ܲ(ܶ|ܵ), i.e. the likelihood of translation a source language string ܵ into a target language 

string ܶ. Different TMs use different methods to align words between source and target 

languages. The main single-word-based alignment methods are IBM 1 to 5 (Brown et al. 

1993) and Hidden-Markov alignment model (Vogel, Ney & Tillmann 1996). These 

models use words as the basic translation units. For Chinese, it is assumed that a sentence 

is segmented into words. Then the same approach can be used for Chinese. Word-based 

translation approach has been used in all the previous studies on Chinese translation 

using parallel corpora. However, as shown in monolingual IR, a Chinese sentence can 
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also be segmented into n-grams of characters (unigrams or bigrams). Therefore, an 

alternative query translation method is to use n-grams of Chinese characters as translation 

units. This possibility has not been studied previously. This is the focus of this chapter. 

3.2.4 Language Modeling Approach 

Statistical language modeling is an approach widely used in current IR research. 

Compared to other approaches (e.g. vector space model), it has the advantage that 

different factors of IR can be integrated in a principled way. For example, unlike in 

vector space model, term weighting becomes an integral part of the retrieval model in 

language modeling. In addition, LM can also integrate easily query translation, as well as 

considering multiple indexing units in Chinese. Therefore, we will use an LM approach 

in this chapter. 

The basic approach of language modeling to IR is to build a statistical language model 

for each document, and then determine the likelihood that the document model generates 

the query (Croft 2003), (Ponte & Croft 1998). An alternative is to build a language model 

for each document as well as for the query. A score over document is determined by the 

difference between them. A common score function is defined by the negative Kullback-

Leibler divergence or relative entropy as follows: 

,ܦ)݁ݎ݋ܿܵ ܳ) = =(஽ߠ||ொߠ)ܮܭ− −෍ ܲ൫ݓหߠொ൯ log ܲ൫ݓหߠொ൯ܲ(ߠ|ݓ஽)௪∈௏ 	
∝෍ܲ൫ݓหߠொ൯ log ௪(஽ߠ|ݓ)ܲ  

(3-1) 

where ߠொ  and ߠ஽  are the parameters of language model for query ܳ  and document ܦ 

respectively, ܸ is the vocabulary of the language. The simplest way to compute query 

model ܲ(ߠ|ݓொ) is estimating probability by the maximum likelihood according to query 

text. For the document model, it is necessary to use a certain smoothing method, such as 
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absolute discounting, Jelinek-Mercer, Dirichlet prior, etc., to deal with the problem of 

zero-probability for the missing words in the document (Zhai & Lafferty 2001). 

In CLIR, words in ܳ  and ܦ  are in different languages. Query translation can be 

integrated into the query model ܲ(ߠ|ݓொ) formulas follows: 

ܲ൫ݐ௜หߠொ೔൯ =෍ܲ൫ݏ௝, =ொ೔൯௦ೕߠ௜หݐ ෍ݐ൫ݐ௜หݏ௝, ொ೔൯ܲߠ ቀݏ௝ቚߠொೕቁ௦ೕ 	
≈ ෍ݐ൫ݐ௜หݏ௝൯ܲ ቀݏ௝ቚߠொೕቁ௦ೕ  

(3-2) 

where ݏ௝  is a word in source language, ݐ௜  is a word in target language, ݐ(ݐ௜|ݏ௝)  is a 

translation probability between ݏ௝  and ݐ௜ . This probability is provided by a translation 

model trained on a parallel corpus. In our case, we use IBM model 1 (Brown et al. 1993) 

trained using GIZA++ toolkit1. We will provide some details about the model in Section 

3.4. A similar approach has been used in (Kraaij, Nie & Simard 2003) for CLIR between 

European languages, in which ݏ௝ and ݐ௜ are words. 

For CLIR with Chinese (as the target language), ݐ௜ can either be words or n-grams. 

Therefore, we are faced with an additional problem of choosing between, or combining, 

different indexing units.  

                                                 

1 http://www.fjoch.com/GIZA++.html 
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3.3 Using Different Indexing and Translation Units for 

Chinese IR and CLIR 

3.3.1 Combination Model for Information Retrieval 

Several studies have compared utilizations of words and n-grams as indexing units for 

Chinese IR (Nie et al. 2000), (Luk, Wong & Kwok 2002). Most of them have been done 

in models other than language modeling. Here, we first re-examine the impact of 

different indexing units within the language modeling framework. Then, we test using 

different units together by a combination model.  

As we discussed above, we have the following index units for Chinese text: segmented 

words, unigram of Chinese characters, bigrams, words with unigram characters, and 

bigrams with unigram characters. The latter two index units able to combine words 

(bigrams) and n-grams naturally.  

An alternative approach is more flexible to combine index units. We can create several 

indexes for the same document: using words, unigrams and bigrams separately. Then 

during the retrieval process, these indexes are combined to produce a single ranking 

function. In LM framework, this means that we build several language models for the 

same document and query. Each type of the model determines a score Scorei. The final 

score is a combination of these scores. So, in general, we define the final score as follows: 

,ܦ)݁݋ݎܿܵ ܳ) =෍ߣ௜ܵܿ݁ݎ݋௜(ܦ, ܳ)௜   (3-3) 

where Scorei is the score determined by a type of model (in our case, either unigram, 

bigram or word model) and ߣ௜  is importance in the combination (with ∑ ௜௜ߣ = 1). In 

particular, we can have the following possible basic indexing strategies: 
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─ W (Word): segment sentences into words, and only use the word model for retrieval 

─ U (Unigram): segment sentences into unigrams (single characters), and only use 

unigram model for retrieval. 

─ B (Bigram): segment sentences into overlapping bigrams of characters. 

─ WU (Word+Unigram): segment sentences into both words and unigrams, as in (Nie 

et al. 2000). 

─ BU (Bigram+Unigram): segment sentences into both overlapping bigrams of 

characters and unigrams. 

These strategies can then be combined according to Formula (3-4). For example, we 

can combine word and unigram models, bigram and unigram models, or word, bigram 

and unigram models, which we denote respectively by W+U, B+U and W+B+U as 

follows ( 0 < ߣ < 	1): 

,ܦ)௪ା௨݁ݎ݋ܿܵ ܳ) = ߣ ⋅ ௪݁ݎ݋ܿܵ + (1 − (ߣ ⋅ ௨݁ݎ݋ܿܵ
,ܦ)௕ା௨݁ݎ݋ܿܵ ܳ) = ߣ ⋅ ௕݁ݎ݋ܿܵ + (1 − (ߣ ⋅  ௨݁ݎ݋ܿܵ

,ܦ)௕ା௪ା௨݁ݎ݋ܿܵ ܳ) = ௕ߣ ⋅ ௕݁ݎ݋ܿܵ + ௪ߣ ⋅ ௪݁ݎ݋ܿܵ + (1 − ௕ߣ − (௪ߣ ⋅  ௨݁ݎ݋ܿܵ

(3-4) 

3.3.2 Creating Different Translation Models for CLIR 

For CLIR, we use a TM to translate query ܳ௦ from source language to target language. 

Here, we use maximum likelihood estimation to estimate the source terms in the query, 

that is:  ܲ൫ݏ௝หߠொ൯ = ௖(௦ೕ;ொೞ)|ொೞ| . The query model in Formula (3-2) becomes: 

ܲ൫ݐ௜หߠொೞ൯ = ෍ ܶ൫ݐ௜หݏ௝൯௦ೕ∈ொೞ
;௝ݏ)ܿ ܳ௦)|ܳ௦|  (3-5) 

where ܿ(ݏ௝; ܳ௦) is occurrence of term ݏ௝ in query ܳ௦, and |ܳ௦| is the number of terms in ܳ௦. 
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The simplest TM is English-Chinese word-to-word translation model, which can be 

trained from English-Chinese parallel corpus (in which Chinese sentences are segmented 

into words). If only words are used, then we will have a TM translating English words 

into Chinese words. We denote this translation approach by ܹ. To improve the retrieval 

coverage (recall) in CLIR, we can use the same method as in monolingual IR: we expand 

each Chinese word sequence in the parallel texts by adding the unigrams. The resulting 

translation model will suggest both Chinese words and characters as translations of 

English words. We denote this translation model by ܹܷ . The addition of single 

characters into parallel sentences aims to deal with the same problem as in monolingual 

Chinese IR. For example, if only 国家 (country) is segmented as a word in a parallel 

sentence, then this word will be suggested as the only translation candidate for “country”. 

In fact, 国 (country) is another reasonable alternative for the same meaning. Therefore, 

by adding single characters into the training sentence, the TM can also suggest 国 as 

another translation candidate to “country”. This approach is simple. We only need to 

perform the following transformation of each parallel sentence: 

݁ଵ݁ଶ …݁௡||ݓଵݓଶ ௠ݓ… 	⇒ 	݁ଵ݁ଶ … ݁௡||ݓଵݓଶ ௠ܿଵܿଶݓ… … ܿ௞ 

where ݁௜  is an English word, ݓ௜ is a Chinese word, ܿ௜ is a Chinese character included in ݓଵ  ௠. GIZA++ is then used to create an IBM 1 model. Now, the word “country” isݓ…

translated into not only 国家 (country): 0.2216, but also 国 (country): 0.2501, 家 (home): 

0.1871, etc. 

In the same way, if we append characters to bigrams, the resulting TM will translate 

an English word to Chinese bigrams and unigrams.  

Now we show how these TM are used for CLIR. Firstly, we notice that the translation 

candidates with low probabilities usually are not strongly related to the query. They are 

more noise than useful terms. So, we remove them by setting a threshold ߜ: we filter out 

the items ݐ௜  with ܶ൫ݐ௜หݏ௝൯ < ߜ . Then, the probabilities of the remaining translation 

candidates are re-normalized so that ∑ ܶ൫ݐ௜หݏ௝൯ = 1௧೔ . 



 

46 

 

Then, we calculate the query model by Formula (3-5). To further reduce the noise, we 

use one of the following two methods to select translations:  

(1) For each source term ݏ௝, we select the top ܰ best translations. 

(2) We sort of the translation candidates by ܲ(ݐ௜|ߠொ) according to Formula (3-2) and 

select the top ܰ ⋅ |ܳ௦| terms as translation. Here ܰ is a fixed parameter that we can 

tune manually. 

3.3.3 Using Co-Occurrence Terms 

Translation models are created for word translation. That is, the translation of a word 

only depends on the source word in isolation. In many cases, a single word is ambiguous. 

For example, the word “intelligence” has several meanings. It can be translated into 

Chinese as 智能 , 情报 , etc. In order to solve the ambiguities, several studies have 

exploited the context words to determine the most appropriate translation candidates. For 

example, Gao et al (Gao et al. 2002) uses a cohesion measure between the translation 

candidates for different source words to select the ones with the highest cohesion. 

Ballesteros and Croft (Ballesteros & Croft 1998) uses co-occurrence statistics for 

translation disambiguation. 

However, all these studies focus on the selection ambiguous translations in the target 

language afterwards. In (Bai, Nie & Cao 2006), a different approach has been proposed 

to suggest related words for query expansion according to more than one query word at 

each time. For example, instead of using ambiguous term relations “Java→programming” 

and “Java→island”, we include more than one term in the condition: “(Java, computer) 

→ programming”, where “(Java, computer)” means that the two words co-occur in some 

window. By adding more terms into the condition, the derived term is more strongly 

related to the query, and it is context-dependent.  
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In this study, we use the same idea but for query translation: In order to determine a 

target language translation, we make use of more than one source language word. For 

example, if “java” co-occurs with “computer”, then the probability of translating it into 

程序 (program) and Java 语言 (Java language) will be much higher than into 瓜哇岛 

(Java island), i.e., ܶ(程序|	݆ܽܽݒ, (ݎ݁ݐݑ݌݉݋ܿ ≫ ܶ(岛|	݆ܽܽݒ,   .(ݎ݁ݐݑ݌݉݋ܿ
In order to obtain such context-dependent translation relations, we perform a co-

occurrence analysis on the parallel texts. As in (Bai, Nie & Cao 2006), we also limit the 

condition part of the translation relations to two words. 

The first question is what pair of words can be considered as meaningful pairs for 

translation. A meaningful pair of words is the one that brings more information than the 

two words separately. Several statistical measures have been proposed to determine such 

pairs (Thanopoulos, Fakotakis & Kokkinakis 2002), including t-score, Pearson’s χ2, log-

likelihood ratio, pointwise mutual information and mutual dependency. The results show 

that log-frequency biased mutual dependency (ܦܯܨܮ) and log-likelihood ratio (ܴܮܮ) 

outperform the other methods. Therefore, we choose the LLR method for identifying 

meaningful co-occurrence words. ܴܮܮ of words ݓଵ  and ݓଶ is determined in as follows 

(Dunning 1993): 

,ଵݓ)ܴܮܮ (ଶݓ = −2 log (ଵܪ)ܮ(଴ܪ)ܮ = −2 log ,ଵଶܿ)ܮ ܿଵ, (݌ ⋅ ଶܿ)ܮ − ܿଵଶ , ܰ − ܿଵ, ,ଵଶܿ)ܮ(݌ ܿଵ, (ଵ݌ ⋅ ଶܿ)ܮ − ܿଵଶ, ܰ − ܿଵ,   	(ଶ݌

where ܪ଴ is the hypothesis of ܲ(ݓଶ|ݓଵ) = ݌ = (ଵݓ|ଶݓ)ܲ ଵ isܪ and ,(ଵݓ¬|ଶݓ)ܲ = 1݌ ଶ݌≠ = ,݇)ܮ ;(ଵݓ¬|ଶݓ)ܲ ݊, (ݔ = ௞(1ݔ − ଶݓ ,ଵݓ ௡ି௞; ܿଵ, ܿଶ, and ܿଵଶ are the occurrences of(ݔ  and ݓଵݓଶ  respectively; ݌ = ܿଶ/ܰ ଵ݌ , = ܿଵଶ/ܿଵ ଶ݌ , = (ܿଶ − ܿଵଶ)/(ܰ − ܿଵ). Usually, 

the co-occurrence of words should be limited within the same context (paragraph or 

sentence) and not far away from each other. We also limit word co-occurrences in the 

same sentence and within a fixed size of window: win_size. We apply a threshold to filter 

out word pairs with low ܴܮܮ  values, and keep the remaining word pairs (a list of 

meaningful word pairs). 
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Now, we can extend the source sentences of parallel corpus. For all words ݁௜ and ௝݁, if 
the distance between them is less than win_size and they are in the list of meaningful 

word pairs, we add the pair ݁௜_ ௝݁ into the source sentence as follows: 

Original sentence pair:  ݁ଵ …	݁௡	||	ݓଵ 	௡ݓ	…
Transformed pair:     ݁ଵ …	݁௡	݁௜_ ௝݁ ଵݓ||		…	 	௡ݓ	…
With the word pairs added, we train a translation model (IBM model 1), which include 

two types of translations: one is from English word to Chinese words, ܶܯ଴; another is 

from English word pair to Chinese words, ܶܯ௖௢. 

The above approach can be viewed as a way to integrate the translation of compound 

terms. However, this approach is more flexible than that using compound terms – the 

determination of compounds usually require stricter syntactic constraints between 

compounds, while in our method words can freely group to form word pairs provided that 

they appear together often. Not only this method has a larger coverage, but also it can 

consider the influence of any useful context word in translation of a word without 

requiring them to form a compound term. 

The final question is how these translation relations can be used for query translation. 

The basic idea is adjusting the probabilities of ܶܯ଴ according to ܶܯ௖௢ in the sentence 

context. The translation probabilities (in ܶܯ଴) should be boosted if the translations are 

also proposed by the co-occurrence translation model (ܶܯ௖௢), and decreased otherwise. 

The translation model in Formula (3-2) is then defined as follows: 

ܶ൫ܿห݁௜, ொ൯ߠ = ෍(1 − (௘೔௘ೕߙ ଴ܶ(ܿ|݁௜) + ௘೔௘ೕߙ ௖ܶ௢(ܿ|݁௜_ ௝݁)௘೔∈ொ  (3-6) 

where the parameter ߙ௘೔௘ೕ ∝ ,௜݁)ܴܮܮ ௝݁), which is a value within the range [0,1], is a 

confidence factor measuring how strong the two words are related in the query. The final 

translation probability for each ݁௜ is then normalized so that ∑ ܶ൫ܿห݁௜, ொ൯ߠ = 1௖ . 
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3.4 Experiments 

3.4.1 The Experiment of Chinese Monolingual IR 

We use Lemur toolkit1 with KL-divergence and Dirichlet prior smoothing method. We 

evaluated the monolingual IR and CLIR using two TREC collections and three NTCIR 

collections: TREC5, 6, and NTCIR3, 4, 5. The statistics are described in Table 3-1. 

Table 3-1. Collection and query topic description 

Query&Coll. Description Size(MB) #Doc #Topic 

TREC5 Peoples Daily & Xinhua news agency 173  165K 28 

TREC6 Peoples Daily & Xinhua news agency 173  165K 26 

NTCIR3 CIRB011&CIRB020 543  381K 50 

NTCIR4 CIRB011&CIRB020 543  381K 60 

NTCIR5 CIRB040 1106  901K 50 

Table 3-2 gives the retrieval results measured in MAP (Means Average Precision), 

where for each of collection, we obtain two results: one with “title” of each topic as the 

query, another with “title+description” as query. We use different index and retrieval 

units described in Section 3.3: word segmentation (ܹ), bigrams (ܤ), Unigrams (ܷ), 

mixture of words and unigrams (ܹܷ ), mixture of bigrams and unigrams (ܷܤ ). In 

addition, we also tested several combinations of these indexing methods, by combining 

their ranking scores. Namely, we combined ܹ and ܷ indexes (ܹ+ܷ) as well as ܤ and ܷ 

indexes (ܤ+ܷ). We vary the combination factor of Formula (3-4) from 0.1, 0.2,…, to 0.9, 

and results show that when we attribute around 0.3 to ܹ or to ܤ and 0.7 to ܷ, we obtain 

the best performances. When combining ܹ, ܤ, and ܷ (ܹ+ܤ+ܷ), we tune the parameters 

manually by try ߣs from 0 to 1 by 0.1. On average, ߣ௨ = ௪ߣ ,0.6 = ௕ߣ = 0.2 gives best 

results. 

                                                 

1 http://www.lemurproject.org 
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We can observe that using words (ܹ) or using bigrams (ܤ) as indexing units, we 

obtain quite similar results. This is consistent with the observations in previous studies. 

What is surprising in our experiments is that using unigrams alone (ܷ), we can also 

obtain very good results, which are even better than ܹ and ܤ. In some previous studies, 

unigrams have not been found to be as effective as bigrams (Nie et al. 2000). We believe 

that the difference may be due to the use of different retrieval models: we use language 

modeling approach which is different from previous ones. The language modeling may 

have a capacity to extract discriminative unigrams higher than the other models. Even if 

characters are not always meaningful, their probabilities are assigned in LM in such a 

way that more meaningful characters are attributed more different probabilities in 

different documents. These characters will make more difference between documents, 

thus affect document ranking more. This capability of LM to consider discrimination 

values of indexes is analyzed in (Zhai & Lafferty 2001).  

Table 3-2. Comparing Chinese monolingual IR results  

Chinese Monolingual IR (Query: Title) 

Query&Coll. W B U WU BU .3W+.7U .3B+.7U W+B+U 

TREC5 0.2585 0.2698 0.3012 0.3298 0.3074 0.3123 0.3262 0.3273 

TREC6 0.3861 0.3628 0.3580 0.4220 0.3897 0.4090 0.3880 0.4068 

NTCIR3 0.2609 0.2492 0.2496 0.2606 0.2820 0.2754 0.2840 0.2862 

NTCIR4 0.1996 0.2164 0.2371 0.2254 0.2350 0.2431 0.2429 0.2387 

NTCIR5 0.2974 0.3151 0.3390 0.3118 0.3246 0.3452 0.3508 0.3470 

Average 0.2805 0.2827 0.2970 0.3099 0.3077 0.3170 0.3184 0.3212 

(Query: Title + Description) 

TREC5 0.3240 0.3496 0.3433 0.3553 0.3553 0.3581 0.3693 0.3668 

TREC6 0.4909 0.5068 0.4709 0.5095 0.5165 0.5165 0.5116 0.5269 

NTCIR3 0.2822 0.2692 0.2672 0.2788 0.2766 0.3118 0.3080 0.3167 

NTCIR4 0.2122 0.2074 0.2390 0.2195 0.2170 0.2464 0.2443 0.2449 

NTCIR5 0.3386 0.3490 0.3741 0.3421 0.3516 0.3858 0.3942 0.3869 

Average 0.3296 0.3364 0.3389 0.3410 0.3434 0.3637 0.3654 0.3684 

When we mix up two types of indexing units in the segmentation step – ܹ with ܷ 

(ܹܷ) and ܤ with ܷ (ܷܤ), we can see that the results are generally better than when only 

one type of index is used. This observation is consistent with (Nie et al. 2000)However, 
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the best methods are those that create separate indexes for each type, and then combine 

the ranking score according to Formula (3-4). The result of combining word, bigram and 

unigram together shows that this approach can produce slightly better results than ܹ+ܷ 

and ܤ+ܷ, but the improvements are marginal. A possible reason is that words are usually 

formed with two characters. So there is a large overlap between words and bigrams. As a 

consequence, once words have been used, bigrams do not bring much new information, 

and vice versa. 

