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RÉSUMÉ

Dans ce travail, nous étendons le nombre de conditions physiques actuellement con-

nues du trou d’échange exact avec la dérivation de l’expansion de quatrième ordre du

trou d’échange sphérique moyenne exacte. Nous comparons les expansions de deux-

ième et de quatrième ordre avec le trou d’échange exact pour des systèmes atomiques

et moléculaires. Nous avons constaté que, en général, l’expansion du quatrième ordre

reproduit plus fidèlement le trou d’échange exact pour les petites valeurs de la distance

interélectronique. Nous démontrons que les ensembles de base de type gaussiennes ont

une influence significative sur les termes de cette nouvelle condition, en étudiant com-

ment les oscillations causées par ces ensembles de bases affectent son premier terme.

Aussi, nous proposons quatre modèles de trous d’échange analytiques auxquels nous

imposons toutes les conditions actuellement connues du trou d’échange exact et la nou-

velle présentée dans ce travail. Nous évaluons la performance des modèles en calculant

des énergies d’échange et ses contributions à des énergies d’atomisation. On constate

que les oscillations causeés par les bases de type gaussiennes peuvent compromettre la

précision et la solution des modèles.

Mots clés: DFT, Fonctionnelle d’énergie d’échange



ABSTRACT

In this work, we extend the number of currently known physical conditions of the

exact exchange hole with the derivation of the fourth-order expansion of the exact spher-

ically averaged exchange hole. We compare the second- and fourth-order expansions

with the exact exchange hole for atomic and molecular systems. We found that, in gen-

eral, the fourth-order expansion reproduces more accurately the exact exchange hole for

small values of the interelectronic distance. We demonstrate that Gaussian-type basis

sets have a significant influence on the terms of this new condition, by studying how

oscillations originated in these basis sets affects its leading term. Also, we propose

four analytical exchange hole models to which we impose all currently known condi-

tions of the exact exchange hole and the new one presented in this work. We assess

the performance of the models by computing exchange energies and its contributions to

atomization energies. It is found that oscillations originated in Gaussian-type basis sets

can compromise the accuracy and solution of the models.

Keywords: DFT, Exchange energy functional
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CHAPTER 1

INTRODUCTION

Electronic structure theory (EST) addresses a wide range of phenomena in areas

such as chemistry, physics, materials science, and biology. Since the beginning of the

20th century, after the discovery of the electron, EST has provided the language of chem-

istry and many of its models and tools. An early cornerstone of EST is provided by the

Lewis theory [1] of atomic and molecular structure. Lewis formulas play an impor-

tant role in chemistry to this day even though they have numerous limitations. Many

molecular properties, such as electronic excitations, cannot be described by them and

they do not provide any quantitative predictions. Quantum mechanics, developed in the

1920s provides an exact formal description of electrons through Schrödinger’s equation.

However, the development of quantitative models for chemistry was hampered by the

enormous complexity of Schrödinger’s equation for many-electron systems. Since the

1980s improvements of theories and computational techniques, as well as the increase

in computer power, moved computational modeling to the forefront in chemistry. In par-

ticular the development of density functional theory (DFT) initiated an ongoing trans-

formation of many areas of science. The key quantity which has to be approximated in

DFT is the exchange-correlation energy functional. We focus on approximations to the

exchange energy functional where the latter can be expressed in terms of the exchange

hole. Building on the work of Becke and collaborators [2, 3], that the exact exchange

hole in inhomogeneous systems can be approximated by an analytic model, where it de-

pends on the Taylor series expansion of the exact spherically averaged exchange hole up

to the second order in the interelectronic distance. With respect to the related work men-

tioned, I extend the Taylor series expansion of the exact spherically averaged exchange

hole up to the fourth order in the interelectronic distance and construct new analytic

exchange hole models that depend on the new extended Taylor series expansion. The

purpose is to obtain exchange hole approximations that are more accurate than the exist-

ing ones.
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1.1 The Schrödinger equation

In the electronic structure of matter, the time dependent Schrödinger equation

ĤΨ = i
∂Ψ

∂ t
, (1.1)

is the most fundamental equation which describes how quantum states of a physical sys-

tem develop in time. The time-dependent Schrödinger equation has applications to scat-

tering and spectral theory, charge transport, etc. For those cases in which one is mainly

concerned with systems without interactions evolving in time, the time-independent vari-

ant of the Schrödinger equation is used. The non-relativistic Schrödinger equation plays

in quantum mechanics the same role of non-relativistic Hamilton’s laws of motion in

classical mechanics.

All properties of any atom or molecule in any of their possible stationary states may

be obtained in principle by the solution of the time-independent Schrödinger equation.

The representation of the problem of a many-electron system is

ĤΨ(RRR1, ...,RRRM,rrr1, ..,rrrN) = EΨ(RRR1, ...,RRRM,rrr1, ..,rrrN) (1.2)

where Ĥ is the Hamiltonian operator in atomic units

Ĥ =
N

∑
i=1

(
−1

2
∇

2
i

)
+

M

∑
A=1

(
− 1

2MA
∇

2
A

)
−

N

∑
i=1

M

∑
A=1

ZA

riA
+∑

i=1

N

∑
j>i

1
ri j

+
M

∑
A=1

M

∑
B>A

ZAZB

RAB
, (1.3)

where the first two terms represent the kinetic energy operator of the electrons and nuclei

in which the indexes i and j indicates the i-th and j-th electrons and the indexes A and B

the A-th and B-th nuclei. The last three terms describe potential energies due to electron-

nucleus, electron-electron and nucleus-nucleus interactions, respectively. Moreover, the

quantities ri j, riA and rAB are distances between electrons, electron and nucleus and

nuclei. Also, note that j > i in the electron-electron interaction operator and B > A in

the nucleus-nucleus interaction operator are used to avoid double counting of electrons

and nuclei. The wavefunction Ψ(RRR1, ...,RRRM,rrr1, ..,rrrN) depends on all M nuclei and N
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electrons variables and E is the total energy for this wavefunction, respectively.

The wavefunction Ψ, also called the probability amplitude, contains all the infor-

mation concerning the system but has no physical interpretation. At the other hand,

when Ψ is normalized the square of its absolute value |Ψ|2 has the physical interpreta-

tion that |Ψ|2d3r1 . . .d3rN is the probability to find electron 1, . . . ,N in volume elements

d3r1 . . .d3rN .

The Schrödinger’s equation presented in equation 1.2 is a eigenvalue equation that

has exact solutions for very simple systems. The wavefunctions that solve the eigenvalue

equation are called eigenstates of the Hamiltonian operator Ĥ while the energies asso-

ciated with this solution are called eigenvalues. The eigenstates Ψ of Ĥ are stationary

states that have well-defined energies E where the state of lowest energy is called the

ground state of the system and it is denoted by Ψ0 .

We observe that the problem at hand is a partial differential equation of a large num-

ber of variables. For instance consider the benzene molecule composed of 12 nuclei and

42 electrons. In this system one needs to solve a problem with 162 variables where only

spatial-coordinates are taken into consideration. Hence, solutions for many-electron sys-

tems need to be approximated. Furthermore, a direct solution of the eigenvalue problem

of equation 1.2 cannot have a closed form due to the electron-electron interaction op-

erator 1/ri j . If one wishes to deal with electronic structure and properties of atoms

and molecules, which is the subject of the present work, a possible separation of vari-

ables should be envisioned. Then mathematical methods can be employed to provide

approximate solutions to the electronic Schrödinger equation. In the following section

we present a short introduction to an approximation proposed by Max Born and Julius

Robert Oppenheimer[4] that allows a separation of variables of the wavefunction. In this

work we use atomic units where the length unit is the Bohr radius a0, the charge unit is

the charge of the electron e, and the mass unit is the mass of the electron m.
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1.2 The Born-Oppenheimer approximation

The first step to reduce the complexity of the problem was made in the early days

of quantum mechanics by Max Born and Julius Robert Oppenheimer. In the Born-

Oppenheimer (BO) approximation[4] the nuclei are taken as fixed because of their much

larger mass, while electrons respond almost instantaneously to changes in the nuclei con-

figurations. Under this assumption, the wavefunction can be factorized into two parts:

one part entails information about the electrons and is called the electronic wavefunc-

tion while the other part contains essentially nuclei information and is called the nuclear

wavefunction,

Ψ(RRR1, ...,RRRM,rrr1, ..,rrrN) = Ψnuc(RRR1, ...,RRRM)Ψelec(RRR1, ...,RRRM,rrr1, ..,rrrN) (1.4)

where the subscripts nuc and elec indicate nucleus and electron parts of the wavefunc-

tion, respectively. Born and Oppenheimer and Born and Huang[5] expanded the to-

tal molecular wavefunction and showed that a single product of electronic and nuclear

wavefunctions is a good approximation. Under this approximation, the electronic wave-

function defined by

Ψelec(RRR1, ...,RRRM,rrr1, ..,rrrN), (1.5)

is then a valid solution to equation 1.2 . Note that the electronic wavefunction depends

directly on electrons coordinates and parametrically on nuclei coordinates. Thus, we

have a different electronic wavefunction and energy for each different arrangement of

the nuclei. The electronic Schrödinger equation takes the following form

ĤelecΨelec(RRR1, ...,RRRM,rrr1, ..,rrrN) = EelecΨelec(RRR1, ...,RRRM,rrr1, ..,rrrN), (1.6)



5

where Ĥelec is the electronic Hamiltonian operator defined as,

Ĥelec =
N

∑
i=1
−1

2
∇

2
i −

N

∑
i=1

M

∑
A=1

ZA

riA
+∑

i=1

N

∑
j>i

1
ri j

=
N

∑
i=1

(
−1

2
∇

2
i

)
+

N

∑
i=1

υ(rrri)+∑
i=1

N

∑
j>i

1
ri j

= T̂ +V̂ne +V̂ee.

(1.7)

All possible solutions of equation 1.6 are stationary states and each of of them have an

associated electronic energy

Eelec ≡ Eelec(RRR1, ...,RRRM), (1.8)

which also depends parametrically on the nuclei coordinates. Furthermore, the total

energy

Etot = Eelec +
M

∑
A=1

M

∑
B>A

ZAZB

RAB
. (1.9)

is obtained by adding the nucleus-nucleus repulsion energy term to the electronic energy.

Indeed, the BO approximation is critical to the study of electronic structure and prop-

erties of chemical systems. Because of the large difference between the masses of nuclei

and electrons, the approximation is valid and permits one to focus on electronic proper-

ties only.

1.3 Wavefunction theory

The idea proposed in 1925 by Uhlenbeck and Goudsmit[6] to explain the fine struc-

ture of atomic spectra is that electrons have an intrinsic angular momentum which is

called spin angular momentum or for short spin. So far we have not included electron

spin into our equations because the Hamiltonian operator Ĥ does not depend on spin-

coordinates thus leaving the non-relativistic Schrödinger equation unchanged. In order

to describe quantum mechanical systems properly we introduce two functions α(σ) and

β (σ) which represent spin up and down, respectively. Note that α(σ) and β (σ) are only



6

symbols to represent the spin functions. The mathematical definition of these functions

is not in the scope of this work. Nevertheless, these two functions are complete and

orthonormal

∑
σ

α
∗(σ)α(σ) = ∑

σ

β
∗(σ)β (σ) = 1, (1.10)

∑
σ

α
∗(σ)β (σ) = ∑

σ

β
∗(σ)α(σ) = 0. (1.11)

With a space coordinate rrr and a spin coordinate σ we can define a new variable

xxx = {(rrr,σ)} (1.12)

which represents the four coordinates; three spatial-coordinates rrr and one spin-coordinate

σ . The composite spatial plus spin coordinate of the electrons xxx is then used to construct

spin-orbitals

χ ≡ χ(xxx), (1.13)

where the product between each spatial orbital and one of the two spin functions forms

two spin orbitals,

χ(xxx) =


φ(rrr)α(σ)

or

φ(rrr)β (σ).

(1.14)

With the inclusion of spin-coordinates we complete the description of electrons. Be-

cause electrons are Fermi-Dirac particles of half integral, an additional condition are

imposed on many-electrons wavefunction. By the symmetry principle[7, 8], many-

electrons wavefunctions must be antisymmetric under particle coordinate exchange,

Ψ(xxx1, . . . ,xxxi, . . . ,xxx j, . . . ,xxxN) =−Ψ(xxx1, . . . ,xxx j, . . . ,xxxi, . . . ,xxxN). (1.15)

These two configurations are physically indistinguishable and should occur with the

same probability |Ψ|2. From equation 1.15 we have that,

|Ψ(xxx1, . . . ,xxxi, . . . ,xxx j, . . . ,xxxN)|2 = |Ψ(xxx1, . . . ,xxx j, . . . ,xxxi, . . . ,xxxN)|2 (1.16)
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holds for all N! distinct permutations of labels 1 . . .N in equation 1.14 . Consider as

a solution to equation 1.6 the product of N distinct orbitals each one containing one

electron

Ψ(xxx1,xxx2, . . . ,xxxN) = χ(xxx1)χ(xxx2) . . .χ(xxxN). (1.17)

From the symmetry principle we should have that equation 1.15 and consequently equa-

tion 1.16 hold true but this is not the case because we have,

|Ψ(xxx1,xxx2, . . . ,xxxN)|2dx1dx2 . . .dxN = |χ(xxx1)|2dx1|χ(xxx2)|2dx2 . . . |χ(xxxN)|2dxN . (1.18)

The last result says that the simultaneous probability of finding electron-one in volume

element dx1 and electron-two in volume element dx2 and etc is equal to the product

of probabilities of each individual event. In other words, the events are uncorrelated.

Hence, the probabilities to find one electron at a given position is independent of the

position of the other electrons. This uncorrelated wavefunction neglects completely

Coulombic interactions for the case of opposite spin electrons and clearly does not sat-

isfy the symmetry principle for indistinguishable particles.

Although wavefunctions as equation 1.17 are not antisymmetric under coordinate

exchange, they are approximate solutions to systems of non-interacting electrons. These

solutions are obtained without great effort since the method of separation of variables

can be employed. Such systems are also linear eigenvalue equations as in equation 1.16

and proper linear combinations of equation 1.17 can be used produce wavefunctions that

satisfy the exchange principle and are approximate solutions to equation 1.6.

1.3.1 Slater Determinants

In 1929 John Slater proposed a determinantal many-electron wavefunction which

is constructed with an appropriate linear combination of symmetry wavefunctions as

equation 1.17 . Such antisymmetric wavefunctions are called Slater determinants. The
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Slater determinant[8, 9] for a system with N electrons is defined as

Ψ(xxx1, . . . ,xxxN) =
1√
N

∣∣∣∣∣∣∣∣∣∣∣

χi(xxx1) χ j(xxx1) . . . χN(xxx1)

χi(xxx2) χ j(xxx2) . . . χN(xxx2)
...

...
...

χi(xxxN) χ j(xxxN) . . . χN(xxxN)

∣∣∣∣∣∣∣∣∣∣∣
, (1.19)

where 1/
√

N! is the normalization factor and the N electrons occupies χN orthogonal

spin-orbitals. Moreover, each row in equation 1.19 is labeled by an electron and each

column is labeled by a spin-orbital. We observe that the Slater determinant does not

relate an electron with a specified orbital.

Some important aspects of chemical structures may be unveiled by a study of the

exchange symmetry. For instance, if the labels of equation 1.19 are the same i = j the

wavefunction vanishes. Thus, two electrons cannot be in the same quantum state. This

result gives the Pauli exclusion principle[7–9] which postulates that only the first three

quantum numbers can be the same for any two electrons.

Solutions to the Schödinger equation need to be approximated with mathematical

methods. These methods are able to determine the best form of the orbitals involved

in the many-electron wavefunctions. Therefore, one can use approximate methods to

minimize the energy of a given system. In the next section the Variational Method will

be discussed.

1.4 The Variational Method

The Variational Method (VM) together with the Pertubation Theory (PT) are the

most important methods[7–9] employed to find approximate solutions to the Schrödinger

equation. The VM works by guessing a trial wavefunction for the eigenvalue equation.

The trial wavefunction contains additional parameters introduced to aid in the determi-

nation of the best form of the orbitals. By varying these parameters one may find the

minimum energy of the system. This procedure can also be applied to excited states.

For a many-electron system one has to find approximate solutions to the eigenvalue
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equation for electrons

ĤΨ̃ = EΨ̃, (1.20)

where Ψ̃ and E are the trial wavefunction of a given nuclei configuration and the elec-

tronic energy, respectively. Moreover, Ĥ is the Hamiltonian operator for electrons de-

fined in equation 1.6 . Note that the present eigenvalue equation was already defined in

equation 1.6 but here we omit the subscript elec. The average of the electronic energy

is,

E =

∫
dτΨ̃∗ĤΨ̃∫
dτΨ̃∗Ψ̃

=

〈
Ψ̃|Ĥ|Ψ̃

〉
〈

Ψ̃|Ψ̃
〉 . (1.21)

At the end of the procedure the final wavefunction and its associated energy are approx-

imations to the exact wavefunction and energy. The result given by the VM is supported

by an important theorem called the Variational Principle (VP). The VP states that any

energy calculated from a trial wavefunction is an upper bound to the lowest energy state

ε0 of the Hamiltonian Ĥ, 〈
Ψ̃|Ĥ|Ψ̃

〉
〈

Ψ̃|Ψ̃
〉 > ε0. (1.22)

When normalized wavefunctions are used the denominator in equation 1.21 is equal to

unity and we have that E =
〈

Ψ̃|Ĥ|Ψ̃
〉

.

We begin the proof of the VM expanding the trial wavefunction Ψ̃ in terms of the

eigenvectors of Ĥ. This is possible since the Hamiltonian operator is a hermitian operator

which implies that its eigenvectors are real and they form a complete orthogonal set,

Ψ̃ =
∞

∑
i=1

ciφi. (1.23)

The omission of the orbital coordinates does not lead to loss of mathematical rigour in

our equations and its use make the following equations shorter. Substituting equation
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1.23 into equation 1.21 we obtain,

E[Ψ̃] =
∑i, j c∗i c j

∫
dτφ∗i Ĥφ j

∑i, j c∗i c j
∫

dτφ∗i φ j

=
∑i, j c∗i c jε j

∫
dτφ∗i φ j

∑i, j c∗i c j
∫

dτφ∗i φ j

=
∑i c∗i ciεi

∑i c∗i ci

=
∑i |ci|2εi

∑i |ci|2
.

(1.24)

At this point, we apply the VP theorem to the VM. Subtracting the exact ground-state

energy ε0 from both sides in equation 1.28 we have that,

E[Ψ̃]− ε0 =
∑i |ci|2(εi− ε0)

∑i |ci|2
. (1.25)

In the right-hand side, every term of the summation is equal to or greater than zero, the

left-hand side must also satisfy the same inequality which results in,

E[Ψ̃]> ε0. (1.26)

We see from the last equation that the energy of any approximate wavefunction is always

equal to or greater than the exact ground-state energy. The equality is attained only when

the trial wavefunction is equal to the exact wavefunction.

The energy in equation 1.24 depends on the form of the trial wavefunction Ψ̃ and is

called a functional. Functionals are often present in the calculus of variations whence the

VM belongs to. In functional analysis a functional is a mapping between vector spaces

that can range from the real line to complex planes[10]. Thus, from equation 1.24 it is

possible to define the mapping as,

E : {ck} 7→ {εk}. (1.27)

Whence, we say that the energy is a functional that establishes a rule for going from a
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function Ψ̃ to a number εk. Thus, it is the functional form of Ψ̃ that gives the values of

E[Ψ̃], rather than any set of independent variables.

We seek now to minimize equation 1.28 that in mathematical language is translated

to,

δE[Ψ̃] = 0. (1.28)

This consequently imposes the condition that E[Ψ̃] be stationary while one varies Ψ̃.

The task is to properly vary the form of the trial wavefunction by a small amount Ψ̃ =

Ψ̃+ δ Ψ̃ in order to minimize the energy. By properly changing the parameters of the

trial wavefunction, one can in principle obtain the optimal form of Ψ̃ that minimizes the

energy. The procedure is outlined as

E[Ψ̃+δ Ψ̃] = 〈Ψ̃+δ Ψ̃|Ĥ|Ψ̃+δ Ψ̃〉

= 〈Ψ̃|Ĥ|Ψ̃〉+ 〈δ Ψ̃|Ĥ|Ψ̃〉+ 〈Ψ̃|Ĥ|δ Ψ̃〉+ . . .

= E[Ψ̃]+δE[Ψ̃]+ . . . ,

(1.29)

where the second term contains all linear terms of the variation expansion of the energy

functional. The infinite number of parameters necessary to calculate the energy turns out

to be a challenging problem for molecular systems. Nonetheless, we can construct an

approximation by linearly combining atomic orbitals to form molecular orbitals.

1.4.1 Linear Combination of Atomic Orbitals

In practical calculations the set of eigenvectors is not complete and we use instead a

finite set of N basis functions that can only span a certain portion of space,

Ψ̃ =
N

∑
i=1

ciφi(rrr). (1.30)

This is approximation is known as Linear Combination of Atomic Orbitals (LCAO)[7–

9]. Thus, the function φi in equation 1.30 correspond to atomic orbitals of a polyatomic

molecule. Notice that we have written the coordinate of the atomic orbitals φi. Here,

these coordinates do not refer to a center of mass of the molecule but they can use
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another reference i.e. the centers of of atoms as origins.

This approximation affects directly the accuracy of our calculations. However, the

great advantage of the LCAO is the possibility to reduce the eigenvalue equation for

electrons into a matrix diagonalization problem when only linear variations are taken

into consideration in our calculations.

