
i 
 

Université de Montréal 

 

 

 

Analysis of intrinsic cardiac neuron activity in relation to neurogenic atrial 

fibrillation and vagal stimulation 

 

 
By 

Siamak Salavatian 

 

 

Département de physiologie moléculaire et intégrative 

Faculté de Médecine 

 

Thesis presented to the Faculty of Graduate Studies 
in order to obtain the degree of  

Doctor of Philosophy (Ph. D.) in Biomedical Engineering 

 
 August 2015 

© Siamak Salavatian, 2015 

 

 

 

 

 

 



ii 
 

RÉSUMÉ 

La fibrillation auriculaire est le trouble du rythme le plus fréquent chez l'homme. Elle conduit souvent à 

de graves complications telles que l'insuffisance cardiaque et les accidents vasculaires cérébraux. Un 

mécanisme neurogène de la fibrillation auriculaire mis en évidence. L'induction de tachyarythmie par 

stimulation du nerf médiastinal a été proposée comme modèle pour étudier la fibrillation auriculaire 

neurogène. Dans cette thèse, nous avons étudié l'activité des neurones cardiaques intrinsèques et leurs 

interactions à l'intérieur des plexus ganglionnaires de l'oreillette droite dans un modèle canin de la 

fibrillation auriculaire neurogène. Ces activités ont été enregistrées par un réseau multicanal de 

microélectrodes empalé dans le plexus ganglionnaire de l'oreillette droite. L'enregistrement de l'activité 

neuronale a été effectué continument sur une période de près de 4 heures comprenant différentes 

interventions vasculaires (occlusion de l'aorte, de la veine cave inférieure, puis de l'artère coronaire 

descendante antérieure gauche), des stimuli mécaniques (toucher de l'oreillette ou du ventricule) et 

électriques (stimulation du nerf vague ou des ganglions stellaires) ainsi que des épisodes induits de 

fibrillation auriculaire. L'identification et la classification neuronale ont été effectuées en utilisant 

l'analyse en composantes principales et le partitionnement de données (cluster analysis) dans le logiciel 

Spike2. Une nouvelle méthode basée sur l'analyse en composante principale est proposée pour annuler 

l'activité auriculaire superposée sur le signal neuronal et ainsi augmenter la précision de l'identification de 

la réponse neuronale et de la classification. En se basant sur la réponse neuronale, nous avons défini des 

sous-types de neurones (afférent, efférent et les neurones des circuits locaux). Leur activité liée à 

différents facteurs de stress nous ont permis de fournir une description plus détaillée du système nerveux 

cardiaque intrinsèque. La majorité des neurones enregistrés ont réagi à des épisodes de fibrillation 

auriculaire en devenant plus actifs. Cette hyperactivité des neurones cardiaques intrinsèques suggère que 

le contrôle de cette activité pourrait aider à prévenir la fibrillation auriculaire neurogène. Puisque la 

stimulation à basse intensité du nerf vague affaiblit l'activité neuronale cardiaque intrinsèque (en 

particulier pour les neurones afférents et convergents des circuits locaux), nous avons examiné si cette 
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intervention pouvait être appliquée comme thérapie pour la fibrillation auriculaire. Nos résultats montrent 

que la stimulation du nerf vague droit a été en mesure d'atténuer la fibrillation auriculaire dans 12 des 16 

cas malgré un effet pro-arythmique défavorable dans 1 des 16 cas. L'action protective a diminué au fil du 

temps et est devenue inefficace après ~ 40 minutes après 3 minutes de stimulation du nerf vague. 

 

Mots-clés: arythmies auriculaires, le système nerveux cardiaque intrinsèque, les neurones de circuit 

local, la stimulation du nerf vague, interactivité neuronal stochastique 
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ABSTRACT 

Atrial fibrillation is the most frequent sustained rhythm disorder in humans and often leads to severe 

complications such as heart failure and stroke. A neurogenic mechanism of atrial fibrillation has been 

hypothesized. Tachyarrhythmia induction by mediastinal nerve stimulation has been proposed as a model 

to study neurogenic atrial fibrillation. In this thesis, we studied the activity of intrinsic cardiac neurons 

and their interactions inside the right atrium ganglionated plexus in a canine model of neurogenic atrial 

fibrillation. These activities were recorded by a multichannel microelectrode array that was paled into the 

right atrium ganglionated plexus. The recording was done for up to 4 hours and it covered the neuronal 

activity during different interventions such as vascular (aorta occlusion, inferior vena cava occlusion, left 

anterior descending coronary artery occlusion), mechanical (touching atrium and ventricle) and electrical 

(stimulating of vagus nerve or stellate ganglion) stimuli as well as atrial fibrillation induction. Neuronal 

identification and classification were done using the principal component analysis and cluster on 

measurements analysis in Spike2 software. New method based on principal component analysis was 

proposed to cancel superimposed atrial activity on neuronal signal to increase the accuracy of the 

neuronal response identification and classification. Based on the neuronal response, we defined subtypes 

of neurons (afferent, efferent and local circuit neurons) and their related activity to different stressors 

which provided a more detailed description of the intrinsic cardiac nervous system. The majority of 

recorded neurons reacted to episodes of atrial fibrillation by becoming more active. This hyperactivity of 

intrinsic cardiac neurons during atrial fibrillation suggested that controlling that activity might help 

preventing neurogenic atrial fibrillation. Since low-level vagus nerve stimulation obtunds the intrinsic 

cardiac neuronal activity (especially for afferent and convergent local circuit neurons), we investigated 

whether this intervention could be applied as a therapy for atrial fibrillation. Our results showed that right 

vagus nerve stimulation was able to mitigate atrial fibrillation in 12 of 16 cases and showed an adverse 

pro-arrhythmic effect in 1 of 16 cases. The protective action however decreased over time and became 

ineffective after ~40 minutes for 3 minutes vagus nerve stimulation. 
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CHAPTER I: INTRODUCTION 
 

The heart of human is a pump made of muscles which circulates the blood in the body to bring 

oxygen to different organs and tissues and to collect carbon dioxide waste in systemic loop and bring the 

deoxygenated blood to the lungs to release carbon dioxide and collect oxygen from the lungs in 

pulmonary loop. The heart has 4 chambers: the right atrium, the left atrium, the right ventricle and the left 

ventricle. Each of these chambers has an important task to do.  

In the systemic loop the oxygenated blood enters into the left atrium and into the left ventricle 

after atrial contraction and from there the blood will be sent to all organs and tissues by different vessels 

(arteries). In the pulmonary loop, the deoxygenated blood enters the right atrium and by contraction of 

right atrium it goes to the right ventricle and from there, the deoxygenated blood is pushed to the lungs to 

oxygenate the blood for the systemic loop. This important blood circulatory mechanism is vital for all 

organs and the functionality of this system is depending on a control system which regulates the heart. If 

any problem arises in this system, it can cause a delay in the delivery of the blood to vital organs and it 

may cause a major damage to these organs due to lack of oxygenated blood. Therefore the regular 

functioning of this blood circulatory system is very crucial to the human body.  

There are different heart diseases which are related to the malfunctioning of one of the heart 

chambers. For example atrial fibrillation is caused by the malfunctioning of the atria. In Canada, in every 

7 minutes one person dies from the heart disease or stroke [1], therefore studying the heart disease and 

trying to find potential cures is very important for public health.  In this thesis, we study the atrial 

fibrillation disease. In particular we study in a dog model how neurally induced atrial fibrillation could be 

induced and what is the role of cardiac neurons in initiating and maintaining this disease and finally we 

try to propose a method to suppress or mitigate atrial fibrillation. 
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I.1. General physiology of the heart  

I.1.1. Heart muscle  

The function of heart muscles is to pump the blood to all the body throughout the whole life 

continuously and regularly without any rest. The atrial and ventricular muscles have a longer duration of 

contraction than skeletal muscles and more importantly there are some excitatory and conductive fibers in 

heart which spread the rhythmical electrochemical signals to all cells. This signal transmission is crucial 

for an efficient and regular contraction of a group of cardiac cells together. The timing and the sequence 

of contraction of each chamber of the heart is very important for the pumping function and blood 

circulation and is controlled by these electrochemical signals called action potentials. 

I.1.2. Cardiac action potential  

Potential difference is created across any membrane by having a high potential in one side and 

low potential in another side of the membrane. The potential difference across a biological cell membrane 

is created by different ions which carry electric charges. The sodium (Na+) and potassium (K+) ions play 

an important role in creating this potential difference. There are several more ions which contribute less to 

create the difference potential across the membrane like Ca2+ or Cl-. Note that although Ca2+ is not 

contributing a lot in creating the potential difference, it acts a crucial role in cardiac muscles. 

 Let us assume that we have a membrane which is only permeable to potassium ions and the concentration 

of potassium ions is higher inside the membrane than outside. Since there is a high concentration gradient 

towards outside the membrane, the potassium ions tend to diffuse out of the membrane. While the 

potassium ions diffuse from interior to exterior, they carry positive charges to the exterior of the 

membrane and it creates the difference in potential. This continues until the potential difference reaches a 

level which blocks the diffusion of more potassium ions. For the mammalian nerve fibers this level is -95 

mV for potassium ion and +61 mV for sodium ion (interior potential- exterior potential).  This level is 

called equilibrium potential or Nernst potential which is reached when the electrical gradient (which tends 
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to carry charges from higher potential to lower) and the chemical gradient (which tends to carry more ions 

from high ion concentration side to low ion concentration side) are the same in magnitude and opposite in 

direction. The Nernst or equilibrium potential for each ion is calculated based on the following formula: 

 

(1) 

 

 

R is the universal gas constant which is equal to 8.314 J.K−1.mol−1 (Joules per Kelvin per mole). T 

is the temperature in Kelvin. Z is the valence of the ion (i.e. +1 for Na+ and K+, +2 for Ca2+ and -1 for Cl-). 

F is the Faraday constant and is equal to 96,485 C.mol−1 (Coulombs per mole). [X]out is the extracellular 

ion concentration and[X]in is the intracellular ion concentration. [X]out and[X]in have the same unit (mole 

or millimole).  

Table 1 shows the Intracellular and extracellular concentrations and Nernst equilibrium potential 

value for three cardiac muscle related important ions Na+, K+ and Ca2+ [2]. 

Table1. Ion concentration of mammalian myocytes 
 
 

Ion intracellular 
concentration(mM)

extracellular 
concentration(mM)

equilibrium 
voltage(mV) 

Sodium( Na+) 5  — 34 140 89 — 38 
Potassium(K+) 104 — 180 5.4 -79  —  -94 
Chloride(Cl-) 4.2 117 -89 
Calcium(Ca2+) 0.1 3 45 

 
 
 

When there are several ions involved and the membrane is permeable to different ions, the 

membrane potential could be calculated by the different equation called Goldman-Hodgkin-Katz 

equation. The following formula is a Goldman-Hodgkin-Katz equation when the membrane is permeable 

to Potassium, Sodium and calcium ions: 
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(2) 

 

The R, T, F, [X]in and [X]out are the same as equation 1 and PX is the relative membrane 

permeability for ion X. 

The resting potential for atrial myocyte is approximately -75 mV[3].  

Heart control signals are transmitted by action potentials which are rapid changes in the 

membrane potential that spread rapidly along the cardiac cells membrane. The action potential starts from 

the resting potential and rises to a high positive membrane potential and then ends with the same negative 

resting potential. There are different ions and ion channels that are involved in this membrane potential 

change. There are different phases of cardiac action potential which are associated with the contribution 

of different ions. These phases are different for the pacemaker cardiac cells and non-pacemaker cardiac 

cells.  

I.1.2.1. Non-pacemaker cardiac cells action potential   

The atrial and ventricular cells are non-pacemaker cells in the heart. Purkinje cells are located 

inside the ventricle wall and they are able to conduct the action potentials rapidly and also cause the 

synchronized contraction of the ventricle. These non-pacemaker cells are not creating the initial impulse 

and they are mostly propagating the action potential which is created by a pacemaker cardiac cell. The 

action potential for these type of cells are shown in figure 1 [4].  

Different phases for the non-pacemaker cells action potentials are: 

Phase 0: When the voltage across the membrane of non-pacemaker cells reaches to a threshold 

voltage (about -70 mV) which could be triggered by an action potential in the adjacent cell, there would 

be a rapid depolarization which is caused by the rapid influx of Na+. This transition is done through the 

fast Na+ channel. 
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Figure 1 Non-Pacemaker cardiac cells action potential(reproduced from  [4]) 

 

At the same time the potassium channels close and the efflux of the K+ decreases. These two mechanisms 

causes the membrane potential to raise from the resting potential which is close to K+ equilibrium 

potential to the potential which is close to  Na+ equilibrium potential. 

Phase 1: This phase is the initial repolarization which is caused by the efflux of the K+. 

Phase 2: The plateau in phase 2 is caused by influx of Ca2+ which is due to specific long lasting 

calcium currents. This phase shows one of the big differences between cardiac action potential and nerve 

or skeletal muscle action potentials which is caused by the contribution of Ca2+ in changing the membrane 

potential. 

Phase 3: In this phase the final repolarization occurs because of the efflux of the K+. 

Phase 4: In this phase the membrane is in the resting state. This phase is associated with the leave 

of K+ ions from inside the cell which happens through the specific potassium channels. At this phase the 

sodium and calcium channels are closed. 
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I.1.2.2. Nodal cell action potential   

The nodal action potential represents the impulse created by the pacemaker nodes like sinoatrial 

or atrioventricular nodes. This type of action potential is shown in the figure 2 [4]. 

 

Figure 2 Nodal action potential (reproduced from [4]) 

The depolarization phase in the nodal cells is slower and is carried by the Ca2+ instead of Na+. 

Actually in the nodal action potential the Na+ ions have a very small contribution to the action potential. 

As the depolarization with Ca2+ is slower than the depolarization with the Na+ due to the difference in 

their ion channels, the nodal action potential is called slow response action potential and the non-

pacemaker action potentials are called fast response action potentials. Another important characteristic of 

the nodal cells membrane potential is that they have an unstable resting potential. 

There are three different phases associated with the nodal action potential. 

Phase 0: Depolarization is caused by the influx of the Ca2+ through specific calcium channels. 

Note that the depolarization in nodal cells is slower than the depolarization in non-pacemaker cells 

because of the different characteristics of the sodium and calcium channels. 
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Phase 3: In this phase the efflux of K+ is repolarizing the cell and the calcium channels is 

inactivated. 

Phase 4: Na+ influx caused by the repolarisation of the preceding action potential raise the 

membrane potential. 

 

I.1.2.3. Effective Refractory Period  

Once an action potential is initiated in one cell, there is a period of time in which the action 

potential cannot be initiated from the same cell. This period of time is called effective refractory period or 

absolute refractory period. While a cell is in the refractory period it would not be excited by the action 

potential from the adjacent cell and therefore the action potential does not propagate through this cell. As 

the action potential propagation is one of the crucial points in the heart beating control system, the 

refractory period plays an important role in stopping the propagation of the action potential when it 

should not propagate to other cells. 

I.1.2.4. Propagation of an action potential in cardiac cells  

Once the action potential is created by a nodal cell, it propagates to other cardiac cells through 

gap junctions. The gap junctions are the junctions connecting adjacent cells in the heart which allows the 

spontaneous depolarization of the neighboring cells and propagation of the action potential. 

I.1.3.  Sinoatrial and atrioventricular nodes 

The sinus node (also called sinoatrial or SA node) is a special part of cardiac muscle in the 

superior posterolateral wall of the right atrium. The muscle of the SA node is different from the other 

non-pacemaker cells in the heart. The SA node creates the first impulse which propagates through the 

atria and ventricles and is essential for heart contraction. This node is connected to the atrial muscles; 
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therefore the action potential created by the SA node can propagate to the right atrium and from the right 

atrium to the rest of the heart. The frequency of the impulses created by the SA node is very important, 

because it is directly related to the rate of heart contraction and variations in blood pressure. As we will 

discuss in future chapters, if there would be any problem with the SA node that it cannot create the 

impulse regularly the heart may not function properly and this could lead to different heart diseases.   

The contraction system in the heart starts from the atrium and then the blood is ejected to the ventricles. 

When the impulse from the SA node is generated and propagates throughout the atrial muscles, it causes 

the atrial muscle to contract and eject the blood to the ventricle. If the action potential propagated to the 

ventricles at the same time then atrial and ventricular contraction would be approximately simultaneous, 

which would causes incomplete blood ejection from the atria to the ventricle and some blood would 

remain in the atrium. To solve this problem, the heart has another important node called atrioventricular 

or AV node. The AV node is located in the posterior wall of the right atrium, immediately behind the 

tricuspid valve. The important role of the AV node is to delay (by approximately 0.13 s) [5] the 

propagation of the action potential coming from the atrium to the ventricles . 

I.1.4. Blood circulation 

A complete circulatory pathway of the heart is shown in figure 3.Oxygen poor-CO2 rich blood 

goes to the right atrium through the venae cava vessels. The inferior vena cava is collecting the used 

blood from the lower part of the human body and superior vena cava is collecting the used blood from the 

upper part the body. When the SA node creates the action potential it propagates to the muscles in right 

atrium and causes these muscles to contract and eject the used blood to the right ventricle. When the 

action potential reaches the AV node the cardiac impulse is transmitted by the AV node after some delay 

and reaches the right ventricle muscle which contracts the right ventricle and the blood is pushed to the 

pulmonary arteries. Lung receives the used blood from the pulmonary arteries and the lung oxygenated 

the blood and removes the carbon dioxide from blood. The oxygenated blood goes to the left atrium. Left 

atrium contracts because of the action potential coming from the right atrium and it ejects the blood to the 
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left ventricle. The action potential coming from the AV node causes the left ventricle muscles to contract 

and the oxygenated blood will be pushed to the different organs of the body through the aorta. Like vena 

cava, aorta also has different branches to serve the body with the oxygenated blood. The ascending aorta 

is serving the upper part of the body and the descending aorta is providing blood to the lower part of the 

body. 

 

Figure 3 Circulatory pathway of the cardiac system[2] 

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Blood Circulation Figure 
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I.2. Neurocardiology  

The field of neurocardiology studies the interactions between the brain and the heart and it is 

composed of two sciences, neuroscience and cardiology. It is an emerging field which studies how the 

heart and the brain collaborate. It is known that the interaction among cardiac neurons is essential for the 

cardiac functionality and regulation. Recently the study of neurocardiological therapeutic methods has 

received greater attention because of the growing evidences that show the relation between heart diseases 

and autonomic nervous system. 

I.2.1. Autonomic nervous system  

The internal organs functions of the body are controlled involuntarily by the autonomic nervous 

system which is part of the peripheral nervous system. This nervous system controls the heart rate, blood 

pressure, respiratory rate and body temperature, all of which are vital signs of the body. 

The autonomic nervous system has two main divisions called sympathetic nervous system and 

parasympathetic nervous system. The following figure shows the branches of the sympathetic and 

parasympathetic nerves. 

The sympathetic division of the autonomic nervous system is active during the “fight or flight” 

states which are in general stressful or emergency situations. When a person is in this kind of situations, 

the sympathetic nervous system may increase the heart rate and the blood pressure. 

In contrast to sympathetic nervous system, parasympathetic nervous system is general active 

during the ordinary tasks of the human body. It can decrease the heart rate and blood pressure and slow 

down the respiratory rate. In most organs that have both sympathetic and parasympathetic nerves, both 

sympathetic and parasympathetic nervous systems are active, therefore the final effect of the autonomic 

nervous system on that organ is the accumulation of the effect of these two nervous systems. Note that 

typically when one is more active, the other nervous system is less active. 
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Figure 4 Sympathetic and parasympathetic nervous system 

Two main neurotransmitters are used in the autonomic nervous system:  acetylcholine and 

norepinephrine. Epinephrine neurotransmitter is also used by some nerves. Nerve fibers that use 

acetylcholine are called cholinergic and the nerve fibers that use norepinephrine or epinephrine are called 

adrenergic fibers. Norepinephrine and epinephrine are mostly used in the sympathetic nervous system and 

acetylcholine is mostly used in the parasympathetic nervous system. 

The function of the nerves in the autonomic nervous system could be explained by their type. 

They could be afferent, efferent or local circuit neurons. The afferent neurons (sensory neurons) are the 

neurons which transmit the information carried by nerve impulses from different organs to the central 

nervous system which includes the brain and the spinal cord. On the other hand, efferent neurons (motor 
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neurons) transmit the information from central nervous system to different organs. Neurons that are only 

participating in a local processing of the information are called local circuit neurons or interneurons.  

I.2.2. Autonomic innervation of the heart: Intrinsic and extrinsic cardiac nervous systems. 

The function of the heart is controlled by two nervous systems: the intrinsic and the extrinsic 

cardiac nervous system. In the extrinsic nervous system, efferent parasympathetic nerves originate from 

the medulla in brainstem. These nerves are connected to the postganglionic neurons in different 

ganglionated plexi on the heart [6]. Sympathetic branch of the extrinsic cardiac nervous system originates 

from the interomediolateral nucleus of spinal cord and it is connected to the sympathetic postganglionic 

neurons of the intrathoracic and intrinsic cardiac ganglionated plexi [7].  The afferent neurons in the 

extrinsic cardiac nervous system transmit the local information from different cardiac regions and the 

major intrathoracic and cervical vessels to the central nervous system [8]. 

Recent studies show that three different types of neurons play important roles in the intrinsic 

cardiac nervous system: efferent, afferent and local circuit neurons [9-11]. Different ganglionated plexi 

distributed at different locations within the heart are part of the intrinsic cardiac nervous system. This 

includes epicardium, myocardium and endocardium [12]. The number, size and shape of the ganglionated 

plexi are different in different species [13]. The intrinsic cardiac ganglionated plexi are distributed over 

different atria and ventricle regions. Figures 5 and 6 show the locations of the ganglionated plexi on the 

surface of the atria and ventricles. Different aspects of the cardiac function are regulated by the neurons in 

the intrinsic cardiac nervous system. This includes regulation of the heart rate and blood flow [14] or 

modulation of intrathoracic and central cardiovascular-cardiac reflexes and coordination of  

parasympathetic and sympathetic efferent postganglionic neuronal input to the heart [15]. 
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Figure 5 Drawing of a posterior view of the human heart and major vessels illustrating the locations of the 
posterior atrial and ventricular ganglionated plexi. Note the mediastinal nerves coursing adjacent to the aortic root and 
joining two superior atrial ganglionated plexi. Positions of the superior vena cava (SVC), inferior vena cava (IVC),right 
ventricle(RV), and left ventricle(LV) are shown( reproduced from [16]). 

 

Figure 6 Drawing of a superior view of the human heart illustrating the distribution of ganglionated plexi on the 
surface of the atria and ventricles. For abbreviations, see figure5(reproduced from [16]). 
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Different studies suggested that intrinsic cardiac ganglionated plexus can affect the adjacent 

myocardial regions [17-19]. It was also proposed that the electrical and mechanical properties of the 

adjacent tissues and cardiac chambers can be influenced by the intrinsic cardiac ganglionated plexi [6]. 