Our statistical hypothesis test shows that the improvements of mixed and combined 

approaches over W, B, and U are statistically significant only for some results; others are 

marginal.  It means that different topics may benefit from different indexing units. 

Overall, comparing ܹ to ܤ, we obtain comparable effectiveness, either when they are 

used alone or they are combined each with ܷ. Therefore, we can conclude that bigrams 

are reasonable alternative to words as indexing units. The combination between them 

does not seem to be interesting. This shows that both types of indexing units captures 

about the same information. On the other hand, unigrams are complementary to them and 

it is useful to combine unigrams with either bigrams or words. 

3.4.2 Using Different Chinese Translation Units for CLIR 

Our model requires a set of parallel texts to train a TM. We have implemented an 

automatic mining tool to mine Chinese-English parallel texts from Web using a similar 

approach to (Chen & Nie 2000). Parallel texts are mined from six websites, which are 

located in United Nations, Hong Kong, Taiwan, and Mainland of China (Chinese pages 

encode in GB2312, Big5, and Unicode). It contains about 4000 pairs of pages and 

includes some noise (non-parallel texts). 

After converting the HTML texts to plain text and mark the paragraph and sentence 

boundaries, we use a sentence alignment algorithm to align the parallel text to sentence 
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pairs. Our sentence alignment algorithm is an extension of the length-based method, 

which also considers the known lexical-translation according to a bilingual dictionary. 

The idea is that if a pair of sentences contains many words that are mutual translations in 

the dictionary, then their alignment score is increased. Here we use CEDICT1, which 

includes 28,000 Chinese words/phrases. After sentence alignment, we obtain 281,000 

parallel sentence pairs. Another extension we made to the traditional TM training is to 

use sentence alignment score during TM training. A pair of sentences with a higher score 

is considered more important in the training process than a pair with lower score. This 

factor can be easily incorporated into the GIZA++ tool. Our previous experiments 

showed that these measures result in better translation models and higher CLIR 

effectiveness (Shi & Nie 2006). In this study, we use the same approach for TM training. 

For English, we use a simple morphological analyzer2 to remove the English language 

suffixes, such as -s, -ed, -en, ase, -yl, -ide, etc. For Chinese word segmentation, we use an 

existing segmentation tool3. The segmenter uses a version of the maximal matching 

algorithm based on a lexicon.  

Once the parallel corpus has been pre-processed as above, GIZA++ is used to train 

translation models – IBM model 1. 

When preprocessing Chinese texts in the parallel corpus, different Chinese units have 

been created separately. We therefore obtain several types of translation models: 

─ W: English word to Chinese words; 

─ B: English word to Chinese bigrams; 

─ U: English word to Chinese unigrams (single characters); 

─ WU: English word to Chinese words and unigrams; 

─ BU: English word to Chinese bigrams and unigrams.  

                                                 

1 http://www.mandarintools.com/cedict.html 
2 http://web.media.mit.edu/~hugo/montylingua/ 
3 http://www.mandarintools.com/download/segment.zip 
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In our experiments, we set N=10 and use the second method introduced in Section 3.2, 

i.e. keep top 10 · |ܳ| target words in query model. This method is slightly better than the 

first one. As for monolingual IR, when two function scores are combined using Formula 

(3-4), we set  = 0.3 for either W or B models. The CLIR results (measured in MAP) are 

shown Table 3-3. 

We can observe that in general, CLIR effectiveness is much lower than monolingual 

effectiveness. This is normal and consistent with previous studies. Although we can 

expect a quite high effectiveness for CLIR between European languages, in general, the 

CLIR effectiveness between English and Chinese is much lower than monolingual 

effectiveness. So, the drop we observe here is not an exception. 

What is important to observe is the comparison between different translation 

approaches.  

As for monolingual IR, we see that using ܹ or ܤ as translation units, we can obtain 

similar results. Using ܷ as translation units, we obtain generally better effectiveness. This 

result is also new compared to the previous studies. This shows that Chinese characters 

can be reasonable indexing and translation units for Chinese.  

When we mix up Chinese units in TM (ܹܷ  and ܷܤ ), we can obtain further 

improvements. On the other hand, although it is still an interesting approach to translate 

the query into different units with different TMs and then combine their ranking scores 

by Formula (3-4), we do not observe any significant increase using this last approach 

over ܹܷ and ܷܤ, contrarily to monolingual IR.  
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Table 3-3. CLIR results using different translation models  

EnglishChinese CLIR (Query: Title) 

Query&Coll. W B U WU BU .3W+.7U .3B+.7U 

TREC5 0.1904 0.2003 0.1922 0.2448 0.2277 0.2158 0.2251 

TREC6 0.2047 0.2293 0.2602 0.2670 0.2772 0.2672 0.2822 

NTCIR3 0.1288 0.1017 0.1536 0.1628 0.1504 0.1619 0.1495 

NTCIR4 0.0956 0.0953 0.1382 0.1410 0.1308 0.1337 0.1286 

NTCIR5 0.1158 0.1323 0.1762 0.1532 0.1462 0.1682 0.1602 

Average 0.1470 0.1518 0.1841 0.1938 0.1865 0.1894 0.1891 

(Query: Title + Description) 

TREC5 0.2433 0.2637 0.2674 0.2984 0.2897 0.2848 0.2906 

TREC6 0.2910 0.3355 0.3624 0.3745 0.3866 0.3641 0.3793 

NTCIR3 0.1401 0.1189 0.1741 0.1878 0.1748 0.1977 0.1731 

NTCIR4 0.1021 0.0992 0.1463 0.1493 0.1390 0.1443 0.1395 

NTCIR5 0.1315 0.1430 0.2252 0.1851 0.1731 0.2051 0.2053 

Average 0.1816 0.1921 0.2351 0.2390 0.2326 0.2392 0.2376 

3.4.3 Using English Word Pair for Translation 

To determine meaningful English word pairs, we use the monolingual English corpus, 

Associate Press (AP88-90). We filtered out the word pair with a LLR less than 100, and 

kept 828,750 pairs. 

The new translation method is compared to the translation method ܹܷ, which proved 

to be the most effective. Here, in addition to segmenting Chinese sentences into both 

words and unigrams, we also group English words to form an additional term. Finally, we 

trained a TM (ܶܯ௖௢) from English to Chinese that also contains translations of English 

word pairs. Using Formula (3-6), we can get the new model that we denote by ܹ ௖ܷ௢ in 

the following table.  
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Table 3-4. Comparing different translation approach (Documents are indexed by ࢁࢃ in both cases) 

 Query: Title Query: Title + Description 

Query& 
Collection 

 ࢕ࢉࢁࢃ ࢁࢃ ࢕ࢉࢁࢃ ࢁࢃ

MAP MAP %WU MAP MAP %WU 

TREC5 0.2448 0.2463 +0.6 0.2984 0.2910 -2.5 

TREC6 0.2670 0.2912 +9.1 0.3745 0.3883 +3.7 

NTCIR3 0.1628 0.1656 +1.7 0.1878 0.1869 -0.5 

NTCIR4 0.1410 0.1448 +2.7 0.1493 0.1536 +2.9 

NTCIR5 0.1532 0.1586 +3.5 0.1851 0.2008 +8.5 

We can see that when meaningful English word pairs are considered in the translation 

model, the resulting retrieval effectiveness is slightly higher than the ܹܷ  translation 

model. However, the improvements are not consistent in all cases.  

For some queries, we observe that this new translation model can produce better 

translation. For example, for TREC6 topic CH45, The MAP of ܹܷ is 0.2514 and that of ܹ ௖ܷ௢ is 0.6439. The English title is “China red cross”. By the ܹܷ translation model this 

topic is translated to “红 :0.5388 中国 : 0.3842 中 :0.3427 国 :0.2650 两 :0.1336 两

岸:0.0837 跨:0.0760 十:0.0720 岸:0.0718 …” The underlined Chinese words are correct 

translations. Once we combine ܶܯ଴ and ܶܯ௖௢ by Formula (3-6), the translation becomes 

“中国:0.3842 中:0.3427 红:0.3007 国:0.2650 十: 0.2362 字:0.2292 红十字会:0.1662 两: 

0.1025 会:0.0901 两岸 0.0642 …” We see that the translation is more related to the 

original query. 

For some other queries, we observed decreases in effectiveness. This is the case for 

TREC6 topic CH24, for which the effectiveness drops from 0.3216 to 0.2437. The 

English title is “Reaction to Lifting the Arms Embargo for Bosnian Muslims”. For this 

query, we have determined correctly “arm_embargo” as a word pair. Its translation 

should be “武器(weapon,arms) ／禁运(embargo)”. However, due to the limitation of our 

parallel corpus, the translations of “arm_embargo” in ܶܯ௖௢ are “运(transport):0.1045 安
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全(safe):0.1025 安 (safe):0.0813  全 (complete):0.0734  禁 (forbid):0.0654 表:0.0576 禁

运(embargo):0.0386 生:0.0348 发:0.0339…” We see that the meaning of “weapon” is 

completely lost and the meaning of “embargo” is only reflected by two low probability 

translations. Therefore, the result becomes worse. We believe that this decrease is largely 

due to the limited size of our parallel corpus and its coverage of Chinese and English 

words. With a larger parallel corpus, the translation model with word pairs should be able 

to produce larger improvements in retrieval effectiveness. 

Another factor that strongly impacts this method is that we have normalized the 

influence of each translation component in Formula (3-6). That is, when an English word 

is contained in a word pair, both types of translations are combined. If a word is not part 

of a word pair, then only word-based translation is considered. In this case, the word-

based translation will be attributed with a higher weight (because it is attributed the 

whole relative importance, or ߙ௘೔௘ೕ = 	0 in Formula (3-6)). This may raise some problem. 

Indeed, when a single word is translated, much ambiguity is introduced. Therefore, we 

should rather reduce our confidence on the translations from single English words. This is 

a problem that we will consider in our future research. 

3.5 Conclusion and Future Work 

Chinese words and bigrams have been considered to be two competitive indexing 

units for Chinese IR. In this study, we further compared these approaches and combined 

them with unigrams (characters). We have found that Chinese unigrams are actually more 

effective than either words or bigrams along – it is new in Chinese IR. In addition, by 

combining either words or bigrams with unigrams, we can get better retrieval 

effectiveness. This result is consistent with previous studies. 

For CLIR with Chinese (as the target language), previous studies usually use words as 

translation units. In this chapter, we have tested the possibility of using bigrams and 

unigrams as alternative translation units. Our experiments showed that these translation 
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units are as effective as words. In particular, unigrams have proven to be even more 

effective than words and bigrams. 

Based on above results, we can see that Chinese characters are very meaningful units, 

which can be used as both indexing and translation units. 

When an English query is translated into both unigrams and words or bigrams, we 

observed slightly higher retrieval effectiveness. However, the increase is marginal. 

In order to reduce translation ambiguity, we also tested the possibility of determining 

Chinese translation from a pair of English words. For some queries, the results are very 

encouraging, but for some others, we observed rather a decrease. Therefore, the overall 

effectiveness is only marginally better. Still, we believe the proposed translation method 

can be further improved in following aspects: 

─ Using a large parallel corpus, we can derive more useful translation from English 

word pairs; 

─ Effectiveness can be further improved by translating both word pairs and words. In 

our current implementation, we only considered the strength of link between 

English words may not be sufficient. We have to define a better measure of 

confidence about the translations generated from single word or word pairs. 

We will tackle these problems in our future research. It would be worthwhile to test 

our approaches also for other Asian languages such as Japanese and Korean. 
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CHAPTER 4.  

RELATING DEPENDENT INDEXES USING 

DEMPSTER-SHAFER THEORY 

Introduction to the chapter 

In the previous chapter, we considered different types of indexing units. However, 

different units are considered to be independent: they are used separately to produce a 

matching score. In reality, different types of indexes are not independent. Let us use the 

combination of word and phrase indexes to illustrate the problem. Give the query 

“computer architecture”, once we represent it as “computer-architecture” in a phrase 

index, and as “computer” and “architecture” in a word index, it is not reasonable to 

consider the two types of indexes independent. “computer-architecture” is strongly 

related to “computer” and “architecture” in the word index. 

In this chapter, we try to address this problem. Our approach is to create a unique 

index in which both the phrase and the component words are represented, however, as 

dependent elements. As it is difficult to determine a priori the way that the phrase and the 

words are dependent, we use a flexible way to deal with it – Dempster-Shafer theory of 

evidence. The idea is to consider a phrase and the component words as forming a group 

of dependent elements. An expression such as “computer architecture” corresponds to 

such a group of elements: {computer-architecture, computer, architecture}. If the same 

expression is found in a query and a document, then the group is matched together. If, on 

the other hand, there is only a partial match (e.g. the document contains separate words 
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“computer” and “architecture”, then the group is discomposed to provide a partial 

matching score. 

The use of Dempster-Shafer theory allows us to have a reasonable representation of 

dependent elements. 

This chapter reproduces a paper published at the Proceedings of the 17th ACM 

Conference on Information and Knowledge Management: (Shi, Nie & Cao 2008). 

4.1 Introduction 

The problems related to the independence between terms assumption are well 

documented in IR literature (Evans & Zhai 1996), (Pôssas et al. 2002), (Wong, Ziarko & 

Wong 1985). To solve the problems, a common approach proposed in the literature is to 

create multiple types of indexes (Evans & Zhai 1996), using both single-word terms and 

multi-word terms. For example computer architecture, one would arrive at two possible 

representations: by computer and architecture, and by the compound term computer-

architecture. In so doing, the document can match a query about computer or architecture 

due to the first type of index, and a query about computer architecture more strongly due to 

the second type of index.  

In the previous chapter, we investigated the combination approaches for Chinese IR and 

English-Chinese CLIR. Although the approach offers a remedy to the practical problem 

of mismatch to some degree, it does not solve the fundamental problem concerning the 

relationship between different terms – the two types of indexes were still used as 

independent pieces of evidence. In reality, computer of the first type is strongly related to 

computer-architecture of the second type. 

The importance to take into account the relationships between terms in IR is widely 

recognized, and a number of investigations have been carried out on it. The studies, such 

as (Metzler & Croft 2007), (Theophylactou & Lalmasy 1998), (Turtle & Croft 1991), use 
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different frameworks ranging from language modeling, Bayesian network to Dempster-

Shafer theory. We observe that any of the proposed methods encountered a crucial 

problem in implementation for the estimation of probabilities of different terms. In 

general, probabilities (or any other weights) are assigned to terms according to their 

frequencies of occurrences. However, when we observe an occurrence of the string 

“computer architecture” in a document, should we consider it as the one for the 

compound term computer-architecture, for the single terms computer and architecture, or 

for both?  

Different methods have been used to deal with this problem. For example, (Evans & 

Zhai 1996), (Theophylactou & Lalmasy 1998) considered the occurrence simultaneously 

for both compound and single terms. This will in fact duplicate the occurrence, one for 

the compound term, and another for single terms. This obviously falsifies the final 

probability estimation and enhances compound terms unduly. For example, in the 

occurrence “computer architecture and network”, “computer architecture” will be 

assigned an overly enhanced importance compared to “network” due to the consideration 

of both compound and simple terms for it.  

Another typical approach is to consider the occurrence only for single terms, and the 

probability of the compound term is estimated afterwards from those of the single terms 

(de Campos, Fernández-Luna & Huete 2003). In this case, however, it is implicitly 

assumed that an occurrence of “architecture” or “architecture” alone implies somehow 

computer-architecture. This is obviously not always true, and a generalized assumption 

can lead to a wrong probability estimation. 

The above problem is fundamental in IR theory. However, it has not been paid due 

attention in previous research in European languages. Part of the reason is that the 

consideration of compound terms in addition to single terms is just an option, because 

words can already capture most of the document contents. The addition of compound 

terms can sometimes improve the retrieval effectiveness. However, in many East Asian 

languages (Chinese, Japanese), the above problem is omnipresent: these languages do not 
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have a proper native definition of the notion of word. The current indexing process used 

in these languages is inherited from the IR studies in European languages, in which word 

is a clear linguistic notion. Forcing to use words as indexing units in Asian languages will 

hide the several important problems: 

Word segmentation is often ambiguous. For the same sentence in Chinese, there may 

often be several different segmentation results, leading to inconsistent word sequences. 

The inconsistency between the segmentation of a document and that of a query will lead 

to mismatch. 

Words in Asian languages strongly overlap. In Asian languages (in particular, 

Chinese), we can determine longer or shorter words from a sentence and they often 

overlap. A typical example is the case of single characters (or ideograms), which can 

represent a concept alone (e.g. 网 – network); but they can also be part of a longer word 

(e.g. 网络 – network) representing the same (or similar) concept. Then both 网 and 网络 

can be used as terms. Obviously, as they overlap, they cannot be considered to be 

independent. 

One may argue that these problems of ambiguous and overlapping terms also exist in 

European languages, e.g. when considering compound terms or when dealing with 

languages such as German. However, the difference is the extent to which the phenomena 

spread in these languages: In Chinese (and several other Asian languages), the 

phenomena are generalized – almost every word formed by two or more characters can 

be viewed as juxtaposition of two or more concepts. The consideration of multiple and 

dependent terms in Asian languages is thus a fundamental question rather than an option. 

In previous studies on Chinese IR, remedial approaches similar to (Evans & Zhai 

1996), (Theophylactou & Lalmasy 1998) have been used, e.g. (Nie et al. 2000), (Kwok 

1997). For example, one can segment a sentence into all the possible (long and short) 

words and then count them independently. However, these approaches do not offer a 

radical solution to the problem. 
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In this chapter, we propose a different approach to consider strongly dependent terms. 

We will use Dempster-Shafer theory (Dempster 1968), (Shafer 1976) to group multiple 

terms implied in the same occurrence of a string. For example, when an occurrence of 网

络 (network) is observed, we consider it as representing three possible terms: 网络, 网 

and 络. This occurrence is represented as a set of terms, or term set, {网络, 网, 络}, as in 

Dempster-Shafer theory of evidence. Probability is assigned to the whole term set instead 

of to each of terms. This will avoid the problem of duplicating the occurrence for long 

terms. In this representation, terms in the same set are assumed to be dependent, but the 

dependency is not explicitly represented. The dependency will be considered in the query 

evaluation phase: To determine the score of a document facing a query, we will consider 

the possible relations between a term set of the document and a term set of the query. 

This will extend the belief and plausibility functions of Dempster-Shafer theory and 

allow us to define more appropriate evaluation functions for IR. 

Our utilization of Dempster-Shafer theory aims to solve the fundamental problem of 

document and query representation by dependent terms. This is different from previous 

utilizations of the theory, which often exploited the theory for combining multiple pieces 

of evidence assumed to be independent (Plachouras & Ounis 2005), (Ruthven & Lalmas 

2002), (Urban, Jose & Rijsbergen 2006). 

This approach is tested on several Chinese test collections from TREC and NTCIR, and 

we obtained significantly better effectiveness than state-of-the-art approaches. 

In the remaining of the chapter, we will first describe some related studies trying to deal 

with dependencies between terms. Then we will describe our approach using Dempster-

Shafer theory. We will describe our experiments on several Chinese test collections. An 

analysis will be made on the results before drawing the conclusions. 
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4.2 Related Work 

Single-word terms are found to be ambiguous in many cases. Therefore, compound 

terms or phrases have been used to complement the single-word terms. For example, one 

can first identifies compound terms or phrases using both statistical and linguistic 

analyses, then combine them with single-word terms (Evans & Zhai 1996). A typical 

approach is to define two retrieval scores, respectively from single-word terms and from 

multi-word terms. The two scores are then combined to produce a final score. This 

approach has shown some improvements in retrieval effectiveness in some cases, but the 

improvements are usually small and not consistent across studies.  