1.4.1.1 Matrix Eigenvalue Problem

In the matrix eigenvalue problem[9], the eigenvalue equation 1.20 is then recast into

its matrix form. The representation of the Hamiltonian operator in the space spanned

by equation 1.30 is H and the overlap matrix S. The elements of these matrices were

already present in equation 1.24 . We now define them formally

Hi j =
∫

dτφ
∗
i Ĥφ j = 〈φ∗i |Ĥ|φ j〉, (1.31)

as the element i j of the Hamiltonian matrix H and

Si j =
∫

dτφ
∗
i φ j = 〈φ∗i |φ j〉, (1.32)

as the element i j of the overlap matrix S. Hence, we begin rewriting the eigenvalue

equation into its matrix form using Hi j and Si j ,

E[Ψ̃] =
∑i, j c∗i c jHi j

∑i, j c∗i c jSi j
. (1.33)

We impose on the VM that Ψ̃ remains normalized during the minimization,

〈Ψ̃|Ψ̃〉= 1. (1.34)

This constraint ensures that the final Ψ̃ will be normalized. Direct minimization of the

N linear coefficients
∂ 〈Ψ̃|Ĥ|Ψ̃〉

∂ck
= 0 k = 0, . . .N, (1.35)
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is not possible anymore because the N parameters are now coupled to each other by the

normalization constraint of equation 1.34 . Minimization of a function with constraints

can be dealt with by means of the Lagrange’s method of undetermined multipliers. In

this method the constraints are multiplied by auxiliary variables called Lagrange’s mul-

tipliers. Then a new functional that contains the orthonormality condition is defined

as

L(c1, . . . ,cN ,E) = 〈Ψ̃|Ĥ|Ψ̃〉−E(〈Ψ̃|Ψ̃〉−1)

= ∑
i, j

c∗i c j〈φi|Ĥ|φ j〉−∑
i, j

εi j

(
∑
i, j

c∗i c j〈φi|φ j〉−1

)
,

(1.36)

where E denotes the Lagrange’s multipliers. The next step of the VM is to apply arbitrary

variations to the N parameters of L in order to to find a global minimum of this functional,

δL(c1, . . . ,cN ,E) = 0

δ

[
〈Ψ̃|Ĥ|Ψ̃〉−E〈Ψ̃|Ψ̃〉

]
= 0.

(1.37)

Taking only the linear terms of δL the VM gives,

δL(c1, . . . ,cN ,E) = ∑
i, j
〈φi|Ĥ|φ j〉δc∗i c j−∑

i, j
εi j
(
〈φi|φ j〉δc∗i c j

)
+∑

i, j
〈φi|Ĥ|φ j〉c∗i δc j−∑

i, j
εi j
(
〈φi|φ j〉c∗i δc j

)
= ∑

i
δc∗i

(
∑

j
Hi jc j−∑

j
εi jSi jc j

)

+∑
j

δc j

(
∑

i
Hi jc∗i −∑

i
εi jSi jc∗i

)
.

(1.38)

The Lagrange multipliers εi j are eigenvalues of Ĥ. They are real numbers and form a

hermitian matrix E. This fact makes the two set of equations in 1.38 equivalent. We now
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have to solve the homogeneous system of N linear equations

∑
j

Hi jc j−∑
j

εi jSi jc j = 0, (1.39)

for the coefficients c j . The latter result has the following matrix form

HC = ESC, (1.40)

where H, S and E are the matrix representation of the Hamiltonian operator, overlap

integrals and the Lagrange’s multipliers, respectively. The column vector C contains the

coefficients or eigenvectors of Ĥ to be determined. The optimal c j that minimize the

energy are obtained by diagonalization of the matrix H.

1.5 Conclusion

The theories and methods introduced in this chapter lead us to a practical way to

calculate the ground-state energy of atoms and molecules by the wavefunction method.

In general, approximations to the wavefunction are necessary in order to accomplish this

objective. Yet, the VM together with the LCAO had to be applied to ease the burden and

make the calculation feasible.

We have seen that the procedure begins with the construction of the Ĥ operator. Once

we have the external potential, υ(rrr) = ∑i=1 υ(rrri), which is the potential due to nuclei

charges action on the electrons and the number of electrons N we fix Ĥ. Next, the ground

state wavefunction is given, in principle, by equation 1.36. Finally, we obtain the ground

state energy with equation 1.21 . The approach is represented schematically as,

{υ(rrr),N}→ Ĥ→Ψ→ E. (1.41)

The VM allied with the method of Lagrange’s multiplier is a powerful tool to tackle the

eigenvalue problem for electrons. However, an attempt to apply the procedure described

above to the problem of many-electron systems is extremely hard. The main cause is the
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difficulty, to evaluate the electron-electron interaction energy term,

∑
i=1

N

∑
j>i

1
ri j

. (1.42)

Many wave function-based methods avoids calculation of equation 1.42. The basic idea

of these methods is to construct a Hamiltonian for a single electron in a effective field

due to the nuclei and the remaining electrons. With respect to the electrons, this effective

field can be the average potential acting on the i− th electron due to the other electrons

present in the system. In its very basic form, this approximation is called the Hartree-

Fock method. This method was extensively reviewed [9] and it is known to provide only

a qualitative guide for molecular calculations.

Therefore, the problem with respect to the correct description of electron-electron

interactions leads to the development of new theories that could, in principle, account

accurately for the correlated motion of electrons. This is the main motivation that took

Pierre Hohenberg and Walter Kohn to develop the Density Functional Theory presented

in the next chapter.



CHAPTER 2

DENSITY FUNCTIONAL THEORY

We open this chapter with the definition of its most important quantity: the electron

density

ρ(rrr) = N
∫

dσ1dxxx1 . . .xxxN |Ψ(xxx1, . . . ,xxxN)|2. (2.1)

Note that Ψ is the wavefunction of a system composed of N electrons. The integration

or average of ρ(rrr) over all spin-coordinates and over all spatial variables not including

the one of the first electron determines the probability of finding any of the N electrons

in volume element drrr1 with any spin configuration[8, 10].

The use of the electron density in the early development of this theory, as a basic

quantity to obtain properties of atoms and molecules is not new in quantum mechanics.

In the early development of this theory, important contributions were made by scientists

like Thomas and Fermi[11]. The first attempts to circumvent the use of many-electron

wavefunction failed to produce accurate approximations and to converge into a theory

with rigorous basis. In 1964, Hohenberg and Kohn (HK) provided two fundamental

theorems[12] that marked the birth of new theory called the Density Functional Theory

(DFT).

2.1 The first theorem of Hohenberg and Kohn

We know that all properties of a chemical system are determined by its external

potential υ(rrr) and by its number of electrons N. Both υ(rrr) and N determine completely

and uniquely the ground state wavefunction Ψ0 and the ground state energy E0[10, 13].

The rigorous justification to use ρ(rrr) to solve the many-electron problem is given by the

first theorem of HK. Our approach to present the theorems is based on the original idea

proposed by HK. The first theorem states that: non-degenerate ground state density ρ0(rrr)

determines uniquely the external potential υ(rrr) within a constant. When potentials differ

by a constant they are equivalent. Since the number of electrons N can be obtained from
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ρ(rrr) then, one is able to construct the Hamiltonian operator and consequently calculate

the ground state of the system. Schematically, we have,

υ(rrr)

ρ0(rrr) Ĥ Ψ0

N

Figure 2.1: Schematically representation of the correspondence between density poten-
tial and wavefunction

We now present the mathematical development that leads to the first theorem. By

solving the eigenvalue equation

ĤΨk = EΨk, (2.2)

we obtain the eigenstates Ψk of the Hamiltonian operator Ĥ. In the set of eigenstates

|Ψk〉 we have the ground-state |Ψ0〉 of the system. Consider now the set of all operators

Ĥ each one containing a υ(rrr) that when minimized by the (VM) gives a non-degenerate

ground-state |Ψ0〉. Thus, we define the set V of all external potentials that lead to a

|Ψ0〉. Furthermore, within V we have an infinite number of equivalent υ(rrr) where each

one takes to the same ground-state |Ψ0〉. We are now in a point where we can create a

map between the external potentials and the ground-states,

P : V 7→ {Ψ0}. (2.3)

Because the ground state Ψ0 determines the ground state density ρ0(rrr),

ρ0(rrr) = N
∫

dσ1dxxx2 . . .xxxN |Ψ0(xxx1, . . . ,xxxN)|2. (2.4)

We can define another map between the set of all ground states Ψ0 and the set of all
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ground state densities D ,

Q : {Ψ0} 7→D . (2.5)

These two maps P and Q are originally surjectives: i.e. for any υ(rrr) ∈ V there exists an

|Ψ0〉 ∈ |Ψ0〉 for which the mapping is exists. Hohenberg and Kohn then proposed that

both maps are bijectives. In other words, both maps can be inverted,

P−1 : {Ψ0} 7→ V

Q−1 : D 7→ {Ψ0}.
(2.6)

These modifications of the mappings P and Q form the core of the first theorem and the

resulting full inverse map can be defined as,

(PQ)−1 : D 7→ V . (2.7)

To prove the theorem we use the false assumption that two different1 external po-

tentials υ(rrr) and υ ′(rrr), lead to the same eigenstate Ψ where we also have two different

Hamiltonian operators Ĥ = T̂ + V̂ne + V̂ee and Ĥ ′ = T̂ + V̂ ′ne + V̂ee each one with its own

ground-state Ψ0 and Ψ′0 , respectively. The representation of this assumption is schemat-

ically shown in figure 2.2

υ(rrr) Ĥ Ψ0

ρ(rrr)

υ ′(rrr) Ĥ ′ Ψ′0

Figure 2.2: Schematically representation of the wrong correspondence between poten-
tial, wavefunction and density used to prove the first theorem.

1that differ by more than a constant
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The two wavefunctions Ψ0 and Ψ′0 are different and when the VP is applied we

obtain,

E0 = 〈Ψ0|Ĥ|Ψ0〉< 〈Ψ′0|Ĥ|Ψ′0〉. (2.8)

where term in the right side of the inequality can be written as

〈Ψ′0|Ĥ|Ψ′0〉= 〈Ψ′0|Ĥ ′|Ψ′0〉+ 〈Ψ′0|Ĥ−H ′|Ψ′0〉

= E ′0 + 〈Ψ′0|V̂ne−V̂ ′n|Ψ′0〉

= E ′0

∫
drrrρ(rrr)

[
υ(rrr)−υ

′(rrr)
]
.

(2.9)

Interchanging the primes of the inequality 2.8 we have by the VP that,

E ′0 = 〈Ψ′0|Ĥ ′|Ψ′0〉< 〈Ψ0|Ĥ ′|Ψ0〉. (2.10)

Following the same steps applied in 2.9 , we have that the right hand side of the latter

inequality becomes,

〈Ψ0|Ĥ ′|Ψ0〉= E0−〈Ψ′0|V̂ ′ne−V̂n|Ψ′0〉

= E0−
∫

drrrρ(rrr)
[
υ(rrr)−υ

′(rrr)
]
.

(2.11)

We now add equations 2.9 and I.6 to obtain

E0 +E ′0 < E ′0 +E0, (2.12)

which is clearly absurd.

This latter result proves the first theorem of HK where it shows that there cannot

exist two different external potentials that lead to the same non-denegerate ground state

density ρ0(rrr). From the viewpoint of the one-to-one mappings established by HK, the

external potential υ(rrr) the ground state density ρ0(rrr) and the ground state Ψ0 uniquely

determines each other. Again schematically,

υ(rrr)↔Ψ0↔ ρ0(rrr). (2.13)
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2.2 Second Theorem of Hohenberg and Kohn

The second theorem describes how we can obtain the ground state energy E0 with

the non-degenerate ground state density ρ0 . To show this we first note that the inversed

mapping Q−1 provides what is needed to establish that any expectation value of the

ground state is a density functional. In the case of the ground state energy we obtain

E[ρ0] = 〈Ψ0[ρ0]|Ĥ|Ψ0[ρ0]〉

= FHK[ρ0]+
∫

drrrρ0(rrr)υ(rrr),
(2.14)

where Ψ0 is the wavefunction of this particular ground-state density ρ0 and FHK[ρ0]

is the Hohenberg-Kohn functional. FHK[ρ] is also known as the universal functional

because it is independent of the external potential and it is defined by

FHK[ρ0] = 〈Ψ0[ρ0]|T̂ +V̂ee|Ψ0[ρ0]〉

= T [ρ]+Vee[ρ]

= T [ρ]+ J[ρ]+Exc[ρ],

(2.15)

where T [ρ] is the kinetic energy, J[ρ] is the Coulomb repulsion energy and Exc is the

exchange-correlation energy, respectively. We delve into the exchange-correlation en-

ergy term in the next section.

The FHK gives the minimum expectation value of 〈Ψ0|T̂ +V̂ee|Ψ0〉when Ψ0 is passed

as input. Clearly, any density which is different from the ground-state density will have

an energy higher than the ground-state energy,

E[ρ̃]> ε0. (2.16)

This latter result is supported by the VP and the inversed mapping Q−1 proposed by HK.

At the beginning of this chapter we have emphasized that the two theorems were

established for non-degenerate ground state. Another important consideration is the rep-

resentability of the densities employed on the VP in the context of the second theorem.
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We call υ-representable the density that is related to an antisymmetric wavefunction of

a certain Hamiltonian operator with an external potential υ(rrr). Therewith we say that

the set D is the set of υ-representable densities.

2.2.1 Constrained-Search

The restriction over degenerate states can be lifted with the use of the constrained-

search proposed by Levy[14]. We feel that is beyond the scope of this work to prove the

procedure and instead we present how it works.

We know that ρ0 can be obtained by quadrature from a given wavefunction Ψ. But

there is an infinite number of antisymmetric wavefunctions that are not necessarily from

ground-states. It is possible to sift the space of trial wavefunctions to get that one that

minimizes FHK . We represent this procedure as,

FHK = min
Ψ→ρ0

〈Ψ0|T̂ +V̂ee|Ψ0〉. (2.17)

The latter equation means that we search over all antisymmetric wavefunctions that can

produce ρ0 consequently minimizing 〈Ψ0|T̂ + V̂ee|Ψ0〉. Noting that the sifting modifies

the space of trial wavefunctions to contain only those wavefunctions that can produce

ρ0 , we say that the variational search is constrained. Thus, the sifting of wavefunctions

not only constrained the space of trial wavefunctions but also extended the domain D of

FHK from υ-representable to N-representable since the space of trial wavefunctions is

the entire N-particle Hilbert space. Hence, we can define the universal functional

F [ρ] = min
Ψ→ρ
〈Ψ|T̂ +V̂ee|Ψ〉

= 〈Ψmin
ρ |T̂ +V̂ee|Ψmin

ρ 〉

= T [ρ]+ J[ρ]+Exc[ρ],

(2.18)

that search the N-representable space of trial wavefunctions for ρ that gives the minimum

expecation value of 〈Ψ|T̂ + V̂ee|Ψ〉. Equations 2.17 and 2.18 are the most important

results of our description of the constrained-search procedure. Naturally,if equation 2.18
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takes the υ-representable density as input it gives the same result as FHK ,

FHK[ρ0] = F [ρ0]. (2.19)

Furthermore, energy minimization can be split into two parts for a better understanding

of the procedure. Within the context of DFT this procedure can be recast as,

E0 = min
ρ

{
min
Ψ→ρ

[
〈Ψ|T̂ +V̂ee|Ψ〉+

∫
d3

ρ(rrr)υ(rrr)
]}

. (2.20)

The inner minimization works by searching all wavefunctions that are associated with a

given ρ . Then, the outer minimization searches the space of ρ(rrr) only where this space

is of N-representable densities. Conveniently, we can use the universal functional to

rewrite equation 2.20 as

E0 = min
ρ

{
F [ρ]+

∫
d3

ρ(rrr)υ(rrr)
}

= min
ρ

E[ρ],
(2.21)

where the energy as functional of the density is,

E[ρ] = F [ρ]+
∫

d3
ρ(ρ)υ(rrr). (2.22)

Therefore, the constrained-search is essential to turn the theorems of HK into an appli-

cable method by releasing the restrictions of υ-representable densities for the energy

minimization procedure. Moreover, it also lifts the restrictions of non-degenerate states.

2.3 The Kohn-Sham Method

Although the HK theorems provide a powerful theory to address the many-electron

problem in terms of the electron density, the theory as it is presents a high degree of

difficulty due to the calculation of the kinetic energy term T [ρ] present in F [ρ]. The ki-

netic energy of a non-degenerate closed-shell system which can be described by a single
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Slater determinant needs to be expressed in terms of the density. But what is the exact

form of T [ρ] ? The first attempts to approximate T [ρ] used the uniform electron gas

density as a starting point. These approximations[11, 15] proposed initially by Thomas,

Fermi, Weizsacker and Dirac and their extensions fail to give accurate results and are

incapable to describe shell structure or chemical bonds. The method proposed by Kohn

and Sham[16] (KS) solves the lack of accuracy of the theory by giving up the direct solu-

tion with the electron density. They introduced orbitals in order to find a way around the

evaluation of the exact kinetic energy. We now present the KS method and its equations.

The KS method begin by defining a non-interacting reference system where the only

terms in the Hamiltonian operator,

Ĥs =
N

∑
i

(
−1

2
∇

2
i

)
+

N

∑
i

υs(rrri) (2.23)

of N electrons are the kinetic and potential operators, respectively. The Schrödinger

equation of the non-interacting reference system is,

ĥsχi = εiχi (2.24)

where the one-electron Hamiltonian operator is defined as,

ĥs =−
1
2

∇
2 +υs(rrr). (2.25)

Solving 2.24 gives the N lowest eigenfunctions χi that form the exact ground-state

wavefunction of the reference system,

Ψs(xxx1, . . . ,xxxN) =
1√
N

det [χ1(xxx1) . . .χN(xxxN)] . (2.26)

Consequently, the density can be written as,

ρ(rrr) =
N

∑
i

∑
σ

|χi(rrr,σ)|2. (2.27)



24

It is important to note that ρ(rrr) obtained from Ψs is non-interacting υ-representable

since it is associated to a unique potential υs(rrr). We face again the issue of uniquely

defining a functional for any N-representable density. Yet, we apply the constrained-

search to remove the restrictions over ρ(rrr) which yields

Ts[ρ] = min
Ψ→ρ
〈Ψs|T̂ |Ψs〉= 〈Φmin

ρ |T̂ |Φmin
ρ 〉, (2.28)

where Φmin
ρ is the wavefunction that minimizes the kinetic energy of the non-interacting

system. Hence, it is now possible to define the kinetic energy for any N-representable

ρ(rrr) that can be uniquely decomposed in terms of orbitals,

Ts[ρ] = 〈Ψs,ρ |
N

∑
i

(
−1

2
∇

2
i

)
|Ψs,ρ〉

=
N

∑
i
〈ψi|−

1
2

∇
2
i |ψi〉.

(2.29)

Consequently, the universal functional of the reference system is written as,

Fs[ρ] = Ts[ρ]+
∫

drrrρ(rrr)υs(rrr). (2.30)

With the reference system defined, KS assumed that ground-state density ρ(rrr) is both

interacting and non-interacting. In other words, they assumed that for any interacting

system with the ground-state density there is a non-interacting system that has the same

ground-state density.

Under the latter assumption KS proposed to write F [ρ] with Ts[ρ] being the principal

part of the kinetic energy,

F [ρ] = Ts[ρ]+ J[ρ]+Exc[ρ]. (2.31)

This decomposition of F [ρ] leaves all terms whose forms are unknown to the exchange-

correlation energy

Exc[ρ] = T [ρ]−Ts[ρ]+Vee[ρ]− J[ρ], (2.32)
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where we note the difference between kinetic energies of the real and the reference sys-

tem and the difference between the electron-electron repulsion energy and the classical

Coulomb repulsion energy. The first difference in Exc[ρ] is small because Ts[ρ] gives the

major contribution to the kinetic energy while in the second difference the result is the

non-classical contribution of Vee[ρ] due to the Pauli principle.

The energy of the reference system is written as,

Es[ρ] = Fs[ρ]+
∫

drrrρ(rrr)υs(rrr)

= Ts[ρ]+
∫

drrrρ(rrr)υ(rrr).
(2.33)

At this point one can apply the (VM) to Es[ρ] restricting the search of the minimum to

the space of orthonormal orbitals,

〈χi|χ j〉= δi j. (2.34)

Then, a new functional which corresponds to the new boundary problem is defined by

L[{χi}] = Es[ρ]−
N

∑
i j

εi j

∫
dτχ

∗
i χ j, (2.35)

where εi j are the Lagrange multipliers. Minimization implies that δL[{χi}] = 0 which

yields

δTs[ρ]

δρ(rrr)
+υs(rrr) =

δ

δρ(rrr)∑
i j

εi j

∫
dτχ

∗
i χ j

δTs[ρ]

δρ(rrr)
+υs(rrr) = µs,

(2.36)

where µs is the chemical potential of the reference system. The energy of the interacting
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system is written as,

E[ρ] = F [ρ]+
∫

drrrρ(rrr)υ(rrr)

= Ts[ρ]+ J[ρ]+Exc[ρ]+
∫

drrrρ(rrr)υ(rrr).
(2.37)

Following the same steps previously used with Es[ρ] one can minimize E[ρ] yielding

δTs[ρ]

δρ(rrr)
+

δJ[ρ]
δρ(rrr)

+
δExc[ρ]

δρ(rrr)
+υ(rrr) = µ, (2.38)

where µ is the chemical potential of the interacting system. Therefore, from the assump-

tion that the ground-state density is both interacting and non-interacting we vary µs until

we have that µs = µ . Once the chemical potential condition is attained it gives

υs(rrr) =
δJ[ρ]
δρ(rrr)

+
δExc[ρ]

δρ(rrr)
+υ(rrr), (2.39)

which completely defines the non-interacting potential also called the effective potential

or KS potential. The process that takes one to satisfy the latter condition can be outlined

as follows:

1. Initial guess of ρ(rrr)

2. Construction of υs(rrr) with ρ(rrr):

υs(rrr) =
δJ[ρ]
δρ(rrr)

+
δExc[ρ]

δρ(rrr)
+υ(rrr) (2.40)

3. Solution of the N one-electron equations:(
−1

2
∇

2 +υs(rrr)
)

χi = εiχi (2.41)

4. Form new:

ρ(rrr) =
N

∑
i

∑
σ

|χi(rrr,σ)|2 (2.42)
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Steps (2) to (4) are repeated until self consistency is obtained which means that the final

density satisfies equation 2.42 . Conveniently, the total energy can be calculated with

equation 2.37 [10, 13]. Hence, equations 2.40 , 2.41 and 2.42 are the KS equations[16].

The KS method provides a very interesting approximation to the problem of many-

electron systems. By introducing orbitals into the HK theorems one obtains the KS

equations which can be solved self-consistenly while the theory is, in principle exact.

The advantage of calculating the non-interacting kinetic energy exactly while leaving

the approximation to the exchange-correlation energy is appealing since the former con-

tributes with a large part to the total energy while the exchange-correlation contribution

is small. Therefore, approximations to the exchange-correlation energy are an ongoing

field of research in chemistry and physics and are fundamental to the success of DFT.