For example, in a canine model study by Yuan et al [20] it was reported that cholinergic neurons of the 

right atrium ganglionated plexi decrease the discharge rage of sinoatrial  node, depress the atrioventricular 

node conduction, and change ventricular contractility.  Moreover the repolarization of ventricular muscle 

can also be influenced by intrinsic cardiac neurons [21]. 

In general both intrinsic and extrinsic cardiac nervous systems are influenced by central nervous 

system, baroreceptor reflex, chemoreceptor reflex and local neuronal activity by the intrinsic cardiac 

neurons [6]. 

I.2.3.  Anatomy and function of intrinsic cardiac nervous system 

 Neural control of the heart includes extrinsic and intrinsic cardiac nervous systems. The intrinsic 

cardiac ganglia are the final pathway for autonomic modulation of regional cardiac function. This 

intrinsic cardiac nervous system is not just a relay for the extrinsic cardiac nervous system. It is able to 

mediate the regional cardiac reflexes and modulate the projection of extrinsic cardiac nervous system to 

the heart by acting as a local integrative neural network [22]. The intrinsic cardiac nervous system 

contains parasympathetic and sympathetic efferent neurons as well as afferent neurons. It also contains 

local circuit neurons which receive inputs from both efferent and afferent neurons. Inputs from 

cardiopulmonary afferent and extrapericardial autonomic ganglia can modulate the neurons in intrinsic 

cardiac nervous system[23]. These inputs are basically modulated by brainstem and spinal cord neurons 

associated with cardiovascular regulation [24-26].  Sinoatrial and atrioventricular nodes as well as 

regional contractile function are affected by vagi (cardiac efferent parasympathetic preganglionic 

neurons), stellate and middle cervical ganglia (cardiac efferent sympathetic neurons) [27, 28]. The 

intrinsic neural control of the heart is done by specific intracardiac convergence points where bilateral 

autonomic inputs merge together [29-32]. 
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The anatomy of the human intrinsic cardiac nervous system was studied by Armour [16] in six 

human hearts. In this study, ganglionated plexi were identified in 10 different atrial and ventricular 

locations. In principle, intrinsic cardiac neurons in each ganglion modify the regional tissue, for example 

intrinsic cardiac neurons located on the atria primarily and not exclusively modify the atrial tissue (the 

same holds for the ventricles) [20].The locations of these ganglionated plexi are shown in Figs. 5-6. 

Different ganglionated plexi with various sizes and different number of neurons (from a few neurons to 

more than 200 neurons) were identified in each of these locations. The numbers of ganglia in different 

cardiac regions are shown in Table 2 based on the result from six human hearts. 

Table 2. Numbers of ganglia in different cardiac regions grouped according to their estimated neuronal 

complement (n =6 human hearts) [16]. 

 

Using this table, it was reported that there are approximately over 14,000 neurons in each human heart 

[16]. The anatomical configuration and sizes of these ganglionated plexi were not exactly the same  for 

different human hearts [16]. Since there were no identified ganglia in extensive regions of atrial or  
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Figure 7 Light photomicrographs of human intrinsic cardiac nerves, ganglia, and neurons. A: Network of 
ganglia and nerves stained with methylene blue and dissected from the posteromedial left atrial ganglionated 
plexus. The ganglia appear as expansions along the length of a nerve, often at branch points (box). B: 
Enlargement of boxed area in A illustrating a ganglion composed of approximately 150–200 nerve cell bodies. 
Note the presence of individual neurons in adjacent nerves(reproduced from[16]). 
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ventricular fat, these intrinsic cardiac ganglionated plexi are loose regional neural networks which include 

the nerves that may form complete loop with diameter of less than 2mm to 1 cm while connecting two 

different ganglia within a ganglionated plexus (Fig.7A) [16].Various neuronal somata with long (39 ±10 

μm ) or short ( 34 ±7 μm)  axes exist in intrinsic cardiac ganglionated plexi and some ganglia are 

estimated to have more than 200 neurons (Fig. 7) [16].  

There are different functions associated with each ganglia cluster. For example the neurons in the 

right atrial ganglionated plexus control the sinoatrial node [28, 30, 33-35], inferior venacava-inferior atrial 

ganglia neurons have an effect on the inferior atrial and atrioventricular conductile tissues [28, 30, 33, 34, 

36]. The coordination of neural activity within intrathoracic autonomic ganglia and the central nervous 

system regionally control the cardiac function [37]. Different studies that used electrophysiological and 

neuropharmacological techniques showed that intrathoracic ganglia are not only simple relay stations for 

autonomic efferent neuronal control of the heart [37, 38]. 

I.2.4.  Right atrium ganglionated plexus  

The location of the right atrium ganglionated plexus (RAGP) is shown in Fig. 5 and Fig. 6. 

Generally the intrinsic neurons in RAGP modify atrial tissues and have been associated with neural 

control of the sinoatrial node [22]. There have been different studies on the activity of neurons in this 

ganglionated plexus. In these studies RAGP ablation was proposed as an antiarrhythmic/fibrillation 

therapy. For example, Moss et al. [39] reported that RAGP ablation may contribute to prevent the 

development of a tachycardia-dependent atrial fibrillation substrate or in another recent study [40] RAGP 

ablation was used as an anti-arrhythmic strategy. The neuronal activity of RAGP was also assessed during 

heart failure and it was reported that neuronal activity in RAGP was decreased by heart failure [41].  

I.2.5.  Intrathoracic autonomic neurons  

Intrathoracic autonomic ganglia contain different population of neurons including afferent, 

efferent and local circuit neurons [37]. 
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I.2.5.1.  Afferent neurons: Cardiac afferent neurons 

Cardiovascular information about the blood pressure, blood volume, blood gases and mechanical 

and chemical milieu of the heart is sent to the autonomic nervous system by cardiac afferent neurons [15].  

The cardiopulmonary sensory inputs are provided by nodose and dorsal root ganglia to brain stem 

and spinal cord neurons [42]. There are more sensory inputs coming from baroreceptor and 

chemoreceptors located along the aortic arch, carotid arteries and carotid bodies which control the cardiac 

autonomic efferent neurons. The cardiac autonomic efferent neurons are also controlled by the afferent 

neural elements within the central nervous system [26]. 

I.2.5.1.1. Cardiac sensory neuronal transduction 

Cardiac sensory neurites (nerve ending) are associated with somata located in nodose, dorsal root 

and intrathoracic ganglia [28, 43-45]. The somata for the cardiac afferent neurons which are located close 

to the target organ generate high frequency activity (phasic) and has a direct effect on the target organ 

efferent neurons [37] therefore there is a fast transmission of the information when these cardiac afferent 

neurons are active. The cardiac afferent neurons’ somata which are not close to their sensory neurite like 

the cardiac afferent neurons in nodose or dorsal root ganglia affect the efferent neurons with a longer 

latency [46] which suggest that providing the cardiac information is depending on their sensory neurites 

and also their somata. These afferent neurons are functionally classified as fast responding and slow 

responding neurons[15].  

I.2.5.1.2. Nodose ganglia afferent neurons 

Nodose ganglion, also called inferior ganglion of vagus nerve, is a large sensory ganglion of 

vagus located in the height of the transverse process of atlas (Fig. 8).  

Some cardiac afferent neurons have a sensory neurite on the heart and somata on the nodose 

ganglion somata. These sensory neurites respond mostly to chemical stimuli and rarely to the mechanical 
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stimuli [47-49]. As these cardiac afferent neurons receive inputs from cardiac receptors they contribute to 

the overall cardiovascular regulation but it is not easy to perceive their activity [50, 51]. 

 

 

I.2.5.1.3. Dorsal root ganglia afferent neurons 

Dorsal root ganglia (also known as posterior root ganglion) are located along the vertebral 

column by the spine in C6-T6 (Fig. 9) [42]. The sensory neurites of this ganglion respond to mechanical 

and chemical stimuli [52]. The cardiovascular regulation is sub-served by the sensory input of these 

cardiac afferent neurons [50, 51, 53].  

 

 

 

 

 

 

 

 

 

Figure 8 Location of Nodose ganglion in Atlas or the first cervical vertebra. Copyright:"BodyParts3D, © The 
Database Center for Life Science licensed under CC Attribution-Share Alike 2.1 Japan." 

Figure 9 Dorsal root ganglion (posterior root ganglion)  
Copyright ©2008 by The McGraw-Hill Companies, Inc.  
Copyright ©2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.
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I.2.5.1.4. Intrathoracic afferent neurons 

There exist afferent somata in intrathoracic autonomic ganglia [16, 54, 55]. The neurites of the 

intrathoracic afferent neurons are located in atrial, ventricular, major vascular and pulmonary tissues [37]. 

These neurons respond to both mechanical and chemical stimuli [56] and they affect intrathoracic efferent 

postganglionic outflows to the heart even after long-term decentralization of the intrathoracic ganglia [9, 

57, 58]. The neural circuits receiving inputs from intrathoracic afferent neurons dynamically control the 

regional cardiac function in each cardiac cycle [37]. 

I.2.5.1.5. Arterial baroreceptors  

Arteries are the blood vessels carrying the blood from the heart to different organs. It is important 

for the arterial blood pressure to be in a normal range (mean of 85-100 mmHg in adults). This normal 

pressure should be maintained for assurance of adequate of blood flows to different organs of the body. 

When arterial blood pressure is changing dramatically or it is not in the normal range the pressure sensors 

called baroreceptors react rapidly to this change via negative feedback systems. Carotid sinus and aortic 

sinus arterial baroreceptors are the most important arterial baroreceptors.  Carotid sinus located at the 

bifurcation of external and internal carotids aortic arch is located on the arch of aorta on the top in 

ascending aorta (Fig.10). 

 

 

 

 

 

 

 

 

Figure 10 Location of arterial baroreceptors 
Copyright ©1998-2013 Richard E. Klabunde 
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These two baroreceptors are the most important because they control the blood flow of the 

arteries which serve blood to important organs (i.e. brain). Baroreceptors are sensitive to both rise and fall 

of the blood pressure. When the blood pressure rises in a vessel, the baroreceptors expand the wall of 

vessels and increase the firing frequency of receptor action potentials. When a sudden fall in blood 

pressure happens, baroreceptors decrease the stretch of the arterial walls and decrease the firing rate 

receptor firing frequency. For example an aorta occlusion leads to the dramatic change of pressure and 

activates the baroreceptors. 

A branch of IX cranial nerve is connected to the carotid sinus baroreceptors and the X cranial 

nerve (vagus nerve) is connected to the aortic nerve and aortic arch baroreceptors. IX and X cranial 

nerves synapses are located in the nucleus tractus solitaries (NTS) in the medulla of the brainstem. The 

activities  of sympathetic and parasympathetic neurons are modulated in nucleus tractus solitaries and it 

regulates the autonomic control of the heart and blood vessels. The carotid sinus and aortic arch 

baroreceptors respond (firing) is displayed in Fig. 11. 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 11 Relation of mean arterial pressure to integrated baroreceptor nerve activity obtained from the aortic (closed circles) and 
carotid sinus (open triangles) nerves. No change in afferent impulse activity occurred in the aortic nerve traffic is displaced to the 
right of that for the carotid sinus. For a given level of baroreceptor nerve activity a greater arterial pressure is required in the 
aortic receptor system.( Reproduced from “baroreceptor regulation of the heart” by S.Evans Downing) 
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The aortic arch receptor is less sensitive than the carotid sinus receptor at low pressure.  Since 

maximum carotid sinus sensitivity (slope of the curve) occurs near the mean normal arterial blood 

pressure, if any changes (even small) in blood pressure occur and tends to put the blood pressure outside 

normal range, the carotid sinus will rapidly react to that and try to bring back the blood pressure to the 

normal range. The maximum carotid sinus sensitivity may change during exercise or hypertension. Also 

at a given mean arterial pressure, decreasing the pulse pressure (which is a difference between systolic 

and diastolic pressure) decreases the nerve activity of baroreceptor. This could become more important in 

the case where both pulse pressure and mean pressure decrease because baroreceptor responds to both 

low mean pressure and low pulse pressure and will decrease more the baroreceptor nerve activity. 

When the arterial blood pressure becomes low, it can cause an irreversible damage to the organs 

therefore the baroreceptors are very sensitive to low pressure. Low blood pressure can happen because of 

blood loss or simply because of standing up suddenly. Decrease in the arterial blood pressure results in 

decreased firing rate of baroreceptor, increase in sympathetic response and decrease in parasympathetic 

response. In normal condition baroreceptors have a tonic inhibitory influence on sympathetic response 

and excitatory influence on parasympathetic response. So when the blood pressure drops, the firing of 

baroreceptor drops a lot and it results in disinhibition of the sympathetic activity. This causes 

vasoconstriction (increase in systemic vascular resistance (SVR)), tachycardia (increased heart rate) and 

positive inotropy (increase the force of heart contraction). These effects are intended to increase blood 

pressure towards the normal pressure. 

The important point about the changes of baroreceptors activity is that this activity is temporary 

and baroreceptors adapt to constant changes in arterial pressure. Therefore if the low blood pressure 

continues, the baroreceptor activity return back to near normal activity. Hormonal or renal regulation of 

arterial pressure will have a long term effect on arterial blood pressure.  
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I.2.5.2.  Efferent neurons 

I.2.5.2.1. Sympathetic efferent neurons 

The sympathetic efferent preganglionic neurons which regulate heart rate have somata within the 

intermediolateral cell column of the spinal cord and their axon is projected from rami T1-T5 to synapses 

of postganglionic efferent neurons within intrathoracic intrinsic and extrinsic cardiac ganglia [37, 59]. 

When these sympathetic efferent neurons activate, they increase heart rate, heart contraction force and 

change impulse conduction’s pattern and speed through the heart [27, 60, 61]. Sympathetic efferent 

postganglionic neurons’ somata (for those that innervate the heart) are located in stellate ganglia [62], 

thoracic middle cervical, mediastinal and intrinsic cardiac ganglia [23, 47, 57, 59, 63, 64].  

I.2.5.2.2. Parasympathetic efferent neurons 

Cardiac parasympathetic efferent preganglionic neurons’ somata are located in the brainstem and 

primarily within the nucleus ambiguous [37]. Some of these cardiac parasympathetic efferent 

Figure 112 A sudden decreases in arterial pressure decreases baroreceptor firing, which activates 
sympathetic neurons and inactivates vagal neurons in the medulla. The resulting increases in 
cardiac output(CO) and SVR act as a negative feedback mechanism to attenuate the fall in 
arterial pressure.  
Copyright ©1998-2013 Richard E. Klabunde 
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preganglionic neurons are located in the dorsal motor nucleus and regions in between [25, 65, 66]. The 

axons of these parasympathetic efferent preganglionic neurons are connected to the synapses of efferent 

postganglionic neurons within intrinsic cardiac ganglia via X cranial nerve (vagus nerve) [67, 68]. Unlike 

sympathetic efferent neurons, activation of parasympathetic efferent neurons decreases heart rate and 

heart contraction force and slows down the speed of the impulse conduction through the heart [22, 69, 

70]. 

I.2.5.3.  Local circuit neurons 

There is a group of neurons within extracardiac and intrinsic cardiac intrathoracic autonomic 

ganglia that interconnect neurons and receive inputs from both afferent and efferent neurons; these 

neurons are called local circuit neurons [22, 23, 59]. Local circuit neurons are involved in the processing 

of cardiovascular afferent information to manage sympathetic and parasympathetic efferent outflows [56]. 

These neurons also contribute to generate the basal activity of cardiac neurons within peripheral 

autonomic ganglia [37]. This contribution becomes more important when intrathoracic ganglia are 

disconnected from the influence of central neurons [57]. 

The latest schematic for interactions that occur within intrathoracic autonomic neurons and 

among these neurons and central nervous system to control of cardiac function was proposed in 2015 

[71](Fig. 13). 

This schematic view indicates that beat to beat regulation of the cardiac function depends on the 

interaction of different neurons within different ganglions via nested feedback loops. Therefore 

intrathoracic extracardiac and intracardiac neurons controlling the cardiac function are affected by the 

influence of higher centers in the spinal cord and brain stem. The autonomic outflow that is coming from 

higher centers to the heart is influenced by afferent feedback from cardiac, intrathoracic vascular and 

pulmonary sensory neurites. Four functionally types of neurons have been identified within intrinsic 

cardiac nervous system: parasympathetic postganglionic efferent neurons [64, 72-74], adrenergic 

postganglionic efferent neurons [20, 75-78], local circuit neurons [47, 63, 64, 79], and afferent neurons 
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[47, 57, 63, 64]. The cholinergic and adrenergic efferent neurons located in intrathoracic autonomic 

ganglia project their axons to cardiac electrical and mechanical tissues [37]. Local circuit neurons connect 

neurons which are close to each other within a ganglion as well as neurons which are in two different 

clusters of intrathoracic ganglia [10, 79]. Mechanosensitive and chemosensitive inputs from 

cardiopulmonary regions are provided by cardiac afferent neurons which are playing an important role in 

the intrathoracic neuronal feedback system [57, 80]. Regional cardiac tone is influenced by the activity of 

neurons in peripheral autonomic ganglia and preganglionic efferent neurons in the brain stem and spinal 

cord [25, 27, 28]. The preganglionic efferent neurons are influenced by afferent feedback from peripheral 

cardiopulmonary afferent neurons [81, 82], and higher centers of central nervous system [26]. Additional 

details of Figure 13 related to mechanism of different receptors (i.e beta-1 and M2) are not discussed in 

this thesis. It was shown that subpopulations of intrinsic cardiac neurons get activated by stimulating the 

efferent neurons’ projection to the heart (parasympathetic and/or sympathetic) [47, 63, 64]. With respect 

to control chronotropic function, direct vagal input to the sinoatrial node could be removed by disruption 

of right atrial ganglionated plexus [83] but sympathetic efferent neuronal effect and the inhibiting effect 

of vagal activation on sinus tachycardia are remained [83]. These remaining effects are suggested to 

depend on neuronal activity in other ganglia of intrinsic cardiac nervous system [37, 83, 84]. The 

neuronal activities within the intrinsic cardiac nervous system are mostly influenced by their common 

shared afferent inputs as well as interconnections mediated via local circuit neurons [37]. 
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Figure 123 Schematic of proposed interactions that occur within and among intrathoracic autonomic neurons 
and between them and central neurons. Intrinsic cardiac ganglia possess afferent neurons, sympathetic (Sympath) and 
parasympathetic (Parasym) efferent neurons and interconnecting local circuit neurons (LCN). Extracardiac intrathoracic 
ganglia contain afferent neurons, local circuit neurons and sympathetic efferent neurons. Neurons in these intrinsic 
cardiac and extracardiac networks form separate and distinct nested feedback loops that act in concert with CNS 
feedback loops involving the spinal cord and medulla to coordinate regional cardiac function on a beat-to-beat basis.  The 
complexity of the neuronal hierarchy for cardiac control. symbols: CSN: carotid sinus, SCS: dorsal column spinal cord, 
VNS: cervical vagus electrical stimulation ,RTX: resiniferatoxin ,DRG: dorsal root ganglia, Aff.: afferent, T1-T4 :first to 
fourth level of thoracic cord, Ang: angiotensin, β:beta adrenergic receptor, M: muscarinic receptor, Gs andGi: G 
proteins, AC: adenylate cyclase, ATP: adenosine triphosphate, cAMP: cyclic adenosine monophosphate, Neurite: sensory 
endings embedded in the myocardium, Decent: decentralization (reproduced from figure 1 [71]) 

 

I.2.5.4.  Extracellular recording of neuronal activity 

The extracellular recording from neuronal activity is done using an electrode which is placed near 

a neuron. This recording can record the action potentials fired by a neuron but it cannot record 

subthreshold activity[85]. The extracellular recording is widely used for in vivo studies. There exist 

different recording electrodes in the market with different capabilities of recording. For example  
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multichannel linear microelectrode array can record from multiple channels; therefore it can cover more 

recording areas. 

I.2.6.  Electrophysiology of cardiac ganglia 

I.2.6.1. Cardiac innervation intact 

Many cardiac neuronal activities are related to the cardiac or respiratory cycles [47, 63, 64]. 

Figure 14 illustrates the percentage of active neurons within the ventral right atrial and ventricular 

ganglionated plexi. Bars denoted by "I" in Fig.14 represent the responses for the animals (n=20) with all 

innervation to the heart intact and bars denoted by "D" (decentralized) represent the responses for another 

group of animal (n=8) two weeks after interruption of all extrinsic input to the heart. Some neuronal 

activities are correlated to either cardiovascular or respiration and some other activities are not related to 

cardiac cycles or respiration. Among ventral right atrial ganglionated plexus neurons, 39% and 8% 

showed spontaneous activity that correlated with cardiac cycle and respiratory cycle respectively. For the 

ventral ventricular ganglionated plexus neurons 81% and 17% exhibited cardiac related and respiration 

related activity respectively [64]. It was also shown that vagus nerve stimulation or stellate ganglia 

stimulation activates a population of neurons in atrial and ventricular ganglia [47, 63, 64]. The recorded 

neuronal activity in these studies [47, 63, 64] suggest that although some intrinsic cardiac neurons could 

be directly affected by efferent sympathetic and parasympathetic input, most of them are not receiving a 

direct input from brainstem and intrathoracic ganglia. It is also suggested that there exist neuronal 

interconnection within the intrinsic cardiac nervous system and that these interconnections coordinate 

autonomic outflow at these ganglia sites [22].  In vitro studies on intracellular/extracellular  recording of 

intrinsic cardiac neurons from rats [86-88], cats[89], pigs[90] and dogs [91-93] also showed that complex 

neural interactions occur within the intrinsic cardiac nervous system[22]. 
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Figure 134 “percent of active neurons within the (A) ventral right atrial and (B) ventral ventricular 
ganglionated plexi, which display spontaneous activities correlated to cardiovascular(CV) or respiratory(respire.) events 
or exhibit irregular discharges unrelated to cardiorespiratory events (other). Responses are shown for animals(n=20) with 
all innervation to the heart intact(I) ,and for a second group of animals (n=8) 2 weeks following interruption of all 
extrinsic input to the heart(decentralization (D) of the intrinsic cardiac ganglionated plexus ). For intracardiac neurons 
with cardiovascular related activities the stacked bars indicate the percentage of those neurons that were directly 
activated by discrete mechanical stimulation of epicardial ventricular and /or atrial sites “(  Reproduced exactly from 
[22]) 

 

I.2.6.2. Decentralized cardiac nerve plexus  

As cardiac neurons receive inputs from autonomic efferent neurons [10], decentralization of 

cardiac autonomic ganglia by acute transection of efferent projection reduces the spontaneous activities of 

cardiac neurons [47, 63, 64]. Despite decentralization of the cardiac ganglia, cardio/respiratory related 

residual activities by many neurons were reported [47, 63, 64]. More importantly, activities of some 

neurons are affected by afferent inputs from mechanoreceptors during decentralization [47, 63, 64]. The 

results shown in these studies [47, 63, 64] suggest that the coordination of intrinsic cardiac nerve 

activities with cardiorespiratory events are not absolutely dependent on the extracardiac feedback 

[22].They also suggest that some afferent dependent neuronal mechanisms within intrinsic cardiac 

neurons remain even after decentralization of cardiac ganglia and elimination of extra cardiac neural 

connection to the intrinsic cardiac neurons [22]. 
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Decentralization of peripheral autonomic ganglia is associated with a high decrease in 

intraganglionic nerve activity [47, 63, 64, 80, 94] but this suppression in nerve activity lasts for some time 

after decentralization and after that it begins to recover toward control values [9, 94]; for example in the 

dog, two weeks after decentralization of intrinsic cardiac ganglia, the activity of atrial and ventricular 

neurons recovered to high levels of spontaneous activity [57]. After decentralization most spontaneous 

activities still remained correlated with either cardiac or respiratory cycles ("D" bars in Fig. 14) [57].  