One can observe that the above combination approach does not really consider the 

tight relationship between single-word terms and compound terms. In order to cope with 

the strong relationship between them, Campos et al. (de Campos, Fernández-Luna & 

Huete 2003) proposed a Bayesian network to represent the possible relationships between 

different terms. Each node in the network represents a term and a link between nodes 

represents their dependency. The model can be seen as an extension of the model 

proposed by Turtle and Croft (Turtle & Croft 1991), but (de Campos, Fernández-Luna & 

Huete 2003) tries to relax the constraint imposed in (Turtle & Croft 1991), that terms in 

the same layer of the network are independent. Although the model described in (de 

Campos, Fernández-Luna & Huete 2003) can integrate, in theory, any type of relation 

between terms in the network, the key issue is the difficulty to estimate the dependencies 

between terms and to assign probabilities to terms. In fact, to implement the model, 

Campos et al. had to heavily simplify the model and the probability of a compound term 

is simply estimated from those of the constituent terms considered alone. This 

implementation fails to reflect the initial idea of term dependencies. 

The Bayesian network proposed by Tuttle and Croft (Turtle & Croft 1991) has also 

been used to consider both single-word terms and phrases (Croft, Turtle & Lewis 1991). 

In this case, they are considered to form two independent sets of terms.  
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In (Metzler & Croft 2007), Metzler and Croft considered term relationships within the 

language modeling framework. In his approach, different types of relations are assumed 

between terms in a set (e.g. a noun phrase), varying from strict order to more flexible 

proximity relations. However, the relationships are only considered between terms in a 

query, and when documents are indexed, single-word terms are still assumed to be 

independent when estimating their probabilities. 

In (Nallapati & Allan 2002), term dependencies are integrated into a bigram language 

model, but the dependencies are restricted to a tree form, and they are estimated loosely 

from term co-occurrences in documents. 

Several approaches have been developed using vector space model. Wong et al. 

(Wong, Ziarko & Wong 1985) proposed a generalized vector space model, which uses 

logical conjunctions of terms as new dimensions in a new vector space. However, this 

method will greatly increase the complexity of the model, making it intractable in 

practice. Pôssas et al. (Pôssas et al. 2002) followed a similar direction using term sets. 

Term sets group terms that co-occur frequently in documents. These sets are used to 

replace the traditional terms in vector space model. However, no relationship between 

term sets is considered. 

The above review shows a critical problem in the current practice in IR: terms and 

term sets are usually considered to be independent. This is particularly apparent in the 

indexing process when terms are assigned probabilities within a document: occurrences 

within the document are counted separately. However, in reality, when a term occurs in a 

document, it often implies the occurrence of some other terms. This is particularly the 

case in Chinese, in which one can segment a sentence into sequences of long or short 

words. A longer term usually implies shorter constituent terms. For example, the 

sequence ܾܽܿ݀	 can be segmented into words ܾܽ  and ܿ݀ , but each of the Chinese 

characters ܽ, ܾ, ܿ and ݀ can also be a word. All these words are implied in the occurrence ܾܽܿ݀. Then, how can we assign probabilities to these indexes, given the fact that they 

overlap in it? The previous approaches have suggested the following assignment schemas: 
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Two independent assignments: the sequence is indexed separately by characters ܽ, ܾ, ܿ 

and ݀, and by words ܾܽ and ܿ݀. The former are assigned a probability of 1/4 (assuming a 

simple uniform assignment here), and the latter 1/2. The two probability assignments are 

combined during query evaluation. 

Mixed assignment: one can expand the occurrence by all the possible indexes implied 

and mix them up. Probabilities are assigned to them as if they are independent. In this 

case, the occurrence will be expanded to 6 terms. Then each of the indexes is assigned the 

probability 1/6 (again assuming a simple assignment here). 

Both probability assignments are deficient. The indexes are indeed dependent, and the 

assignments ignore the dependencies. The reason that the above assignment schemas are 

used is due to the difficulty to take into account the dependences during the indexing 

phase, partly for efficiency reasons, but more often due to the lack of appropriate models. 

The question we put forward in this chapter is: why should we force ourselves to 

assign a part of probability to the individual terms involved in an occurrence when we 

lack information for doing it? For example, when we observe the string ܾܽܿ݀  in a 

document, we are unable to assign a precise probability to each of the terms implied 

because of their dependencies and the overlapping nature of their occurrences and 

probabilities.  

The idea we propose in this chapter is to assign the probability just at the level we can, 

i.e. when ܾܽ is observed, we well assign the probability to the set of the implied terms {ܾܽ, ܽ, ܾ}, and no further assumption is made to force the assignment to each of the 

member terms. This is the idea used in Dempster-Shafer theory of evidence.  

Dempster-Shafer theory has been used in several previous studies in IR (Plachouras & 

Ounis 2005), (Theophylactou & Lalmasy 1998), (Urban, Jose & Rijsbergen 2006). 

Theophylactou and Lalmasy considered a compound term as a set of single terms 

following Dempster-Shafer theory. However, the probability assigned to a set of terms 

was determined from the ܨܦܫ values of each of the terms in the set, thereby losing all the 
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inherent dependency between single and compound terms. Dempster-Shafer theory has 

also been used in (Plachouras & Ounis 2005) to combine content and link evidence in 

web IR, and in (Urban, Jose & Rijsbergen 2006) to combine textual and visual evidence 

for image retrieval. These studies are concerned with the combination of multiple pieces 

of evidence, which is not our focus here. In this chapter, we deal with the assignment of 

probability mass to terms or term sets using Dempster-Shafer theory.  

In the next section, we will first describe briefly the Dempster-Shafer theory. Then we 

will describe how it is used in our model. 

 

4.3 A New Model Based on Dempster-Shafer Theory 

4.3.1 Dempster-Shafer Theory 

Dempster-Shafer theory (Dempster 1968), (Shafer 1976) is developed in order to 

account for the lack of information, or the uncertainty. Different from the traditional 

probability theory, when there is lack of information to allow a precise assignment of 

probability to individual elements; Dempster-Shafer theory will just assign probability to 

sets of elements. The terms in a set will share the probability mass, however, in an 

undetermined way. 

More specifically, let Θ be a set of basic elements under consideration. The power set, 2஀, denotes the set of all possible subsets of Θ including the empty set . A function ݉: 2஀ → [0,1]	is called a basic probability assignment (BPA), which assigns a probability 

mass to each of the subsets, and this function satisfies the following axioms: 

1. The empty set is assigned the value 0: ݉() = 0 

2. The sum of the probabilities assigned to all subsets of Θ is 1: ∑ ݉(ܺ) = 1௑∈ଶ౸   
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The probability mass ݉(ܣ)  assigned to a subset ܣ  expresses the proportion of all 

available evidence that supports the claim that the actual state belongs to ܣ but to no 

particular subset of ܣ.  

From the mass assignments, we can determine two measures - plausibility (݈ܲ) and 

belief (݈݁ܤ), which are usually considered as the upper and lower bounds of a probability 

interval: 

(ܣ)݈݁ܤ ≥ (ܣ)ܲ ≤  (ܣ)݈ܲ
The belief (ܣ)݈݁ܤ for a set ܣ is defined as the sum of all the masses of subsets of ܣ: 

(ܣ)݈݁ܤ = ෍ ஻:஻⊆஺(ܤ)݉  

That is, (ܣ)݈݁ܤ gathers all the evidence directly in support of ܣ or of its subsets. The 

plausibility ݈ܲ(ܣ) is the sum of all the masses of the sets ܤ that intersect ܣ: 

(ܣ)݈ܲ = ෍ ஻:஻∩஺ஷ(ܤ)݉  

That is, ݈ܲ(ܣ) gathers all evidence that may support ܣ, or not in contradiction with ܣ. 

When ݉ assigns a part of the evidence to a set ܣ containing several elements, this is 

because we do not have the necessary information about the precise distribution of the 

probability mass to each of the members – this is the source of uncertainty. In the 

particular case where ݉ assigns non-zero probabilities only to individual elements (or 

subsets containing only one element), Dempster-Shafer theory will correspond to the 

traditional probability theory, i.e. (ܣ)݈݁ܤ 	= (ܣ)ܲ	 	= (ܣ)݈ܲ	  for any ܣ  containing a 

single element. 
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4.3.2 New Indexing Method Based on Dempster-Shafer Theory 

In most previous studies, e.g. using probabilistic models, terms are assumed to be 

independent; thus, the occurrence of one term does not affect that of another. Therefore, 

the probabilities of terms can be estimated simply according to their frequencies of 

occurrences. However, this independence assumption is more for calculation convenience 

than the reality, as our previous examples showed. Indeed, we do not know exactly how 

to assign an occurrence to the compound term and to its constituent shorter terms. This 

situation can be correctly accounted for using Dempster-Shafer theory.  

Let us consider the case of Chinese. In Chinese, a compound term ܾܽܿ can often be 

further segmented into shorter words (suppose that we can recognize ܾܽ and ܾܿ1) and 

legitimate single-character terms ܽ , ܾ  and ܿ . Therefore, when ܾܽܿ  is observed in a 

document, we should not segment it only as a compound term. This occurrence also 

implies all the other implied terms. However, as we are unable to distribute this 

occurrence precisely among them, an appropriate representation is to consider that the 

occurrence of ܾܽܿ indeed represents the set of terms {ܾܽܿ, ܾܽ, ܾܿ, ܽ, ܾ, ܿ} as in Dempster-

Shafer theory. Graphically, this is illustrated in the following figure, where the large 

circle represents the occurrence of ܾܽܿ and the smaller circles those of the constituent 

terms:  

 

                                                 

1 In this study, we assume that ܽܿ is not a constituent term in this case, and we will only consider 
terms formed by consecutive character strings. 

abc 

b 

c ab 

a 

bc 

Figure 4-1. Illustration of overlapping terms 
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We can see that terms and their occurrences strongly overlap, but in this case, we do 

not further impose a way to share the occurrence (or probability) among them.  

Now, for a document that contains much longer sequences of characters, we have two 

choices:  

We can generalize the consideration of dependency between any sequence and its 

subsequences. For example, suppose a document containing the sequence ܾܽܿ݀, in which 

we can recognize two legitimate compound words ܾܽ and ܿ݀. One could consider the 

relationships within ܾܽ and within ܿ݀, but also consider	ܾܽ and ܿ݀ to be dependent. This 

consideration of dependency can further spread to longer sequences. This generalized 

consideration of dependency possibly reflects the reality, as ܾܽ  and ܿ݀  could be 

somehow dependent. However, we are then faced with a serious problem of complexity, 

which makes the approach intractable. 

Instead, we will take another option, in which we assume independence between 

compound terms ܾܽ  and ܿ݀ , which are determined using an existing segmentation 

process This assumption is made because in general, there are weaker relationships 

between segmented words than within these words (in Chinese). Therefore, in this 

chapter, we focus on the strong dependencies within segmented words only. The 

generalized consideration will be the subject of a future work. 

The second option requires a word segmentation tool to chunk a text into non-

overlapping segments. There are a number of such tools, and it has been shown that they 

can usually achieve an accuracy of over 95%. In fact, the real problem of Chinese IR is 

not in word segmentation accuracy, but rather the consideration of strongly overlapping 

terms, which is exactly the focus of this chapter. 

Once a document is segmented into non-overlapping segments, we can use their 

frequency to estimate their probability as usual. However, the probability is assigned to 

the term set corresponding to the segment. Let us denote a segment by ݐ , and the 

corresponding term set by ݐ∗. Then we can arrive at the following mass assignment:  
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(ܦ|∗ݐ)݉ = ;ݐ)ݐ݊ݑ݋ܿ |ܦ|(ܦ  

where count(t; D) is the frequency of occurrences of the segment ݐ in a document ܦ and |ܦ| is the size of the document (the number of segments).  

Notice that the above assignment satisfies the conditions required for BPA of 

Dempster-Shafer theory. 

4.3.3 Retrieval Model 

Given a query ܳ, it can also be segmented into a sequence of segments ݍଵ	ݍଶ, … ,  .௡ݍ

For example, the query 爱滋病防治  (prevention and treatment of AIDS) can be 

segmented into 爱滋病 (AIDS) and 防治 (prevention and treatment). The corresponding 

term sets are {爱滋病, 爱滋, 爱, 滋, 病} and {防治, 防, 治}. For a query, we assume a 

logical AND relation between different term sets. To simplify the notation, we will also 

represent the term sets of the query ܳ by ݍଵ∗, … , ∗௡ݍ , and the term sets of terms ݀ଵ, ݀ଶ, … in 

a document ܦ by ݀ଵ∗, ݀ଶ∗, …. Then the correspondence between a document and this query 

can be determined by the following conditional probability using language modeling: 

(ܦ|ܳ)ܲ =ෑܲ(ݍ௜∗|ܦ)௡
௜ୀଵ (4-1) 

 

4.3.4 Direct Application of Dempster-Shafer Theory 

Ideally, we would like to be able to define a precise probability function ܲ(ݍ௜∗| ௝݀∗) to 

measure the relationship between each term set ௝݀∗ appearing in the document and the 

term set ݍ௜∗ in the query. With such a function, the probability ܲ(ܳ|ܦ) could be estimated 

as follows: 
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(ܦ|ܳ)ܲ =ෑܲ(ݍ௜∗|ܦ)௡
௜ୀଵ =ෑ ෍ ܲ൫ݍ௜∗ห ௝݀∗൯ ⋅ ݉( ௝݀∗|ܦ)ௗೕ∈஽

௡
௜ୀଵ  (4-2) 

 

However, the probability ܲ(ݍ௜∗| ௝݀∗) cannot be estimated precisely due to the lack of 

information, as in Dempster-Shafer theory. Following this latter, we can nevertheless 

define the following lower and upper bounds for it: 

(ܦ|∗௜ݍ)݈݁ܤ = ෍ ݉( ௝݀∗|ܦ)ௗೕ∈஽,ௗೕ∗⊆௤೔∗  

(ܦ|∗௜ݍ)݈ܲ = ෍ ݉( ௝݀∗|ܦ)ௗೕ∈஽,ௗೕ∗∩௤೔∗ஷ  

(4-3) 

which gather all the direct support evidence and the possible support evidence, 

respectively, for ݍ௜∗. 
Equivalently, we can also consider that there is a transfer of probability mass from one 

term set to another in these functions. To correspond to the above functions, we can 

assume the transfer function (ܤ|ܣ)ݐ = 1 between two term sets ܣ and ܤ respectively as 

follows: 

(ܤ|ܣ)ݐ	:݈݁ܤ = 1	iff		ܤ ⊆ :݈ܲ	;ܣ (ܤ|ܣ)ݐ = 1	iff	ܣ ∩ ܤ ≠ . 

The following figure illustrates the transfer in the two cases, where each arrow 

represents a transfer 1=ݐ for each case:  
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Consequently, we can also define the following bounds1 for ܲ(ܳ|ܦ): 
(ܦ|ܳ)ᇱ݈݁ܤ =ෑ݈݁ܤ(ݍ௜∗|ܦ)௡

௜ୀଵ  

݈ܲᇱ(ܳ|ܦ) =ෑ݈ܲ(ݍ௜∗|ܦ)௡
௜ୀଵ  

Then the query likelihood can be bounded as follows: 

(ܦ|ܳ)ᇱ݈݁ܤ ≤ (ܦ|ܳ)ܲ =ෑ ෍ ܲ൫ݍ௜∗ห ௝݀∗൯݉൫ ௝݀∗หܦ൯ ≤ ݈ܲᇱ(ܳ|ܦ)ௗೕ∈஽
௡

௡ୀଵ  

                                                 

1 Notice that these functions do not correspond to Bel and Pl of Dempster-Shafer theory in the 

strict sense for the evaluation of a conjunction of two different subsets. In Dempster-Shafer 

theory, Bel and Pl are determined according to the mass assigned to the intersection of the subsets, 

which could be empty. So, we use Bel’ and Pl’ to denote our bounds. 

a ab 
a, b

abc, ab, 
bc, a, b, 

e

(ܦ|∗(ܾܽ))݈ܲ (ܦ|∗(ܾܽ))݈݁ܤ
Figure 4-2. Illustration of probability transfer. 
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4.3.5 Modified Applications 

As we saw, the above application of Dempster-Shafer theory assumed a transfer of the 

whole probability mass from one term set to another, according to whether the former is a 

subset of, or intersects with, the latter. No particular knowledge about the language is 

used. In fact, the language can provide us with a better definition of the transfer function. 

For example, it can be generally admitted in Chinese that when the term ܾܽ is observed, 

the shorter terms ܽ and ܾ are also observed. So the latter are implied, and we can admit a 

strong transfer from the former subset (ܾܽ)∗ to the latter ܽ∗ and ܾ∗. On the other hand, 

when a shorter term is observed, a longer term is also implied to some degree. For 

example, the term 爱滋 (AIDS) can imply 爱滋病 ([disease of] AIDS). Therefore, there 

is also some transfer from the former term set to the latter. However, this transfer 

strongly depends on cases. For example, the transfer from a very ambiguous and frequent 

character such as 人 (person) to a specific term such as 人权 (human rights) should be 

much lower than between 爱滋 and 爱滋病 (AIDS).  The transfer degree from a term set 

to another strongly depends on how much the former overlaps with the latter and how 

frequent they are in the collection (the language). We will provide some intuitive criteria 

for the definition of transfer functions below. For now, let us assume such a language-

dependent transfer function between term sets (ܤ|ܣ)ݐ. This transfer function offers a 

flexible means to extend the original evaluation process in Dempster-Shafer theory, and it 

can be adapted to the particular characteristics of a language. Accordingly, we can define 

the following generalized form of evaluation function instead of ݈݁ܤ and ݈ܲ functions: 

(ܦ|∗௜ݍ)ܨ = ෍ ௜∗หݍ൫ݐ ௝݀∗൯ ⋅ ݉( ௝݀∗|ܦ)ௗೕ∈஽  

(ܦ|ܳ)݁ݎ݋ܿܵ =ෑܨ(ݍ௜∗|ܦ) =ෑ ෍ ௜∗หݍ൫ݐ ௝݀∗൯ ⋅ ݉( ௝݀∗|ܦ)ௗೕ∈஽
௡
௜ୀଵ

௡
௜ୀଵ  

(4-4) 

Now, let us consider in more detail the desired transfer function for Chinese. Our 

definition is guided by the following general observations: 
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1. A longer Chinese term ܾܽ usually strongly implies a shorter term ܽ or ܾ; 

2. A shorter term ܽ is more ambiguous than a longer term ܾܽ, and the occurrence of ܽ	implies less strongly that of the longer term ܾܽ. 

3. In addition to strictly inclusive term sets, two strongly overlapping term sets also 

have strong similarity. The more a term set ܣ overlaps with another term set ܤ, 

the stronger there is a transfer from ܣ to ܤ. 

The following definitions comply with the above general observations: 

1.  Transfer according to word morphology: A simple method is to observe how much 

a term overlaps another, and define a transfer function accordingly. This corresponds to: 

(ܤ|ܣ)1ݐ = ܣ| ∩ ܿ|ܣ|ܿ|ܤ  (4-5) 

where | ⋅ |௖  means the length in character. The more common characters two terms sets 

share, the higher a transfer value will be assigned.   

2. Transfer according to collection frequency:  

(ܤ|ܣ)2ݐ = ൞ 1 ݂݅ ܣ ⊆ 0ܤ ݂݅ ܣ ∩ ܤ = ܿܣ)ݐ݊ݑ݋ܿ(ܣ)ݐ݊ݑ݋ ∩ (ܤ ݁ݏ݅ݓݎℎ݁ݐ݋  (4-6) 

where ܿݐ݊ݑ݋(⋅)  is the count of occurrences of ܣ  or intersection of ܣ  and ܤ  in the 

document collection. 

3. Transfer function according to document frequency: 

(ܤ|ܣ)3ݐ = ൞ 1 ݂݅ ܣ ⊆ 0ܤ ݂݅ ܣ ∩ ܤ = ݂݀(ܣ)݂݀(ܣ ∩ (ܤ ݁ݏ݅ݓݎℎ݁ݐ݋  (4-7) 
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where ݂݀(. ) is the document frequency. 

All these functions will be tested in our experiments. It turns out that the third definition 

results in the best effectiveness. 

The above idea of probability transfer is related to the approach based on logical 

imaging (Crestani & van Rijsbergen 1995), in which the probability of a term assigned in 

the document is transferred to its nearest term, and the amount transferred to the query 

terms is used as the degree to which the document satisfies the query. Our approach is 

different from this approach in two respects: First, our transfer is defined between sets of 

terms; Second, and more importantly, our transfer is not towards one single nearest term 

(or set of terms), but the transfer can be made towards several term sets. This corresponds 

to the idea of generalized logical imaging (Kwok 1997), in which the probability mass of 

one term set can be transferred to several term sets close to it. 

One may raise the concern about the complexity to estimate the transfer function. 