2.3.1 The Exchange-Correlation Functional

Although the exchange-correlation energy has been defined in equation 2.32 , its

expression is not appropriate to construct good approximations since it is formed from

two different contributions, one from the difference between kinetic energies of the real

system and the reference system and the other from the difference between the Vee[ρ]

and J[ρ]. Nevertheless, we will see that it is possible to express Exc[ρ] in form more

suitable to design new functionals.

Before we proceed, we want to write the exchange-correlation energy in terms of its

exchange and correlation components

Exc[ρ] = Ex[ρ]+Ec[ρ], (2.43)

where the exchange part can be defined exactly for closed-shell systems by the following

expression,

Ex[ρ] = 〈Φmin
ρ |V̂ee|Φmin

ρ 〉− J[ρ]. (2.44)

This is true when Φmin
ρ is a single Slater determinant which is the case in practical cal-

culations. When we have one electron in the system the electron-electron interaction
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energy vanish[17] and the exchange energy is defined as,

Ex =−J[ρ]. (2.45)

Recalling the universal functional of equation 2.18, we define the correlation energy as,

Ec[ρ] = Exc[ρ]−Ex[ρ]

= F [ρ]−{Ts[ρ]+ J[ρ]+Ex[ρ]}

= 〈Ψmin
ρ |T̂ +V̂ee|Ψmin

ρ 〉−〈Φmin
ρ |T̂ +V̂ee|Φmin

ρ 〉

(2.46)

Unfortunately, these definitions of the exchange and correlation energies still need to be

transformed into more useful expressions to construct approximations.

We now introduce two important functions that are very useful to statistically de-

scribe the behavior of a system of N electrons. They are called density matrices[8]: the

one-particle density matrix is

γ1(rrr1σ1,rrr′1σ
′
1) = N

∫
drrr2 . . .drrrNΨ

∗(rrr1σ1, . . . ,rrrNσN)Ψ(rrr′1σ
′
1,rrr2σ2, . . . ,rrrNσN), (2.47)

and two-particle density matrix,

γ2(rrr1σ1,rrr2σ2;rrr′1σ
′
1,rrr
′
2σ
′
2) = N(N−1)

∫
drrr3 . . .drrrNΨ

∗(rrr1σ1,rrr2σ2,rrr3σ3, . . . ,rrrNσN)

×Ψ(rrr′1σ
′
1,rrr
′
2σ
′
2,rrr3σ3, . . . ,rrrNσN).

(2.48)

The first density function γ1 gives the probability to find an electron in drrr1σ1 at

point r1 with spin σ1 and the second density function γ2 gives the joint probability to

find one electron at rrr1 with spin σ1 in volume element drrr1 and an electron at rrr2 with

spin σ2 in volume element drrr2 . Moreover, the two factors N and N(N−1) enforce the

normalization of the equation 2.47 and 2.48, respectively.

Note that the use of primes in these density functions is merely a mathematical ar-

tifact to allow us to express expectation values in terms of density functions only. Any
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given "real" operator (e.g. with differentiation or integration) will act on the term Ψ in

its right side first before we had a chance to take Ψ∗ round to the right of the operator to

obtain the density[8].

It is straightfoward to verify that the γ1 normalizes to the number of electrons

N =
∫

drrr1dσ1γ1(rrr1σ1,rrr1σ1), (2.49)

and that γ2 normalizes to the number of electron pairs

N(N−1) =
∫

drrr1dσ1drrr2dσ2γ2(rrr1σ1,rrr2σ2;rrr1σ1,rrr2σ2). (2.50)

The spinless versions of γ1 and γ2 can be obtained summing over all spin configu-

rations. Averaging the spins of the one-particle and two-particle density matrices yields

respectively

ρ1(rrr1;rrr′1) =
∫

dσ1γ1(rrr1σ1,rrr′1σ1), (2.51)

and

ρ2(rrr1,rrr2;rrr′1,rrr
′
2) =

∫
dσ1dσ2γ2(rrr1σ1,rrr2σ2;rrr′1σ1,rrr′2σ2). (2.52)

The ground-state energy of a general Hamiltonian is then written in terms of the two

density functions[10]

E =
∫

drrr1

[
−1

2
∇

2
rrr′1

ρ1(rrr1;rrr′1)
]

rrr1=rrr′1

+
∫

drrr1
[
ρ1(rrr1;rrr′1)υ(rrr1)

]
rrr1=rrr′1

+
1
2

∫
drrr1drrr2

[
ρ2(rrr1,rrr2;rrr′1,rrr

′
2)

|rrr1−rrr2|

]
rrr1=rrr′1;rrr2=rrr′2

,

(2.53)

where the subscript rrr′1 in the Laplacian operator indicates that it acts on this coordinate

only and all terms have been defined in section 1. After the operators act on the density
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functions, we set rrr1 = rrr′1 before we evaluate the integral to get,

E =
∫

drrr1

[
−1

2
∇

2
ρ1(rrr1)

]
+
∫

drrr1ρ1(rrr1)υ(rrr1)+
1
2

∫
drrr1drrr2

ρ2(rrr1,rrr2)

|rrr1−rrr2|

= T +Vne +Vee.

(2.54)

We focus on the last term Vee of the ground-state energy. This term gives the electron-

electron repulsion energy and depends directly on the spin-independent pair density ρ2 .

The classical part of ρ2 generates the self-repulsion energy,

J[ρ] =
1
2

∫
drrr1drrr2

ρ1(rrr1)ρ1(rrr2)

|rrr1−rrr2|
. (2.55)

Conveniently, to have the non-classical part written explicitly in Vee we can rewrite ρ2 as

ρ2(rrr1,rrr2) = ρ(rrr1)ρ(rrr2)[1+h(rrr1,rrr2)], (2.56)

where this same equation defines the function h(rrr1,rrr2) called the pair-correlation func-

tion. Rearranging the terms of the latter equation yields: the exchange-correlation hole

density ρxc[18],

ρ2(rrr1,rrr2)

ρ(rrr1)
−ρ(rrr2) = ρ(rrr2)h(rrr1,rrr2)

ρxc(rrr1,rrr2) = ρ(rrr2)h(rrr1,rrr2).

(2.57)

This density function is central in the design of functional approximations where it de-

scribes the exchange and correlation effects by creating a hole around every electron in

a system while keeping other electrons from getting close to it. It is possible to analyse

its action on the system from the point of view of probability density only, where ρxc

gives the probability of finding one electron at rrr1 given another electron at rrr2. More

information about ρxc will be given in this section and the ones that follows.
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Hence, it is possible to recast the electron-electron repulsion energy as,

Vee[ρ] =
1
2

∫
drrr1drrr2

ρ1(rrr1)ρ1(rrr2)

|rrr1−rrr2|
+

1
2

∫
drrr1drrr2

ρ1(rrr1)ρ1(rrr2)h(rrr1,rrr2)

|rrr1−rrr2|

=
1
2

∫
drrr1drrr2

ρ1(rrr1)ρ1(rrr2)

|rrr1−rrr2|
+

1
2

∫
drrr1drrr2

ρ1(rrr1)ρxc(rrr1,rrr2)

|rrr1−rrr2|

(2.58)

It is important to note that the normalization condition for the two-particle density

matrix in equation 2.50 has to be present in ρxc according to the natural definition of the

first[8, 10]. Thus, we have after integrating over the volume element drrr2 the sum rule

for the exchange-correlation hole,

∫
drrr2ρxc(rrr1,rrr2) =−1. (2.59)

This accounts for the reduction in the probability due to the presence of an electron at

rrr1. From the positivity of 2.52 and from equations 2.56 and 2.57 we find that,

ρxc(rrr1,rrr2)>−ρ(rrr2). (2.60)

The objective now is to find a single consistent expression for Exc that at the end can

be more tractable to construct density functional approximations. To solve this problem,

we use a powerful technique called the adiabatic connection.

2.3.2 Adiabatic Connection

The adiabatic connection[18–21] is very useful for the design of functionals since it

provides a deep understanding of the physics that governs the exchange and correlation

energies thus pointing the path to the construction of their density functionals.

First we add a parameter λ to the universal functional defined in equation 2.18 ,

Fλ [ρ] = min
Ψ→ρ
〈Ψ|T̂ +λV̂ee|Ψ〉= 〈Ψλ

ρ |T̂ +λV̂ee|Ψλ
ρ 〉. (2.61)

With this new functional when λ = 0 we obtain, after the minimization under the constrained-
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search, the universal functional of the reference system,

F0[ρ] = Ts[ρ]. (2.62)

For λ = 1 we have F1[ρ] = F [ρ] of the real system,

F [ρ] = T [ρ]+Vee[ρ]. (2.63)

Clearly, the parameter λ describes how much electron-electron interaction is present in

F [ρ]. At this point we write the exchange-correlation energy as,

Exc[ρ] =Vee[ρ]− J[ρ]+T [ρ]−Ts[ρ]

= T [ρ]+Vee[ρ]−Ts[ρ]− J[ρ]

= F1[ρ]−F0[ρ]− J[ρ]

=
∫ 1

0
dλ

∂Fλ [ρ]

∂λ
− J[ρ].

(2.64)

The integrand in Exc can be simplified using the Hellmann-Feynmann theorem[7] yield-

ing
∂Fλ [ρ]

∂λ
= 〈Ψλ

ρ |λV̂ee|Ψλ
ρ 〉, (2.65)

which is the final piece needed to rewrite Exc[ρ] as,

Exc[ρ] =
∫ 1

0
dλ 〈Ψλ

ρ |λV̂ee|Ψλ
ρ 〉− J[ρ]

=
1
2

∫
drrr1drrr2

∫ 1

0
dλ

ρλ
2 (rrr1,rrr2)

|rrr1−rrr2|
− J[ρ].

(2.66)

The average of the pair-density over the parameter λ leads to

∫ 1

0
dλρ

λ
2 (rrr1,rrr2) = ρ(rrr1)ρ(rrr2)[1+ h̄(rrr1,rrr2)], (2.67)

where h̄(rrr1,rrr2) is the average pair correlation function over the coordinate λ . This can
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be extended to the exchange-correlation hole

ρ̄xc(rrr1,rrr2) =
∫ 1

0
dλρ

λ
xc(rrr1,rrr2), (2.68)

where we have that for λ = 0 yields the spin-compensated exchange-hole ρx . Ultimately,

we rewrite the exchange-correlation energy as[18],

Exc[ρ] =
1
2

∫
drrr1drrr2

ρ(rrr1)ρ(rrr2)

|rrr1−rrr2|
+

1
2

∫
drrr1drrr2ρ(rrr1)

ρ(rrr2)h̄(rrr1,rrr2)

|rrr1−rrr2|
− J[ρ]

=
1
2

∫
drrr1drrr2ρ(rrr1)

ρ(rrr2)h̄(rrr1,rrr2)

|rrr1−rrr2|

=
1
2

∫
drrr1drrr2ρ(rrr1)

ρ̄xc(rrr1,rrr2)

|rrr1−rrr2|
.

(2.69)

It has been shown[18, 22] that the exchange-correlation energy depends only on

the spherical average of the exchange-correlation hole about the reference point rrr1. To

calculate the spherical average of ρ̄xc(rrr1,rrr2) first we use a change of variable: rrr2 = rrr1+uuu

followed by an integration over the angular part of uuu as follows,

ρ̄xc(rrr1,u) =
1

4π

∫ 2π

0
dφu

∫
π

0
dθu sinθuρ̄xc(rrr1,rrr1 +uuu). (2.70)

This is the average of the exchange-correlation hole on a sphere of radius u = |rrr1−rrr2|
which is the interelectronic distance. Substituting equation 2.70 into 2.69 yields,

Exc[ρ] =
1
2

∫
drrr1ρ(rrr1)

∫
∞

0
du4πu2 ρ̄xc(rrr1,u)

u
. (2.71)

From equation 2.71 we can also define the exchange-correlation energy density

εxc(rrr) =
∫

∞

0
du4πu2 ρ̄xc(rrr1,u)

u
, (2.72)

that gives the energy per volume of the system and that allows one to write the exchange-
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correlation energy in terms of εxc as,

Exc[ρ] =
1
2

∫
drrrεxc(rrr). (2.73)

The exchange-correlation hole can be further separated into its components

ρ̄xc(rrr1,rrr2) = ρx(rrr1,rrr2)+ ρ̄c(rrr1,rrr2), (2.74)

where ρx(rrr1,rrr2) and ρ̄c(rrr1,rrr2) are the exchange and correlation holes, respectively.

Note, that the bar over a hole function indicates a dependence on λ . Naturally, the

noninteracting reference system or the Kohn-Sham system (λ = 0), only accounts for

Fermi correlation leading to a λ -independent exchange hole ρx. However, Coulomb cor-

relation appears for any fiction intermediate value of λ as well as in the real or physical

system (λ = 1) where we have a λ -dependent correlation hole ρ̄c.

Recently, it has been shown[23] that is possible to express the exchange-correlation

hole as a product by

ρxc(rrr,u) = ρx(rrr,u) fc(rrr,u), (2.75)

where in this context ρx is the spherically-averaged exchange hole and fc is the spherically-

averaged correlation factor, respectively.

Up to this point our discussion was restricted to spin-compensated systems: ρα = ρβ .

From now on we change our formulation to that of spin-polarized systems where the

exchange-correlation energy can be separated into its parallel-spin and opposite-spin

components,

Exc[ρ] = Exc[ρα ,ρβ ]. (2.76)

The real advantage of spin-polarized over spin-compensated formalism is that the first

provides much better information for approximate functionals of spin-polarized systems

than the latter[24, 25]. This explains why Local Spin-Density Approximation (LSDA)

is better than Local Density Approximation (LDA) where LDA is defined for spin-

compensated systems. This kind of treatment is also applied to exchange and correlation

energies, and hole densities.
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In the 1-determinant approximation, one can write the one-particle density matrix γ1

in terms of orbitals as

γ1(rrr1σ1,rrr′1σ
′
1) =

occ

∑
i

ψi(rrr1σ1)ψ
∗
i (rrr
′
1σ
′
1), (2.77)

and γ2 assumes the following form in terms of γ1,

γ2(rrr1σ1,rrr2σ2;rrr′1σ
′
1,rrr
′
2σ
′
2)= γ1(rrr1σ1,rrr′1σ

′
1)γ1(rrr1σ1,rrr′2σ

′
2)−γ1(rrr2σ2;rrr′1σ

′
1)γ1(rrr1σ1,rrr′2σ

′
2).

(2.78)

To move on further we want to write the spinless one-particle density matrix ρ1

defined in equation 2.51 (now in the 1-determinant approximation) explicitly with its

two spin components as,

ρ1(rrr1,rrr′1) = γ1(rrr1α,rrr′1α)+ γ1(rrr1β ,rrr′1β )

= ρ1α(rrr1,rrr′1)+ρ1β (rrr1,rrr′1).
(2.79)

This result represents the average of spin of the diagonal elements of γ1. Moreover, when

rrr1 = rrr′1 we have the electron spin density,

ρα(rrr1) = ρ1α(rrr1,rrr1). (2.80)

This can be expressed in terms of orbitals as

ρα(rrr1) =
α

∑
i

φi(rrr1)φ
∗
i (rrr1), (2.81)

where we have used the spatial part of the spin orbital ψi = φiα . Similar equations exists

for beta spin. Therefore, with equations 2.78 , 2.79 and 2.80 we find that the spinless

pair density is

P2(rrr1,rrr2) = P2αα(rrr1,rrr2)+P2ββ (rrr1,rrr2)+P2αβ (rrr1,rrr2)+P2βα(rrr1,rrr2), (2.82)
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where

P2αα(rrr1,rrr2) = ρα(rrr1)ρα(rrr2)−ρ1α(rrr1,rrr2)ρ1α(rrr2,rrr1)

P2αβ (rrr1,rrr2) = ρα(rrr1)ρβ (rrr2).
(2.83)

Expressions for P2ββ and P2βα are naturally similar to the last two equations. Thus, the

spinless pair-density function is written generally as,

P2σσ ′(rrr1,rrr2) = ρσ (rrr1)ρσ ′(rrr2)−δσσ ′ρ1σ (rrr2,rrr1)ρ1σ ′(rrr1,rrr2). (2.84)

Clearly, in the 1-determinant approximation the Fermi correlation is the only corre-

lation taken into consideration through the same-spin pair probability. Hence, we con-

centrate our attention on the same-spin pair-density function,

P2σσ (rrr1,rrr2) = ρσ (rrr1)ρσ (rrr2)−ρ1σ (rrr2,rrr1)ρ1σ (rrr1,rrr2). (2.85)

Rearranging the terms of P2σσ , we define the exchange-hole density as,

P2σσ (rrr1,rrr2)

ρσ (rrr1)
= ρσ (rrr2)−

ρ1σ (rrr2,rrr1)ρ1σ (rrr1,rrr2)

ρσ (rrr1)

P2σσ (rrr1,rrr2)

ρσ (rrr1)
−ρσ (rrr2) =−

ρ1σ (rrr2,rrr1)ρ1σ (rrr1,rrr2)

ρσ (rrr1)

ρx(rrr1,rrr2) =−
ρ1σ (rrr2,rrr1)ρ1σ (rrr1,rrr2)

ρσ (rrr1)
.

(2.86)

The exchange-hole plays a very important role in the design of exchange-correlation en-

ergy functionals[26]. We would like to postpone the description of its role and properties

where we will also present the exchange and correlation energy functionals.

The ρx(rrr1,rrr2) accounts for the reduction in the electron density ρσ (rrr2) because of

the spreading out of electron density ρσ (rrr1) where rrr1 is the position of the reference

electron. From its definition we verify that ρx is always negative.
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It follows that ρx satisfies the sum rule,

∫
drrr2ρx(rrr1,rrr2) =−1. (2.87)

This is a very important result since it shows that the probability of finding one electron

with spin σ at rrr2 given an electron at rrr1 is reduced by 1. The sum rule is due to the

orthonormality of the orbitals present in the 1-determinant approximation.

Another important analytical property of ρx in the 1-determinant approximation is

called the on-top value[27]. When rrr1 = rrr2 we have from equations 2.77 and 2.84 that

ρx(rrr1,rrr1) =−ρσ (rrr1), (2.88)

where ρx is determined only by the density of the reference electron at rrr1. These con-

ditions are quite restrictive and can be used to approximate exchange energy functionals

based on models of ρx.

Substituting equation 2.85 into Vee and 2.44 respectively we obtain the exchange

energy,

Exσ [ρσ ] =
1
2

∫
drrr1drrr2

ρσ (rrr1)ρx(rrr1,rrr2)

|rrr1−rrr2|
. (2.89)

The functional defined in equation 2.88 is exact in the context of DFT[10, 24, 26]. The

same expression appears in the Hartree-Fock (HF) theory[9]. Although they share the

same form, they are obtained from different equations and calculated with different types

orbitals resulting in different quantities.

It is also interesting to average the angular part of the exchange-hole since Ex depends

only on the spherical average of ρx. This is achieved integrating ρx over all its angular

coordinates,

ρx(rrr1,u) =
1

4π

∫ 2π

0
dφu

∫
π

0
dθu sinθuρx(rrr1,rrr1 +uuu). (2.90)

Conveniently, this allows one to write the Ex as,

Exσ [ρσ ] =
1
2

∫
drrr1ρ(rrr1)

∫
∞

0
du4πu2 ρx(rrr1,u)

u
. (2.91)
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From the definition of ρx we find that this result is always negative.

Now, we go back to the separation of the exchange-correlation hole presented in

equations 2.74 to define the correlation hole by

ρ̄c(rrr1,rrr2) = ρ̄xc(rrr1,rrr2)−ρx(rrr1,rrr2). (2.92)

From equations 2.67 and 2.68 we note that the exchange hole is independent of the

parameter λ while the correlation hole is λ -dependent. This dependence of ρ̄c on λ

imposes additional difficult to the already very complicated task of calculating ρ̄c by

first-principle methods[28].

Also, the correlation hole satisfies the sum rule by

∫
drrr2ρ̄c(rrr1,rrr2) = 0, (2.93)

where the latter is a consequence of the sum rules of the exchange-correlation and ex-

change holes. Equation 2.93 indicates that ρc must have negative and positive contribu-

tions. At the position of the reference electron rrr1 the correlation hole is nonpositive,

ρ̄c(rrr1,rrr1)6 0. (2.94)

The correlation energy is then given by,

Ecσ [ρσ ] =
1
2

∫
drrr1drrr2

ρσ (rrr1)ρ̄c(rrr1,rrr2)

|rrr1−rrr2|
. (2.95)

As mentioned before, integrals involving ρ̄c are very complicated to calculate from first-

principle methods and need to be approximated.

By applying on ρ̄c the same procedure used to calculate the spherical average of ρxc

and ρx we find that the correlation energy in terms of ρc(rrr1,u) is,

Ecσ [ρσ ] =
1
2

∫
drrr1ρ(rrr1)

∫
∞

0
du4πu2 ρ̄c(rrr1,u)

u
. (2.96)
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In this section we developed the KS method and presented techniques that made

possible the study of important physical properties of Exc. The next section comes to

show why we need to construct approximations to this functional. Also, what can be

used and some techniques developed in the last years for this task.

2.4 Exchange-Correlation Functional Approximation

Approximations for the exchange-correlation functional are fundamental for the de-

velopment of DFT. From its conventional decomposition into its exchange and corre-

lation components we shown that the true form of the former,defined in equation 2.89,

is exact through the exchange hole. However, the exact form of the correlation hole

is unknown. Hence, one would be tempted to construct an exchange-correlation func-

tional using the exact exchange functional and approximating the correlation part only.

Unfortunately, this is not as straightfoward as it seems[29].

First, in DFT we seek functionals that depend on the density directly which is not

the case for Ex. This is a big issue since we need to evaluate the derivatives of Ex with

respect to ρ(rrr) to obtain the exchange potential.

Secondly, when Ex is added to Ec to form the Exc, part of the error cancelation that

occurs in the sum is lost resulting in poor accuracy. The error cancelation will be ex-

plained using the concept of non-locality of hole densities in the next part of this section.

Hence, both the exchange and correlation functionals need to be approximated. We

are going to introduce one important concept for the construction of density functionals

and then we will present what one might use to construct reliable density functionals and

the trends of these approximations.

2.4.1 Non-locality of hole densities

An important concept in DFT is the locality of functionals. A local functional has

in its form an integrand that needs to be evaluated at the integration variable only. The

exchange-correlation functional is an example of a local functional. It depends on εxc(rrr1)

which needs to be integrated over rrr only. Functionals whose integrands need to be
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evaluated at two integration variables are said to be nonlocal[10]. This is the case of

the exchange functional where its integrand involves the exchange hole ρx(rrr1,rrr2).

