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RÉSUMÉ 

Le glaucome est la principale cause de cécité irréversible dans le monde. Chez les 

patients atteints de cette pathologie, la perte de la vue résulte de la mort sélective des 

cellules ganglionnaires (CGR) de la rétine ainsi que de la dégénérescence axonale. La 

pression intraoculaire élevée est considérée le facteur de risque majeur pour le 

développement de cette maladie. Les thérapies actuelles emploient des traitements 

pharmacologiques et/ou chirurgicaux pour diminuer la pression oculaire. Néanmoins, la 

perte du champ visuel continue à progresser, impliquant des mécanismes indépendants de 

la pression intraoculaire dans la progression de la maladie. Il a été récemment démontré 

que des facteurs neuroinflammatoires pourraient être impliqués dans le développement du 

glaucome.  Cette réponse est caractérisée par une régulation positive des cytokines pro-

inflammatoires, en particulier du facteur de nécrose tumorale alpha (TNFα). Cependant, 

le mécanisme par lequel le processus neuroinflammatoire agit sur la mort neuronale reste 

à clarifier. 

L’hypothèse principale de ce doctorat propose que les facteurs pro-

inflammatoires comme le TNFα et la phosphodiestérase 4 (PDE4) interagissent avec 

les mécanismes moléculaires de la mort neuronale, favorisant ainsi la survie et la 

protection des CGRs au cours du glaucome. 

Dans la première partie de ma thèse, J’ai utilisé un modèle in vivo de glaucome 

chez des rats Brown Norway pour montrer que l’expression du TNFα est augmentée 

après l'induction de l'hypertension oculaire. L'hypothèse spécifique de cette étude suggère 

que les niveaux élevés de TNFα provoquent la mort des CGRs en favorisant l'insertion de 

récepteurs AMPA perméables au calcium (CP-AMPAR) à la membrane cytoplasmique. 



 
 

iv 
 

Pour tester cette hypothèse, j’ai utilisé un inhibiteur sélectif de la forme soluble du TNFα, 

le XPro1595. L'administration de cet agent pharmacologique a induit une protection 

significative des somas et des axones des neurones rétiniens. L'évaluation de la 

perméabilité au cobalt a montré que le TNFα soluble est impliqué dans l'insertion de CP-

AMPAR à la membrane des CGRs lors du glaucome. L’exposition des neurones à une 

pression oculaire élevée est à l’origine de la hausse de la densité membranaire des CP-

AMPARs, grâce à une diminution de l’expression de la sous-unité GluA2. La présence de 

GluA2 au sein du récepteur ne permet pas l’entrée du calcium à l’intérieur de la cellule. 

L'administration intraoculaire d’antagonistes spécifiques des CP-AMPARs promeut la 

protection des somas et des axones des CGRs. Ces résultats montrent que les CP-

AMPARs jouent un rôle important dans la pathologie du glaucome. 

Dans la deuxième partie de ma thèse, j’ai caractérisé l'effet neuroprotecteur d’un 

inhibiteur de la PDE4, l’ibudilast, dans notre modèle de glaucome. L'hypothèse 

spécifique s’oriente vers une atténuation de la réponse neuroinflammatoire et de la gliose 

par l’administration d’ibudilast, favorisant ainsi la protection neuronale. Les résultats 

montrent que dans les rétines glaucomateuses, l’ibudilast diminue la gliose et l'expression 

de plusieurs facteurs tels que le TNFα, l'interleukine-1β (IL-1β), l’interleukine-6 (IL-6) et 

le facteur inhibiteur de la migration des macrophages (MIF). Chez les rats glaucomateux,  

nous avons observé une expression notable de PDE4A dans les cellules de Müller, qui est 

en corrélation avec l'accumulation de l’AMP cyclique (AMPc) dans ces cellules après un 

traitement d’ibudilast. Finalement, nous avons démontré que la protection des CGRs via 

l’administration d’ibudilast est un mécanisme dépendent de l’AMPc et de la protéine 

kinase A (PKA). 
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En conclusion, les résultats présentés dans cette thèse identifient deux 

mécanismes différents impliqués dans la perte des CGRs au cours du  glaucome. Ces 

mécanismes pourraient fournir des perspectives potentielles pour le développement de 

nouvelles stratégies de traitement du glaucome. 