Although, theoretically, we will have ܱ(݊ଶ) where n is the number of terms (including 

single-character words) in Chinese, in practice, we only have to estimate the transfer 

between term sets that share some common characters. Given the length of words is usually 

not more than 4 characters and the average length of words is around 2 characters, the 

practical time for the estimation can be much reduced. Another complexity is the 

exponential number of terms within a term set. However, in our case, several factors 

contribute to limit this complexity in practice: 1) we restrict the terms sets to those that 

correspond to known Chinese words (determined by a segmentation tool); 2) the length of 

the latter usually does not exceeds 4 characters; and 3) we only consider terms that are 

consecutive characters in the segment, i.e. for ܾܽܿ, we only consider the terms ܾܽ and ܾܿ, 

but not ܽܿ (which is much less likely to be a sub-term of ܾܽܿ in general). Therefore, the 

actual complexity in our calculation is strongly confined. 

The transfer function is defined offline. It is then integrated with the Lemur toolkit, 

which we use as our basic retrieval tool. 
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4.3.6 An Illustration Example 

Let us show a simple example to illustrate the process of indexing and retrieval with 

our method, in comparison with previous approaches. 

Suppose a document containing the sequence 通讯网络图 (graph of communication 

network) and suppose 通讯  (communication) and 网络  (network) are legitimate 

compound words, and each of the characters can also be a word. Intuitively, the 

document is strongly related to the query 通讯网 (communication network), which can 

be segmented into 通讯 (communication) and 网 (network). 

Traditional method 1: 

If we use the traditional method with segmented words only, the document will be 

indexed by terms 通讯, 网络 and 图, with equal probability 1/3. However, the query term

网 will be considered to be independent from 网络. Therefore, the score of this document 

is 0. This evaluation is clearly deficient. 

Traditional method 2: 

If we index the document by both long and short terms, then we will have the 

following terms: 通讯, 通, 讯, 网络, 网, 络, and 图, and each of them is assigned a 

probability 1/7. The query is also segmented into: 通讯, 通, 讯, 网. The corresponding 

score is then (1/7)4. Although this method can give some weak score to the query, no 

relationship between the overlapping terms is considered. The critical situation in method 

1 is remedied by the fact that term occurrences are duplicated for shorter terms. However, 

the overlapping terms are assigned probabilities as if they occur independently in the 

document, leading to a deficient probability assignment. 

Our method: 
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Using the approach we propose, the document is represented by the following term 

sets, each being assigned the probability 1/3 by m:  

݀ଵ∗ = {通讯,通,讯}, ݀ଶ∗ = {网络,网,络}, ݀ଷ∗ = {图} 
Given a query 通讯网 (communication network), the query can be segmented into 通

讯 and 网, which are represented by two term sets:  

∗ଵݍ = {通讯,通,讯}, ݍଶ∗ = {网} 
Using the first transfer function we defined, we have: 

(∗ଵ∗|݀ଵݍ)ଵݐ = (∗ଶ∗|݀ଶݍ)ଵݐ ,1 = 1/2; 

Then ܵܿ(ܦ|ܳ)݁ݎ݋ = ܲ ቀଵଷ ⋅ 1ቁ ܲ ቀଵଷ ⋅ ଵଶቁ = ଵଵ଼. 
Intuitively, this value seems more reasonable than the previous ones. We will further 

confirm it in our experiments. 

Plausibility and Belief: 

If we use Bel’ and Pl’ derived from Dempster-Shafer theory, we will have: 

Bel’(Q|D) = 0 and Pl’(Q|D) = (1/3)2 = 1/9. 

Clearly, Bel’ is too strict to be used as document score - many queries will have Bel’ = 

0. As to Pl’, it sum up all the probability masses whenever a term set intersects with the 

query term set. This transfer is too generous. It is problematic for Chinese because of the 

fact that very different words may share some character (e.g. 桌子 – table and 儿子 – 

son), and it is not reasonable to transfer the whole probability mass between the two term 

sets in this case. 
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In comparison, our method allows for partial probability transfer and the degree of 

transfer can be defined according to the characteristics of the terms. 

4.4 Experiments 

We test the proposed approach for Chinese IR. Several test collections are used. They 

come from the TREC and NTCIR experimentation campaigns. The characteristics of the 

collections are summarized in the following table. In our experiments, we choose to use 

topic titles as our queries. 

Table 4-1. Characteristics of the test collections and query sets 

Query&Coll. #Doc Size 
(MB)

Avg. Doc.
Length

#Queries
Avg. Qry Len. 

 (in word) 
TREC5 

164,778 166.9 158 
28 4.7 

TREC6 26 4.7 

TREC9 127,938 86.2 205 25 3.7 

NTCIR4 381,681 531.8 226 59 4.3 

NTCIR5 
901,446 1081.4 207 

50 4.6 

NTCIR6 50 3.9 

4.4.1 Preprocessing 

The test collections are in different coding schemas – GB and Big5. We converted all 

documents and queries to GB. 



 

79 

 

Chinese texts are segmented into words. Several word segmentation tools are available. 

We choose to use the segmentation program from LDC1. It uses dynamic programming to 

find the path which has the highest segmentation score.  

Once the documents are segmented, we use Lemur2 as our basic retrieval system to 

index them, i.e. to assign a probability value to each of the segments, or equivalently, to the 

corresponding term set. 

4.4.2 Compared Methods 

We will compare our method to several methods commonly used for Chinese IR: 

─ Indexing by segmented words: In this method, only the segmented words (usually 

the longest words) are used as indexes. We denote the method by ܹ. 

─ Indexing by all words: This method is a relaxed method illustrated in section 3.4 – 

Traditional method 2. This method is identified by ܹܷ. 

─ Indexing by character unigrams and bigrams: These methods do not require to 

segment texts into words. Every character unigram and bigram is used as an index. 

We compare three versions: ܷ – using unigrams only; ܤ – using bigrams and ܷܤ – 

mixing both of them (as in ܹܷ). 

─ Linear combination of words and characters: This method determines two retrieval 

scores for a query, one according to words and another according to characters. 

Then the scores are combined linearly. In our experiment, we normalize the two 

scores by dividing them by the respective highest score. Then they are combined 

using 0.5 weight for each of them, which results in the best effectiveness for this 

method. This method is denoted by ܹ+ܷ. 

                                                 

1 http://www.ldc.upenn.edu/Projects/Chinese/seg.zip 
2 http://www.lemurproject.org/ 
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All the above methods are widely used in previous studies on Chinese IR (Kwok 1997), 

(Nie et al. 2000). Notice that these methods are the state-of-the-art approaches to Chinese 

IR. In particular, methods 3 and 4 often produced the best retrieval effectiveness in 

previous experiments (Shi, Nie & Bai 2007). 

─ Our method ܯଵ: The transfer function is based on term overlapping – ݐଵ defined 

in section 4.3.5. 

─ Our method ܯଶ: The transfer function is based on term frequency in the collection 

 .ଶ defined in section 4.3.5ݐ –

─ Our method ܯଷ : The transfer function is based on document frequency – ݐଷ 

defined in section 4.3.5. 

To avoid zero probability value, we use Dirichlet method to smoothing the basic ݉ 

function and we use default Dirichlet prior 1000. 

4.4.3 Experimental Results 

Table 4-2 and Table 4-3 summarize our experimental results of baselines and our 

models. It shows the effectiveness (measured in Mean Average Precision – MAP) of all 

the traditional methods, as well as the two variants of our method.  

First, we observe that results using existing methods are consistent with previous studies, 

except for the ܷ method. In general, we can observe that the method ܤ using character 

bigrams leads to quite equivalent effectiveness to the method ܹ using word segmentation. 

What is not usual to observe in previous studies is the relatively high effectiveness obtained 

using character unigrams only (ܷ). It is often higher than ܤ (except in Trec6 and 9), which 

is different from previous experiments. We believe that the key reason is the different 

model we use: we use language modeling while previous experiments often used vector 

space model with ݂ݐ-݂݅݀ weighting. The weighting schema in the language model may 

be more appropriate for characters, which are often of high document frequencies in 
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Chinese. The traditional ݂݅݀  factor may not be able to differentiate and weigh these 

characters effectively. 

We also show that some combinations proposed in previous studies (ܷܤ, ܹܷ and ܹ+ܷ) can result in higher effectiveness than using a single type of index, which is 

consistent with previous studies. The effectiveness using these methods corresponds to 

current state-of-the-art in Chinese IR. 

For our methods, we first tested the transfer function ݐଵ. However, the results (ܯଵ in 

Table 4-2) are not better. This performance is clearly shows that the transfer function 

defined solely according to the overlapping of terms is not appropriate. Indeed, as we 

showed earlier, very different terms such as 桌子 – table and 儿子 – son can be assigned 

a quite high transfer degree, which is not reasonable. Therefore, we have to consider 

better criteria for the transfer function. 

In Table 4-3: Our methods (‡ t.test<0.01, † t.test<0.05), we can see that other 2 transfer 

functions can produce very competitive results, usually higher than state-of-the-art 

approaches. This shows that these transfer functions exploiting term distribution in the 

collection are more reasonable. In addition, we can see that the third transfer function 

defined using document frequency (ܯଷ) leads to better results than the one defined using 

term frequency in collection (ܯଶ).  

For the method ܯଷ, the t-test shows that most of the improvements over the traditional 

methods using a single type of index are statistically significant. Compared with the 

combined traditional methods, those improvements are not always statistically significant. 

However, we do observe general improvements on all the collections, except in one case 

– NTCIR4 compared to ܹ+ܷ. 

The above results strongly suggest that the method we proposed is better suited to 

Chinese IR than state-of-the-art approaches. In particular, it can better take into account 

the overlapping nature of Chinese compound terms and simple terms, and account for 

their relationships during probability assignment. The fact that we obtained better results 
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than traditional approaches also shows that this problem is crucial in Chinese IR and 

should be correctly dealt with. 

In the next section, we will analyze some examples to show why our methods 

performed better. 

Table 4-2: MAP of traditional methods (Baselines) 

Query&Coll B U W BU WU W+U 

Trec5 0.2649 0.2917 0.2773 0.3059 0.3274 0.3185 

Trec6 0.3592 0.3524 0.3984 0.3794 0.4017 0.4009 

Trec9 0.2109 0.2379 0.1964 0.2422 0.2287 0.2245 

NTCIR4 0.2013 0.2305 0.2084 0.2263 0.2250 0.2393 

NTCIR5 0.3293 0.3463 0.3758 0.3543 0.3783 0.4000 

NTCIR6 0.2438 0.2664 0.2759 0.2884 0.2850 0.2973 

 

Table 4-3: Our methods (‡ t.test<0.01, † t.test<0.05) 

 

4.4.4 Analysis and Discussions 

A detailed analysis reveals several interesting facts. 

 

Query 
&Coll. 

M1 M2 M3

MAP MAP MAP %U %B %W %BU %WU %W+U

Trec5 0.2523 0.3221 0.3306 +13.3† +24.8‡ +19.2‡ +8.1 +1.0 +3.8

Trec6 0.3278 0.4131 0.4185 +18.8‡ +16.5‡ +5.0† +10.3† +4.2 +4.4

Trec9 0.2356 0.2735 0.2756 +15.8† +30.7† +40.3† +13.8 +20.5 +22.8†

NTCIR4 0.2106 0.2334 0.2357 +2.3 +17.1‡ +13.1‡ +4.2 +4.8 -1.5

NTCIR5 0.3175 0.4137 0.4189 +21.0‡ +27.2‡ +11.5‡ +18.2‡ +10.7‡ +4.7

NTCIR6 0.2528 0.2955 0.3002 +12.7‡ +23.1‡ +8.8‡ +4.1 +5.3 +1.0
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The new method can consider various expressions of the same concept. 

Some concepts have various writings in Chinese. This is the case for AIDS, which can 

be written as 爱滋病 or 艾滋病. One of test queries (CH73) used the second writing: 中

国 (China) 的 (of) 艾滋病 (AIDS) – AIDS in China; while many relevant documents 

used the first one. As a consequence, the simple word-based approach resulted in an 

average precision close to 0. 

On the other hand, the unigram-based method can take advantage of the common 

characters, and the result is very good: 0.3313 in average precision. The method 

combining words and unigrams resulted in 0.3983 average precision. 

Using our model, the query can match both the whole exact term or partially match the 

alternative writing through the common characters. We obtained 0.4268 in average 

precision.  

Compared to the traditional combination method, our method does not consider a 

fixed way to combine characters and terms. Instead, we try to determine the proportion of 

documents containing 滋 and 病 that also contain 艾滋病 (the query term). That is, in this 

case, the transfer function is defined as:  

ଷݐ ቀ൫艾滋病൯∗ቚ൫爱滋病൯∗ቁ = ݂݀൫艾滋病൯∗/݂݀ ቀ൫艾滋病൯∗ ∩ ൫爱滋病൯∗ቁ		= 	݂݀൫艾滋病൯∗/݂݀({滋,病}))	
which is relatively high in this case. 

Our method can exploit the implied shorter words. 

When a long term implies a shorter term, our model can consider both of them, as well 

as their relationship. 

For the query NTCIR5, query 18: 烟草商 (tobacco business) 诉讼 (accusation) 赔偿 

(compensation), the first word contains a shorter word 烟草 (tobacco). The long term 烟
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草商  is a much less frequent word than the shorter word 烟草  in Chinese. As a 

consequence, the word-based approach will also miss many relevant documents talking 

about 烟草. The average precision of this method is only 0.0998. 

Using the mixture of words and unigrams, we will also consider the single character 

terms 烟 (tobacco, smoke), 草 (herb, grass), 商 (business, commerce, discuss). Although 

these characters are quite common and ambiguous, considering them still raised the 

average precision of this query to 0.2895. 

In our approach, there is a strong transfer between the term set corresponding to 烟草 

to the term set corresponding to 烟草商. This will enable the documents about 烟草 to 

have a strong correspondence with the query. For this query, our approach obtained an 

average precision of 0.4210. 

Our method can weaken the influence of ambiguous single characters. 

When character unigrams are used in a traditional approach, it participates in the 

matching process at an equal importance, i.e. any character is assigned a probability in a 

uniform manner. In fact, some characters are highly ambiguous, as we showed in the last 

example 烟草 (tobacco). When a compound term is discomposed into such ambiguous 

characters, we will almost lose all the specific meaning of the compound. Another 

example is 人权 (human rights), which is a quite specific term, but it is composed of two 

common characters: 人 (person) and 权 (right, power). If we rely on these characters in a 

fixed manner, many irrelevant documents will be retrieved. 

On the other hand, through the estimation of the transfer function according to 

document frequency, our method will be able to estimate that a term set containing 人 

will not transfer a large amount of probability to the term 人权, so is from 权 to 人权. As 

a consequence, the role of such ambiguous characters in the matching process will be 

diminished. This example also explains why the first transfer function (t1) did not work 

well. 
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Our method can also introduce noise. 

Determining a transfer from characters does not always produce better result. For 

example, CH27 of TREC5 asks for 中国 (China) 在 (in) 机器人 (robotics) 方面 (area) 

的 (of) 研制 (research) - Robotics research in China. Using unigram-based method, the 

key term 机器人(Robot) is decomposed into 3 very common characters  机 (machine, 

engine) 器 (machine, utensil), 人(human, person), and it leads a low average precision 

(0.1319). For this query, word-based method obtains a high effectiveness (0.4302). When 

words and unigrams are combined (WU), we obtain 0.3734, lower than using the word 

alone. Our method achieves 0.3952 in average precision. Although this effectiveness is 

higher than the traditional WU method, it is still lower than W alone. 

This example shows the potential risk of our method (indeed, of any method that 

combines different types of indexes): the transfer functions we defined can lead to 

additional noise in some cases. This also shows an aspect which we should improve in 

our future research – to define a more reasonable transfer function that better consider 

how the term set to which the transfer is made is ambiguous. Document frequency can 

partly account for term ambiguity, but better criteria should be found.  

Despite this potential risk, the global effect of our method using transfer functions is 

positive. It allows matching slightly different terms, while the transfer rate is measured 

by the extent the two terms correspond. 

4.5 Conclusions 

In this chapter, we dealt with the fundamental problem by using different terms and 

considering the relationships between them. Different from previous approaches, our 

approach does not make strong independent assumption to force assigning probability to 

individual terms. Instead, we followed the principle of Dempster-Shafer theory and 

assigned probability to the whole set of terms instead of individual terms. This approach 
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can better account for the phenomenon that term meanings strongly overlap in documents, 

and therefore, the same occurrence of a string can be simultaneously considered as that of 

a set of long term and shorter terms within it. The method to assign probability to the set 

of these terms allows us to avoid duplicating the occurrence artificially, resulting in a 

more principled way to estimate probability. 

Dempster-Shafer theory includes two functions: belief and plausibility. It only 

considers cases that two term sets are overlapping or inclusive with no specific 

knowledge about the language being used. In our approach, we have extended these 

functions by considering the possible relationships between terms or term sets, which led 

to a more suitable matching function for IR, especially in Chinese. 

In this chapter, we have focused on the general model and many aspects remain to be 

fully explored. For example, we have defined simple transfer functions, although, more 

complex functions can be defined by using better criteria, especially for the consideration 

of term ambiguity, as we discussed earlier. In addition, the transfer function can rely on 

richer linguistic knowledge rather than just character overlapping or term distributions. 

For example, one can take advantage of linguistic resources such as a thesaurus – if two 

term sets correspond to two related terms in the thesaurus, then a stronger transfer 

function can be defined. Term co-occurrences can be used as another resource. When we 

extend the approach in this direction, the transfer function can be used as a general mean 

to consider any type of relationship between terms. This will be worthwhile to do future 

work. 

One may also have noticed that we did not explicitly represent dependencies between 

terms within a term set, but consider it through the utilization of transfer functions. So, 

term dependencies are indirectly considered. 

The proposed approach can be applied beyond the limit of segmented words, i.e. we 

can also consider dependencies between segmented words in Chinese. The key question 

is how to consider relatively strong relations between segmented words, while avoiding 
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considering terms that are not truly related in a sentence. This is an aspect to be studied in 

the future. 

The approach has been tested only on Chinese. The general idea can also be used on 

other languages. For example, the same model can be used to consider the relationship 

between single words and compound terms in European languages. This is another 

direction to pursue in the future. 
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CHAPTER 5.  

MODELING VARIABLE TERM 

DEPENDENCIES ACCORDING TO THEIR 

UTILITIES IN IR 

Introduction to the chapter 

In the previous chapter, dependent units are grouped into a single set. Although the 

solution is attractive from a theoretical point of view, there are two important limitations: 

─ Dependencies are only allowed within a group (corresponding to a phrase), 

making it impossible to relate a term from a group to a term in another group. In 

IR, there are cases that such relation should be considered – a term can depend on 

another term that loosely specify its context, as in “hotel booking Java” where 

“hotel” provides a useful hint on the interpretation of “Java”, without forming a 

phrase with it. 

─ The relation between a long string and a shorter one with the same group is 

defined in a heuristic way according to their lengths. In reality, terms within a 

query can be dependent in different ways and we need to represent these 

dependencies more explicitly. 

Therefore, in this chapter, we present a model that captures two specific types of 

dependencies: bigram and co-occurrence. This approach is an extension to the Markov 
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Random Field models. Rather than using MRF, we use a discriminative model so that we 

can select part of the binary dependencies without having to incur the high complexity of 

MRF models. 

This chapter is a submission to the Information Retrieval Journal. Parts of this chapter 

have been published in SIGIR-2009: (Shi & Nie 2009), CIKM-2010: (Shi & Nie 2010A), 

and AIRS-2010 (Shi & Nie 2010B).  

5.1 Introduction 

Traditional bag-of-words IR models do not consider independence between terms, so 

they usually lead to unsatisfactory retrieval results. In the previous chapters, we already 

discussed the problem and proposed two approaches to capture the relationship between 

terms. The phrase-based or n-grams models try to capture the term dependency by using 

phrases or n-grams of terms, and they are combined with the unigram language model 

through model smoothing. Graphical modeling approaches have also been used to encode 

term dependencies, including Bayesian network (Turtle & Croft 1990), (de Campos, 

Fernández-Luna & Huete 2003), dependency tree (Nallapati & Allan 2002), (Gao et al. 

2004) and Markov random field (Metzler & Croft 2005). More recently work includes 

our Dempster-Shafer model (Shi, Nie & Cao 2008) (Shi, Nie & Cao 2008), (Shi & Nie 

2009) and term proximity models (Tao & Zhai 2007), (Lv & Zhai 2009), (Zhao & Yun 

2009). 