We now analyse how the kernel of the exchange functional, the exchange hole, reacts

on different environments. From equation 2.85 and its definition in equation 2.86, the

exchange hole in one electron systems is the negative of the density at rrr2. This says

that the probability density to find an electron at rrr2 is independent of reference point rrr1.

Hence, the exchange hole does not follow the reference point rrr1 [29]. In general, when

more than one orbital is occupied the exchange hole depend on both positions rrr1 and

rrr2. When two electrons with the same spin configuration occupy different orbitals, the

exchange hole changes to,

ρx(rrr1,rrr2)=−
ψ2

1 (rrr1σ)ψ2
1 (rrr2σ)+ψ2

2 (rrr1σ)ψ2
2 (rrr2σ)+2ψ1(rrr1σ)ψ2(rrr1σ)ψ1(rrr2σ)ψ2(rrr2σ)

ρσ (rrr1)
.

(2.97)

The first term in the right hand side of equation 2.97 is the product of the orbital densi-

ties at point rrr1 and rrr2, respectively. The second term in the right hand side we also have

the product of the orbital densities but with switched positions. The last term accounts

for those regions where there is overlap between the orbitals ψ1 and ψ2. We say that

the exchange hole is delocalized in those regions. In an atom, the last term has a signif-

icant importance in the intershell and outer valence regions. In molecular systems the

exchange hole may be delocalized over several centers.

For instance take the special case of stretched H2
+ [2]. Rather simple, this molecule

illustrates the problem of delocalization of ρxσ in molecules. In this case, ρxσ is half

the value of the molecular orbital σg equally divided between the two cores. When the

reference point rrr1 is close to one of the cores, the value of ρxσ has only half an electron

while the other half is in the other core.

Now, we want to explain with the aid of hole densities how the error cancelation

occurs when we sum Ex and Ec to obtain Exc. The exchange-correlation hole density is in

great extent localized about the reference electron rrr1. As mentioned before, we know that

the exact exchange hole may be strongly delocalized in molecular systems. Therefore,

the correlation hole must be strongly delocalized so to cancel out the nonlocality of the
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exchange hole.

Hence, to use the exact exchange functional together with an approximate correlation

functional is not clever since one needs to construct approximate correlation functionals

that would be able to cancel out the effects of the first which is not an easy task. If instead

of the exact exchange functional we construct local approximations for both exchange

and correlation functionals we can take advantage of the cancellation of errors and obtain

an accurate functional.

In practice, when designing a functional we have a few ingredients and non-systematic

procedures to rely upon.

2.4.2 Ingredients

The conception of new approximate functionals may look like an art since only a

few procedures and ingredients are available to guide us. As we mentioned before, the

central functional in KS DFT is Exc which can, in this context, be written as

Excσ [ρσ ] =
∫

drrrεxcσ (p1, p2, p3, p4, p5, . . .), (2.98)

where εxcσ is the exchange-correlation energy density and pi are density-dependent pa-

rameters or ingredients. Notice that the requirement now is for a local Exc which depends

directly on ρ . Although we seek a local Excσ , when only local ingredients are used the

accuracy is insatisfactory. Here, we present the most used ingredients. They are the

modulus of the gradient of the density

p1 = |∇ρσ (rrr)|, (2.99)

the Laplacian of the density

p2 = ∇
2
ρσ (rrr), (2.100)
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the non-interacting kinetic energy density (with KS orbitals) τσ (rrr)

p3 =
σ

∑
k=1
|∇φk(rrr)|, (2.101)

the closed-shell exact-exchange energy density εxσ (rrr1)

p4 =−
N/2

∑
k,l=1

∫
drrr2

φk(rrr1)φ
∗
k (rrr2)φ

∗
l (rrr1)φl(rrr2)

|rrr1−rrr2|
, (2.102)

and the paramagnetic-current density jjjσ (rrr),

p5 =−
i
2

occ

∑
k=1

[φ∗k (rrr)∇φk(rrr)−φk(rrr)∇φ
∗
k (rrr)]. (2.103)

Derivatives of the density and any ingredient that does not depend directly on the den-

sity is seen as a semi-local ingredient which is the case for ∇ρσ , ∇2ρσ , τσ and jjjσ while

εxσ is completely nonlocal. Note that nonlocal ingredients need to be gauge-independent

and invariant with respect to unitary transformation of the KS orbitals. Moreover, it is

crucial to understand how exchange and correlation functionals change when the density

is scaled by a uniform coordinate transformation.

2.4.3 Uniform Coordinate Scaling Transformation

Many properties of the exact exchange and correlation functionals were derived by

Levy and Perdew[30–33]. These properties provide information on how Ex and Ec be-

have under a coordinate scaling transformation of the density and they are present in a set

of conditions used to approximate functionals. What follows is a very short presentation

of how the density, the exchange and correlation functionals behave under the uniform

coordinate scaling transformation. A full description of this transformation is given in

the appendix I of this work.

The uniform scaling of the density defined by

ργ(rrr) = γ
3
ρ(γrrr), (2.104)
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is the most important transformation. In equation 2.104, γ is a constant that when varied

scales uniformly all components of rrr. Hence, γ can contract or expand the density while

leaving unaffected the integral involving ργ in all space,

∫
drrrργ(rrr) = γ

3
∫

drrrρ(γrrr) = N. (2.105)

The Hartree electrostatic self-repulsion term scales uniformly as,

J[ργ ] = γJ[ρ]. (2.106)

Under a uniform coordinate scaling the non-interacting kinetic energy behaves as,

Ts[ργ ] = γ
2Ts[ρ]. (2.107)

The exchange functional has a simple coordinate scaling,

Ex[ργ ] = γEx[ρ]. (2.108)

At the high-density limit γ→∞ it is easy to see that Ts will have the biggest contribution

to the total energy defined in equation 2.37 . In an ionic system with a very large nuclear

charge, the density would be distorted towards the nucleus with J and Ex contributing

negligibly to the total energy. On the other hand, when γ → 0, J and Ex give the biggest

contributions to the total energy.

The correlation functional has a complex scaling relation,

Ec[ργ ]< γEc[ρ](γ < 1),

Ec[ργ ]> γEc[ρ](γ > 1).
(2.109)

At the high limit of γ we have

lim
γ→∞

Ec[ργ ]>−∞. (2.110)
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While at the low limit when γ → 0, we obtain

Ec[ργ ] = γD[ρ]+ . . . , (2.111)

where D[ρ] is an unknown functional.

The discrepancy between the scaling relations of Ex and Ec comes from the dif-

ferent definitions of the constrained-search for these functionals. In equation 2.44 the

constrained-search for Φmin
ρ involves T̂ to find Φmin

ρ but it only depends directly on Vee

which scales as,

Vee[ργ ] = γ
−1Vee[ρ]. (2.112)

These two facts accounts for the simple scale relation of Ex. The correlation func-

tional has the constrained-search for Ψmin
ρ defined in equation 2.46 . In this case, the

the constrained-search depends directly on two operators with different properties. The

first, T̂ , is of homogeneous degree −2 while Vee scales as shown in equation 2.112. This

fact leads to the complicated scaling relation of Ec shown in equation 2.109. Conse-

quently, approximations to Ec demand quite an effort in comparison to approximations

to Ex.

2.5 Strategies for the Design of Functionals

The classification of density functional approximations by their level of sophistica-

tion was proposed by John Perdew and is called the "Jacob’s Ladder"[34]. The idea is to

have in each rung a number of conditions that have well defined levels of sophistication

used to design functionals. It is important to clarify that climbing higher on the ladder

does not necessarily gives a strictly more accurate functional.

At the bottom of the ladder we have the LSDA which is the first approximation

proposed by Hohenberg and Kohn[12],

ELSDA
xc [ρσ ] =

∫
drrrεσ (ρσ ). (2.113)

The second step belongs to the Generalized Gradient Approximation (GGA). These
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functionals depend on ρσ and ∇ρσ ,

EGGA
xc [ρσ ] =

∫
drrrεσ (ρσ ,∇ρσ ). (2.114)

The meta-GGA (MGGA) appear in the third step because they use τσ and may also use

∇2ρσ ,

EMGGA
xc [ρσ ] =

∫
drrrεσ (ρσ ,∇ρσ ,τσ ,∇

2
ρσ ). (2.115)

In the fourth rung we found the hyper-GGA (HGGA) that use the exact exchange energy

density εexact
xσ in addition to the previous properties,

EHGGA
xc [ρσ ] =

∫
drrrεσ (ρσ ,∇ρσ ,τσ ,∇

2
ρσ ,ε

exact
xσ ). (2.116)

Higher rungs involve properties that depend on non-occupied KS orbitals[26]. The

price to climb the ladder is the computational cost needed to calculate elaborated quan-

tities such as εexact
xσ .

For a large extent, DFT has gained its fame with GGA. Many approximate density

functionals, including the BLYP [35, 36] and PBE [37], are able to give reliable results

for many properties such as geometries, vibrational frequencies, charge distributions,

binding energies, etc[38–40].

2.5.1 The Generalized Gradient Approximation approach

Functionals based on GGA and MGGA by constriction are constrained to satisfacty

known conditions of the exchange-correlation functional such as the asymptotic behavior

of υx [41, 42], lower and upper limits of Exc[43], scaling relations of the density[30–33].

Here we focus on the GGA for exchange energy only. The starting point of this

approach is the spin-unpolarized exchange energy functional written in terms of the ex-

change energy density

Ex[ρ] =
∫

drrr1ρ(rrr1)εx(rrr1), (2.117)
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where the exchange energy density is,

εx(rrr1) =
1
2

∫
drrr2

ρx(rrr1,rrr2)

|rrr1−rrr2|
. (2.118)

Note that ρx is the exchange hole of a spin-unpolarized system defined as

ρx =−
|ρ1(rrr1,rrr2)|2

2ρ(rrr1)
, (2.119)

where

ρ1(rrr1,rrr2) = 2
occ

∑
i=1

ψ
∗
i (rrr1)ψi(rrr2) (2.120)

is the Kohn-Sham one-particle density matrix. The use of the spin-unpolarized version

of Ex is justifiable by the spin-scaling relation which shows that,

Ex[ρα ,ρβ ] =
1
2

Ex[2ρα ]+
1
2

Ex[2ρβ ]. (2.121)

Generally, GGA are conceived in their spin-unpolarized forms because their formula-

tions are easy to handle. Once the GGA is built, it is straightfoward to obtain their

spin-polarized[24, 25, 44, 45] form through equation 2.121.

When the exchange hole of the GGA functional satisfies the uniform coordinate scal-

ing property of equation 2.104, we can write it in terms of a dimensionless function

Jx[45],

ρx(ρ,y,s) = ρJx(y,s) (2.122)

where we have used the interelectronic distance

y = kFu, (2.123)

and the reduced density gradient

s =
|∇ρ|
2kFρ

. (2.124)

Notice that both y and s are dimensionless quantities while the latter use the Fermi wave-
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vector defined by,

kF = (3πρ)1/3. (2.125)

The reduced density gradient goes from 0 in regions where the density is strongly uni-

form to ∞ in regions where the density is weakly uniform thus providing an index of

inhomogeneity of the density.

The construction of GGA[46] is written as

EGGA
x [ρ] =

∫
drrr1ρ(rrr1)ε

GGA
x [ρ,s], (2.126)

where

ε
GGA
x [ρ,s] = ε

LDA
x [ρ]Fx[s]. (2.127)

Fx[s] is called the enhancement factor and is a functional of s. It must reduce to unity

when s = 0, so it can recover the LDA exchange energy. Its explicit form is given by,

8
9

∫
∞

0
dy yJx[s,y] =−Fx[s]. (2.128)

Another important quantity present in the construction of GGA is the system-averaged

exchange hole,

〈ρx(u)〉=
1
N

∫
drrr1ρ

2(rrr1)Jx[s,y]. (2.129)

There are three main approaches to construct enhancement factors Fx. The first im-

poses a number of known exact conditions on the system- and spherically-averaged ex-

change hole. The second approach uses exact conditions of the exchange energy Ex

while the last one uses exact conditions of the exchange energy density εx. We want to

emphasize that there is no strict route that leads to an accurate functional, instead one

should try to satisfy a number of conditions in a manner that leads to accurate function-

als. For instance, both FPW86
x and F91

x of PW86[46] and PW91[47] functionals, were

based on the first approach. The enhancement factor of the PBE [37], FPBE
x is con-

structed using the second approach while using the first one as a guide. Becke’s F88
x [35]

is based on both second and third approaches. The same steps and approaches employed
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in constructing GGA are shared with MGGA[48] while the latter have in addition to the

GGA ingredients the kinetic energy density τ .

One may also choose to fit the functional approximations to experimental results.

This would cause unsatisfactory results when the functional is used outside its training

set. By contrast, non-empirical functional approximations can be design to satisfy a set

of constraints that yields a transferable functional that is uniformly accurate for different

systems.

In the next rung passing over GGA and MGGA respectively we find functionals that

mix exact properties to those used in lower rungs.

2.5.2 The Hybrid Approach

In this type of strategy, a quota of the exact exchange energy εexact
x is used in the con-

struction process. Functionals based on this approach are called hybrids and some of the

most important hybrids are the B3[49], PBE0[50, 51] and TPSSh[52]. These functionals

have proven to be very accurate with respect to the estimation of several properties such

as geometries, vibrational frequencies, charge distributions, binding energies, etc[38–

40].

The addition of εexact
x leads to very accurate approximate functionals since here the

non-local behavior of the exchange hole is captured naturally by the exact exchange

kernel.

The first class of these functionals are called global hybrids and they have the fol-

lowing form (here we use Exc in its spin-compensated form)

Exc[ρ] =
∫

drrrαε
exact
x (rrr)+(1−α)εx(rrr)+ εc(rrr), (2.130)

where α is the mixing fraction a parameter which determines a quota of the exact

exchange-energy density to be used. Note that α is a system-independent parameter.

A more interesting form for Exc known as local hybrid has a system-dependent pa-
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rameter α(rrr),

Exc[ρ] =
∫

drrrα(rrr)εexact
x (rrr)+(1−α(rrr))εx(rrr)+ εc(rrr). (2.131)

Conveniently, the mixing fraction must vary between 0 and 1 where the first global hy-

brids had quotas up to a maximum of 25% of the εexact . In general, the mixing fractions

are based on indexes that can indicate how much the hole is delocalized over a region in

real space. This information can be obtained from quantities such as the kinetic energy

densities and those involving derivatives of the density.

2.5.3 Exchange Hole Modelling

Another strategy for designing exchange density functionals is the modeling of the

exchange hole function[26]. In this approach one proposes analytical exchange-hole

models that can satisfy all known conditions of the exact exchange hole which are: the

negativity of the hole, the normalization and its short-range behavior about the interelec-

tronic distance.

Here, we adopt a different way to introduce the concept of exchange hole modeling.

We are going to present two successful models that are related to crucial paradigms in

condensed matter physics and quantum chemistry. In condensed matter physics one has

the slowly varying density limit. The two others are the one- and two-electron densities

limit that belong to quantum chemistry. By crucial we mean that functionals which cover

both limits might attein a good level of accuracy in both fields.

The LSDA exchange hole[53] is known in condensed matter physics where it has

been used as a starting point for many exchange functional approximations. It was

also used in functionals conceived in quantum chemistry, such as PBE[37], PW91[47],

TPSS[48] and many others. The BR model hole[3], based on quantum chemistry field,

is also special since it can recover the one-electron density limit exactly.

Before we proceed to the exchange hole models we would like to introduce a very

useful feature for design new hole models: the second-order Taylor expansion of the

exact spherically-averaged exchange hole.
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2.5.3.1 The Second-Order Expansion of the Exchange Hole

Becke[54] was the first to expand the spherically-averaged exchange hole in powers

of u, the interelectronic distance. This expansion in the range[55] of 0 < u < |rrr1|, where

rrr1 is the position of the reference electron, has the form of a Taylor series. Here, we

present the mathematical development of the expansion and the form of the second-order

expansion.

Generally, the Taylor expansion of a function of two coordinates f (rrr1,rrr2) is written

as

f (rrr1,rrr1 +uuu) =
∞

∑
j=0

1
j!
(uuu ·∇rrr2)

j f (rrr1,rrr2)|rrr2=rrr1, (2.132)

where we have used rrr2 = rrr1 +uuu .

In the last equation, one can easily identify the Taylor series of the exponential func-

tion which is,
∞

∑
j=0

1
j!
(uuu ·∇rrr2)

j = euuu·∇rrr2 . (2.133)

This last quantity can be seen as an operator. Before we apply it to f (rrr1,rrr2) we need to

calculate its spherical averaged to obtain,

〈euuu·∇rrr2 〉= 1
4π

∫ 2π

0

∫
π

0
dφdθ sin(θ)euuu·∇rrr2

=
1

4π

∫ 2π

0

∫
π

0
dφdθ sin(θ)eu∇rrr2 cos(θ)

=
sinh(u∇rrr2)

u∇rrr2

=
1

u∇rrr2

∞

∑
n=0

(u∇rrr2)
2n+1

(2n+1)!

= 1+
u2∇2

rrr2

3!
+

u4∇4
rrr2

5!
+

u6∇6
rrr2

7!
+

u8∇8
rrr2

9!
+ ...,

(2.134)

where t = u∇rrr2 cos(θ) has been used in the evaluation of the integral. With the spherically-
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averaged operator defined in equation 2.134, we can apply it to f (rrr1,rrr2) to get,

〈 f (u)〉= euuu·∇rrr2 f (rrr1,rrr2)|rrr2=rrr1

= (1+
1
3!

u2
∇

2
rrr2
+

1
5!

u4
∇

4
rrr2
+ ...) f (rrr1,rrr2)|rrr2=rrr1 .

(2.135)

We have a similar case for the exchange hole defined in equation 2.86 . When the

operator euuu·∇rrr2 acts on ρxσ (rrr1,rrr2) we get,

〈ρxσ (u)〉= euuu·∇rrr2 ρxσ (rrr1,rrr2)|rrr2=rrr1

= (1+
1
3!

u2
∇

2
rrr2
+

1
5!

u4
∇

4
rrr2
+ ...)ρxσ (rrr1,rrr2)|rrr2=rrr1.

(2.136)

Applying each coefficient of the series on the exchange hole yelds the Taylor expansion

of the exact spherically averaged exchage hole near the reference point

〈ρxσ (u)〉= ρσ (rrr1)+

[
∇

2
ρσ (rrr1)−

(
2τσ +

1
4
|∇ρσ (rrr1)|2

ρσ (rrr1)

)]
u2 + . . . , (2.137)

where the zeroth-term gives the density at the reference point and the second-order term

gives the curvature of the exchange hole. All the steps involved to obtain equation 2.137

from equation 2.136 will be presented in the next chapter.

From the second-order expansion, we see that it involves non-local expressions for

Exσ through the presence of electron density derivatives. This expansion was first ex-

plored by Becke to parameterize an exchange-hole model where some qualitative incor-

rect features of the exchange hole were fixed. Many other exchange functionals ranging

from GGA to Hybrids also explores the second-order expansion.

Next, we introduce two important exchange-hole models, the LSDA[12] and the BR

model[3].

2.5.3.2 The LSDA

The LSDA was the first approximation to Exc and was proposed by Kohn and Sham[16].

The idea is to use the Uniform Electron Gas (UEG)[56] as a starting point to approxi-
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mating Exc for systems with a uniform or slow-varying density. In the UEG, the elec-

trons occupy a infinite region of space, with a uniform positive external potential, which

keeps the the neutrality of the system. Furthermore, the states of this system are doubly-

occupied by the electrons in an ordered way from 0 to the Fermi level forming a surface

of a sphere of radius kF =(3πρ)1/3 where the Kohn-Sham orbitals are chosen to be plane

waves. Hence, systems with uniform or slow-varying densities may be approximated by

the UEG.

The spherically-averaged exchange hole in the unpolarized UEG is given by

ρx(rrr,u) =−2
|ρ1(rrr,rrr+uuu)|2

ρ(rrr)
, (2.138)

where

ρ1(rrr,rrr+uuu) =
k3

F
2π2

sin(kFu)− kFucos(kFu)
(kFu)3 . (2.139)

Taking the exchange hole of the UEG and insterting it into the integral to calculate

the exchange energy density we obtain

εx(ρ) =
∫

∞

0
du2πuρx(rrr,u)

=
3kF

4π
,

(2.140)

and the total exchange energy is given by

Ex[ρ] =−
3
4

(
3
π

)1/3 ∫
drrrρ

4/3(rrr). (2.141)

To take into account the polarization of the system we introduce the local relative

spin-polarization[24, 25]

ζ (rrr) =
ρα(rrr)−ρβ (rrr)

ρ(rrr)
, (2.142)

which is the ratio of the difference between spin densities and the total density. For the

case of a polarized system ζ can assume the values of ±1 and for the unpolarized case
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ζ = 0. Hence, the exchange energy density becomes

εxσ (ρ,ζ ) = εx(ρ)
(1+ζ (rrr))4/3 +(1−ζ (rrr))4/3

2
, (2.143)

and the total exchange energy is given by

ELSDA
xσ [ρα ,ρβ ] =−

3
4

(
3
π

)1/3 ∫
drrrρ

4/3(rrr)
(1+ζ (rrr))4/3 +(1−ζ (rrr))4/3

2
. (2.144)

Since the LSDA is classically the starting point for approximating EXC , we must under-

stand its features in order to profit from the good points and improve or avoid the bad

points. We now present the good and bad aspects of the LSDA[57].

The good points:

• The LSDA for the exchange component is exact for the case of uniform densities

and provides a good approximation for systems with a slowly-varying density.

• It satisfies the coordinate scaling inequality Ex < 0.

• LSDA is properly size-consistent[58].

• For the case of Exc , LSDA satisfies the Lieb-Oxford bound[43].

• Its on-top exchange hole is exact while the KS wavefunction is a single Slater

determinant.

• Its cusp condition is also realistic.

• As a consequence of the last points, the system-average of its hole "unweights"

undesired regions of space where LSDA could incorrectly describe.

The bad points:

• LSDA does not describe systems with density inhomogeneity.

• The one-electron case is not treated exactly.
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• LSDA misses the derivative discontinuity.

• Incorrect prediction of a hetero-nuclear molecule or solid dissociation.