I.2.6.3. Intrathoracic nervous system and cardiac arrhythmias  

Unlike the extracardiac autonomic ganglia which tend to amplify central nervous system and 

afferent feedback, intrinsic cardiac nervous system tries to limit cardiac excitability and acts as a low pass 

filter to minimize transient neuronal imbalances [37]. Mediation of local cardiac reflexes is also done by 

afferent feedback mechanisms within intrathoracic ganglia [37]. Moreover, efferent cardiac neurons 

control the heart via descending parasympathetic neuronal projections to the heart. The local circuit 

neurons also contribute with efferent cardiac neurons to mediate the cardiac function [83, 84, 95]. Ventral 

right atrial [28] and posterior atrial [84] ganglionated plexi have an important role in heart beat control. 

Inferior vena cava-inferior atrium ganglionated plexus is primarily controlling the AV conduction [28]. 

Imbalance control of cardiac electrical activity could happen when the end-effectors such as the sinoatrial  

node malfunction [96] or when neuronal parts are disrupted from the intrinsic nervous system as after 

ablation [84, 97, 98].This imbalance may be one of the important causes of cardiac arrhythmias [37]. For 

example it was indicated that stimulation of left-sided peripheral autonomic neurons induce dysrhythmias 

[99].  

I.3. Atrial arrhythmias 

I.3.1. Description of atrial fibrillation 

Irregular heart rhythm is called arrhythmia. Arrhythmia could occur when the heart is beating 

much slower (bradycardia), much faster (tachycardia) or completely irregularly. The most common 
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arrhythmia is atrial fibrillation. During atrial fibrillation, disorganized propagation of action potentials in 

the atria causes the atria to fibrillate (irregular and fast contraction); therefore when atria are filled with 

blood, they are not able to efficiently pump the blood to ventricle and some blood remains in the atria. 

This may cause a lack of blood for different organs due to atrial pumping disability or the remaining 

blood in the atria may create a clot which increases the risk of stroke. There are nearly 250,000-350,000 

patients with atrial fibrillation disease in Canada (more than 4 million in United States [100, 101]).It often 

leads to heart failure and stroke [102].The prevalence of atrial fibrillation increases with age [102, 103]. It 

results to approximately one-third of hospitalization for cardiac rhythm disorders [104] and it is estimated 

that 20% of all strokes are caused by atrial fibrillation [105]. 

I.3.2. Initiation and maintenance of atrial fibrillation  

Atrial fibrillation is initiated when the action potential does not originate from the sinoatrial node 

and it is initiated by another part in the atria (mostly near pulmonary veins). When this electrical impulse 

is generated, it does not pass the same route as SA node action potential. As a result, the signal propagates 

throughout the atria in a disorganized way and it contracts different parts of atria in a disorganized 

manner which causes fibrillation. This signal may or may not pass through the AV node to the ventricles.  

The origin of atrial fibrillation could be neurogenic (the role of the intrinsic cardiac nervous system is 

critical in this case), myogenic (related to abnormalities or remodeling in the heart muscle), or due to a 

combination of both [106]. After the onset of focal atrial fibrillation, it is also possible to maintain it with 

very long duration by injecting carbachol into the fat pad at the base of right superior pulmonary vein 

[107]. The idea that the autonomic nervous system is involved in atrial arrhythmias dates from the 19th 

century [106, 108] and is now well established [109-116].  

The occurrence of atrial fibrillation in patients is reported in both paroxysmal and chronic form. 

Remodeling of the underlying substrate is the main cause for the progress from the paroxysmal to the 

chronic form [117-119]. At the early stage of atrial fibrillation development, a focal origin located around 

the pulmonary veins was identified in many patients by several electrophysiological studies [120, 121]. 
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Therefore, isolation of these pulmonary veins through catheter ablation has been a relatively successful 

strategy to terminate atrial fibrillation. 

Clinical evidences show that the ganglionated plexus at the pulmonary vein-atrial junctions has a 

critical role in the initiation and maintenance of the focal form of atrial fibrillation [122]. It has also been 

proposed that the number of active ganglionated plexus can predict the atrial fibrillation recurrence after 

minimally invasive surgical atrial fibrillation ablation [123]. Therefore ganglionated plexus ablation was 

shown to be effective at preventing atrial fibrillation recurrence when combined with pulmonary vein 

isolation [122, 124, 125]. 

The implication of the autonomic nervous system in atrial fibrillation has also been established in 

a subgroup of patients in which atrial fibrillation episodes typically occurred overnight or after dinner and 

were preceded by bradycardia [115]. Patients with this vagally-mediated form of paroxysmal atrial 

fibrillation tended to be younger and had a normal P wave, and thus presumably a normal conduction 

substrate [126]. The exact role of the autonomic nervous system, however, remains unclear [127]. 

There are growing clinical evidences that the autonomic nervous system is involved in the 

initiation and recurrence of atrial fibrillation [128-132]. Experimental evidence of a neural origin of 

ectopic beats was provided by applying high-frequency stimulation pulmonary vein during atrial 

refractory period [133]. Autonomic nerve stimulation evoked ectopic beats, resulting in focal atrial 

fibrillation. This ectopic activity was eliminated by injecting a neuronal blocker [133]. 

Microelectrode recordings in excised pulmonary vein preparations showed action potentials with 

early after-depolarization and triggered activity following ganglionated plexus high-frequency stimulation 

[134]. Vagus nerve stimulation was also shown to create an arrhythmogenic substrate that promoted atrial 

fibrillation more strongly than chronic atrial rapid pacing for similar reduction in atrial effective 

refractory period [135]. 

These clinical observations have motivated the development of dog models to investigate the 

relation between atrial fibrillation and the autonomic nervous system. In these models, atrial 
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tachyarrhythmias could be induced by electrically stimulating the vagosympathetic trunks in the neck 

[136] or mediastinal nerves [137-139]. 

Recently, neurogenic effects have received growing attention, notably due to potential therapeutic 

targets for catheter ablation [140],drugs [141] and nerve stimulation [142, 143]. 

I.3.3. Induction of atrial fibrillation by stimulating mediastinal nerve 

Atrial fibrillation can be induced neurally by stimulating small branches of mediastinal nerve of 

the thoracic vagosympathetic complex [144-146] or pulmonary vein related mediastinal nerves [147, 

148]. Mediastinal nerves are the nerves in the mediastinum area showed in Figure 15. 

 

Figure 145 Mediastinum 
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Figure 156 Arrhythmia caused by the stimulation of mediastinal nerve. “The unipolar electrogram (upper 
tracing) illustrates the bradycardic response (cycle length, CL, increased from 379 to 552 ms) followed by spontaneous 
atrial premature depolarization (APD), atrial tachycardia (AT) and paroxysmal atrial fibrillation (AF). Electrical stimuli 
(blue arrows) were applied to a right-sided, extra-pericardial mediastinal nerve. Deflections corresponding to dissociated 
ventricular depolarizations are identified (V). “(reproduced from [139]) 

 

Mediastinum contains different parasympathetic and sympathetic nerves. In this thesis we use 

“mediastinal nerve” term to point a small branch of vagus nerve. Applying electrical stimuli to the right 

sided mediastinal nerves could induce atrial fibrillation in canines [139]. These mediastinal nerves are 

identified by their accompanying vessels [145]. Figure 16 illustrates the effect of mediastinal nerve 

stimulation on the activity of atria.  

 

I.3.4. Therapeutic approaches to atrial fibrillation 

I.3.4.1.  Pharmacotherapy   

It was shown that the heart rhythm of 50% of atrial fibrillation patients that used antiarrhythmic 

drugs went back to the normal rhythm after one year [149]. Therefore using antiarrhythmic drugs is not an 

ultimate solution for treating atrial fibrillation and the patient who are not treated by these drugs, should 

try other atrial fibrillation treatments. The essential drug for the patient at risk of stroke is anticoagulant 

drugs [150]. The anticoagulant drugs help to prevent blood clotting. The pharmacotherapy is usually 

combined with other treatments like catheter ablation [17, 130]. 
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I.3.4.2. Catheter ablation   

In this treatment flexible thin wires (catheters) are inserted in to the blood vessel and they are 

guided to the specific regions of the heart that needs to be removed. Usually radiofrequency energy is 

transmitted via these catheters to the heart tissue where is causing the problem (i.e. arrhythmias) to 

destroy these parts. Catheter ablation showed a very good success rate in terminating heart rhythm 

disorders but it was not very successful in treating atrial fibrillation [151]. The success rates of surgical 

approaches to treat atrial fibrillation vary among different patients. In the study by Cappato et al [152], it 

was reported that catheter ablation was effective in ≈70% of patients. This percentage increased to ≈80% 

in patients when the catheter ablation was combined with antiarrhythmic pharmacological therapy [152] 

.Therapeutic success rates of such therapy was 87, 81 and 63 % at the end of 1, 3 and 5 years, respectively 

[153]. Moreover, catheter ablation exhibits complications [152] such as the left atrial stiffness syndrome 

[154], micro-embolic episodes [155], as well as risk of symptomatic or silent cerebral ischemia detected 

via magnetic resonance imaging [156]. The disadvantages of catheter ablation have encouraged the 

development of new non-pharmacologic therapies for atrial fibrillation treatment. 

 New procedures have been designed to improve success rate by targeting complex fractionated atrial 

electrograms [157] or the ganglionated plexi [140]. Evidences of ganglionated plexus involvement in 

pulmonary vein ectopy [158, 159] supported the idea of ablating right and/or left ganglionated plexus to 

treat paroxysmal atrial fibrillation [160-164], and sometimes persistent atrial fibrillation [165] and 

neurocardiogenic syncope [122, 166, 167]. A recent retrospective meta-analysis of 342 patients 

demonstrated the clinical relevance of ganglionated plexus in atrial fibrillation [168].  

Other new therapies like vagus nerve stimulation [169-171] or spinal cord stimulation [172-175] have 

been evaluated for the treatment of atrial fibrillation. Antiarrhythmic effect of vagus nerve stimulation 

was demonstrated and it was shown that it has minimal adverse effects [133, 143, 171]. Low level vagus 

nerve stimulation therapy is able to suppress atrial fibrillation induced by cholinergic neuronal activation 

in ambulatory canines, by suppression of stellate ganglion hyperactivity [170].  It has been hypothesized 



40 
 

that decreasing the activity of intrinsic cardiac local circuit neurons by vagus nerve stimulation might be 

the reason of antiarrhythmic effect [169, 176].  

I.4. Vagus nerve stimulation 

I.4.1.  Description of vagus nerve stimulation 

The vagus nerve is the tenth cranial nerve (it is also called cranial nerve X, pneumogastric nerve). 

The position of vagus nerve is shown in figure 17. The vagus nerve is connected to many organs in the 

body (Figure 18) and it mostly controls the parasympathetic innervation of these organs. The main 

substance released by vagus nerve as a neurotransmitter is acetylcholine. 

 

Figure 167 Location of Vagus nerve (reproduced from [177]) 
 

In vagus nerve stimulation, the vagal nerve is stimulated by a light electrical signal which 

increases the parasympathetic tone. Vagus nerve stimulation is a FDA-approved therapy for refractory 

epilepsy and depression [133, 134, 178, 179]. Since it affects cardiac electrophysiology [133], vagus 

nerve stimulation has the potential to become a therapy for cardiac arrhythmias as well. Treatment of 

heart failure appears to be a promising application for vagus nerve stimulation [133, 180-184]. Recently 

the advances in technology made it possible to develop the implantable device that can test the vagus 
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nerve stimulation therapy on heart failure in animal model [182, 185]. CardioFit system (BioControl 

Medical, Yehud, Israel; Figure 19) is a device that implements the vagus nerve stimulation.  

 

 

Figure 18 Connection of Vagus nerve branches to some body organs (reproduced from [177]) 

 

This system generates a small electrical current by an implantable pulse generator and delivers the pulses 

to the vagus nerve by the first lead placed surgically around the right cervical vagus nerve [185]. The 

heart rate detection and electrocardiogram  sensing are done by another lead placed in the right ventricle 

and used to stop vagus nerve stimulator when heart rate drops below a predefined level [69].  
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Figure 19 Right, Depiction of an implanted CardioFit Vagus Nerve Stimulation (VNS) device showing the 
position of the VNS lead on the right vagus nerve, the intracardiac pacing lead in the right ventricular apex, and the 
implantable CardioFit neurostimulator in the right subclavicular region. Left top, Depiction of the positioning of the 
CardioFit stimulation lead around the right vagus nerve. Left bottom, Photograph of the Cardiot VNS implantable 
neurostimulator, sensing lead, and VNS lead.Courtesy BioControl Medical, Ltd., Yehud, Israel.(reproduced from [69]) 
 
 

I.4.2. Vagus nerve stimulation therapy 

Although intensive vagus nerve stimulation has been used to trigger and maintain atrial 

fibrillation, low level vagal nerve stimulation is able to mitigate atrial fibrillation. Different studies 

showed the anti-arrhythmogenic effect of vagus nerve stimulation [133]. Zhang et al. [186] reported the 

non-arrhythmogenic effect of therapeutic chronic vagus nerve stimulation in conscious animals, and 

concluded that moderately intense vagus nerve stimulation can be used to deliver therapeutic benefits 

without arrhythmogenic risk. It has also been proposed that low level vagus nerve stimulation may 

prevent episodic atrial fibrillation caused by rapid pulmonary vein and non-pulmonary vein firing [142] or 

caused by rapid atrial pacing [171], significantly decrease acetylcholine-induced atrial fibrillation 

duration [187] and even suppress atrial fibrillation [171, 188]. Since atrial fibrillation can be triggered by 
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vagus nerve stimulation in dogs (for a specific range of pacing parameters), there was a concern that atrial 

fibrillation episodes might occur as a side effect of chronic vagus nerve stimulation. This does not seem to 

be the case in epilepsy patients [180, 189, 190]. In a study that used low level vagus nerve stimulation, it 

was claimed that low level vagus nerve stimulation can suppress atrial fibrillation induced by strong 

cholinergic stimulation and it was hypothesized that the inhibition of the intrinsic cardiac nervous system 

by low level vagus nerve stimulation may be responsible for this anti- arrhythmogenic effect [171, 188, 

191]. It was also reported that continuous low level vagus nerve stimulation reduces paroxysmal atrial 

tachyarrhythmias in ambulatory canines [170] and suppresses atrial fibrillation inducibility [169, 192]. 

Inhibition of atrial fibrillation inducibility could also be done by low level transcutaneous electrical 

stimulation [191]. 

I.5. Conceptual framework 

Hypothesis 1 : The intrinsic cardiac nervous system acts as a local processor (not only as a 

relay between the brain and the heart), using multiple nested feedback control loops to modulate 

cardiac function[56]. Mediastinal nerve stimulation induces imbalance of neuronal activity and 

enhances arrhythmogenicity. 

Atrial fibrillation  is the most frequent persistent rhythm disorder in humans (nearly 250,000 

patients in Canada) and often leads to heart failure and stroke[193]. The most frequent clinical conditions 

that are associated with atrial fibrillation are: “ischemic heart disease, diabetes, hypertension, 

cardiomyopathy, valvular heart disease and heart failure”[194]. Despite decades of investigations, many 

questions related to the principal mechanisms of the initiation and maintenance of atrial fibrillation 

remain open [195].  

Atrial fibrillation could be induced neurally by stimulating mediastinal nerves [137-139] and one 

of the approaches to terminate atrial fibrillation is to isolate pulmonary veins(due to the origin of ectopic 

beat) through catheter ablation  which showed success rates in the range 70-85%, often after a second 
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intervention [140, 196-198]. As intrinsic cardiac ganglionated plexi are involved in the pulmonary vein 

ectopy [158, 159], new approaches target the ganglionated plexi to treat paroxysmal atrial fibrillation 

[161-163, 199, 200]and persistent atrial fibrillation [165]. Hence ganglionated plexi ablation and 

pulmonary vein isolation are promising treatments for preventing atrial fibrillation [122, 124, 201]. While 

ablation remains the main focus[202, 203], ganglionated plexi may also be targeted by pharmacological 

intervention[204] but the exact role of ganglionated plexi remains unknown[127].Therefore a better 

understanding of a possible  link between ganglionated plexi and atrial fibrillation would benefit to the 

development [129] and validation of therapies. 

Among the intrinsic cardiac ganglia the right atrium ganglionated plexus is the most easily 

accessible plexus during open chest surgery because of its location on the superior surface of the right 

atrium. The right atrium ganglionated plexi receives inputs from mediastinal nerves and from the vagal 

nerve and it exerts predominant parasympathetic regulation of sinus node [205].The activity generated by 

neurons located in right atrium ganglionated plexus can be  recorded in situ by means of a multichannel 

microelectrode. 

In this thesis, we recorded the activity of intrinsic cardiac neurons in right atrium ganglionated 

plexus in a dog model and studied their activity during atrial fibrillation which was induced by 

mediastinal nerve stimulation. Experiments were done at Quillen College of Medicine, East Tennessee 

State University, Johnson City, TN.   

During my internship which led to PhD. studies at Hôpital du Sacré-Coeur de Montréal under the 

supervision of Dr. Jacquemet, I was introduced to Dr.Beaumont who is specialized in neuroscience and 

neurocardiology and who was a professor at Hôpital du Sacré-Coeur de Montréal. When I started my 

PhD. the canine experiments had been done by him and our collaborators Dr.Ardell and Dr.Armour in 

Tennessee. Dr.Ardell and Dr.Armour are leaders and influential in neurocardiology field who worked 

more than 40 years in neurocardiology related projects. As these recordings were new recordings, there 
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was a need to improve the tools to get the data in a reasonable time and explore the data analysis methods 

that could be applied. The tools improvement and engineering parts were done at Hôpital du Sacré-Coeur 

de Montréal by Dr.Jacquemet, Dr.Vinet and me. Dr.Jacquemet and Dr.Vinet are specialized in cardiac 

electrophysiology, signal processing, statistics and data analysis methods.  Therefore we had a good team 

in Tennessee who were working on the experiments and another team in Montreal who were working on 

the analysis of data which were transferred from Tennessee to Montreal. During the first year of my PhD. 

studies, Dr.Beaumont was the person who kept the collaboration efficient by contacting Dr.Ardell and 

Dr.Armour and visiting their lab in Tennessee. When Dr.Beaumont moved from Montreal to Tennessee, 

the Montreal team (Dr.Jacqumet,Dr.Vinet and me) kept the efficient contact with Dr.Beaumont and we 

had discussion through telephone or conference call.  Although working with collaborators in another 

country is not very easy, our collaboration went well.  

Hypothesis 2: Low level vagus nerve stimulation mitigates the atrial fibrillation by 

attenuating the activity of intrinsic cardiac local circuit neurons.    

Recent treatment such as low level vagus nerve stimulation [171, 188] were also proposed to 

mitigate atrial fibrillation due to its effect on cardiac electrophysiology [133, 206]. Although there are 

some hypothesis about the suppression of intrinsic cardiac neuronal activity during vagal stimulation 

[169, 176], the effect of vagal stimulation on different types of intrinsic cardiac neurons (afferent, 

efferent, local circuit neurons) is not investigated and remains unclear. 

In this thesis, we tried to understand a link between vagal nerve stimulation, atrial fibrillation and 

intrinsic cardiac neuronal activity and to investigate if vagus nerve stimulation could be applied as a 

therapy for atrial fibrillation.  
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Chapter 2 will discuss the activity of intrinsic cardiac neurons in right atrium ganglionated plexus in 

relation to different interventions. The interventions include mechanical, vascular, and electrical stimuli 

as well as induction of atrial fibrillation. This chapter will show how the neuronal recording, 

identification and classification processes were done and it will show the methods that were used to 

evaluate the data. It will also give some insights about the responses of each neuronal subtype to different 

stimuli. 

Chapter3 will discuss a new method which enhances the neuronal identification process by 

cancelling the atrial activity from neuronal recorded signals. This chapter will explain the basis of the 

method and the results of applying the method. 

Chapter 4 will discuss and study the intrinsic cardiac neuronal activity in relation to atrial 

fibrillation and vagus nerve stimulation. Moreover it will evaluate the efficacy of vagus nerve stimulation 

on mitigation of atrial fibrillation.  
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CHAPTER II: NETWORK INTERACTIONS WITHIN THE 

CANINE INTRINSIC CARDIAC NERVOUS SYSTEM: 

IMPLICATIONS FOR REFLEX CONTROL OF REGIONAL 

CARDIAC FUNCTION 
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Key Point Summary  

• Control of regional cardiac function, as mediated by the intrinsic cardiac (IC) nervous system, is 

dependent upon its cardiac afferent neuronal inputs, changes in its central neuronal drive and 

interactions mediated within via local circuit neurons. 

• The majority of such local circuit neurons receive indirect central (sympathetic and parasympathetic) 

inputs, lesser proportions transducing the cardiac milieu.  

• 50% of IC neurons exhibit cardiac cycle related periodicity that is primarily related to direct cardiac 

mechano-sensory afferent inputs and, secondarily, to indirect central autonomic efferent inputs.  

• In response to mediastinal nerve stimulation, most IC neurons became excessively activated in the 

induction of atrial arrhythmias such that their stochastic interactivity precedes and persists throughout 

neuronally induced atrial fibrillation.   