 All the above studies have shown the usefulness of considering term dependencies of 

different types. However, these models have different kind limitations. The phrase and n-

gram based combination models cannot explicitly represent the dependency. Dempster-

Shafer model cannot capture the relation of distance terms, e.g. the distance terms fall 

into two terms set. We notice that most other approaches (especially within the language 

modeling framework) assume that all the term dependencies of the same type have the 

same contribution to the global model. Typically, different types of models (unigram 
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model and dependency models) are combined via smoothing or linear combination, in 

which a unique weight is assigned to each component model. This is equivalent to say 

that a type of term dependency, say adjacency, has equal importance in the retrieval 

process regardless to the terms being considered. This is obviously untrue. The strength 

of dependency between adjacent terms changes largely. For example, the adjacency 

between “black” and “Monday” in the expression “black Monday” corresponds to a 

strong dependency, which is crucial to be captured in an IR model. On the other hand, the 

one in “computer game” is less critical – even if the dependency between “computer” and 

“game” is ignored, the retrieval effectiveness obtained using the unigram model would 

still be quite good. The difference between the two cases lies in the strength of the 

dependency as well as the utility of it for IR. Intuitively, a stronger dependency should 

play a more important role in the retrieval process. However, not all dependencies are 

necessary to be captured – if the meaning of the dependent terms together is 

compositional, then the omission to consider the dependency is not problematic. On the 

other hand, if the meaning is non-compositional (e.g. “black Monday”), then the 

consideration of the dependency is crucial. The above aspects have not been fully 

integrated in the models proposed in the literature: all the dependencies of the same type 

are treated with equal importance. 

Another restriction in a number of previous studies is to consider adjacent words only 

(Bendersky, Metzler & Croft 2010). The reason is that of computational complexity. 

Depending on the model used, it could be difficult to extend dependency beyond adjacent 

words. However, dependencies can span over more distant terms. For example, in 

“processor specifically designed for laptop computers”, there is a strong dependency 

between “processor” and “laptop”. This dependency cannot be captured under this 

restriction. The dependency between more distant terms is not necessarily weaker than 

closer terms. For example, in “computer aided crime”, the relation between “computer” 

and “crime” is much stronger and useful for IR than the adjacent pairs “computer aided” 

and “aided crime”. Therefore, the strength of the dependency is not only a function of 

their distance. More criteria should be considered. 
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Term dependency is indeed of multiple types. In terms of distance, one can consider 

two adjacent terms, with or without their order. One can also consider dependency 

between terms at some distance. In terms of the nature of dependency, one can consider 

grammatical dependency (e.g. between subject and verb) or statistical co-occurrence 

dependency. In several previous studies, e.g. (Fagan 1987) and (Gao et al. 2005), it turns 

out that statistical dependencies are more useful than grammatical dependencies. In our 

study, we found that the terms dependency exists among all query terms in various 

strength, considering only natural phrases (even non-strict phrases) is not sufficient for IR. 

Our experiments show that using manually selected phrases in the dependency model 

usually worse than considering all adjacent/closer term pairs. So, in this study, we will 

consider statistical dependencies (although the model we propose can also integrate other 

types of dependencies). Statistical dependency can be of the following types. When a 

user issues a query including terms “ܾܽ”, he/she may intend to retrieve documents in 

which: 

─ the terms ܽ and ܾ occurs independently at any position in the documents; 

─ the terms occur adjacently and in the same order in the documents, i.e. the bigram ܾܽ should occur; or 

─ the terms ܽ and ܾ are preferred to occur closely within a certain distance. 

The first case applies to terms that are not strongly tied, and their separate occurrences 

in documents are sufficient. For example, the terms in the query “Ford Audi” about 

automobiles can be treated independently by a unigram model. The second case typically 

refers to a non-compositional compound expression formed by two terms, for example 

“black Monday”. The separation between the terms would generate very different 

meanings. A large number of cases are in the third category. In many queries such as 

“laptop price”, the terms are dependent to some extent, but it is too strong a constraint to 

require them to occur as a bigram in documents. The loose dependency between them can 

be captured, to some extent, by the fact that they occur relatively closely to each other in 

documents. This is the phenomenon considered in proximity-based models (Lv & Zhai 



 

92 

 

2009), (Tao & Zhai 2007). In this chapter, we will call such a case co-occurrence 

dependency within text windows. 

This chapter considers all these dependencies. As we will see in the next section, a 

number of previous studies have considered these dependencies in some way. However, 

this study bears an important difference with them: in the previous studies, all the 

dependencies of the same type are assigned a unique importance, corresponding to the 

collective contribution of the dependencies of this type to the retrieval effectiveness. It is 

clear that individual dependencies of the same type between different terms can have 

very different impacts on IR, which cannot be reflected in the above method. Our model 

tries to integrate term dependencies according to their strength and possible impact on the 

retrieval effectiveness: for a query which can be treated correctly as unigrams (e.g. “Ford 

Audi”), the dependency between the terms will play little role. However, if the terms are 

strongly dependent (e.g. “black Monday”), then the dependency model will be assigned a 

larger importance. An important task in this chapter is to determine such a strength and 

impact. We will propose a learning process for it using a set of features. 

This chapter will be organized as follows. In the next section, we review some related 

studies considering term dependencies. Then, we will describe our variable dependency 

discriminative model in Section 5.3, which integrates several types of dependencies. In 

Section 5.4, we provide more details on parameter learning. We present the experiments 

on TREC and NTCIR collections (in English and Chinese) in Section 5.5. Analysis, 

discussion and conclusions are given in Section 5.5.4. 

5.2 Related Work 

5.2.1 Proximity Models 

To deal with dependencies between more distant terms, proximity model further 

considers the proximity of query terms in a document. Early studies (Keen 1992), 
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(Rasolofo & Savoy 2003) used the proximity in Boolean retrieval models and BM25 

models. More recently, (Tao & Zhai 2007) combined term proximity with KL-divergence 

language model and Okapi BM25 model, and showed significant improvement. Lv and 

Zhai (Lv & Zhai 2009) use a proximity-based density function (a non-increasing function 

of the distance |݆ − ݅|) to propagate the occurrence of a term at position ݅ to its neighbor 

position ݆. Then, they define a language model for each position of a document. The final 

score of a document to a query is determined according to the position-dependent 

language models.   

At the same time, (Zhao & Yun 2009) proposed a new proximity language model 

(PLM), which performs empirically better than previous intuitive combination of 

proximity. In PLM model, the basic ranking function is based on KL-divergence of 

language models of query and document. 

ܴܽ݊݇(ܳ, (ܦ =  (5-1) (෠஽஻ߠ||෠ொߠ)ܮܭ−

In their document model, they integrated the proximity information in the following way:  

ܤ݅,ܦ෠ߠ = ;݅ݓ)ܿ (ܦ + (݅ݓ)ܤݔ݋ݎܲߣ + |ܦ|(ܥ|݅ݓ)ܲߤ + ∑ 1=݆|ܸ|(݆ݓ)ܤݔ݋ݎܲߣ + ߤ  (5-2) 

where ܿ(ݓ௜;  .is collection language model for smoothing (ܥ|௜ݓ)ܲ ௜, andݓ is proximity centrality of term (௜ݓ)	஻ݔ݋ݎܲ ,ܦ ௜ inݓ is the count of word (ܦ

For non-query terms, ܲݔ݋ݎ஻(ݓ௜)  is assumed to be zero. For a query term, it is 

computed according to term minimum distance (P_SumProx), average distance 

(P_AveDist), or term proximity summed over pair proximity (P_SumProx). Their 

experiments show that P_SumProx performs the best. As a baseline, we will use 	P_SumProx, which is defined as follows: 

(௜ݍ)ݔ݋ݎܲ݉ݑܵ_ܲ = ෍ ݂ ቀݏ݅ܦ൫ݍ௜, ;௝ݍ ൯ቁ௤ೕ∈ொ,௤ೕஷ௤೔ܦ  
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where ݂(ݔ) = ௫ିܽݎܽ݌ ,௜ݍ)ݏ݅ܦ , ;௝ݍ (ܦ  is minimum distance between ݍ௜  and ݍ௝  in 

document D, and ܽݎܽ݌ is a free parameter to be tuned.  

We notice that all the methods described in this section assign a fixed parameter for 

each model component. In PLM, the parameter ߣ is fixed (albeit the fact that the value of 

proximity ܲݔ݋ݎ஻(ݓ௜) changes). Therefore, all dependencies of a given type proximity 

are assumed to have equal importance in the whole retrieval process. Although this 

makes the model easier to implement, the assumption is not reasonable. 

5.2.2 Markov Random Field Models 

Metzler and Croft (Metzler & Croft 2005) proposed a Markov random field model for 

IR. In the model, they defined three types of potential functions on clique of single terms, 

ordered term clique, and unordered term clique. Each potential function is a language 

modeling estimation smoothed by the collection, and the parameters ்ߣ, ,ைߣ ௎ߣ  are 

weights associated to the models as followings.  

(ܳ|ܦ)ܲ =୰ୟ୬୩ ෍ (ீ)௖݂(ܿ)௖∈஼ߣ =෍்்݂ߣ (ܿ)௖∈் +෍ߣை ை݂(ܿ)௖∈ை +෍ߣ௎ ௎݂(ܿ)௖∈௎  (5-3) 

Two specific dependency models are proposed (see Figure 2-2) MRF-SD and MRF-FD. 

In the former, it only considers dependence between adjacent query terms; while in the 

latter, a term in the clique depends on all the others. In practice, MRF-FD is difficult to 

implement because of its complexity, especially when the query becomes long.  

Bendersky et al. (Bendersky, Metzler & Croft 2010) notice that the fixed parameters ்ߣ	, ,ைߣ  ௎ do not allow one to consider the variable impact of term dependencies. Theyߣ

extend the MRF-SD model so that the parameters become dependent on the individual 

term or term pair: 
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(௜ݍ)ߣ =෍ ௞ೠ೙೔௝ୀଵ(௜ݍ)௝௨௡௜݃௝௨௡௜ݓ  

,௜ݍ)ߣ (௜ାଵݍ =෍ ,௜ݍ)௝௕௜݃௝௕௜ݓ ௜ାଵ)௞್೔௝ୀଵݍ  

(5-4) 

in which the functions ݃௝௨௡௜(ݍ௜)  and ݃௝௕௜(ݍ௜, (௜ାଵݍ  correspond to the importance of a 

unigram ݍ௜ and a bigram/biterm ݍ௜,  ௜ାଵ determined using a set of features. The featuresݍ

include the traditional ݂ݐ, ݂݅݀ features, as well as those extracted from Google n-grams 

corpus and Microsoft 2006 RFP query logs. Documents are ranked according to the 

following equation: 

(ܳ|ܦ)ܲ =௥௔௡௞ ෍ ௝௨௡௜ݓ ෍ ݃௝௨௡௜(ݍ௜)்݂ ,ݍ) ௤೔∈ொ(ܦ
௞ೠ೙೔
௝ୀଵ+෍ݓ௝௕௜ ෍ ݃௝௕௜(ݍ௜, ](௜ାଵݍ ை݂(ݍ௜ݍ௜ାଵ, (ܦ + ௎݂(ݍ௜ݍ௜ାଵ, ௤೔௤೔శభ∈ொ[(ܦ

௞್೔
௝ୀଵ  

(5-5) 

The above model is called Weighted MRF-SD (WSD). This extension goes in the 

same direction as the method we propose in this chapter. However, the above method is 

still limited in the two following aspects: 

Term dependency is limited to two adjacent terms. More distant terms are still 

assumed to be independent. 

The ordered term bigram and unordered term biterm are assigned the same importance, 

which may not be reasonable. This will be confirmed in our experiments.  

In our model, we remove the above two limitations. 

5.2.3 Discriminative Models 

Another family of approaches to consider term dependencies uses discriminative 

models. In the recent past, discriminative models have been empirically successful in 
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many applications of machine learning. Discriminative models model the dependence of 

an unobserved variable y on an observed variable ݔ directly. For example of classification, 

the model learns a direct map from input x to the class labels. In contrast, the generative 

models estimate the conditional probability ܲ(ݕ|ݔ) and the prior probability ܲ(ݕ), and 

calculate the posterior by ܲ(ݔ|ݕ) ∝ (ݕ)ܲ(ݕ|ݔ)ܲ . One of the advantages for using 

discriminative models is as (Vapnik 1998) pointed, “one should solve the problem 

directly and never solve a more general problem as an intermediate step”. Another 

advantage is the flexibility: the discriminative function can be a posterior probability ܲ(ݔ|ݕ) or simply a confidence score ݃(ݔ|ݕ).  
In IR, discriminative models have also been used widely, such as (Nallapati 2004) 

(Gao et al. 2005). A typical discriminative model is formulated as follows:  

,ܦ|݈ܴ݁)ܲ ܳ) = 1ܼ
exp൭෍ߣ௜ ௜݂(ܳ, ௡(ܦ

௜ ൱ (5-6) 

where  ௜݂(ܳ,  .௜ and ܼ is a normalization constantߣ is a feature function with weights (ܦ

In (Gao et al. 2005), a linear discriminative model (ܯܦܮ) is defined, leading to a score 

function in the same form as Equation (5-6) . The features used are related to unigrams, 

bigrams, phrases in a query, and headwords of document. Compared to ܨܴܯ models, 

discriminative models are more flexible to incorporate more features. In particular, when 

we allow dependencies to span over distant terms, it is not necessary to also consider the 

dependencies with all the terms between them. In contrast, the ܨܴܯ models can only 

capture the dependence of non-adjacent terms in their full dependent models (ܦܨ-ܨܴܯ). 

For example to consider the dependency between a and c of query “a b c d”, the ܦܨ-ܨܴܯ  must model “a b c” together. We can limit to pair-wise dependencies in 

discriminative models, which often correspond to the strongest dependencies that we 

want to capture. This flexibility allows us to consider more term dependencies, without 

having to increase the complexity of the model to account for more complex and less 

useful dependencies. 
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However, we observe once again that each type of feature used in previous 

discriminative models is assigned a fixed value (i.e.  ߣ௜), which is not reasonable. 

5.3 Our Approach: Variable Dependency 

Discriminative Model 

As (Nallapati 2004) observed, discriminative models have been preferred over 

generative models in many machine learning problems. The discriminative function can 

be a posterior probability or simply a confidence score. We use a discriminative model as 

our framework due to its efficiency and flexibility. In addition to unigrams, we consider 

the term dependencies between the following types term pair: 

─ Ordered bigrams; 

─ Unordered co-occurrence dependency within some distances. 

In our model, the second type of dependency is considered to integrate the proximity 

feature according to the distance between the terms in documents. Lv and Zhai (Lv & 

Zhai 2009) proposed several functions to model the impact of a term on another 

according to its distance or proximity. One might use such functions in the discriminative 

model. However, for simplicity, we will use a simpler approach: we will consider co-

occurrences within several different window sizes in documents, each window size 

corresponds to one dependency model. Let us use ܥ௪  to denote term co-occurrences 

within the window size w. In particular, ܥଶ  considers unordered adjacent terms, or 

biterms (Srikanth & Srihari 2002). Let us assume a set of window sizes ܹ  (in our 

implementation, we use 4 window sizes 2, 4, 8, and 16 for English; 3 window sizes 2, 4, 

and 8 for Chinese) when we construct document models. The ranking function is 

extended from Equation (5-6) to the following one: 
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,ܦ|݈ܴ݁)ܲ ܳ) = ෍ (ܳ|௜ݍ)௎ߣ ௎݂(ݍ௜, ௤೔∈ொ(ܦ + ෍ ,௜ݍ)஻ߣ (ܳ|௜ାଵݍ ஻݂(ݍ௜ݍ௜ାଵ, +௤೔௤೔శభ∈ொ(ܦ ෍ ෍ ,௜ݍ)஼ೢߣ (ܳ|௝ݍ ஼݂ೢ(ݍ௜, ,௝ݍ ௤೔,௤ೕ∈ொ,௜ஷ௝௪∈ௐ(ܦ  
(5-7) 

We name above model variable dependency discriminative model (ܯܦܦ ), which 

contains three classes of discriminative features: unigram features ௎݂(ݍ௜, (ܦ , bigram 

features ஻݂(ݍ௜ݍ௜ାଵ, ,௜ݍ)and co-occurrence features ஼݂ೢ (ܦ ,௝ݍ  where w is the window (ܦ

size. Each feature is associated with a function ߣ(⋅)  denoting the importance of the 

feature for the query Q. This function allows us to take into account the dependencies 

between bigrams and co-occurring terms according to their strength and utility. This is 

fundamentally different from most previous models (except (Bendersky, Metzler & Croft 

2010)) in which a fixed weight is assigned to the whole component model rather than to 

individual features.  

Another advantage of our model is the flexibility. The co-occurrences of query terms 

are not limited to adjacent terms (as ܦܵ-ܨܴܯ) nor all the query terms (as ܦܨ-ܨܴܯ). If 

the distance of two terms in a query is too far, they do not tend to be dependent. In our 

model, we only consider the co-concurrency of query terms which are in a certain query 

window (ܳ݊݅ݓ). The terms are considered independent if they are not in Qwin. Therefore, 

for the query length is n, the complexity of our model is ܱ(݊), whereas the ܦܨ-ܨܴܯ is ܱ(2௡). In our implementation, we set ܳ݊݅ݓ to 6 for English and 4 for Chinese.  

The discriminative feature functions we use are as follows:  

݂ܷ൫݅ݍ, ൯ܦ = ܷܲ൫݅ݍหܳ൯ ݃݋݈ ܷܲ൫݅ݍหܦ൯݂ܤ൫1+݅ݍ݅ݍ, ൯ܦ = 1หܳ൯+݅ݍ݅ݍ൫ܤܲ ݃݋݈ ݓܥ݂	൯ܦ1ห+݅ݍ݅ݍ൫ܤܲ ቀ݅ݍ, ,݆ݍ ቁܦ = ݓܥܲ ቀ{݅ݍ. ቚܳቁ{݆ݍ ݃݋݈ ݓܥܲ ቀ{݅ݍ.  ቁܦቚݓ{݆ݍ

 

(5-8) 

where {ݍ௜. ௝}௪ݍ  denote a pair of co-occurring terms ݍ௜  and ݍ௝  in document within a 

window of size w, and ܲ(⋅ |ܳ) and ܲ(⋅  are language models for query and document (ܦ|
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respectively. The features are defined in this way in order to better correspond to the 

traditional approaches in language modeling. This will make it easier to compare our 

model with other approaches using language modeling. However, one could well define 

different features.  

We can notice that if all the ߣ functions are defined as a constant, then the above 

model degenerates to the previous ones, which are indeed linear combinations of the 

component models. However, as we discussed in Section 5.1, the ߣ  functions should 

depend on the term or term pair. We will use a set of features to learn the importance of 

terms, bigrams and co-occurring terms in a query. This will be described in more detail in 

Section 5.4. Putting all together, we have the following final ranking model: 

,ܦ|݈ܴ݁)ܲ ܳ) =௥௔௡௞ ෍ (ܳ|௜ݍ)௎ߣ ௎ܲ௠௟(ݍ௜|ܳ)௤೔∈ொ log ௎ܲ(ݍ௜|ܦ)+ ෍ ,௜ݍ)஻ߣ (ܳ|௜ାଵݍ ஻ܲ௠௟(ݍ௜ݍ௜ାଵ|ܳ) log ஻ܲ(ݍ௜ݍ௜ାଵ|ܦ)௤೔௤೔శభ∈ொ 	
+ ෍ ෍ ,௜ݍ)஼ೢߣ (ܳ|௝ݍ ஼ܲ௠௟({ݍ௜. (ܳ|{௝ݍ log ஼ܲೢ({ݍ௜. ௤೔,௤ೕ∈ொ଴ழ|௜ି௝|ழொ௪௜௡௪∈ௐ(ܦ|௝}௪ݍ  

(5-9)

For the query models, we will simply use Maximum Likelihood (ML) estimation as 

follows, where ݐோ is any item (a unigram, a bigram or a pair of co-occurring terms) and ܿ(ݐோ; ܳ) its count in the query: 

ܴܲ݉ (ܳ|ܴݐ)݈ = ;ܴݐ)ܿ ܳ)|ܳ|ܴ , ܴ ∈ {ܷ, ,ܤ ,2ܥ ,4ܥ … }  

For the document models ܲ(⋅ 	(ܦ| on different types of items, we use Dirichlet 

smoothing as follows: 

(ܦ|ܴݐ)ܴܲ = ;ܴݐ)ܿ (ܦ + ܴߤ ⋅ ܴ|ܦ|(ܥ|ܴݐ)ܴܲ + ܴߤ   
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where ܿ(ݐோ; (ܦ  is the number of times the item ݐோ	occurs in document D (within a 

window for ܥ௪ ); ோܲ(ݐோ|ܥ) = ∑ ௖(௧ೃ;஽)ವ∈಴∑ 	|஽|ೃವ∈಴  is the collection language model; ߤோ  is a 

Dirichlet prior for the corresponding type of model; and |ܦ|ோ is the document length in 

the expression of R, i.e. the total number of unigrams, bigrams or co-occurring terms 

within the corresponding window size. For instance, |ܦ|௎  is the number of terms 

(unigrams) in the document, |ܦ|஼ఴ = 7(݊ − 8) + ቀ82ቁ = 7(݊ − 4)  is the number of 

possible co-occurring terms in D if we use windows of size 8. 

