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Résumé 

La digestion enzymatique des protéines est une méthode de base pour les études 

protéomiques ainsi que pour le séquençage en mode « bottom-up ». Les enzymes sont 

ajoutées soit en solution (phase homogène), soit directement sur le gel polyacrylamide 

selon la méthode déjà utilisée pour l’isolation de la protéine. Les enzymes protéolytiques 

immobilisées, c’est-à-dire insolubles, offrent plusieurs avantages tels que la réutilisation de 

l’enzyme, un rapport élevé d’enzyme-sur-substrat, et une intégration facile avec les 

systèmes fluidiques. Dans cette étude, la chymotrypsine (CT) a été immobilisée par 

réticulation avec le glutaraldehyde (GA), ce qui crée des particules insolubles. L’efficacité 

d’immobilisation, déterminée par spectrophotométrie d’absorbance, était de 96% de la 

masse totale de la CT ajouté. Plusieurs différentes conditions d’immobilisation (i.e., 

réticulation) tels que la composition/pH du tampon et la masse de CT durant la réticulation 

ainsi que les différentes conditions d’entreposage tels que la température, durée et humidité 

pour les particules GA-CT ont été évaluées par comparaison des cartes peptidiques en 

électrophorèse capillaire (CE) des protéines standards digérées par les particules. Les 

particules de GA-CT ont été utilisés pour digérer la BSA comme exemple d’une protéine 

repliée large qui requit une dénaturation préalable à la digestion, et pour digérer la caséine 

marquée avec de l’isothiocyanate de fluorescéine (FITC) comme exemple d’un substrat 

dérivé afin de vérifier l’activité enzymatique du GA-CT dans la présence des groupements 

fluorescents liés au substrat. La cartographie peptidique des digestions par les particules 

GA-CT a été réalisée par CE avec la détection par absorbance ultraviolet (UV) ou 

fluorescence induite par laser. La caséine-FITC a été, en effet, digérée par GA-CT au même 

degré que par la CT libre (i.e., soluble). Un microréacteur enzymatique (IMER) a été 

fabriqué par immobilisation de la CT dans un capillaire de silice fondu du diamètre interne 

de 250 µm prétraité avec du 3-aminopropyltriéthoxysilane afin de fonctionnaliser la paroi 

interne avec les groupements amines. Le GA a été réagit avec les groupements amine puis 

la CT a été immobilisée par réticulation avec le GA. Les IMERs à base de GA-CT étaient 

préparé à l’aide d’un système CE automatisé puis utilisé pour digérer la BSA, la 

myoglobine, un peptide ayant 9 résidus et un dipeptide comme exemples des substrats 

ayant taille large, moyenne et petite, respectivement. La comparaison des cartes peptidiques 
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des digestats obtenues par CE-UV ou CE-spectrométrie de masse nous permettent d’étudier 

les conditions d’immobilisation en fonction de la composition et le pH du tampon et le 

temps de réaction de la réticulation. Une étude par microscopie de fluorescence, un outil 

utilisé pour examiner l’étendue et les endroits d’immobilisation GA-CT dans l’IMER, ont 

montré que l’immobilisation a eu lieu majoritairement sur la paroi et que la réticulation ne 

s’est étendue pas si loin au centre du capillaire qu’anticipée. 

 

Mots-clés: Cartographie peptidique, Réticulation, Glutaraldéhyde, Chymotrypsine, 

Électrophorèse capillaire, Réacteur d’enzyme immobilisé (IMER) 
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Abstract 

Digesting proteins using proteolytic enzymes is a standard method in proteomic studies 

and bottom-up protein sequencing. Enzymes can be added in solution or gel phase 

depending on how the protein has been isolated. Immobilized, i.e., insoluble, proteolytic 

enzymes offer several advantages such as reusability of enzyme, high enzyme-to-substrate 

ratio, and integration with fluidic systems. In this study, we prepared glutaraldehyde-

crosslinked chymotrypsin (GA-CT), which creates insoluble particles. The immobilization 

efficiency was determined by absorbance spectrophotometry and found to be 96% of the 

total amount of chymotrypsin added. Different immobilization (i.e., crosslinking) 

conditions such as buffer composition/pH and initial mass of CT during crosslinking as 

well as different storage conditions such as temperature, time and humidity for the GA-CT 

particles were evaluated by comparing capillary electrophoretic (CE) peptide maps of 

protein standards digested with the particles. The GA-CT particles were used to digest BSA 

as an example of a large folded protein that needs denaturation prior to digestion, and 

casein-fluorescein isothiocyanate (FITC) as an example of a small, labeled substrate to test 

enzyme activity in the presence of substrate-bound fluorescent groups. Peptide mapping of 

digests from GA-CT particles was achieved by CE with ultraviolet (UV) absorbance or 

laser induced fluorescence (LIF) detection. FITC-labeled casein was digested by GA-CT to 

the same extent as with free (i.e., soluble) CT. An immobilized enzyme microreactor 

(IMER) was fabricated by immobilizing CT inside a 250 µm i.d. fused-silica capillary tube 

pre-treated with 3-aminopropyltriethoxysilane to functionalize the inner walls with amine 

groups. Glutaraldehyde was reacted with the amine groups and then CT was immobilized 

by crosslinking to the GA. IMERs based on GA-CT were fabricated using an automated CE 

system and used to digest BSA, myoglobin, a 9-residue peptide and a dipeptide as 

examples of large, medium and small substrates. Digests were studied by comparing 

peptide maps obtained by CE coupled to either UV or mass spectrometric (MS) detection in 

order to evaluate immobilization conditions as a function of buffer composition/pH and 

reaction times. A separate study, which used fluorescence microscopy to investigate the 

extent and location of GA-CT immobilization in the IMER, showed that immobilization 
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only takes place primarily near the capillary walls and that crosslinking does not extend as 

far into the center of the IMER as had been expected. 

 

Keywords: Peptide mapping, Crosslinking, Glutaraldehyde, Chymotrypsin, Capillary 

electrophoresis, Immobilized enzyme reactor (IMER) 
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1.1. Determination of Proteins 

The human body is made of billions of living cells, each containing a vast number of 

biomolecules. Knowing the composition of cells, tissues and biological fluids plays an 

important role in state-of-health studies. Abnormalities in cellular functions can cause 

different responses, usually a disease state [1, 2]. Biochemical studies have provided much 

information about diseases and biochemical markers such as proteins are used as indicators 

for diagnosis [1-3]. While DNA is considered the blueprint of life, proteins can be 

considered as its tools. To study proteins’ functions, it is important to understand their 

structure, composition and interactions. The field of research aimed to study proteins 

emerged in 1994 and Wilkins named it “proteomics” [4]. The word proteomics is based on 

the philosophy of the previously introduced terms “genomics” and “genome” describing the 

sets of genes in an organism, where the term “omics” indicates the overall understanding of 

living cells [5, 6]. Proteomics studies include protein separation, identification, 

quantification and sequence analysis, and provide a means for understanding and mapping 

protein function in cells. Additionally, proteomics studies have provided opportunities for 

introducing new medicins. While many earlier medicines are small non-protein molecules, 

several new drugs have been derived from proteins in last two decades. Proteomic studies 

have helped in reconstituting endogenous proteins such as insulin, growth hormones, blood 

clotting factors and reproductive hormones as medicines with pivotal impact in the 

treatment of many diseases [7]. The proteome of a cell can show large variations that 

depend on cellular and environmental conditions. The proteome has a dynamic nature 

because of many molecular interactions and post-translational modifications. The number 

of modified and unmodified proteins in a cell is higher than the number of genes that code 

for them. Additionally, many of these proteins are at low abundance, which makes 

proteomic analysis a challenge. Such a complex sample requires very robust separation 

techniques prior to sequence analysis or quantification as well as highly sensitivity 

detectors. 

The ultimate goal of analytical methods used in proteomics is to identify and quantify 

all individual proteins in a cell. Finding a single method is challenging, however a 

combination of sequential methods can provide high resolution analysis for a complex 
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protein mixture. Mass spectrometry (MS) and multidimensional liquid chromatography 

(LC) are the two dominant analytical separation techniques used in structural proteomics 

studies [8]. A high quality separation is essential for protein identification as T. Rabilloud, 

a leader in the field of protein separation, emphasized: “Because of the complexity of 

biological samples, it is absolutely necessary to separate (and sometimes quantify) the 

analytes prior to their measurement with mass spectrometry” [9]. 

Proteins are made of linear chains of amino acids. These amino acids are linked 

together by a peptidic bond between the α-amino group of one amino acid and the α-

carboxylate group of another. Proteins have four levels of structure, namely: primary, 

secondary, tertiary and quaternary. The specific number and sequence of amino acids in a 

linear polypeptide is called the primary structure. Analytical separations of polypeptides by 

techniques such as LC and MS are usually based on the primary amino acid sequence. 

A protein’s secondary structure is the local structure of neighboring amino acids. Once 

the primary structure is formed, the single chain can twist into an α-helix, or lie alongside 

itself and form a β-pleated sheet. These structural conformations are called secondary 

structure. All proteins are defined first by their primary structure and then secondary 

structure. Larger proteins such as myoglobin or bovine serium albumin (BSA) can have a 

tertiary structures and quaternary structures. 

Tertiary structure refers to the three dimensional shape formed when the peptide chain 

curls and folds. Some forces such as covalent disulfide bonds between two cysteines, 

electrostatic (ionic) interactions mostly between acidic and basic side chains, hydrogen 

bonds, van der Waals forces, and hydrophobic side chains pushed away from water create 

and hold the tertiary structure. It is this structure that gives a protein its unique function 

[10]. Not all proteins have quaternary structure. Quaternary structures exist only for 

proteins containing more than one polypeptide chain bonded to the others in the same 

protein via non-covalent interactions. 

Identifying and quantifying a large protein can be quite challenging. One way to study 

large proteins is to cleave them into smaller segments called polypeptide chains. This is 

frequently accomplished by enzymatic digestion. Enzymes are incredibly important 
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biological catalysts exerting the ability to cut proteins by specific recognition of certain 

amino acids in the primary structure. An enzyme catalyzes a single reaction or class of 

reactions with its protein substrates, a property known as enzyme specificity. For example, 

chymotrypsin cleaves peptide bonds primarily on the carboxy-terminal side of the amino 

acid residues phenylalanine, tryptophan and tyrosine in a protein. These amino acids all 

contain an aromatic group, which makes chymotrypsin specific for this class of molecules. 

Enzymes are very specific and a powerful means of cleaving proteins into smaller 

polypeptides to allow analysis. However, enzymes are sometimes not able to function if the 

protein substrate cannot reach the enzyme’s active site. When a protein is large and highly 

folded, the enzyme has very limited access to the internal amino acid residues and therefore 

it will have limited cleavage sites accessible. This affects the amount of polypeptide 

fragments that can be created and may affect the analytical methods for protein 

identification. In order to increase the extent of enzymatic digestion for large or heaviliy 

folded proteins, the protein can be unfolded, i.e., the proteins lose their tertiary structure. 

This can be achived by denaturing the protein [10], generally by heat or use of chemical 

reactions. At high temperatures, the energy of heat can overcome the hydrophobic 

interactions that hold a protein together and cause the protein to partially unfold; however, 

this is a reversible process and the protein may refold at lower temperature. Chemical 

chaotropic reagents such as urea [11] can break the strong hydrogen bonds within a 

protein’s secondary and tertiary structure and reducing agents such as dithiothreitol can 

break the intramolecular disulphide bonds between two cysteines allowing the protein to be 

unfolded. 

 

1.1.1. Sample Preparation for Structural Proteomics Studies 

Proteins are usually contained within intracelleular strucutres inside a cell. Often cell 

wall disruption is required before proteins can be effectively solubilized and extracted. 

Various chemical and physical techniques can be used to destroy the cell wall [12, 13]. The 

next step involves protein solubilisation and extraction. This is often aided by surfactants 

such as sodium dodecyl sulfate (SDS). Due to the wide range of proteins and interfering 
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contaminants that SDS solubilisation can produce, protein separation at this point is 

imperative. Protein enrichment during separation is the next step, which increases the 

concentration of the proteins of interest and decreases the concentration of interfering 

compounds. Proteins treated with SDS are usually fractionated either by two dimensional 

polyacrylamide gel electrophoresis (2D-SDS-PAGE), which separates proteins based on 

their isoelectric point (pI) and molecular mass, or by chromatographic methods such as LC, 

depending on the sample complexity (Figure 1.1) [14]. Isolation (fractionation) is usually 

followed by protein digestion using proteolytic enzymes. The resulting polypeptides are 

then separated by LC methods with higher resolution than those used for proteins, or by 

MS or capillary electrophoresis (CE) because analysis of peptides yields higher resolution 

and more accurate identification than analysing the intact proteins. 

 

 

Figure 1.1. General schematic for protein extraction, enrichment and separation. 
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Since the early days of biotechnology, some proteins have been known to be difficult 

to digest due to their tight folding. As mentioned above, in order to conduct proteomic 

studies on large proteins, digestion by using denaturation is usually necessary. For example, 

Figure 1.2 shows the undenatured (folded) native tertiary structure of bovine serium 

albumine (BSA) with the locations of Phe (F), Tyr (Y) and Trp (W) highlighted; the amino 

acid residues that should be cleaved by using chymotrypsin (Figure 1.2). However, due to 

the folded structure of BSA these sites are not readily accessible for cleavage, which makes 

denaturation a critical step in protein analysis of BSA [15]. 

 

 

Figure 1.2. Tertiary structure of the native protein, the yellow sites indicate the presence of 
F, W or Y in BSA crystal (http://www.ncbi.nlm.nih.gov/Structure/MMDB/mmdb.shtml). 

 

Although fewer sample preparation steps are needed for thermal denaturation, this 

method can lead to protein aggregation or renaturation upon cooling. The mechanisms of 

protein aggregation are not fully understood, but it is known that protein aggregation causes 

insolubility of proteins [16]. On the other hand, chemical denaturation is commonly used as 

an initial step for digesting large proteins. It involves unfolding with urea, reduction of 

disulfide bonds and then alkylation of the cysteine –SH groups to prevent reformation of 

disulfide bridges. In the present study, for most experiments, BSA was chemically 

denatured in this way prior to digestion by chymotrypsin. Undenatured BSA was also 

digested using this enzyme in a comparative way to study the effect of denaturation. 
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1.1.2. Enzymatic Digestion 

Proteomic studies typically proceed by one of two types of digestion: “in-gel” or “in-

solution”. The in-solution digestion is used for proteins fractionated by LC, with collected 

fractions redissolved in buffer and then enzyme added to the solution in order to digest the 

protein substrates. The in-gel digestion is for proteins fractionated by gel electrophoresis. 

The isolated protein is embedded in a gel matrix, already extracted from the whole gel, and 

the enzyme solution is added to the slice of the gel. In-gel digestion offers the benefit of 

removal of low molecular weight impurities [17]. It normally includes destaining, 

reduction, and alkylation of –SH groups, enzymatic cleavage of protein, peptide extraction 

from the gel, and finally analysis by MS or LC-MS, including sequencing by tandem MS 

[14]. 

 

 

Figure 1.3. The workflow of in-gel protein digestion including gel band excision, 
reduction, alkylation and finally enzymatic digestion. 

 

Proteolytic enzymes can undergo autoproteolysis, which is self-digestion. 

Autoproteolysis leads to interfering background peptides during identification and 

quantification. In both in-solution and in-gel digestions, the enzyme-to-substrate ratio must 

be low to avoid having autoproteolysis products detected as they are interfering background 

peptides. Since enzymes are catalysts and not consumed in the substrate digestion, using 

low amounts of enzymes typically suffice in these reactions. However, such enzyme 

reactions are slow, as the reaction rate correlates positively with the amount of the enzyme 

used. In-gel digestions are often carried out for 18-24 h (“over night”) to allow complete 
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digestion. An alternative approach is to use a larger amount of enzyme for faster enzymatic 

reaction, or turnover. This is achieved by immobilizing enzyme, which can greatly reduce 

autoproteolysis and thus the nuisance of interfering background peptides. There is a 

limitation to increasing the enzyme concentration that depends on the turnover number of 

the enzyme. This is further described below under Section 1.2.  

Various proteolytic enzymes are used for protein digestion, including trypsin, 

chymotrypsin and pepsin. Trypsin is one of the most commonly used enzymes for this 

purpose. It cleaves peptide bonds at the C-terminal side of Lys and Arg residues with very 

high selectivity, producing a modest number of polypeptides of small and medium length 

which are easily separated by most analytical separation techniques. The separation of such 

peptides is called “peptide mapping” of the parent protein and is described further in the 

next section. Traditional enzymatic digestion in solution or in gel can be time consuming 

because of the low concentration of enzyme [14], a drawback that is addressed further 

under Section 1.2. 

 

1.1.3. Peptide Mapping 

Proteomics analysis can be performed in either “bottom-up” (also called shotgun), or 

“top-down” mode (Figure 1.4). In the latter mode, protein fragmentation is not achieved by 

using enzymes; it takes place in a mass spectrometer due to specific collisionally induced 

dissociation. The “bottom-up” approach involves digestion of proteins using a proteolytic 

enzyme that cleaves at well-defined sites to create a peptide mixture. For both modes, 

proteins from biological samples are extracted then fractionated by gel electrophoresis or 

LC (Figure 1.1) because of the complexity of the sample [18].  
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Figure 1.4. General workflow for bottom-up and top-down proteomics [19].  
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In the “bottom-up” approach to a proteomics study, the sample preparation usually 

includes proteolysis of proteins into peptides (protein digestion) by using an enzyme 

leading to a more effective analysis because peptides are less complex than proteins and 

easier to separate by analytical techniques. Every enzyme cleaves only specific peptide 

bonds according to the amino acid residue. Therefore, the peptides resulting from the action 

of a known enzyme on each given protein are easier to identify using protein databases 

(e.g., National Center for Biotechnology Information (NCBI) protein resources or 

UniProtKB/Swiss- Prot) if mass spectrometric detection is used and thus the exact masses 

of the peptides are known. This is referred to as peptide mass mapping and can oftern be 

carried out without the need of chromatography techniques, for example by matrix assisted 

laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF MS). 

Additionally, the peptides can be sequenced if an MS/MS (tandem MS) analyser is used, 

which will fragment each parent peptide (precursor) separated first in the LC or CE “map” 

and/or the first analyser of the spectrometer. This reveals the amino acid sequence of the 

peptides and provides a very high confidence in protein identification using comparison 

with genomic databases. It also provides primary sequence information for newly 

discovered proteins and is used in determining post-translational modifications (PTMs) of 

proteins.  

Peptide mapping has also been conducted by CE, a complementary technique to 

HPLC, either to compare the fingerprint separation of one sample to another, or as CE-MS 

and CE-MS/MS to identify peptides according to their mass followed by identifying the 

proteins via genomic database searching [18, 20]. The map or fingerprint alone (the 

electropherogram or the chromatogram) acquired with photometric detection can be used to 

compare two samples without the need to identify each peptide by its mass.  

The amount of a sample available for proteomics studies is often limited, which can 

affect the accuracy of an analysis. CE is an ideal technique in this respect because it 

requires only small amounts of sample and can achieve separation efficiencies of over one 

million theoretical plates [20-26]. CE is a powerful tool for peptide separation such that 

peptide mapping was one of the first applications shown when CE was first described in the 

literature [27-31]. For unambiguous identification of peptides separated by CE, it is coupled 
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with MS. Kasicka published a very good review on different peptide separation methods 

using CE [32, 33]. 

Regardless of the technique chosen for peptide mapping, the use of enzymes is an 

unavoidable step to preparing the protein substrates. Due to the drawbacks of using 

enzymes in solution or for in-gel digestion, as described under Section 1.1.2., the enzyme 

immobilization approach has been used widely and has recently grown in popularity. 

 

1.2. Enzyme Immobilization 

The classical method of enzyme digestion, whether done in solution or “in-gel” 

following PAGE fractionation, suffers from long digestion time and interference of enzyme 

autoproteolysis products during the quantification and identification. To decrease the 

autoproteolysis, typically a low enzyme to substrate ratio is used, usually 1:20 to 1:100, 

which indicates that the enzymatic reactions are slow (16-24 h) [34-37]. Using enzyme 

immobilization can address this limitation and expedite digestion without the interference 

from autoproteolytic peptides. 

 

1.2.1. Immobilized Proteases 

The immobilization of enzymes for chemical analysis applications has become more 

popular during the last two decades. In this technique, an enzyme can be immobilized by 

several methods. These methods include: binding to a solid-phase carrier, [38, 39] or glass 

beads as a support [40-44]; encapsulating by a polymer [45]; entrapping using sol-gels [46, 

47]; and crosslinking as a carrier free immobilized enzyme [48-53]. Several immobilization 

approaches have been demonstrated, including entrapment, adsorption, covalent binding, 

crosslinking or affinity-based interaction.  
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1.2.1.1. Covalent Immobilization 

In the covalent binding method, a biocatalyst is bound to a surface or solid support 

through functional groups. These functional groups are those which are not essential for the 

catalytic activity of the biocatalyst. The binding is normally carried out by initial activation 

of the surface using multifunctional reagents (e.g., glutaraldehyde), and then enzyme 

coupling to the activated support. Although this method provides a high stability of enzyme 

immobilization, the reproducibility is sometimes poor and it needs high amounts of 

bioreagent [51, 54, 55]. It is still one of the most popular methods of immobilization since 

it provides very strong binding of enzyme with minimal leakage. Non-covalent bonds are 

normally weaker and changing the pH, temperature, or ionic strength can compromise the 

enzyme and thus its reaction with the substrate [56]. 

 

1.2.1.2. Entrapment 

Enzymes can be immobilized in three-dimensional matrices such as an 

electropolymerized film, carbon paste, a photopolymer, a polysaccharide or a silica-based 

sol-gel. This immobilization method is easy to perform and the activity of the enzyme is 

preserved during the immobilization process because there is no chemical reaction between 

the monomers and the enzyme. The drawbacks for this method include biocomponent 

leaching and possible diffusion barriers [49]. 

 

1.2.1.3. Adsorption 

One of the easiest methods of immobilization is enzyme adsorption onto a solid 

support. In this method, the enzyme is dissolved in a solution and a solid support is in 

contact with the solution for a fixed period of time. The adsorption is based on weak bonds 

such as van der Waals forces and hydrophobic interactions. The drawback for this method 

includes desorption of the enzyme if there are changes in temperature, pH and ionic 

strength [55]. 
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1.2.1.4. Affinity 

This method provides an immobilization based on enzyme orientation and molecular 

recognition. It creates an affinity bond between an activated support and a specific group of 

the enzyme sequence. This technique allows controlling the enzyme orientation in order to 

reduce enzyme inactivation and site blocking. The limitation of this method is the need for 

the presence of specific groups on the enzyme. In some cases the affinity tag needs to be 

attached to the protein sequence by genetic engineering [57], but the most common practice 

is to covalently bind biotin to the enzyme and have it react strongly with streptavidin that is 

attached to a solid support. 

 

1.2.2. Immobilization by Glutaraldehyde-Mediated Crosslinking 

There is an increasing interest in using carrier-free immobilized enzymes such as 

crosslinked enzyme crystals (CLECs). These do not lead to extra inactive mass, as a solid 

carrier does, which decreases the volumetric activity. One of the carrier-free 

immobilization methods is crosslinked enzyme aggregates or CLEAs [52, 58]. This method 

includes changing the hydration state of an enzyme or altering the electrostatic constant of 

the enzyme solution by adding appropriate aggregation agents. The soluble enzyme 

precipitates as insoluble aggregated enzyme with native confirmation retained. The next 

step is crosslinking the aggregated enzyme by adding a crosslinking agent. CLEAs need 

highly purified protein and thus a labour-intensive recrystallization step [48]. Using the 

glutaraldehyde immobilization technique described in this thesis, the enzyme is 

immobilized directly by adding the crosslinking agent and without need of crystallization. 

In crosslinking techniques, enzymes are immobilized using a bifunctional agent such as 

glutaraldehyde. This technique is simple and yet provides fairly strong chemical crosslinks 

between enzyme molecules, depending on the pH. The main drawback however is the loss 

of enzyme activity due to distortion of the active enzyme’s conformation during 

crosslinking [40, 53, 57, 59]. 
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In the present study, enzyme immobilization was conducted by using the crosslinking 

technique. Chymotrypsin, the enzyme used for the study, was immobilized (i.e., 

insolubilized) using glutaraldehyde as a crosslinking agent. Chymotrypsin has been 

immobilized on several sorbents according to the literature [60-65]. Using an immobilized 

protease overcomes the previously discussed drawbacks. Additionally, this method 

improves the stability of the enzyme and offers the benefit of reusability. Since the enzyme 

stability is promoted in this method, a highier enzyme-to-substrate ratio can be used and it 

diminishes the autoproteolysis significantly [41, 53, 66-71]. One of these methods, 

glutaraldehyde (GA)-mediated crosslinking, has been used for the research described in the 

present thesis and is thus discussed further. 

Glutaraldehyde is one of the most common protein crosslinking agents. It is an 

inexpensive and commercially available agent. GA exists in several forms (monomerique 

and oligomerique) in aqueous solution which can all react with lysine residues (the ε-amino 

group) of proteins. Most proteins contain several lysine residues that are usually located on 

the protein surface because of the polar nature of the amine group. The lysine residues in 

chymotrypsin are not involved in its catalytic site, which allows GA crosslinking to 

maintain the enzyme’s conformation and therefore its biological activity. One of the 

common mechanisms proposed for crosslinking is between an aldehyde group of GA and 

an ε-amino group of lysine in the enzyme (Figure 1.5) [50]. In the present study, we used 

GA-mediated crosslinking of chymotrypsin. The exact mechanism of GA reaction with a 

protein’s amino groups is not clearly understood and a large number of mechanisms have 

been reported in the literature [50]. It seems that more than one mechanism could be 

responsible for GA crosslinking with chymotrypsin, leading to a range of conjugates, but 

this aspect was not studied in the current work. 
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Figure 1.5. One of the common crosslinking reactions between glutaraldehyde and an 
enzyme, were Enz-N represents a lysine ε-amino group of the enzyme[50]. 