Mot clés : cellules ganglionnaires de la rétine, glaucome, facteur de nécrose tumorale 

alpha, neuro-inflammation, ibudilast, phosphodiestérase-4, adénosine monophosphate 

cyclique, CP-AMPAR 
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SUMMARY 

Glaucoma is the leading cause of irreversible blindness worldwide. Loss of vision 

in glaucoma results from the selective death of retinal ganglion cells (RGCs) and axonal 

degeneration. Elevated intraocular pressure (IOP) is the major risk factor for developing 

glaucoma, and current therapies have focused on pharmacological or surgical strategies to 

lower IOP. However, visual field loss continues to progress in spite of effective pressure 

control, indicating that mechanisms other than elevated IOP contribute to disease 

progression. Recent data demonstrate a neuroinflammatory component in glaucoma, 

characterized by upregulation of proinflammatory cytokines, most notably tumor necrosis 

factor α (TNFα). However, the mechanism by which the neuroinflammatory response 

acts on RGC death needs to be clarified.  

The main hypothesis of this thesis is that targeting pro-inflammatory factors 

including TNFα and phosphodiesterase-type 4 (PDE4), interferes with molecular 

mechanisms that contribute to RGC death and this will thus successfully promote 

neuronal protection. 

In the first part of my thesis, I used an in vivo glaucoma model in Brown Norway rats 

to show that TNFα is upregulated early after induction of ocular hypertension. The specific 

hypothesis of this study is that high levels of TNFα promote RGC death by mediating the 

membrane insertion of Ca2+-permeable AMPA receptors (CP-AMPARs). I blocked TNFα 

function with XPro1595, a selective inhibitor of soluble TNFα. Administration of XPro1595 

effectively protected RGC soma and axons. The cobalt permeability assay was used to 

show that soluble TNFα triggers the membrane insertion of CP-AMPAR in RGCs of 

glaucomatous retinas. This CP-AMPAR activation is caused by the downregulation of 

GluA2 which occurs when neurons are exposed to elevated IOP. Finally, intraocular 
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administration of specific CP-AMPAR antagonists promoted RGC soma and axon 

protection. Taken together, these results show that CP-AMPARs play an important role in 

in the pathology of glaucoma. 

In the second part of my thesis, I characterized the neuroprotective effect of 

ibudilast, an inhibitor of PDE4, in the Brown Norway glaucoma model. We hypothesized 

that ibudilast promotes neuron protection by attenuating gliosis and the 

neuroinflammatory response. The results show that in glaucomatous retinas, ibudilast 

attenuates gliosis and the expression of TNFα, interleukin-1β (IL-1β), interleukin-6 (IL-6) 

and macrophage migration inhibitory factor (MIF). Interestingly, elevated IOP leads to 

substantial expression of PDE4A in Müller cells, which correlates with the accumulation of 

cAMP in these cells after ibudilast treatment. Lastly, ibudilast promoted RGC soma and 

axons protection through the activation of the cAMP/PKA pathway.  

In conclusion, the findings presented in this thesis identify two different 

mechanisms underlying RGC loss in glaucoma. These mechanisms can potentially 

provide new insights to develop novel strategies for the treatment of glaucoma.  

 

Key words: retinal ganglion cell, glaucoma, tumor necrosis factor-alpha, neuroinflammation, 

ibudilast, phosphodiesterase-4, cyclic adenosine monophosphate 
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CHAPTER 1 

 

 

 

 

 

 

 

I. GENERAL INTRODUCTION 

 

 

 

 

 

 

 

  



2 
 

I.1. THE RETINA: CELLULAR AND FUNCTIONAL ORGANIZATION 

 The retina is a specialized light-sensitive tissue comprised of neurons and glial cells 

that captures photons of light and sends this information to the brain for further processing. 