• It does not satisfy the nonlocal constraint: ρxc(rrr1,rrr2)≥−ρx(rrr2)

2.5.3.3 Becke-Roussel Exchange-Hole Model

As we discussed earlier, it is common to adopt the UEG[56] as a starting point to

design exchange functionals. However, this choice is not unique. In this regard, BR[3]

digress from the conventional path and proposed an interesting exchange-hole model

based on the hydrogenic orbital,

ρ
H
xσ (rrr) =

α3

8π
exp−αrrr . (2.145)

One of the remarkable features of the model is that it satisfies all known conditions of

the exact system up to date: the non-negativity of the hole, the normalization condition

and the short-range behavior of the exchange-hole density. It is important to note that

these conditions are present in all electronic systems and a systematic satisfaction of

them would, in principle, lead to very reliable approximations of the exchange hole.

Another advantage of this model is the accurate total exchange energies for atomic

systems. This could be attributed to the presumption that the exchange hole in different

atomic systems are very similar in their forms to the hole of the hydrogen atom. In the

case of molecular systems this is not always true because the hole can be delocalized

over several centers of a molecule.

After evaluating the spherical average of ρH
x one obtains,

ρ
H
xσ (rrr,u) =−

1
4π

∫ 2π

0
dφu

∫
π

0
dθu sinθu ρ

H
x (rrr+uuu)

=− 1
4π

∫ 2π

0
dφu

∫
π

0
dθu sinθu

α3

8π
exp−α

√
r2+u2−2rucosθu

=− α

16πru

[
(α|r−u|+1)e−α|r−u|− (α|r+u|+1)e−α|r+u|

]
.

(2.146)
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Considering the analytical form of the spherically-averaged model as a mathematical

object with two functions BR defined the following function

ρ
BR
xσ (a,b,u) =− a

16πbu

[
(a|b−u|+1)e−a|b−u|− (a|b+u|+1)e−a|b+u|

]
. (2.147)

where the values of a ≡ a(rrr) and b ≡ b(rrr) for a given reference point rrr are determined

by imposing the condition that Taylor expansion of equation 2.147

ρ
BR
xσ (a,b,u) =

a3e−ab

8π
+

a4(−2+ab)e−ab

48bπ
u2, (2.148)

reproduces the second-order expansion of the exact exchange hole,

ρ
exact
xσ (rrr) = ρσ (rrr)+

1
3!

[
∇

2
ρσ (rrr)− γ

(
2τσ (rrr)+

1
4
|∇ρσ (rrr)|2

ρσ (rrr)

)]
u2. (2.149)

Equating the coefficients yields, after some algebraic manipulations, two non-linear

equations,

a2e−ab = 8πρσ (rrr)

a2b−2a =
6bQσ (rrr)

ρσ (rrr)
,

(2.150)

where

Qσ (rrr) = ∇
2
ρσ (rrr)− γ

(
2τσ (rrr)+

1
4
|∇ρσ (rrr)|2

ρσ (rrr)

)
, (2.151)

and the parameter γ is set to unity for now.

Through a variable substitution x = ab, it is possible to simplify the system of equa-

tions into a single equation,

xe−2x/3

(x−2)
=

2
3

π
2/3 ρσ (rrr)5/3

Qσ (rrr)
. (2.152)

This non-linear equation is solved by the Newton-Raphson method at each point of the
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reference electron rrr. The total exchange energy is obtained by

Exσ [ρ] =
1
2

∫
drrrρ(rrr)εBR

xσ (rrr), (2.153)

where the exchange energy density is calculated by,

ε
BR
xσ (rrr) =−

[
1− exp−ab

(
1+

1
2

ab
)]/

2b. (2.154)

The parameter γ when set to the empirical value of 0.8 allows one to recover, in part,

the uniform gas limit. Note that this is does not change the result for the hydrogen atom

where we have that the second term in Qσ vanishes when in one electron orbital.

The BR model has important features that must be highlighted. The exchange hole

ρBR
x satisfies important constraints such as the non-positivity, normalization and short-

range behavior of the exact exchange hole. Moreover, its exchange energy density gives

the correct asymptotic behavior,

lim
rrr→∞

ε
BR
xσ (rrr) =−1

rrr
. (2.155)

Furthermore, the model provides the exact one-electron limit by definition, a deficiency

frequently present in many exchange functional approximations. The relative success of

the BR model for atoms may be attributed to the general form of the exact exchange hole

in atomic systems where they resemble that of the hydrogenic exchange hole. Neverthe-

less, we have seen that in molecular systems the exact exchange hole can be quite delo-

calized. For this reason, we understand that, in molecular systems the BR model gives a

limited description of the exchange effect. Therefore, the design of new exchange hole

models that correctly describe atomic and molecular environments is necessary.

2.6 Conclusion

In this chapter, we have introduced, in a simplistic form, the theorems of Hohenberg

and Kohn that are the pilars of DFT. We also exposed the development and improvement
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of the theory during the last years that lead to the sophisticated method widely used

nowadays.

Although DFT has attained a large popularity due to its ability to provide good accu-

racy for several properties due to successful functionals, it still has quite a few problems

to be solved such as reaction barriers, s-d transfer energies, etc. In view of this, we

present a new analytical property of the exact exchange hole. This new condition could

be employed in the construction of new exchange hole models therefore extending the

the short-range quadratic behavior of the exact exchange hole up to the fourth-order

term. In view of this, we also propose three analytical exchange-hole models which

employ all currently known conditions and our new one. Thus, we seek to construct

accurate exchange functional approximations to calculate properties such as atomization

energies, ionization energies, geometries, etc.



CHAPTER 3

THE FOURTH-ORDER EXPANSION OF THE EXCHANGE HOLE

The importance and popularity earned by modern DFT can be attributed to a number

of density functional approximations for the, yet unknown, exact exchange-correlation

functional. These approximations were devised not from a formal guideline, but from the

application of human creative skill and imagination. In this respect, the analytic proper-

ties of the exchange-correlation functional play a fundamental role in the development

of density functional approximations.

In regard of the above considerations, we present here a new condition of the ex-

act exchange hole, thus, expanding, the current number of analytic properties of this

function. This new condition is obtained from the fourth-order expansion of the spheri-

cally averaged exact exchange hole which gives the short-range quartic behavior of the

exchange-hole function.

Hence, we expect that our new condition, used in conjunction with other ones, can

better describe the exact exchange hole for atoms and molecules therefore leading to

exchange functional approximations that are able to predict accurately atomization en-

ergies, ionization energies, etc.

In the last chapter, we have introduced the second-order expansion of the exact spher-

ically averaged exchange hole and shown how BR[3] used it to construct a completely

nonempirical exchange-hole model that sucessfully reproduces the short-range quadratic

behavior of ρx(rrr,u).

What follows is the mathematical development to obtain the fourth-order term of the

Taylor series of the exact spherically averaged exchange hole. The organization of this

chapter is as follows. In the Theory section we present the full derivation of the second-

order and fourth-order expansions. The details involved in the implementation of all

quantities of the fourth-order term are given in the Implementation section. Next, in the

Results and Discussion we describe how the fourth-order expansion improves over the

second-order expansion and how it could be applied to functional designing. Finally, in
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Conclusion we give our last remarks of the fourth-order expansion and future works.

3.1 Theory

The general form of the expansion presented in equation 2.136[54] is,

〈ρxσ (u)〉= (1+
1
3!

u2
∇

2
rrr2
+

1
5!

u4
∇

4
rrr2
+ ...)ρx(rrr1,rrr2)|rrr2=rrr1. (3.1)

The derivation of the fourth-order term in u involves the first two terms of the expan-

sion. From equations 2.80, 2.81 and 2.86 we can express the exchange hole in terms of

real orbitals (KS orbitals[16]) as,

ρxσ (rrr1,rrr2) =
1

ρσ (rrr1)

σ

∑
k,l

ψk(rrr1)ψk(rrr2)ψl(rrr1)ψl(rrr2). (3.2)

First, the second-order term of equation 3.1 is derived by applying Laplacian operator

∇2
rrr2

on ρxσ which leads to,

K2 = ∇
2
rrr2

ρxσ (rrr1,rrr2)

=
1

ρσ (rrr1)

σ

∑
k,l

ψk(rrr1)ψl(rrr1)∇
2
rrr2

ψk(rrr2)ψl(rrr2).
(3.3)

Note that the operator acts only on coordinate rrr2 of ρxσ (rrr1,rrr2) yielding,

∇
2
rrr2

ψk(rrr2)ψl(rrr2) = ψk(rrr2)∇
2
rrr2

ψl(rrr2)+ψl(rrr2)∇
2
rrr2

ψk(rrr2)+2∇rrr2ψl(rrr2) ·∇rrr2ψk(rrr2) (3.4)

Substituting this into 3.3, it follows that at the coalescense point (when rrr2 = rrr1) K2 is,

K2|rrr2=rrr1 =
1

ρσ (rrr1)

σ

∑
k,l

ψk(rrr1)ψl(rrr1)
[
ψk(rrr1)∇

2
rrr1

ψl(rrr1)+ψl(rrr1)∇
2
rrr1

ψk(rrr1)+2∇rrr1ψl(rrr1)∇rrr1ψk(rrr1)
]
.

(3.5)
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Rearranging, it leads to,

K2|rrr2=rrr1 =
1

ρσ (rrr1)

σ

∑
k,l

[
ψk(rrr1)ψk(rrr1)ψl(rrr1)∇

2
rrr1

ψl(rrr1)+ψl(rrr1)ψl(rrr1)ψk(rrr1)∇
2
rrr1

ψk(rrr1)

+2ψl(rrr1)∇rrr1ψl(rrr1)ψk(rrr1) ·∇rrr1ψk(rrr1)]

=
1

ρσ (rrr1)

[
σ

∑
k

ψk(rrr1)ψk(rrr1)
σ

∑
l

ψl(rrr1)∇
2
rrr1

ψl(rrr1)+
σ

∑
l

ψl(rrr1)ψl(rrr1)
σ

∑
k

ψk(rrr1)∇
2
rrr1

ψk(rrr1)

+2
σ

∑
l

ψl(rrr1)∇rrr1ψl(rrr1) ·
σ

∑
k

ψk(rrr1)∇rrr1ψk(rrr1)

]

=
σ

∑
l

ψl(rrr1)∇
2
rrr1

ψl(rrr1)+
σ

∑
k

ψk(rrr1)∇
2
rrr1

ψk(rrr1)

+
1

ρσ (rrr1)

[
2

σ

∑
l

ψl(rrr1)∇rrr1ψl(rrr1)
σ

∑
k

ψk(rrr1)∇rrr1ψk(rrr1)

]

= 2
σ

∑
k

ψk(rrr1)∇
2
rrr1

ψk(rrr1)+
1

ρσ (rrr1)

[
2

σ

∑
l

ψl(rrr1)∇rrr1ψl(rrr1) ·
σ

∑
k

ψk(rrr1)∇rrr1ψk(rrr1)

]
(3.6)

This gives the curvature of the exchange hole in terms of orbitals at the position rrr of a

reference electron. It is interesting to have equation 3.6 in terms of known quantities.

This is achieved using the fact that the gradient of the spin-density is

∇ρσ (rrr1) = ∇

σ

∑
i
[ψi(rrr1)]

2 =
σ

∑
i

2ψi(rrr1)∇ψi(rrr1) (3.7)

and the Laplacian of the spin-density is,

∇
2
ρσ (rrr1) = ∇

2
σ

∑
i
[ψi(rrr1)]

2 =
σ

∑
i

2
[
ψi(rrr1)∇

2
ψi(rrr1)+∇ψi(rrr1) ·∇ψi(rrr1)

]
. (3.8)
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Using equations 3.7, 3.8 we can rewrite equation 3.6 as,

K2|rrr2=rrr1 = ∇
2
ρσ (rrr1)−2

σ

∑
l

∇ψl(rrr1) ·∇ψl(rrr1)+
1
2
[∇ρσ (rrr1)]

2

ρσ (rrr1)

= ∇
2
ρσ (rrr1)−2τσ (rrr1)+

1
2
[∇ρσ (rrr1)]

2

ρσ (rrr1)
.

(3.9)

Now we focus on the fourth-order term of equation 3.1 which is written as,

K4|rrr2=rrr1 = ∇
4
rrr2

ρxσ (rrr1,rrr2)

=
1

ρσ (rrr1)

σ

∑
k,l

ψk(rrr1)ψl(rrr1)∇
4
rrr2

ψk(rrr2)ψl(rrr2).
(3.10)

Consider first, the part of equation 3.10 possessing the coordinate rrr2,

∇
4
rrr2

σ

∑
k,l

ψk(rrr2)ψl(rrr2)=∇
2
rrr2

σ

∑
k,l

[
ψk(rrr2)∇

2
rrr2

ψl(rrr2)+ψl(rrr2)∇
2
rrr2

ψk(rrr2)+2∇rrr2ψl(rrr2) ·∇rrr2ψk(rrr2)
]

(3.11)

The first term of equation 3.11 is

∇
2
rrr2

σ

∑
k,l

ψk(rrr2)∇
2
rrr2

ψl(rrr2)=
σ

∑
k,l

ψk(rrr1)∇
4
ψl(rrr1)+2∇ψk(rrr1)·∇3

ψl(rrr1)+∇
2
ψl(rrr1)∇

2
ψk(rrr1),

(3.12)

where we have an equivalent result for the second term. In order to calculate the third

term we make use of Green’s second vector derivative identity,

∇
2(AAA ·BBB) =AAA ·∇2BBB−BBB∇

2AAA+2∇ · [(BBB ·∇)AAA+B×∇×AAA] . (3.13)
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Hence, the third term 1 is written as

∇
2

σ

∑
k,l

2∇ψk ·∇ψl =
σ

∑
k,l

2
{

∇ψk ·∇2
∇ψl−∇ψl ·∇2

∇ψk +2∇ · [(∇ψl ·∇)∇ψk +∇ψl×∇×∇ψk]
}

=
σ

∑
k,l

2
{

∇ψk ·∇2
∇ψl−∇ψl ·∇2

∇ψk +2∇ · [(∇ψl ·∇)∇ψk]
}
,

(3.14)

where we have used the fact that ∇×∇ψk = 0. Substituting equations 3.12 and 3.14 into

equation 3.11 at the coalescense point leads to,

K4|rrr2=rrr1 =
1

ρσ (rrr1)

σ

∑
k,l

ψk(rrr1)ψl(rrr1)
{

ψk(rrr1)∇
4
ψl(rrr1)+2∇ψk(rrr1) ·∇3

ψl(rrr1)+∇
2
ψl(rrr1)∇

2
ψk(rrr1)

+2
[
∇ψk(rrr1) ·∇2

∇ψl(rrr1)−∇ψl(rrr1) ·∇2
∇ψk(rrr1)+2∇ · ((∇ψl(rrr1) ·∇)∇ψk(rrr1))

]
+ψl(rrr1)∇

4
ψk(rrr1)+2∇ψl(rrr1) ·∇3

ψk(rrr1)+∇
2
ψk(rrr1)∇

2
ψl(rrr1)

}
=

1
ρσ (rrr1)

σ

∑
k,l

ψk(rrr1)ψl(rrr1)
{

ψk(rrr1)∇
4
ψl(rrr1)+4∇ψk(rrr1) ·∇3

ψl(rrr1)+2∇
2
ψl(rrr1)∇

2
ψk(rrr1)

+ψl(rrr1)∇
4
ψk(rrr1)+4∇ · ((∇ψl(rrr1) ·∇)∇ψk(rrr1))

}
.

(3.15)

The last term of equation 3.15 is an unconventional expression that has never been seen

before in the literature of DFT. In order to get more information from this term we pro-

ceed by writing it in terms of function derivatives. Consider first the following quantities

which are presented in their basic mathematical forms,

∇g ·∇ = gx
∂

∂x
+gy

∂

∂y
+gz

∂

∂ z
(3.16)

1Ommiting the target coordinate rrr2.
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(∇g ·∇)∇ f = (gx fxx +gy fxy +gz fxz) x̂

+(gx fxy +gy fyy +gz fyz) ŷ

+(gx fxz +gy fyz +gz fzz) ẑ

(3.17)

Using 3.16 and 3.17 we can write the last term of K4 as,

∇ · (∇g ·∇)∇ f = (gxx fxx +gx fxxx +gxy fxy +gy fxxy +gxz fxz +gz fxxz)

+(gxy fxy +gx fxyy +gyy fyy +gy fyyy +gyz fyz +gz fyyz)

+(gxz fxz +gx fxzz +gyz fyz +gy fyzz +gzz fzz +gz fzzz) .

(3.18)

Rearranging the terms we have

∇ · (∇g ·∇)∇ f = ∇g ·∇3 f

+(gxx fxx +gyy fyy +gzz fzz

+2gxy fxy +2gxz fxz +2gyz fyz) ,

(3.19)

where we used,

∇
3 f = ∇

(
∇

2 f
)

= ∇
2 (∇ f )

= ( fxxx + fxyy + fxzz) x̂

+( fxxy + fyyy + fyzz) ŷ

+( fxxz + fyyz + fzzz) ẑ.

(3.20)

In equation equation 3.19 , the term inside the parenthesis can be recast by defining

a vetor with of 6 components,

fff 6v =
(

fxx, fyy, fzz,
√

2 fxy,
√

2 fxz,
√

2 fyz

)
. (3.21)
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Conveniently, it leads to a short form of equation 3.19 ,

∇ · (∇g ·∇)∇ f = ∇g ·∇3 f + fff 6v ·ggg6v. (3.22)

Hence, K4 is written as,

K4|rrr2=rrr1 =
1

ρσ (rrr1)

σ

∑
k,l

ψk(rrr1)ψl(rrr1)
{

ψk(rrr1)∇
4
ψl(rrr1)+4∇ψk(rrr1) ·∇3

ψl(rrr1)+2∇
2
ψl(rrr1)∇

2
ψk(rrr1)

+ψl(rrr1)∇
4
ψk(rrr1)+4∇ψl(rrr1) ·∇3

ψk(rrr1)+4ψ
6v
l (rrr1) ·ψ6v

k (rrr1)
}

=
1

ρσ (rrr1)

{
2

σ

∑
k

ψk(rrr1)ψk(rrr1)
σ

∑
l

ψl(rrr1)∇
4
ψl(rrr1)+8

σ

∑
k

ψk(rrr1)∇ψk(rrr1) ·
σ

∑
l

ψl(rrr1)∇
3
ψl(rrr1)

+2
σ

∑
k

ψk(rrr1)∇
2
ψk(rrr1)

σ

∑
l

ψl(rrr1)∇
2
ψl(rrr1)+4

σ

∑
k

ψk(rrr1)ψ
6v
k (rrr1) ·

σ

∑
l

ψl(rrr1)ψ
6v
l (rrr1)

}
.

(3.23)

Note that in rearranging the terms we used the fact that,

σ

∑
k

ψkψk

σ

∑
l

ψl∇
4
ψl =

σ

∑
l

ψlψl

σ

∑
k

ψk∇
4
ψk. (3.24)

We now seek to express K4 in terms of the density and other known quantities. The

procedure that follows is analogous to what we have done with K2 from equation 3.7 to

3.9. The biharmonic of the density is defined by,

∇
4
ρσ = 2

σ

∑
i

∇
2 [

ψi(rrr1)∇
2
ψi(rrr1)+∇ψi(rrr1) ·∇ψi(rrr1)

]
= 2

σ

∑
i

[
ψi(rrr1)∇

4
ψi(rrr1)+2∇ψi(rrr1) ·∇3

ψi(rrr1)+∇
2
ψi(rrr1)∇

2
ψi(rrr1)

]
+4

σ

∑
i

∇ · [(∇ψi(rrr1) ·∇)∇ψi(rrr1)]

(3.25)
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Solving equation 3.25 for the third term in the first squared braket we obtain,

2ψi(rrr1)∇
4
ψi(rrr1) = ∇

4
ρσ −4

σ

∑
i

∇ψi(rrr1) ·∇3
ψi(rrr1)−2

σ

∑
i

∇
2
ψi(rrr1)∇

2
ψi(rrr1)

−4
σ

∑
i

∇ · [(∇ψi(rrr1) ·∇)∇ψi(rrr1)]

= ∇
4
ρσ −8

σ

∑
i

∇ψi(rrr1) ·∇3
ψi(rrr1)−2

σ

∑
i

∇
2
ψi(rrr1)∇

2
ψi(rrr1)

−4
σ

∑
i

ψ
6v
i (rrr1) ·ψ6v

i (rrr1)

(3.26)

Substituting it into equation 3.23 leads to the final form of K4,

K4|rrr2=rrr1 =
1

ρσ (rrr1)

{
σ

∑
k

ψk(rrr1)ψk(rrr1)

×

[
∇

4
ρσ −8

σ

∑
i

∇ψl(rrr1) ·∇3
ψl(rrr1)−2

σ

∑
i

∇
2
ψl(rrr1)∇

2
ψl(rrr1)−4

σ

∑
i

ψ
6v
l (rrr1) ·ψ6v

l (rrr1)

]

+8
σ

∑
k

ψk(rrr1)∇ψk(rrr1) ·
σ

∑
l

ψl(rrr1)∇
3
ψl(rrr1)+2

σ

∑
k

ψk(rrr1)∇
2
ψk(rrr1)

σ

∑
l

ψl(rrr1)∇
2
ψl(rrr1)

+4
σ

∑
k

ψk(rrr1)ψ
6v
k (rrr1) ·

σ

∑
l

ψl(rrr1)ψ
6v
l (rrr1)

}

= ∇
4
ρσ −8

σ

∑
i

∇ψl(rrr1) ·∇3
ψl(rrr1)−2

σ

∑
i

∇
2
ψl(rrr1)∇

2
ψl(rrr1)−4

σ

∑
i

ψ
6v
l (rrr1) ·ψ6v

l (rrr1)

+
1

ρσ (rrr1)

{
8

σ

∑
k

ψk(rrr1)∇ψk(rrr1) ·
σ

∑
l

ψl(rrr1)∇
3
ψl(rrr1)+2

σ

∑
k

ψk(rrr1)∇
2
ψk(rrr1)

σ

∑
l

ψl(rrr1)∇
2
ψl(rrr1)

+4
σ

∑
k

ψk(rrr1)ψ
6v
k (rrr1) ·

σ

∑
l

ψl(rrr1)ψ
6v
l (rrr1)

}
.

(3.27)

With the fourth-order term K4 fully determined, we need to validate its results in

order to use it as a new constraint for exchange hole models. The procedure employed

in the validation of K4 depends on the recent work of Antaya, Zhou and Ernzerhof [59].