 

Although we expect a partial enzyme inactivation because of the crosslinking, 

sufficient enzyme activity was retained in most of our experiments. Additionally, our GA-

crosslinked enzyme generally shows a good stability and can be recovered and reused, as 

despcribed in Chapters 3 to 6. 

Immobilized enzyme can be used in batch form or in flow systems such as 

immobilized-enzyme reactors (IMERs). An immobilized enzyme reactor (IMER), usually 

in the format of a flow-through cartridge, can be prepared from various stationary phases 

and offers reduced cost of solvent and solution in the case of expensive enzymes or low 

amounts of substrate [72]. Since IMERs can operate in a fluidic style, they can be coupled 

with micro-column protein purification upstream and with high sensitivity peptide mapping 

methods downstream for protein characterization. Using the IMER also makes automation 

of digestion easier. The IMER is usually coupled with other instruments such as capillary 

electrophoresis [32, 73-76], HPLC [77, 78] or mass spectrometry [27, 72, 79, 80].  

The on-line digestion of proteins can be automated and therefore faster protein 

identification made. By using this method, manual sample handling can be greatly reduced 

because the reactor can also be coupled on-line to separation and detection schemes, with 

the advantage of automation being especially important in microfluidic systems. 

 

1.2.3. Immobilized Enzyme Reactor (IMER) 

Miniaturising devices for chemical analysis has been a rapidly growing trend in recent 

years [81-83]. Small sized immobilized enzyme reactors (IMERs) are not exceptions. 

Several studies have been conducted on IMERs for proteomics studies. Since the analytical 



16 

 

 

 

performance of an IMER is directly affected by the immobilization process, many studies 

have been done to develop successful immobilization strategies to advance sensitivity and 

stability of IMERs. The best method for enzyme immobilization depends on whether higher 

sensitivity or more stability is desired for each application. Other factors such as 

reproducibility, cost and difficulty of the immobilization process need to be considered 

[56]. 

Several IMER preparation techniques have been reported in the literature, using most 

often either a packed column or by derivatizing the enzyme on the inner wall of an open 

tube capillary. Bonneil et al.[40, 84] used enzyme-bound beads which is one of the popular 

methods because of its simplicity. They used CPG-Trypsin packed inside the IMER and 

digested β-casein and insulin chain B as substrate. Although the separation efficiency was 

poor because of valve design for the on-line method, the system was reproducible in terms 

of migration time [40, 84, 85]. 

One of the first studies on trypin immobilization coupled to CE separation was 

performed by Kuhr’s group [86]. They demonstrated that trypsin can be immobilized onto 

the inner wall of a fused-silica capillary to produce an open tubular heterogeneous enzyme 

reactor. Shan et al. [87] used δ-gluconolactone as an enzyme to prepare an IMER. Their 

preparation method took about 10 h and needed high temperature (180 °C) and nitrogen 

gas. Although they prepared the IMER, they only used it to separate peptides and DNA 

markers and not to digest substrate. Another IMER was described by Krenkova et al. [88] 

using TPCK-treated trypsin and pepsin A as the enzymes. They attached the enzyme on the 

inner wall of a capillary. The IMER preparation method they used needed more than 30 h, 

100 °C and nitrogen gas where cytochrome C and β-casein as substrates were passed 

through the IMER using pressurized nitrogen. They only used the native protein and not 

denatured substrate. Another study was conducted by Wood et al. [89] who also used 

TPCK-trypsin and had a long IMER preparation time of about 35 h and needed an oven to 

reach 110 °C. They digested Nα-benzoyl-L-arginine ethyl ester (BAEE) and measured the 

ratio of Nα-benzoyl-L-arginine (B-Arg) peptide from substrate to internal standard of Nα-

Z-L-arginine (Z-Arg) in order to calculate the enzyme activity. The above studies only 

represent a fraction of those reported for proteolytic IMERs in the past 20 years. 
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In the methods mentioned above, the IMER preparation took a long time and needed 

instruments other than the CE itself, such as an oven and nitrogen gas. In our study, we 

attempted to simplify these steps and used only a common CE system with the standard 

injection and flushing pressures. We used a temperature as high as was possible in the CE 

itself, and not a complementary oven for IMER preparation. The simplified technique helps 

to achieve automation with less complexity and fewer steps. Additionaly, we used 

denatured substrate as well as the native forms to study the effect of denaturing agents on 

the IMER digestion by GA-crosslinked chymotrypsin. 

 

1.3. Chymotrypsin as the Protease 

In principle, any enzyme can be immobilized for a vast range of applications. Since the 

current study is focused on application to proteomics, only the proteases trypsin and 

chymotrypsin are discussed below.  

Several immobilized proteases have been reported for proteomics studies, ed such as 

pepsin [90], trypsin [42, 72, 86, 91-94], and chymotrypsin [53, 64]. Although the Waldron 

research group had used trypsin for previous studies, chymotrypsin has been used in the 

past few years for reasons described below. The highly specific cleavage of peptide bonds 

by trypsin at the C-terminal side of residues lysine and arginine in a substrate [72] indicates 

that these two amino acids must be “available” in their native state to be recognized by the 

enzyme’s active site. On the other hand, our group was interested in using the ultra-high 

sensitivity of CE-LIF-based peptide mapping as a means to characterize the efficiency of 

glutaraldehyde (GA)-crosslinked enzyme for low substrate concentrations. Since many 

fluorescently labeled proteins have been derivatized at the ɛ-amine group of lysine residues, 

trypsin will not cleave the protein here. [95-100]. Therefore, trypsin cleaves the labeled 

substrate only at its arginine sites,, which is a less abundant residue in many proteins. 

Because of this drawback for using trypsin, chymotrypsin was selected as an alternative to 

allow characterization of immobilized enzyme to benefit from using CE-LIF for peptide 

mapping.  
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Chymotrypsin cleaves the substrate on the C-terminus of phenylalanine (Phe), tyrosine 

(Tyr), and tryptophan (Trp) residues [101, 102]. An advantage of this is that all 

chymotryptic peptides contain one aromatic amino acid which allows their detection by 

UV-absorbance, although the molar absorptivity of the peptide is low. Chymotrypsin is a 

25 kDa protease with a single polypeptidic chain of 245 amino acid residues. It has been 

used in food industry and exerts pharmaceutical properties [103, 104]. For example, protein 

hydrolysis using chymotrypsin enhances nutritional characteristics in food products and 

reduces allergic properties and bitterness. Since large amounts of this enzyme are required 

for industrial purposes, its recovery and reuse is documented [105] 

In the present study chymotrypsin was immobilized using GA with a similar procedure 

developed previously in our lab for trypsin [51, 106].  

 

1.4. Research Objectives and Thesis Structure 

A key step in obtaining proteomics information includes enzymatic digestion of protein 

into smaller peptides, which is the “bottom-up” approach [107]. The enzyme can be used in 

immobilized form, which offers several benefits including its reusability, reducing its 

autoproteolysis and, therefore, the possibility of using higher enzyme-to-substrate ratios 

[36]. Immobilized enzymes can be used batch-wise or in flow systems such as IMERs [85] 

and various studies have been conducted for both formats [36, 49, 51, 84]. Nevertheless, 

there is a need for additional investigation on immobilizing enzymes by GA, especially in 

micro-reactors, and studying their effectiveness in digesting different sizes of substrates. 

Therefore, the general hypothesis that guided the current work was to develop and 

characterize a simple and rapid in situ enzyme immobilization procedure for GA-

crosslinked enzymes to make a microreactor (IMER) compatible with microcolumn 

separations and mass spectrometry (MS). The novelties of this approach includes using 

chymotrypsin, which provides cleavage sites different of those trypsin and facilitating 

digestion of fluorescently labeled proteins, making an in-situ IMER using chymotrypsin, 

and digesting different substrates and separating the digests. The objectives of the present 

study include the short term goal of making carrier-free immobilized enzyme preparations 
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and an IMER by using GA as a crosslinking agent. The long term goal is finally coupling 

the IMER with microcolumn protein purification upstream and with high sensitivity peptide 

mapping methods downstream for protein characterization.  

Using polymers and other supports as enzyme carriers lead to “dilution of activity” of 

enzyme due to the presence of a large amount of non-catalytic mass. Compared with 

immobilizing the enzyme on a solid support, the GA-based crosslinking method has the 

advantage of higher volumetric activity because of the absence of extra inactive mass, e.g., 

the carrier [48]. It also eliminates the necessity of packing micro-columns with enzyme-

bound beads. The GA crosslinking immobilization method in bulk format, its optimization, 

and the effect of buffers are examined in Chapter 3. The preparation of substrate is also 

discussed. In order to achieve a more complete digestion, denaturing the substrate is needed 

to expose more residues and subsequently make more cleavage sites accessible to enzyme, 

especially when a large folded protein substrate is used [108]. BSA was chosen as a large 

model substrate, which was first denatured, reduced and alkylated and then digested using 

GA-immobilized chymotrypsin. 

In the present study, we used chymotrypsin as the enzyme instead of the most 

commonly used enzyme in proteomics: trypsin [40, 84, 88, 89]. When substrate 

concentration is low, peptide mapping by CE-UV can be substituted by CE-LIF for 

fluorescently labeled substrates digested with chymotrypsin, as described above in Section 

1.3. Since chymotrypsin cleaves the substrate at residues Phe, Tyr and Trp, fluorescence 

labeling at lysine does not interfere with the digestion. Digesting fluorescently labeled 

substrates using immobilized chymotrypsin as well as comparing GA-immobilized to 

soluble chymotrypsin are discussed in Chapter 4. We also show that immobilzed 

chymotrypsin can be used to digest denatured BSA after being stored wet (i.e., in solution) 

or dried, where the digests were mapped using CE-UV. Of most significance in Chapter 4 

is the first example of making our in situ IMER based on GA crosslinking of chymotrypsin. 

We describe how chymotrypsin is immobilized in a fused silica capillary using the CE 

system to automate reagent deliver. Then myoglobin, as a medium sized substrate, is 

digested in the IMER and the digests mapped using CE-MS. This latter technique is 

described briefly in Chapter 2.  
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In Chapter 5, the digestions of substrates of different sizes using the IMER are 

discussed. Various times and pressures were applied using the automated CE system to 

pass the substrates through the IMER. Peptide mapping of the digests was made using CE-

UV and/or HPLC-MS. We also conducted certain experiments to study the effect of 

denaturation agents on the IMER digestion of BSA, a large model substrate.  

In order to better understand the extent of immobilization of enzyme in the IMER 

capillary, a fluorescent microscopy imaging study was done, as described in Chapter 6. The 

IMERs were prepared in two lengths, 3 cm and 43 cm. A fluorescein isothiocyanate 

solution was passed through the IMER at various stages of fabrication and the confocal 

laser scanning microscopy (CLSM) images show its attachement to the enzyme and/or the 

amine-functionalised capillary wall. The CLSM system is shown in Chapter 2. 

Chapter 7 presents a summary of the results obtained from chapters 3 to 6 and puts 

them into prespective with respect to the short term goals of the research and to other 

studies already published. Future experiments are proposed to improve on the results 

obtained and to work towards the long term goals. 

  



 

 

 

Chapter 2. Analytical Techniques 
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Several analytical techniques were used in the present study to perform enzyme 

immobilization, digestion, peptide separation (mapping) and identification. These 

techniques are described in the present chapter. Separations were mostly performed by 

capillary electrophoresis (CE) using ultraviolet (UV) absorbance detection, CE with laser 

induced fluorescence (LIF) detection, and CE coupled to a single quadrupole mass 

spectrometer (MS). To investigate the crosslinked enzyme inside the immobilized enzyme 

reactor (IMER) capillary, a confocal laser scanning microscope (CLSM) was used to 

visualise fluorescence labeling of the enzyme.  

 

2.1. Capillary Electrophoresis 

 CE is a high resolution low solvent consumption analytical separation technique that is 

powerful enough to give good peptide maps using UV detection because peptide bonds 

absorb UV. However, the limit of detection (LOD) is high and it is challenging using 

solutions with very low concentrations [40, 109]. On the other hand, CE coupled with laser 

induced fluorescence (LIF) can provide high sensitivity detection for fluorescent analytes 

[110, 111]. CE is somewhat more difficult to interface with MS due to limitations including 

the need of a volatile separation buffer and a low flow regime. This is because the CE flow 

rate is lower than the electrospray ionisation (ESI) make-up flow, which needs to be at the 

range of several µL/min. However, CE-MS offers the benefit of accurate peptide 

identification for known proteins in the many proteomic databases [20, 28, 112, 113].  

The CE technique was first described in 1967 by Hjerten [114]. The technique became 

well known in the 1980s when Jorgenson and Lukacs showed that using CE could increase 

the resolution of liquid phase separations to over 100,000 theoretical plates[115]. CE has 

been used successfully in separation and analysis of various molecules such as vitamins, 

drugs, peptides, proteins, nucleotides and nucleic acids [22, 40, 42, 45, 50, 96, 116]. Some 

inherent characteristics of CE include advantages such as small sample size, rapid analysis, 

low solvent consumption, high resolution and high efficiency of analysis. These advantages 

have made CE an important complementary technique to HPLC for instrumental analysis in 
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chemistry, biochemistry and clinical laboratories. Due to these advantages, CE has been 

widely used in several proteomic studies [40, 88, 117]. 

CE is performed in a fused silica capillary normally coated by polyimide on the outside 

for protection and flexibility (Figure 2.1). The capillary length usually varies between 20-

60 cm and the inner diameter (ID) is between 50-250 µm. The capillary is filled with an 

appropriate electrolyte that exerts sufficient buffer capacity. The sample injection is 

performed at the capillary inlet by either hydrodynamic pressure of 5-50 mbar or 

electrokinetically by applying a voltage of 1-5 kV, for a few seconds in both cases. The 

injection could also be made by applying a vacuum at the capillary outlet. After sample 

injection, both inlet and outlet of the capillary are immediately immersed into vials 

containing about 1 mL buffer known as the background electrolyte (BGE). Subsequently, a 

separation voltage of 10-30 kV is applied to induce electromigration of charged analytes 

injected at the inlet toward the outlet. In buffers of pH ˃ 2, the silanol groups (Si-OH) on 

the surface of the inner wall of the capillary create a net negative charge. An adsorbed layer 

of cations from the BGE forms here, as well as a second diffuse layer, which make up the 

electric double layer composed of BGE ions. When a voltage is applied acoss the capillary, 

bulk flow of BGE, which moves from the positive (anode) to the negative end (cathode) 

and is called electroosmetic flow (EOF), occurs. The bulk flow of BGE is due to the 

electrical double layer’s cationic nature being attracted to the cathode. The strong EOF 

insures that the analyte is directed toward the outlet passing the detector, which is placed 

near the capillary outlet where the cathode is. The analyte ion’s intrinsic velocity, typically 

in 0.1-1 mm/s range, depends on the charge and size of the ion. The net migration velocity 

of the analyte depends on its electrophoretic mobility and additional factors such as the 

electroosmotic flow (EOF), and all of these depend on pH and viscosity of the buffer 

solution and the possible interaction of the analyte with capillary walls [22, 116, 118-120]. 
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Figure 2.1. Schematic of capillary electrophoresis instrumentation. 

 

Two CE instruments were used during the course of the research presented in the 

present thesis. The first was an Agilent HP3DCE system (Agilent Technologies, Waldbronn, 

Germany) equipped with a UV/Vis diode array detector, although detection was generally 

monitored at 200 nm. For certain experiments this CE was coupled with MS (MSD SL 

System, Agilent Technologies, Santa Clara, CA, USA). More information about CE-MS is 

described in the next section. The second system was a Beckman P/ACE MDQ system 

(Beckman Coulter, Fullerton CA, USA) equipped with a 3 mW argon ion laser having an 

excitation wavelength of 488 nm and a 520 nm wavelength band-pass emission filter was 

for CE-LIF experiments. 

 

2.1.1. Peptide Mapping by CE-UV for digests obtained by using immobilized 
chymotrypsin pellet 

Peptide mapping of digested substrate was performed on the Agilent CE System 

(Agilent Technologies, Waldbronn, Germany) equipped with a UV/Vis diode array detector 

(DAD). The electropherograms were recorded at 200 nm. Separations were performed at 
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+15 kV at 25 ⁰C in a fused silica capillary (43 cm total length, 75 µm id). The BGE 

consisted of 50 mM sodium phosphate, pH 2.5. All buffers were prepared in Milli Q water 

and were filtered through a 0.22 µm nylon syringe filter (Chromatographic Specialties, 

Brockville, ON, Canada) prior to use. 

 

2.1.2. Peptide Mapping by CE-UV for digests obtained by using IMER 

Peptide mapping of substrate digests from the IMER was performed on the Agilent CE 

System with the same capillary dimensions and applied voltage as described above in 

Section 2.1.1. The following buffers were prepared to study the effect of buffer on 

separating IMER digests: 25, 50, and 75 mM sodium phosphate, each at pH 2.5, 4.4 and 

6.8; 50 mM ammonium bicarbonate at pH 4.4 and 6.9; 25, 50, and 75 mM sodium borate at 

pH 8.6. All buffers were prepared in Milli-Q water and filtered as above. 

 

2.1.3. Peptide Mapping by CE-LIF 

CE-LIF peptide mapping was performed on a Beckman P/ACE MDQ instrument 

(Beckman Coulter, Fullerton CA, USA) equipped with a 3 mW argon ion laser with an 

excitation wavelength of 488 nm and emission wavelength of 520 nm. Separations were 

performed at +20 kV, and 25 °C, in an uncoated fused silica capillary (43 cm total length, 

75 µm I.D.). The BGE consisted of 50 mM sodium phosphate with pH 7.0 was chosen 

based on previouse study by S-M Gan [121]. All buffers were prepared in Milli Q water 

and filtered as above. 

 

2.2. Capillary Electrophoresis-ElectroSpray Ionization / Mass 
Spectrometry (CE-ESI/MS) 

Coupling CE to MS provides a sensitive, rapid and powerful technique that has been 

used since late 1980s. Many research and review articles have been published regarding the 

use of CE-MS particularly for proteomic studies [98, 112, 122-128], even though the 
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technique has not been nearly as popular as HPLC-MS. There are several ionization 

techniques reported for coupling CE with MS, including atmospheric pressure chemical 

ionization, thermospray ionization and MALDI. However, electrospray ionization (ESI) is 

by far the most popular ionization technique [113]. ESI is a primary choice for coupling CE 

to MS since it allows the detection of large molecules by generating ions with multiple 

charges. Using a commercial nano-spray interface, the analyte is transferred from CE buffer 

to gas phase ions by ESI [129]. More recently, improved and simplified electrospray 

interfaces have been reported [130-132] and CE-MS technique become more popular. 

Despite the new CE-MS interfaces, most reported analyses have been conducted using 

commercially available interfaces with a sheath liquid, usually for nanospray HPLC-MS, 

and their robustness is not always ideal [53, 125]. In the present study, we used CE-ESI-

MS to separate and identify peptides after protein digestion with GA-immobilized 

chymotrypsin. All analyses were performed on an Agilent single quadrupole MS (MSD SL 

System, Agilent Technologies) interfaced with an orthogonal sheath flow ESI-MS sprayer 

ion source (Agilent Technologies, Figure 2.2 A and B). The Agilent HP3DCE system was 

coupled to the ESI probe using a specially designed CE cassette to allow the capillary to 

exit the CE instrument without losing too much of the temperature thermostatting. All 

separations were performed at 25 °C. 

The flow splitter was made using 21 cm of blue PEEK tubing bringing solvent (sheath 

liquid) from the pump to a Tee connection. The Tee connector splits the flow between a 

75 µm ID, 35 cm long capillary going to the nebulizer carrying the sheath liquid, and a 

250 µm ID, 56 cm long blue PEEK tubing going back to the bottle to recycle the unused 

buffer (Figure 2.3 A and B). 
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Figure 2.2. A) Schematic of CE coupled to an ESI-MS via the interface. B) A photo of the 
ESI-MS flow splitter used to connect the CE capillary outlet to the MSD for peptide 
mapping. 
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The BGE pH is important since it determines the degree of protonation or 

deprotonation of liquid phase and, therefore, affecting the charged ions in the gas phase. 

The BGE was composed of 10 mM ammonium acetate at pH 6.7. The sheath liquid mixes 

with the CE electrolyte solution at the CE outlet tip to provide the electrical contact for the 

CE capillary and spraying tip. It also offers sufficient flow rate for ESI and, therefore, 

improves the electrospray stability. Sheath liquids should be compatible with BGE and 

volatile, exert low surface tension to facilitate droplet break-up in the ion evaporation 

process, and be sufficiently conductive to permit ESI [133, 134]. However, it should not be 

too conductive to suppress the ionization of analytes by the competing ions in the droplet. 

Typically, the sheath liquid has high content of non-aqueous solvent with low surface 

tension such as alcohols, and a volatile electrolyte such as ammonium acetate or formate, 

acetic acid, or formic acid [135, 136]. The sheath liquid used in the present study was 0.1% 

formic acid in 50% methanol/water, with the flow rate set at 10 µL/min. In order to achieve 

this low flow rate, a sheath flow splitter was used to decrease the isocratic Agilent LC 

pump flow by a factor of 25 from 250 µL/min. The sheath flow running in blue PEEK 

tubing from one side and the analyte in BGE running in capillary from the other side, go to 

the nebulizer and are sprayed to the MS (Figure 2.2). Both BGE and sheath liquid affect the 

transfer of analyte ions from the liquid to the gas phase. 

Nitrogen as a nebulizing (drying) gas assists the ion evaporation process in ESI. The 

nitrogen gas for nebulization was regulated at 130 °C and 170 kPa to provide a flow rate of 

10 L/min to facilitate the desolvation.  

To connect the CE to the ESI source, the outlet of the separation capillary was placed 

in the ion source as an emitter tip (Figure 2.3). To increase the stability of the spray, about 

1 cm of the insulating polyimide coating was removed from the capillary tip and the glass 

was cut carefully. The tip of the capillary should extend beyond the nebulizer tip slightly. 

The optimum length that yielded the best results was about 2 mm (Figure 2.3). 
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Figure 2.3. A) Schematic presentation of CE connected to ESI-MS showing analyte from 
CE, sheath flow, and drying gas going to nebulizer and then MS [137]. B) ESI nebulizer 
(left panel) showing the outlet of the CE capillary placed slightly beyond the end of the 
nebulizer tip (right panel). 
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For peptide mapping by CE, a low pH buffer is preferred to render all peptides 

cationic, thus a better detection sensitivity is achieved for small positively charged peptides. 

Therefore, the MSD was operated in positive ion detection mode. The MSD parameters 

were set to: 200 to 1000 m/z mass range, fragmentor was set at 65 V, detector gain at 3, 

cycle time of 0.97 s per cycle. Single ion monitoring (SIM) mode was used for 50% of a 

cycle time. 

 

2.3. Confocal Laser Scanning Microscope (CLSM) 

Confocal laser scanning microscopy is a well-known technique used for high 

resolution or 3D imaging [138-140]. One of the advantages of confocal microscopy over a 

wide-field microscope is its ability to produce imaging for thick samples at different depths. 

The CLSM was developed in 1957 [141] and became more popular years later, owing more 

popularity to the progress in laser technology and computer science power [142]. CLSM 

imaging is point by point and, instead of projecting through an eyepiece, the image is 

processed by a computer [143]. A laser or arc-discharge source is usually used for 

excitation due to its high output power that improves fluorescence emission intensity. The 

detector is usually a photomultiplier tube (PMT) which has high quantum efficiency in the 

near-UV, visible and near IR. 

In the present study, a Leica TCS SP5 II CLSM equipped with point laser sources 

controlled by high speed acousto-optic tuneable filters was used (Figure 2.4). The 

excitation sources include a helium neon (λ=633 nm), diode-pumped solid state (DPSS: 

λ=561 nm), and argon ion (λ=458/488/514 nm) laser. The source used for the studies 

presented in Chapter 6 was the 488 nm argon ion line, since we used fluorescein 

isothiocyanate (FITC) as our fluorescent label. The emission was measured at 500 nm. 
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Figure 2.4. A schematic presentation of confocal laser scanning microscope (Leica TCS 
SP5). 
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Chapter 3. Capillary Electrophoretic Peptide Mapping to Probe the 
Immobilization/Digestion Conditions of Glutaraldehyde-crosslinked 
Chymotrypsin 

 

 

A version of this chapter has been submitted1 on April 29, 2015, to Current Analytical 

Chemistry with authorship by Golfam Ghafourifar and Karen C. Waldron 

 

 

 

 

  

                                                 

1 The manuscript, accepted during thesis corrections, will be published as Curr. Anal. Chem., 2016, 12, 
65-73. 



30 

 

 

 

3.1. Abstract 

The use of immobilized enzymes in proteomics studies has increased over the last 

decade due mostly to their ease of use in fluidic systems but also because autoproteolysis is 

suppressed allowing use of high ratios of enzyme-to-substrate for rapid digestion. 

Chymotrypsin immobilization by crosslinking with 2.5% aqueous glutaraldehyde has been 

used to produce a gel-like agglomerated pellet of high enzyme loading capable of digesting 

protein. The efficiency of the immobilized enzyme for protein digestion was followed by 

capillary electrophoretic peptide mapping with absorbance detection at 200 nm. A study 

comparing preparation methods showed that making a small immobilized enzyme pellet 

leads to better and more reproducible digestions (i.e., peptide maps) compared to using 

either a five-fold larger pellet or a portion of the latter having a similar mass to the small 

pellet. When three different buffers for the enzyme crosslinking reaction were compared, 

sodium phosphate at pH 6.4 showed better batch-to-batch reproducibility of the enzyme 

and better long-term storage (28 days at -20°C). The immobilized chymotrypsin pellet 

could be used for two consecutive digestions of BSA. 