• Modulation of such stochastic IC local circuit neuronal recruitment may represent a novel target for 

the treatment of select cardiac disease, including atrial arrhythmias. 
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Abstract 

Objectives: To determine how aggregates of intrinsic cardiac (IC) neurons transduce the 

cardiovascular milieu versus responding to changes in central neuronal drive.  To determine IC network 

interactions subsequent to induced neural imbalances in the genesis of atrial fibrillation (AF).  Methods: 

Activity from multiple IC neurons in the right atrial ganglionated plexus was recorded in 8 anesthetized 

canines using a 16-channel linear microelectrode array.  Induced changes in IC neuronal activity were 

evaluated in response to:  (1) focal cardiac mechanical distortion; (2) electrical activation of cervical vagi 

or stellate ganglia; (3) occlusion of the inferior vena cava or thoracic aorta; (4) transient ventricular 

ischemia and (5) neurally induced AF.  Results: Low level activity (ranging from 0 to 2.7 Hz) generated 

by 92 neurons was identified in basal states, activities that displayed functional interconnectivity. The 

majority (56%) of IC neurons so identified received indirect central inputs (vagus alone: 25%; stellate 

ganglion alone: 27%; both: 48%).  50% transduced the cardiac milieu responding to multimodal stressors 

applied to the great vessels or heart. 50% of IC neurons exhibited cardiac cycle periodicity, with activity 

occurring primarily in late diastole into isovolumetric contraction. Cardiac related activity in IC neurons 

was primarily related to direct cardiac mechano-sensory inputs and indirect autonomic efferent inputs. In 

response to mediastinal nerve stimulation, most IC neurons became excessively activated; such network 

behavior preceded and persisted throughout AF.  Conclusion: Stochastic interactions occur among IC 

local circuit neuronal populations in the control of regional cardiac function. Modulation of IC local 

circuit neuronal recruitment may represent a novel approach for treatment of cardiac disease, including 

atrial arrhythmias. 
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Abbreviations 

AF, atrial fibrillation; Ao, aortic; CAO, coronary artery occlusion; CV, cardiovascular; IC, intrinsic 

cardiac; ICNS, intrinsic cardiac nervous system; IVC, inferior vena cava; LAD, left anterior descending 

coronary artery; LCV, left cervical vagosympathetic complex; LSS, left stellate ganglion stimulation; 

LCN, local circuit neuron; LMA, linear microarray; LV, left ventricle; LV dp/dt, first derivative (+ 

positive, - negative) of left ventricular pressure; LVP, left ventricular pressure; LVSP, Left ventricular 

systolic pressure; Occl, occlusion; RAGP, right atrial ganglionated plexus; RCV, right cervical 

vagosympathetic complex; RSS, right stellate ganglion stimulation; RV, right ventricle. 
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II.1.  Introduction 

It has been proposed that the intrinsic cardiac nervous system (ICNS) acts as the final coordinator 

of regional cardiac indices, doing so under the modulating influence of higher centers of the cardiac 

nervous system including intrathoracic, spinal and brainstem mediated reflexes (Armour & Janes, 

1988;Armour & Hopkins, 1990;Ardell, 2004;Gray et al., 2004b;Zucker & Gilmore, 1991).  Coordination 

occurring within the ICNS is dependent on three factors: convergence of afferent neuronal inputs 

(mechano-sensitive, chemo-sensitive, ischemic sensitive), central efferent neuronal inputs (both 

sympathetic and parasympathetic) and interconnections mediated via local circuit neurons (Ardell et al., 

1991;Armour et al., 1998;Herring & Paterson, 2009;Taylor et al., 1999;McAllen et al., 2011;Gray et al., 

2004a).  The latter neuronal population likely sub serves complex reflex processing within the ICNS 

(Armour, 2008).  Neuronal imbalances within any of these elements can exert deleterious effects on 

cardiac function, including arrhythmia induction (e.g. AF; (Gibbons et al., 2012;Shen et al., 

2011;Scherlag et al., 2006) and progression into congestive heart failure (Dell'Italia & Ardell, 

2004;Zucker et al., 2012;Liu et al., 2012). 

In order to characterize the ability of different neuronal populations within the ICNS to transduce 

altered cardiac status, the correlative interactions exhibited among specific IC neuronal populations 

within the heart need to be assessed with respect to whether they receive common shared cardiovascular 

sensory inputs or not (Armour & Kember, 2004;Kember et al., 2001;Thompson et al., 2000) as well as 

how they are impacted by central neuronal inputs (Ardell, 2004;McAllen et al., 2011;Andresen et al., 

2004;Herring & Paterson, 2009). This information would form the basis for determining: (1) how they 

differentially transduce afferent inputs from different cardiac regions and the major thoracic vasculature 

(Thompson et al., 2000;Waldmann et al., 2006); (2) how individual neurons distributed throughout an 

intrinsic cardiac ganglionated plexus interact under the direct versus indirect control of central cholinergic 

preganglionic (medullary) or adrenergic (spinal cord/stellate/middle cervical ganglia) efferent neuronal 

inputs (Gagliardi et al., 1988;Armour et al., 2002;Armour & Hopkins, 1990); and (3) how their sensory 
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activity and interactive behavior are affected by transient regional ventricular ischemia (Armour et al., 

2002;Huang et al., 1993;Armour et al., 1998).  These questions have implications for atrial and 

ventricular arrhythmia induction which might arise as a consequence of abnormal interactions among the 

various populations of intrinsic cardiac neurons (Cardinal et al, 2009), an issue yet to be defined.  

The present study addresses these questions in the anesthetized canine preparation. With the 

emergence of linear microarray electrode technology, it is now feasible to evaluate in situ activities within 

and between different aggregates of IC neurons over relatively long periods of time, including in response 

to complex afferent and efferent stressors.  Data so derived indicate that the majority of neurons in the 

ICNS are local circuit neurons that simultaneously transduce inputs from cardiac and major intrathoracic 

vascular receptors, as well as direct or indirect inputs from central (spinal cord and medullary) neurons.  

Surprisingly few IC neurons proved to be under the direct (monosynaptic) influence of medullary or 

spinal cord efferent preganglionic neurons.  The interactive behavior displayed among most of this ICNS 

network was of a primarily stochastic nature.  Imbalance of intrinsic cardiac control in the induction of 

atrial arrhythmia indicates that targeting excessive, stochastic interactions among intrinsic cardiac local 

circuit neurons may be relevant to understanding how to mitigate such pathology therapeutically. 

 

II.2. Methods 

II.2.1. Ethical approval 

Eight mongrel dogs (either sex), weighing 18-27 kg, were used in this study. All experiments 

were performed in accordance with the guidelines for animal experimentation described in the “Guiding 

Principles for Research Involving Animals and Human Beings”  (Am.Physiol.Society, 2002). The 

Institutional Animal Care and Use Committee of East Tennessee State University approved these 

experiments. 
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II.2.2. Animal preparation 

Animals were pre-medicated with sodium thiopental (15 mg/kg, i.v), intubated and anesthetized 

using 2% isoflurane. The left femoral vein was catheterized to allow fluid replacement as well as the 

administration of anesthetic and pharmacological agents. Left ventricular chamber pressure was measured 

via a 5-Fr Mikro-Tip pressure transducer catheter (Millar Instruments, Houston, TX) inserted into the 

chamber via the left femoral artery. The right femoral artery was catheterized to monitor aortic pressure 

using another Mikro-Tip transducer. Heart rate was monitored via ECG lead II. Depth of anesthesia was 

assessed by monitoring corneal reflexes, jaw tone and alterations in cardiovascular indices. Following 

completion of the surgery, anesthesia was changed to α-chloralose (75 mg/kg i.v. bolus), with continuous 

infusion (16 mg/kg/hr) adjusted as required throughout the duration of each study. Body temperature was 

monitored rectally and maintained steady via a circulating water heating pad (T/Pump, Gaymar Industries 

Inc., Orchard Park, NY). Respiration was controlled using an artificial ventilator (at 12-16 cycles/min) 

supplied with oxygen. Acid-base status was evaluated hourly (Irma TruePoint blood gas analyzer, 

International Technidyne Corp., Edison NJ); tidal volume was adjusted and bicarbonate infused as 

necessary to maintain blood gas homeostasis.   

II.2.3. Neuronal activity recording 

Following a transthoracic thoracotomy (T4), a pericardial cradle was formed. The activity 

generated by neurons located in the right atrial ganglionated plexus (RAGP) was recorded in situ by 

means of a multichannel linear microelectrode array (MicroProbes Inc., Guithersberg, MD). This 

microelectrode linear array, consisting of 16 platinum/iridium electrodes (25 µm diameter electrode with 

an exposed tip of 2 mm; impedance 0.3-0.5 MΩ at 1 kHz), was embedded in the right atrial fat that 

contained the RAGP such that its tip was placed adjacent to right atrial musculature.   

The probe was attached to a flexible lead, allowing the probe to be semi-floating. The density of 

tissue in the ventral right atrial fat helped to maintain position stability over prolonged periods of time (6-

8 hrs of recording). The connecting wires of the multichannel electrode, along with ground and reference 
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wires, were attached to a 16-channel microelectrode amplifier with headstage preamplifier (A-M systems, 

Inc., model 3600; Carlsborg, WA).  For each channel, filters were set to 300-3K Hz and gain to 5K. A 

hook electrode was sewn to the atrial myocardium close to the RAGP to provide a reference right atrial 

electrogram.  This atrial electrogram was utilized for determination of atrial rate, duration and 

characterization of atrial arrhythmias, including atrial fibrillation, and for identification of the timing of 

atrial electrical artifacts contained within the neural recording data. The 16 microelectrode array signals, 

along with recorded cardiovascular indices (ECG, right atrium electrogram and hemodynamic data), were 

digitized via a Cambridge Electronics Design (model 1401) data acquisition system for off-line analysis. 

The sampling frequency for neuronal data was 5.26 kHz; it was six time lower (0.877 kHz) for all other 

signals. 

 

II.2.4. Cardiac and vascular mechanical stimuli 

In order to determine whether identified right atrial neuronal populations transduce 

mechanosensory inputs from select cardiac tissues, the right ventricular conus and the left ventricular 

lateral wall were sequentially touched gently by a finger during 10 s intervals with at least 2 min baseline 

data obtained between stimulus applications. A length of saline soaked umbilical tape was placed around 

the base of the inferior vena cava and another one around the descending thoracic aorta. Silk ligatures 

were placed around the left anterior descending coronary artery about 1 cm from its origin. This enabled 

us to repeatedly occlude the inferior vena cava (for 20 seconds), the descending aorta (for 20 seconds) and 

the left anterior descending coronary (for 1 minute) while recording evoked changes in IC neuronal 

activities. At least 5 min separated each of these stressors, thereby allowing for return to basal activities. 

II.2.5.  Extracardiac efferent neuronal inputs 

The left and right cervical vagosympathetic complexes and stellate ganglia were exposed. Bipolar 

electrodes were placed around each of them.  Thereafter, these neural structures were stimulated 

individually via a Grass Model S88 Stimulator (Grass Co., Warwick, RI).  To established threshold for 
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vagal efferent activation, the stimulus frequency was initially set to 20 Hz, pulse width to 2 ms and 

voltage increased until heart rate decreased by 10%.  To establish threshold for sympathetic efferent 

activation, frequency was set to 4 Hz, pulse width to 2 ms, with threshold defined as the voltage necessary 

to increase heart rate or LV dP/dt by 10%. During the course of each experiment, these efferent neural 

stimuli (RCV, LCV, RSS or LSS) were periodically delivered for 1 min at 1 Hz, 2 ms pulse width, with 

stimulus voltages being 3x threshold. This was done to identify potential direct versus indirect inputs to 

IC neurons. 

II.2.6. Mediastinal nerve stimulation 

The right-sided mediastinal nerves that coursed over the ventral and ventro-lateral surfaces of the 

intrapericardial aspects of the superior vena cava were identified visually. In order to consistently elicit 

brief episodes of atrial arrhythmias, one or more of these mediastinal nerve sites were stimulated 

repeatedly via a bipolar electrode (inter-electrode distance 1.5 mm), as done previously (Armour et al., 

2005;Richer et al., 2008). Each active site was marked with India ink for identification during subsequent 

stimulations. The stimulator was controlled externally by the Cambridge Electronics Design data 

acquisition system running Spike 2 software, with the macro for D/A output triggered by on-line atrial 

wave-front detection. Trains of five electrical stimuli (1-2 mA, 1 ms duration, and 5 ms pulse interval) 

were delivered for up to 20s to each selected mediastinal site during the refractory period of each atrial 

beat. Contact between the bipolar electrode and the tissue was discontinued immediately after the onset of 

the atrial tachyarrhythmia. 

II.2.7. Data analysis: Signal processing of recorded multi-unit IC neuronal activity 

Recorded neuronal activity generated by individual neuronal somata located throughout the 

RAGP was recorded, as depicted above. Recorded neuronal signals were contaminated by the electrical 

activity arising from the adjacent atrial myocardium located below the RAGP. Electrical artifacts induced 

during electrical stimulation of autonomic neural structures or mediastinal nerves could also be identified 

in the recorded signals. Artifact removal was thus necessitated, using the software Spike2 program 
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(Cambridge Electronic Design, Cambridge, England). Four channels with neuronal activity were selected 

by visual inspection from all 16 channels of information. Simultaneously occurring activity displaying 

similar waveforms in each of 3 adjacent channels was interpreted as being artifactual as, for instance 

representative of electrical activity generated by the adjacent atrial tissue. As such, these artifacts were 

identified using the template matching functionalities of Spike2. The right atrial electrogram channel and 

the stimulator signal served to validate such artifact identification. In this manner, artifact waveforms 

were eliminated from all 16 channels.  Figure 1 illustrates such an analysis process. These blanking 

intervals represented only 3% of the signal durations during sinus rhythm and up to 18% of signal 

duration during AF. 

 Following artifact removal, the activity generated by individual IC neuronal somata could be 

characterized by their specific amplitudes and waveforms derived from each of the 16 recorded LMA 

channels. These signals were processed by analyzing the activities recorded from pairs of adjacent 

electrodes (stereotrode).  An action potential was considered to arise from a single IC neuronal somata 

and/or dendrites when two (but not more) adjacent electrodes displayed similar waveforms that occurred 

simultaneously in two adjacent electrodes.  Action potentials derived from a single electrode were 

consistent with the waveforms observed from adjacent (but not distant) electrodes, this association 

remaining unchanging over time. Automatic waveform classification (i.e. identifying all the action 

potential corresponding to the same IC neuron) were performed by template matching (template length: 5-

6 ms, ~30 samples) and validated by principal component analysis. Further manual validation was 

performed by visual inspection of the templates such that artifact-related templates could be eliminated. 

Two similar templates (as established by principal component analysis) were merged when evidence 

arose (e.g. complementary intermittent firing) that the two firing time series so identified corresponded to 

a single neuron. Using that procedure, consistent waveforms derived from individual somata could be 

identified in situ, as has been done previously using a single unipolar electrode (Gagliardi et al., 

1988;Ardell et al., 1991;Ardell et al., 2009).  Figure 1 illustrates this process to identify the activities 

generated by two separate IC neurons, as recorded concurrently from adjacent channels of the LMA 



58 
 

electrode. Using these techniques and criteria, action potentials generated by individual somata and/or 

dendrites (not axons of passage) could be identified for up to 8 hours (Ardell et al., 1991;Ardell et al., 

2009).  At the completion of neural recording, animals were terminated under deep anesthesia (50mg/kg 

alpha choloralose) using DC current induced ventricular fibrillation.   

II.2.8. Data Analysis: Monitoring individual neuron activity 

Neuronal activity was compared in different time windows (before versus during an intervention 

such as touch or autonomic efferent nerve stimulation) by calculating the evolution of average neuronal 

activity rate. The time window before an intervention (baseline) was assessed for 1 minute time periods. 

The time window during an intervention covered the actual duration of that intervention. The significance 

level of the observed differences in firing rate was assessed using a statistical test developed for cortical 

neurons and based on the Skellam distribution (Shin et al., 2010) (see Appendix for a detailed description 

of this analysis). The resulting p-value was a function of the duration of the two time windows that were 

compared as well as the number of action potential identified in each time window. Two levels of 

significance were employed: 0.01<p<0.05 (moderate change) and p<0.01 (strong change). Figure 2 

illustrates such an analysis for baseline activity intervals of 60 sec contrasted with stressor-evoked 

intervals of 60 sec (panel A) or 5 sec (panel B). Using this statistical approach, changes in action potential 

generation rates recorded before and during each intervention (e.g., afferent activation, stimulation of 

efferent inputs to IC network) were quantitatively evaluated for all identified IC neurons for each stressor. 

II.2.9. Data Analysis: Conditional Probability 

This type of analysis quantifies whether a neuron that responded to one stressor also responds to 

another stressor.  For that purpose, a neuron was said to respond to a stressor when a significant change in 

its activity rate (p<0.05; either an increase or a decrease) was observed before and during each 

intervention (see above and Figure 2). The potential for a functional relationship between stressors X and 

Y was quantified within neurons identified in each dog as a conditional probability that a neuron that 
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responded to stressor Y also responded to a stressor X. The conditional probability (Prob: response to Y | 

response to X) was estimated as the number of neurons that responded to both X and Y, divided by the 

number of neurons that responded to X.  

II.2.10. Data Analysis: Chi Square 

Chi square analysis was used to compare potential inter-relations between response 

characteristics of IC activity (e.g. basal activity with or without cardiac related periodicity) and 

corresponding activity effects evoked by activation of specific afferent and efferent pathways. 

 

II.3. Results 

II.3.1. Spontaneous activity in physiological states 

In the 8 anesthetized animals investigated, the activities generated by a total of 92 neuronal 

somata and/or dendrites (referred to as IC neurons hereafter) located at different depths (superficial, 

intermediate and deep) within the RAGP were identified using the LMA electrode (average: 11.5 

neurons/dog). Spontaneous activity generated by each was assessed by pooling the data from the 1-min 

time interval baselines obtained before each of the ten interventions. Spontaneous spiking activity varied 

considerably among neurons. As shown in Figure 3, baseline firing frequency ranged from 0 to 2.7 Hz, 

68% being < 0.1 Hz and 8% being > 0.4 Hz. Although 12% of these neurons were never active during the 

1-min intervals right before the interventions commenced, all of these became active at some time during 

or after one or more of the interventions. 

Within these control intervals, some neurons (43 of 92) generated spikes that clustered around 

specific phases of the cardiac cycle.  Figure 4 illustrates this relationship such that neuron 1 was 

preferentially active during the left ventricular ejection phase and another one (neuron 2) was 

preferentially active during left ventricular isovolumetric contraction. Other identified neurons (e.g. Fig 4, 

neuron 3) generated activity patterns that did not relate to a specific phase of the cardiac cycle.  Using 

spike-triggered averaging, it is possible to demonstrate the temporal correlation between some IC neurons 
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thereby indicating interdependent relationships within IC networks.  Figure 5 demonstrates such a 

relationship for two IC neurons that generated activities with cardiac related periodicity. For instance, the 

activity generated by neuron 1 was, on average, followed within a few milliseconds by activity generated 

by neuron 2.  Note that this interdependent relationship was dynamic in nature such that they displayed 

inter-spike intervals  that varied over time in the temporal relationship of their activities to each other 

(minimum 8 ms; peak of the histogram at 12 ms, see Fig. 5C) and that furthermore the activities displayed 

by these two neurons was not always coupled during every cardiac cycle. 

II.3.2. Cardiovascular mechanoreceptor activation evoked IC responses 

Within identified populations of IC neurons of the RAGP, 22% responded significantly to 

touching the ventricular epicardial surface in one or more region (RV conus, RV sinus or ventral LV). A 

typical neuronal response to touch is shown on Fig. 6. In this example, during touch, the activity 

generated by two neurons became inhibited, while others were activated.  Note that some other ones (e.g. 

neuron 8) were relatively unaffected by this gentle epicardial touch. The significance of changes induced 

in the activity rates of each of the identified neuron in each of the dogs during each of the stressors 

studied is summarized in Fig. 7 and Table 1. Note that even within a given animal, a common stressor 

(e.g. touch of RV or LV) can evoke differential neuronal effects, even from closely adjacent IC neurons.  

For instance, of IC neurons modulated by ventricular touch, activity generated by 76% (16 of 21) 

increased while that of 24% (5 of 21) decreased (Table 1). 

The activities generated by 41% (38 of 92) of identified IC neurons changed when the IVC or the 

descending thoracic aorta was occluded briefly; of these 39% were affected by both stressors (15 of 38). 

As indicated in Table 1, IC activity was either increased (n=37) or decreased (n=16) among these 

differing neuronal populations in response to one stressor, even within a given animal (Figure 7). In the 

case of ventricular touch and occlusion of the great vessels, IC neurons generating lower level basal 

activity tended to be activated by these stressors while the activities of those with higher levels of basal 
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activity tended to be suppressed by these same stressors (Table 1).  Overall, 50% of recorded IC neurons 

(46 of 92) were modified by ventricular touch or occlusion of the great vessels. 

II.3.3. Evoked IC response to stimulation of central inputs 

Previous studies using a single unipolar electrode found that few RAGP neurons received direct 

inputs from medullary (parasympathetic efferent preganglionic) neurons or stellate ganglia neurons, as 

determined by fixed latency evoked responses between RAGP neuronal activity and individual electrical 

stimuli applied at low frequencies to a stellate ganglion or a cervical vagus nerve (Gagliardi et al., 1988). 

Based upon these fixed latency criteria, none of the 92 RAGP neurons evaluated in this study received 

direct central neuronal inputs. On the other hand, the activity of 42% (39/92) of identified IC neurons was 

modified in response to 1 Hz stimulation of either stellate ganglion, indicating indirect input activation of 

such neurons with non-fixed latencies (Fig. 7 and Table 1).  Of these IC neurons, 10 were influenced by 

RSS alone, 12 by LSS alone and 17 other were affected by both of these central neuronal inputs.  The 

predominant effect of stellate stimulation on IC activity was excitation (Table 1).   Likewise, when low 

frequency electrical stimuli (1 Hz) were applied to either cervical vagus, the IC activity from 41% (38/92) 

of identified neurons was modified - doing so after non-fixed latencies (Fig. 7 and Table 1).  Of these IC 

neurons, 17 were impacted by RCV alone, 7 by LCV alone and 14 by both vagi.  The predominant effect 

of vagal stimuli on affected IC neurons was excitatory in nature (Table 1).  At 1 Hz stimulation 

frequencies, induced changes in LVSP or LV -dp/dt were less than 5% of baseline in response to either 

cervical vagal or stellate stimulation indicating minimal evoked changes in cardiac inotropic function.  

While induced chronotropic responses to 1 Hz VNS were less than 5% difference from baseline (p=.94), 

LSS increased heart rate on average from 96.6±11.9 beats/min to 103.2±10.1 beats/min (p=.30) and RSS 

from 101.1± 12.6 beat/min baseline to 120.2±0.3 beats/min (p<0.01). 

Some IC neurons receive convergent inputs from both efferent limbs of the autonomic nervous 

system.  Fifty-six percent (52/92) of identified IC neurons responded to some combination of cervical 

vagal nerve (RCV, LCV) or stellate ganglia (RSS, LSS) nerve stimulation.  Of these 52 IC responders, 5 
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were activated by all 4 inputs, 12 were activated by 3 of 4 inputs, 17 responded to 2 inputs and 18 

responded solely to 1 input.  Overall, 48% (25/52) have evoked response to both vagal and sympathetic 

inputs, 25% (13/52) respond sole to vagal (RCV or LCV) stimulation and the remained 27% (14/52) 

respond solely to central sympathetic (RSS or LSS) efferent neuronal inputs. 