To give an example to illustrate the model, let us imagine a query of four words ܽ	ܾ	ܿ	݀, and let ܳ݊݅ݓ be 3. The first component of the model considers the unigrams ܽ, ܾ, ܿ  and ݀ . The second component concerns the bigrams ܾܽ , ܾܿ  and ܿ݀ . The third 

component considers the co-occurring term pairs {ܽ, ܾ}, {ܽ, ܿ}, {ܾ, ܿ}, {ܾ, ݀} and {ܿ, ݀}. 
The pair {ܽ, ݀} is not considered as a co-occurrence because the distance is large than ܳ݊݅ݓ. If we use several window sizes for co-occurrence document models, then the co-

occurring pairs will be considered evaluated in all these co-occurrence models. 

Notice that if we use a single document window size (e.g. 8) to construct co-

occurrence document model, restrict co-occurring query terms to adjacent terms (i.e. ܳ݊݅ݓ = 2), and assume term-independent	ߣ functions, then our model degenerates to 

MRF-SD. 

5.4 Parameters Estimations 

We have the following free parameters to be estimated: (1) Dirichlet priors ߤ for each 

component language model (2) Dependence strength ߣ(⋅)	for each unigram, bigram and 

pair of co-occurring terms. 
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5.4.1 Determining the Dirichlet Priors 

When we use 4 windows sizes (2, 4, 8 and 16), we have the following priors: ߤ௎, ,஻ߤ ,஼మߤ ,஼రߤ ,஼ఴߤ ߤ ஼భల. For unigram language model, we empirically setߤ = 1000 (it 

results in the best average performance). It is intuitive to see that a longer document 

expression (e.g. with a larger window size) leads to a higher sparsity. This situation will 

require a large ߤ. This has been confirmed in general language modeling. To confirm this 

intuition in the IR context, we run a simple experiment on TREC Disk1 combining 

unigrams and co-occurring terms within window size 2 or 16. We want to see if ߤ஼భల 

should be set at a larger value than for ߤ஼మ. We use here a simple linear combination: the 

unigram model is assigned the weight of 1, while the co-occurrence models the weight of 

0.1 or 0.2. Figure 5-1 shows the results we obtain. We can see from the figure that when ܥଶ is used, a relatively small ߤ஼మ is preferred, especially when its importance is 0.1. On 

the other hand, ߤ஼భల should be assigned a much larger value. 

  

Figure 5-1. Impact of  ࡯ࣆ on ࢁ + ࢁ ૛ and࡯ +  ૛ prefers a࡯ࣆ  :૚૟ on collection Disk1࡯
smaller value and  ࡯ࣆ૚૟  prefers a lager value. 

The above simple experiment confirms our intuition. Therefore, our Dirichlet priors 

are set according the document length in the bigram and co-occurrence expressions. If the 

length of a document is ݊	in unigram expression, the lengths of document in bigram, co-
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occurrence in window 2, 4, 8, and 16 are respectively n-1, n-1, 3(n-2), 7(n-4), and 15(n-8). 

Consequentially, we set ߤ஻ ஼మߤ	, ஼రߤ	, ஼ఴߤ	,  and ߤ஼భల  proportionally to 1000, 1000, 3000, 

7000 and 15000 respectively. These values are not necessarily the best ones, but they turn 

out to perform well. 

5.4.2 Learning the Importance of a Dependency 

For a query ܳ௜ consisting of ݊௜ query terms, we have the following parameters to be 

estimated: ࢏ࢁࣅ = ,௎௜,ଵߣ … , ௎௜,௡೔ߣ ஻௜ࣅ , = ,஻௜,ଵߣ … , ஻௜,௡೔ିଵߣ ஼௜ࣅ , = ,஼௜,ଵߣ … ஼௜,௑ߣ , where ܥ = ,ଶܥ ,ସܥ ,଼ܥ ଵ଺ܥ  if we set ܹ = {2,4,8,16} , and ܺ = ൜ ݊௜(݊௜ − 1)/2 ݂݅	݊௜ < ௜݊)݊݅ݓܳ − ݊݅ݓܳ)(2/݊݅ݓܳ − 1)	 ݂݅	݊௜ ≥ ݊݅ݓܳ . All the parameters for ܳ௜  is ࢫ௜ ,௎௜ࣅ}= ,஻௜ࣅ ,஼మ௜ࣅ ,஼ర௜ࣅ ,஼ఴ௜ࣅ  ஼భల௜}. As these parameters denote the importance of a specificࣅ

term and term pair for IR, they should be tightly related to the expected retrieval 

effectiveness. In order to do this, we propose to learn these parameters using a set of 

training data including relevance judgments. In our experiments (see Section 5.5), we 

will use 10-fold cross validation, i.e., 1/10 of the data will be used in turn as the test data 

while the remaining 9/10 will be used as the training data. 

Assume that we have ݈  training queries  ܳଵ, … , ܳ௟ . First, we try to find the best 

parameters ࢫ௜∗ for each ܳ௜ according to the following equation:  

݅∗ࢫ = ࢏ࢫݔܽ݉ݎܽ ࢏ࢫ൫ܴܧ ; ܶ݅൯  

where ܴ࢏ࢫ	is the document ranking under parameters ࢫ௜; ௜ܶ is the training data (relevance 

judgments for ܳ௜); and  ܧ(⋅) is an evaluation function. In our case, we use mean average 

precision (MAP). 

To find  ࢫ௜∗, we use the coordinate-level ascent algorithm introduced in (Metzler & 

Croft 2007). Coordinate ascent is a commonly used optimization technique for 

unconstrained optimization problems. The algorithm iteratively optimizes a multivariate 
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objective function by solving a series of one dimensional searches. It repeatedly cycles 

through each parameter, holding all other parameters, and optimizes over the free 

parameter until some convergence criteria is met. This algorithm is a local search 

technique and only guaranteed to find a global maxima if the evaluation function E is 

concave. But it is efficient and effective for the parameters learning especially when there 

are a limited number of parameters. As we deal with short queries, the number of 

possible pairs of terms to consider is limited. 

Once ࢫ௜∗ is found, the training data can be transformed into a set of pairs {(ݔ௜	,  ,{(௜ݖ
where ݔ௜  is a unigram, bigram or a pair of co-occurring terms, and ݖ௜	is the optimal  ߣோ∗ ܴ) (௜ݔ) ∈ {ܷ, ,ܤ ,ଶܥ ,ସܥ … }) found by the coordinate-level ascent algorithm. 

In the second step, we train the functions ߣோ(⋅) such that they best fit ߣோ∗ (⋅) for the 

training data. 

We define the features based on the current document collection and a general corpus. 

In this work, we will use the combination of all the test collections to simulate the general 

corpus. For simplicity, we assume in this study that ߣ஻(⋅) and  ߣ஼(⋅) only depends on the 

features of the given bigram or co-occurring terms, but does not depend on other pairs in 

the query. This assumption is not always true, but it will simplify our definition of 

features. More complex features could be investigated in the future. 

In our experiments, we use the following features for unigram ݑ௜ (where the ܾ௜	ܽ݊݀	ܿ௜ 
are the query bigram and co-occurring term which includes ݑ௜ and has the largest ܲܫܯ):  

 in current collection and in general collection (௜ݑ)݂݀݅ ─

─ Binary test value	݂݅݀(ݑ௜) > 	ܶℎݏ݁ݎℎ݈݀݋?		
─ The frequency of ݑ௜	in current collection and in general collection 

─ PMI of ܾ௜ in the current collection and in general collection 

─ The ratio of ݂݅݀(ܾ௜) and ݂݅݀(ݑ௜) 
─ PMI of ܿ௜ in the current collection and in general collection 

─ The ratio of ݂݅݀(ܿ௜) and ݂݅݀(ݑ௜) 
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─ Length of query 

─ The different of ݂݅݀(ݑ௜) and max୳ౠ∈୕  (௝ݑ)݂݀݅
The following features are used for both bigram ܾ௜ = ௜ାଵݍ௜ݍ   and co-occurring terms ܿ௞ = ,௜ݍ ݅ and ݆ means ,ݔ ௝ (we note themݍ + 1	for	bigram).  

─ Point-wise mutual information in the general collection: ܲ(ݔ)݈݈ܽ_ܫܯ 
─ A binary value according to the test: ܲ(ݔ)݈݈ܽ_ܫܯ > ܶℎݏ݁ݎℎ݈݀݋? (Threshold is set 

to 0 in our case) 

─ PMI  in the current collection: ܲ(ݔ)݈݈݋ܿ_ܫܯ 
─ Binary test value	ܲ(ݔ)݈݈݋ܿ_ܫܯ > 	ܶℎݏ݁ݎℎ݈݀݋?		
(ݔ)݂݀݅ ─ − (௜ݍ)݂݀݅ − ݂݅݀൫ݍ௝൯	
(ݔ)݂݀݅) ─ − (௜ݍ)݂݀݅ − (௜ݍ)݂݀݅)/((௝ݍ)݂݀݅ + 	((௝ݍ)݂݀݅
,ݔ)ݐ݊ݑ݋ܿ ─ ,௜ݍ)ݐ݊ݑ݋ܿ)	݊݅݉/(݈݈݋ܿ ,(݈݈݋ܿ ,௝ݍ൫ݐ݊ݑ݋ܿ  ൯݈݈݋ܿ
,ݔ)ݐ݊ݑ݋ܿ ─ ,௜ݍ)ݐ݊ݑ݋ܿ)	ݔܽ݉/(݈݈݋ܿ ,(݈݈݋ܿ ,௝ݍ൫ݐ݊ݑ݋ܿ  ൯݈݈݋ܿ
─ Whether ݔ is in a large phrase dictionary (Termium)? 

─ Whether ݔ is appears in the title of a Wikipedia article? 

─ The distance between the terms in the query | ݆ − ݅| (only for ܿ௞).	
In addition, we also define the following feature for a bigram ܾ௜, which corresponds to 

the case of a bigram in which one of the constituent words only appears in this bigram: 

ห൛ܦหܿ(ܾ௜; (ܦ > 1 & ܿ(ܾ௜; (ܦ = ݉݅݊൫ܿ(ݍ௜; ,(ܦ ;௜ାଵݍ)ܿ ;௜ܾ)ܿ|ܦ}|൯ൟห(ܦ (ܦ > 1}|  

The features defined above for an item ݔ௜  (unigram, bigram or co-occurring terms) 

form a vector ܠ௜ . Now our training data are {(ܠଵ, ,(ଵݖ ,ଶܠ) ,(ଶݖ … , ,௠ܠ) {(௠ݖ ௜ܠ , ∈ℝ௡,	ݖ௜ ∈ ℝଵ, ݊ is the number of features and m is the number of training data. We then 

use the epsilon Support Vector Machine Regression (߳-SVR) (Vapnik 1998) method to 

train ߣோ(⋅) by determining the function 
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(ݔ)ܴߣ = (ܠ)ݕ = (ܠ)߶ܶܟ + ܾ  

to minimize: 

௜ߦ෍൫ܥ + መ௜൯ߦ + 12 ଶே‖ܟ‖
௜ୀଵ   

subject to: 

(௜ܠ)ݕ − ߳ − መ௜ߦ ≤ ௜ݖ ≤ (௜ܠ)ݕ + ߳ + ߳ ௜ߦ ≥ 0, ௜ߦ ≥ 0, መ௜ߦ ≥ 0, ݅ = 1, … ,݉  

By applying a kernel substitution, we can obtain a non-linear ܸܵܯ. In our experiments, 

we use the LIBSVM1 toolkit, and choose the radial basis kernel function. There are 3 

parameters to be further tuned for ߳-ܸܴܵ : cost ܥ ,   of the kernel function and the 

tolerance of termination criterion ߝ. In our experiments we use a grid search to determine 

them on the training data. In our experiments, ܥ, , and ߝ are tuned in the range of 2~8, 

1/31~1/256, 1/16~1/32 respectively, according to the training data.   

With the above learning process, the  parameters for different terms or term pairs are 

determined so as to maximize the expected MAP. Therefore, these parameters can be 

considered as denoting the possible impact of a term or pair of term on MAP. 

                                                 

1 http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 
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5.5 Experiments 

5.5.1 Experimental setting, pre-processing, and indexing 

Our experiments are on both English and Chinese collections. The English collections 

are carried out on TREC collections, and the Chinese collections are TREC and NTCIR. 

We use the title filed of topics as query. This choice is made to better correspond to real 

queries on search engines. The Characteristics of collections and queries are listed in 

Table 5-1. 

Table 5-1. Characteristics of document collections and queries (the unit of query length 
is word for English and Chinese character for Chinese) 

Coll. Description  #Doc 
Size 
(GB)

Query 
Set 

Query 
IDs 

#Qry 
Avg. 

Q.Len

E
nglish 

Disk1 
AP89, WSJ87-89, 
FR89, DOE1/2, ZF1 

510,637 1.26 Disk1 1-200 199 3.7 

Disk2 
AP88, WSJ00-92, 
FR88, ZF2 

231,219 0.90 Disk2 1-200 199 3.7 

Disk4 CR93, FR94, FT91-94 293,710 1.28 Disk4 251-350 100 2.9 

Disk5 FBIS96, LA89-90 262,367 0.95 Disk5 301-450 150 2.4 

WT10g GOV test collection 1,692,096 11.03 WT10g 451-550 97 2.4 

C
hinese 

TR56 
People’s Daily &  
Xinhua news agency 

164,788 0.17 
TREC5 CH1-28 28 12.3 

TREC6 CH29-54 26 12.0 

TR9 
HK commercial data &
daily news, Takongpao 

127,938 0.09 TREC9 CH55-79 25 6.2 

NT34 CIRB011 & CIRB020 381,681 0.54 NTCIR4 001-060 59 8.8 

NT56 CIRB040r 901,446 1.11 
NTCIR5 001-050 50 9.4 

NTCIR6 003-110 50 8.1 

We performed the following pre-processing on all English documents: 

─ Some unimportant fields and tags are removed, such as DATALINE, SO, IN 

fields in WSJ collection and BYLINE, PUB, PAGE fields in FT91-94 collection; 
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─ Stopwords are removed using a 625-stopword list from Lemur1 toolkit; 

─ Stemming by Porter stemmer. 

For Chinese collections, as they are in different coding schemas, we converted all the 

characters into GB codes. To compare to the word-based method, we use a word 

segmentation tool ICTCLAS 2  to segment Chinese texts to words, and use another 

segmentation program from LDC3 to further segment long words into short words. For 

example, the long word 世界贸易组织  (World Trade Organization) will be further 

segmented in the second step into its constituent short words: 世界 (World), 贸易 (Trade), 

组织 (Organization). The previous experiments showed that short words perform better 

than long words  (Kwok 1997). 

To train the parameters, we used two external data for English: a phrase dictionary 

built for French/English machine translation – Termium, which contains 853K phrase 

translations and the titles of Wikipedia articles (the archived file enwiki-20071018-pages-

articles.xml4 including 4,248K entries). For Chinese, we use the external data of Chinese 

Wikipedia articles5, which includes 338,164 titles. 

We use Indri6 to build the basic indexes. For English, the basic index unit is word (we 

denote by ܷ). For Chinese, the basic index units are Chinese characters (ܷ). To compare 

to the baseline models in Chinese IR, we also build the indexes for other index units: 

words (ܹ), bigrams (ܤ), words and bigrams combined with unigrams (ܹܷ, ܷܤ).  

To implement our model, we use a retrieval strategy similar to re-ranking: we first 

retrieve top 2000 documents for each query by the basic unigram language model, and 

then our method is applied to these documents. Different from the previous re-ranking 

                                                 

1 http://www.lemurproject.org/ 
2 http://ictclas.org/ 
3 http://www.ldc.upenn.edu/Projects/Chinese/seg.zip 
4 http://download.wikimedia.org/enwiki/, on 2007-12-12 
5 http://download.wikimedia.org/chwiki/, on 2007-12-12 
6 http://www.lemurproject.org/indri/ 
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approaches, in our re-ranking, we do not combine the initial score, because our final 

ranking score (Equation (5-9)) already contains a unigram language model component. 

The new ranking method is implemented outside the Lemur toolkit. The count the 

frequencies used in our model (unigrams, bigrams and term co-occurrences within 

windows in documents) can be gotten from basic indexes by Indri tools kit directly or by 

a set of our extended functions to this toolkit. 

In Table 5-2, we summarize the models used in the experiments, where “diff. μ” means 

to use the following parameters: ߤ௎ = ஻ߤ = ஼మߤ = ஼రߤ ,1000 = ஼ఴߤ ,3000 = 5000, and ߤ஼భల = 15000 (for English). “fixed ߣோ(⋅)” means to choose the best weights for each of 

the component model such that the linearly combined model achieves best result for the 

collection. “vary ߣோ(⋅)	 ” means that the weights are learnt for each pair of terms 

automatically through cross validation, as we described in Section 5.4.  

In our experiments, we use the title (which usually only contains few keywords) as our 

query. Every word in the title is important for the query. Therefore, in our ܯܦܦ model, 

we assume the importance of unigram, ߣ௎(⋅) to 1 first, such that we can focus on the 

impact of various bigrams and co-occurrence weights. In the sub-section 0, we will 

compare using fixed unigram weight to using various unigram weights. 

Table 5-2. The description of our models used in the experiments 

Model Adjacent query 
terms only 

Discriminative  
functions used

 (⋅)ࡾࣅ ࣆ
MRF-SD Yes ܷ, ,ܤ ଼ܥ 1000 Fixed 

DDM-T1 No ܷ, ,ܤ ଼ܥ 1000 Fixed 

DDM-T2 No ܷ, ,ܤ ,ଶܥ ,ସܥ ,଼ܥ (ଵ଺ܥ) diff. μ Fixed 

DDM No ܷ, ,ܤ ,ଶܥ ,ସܥ ,଼ܥ (ଵ଺ܥ) diff. μ Vary except ߣ௎=1

DDM+ No ܷ, ,ܤ ,ଶܥ ,ସܥ ,଼ܥ (ଵ଺ܥ) diff. μ Vary all ߣோ 
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The ܯܦܦ is a full implementation of our proposed model, 1ܶ-ܯܦܦ and 2ܶ-ܯܦܦ are 

models proposed for testing the usefulness of non-adjacent term and different distances 

with fixed weights. The ܯܦܦା is the model varies all term weights including ߣ௎. 

5.5.2 Experimental results on English collections 

One independent model and three state-of-the-art dependent models are chosen as our 

baselines: Unigram mode (ܷ ܦܵ-ܨܴܯ ,( , weighted ܦܵ-ܨܴܯ ܦܹܵ)  ), and ܲܯܮ . The 

results with the baseline methods are shown in Table 5-3. 

Table 5-3. The results of the baseline models (‡ t.test<0.01, † t.test<0.05) 

Query  
&Coll. 

Unigram 
MRF-SD 

(best ࢀࣅ, ,ࡻࣅ  (ࢁࣅ

WSD 
(best param 

trained on the 
queries) 

WSD-X 
(10-fold cross 

validation) 

PLM 
(best ࣅ ,ࢇ࢘ࢇ࢖) 

MAP MAP %U MAP %SD MAP %WSD MAP %SD 

Disk1 0.2382 0.2453 +3.0%‡ 0.2478 +1.0% 0.2464 -0.6% 0.2425 -1.2%

Disk2 0.2340 0.2480 +6.0% ‡ 0.2504 +1.0% 0.2487 -0.7% 0.2447 -1.3%

Disk4 0.1845 0.1956 +6.0% 0.1974 +0.9% 0.1871 -5.2% 0.2011 +2.8%

Disk5 0.2365 0.2461 +4.1% ‡ 0.2476 +0.6% 0.2383 -3.8% 0.2469 +0.3%

WT10g 0.2042 0.2169 +6.2% † 0.2212 +1.9% 0.2199 -0.6% 0.2181 +0.5%

For ܦܵ-ܨܴܯ and ܲܯܮ, we use a grid search to find the best MAP for each collection. 