 

3.2. Introduction 

Proteomic studies, both structural and functional, play an important role in the post-

genomic era, with increasing importance for diagnosis and treatment of disease. Based on 

estimations, human serum and plasma contain more than 100,000 proteins [144]. This 

complexity of samples presents a major challenge for identification and quantification in 

proteomics studies. Peptide mapping is a tool widely used to aide in protein identification 

and characterization; protein is digested using a proteolytic enzyme and the digests, 

composed of peptides, are separated and identified using one or more analytical methods 

such as mass spectrometry (MS), liquid chromatography (LC) and LC-MS, capillary 

electrophoresis (CE) and CE-MS, and capillary electrochromatography (CEC) [35, 111, 

124, 145-149]. 
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Compared to LC, CE has been less widely used in proteomic studies; however, it can 

provide valuable information about the size and charge of peptides. It offers the benefit of 

rapid separation, high resolution, decent sensitivity, good reproducibility with optimized 

rinsing, and small sample and reagent consumption [147]. Whereas the exact identification 

of the peptides is not conclusive using CE with UV diode array detection, it can be coupled 

with MS and the peptide masses used to identify the protein substrate. On the other hand, 

peptide mapping used as a comparative tool can be highly effective in that the peptide 

fingerprint can have diagnostic value. In the current study, peptide mapping of bovine 

serum albumin (BSA) protein by CE with absorbance detection at 200 nm was used to 

evaluate the efficiency of the chymotrypsin immobilization method and the effects of using 

different conditions for the enzyme preparation and digestion. 

 Typically, enzymatic digestion is carried out in solution with enzyme present at 25-

50 times less than the protein substrate so that autoproteolysis peptides will be undetected 

in peptide maps. This practice leads to long incubation times of up to 24 h and implies a 

single use of enzyme. Enzyme immobilization offers the benefit of facile separation from 

the digest for its re-use and supressed autoproteolysis, which means a high enzyme-to-

substrate (E:S) ratio can be used for faster enzymatic reaction [36, 42, 150, 151]. 

Immobilization may also improve an enzyme’s performance by increasing its stability [152, 

153] and, in some cases, enzymatic activity and specificity [154, 155]. Many different 

enzyme immobilization methods have been reported. These can be divided into four main 

categories [58]: first, binding to a carrier, for example magnetic particles [38, 39] or glass 

beads and polymers as a support [42-44, 156]; second, encapsulation using a polymer [45]; 

third, entrapment using sol-gels [46, 47]; and forth, by crosslinking of enzyme molecules 

[48-53]. Enzyme crosslinking is a carrier-free method and, in comparison with binding to a 

solid support or encapsulation, can potentially contain a high proportion of active enzyme 

[51, 52].  

 One of the most common protein crosslinking agents is glutaraldehyde (GA), which 

is commercially available and inexpensive. Crosslinking occurs between the tertiary amine 

groups of the enzyme’s lysine residues and the two aldehyde functional groups of GA [50]. 

Glutaraldehyde has been studied by our group as a crosslinking agent for trypsin and 
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chymotrypsin [41, 51, 53], specifically to develop simple and inexpensive immobilization 

methods for proteomics applications and enzyme microreactors. In this study, chymotrypsin 

was immobilized using GA-mediated crosslinking, which produces a soft, spongy 

polymeric particle resembling an agglomerated pellet, and the effects of certain enzyme 

preparation parameters on the immobilization and digestion procedure have been 

investigated. Specifically, the amount of immobilized enzyme (the pellet’s relative size), 

the effect of three different buffers used during the immobilization reaction, the effect of 

digestion time, and the effect of denaturing the substrate have all been evaluated by 

comparing the quality of the CE-based peptide maps of BSA. The potential for re-usability 

of the GA-crosslinked chymotrypsin was also assessed. The current immobilization method 

differs significantly from that used to prepare crosslinked enzyme aggregates (CLEAs) for 

industrial scale catalysis [52, 58] in which the enzyme is first precipitated and then the 

crosslinked product is dried and crushed to a powder for use.   

   

3.3. Experimental 

3.3.1. Reagents and Chemicals 

α-Chymotrypsin from bovine pancreas type II, glutaraldehyde (GA; 25% aqueous 

solution), bovine serum albumin (BSA), monobasic sodium phosphate, dibasic sodium 

phosphate, tris(hydroxymethyl)aminomethane hydrochloride (Tris-HCl), 2-amino-2-

(hydroxymethyl)- 1,3-propanediol (Tris base), phosphoric acid, dithiothreitol (98% purity), 

ammonium phosphate and ammonium bicarbonate were purchased from Sigma Aldrich 

(Oakville, ON, Canada). Calcium chloride, sodium hydroxide, sodium acetate, sodium 

chloride, glycine, urea, iodoacetamide and acetic acid were purchased from Anachemia 

(Montreal, QC, Canada) and used as is. Methanol was purchased from BDH (West Chester, 

PA, USA). Hydrochloric acid was from EMD Millipore (Gibbstown, NJ, USA). Fused 

silica capillary tubing for CE separations (75 µm I.D., 375 µm O.D.) was from Polymicro 

Technologies (Phoenix, Arizona, USA). A multi-cartridge Milli-Q filtration/deionization 

system (Millipore, Bedford, MA, USA) was employed to purify the distilled water used in 

preparation of all solutions and buffers. 
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3.3.2. Substrate Denaturation 

The protein substrate chosen for all tests was BSA, a large protein with 17 disulfide 

bridges. Denaturation was carried out using common methodology as follows: 8 mg BSA 

was dissolved in 800 µL ammonium bicarbonate solution (0.4 M, pH 8.0) containing 8 M 

urea. Reduction of disulfide bonds was achieved by adding 120 µL dithiothreitol (45 mM in 

water) to the substrate solution and reacting at 50 °C for 15 min. The solution was then 

cooled to room temperature, and then 120 µL of iodoacetamide (100 mM in water) was 

added to prevent thiol re-oxidation and reforming of the disulfide bridges between cysteine 

residues in the substrate. The solution was diluted with Tris-HCl (100 mM, pH 7.8) 

containing 10 mM calcium chloride to a final concentration of 2 mg mL-1 BSA. 

 

3.3.3. Preparation of Immobilized Chymotrypsin 

The following procedure was adapted from a previous method for trypsin crosslinking 

and preliminary studies using chymotrypsin [51, 157].  In a 1.5 mL microcentrifuge vial, 

200 µL chymotrypsin stock solution was diluted to 0.15 mM using 50 mM phosphate pH 

6.4. Then 390 µL GA, diluted to 2.5% (v/v) in water, was added drop-wise to the enzyme 

solution, representing a large molar excess over the chymotrypsin (260 nmol). The 

immobilization reaction was allowed to proceed without stirring for 2 h at room 

temperature. The solution was then centrifuged at 3000 rpm for 2 min and the supernatant 

was decanted off leaving a soft, gel-like mass of agglomerated particles that settle to 

resemble a large pellet. The insoluble product was gently washed to remove unreacted 

enzyme and excess GA with 3  1 mL buffer, then 3  1 mL NaCl (500 mM in water), 

and finally with 1 1 mL buffer, each time by decanting. The decanted washings were kept 

for further analysis to study the washing effect on removing un-bound chymotrypsin from 

the GA-crosslinked enzyme product, which is referred to herein as the pellet. Finally, 

1.0 mL glycine (200 mM in phosphate buffer) was added to react with any remaining free 

aldehyde groups for 3 h at room temperature. The final product was washed with 3  1 mL 

buffer followed by 3  1 mL Milli-Q water. The immobilized chymotrypsin was stored at -

20 °C in 1 mL Milli-Q water.  
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 A small-scale preparation of immobilized chymotrypsin was also made and 

involved the same procedure above but with all volumes reduced five-fold, including 

washes. The small-scale immobilized product, i.e., the enzyme pellet, was kept in 200 µL 

Milli-Q water at -20 °C.  

 

3.3.4. Digestion of Substrate by Immobilized Chymotrypsin  

For digestion using the small-scale preparation, BSA substrate was added directly to 

defrosted immobilized chymotrypsin (already in 200 µL water) to reach the intended E:S 

ratio as indicated in the Results and Discussion section. The digestion was carried out in the 

microcentrifuge tube for 4 h at 37 °C with gentle shaking at 50 min-1 using a model SK-10 

shaker (BEA-Entprotech Corp, Hyde Park, MA). The substrate was typically added at a 

molar ratio equal to or less than the effective mass of enzyme to achieve sufficient 

digestion activity. The mixture was buffered by residual Tris-HCl, pH 7.8, added in 

conjunction with the denatured substrate. The digest solution was decanted off without 

prior centrifugation and analysed by CE (peptide mapping) without prior filtration, pre-

concentration or desalting. These latter procedures may contribute to analyte loss and 

decreased method reproducibility, which could hamper our goal of comparing subtle 

differences in immobilized enzyme preparation and use. Digestion using the full-scale 

preparation was carried out in the same manner, but with removal of some storage solution 

first to achieve the desired E:S ratio. Digestion using 20% of the full-scale preparation was 

attempted, in order to have the same effective mass of enzyme as the small-scale 

preparation. However, it wasn’t possible to weigh out 1/5th of the gel-like pellet, and 

withdrawing 200 µL of a suspension of the particles after vigorously shaking the 1 mL 

preparation gave highly irreproducible peptide maps so this was not pursued further. 

 

3.3.5. Effect of Digestion Time 

BSA substrate solution was added as three aliquots to three separate batches of 

immobilized chymotrypsin made using the small-scale preparation such that the apparent 
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E:S ratio was 1:1 (mol:mol). The three solutions were then digested for 4, 8 and 24 h at 

37 °C and 40-50 µL of digest solution was withdrawn immediately for peptide mapping by 

CE. 

 

3.3.6. Effect of Buffer Composition During Enzyme Crosslinking Reaction 

Enzyme immobilization is usually carried out in a buffered medium thus three 

crosslinking buffers were evaluated for the small-scale enzyme preparation method: 50 mM 

sodium acetate buffer at pH 5.5, 50 mM sodium phosphate buffer at pH 6.4, and 50 mM 

sodium phosphate buffer at pH 6.8. These buffers were used for the subsequent washing 

steps. Digestions (4 h) of denatured BSA and peptide mapping were carried out as indicated 

in the Results and Discussion section. 

 

3.3.7. Effect of Substrate Denaturation on Digestion 

To see if native BSA could undergo partial digestion by the immobilized chymotrypsin 

preparation, two fresh batches of immobilized enzyme were used to digest denatured and 

native (undenatured) BSA, both dissolved in Tris-HCl buffer (100 mM, pH 7.8, with 

10 mM CaCl2). The two substrates were also analysed by CE to identify their migration 

times. 

 

3.3.8. Reusability of the Immobilized Chymotrypsin 

An initial aliquot of denatured BSA was digested using the small-scale enzyme 

preparation and all supernatant decanted off then analysed by CE. The remaining enzyme 

pellet was washed with water then sodium phosphate buffer, each 200 µL × 2 times. A 

second aliquot of substrate was then added and the volume brought to 200 µL for the 

second digestion. Upon washing the immobilized enzyme after the second digestion and 

decantation, the pellet did not stay agglomerated and became too finely dispersed for a third 

use. To test for possible carry-over between the two digestions, two control experiments 
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were performed. For the first control, a blank substrate solution containing all denaturation 

reagents except BSA was “digested” by a fresh batch of immobilized chymotrypsin for 4 h 

at 37 °C. The supernatant was decanted off and mapped by CE. The enzyme pellet was then 

washed as above with water and buffer. Then, an aliquot of denatured BSA was added for 

the second digestion followed by peptide mapping by CE. For the second control, the 

opposite experiment was carried out: denatured BSA was digested first then the blank 

substrate solution after washing the enzyme pellet. 

 

3.3.9. Peptide Mapping by Capillary Electrophoresis 

Peptide mapping by CE was performed on an HP3DCE instrument (Agilent 

Technologies, Waldbronn, Germany) equipped with a UV/Vis diode array detector 

monitored at 200 nm. Separations were performed at +15 kV at 25 °C in an uncoated fused 

silica capillary (43 cm total length, 34 cm effective length). The background electrolyte 

consisted of 50 mM sodium phosphate buffer, pH 2.5, prepared in Milli Q water and 

filtered with a 0.22 µm nylon syringe filter (Chromatographic Specialties, Brockville, ON, 

Canada) prior to use. The capillary column was conditioned at 950 mbar with 0.1 M HCl 

then buffer for 3 min each before injection, and then with 0.1 M NaOH and Milli-Q water 

for 1 min each and 0.1 M HCl for 2 min after each run. Samples were injected by applying 

34.5 mbar  5 s at the inlet followed by a plug of buffer (34.5 mbar  2 s) to prevent the 

sample from diffusing out of the capillary before the high voltage is applied. 

 

3.4. Results and Discussion 

3.4.1. The Effect of Preparation Method on Immobilized Enzyme Performance 

For the enzymatic digestion of proteins, the typical E:S ratio of 1:25 (weight-to-weight 

or mole-to-mole) [158] presumes that both reagents are in solution and the enzyme activity 

is high. Similar nomenclature can be used for immobilized enzymes, even though their 

specific activity is greatly reduced compared to the soluble form. For example, we reported 

that GA-crosslinked trypsin had a specific activity 4000 times lower than soluble trypsin 
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[51]. The mass of enzyme was determined from its immobilization efficiency (> 95%) in 

that study. As a result, immobilized trypsin digestions were made at an “apparent” E:S ratio 

of 2:1 (w/w) for 4 h at 37 °C, which was comparable to soluble trypsin digestions made at 

an E:S of 1:25 (w/w) for 24 h [41, 51]. The immobilization efficiency of GA crosslinking 

of chymotrypsin in terms of total mass of enzyme was recently determined as 94±2% [53], 

which translates to a quantity of 240 nmol chymotrypsin for the full-scale enzyme 

preparation.  

 Using the full-scale enzyme preparation at an apparent E:S ratio of 8:1 (mol/mol) 

showed almost no digestion after 4 h at 37 °C based on the CE peptide maps (data not 

shown). Increasing the E:S ratio to 26:1 showed a better digestion (Figure 3.1 A), however 

the electropherograms suggest incomplete digestion of BSA, as evidenced by the large 

protein peak at 14 min. On the other hand, an apparent E:S ratio of 8:1 (mol/mol) when 

using the small-scale enzyme preparation showed good digestion in 4 h (Figure 3.1 B) as 

evidenced by numerous peptide peaks of intensity comparable to the remaining undigested 

BSA. The poor digestion using the full-scale method might be caused by adsorption of 

substrate and/or product peptides on the large enzyme pellet, thus inhibiting substrate 

digestion and/or product release into the supernatant. Replicate CE injections are shown in 

Figure 3.1 as a measure of instrumental reproducibility; peak area precision ranged from 

1.4 to 22% RSD measured across 12 peaks in the 3 runs from Figure 3.1 B. The 12 peaks 

marked with asterisks were chosen to span the elution window from 8-22 min and be 

confidently seen in all three runs. Migration time reproducibility was not evaluated because 

electropherograms can be realigned by normalisation with internal peptide standards to give 

very good presicsion when needed.  
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Figure 3.1. Peptide maps showing the effect of the preparation scale of immobilized 
enzyme on its overall performance. (A) CE-UV peptide maps of BSA (9 µM) digested by 
GA-crosslinked chymotrypsin prepared using the full-scale procedure and with an apparent 
E:S ratio of 26:1 (mol:mol); (B) CE-UV peptide maps of BSA (22.5 µM) digested by GA-
crosslinked chymotrypsin prepared using the small-scale procedure and with an apparent 
E:S ratio of 8:1 (mol:mol). In both cases, digestion was performed for 4 h at 37 °C. 
Separations were performed at +15 kV in 50 mM sodium phosphate buffer, pH 2.5, with 
detection at 200 nm. Triplicate injections into the CE are shown for both preparation 
methods. Peaks with asterisks were used to calculate area reproducibility.  
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The wash solutions during the immobilization were reserved to monitor the efficiency 

of removing unreacted chymotrypsin that could induce free-solution digestion of substrate. 

The triplicate decanted washes for the full-scale method were pooled resulting in three 

samples for CE analysis: 3 mL of buffer, 3 mL of NaCl and 1 mL of buffer from the 

various series of washing. No chymotrypsin peak was detected in any of these. The same 

negative result was obtained for the pooled washes from the small-scale method. Given the 

modest detection limits of CE, the solutions were concentrated 10-fold by centrifugal 

evaporation using a Savant Speed Vac, then re-analysed. No chymotrypsin was detected in 

the washes from the small-scale immobilization procedure whereas a small peak for 

chymotrypsin was detected in the 10× concentrated washes from the full-scale preparation 

(Figure S3.1 in Supporting Information, Section 3.7), with decreasing amounts in 

successive pooled washes (Table 3.1). There was no detectable chymotrypsin in the 

washing steps after glycine addition, even when washes were concentrated. 

 

Table 3.1. The pooled washes from the full-scale enzyme immobilization procedure were 
collected and the solutions concentrated 10 times by evaporation under centrifuge. The 
concentrates were injected to the CE and the chymotrypsin concentration was calculated 
based on a calibration curve. 

 Unreacted [CT] in 
concentrates 

Estimated unreacted [CT]  
in pooled washings 

First series of washing 
 (3 × 1 mL buffer) 

0.36 µM 0.036 µM 

Second series of washing 
 (3 × 1 mL NaCl) 

0.24 µM 0.024 µM 

Third series of washing 
 (1 × 1 mL buffer) 

0.14 µM 0.014 µM 
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3.4.2. Effect of Digestion Time 

Immobilized enzymes are frequently used at high apparent E:S ratios to not only 

accelerate the enzymatic reaction but also to compensate for the reduced activity per gram 

of product. Digestions on the order of a few minutes have been demonstrated with solid-

phase trypsin [42, 151], which is ideal when substrates are small or when highly incomplete 

digestions can be tolerated, i.e., for protein identification by MS mapping. Since our 

previous GA crosslinking studies used 4 h digestions, this duration was retained to ensure 

there would be enough peptide peaks to evaluate the crosslinking conditions. With the 

small-scale enzyme preparation and an apparent E:S ratio of 1:1 (mol:mol), the peptide 

maps of BSA were essentially identical after 4 and 8 h digestion whereas 24 h of digestion 

resulted in around 10 more peptide peaks (Figure S3.2 in Supporting Information, Section 

3.7). A 1 h digestion of BSA using the full-scale enzyme preparation at the higher E:S ratio 

of 26:1 was quite acceptable (Figure S3.3 in Supporting Information) but was 

irreproducible from batch to batch (data not shown). The more efficient digestions observed 

at the lower E:S ratio implies that the small-scale GA crosslinking procedure provides 

higher relative activity than the full-scale method. 

  

3.4.3. Effect of Buffer Composition During the Enzyme Crosslinking Reaction 

The buffer conditions, particularly pH, during enzyme immobilization influence the 

reaction between the enzyme and GA. Migneault [159] tested a range of buffers for the GA 

crosslinking procedure with trypsin, from phosphoric acid at pH 2 to sodium borate at pH 

10. She showed that for pH ≤ 4 and pH ≥ 9, no insoluble product could be formed, and at 

pH 5 it took 150 min to make the insoluble GA-crosslinked trypsin. The fastest reactions 

leading to insoluble immobilized enzyme were obtained between pH 5-8, with pH 6.8 

chosen for peptide mapping in those studies [159]. Accordingly, we chose to investigate the 

effect of crosslinking buffer on the chymotryptic peptide maps of BSA for three buffer 

systems: 50 mM sodium acetate at pH 5.5 and 50 mM sodium phosphate at pHs 6.4 and 

6.8. Each immobilized chymotrypsin was prepared in triplicate batches for each buffer 

using the small-scale procedure. The washing steps were made using the respective buffers. 
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Digestions were carried out identically for the nine samples using nine aliquots of a single 

solution of denatured BSA as substrate.  

 By visual inspection, both phosphate buffers (pH 6.4 and 6.8) led to a more robust 

enzyme pellet after washing compared to using the acetate buffer at pH 5.5. In comparing 

the peptide maps obtained from digestions with three batches of enzyme prepared in the pH 

5.5 acetate buffer (see Figure S3.4-A in Supporting Information, Section 3.7), some 

variability was observed in the number of peptides and their peak areas in each digest 

(Figure 3.2 A), which suggests that the crosslinking process and/or the washing steps were 

not very reproducible. The latter hypothesis is plausible and would lead to variation in the 

final mass of immobilized enzyme available for digestion and thus a variation in specific 

activity. Using the pH 6.4 phosphate buffer during crosslinking resulted in better batch-to-

batch reproducibility, reflected as more reproducible peptide peak areas in the BSA digests 

(Figure 3.2 B) and also more peptides (Figure S3.4-B in Supporting Information) compared 

to using either the pH 6.8 buffer (Figure 3.2 C) or the pH 5.5 buffer during enzyme 

crosslinking. The quantitative differences between the three crosslinking buffers were 

compared by calculating the peak area RSD (n=3) per peptide per buffer system (Table 

S3.1 in Supporting Information) as well as the overall variation in peak area for each buffer 

by averaging the peak area RSDs. These results are summarized in Table 3.2, along with 

the number of peptides identified for each batch of enzyme used, and demonstrate that 

enzyme crosslinking in phosphate buffer, pH 6.4, leads to the highest and most 

reproducible batch-to-batch enzymatic activity as measured by BSA digestion under the 

reported conditions.  
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Figure 3.2. Graphs of peptide peaks in BSA digests showing batch-to-batch (n = 3) 
reproducibility of immobilized chymotrypsin for three different buffers tested during 
enzyme crosslinking: (A) acetate buffer, pH 5.5; (B) phosphate buffer, pH 6.4; (C) 
phosphate buffer, pH 6.8. All 9 batches of immobilized chymotrypsin were prepared by the 
small-scale procedure. Nine aliquots of the same substrate (BSA, 22.5 µM) were used. The 
E:S ratio was 8:1 (mol:mol) and digestions were performed for 4 h at 37 °C then 
peptideseparations were carried out as in Figure 3.1. 
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Table 3.2. The effect of crosslinking buffer composition on immobilized enzyme 
reproducibility and activity (batch-to-batch) evaluated by peptide mapping of BSA (22.5 
µM) at an apparent E:S ratio of 8:1 (mol:mol). Separations were carried out as in Figure 
3.1. 

Crosslinking 
buffer 

Immobilized enzyme 
batch 

Total no. of identified 
peptidic peaks a 

Overall peak 
area RSD b,c 

Acetate  
pH 5.5 

1st 16 

43% 2nd 16 

3rd 18 

Phosphate  
pH 6.4 

1st 22 

27% 2nd 22 

3rd 22 

Phosphate  
pH 6.8 

1st 6 

39% 2nd 8 

3rd 19 
a Presence of a peptide molecule confirmed by diode array spectra. 
b The raw data for each peptide peak (triplicate digestions) and calculated RSD values are 
given in Table S1 of Supporting data, Section 3.7. 
c The peak area RSD arising from technical variation alone (i.e., the CE mapping method), 
ranges from 1.4 to 22% RSD, with an average of 11% RSD, calculated from Fig. 1 B for 12 
peptide peaks (triplicate injections) 

 

3.4.4. Reusability of Immobilized Chymotrypsin 

Immobilized enzyme reusability was evaluated using the same BSA substrate solution 

and a single batch of enzyme prepared using the small-scale procedure. Figure 3.3 shows a 

decreased intensity of peptidic peaks obtained from the second digestion, likely because of 

loss of immobilized enzyme in the pellet during the first digestion and/or the washing steps. 

A third digestion was not possible as there was such extensive break-up of the enzyme 

pellet that the dispersed particles could not agglomerate and be separated from the wash 

solutions by decanting or centrifugation. To verify that the peptides observed in the second 

digest were the result of enzymatic digestion and not carry-over from the first digest, or the 



44 

 

 

 

result of chymotrypsin autoproteolysis, two control experiments were performed. In the 

first, a substrate-free blank solution was digested, followed by the BSA substrate with 

washing of the pellet in between. In the second, the BSA substrate was digested, followed 

the blank solution (after washing). Figure S3.5-A (Supporting Information, Section 3.7) 

shows some chymotrypsin autoproteolysis peaks for the blank digestion done first then the 

complete peptide map of BSA when the real substrate was digested in the second use of the 

enzyme. For the reverse experiment, Figure S3.5-B (Supporting Information) shows the 

expected BSA peptide map for the first use of enzyme and then only small autoproteolysis 

peaks for the blank digestion in the second use. These results confirm that the enzyme 

pellet is robust enough to withstand the washing regime after the first digestion, 

maintaining good activity, and also that washing the immobilized enzyme after the first 

digestion adequately removed peptides that may have been adsorbed on the enzyme pellet. 

 

Figure 3.3. Peptide maps showing immobilized enzyme reusability for digestion of BSA 
(22.5 µM) by a single batch of GA-crosslinked chymotrypsin prepared using the small-
scale procedure. The enzyme pellet was washed 4 times: 2 × 200 µL each with water and 
crosslinking buffer. The apparent E:S ratio was 1:1 (mol:mol) during both digestions 
carried out for 4 h at 37 °C. Separations were carried out as in Figure 3.1. 
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3.4.5. The Effect of Denatured Versus Native Substrate1 

The necessity of denaturing a large substrate like BSA before digestion with the GA-

crosslinked chymotrypsin was investigated because when a partial digestion is sufficient for 

an application, eliminating the time consuming steps of denaturation, reduction and 

alkylation is desirable. The BSA substrates (denatured and native) were analysed by CE 

before their digestion, revealing that the native protein elutes about 5.5 min faster than the 

denatured form in pH 2.5 separation buffer (Figure 3.4 A and C). Intuitively, the denatured 

protein has a larger hydrodynamic radius and thus a slower migration time caused by 

frictional drag during electrophoresis compared to the compact, native form of BSA. Both 

substrates were added to the immobilized chymotrypsin prepared using the small-scale 

method and digested under identical conditions then mapped by CE (Figures 3.4 B and D). 