The neurons are sub-divided into photoreceptors cells, bipolar cells, horizontal cells, amacrine 

cells, and retinal ganglion cells (RGC). The glial cells are categorized into Müller cells, 

astrocytes and microglia. These cells are organized into five interconnected layers. Of the five 

layers, the ganglion cell layers (GCL), inner nuclear layer (INL) and outer nuclear layer 

(ONL) consist mainly of cell bodies while synaptic connections among the neurons are located 

in the inner plexiform layer (IPL) and the outer plexiform layer (OPL) (Fig. 1). Briefly, the 

light pathway is as follows: light passing through the lens is captured by the photoreceptors, 

initiating and sending a cascade of neuronal signals  which is eventually sent to the brain via 

RGCs, where it is further processed for visual perception (Kolb, 1995a). 

The retina is an extension of the central nervous system (CNS) and, as such, is 

considered a window to the brain. In fact, the retina displays many structural similarities to the 

brain and spinal cord. Moreover, a multitude of extremely similar pathological processes 

contribute to neurodegenerative diseases affecting the brain, spinal cord and eye (London et 

al., 2013). For example, there is much evidence that supports a link between Alzheimer’s 

disease and glaucoma. Patients with Alzheimer’s disease show an increased risk of having 

glaucoma (Bayer et al., 2002), also, some Alzheimer patients exhibit optic nerve degeneration 

(Hinton et al., 1986) and loss of RGCs (Blanks et al., 1989). Moreover, amyloid plaques and 

hyperphosphorylated tau protein have been reported in post-mortem retinas from patients with 

Alzheimer’s disease. Recently, it has been reported that tau has a neurotoxic effect in a model 

of experimental glaucoma (Chiasseu M, 2015). Further understanding the similarities among 
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CNS regions and neurodegenerative conditions is essential for the development of shared 

therapies. One pertinent example is the use of galantamine, which is currently used for the 

symptomatic treatment of Alzheimer’s disease (Razay and Wilcock, 2008).  Interestingly, 

galantamine has also been shown to be involved in RGC protection in a rodent model of 

glaucoma disease (Almasieh et al., 2010), and thus represents a promising treatment option for 

human glaucomatous patients. 
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Figure 1. A schematic diagram showing the glial cells and neurons in the retina. 

The light from the lens traverse all retinal layers before reaching the primary light-sensitive 

cells called photoreceptors (rods and cones). Photoreceptors transduce light stimuli into 

electrical signal. Rods are able to detect even a single photon and cones are responsible for 

vision at higher intensity illumination and color vision. The signal is then transferred to the 

bipolar cells and horizontal cells at the level of the OPL, where the synaptic connections are 

achieved. Bipolar cells and amacrine cells make synaptic connection with RGC in the IPL. 

RGC axons convey the information from the retina to the brain via de optic nerve. Glial cells 

include: Müller cells, astrocytes and microglia. They contribute to create a favourable 

environment for neurons. Source of image: Jorge Luis Cueva Vargas. 
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I.1.1. Retinal neurons 

More than 60 distinct types of neurons are needed for the processing of visual images. 

They are broadly grouped into sensory neurons, including the photoreceptors, and other 

intricately connected neurons, which propagate the signal for image processing to occur. The 

connected neurons are classified based on the specific role in processing visual images and are 

arranged in three categories: 1) those which decompose the output from photoreceptors, 2) 

those which connect the outputs from photoreceptor to specific types of RGCs and, 3) those 

which combine activities from bipolar and amacrine cells to create the different signals 

encoding the visual world (Masland, 2011, 2012b).  

I.1.1.1. Photoreceptors 

The cell bodies of the photoreceptors are located in the ONL. At the OPL, the axon 

terminals of photoreceptors make synaptic contact with bipolar and horizontal cells. Through 

the process of phototransduction, photoreceptors convert captured light energy into membrane 

potential changes by altering the release of neurotransmitters (Cuenca et al., 2014). 