In this work they constructed the exact analytical form of the non-local exchange hole
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in terms of Gaussian functions. Thus, by comparing the values of K4 with the values of

the fourth-order term of the non-local exchange hole for the same points in space it is

possible to assure K4. The details involving the implementation of K4 follows in the next

section while its validation and results will be presented in the section Results.

3.2 Implementation

The fourth-order term was implemented using the computer language fortran 77 into

GAUSSIAN code[60]. Initially the GAUSSIAN code had to be modified to support

the complete computation of the quantities needed to construct the fourth-order term.

This involves derivatives up to the fourth order of orbitals with respect to the electron

coordinates. Although much of the orbital derivatives were already implemented in the

GAUSSIAN code, there were not any currently method using these quantities. Hence, a

modification of the code had to be performed to allow these computations.

First, we modified the GAUSSIAN code to increase the number of its memory allo-

cated to calculate the fourth-order term. Note that the fourth-order term does not need an

additional large amount of memory. This patch of the code is related to the limitation of

the code since none of its methods used it before. Therefore, the code could not account

for the size needed to store the values of these orbital derivatives of fourth degree.

Secondly, we implemented all quantities of equation 3.27 which includes the bihar-

monic of the density defined in equation 3.25.

3.3 Results and Discussion

The calculations involving the expansions of the exact spherically averaged exchange

hole and the densities of atoms and molecules were done using the 6-311G+(2d,p) basis

set in the Gaussian program system. This basis set represents the orbitals of each atom

where it has 6 gaussian functions for the inner shell, 3 gaussian functions for the valence

orbitals and two gaussian functions with different sizes for extended valence orbitals.

The specification (2d,p) indicates that one p-type function is added to the hydrogen atom

and two more d-type functions to atoms with Z > 2. Moreover, cartesian functions were
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used for d-type orbitals. The grid employed in our calculations has 75 radial shells and

302 angular points per shell, giving approximately 7000 points per atom. Experimental

geometries were used as inputs throughout all our calculations.

3.3.1 Study of the Expansions of ρx(rrr1,u)

In this section, the exact analytic spherically averaged exchange hole results were

obtained from the program developed in the GAUSSIAN code by Antaya, Zhou and

Ernzerhof[59]. The calculations involving this program were done with the same basis

set and grid as used in the calculations of the expansions of the exact spherically averaged

exchange hole. From now on we use the term exact exchange hole in reference to the

exact spherically averaged exchange hole for the sake of brevity where the latter is used

when necessary.

As mentioned before in 2.5.3.1, the second- and fourth-order expansions are obtained

through the Taylor series expansion of the exact spherically averaged hole[54] when the

interelectronic distance u is equal to 0. In this regard, these expansions are not expected

to represent the exact hole in the whole space but in its definition range (0 < u < r1),

where r1 is the distance from the reference electron to the nearest nucleus.

In figure 3.1, the second- and fourth-order expansions are compared with the exact

analytic exchange hole at different reference points in the Be and N atoms.

In figure 3.1 (a), when the reference point is inside the 1s shell the exact exchange

hole assumes the form of a Gaussian-like function. This is attributed to the fact that

the 1s orbital gives the biggest contribution to the density, causing the exact hole to

adopt the form of this orbital. In Figure 3.1 (b), the reference point has been placed in

the region between core and valence shells. In this region, there is a significant overlap

between different orbitals contributing to the density. Hence, the exact analytic exchange

hole exhibits a strong dependence on both positions rrr1 and rrr2 resulting in a nonlocal

maximum. Within the valence-shell region the exact exchange hole has a remarkable

structure near the position of the nucleus at u = 2.0 a.u. as shown in figure 3.1 (c). This

indicates that even when the reference point is placed far from the nucleus the exact

hole remains trapped into the system. Moreover, the valence-shell region is known to be
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slightly more homogeneous than the other parts of an atom thus reflecting the smooth

behavior of the exact analytic hole.

We observed from the inset of figure 3.1 (a) that both expansions agree qualitatively

to the exact exchange hole, reflecting that when the exact exchange hole is localized both

expansions are able to correctly represent it. On the contrary, when the exact exchange

hole is delocalized over a region of space the expansions differ quite considerably in

how they represent the former, as shown in the insets of figures 3.1 (b)− (c). The

fourth-order expansion reproduces the form of the exact curve longer,within their def-

inition range (0 < u < r1), whereas the second-order expansion diverges much sooner.

Outside its definition range, we cannot expect that the Taylor series expansions of the

exact spherically averaged exchange hole recover the exact exchange hole[55].

Therefore, the fourth-order expansion can, in general, better represent the exact ex-

change hole in the core, core-valence and valence regions of the Be atom.
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Figure 3.1: Comparison of the expansions, in their definition ranges (0 < u < r1), with
the exact hole. Exact exchange hole (solid red lines), second-order expansion (dotted
green lines) and fourth-order expansion (dashed blue lines) of the exact exchange hole
of the Be atom.

Figures 3.2 (a)-(c) show the same graphical comparison of the expansions with the

exact exchange hole at the core, core-valence and valence regions of the N atom. Here,

the exact holes of the N atom have a similar form to those observed in the Be atom.

However, when the reference point is in the valence region the exact exchange hole does

not show any structure.

From the insets of figures 3.2 (a)-(c), significant improvement is observed with re-
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spect to the representation of the exact exchange hole by the fourth-order expansion in

the core and valence regions. In the intershell region, shown in inset of figure 3.2 (b), the

second- and fourth-order expansions are indistinguishable. Hence, we observed a quali-

tative improvement of the fourth-order expansion on the second-order expansion,within

their definition range (0 < u < r1), in the description of the exact exchange hole when

the reference point is in three distinct regions of the N atom.
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Figure 3.2: Comparison of the expansions, in their definition ranges (0 < u < r1), with
the exact hole. Exact exchange hole (solid red lines), second-order expansion (dotted
green lines) and fourth-order expansion (dashed blue lines) of the exact exchange hole
of the N atom.
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The results of the fourth-order expansion presented above shown a remarkable im-

provement upon the second-order expansion to describe the exact exchange hole in

atomic systems. However, the focus of this work is the calculation of molecular proper-

ties that depend on the energy exchange e.g. atomization energies. In view of this, we

studied the performance of the fourth-order expansion against the second-order expan-

sion of the exchange hole for two molecular systems the H2 and N2. This has been done

by comparing the two expansions with the exact analytic exchange hole at four distinct

regions: the inner- and outer-valence regions, the midpoint of the σ bond and for a ref-

erence point placed perpendicular to the axis of σ bond. The results for the H2 and N2

are presented in figures 3.3 and 3.4, respectively.

Because the H2 has only one electron of each spin, its exchange hole is given by

half of the density ρx(rrr1,rrr2) = ρ(rrr2)/2 and it is independent of rrr1, the reference elec-

tron. This effect is characteristic of any two-electron system and it is known by the

name of self-interaction correction. Figures 3.3 (a)− (d) show the plots of the second-,

fourth-order expansions and the exact analytic exchange hole. As mentioned before, the

expansions must be compared in their definition range (0 < u < r1) where for values of

u > r1 the Taylor series expansions of the exact spherically exchange hole will diverge.

In figure 3.3 (a) and (b), the reference point is placed in the inner and outer valence,

respectively. At these points, the exact exchange holes show a smooth behavior which

can be attributed to the σ bond. A similar form is seen when the reference point is at

the midpoint of the σ bond. For a reference point placed perpendicular to the axis of

the σ bond from 1.30874 a.u. from the midpoint, the exchange hole shows a nonlocal

maximum.
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Figure 3.3: Comparison of the expansions, in their definition ranges (0 < u < r1), with
the exact hole. Exact exchange hole (solid red lines), second-order expansion (dotted
green lines) and fourth-order expansion (dashed blue lines) of the exact exchange hole
of the H2 molecule.

In the insets of figures 3.3 (a)− (c), the fourth-order expansion does not show a

remarkable improvement. This can be explained by the fact that the exchange hole is

well localized in these regions. However, in the inset of figure 3.3 (d), the fourth-order

expansion can correctly describe the form of the exact exchange hole longer indicating

that it is better suited to handle nonlocal regions of molecules than the second-order

expansion.
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In figure 3.4 (a), the reference point is placed in the inner valence of the N2 the

exact analytic exchange hole shows significant structure due to the nucleus which is

near u = 0.54. At the outer valence, the curve of the exact hole is well-behaved and

symmetric resembling a σ -like orbital. This is due to the 2s orbitals which give the

biggest contribution to the σ bond. When the reference point is at the midpoint of the

σ -bond the exact hole has a form very close to the outer valence, a σ -like orbital. We

also placed the reference point perpendicular to the axis of the σ bond at a distance of

1.92896 a.u. from the midpoint. At this reference point the exact analytic exchange hole

describes a nonlocal maximum. This is due to the overlap of different orbitals in this

region.
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Figure 3.4: Comparison of the expansions, in their definition ranges (0 < u < r1), with
the exact hole. Exact exchange hole (solid red lines), second-order expansion (dotted
green lines) and fourth-order expansion (dashed blue lines) of the exact exchange hole
of the N2 molecule.

From the results presented in figure 3.4 (a)-(d) we observed that the fourth-order

expansion, within their definition range (0 < u < r1), improves the description of the

exact exchange hole upon the second-order expansion. Particularly in the region where

the exact hole does delocalized, as in the inner valence and in the bond region off the

axis of the σ -bond, the fourth-order expansion shows better qualitative agreement to the

exact curve.
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3.3.2 Basis Set Influence on the Expansions of ρx(rrr1,u)

Up to this point, we have validated and assessed the fourth-order expansion in de-

scribing the exact exchange holes in several reference points of atoms and molecules. In

order to employ the fourth-order expansion in the construction of exchange functional

approximations, we study how Gaussian-type basis sets influence its applications.

Gaussian-type basis set artifacts are not new in quantum chemistry. For instance,

oscillations and divergences are an unpleasant reality in the development of KS effec-

tive potentials[61]. These artifacts can be amplified when derivatives of orbitals and

densities are necessary during calculations. Since the fourth-order expansion contains

derivatives of orbitals and densities and we intend to employ it in the construction of

exchange functional approximations, we studied how Gaussian-type basis sets influence

the application of the biharmonic condition.

From the biharmonic condition defined in 3.27, it is straightfoward to verify that the

highest order derivative with respect to the orbitals is in the leading term, the biharmonic

of the density. Therefore, it is sufficient to study the influence of Gaussian-type basis

sets on this term alone. We also studied the influence on the laplacian of the density, the

leading term of the curvature condition defined in equation 3.9.

The biharmonic of the density of the 1s orbital of H atom has been analytically cal-

culated with three basis sets. These basis sets are linear combinations of primitive Gaus-

sian functions and are known in the quantum chemistry community as STO-nG where n

stand for the number of primitive functions employed. In figure 3.5, we compared the

biharmonic of the densities obtained with STO-1G, STO-2G and STO-3G with the exact

curve given by the biharmonic of the density of the 1s Slater-type orbital of the Hydrogen

atom. These curves are denoted as BHDGn where the they indicate the Biharmonic of

the Density calculated by the STO-nG basis set, i.e. BHDG1 denotes the biharmonic of

the density obtained with the STO-1G basis set. The notation BHDS indicates the curve

of the Biharmonic of the Density obtained with the Slater-type orbital of the Hydrogen

atom.
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Figure 3.5: BHDG1 (yellow dashed-dotted line), BHDG2 (blue dashed line) and
BHDG3 (greed dotted line) correspond to the biharmonic of the density of the 1s or-
bital obtained with a STO-1G, STO-2G and STO-3G basis set, respectively. BHDS (red
solid line) is the biharmonic of the density of the density of the 1s Slater-type orbital of
the Hydrogen atom.

We observe in figure 3.5 that BHDG1, BHDG2 and BHDG3 do not describe cor-

rectly the exact curve. However, the curve generated by BHDG3 seems to better describe

the asymptotic behavior of the exact curve BHDS.

Also, we analytically calculated and plotted in figure 3.6 the laplacian of the density

of the 1s orbital of H atom. The densities were calculated with the STO-1G, STO-

2G,STO-3G basis set and a Slater-type orbital. These curves are denoted as LPDGn

where the they indicate the Laplacian of the Density calculated with the STO-nG basis

set, i.e. LPDG1 denotes the biharmonic of the density obtained with the STO-1G basis

set. The notation LPDS indicates the curve of the Laplacian of the Density obtained with

the Slater-type orbital of the Hydrogen atom.
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We observe in figure 3.6 that LPGD3 shows a qualitative improvement on LPGD1

and LPGD2 but it still not able to recover the exact curve LPDS. Many functionals

were constructed employing the curvature condition which contains the laplacian of the

density. Furthermore, the curvature condition and the laplacian of the density alone are

extensively used in bonding analysis where functions based on these quantities are able

to localized electrons in regions of space. Clearly, a small Gaussian-type basis set such

as the STO-3G, cannot be used in these applications when chemical accuracy is taken

into consideration.

The influence of the basis set oscillations on exchange hole models can be explained

by comparing the plots of exchange energy densities, εσ (rrr), of the H atom. This is done

by obtaining, in a post-HF calculation2, the exchange energy densities of the original BR

model (BR2) and the BR model parameterized with the biharmonic condition (BR4) in

place of the curvature condition 3. The plot of exact exchange energy density of the H

2Details of calculations are given in section 4.4 of chapter 4.
3For further details of the BR4 model see section 4.4 of chapter 4.
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atom was obtained with the following formula,

εxσ (r) =−
[

1− exp−αr
(

1+
1
2

αr
)]/

2r. (3.28)

Note that equation 3.28 is basis set independent and has the same form as the exchange

energy density of the BR model defined in equation 2.154. However, according to the

hydrogenic orbital we set α = 2 in equation 3.28 in our calculations while varying r

along the x-axis.

Since BR2 and BR4 models are based on the hydrogenic orbital and both models

are parameterized with the Taylor series expansion of the exact spherically averaged

exchange hole, we expect that their exchange energy density curves recover the exact

one. In figure 3.7, we compare the exchange energy densities of BR2 and BR4 models

with the exact one for the H atom.
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Figure 3.7: Comparison of Exchange Energy Densities (a.u.) of BR2 and BR4 with the
exact for the H atom along the x-axis (a.u.)

The exact exchange energy density obtained by equation 3.28 is smooth in all its ex-

tention, whereas the exchange energy density obtained by BR4 oscillates with amplitude

increasing toward the nucleus. It recovers the exact one in the interval of (3 ≤ x ≤ 5)
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and reproduce BR2 exchange energy density for (x > 5). The curve obtained by BR2

recovers the exact exchange energy density for (x≤ 5) . We do not expect any of the two

models to recover the exact exchange energy density when (x > 5). In this range, the

contribution of the exchange energy density to the total exchange energy is very small

due to the low-density limit. The oscillations observed in figure 3.7 arise from small un-

dulations in Kohn-Sham orbitals[62] that are amplified by any derivative of the orbitals

or the density. In this regard the biharmonic condition, which contains the biharmonic

of the density and other high derivatives of orbitals, transfers these oscillations into the

BR4 model during the its parameterization causing oscillations in the exchange energy

density. It is important to mention that models constructed to satisfy the short-range

quartic behavior (the on-top, the curvature and the biharmonic conditions) along with

the normalization condition could present unexpected behaviors related to these oscilla-

tions. By "unexpected", we mean for instance the impossibility to satisfy all constraints

imposed on the model therefore leading to unphysical total exchange energies.

3.4 Conclusion

We have focused here on the assessment of the fourth-order expansion for the de-

scription of the exact exchange hole. The second-order and fourth-order expansions were

compared with the exact analytic exchange holes of several reference points in the Be,

N, H2 and N2 systems. Here, we found that, in its definition range (0 < u < r1)[55], the

fourth-order expansion remarkably improves the representation of the exact exchange

hole compared to the second-order expansion.

We observed that the fourth-order expansion, in general, represent quite accurately

the short-range quartic behavior of the exact exchange hole compared to the second-

order expansion. In regions where the exact exchange hole is delocalized (Figures 3.1

(c), 3.2 (c)), 3.3 (d) and 3.4 (d)), we observed that the fourth-order expansion is able to

remarkably mimic the exact exchange hole.

Also, we verified the influence of Gaussian-type basis sets oscillations on the expan-

sions of the exact exchange hole by studying the behavior of the leading terms of the
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curvature and biharmonic conditions with different Gaussian-type basis sets. It has been

found that these basis sets artifacts indeed cause instabilities in the leading terms of the

two conditions.

Moreover, in figure 3.7, we observed by comparing the exchange energy densities

of BR2 and BR4 with the exact one for the H atom that these oscillations originated in

the basis set have a strong influence in the BR4 model. Consequently, we believe that

any other exchange hole model parameterized with the biharmonic condition would be

critically affected by this effect.

One way around this problem would be to implement and perform our computations

based on plane waves where this oscillations would not be present. Another possibility

is to calculate the weighted averaged of the exchange energy densities of the BR2 and

BR4 as

εxσ (rrr) = ω(rrr)εBR2
xσ (rrr)+ [1−ω(rrr)]εBR4

xσ (rrr), (3.29)

where the function ω(rrr) can determine how much contributions from BR2 and BR4 will

be used to generate εxσ (rrr) with aim of supressing parts of the oscillations in the exchange

energy density observed in figure 3.7. Development of ω(rrr) is under development by

the author.



CHAPTER 4

EXCHANGE-HOLE MODELS

It is known that many exchange functional approximations are based on the LDA ex-

change hole[53]. However, this first approximation suffers from many problems, pointed

out by us in chapter 2, that lead to poor results when applied to molecular systems. For

instance, LDA exchange hole is always localized to some extent around the reference

point. In contrast, the exact exchange hole in a molecular system may be delocalized

over several centers. Even when the reference point is far from the molecule, the ex-

change hole is still trapped at the molecule. This fact leads to an asymptotic behavior

of the form 1/rrr of the exchange energy density and the exchange potential. Further-

more, the LDA exchange hole does not account for the short-range behavior given by

the expansion of the exact spherically averaged exchange hole.

In the last chapter we also presented the BR exchange-hole model[3] which is based

on a physical system but differently from LDA[16], the BR model is based on an in-

homogeneous system. By parameterizing their model to the second-order expansion of

the exact exchange hole, the BR model can describe exactly the short-range behavior of

the exchange hole up to the second-order. The result of this new approach is an striking

improvement over LDA in terms of atomic exchange energies.

Altough the LDA exchange hole can deliver good results for homogeneous systems

and the BR exchange hole is accurate in the description of atomic systems, the main

concern of chemists is the breaking and formation of chemical bonds. In this regard,

we believe that there still room for improvement at the level of exchange hole modeling.

In this second part of this work we propose three exchange hole models. We adopted

the framework used in the construction of the BR model where a systematic constraint

satisfaction is employed. In general, we apply all current known conditions of the exact

exchange hole as well as the new condition derived by us in the last chapter.

The organization of this chapter is as follows. For every model we first give an

introduction followed by the Development section where all mathematical details are
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present. Next, in Implementation, we describe how the models were used in realistic

calculations. In the Results and Discussion we assess the exchange hole models and

describe their particularities and finally, in Conclusion, we give our final remarks.

4.1 The Four-Parameter Model

The Four-Parameter (FP) model is an analytic form aimed to approximate the ex-

change hole. Its construction, based on a polynomial tamed by an exponential function,

clearly is not based on any physical system differing in this aspect from the LSDA[53]

and BR exchange holes[3]. However, this is not a new approach. Becke[54] and Ernz-

erhof and Perdew[53] have also proposed exchange hole functions with similar forms.

The FP model is tought to be flexibe enough to be parameterized by the fourth-order ex-

pansion of the exact exchange hole. We also apply the normalization and non-negativity

conditions.

4.1.1 Development

The FP model is built from the positive series expansion about the variable u

v(a,b,c,u) =
(
a+bu+ cu2)2

, (4.1)

where the coefficients are parameters to be determined from analytical properties of the

exact exchange hole. Note that, alone, these parameters carry no physical meaning.

Since we seek to construct a density function from an ordinary function we need to

symmetrize equation 4.1 with respect to the y-axis which gives,

v(a,b,c,u)+ v(a,b,c,−u) =−2
(
a2 +b2u2 +2acu2 + c2u4)

f (a,b,c,u) = 2
(
a2 +b2u2 +2acu2 + c2u4) . (4.2)

Normalization of the model is enforced by a damping factor which has the form of a
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Gaussian-like function which multiplies f (a,b,c,u),

ρ
FP
xσ (a,b,c,d,u) = 2

(
a2 +b2u2 +2acu2 + c2u4)e−du2

. (4.3)

The exponential works by taming the core of the density function. When u→ ∞ the

polynomial part goes to infinity very fast while the gaussian-like function goes to zero

thus smoothing the function.

At this point we expand the FP model in a Taylor series and equate its coefficients

ρ
FP,(0)
xσ =−2a2

ρ
FP,(2)
xσ =

(
−2b2−4ac+2a2d

)
ρ

FP,(4)
xσ =

(
−2c2 +2b2d +4acd−a2d2) ,

(4.4)

to those of the exact hole denoted K0, K2 and K4.Note that the numbers between paren-

thesis in superscripts indicate the order of each coefficient in the expansion. With this

procedure, the parameter a is determined by the zeroth-order term K0 which gives the

density at the reference point,

a =

√
K0√
2
. (4.5)

Once the form of a is determined we have that b gives,

b =

√
2c
√

2
√

K0 +dK0 +K2
√

2
. (4.6)

From a and b we get c,

c =

√
d2K0

2 +dK2 +K4
√

2
. (4.7)

Note that the terms K2 and K4 are the second-order and fourth-order terms of the fourth-

order expansion of the exact exchange hole, respectively. Hence, the FP model can

represent the short-range quaternary behavior of the exact spherically averaged exchange

hole.
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Imposing the normalization condition we obtain,

∫
du24πρ

FP
xσ (a,b,c,u) = 1

(7d(5dK0 +6K2)+30K4)π
3/2

8d7/2 = 1.
(4.8)

Equation 4.8 does not have a simple linear expression and it is not possible to solve

it in terms of d. A numerical approach needs to be employed to determine the value of d.

There are a number of mathematical methods to determine the solutions of a nonlinear

equation. The Newton-Raphson method is one of the most reliable root-finding methods

used in many areas in science. It also happens to have a very simple implementation

which is definitely an advantage. Note that equation 4.8 can have multiple solutions

however, this version of the algorithm only employes the first one found by the Newton-

Raphson scheme.