The peptide map of native BSA (Figure 3.4 D) shows partial digestion as well as 

undigested substrate (peak at 9 min), not only because the highly folded protein protects 

many cleavage sites but possibly also because the enzyme pellet is not sufficiently porous 

to allow much of the protein backbone to reach the active sites of chymotrypsin. In 

contrast, Figure 3.4 B shows more peptidic peaks centered around 11 min due to more 

extensive digestion of denatured BSA by the immobilized chymotrypsin pellet. 

Nonetheless, the GA-crosslinked enzyme shows good potential for use with simplified 

substrate preparation for MS-based proteomics studies. 

 

                                                 

1 The study was done with different concentrations of urea and CaCl2 and the best concentration was 8M 
and 10 mM respectively. More details about the effect of [urea] and [CaCl2] are described in Appendix A. 
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Figure 3.4. Comparison of immobilized enzyme digestion efficiency for denatured versus 
native substrate. (A) Electropherogram of denatured BSA; (B) peptide map of digested 
denatured BSA (22.5 µM); (C) electropherogram of native BSA; (D) peptide map of 
digested native BSA (22.5 µM). Digestions were performed for 4 h at 37 ⁰C using the 
small-scale preparation of GA-crosslinked chymotrypsin at an apparent E:S ratio of 1:1 
(mol:mol). Separations were carried out as in Figure 3.1. 

 

3.5. Conclusions 

Chymotrypsin immobilized by GA crosslinking was demonstrated for BSA peptide 

mapping studies, although further optimization is still required to improve the enzyme’s 

reusability. Nonetheless, this rapid and inexpensive immobilization method offers the 

benefits of using a high enzyme-to-substrate ratio and reuse of the enzyme. A study of the 

conditions for immobilized enzyme preparation showed that the size of the enzyme pellet 

and the composition of the crosslinking buffer—most importantly its pH—influence the 

reproducibility of peptide maps and, by extrapolation, the activity of the immobilized 

enzyme. The gentle washing protocol was able to remove a significant amount of non-
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reacted or adsorbed chymotrypsin from the enzyme pellet, although it was observed that 

there was a limitation to the washing, which eventually caused disintegration or dissolution 

of the immobilized enzyme. The solution to this problem is using the immobilized enzyme 

in a microreactor format with on-line peptide mapping and with fewer washing steps in 

order to conserve the GA-crosslinked chymotrypsin. 
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3.7. Supporting Information 

The following section is adapted from the Supporting Information submitted with 

Ghafourifar and Waldron “Capillary Electrophoretic Peptide Mapping to Probe the 

Immobilization/Digestion Conditions of Glutaraldehyde-crosslinked Chymotrypsin” to 

Current Analytical Chemistry. 

Supporting data includes: electropherograms of residual chymotrypsin in washings 

after enzyme immobilization; BSA peptide maps for digestion of 1, 4, 8 and 24 h; BSA 

maps showing batch-to-batch reproducibility of immobilized chymotrypsin prepared in 

three crosslinking buffers; a table quantifying the peptide peaks and areas as a function of 

crosslinking buffer composition and batch number; peptide maps for the carry-over study to 

evaluate GA-crosslinked chymotrypsin reusability using substrate blanks as controls. 
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Figure S3.1. Electropherograms showing the residual, unreacted chymotrypsin removed 
after each stage of washing the immobilized enzyme aggregated particle that was made 
using the full-scale procedure. Each pooled wash solution was concentrated 10 fold using a 
Speed Vac before injection into the CE for separation. Separations were carried out by 
capillary electrophoresis at +15 kV (75 µm i.d. × 43 cm capillary) in 50 mM sodium 
phosphate buffer, pH 2.5, with detection at 200 nm. 

 

Figure S3.2. Peptide maps showing the effect of digestion time for BSA (22.5 µM) 
digested at 37°C using GA-crosslinked chymotrypsin prepared by the small-scale 
procedure and with an apparent E:S ratio of 1:1 (mol:mol). Separations by CE-UV were 
carried out as described in Figure S3.1. 
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Figure S3.3. Peptide map of BSA (9 µM) digested for 1 h at 37 °C by GA-crosslinked 
chymotrypsin prepared using the full-scale procedure and with an apparent E:S ratio of 
26:1 (mol:mol). Separations by CE-UV were carried out as described in Figure S3.1. 
Triplicate injections of a single digest into the CE are shown. 

 

 

Figure S3.4. Peptide maps for BSA digestions showing batch-to-batch (n = 3) 
reproducibility of immobilized chymotrypsin prepared using three different buffers during 
enzyme crosslinking: (A) acetate buffer, pH 5.5; (B) phosphate buffer, pH 6.4; (C) 
phosphate buffer, pH 6.8. All 9 batches of immobilized chymotrypsin were prepared 
following the small-scale procedure. Nine aliquots of the same substrate (BSA, 22.5 µM) 
were used. The apparent E:S ratio was 8:1 (mol:mol) and digestions were performed for 4 h 
at 37 °C. Separations by CE-UV were carried out as in Figure. S3.1. 
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Figure S3.5. Carry-over study for assessing GA-crosslinked chymotrypsin reusability using 
substrate blanks as controls for either the first use or the second use of enzyme. (A) GA-
crosslinked chymotrypsin was used to “digest” a blank solution containing all denaturation 
reagents except BSA, then the crosslinked particle was washed, then reused with denatured 
BSA (22.5 µM) as substrate for the second digestion. (B) GA-crosslinked chymotrypsin 
was used to digest denatured BSA (22.5 µM) as substrate in the first use of the enzyme 
particle, followed by the same washing procedure as above, then reused with the blank 
substrate solution “digested” in the second use of enzyme. The immobilized chymotrypsin 
for both batches (A and B) was prepared using the small-scale procedure. All digestions 
were performed at 37 ⁰C for 4 h and the E:S ratio for BSA was 1:1 (mol:mol). Separations 
(peptide mapping) by CE-UV were carried out as in Figure S3.1. 

A 

B 
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Table S3.1. The effect of crosslinking buffer composition on GA-crosslinked chymotrypsin 
activity evaluated by comparing digests of BSA (22.5 µM) at an E:S ratio of 8:1 (mol:mol). 
Peptide mapping was carried out by CE at +15 kV (75 µm i.d. capillary) in 50 mM sodium 
phosphate buffer, pH 2.5, with detection at 200 nm. For each buffer composition, three 
batches of crosslinked enzyme were made and digestion was carried out with aliquots of the 
same BSA solution (denatured, reduced and alkylated).. 

Acetate buffer pH 5.5 Phosphate buffer pH 6.4 Phosphate buffer pH 6.8 

 Peptide peak 
areas   Peptide peak 

areas   Peptide peak 
areas  
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1 4 10 12 45 1 13 9 13 21 1 ND ND 9 - 
2 6 16 19 51 2 17 11 20 28 2 ND ND 11 - 
3 10 11 11 7 3 15 9 19 37 3 ND ND 4.3 - 
4 7 9 14 37 4 6 4 5 15 4 ND ND 5.2 - 
5 11 37 34 51 5 5 3 7 40 5 ND ND 4.2 - 
6 18 10 14 31 6 5 4 7 26 6 ND 13 15 11 
7 9 9 10 7 7 19 17 28 27 7 ND ND 10 - 
8 7 5 ND 18 8 12 10 13 15 8 ND ND 24 - 
9 ND 12 16 19 9 47 32 44 19 9 ND ND 6 - 

10 ND 20 11 42 10 61 29 77 44 10 49 16 34 50 
11 10 46 23 68 11 23 16 19 18 11 ND ND 9 - 
12 20 15 38 49 12 5 5 5 6 12 29 ND 14 51 
13 17 31 14 44 13 5 8 7 16 13 11 7 7 30 
14 11 52 ND 92 14 24 19 24 12 14 23 15 22 22 
15 23 6 34 66 15 48 33 55 24 15 ND ND 16 - 
16 7 10 26 69 16 68 17 37 63 16 ND 15 10 29 
17 9 ND 9 4 17 41 31 39 13 17 ND 10 22 49 
18 ND ND 18 - 18 24 20 32 25 18 15 6 23 60 
19 35 ND 10 81 19 20 16 30 32 19 39 15 28 44 
20 ND ND 17 - 20 20 18 35 36   
-     21 14 24 39 48   -  
-     22 40 32 62 35   -  

Average RSD 43%     27%  39% 
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4.1. Abstract 

Immobilized proteolytic enzymes present several advantages over their soluble form, 

not the least of which is suppression of autoproteolysis peaks even at high enzyme-to-

substrate ratios. We have made immobilized chymotrypsin by directly crosslinking it with 

glutaraldehyde to produce polymeric particles. Digestion of two model substrates using the 

particles was followed by capillary electrophoresis (CE) peptide mapping with detection by 

UV absorbance or laser induced fluorescence. Results showed that autoproteolysis was 

highly suppressed and that different storage conditions of the particles in the short term (24 

h) did not affect digestion of denatured BSA. As well, the chymotrypsin particles were 

indifferent to the presence of fluorescein groups on a casein substrate. Glutaraldehyde 

crosslinking of chymotrypsin inside a fused silica capillary column to make an immobilized 

enzyme reactor (IMER) was achieved in a series of reagent addition and washing steps, 

entirely automated using a commercial CE instrument. Digestion of myoglobin in the 

IMER for 30 min at 37 °C followed by peptide mapping by CE-MS of the collected digest 

allowed identification of 17 chymotryptic peptides of myoglobin, or 83% primary sequence 

coverage.  

 

4.2. Introduction 

Proteomic studies require rapid peptide mapping methods for protein identification and 

quantification. Drawbacks of a classical proteolytic digestion, whereby soluble enzyme is 

added to the protein, include long incubation times and single use of the enzyme [72, 79, 

88, 92]. Advantages of immobilizing the enzyme include using a high enzyme-to-substrate 

ratio to accelerate digestion, better enzyme stability by reducing the enzyme’s flexibility, 

fewer autoproteolysis products and reuse of the enzyme [72, 86, 88, 160, 161]. Many 

immobilization methods for proteolytic enzymes have been reported [22, 42, 85, 86, 161-

164], several of which use glutaraldehyde (GA), a common crosslinking agent [50, 111, 

161, 165]. GA is highly reactive towards primary amine groups making it suitable either as 

a linker to solid supports or as a polymerizing agent [43, 51, 166]. Immobilized enzymes in 

general have wide ranging use but for proteomics they facilitate automated protein 
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digestion [79, 88, 167] in the form of immobilized enzyme reactors (IMERs) that can be 

coupled to separation and detection systems enabling high throughput proteomic analysis 

[79, 151, 167-170]. There are several excellent reviews on immobilized protein reactors 

[72, 79, 164, 171-173].  

The digests from proteolytic IMERs have been analyzed by different on-line and off-

line mapping methods such as direct injection MS [9, 15, 45, 80, 112, 122, 124, 131, 147, 

148, 150, 167-169, 172, 174-183], LC-MS [149, 166, 184-186], CE-MS [28, 33, 39, 49, 52, 

75, 78, 79, 111, 113, 123, 138, 147-149, 152, 168, 187-195], CE-laser induced fluorescence 

(LIF) [28, 186] and CE-UV [40, 109]. Capillary electrophoresis offers certain advantages 

compared to other methods, specifically the use of minute amounts of sample, low solvent 

consumption and compatibility with a wide range of detection techniques [22, 96, 116]. 

Limitations due to low sample concentrations can be overcome by using in-capillary 

preconcentration strategies [22, 40, 171]. Within an IMER, the enzyme can be immobilized 

on a variety of supports; particles [196], a membrane [180, 187] or the capillary inner wall 

[109, 168] to name just a few.  

While essentially any enzyme could be immobilized inside an IMER, trypsin is the 

most commonly used for proteomic studies because of its highly specific cleavage, which is 

limited to the residues lysine and arginine [72] and produces medium length peptides that 

are mostly cationic. To evaluate IMER performance (activity, reproducibility, stability, etc) 

at sub-nanomolar protein substrate concentrations, a sensitive detection method such as LIF 

is needed [95, 96]. However, fluorescent derivatization has two drawbacks for proteomics 

studies: post-digestion, the peptides at sub-nM concentrations react too slowly with 

fluorescent labeling reagents; predigestion, fluorophore-labeled ε-lysine residues are not 

recognized by trypsin resulting in cleavage only at arginine, the less abundant residue. Our 

approach is to use chymotrypsin as an alternative to trypsin so that IMER characterization 

can profit from using CE-LIF and fluorescently labeled protein as a test substrate. 

Therefore, in the present study, chymotrypsin was immobilized by crosslinking it with GA 

using a similar procedure developed in our lab for trypsin [51, 111]. CE coupled to UV, 

LIF and MS detectors was used for peptide mapping in this study as a means to evaluate 
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certain aspects (e.g., short-term storage conditions) of GA-crosslinked chymotrypsin 

particles and the ability of a fabricated IMER to digest myoglobin. 

 

4.3. Materials and Methods 

4.3.1. Reagents and Materials 

α-Chymotrypsin from bovine pancreas type II, glutaraldehyde (25% aqueous solution), 

bovine serum albumin (BSA), horse myoglobin-α, monobasic sodium phosphate, dibasic 

sodium phosphate, triza hydrochloride, Trizma base, calcium chloride, sodium hydroxide, 

fluorescein isothiocynate (FITC) conjugated to bovine casein, (3-

aminopropyl)triethoxysilane (3-ATPES, 99% purity), sodium acetate, sodium chloride, 

glycine, urea, formic acid, iodoacetamide and acetic acid were from Anachemia (Montreal, 

QC, Canada). Phosphoric acid, dithiothreitol (DTT, 98% purity), ammonium phosphate and 

ammonium bicarbonate were purchased from Sigma Aldrich (Oakville, ON, Canada). 

Methanol was purchased from BDH (West Chester, PA, USA). Hydrochloric acid was from 

EMD Millipore (Gibbstown, NJ, USA). Fused silica capillary tubing for the IMER (250 µm 

I.D., 360 µm O.D.) was obtained from Chromatographic Specialties Inc. (Brockville, ON, 

Canada). Fused silica capillary tubing for CE separations (50 µm or 75 µm I.D., 375 µm 

O.D.) was from Polymicro Technologies (Phoenix, Arizona, USA). A multi-cartridge Milli-

Q filtration/deionization system (Millipore, Bedford, MA, USA) was employed to purify 

the distilled water used in preparation of all solutions and buffers. 

 

4.3.2. Protein Substrate Denaturation 

Eight milligram of substrate in 800 µL ammonium bicarbonate solution (0.4 M, pH 

8.0) containing 8 M urea was reacted with 120 µL DTT (45 mM in water) at 50 °C for 15 

min to reduce disulfide bonds. After cooling to room temperature, 120 µL of iodoacetamide 

(100 mM in water) was added to prevent thiol oxidation and reformation of the disulfide 

bridges between cysteine residues in the substrate. Tris-HCl (100 mM, pH 7.8) containing 
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10 mM calcium chloride was added to dilute the denatured protein substrate to a final 

concentration of 2 mg/mL. 

 

4.3.3. Digestion of Substrate by Soluble Chymotrypsin  

Chymotrypsin stock solution (1.3 mM) was added to substrate (either FITC-casein 

solution or Milli-Q water for the autoproteolysis study) and digested at 37 °C. The duration 

and the enzyme:substrate ratio are indicated in the results section.   

 

4.3.4. Preparation of GA-Crosslinked Chymotrypsin Particles  

The following procedure was adapted from our previous method for trypsin and from 

preliminary studies using chymotrypsin [41, 106]. A 50 mM sodium phosphate buffer, 

pH 6.4, was used for several preparation and washing steps in this section. In a 1.5 mL 

microcentrifuge vial, the chymotrypsin stock solution was diluted to 0.15 mM using 

phosphate buffer. GA, diluted to 2.5% (v/v) in water, was added dropwise (ca. 80 µL) to 

the enzyme solution. This represents a large molar excess over chymotrypsin. The 

immobilization reaction was allowed to proceed without stirring for 2 h at room 

temperature. The solution was then centrifuged at 3000 rpm for 2 min and the supernatant 

was decanted off. The particles were washed to remove unreacted enzyme and excess 

glutaraldehyde with 3  200 µL phosphate buffer, 3  200 µL NaCl (500 mM), then once 

again with 200 µL buffer. Finally, 200 µL glycine (200 mM, in phosphate buffer) was 

added to react with any excess aldehyde groups for 3 h at room temperature. The final 

product was washed with 3  200 µL phosphate buffer followed by 3  200 µL Milli-Q 

water. The immobilized crosslinked chymotrypsin particles were stored at -20 °C in 200 µL 

Milli-Q water. The immobilization yield was measured by absorbance spectroscopy using a 

Cary 100 Spectrophotometer from Varian.  
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4.3.5. Digestion of Substrate by Immobilized Chymotrypsin Particles  

The protein substrate was added to the immobilized chymotrypsin preparation 

(particles in 200 µL) to reach a given enzyme:substrate ratio (mol:mol), as indicated in each 

figure, where the enzyme typically had a mole ratio equal to or higher than the substrate. 

Digestion was performed in a 1.5 mL microcentrifuge tube in batch format with gentle 

shaking for 4 h (or 24 h) at 37 °C. The digest solution was decanted off and then was 

injected into the CE (see description below) for separation without pre-concentration or 

filtration. 

 

4.3.6. CE-UV and CE-LIF Separations 

CE-UV peptide mapping of BSA digests was performed on an Agilent System (Agilent 

Technologies, Waldbronn, Germany) equipped with a UV/Vis diode array detector (DAD) 

but monitored at 200 nm. CE-LIF peptide mapping of FITC-labeled casein digests was 

performed on a Beckman MDQ instrument (Beckman Coulter, Fullerton CA, USA) 

equipped with a 3 mW argon ion laser having an excitation wavelength of 488 nm and a 

520 nm emission wavelength band-pass filter. Separations were performed at +15 kV in the 

Agilent CE and at +20 kV in the Beckman CE, all at 25 °C in an uncoated fused silica 

capillary (43 cm total length, 75 µm I.D.). The background electrolyte (BGE) consisted of 

50 mM sodium phosphate, pH 2.5, for CE-UV mapping and 50 mM sodium phosphate pH 

7.0 for CE-LIF mapping. All buffers were filtered with a 0.22 µm nylon syringe filter 

(Chromatographic Specialties, Brockville, ON, Canada) prior to use. The capillary was 

flushed with 0.1 M NaOH for 1 min, Milli-Q water for 1 min, 0.1 M HCl for 2 min, then 

buffer for 3 min. Sample injection for the Beckman system was performed by applying 0.5 

psi  5 s at the inlet followed by 2 s of buffer using the same pressure. On the Agilent 

system, sample was injected at 34.5 mbar  5 s followed by 2 s of buffer. 

  



58 

 

 

 

4.3.7. Microreactor (IMER) Construction and Characterization 

4.3.7.1. In Situ IMER Fabrication 

A selected length of fused silica capillary (43 cm  250 µm I.D.) was installed in the 

Agilent CE system, rinsed at 50 mbar with NaOH (1 M) for 1 h, followed by Milli-Q water 

then methanol, each for 10 min. The capillary was dried by flushing (at 950 mbar) with air 

for 10 min at room temperature. The dried capillary was then activated with HCl (1 M) by 

rinsing it at 50 mbar for 1 h at room temperature. The capillary wall was then derivatized 

with (3-aminopropyl)triethoxysilane (3-APTES, 10% (v/v) in methanol) at 60 °C by rinsing 

it for 1 h at 50 mbar, then letting it sit for 3 h. The amino-functionalized capillary was 

rinsed for 3 min at 50 mbar with Milli-Q water to remove unreacted 3-APTES. After 

cooling to room temperature, GA (diluted to 2.5% (v/v) in water) was passed through the 

capillary for 1 h at 50 mbar followed by rinsing for 3 min at 50 mbar with phosphate buffer. 

Next, chymotrypsin (1.3 mM in water) was continuously passed at 50 mbar into the 

capillary for up to 60 min. The sequence of GA, buffer then chymotrypsin was repeated 

three times. The capillary was then left at room temperature for 3 h to complete the 

crosslinking reaction. Finally, the IMER was rinsed with water for 2 min at 50 mbar. 

 

4.3.7.2. Digestion of Substrate in the Immobilized Chymotrypsin Microreactor 

The protein substrate (18 mg/mL myoglobin with no denaturation or 2 mg/mL BSA 

after denaturation) was injected into the IMER at 50 mbar for 2 min. Even after 2 min of 

injection, little or no substrate was seen at the IMER outlet. Digestion was allowed to 

proceed for 30 min at 37°C. Then, 50 mM phosphate buffer was passed through the IMER 

capillary at 50 mbar for 2 min to flush the digest to the outlet. The digest and buffer rinse 

(total volume ca. 80 µL) were collected and analyzed by CE-MS without pre-concentration 

or filtration. 
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4.3.7.3. CE-MS Separation 

Separation was performed on the Agilent system in a bare fused silica capillary (75 µm 

I.D., 360 µm O.D., 70 cm total length, 21 cm to the UV detector) at 25 °C under an applied 

voltage of +35 kV in a buffer composed of 10 mM ammonium acetate, pH 6.7. Detection 

was made with a single quadrupole mass sensitive detector (MSD SL System, Agilent 

Technologies, Santa Clara, CA, USA) interfaced using an orthogonal sheath flow CE- MS 

sprayer ion source (Agilent Technologies). The MSD was operated with an atmospheric 

pressure electrospray ionization (API-ES) source in positive ion detection mode. The 

source parameters were as follows: drying gas flow of 10 L/min at 130°C, 170 kPa; sheath 

liquid composed of 0.1% formic acid in 50% methanol operated at a flow rate of 250 

µL/min. The MSD parameters were: 200 -1000 m/z mass range, fragmentor set at 65 V and 

detector gain at 3, cycle time of 0.97 s per cycle. Selected ion monitoring (SIM) mode was 

used for 50% of a cycle time. 

 

4.4. Results and Discussion 

4.4.1. Immobilization Efficiency 

The immobilization efficiency, or yield, of the GA-chymotrypsin reaction was 

evaluated by UV-Vis absorbance spectroscopy. The spectra of chymotrypsin and GA 

overlap significantly (Figure 4.1), including the absorbance region specific to aromatic 

residues. Therefore, two graphical methods were used to quantify the amount of 

chymotrypsin remaining in the supernatant and washes after the crosslinking reaction, 

where there was still the presence of excess GA. 
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Figure 4.1. UV-Vis absorbance spectra of chymotrypsin (12 μM) and glutaraldehyde 
(2.5%). The reference solution was Milli-Q water. 

 

The first method involved using the fourth derivative spectra measured at 288 nm 

where the absorption for glutaraldehyde is zero but that of chymotrypsin shows a strong 

negative band (the spectra are presented in Appendix B). A calibration curve for 

chymotrypsin (for concentrations from 4 to 20 µM) in the presence of excess GA was made 

using the fourth derivative absorptions at 288 nm of mixtures of chymotrypsin and GA. The 

absorption of chymotrypsin in solution (supernatant and washed) after the immobilization 

reaction was subtracted from the initial concentration. The second method involved the 

commonly used “analysis of a mixture” [197] which requires absorbance measurements, at 

several wavelengths, of three solutions: the mixture, a chymotrypsin standard and a GA 

standard. A plot of Amix/ACT,st as a function of AGA,st/ACT,st was made where Amix is the 

absorption of the supernatant after crosslinking, ACT,st is the absorption of diluted 

chymotrypsin standard solution ([CT]st =6 µM) and AGA,st is the absorption of diluted GA 

standard solution ([GA]st =0.47%). The absorbances were measured at 265, 268, 271 and 

275 nm. From equation (4.1), the slope and intercept, [GA]/[GA]st and [CT]/[CT]st 

respectively, permitted estimations of [GA] and [CT] remaining in solution after the 

crosslinking reaction.  
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Combining the results for both spectral methods, the average immobilization efficiency 

was determined to be as 94 ± 2% (n=5)1.  

 

4.4.2. Autoproteolysis of Chymotrypsin 

Autoproteolysis, which leads to interfering background peptides during separation and 

identification, is unavoidable unless very low enzyme concentrations are used, thereby 

necessitating long incubation times. Immobilization is proposed to decrease autoproteolysis 

by reducing the enzyme’s flexibility [160]. Trypsin immobilized via the ε-amino groups of 

lysine residues is inherently stabilized against autoproteolysis because a large proportion of 

its cleavage sites are literally “tied up” [42]. Chymotrypsin, which cleaves substrate at 

aromatic residues, does not benefit from this so it is important to carefully evaluate the 

autoproteolysis of this enzyme once it is insolubilized. We prepared immobilized 

chymotrypsin using GA as a crosslinking agent, which results in formation of irregularly 

shaped, soft particles. To fairly compare the autoproteolysis of soluble versus GA-

crosslinked chymotrypsin, a blank substrate sample (i.e., 0 mg of BSA) was subjected to all 

denaturation steps (Section 4.2.2), incubated with each form of chymotrypsin at 37 °C for 

24 h, then analyzed by CE-UV. Figures 4.2A and B show that the soluble chymotrypsin 

underwent extensive autoproteolysis, whereas there was very limited autoproteolysis using 

an equivalent amount of GA-crosslinked immobilized chymotrypsin. This suggests that 

enzyme flexibility is indeed reduced or at least that the crosslinked chymotrypsin does not 

present significant cleavage sites. 

                                                 

1 More details about calculating immobilization efficiency are presented in Appendix B. 
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Figure 4.2. CE-UV peptide maps showing autoproteolysis of soluble chymotrypsin (A) and 
GA-crosslinked (immobilized) chymotrypsin (B), both incubated at 37 °C for 24 h. Milli-Q 
water as a substrate was subjected to the denaturation conditions described in the text. 
Separations were performed at +15 kV using 50 mM phosphate buffer, pH 2.5. The 
concentration of chymotrypsin was 0.12 mM in both experiments. 