The step for searching ்ߣ, ,ைߣ  .model is from 1.5 to 1.9 and λ from 3 to 9 ܯܮܲ in the ܽݎܽ݌ is 0.05. The search space of ܦܵ-ܨܴܯ ௎ forߣ

To compare with the ܹܵܦ  model, we simulate the implementation in (Bendersky, 

Metzler & Croft 2010). The features we use to determine the weights of ݃௝௨௡௜(ݍ௜) and ݃௝௕௜(ݍ௜,  are according to those used in (Bendersky, Metzler & Croft 2010). But two		௜ାଵ)ݍ

following datasets are not used in our simulation:  Google n-grams corpus and Microsoft 

2006 RFP query logs. Instead, we add the features from a large phrase dictionary 
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(Termium). As a consequence, our result with the simulation is slightly different from 

that reported in (Bendersky, Metzler & Croft 2010), but the general comparison to the 

other models (namely to ܦܵ-ܨܴܯ) is consistent with it. 

As we can see, the ܦܵ-ܨܴܯ model consistently outperforms the traditional unigram 

model, and the ܹܵܦ model outperforms ܦܵ-ܨܴܯ model on all the collections. However, ܲܯܮ  has a performance globally similar to ܦܵ-ܨܴܯ  – the improvements are not 

consistent over the collections. 

In the following subsections, we will examine several questions. 

5.5.2.1 Is non-adjacent query pair useful? 

We compare the result of using adjacent pairs query terms (ܦܵ-ܨܴܯ) vs. using both 

adjacent and non-adjacent pairs in the query (1ܶ-ܯܦܦ) (see Table 5-4 below). In both 

cases, the document co-occurrence model is constructed by considering co-occurrences 

within windows of size 8 as in (Metzler & Croft 2005). The result (in Table 5-6) shows 

that when non-adjacent term pairs are considered, we obtain consistent improvements in 

retrieval effectiveness, although the improvements are not statistically significant. This 

result tends to confirm our hypothesis that enlarging the dependencies to non-adjacent 

terms is useful in IR. 

5.5.2.2 Co-occurrence within different distances 

In DDM-T2, we define several component models for documents for term pairs within 

different window sizes: 2, 4, 8 and 16. The model for each window size is assigned a 

different weight. From Table 5-4, we can see that this model performs consistently better 

than 1ܶ-ܯܦܦ, which uses a single window size. This result suggests that term pairs at 

different distances have different dependence strengths and impacts on IR. They should 
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be considered separately. This observation is consistent with the approach used in 

(Metzler & Croft 2005). 

Table 5-4. Using non-adjacent pairs and considering co-occurrences within different 
distances 

Query 
&Coll. 

DDM-T1 
(best ࢁࣅ, ,࡮ࣅ  (ૡ࡯ࣅ

DDM-T2  
(best ࢁࣅ, ,࡮ࣅ ,૛࡯ࣅ … ,  (૚૟࡯ࣅ

MAP % U % SD MAP % U % SD %T1 

Disk1 0.2457 +3.15%‡ +0.16% 0.2458 +3.2%‡ +0.20% +0.04%

Disk2 0.2484 +6.15%‡ +0.16% 0.2486 +6.2%‡ +0.24% +0.08%

Disk4 0.2023 +9.65%† +3.43% 0.2053 +11.3%† +4.96%† +1.48%

Disk5 0.2465 +4.23%‡ +0.16% 0.2474 +4.6%‡ +0.53% +0.37%

WT10g 0.2205 +7.98%† +1.66% 0.2223 +8.9% ‡ +2.55% +0.82%

In 2ܶ-ܯܦܦ , we have the following component models: unigram, bigram, co-

occurrence models. It is interesting to examine the relative contribution of each of these 

component models. This can be reflected by the weights we assign to them in the optimal 

setting. Table 5-5 shows the best weights assigned to the models for each collection. It is 

not surprising to see that the unigram model is the most important one, taking 79.1% of 

the importance in the global model on average. Bigram model appears to be the second 

most important model. The models ܥଶ and ܥସ have slightly lower importance, while the 

models for larger window sizes (i.e. ଼ܥ and ܥଵ଺) are marginally important. We notice a 

lower importance of ܥଶ than ܥସ. However, this does not mean that the adjacent term pairs 

in ܥଶ are less important than those in ܥସ. One has also to consider the fact that part of the 

dependencies between adjacent terms is captured by bigrams (ܤ). So, the lower weight 

for ܥଶ  does not contradict the observation that smaller windows capture stronger and 

more useful term dependencies. 

We can also observe a quick decay of the importance along with the increase of 

window size. This is intuitive, and confirms the assumption used in (Metzler & Croft 

2005).  
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From the Table 5-5, we can also notice the different importance between bigrams (ܤ) 

and co-occurring terms (ܥ௪). This confirms our intuition that these two types of term 

dependencies should be treated in different ways. This supports our extension from the ܹܵܦ model. 

Table 5-5. Test the average importance of unigram, bigram and biterm in different 
windows 

Best weight ࡮ ࢁ ૛࡯ ૝࡯ ૡ࡯  ૚૟࡯
Disk1 1.00 0.07 0.05 0.03 0.00 0.00 

Disk2 1.00 0.10 0.05 0.07 0.00 0.01 

Disk4 1.00 0.07 0.05 0.07 0.02 0.04 

Disk5 1.00 0.10 0.03 0.20 0.00 0.00 

WT10g 1.00 0.15 0.10 0.05 0.01 0.05 

Average  79.1% 7.8% 4.4% 6.6% 0.5% 1.6% 

5.5.2.3 Experiment result of DDM: using learnt weights of term pairs 

In ܯܦܦ, we set the fixed weight (1.0) to unigram terms and assign various weights to 

individual term pairs. The weights of term pairs are learnt by cross validation: for each 

collection, 9/10 of the queries are used in turn as training data while the remaining 1/10 

of the queries are used as test queries. In Table 5-6, we report the average effectiveness 

obtained in the cross validation. Compared to the other models, we can see that this 

model performs generally better. The only exception is on Disk4 data, compared to ܲܯܮ 

and 2ܶ-ܯܦܦ. In a number of cases, the differences with the other models are statistically 

significant. 

This result shows that the model we propose in this chapter can indeed lead to 

additional gains in retrieval effectiveness. Together with the previous comparisons, this 

result suggests that the two extensions we brought to this model, i.e. the consideration of 

more distant term dependencies and the weighting of individual term pairs, are indeed 

important factors that should be incorporated into IR models. 
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Notice that the weights we obtain from cross validation are far from optimal, while for 

the other models we tune the parameters to their best. So, the above comparison gave 

advantages to the other models (the ܹܵܦ-ܺ in Table 5-3 is the cross-folder validation 

result for ܹܵܦ, it shows steadily worse than ܹܵܦ). In order to see the potential of a 

model with the above two extension, we try to determine the best weights for each 

individual term pair by a coordinate-level ascent search as explained in Section 5.4.2. The 

ideal case is shown in the last column of Table 5-6. We can see that the optimal 

effectiveness is far beyond what we can obtain by cross validation. This leads to two 

observations: 

Table 5-6. Comparing DDM to baselines in MAP  

Query 
&Coll. 

DDM (ૃ܃=૚, ૃ܀(⋅) trained by 10-fold cross validation) 

MAP %U %SD %WSD %PLM %T2 

Disk1 0.2489 +4.5% ‡ +1.4%† +0.4% +2.6%‡ +1.2%† 

Disk2 0.2519 +7.6% ‡ +1.6%† +0.6% +2.9%‡ +1.3%† 

Disk4 0.1979 +7.3% +1.2% +0.3% -1.6% -3.6% 

Disk5 0.2500 +5.7% ‡ +1.6%† +1.0% +1.3% +1.0% 

WT10g 0.2255 +10.4%‡ +3.9%† +1.9% +3.3% +1.4% 

─ Our parameter tuning is not done at its best. Better parameters can be learnt. To 

do this, new features may be required and new learning methods may be 

necessary. 

─ Our model has a large potential not yet fully exploited (see the ideal result in 

Table 5-8). With better features and a better learning method, the proposed model 

can lead to even better results. 

These are the elements that we will further examine in our future studies. 
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5.5.2.4 Using manually selected phrases vs arbitrary term pairs 

Here, we exam whether using manually selected phrases is better than using arbitrary 

term pairs in dependency model. A query usually does not consist of strict phrase. So, our 

manually selected phrases are more flexible, such as “anti smooking”, “oil spill”, “human 

life”. We marked total 312 different phrases (term pair) from all queries. For each query 

set, the selected phrases number in the query set and average phrase number for each 

query are listed in Table 5-7. 

Table 5-7. Compare using manually select phrase (M.S.P) to using all pairs in DDM 

Query 
&Coll. 

# 
M.S.P 

#M.S.P  
per  

query 

DDM-T2 (best fixed ࡾࣅ) DDM (ࢁࣅ = ૚, learnt ࡾࣅ)

All pairs Selected pairs All pairs Selected pairs

MAP MAP %All pair MAP MAP %All pair

Disk1 160 0.80 0.2458 0.2465 -0.3% 0.2489 0.2476 -0.5%

Disk2 160 0.80 0.2486 0.2470 -0.6% 0.2519 0.2492 -1.1%

Disk4 74 0.74 0.2053 0.1899 -7.5% 0.1979 0.1919 -3.0%

Disk5 92 0.61 0.2469 0.2471 +0.1% 0.2500 0.2457 -1.7%

Wt10g 37 0.37 0.2223 0.2119 -4.7% 0.2254 0.2066 -8.3%

We compare using selected phrases and using arbitrary phrases (all phrases) in two 

models: 2ܶ-ܯܦܦ and ܯܦܦ  The results show using only .(are learnt	ݏߣ ௎=1, otherߣ) 

manually selected phrases in dependency models performs worse steadily than using all 

term pairs. Therefore, consider only natural phrase is neither necessary nor sufficient. 

5.5.2.5 Results using fixed unigram weight vs. learned unigram weight 

In our model, we allow using variable unigram weights as well as bigrams and co-

occurrences. In the previous experiments, we simply set the unigrams weights to 1, and 

only focus on learning the weight of term pair. To enable variable unigram weights, we 

use the same 10-fold cross validation method for all unigrams, bigrams, and co-

occurrences. The results in Table 5-8 show variable unigrams can get some improvement 
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only for some collections. However, for some other collections, the results become 

worse. Two possible reasons may lead to the result:  

─ We use title as our query. It is short and every query term is important, especially 

for the query which only includes keywords. So given each unigram a fixed 

higher weight (ߣ௎ = 1.0) is good enough. 

─ The training data and features are not enough to represent the importance of each 

unigram. The inaccurate learnt weight or disproportion weights of unigram will 

harm the performance. 

From the ideal results (assign best weight to individual term or term pair), we notice 

that the ܯܦܦ  models have large potential rooms, especially for ܯܦܦ  with variable 

unigram weights.  

Table 5-8. Compare DDM (fixed ૃ܃) to DDM+ (variable ૃ܃) 

Query 
&Coll. 

DDM (ࢁࣅ = ૚,	 
various for other ࢙ࣅ) 

DDM+ (various all  (࢙ࣅ

Learnt Ideal Learnt Ideal 

MAP MAP MAP % U %WSD %DDM MAP %DDM 

Disk1 0.2489 0.2944 0.2533 +6.3% +2.2% +1.8% 0.3202 +8.8%

Disk2 0.2519 0.3044 0.2534 +8.3% +1.2% +0.6% 0.3326 +9.3%

Disk4 0.1979 0.2386 0.1988 +7.7% +0.7% +0.7% 0.2685 +12.5%

Disk5 0.2500 0.2903 0.2435 +3.0% -1.6% -2.6% 0.3114 +7.3%

WT10g 0.2254 0.2749 0.2215 +8.5% +0.1% -1.7% 0.3043 +10.7%

For short queries, the query terms are usually carefully selected for IR. All the 

unigrams should be same impartment. The learnt weights of unigram may be inaccurate 

(assigned a lower weight) sometime due to less training data. To verify this assumption, 

we do the same experiment for long query. We use the "DESC" part of topic as long 

query, and test on 5 TREC/WT10G collections: disk1, disk2, disk4, disk5, wt10g. 
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Table 5-9. Description of long queries vs. short queries 

Query 
&Coll. 

Topics 
Num of 
queries 

Avg. length of  
long query (DESC) 

Avg length of  
short query (TITLE) 

Disk1/Disk2 1-200 199 9.2 3.7 

Disk4 251-351 100 8.9 2.9 

Disk5 301-450 150 7.9 2.4 

Wt10g 451-550 97 5.9 2.5 

 

Table 5-10 The results of the baseline models for long query. The symbols ‡ and † mean 
statistical significance with t-test at p<0.01 and p<0.05 level. 

Query 
&Coll. 

Uni-
gram 

MRF-SD 
(best ૃ܂, ,۽ૃ  (܃ૃ

WSD  
(best param. 

trained on the test 
queries) 

WSD-X 
(10-fold cross 

validation) 

PLM
(best ܉ܚ܉ܘ, ૃ 

trained on the 
test queries)

 MAP MAP % U MAP % SD MAP % SD %WSD MAP % SD 

Disk1 0.2203 0.2281 +3.5%‡ 0.2385 +4.6%‡ 0.2379 +4.3%‡ -0.2% 0.2202 -3.5%‡

Disk2 0.2152 0.2307 +7.2%‡ 0.2428 +5.2%‡ 0.2429 +5.3%‡ +0.0% 0.2214 -4.1%‡

Disk4 0.1643 0.1850 +12.6%† 0.1785 -3.5% 0.1696 -8.3%† -5.0%† 0.1798 -2.8% 

Disk5 0.2171 0.2250 +3.7%‡ 0.2291 +1.8% 0.2260 +0.4% -1.3% 0.2191 -2.7%† 

WT10g 0.1911 0.2044 +6.9%‡ 0.2137 +4.5%† 0.2097 +2.6% -1.9% 0.2008 -1.8% 

 

Table 5-11. Compare DDM (fixed ૃ܃), DDM+ (variable ૃ܃) and base models. The symbols ‡ 
and † mean statistical significance with t-test at p<0.01 and p<0.05 level. 

Query 
Set 

Uni-
gram 

MRF-SD 
(best ૃ,܂	܃ૃ,۽ૃ) 

W-SD 
(best 

weights)

WSD-X
(10-X-

V) 

PLM
(best ܉ܚ܉ܘ, ૃ)

DDM 
(10-X-V, fixed ૃ܃ = ૚) 

DDM+ 
(10-X-V, 

vary all ૃ) 

Ideal 
DDM

%DDM+ %DDM+ %DDM+ %DDM+ %DDM+ MAP %DDM+ MAP MAP

Disk1 -10.3%‡ -7.2%‡ -2.9% -3.1% -10.4%‡ 0.2371 -3.5%‡ 0.2457 0.3757

Disk2 -16.3%‡ -10.3%‡ -5.6%‡ -5.5%‡ -13.9%‡ 0.2403 -6.6%‡ 0.2572 0.3853

Disk4 -12.4%† -1.4% -4.9% -9.6%† -4.2% 0.1826 -2.7% 0.1926 0.3531

Disk5 -9.7%‡ -6.4%‡ -4.7%† -6.0% -8.9%‡ 0.2275 -5.4%‡ 0.2404 0.4044

WT10g -20.5%‡ -15.0%‡ -11.1%‡ -12.8%‡ -16.5%‡ 0.2171 -9.7%‡ 0.2405 0.3935
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The result shows that vary unigram weights (ܯܦܦା) are much helpful for IR for long 

query. The query terms in long query are not as same important as in short queries. So, 

assigning the equal weight to all the unigrams will lead to more noise. The following 

analysis shows how the vary unigram weights lead to the good result:  

For query 003 “Document will announce a new joint venture involving a Japanese 

company”. The scores of Unigram, ܯܦܦ ,ܦܵ-ܹ ,ܦܵ-ܨܴܯ (fixed ߣ௎), and ܯܦܦା (vary ߣ௎ ) are 0.3382, 0.3802, 0.4006, 0.3955, and 0.4108. After stop-word, the unigram 

weights are learnt and assigned: announce/0.37, joint/0.76, venture/0.9, japanese/1.0, 

company/0.48. We can find that the core words venture and japanese are assigned the 

larger weights, so that the DDM+ achieves the best result. 

Another query 011 “Document discusses the goals or plans of the space program or a 

space project of any country or organization.” The score are 0.1074, 0.1283, 0.1292, 

0.1218, and 0.1576. The unigram weights are learnt as discuss/0.25, goal/0.5, plan/0.35, 

space/0.8, program/0.43, project/0.6, country/0.34, organization/0.4. Assigning larger 

weights to the core words (space, program, and project) than other terms will make the 

result better than giving them the same weights. 

5.5.3 Experimental Results on Chinese 

We first provide the retrieval results of the baseline methods in Table 5-12. The 

combination parameters in ܹ+ܷ and ܤ+ܷ are tuned to their best. For a Chinese query ݍଵݍଶ ,ଶݓ,ଵݓ ௡, we assume the word segmentation result to beݍ… ௠ݓ… . The baseline 

models are listed below:  

─ ܷ: We use unigrams of character, and the query is “ݍଵݍଶ  .”௡ݍ…

ܤ ─ : We use bigrams of characters. The corresponding Indri query is 

 . ”(௡ݍ௡ିଵݍ)#1	…	(ଶݍ		ଵݍ)#1“
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 We use both bigrams and unigrams mixed up in a single query. The Indri :ܷܤ ─

query is “#1(ݍଵ		ݍଶ)	…	#1(ݍ௡ିଵݍ௡)	ݍଵ	ݍଶ  .”௡ݍ…

	.and ܷ are interpolated according to Formula (3-4) ܤ of the scores using : ܷ+ܤ ─
─ ܹ: We use segmented words. The query is “ݓଵ	ݓଶ  .”௠ݓ…

─ ܹܷ : The segmented words are mixed up with character unigrams. The Indri 

query is “ݓଵ	ݓଶ ,ଵݍ	௠ݓ… ଶݍ     .”௡ݍ…

─ ܹ+ܷ: The scores using ܹ and ܷ are interpolated according to Formula (3-4). 

Table 5-12.  The baselines (MAP) of traditional Chinese IR models. 

Query&Coll. ܃+܅ ܃܅ ܅ ܃+۰ ܃۰ ۰ ܃ 

Trec5 0.3013 0.2696 0.3184 0.3269 0.2802 0.3265 0.3173 

Trec6 0.3601 0.3610 0.3875 0.3878 0.3881 0.3983 0.3998 

Trec9 0.2381 0.2119 0.2469 0.2543 0.1905 0.2283 0.2381 

Ntcir4 0.2371 0.1995 0.2243 0.2489 0.2237 0.2396 0.2469 

Ntcir5 0.3587 0.3151 0.3563 0.3681 0.3840 0.3817 0.3998 

Ntcir6 0.2695 0.2448 0.2931 0.3064 0.2739 0.2863 0.3012 

To see the importance of different type of index, we plot the results of the methods ܤ+ܷ  and ܹ+ܷ  on Trec6 and Ntcir6 collections in Figure 5-2. We can see that a 

reasonable interpolation usually leads to a higher effectiveness than using only one type 

of index (the two extremities of the curves). This shows that different types of indexes are 

complementary and it is useful to combine them. However, the best weight for each type 

of index depends on the collection and on the types of indexes combined. Indeed, the 

usefulness of different words and bigrams varies largely. The weight we assign to a type 

of index corresponds to a compromise among all the words and bigrams. As we will see 

in the experiment with our proposed model, it is better to assign a different weight to a 

word or a bigram depending on its usefulness. 
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Figure 5-2. Compare the MAP of B, U, W, and their interpolations on Trec6 and Ntcir6 
Collections. 

 

Table 5-13.  The baselines of dependency models: MRF-SD and WSD.  

Query 
&Coll. 

MRF-SD 
(best weight) 

WSD 
(best weight) 

WSD-X 
(10-folder cross 

validation) 

MAP % U 
% 

B+U 
%W+U MAP %U %SD MAP %SD %WSD

Trec5 0.3271 +8.6‡ +3.1 +3.1 0.3279 +8.8‡ +0.2 .3234 -1.1 -1.4 

Trec6 0.3899 +8.3‡ +0.6 -2.5 0.3780 +5.0 -3.1 .3649 -3.1 -3.5 

Trec9 0.2576 +8.2 +1.3 +8.2 0.2732 +14.8† +6.0 .2556 +6.0 -6.4 

Ntcir4 0.2490 +5.0† +0.0 +0.8 0.2514 +6.0‡ +1.0 .2458 +1.0 -2.2 

Ntcir5 0.3846 +7.2 ‡ +4.5 -3.8 0.3909 +9.0† +1.6 .3713 +1.6 -5.0 

Ntcir6 0.3066 +13.8‡ +0.0 +1.8 0.3088 +14.6‡ +0.7 .3092 +0.7 +0.1 

In Table 5-13, we show the effectiveness with other baselines – MRF-SD  and 

Weighted MRF-ܵܦ ܦܹܵ)  ). For ܦܵ-ܨܴܯ , we use a grid search to find the best 

parameters λ୘, λ୓, λ୙  so as to maximize MAP for each collection. Therefore, the 

effectiveness of this model is tuned to its best. The results with ܦܵ-ܨܴܯ are slightly 

better than ܤ+ܷ . Indeed, if we remove the unordered part, the ܦܵ-ܨܴܯ  becomes 

identical to ܤ+ܷ . The difference between ܦܵ-ܨܴܯ  and ܤ+ܷ  corresponds to the 
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contribution of unordered unigram pairs. The ܹܵܦ model is slight better than ܦܵ-ܨܴܯ 

except on Trec6. However, the differences between the two models are not statistically 

significant. 