In order to apply the Newton-Raphson scheme, we define the following function

N(d) =
(7d(5dK0 +6K2)+30K4)π

3/2

8d7/2 −1. (4.9)

When equation 4.9 vanish, then the parameter d should be determined by the Newton-

Raphson method.

Once we have solved equation 4.8 , the exchange energy density at the reference

point rrr is given by,

ε
FP
xσ (rrr) =

∫
∞

0
du4πρ

FP
xσ (a,b,c,d,u) =−2(3d(dK0 +K2)+2K4)π

d3 . (4.10)

From equation 4.10, it is clear that all parameters, a, b, c and d must have been deter-

mined previously.

4.1.2 Implementation

The FP model was implemented into the GAUSSIAN code[60] with the computer

language fortran 77. The implementation of the Newton-Raphson method was obtained
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from the Numerical Recipes in Fortran 77.

In summary, the algorithm build for the FP model works as this:

1. First, the GAUSSIAN program calculates densities and all quantities needed by

the fourth-order expansion of the exact spherically averaged exchange hole.

2. Second, the Newton-Raphson method is employed, in every point of the grid, to

find a solution to equation 4.9. Once the parameter d is determined, the code

calculates the values of the other parameters a, b and c, thus solving the model.

3. Third, the exchange energy density is calculated by equation 4.10 and then passed

to the GAUSSIAN program where it will be used to obtain the total exchange

energy of the target system.

4.1.3 Results and Discussion

Calculations of the total exchange energies with the FP model were done using the

6-311G+(2d,p) basis set in the GAUSSIAN program. This basis set represent the orbitals

of each atom where it has 6 gaussian functions for the inner shell, 3 gaussian functions

for the valence orbitals and two gaussian functions with different sizes for extended

valence orbitals. The specification (2d,p) indicates that one p-type function is added

to the hydrogen atom and two more d-type functions to atoms with Z > 2.Moreover,

cartesian functions were used for d-type orbitals. The grid employed in our calculations

has 75 radial shells and 302 angular points per shell, giving approximately 7000 points

per atom. Experimental geometries were used as inputs through out all our calculations.

We begin to assess the FP model with small systems such as the atoms of the first

and second row of the periodic table. We verified, however, that it is not possible to find

solutions of equation 4.9, which would determine the parameter d, in all points of space.

Note that the parameters b and c are coupled to the parameter d through equations 4.6

and 4.7, respectively. Thus, for the points where equation 4.6 does not have a solution the

model cannot satisfy all conditions. This problem leads, in general, to unphysical results,

therefore compromising the calculation of total exchange energies. Any exchange-hole
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model that does not satisfy the normalization condition could, for instance, remove more

than one electron from the system.

4.1.4 Conclusion

Unfortunately, equation 4.9 cannot be solved for every point in the space. Conse-

quently, the FP model does not satisfy the normalization condition in all space. Since the

normalization is one of the most restrictive analytical properties of the exact exchange

hole this poses a serious problem for the application for this model.

Since the FP model is built to reproduce the short-range quaternary behavior of

the exact spherically averaged exchange hole, the oscillations verified in derivatives of

orbitals and densities is clearly transfered to the model through its parameterization.

Hence, these oscillations corroborate to generate instabilities in the solution of the FP

model.

The advantage of the FP model lies in its simple mathematical form and flexibility to

represent the fourth-order expansion of the exchange hole. Therefore, we believe that the

FP model could be a good exchange hole approximation once the instabilities produced

by the basis set are solved.

4.2 Extension of Becke-Roussel Model

It is known that the BR model[3] reproduce the short-range quadratic behavior of the

exact spherically averaged exchage hole. However, we shown in the last chapter that the

fourth-order expansion of the exact exchange hole improves the representability of the

short-range behavior over the second-order expansion for atomic and molecular systems.

This lead us to propose a correction or an extension to the BR model. A modification

to the BR model is supported by its simple analytic form and good results in terms of

atomic exchange energies.
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4.2.1 Development

We begin with the unnormalized form of the spherically averaged BR model defined

by

ρ
BR
xσ (a,b,u) =

1
2a2bu

[
(a|b−u|+1)e−a|b−u|− (a|b+u|+1)e−a|b+u|

]
, (4.11)

where u is the interelectronic distance and a and b are parameters to be determined. With

the unnormalized BR model we construct a new exchange hole model (EBR model)

ρ
EBR
xσ (a,b,c,u) = (1+ cu4)ρBR

xσ (a,b,u), (4.12)

where c is a new parameter to be determined. Note here that when c = 0 we obtain the

original unnormalized BR model.

The normalization condition is satisfied through the normalization factor calculated

by,

∫
du24πρ

EBR
xσ (a,b,c,u) =

8
(
360c2 +40a2b2c2 +a4 (1+b4c2))π

a7

= N(a,b,c)
(4.13)

where N(a,b,c) is the normalization factor. Notice that N(a,b,c) depends on all param-

eters of the EBR model. Hence, the normalized form of the EBR model is,

ρ
EBR
xσ (a,b,c,u) =

1
N(a,b,c)

[
(1+ cu4)ρBR

xσ (a,b,u)
]
. (4.14)

The normalization factor does not affect the ability of the EBR model to obtain the

original BR model. In fact, with the normalization factor when c = 0 we obtain the

normalized BR model in its original form.

Expansion of equation 4.14 in a Taylor series about u up to the fourth-order provides
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three coefficients,

ρ
EBR,(0)
xσ (a,b,c) =

a7e−ab

8((360c2 +40a2b2c2 +a4 (1+b4c2))π)

ρ
EBR,(2)
xσ (a,b,c) =

a8(−2+ab)e−ab

48b(360c2 +40a2b2c2 +a4 (1+b4c2))π

ρ
EBR,(4)
xσ (a,b,c) =

a7
(

a4

120 −
a3

30b + c2
)

e−ab

8(360c2 +40a2b2c2 +a4 (1+b4c2))π
.

(4.15)

Note that the numbers between parenthesis in superscripts indicate the order of each

coefficient in the expansion. Equating these coefficients to those of the expansion of the

exact hole in a Taylor series produces three non-linear equations,

F(a,b,c) = ρ
EBR,(0)
xσ (a,b,c)−K0

G(a,b,c) = ρ
EBR,(2)
xσ (a,b,c)−K2

H(a,b,c) = ρ
EBR,(4)
xσ (a,b,c)−K4

(4.16)

Clearly, to determine all parameters a system of three nonlinear equations needs to be

solved numerically. For this purpose, the Broyden’s method is employed and all param-

eters are determined when all three functions F , G and H vanish simultaneously. It is

known that a system of nonlinear equations can have multiple solutions for a single point

rrr therefore, in this version we only use the first solution found by the Broyden’s method.

The exchange energy density at the reference point is given by,

ε
EBR
xσ =

∫
∞

0
du4πρ

EBR
xσ (a,b,c,u)

=
−2a4−144c2−48a2b2c2−2a4b4c2 +2a4e−ab +a5be−ab +144c2e−ab +24abc2e−ab

2b(360c2 +40a2b2c2 +a4 (1+b4c2))
.

(4.17)

4.2.2 Implementation

In order to calculate the total exchange energy of a system, first a Hartree-Fock com-

putation is performed to obtain the target system wavefunction. Then, this wavefunction
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is used as an initial guess in our calculations which consists of a single SCF iteration,

in a post-HF calculation. In this single iteration the GAUSSIAN program[60] generates

the densities and all other quantities necessary to build the fourth-order expansion of the

exact exchange hole which are then passed into the function code where the EBR model

is implemented.

The EBR model was implemented in the GAUSSIAN code using the computer lan-

guage Fortran 77. In order to determine the parameters of the model we need to solve

the system of nonlinear equations defined in 4.15. The Broyden’s method which is a

root-finding algorithm for multidimensional problems was implemented. This algorithm

is a quasi-Newton method that does not need to calculate the Jacobian matrix of the

functions F , G and H defined in equation 4.16.

The code of the EBR model was made to be called for each point of the grid produced

by the GAUSSIAN program. Hence, at each of these points we seek to determine the

parameters of the EBR model to finally calculate the total exchange energy.

In summary, the algorithm build for the EBR model works as this:

1. First, the GAUSSIAN program calculates densities and all quantities needed by

the fourth-order expansion of the exact spherically averaged exchange hole.

2. Second, the Broyden’s method is employed, in every point of the grid, to find a

solution to the model. Once a solution is found all parameters are determined.

3. Third, with the parameters determined the exchange energy density is calculated

by equation 4.17 and then passed to the GAUSSIAN program where it will be

used to calculate the total exchange energy of the target system.

4.2.3 Results and Discussion

The actual calculations were done using the 6-311G+(2d,p) basis set in the GAUS-

SIAN program. This basis set represent the orbitals of each atom where it has 6 gaussian

functions for the inner shell, 3 gaussian functions for the valence orbitals and two gaus-

sian functions with different sizes for extended valence orbitals. The specification (2d,p)
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indicates that one p-type function is added to the hydrogen atom and two more d-type

functions to atoms with Z > 2. Moreover, cartesian functions were used for d-type or-

bitals.The grid employed in our calculations has 75 radial shells and 302 angular points

per shell, giving approximately 7000 points per atom. Experimental geometries were

used as inputs through out all calculations.

In our calculations we have tested all solutions of the system of nonlinear equations

4.16 where Broyden’s method found multiple solutions. Unfortunately, none of them

lead to better results. The addition of the fourth-order term correction to the EBR model,

in most cases, did not improve the results for exchange energies of atoms and molecules

over the BR model. The MAE of the atomic and molecular subsets show a very small

reduction compared with original BR.

From the results of table 4.I, it is possible to conclude that the correction proposed

to the original BR model does not produce any improvement to the exchange energies.
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System EExact
x EBR

x EEBR
x

H -0.313 -0.313 -0.313

He -1.026 -1.039 -1.039

Li -1.781 -1.793 -1.793

Be -2.666 -2.680 -2.680

B -3.768 -3.783 -3.774

C -5.074 -5.093 -5.092

N -6.603 -6.629 -6.629

O -8.210 -8.252 -8.251

F -10.035 -10.093 -10.086

Ne -12.097 -12.176 -12.176

Na -14.015 -14.072 -14.072

Cl -27.539 -27.474 -27.473

P -22.641 -22.626 -22.626

MAEs 0.000 0.032 0.030

H2 -0.658 -0.658 -0.658

HF -10.420 -10.509 -10.509

LiH -2.146 -2.165 -2.165

LiF -11.994 -12.112 -12.107

Li2 -3.564 -3.591 -3.591

Na2 -28.021 -28.144 -28.137

F2 -19.949 -20.157 -20.157

Cl2 -55.092 -54.982 -54.973

NH3 -7.665 -7.717 -7.702

P2 -45.201 -45.205 -45.205

N2 -13.092 -13.235 -13.234

NO -14.725 -14.875 -14.875

NO2 -22.897 -23.166 -23.166

O2 -16.259 -16.452 -16.452

MAEs 0.000 0.107 0.106

MAE 0.000 0.071 0.070

Table 4.I: Exchange energies of atoms and molecules (in Hartree). MAE, mean absolute
error. MAEs of a set of atoms and molecules and Total MAE are shown.
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Since the main concern of chemists lies with the breaking and formation of chemical

bonds the calculation of energy changes upon chemical transformation is fundamental.

In regard of this, we calculate the exchange-energy contribution to the atomization en-

ergy (Table 4.II), ∆Ex = Emolecules
x −Eatoms

x .

Molecules EExact
x EBR

x EEBR
x

H2 -0.033 -0.033 -0.033

HF -0.073 -0.103 -0.110

LiH -0.053 -0.060 -0.060

LiF -0.179 -0.226 -0.228

Li2 -0.003 -0.006 -0.006

Na2 0.009 0.000 0.007

F2 0.121 0.029 0.015

Cl2 -0.013 -0.034 -0.027

NH3 -0.125 -0.151 -0.135

P2 0.082 0.048 0.048

MAEs 0.000 0.027 0.027

N2 0.114 0.023 0.024

NO 0.089 0.006 0.006

NO2 0.126 -0.033 -0.034

O2 0.162 0.052 0.051

MAEs 0.000 0.111 0.111

MAE 0.000 0.051 0.051

Table 4.II: Exchange-energy contributions to the atomization energies (in Hartree).
MAE, mean absolute error. MAEs of a set of single- and multi-bonded molecules and
Total MAE are shown.

Again, the EBR model does not show any improvement to the exchange-energy con-

tribution to the atomization energies over the BR model. The failure of the EBR model

to improve the results of exchange energies and their contributions to the atomization

energies can be directly related to oscillations present in the fourth-order term which
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causes instabilities in the solution of the model. By solution of the model we mean that

the system of nonlinear equations defined in equation 4.16 does not have a solution in

a large number of points of the space. When this is the case, the EBR model recover

the BR model by taking the parameter c = 0 in the equation 4.14. Hence, the major

contribution to the results presented here belong to the BR model.

4.2.4 Conclusion

The fourth-order expansion of the exact spherically averaged exchange hole provides

a systematic improvement over its second-order version. In this part of the work, we

applied the former expansion as a correction to the BR model resulting in the EBR

model. We tested its ability to describe exchange energies and chemical transformations

such as atomization energies. We found that oscillations due to the basis set hinder the

solution of the EBR model leading to unsatisfactory results in terms of an improvement

over the original BR model.

4.3 H2 Model

The H2 model is based on the density of the bonding orbital of the molecule H2.

The idea is to construct an exchange hole model that has the characteristics of a two-

electron system hole and that could be used to correctly describe the exact exchange

hole during its dissociation process. Moreover, the H2 model is designed to represent

exactly the short-range quatic behavior of the exact spherically averaged exchange hole.

Furthermore, two other conditions are imposed on this model: the non-positivity and

normalization of the exchange hole.

4.3.1 Development

The molecular orbital σg of H2 can be constructed with two gaussian functions by

ρ
H2(rrr,RRR1,RRR2,α,λ ) =

[
λe−α2(rrr−RRR1)

2
+(1−λ )e−α2(rrr−RRR2)

2
]2
, (4.18)
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where RRR1 and RRR2 are vectors representing the positions of two nuclei while rrr is the

reference vector, α corresponds to an exponential factor and λ is a parameter which

assumes values between 0 and 1. When λ is equal to 0, the function ρH2(rrr,RRR1,RRR2,α,λ )

reduces to a single nucleus system expressed by a single gaussian-like function centered

at RRR2, while when λ equals to 1 it is also reduced to the same case of a single nucleus

centered RRR1 as shown below

ρ
H(rrr,RRR1,RRR2,α,λ = 0) =

[
e−α2(rrr−RRR2)

2
]2
, (4.19)

where the superscript H in this particular case indicates that it represents the orbital

density of a hydrogen atom. Yet, when RRR2 = RRR1 the equation 4.16 reduces to 4.17. In

regard of this, equation 4.16 is named the general case of the H2 model and 4.17 is

named the particular case. The parameter λ acts as a switching factor by balancing

charge density between the nuclei, which could be very useful in the description of ionic

and covalent bonds. Taking the average over all angular parts we obtain

ρ
H2
xσ (r,R1,R2,α,λ ,u) =−λ

2 e−2α2((r−R1)−u)2− e−2α2((r−R1)+u)2

8α2u(r−R1)

+(1−λ )2 e−2α2((r−R2)−u)2− e−2α2((r−R2)+u)2

8α2u(r−R2)

+(−λ
2 +λ )

e−α2[((r−R1)−u)2+((r−R2)−u)2]− e−α2[((r−R1)+u)2+((r−R2)+u)2]

2α2u((r−R1)+(r−R2))
,

(4.20)

where u is the interelectronic distance.

Note that the model is not normalized. We impose the normalization condition

through a normalization factor. This is obtained by,

∫
du24πρ

H2
xσ (r,R1,R2,α,λ ,u) = 1. (4.21)

Applying the normalization factor to equation 4.18 yelds the normalized exchange hole
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model,

ρ
H2
xσ (r,R1,R2,α,λ ,u) =

2
√

2α3

π3/2
[
1+2(λ 2−λ )

(
1− e−α2(R1−R2)2/2

)]
×

{
λ

2 e−2α2((rrr−RRR1)−u)2− e−2α2((rrr−RRR1)+u)2

8α2u(rrr−RRR1)

+(1−λ )2 e−2α2((rrr−RRR2)−u)2− e−2α2((rrr−RRR2)+u)2

8α2u(rrr−RRR2)

+(−λ
2 +λ )

e−α2[((rrr−RRR1)−u)2+((rrr−RRR2)−u)2]− e−α2[((rrr−RRR1)+u)2+((rrr−RRR2)+u)2]

2α2u((rrr−RRR1)+(rrr−RRR2))

}
.

(4.22)

At this point, we use the uniform coordinate scaling property of the density to gen-

erate a dimensionless exchange hole function. This is done to reduce the number of

parameters. First, we define five quantities to help in the coordinate scaling transforma-

tion

a =
α

kF

b = (rrr−RRR1)kF

c = (rrr−RRR2)kF

d = λ

y = kFu,

(4.23)

where kF = (6π2ρ)1/3 is the local Fermi wave vector for spin-polarized systems. Next,
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we substitute these quantities into equation 4.20 to obtain,

JH2
x (a,b,c,d,y) =

−2
√

2ak3
F((

1+2(−1+d)d
(

1− e−
1
2 a2(c−b)2

))
π3/2

)
×

d2
(

e−2a2(b−y)2− e−2a2(b+y)2
)

8by
+

(1−d)2
(

e−2a2(c−y)2− e−2a2(c+y)2
)

8cy

+

(
d−d2)(e−a2((b−y)2+(c−y)2)− e−a2((b+y)2+(c+y)2)

)
2y(b+ c)

 . (4.24)

The parameters a, b, c and d are related to the exponent of the gaussian function, the

position of the first center, the position of the second center and the switching factor,

respectively. The reference vector has been eliminated during the density scaling.Note

also that the parameter y is related to the interelectronic distance u by y = kFu. The

fourth-order expansion of JH2
x around y gives the zeroth-order term

JH2,(0)
x (a,b,c,d) =

1(
e

1
2 a2(b−c)2−2d

(
−1+ e

1
2 a2(b−c)2

)
+2d2

(
−1+ e

1
2 a2(b−c)2

))
π3/2

×
[

2
√

2a3e−
1
2 a2(3b2+2bc+3c2)

(
(−1+d)ea2b2

−dea2c2
)2

k3
F

]
, (4.25)

the second-order term

JH2,(2)
x (a,b,c,d) =

1(
3
(

e
1
2 a2(b−c)2−2d

(
−1+ e

1
2 a2(b−c)2

)
+2d2

(
−1+ e

1
2 a2(b−c)2

))
π3/2

)
×
[
4
√

2a5e−
1
2 a2(3b2+2bc+3c2)

((
−3+4a2c2)(−1+d)2e2a2b2

+
(
−3+4a2b2)d2e2a2c2

−2
(
−3+a2(b+ c)2)(−1+d)dea2(b2+c2)

)
k3

F

]
, (4.26)
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and the fourth-order term,

JH2,(4)
x (a,b,c,d) =

1(
15
(

e
1
2 a2(b−c)2−2d

(
−1+ e

1
2 a2(b−c)2

)
+2d2

(
−1+ e

1
2 a2(b−c)2

))
π3/2

)
×
[
4
√

2k3
Fa7e−

1
2 a2(3b2+2bc+3c2)

((
15−40a2c2 +16a4c4)(−1+d)2e2a2b2

+
(
15−40a2b2 +16a4b4)d2e2a2c2

−2
(
15−10a2(b+ c)2 +a4(b+ c)4)(−1+d)dea2(b2+c2)

)]
. (4.27)

Note that the numbers between parenthesis in superscripts indicate the order of each co-

efficient in the expansion. Hence, a system of nonlinear equations is formed by equating

the coefficients JH2,(0)
x , JH2,(2)

x and JH2,(4)
x to those coefficients of the fourth-order expan-

sion of the exact exchange hole. In order to search for solutions of the nonlinear system

of equations first we define the three functions

F(a,b,c,d) = JH2,(0)
x (a,b,c,d)−K0/ρ

G(a,b,c,d) = JH2,(2)
x (a,b,c,d)−K2/ρ

H(a,b,c,d) = JH2,(4)
x (a,b,c,d)−K4/ρ

(4.28)

where coefficients of the fourth-order expansion of the exact exchange hole are denoted

K0, K2 and K4. In the density scaling process, the density is scaled out of the analytic

form of the exchange hole model. Consequently, when the model is expanded in a

Taylor series the densities are present in each coefficient. For this reason, when we form

the system of nonlinear equations the density appears dividing K0, K2 and K4. When a

solution of system of nonlinear equations is found all three equations defined in equation

4.26 simultaneously vanish, then all parameters of JH2
xσ are be determined.
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The exchange energy density at the reference point is given by

ε
H2
xσ (rrr) =

2πρ

k2
F

∫
∞

0
dyyJH2

xσ (a,b,c,d,y)

=
1

−bc(b+ c)
(
−2(d2−d)+ e

a2(c−b)2
2 (2d2−2d +1)

)
×
[

e
a2(c−b)2

2 c(b+ c)d2Erf
(

ab
√

2
)
+ e

a2(c−b)2
2 b(b+ c)(d−1)2Erf

(
ac
√

2
)

−4bcErf
(
(b+ c)a√

2

)
d(d−1)

]
,

(4.29)

where Erf is the error function.

Figure 1 shows the behavior of the weighted JH2
xσ (a,b,c,d,y) for three distinct values

of d. Note the shift in the density between centers while we vary d.
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Figure 4.1: H2 exchange holes weighted by y with arbitrary parameters a = 2, b = 0.1
and c = 4. In the panels (a), (b) and (c), the value of d has different values, d = 0,
d = 0.5 and d = 1, respectively.
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4.3.2 Implementation

In order to calculate the total exchange energy of a system, first a Hartree-Fock com-

putation is performed to obtain the target system wavefunction. Then, this wavefunction

is used as an initial guess in our calculations which consists of a single SCF iteration,

in a post-HF calculation. In this single iteration the GAUSSIAN program[60] generates

the densities and all other quantities necessary to build the fourth-order expansion of the

exact exchange hole which are then passed into the function code where the H2 model is

implemented.

The H2 model was implemented in the GAUSSIAN code using the computer lan-

guage Fortran 77. In order to determine the parameters of the model we need to solve

the system of nonlinear equations defined in 4.28. The Broyden’s method which is a

root-finding algorithm for multidimensional problems was implemented. This algorithm

is a quasi-Newton method that does not need to calculate the Jacobian matrix of the

functions F , G and H defined in equation 4.28.