II.3.4. Cardiac related IC periodicity: relationship to afferent and efferent inputs 

Figure 8 shows activity histograms obtained for all IC neurons that generated at least 100 action 

potentials during baseline recording periods.  Of the 49 neurons so identified, 43 generated activity that 

clustered around specific phases of the cardiac cycle.  The majority of that cardiac periodicity was evident 

during diastole (14 neurons) or isovolumetric contraction (22 neurons), with lesser aggregate activity 

being evident in the ejection phase (10 neurons) or during isovolumetric contraction (7 neurons).  23% of 

IC neurons with cardiac related periodicity exhibited dual activity peaks in relationship to LV pressure 

during the cardiac cycle.   

Figures 7 and 9 demonstrate the differential effects of afferent and efferent inputs on IC activity 

from neurons that displayed cardiac related periodicity versus those that did not.  Following Chi-square 

analysis of the neuronal data, it is evident that those IC neurons that generated cardiac related activities 

were preferentially modified by mechano-sensitive inputs (RV touch, LV touch, Aortic occlusion or IVC 

occlusion) as well as by activation of each of the primary central efferent neuronal inputs to the IC 

network, both sympathetic (stellate stimulation) and parasympathetic (vagal stimulation) in origin.  In 

contrast, transient occlusion of the LAD evoked similar changes in the activity of neurons, whether they 

did or did not display cardiac related periodicity during basal states. 

II.3.5. LV ischemia and evoked IC responses 

Myocardial ischemia induced by transient LAD occlusion triggered a response in 32% (26/82) of 

identified IC neurons. Transient myocardial ischemia increased activity in 14 of these neurons and 

depressed that of 12 neurons (Table 1). Such activity changes were manifest during ischemia and during 

early reperfusion. Figure 10 (top panel) summarizes the corresponding sensitivity to activation by cardiac 
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mechano-sensitive inputs (RV touch, LV touch, Aortic occlusion and IVC occlusion) in IC neurons that 

responded to LAD occlusion compared to IC neurons that were ischemia insensitive.  Chi-square analysis 

indicated that ventricular ischemic sensitive IC neurons also displayed increased responsiveness to 

cardiac afferent inputs.  In contrast, responsiveness to either vagal or stellate stimulation was similar 

between ischemic sensitive versus insensitive IC neurons (Figure 7 and Chi-square analysis with P greater 

than 0.05). 

II.3.6. Atrial arrhythmia induction 

Short episodes of atrial arrhythmia (duration 5 to 20 s) were initiated repeatedly when brief bursts 

of electrical current were delivered to selected right sided mediastinal nerves during the atrial refractory 

period. Arrhythmia induction via MNS was the stressor, by itself, that affected the largest number of 

identified neurons (Table 1: 48 of 92 neurons). Of those IC neurons affected by mediastinal nerve 

stimulation, 88% (42 of 48) increased their activity and 12% (6 of 48) exhibited reduced activity during 

AF (Table 1 and Figure 7). Chi-square analysis also indicated that the sensitivity of IC neurons that 

responded to mediastinal nerve stimulation was reflective of an increased responsiveness to cardiac 

afferent inputs (Figure 10, bottom panel).  In contrast, IC responsiveness to either vagal or stellate 

ganglion inputs was similar when comparing MNS sensitive versus MNS insensitive neurons (Figure 7 

and Chi-square analysis with P greater than 0.05). 

II.3.7. Interdependence of neuronal function in response to different stressors 

Figure 11A summarizes, in matrix format the relationships of the various identified IC neurons 

when comparing their responses to all 10 stressors tested. It was found that all ten of these conditional 

probabilities generated specific neuronal relationships. As such, their corresponding (CP ≥ 0.6) functional 

interconnectivities can be represented as a network (c.f., Fig. 11B). These relations so displayed do not 

necessarily imply a mechanistic link between neurons initiated by these stressors. Rather, these 

relationships appear to reflect the concordant behavior among RAGP neuronal populations induced by 

pairs of independent stressors. Note that conditional probability links responses initiated among afferent 
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stressors (e.g. IVC and aorta occlusion) contrast to those initiated by differential central neuronal efferent 

neuronal inputs to the IC network (RCV, LCV, RSS and LSS). Furthermore, these data indicate a 

convergence point of the IC neuronal population that transduces both afferent and efferent inputs – a local 

circuit neuronal population engaged by MNS in the induction of atrial arrhythmias. 

II.4. Discussion 

Neural control of the heart depends upon the dynamic interplay between a series of nested 

feedback loops involving peripheral and central aspects of the cardiac nervous system (Armour, 

2008;Zucker & Gilmore, 1991). The intrinsic cardiac nervous system (ICN) represents the most distal of 

its control loops and, as such, functions as the final common pathway for cardiac control (Ardell et al., 

1991;Ardell, 2004;Armour, 2008).  The data derived from the experiments reported herein demonstrates 

the primary inherent characteristics of the major neuronal subpopulations within the ICNS, including the 

fact that the integrative characteristics of its different local circuit neuronal populations differ in the 

transduction of specific cardiac afferent or central efferent derived neuronal inputs.  

The majority of intrinsic cardiac (IC) neurons that were functionally identified in this study 

exhibited low levels of spontaneous activity in control states, 68% exhibiting basal activity less than 0.1 

Hz.  The data derived from this study further demonstrates the state dependence of the majority of these 

intrinsic cardiac neurons that predicated their response characteristics to select cardiovascular stressors 

(Kember et al., 2001;Waldmann et al., 2006).  For example, the baseline activity displayed by many IC 

neurons appeared to determine how such neurons responded to specific afferent versus efferent neuronal 

inputs to the ICN.  Those IC neurons exhibiting low basal firing levels in control states were for the most 

part activated by cardiovascular stressors, while those exhibiting higher basal firing rates tended to be 

suppressed by cardiovascular stressors.   

Fundamental to our understanding of control of regional cardiac indices, the various subsets of IC 

neurons identified in this study demonstrated interdependent neuronal behavior, even during basal states.  

Previous work from our laboratory has suggested that such neuronal activity interdependence is indicative 
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of common shared cardiopulmonary afferent inputs to the ICN, ones that primarily rely upon functional 

interconnectivity mediated via i) local network interactions and ii) divergent descending projections from 

higher centers to the distributive IC networks (Waldmann et al., 2006;Armour et al., 1998;Thompson et 

al., 2000;Randall et al., 2003).  As such, we have proposed that this overlapping control system allows for 

effective local reflex modulation of regional cardiac electrical and mechanical indices while, at the same 

time, providing a peripheral substrate for higher centers to impact cardiac function (Armour, 2008;Ardell, 

2004). 

 The intrinsic cardiac nervous system is a distributed neural network capable of independent and 

interdependent reflex processing of cardiac sensory and central neuronal inputs (Ardell et al., 

1991;Thompson et al., 2000;Waldmann et al., 2006).  While efferent postganglionic neuronal outputs to 

the target organ arising from the various aggregates of intrinsic cardiac ganglia exert preferential control 

over different regions of the heart, many exert modulating effects over divergent cardiac regions because 

of ICNS interconnectivity (e.g. RAGP neurons evaluated herein are primarily associated with control of 

atrial function) (Ardell & Randall, 1986;Yuan et al., 1994;Gray et al., 2004a). Thus, changes can occur in 

the function of neurons located in multiple sites throughout the intrinsic cardiac nervous system in 

response to activation of select populations throughout the intrinsic cardiac ganglionated plexus (Cardinal 

et al., 2009;Yuan et al., 1993).  This distribution/cascade of IC control ultimately results in a combined 

capacity to influence tissues throughout the atria and ventricles.  

 The intrinsic cardiac nervous system is composed of a heterogeneous population of neurons (Gagliardi 

et al., 1988;Adams & Cuevas, 2004;Parsons, 2004;McAllen et al., 2011). Prior neurophysiological 

studies using unipolar recording electrodes demonstrated that its neurons can be functionally sub-divided 

into afferent, local circuit and efferent neurons, the latter involving both sympathetic and the expected 

parasympathetic post-ganglionic neurons (Armour, 2008;Ardell, 2004).  Prior anatomical and 

immunohistochemistry approaches have supported this stratification in both humans and various animal 

models (Yuan et al., 1994;Armour et al., 1997;Parsons, 2004;Hoover et al., 2009).  Utilizing classical 

neurophysiological-based definitions, afferent neurons would be defined as those transducing a 
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circumscribed cardiac receptor field with preferential modality sensitivity (Armour & Kember, 

2004;Kember et al., 2001;Brown, 1979;Zucker & Gilmore, 1991).  Classically, autonomic efferent post-

ganglionic neurons would be defined as those somata that can be activated mono-synaptically following 

application of electrical stimuli to their pre-ganglionic neuronal inputs (c.f., the vagi or stellate ganglia) 

(Langley, 1921).  The population of local circuit neurons (LCN’s) would be the remainder of the neurons 

of the ICNS that receive i) secondary inputs from the IC afferent/efferent subpopulations depicted above, 

in addition to ii) interconnecting inputs derived from other LCN’s located in the same or other ganglia.   

It has been proposed that the primary functions of the IC LCN’s are to: i) process and coordinate 

dynamic afferent and efferent derived inputs which, in turn, ii) modulate efferent postganglionic  neuronal 

outputs to various cardiac regions (Armour, 2008;Ardell, 2004).  Given these assumptions and, as 

summarized in Figure 11, we now propose that LCN populations should be subdivided into three basic 

sub-classes: i) secondary afferent LCN’s, ii) secondary efferent LCN’s and iii) the convergent LCN’s.  

Each of these sub-populations exhibit preferential response characteristics to various stressors.  For 

instance, secondary afferent LCNs transduced multiple and divergent cardiopulmonary mechanical and 

chemical stressors in a secondary fashion.  In like manner, the secondary efferent LCN’s received 

multiple indirect (not monosynaptic), but consistent, inputs from central sympathetic and/or 

parasympathetic efferent neuronal sources.  Our data further indicates that many of these secondary 

afferent and efferent LCN’s interconnect with other populations - the convergent LCN’s. The convergent 

LCN’s can be best represented by their collective responsiveness to excessive nerve input imbalances – as 

induced in this study by mediastinal nerve stimulation.  

II.4.1. Central neuronal command  
 

Central and peripheral aspects of the cardiac nervous system act synergistically to regulate 

regional cardiac function (Ardell, 2004;Armour, 2008;Herring & Paterson, 2009;Armour et al., 

1998;McAllen et al., 2011). Data derived from this study indicate that over half (56%) of IC neurons 

received indirect and frequently convergent central efferent neuronal inputs via the vagi and/or stellate 
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ganglia. In accord with that finding, there was a substantial convergence of right and left-sided autonomic 

efferent inputs onto identified IC neurons.  For instance, of the 42% of the population that responded 

indirectly to sympathetic efferent neuronal inputs, 56% were modulated by unilateral inputs and 44% by 

inputs from both stellate ganglia. Correspondingly, of the 41% of IC neurons that responded to vagal 

nerve stimulation, 63% responded to unilateral inputs and 37% to bilateral inputs. The predominant effect 

of these central neuronal inputs to ICN was excitatory in nature.  Of those IC neurons responding to 

electrical stimulation of these preganglionic inputs, 25% responded solely to stellate stimulation and 25% 

responded solely to vagal activation; these neurons are defined as secondary efferent LCN’s since they 

did not respond with fixed latencies in response to preganglionic efferent stimulation. The remaining 50% 

of IC neurons identified by autonomic stimulation responded to inputs from both central neuronal 

sources: at least one stellate ganglion and one cervical vagus; these neurons are defined as convergent 

LCN’s.  This latter population may sub serve, in part, the role of sympathetic/parasympathetic interactive 

control of regional cardiac function - as occurs at ICN sites separate from the end-effectors (Herring & 

Paterson, 2009;McGuirt et al., 1997;Furukawa et al., 1996;Randall et al., 1998).   

II.4.2. Sensory neural inputs  
 

 For a given CV afferent stressor or combination of stressors, the evoked change in neuronal 

activity of a given responsive IC neuron was found to be reproducible. Few of these afferent could be 

classified as primary afferent neurons, ones that responded to one modality arising from a restricted 

receptive field (Armour & Kember, 2004;Brown, 1979).  Thus, the majority of the neurons so identified 

can be more appropriately classified as secondary afferent LCN’s.   

Secondary afferent LCN’s transduce multimodal inputs from the great thoracic vessels and/or 

different regions of the heart.  In fact, in some cases mechano-sensitive afferent inputs arising from these 

different cardiopulmonary regions evoked directionally differential responses in various IC neurons, even 

when studying the evoked activities generated by adjacent IC neurons.  About 50% of the IC neurons that 

exhibited cardiac cycle related periodicity displayed activity primarily during late diastole into 
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isovolumetric contraction.  Furthermore, those IC neurons that displayed cardiac cycle related periodicity 

were found to preferentially transduce not only mechano-sensitive inputs but also descending central 

neuronal efferent inputs. This observation demonstrates the diverse nature of the processing capabilities 

of individual IC neurons.  It also suggest an ability of the network to respond appropriately to multiple 

afferent inputs arising from different cardiac regions or from major vessel adjacent to the heart. All of 

which indicates that the afferent neuronal transduction capabilities of the ICN may account for the fact 

that many of its neurons involved in the synchrony of regional cardiac contractile function display beat-to 

beat activity patterns reflective of regional cardiodynamics (Armour, 2008;Armour et al., 1998). 

It has been proposed that common shared CV afferent neuronal inputs can sub serve a primary 

role in the interactive behavior among neuronal somata in i) the ICN and ii) extracardiac intrathoracic 

autonomic ganglia (including the mediastinal, middle cervical and stellate ganglia) in the determination of 

local network interactions (Kember et al., 2001;Armour & Kember, 2004;Waldmann et al., 2006;Armour 

et al., 1998).  As such, these can be impacted by cardiovascular stressors, including: 1) asymmetric 

activation of extracardiac neuronal inputs into and between IC nerve networks in the induction of atrial 

arrhythmogenesis (Armour et al., 2005;Richer et al., 2008); and 2) ischemic-induced excessive activation 

of ventricular afferent neurons inducing heterogeneous and excessive activation of local circuit neurons 

(Huang et al., 1993;Waldmann et al., 2006;Armour et al., 1998).  Such derangements of cardiac control 

networks can contribute to the potential for sudden cardiac death (Schwartz et al., 1992;Vanoli et al., 

2008;Billman, 2006).  Moreover, disruptions and remodeling of network interconnections within the 

cardiac nervous system, including its ICNS elements (Hardwick et al., 2012;Bibevski & Dunlap, 2011), 

are associated with chronic ischemic heart disease or congestive heart failure and likely contribute to the 

evolution of these pathologies (Chen et al., 2001;Zucker et al., 2012;Bibevski & Dunlap, 2011;Arora et 

al., 2003;Nguyen et al., 2012;Lopshire et al., 2009;Shinohara et al., 2012). 
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II.4.3. Atrial arrhythmia induction   
 

Heterogeneous activation of the cardiac nervous system can exert destabilizing influences on 

cardiac electrical indices (Armour et al., 2005;Scherlag et al., 2006;Billman, 2006). In response to 

mediastinal nerve stimulation, most IC neurons became excessively activated – including many 

previously inactive ones; such alteration in network behavior preceded and persisted throughout such 

induced AF (Gibbons et al., 2012).  We have previous shown that suppression of IC function via targeted 

neuromodulation therapy mitigates this MSN induced AF potential (Gibbons et al., 2012). 

In the current study we found that most IC neurons that responded to excessive MSN inputs 

likewise demonstrated preferential and extensive inputs from cardiopulmonary afferents. While some 

MSN-sensitive IC neurons received inputs from both the vagi and stellate ganglia, their response 

characteristics to central efferent autonomic inputs was not predictive of their potential contribution to 

local neuronal imbalance leading to AF induction.  Based upon their integrated response to imposed 

afferent and efferent stressor, the data derived herein suggest that IC neurons that responded to MNS with 

enhanced activity were most likely made up of the convergent LCN population.  Future studies should 

focus on which sub-populations of IC neurons are targeted by neuromodulation based therapies, either 

electrical or pharmacological (Armour et al., 2005;Lopshire et al., 2009;Gibbons et al., 2012), for 

effective control of cardiac arrhythmias. 

II.4.4. Myocardial ischemia  
 

Transient myocardial ischemia impacts cardiomyocytes as well as neurons in multiple levels of 

the cardiac nervous system that regulate them (Waldmann et al., 2006;Ardell et al., 2009;Southerland et 

al., 2007;Southerland et al., 2012).  The resultant local metabolic factors, coupled with reflex evoked 

changes in neurotransmitter release, are principal factors in augmenting the arrhythmogenic substrate, 

including the potential for sudden cardiac death, and subsequent apoptosis of affected myocytes within 

the ischemic zone (Cohen & Downey, 2011;Southerland et al., 2012;Billman, 2006;Crow et al., 2004). 
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As determined previously and confirmed herein, myocardial ischemia impacts IC neural network 

interactions, doing so primarily via cardiac afferent neuronal activation (Huang et al., 1993;Armour et al., 

2002;Waldmann et al., 2006).  Activation of ischemic-sensitive afferent neurons can impact various 

elements within the ICN (Armour et al., 2002;Foreman et al., 2000), even when they are disconnected 

from higher centers of the cardiac neuronal hierarchy (Huang et al., 1993).  Data derived in this study 

demonstrates that myocardial ischemia transducing IC neurons which are preferentially influenced by 

cardiac afferent activation exhibit no selectivity with respect to central efferent neuronal inputs when 

compared to populations of non-ischemic sensitive IC neurons.  These data apparently reflect the 

differential processing capabilities of the ICNS convergent local circuit neuronal population.  Recent 

studies have demonstrated that neuromodulation therapy has the potential to modulate arrhythmogenic 

and apoptotic potentials to ischemic stressors (Southerland et al., 2007;Southerland et al., 2012;Ardell et 

al., 2009;Lopshire et al., 2009).  Future studies should consider whether selective sub-populations of 

peripheral autonomic (intrathoracic extracardiac and intrinsic cardiac) neurons can be targeted 

therapeutically to provide cardioprotection in the presence of stressors.  

II.5. Conclusion and significance  
 

 The data derived from these studies indicate that the intrinsic cardiac nervous system is composed of 

heterogeneous populations of neurons, as identified functionally herein and in the past by anatomical 

means (Armour et al., 1997;Hoover et al., 2009;Parsons, 2004;Yuan et al., 1994), that act synergistically 

with one another and with neurons in intrathoracic extracardiac ganglia, the spinal cord, the brainstem and 

higher centers in the control of regional cardiac function (Brown, 1979;Zucker & Gilmore, 1991;Armour, 

2008;McAllen et al., 2011;Southerland et al., 2012).  Such an arrangement subtends in both normal and 

stressed states.  The relative contribution of central versus peripheral aspects of the cardiac nervous 

system varies (Lopshire et al., 2009;Southerland et al., 2007;Southerland et al., 2012;Zhang et al., 2009), 

according to the stressor applied (e.g., regional cardiac mechanical vs ischemic perturbations) and the 

adapations so engendered in the neurohumoral control systems (Armour et al., 1998;Zucker et al., 
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2012;Mill et al., 2011;Hardwick et al., 2012).  As such, neurons located in each level of the cardiac 

neuronal hierarchy (intrinsic cardiac, intrathoracic extracardiac and central) interact in an ongoing 

dynamic fashion to insure adequate cardiac output that meets the demands imposed by transient 

alterations in bodily functions (Armour, 2008;Zucker et al., 2012).   

This study makes evident the fact that the major population of intrinsic cardiac neurons involved 

in cardiac regulation is local circuit in nature.  Thus for efferent control, while a limited population of 

identified IC neurons received direct centrally derived preganglionic inputs, a sizable population of 

intrinsic cardiac neurons transduced indirect inputs from one or more central neuronal source (medulla vs 

spinal cord neurons).  As such the population of LCNs that receive preferential, but not direct, central 

neuronal inputs we have defined as secondary efferent LCN’s.  This subpopulation of IC neurons may 

subserve a major role in coordinating autonomic interactions on the target organ itself.  Importantly, this 

population is likely involved in arrhythmia formation when its stochastic interactions become activated 

excessively.   

A number of LCN’s received preferential and divergent cardiopulmonary afferent inputs (Fig. 

11). While some of the IC neurons that responded to touch or great vessel occlusions could be primary 

afferents, the majority exhibited wide-field distributions and responded to multi-modal inputs; these we 

define as secondary afferent LCN’s. As such, this may be the population that becomes excessively 

activated in the transduction of ventricular ischemia.  In addition, it appears that the networks interactions 

that occur among the various LCN populations distributed throughout the ICN do so primarily via the 

convergent LCN population.  

Under basal conditions the low level, stochastic interactivity that occurs among the different ICN 

populations apparently acts to coordinate regional cardiac function. Yet, asymmetric changes in afferent 

or efferent inputs to that population can evoke disorganized responses with resultant imbalances in 

efferent distributions to tissues throughout the heart (Armour et al., 2005;Scherlag et al., 2005;Issa et al., 

2005).  Such a state can readily lead to cardiac arrhythmia induction (Scherlag et al., 2006;Billman, 

2006;Armour, 2008). By inference, stabilization of IC/LCN stochastic interactivity may represent a novel 
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approach for the suppression of atrial arrhythmia formation (Gibbons et al., 2012). Centrally mediated 

coordination of disparate IC neuronal networks likewise may find applications in the therapeutic 

management of compromised contractile function, such as occurs during the evolution of CHF with its 

attendant abnormal neurohumoral engagement (Zucker et al., 2012;Lopshire et al., 2009;Liu et al., 2012).  

Future studies should consider the contribution of differential remodeling of select neuronal populations 

within the cardiac neuronal hierarchy in response to evolution of cardiac pathology in order to exploit 

potential neural targets to mitigate the adverse consequences of abnormal cardiac neuronal hierarchy 

function that attends cardiac disease. 
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Appendix 1: Significance of changes in firing rate 

Changes identified in neuronal activity were compared at different time windows by calculating 

the average firing rate over time. The significance level of the observed differences in firing rate was 

assessed using a statistical test recently utilized in a study of primary motor cortex neurons (Shin et al., 

2010). The resulting p-value is a function of four parameters: the duration of the two time windows and 

the number of firings in each time window.  

The null hypothesis is that the two firing rates are equal. For this analysis, it is assumed that the 

number of action potentials identified follows a Poisson distribution in each time window and that the 

difference in the activities follows a Skellam distribution (Skellam, 1946;Strackee & Deneir van der Gan, 

1962). Parameters can then be estimated using the maximum likelihood approach. From the Skellam 

cumulative distribution function, the probability that the difference in number of firings is larger than the 

observed value provides the desired p-value (unilateral test). The test was implemented in Matlab and 

adapted from the R package "skellam" by Jerry W. Lewis. Two significance levels were used: 1% and 

5%. Figure 2 shows the firing rate-dependent thresholds of significant increase and decrease of firing rate. 