Table 5-14.  The DDM results (fixed ࢁࣅ to 1). 

Query 
&Coll. 

DDM-T2 (best fixed ࣅs) DDM (1=ࢁࣅ, various other ࣅs by 10-fold cross-validation)

MAP %U %SD MAP %U %B+U %W+U %SD %WSD %T2 

Trec5 0.3278 +8.8‡ +0.2 0.3420 +13.5‡ +4.6† +7.8† +4.6† +4.3 +4.3† 

Trec6 0.3916 +8.7‡ +0.4 0.4171 +15.8‡ +7.6‡ +4.3 +7.0‡ +10.4‡ +6.5† 

Trec9 0.2627 +10.4 +2.0 0.2793 +17.3† +9.8† +17.3† +8.4† +2.2 +6.3 

Ntcir4 0.2503 +5.5‡ +0.5 0.2605 +9.8‡ +4.7† +5.5† +4.6† +3.6† +4.1† 

Ntcir5 0.3851 +7.4‡ +0.1 0.3964 +10.5‡ +7.7 -0.9 +3.1 +1.4 +2.9 

Ntcir6 0.3070 +13.9‡ +0.1 0.3176 +17.9‡ +3.6† +5.5‡ +3.6† +2.9 +3.5† 

The results in Table 5-14 show that the 2ܶ-ܯܦܦ model (ܯܦܦ with fixed weights) is 

slightly better than ܦܵ-ܨܴܯ . This is due to the fact that we added non-adjacent co-

occurring characters. In Table 5-13 we show the effectiveness with other baselines – ܨܴܯ − ܨܴܯ and Weighted ܦܵ − ܨܴܯ For .(ܦܹܵ) ܦܵ −  we use a grid search to ,ܦܵ

find the best parameters λ୘, λ୓, λ୙ so as to maximize MAP for each collection. Therefore, 

the effectiveness of this model is tuned to its best. The results with ܨܴܯ − ܦܵ  are 

slightly better than ܤ + ܷ . Indeed, if we remove the unordered part, the ܨܴܯ −  ܦܵ

becomes identical to ܤ + ܷ. The difference between ܨܴܯ − ܤ and ܦܵ + ܷ corresponds 

to the contribution of unordered unigram pairs. The ܹܵܦ  model is slight better than ܨܴܯ −  except on Trec6. However, the differences between the two models are not ܦܵ

statistically significant. 

In Table 5-13, we show the effectiveness with other baselines – ܦܵ-ܨܴܯ  and 

Weighted ܦܵ-ܨܴܯ ܦܹܵ)  ). For ܦܵ-ܨܴܯ , we use a grid search to find the best 

parameters ்ߣ ைߣ , ௎ߣ ,  so as to maximize MAP for each collection. Therefore, the 

effectiveness of this model is tuned to its best. The results with ܦܵ-ܨܴܯ are slightly 

better than ܤ+ܷ . Indeed, if we remove the unordered part, the ܦܵ-ܨܴܯ  becomes 
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identical to ܤ+ܷ . The difference between ܦܵ-ܨܴܯ  and ܤ+ܷ  corresponds to the 

contribution of unordered unigram pairs. The WSD model is slight better than ܦܵ-ܨܴܯ 

except on Trec6. However, the differences between the two models are not statistically 

significant. 

The Results in Table 5-14 show that the 2ܶ-ܯܦܦ model (ܯܦܦ with fixed weights) is 

slightly better than ܦܵ-ܨܴܯ . This is due to the fact that we added non-adjacent co-

occurring characters. 

 When we vary the weights of the bigram and the pair of co-occurring characters, the 

result becomes much better. In general, our model outperforms all the baseline methods 

except in one case. Many of the improvements are statistically significant. In comparison 

to ܤ+ܷ , ܹ+ܷ ܦܵ-ܨܴܯ ,  and 2ܶ-ܯܦܦ , this result shows the benefit of assigning 

variable importance to pairs of characters. The result clearly validates the general 

approach we used in our model.  

Notice again that in the above comparison, we gave considerable advantage to the 

baseline models, as their parameters are tuned to their best (see the difference of ܹܵܦ-ܺ 

with cross folder validation in Table 5-13, it is steadily worse than ܹܵܦ), which is not 

the case for our model. 

In the previous Chinese experiences, we only variable the weights of bigrams and co-

occurrences, unigrams weights are fixed to 1. Now we try to variable all weights in the ܯܦܦ, and the results list in Table 5-15. Same to the English result, for short queries, the ܯܦܦା (ܯܦܦ with variable unigrams) get the marginable improvement than ܯܦܦ with 

fixed unigram weight. It is confirmed that the ܯܦܦ model with fixed unigram weighs (ߣ௎ = 1.0) can perform as good as ܯܦܦା with vary ߣ௎ for short queries. 
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Table 5-15.  Comparing DDM (fixed ࢁࣅ) to DDM+ (variable ࢁࣅ)  

Query 
&Coll. 

DDM (ࢁࣅ = ૚,	 
various for other ࢙ࣅ) 

DDM+ (various all  (࢙ࣅ

Learnt Ideal Learnt Ideal 

MAP MAP MAP % U %WSD %DDM MAP %DDM 

Trec5 0.3420 0.4633 0.3470 +15.2‡ +5.8† +1.4 0.5110 +10.3‡ 

Trec6 0.4171 0.5515 0.4270 +18.6‡ +9.5† +2.4 0.5926 +7.4‡ 

Trec9 0.2793 0.4060 0.2791 +17.3 +2.2 -0.1 0.4634 +14.1‡ 

Ntcir4 0.2605 0.3829 0.2570 +8.4‡ +2.2 -1.4 0.3986 +4.1‡ 

Ntcir5 0.3964 0.5478 0.3833 +6.9‡ -1.9 -3.3 0.5719 +4.4‡ 

Ntcir6 0.3176 0.4312 0.3318 +23.1‡ +7.5‡ +4.5† 0.4570 +6.0‡ 

In order to have an idea of the potential of our model, we also show the effectiveness 

of ܯܦܦ and ܯܦܦା using the best parameters (best weights for each unigram, bigram 

and pair of characters). We can see that latter model with ideal parameters is better than 

the former one, and both of these two models can potentially largely outperform the 

existing models. 

5.5.4 Analysis and Discussion 

We have used the assumption that different pairs of terms should be weighted in 

different ways. Let us provide some concrete examples containing two terms to support it 

here. Let us examine 1ܶ-ܯܦܦ , which include three component models – unigram, 

bigram and co-occurring terms. We fix the weight of the unigram model at 1 and vary the 

weights of the two other component models to see the impact on the following queries 

(with stopwords removed): “death cancer”, “black Monday”, “drug approval”. Figure 5-3 

shows the variation in MAP along with the changes in the weights. 

What we can see is that for “death cancer”, the best effectiveness can be obtained 

when both the bigram and co-occurrence models are weighted low (near 0). This shows 
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that this query is best treated by the unigram model only. In other words, the dependency 

between the terms in this query is not important. 

On the other hand, for “black Monday”, the weights of the bigram and co-occurrence 

models should be tuned high, showing that it is important to consider this query as a 

bigram and co-occurring terms. Indeed, this query corresponds to a specific expression, 

which should be considered as such. Any transformation (e.g. separation of the terms) 

would alter greatly the meaning. This explains the high weights that we should assign to 

the bigram and co-occurrence models.  

For the third query “drug approval”, the bigram model should not be assigned a strong 

weight, while the co-occurrence model should. This query corresponds to an expression 

in which the two terms are strongly dependent; however, they do not form a specific 

expression. For example, a document containing “the approval of anti-depression drug” 

can also be relevant. Therefore, some flexibility should be allowed when matching the 

query with documents. Such flexibility is allowed in the co-occurrence model. This is 

why the co-occurrence model should be assigned a strong weight. 

The above three cases are typical in IR. They correspond to the three cases we 

mentioned in Section 5.1. These examples clearly confirm our intuition that a component 

model does not have the same impact on different queries.  
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Figure 5-3. Three typical performance curves: independent (death cancer), 
dependent in ordered adjacent (black Monday), and dependent no matter the order 

and adjacency (drug approval). The importance weight of unigram is set to 1, 
bigram and co-occurrence weights vary. 
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In the following tables, we show why our model, by applying automatically learnt 

weights, performs better than the baseline model ܦܵ-ܴܨܯ. Recall that for ܦܵ-ܴܨܯ, we 

tuned the weights to their best. In the columns “ܯܦܦ” and “Ideal”, the component 

models with the weight 0 are not shown, and the weights are normalized. 

In Table 5-16 and Table 5-17, the learnt weights are better than best fixed weights of ܦܵ-ܨܴܯ – the weights are closer to the ideal ones. However, the learnt weights in Table 

5-18 are further away from the ideal weights, leading to a lower effectiveness. The last 

case shows that our learning method is not capable to determine the weights correctly in 

all the cases. This leaves much room for improvement in the future. 

Table 5-16. Topic 121 “death cancer” for Collection Disk1 

 MRF-SD DDM Ideal 

Weights . 90ܷ ܤ08. ଼ܥ02. . 98ܷ  1.0ܷ ܤ02.

MAP 0.0088 0.0104 0.0105 

 

Table 5-17. Topic 105 “black Monday” for Collection Disk1 

 MRF-SD DDM Ideal

Weights . ܤ08.	9ܷ ଼ܥ02. . 71ܷ ܤ29. . 40ܷ  ଶܥ28.	ܤ32.

MAP 0.0016 0.0034 0.0059

 

Table 5-18. Topic 014 “drug approval” for Collection Disk1 

 MRF-SD DDM Ideal 

Weights . ܤ08.	9ܷ ଼ܥ02. . 95ܷ ܤ02. . 28ܷ ସܥ24. ଼ܥ24.  ଵ଺ܥ24.

MAP 0.1035 0.0977 0.1505

Our model can also capture the dependencies between non-adjacent query terms. For 

some queries, such as “recycle automobile tire” (see Table 5-19), “recycle” and “tires” 
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have a strong dependency. Ignoring it (as ܦܵ-ܨܴܯ  and ܹܵܦ  do) will reduce the 

effectiveness.  

Table 5-19. Topic 419 “recycle automobile tire” for Collection Disk5 

 MRF-SD DDM Ideal 

recycle automobile . ܤ09.		88ܷ ଼ܥ03. . 92ܷ ܤ08. 1.0ܷ 

recycle tire N/A . 82ܷ ଶܥ08. ଵ଺ܥ10. . 49ܷ  ଶܥ34.	ܤ17.

automobile tire . ܤ09.		88ܷ . ଼ܥ03 . 86ܷ ܤ13. . ଶܥ01. 48ܷ ଵ଺ܥ.12		ସܥ17.	ܤ23.
MAP 0.1873 0.2065 0.2589

For Chinese IR, setting proper weights to character pairs (high weights to useful pairs, 

low weights to noisy pairs), our model can benefit from the strengths of unigram model 

and dependency model, and avoid the disadvantages of them.  

─ Unigrams (characters) are useful for matching synonyms, near-synonyms or 

various forms of transliterations due to the characters they share. For example, the 

two variants of AIDS 爱滋病 and 艾滋病 can be partly matched because they 

share two characters 滋 (grow, multiply) and 病 (disease). In our experiments, for 

the query Ch73 in Trec9: “中国的艾滋病 ” (AIDS in China), the average 

precision (AP) using words is close to 0 because the documents use a different 

variant of AIDS - 爱滋病. On the other hand, using unigrams, we obtain an AP of 

0.3344. Using ܯܦܦ, we obtain an AP of 0.4070. In ܯܦܦ, we observe that except 

for the bigrams 艾滋 and 滋病, the weights of other bigrams and co-occurring 

character pairs are close to 0. This means that our model heavily relies on 

unigrams for this query. However, as some of the bigrams (in particular, the 

bigram 滋病) have a non-zero weight, they help enhance the connections between 

these characters. This explains the improved effectiveness of ܯܦܦ over unigram 

model. 

─ On the other hand, characters that are highly ambiguous should be combined and 

our model can successfully make use of dependencies in these cases. For example, 
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in the query Ch27 of Trec5 “中国 (China) 在(in) 机器人(robotics) 方面(area) 的

(of) 研制(research)”, if we use unigrams, both the terms 中国(China) and 机器人

(robot) are decomposed into very common characters 中 (China, middle), 国

(country), 机 (machine, engine), 器 (machine, utensil), 人 (human, person). These 

latter lead to a low effectiveness of 0.1057. When words are used the average 

precision is increased to 0.4079. Although our ܯܦܦ model is unable to decide to 

rely entirely on words in this case, it still assigns a quite strong relative 

importance to the words, leading to an average precision of 0.3030. The highly 

ambiguous characters are indeed put into dependencies as follows: 中国 (with a 

weight of 0.64), 器人 (0.59). These strong weights help solve the ambiguity 

problem of separate characters. 

Our model can capture the dependencies between non-adjacent characters.  

─ For the query 003 of Ntcir4 “胚胎 (embryonic) 干细胞 (stem cells)”, we obtain 

an AP of 0.1891 using unigrams, 0.2174 using ܦܵ-ܨܴܯ, and 0.2410 using ܹܵܦ, 

while our ܯܦܦ model results in an AP of 0.4096. The good performance of ܯܦܦ 

is due to the fact that strong dependencies between non-adjacent characters are 

captured. In this case, we observe strong weights for the co-occurring characters 

胎 and 干 (with a weight of 0.22), 胚 and 干 (0.54), 胎 and 胞 (0.27). These pairs 

do not correspond to legitimate words in this query, but their combinations tend to 

enhance the relationship between the words 胚胎 and 干细胞. We can see that co-

occurring characters can also successfully capture relationships between different 

words. 

The above examples illustrate why the two extensions to the previous dependency 

models we propose in this chapter can lead to gains in the retrieval effectiveness. 
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5.6 Conclusions 

Terms in documents and queries are often dependent. A model that ignores term 

dependencies is prone to retrieve much noise, terms can have different meanings in 

different contexts. On the other hand, a model that treats all terms as equally dependent 

also runs the danger of connecting terms that are not strongly dependent and imposes 

such a false dependency as a requirement in the retrieval process. As a result, such a 

model may miss documents where the false dependency does not appear. If one treats all 

dependencies of the same kind in a unique way (i.e. by assigning a unique weight) as 

being done in most previous models, one will end up in assigning a moderate unique 

weight to all dependencies because of the above danger. The real problem is that term 

dependencies vary largely: a pair of terms such as “black Monday” is strongly dependent, 

and the consideration of the dependency in the retrieval process is highly beneficial; 

while other pairs of terms (e.g. “death cancer”) have weaker dependencies and can be 

treated separately. Therefore, each pair of terms should be treated in its own way 

according to the strength of the dependency and the usefulness of considering the pair of 

terms together. The approach proposed in this chapter goes in this direction. 

Our model extends the existing dependency models on two following aspects: 

─ We assign weights to individual pairs of terms rather than to a type of dependency; 

─ We consider dependencies between terms of further distance, and different 

distances are also treated separately. 

We tested our model and compared it to existing ones on several TREC and NTCIR 

collections for English and Chinese IR. Our experimental results showed that our model 

can consistently outperform existing approaches. In a number of cases, the improvements 

are statistically significant. While we cannot conclude our implementation fully exploited 

the potential of the model (because of the limitation in the learning process), it is clear 

that the model could potentially be significantly better than state-of-the-art methods. The 

results differences between our implementation and the ideal case can lead to future study 
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in the following aspects: (1) extend the set of features and try other learning methods. (2) 

test on a larger amount of training data including query logs, user profiles, and click 

through data. 
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CHAPTER 6.  

DISCUSSIONS AND CONCLUSION 

Queries terms in IR are often dependent. A model that ignores the term dependency or 

simply considers all dependent terms in equal weight is prone to retrieving much noise. 

As a result, such a model may assign a low value to a relevant document without 

calculating the dependency of terms, or assigning a high value to an irrelevant document 

if over emphasized dependency in the document. Each pair of terms should be treated in 

its own way according to its strength of the dependency and the usefulness. 

In this thesis, we tested several methods to capture term dependency for monolingual 

IR and cross-lingual IR as well. In CLIR, the dependency of source language terms needs 

to reflect in target language terms. We proposed three approaches to integrate the 

dependency: combination model of using language models, Dempster-Shafer theory 

based model, and discriminative language model.   

Firstly, we tested combination approach on Chinese collection under language 

modeling framework. We tried the following index units: unigram character (ܷ), bigram 

character (ܤ), segmented word (ܹ), mix of bigram and unigram (ܷܤ), mix word of 

unigram (ܹܷ), and the combinations of ܹ+ܷ, ܤ+ܹ ,ܷ+ܤ+ܷ. Results show that the 

combination approach lead to better retrieval effectiveness than using any single index 

unit, consistent with previous studies. We also found that Chinese unigrams are even 

more effective than either words or bigrams. For CLIR, we have chosen to use bigrams 

and unigrams as alternative translation units. Our experiments showed that these 

translation units are as effective as words. We observed only slightly higher retrieval 
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effectiveness when combining unigrams and words/bigrams translations and using 

translations from English word pairs.  

Our conclusions are (1) Chinese characters are very meaningful units, which can be 

used as both indexing and translation units (2) The linear combination with different 

index units is more effective than using single one, but the increase for CLIR is marginal. 

Further improvement can be done in the following aspects: consider strength of link 

between English words; try another way other than linear combination of different index 

units. 

Secondly, we followed the principle of Dempster-Shafer theory and assigned 

probabilities to sets of terms instead of to their components separately. This consideration 

can well capture the phenomenon that terms strongly overlap in its individual form and in 

combined form. The same occurrence of a string can be simultaneously considered as that 

of a long term and that of shorter terms included in it. The approach allows us to avoid 

duplicating the occurrence artificially, resulting in a more principled way to estimate 

probability. We extended Dempster-Shafer's belief and plausibility functions to a general 

transfer function (ܤ|ܣ)ݐ  by considering the possible relationships between term sets 

under specific characteristics about the language. This resulted in a more suitable 

matching function for IR. 

We tested our model with several simple functions on Chinese IR. Results strongly 

suggest that the method we proposed is more suited for Chinese IR than state-of-the-art 

approaches. In particular, it can better take into account the overlapping nature of 

Chinese compound terms and simple terms, and cope their relationships during 

probability assignment. Although, more complex functions can be defined by choosing 

better criteria, especially when deal with term ambiguity. In addition, the transfer 

function can rely on richer linguistic knowledge rather than just character overlapping or 

term distributions.  

This model can be also apply on European languages, which can be a worth area 

explorers in future studies. 
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The limitation of this model is that only term relations within the term-set are 

considered, while dependency between term sets is not well considered. It is also the 

problem we will solve next. 

Thirdly, we proposed a discriminative language model for handling pairwise term 

dependencies according to their dependency stretch and usefulness in IR. Our model 

extends the existing dependency models in the two following aspects: (1) assigning 

weights to individual pairs of terms rather than to a type of dependency (2) considering 

dependencies between terms in further distance, and different distances are also treated 

separately. We tested our model on several TREC and NTCIR collections for English and 

Chinese IR. Experimental results showed that our model can consistently outperform 

existing approaches. The ideal case shows that the model has a great potential to be 

significantly better than state-of-the-art methods. 

In conclusion, capturing term dependencies and taking into account of the dependency 

strength and usefulness are more helpful to IR. The discriminative language model we 

proposed can effectively integrate term dependency factors leading to good IR results. 

The difference between result in our implementation and in the ideal case suggests that 

the approach can be improved further, including: 

─ The set of features used to determine the weights on pairs of terms could be 

extended; 

─ Other learning methods to train importance of dependencies need to try; 

─ Finally, we may need a larger amount of training data. Query logs with user 

interactions (click-throughs) could be a valuable resource. 
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