 

4.4.3. Storage Conditions 

Immobilized enzymes are kept in either dry or wet conditions, i.e., in a known amount 

of water. We compared the effect of storage temperature and humidity condition of GA-

crosslinked chymotrypsin on its relative activity for BSA digestion. Six batches of GA-

chymotrypsin particles were prepared; three were kept wet according the procedure above 

and three were dried using a Savant Speed Vac, then they were stored at -20, 4 and 22°C 

for 24 h. The vacuum dried particles became a thin gel at the bottom of the microcentrifuge 

tube. Six aliquots of denatured BSA were added to the six tubes and incubated for 24 h at 

37°C. Despite minor differences between the electropherograms, both wet (Figure 4.3A) 

and dried (Figure 4.3B) GA-chymotrypsin maintained similar activity regardless of storage 

temperature for the digestion of denatured BSA. In a separate experiment, we confirmed 

that the GA-chymotrypsin particles stored wet at -20°C for 4 months were still active 
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toward BSA (data not shown). These experiments suggest that although the GA-

chymotrypsin particles are a soft material, they are fairly robust. 

 

 

Figure 4.3. CE-UV peptide maps of BSA (2 mg/mL) showing the effect of different short-
term storage conditions on immobilized enzyme activity where the GA-chymotrypsin 
particles were stored either wet for 24 h at the indicated temperatures (panel A), then used 
to digest three aliquots of denatured BSA, or stored dry for 24 h at the indicated 
temperatures (panel B), then used to digest three more aliquots of denatured BSA. For both 
wet and dry storage conditions, the enzyme:substrate ratio was 20:1 (mol:mol), and 
digestion was for 24 h at 37 °C. Separation conditions were the same as in Figure 5.2. 

 

4.4.4. Digestion of Fluorescently Labeled Protein using GA-Chymotrypsin Particles 

At low substrate concentrations (< 1 μM), peptides in a diluted digest cannot be easily 

detected by CE-UV [186]. Therefore, CE-LIF detection of peptides from a fluorescently 

labeled protein offers an alternative method for characterizing immobilized enzymes at low 

substrate concentration. The commercially available substrate FITC-casein was digested 

without prior denaturation by both soluble and GA-crosslinked chymotrypsin and the 

digests were analyzed by CE-LIF. Figure 4.4 shows that the presence of fluorescein groups 

on the substrate does not block the activity of the GA-crosslinked chymotrypsin. The CE-

LIF separation conditions were not further optimized in this study once we confirmed that a 

similar number of peaks were seen in both electropherograms. On the other hand, the 

different peak intensities observed by CE-LIF are probably due to a difference in enzymatic 
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activity between the soluble and the GA-crosslinked chymotrypsin. Injection of undigested 

substrate shows only a single peak at 1.75 min (Figure S4.1, Supporting Information). 

 

 

Figure 4.4. CE-LIF peptide maps of FITC-casein substrate (400 nM) digested for 4 h at 37 
°C by GA-crosslinked chymotrypsin (A) and soluble chymotrypsin solution (B). The 
separation was carried out at +20 kV, in 50 mM phosphate buffer, pH 7.0. The E:S ratio 
was 30:1 (mol:mol). 

 

4.4.5. IMER Digestion 

The procedure for aminopropyl functionalization of the capillary using 3-APTES and 

enzyme immobilization was inspired by the methods reported by Krenkova et al. for a 

trypsin microreactor [88] and by Shan et al. for a δ-gluconolactone modified capillary [87]. 

The Krenkova method required more than 30 h and both reports required nitrogen gas and 

high drying temperatures. Our method required about 15 h and temperatures no higher than 

60 °C. Figure 4.5A shows a simple stereomicroscope image (Motic Model BA310 

microscope, Hong Kong) of the capillary after derivatizing it with 3-APTES but prior to 
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chymotrypsin immobilization. Liquids can still pass freely through the capillary. Figure 

4.5B shows the capillary after passing through GA and chymotrypsin three times, in which 

a heterogeneous solid material can be seen as evidence that crosslinked chymotrypsin was 

made. At this point, flow through the capillary was encumbered but not totally blocked and 

it was not clear whether a thick layer of GA-crosslinked chymotrypsin was formed along 

the walls, or whether the polymeric network extended across the width of the IMER. When 

then same procedure was attempted in 75 µm I.D. capillaries they became blocked at the 

chymotrypsin addition step, which is why we moved to a larger I.D. column. 

 

 

Figure 4.5. Stereomicroscope images taken from the window section of the IMER capillary 
after passing the 3-APTES through (image A), and then after passing the glutaraldehyde 
and chymotrypsin through (image B), leading to GA-chymotrypsin immobilized inside the 
IMER. 

 

We were able to digest myoglobin substrate in 30 min, although the total volume 

injected was not calibrated. It is important to note that when we tried to digest denatured 

BSA in the IMER we saw some peaks in the CE-MS analysis but none of the m/z values 

could be attributed to BSA chymotryptic peptides. It is not clear whether the residual 

denaturation reagents caused a problem in the IMER or whether the BSA was too large to 

digest. If substrate size were the issue, then this would clearly limit the application of the 



66 

 

 

 

IMER. We are investigating these limitations using heat denaturation of BSA, other large 

protein substrates and chemical denaturation of myoglobin before IMER digestion. 

 

4.4.6. CE-MS Characterization 

Addition of mass spectral detection to CE permits peptide mass mapping, which 

facilitates protein identification by comparing the experimental m/z values of peptides to 

those from theoretical digestion of known proteins in a given genomic database. The 

ExPASy (http://www.expasy.org) and Protein Prospector (http://prospector.ucsf.edu) 

databases were used to determine the theoretical chymotryptic sites for digestion of 

myoglobin (Figure 4.6) as well as for autodigestion of chymotrypsin (31 cleavage sites). 

The only optimization of the CE-MS parameters consisted of investigating acetic acid and 

sodium acetate along with ammonium acetate for the BGE and the effect of a few different 

flow rates for the sheath liquid. CE-UV data are also obtained from the Agilent CE-MS 

system for a given sample but are not always meaningful because the effective separation 

length to the UV detector is short (21 cm) and the buffer, which must be compatible with 

MS detection, generally has poor resolving power for CE-UV peptide mapping. 

 

Figure 4.6. Primary sequence of myoglobin with slashes indicating the expected 
(theoretical) chymotryptic cleavage sites and with CE-MS identified peptides underlined to 
visualize the sequence coverage and missed cleavages. 

 

For the IMER-based myoglobin digest, the CE-UV peptide map had poor S/N ratio but 

in the CE-MS total ion current electropherogram, peptides (although poorly resolved) 

eluting between 6 and 11 min could be seen. Approximately 12 mass spectra across this 

elution window were examined. Scanning the mass range up to 1,000 Da was deemed 
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adequate because the largest peptides are highly basic and thus can be detected in their 

higher charge states. The measured m/z values obtained for chymotryptic digestion of 

myoglobin in the IMER were compared to the theoretical m/z values to identify the 

peptides. The experimentally identified peptides are shown in Table 4.1 along with their 

m/z values, charge states, theoretical m/z values and number of missed cleavages. The 

identified peptides are also underlined in Figure 4.6. The sequence coverage was 83.8% 

according to the amino acid residues in the identified peptides. It should be noted that three 

chymotryptic cleavage sites in myoglobin result in single amino acid residues that are 

below the mass range scanned. 

 

Table 4.1. Experimentally identified residues from horse myoglobin digested by 
chymotrypsin IMER and identified by CE-MS. 

Measured m/z a Theoretical m/z (mi) Position MCb Peptide sequence a detected by CE-MS 
204.1 204.098 153-154 0 (F)QG(-) 
274.72+ 274.6812+ 31-34 1 (L)IRLF(T) 
389.72+ 389.7082+ 148-154 2 (Y)KELGFQG(-) 
644.4 644.398 71-77 1 (L)TALGGIL(K) 
950.5 950.505 140-147 0 (F)RNDIAAKY(K) 
593.2 593.220 4-8 0 (L)SDGEW(Q) 
407.32+ 407.2112+ 42-47 1 (L)EKFDKF(K) 
295.1 295.129 106-107 0 (L)EF(I) 
418.2 418.208 13-15 0 (L)NVW(G) 
487.2 487.287 9-12 0 (W)QQVL(N) 
475.92+ 475.7562+ 140-147 0 (F)RNDIAAKY(K) 
778.1 778.409 148-154 2 (Y)KELGFQG(-) 
924.6 924.432 117-124 0 (L)HSKHPGDF(G) 
762.02+ 761.8972+ 16-30 0 (W)GKVEADIAGHGQEVL(I) 
295.14+ 294.9184+ 78-87 0 (L)KKKGHHEAEL(K) 
566.92+ 567.2852+ 125-136 0 (F)GADAQGAMTKAL(E) 
433.84+ 434.5064+ 91-105 1 (L)AQSHATKHKIPIKYL(E) 
579.23+ 579.0053+ 91-105 1 (L)AQSHATKHKIPIKYL(E) 
894.3 894.366 1-8 1 (-)MGLSDGEW(Q) 
544.34+ 544.3004+ 51-70 1 (L)KTEAEMKASEDLKKHGTVVL(T) 

a. for [M+H]+ unless otherwise indicated; the MSD only reports mass to ± 0.1 Da. 

b. number of missed cleavages. 
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Table 4.1 and Figure 4.6 show there were a few more missed cleavages than what has 

been seen for other microreactor configurations [51, 124, 198]. This may be a result of not 

denaturing the myoglobin substrate before digestion or an indication that there was less 

contact than anticipated between the substrate and GA-chymotrypsin in the IMER. 

Although myoglobin has no disulfide bonds that require chemical denaturation, it is an 

extremely compact protein [199] so some of its aromatic residues are probably buried when 

in the native conformation making them less accessible to chymotryptic cleavage. It is 

important to note that this situation is less problematic for trypsin because lysine and 

arginine—the tryptic cleavage sites—should be nearer to the surface of a compact protein. 

Batch digestion of undenatured myoglobin with GA-chymotrypsin particles showed ca. 18 

peptidic peaks by CE-UV analysis (Figure S4.2 in Supporting Information), which is 

similar to the number of peptides identified by CE-MS after IMER digestion. The peptides 

in Figure S4.2 presumably include some missed cleavages and some of the 26 expected 

chymotryptic peptides for myoglobin, suggesting that the IMER format provided as much 

enzyme-substrate “contact” as did a suspension of GA-chymotrypsin particles. Batch 

digestion using soluble chymotrypsin was also carried out, but unfortunately we had 

instrument problems with the API-ES interface to the MSD when the soluble chymotrypsin 

digest of myoglobin was analyzed and we are working to fix this. A further study will 

compare the digestion of denatured to undenatured myoglobin for soluble, crosslinked and 

IMER-bound chymotrypsin formats.  

IMER autoproteolysis activity was examined in the CE-MS results by searching the 

mass spectra for peaks corresponding to m/z values of chymotryptic peptides of 

chymotrypsin. No such peptides were found, even when including three missed cleavages 

and charge states above (M+4H)4+. Similarly, trypsin activity toward myoglobin was 

searched in the spectra because our chymotrypsin was not sequencing grade, but no tryptic 

peptides were found. 
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4.5. Concluding Remarks 

Immobilized enzymes play an important role in proteomics. Chymotrypsin 

immobilization mediated by GA crosslinking was achieved to make insoluble enzyme 

particles as well as an IMER directly in a capillary using the CE instrument for fluid 

handling to deliver all reagents. The present study shows that the short-term storage 

temperature and humidity level of the GA-crosslinked chymotrypsin particles have little 

effect on BSA digestion. Furthermore, bulky fluorophore moieties on the substrate do not 

block digestion by the GA-chymotrypsin particles. A separate manuscript that describes 

optimizing the conditions for particle formation is concurrently in preparation. We 

succeeded in fabricating an in situ IMER and good myoglobin digestion (83% sequence 

coverage) was observed by CE-MS peptide mass mapping. Further optimization of the 

IMER preparation and digestion conditions is underway and we are investigating 

alternative methods to evaluate the extent of crosslinking that occurs. The goal is to couple 

the GA-crosslinked enzyme IMER to different separation and identification techniques to 

show its viability for on-line peptide mapping. 
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4.7. Supporting Information 

The following section is adapted from the Supporting Information published with 

Ghafourifar et al. “Development of glutaraldehyde-crosslinked chymotrypsin and an in situ 

immobilized enzyme microreactor with peptide mapping by capillary electrophoresis”., in 

Electrophoresis. 

 

Figure S4.1. CE-LIF peptide map of FITC-casein substrate (1 µM) before digestion. The 
separation was carried out at +20 kV, in 50 mM phosphate buffer, pH 7.0. All other 
separation and detection conditions were the same as in section 4.3.6. 

 

 

Figure S4.2. CE-UV peptide map of undenatured myoglobin (2 mg/ml) digested using GA-
crosslinked chymotrypsin particles for 4 h at 37 °C. The enzyme:substrate ratio was 10:1 
(mol:mol). The separation was carried out at +15 kV in 50 mM phosphate buffer, pH 6.4 
(baseline noise was high at the typical separation pH of 2.5). All other separation conditions 
were the same as in section 4.2.6.  
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Chapter 5. A Study of the Chymotrypsin IMER Digestion Efficiency as a 
Function of Substrate Size 

 

 

A version of this chapter will be submitted for publication to Analytical Sciences with 

authorship by Golfam Ghafourifar, Brian Fleury and Karen C. Waldron 
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5.1. Abstract 

Enzymatic digestion of proteins, an essential technique used in bottom-up proteomics, 

can be achieved with immobilized, i.e., insoluble, enzymes. This method offers several 

benefits over soluble enzymes including reusability, high enzyme-to-substrate ratio for 

rapid digestion, limited autoproteolysis and integration with fluidic systems. We are using 

chymotrypsin as the proteolytic enzyme and glutaraldehyde (GA) as a crosslinking agent to 

immobilize chymotrypsin without the need for a secondary solid support. The resulting 

polymeric, spongy product of crosslinked GA-chymotrypsin prepared in batch form can be 

prepared inside a capillary column to fabricate an immobilized enzyme microreactor 

(IMER). IMERs based on GA-chymotrypsin were prepared using an automated capillary 

electrophoresis (CE) system for delivery of reagents and to digest BSA as an example of a 

medium-to-large sized protein substrate, a 9-residue peptide as an example of a small 

substrate, and finally a dipeptide. During digestion of these substrates, the conditions 

investigated were buffer composition, pH, applied pressure and reaction time in the IMER. 

The performance of the IMERs was followed by comparing peptide maps obtained by CE 

or HPLC coupled to either UV or mass spectrometric (MS) detection.  

 

5.2. Introduction 

The use of micro-scale immobilized enzyme reactors (IMERs) based in proteases has 

grown in recent years to address the need for fast digestions, reduced autoproteolysis and 

multiple usage especially for expensive enzyme catalysts [36, 40, 72, 92, 94, 151, 160, 167, 

200]. Immobilization of enzymes essentially eliminates their intermolecular collisions and 

thus the potential for autoproteolysis. This, in turn, allows using a higher enzyme-to-

substrate ratio than the typical ratio used in both soluble protease reactions and in-gel 

digestions and leads to a faster reaction. For example, Liang et al. reported that using a 

trypsin-IMER allowed a ten to one hundred fold increase of the enzyme concentration in 

comparison with a solution-phase digestion [189]. Dartiguenave et al. showed that efficient 

digestions of β-casein could be achieved in 80 s in a trypsin-IMER and that over 20 

digestions could be made reproducibly [42]. On the other hand, Rivera-Burgos et al. 
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observed that the peptides generated from trypsin-IMER digested protein are not always 

identical to those obtained with the traditional 24 h digestion protocol using soluble trypsin, 

although this is less of a problem in tandem mass spectrometry (MS/MS) based peptide 

identification with sequence analysis[201]. Migneault et al. showed that autolysis peaks 

using immobilized trypsin were indistinguishable from background noise [41]. An 

advantage of the proteolytic IMER is that it can be coupled to high-resolution separation 

and detection instruments such as liquid chromatography-MS (HPLC-MS), capillary 

electrophoresis-MS (CE-MS), CE-UV and CE-laser induced fluorescence (LIF) to 

automate peptide mapping [72, 85, 132, 194, 202]. Although a certain number of IMER 

devices with enzymes immobilized on agarose-gel or silica particles are commercially 

available, a large number of novel IMERs have been described and may become 

commercialized. 

Enzyme immobilization is relatively straightforward, whereas creating an efficient 

microIMER is not. There are several techniques to immobilize enzymes such as non-

covalent adsorption, entrapment and encapsulation, ionic binding, covalent binding and 

enzyme crosslinking, to name a few [31, 183, 195, 198, 203]. Although immobilization 

through formation of a covalent bond requires several chemical steps, it boasts the highest 

popularity over other immobilization techniques because it is robust [156, 169]. 

Crosslinking an enzyme using a bifunctional agent such as glutaraldehyde (GA) is an 

example of covalent binding that requires the least chemical modification [204, 205]. GA is 

a well-known crosslinking agent used for more than 40 years [48, 50, 52, 106, 206].  

Theoretically, any enzyme can be immobilized to make a microIMER; however, 

trypsin is the most commonly reported due to its high specificity (cleavage of peptide 

bonds only at the C-terminal side of lysine and arginine residues) and its rendering of 

medium-sized peptide fragments having a positive charge and, thus, its preference for 

protein digestion and proteomics studies [40, 41, 169, 207-210]. For use with amine-

derivatized substrates, such as fluorescently labeled proteins, trypsin is not the ideal 

enzyme because it does not recognize the labeled lysine side chains as a cleavage site. The 

alternative to this, chymotrypsin, probably the second most commonly used proteolytic 

enzyme, cleaves proteins at the C-terminal side of aromatic residues so it can be used as a 
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viable alternative to trypsin in IMERs when the substrate is fluorescently labeled at its 

amino groups, allowing fluorescent detection of products to be used [53, 72]. We have 

shown that GA-crosslinked chymotrypsin can be used to digest fluorescein isothiocyanate 

(FITC) labeled casein in batch format and also that chymotrypsin can be immobilized 

inside a 250 µm ID, 40 cm long, fused silica capillary using GA-mediated crosslinking to 

produce a microIMER [53]. In the present work, GA-chymotrypsin IMERs were fabricated 

in a similar manner and the effects of certain reagent conditions (flow rate, pH) on 

digestion of small and large substrates were studied with the goal of identifying a universal 

or optimum digestion protocol. The digests of various substrates were analyzed by CE-UV 

or HPLC-MS, depending on their complexity. 

CE is a high-resolution separation technique that can be sensitive to certain buffer 

conditions. The proper selection of buffer composition and pH is essential to obtain good 

peptide mapping. In most cases, a CE buffer of sodium phosphate at pH ≤ 2.5 insures all 

peptides are positively charged and silanol dissociation on the inner capillary wall is 

suppressed so that electroosmotic flow is very low and thus good resolution is achieved 

[42, 51, 117]. In previous studies from our group, CE-UV based peptide maps were 

obtained in these conditions. However, the digests in the current IMER study could not be 

separated by CE in phosphate buffer pH 2.5 for unknown reasons, but somehow related to 

the peptides coming from digestion in the GA-chymotrypsin microreactor. Therefore, we 

examined three additional buffer systems: ammonium bicarbonate at pHs 4.4 and 6.9 and 

sodium tetraborate at pH 8.6, to find the optimum CE-UV conditions for peptide mapping 

of the chymotryptic-IMER digests. 

 

5.3. Materials and Methods 

5.3.1. Reagents and Materials 

α-Chymotrypsin from bovine pancreas type II, GA (25% aqueous solution), bovine 

serum albumin (BSA), monobasic sodium phosphate, dibasic sodium phosphate, acetic 

acid, trizma hydrochloride, Trizma base, calcium chloride, sodium hydroxide, (3-
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aminopropyl)triethoxysilane (3-APTES, 99% purity), urea, and iodoacetamide were from 

Anachemia (Montreal, QC ). The nonapeptide WAGGDASGE, sodium acetate, sodium 

borate, and DL-phenylalanine, phosphoric acid, tryptophan and dithiothreitol (DTT) (98% 

purity) were purchased from Sigma Aldrich (Oakville, ON). Hydrochloric acid was from 

EMD Millipore (Gibbstown, NJ). The dipeptide H-Phe-His-OMe∙2HCl (FH-OMe) was 

purchased from Bachem (Torrance, CA). Sodium dodecyl sulfate (SDS) was from Fisher 

Scientific (Hanover Park, IL). Fused silica capillary tubing for the IMER (250 µm ID, 360 

µm OD) was obtained from Chromatographic Specialties Inc. (Brockville, ON). Fused 

silica capillary tubing for CE separations (75 µm ID, 375 µm OD) and Inner-Lok 

connectors were from Polymicro Technologies (Phoenix, AZ). Syringes were purchased 

from BD (Franklin lakes, NJ). A multi-cartridge Milli-Q filtration/deionization system 

(Millipore, Bedford, MA) was employed to purify the distilled water used in preparation of 

all solutions and buffers. 

 

5.3.2. BSA Substrate Denaturation 

BSA was first denatured in an ammonium bicarbonate solution (0.4 M, pH 8.0) 

containing 8 M urea, then disulfide bonds were reduced with DTT (45 mM in water) 

followed by alkylation with iodoacetamide (100 mM in water), as described previously 

[53]. The final solution was diluted using Tris-HCl (100 mM, pH 7.8) containing 10 mM 

CaCl2 to reach a final substrate concentration of 2 mg/mL. 

 

5.3.3. Digestion of Substrate by Soluble Chymotrypsin 

Chymotrypsin solution (1.3 mM in water) was added to substrate to reach a given 

enzyme:substrate ratio (mol:mol), as indicated in the following sections, and the solution 

was incubated at 37 °C for 4 h, then analysed by peptide mapping.  
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5.3.4. Preparation of Glutaraldehyde-Immobilized Chymotrypsin Particles 

Chymotrypsin stock solution (1.3 mM in water) was diluted using 50 mM phosphate 

buffer pH 6.4 to reach 0.15 mM. A diluted solution of GA (2.5% in water) was added drop-

wise to the enzyme solution and the immobilization reaction proceeded for 2 h at room 

temperature. The solution was then centrifuged at 3000 rpm for 2 min and the supernatant 

was decanted off. The insoluble product was gently washed to remove excess GA and 

unreacted enzyme with 3  200 µL buffer, then 3  200 µL NaCl (500 mM), and finally 

with 1 200 µL buffer. Next, 200 µL glycine (200 mM in phosphate buffer) was added to 

react with any remaining unreacted aldehyde groups for 3 h at room temperature. The final 

product was washed with 3  200 µL buffer followed by 3  200 µL water. The 

immobilized chymotrypsin was stored at -20 °C in 200 µL water.  

 

5.3.5. Digestion of Substrate by Immobilized Chymotrypsin Particles 

The substrate solution was added to immobilized chymotrypsin to reach the 

enzyme:substrate ratio (mol:mol, based on 94 ± 2% immobilization efficiency [53]) as 

indicated in the following sections. Digestion was performed in a 1.5 mL microcentrifuge 

tube by shaking gently (50 min-1) using a model SK-10 shaker (BEA-Entprotech Corp, 

Hyde Park, MA) at 37 °C for 4h. The digest solution was then decanted off and injected 

directly into the CE for separation. 

 

5.3.6. In situ IMER Fabrication 

A series of six IMERs in total were fabricated using a procedure similar to that 

reported previously where the IMER internal wall was derivatized by sequentially passing 

3-ATPES, glutaraldehyde and chymotrypsin through the capillary [53]. Specifically, a 

43 cm length of fused silica capillary (250 µm ID, internal volume of 21.1 µL) installed in 

the CE system (Agilent Technologies, Waldbronn, Germany) was first rinsed with 1 M 

NaOH for 1 h followed by water for 10 min and then methanol for 10 min. All the solutions 

were passed through the capillary at 50 mbar using the Agilent CE system autosampler, 
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unless stated otherwise. The capillary was then dried by flushing with air at 950 mbar for 

10 min. The internal wall was then activated by rinsing with 1 M HCl for 1 h. Then 3-

APTES (10% (v/v) in methanol) was passed continuously through the capillary at 60 °C for 

1 h, and then left at rest for an additional 3 h to functionalize the internal wall with amino 

groups. The capillary was cooled to room temperature and then rinsed for 3 min with water. 

Next, GA (2.5% v/v in water) was passed through the capillary for 1 h at room temperature 

followed by rinsing for 3 min with phosphate buffer, pH 6.4. Chymotrypsin (1.3 mM in 

water) was then continuously passed into the capillary for up to 1 h. The sequence of 

adding GA, buffer then chymotrypsin was repeated three times. The capillary was then left 

at room temperature to allow the crosslinking reaction to occur. After 3 h, the IMER was 

rinsed with water for 2 min.   

Substrate was passed through the IMER using different protocols as described below to 

find the best method for digestion. The digests were collected at the IMER outlet into 

20 µL water (to prevent evaporation as the digest exited the capillary) and then subjected to 

analysis (peptide mapping) by CE or HPLC. 

 

5.3.7. Separation Buffers for Peptide Mapping by CE-UV 

The following buffers were prepared to identify the most suitable conditions for 

separating IMER digests with the highest resolution of peaks: 25, 50, and 75 mM sodium 

phosphate, each at pH 2.5, 4.4 and 6.8; 50 mM ammonium bicarbonate at pH 4.4 and 6.9; 

25, 50, and 75 mM sodium borate at pH 8.6. All buffers were prepared in Milli-Q water and 

filtered through a 0.22 µm nylon syringe filter (Chromatographic Specialties) prior to use. 

 

5.3.8. Digestion Using the IMERs 

Different experimental methods were applied for the six IMERs to increase substrate 

digestion as evidenced first by the collection of sufficient digest at the IMER outlet and 

then by the quality of peptide maps, i.e., higher intensity and number of expected peaks. 