Note that when the duration of the time windows are different the regions are asymmetric (Fig. 2B).  

The advantages of this method are its simplicity, the robustness of its parameter estimation and its 

applicability in the case of low firing rates, including when the firing rate is zero. Its limitations are the 

assumptions of stationarity and Poisson-distributed firings. In contrast with cortical neurons, neurons in 

the right atrium ganglionated plexus tend to fire at low frequency unless a special event (e.g. atrial 

fibrillation) occurs. As a result, the limited number of firings in the time windows prevents robust 

estimation of a larger number of parameters. 
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Figure legends 

Table 1.  IC neuronal activity (mean ± SD) at baseline and in response to indicated stressors (see 

abbreviations).  Responses are subdivided based upon evoked increases in activity (top panels) and 

decreased activity (bottom panels). P values derived based on analysis detailed in appendix and Fig. 2.  

Based on that analysis, responses are subdivided based upon evoked responses with p<0.01 (left panels) 

and p<0.05 (right panels). 

 

Figure 1. Methodology for the identification of individual IC neurons. Traces indicate: (a) 

Left ventricular chamber pressure (LVP); (b) electrocardiogram (ECG); (c) right atrial electrogram 

(RAE); (d) event channel created from identified electrical/mechanical artifacts; (e, g) raw signal 

recordings of two channels from the multichannel linear microarray electrode; (f, h) neuronal recordings 

from channels (e) and (g) after artifact removal based on the event channel (d); and (i, j) two final 

neuronal waveforms extracted from a stereotrode built from channels (f) and (h) using principal 

component analysis. These final waveforms (i, j) represent basal activity from two separate IC neurons 

located within the right atrial ganglionated plexus; such activity can be evaluated continuously and 

concurrently for hours and in response to imposed stressors. 

 

Figure 2. Quantitative assessment of significance (P-values) when comparing the firing rate 

in two intervals: baseline to stress-evoked response. P-values are computed using the Skellam test and 

displayed as a function of the average firing rate in the first and in the second interval. The dark red and 

light red colors mean that the firing rate is strongly (p<0.01) or moderately decreasing (0.01<p<0.05) 

respectively. The dark green and light green colors mean that the firing rate is strongly (p<0.01) or 

moderately increasing (0.01<p<0.05) respectively. (A) Both intervals last 60 sec (baseline interval 1 and 

response during stressor interval 2). (B) The first interval (baseline) has a duration of 60 sec and the 

second (response during stressor) has a duration of 5 sec.  
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Figure 3. Histogram of baseline frequencies of all identified IC neurons. 

 

Figure 4. Subpopulations of IC neurons demonstrate cardiac-related neuronal activity. 

(A) LV pressure and representative examples of neurons that are primarily active during left ventricular 

ejection (neuron 1), during isovolumetric contraction phase for LV (neuron 2) or with activity 

independent of LVP (neuron 3). (B) For each of these neurons, the probability density of firing as a 

function of the position within the LVP cycle (expressed as a phase between 0 and 2π) is indicated along 

with the average LVP profile. 

 

Figure 5. Long-term interdependent activity of two IC cardiovascular-related neurons. (A) 

ECG and concurrent spontaneous activity of two IC neurons. (B) Zoom of panel A over 4 cardiac cycles. 

(C) Spike triggered (neuron 1 to neuron 2) histogram of spontaneous activity for these two IC neurons 

recorded over 2 hours. Note maintained temporal relationship, but with some variation in such 

interdependent activity. 

 

Figure 6. Left ventricular touch differentially modifies IC activity. The spiking activities 

concurrently recorded from 8 selected IC neurons in a single animal are shown. Vertical dotted lines 

indicate onset and offset of touch. Note that subpopulations of IC neurons shown diminished activity 

during touch (e.g. neurons 2 and 3), some are activated by touch (e.g. neuron 7) and some are unaffected 

(e.g. neuron 8). 

 

Figure 7. Varied responses displayed by each neuron studied in response to differing 

sensory or central efferent neuronal stressors. Each horizontal column represents how each identified 

RA neuron in all 8 dogs responded to each of the stressors applied (horizontal row above). Each column 

is associated with a specific stressor: afferent activation (touch of right [RV] or left [LV] ventricle; 
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occlusion of inferior vena cava [IVC] or descending aorta; myocardial ischemia evoked by transient 

occlusion of left anterior descending coronary artery), activation of efferent inputs to the RAGP via 

electrical stimulation of the right (RCV) or left (LCV) cervical vagus or stellate ganglia (right, RSS; left, 

LSS), or global activation of the IC network evoked by electrical stimulation of mediastinal nerves 

(MNS) at levels sufficient to evoke atrial fibrillation (AF). The number (n) of neurons so identified in 

each animal is indicated to left. The significance of each change ranged from greatest (p<0.01) to 

moderate (0.01<p<0.05) to insignificant (N/A) (grey bars means that an intervention was not performed). 

Right hand column characterized whether neurons CV related activity occurred during diastole (D), 

isovolumetric contraction (C), LV ejection (E) or isovolumetric relaxation (R). 

 

Figure 8. IC neurons with cardiac-related activity are preferentially active during diastole 

to isovolumetric contraction phases.  Activity histograms for all identified IC neurons that generated at 

least 100 spikes at baseline (49 of 92).  Shaded area indicates time of LV contractile phase.  The activities 

of these IC neurons are sorted according to entropy of distribution.  Classification of firing patterns, 

relative to cardiac cycle, indicated above each neuron based upon bin (or immediately adjacent bin) 

counts that exceed 30% of total activity. Distribution of firing was: 14 neurons active in diastole (D), 22 

neurons active during involumetic contraction (IC), 10 neurons active during ejection phase (E), 7 units 

active during isovolumetric relaxation (IR).  10 neurons showed dual peaks.  Six neurons that exhibit 

adequate basal activity failed to demonstrate cardiac-related periodicity in firing. 

 

Figure 9.  IC neurons displaying cardiac related activity are modified differentially by 

afferent and efferent stressors.  Proportion (% responders) of IC neurons with basal cardiac (cardiac 

periodicity) vs non-cardiac cycle (no cardiac periodicity) related periodicities whose activity was 

modified by afferent neuronal inputs (top left panel: RV touch, LV touch, transient occlusion of IVC or 

descending Aorta), efferent neuronal inputs (top right panel, stellate ganglia; bottom left panel, cervical 
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vagi) or transient occlusion of the LAD (bottom right panel). Chi-square P values are indicated for each 

subclass of stressor.  

 

Figure 10.  Afferent sensitivity to mechanical stressors predicts IC responsiveness to 

ischemic or MNS stressors.  Proportion of IC neurons modified by afferent stressors (RV touch, LV 

touch, transient occlusion of IVC or descending aorta) divided according to their sensitivity to transient 

LAD CAO (top panel) vs mediastinal nerve stimulation (bottom panel). Chi-square P values are indicated 

for each subclass of stressor.  

 

Figure 11. Interdependent activity among IC neurons in response to transient afferent or 

efferent stressors.  Panel A indicates the conditional probability that one neuron responding to one 

stressor (X axis) responded to another stressor (Y axis). Aor: aorta occlusion; other acronyms as in Fig. 7. 

Gray-scale indicates level of probability of each occurrence (0 to 1 in 0.2 increments). Panel B 

graphically indicates the pattern of interdependent interactions between applied stressors. Arrow thickness 

is proportional to the strength of conditional probability, whose value is also indicated next to each arrow.  

Only links with conditional probabilities ≥ 0.6 are displayed. Mediastinal nerve stimulation (MNS) is a 

preeminent stressor, evoking changes in 52% of recorded IC neurons (48 of 92). Interdependent 

interactions among the IC neurons in response to stressors fall into two principal categories, efferent 

dependent and afferent dependent; stressor evoked activity in both subpopulations of IC neurons likewise 

being predictive of activation in response to MNS. Seventeen % of recorded IC neurons (16 of 92) were 

not significantly affected by any of the stressors applied. 
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CHAPTER III: RECORDING AND IDENTIFICATION OF 

CARDIAC NEURON ACTIVITY IN THE RIGHT ATRIUM 

GANGLIONATED PLEXUS 
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Abstract 
 

Recent multichannel electrode array technology has enabled the simultaneous recording of 

multiple cardiac neurons located in ganglia on a beating heart. These new bioelectric signals are 

contaminated by the electrical activity of the atrial muscle just underneath. These atrial waveforms may 

mask relevant neuronal activity. In this paper, we evaluate the application of a principal component 

analysis technique to suppress atrial activity (AA) and reveal hidden neuronal activity. Neuronal signals 

were recorded in situ using a 16-channel electrode in an open-chest, anesthetized dog in sinus rhythm. 

Validation of AA cancellation was performed by comparing neuron spike waveforms extracted from 

within AA with those found in AA-free time intervals. Results showed that consistent neuronal 

waveforms can be identified within AA in order to improve the detection of neuron firings. 
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III.1. Introduction 

The heart receives sympathetic and parasympathetic innervation through the intrinsic cardiac 

nervous system [1]. Cardiac neurons notably contribute to the control and the regulation of heart rate and 

contraction. Afferent and efferent terminations as well as sympathetic efferent post-ganglionic neurons 

are known to be located in patches of fatty tissue on the atrial surface [2]. These ganglionated plexi have 

been hypothesized to contain local circuit neurons acting as local processor of information (the so-called 

"little brain in the heart" [3]) to coordinate regional cardiac function. There are growing evidences that an 

imbalance in the electrical activity of cardiac neurons is involved in the initiation and maintenance of 

atrial arrhythmias [4,5]. Advances in neurocardiology raised the need for reliable in situ monitoring of the 

electrical activity of the cardiac neurons in the ganglionated plexi. 

Electrophysiological recordings in ganglionated plexi are performed by inserting an electrode in 

the nervous tissue, enabling the measurement of extracellular potentials (spikes) generated by neuronal 

action potential [1]. In the atria, this task is complicated by two problems. First, the electrode is placed 

directly on a beating heart and moves with it. Second, the signals generated by cardiac neurons may be 

masked by the superimposed atrial activity (AA). The first issue is typically addressed by means of a 

probe tethered by a flexible lead. Proposed solutions to the second problem have been so far limited to 

blanking the signals during AA [1,6], thus ignoring possible neuronal activity in these intervals. This 

paper presents a first attempt to extract information about cardiac neurons during local atrial 

depolarization, which will be crucial for future studies during atrial fibrillation. 

This AA cancellation problem is similar to the subtraction of ventricular activity in the ECG 

during an atrial arrhythmia [7,8]. By analogy, considerable gain in AA removal performance is expected 

from the use of multiple simultaneous signals. While multichannel electrodes are commonly used in the 

brain, recordings in intrinsic cardiac ganglia have been so far essentially limited to one or a few electrodes 

[1]. We are using linear multielectrode arrays, in which electrodes are far enough from each other to 

record different neurons, but sufficiently close so that AA manifestation (atrial waveforms) should remain 
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similar in all of them. Principal component analysis (PCA) appears to be a natural tool in this situation. In 

this paper, we follow this approach and evaluate its applicability to multichannel cardiac neuron 

recordings in dogs. 

 

III.2. Methods 

III.2.1. Experimental recordings 

Mongrel dogs underwent bilateral open chest surgery. The activity generated by neurons located 

in the right atrium ganglionated plexus (RAGP) was recorded for 25 minutes by means of a multichannel 

microelectrode array (Linear Microelectrode Array, MicroProbes Inc., Guithersberg, MD) in situ in 

baseline conditions under anesthesia and controlled respiration. This microelectrode array, consisting of 

16 platinum/iridium electrodes (25 µm diameter electrode with an exposed tip of 2 mm; impedance 0.3-

0.5 MΩ at 1 kHz), was embedded in the right atrial fat that contained the RAGP such that its tip was 

placed adjacent to right atrial myocardium. In addition, an electrode was sewn to the atrial myocardium 

close to the RAGP to provide a reference atrial electrogram and assist AA identification. When low 

amplitude neuronal activity was observed by visual inspection in a channel during the setup phase of the 

experiment, the gain of that channel was manually adjusted. The gain therefore varied across the 

channels. 

The signals were digitized at a sampling frequency of 5.6 kHz via a Cambridge Electronics Design 

(model 1401) data acquisition system.  

III.2.2. AA waveforms detection  

The 17 signals (16 neuronal channels + electrogram) were analyzed offline using the Spike2 

software (Cambridge Electronics Design). The signals of the two distal microelectrodes of the array were 

discarded because of low signal-to-noise ratio, leaving 14 neuronal channels. Figure 1 shows three 

different channels as well as the right atrium electrogram. Neuronal activity is clearly visible on the first 
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two channels, while it remains very low on the third one. When the local cardiac tissue depolarizes, it 

generates a waveform not only on the electrogram, but also simultaneously on all other data channels (see 

Fig. 1). 

 Events (both neuronal responses and AA since they have similar amplitude) were detected using 

a threshold-based method provided in Spike2. Because of the inter-electrode distance, the activity of a 

single neuron can usually not be seen from more than two adjacent channels. To discriminate between 

neuronal response and AA, we therefore assumed that any event present simultaneously in three or more 

channels was AA. To facilitate the procedure, AA detection was performed on a subset of four channels 

(called four-trode) with low neuronal activity (selected by visual inspection). The right atrial electrogram 

served to ensure that AA detected in neuronal signals was indeed caused by an atrial activation. Note that 

atrial electrogram waveforms were approximately but not exactly aligned with the AA in neuronal 

channels since the myocardial electrode and the RAGP electrode were distant by a few millimeters. 

III.2.3. Spike sorting outside AA   

Spike sorting consists in grouping neuronal waveforms into clusters based on their shape [9]. 

Each waveform of a group presumably corresponds to the firing of the same neuron. As a first step, a 26-

ms window was blanked in all channels around each detected AA waveform. Automatic spike sorting 

techniques available in Spike2 were applied to extract neuron spike trains. The standard approach for 

neuronal activity identification stops here. The next two paragraphs describe an attempt at finding 

neuronal spikes within the blanked intervals. 

III.2.4. AA cancellation  

Signals were then exported from Spike2 to Matlab for further analysis. Each AA window was 

processed separately. An example of signal waveforms in an AA window is shown on the left panel of 

Fig. 2. After mean subtraction, the signals were normalized by their standard deviation to compensate for 

channel-specific gain (see e.g. signals 4, 5, 7 and 9 in Fig. 2). 

For each atrial beat, the 14 signals in the corresponding AA window were represented as a 146-
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by-14 data matrix (windows were 146 samples long). AA cancellation was performed based on principal 

component analysis (PCA) of that matrix [207]. In all but rare cases, the first principal component (an 

example is shown at the bottom of Fig. 2) captured at least 70-90% of the variance. This confirmed that 

AA shape was very similar in all channels. The signals were then reconstructed after suppression of the 

first principal component. Removing the second principal component did not further improve the 

identification of neuronal activity in the residual, presumably due to its orthogonality constraint. The right 

panel of Fig. 2 shows examples of residuals after AA cancellation. One of them (channel 2) seems to 

contain a neuronal activity. 

III.2.5. Spike identification within AA  

To establish that spikes observed within AA after cancellation (and detected by thresholding) 

were real neuronal responses, two criteria were used. First, when simultaneous spikes occurred in more 

than two channels, they were considered as cancellation artifact. Otherwise, the spike waveform was 

compared to the templates of neuronal waveforms identified outside AA using Spike2. The maximum 

cross-correlation served as a quantitative measure to select the best candidate and associate the spike with 

a previously identified neuron. 

III.3. Results 

In the 25 min studied, 1600 AA waveforms were detected (64 per min). These corresponded to 

the segments that were blanked in the standard approach. Some AA corresponding to atrial activations 

were not detected. They had significantly lower amplitude (e.g. premature beats) than neuronal response 

and were not blanked in the standard approach because they did not prevent the identification of neuronal 

response. Decreasing the threshold to detect them would increase false positive detection of neuronal 

response. 

Outside AA, a total of 18 neuronal waveforms were identified in the 14 channels, presumably 

corresponding to the activity of 18 different neurons. Their firing rates ranged from 0.06 to 2.09 Hz in 
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baseline conditions, in agreement with previous recordings in the RAPG [1]. Table 1 lists the number of 

neuronal spikes outside AA for the 10 neurons having the highest firing rates. 

AA cancellation provides a tool for identifying additional neuronal spikes. The channel 2 of Fig. 

2 has a spike in the residual after cancellation. Its amplitude is in the range of the amplitudes of spikes 

identified outside AA. To further confirm that this spike is a neuronal response, its waveform was 

compared to similar spike waveforms outside AA. Figure 3 gives a few examples of spikes with similar 

shapes found inside and outside AA. For a variety of morphologies, waveforms were consistent inside 

and outside AA. As a results, it was possible to associate each spike inside AA with a cluster of 

waveforms (i.e., with a neuron) outside AA. Table 1 summarizes for the neurons with highest firing rates 

the number of spikes inside and outside AA. Spikes inside AA contributed to about 1 to 2% of the total 

identified spikes, while the cumulated length of all AA represented 2.8% of total signal duration. 

 

III.4. Discussion  

This paper demonstrates the value of multichannel neuronal recording for investigating the 

intrinsic cardiac nervous system. First, the detection of simultaneous spikes in multiple channels 

facilitates the identification of AA. This is of particular importance since amplitude and shape alone are 

sometimes not sufficient to reliably classify waveforms as AA. Second, a simple PCA algorithm enabled 

us to reveal neuronal activity masked by AA. Combined with powerful spike sorting techniques in 

Spike2, this type of multichannel analysis opens new perspectives in neurocardiology by permitting to 

study neuron population dynamics and network interactions in atrial ganglionated plexi in relation to 

cardiovascular, chemical, mechanical or neuronal inputs/outputs [11]. 

When AA waveforms are blanked, neuron firing rates are underestimated. Our results suggest 

that the systematic error in firing rate is of the order of 1.5% during sinus rhythm, which is small as 

compared to changes in firing rates resulting from external input (e.g. increased blood pressure). When 

the activity of a neuron is cardiovascular-related (i.e., when it fires at specific phases within the cardiac 
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cycle), there may be a physiological reason for the presence or absence of firing during the AA. This may 

explain why the average firing rate in the AA is slightly lower than expected (1.5% of the spikes in 2.8% 

of signal duration). Another reason could be misdetection of lower amplitude waveforms due to 

cancellation artifacts. 

The problem of removing AA becomes more critical during episodes of atrial arrhythmias. In 

these very relevant conditions, atrial rate increases markedly so that the cumulated duration of AA may 

represent up to 15-20% of signal duration, resulting in a more severe underestimation of firing rates. 

Future work will evaluate the applicability of our approach to these signals. 

III.5. Conclusion  

The application of multichannel microelectrode arrays to neurocardiology created new signal 

processing challenges. A combination of PCA and template matching enabled us to get more insight into 

RAGP neuronal activity hidden in AA. These tools and their future developments will form the basis for 

deeper investigations of neuronal activity in relation to the occurrence of atrial arrhythmias.  
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Figure legend 

 

Table 1. Number of neuron spikes inside and outside atrial activity (AA). 

 

Figure 1. Electrical activity recorded in the right atrial ganglionated plexus (only 3 channels are 

displayed) and right atrial electrogram representing myocardial activity. Note that some events (AA) are 

aligned in all channels. 

 

Figure 2. First column: signals (14 channels) containing an atrial activity (AA) waveform. 

Second column: the same signals after AA cancellation. The bottom trace shows the principal component. 

 

Figure 3. (A) Examples of neuronal responses within an AA waveform after cancellation. (B) 

Best match with a neuronal response found outside AA. 
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Table 1. Number of neuron spikes inside and outside atrial activity (AA). 
 
 
 
 
 
 
 
 
 

neuron #spikes outside 
AA 

#spikes 
within AA 

fraction 
inside 

1 3129 35 1.1% 
2 1888 23 1.2% 
3 1641 24 1.4% 
4 1333 17 1.3% 
5 1251 11 0.9% 
6 1023 14 1.4% 
7 897 7 0.8% 
8 687 20 2.8% 
9 584 25 4.1% 

10 549 7 1.3% 
others 1850 38 2.0% 
total 14832 221 1.5% 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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CHAPTER IV: VAGAL STIMULATION TARGETS SELECT 

POPULATIONS OF INTRINSIC CARDIAC NEURONS TO 

CONTROL NEURALLY-INDUCED ATRIAL FIBRILLATION 
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Abstract: 
 

Background: Mediastinal nerve stimulation (MNS) reproducibly evokes atrial fibrillation 

(AF), an effect dependent upon excessive activation of intrinsic cardiac (IC) neurons.  This study 

evaluated whether pre-emptive vagus nerve stimulation (VNS) alters mediastinal nerve (MNS)-

induced changes within the IC neural network to alter susceptibility to AF.  Methods: Activity of IC 

neurons in the right atrial ganglionated plexus was directly evaluated in anesthetized canines (n=8) 

using a linear microelectrode array in response to: 1) epicardial touch or great vessel occlusion vs 

(2) stellate or vagal stimulation.  The capacity of right-sided MNS to modify IC activity in the 

induction of AF was determined prior to and after pre-emptive right (RCV) vs left-sided (LCV) 

VNS (15 Hz, 500µsec; 1.2x bradycardia threshold; 3 min).   Results: IC activity (baseline: 

0.11±0.29Hz) increased during MNS-induced AF (0.51±1.30Hz; p<0.001). Convergent LCN’s, 

defined as IC neurons responding to afferent and efferent inputs, were preferentially activated. Pre-

emptive RCV reduced MNS-induced changes in convergent LCN’s activity (by 70%), while 

mitigating the potential for MNS-induce AF (by 75%). Pre-emptive LCV reduced LCN activity by 

60% while mitigating the AF potential by 40%. Increases in IC neuronal synchrony elicited during 

neurally-induced AF were also mitigated by pre-emptive VNS.  Such anti-arrhythmic effects 

persisted post-VNS for, on average, 26 min. Conclusions: VNS preferentially targets convergent 

LCNs and their interactive coherence to mitigate AF resulting from IC neural imbalance. The anti-

arrhythmic properties imposed by VNS exhibit memory. 
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IV.1. Introduction 

Atrial fibrillation (AF) affects more than three million people a year in the United States, 

prevalence that has been projected to reach 5.6 - 12.1 million by 2050 (23, 37).  Despite such 

prevalence, the underlying mechanisms of AF are not fully understood. Current treatments consist 

of pharmacological therapies that have been combined with localized atrial catheter-based or 

surgical ablation (17, 48). Although many surgical approaches to AF have been attempted, their 

success rates vary among patients.  Cappato et al (14) reported that catheter ablation was effective 

in ≈70% of patients, increasing to ≈80% in patients when combined with antiarrhythmic 

pharmacological therapy.  Weerasooriya et al (57) reported the therapeutic success rates of such 

therapy as 87, 81 and 63 % at the end of 1, 3 and 5 years, respectively. Moreover, ablation 

procedures are associated with complications such as the left atrial stiffness syndrome (22), micro-

embolic episodes (45), and a risk of symptomatic or silent cerebral ischemia (20).  Such drawbacks 

have increased the focus on understanding the mechanisms of AF and the development of novel 

non-pharmacologic therapeutic options for its management.  Active neuromodulation based 

therapies for AF represent a new approach to such management.  These include vagal nerve 

stimulation (VNS) (33, 47, 49) and spinal cord stimulation (SCS) (21, 52, 56); which target various 

aspects of the cardiac neuronal hierarchy.  