The code of the H2 model was made to be called for each point of the grid produced

by the GAUSSIAN program. Hence, at each of these points we seek to determine the

parameters of the H2 model to finally calculate the total exchange energy.

In summary, building the algorithm for the H2 model works as this:

1. First, the GAUSSIAN program calculates densities and all quantities needed by

the fourth-order expansion of the exact spherically averaged exchange hole.

2. Second, the Broyden’s method is employed, in every point of the grid, to find a

solution to the model. Once a solution is found all parameters are determined.

3. Third, with the parameters determined the exchange energy density is calculated

by equation 4.29 and then passed to the GAUSSIAN program where it will be

used to calculate the total exchange energy of the target system.
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4.3.3 Results and Discussion

The actual calculations were done using the 6-311G+(2d,p) basis set in the GAUS-

SIAN program. This basis set represent the orbitals of each atom where it has 6 gaussian

functions for the inner shell, 3 gaussian functions for the valence orbitals and two gaus-

sian functions with different sizes for extended valence orbitals. The specification (2d,p)

indicates that one p-type function is added to the hydrogen atom and two more d-type

functions to atoms with Z > 2. Moreover, cartesian functions were used for d-type or-

bitals. The grid employed in our calculations has 75 radial shells and 302 angular points

per shell, giving approximately 7000 points per atom. Experimental geometries were

used as inputs through out all calculations.

We begin to assess the H2 model with small systems such as the atoms of the first

and second row of the periodic table. In these calculations the switching factor was set

to 0.5.

Unfortunately, we cannot find a solution to the system of nonlinear equations for any

of these atoms. In other words, we could not find a solution for the model which leads

to the determination of all parameters and consequently to the calculation of the total

exchange energy.

When we have the particular case of the model, represented by a single gaussian-

like density function in equation 4.17, the system of nonlinear equations is reduced to

a single nonlinear equation. However, we also verified that, in all chemical systems

assessed, the model cannot be solved in all points of the grid.

The failure to solve the model is not due to the choice of the root-finding algorithm

but to the complexity of the problem itself. From the theory of numerical analysis, there

is no guarantee to find a root for this type of system of nonlinear equations. Although

the model posseses flexibility to accomodate all conditions of the exact exchange hole

its solution is not possible. This issue could be attributed to oscillations caused by the

basis set representation of orbitals. These basis set artifact is then transfered to densities.

Moreover, any orbital and density derivatives would amplify such effects thus producing

instabilities in the parameterization of the H2 model.
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However, the particular case of H2 was designed to represent the short-range quadratic

behavior of the exact spherically averaged exchange hole and yet we verified that it can-

not be solved. Therefore, we believe that a Gaussian function cannot represent the short-

range behavior in all space which is in contrast to the Slater function employed by the

BR model.

4.3.4 Conclusion

Despite its flexibility to parameterize the fourth-order expansion of the exact ex-

change hole together with the normalization and non-negativity conditions, the model

cannot be solved in all space. Hence, we believe that the lack of solutions is attributed

to two factors, to the system of highly nonlinear equations and to instabilities produced

by the basis set. We also verified that the particular case cannot represent the short-

range quadratic behavior of the exact spherically averaged exchange hole in all space.

Therefore, the H2 model needs to be reformulated in order to be a good candidate for a

exchange hole function.

4.4 Becke Roussel Model with the Fourth-Order Term

The BR Model[3] is known to represent the short-range quadratic behavior of the

spherically averaged exact exchange hole. This implies that the first two terms of the

expansion are used to parameterize the analytic form of the model. Here, we introduce a

different parameterization to the BR model. The fourth-order term will be used in place

of the second-order term to assess how the model reacts to this change. This model is

called BR4 in reference to the fourth-order term.

4.4.1 Development

The development of the BR4 follows exactly the framework adopted in the construc-

tion of the original BR. We refer the reader to the first chapter of this work where we
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give all the details of its construction. The spherically averaged BR model is defined by

ρ
BR
xσ (a,b,u) =− a

16πbu

[
(a|b−u|+1)e−a|b−u|− (a|b+u|+1)e−a|b+u|

]
, (4.30)

where a and b are parameters to be determined from the short-range behavior of the

exact exchange hole.

The expansion of the BR model in a Taylor series up to the fourth-order term gives

three coefficients,

ρ
BR4,(0)
xσ (a,b) =

a3e−ab

8π

ρ
BR4,(2)
xσ (a,b) =

a4(−2+ab)e−ab

48bπ

ρ
BR4,(4)
xσ (a,b) =

a6(−ab−4)e−ab

960bπ
.

(4.31)

To determine the parameters a and b the zeroth- and fourth-order terms from the expan-

sion of the analytic model and from the exact exchange holes are equated yelding the

system of nonlinear equations,

F(a,b) = ρ
BR4,(0)
xσ (a,b)−K0

G(a,b) = ρ
BR4,(4)
xσ (a,b)−K4.

(4.32)

The system of nonlinear equation defined in equation 4.32 can be simplified by using a

variable substitution x = ab. Substituting x into the functions F and G we obtain,

xe−4x/3

(x−4)
=

2π4/3
15

K7/3
0
K4

. (4.33)

As in the original BR model[3], equation 4.33 has a unique and positive solution for all

conditions. To find these solutions we rely on the Newton-Raphson method.

The exchange energy density at the reference point is given by,

ε
BR4
xσ (rrr) =

[
1− exp−ab

(
1+

1
2

ab
)]

. (4.34)
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Note that the exchange energy density of the BR4 model and BR model defined in equa-

tion 2.154 are identical. Clearly, the parameters necessary to calculate the exchange

energy density are different.

4.4.2 Implementation

In order to calculate the total exchange energy of a system, first a Hartree-Fock com-

putation is performed to obtain the target system wavefunction. Then, this wavefunction

is used as an initial guess in our calculations which consists of a single SCF iteration,

in a post-HF calculation. In this single iteration the GAUSSIAN program[60] generates

the densities and all other quantities necessary to build the fourth-order expansion of the

exact exchange hole which are then passed into the function code where the BR4 model

is implemented.

The BR4 model was implemented in the GAUSSIAN code using the computer lan-

guage Fortran 77. In order to determine the parameters of the model we need to solve a

nonlinear one-dimensional The Newton-Raphson method which is a root-finding algo-

rithm for unidimensional problems was implemented to search for solutions of equation

4.32.

The code of the BR4 model was made to be called for each point of the grid produced

by the GAUSSIAN program. Hence, at each of these points we seek to determine the

parameters of the BR4 model to finally calculate the total exchange energy.

In summary, the algorithm build for the BR4 model works as this:

1. First, the GAUSSIAN program calculates densities and all quantities needed by

the fourth-order expansion of the exact spherically averaged exchange hole.

2. Second, the Newton-Raphson method is employed, in every point of the grid, to

find a solution to the model. Once a solution is found all parameters are deter-

mined.

3. Third, with the parameters determined the exchange energy density is calculated

by equation 4.33 and then passed to the GAUSSIAN program where it will be

used to calculate the total exchange energy of the target system.



105

4.4.3 Results and Discussion

The actual calculations were done using the 6-311G+(2d,p) basis set in the GAUS-

SIAN program. This basis set represent the orbitals of each atom where it has 6 gaussian

functions for the inner shell, 3 gaussian functions for the valence orbitals and two gaus-

sian functions with different sizes for extended valence orbitals. The specification (2d,p)

indicates that one p-type function is added to the hydrogen atom and two more d-type

functions to atoms with Z > 2. Moreover, cartesian functions were used for d-type or-

bitals. The grid employed in our calculations has 75 radial shells and 302 angular points

per shell, giving approximately 7000 points per atom. Experimental geometries were

used as inputs through out all calculations.

The BR4 exchange-hole function does not improve the results of exchange energies

of atoms and molecules (Table 4.III). Because the analytic form of BR4 model is based

on a physical system and its construction follows the same steps used in the original

BR, the failure of the model to deliver exchange energies close to those given by the BR

model indicates an important issue with its parameterization.
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System EExact
x EBR

x EBR4
x

H -0.313 -0.313 -0.315

He -1.026 -1.039 -1.027

Li -1.781 -1.793 -1.778

Be -2.666 -2.680 -2.601

B -3.768 -3.783 -3.852

C -5.074 -5.093 -5.212

N -6.603 -6.629 -7.024

O -8.210 -8.252 -8.804

F -10.035 -10.093 -11.031

Ne -12.097 -12.176 -13.596

Na -14.015 -14.072 -15.682

Cl -27.539 -27.474 -31.719

P -22.641 -22.626 -24.830

MAEs 0.000 0.032 0.911

H2 -0.658 -0.658 -0.637

HF -10.420 -10.509 -11.577

LiH -2.146 -2.165 -2.158

LiF -11.994 -12.112 -13.137

Li2 -3.564 -3.591 -3.576

Na2 -28.021 -28.144 -31.389

F2 -19.949 -20.157 -22.030

Cl2 -55.092 -54.982 -63.620

NH3 -7.665 -7.717 -8.156

P2 -45.201 -45.205 -49.625

N2 -13.092 -13.235 -13.889

NO -14.725 -14.875 -15.750

NO2 -22.897 -23.166 -24.680

O2 -16.259 -16.452 -17.485

MAEs 0.000 0.107 1.862

MAE 0.000 0.071 1.404

Table 4.III: Exchange energies of atoms and molecules (in Hartree). MAE, mean abso-
lute error. MAEs of a set of atoms and molecules and Total MAE are shown.
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We also studied the ability of the BR4 model to describe chemical transformations

such as atomization energies, ∆Ex = Emolecules
x −Eatoms

x . In Table 4.IV , the exchange-

energy contribution to the atomization energies is presented.

Molecules EExact
x EBR

x EBR4
x

H2 -0.033 -0.033 -0.006

HF -0.073 -0.103 -0.231

LiH -0.053 -0.060 -0.065

LiF -0.179 -0.226 -0.328

Li2 -0.003 -0.006 -0.020

Na2 0.009 0.000 -0.024

F2 0.121 0.029 0.031

Cl2 -0.013 -0.034 -0.182

NH3 -0.125 -0.151 -0.186

P2 0.082 0.048 0.035

MAEs 0.000 0.030 0.082

N2 0.114 0.023 0.160

NO 0.089 0.006 0.078

NO2 0.126 -0.033 -0.048

O2 0.162 0.052 0.123

MAEs 0.000 0.111 0.068

MAEs 0.000 0.051 0.074

Table 4.IV: Exchange-energy contributions to the atomization energies (in Hartree).
MAE, mean absolute error. MAEs of a set of single- and multi-bonded molecules and
Total MAE are shown.

The ∆Ex of singly-bonded molecules show a worsening which is in contrast to the

results of multi-bonded molecules where a significant improvement is observed. Yet,

in the singly-bonded subset, the H2 is an exception with a large improvement over the

BR model. These multi-bonded molecules are formed by several electron pairs working

as binding or as antibinding pairs. During the atomization process, the exchange holes
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change forms very rapidly and may be highly delocalized over the nuclei. This chemical

transformation is directly related to the valence region where the fourth-order term of the

expansion of the exact exchange hole has less influence from basis set oscillations. In

regard of these facts, and in view of the results of ∆Ex for multi-bonded molecules, we

suggest that the fourth-order term is better suited for those regions where the exchange

holes are not in the vicinity of the reference point but delocalized over several centers.

Note here that our suggestion is based on a deficiency of the basis set and not on a

problem with the fourth-order expansion of the exact exchange hole.

The model’s ability to describe accurately delocalized systems encourages further

studies. An interesting idea would be the interpolation of two models based on the orig-

inal form of the BR exchange-hole function where each model would have different pa-

rameterization. One designed to handle regions where the exchange holes are localized

while the other would deal with delocalized exchange holes.

The parameterization of the BR4 exchange hole with the zeroth- and fourth-order

terms, in general, have worsened the results compared with the original parameterization

used in the BR model. A possible justification for this might be that oscillations caused

by the basis set are transfered to the BR4 model through the zeroth- and fourth-order

terms. These terms are composed by orbitals, densities and their derivatives where the

latter amplify these oscillations then, causing instabilities in the parameterization of the

model. However, these oscillations do not appear to completely compromise the results

of ∆Ex for multi-bonded molecules.

4.4.4 Conclusion

In this part of the work, we examined a new parameterization of the BR model with

the zeroth- and fourth-order terms of the expansion of the exact spherically averaged

exchange hole. We found that while, in general, the results are unsatisfactory from the

viewpoint of chemical accuracy, the model gave interesting results for the exchange-

energies contributions to the atomization energies of multi-bonded molecules. Also,

basis set artifact appears to produce instabilities in the model thus compromising its

results. Therefore, further improvement depends directly on the removal of oscillations
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from our calculations.



CHAPTER 5

CONCLUSION

The development of exchange-correlation functionals under the KS theory is ongo-

ing in quantum chemistry and solid state physics. Although the exchange-correlation

functional and its hole function do not have closed forms, which would lead to system-

atic improvement, the systematically satisfaction of a number of conditions has proven

to be fundamental to obtain successively improved approximations. DFT has evolved

from LDA, which takes into consideration only the density at each point in space, to

hybrids being able to give a better description of molecules and solids. Therefore, theo-

retical conditions have been and will be fundamental to further development of density

functional approximations.

The goal of this work is twofold: to unveil a new condition of the exact exchange

hole, thus expanding the actually limited number of known conditions, and to propose

four exchange hole models, to which we enforce all these conditions to construct ex-

change functional approximations.

In the first part of this work, details of the biharmonic condition are presented. This

new condition gives the short-range quartic behavior of the exact spherically averaged

exchange hole. We have assessed the performance of this condition for atomic and

molecular systems. We have graphically compared the second- and fourth-order expan-

sions with the exact exchange hole in several reference points. It has been demonstrated

that the fourth-order expansion can represent quite accurately the short-range behavior

of the exact exchange hole. The new condition particularly gives better results when the

exchange hole is delocalized. Also, we have examined the effects of Gaussian-type basis

sets on the fourth-order expansion by studying how the leading term in biharmonic con-

dition behaves when oscillations are inherited from densities and orbitals. We observed

that these oscillations can potentially cause instabilities in applications of the new con-

ditions.

In the second part of this work, we proposed four analytic completely nonempirical,
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exchange hole models: FP, EBR, the H2 Model and BR4. Our approach to the construc-

tion of these models follows the same framework adopted by Becke and Roussel in the

construction of the BR exchange hole model. It consists of systematic satisfaction of

all currently known conditions of the exact exchange hole, namely the normalization,

the non-negativity and the short-range behavior. Our models were designed to be suf-

ficiently flexible to parameterize the short-range quartic behavior of the exact exchange

hole in any system. The solution of a model begins by determining its parameters in all

space, which yields its distribution with respect to the reference point. It has been found

that the FP and H2 models do not have solutions in all points of space.

The FP model is based on an analytic function designed to mimic the exact exchange

hole in any system. In this model, a nonlinear one-dimension equation needs to be

solved in every point of the grid to determine the parameter which is directly related to

the normalization condition and, consequently, solve the hole model. However, we have

found that the model cannot be realized for atoms.

The motivation to find an exchange hole model able to correctly describe chemical

bonding has lead us to propose the H2 model, which is based on the density of the

bonding orbital of the H2 molecule. We have shown that, in order to solve the H2 model,

a system of three nonlinear equations must be solved in all grid points. Also, we verified

that this highly nonlinear problem cannot be solved for simple systems such as atoms.

Since the EBR and BR4 models do have solutions in space, we have assessed their

performances by computing total exchange energies and contributions of the exchange

energies to the atomization energies of small molecules.

In the EBR model, we have introduced a parameter to the original BR model in order

to accomodate the biharmonic condition. The introduction of a new parameter conse-

quently added a new nonlinear equation yielding a system of three nonlinear equations.

It has been found that the EBR does not improve on the BR model with respect to ex-

change energies and exchange-energy contributions to the atomization energies. This

can be explained by the difficulty in finding solutions to the model in all grid points.

Our last proposed model is based on the BR model the difference being that we

have used the fourth-order term instead of the second-order term of the expansion of
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the exact exchange hole. We have examined the accuracy of this model to calculate

exchange energies and exchange-energy contributions to simple chemical systems. It

has been demonstrated that the BR4 does not improve on the BR model with respect to

exchange energies. In reality, in most cases the use of the fourth-order term worsens the

results compared to the BR model as shown in table 4.III. The accuracy of the model

to compute exchange-energy contributions to the atomization energies for single bonded

molecules, shown in table 4.IV , is worse than the BR model. However, for multi-bonded

molecules the BR4 significantly improves on the BR model.

Althought the results of the test calculations have shown unsatisfactory accuracies

for EBR and BR4 models and failures to solve the FP and H2 models in all space, they

served the important purpose of understanding and pinpointing the common problem of

all models. We strongly believe that these oscillations originated in the Gaussian-type

basis sets are the root cause of the problems found in our exchange hole models. This

idea is supported by our study on the influence that Gaussian-type basis sets have on the

expansions of the exact exchange hole.

By inheriting oscillations from orbitals, densities and their derivatives during the

parameterization process, where the fourth-order term of the expansion of the exact ex-

change hole is present, our models become greatly unstable. Thus, these instabilities

added to the natural difficult to solve systems of nonlinear equations can completely

compromise the realization of models(as seen in the FP and H2) or undermine the per-

formance of computations of exchange energies as well as its contributions to the atom-

ization energies(in the case of EBR and BR4). In view of this one may ask: Why not

use very large Gaussian-type basis sets in the test calculations ? Rather than use very

large basis sets in our calculations and find a palliative solution, we prefer to work on

a long-term solution. An interesting idea is to apply the biharmonic condition in re-

gions where it is more effective than the second-order expansion. We have seen that the

former significantly improves the description of the exact exchange hole for nonlocal re-

gions of molecular systems. Therefore, interpolating two exchange holes parameterized

for different regions of a system could be seen as a solution to the problem discussed.

We conclude that the biharmonic condition is a valuable constraint to be employed
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in the parameterization of exchange hole models. However, oscillations originated in

Gaussian-type basis sets can compromise the computations of exchange energies and

its contributions to atomization energies, therefore they should be properly addressed.

In future work we will describe the construction of a new exchange functional which

explores the idea of interpolating two exchange hole models parameterized for distinct

subregions, one exchange hole model enforcing the biharmonic condition for those re-

gions where the exact exchange hole is delocalized while the other applies the curvature

condition to regions where the exact exchange hole is localized.
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Appendix I

Uniform Coordinate Scaling

Let Ψ(rrr1, ...,rrrN) be a normalized function of N-electrons. We follow with the scaling

of Ψ:

Ψ≡Ψ(γrrr1, ...,γrrrN) (I.1)

where γ is a scale factor which affects only the length of the N-particle coordinates rrri

without change on their direction. The physical effect of scaling Ψ in a 3n-dimensional

space is: for γ < 1, Ψ is more diffuse and for γ > 1, the function is contracted. We must

verify that Ψ is normalized after we introduced the scale factor γ . It is known that

1 =
∫

dυΨ
∗(rrr1, ...,rrrN)Ψ(rrr1, ...,rrrN)

=
∫

d(γυ)Ψ∗(γrrr1, ...,γrrrN)Ψ(γrrr1, ...,γrrrN),

where the volume element is

d(γυ) = (γr1)
2 sinθ1d(γr1)...γrN)

2 sinθNd(γrN)

= γ
3(r1)

2sinθ1d(r1)...γ
3(rN)

2sinθNd(rN).

Note that the scale factor γ3 multiplies N particle coordinates, therefore

1 = γ
3N
∫

dυΨ
∗
Ψ, (I.2)

which gives the normalized scale function Ψ

Ψγ ≡ γ
3N/2

Ψ(γrrr1, ...,γrrrN). (I.3)

We define now the kinetic T̂

T̂ =
N

∑
i=1
−1

2
∇

2
i , (I.4)
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and the potential V̂

V̂ =−
N

∑
i=1

Z
|RRR−rrri|

+∑
i 6= j

1
|rrri−rrr j|

, (I.5)

operators for a N-electron atom. Therefore, the expectation values of the respective

operators are

T =
∫

dυΨ
∗(rrr1, ...,rrrN)

N

∑
i=1
−1

2
∇

2
i Ψ(rrr1, ...,rrrN). (I.6)

and

V =
∫

dυΨ
∗(rrr1, ...,rrrN)−

N

∑
i=1

Z
|RRR−rrri|

+∑
i6= j

1
|rrri−rrr j|

Ψ(rrr1, ...,rrrN), (I.7)

The expectation value for the potential energy with the scaled functionis obtain by

Vγ = γ
3N
∫

dυΨ
∗(γrrr1, ...,γrrrN)

N

∑
i=1

(
Z

|RRR−rrri|

)
Ψ(γrrr1, ...,γrrrN). (I.8)

In order to make the V̂γ equal to V̂ we have to scale all terms involving rrr, including the

operator. By definition, the potential operator has an r term as r−1 because in general

(VR)

1
|uuu−vvv|

=
1

ruv
(I.9)

In the case of the kinetic operator, the Laplacian operator may be written as

∇
2
i =

1
r2

[
∂

∂ r

(
r2∂

∂ r

)
+

1
sinθ

∂

∂θ

(
sinθ∂

∂θ

)
+

1
sin2

θ

∂ 2

∂φ 2

]
, (I.10)

where the r term shows as r−2. Therefore, to get the scale factor in the potential operator
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we have to multiply the integral in eq.(I.6) by γγ−1 to get

Vγ = (γγ
−1) γ

3N
∫

dυΨ
∗(γrrr1, ...,γrrrN)

N

∑
i=1

(
Z

γ|RRR−rrri|

)
Ψ(γrrr1, ...,γrrrN)

= γ

∫
d(γυ)Ψ∗(γrrr1, ...,γrrrN)

N

∑
i=1

(
Z

γ|RRR−rrri|

)
Ψ(γrrr1, ...,γrrrN)

= γV.

We apply the same procedure to the kinetic operator to obtain

Tγ = (γ2
γ
−2)γ3N

∫
dυΨ

∗(γrrr1, ...,γrrrN)
N

∑
i=1

(
−1

2
∇

2
i

)
Ψ(γrrr1, ...,γrrrN)

= γ
2
∫

d(γ3N
υ)Ψ∗(γrrr1, ...,γrrrN)

N

∑
i=1

(
−1

2
1

γ−2 ∇
2
i

)
Ψ(γrrr1, ...,γrrrN)

= γ
2T.
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