Substrates with different size and complexity were passed through the IMERs using 
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different parameters of applied pressure (which dictates flow rate and thus residence time in 

the IMER), rinsing time and loading time (i.e., injection volume). The digestion methods 

are described in the sections below according to the substrate tested and the IMER 

fabricated. In all cases, the IMER was thermostated at 37°C during digestions. 

  

5.3.8.1. IMER Digestion of the Dipeptide Phe-His-OMe (FH-OMe)  

FH-OMe (1.6 mM in water) as substrate was passed through two different IMERs 

using the methods summarized in Table 5.1. In Method 1, 200 µL FH-OMe solution was 

passed through IMER #1 in four steps: first, by applying the “normal” Agilent CE injection 

pressure (34.5 mbar) for 0.15 min followed by a second, lower pressurization (2 mbar) for 

longer time (30 min) and then another 5 mbar pressure injection for even longer (190 min), 

which emptied the inlet vial. Since the full 200 µL had still not eluted at the capillary outlet, 

the IMER was flushed at 950 mbar, which is the Agilent CE “wash” pressure, for 0.10 min 

to push out all the digest. Almost all 200 µL of the digest were collected by the end of these 

4 pressurization steps, and this solution was mapped by CE-UV. 

In Method 2a, 200 µL of FH-OMe solution was passed through a new IMER (IMER 

#2) by applying 50 mbar for 120 min, leading to collection of only 40 µL of digest the 

IMER outlet whereas the inlet vial was more-or-less empty. It should be noted that 

applying 50 mbar × 120 min corresponds to an equivalent volume of 50 mL passing 

through an open tube of 43 cm × 250 µm ID.   

In Method 2b, the 40 µL of digest collected from Method 2a was reinjected into the 

IMER #2 to increase the extent of digestion. Approximately 30 µL was collected at the 

outlet and mapped by CE-UV. 
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Table 5.1. Methods used to pass substrate FH-OMe through an IMER for digestion using 
the programmable CE system. 

Substrate solution Pressure applied to 
injection vial (mbar) 

Duration  
(min) 

Approximate 
volume collected  

 
Method 1 (IMER #1)  
FH-OMe (200 µL) 34.5 0.15 0 

 2.0 30 0 

 5.0 190 ~ 200 µL 

 950 0.10 A few µL 

Method 2a (IMER #2)  
FH-OMe (200 µL) 50.0 120 40 µL 

Method 2b (IMER #2)  
Solution collected from 
Method 2a (~ 40 µL) 

50.0 120 30 µL 

 

 

5.3.8.2. IMER Digestion of the peptide WAGGDASGE 

The nonapeptide substrate WAGGDASGE (1.3 mM in water) was passed through a 

new reactor (IMER #3) using two different methods, as summarized in Table 5.2. Since 

50 mM acetate buffer pH 5.6 had been used previously for digesting substrate by GA-

immobilized enzyme particles in batch format, this buffer was passed through IMER #3 

prior to introducing substrate. The digestion in Method 3a was devised to simulate 

conditions of digestion using the enzyme particles. The buffer was flushed through IMER 

#3 by applying 950 mbar for 0.50 min prior to injecting the substrate. WAGGDASGE (200 

µL) was then flushed through the IMER for 2.00 min at the same pressure.  

In Method 3b, IMER #3 was reused and flushed with 50 mM acetate buffer pH 5.6 for 

0.20 min to push out possible remaining digest from inside the reactor, produced during 

Method 3a. 
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Table 5.2. Methods used to pass substrate WAGGDASGE through the IMER for digestion 
using the programmable CE system. 

Substrate solution Pressure applied to 
injection vial (mbar) 

Duration 
(min) 

Approximate 
volume collected 

 
Method 3a (IMER #3)  
Ammonium acetate 
buffer, 50 mM, pH 5.6 

950 0.50 (not measured) 

WAGGDASGE (200 µL)  950 2  100 µL 

Method 3b (IMER #3)    
Ammonium acetate 
buffer, 50 mM, pH 5.6 

950 0.20  200 µL 

 

 

5.3.8.3. IMER Digestion of the protein BSA 

The substrate BSA (0.12 mM in water, denatured) was passed through new IMERs 

using four methods, as summarized in Table 5.3. In Method 4, BSA substrate solution was 

flushed through IMER #4 for 2 min. The collected digest (150 µL) at the outlet vial was re-

injected to the same reactor (IMER #4) by applying 50 mbar for 30 min to increase the 

level of digestion. 

In Method 5a, denatured BSA solution (0.12 mM) was flushed through a new reactor 

(IMER #5) for 0.20 min followed by pulsed flushes for 0.40, 0.60, and 0.80 min until 

finally the digest was seen at the outlet. At the end, we were able to collect about 60 µL of 

digest, which was analysed by peptide mapping. 

In Method 5b, the collected digest from Method 5a was flushed through IMER #5 

again for 1.00 min at 950 mbar to increase the extent of digestion. This injection was 

followed by flushing water through IMER #5 for 0.20 min to push out the entire digest 

from IMER #5, yielding a collected volume of 80 µL. 

In Method 6, denatured BSA solution (0.12 mM) as substrate was passed slowly 

through a newly prepared reactor (IMER #6) by applying 50 mbar pressure for 60 min 
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followed by flushing at 950 mbar for 1 min. The digest (200 µL) was collected at the outlet 

and subjected to peptide mapping. 

 

Table 5.3. Methods used to pass substrate BSA (denatured) through the IMER for digestion 
using the programmable CE system.  

Substrate solution Pressure applied to 
injection vial (mbar) 

Duration 
(min) 

Approximate 
volume collected 

 
Method 4 (IMER #4)  
BSA (200 µL) 950 2  150 µL 

Solution collected from 
Method 4 (150 µL) 

50  30 50 µL 

Method 5a (IMER #5)  
BSA (200 µL) 950 0.20  0 

0.40  0 

0.60  0 

0.80   60 µL  

Method 5b (IMER #5)  
Collected solution from 
Method 5a ( ~ 60 µL) 

950 1.00  (not measured) 

Water 950 0.20  80 µL 

Method 6 (IMER #6)  
BSA (200 µL) 50 60 (not measured) 

950 1.00  ~ 200 µL 

 

 

5.3.9. Peptide Mapping by CE-UV 

Peptide mapping of substrate digests was performed on the Agilent CE System which 

is equipped with a UV/Vis diode array detector (DAD). The electropherograms were 

recorded at 200 nm. Separations were performed at +15 kV at 25 ⁰C in a fused silica 
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capillary (43 cm total length, 75 µm id). The capillary was rinsed with 0.1 M HCl, then 

water, each for 3 min at 950 mbar pressure prior to each injection. After each separation, 

the capillary was rinsed with 0.1 M NaOH, then water, for 1 min each, then with 1 M HCl 

for 2 min and finally with SDS for 3 min, each by applying 950 mbar pressure. The sample 

(digest) was injected by applying 34.5 mbar pressure for 5 s followed by buffer injection 

for 2 s. 

 

5.3.10. Peptide Mapping by HPLC-MS 

Digests were submitted to the Regional Mass Spectrometry Laboratory in the 

Chemistry Department at Univeristé de Montréal where analyses were made on an Acquity 

ultra-performance liquid chromatography Class I system (Waters Ltd., Milford, MA) 

coupled to a Waters Synapt G2-S quadrupole-time-of-flight mass spectrometer with 

electrospray ionization HPLC-ESI-TOFMS in positive ion mode.   MassLynx 4.1 software 

was used to control the system and process the data. 

Separations were carried out using an Acquity CSH C18 column (75 × 2.1 mm, 1.7 µm 

particles) from Waters Ltd., maintained at 40oC. The auto-sampler temperature was set at 

10oC to avoid sample degradation. The eluents consisted of 0.1% of formic acid in water 

(eluent A) and 0.1% of formic acid in acetonitrile (eluent B), and the initial mobile phase 

contained 5% B. The following gradient elution was applied at a flow rate of 400 µL/min: 5 

to 90% B in 7 min; hold 90% B for 1 min. Eluent B was then decreased from 90 to 5% 

from 8 to 8.5 min and held constant for up to 12 min to permit column equilibration. The 

injection volume was 3 µL. 

The electrospray interface was operated in positive ion mode. The capillary voltage 

was 0.8 kV, the source temperature 100 oC and the desolvation temperature 250oC. Mass 

spectra were acquired in MSE resolution mode from m/z 100-3200 in both functions. A 

linear collision energy ramp of 20-35 was applied in function 2 in the transfer cell. 

Accurate mass values from function 1 were used for peptide elemental composition 

confirmation while manually aligned fragments from function 2 were used for peptide 

sequence confirmation. The mass range scanned was up to m/z 3000. The databases 
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ExPASy (http://www.expasy.org) and Protein Prospector (http://prospector.ucsf.edu) were 

used to determine the theoretical chymotryptic peptides for all three substreates: FH-OMe, 

WAGGDASGE and denatured BSA. The maximum number of missed cleavages was set to 

two and the peptide masses investigated were for the ions [M+H]+and [M+2H]2+only. 

 

5.4. Results and Discussion 

5.4.1. Choosing the Separation Buffer for Peptide Mapping by CE-UV 

For unknown reasons, using the traditional phosphate buffer at pH 2.5 for peptide 

separation was problematic because the capillary wall was somehow changed after the first 

injection of any IMER-digested sample, and this sabbotaged additional analyses with the 

same capillary until very intense washes were made with 1 M NaOH and HCl. The problem 

usually involved a shift in the electropherogram baseline, which drifted both in the positive 

and negative directions dramatically. In addition, the baseline become excessively noisy 

and the current dropped to zero after a few minutes of applying voltage, which caused the 

run to be aborted.  

As a result of the above problems we decided to increase the pH, which would increase 

the EOF, hoping to facilitate the peptides’ migration through the capillary. However, the 

problems with current drop and drifting baseline continued, even after changing the 

phosphate buffer pH from 2.5 to 4.4 and 6.8 (Figure S5.1, Supplementary data), or 

changing the buffer concentration from 25 to 50 or even to 75 mM (data not shown), in an 

effort to modify the electric double layer in the capillary by modifying ionic strength. In 

order to get around this problem and find a suitable background electrolyte (BGE), several 

other buffers and pHs were studied. 

Using the 50 mM ammonium bicarbonate buffer at pHs 4.4 and 6.9 provided a more 

stable current. However, the baseline drifted noticeably up and down throughout the 

electropherogram (Figure S5.2, Supplementary data), so this was abandoned. Using a 

50 mM sodium borate buffer pH 8.6 gave the most stable current and baseline during the 
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separation, so this was investigated further to find the best conditions for separation 

(peptide mapping). 

5.4.2. The Effect of Borate Buffer Concentration on CE-UV Mapping 

To study the effect of borate buffer concentration on CE separation of digests from the 

IMERs, we used BSA digested using Method 5b as the sample. Sodium borate buffer pH 

8.6 was investigated at three different concentrations: 25, 50 and 75 mM. Although all three 

concentrations tested showed stable current and baseline with digests from the IMERs, 

using 50 mM buffer yielded a better separation than at 25 and 75 mM. We could identify 4 

significant peaks in BSA digests from Method 5b using the 50 mM borate buffer as BGE as 

shown by the peak resolutions given in Table 5.4, calculated between neighboring peaks.  

 

Table 5.4. The peak resolutions calculated between two neighbouring peaks as a function 
of borate buffer concentration (pH 8.6), using BSA digests from IMER #5 digested by 
Method 5b as the sample. The separations were performed by CE-UV. 

Borate buffer concentration 
(mM) 

R1,2 R2,3 R3,4 

25 0.65 0.09 4th peak was not 

detectable 

50 1.01 1.03 0.39 

75 2.78 3rd peak was not detectable 

 

As seen in Table 5.4, changing the buffer concentration to 25 mM diminished the 

resolution between the first and the second peaks and the forth peak was not detectable. 

Using the 75 mM buffer provided a much better resolution between the first and the second 

peaks, however the third peak was not detectable. Therefore, the 50 mM borate buffer was 

used for all subsequent CE separations. 
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5.4.3. Blank Digestion Using an IMER 

A blank experiment was performed to investigate whether any IMER fabrication 

reagents remained in our collected digest samples which might interfere with our separation 

and detection. As the blank, 200 µL pure water was passed through an IMER by applying 

50 mbar pressure for 1 h. The collected solution at the outlet was mapped using CE-UV. 

The electropherogram did not show any peaks that could be attributed to the presence of 

reagents from the IMER. The sample was spiked with FH-OMe, which showed the 

electropherogram expected for the standard solution of 80 µM FH-OMe (Figure 5.1). 

 

 

Figure 5.1. Blank digestion (blue trace) using water passed through the IMER for 1 h at 
50 mbar pressure. The blank digest spiked with 80 µM FH-OMe (red trace). CE-UV 
separations were performed at +15 kV using 50 mM borate buffer, pH 8.6, at 25 °C in an 
uncoated fused silica capillary (43 cm total length, 75 µm I.D.) with detection at 200 nm.  

 

There was no significant difference between the blank digest spiked with FH-OMe and 

the standard solution of FH-OMe. Thus, there appeared to be no interference caused by the 

IMER reagents in analysing the collected sample by CE-UV. 
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5.4.4. IMER Digests of Substrate FH-OMe  

In the first digestion method, the single substrate sample (200 µL FH-OMe) required 

four attempts to flow through the reactor using the pressures and times shown in Table 5.1. 

Using Method 1, FH-OMe substrate was first injected into IMER #1 for 0.15 min while 

applying 34.5 mbar pressure, and then pushed through continuously by applying 2 mbar for 

30 min, which should lead, respectively, to a 3.3 µL then a 116 µL injection plug in an 

open capillary of the same dimensions (43 cm × 250 µm ID). Although the second injection 

should have pushed the entire digest to the outlet, no liquid was collected in the outlet vial. 

This indicates that 2 mbar pressure was insufficient to pass the substrate through the IMER, 

either because there is a blockage or just a very narrow flow path. Therefore, the pressure 

and the time were increased to 5 mbar ×190 min. The total volume of substrate in the inlet 

was equal to 200 µL and it was mostly passed through the IMER; however, a few drops 

were left in the inlet. To insure the substrate was passed through completely and no 

substrate was left in the inlet or inside the IMER, we applied 950 mbar (i.e., the Agilent 

flushing pressure) for 0.1 min. The total time for digesting the substrate using this method 

was 220 min. The CE-UV peptide map is shown in Fig. 5.2, blue trace. The digest solution 

was then spiked with 2 mM Phe to verify the migration time of the Phe product peak 

(Figure 5.2, red trace). There was no standard for the other product, H-OMe, which should 

have a similar CE migration time to the substrate at pH 8.6.  

 

Figure 5.2. CE-UV peptide map FH-OMe (1.6 mM) digested by IMER #1 using Method 1 
(blue electropherogram). The digest solution was spiked with phenylalanine solution (2 
mM) in order to determine the Phe peak (red electropherogram). Separation conditions are 
the same as in Figure 5.1. 
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In order to quantify the concentration of Phe in the IMER digest, different 

concentrations of the standard Phe solution were injected into the CE and the areas were 

measured. Each standard sample was injected three times and the average area was plotted 

to make the calibration curve shown in Figure 5.3. The larger error bar for 0.08 mM Phe 

might be due to a faulty injection.  

 

 

Figure 5.3. Calibration curve (log-log plot) for different concentrations of Phe standard 
injected  the CE. The average area was measured for three injections. 

 

The limit of detection (at 3σ) for analysis of Phe standard by CE-UV was calculated to 

be 0.7 µM and the limit of quantification was 2.4 µM. In order to calculate the background 

noise (i.e., the σ value), the average area and the standard deviation of 10 peaks 

corresponding to noise were measured for the electropherogram representing the lowest 

concentration (5.0 µM). According to the calibration curve, the concentration of Phe from 

the IMER #1 digested FH-OMe using Method 1 was measured as 0.05 mM, which is only 

about 3.1% of the initial substrate concentration prior to digestion. However, because of the 

possibility of having some reagents from the IMER present, and dilution of digests, we also 
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measured the ratio of Phe peak area to undigested FH-OMe peak area in the 

electropherogram. Using this method, the ratio was calculated as 31.9%, which is 57.7% of 

the ratio when GA-immobilized chymotrypsin was used in batch format (particles) instead 

of IMER format for digestion of the same substrate and concentration. It is important to 

point out that the enzyme-to-substrate ratio is unknown for the IMER format.  

As a result of the low amount of digest collected at the outlet (30 µL compared to the 

expexted 200 µL), the difficulty with injecting substrate using low pressures (2 – 50 mbar), 

and the limited digestion of FH-OMe according to the peptide map in Figure 5.2 and 

calibration curve data, the overall digestion method was adjusted. Method 2a, using new 

IMER #2, implied increasing both pressure and time to pass substrate through the IMER. 

Based on Poiseuille laminar flow in an open tube calculations, 50 mbar applied for 120 min 

should be enough to pass all 200 µL substrate through the IMER to the outlet. However, 

because of the immobilized enzyme layers on the inside wall, a longer time and higher 

pressure should be needed to pass all 200 µL of substrate through.  

Using Method 2a, FH-OMe digest collected in the outlet vial was only about 40 µL. A 

tiny portion of this was subjected to CE-UV analysis (Figure 5.4-A). The peak area ratio of 

Phe to undigested FH-OMe was again 31.9% . The rest of the collected digest (40 µL) was 

then re-injected to IMER #2 for further digestion (Method 2b) for another 120 min at 

50 mbar. The total digestion time was now 240 min. However, because of the small volume 

of collected sample using Method 2b, only about 30 µL was collected at the IMER #2 

outlet using Method 2b. The peak area ratio between Phe and FH-OMe decreased to 25.0%, 

which is 45.3% of the ratio of digestion by immobilized chymotrypsin particle in batch 

format. Both Phe and undigested FH-OMe peaks showed lower intensity after the second 

digestion, as shown in Figure 5.4-B. This suggests that IMER reagents may be leaching 

from the capillary into the collection vial and causing background in the CE peptide 

mapping.  
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Figure 5.4. CE-UV map of the peptides collected by passing FH-Ome through IMER #2 
using Method 2a (A) and Method 2b (B). The separation conditions were the same as in 
Figure 5.1 

 

Both collected samples from Methods 2a and 2b were also analysed by HPLC-MS 

(data not shown) where we were able to identify two fragments for each digest: Phe at m/z 

166 and His-OMe at m/z 317. 

 

5.4.5. IMER Digestion of WAGGDASGE  

A 50 mM ammonium acetate buffer, pH 5.6, was flushed (950 mbar) through IMER #3 

for 0.5 min prior to introducing substrate to see if changing the pH inside the IMER would 
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have any effect on the digestion. The nonapeptide substrate at 1.3 mM (200 µL) was 

flushed (950 mbar) through IMER #3 for 2 min such that about 100 µL was collected in the 

outlet vial (Method 3a). The collected digest was mapped by CE-UV, giving the 

electropherogram in Figure 5.5 (blue trace), which shows several small, separated peaks 

and a large peak. Only two peaks are expected because only the peptide bond between the 

first residue Trp (W) and the second one, Ala (A), are theoretically cleaved by 

chymotrypsin. The digest was spiked with a standard solution of Trp (5 mM) to determine 

its migration time (1.6 min) in the electropherogram (Figure 5.5, red trace). 

 

 

Figure 5.5. CE-UV peptide maps for the nonapeptide substrate WAGGDASGE (1.3 mM) 
digested by IMER #3 using Method 3a. Separation conditions for CE-UVwere the same as 
those given in Figure 5.1. The blue trace shows the electropherogram of collected digest 
and the red trace is the same sample spiked with 5 mM Trp standard. 

 

The collected digest from IMER #3, Method 3b, was also analysed using HPLC-MS 

(data not shown) and a fragment with m/z 663 representing AGGDASGE was identified, as 

we expected. The peak for Trp was not within the scanned mass range.  

Different concentrations of the Trp standard were injected into the CE-UV system in 

triplicate and the relative area was measured in each electropherogram, providing the 
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calibration curve shown in Figure 5.6. The limit of detection for measuring the 

concentration of Trp standard by CE-UV was calculated to be 0.37 µM and the limit of 

quantification as 1.2 µM.  

 

 

Figure 5.6. Calibration curve of standard Trp at 5 concentrations, each injected three times 
and the average area plotted with error bars for each concentration. Analyses were done by 
CE-UV using the separation conditions as in Fig. 5.1 

 

Using the calibration curve, the concentration of Trp in the nonapeptide digest was 

calculated as 0.17 mM, which is 13.1% of the initial concentration of the substrate. The 

same method was used to calculate the concentration of Trp in a digest of the nonapeptide 

made using the GA-immobilized chymotrypsin in particle format for batch digestion 

(Figure 5.7, blue trace). The enzyme-to-substrate ratio was 1:1 for the batch format, and the 

ratio of Trp peak area to substrate was 71.4%, showing that it is more efficient for digestion 

than then IMER, either because the E:S ratio is higher, or because there is less interference 

with the peptide mapping by CE-UV. The Trp peak was identified in the digest by spiking 

the latter with a standard solution of Trp (Figure 5.7, red trace).  
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Figure 5.7. CE-UV peptide maps for substrate WAGGDASGE (0.21 mM) digested by GA-
immobilized chymotrypsin particles in batch format for 4h at 37 ⁰C, E:S of 1:1 mole ratio 
(blue trace). The red trace is the digest sample spiked with 5 mM Trp standard. Separations 
were carried as in Figure 5.1. 

 

The IMER #3 was next rinsed by flushing ammonium acetate buffer though for 

0.2 min at 950 mbar to push out any remaining digest (or undigested substrate) from the 

IMER (Method 3b). Although about 200 µL was collected in the outlet vial, the CE 

analysis did not show any detectable amount of either substrate or Trp product. 

 

5.4.6. IMER Digestion of Denatured BSA  

We chose BSA, a highly folded protein that needs to be denatured, reduced and 

alkylated before digestion, as an example of a large substrate in order to evaluate the IMER 

efficiency. However, it should be noted that according to Rivera-Burgos et al. [108] “limit 

peptides” (peptides without missed-cleavages) are not necessarily equimolar to the parent 

protein. These authors indicate that, although breaking disulfide bonds and adding urea 

makes more cleavage sites accessible, it is not enough to “globally unmask the peptide 

bonds required” [108]. Therefore, the complete digestion of BSA is less likely and we 

expect to see some missed-cleavages, which might impact the identification, which is 

especially true for digestion of large or complex proteins. 
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The protein substrate was denatured and the final concentration of 0.12 mM BSA was 

digested using IMERs #4, 5 and 6 by applying different digestion protocols (Table 5.3). 

The denatured BSA solution was flushed through IMER #4 (950 mbar pressure) for 2 min 

using Method 4. About 150 µL was collected at the outlet. The collected solution was re-

passed through IMER #4 much more slowly (50 mbar for 30 min) to gain more digestion, 

without analyzing it first. The collected digest this time was only about 50 µL. The digest 

was analysed by HPLC-MS peptide mapping and the total ion chromatogram is shown in 

Figure 5.8. We were able to look at the MS spectra for all the retention times and identify 

130 amino acids out of 607 in BSA (see Table S5.1 in Supplementary Data for the 29 

identified peptides), which corresponds to 21% coverage of the primary sequence using 

digestion Method 4. The sample was also mapped by CE-UV, as shown in Figure 5.9. 

 

 

Figure 5.8. HPLC-MS peptide map (total ion chromatogram) for denatured BSA 
(0.12 mM) digested by the chymotrypsin IMER using Method 4 with IMER #4 (see Table 
5.3) for a total substrate digestion/residence time of 32 min. Analysis conditions are given 
in the experimental section. 
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Although digestion Method 4 allowed us to identify many of the expected peptides, the 

HPLC-MS peptide map (Figure 5.8) and CE-UV peptide map (Figure 5.9) did not show 

good separations for the BSA digest. The large peak in Figure 5.9 represents the undigested 

BSA in the CE-UV electropherogram. Most of the peptides show low intensity signals 

indicating low concentrations, and the peaks mostly overlapped (Figure 5.9). 

 

 

Figure 5.9. CE-UV peptide map for denatured BSA (0.12 mM) digested by chymotrypsin 
IMER #4 using Method 4 for a total substrate digestion/residence time of 32 min. The 
separation conditions were the same as in Figure 5.1. The insert represents the zoomed in 
electropherogram. 

 

To decrease the digestion time for BSA in the IMER, we used only high pressure 

(flushing by applying 950 mbar) for both Methods 5a and 5b. A denatured BSA solution 

was passed through IMER #5 using Method 5a. The BSA solution was flushed through the 

IMER for 0.20 min. Although flowing a solution for this time and pressure would normally 

correspond to over 17 fold of the total volume of an empty capillary with the same 

dimensions, nothing eluted from the IMER, suggesting it was blocked or at least not very 

porous. The flushing time was then increased to 0.40 min and then 0.60 min, but with no 

volume change either at the outlet or inlet observed. Therefore, the flushing time was 
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increased yet again to 0.80 min and finally about 60 µL was collected at the outlet. It was 

not clear what happened to the loss of injected volume. It may have been evaporated from 

the inlet vial because of applying pressure here. It is also possible that a small leak through 

the CE pre-punch hole occurred, although it was hard to find evidence for this. The 

collected digest solution was analysed by CE-UV. However, the electropherogram did not 

show a good digestion for Method 5a (data not shown). Therefore, the digest solution was 

re-passed through IMER #5 according to Method 5b (see Table 5.3), with a water rinse 

following the sample introduction. The digest collected at the outlet was mapped by CE-

UV and HPLC-MS. The CE-UV electropherogram showed more digestion than for Method 

5a (data not shown). Peptide mapping by HPLC-MS allowed us to identify 34 peptides in 

the MS spectra corresponding to 205 amino acids, which represents a sequence coverage of 

34% for BSA (Table S5.2, Supplementary Data) for a total substrate digestion/residence 

time of only 3.2 min. On the other hand, both CE and HPLC peptide maps showed weak 

separation eficiency accompanied by overlapping peaks (data not shown), which is 

undesirable.  