The cardiac neuronal hierarchy is made up of neuronal somata located in the insular cortex, 

brain stem, spinal cord, intrathoracic sympathetic ganglia and the intrinsic cardiac nervous system 

(ICNS) (2, 6, 66). It has been proposed that the ICNS acts as the final coordinator of regional 

cardiac indices and that it is under the influence of intrathoracic, spinal cord and brainstem reflexes 

(6). Modulation of cardiac function by the ICNS is coordinated by afferent (mechanosensitive, 

chemosensitive and ischemia sensitive) inputs acting reflexly on both peripheral and central aspects 

of the cardiac nervous system (6, 8, 65) .  These afferent and efferent projections interact via local 

circuit neurons (LCNs) at these locations to modulate both sympathetic and parasympathetic 
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efferent postganglionic projections to all regions of the heart (3, 18, 26, 35).  It has been postulated 

that LCNs support complex reflex processing within the ICNS (6).  It has been further demonstrated 

that neuronal imbalances within the ICNS can exert deleterious effects on cardiac function, 

including arrhythmia induction (7, 9, 44, 46).   

Vagal stimulation modulates cardiac electrical function (58) and has the potential to either 

increase or decrease the propensity to arrhythmias (17). Higher intensity stimulations tend to 

increase atrial fibrillation inducibility (61, 63); lower intensity vagal stimulation can stabilize atrial 

electrical function (16, 53). Moreover, recent studies have demonstrated the anti-arrhythmic effects 

of vagal nerve stimulation (VNS) can be delivered with minimal adverse effects (49, 61, 62).  It has 

also been reported that low level VNS therapy can suppress AF induced by cholinergic neuronal 

activation in ambulatory canines along with suppression of stellate ganglion hyperactivity (47).  It 

has been hypothesized that obtunding intrinsic cardiac LCN transduction might be a mechanistic 

basis of such benefit (21).  

In order to understand the efficacy of VNS therapy on atrial arrhythmia suppression, we 

studied the effects of right versus left-sided vagus nerve stimulation on various subgroups of 

intrinsic cardiac (IC) neurons in the canine right atrial ganglionated plexuses (RAGP) (60).  This 

population of neurons is primarily associated with autonomic control of the sinoatrial node (5, 36). 

With direct IC neuronal recordings, using linear microarray electrode technology, it is possible to 

evaluate and sub-classify the activities generated by multiple populations of IC neurons in situ 

based on their responses to different cardiovascular stressors (11).  Disruptions in ICNS network 

function can be evaluated with respect to its varied neuronal subtypes (afferent, efferent or local 

circuit) and, correspondingly, used to delineate neural targets for potential anti-arrhythmic 

therapies. 

The model of atrial fibrillation utilized in this study is focal mediastinal nerve stimulation 

(9). This model provides a reproducible stress against which anti-arrhythmic therapies can be 

evaluated and optimized (4, 9, 21, 43). Previous work has demonstrated that such electrical stimuli 
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activate neural projections that directly innervate a discrete sub-population of intrinsic cardiac 

neurons (21), giving rise to overall ICNS network hyper-excitability (21), with resultant disparate 

efferent outflows to atrial tissues causing local heterogeneities in atrial function and induction of 

transient atrial fibrillation (9, 43).   The present study demonstrates the fundamental contributions of 

LCN neurons within the ICNS in modulating the atrial arrhythmogenic substrate and their pivotal 

role as a target for neuromodulation of AF.  

IV.2. Methods 

IV.2.1. Animal preparation 

 All experiments were performed in accordance with the guidelines for animal experimentation 

described in the Guide for the Care and Use of Laboratory Animals, Eighth Edition, National Academy 

Press, Washington DC, 2010.  The Institutional Animal Care and Use Committee of the East Tennessee 

State University approved these experiments.  Eight mongrel dogs of either sex, weighing 18.6-26.9 kg, 

entered this study.  Animals were sedated with propofol (3-8 mg/kg, intravenous (i.v.)), followed by 

endotracheal intubation and mechanical ventilation. General anesthesia was maintained with isoflurane 

(1-2%, inhalation). Following completion of surgery, anesthesia was changed to α-chloralose (50 mg/kg 

i.v. bolus), with continuous infusion (8-12 mg/kg/hr i.v.) adjusted to effect throughout the duration of 

each study. Throughout, the depth of anesthesia was assessed by monitoring corneal reflexes, jaw tone, 

and hemodynamic indices. Body temperature was maintained via a circulating water heating pad (Gaymar 

T/Pump, Gaymar Industries Inc., Orchard Park, NY). At the completion of the experiments, animals were 

humanely euthanized under deep anesthesia and by inducing ventricular fibrillation via direct current 

stimulation. 

IV.2.2. Hemodynamic recording  

The left femoral artery was catheterized to record arterial blood pressure (Ao BP).  The left 

femoral vein was catheterized to allow for fluid replacement, as well as anesthetic and pharmacological 
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agent delivery.  The right femoral artery was catheterized in order to monitor left ventricular chamber 

pressure (LVP) via placement into that chamber of a Mikro-Tip Pressure Transducer Catheter (Millar 

Instruments, Houston, TX).  Heart rate was monitored via a Lead II electrocardiogram (ECG). Pressures 

(Ao BP, LVP) and ECG were input to a Cambridge Electronics Design Cambridge Electronics Design 

(model 1401) data acquisition system for continuous monitoring of hemodynamic stability. 

IV.2.3. Vagal stimulation (VNS)  

Following a midline incision in the ventral neck, the right and left cervical vagi were exposed and 

bipolar stimulation electrodes (PerrenialFlex, Model 304, Cyberonics, Inc.) placed around each. Each lead 

was connected individually to a Grass S88 stimulator via separate PSIU6 constant current isolation units.  

Bradycardia thresholds for each nerve stimulated were identified using 20 Hz, 500μs pulse width stimuli, 

as determined by progressive increases in current intensity until 10% bradycardia was evoked.  For right-

sided VNS this current was found to be, on average, 1.75 mA; for left-sided VNS it was 2.25 mA. VNS 

was applied to each vagus for 3 min periods (15 Hz; 500μs pulse width) at a current intensity that was 

1.2x bradycardia threshold. 

IV.2.4. Mediastinal nerve stimulation (MNS)  

Following thoracotomy, an incision was made in the pericardial sac and a pericardial cradle 

formed.  A bipolar electrode was affixed to the right atrium, 1 cm dorsal to the SA node, to record an 

atrial electrogram. Right-sided mediastinal nerves were identified visually on the ventral and ventro-

lateral surface of the intrapericardial aspects of the superior vena cava. This nerves are aggregate of 

sympathetic and parasympathetic efferent projections as well as inter-ganglionic projections arising from 

local circuit neurons contained within the ICNS (9, 21, 24, 55) .  Each nerve was stimulated individually 

using detailed published techniques (9, 21).  Briefly, trains of five electrical stimuli (0.3-1.2 mA, 1 ms 

duration, 5 ms pulse interval) were delivered during individual atrial refractory periods to identified 

mediastinal sites for up to 20 seconds, as triggered by the reference atrial electrogram to avoid direct atrial 

capture.  Electrical stimuli were delivered via a roving bipolar probe electrode (1.5 mm spacing) 
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connected to a constant current generator (PSIU6, Grass Instruments, Quincy, MA) affixed to a Grass S88 

stimulator (Grass Instruments, Quincy, MA).  The stimulator was externally controlled by a script running 

on the CED powerlab and triggered by atrial wave front detections.  Active nerve sites were identified by 

the immediate induction of atrial tachyarrhythmias (including atrial fibrillation) when first exposed to 

focal electrical stimuli.  Each active mediastinal nerve site so identified was marked with India ink for 

repeated stimulation.  By these means, 2-4 active nerve sites were identified in each animal.  Contact 

between the bipolar electrodes and tissue was discontinued immediately after the onset of the atrial 

tachyarrhythmia in order to limit their durations.   

IV.2.5. Neuronal Recording  

The activity generated by right atrial neurons in situ was identified using a multichannel linear 

microelectrode array (LMA; MicroProbes Inc., Gaithersburg, MD) that consisted of 16 platinum/iridium 

electrodes (25 µm diameter electrode with an exposed tip of 2 mm; impedance 0.3-0.5 MΩ at 1 kHz).  

The LMA electrode was embedded in the right atrial fat that contained the RAGP, as described previously 

(11).  This probe was attached to a flexible lead, the density of right atrial fat helping to maintain position 

stability over prolonged periods of time (up to 8 hours of recording). The connecting wires of the 

multichannel electrode, along with ground and reference wires, were attached to a 16-channel 

microelectrode amplifier with a headstage preamplifier (A-M systems, Inc., model 3600; Carlsborg, WA).  

For each channel, filters were set to 300-3K Hz and gain to 5K. Another electrode was sewn to the atrial 

myocardium close to the RAGP to provide a reference right atrial electrogram (RAE) which was utilized 

to determine atrial rate, duration and characterization of atrial arrhythmias, along with a timing index for 

subsequent identification of atrial electrical artifacts in IC neural recording data.  The 16 microelectrode 

array signals, along with recorded cardiovascular indices (ECG, right atrium electrogram and 

hemodynamic data), were digitized via a Cambridge Electronics Design (model 1401) data acquisition 

system for off-line analysis. The sampling frequency for neuronal data was 5.26 kHz; it was six time 

lower (0.877 kHz) for all other recorded signals.   
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IV.2.6. Identification of neuronal activity  

The activity generated by individual neuronal somata located within the RAGP was recorded. 

Identification of the activity generated by individual neurons via the 16 channel electrodes was performed 

off line using Spike2 software program (Cambridge Electronic Design) in two steps: (1) artifact 

identification and blanking; (2) spike detection, waveform classification and validation with principal 

component analysis (11).  Artifacts were identified related to electrical activity generated by the atrial 

myocardium beneath the RAGP as well as by MNS stimulation. Using the techniques depicted above, 

each artifact could be identified and eliminated to permit identification of action potentials generated by 

individual somata and/or dendrites (not axons of passage) for up to 8h periods (11, 19, 54).  

IV.2.7. Monitoring IC neuron activity  

The activity generated by individual IC neurons was identified in different time windows (c.f., 

before versus during each intervention depicted below). The time window before an intervention 

(baseline) was defined as the 1 min time interval preceding each intervention. The time window during an 

intervention covered the entire duration of that intervention. The significance level of the observed 

differences in firing rates was assessed using a statistical test based on the Skellam distribution developed 

for cortical neurons (50), as adapted for IC neurons (11). Using this statistical approach, the significance 

of changes in firing rates before and during each intervention was computed for all identified IC neurons 

during all interventions.  This permitted matrix summarization of all responses that identified IC neurons 

underwent during each intervention. Change in neuronal activity so engendered was considered moderate 

when p<0.05 and strong when p<0.01. 

IV.2.8. Determination of neuron subtypes   

We classified the behavior of identified neurons according to their activity characteristics in 

response to the following interventions: (1) touching the ventral LV or RV (conus vs sinus); (2) 20 sec 

descending aorta occlusion; (3) 20 sec inferior vena cava occlusion; (4) stimulation (1 Hz for 1 min) of 

RCV vs LCV; and (5) stimulation (1 Hz for 1 min) of right vs left stellate ganglia. By these means, each 
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neuron was classified according to how it responded to each of those interventions and change in firing 

rate (p<0.05).  When a neuron responded solely to one or more afferent stressors (interventions 1-3 

above), it was classified as an afferent LCN. Efferent LCNs were identified as those responding indirectly 

(variable latency) to one or more efferent (vagal vs sympathetic motor) inputs. IC neurons that respond 

with a fixed latency to efferent inputs were classified as efferent IC neurons (6).   IC neurons that 

responded indirectly to both afferent and efferent stressor were classified as convergent LCN (11).  

Identified neurons that did not respond to any stressor were classified as exhibiting unknown function.  

IV.2.9. AF characteristics  

Atrial electrograms were recorded from the ventral right atrial free wall and referenced to a 

Wilson Central terminal.  From the atrial electrograms, the following response characteristics were 

determined during the atrial tachyarrhythmia: latency (defined as the interval from the first applied 

stimulus to tachyarrhythmia initiation); duration of the AF (defined as time from onset to self-termination 

of AF); and dominant frequency of atrial activity during induced AF episode. When AF was not initiated 

by MNS, AF duration was by definition set to zero. The duration of AF episodes occurring before and 

after VNS were compared by reference to the duration of each, as obtained from one or more AF episodes 

induced before and after the VNS protocols. The effects of VNS therapy was separated into 4 categories, 

using MNS as the constant defined stressor: i) AF prevention (AF initiation failed); ii) AF mitigation (AF 

duration reduced by 20% or more); iii) AF prolongation (AF duration increased by at least 20%) and iv) 

as having no effect. Results were considered to be not significant (no effect) when occurring up to the 

20% range.  

IV.2.10. Time dependence of VNS effect   

Kaplan-Meier survival analysis was performed to estimate how long the effect of VNS lasted as 

the number (up to 7) and timing of successive AF initiation attempts (at 5 to 10 min intervals, if needed) 

varied. When a mediastinal nerve stimulus evoked an AF episode as long as the reference (control state) 

episode, sequential MNS trials were terminated. Accordingly, VNS efficacy at time t was defined as the 
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percentage of experiments for which the latest unsuccessful AF attempt (if any) occurred after time t.  A 

second survival curve was also created based on the percentage of experiments in which the latest 

mitigated AF episode (if any) occurred after time t in order to determine how long neuronal effectiveness 

lasted. 

IV.2.11. Neuronal synchrony   

In each animal, a synchrony index (SI) was calculated (34) in order to characterize the possibility 

of synchrony of activity generated among different populations of IC neurons identified during: i) 

baseline states  as compared to ii) during episodes of neurally-induced atrial arrhythmias.  The potential 

of VNS to alter IC synchrony was likewise assessed. Since there was a limitation of analysis imposed by 

the limited number of action potentials identified during the 3 min of VNS, synchrony analysis was not 

performed in such instances.  The synchrony of activities displayed by different populations of identified 

neurons, as defined by Agmon (1), was analyzed by assessing the activity generated by pairs of identified 

neurons in each animal. In order to calculate such a synchrony index (SI), one neuron was defined as the 

reference and the other as the target. Different SI values were obtained that depended on which neuron 

was considered reference, thus making the SI a non-symmetric measure. As such, calculation of this SI 

index required the identification of coincidences of activities among neurons when reference and target 

neurons both generate activity within a time window of selected duration τ. Our previous study defined 

the optimal value for τ with respect to intrinsic cardiac neurons to be 40 ms (34). The number of 

coincidences was obtained by counting reference spikes during which coincidence occurred. Given that 

some coincidences may be random in nature, the coincidence count was also estimated in surrogate data 

obtained by applying a random jitter to the reference spikes in each time window of duration 4τ (1). To 

obtain normalized SI values, the mean coincidence count in surrogate data was subtracted from the actual 

coincidence count identified. Thereafter, the resultant was divided by the number of reference spikes. 

Surrogate data also served to calculate a p-value in order to assess statistical significance of these data.  

When the number of neuron pairs demonstrating statistically significant synchrony was identified (p < 



124 
 

0.01 and SI > 0.01), a chi-square test was performed to assign statistical significance to changes in the 

number of synchronized pairs for each neuronal subtype combination studied (51).   

IV.3. Results   

IV.3.1. Functional response characteristics of identified right atrial neurons 

A total of 89 neurons were identified in the 8 subjects studied (11.1±3.5 neurons per subject).  

Figure 1C shows the patterns of IC neural responses from one representative animal (n = 10 neurons) as 

ascribed to discrete afferent or efferent inputs.  Based on these responses, IC neurons were sub-classified 

as afferent, efferent or convergent LCN’s.  The distribution of such grouping in this representative animal 

was reflected across all 8 animals (Fig. 1D).    Of the 89 functionally identified right atrial neurons (those 

that generated spontaneous activity), 65 neurons were characterized as being i) afferent local circuit 

neurons (n = 15; 17%), ii) efferent local circuit neurons (n= 20; 22%) or iii) convergent local circuit 

neurons (n = 30; 34%) by their response to defined afferent and efferent stressors. The rest (n=24; 27%) 

did not respond to any of these imposed stressors; as such, their function was labeled as being unknown 

(Fig. 1D, right panel).    

IV.3.2. Effects of right-sided mediastinal nerve stimulation on right atrial neurons and 

atrial electrophysiological stability 

Figures 1A and 2A illustrate representative responses from individual animals in which a brief 

period of MNS stimulation elicited transient periods of atrial arrhythmia (atrial tachycardia/atrial 

fibrillation; AT/AF).  Note that bradycardia usually precedes the onset of AT/AF (Figure 1A) and that 

there is an increase in IC activity during MNS and that activity persisted during progression of atrial 

arrhythmia (Figure 2A).  In 5 of 9 neurons, activity persisted briefly even after spontaneous conversion 

back to sinus rhythm . Across all animals and in response to MNS, IC activity increased preferentially in 

response to MNS among the convergent LCN IC population (0.13±0.3 to 0.88±1.73 Hz, p<0.001), with 

less effects occurring in afferent LCNs (0.07±0.3 to 0.14±0.43 Hz, p<0.032) and no change occurring in 

the efferent LCN population (0.11±0.3 to 0.21±0.74 Hz, p<0.24).  Average neuronal activity across all 
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recorded IC neurons was 0.11±0.29 Hz at baseline, increasing to 0.51±1.30 Hz (p<.001) during the MNS 

induced atrial tachyarrhythmia. 

Figures 1B and 3 summarize the impact of VNS on the AF inducibility to right-sided MNS.  The 

latency for AF induction at baseline was 2.68±2.32 seconds, this latency increased to 3.32± 2.82 seconds 

after RCV and decreased to 2.25±3.19 seconds after applying LCV. These changes were not significant.  

AF responses to pre-emptive VNS stratified into 4 subgroups, 32% were prevented (10 of 31 trials, see 

Fig 1B for example), 26% mitigated (8 of 31 trials), 23% were not impacted (7/31 trials) and 19% 

prolonged (6 of 31 trials) (Fig. 3A). AF prolongations were most evident with left-sided VNS evaluated 

against right-sided mediastinal nerve stimulation. When AF was induced by MNS, dominant frequency 

was similar with and without pre-emptive VNS.  Dominant frequency (sham VNS) was not predictive of 

anti-arrhythmic effects for subsequent VNS.   

IV.3.3. Effects of ipsilateral vagal nerve stimulation on IC activity and the potential for 

neurally induced atrial arrhythmias  

 Right-sided VNS impacted right atrial neural function in response to MNS (Figs 2B and 4A). It 

mitigated the potential for neurally-induced AF by 75% (Fig 4B).  Prior to VNS, MNS increased the 

activity among both afferent and convergent LCN sub-populations (Fig 4A, black lines). Following pre-

emptive right-sided VNS, basal activity was differentially decreased among efferent LCNs (0.16±0.4 vs 

0.06±0.19 Hz; p<0.01). Post-VNS, MNS-induced excitation of convergent LCNs was blunted (0.91±1.73 

vs 0.26±0.73 Hz; p<0.002), being totally eliminated among afferent LCN populations (Fig 4A).   

IV.3.4. Effects of contralateral vagal nerve stimulation on IC activity and the potential for 

neurally induced atrial arrhythmias  

In contrast to ipsilateral VNS, left-sided vagal stimulation exerted no significant change in basal 

IC neuronal activity (Fig 5A). However, as with right-sided VNS, LCV differentially mitigated the MNS-

induced increase in convergent LCN activity (0.84±1.74 vs 0.34±0.49 Hz; p=0.057).   The potential for 
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MNS-induced AF was mitigated in 40% by LCV VNS and without effect in 27% of cases.  Pre-emptive 

left-sided VNS enhanced AF induced from 33% of right-sided MNS sites evaluated (Figure 5B).   

IV.3.5. IC network characteristics: neuronal synchrony 

The MNS-induced increases in IC activity are reflective of common shared input and/or 

interdependent local network interactions mediated by LCNs (6).  Figure 6 illustrates this potential by 

evaluating synchrony among the various pairs of IC neurons identified within the RAGP during baseline 

conditions, as well as during MNS induced changes i) prior to (top panel) and  following pre-emptive 

right-sided VNS (bottom panel).  In the sham (unstimulated) VNS state, note that while there was 

minimal coherence of activity among the various sub-populations of IC neurons identified, in response to 

MNS there was a preferential increase in IC synchrony among convergent LCNs, as well as between 

convergent and efferent LCN sub-populations.  Following right-sided VNS, while there was a differential 

increase in synchrony during baseline states among convergent LCNs (Fig 6, bottom panel); any MNS-

induced change in IC synchrony was extinguished.  

IV.3.6. IC network characteristics: memory 

The efficacy of VNS therapy in terms of shortening/preventing MNS-induced arrhythmias (post-

VNS) was assessed via Kaplan-Meier survival analysis (Fig. 7).  Following right-sided VNS, anti-

arrhythmic effects against repeated MNS-induced arrhythmias was attenuated for 20 min after VNS 

therapy (top panel); it was extinguished by ~40 min post VNS  (Fig. 7A; fitting exponential function 

resulted in a time constant of 26±2 min [95% confidence interval]).  While the overall anti-arrhythmic 

efficacy of contralateral VNS was reduced (Fig 7, bottom panel), the time constants derived from RCV vs 

LCV responses were not significantly different (logrank test).  For corresponding MNS-induced changes 

in IC activity, the pre-VNS induced change in convergent activity (0.11 to 1.57 Hz, p=0.023) was 

suppressed immediately after VNS (0.04 to 0.38 Hz, p=0.17), and recovered ~30 min post VNS (0.07 to 

1.28 Hz, p=0.016). Following recovery, characteristics of MNS-induced AF (latency, duration and 

dominant frequency) were similar to sham VNS control (data not shown). 
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IV.4. Discussion   

 The major findings of this study are: 1) VNS can attenuate AF through its effects of specific cardiac 

neuronal populations, the convergent LCN’s; 2) Convergent LCN’s are central to neurally-induced AF 

induction and are the primary neural targets for anti-arrhythmic effect of VNS; 3) Disruptive neural inputs 

to the ICNS differentially alter coherence of activity among IC neurons and pre-emptive VNS modifies 

such effects; 4) ipsilateral VNS imparts a greater impact on IC neural function and the ability to stabilize 

the ICNS against neural imbalance; and 5) The anti-arrhythmic effects imparted by VNS has memory. 