IMER #6 was prepared and digestion Method 6 (Table 5.3) applied using a protocol 

that was almost the inverse of Method 4. A lower pressure and slower digestion of 

denatured BSA was done first (50 mbar × 60 min) and then flushing at 950 mbar for 1 min 

to investigate whether switching these orders would improve the digestion. Using Method 

6, about 200 µL was collected in the outlet vial. The collected digest was mapped by CE-

UV, which is shown in Figure 5.10 where there are now more peptidic peaks with a better 

separation efficiency and lower intensity of the undigested BSA, indicating a better 

digestion of the substrate compared with the other methods in Table 5.3. Similarly, the 

HPLC-MS peptide map was slightly better (Figure 5.11). The collected peptides were 

identified in the HPLC-MS spectra, resulting in 210 amino acids of a total 607 being 

identified across 38 peptides. Thus using Method 6 to digest the denatured BSA gives 35% 

primary sequence coverage (see Table S5.3, Supplementary Data). 
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Figure 5.10. CE-UV peptide map for denatured BSA (0.12 mM) passed through IMER #6 
using digestion Method 6 (see Table 5.3) for a total substrate digestion/residence time of 61 
min. The separation conditions were the same as in Figure 5.1. The insert represents the 
zoomed in electropherogram.  

 

 

 

 Figure 5.11.  HPLC-MS peptide map (total ion chromatogram) of denatured BSA (0.12 
mM) passed through IMER #6 using Method 6 (see Table 5.3) for a total substrate 
digestion/residence time of 61 min. The separated conditions for HPLC-MS are given in the 
experimental section. 
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5.5. Conclusions 

Our study of several BGE buffers and concentrations shows 50 mM borate buffer at pH 

8.6 gives us a stable current and baseline and better separation resolution for CE-UV 

peptide mapping. Passing water through the IMER and the blank digestion shows no 

significant background peaks, although actual digests showed more peaks than expected 

based on the theoretical cleavage by chymotrypsin. We were able to partially digest FH-

OMe and WAGGDASGE solutions, identifying the peptide fragments in CE-UV maps by 

spiking or in HPLC-MS maps by knowing the masses of expected products. An estimation 

of the extent of digestion was made by quantifying amino acid fragments by CE-UV using 

a calibration curve. Denatured BSA was successfully digested by the IMER with 3 different 

digestion methods. The best digestion method (Method 6), where slower passage of 

substrate for 60 min then a 1-min flush at the end was done, led to the highest sequence 

coverage (35%) and more peptidic peaks in both CE and HPLC peptide maps with better 

resolution. 
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5.6. Supplementary Data 

 

 

Figure S5.1. The denatured BSA (0.12 mM) passed through the IMER using Method 4. 
The digests were separated using CE-UV in the BGE of 50 mM sodium phosphate pH 6.8. 

 

 

 

Figure S5.2. The denatured BSA (0.12 mM) passed through the IMER using Method 4. 
The digests were separated using CE-UV using the BGE of 50 mM ammonium bicarbonate 
buffer pH 4.4. 
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Table S5.1. Experimentally identified peptides by HPLC-MS from BSA digested by the 
GA-crosslinked chymotrypsin IMER #4 using Method 4. 

Measured m/z a Theoretical m/z Position MCb Peptide sequence a detected by HPLC-MS 
453.2295 453.2344 394-397 0 STVF 
561.3342 561.3395 521-525 0 VPKAF 
658.3187 658.3195 180-184 1 YANKY 
705.4595 705.3817 174-179 0 APELLY 
735.4514 735.3494 55-60 0 LQQCPF 
974.4466 974.4577 36-43 0 KDLGEEHF 
976.8726 976.5574 427-434 0 QNALIVRY 
996.4440 996.4520 512-520 0 SALTPDETY 
1051.5491 1051.5571 151-158 1 KADEKKFW 
1180.6316 1180.6473 425-434 1 GFQNALIVRY 
1212.5839 1212.5895 343-353 1 QEAKDAFLGSF 
1488.7245 1488.7369 343-355 2 QEAKDAFLGSFLY 
1538.7517 1538.7737 512-525 1 SALTPDETYVPKAF 
1572.7758 1572.7904 61-73 0 DEHVKLVNELTEF 
1583.8699 583.9002 592-607 0 AVEGPKLVVSTQTALA 
368.18932+ 368.17832+ 55-60 0 LQQCPF 
456.72892+ 456.73232+ 181-188 1 ANKYNGVF 
487.73032+ 487.73252+ 36-43 0 KDLGEEHF 
526.27552+ 526.28222+ 151-158 1 KADEKKFW 
590.36682+ 590.82732+ 425-434 1 GFQNALIVRY 
606.79552+ 606.79842+ 343-353 1 QEAKDAFLGSF 
670.82652+ 670.83892+ 25-35 0 DTHKSEIAHRF 
676.34162+ 676.34892+ 164-173 1 EIARRHPYFY 
744.86492+ 744.87212+ 343-355 2 QEAKDAFLGSFLY 
844.82622+ 844.83932+  0 (Cys_CAM: 581, 582, 590) 
769.87662+ 769.8905 512-525 1 SALTPDETYVPKAF 
786.89482+ 786.89882+ 61-73 0 DEHVKLVNELTEF 
792.44922+ 792.39032+ 95-108 0 GDELCKVASLRETY 
792.44922+ 792.45382+ 592-607 0 AVEGPKLVVSTQTALA 
1145.04202+ 1145.06462+ 55-73 1 LQQCPFDEHVKLVNELTEF 

a For [M+H]+ ions unless otherwise indicated. 

b Number of missed cleavages. 
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Table S5.2. Experimentally identified peptides by HPLC-MS from BSA digested by the 
GA-crosslinked chymotrypsin IMER #5 using Method 5b. 

Measured m/z a Theoretical m/z Position MCb Peptide sequence a detected by HPLC-MS 
367.1936 367.1976 159-161 0 GKY 
397.1751 297.1718 52-54 0 SQY 
453.2312 453.2344 394-397 0 STVF 
495.2831 495.2562 181-184 0 ANKY 
643.3423 643.3450 159-163 1 GKYLY 
658.3190 658.3195 180-184 1 YANKY 
699.3718 699.3712 350-355 1 LGSFLY 
865.4722 865.4778 151-157 0 KADEKKF 
930.5115 930.5155 230-237 0 GERALKAW 
944.4660 944.4697 358-364 0 SRRHPEY 
996.4511 996.4520 512-520 0 SALTPDETY 
1193.6532 1193.6564 521-530 1 VPKAFDEKLF 
1212.5888 1212.5895 343-353 1 QEAKDAFLGSF 
1340.6719 1340.6705 25-35 0 DTHKSEIAHRF 
1488.7397 1488.7369 343-355 2 QEAKDAFLGSFLY 
322.17532+ 322.17612+ 159-163 1 GKYLY 
326.17022+ 326.17102+ 526-530 0 DEKLF 
456.73212+ 456.73232+ 181-188 1 ANKYNGVF 
465.76102+ 465.76142+ 230-237 0 GERALKAW 
526.28182+ 526.28222+ 151-158 1 KADEKKFW 
597.33122+ 597.33192+ 521-530 1 VPKAFDEKLF 
670.83562+ 670.83892+ 25-35 0 DTHKSEIAHRF 
676.34392+ 676.34892+ 164-173 1 EIARRHPYFY 
681.41072+ 681.41122+ 365-376 0 AVSVLLRLAKEY 
744.87092+ 744.87212+ 343-355 2 QEAKDAFLGSFLY 
792.45152+ 792.45382+ 592-607 0 AVEGPKLVVSTQTALA 
908.50222+ 908.50382+ 36-51 1 KDLGEEHFKGLVLIAF 
1019.53012+ 1019.53092+ 164-179 2 EIARRHPYFYAPELLY 
1052.39282+ 1052.39742+ 109-126 0 GDMADCCEKQEPERNECF 
1086.04562+ 1086.04892+ 512-530 2 SALTPDETYVPKAFDEKLF 
1097.58022+ 1097.58072+ 36-54 2 KDLGEEHFKGLVLIAFSQY 
1124.03012+ 1124.03022+ 74-94 0 AKTCVADESHAGCEKSLHTLF 
1148.55442+ 1148.55892+ 25-43 1 DTHKSEIAHRFKDLGEEHF 
1166.48102+ 1166.48192+ 377-397 1 EATLEECCAKDDPHACYSTVF 

a For [M+H]+ unless otherwise indicated. 

b Number of missed cleavages. 

 

 

 



101 

 

 

 

Table S5.3. Experimentally identified peptides by HPLC-MS from BSA digested by the 
GA-crosslinked chymotrypsin IMER #6 using Method 6. 

Measured m/z a Theoretical m/z Position MCb Peptide sequence a detected by HPLC-MS 
205.0922 205.0971 158-158 0 W 
295.1617 295.1652 354-355 0 LY 
295.1617 295.1652 162-163 0 LY 
336.1915 336.1918 575-577 0 VAF 
397.1710 297.1718 52-54 0 SQY 
423.2227 423.2238 350-353 0 LGSF 
453.2334 453.2344 394-397 0 STVF 
495.2556 495.2562 181-184 0 ANKY 
553.2761 553.2769 158-161 1 WGKY 
561.3387 561.3395 521-525 0 VPKAF 
651.3327 651.3348 526-530 0 DEKLF 
705.3815 705.3817 174-179 0 APELLY 
735.3487 735.3494 55-60 0 LQQCPF 
912.4567 912.4574 181-188 1 ANKYNGVF 
944.4692 944.4697 358-364 0 SRRHPEY 
996.4517 996.4520 512-520 0 SALTPDETY 
1113.5030 1113.5033 52-60 1 SQYLQQCPF 
1238.7141 1238.7143 44-54 1 KGLVLIAFSQY 
1351.6904 1351.6905 164-173 1 EIARRHPYFY 
1512.7236 1512.7230 354-364 2 LYEYSRRHPEY 
1517.6057 1517.6069 578-591 0 VDKCCAADDKEACF 
2959.4970 2959.4982 394-418 1 STVFDKLKHLVDEPQNLIKQNCDQF 
277.14302+ 277.14212+ 158-161 1 WGKY 
294.13892+ 294.13922+ 354-357 1 LYEY 
322.17512+ 322.17612+ 159-163 1 GKYLY 
415.21462+ 415.21582+ 158-163 2 WGKYLY 
526.28122+ 526.28222+ 151-158 1 KADEKKFW 
590.82632+ 590.82732+ 425-434 1 GFQNALIVRY 
619.86022+ 619.86082+ 44-54 1 KGLVLIAFSQY 
676.34792+ 676.34892+ 164-173 1 EIARRHPYFY 
681.41112+ 681.41122+ 365-376 0 AVSVLLRLAKEY 
721.38922+ 712.38992+ 521-532 2 VPKAFDEKLFTF 
744.87162+ 744.87212+ 343-355 2 QEAKDAFLGSFLY 
756.86332+ 759.86512+ 354-364 2 LYEYSRRHPEY 
792.39012+ 792.39032+ 95-108 0 GDELCKVASLRETY 
908.50202+ 908.50382+ 36-51 1 KDLGEEHFKGLVLIAF 
987.44862+ 987.44912+ 333-349 1 AEDKDVCKNYQEAKDAF 
2083.49782+ 2083.49822+ 358-393 2 SRRHPEYAVSVLLRLAKEYEATLEECC 
    AKDDPHACY 
2576.36422+ 2576.36462+   (Cys_CAM: 537) 
2892.52402+ 2892.52312+   (Cys_CAM: 537) 

a For [M+H]+ unless otherwise indicated. 

b Number of missed cleavages. 
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Chapter 6. Fluorescence microscopy imaging of an immobilized enzyme 
microreactor to investigate glutaraldehyde-mediated crosslinking of 
chymotrypsin 

 

 

A version of this chapter has been submitted1 on April 30, 2015, to Analytical Letters 

with authorship by Golfam Ghafourifar and Karen C. Waldron 

 

  

                                                 

1 The manuscript, accepted during thesis corrections, is available on-line since Sept. 6, 2015
 (DOI:10.1080/00032719.2015.1075128.). 
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6.1. Abstract 

Immobilized enzyme microreactors based on proteases for proteomics studies are 

usually made from enzyme bound to a solid-phase support such as particles packed into a 

cartridge. Our group has developed a support-less immobilization strategy that uses 

glutaraldehyde-mediated crosslinking to render proteolytic enzymes insoluble for facile 

protein digestion. While this works well in batch format, in-situ crosslinking within a 

microcolumn-based enzyme microreactor is less straight-forward. A microreactor was 

fabricated by immobilizing chymotrypsin, a proteolytic enzyme, inside a 250-µm i.d. fused 

silica capillary that was first functionalized with amino groups before adding 

glutaraldehyde and enzyme. The extent and location of enzyme immobilization within the 

capillary tubing was probed by reacting fluorescein isothiocyanate with residual amino 

groups in the microreactor then imaging the capillary by confocal laser fluorescence 

microscopy. The images imply that chymotrypsin immobilization occurred mostly near the 

wall and did not extend into the center of the microreactor as a crosslinked porous network. 

On the other hand, this structure facilitates the passage of substrate through the reactor. 

Digestion of denatured bovine serum albumin by flowing it through the 43-cm long 

crosslinked chymotrypsin microreactor for a total of 3.2 min produced 29 peptides, 

corresponding to 34% primary sequence coverage..  

 

6.2. Introduction 

Enzymes have been used in analytical chemistry for a wide range of assays because of 

their selectivity. Immobilizing enzymes offer the advantage of their reuse because they 

retain most of their activity [211], leading to cost benefits. Proteolytic enzymes are no 

exception. As a result of immobilization, autoproteolysis decreases significantly; therefore, 

a proteolytic enzyme can be used at high enzyme-to-substrate ratio conditions for faster 

reaction [41, 42, 51]. Immobilization also increases the stability of the enzyme against 

denaturation induced by heat, pH extremes and organic solvents [160, 173]. Immobilized 

enzyme reactors, once seen only in process chemistry, are being used more and more 

frequently in proteomics studies for protein digestion [36, 47, 79, 164]. Commercially 
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available cartridges containing proteases bound to a solid-phase can be easily connected to 

liquid chromatography-mass spectrometry (LC-MS) systems for rapid digestion and 

peptide mass mapping, or sequencing, in order to identify proteins in a complex sample 

[79, 151, 184, 211]. For microLC and capillary electrophoresis (CE), novel small scale 

enzyme cartridges based on attachment to particles or magnetic beads, immobilization on 

the capillary inner wall, or hybridization to bound aptamers, to name just a few examples, 

have been reported as enzyme microreactors [39, 109, 212, 213].  

An alternative immobilization strategy uses glutaraldehyde as a protein crosslinking 

agent, avoiding the need for a solid support [50, 51, 53]. This method results in high 

activity immobilized enzyme particles that are gel-like when prepared in batch form; 

however, the nature of glutaraldehyde-mediated crosslinking within a microcolumn-sized 

reactor is not necessarily the same, and is more difficult to characterize. In a previous study 

on myoglobin digestion in a glutaraldehyde-mediated immobilized chymotrypsin 

microreactor [53], we found that the order in which glutaraldehyde and chymotrypsin were 

passed though the capillary plays an important role in immobilizing the enzyme without 

clogging the reactor. Ideally, a porous network of glutaraldehyde-enzyme across the 

capillary would provide fast mass transfer from the reduced diffusion path length of 

substrate and thus increase the contact time with enzyme, as seen in monolithic trypsin 

microreactors [168, 177, 200, 214]. To better understand the nature of the glutaraldehyde-

crosslinked enzyme in the microreactor and to visualize the extent and location of the 

enzyme, we devised a fluorescence imaging experiment using fluorescein isothiocyanate. 

At various stages, the immobilized enzyme microreactor fabrication was stopped and 

fluorescein derivative was passed through the capillary to react with residual amino groups. 

The partial (or complete) microreactor treated with the fluorescein probe was imaged with a 

confocal laser scanning microscope to deduce the presence or absence of immobilized 

enzyme. The digestion efficiency of the crosslinked chymotrypsin microreactor was 

assessed using bovine serum albumin, a large protein substrate.  
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6.3. Materials and methods 

6.3.1. Reagents and materials 

α-Chymotrypsin from bovine pancreas type II, glutaraldehyde (25% aqueous solution 

diluted in water to 2.5% for all reactions), phosphoric acid, monobasic sodium phosphate, 

dibasic sodium phosphate, (3-aminopropyl)-triethoxysilane (99% purity, used at 10% v/v in 

methanol for all reactions), fluorescein isothiocyanate, bovine serum albumin (BSA), and 

tris(hydroxymethyl)aminomethane hydrochloride (Tris-HCl) were purchased from Sigma 

Aldrich (Oakville, ON, Canada). Sodium hydroxide, sodium chloride and calcium chloride 

were purchased from Anachemia (Montreal, QC, Canada). Methanol was purchased from 

BDH (West Chester, PA). Hydrochloric acid was from EMD Millipore (Gibbstown, NJ). 

Fused silica capillary tubing for the immobilized enzyme microreactor (250 µm i.d., 360 

µm o.d.) was obtained from Chromatographic Specialties Inc. (Brockville, ON, Canada). 

Fused silica Inner-Lok connectors were from Polymicro Technologies (Phoenix, AZ). The 

Inner-Lok connector, which makes a simple compression fitting with polyimide coated 

capillary tubing, was cut in half and fused to a 1-mL disposable tuberculin syringe with 

male luer (BD, Franklin Lakes, NJ) to facilitate manual rinsing of capillaries at a slow rate 

(1 mL over approx. 10 s). A multi-cartridge Milli-Q filtration/deionization system 

(Millipore, Bedford, MA) was employed to purify the distilled water used in preparation of 

all solutions and buffers and for all washing steps. 

 

6.3.2. In situ IMER fabrication: 3 cm × 250 µm microreactor 

The following procedure was used to make batches of partial and complete 

immobilized chymotrypsin microreactors. A 3-cm length of capillary tubing (250 µm i.d., 

1.5 µL internal volume) was washed using the homemade InnerLok-adapted syringe by 

pushing through 1 mL each of 1 M NaOH and methanol. It was dried by slowly pushing air 

through, followed by rinsing with 1 mL of 1 M HCl. Next, 1 mL of aminopropyl 

triethoxysilane (10% v/v in methanol) was passed through, allowing the last 1.5 µL to 

remain in the capillary. Both ends were sealed with Parafilm and the capillary was kept at 
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60 ⁰C for 1 h. The capillary was then rinsed with 1 mL water and either imaged with the 

confocal laser microscope, photographed, treated with fluorescein isothiocyanate (described 

below) or used for the subsequent step. Next, 1 mL glutaraldehyde (2.5% v/v in water) was 

introduced the same way as the aminopropylating agent, resealing the ends again with 

Parafilm and leaving the capillary at rest for 1 h at room temperature. The capillary was 

then rinsed with 1 mL of 50 mM phosphate buffer, pH 6.4, and either imaged, treated with 

fluorescein probe or used for the subsequent steps. As with the glutaraldehyde step, 1 mL 

chymotrypsin (1.3 mM in water) was reacted in the sealed capillary for 1 h. The resulting 

enzyme microreactor was then rinsed with 1 mL water and imaged as is or treated with 

fluorescein probe. In each case above, treatment with fluorescein isothiocyanate (0.23 mM 

in water) involved introducing 1 mL and re-sealing the capillary ends with Parafilm. The 

fluorescein-treated enzyme microreactor was kept in the dark over night at room 

temperature with gentle shaking, which was achieved by taping it inside a centrifuge tube 

and allowing the tube to roll back and forth on the shaker operated at 50 min-1. It was 

rinsed with 1 mL water before microscopy imaging.  

 

6.3.3. In situ IMER fabrication: 43 cm × 250 µm microreactor 

The longer immobilized chymotrypsin microreactor was prepared with the same 

reagents and order as above for the small microreactor but using automated delivery of the 

solutions pushed through at 50 mbar with an Agilent CE instrument (Agilent Technologies, 

Waldbronn, Germany) and also repeating the sequence of adding glutaraldehyde and 

chymotrypsin two more times as described previously [53]. Once completed, the 

microreactor was rinsed continuously with 0.23 mM fluorescein isothiocyanate for 3 h at 50 

mbar and finally rinsed with water for 10 min at 50 mbar before fluorescence microscope 

imaging. A second 43-cm long chymotrypsin microreactor was prepared without the 

fluorescein rinsing and left at room temperature for 3 h. It was then rinsed with water for 2 

min and used for digestion of protein substrate.  



107 

 

 

 

6.3.4. Fluorescence microscope imaging 

A Leica Microsystems TCS SP5 II (Concord, ON, Canada) confocal laser scanning 

microscope was used to image the immobilized enzyme microreactors. The excitation was 

at 488 nm for fluorescein and emission was measured at 500 nm. The transmission image 

was acquired simultaneously using the transmitted light detector. In all cases, microreactor 

capillaries were fixed on a glass microscope slide using a droplet of nail polish as glue in 

order to stabilize them for imaging. 

 

6.3.5. Digestion of Bovine Serum Albumin in the Microreactor  

The protein substrate BSA was denatured, reduced and alkylated as described 

previously [53] then diluted in Tris-HCl buffer (100 mM, pH 7.8) containing 10 mM CaCl2 

to reach a final concentration of 120 µM BSA. The substrate was flushed (at 950 mbar) 

through the 43-cm long microreactor for 2.0 min using the automated CE system set at 

37°C, resulting in approx. 60 µL of digest collected at the outlet. This volume was re-

introduced into the microreactor and flushed through for 1.0 min, followed by water for 

0.2 min, yielding a final collected volume of 80 µL. The digest was analyzed directly by 

ultra-performance liquid chromatography on an Acquity UPLC Class I system (Waters 

Ltd., Milford, MA) coupled to a Waters Synapt G2-S quadrupole-time-of-flight mass 

spectrometer with electrospray ionization in positive ion mode. The separation was carried 

out at 40°C on an Acquity CSH C18 column (1.7 µm, 2.1 mm × 75 mm) from Waters Ltd. 

at a flow rate of 400 µL/min using the mobile phase constituents 0.1% formic acid in water 

(eluent A) and 0.1% formic acid in acetonitrile (eluent B) with the following gradient: 5 to 

90% B from 0 to 7 min, hold at 90% B for 1 min, 90 to 5% B from 8 to 8.5 min, hold at 5% 

B for 12 min to permit column equilibration. The injection volume was 3 µL.  

 

6.4. Results and discussion 

The order in which reagents are passed through the capillary plays an important role in 

fabricating the crosslinked enzyme microreactor. In preliminary studies, it was found that 
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initial functionalization of the capillary inner wall to create amino substituents as an anchor 

for glutaraldehyde-immobilized chymotrypsin was necessary. We also found that pre-

mixing glutaraldehyde and chymotrypsin then passing the mixture immediately through the 

capillary was impossible because the crosslinking reaction was too fast; chymotrypsin 

particles started to appear less than 1 min after mixing, which caused the capillary to clog. 

In an attempt to slow down the immobilization reaction, glutaraldehyde was added to the 

chymotrypsin in a tube placed in a dry ice bath. However, the immobilization reaction 

started immediately after adding reagent and a suspension of glutaraldehyde-chymotrypsin 

particles formed after removing the tube from the bath. Therefore, we proceeded to use 

sequential addition of the crosslinker and enzyme. 

Fabrication of the glutaraldehyde-crosslinked chymotrypsin microreactor involved 

serially flushing the capillary with the reagents. During development of the 43-cm IMER 

[53], various sequences of reagent addition were tried: passing chymotrypsin first and then 

glutaraldehyde without rinsing in between; the opposite order without rinsing; passing 

chymotrypsin first, rinsing and then adding glutaraldehyde. In the first two sequences, there 

was capillary clogging and in the second, no clogging but also no digestion because no 

immobilization occurred. Therefore, it was deemed important to better understand the 

microreactor’s inner surface, both in nature and spatial distribution of reagents after each 

fabrication step (functionalization, glutaraldehyde-activation, chymotrypsin 

immobilization). Confocal laser fluorescence imaging of the microreactor capillaries with 

concomitant acquisition of the transmitted light image was thus carried out after each 

reaction step.  

 

6.4.1. Direct monitoring of enzyme immobilization 

Several stereo-photographs (Figure 6.1) were taken of the 3-cm microreactor capillary 

after each step of fabrication using a stereomicroscope (Motic, Model BA310, Hong Kong), 

taking care to keep the plane of focus in the same place each time. The capillary appeared 

clear inside after initial washings and prior to passing through the aminopropyl 

functionalization reagent (Figure 6.1, left-most column). After flowing the 
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aminopropylation agent through and then glutaraldehyde, the capillary still appeared clear 

implying there was no heterogeneous material such as polymerized glutaraldehyde inside 

the capillary (Figure 6.1, center two columns). However, after passing chymotrypsin 

through, the presence of immobilized enzyme particles inside the capillary could be seen 

(Figure 6.1, last column). The cartoon images in Figure 6,1 imply that immobilization takes 

place mostly at the capillary wall but this cannot be confirmed visually.    

 

 

Figure 6.1. Stereomicroscope images taken from the capillary window before and after 
each step of enzyme microreactor fabrication. All images were taken in ×4 and ×10 
magnification. 

 

6.4.2. Indirect monitoring of enzyme immobilization by fluorescence imaging 

Fluorescein isothiocyanate is reactive towards nucleophiles like primary and secondary 

amino groups, even at neutral pH in its monobasic form. We anticipated that by passing this 

fluorescent derivative through the microreactor at various stages of fabrication, it could 

react with the aminopropyl groups on the capillary wall and with free ε-amino groups from 

lysine residues of chymotrypsin that had not been crosslinked by glutaraldehyde. This 
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information was expected to reveal the extent of crosslinking. To image the enzyme 

microreactor and detect fluorescence using the confocal laser scanning microscope, a 

“window” was made in the capillary tubing, before adding microreactor reagents, by 

removing (burning off) a few millimeters length of the protective polyimide coating (Figure 

6.2.). In one batch of 3-cm microreactors, the window was left intact and in another, it was 

cut after various stages of preparation to allow capturing an image from the cross-section. 