IV.4.1. ICN modulation of cardiac function 

The ICNS is composed of heterogeneously dispersed populations of neurons, with stratification 

into distinct classes of neurons (6, 11).  These IC neurons can be functionally stratified by their in situ 

behavior based on their responses to different stressors according to whether they belong to either 

afferent, efferent or convergent LCN sub-types (6, 11).  The convergent LCNs are responsible for  

primary reflex integration within the ICNS (6), coordinating atrial and ventricular tissues via its efferent 

outputs. With respect to central autonomic efferent preganglionic axons, they project directly onto 

intrinsic cardiac efferent post-ganglionic (intrinsic cardiac parasympathetic and sympathetic) neurons as 

well as convergent LCNs (11, 36, 39).  These IC network interactions are critical to mediating 

sympathetic/parasympathetic cardiomotor outflow (36, 38). 

IV.4.2. ICN processing and atrial arrhythmias 

Asymmetric neural inputs to the IC network increase the potential for AT/AF (9, 17). Stochastic 

processing within that network underlies the instability that can occur within the ICNS to initiate 

arrhythmias (30, 31).  The resultant “hyper-stochasticity” displayed among its convergent LCNs in 

response to MNS appears to be fundamental to any enhancement of an arrhythmia potential (21).  Our 

study shows, any such enhancement of activity among IC LCNs can be associated with increases in their 

coherence to effect local efferent neuronal outflows (24, 36). Such coherence or lack thereof, is ultimately 
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dependent on intra-ganglionic interconnections (27, 54).  Our data indicates that IC network interactions 

can be targeted therapeutically to modify atrial arrhythmia induction.  

 

IV.4.3. VNS and ICN network function 

VNS therapy not only impacts individual IC activity, but also coherence displayed among its 

neurons (29). Data presented herein shows VNS, through effects on IC network interactions, blunts IC 

responsiveness to excessive neural inputs.  In fact, its convergent LCNs appear to be central to the 

stabilizing influence of the VNS therapy both in terms of neural activation and resulting cardiac 

electrophysiological stability.  Previous studies have demonstrated that aggregates of the IC ganglionic 

plexus neurons exert preferential spheres of influence on cardiac tissues, manifested by their direct and 

indirect projections to cardiomyocytes (5, 59, 60).  With respect to the RAGP, although it exerts 

preferential control of sinoatrial nodal pacemaker activity, it also influences distant atrial tissues along 

with ventricular electrical and contractile indices (5, 59).  

Medullary derived parasympathetic efferent preganglionic projections likewise have spheres of 

influence, reflecting both their projections onto specific subpopulations of intrinsic cardiac ganglia and 

their targeting of convergent LCNs (6, 25, 35, 41).  Our data shows that ipsilateral VNS exerts 

substantially greater anti-arrhythmic effects when targeting right atrial neuronal networks than 

contralateral preganglionic projections to such ganglia (Fig. 7).  Presumably, this reflects insufficient 

preganglionic efferent coverage to respective (contralateral vs ipsilateral) aggregates of IC neurons (38, 

40, 41). This anatomical-functional heterogeneity likely underlies any increased AF potential that right-

sided ICNS neural imbalance elicits with left-sided VNS therapy. Regardless of VNS site of delivery, its 

anti-arrhythmic effects exhibit memory.  In this study, 3 min of VNS conferred protection for up to 26 

minutes.   
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IV.4.4. Perspectives and significance 

Ablation and surgical approaches for AF, while in many cases exerting adequate short-term 

management (~80% success rate), show substantial failure rates over time (~60% success rate at 5 years) 

(14, 57).  In fact, failures are not unexpected given the potential of IC networks to adapt and reorganize 

over time in the face of pathology (10, 32).  In addition, there are at least five neuronal aggregates of 

atrial intrinsic cardiac ganglionated plexuses that modulate atrial function, each with preferential 

distributions/spheres of influence (15, 59). For example, the RAGP primarily modulates sinoatrial nodal 

function (5), the posterior atrial ganglionic plexus coordinates sympathetic and parasympathetic 

interactions for control of chronotropic function (36, 38),  and the inferior vena cava-inferior atrial 

ganglionated plexus modulates inferior atrial electrical functions with effects extending into the 

atrioventricular node (5). This is in addition to potential contributions mediated by the dorsal atrial 

ganglionated plexus (59, 60) and its utility as a potential target in conjunction with ablation of the 

pulmonary vein complex for treatment of AF (28, 48). 

A major advantage of electrical neuromodulation therapy, especially when applied at more rostral 

sites in the neuraxis, is that single point therapy can modulate a wide range of disparate ganglia within the 

ICNS (6, 41, 42, 62).   VNS therapy represents an effective strategy to modulate global ICNS network 

function/stability.  In addition the therapy is readily reversible, has a rapid therapeutic onset and, as the 

data in this paper shows; it has memory (effects that outlast application).   

Mechanistic understanding of autonomic regulator therapy is essential for its effective 

application. Cervical VNS therapy influences both ascending and descending axonal projections to impact 

neuronal processing at different (central to target organ) levels of the cardiac neuraxis (12, 13).  By 

understanding mechanistically the underlying pathology and its impact on the neural hierarchy for cardiac 

control, neuromodulation therapy can be applied to effectively manage the disease process and preserve 

end-organ function (13, 64).  
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Figure legends 

 

Figure 1. VNS effects on MNS-induced AF and functional classification of IC neurons.  

Atrial electrical activity recorded from a unipolar electrode on the ventral right atrial free wall. 

Bursts of electrical stimuli were applied to a caudal right-sided mediastinal nerve during the 

atrial refractory period (arrows above) before (A) and after (B) preemptive right-sided VNS. 

Note the prolongation of atrial cycle length (CL) that transitioned to atrial tachyarrhythmia 

before, but not after VNS.  IC neurons are classified based on their functional responses to 

application of afferent [(touch of right (TRV) or left (TLV) ventricle; occlusion of descending 

aorta (AOR) or inferior vena cava (IVC)] vs efferent [(right (RCV) or left (LCV) cervical vagus 

or stellate ganglia (right, RSS; left, LSS) electrical stimulation] interventions. Panel C represents 

the distribution of response derived from 10 IC neurons in one representative animal.  Panel D 

sub-classifies identified IC neurons based on their functional responses to defined inputs for the 

representative animal (left pie chart) vs the entire population of 89 IC neurons identified in all 8 

animals (right pie chart). Afferent-related IC neurons responded differentially to at least one of 

the following stressors: TRV, TLV, AOR or IVC.  Efferent-related IC neurons responded to 

cervical vagal and/or stellate stimulation. Convergent IC neurons were modulated by sub-sets of 

afferent and efferent inputs. Approximately 1/5 of IC neurons evaluated had basal discharge that 

was unaffected by any of the afferent or efferent stressors tested and, as such, are defined as 

unknown. 

 

Figure 2. Representative responses to mediastinal nerve stimulation (A) prior to and (B) 

following RCV VNS. A right atrial electrogram (RAE) is shown with concomitant activities 

generated by 9 IC neurons. Panel A shows the control state where AF was induced right-sided 
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MNS. Panel B shows response when the same MNS site was stimulated 1 min following 3 min 

of pre-emptive of right-sided VNS.  Solid arrows delimit time of the MSN nerve stimulations. 

Dashed line (panel A) indicates duration of AF induced by MNS.  As shown in panel B, 

following RCV, MNS failed to induce AF, even when applied for longer periods of time (20 s) 

than before therapy.   

 

Figure 3. Characteristics of MNS-induced AF pre- and post- VNS.  Panel A summarizes 

induces changes in AF duration.  Panel B summarizes dominant frequency of AF.  Responses are 

sub-grouped into those where VNS prevented, mitigated, had no effect or prolonged atrial 

fibrillation. * p<0.02 from sham VNS. 

 

Figure 4.  A. Neural response of IC neurons to MNS in the absence (solid line) vs 

immediately following pre-emptive right-sided (ipsilateral) therapy (Dashed line: RCV VNS). IC 

neurons were sub-classified as convergent, afferent or efferent LCN’s as defined by protocol 

outlined in Figure 1.  In control states, right-sided MNS stimulations induced AF in 100% of 

cases reflecting the emergent and heterogeneous activation of IC neurons within the RAGP 

intrinsic cardiac ganglia.   Convergent LCNs were the predominant population of IC’s activated 

by MNS and the primary target for neuromodulation/suppression by pre-emptive RCV therapy.  

B. Impact of ipsilateral VNS therapy on the atrial arrhythmogenic potential to MNS.   Effects of 

RCV VNS were classified according to whether it prevented, blunted or enhanced AF or exerted 

no effects on MNS-induced AF. * p<0.05 from baseline; # p<0.05 from control. 

 

Figure 5.  A. Neural response of IC neurons to MNS in the absence (solid line) vs 

immediately following pre-emptive of left-sided (contralateral) therapy (Dashed line: LCV 
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VNS). IC neurons were sub-classified as convergent, afferent or efferent LCN’s as defined by 

protocol outlined in Figure 1.  Convergent LCNs were the predominant population of IC’s 

activated by MNS and the primary target for neuromodulation/suppression by pre-emptive LCV 

therapy.  B. Impact of contralateral VNS therapy on the atrial arrhythmogenic potential to MNS.   

Effects of LCV VNS were classified according to whether it prevented, blunted or enhanced 

atrial fibrillation or exerted no effects on MNS-induced AF. While LCV VNS mitigated the AF 

potential for 40% of MNS sites tested, in contradistinction to RCV VNS, it enhanced that 

potential in 1/3 of MNS sites tested. * p<0.05 from baseline. 

 

Figure 6.  MNS-induced changes in IC network synchrony. The synchronized activities 

generated by identified pairs of IC neurons (SI>0.01 and p<0.01) were determined and the 

classified post-hoc according to the following subtypes: [A] afferent LCNs; [E] efferent LCNs; 

and [C] convergent LCNs. Panels show the degree of synchrony between the 6 combinations of 

IC subclass pairings elicited during: i) baseline states (black bars) and ii) in during MNS-induced 

arrhythmias (grey bars).  The top panel shows these relationships in untreated (sham VNS) states 

as well as during neurally induced AF. Note that MNS-induced a differential increase in 

synchrony between efferent to convergent IC pairs (E:C) as well as the convergent to convergent 

pairings (C:C). The bottom panel illustrates the effects of pre-emptive RCV VNS on these same 

IC neurons.  While pre-emptive RCV differentially increased synchrony between convergent 

LCNs at baseline, it eliminated the increase in synchrony across all 6 IC subclass pairings during 

MNS. * p< 0.02 from baseline; # p<0.01 sham to RCV VNS state. 
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Figure 7. VNS induced neural memory and its anti-arrhythmic effects.  (A) Evolution of 

the effects of right-sided VNS therapy on the capacity of MNS to induce AF (% efficacy), as a 

function of time post-therapy.  Light gray curve represent the percentage of cases (Kaplan-Meier 

survival curve) in which AF duration was shortened or prevented; dark curve indicates when pre-

emptive RCV prevented MNS-induced AF.  (B) Similar data derived with respect to AF 

potential when left-sided (LCV) therapy was applied pre-emptively.   
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CHAPTER V: DISCUSSION 

V.1. Technological challenges  

V.1.1. Recording, identification and classification of intrinsic cardiac neurons activity 

Recording the activity of intrinsic cardiac neurons in vivo has its own difficulties. As stated in the 

methodology part of chapter 2, while the heart is beating, the electrode is paled into the intrinsic cardiac 

ganglion and it should stay at the same location (while moving with heart) to avoid losing individual 

neuronal activity throughout whole experiment. Actually this is not the case in recording brain’s neuronal 

activity in which the electrode is implanted and it is fixed during the experiment. Finding the appropriate 

ganglion with active neurons is also an important point in recording neuronal activities. Using new 

technologies, it is now possible to record and display the neuronal signal in real-time, therefore the place 

of electrode could be changed in case no neuronal activity is showed on the monitor; this could happen 

when the electrode is not close enough to neuronal somata in extracellular recordings. Using multichannel 

microelectrode array helped us to cover more recording areas and detect superimposed atrial activity on 

neuronal signal. Unfortunately these electrodes could not be used for many times, and they had to be 

replaced when the signal to noise ratio on the neuronal signal was very low. Using a new electrode helps 

to have a better clean recording. Normally the recorded activities on the first and last channels are not 

very useful, because they have very low signal to noise ratio. Generally the recording process could be 

improved by using a new electrode to increase signal to noise ratio and finding a spot where we can 

record from more neurons. 

Identification and classification of cardiac activities were done in Spike2 software. This part of 

the analysis is very critical because all the rest of analyses which are related to neuronal activity are based 

on this identification and classification. The identification was done by using a threshold which is close to 

the noise level. Using a high threshold for detecting neuronal activity leads to detection of more obvious 

neuronal activity and it could be done very fast. However, using a low threshold leads to detection of 
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small action potentials (which are presumably generated by a neuronal soma not very close to the 

electrode), therefore it catches more neuronal activity. The big disadvantages of using low threshold is 

that it detects many artifacts as neuronal activity, and it is very time consuming to only extract neuronal 

activity from detected activities. Therefore there is always a trade-off between using a low or high 

threshold for neuronal activity detection. In this project the threshold was chosen to be close to the noise 

level, so there would be maximal neuronal activity detection and manageable number of artifact/noise 

detection. Classification part was done using principal component analysis, and other measurement tools 

with Spike2 which helped to classify the neuronal activity. The identification and classification part could 

be improved by applying principal component analysis and other new measurement tools combined by 

visual inspection[208]. This could be very time consuming in case the signal to noise ratio is low, the 

detection threshold is low and high accuracy is required. To accelerate the identification and classification 

process, one could only extract the part of signals that are going to be used for the further analysis and 

apply identification and classification process only on these extracted parts. In case we have different 

recording files for the same experiment, it is very important to merge all files and then apply the analysis; 

otherwise combining neurons from different files could be very complicated and time consuming. 

Using all these tools and analysis made it possible to have the activity of individual neurons 

throughout 4 hours of recording, which was a big improvement to the previous single channel recording 

[176].  

V.1.2. Atrial activity detection and cancelation  

As discussed, identification of the neuronal activity is one of the most important parts in the 

analysis. Since we are recording from RAGP and it is very close to the atria, the superimposed electrical 

activity of atria makes the identification process difficult and time consuming; therefore we need to 

remove this superimposed atrial activity. By using multichannel microelectrode array, it was possible to 

detect the atrial activity part by simultaneous activity on all channels of electrode which is not the case in 
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the neuronal activity (a neuronal activity appears on maximum 2 channels simultaneously). As explained 

in chapter 3, our first method for removing these atrial activities was to blank the part of signal in which 

atrial activity was detected. Although blanking method is very fast, it does not allow the maximal 

detection of neuronal activity. In this method the neuronal activity that are superimposed with atrial 

activity are removed. This problem becomes more critical when some neurons are cardio-related neurons 

which fires close to atrial activity’s time (chapter III, figure1) or during atrial fibrillation when the heart 

rate (i.e atrial activity) is increasing. In these cases many neuronal activities will be removed and the rest 

of analysis on the activities of these neurons will not be reliable (many activities were removed by 

blanking). In the new method that was discussed in chapter 3, we used principal component analysis to 

cancel the superimposed activity of atria instead of blanking. The results (chapter III, figure 2) showed 

that using the new method, we do not lose any activity that is superimposed by atrial activity which 

improves the identification analysis. In our case, the superimposed atrial activities were simultaneous on 

all our neuronal channels but if they were not simultaneous, the signals should be aligned first by using 

the cross correlation function. In a very noisy signal, our atrial activity cancellation method performs 

better if a low pass filter is applied before applying the method. 

V.1.3. Neuronal response to different mechanical and electrical stimuli  

The firing rate of majority of intrinsic cardiac neurons in our study was low in the baseline 

(Chapter 2, figure3). This is not the case in the recording from the neurons in the brain. For that reason, in 

our study, in most cases, it is difficult to do statistics on the activity of intrinsic cardiac neurons. The 

neuronal responses to different mechanical stressors and electrical stimuli were shown in chapter 2,figure 

7. To calculate the response of neurons, it was assumed that the activity of neurons follow the Poisson 

distribution due to irregular firing time of neurons. The firing rate of each neuron was compared before 

and during intervention. As this is not a symmetric comparison because of different duration of compared 

segments, a correction was applied (see chapter 2). The neuronal responses to different stressors were 

investigated to understand the effect of these stressors on intrinsic cardiac neurons in RAGP. Moreover 
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these responses were used to identify the neurons’ subtype (afferent, efferent or local circuit neurons). 

This identification of neurons’ could be improved by repeating different stressors and increase the 

strength of each stressor when applicable (for example severe occlusion while applying aorta occlusion to 

affect baroreceptors more). However it could be some experimental constrains that prevents the 

application of more severe stressor. For example very severe aorta occlusion may have a very long lasting 

effect on the heart and it could be very time consuming to wait for the heart to go back to the baseline 

state to continue the experiment. Moreover there is a risk that heart does not return to the normal state 

after applying severe stressor. 

V.1.4. Induction of atrial fibrillation and analysis of neuronal activity during atrial 

fibrillation  

In our project we used the canine model and we induced atrial fibrillation by stimulating 

mediastinal nerve. This induction is related to the stimuli current in such a way that if the stimulation’s 

current is higher, the atrial fibrillation will last longer and if it is not high enough, it is not possible to 

induce atrial fibrillation. Therefore selecting proper current amplitude for the stimulation is crucial and it 

should be used throughout the experiment. Another important parameter to induce atrial fibrillation is the 

location of mediastinal nerve that is being stimulated. In our study we tried different locations (sites) and 

after finding the best sites, we marked them and we used the same locations for all induction of atrial 

fibrillation in that canine. Normally after 3-4 pulses of the stimulation, the heart goes to the atrial 

fibrillation state (chapter IV, figure1) and the atrial fibrillation terminates by itself (this could last from 

couple of seconds to couple of minutes). As during atrial fibrillation the atria do not contract completely, 

it is not easy to detect the atrial rate during atrial fibrillation from right atrium electrogram.  In a case 

where the atrioventricular node blockage happens, it is possible to detect it by looking at right atrium 

electrogram and ECG for the same beat. One of the big challenges for the neuronal activity analysis 

during atrial fibrillation is the short duration of atrial fibrillation. This could be an issue for the firing rate 

analysis and also synchrony analysis. For the firing rate analysis, knowing the low firing rate of intrinsic 
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cardiac neurons, comparing two neurons statistically which had 1 or  2 spikes during 5 seconds of atrial 

fibrillation does not give good insight. This could be more problematic for the synchrony analysis where 

we need a minimum amount of time to calculate synchrony index[209]. This issue could be addressed by 

using average firing rate over different trials of atrial fibrillation and merge different atrial fibrillation 

episodes for firing rate and synchrony analysis respectively. The result in chapter 2 shows the 

hyperactivity of intrinsic cardiac neurons during atrial fibrillation [210] therefore in chapter 4 we studied 

this neuronal activity and we tried to find a way to calm down this hyper activity. 

V.1.5. Stimulating vagus nerve: effect on atrial fibrillation and intrinsic cardiac neuronal 

activity  

In chapter 4, it was shown that low level vagus nerve stimulation is able to mitigate atrial 

fibrillation in a canine model. In this study the right vagus nerve stimulation showed better anti- 

arrhythmogenic effect and in contrast left vagus nerve stimulation showed some arrhythmogenic effect. 

This could be explained by knowing that atrial fibrillation was induced by stimulating the right sided 

mediastinal nerve which creates imbalance in the right sided neuronal network. Since right sided vagus 

nerve projects more axons extensively to the right atrium ganglionated plexus than left vagus nerve, it 

could be more effective in inducing network stability throughout this specific complex. This is a very 

important result for the vagus nerve stimulation therapy because if the vagus nerve stimulation is applied 

to the wrong side, it may have arrhythmognic effect. Vagus nerve stimulation memory was approximately 

26 min for a 3 min vagus nerve stimulation. We hypothetize that if the vagus nerve stimulation could be 

applied for a longer period of time, the network will be more stabilized and as a result the anti 

arrhythmogenic effect will last longer . 

In this thesis we proposed that the hyperactivity of convergent local circuit neurons could be a 

reason that the atrial fibrillation was induced or maintained. This hypothesis was based on the fact that 

when vagal stimulation showed the anti-arrhythmogenic effect, the firing rate of all convergent local 
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circuit neurons that had significant (p<0.01) change, decreased. This could show that the vagal 

stimulation is targeting the convergent local circuit neurons by attenuating their activity and as a result the 

atrial fibrillation could be mitigated because of the lower activity of convergent local circuit neurons 

caused by vagus nerve stimulation. 

 For many heart rhythm disorders catheter ablation of intrinsic cardiac ganglionated plexus has 

shown to be a reliable treatment. The similarity between ablation of ganglionated plexus and vagus nerve 

stimulation is they try to decrease the activity of intrinsic cardiac neurons. The disadvantage of the 

ganglionated plexus ablations beside the clinical complication is that all the neurons in the ganglionated 

plexus are removed and all their functionalities either good or bad are removed. However in vagus nerve 

stimulation, the treatment is less invasive and is more specific to attenuate the activity of convergent local 

circuit neurons which proposed to be the main cause of the maintenance of the atrial fibrillation. 

V.2. Future work 

As the neurocardiology field is a growing domain ,it brings new challenges to the research. 

Recording part is one of the main parts of electrophysiology projects. Many works were done to 

enhance the recording techniques and data acquisition systems but still there is a need for better recording 

with higher signal to noise ratio and the electrodes which could capture more neuronal activities. 

Recording the activity of more neurons would be very beneficial for the neurocardiology projects, 

because in most cases the electrodes can only catch a few neurons. Ideally the neuronal activity’s 

identification and classification is better to be done in real-time or with a small delay. But we are far from 

performing real time identification and classification. This is due to the algorithms and techniques which 

are used for these types of analysis and also some manual works that still need to be done to complete this 

process. This process could be improved by developing new identification and classification techniques. 

Understanding the “little brain in the heart” is advancing but there is still a lot to understand to create a 

model for this neural network. 
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 In our study, vagus nerve stimulation showed to be a potential therapy for atrial fibrillation 

(chapter IV, figure 4). The effect of vagus nerve stimulation depends on different parameters of 

stimulation like frequency and amplitude. As high level vagus nerve stimulation leads to atrial fibrillation 

and low level vagus nerve stimulation leads to mitigation of atrial fibrillation, it is very important to find 

the best parameters for the vagal stimulation. This becomes very important in clinical trials. Another task 

that could be done is to apply vagus nerve stimulation for a longer period of time and evaluate the 

efficacy of this therapy. 
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