Figure 3 shows the fluorescence images and simultaneously acquired grey transmitted light 

images from several 3-cm microreactors. For the transmission signal, excitation was from 

the same 488 nm laser. 

 

 

Figure 6.2.  An example of two 3 cm-long microreactor capillaries (intact) glued to a 
microscope slide with nail polish in preparation for imaging by confocal laser fluorescence 
microscopy. Both microreactors were functionalized with 3-aminopropyl-triethoxysilane, 
activated with glutaraldehyde, crosslinked with chymotrypsin and then treated with 
fluorescein isothiocyanate. 

 

Figures 6.3A-C show, respectively, capillaries treated with fluorescein probe after the 

first (aminopropyl functionalization), second (glutaraldehyde activation) and third (enzyme 

immobilization) stages of microreactor fabrication. In all three images, the window had 

been cut in half before imaging. The focal plane was close to the centre of the capillary 

tube, essentially imaging across the full diameter of each microreactor. A strong 

fluorescence signal was observed at the capillary walls in Figure 6.3A corresponding to 

fluorescein isothiocyanate having reacted with amino groups on the aminopropylated inner 

wall. The transmitted light signal (Figure 6.3A, right side) was quite dark because of strong 

absorbance by the abundant fluorescein groups. For the microreactor capillary in which 
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fluorescent probe treatment followed glutaraldehyde activation, the fluorescence signal was 

not as strong (Figure 6.3B, left) and more transmitted light was observed (Figure 6.3B, 

right) corresponding to less binding of the fluorescein probe added at this stage of 

fabrication. This results from having tied up many of the aminopropyl groups with 

glutaraldehyde, providing fewer reaction sites for fluorescein isothiocyanate. A further 

decrease in fluorescence and increase in transmitted light signal is seen in Figure 6.3C 

where glutaraldehyde-crosslinked chymotrypsin is present. This result was surprising, as 

we expected strong fluorescence to extend further into the capillary due to the fluorescein 

probe’s reaction with free ε-amino groups from the enzyme. On the contrary, the weaker 

signal implies that chymotrypsin was extensively crosslinked with glutaraldehyde such that 

the fluorescein could react only with the residual aminopropyl groups at the capillary wall 

and, perhaps, a limited number of lysine side chains. An uncut microreactor containing 

glutaraldehyde-crosslinked chymotrypsin with no added fluorescent probe (Figure 6.3D), 

thus serving as a blank, shows no fluorescence as expected. The transmitted light image 

(Figure 6.3D, right) looked clear because there were no absorbing species at the excitation 

wavelength of 488 nm and thus high transmission. The cross-sectional fluorescence image 

(Figure 6.3E) from a cut capillary shows that fluorescein was not evenly distributed on the 

inner surface of the capillary and presumably the same is true for the crosslinked enzyme 

distribution.    
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Figure 6.3. Fluorescence (left side) and transmitted light (right side) images of five small 
(3-cm) microreactor capillaries showing approx. 1 mm of the broken or intact window: (A) 
partially prepared microreactor with only aminopropyl functionalization before treatment 
with fluorescent probe; (B) partially prepared microreactor with aminopropyl 
functionalization and glutaraldehyde activation, then treatment with fluorescent probe; (C) 
full microreactor prepared with crosslinked chymotrypsin then treated with fluorescent 
probe; (D) same as (C) but no fluorescent probe passed through (i.e., the blank); (E) cross-
section of a broken capillary prepared as in (C). 

 

A second study was conducted to further investigate the immobilized enzyme location 

in the microreactor. After making a 3-cm microreactor and reacting it with fluorescein 

probe, fluorescence was recorded continuously while stepping the microscope slowly 

downward along the optical axis in the z direction (Figure 6.4A), from near the top of the 

capillary to near the middle, in cross-section. Eight screen shots from the depth-coded map 

are shown in Figure 6.4 where image #1 is from the top of the microreactor and image #8 is 

105 µm further down the optical axis, so approaching the full width (diameter) of the 
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capillary microreactor, showing its cross-section. The confocal microscope’s field of view 

corresponds to the red box around the microreactor photo shown in Figure 6.4B. Near the 

top of each image, fluorescence from the capillary’s polyimide coating is seen and then a 

dark area below that corresponding to burnt polyimide. The results from images #1-8 

(Figure 6.4) confirm that fluorescein is bound mostly near the wall of the microreactor and 

suggest it may also be within 15-25 µm of the wall because two sources of fluorescence can 

be seen in image #4 where the focal plane is 25 µm down (in z direction) from the top of 

the reactor. This may be explained by two mechanisms: the crosslinked enzyme did not 

completely cover the capillary wall thus exposing some aminopropyl sites for derivatization 

with fluorescein, and the enzyme was partially derivatized with fluorescein but is only 

immobilized near the wall and not throughout the entire capillary. 

 

 

Figure 6.4. Images obtained from continuously moving the confocal laser scanning 
microscope from the top of the capillary to the middle along the optical axis, i.e., the z 
direction as in panel (A), showing its cross-section for a complete 3-cm microreactor with 
glutaraldehyde-crosslinked chymotrypsin, treated with fluorescein isothiocyanate. (B) 
Section of microreactor imaged to obtain screen shots #1 through 8 (lower panels), which 
span a total depth or vertical distance imaged of 103 µm.  
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A long (43 cm) IMER was fabricated using the method developed previously [53] and 

then treated with fluorescein isothiocyanate to study the consistency of chymotrypsin 

immobilization along the length of the microreactor by fluorescence imaging. Four 

windows were made at 2, 7, 16 and 26 cm from the microreactor inlet before flowing 

through the reagents for enzyme immobilization and finally the fluorescein probe. 

Fluorescence and transmission images were recorded for each window immediately 

following treatment with the probe. Surprisingly, no fluorescence signals were observed at 

any of the four locations implying that no amino groups were available for derivatization. 

This suggests that aminopropyl groups at the wall were completely masked by the 

crosslinked chymotrypsin, the latter of which had no free ε-amino groups. However, as 

Figure 6.5 shows, after the microreactor was left for 24 h at room temperature in the dark, 

weak fluorescence signals were finally observed at 2, 7 and 26 cm from the inlet and a 

slightly stronger signal observed at 16 cm. The transmittance signal at the 16-cm window 

also showed more fluorescein present than elsewhere. One hypothesis to explain the results 

seen both before and after the 24-h period is that the chymotrypsin is so highly crosslinked 

at the wall that: a) diffusion of fluorescein isothiocyanate toward the wall baring the free 

aminopropyl groups was hindered and thus very slow, e.g., requiring 24 h, and b) there 

were very few uncrosslinked lysine side chains thus few ε-amino groups for reaction with 

the fluorescent probe. These are plausible given the triple layering of glutaraldehyde and 

chymotrypsin during fabrication of the 43-cm long microreactor whereas the 3-cm 

microreactors had only a single layer. The images in Figure 5 show also that the crosslinked 

enzyme was not homogeneously distributed throughout the microreacotr. Nonetheless, we 

know it is sufficiently abundant because microreactors made with the same procedure have 

been used to digest myoglobin [53], small peptides [215] and BSA as described below.  
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Figure 6.5. Fluorescence microscope imaging at different lengths along the capillary of a 
complete 43-cm microreactor with glutaraldehyde-crosslinked chymotrypsin applied in 
three layers and treated with fluorescein isothiocyanate then left at room temperature for 24 
h. Windows were burned at 2, 7, 16 and 26 cm from the inlet before adding microreactor 
fabrication reagents. 

 

6.4.3. Digestion of bovine serum albumin in the microreactor 

Immobilization of a proteolytic enzyme tends to decrease its activity, so high enzyme 

loading is used to compensate. For example, we reported that glutaraldehyde-crosslinked 

trypsin particles have a specific activity 4000 times lower than soluble trypsin as 

determined using a small amino acid-based substrate and based on the crosslinking 

efficiency (95% total mass of trypsin) [51]. In that study, 4 h protein digestions made with 

glutaraldehyde-trypsin particles showed comparable activity to 24 h digestions made with 

soluble trypsin. Although the enzyme loading and specific activity of the crosslinked 

enzyme microreactor are expected to be lower than for the particles, there is still good 

digestion efficiency. BSA, a highly folded protein, was denatured and passed through the 

43-cm long chymotrypsin microreactor at a high flow rate, resulting in a total residence 

time of 3.2 min for digestion. Peptide mass mapping by LC-MS (Figure 6.6) allowed us to 

identify 29 chymotryptic peptides of BSA, as shown in Table I, accounting for 205 amino 

acid residues of BSA, which is a primary sequence coverage of 34%. The digestion 
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efficiency would likely appear higher if all 80 µL of collected digest had been analyzed 

after preconcentration. Digestion carried out at a slower flow rate in the microreactor is also 

expected to improve efficiency.  

 

 

Figure 6.6. Total ion chromatogram of the digest of BSA collected after digestion for 3.2 
min at 37 °C of the substrate in a 43-cm long glutaraldehyde-crosslinked chymotrypsin 
microreactor. The separation was performed by ultra-performance liquid chromatography 
coupled to a quadrupole-time-of-flight mass spectrometer and using a C18 column and 
gradient elution with water and acetonitrile (both with 0.1% formic acid) at a flow rate of 
400 µL/min. The injection volume was 3 µL. All other details are in the experimental 
section. 

 

6.5. Conclusion 

Fluorescein isothiocyanate was chosen to probe the location of the glutaraldehyde-

crosslinked enzyme in a microreactor due the former’s known reactivity with ε-amino 

groups from the enzyme’s lysine side chains. We expected to see a strong fluorescence 

signal from fluorescein derivatization in the presence of chymotrypsin. However, the 

fluorescence signal decreased after both activation of the reactor with glutaraldehyde and 

crosslinking with chymotrypsin, suggesting that the fluorescent probe reacts more 

efficiently with free aminopropyl groups on the functionalized capillary wall than with the 
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ε-amino groups of the enzyme. This explains why the fluorescein isothiocyanate reaction 

with amino groups took a long time when it was added after glutaraldehyde-chymotrypsin 

crosslinking in layers, which resulted in limiting fluorescein probe’s diffusion to the 

microreactor wall. The fluorescence images suggest that immobilization was achieved 

mostly near the wall and not throughout the whole capillary as a crosslinked network. On 

the other hand, this structure permits passage of substrate through the immobilized enzyme 

microreactor because it has some open-tube character, as demonstrated by the rapid, partial 

digestion of BSA. 
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Chapter 7. Conclusion and Perspectives on Future Work  
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Drawbacks for protein digestions in solution phase and in gels include long incubation 

times, single use of the enzyme and enzyme autolysis leading to creation of background 

peptides that interfere in separation and identification of peptides from the substrates of 

interest. By using immobilized enzymes, auto-proteolysis can be greatly reduced, allowing 

a high enzyme concentration be used, which helps to also achieve faster digestion of 

substrate. Likewise, immobilized enzymes can be reused, which offsets the extra expenses 

when they are used in larger quantities. Automation in fluidic and microfluidic systems is 

made possible by using immobilized enzyme microreactors (IMERs). 

Our first objective was to immobilize chymotrypsin by using glutaraldehyde as a 

crosslinking agent. The crosslinking procedure was similar to the one our group has used 

previously [106]. This immobilization method is rapid and inexpensive and allowed us the 

benefit of using high enzyme-to-substrate ratios. Crosslinking chymotrypsin by 

glutaraldehyde is a novel approach since proteolytic enzymes are immobilized mostly by 

attachment to solid supports [51, 63, 64].  

The general condition of chymotrypsin immobilization presented in Chapter 3 involved 

studying the effect of buffer and pellet size on immobilization and consequently on 

digestion and peptide mapping. The results showed that the immobilized enzyme pellet size 

and the buffer used during crosslinking can influence the reproducibility of peptide 

mapping. The washing steps during the immobilization process remove a significant 

amount of adsorbed or non-reacted chymotrypsin. However, it was observed that a portion 

of the enzyme is lost during the washing steps and the pellet size is reduced after several 

step of manipulation. In future studies, a “spacer” molecule incorporated during the 

crosslinking procedure might help with better robustness of the glutaraldehyde-enzyme 

product. Immobilized chymotrypsin was used to digest BSA in both native and denatured 

forms. We showed in Chapter 4 that short term storage temperature and humidity of the 

immobilized chymotrypsin have minimal effects on BSA digestion. The results also show 

that the presence of fluorescent groups on the protein substrate do not hinder the activity of 

immobilized chymotrypsin.  
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Developing an in-situ IMER is important for achieving an automated fluidic system. 

Therefore, an IMER was fabricated by adapting existing methods by Krenkova et al. [88] 

who made a trypsin reactor, and Shan et al. [87] who reported δ-gluconolactone modified 

capillary. The IMER preparation method developed in the current thesis decreases the 

fabrication time by half in comparison with those methods. The enzyme chymotrypsin was 

successfully immobilized by glutaraldehyde crosslinking inside a 250-µm i.d. capillary to 

fabricate an IMER. Myoglobin was digested using the IMER and CE-MS analysis showed 

83% sequence coverage (Chapter 4). Digestion a larger substrate like BSA after its 

denaturation and reductive alkylation was problematic at first but finally achieved as shown 

in Chapter 5 for both fast (3 min) and slow (60 min) digestions in the chymptrypsin IMER.  

To understand and measure IMER efficiency, the concentration of enzyme and 

substrate need to be known to estimate the E:S ratio. However, because of the heterogeneity 

of immobilized enzyme and the fluidic nature of introducing the substrate, the E:S ratio is 

different at each part of the capillary IMER and at each moment. The peptides Phe-OMe 

and WAGGDASGE, and the protein BSA, representing substrates of different sizes, were 

digested using the chymotrypsin IMER with various protocols for substrate injection by 

pressurisation with an automated CE system. Phe-OMe and WAGGDASGE digestion 

efficiencies were quantified by using calibration curves of the product peptides after their 

identification by spiking and their presence confirmed by HPLC-MS. Quantification of the 

mass of enzyme in the IMER is important for future studies and could be achieved by 

complete hydrolysis of the crosslinked chymotrypsin followed by amino acid analysis.   

Digestion of denatured BSA, a large and complex substrate, was successfully achieved 

using different flow protocols. In one method, a total IMER digestion time of 30 min led to 

identification by HPLC-MS of 29 peptides from BSA, representing 21% sequence coverage 

(Method 4, Chapter 5). In another method, the total BSA digestion time in the IMER was 

doubled (60 min), which improved sequence coverage to 35% from 38 peptides (Method 6, 

Chapter 5). A rapid digestion of 3 min required re-introduction of the digest into the IMER 

for a second “pass”, which resulted in identification of 34 peptides and 34% sequence 

coverage (Method 5a and 5b, Chapter 5). The longer digestion in Method 6 produced better 

peptide maps by CE-UV and HPLC-MS, with better peak resolution. Zhang et al. reported 
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33% sequence coverage digesting BSA by their IMER [216] and Wu et al. reported 51% 

[217]. Yu et al. were able to recover 51% of BSA sequence using their IMER to digest a 

mixture of three substrates including myoglobin, cytochrome c, and BSA. Their study 

indicates digesting myoglobin itself led to 82% sequence coverage [189], which is similar 

to our results. In future work, it would be desirable to also quantify undigested protein more 

accurately using a protein assay, independent of the peptides.  

The extent of immobilization inside the capillary was studied by fluorescently labeling 

the enzyme with FITC and imaging the IMER by confocal laser scanning microscopy. It 

was found that the FITC probe has a higher tendency to react with unreacted amines from 

3-APTES functionalization of the capillary wall than with the unreacted lysine ε-amino 

groups of the chymotrypsin (Chapter 6). The fluorescence images show that immobilization 

was achieved mostly near the wall, but extended a little into the center channel of the 

IMER. This explains why a lower pressure could be used to pass the substrate through the 

IMER. The results show the benefit of lower back pressure and reducing diffusion paths, 

compared to common methods using bulk immobilization through the whole volume of the 

capillary reactor [156, 200, 218, 219]. This leads to a faster mass transfer and subsequently 

faster digestion. To visualize the location of the enzyme more selectively, without revealing 

derivatization of the amino groups at the wall, a second fluorescent probe could be used 

that is SH-reactive or COOH-reactive to show evidence of the probe-chymotrypsin 

reaction. 

Glutaraldehyde-mediated immobilization of chymotrypsin in the capillary to make an 

IMER shows promise since partial digestion of small, medium and large denatured protein 

was achieved. Compared with the current reported methods to immobilize and reuse of 

trypsin, the stability of our immobilized chymotrypsin as a batchwise particle or in an 

IMER format needs to be improved to increase the digestion efficiency and reusability 

[152, 153].  

As a long-term goal, the IMER could be connected to microcolumn protein 

fractionation/purification upstream and analytical peptide separation strategies downstream, 

as suggested in Figure 7.1.  
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Figure 7.1. Proposed protein characterization system with coupling the IMER to CE-UV or 
CE-LIF to separate the peptides and finally the MS (or MS/MS) to identify and sequence 
them. 

 

The format shown in Figure 7.1 allows digesting the isolated protein using 

immobilized enzyme (IMER) followed peptide mapping and sequencing to identify 

proteins in a sample. The transferability of our device to automated microfluidic platforms 

to address high throughput of protein analyses in the long term could be pursued. 
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Appendix A. The Effect of Urea and Calcium Chloride on Denaturation of 
the Protein HbA 
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The HbA (Hemoglobin A) was denatured following the procedure stated in Chapter 3. 

Three different concentrations of urea (2, 5, and 8 M) were studied. We also investigated 

the effect of different calcium ion concentrations (0, 2, 5, and 10 mM) on denaturation. 

The 2 mg/ml denatured HbA was digested using CT-GA (enzyme: substrate 1:25). The 

digests were separated by CE. We measured the peak areas of 6 peptides in the map and 

noted how they varied according to the 12 different denaturation conditions tested. Some of 

peptide maps showed no peak or the peak showed was overlapping with its neighbouring 

peak, thus could not be quantified. Table A.1 shows the overall highest peak areas present 

when using different concentration of urea and calcium chloride to denatured HbA. 

 

Table A.1. Identified peptides by CE-UV from HbA digested by GA-crosslinked 

chymotrypsin enzyme : substrate ratio is 1:25. 

[urea] 

  Peak area (relative units) of six different peptide peaks 

6.7 ± 0.3 6.9 ± 0.3 7.3 ± 
0.3 

7.6 ± 
0.3 8.4 ± 0.3 10.3 ± 

0.3 

2 M 

0 mM 31 43 10 33 40 47 

2 mM 20 25 12 16 10 61 

5 mM 9 N/D N/D 12 10 16 

10 mM 21 28 18 21 20 12 

5 M 

0 mM 31 49 28 34 57 72 

2 mM 22 32 10 16 23 28 

5 mM 38 32 27 23 30 26 

10 mM 22 35 21 25 35 23 

8 M 

0 mM 29 40 32 26 43 47 

2 mM 48 56 41 30 60 64 

5 mM 15 22 30 19 12 34 

10 mM 50 70 45 39 59 67 

[CaCl2] 
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Under low urea concentration a large intense peak at about 40 min was observed. This 

is due to the presence of insufficient urea to denature all of the protein, so the enzyme is not 

able to digest the protein properly either. Consequently, a large peak representing 

undenatured and therefore undigested protein is observed. 

Using the Chem-Station software allows us to choose any area on electropherogram 

and look at the spectra. We were able to distinguish between peptidic peaks and noises 

knowing that proteins and peptides show signature absorptions between 190 to 230 nm 

because of their different amino acids contents. The absorption of the chromophoric amino 

acids is the result of side chain chromophore and carboxylate group absorption [220]. 

Figure A.1 shows the different amino acids spectra. Due to that carboxylic groups are used 

in polymerization the absorption intensity for the amino acids will be less comparing with 

free amino acid [220]. 

 

 

Figure A.1. UV absorption spectra for different amino acids (pH 5) from 185 to 230 nm. 
The cysteine spectrum was measured at pH 3 [220]. 
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Figure A.2 represents some of the spectra obtained by choosing different peaks at HbA 

digested by immobilized chymotrypsin electropherogram and looking at their spectra. It 

allows us to classify peptides as well as non-peptidic peaks or noises. 

 

 

Figure A.2. Spectra obtained from choosing some peaks on denatured and digested HbA 
using immobilized chymotrypsin electropherogram. 

 

Using 8 M urea and 10 mM calcium chloride shows more peptic peaks comparing with 

other conditions whereby lower concentration of urea or calcium chloride were used. 

Therefor, these concentrations were chosen as the optimum concentrations for denaturation 

and used thereafter throughout the present study. 

In another experiment, the effect of urea on enzyme autoproteolysis was studied. The 

presence of urea shows a significant effect on digestion especially for large proteins. 

However, it also increases the enzyme autoproteolysis. The effect of urea on enzyme 

autoproteolysis was studied using both soluble chymotrypsin and trypsin as the enzymes. 

First, a blank solution of denatured protein containing all chemicals using in denaturation 

but protein, was added to enzyme, both chymotrypsin and trypsin separately, to reach an 

E:S ratio of 1:25 as if there was any denatured HbA. The solution was incubated at 37 ⁰C 
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for 4 hours. Figure A.3 shows the electropherogram after analysing the solution using CE 

containing numerous peptidic peaks due to the high rate of autoproteolysis. 

 

 

Figure A.3. A blank solution of denatured protein containing all denaturation chemicals 
except the protein substrate. The amount of protein was replaced with water. An enzyme, 
(A. free chymotrypsin and B. free trypsin) was separately added, to reach an E:S of 1:25 as 
if there was any protein. The digestion was carried out at 37 ⁰C for 4 hours. 
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 Next, a similar study was conducted in which urea was replaced with water, as well as 

protein, in the solution. The samples were incubated at the same digestion conditions and 

studied using CE. Figure A.4 shows the electropherogram of this study that represents less 

peptidic peaks confirming the presence of urea can increase the autoproteolysis 

significantly. 

 

Figure A.4.  A blank solution of denatured protein containing all denaturation chemicals 
except the protein substrate and urea. The urea and protein were replaced with water. An 
enzyme, (A. free chymotrypsin and B. free trypsin) was separately added, to reach an E:S 
of 1:25 as if there was any protein. The digestion was carried out at 37 ⁰C for 4 hours. 

 

Although using urea in denaturation procedure leads to higher enzyme autoproteolysis 

when using free (soluble) enzyme, urea is necessary to properly digest large proteins such 

as HbA or BSA as described under Chapter 3. Additionally, using immobilized enzyme 

decreases the autoproteolysis significantly even in the presence of urea.  
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Appendix B. Determining Immobilization Efficiency by UV-Vis 
Absorbance Spectroscopy 
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To determine the immobilization efficiency, the amount of chymotrypsin is measured 

in the supernatant after immobilization. We measured the absorption of chymotrypsin and 

glutaraldehyde (GA) prior to mixing them together, i.e., before crosslinking reaction. 

Figure 5-1 shows that high concentrations of glutaraldehyde and chymotrypsin exert similar 

spectral characteristics with the most overlap in absorption regions specific to aromatic 

residues.  

Due to this overlap, we determined that a method is needed to carryover the amount of 

CT immobilized in the presence of GA. Two methods were used: The analysis of a mixture 

and the fourth derivative, as described below under Sections B.1 and B.2, respectively.  

 

B.1 Analysis of a Mixture 

At each wavelength, absorption of the supernatant after crosslinking reaction is the 

sum of the absorptions of CT and GA. Therefore: 

λ :           ܣ௠௜௫ = .[ܶܥ]஼்ߝ ݈ + .[ܣܩ]஺ீߝ ݈    (B.1) 

 

For each standard solution of CT and GA: ܣ஼்,௦௧ = .௦௧[ܶܥ]஼்ߝ ஼்ߝ  ݈ = ஼்,௦௧ܣ ݈. ௦௧൘[ܶܥ]    (B.2) 

஺,௦௧ீܣ = .௦௧[ܣܩ]஺ீߝ ஺ீߝ  ݈ = ஺,௦௧ீܣ ݈. ௦௧൘[ܣܩ]     (B.3) 

Dividing Equations 9.2 and 9.3 then 9.1: 

st

stGA

st

stCT
mix GA

GAA
CT

CTA
A

][
][

][
][ ,, ⋅

+
⋅

=
        (B.4) 

Therefore: 
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     (B.5) 

 

Based on the Equation B.5 and Figure B.2 the concentrations of CT and GA can be 

calculated.   

 

Figure B.1. Drawing the graph using Equation B.5 allows calculating the concentration of 
chymotrypsin based on the intersect value. 

 

The measurements are conducted at four different wavelengths, 265, 268, 271, and 275 

nm. We used chymotrypsin 6 µM and glutaraldehyde 0.45% V/V in water as the standard 

solutions. The supernatant mixture absorption (Amix) was measured after the crosslinking 

reaction. By using figure B.1 the chymotrypsin concentration was measured, which shows 

95% ± 2 of chymotrypsin is in the immobilized form for 5 measurements (Figure B.3). 
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Figure B.2. Measuring absorption of supernatant and standard solution of chymotrypsin 
and glutaraldehyde at four different wavelengths, 265, 268, 271, and 275 nm and drawing 
the graph using Equation B.5. 

 
B.2 Fourth Derivative Method 

Since the spectra for chymotrypsin and glutaraldehyde are similar and show overlaps 

(Figure B.1), fourth derivative method was used as an alternative to carry over the amount 

of chymotrypsin after crosslinking reaction. In this method, fourth derivative spectra of 

glutaraldehyde (Figure B.3A) and chymotrypsin (Figure B.3B) were calculated 

mathematically. 

 

 

Figure B.3. (A) 4th derivative spectrum of GA, (B) 4th derivative spectrum of CT. 

A Calibration curve of d4A/dλ4 as a function of CT concentration was constructed. The 

chymotrypsin immobilization efficiency was calculated as 94 ± 2% for 5 measurements. 