Photoreceptors are categorized into rods and cones. Rods contain a light-sensitive pigment 

known as rhodopsin. Although rods cannot differentiate between spectral modulation, rods are 

highly light-sensitive and are able to detect even a single photon (Rieke, 2000) and are thus 

responsible for dim-light vision (Hoon et al., 2014). On the other hand, cones-opsins, are less 

sensitive than rods. They respond selectively to photons in different regions of the visible 

spectrum. There are three types of cones: long (red or L-), middle (green or M-) and short 

(blue or S-) wavelength cones (Wassle, 2004), thus conferring the ability to visualize the entire 

color pallete. 
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I.1.1.2. Bipolar cells 

Bipolar cells are located in the INL and they transmit signal from the photoreceptors to 

the inner retina. Recent studies indicate that there are 13 bipolar cell sub-types (Helmstaedter 

et al., 2013; Euler et al., 2014). In mice, there is one type of rod bipolar cell, whose dendrites 

exclusively contact rod photoreceptors; and 12 types of cones bipolar cells that make synaptic 

contact with cones and in some species can also contact rods (Nelson and Connaughton, 

1995). When the retina is stimulated by light, the OFF bipolar cells hyperpolarize and the ON 

bipolar cells depolarize. OFF bipolar cells express ionotropic glutamate receptors and make 

contact with OFF RGCs, whereas ON bipolar cells express metabotropic glutamate receptors 

and make contact with ON RGCs (Nomura et al., 1994; Wassle, 2004).  

I.1.1.3. Horizontal cells 

Similar to bipolar cells, horizontal cells are located in the INL. These cells release γ-

aminobutyric acid (GABA) and provide inhibitory feedback to the photoreceptors through 

lateral interactions in the OPL. Some reports suggest that light-dependent release of GABA  

from horizontal cells provide feed-forward inhibition of bipolar cell dendrites (Wassle, 2004). 

Horizontal cells measure the average level of illumination across the broad region, then 

subtract it from the local signals triggered by the photoreceptors, resulting in the reduction of 

redundancy of the signal transmitted to the inner retina (Masland, 2001). 

I.1.1.4. Amacrine cells 

Amacrine cells are the main group of inhibitory interneurons interacting with bipolar, 

ganglion cells and other amacrine cells in the IPL (Masland, 2012a). They exhibit great 

structural diversity and complexity.  Indeed, they serve to integrate, modulate and interpose a 
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temporal domain to the visual message presented to the RGCs (Kolb, 1995b). Wild-field 

amacrine cells mediate segregation of object and background motion (Olveczky et al., 2003). 

I.1.1.5. Retinal ganglion cells 

There are approximately 20 sub-types of RGCs in the retina, differentiated by 

morphology, molecular characteristics and functionality (Erskine and Herrera, 2014). RGCs 

have a unique configuration and can be structurally  compartmentalized in dendrites, cell 

body, non-myelinated axon and myelinated axon (Yu et al., 2013). In the IPL, RGC dendrites 

receive the electrical messages from bipolar cells and/or amacrine cells. Through the RGC 

axons, these messages are conveyed to specific targets in the brain.  RGC axons travel through 

the optic nerve, the chiasm and the optic tract to make synapses in the superior colliculi, the 

lateral and medial geniculate bodies and the pretectal nuclei. Interestingly, it has been reported 

that 1-3% of the RGCs population contain melanopsin. This RGCs population, which is 

inherently light-sensitive is involved in the circadian rhythm and the pupillary light reflex 

(Wassle, 2004) 

I.1.1.5.1.Retinal ganglion cells: the cellular target of many optic neuropathies 

Optic neuropathies are a group of diseases characterized by dysfunction and/or 

degeneration of axons in the optic nerve and RGC death, leading to vision loss. Each RGC 

compartment is located in a different extracellular environment with different energy 

requirement (Yu et al., 2013). With the exception of the myelinated axons, the energy demand 

in the other compartments is higher, making RGCs more vulnerable to injury (Morgan, 2012). 

Non-myelinated axons have a high density of mitochondria-rich varicosities (associated with a 

high demand of energy) and a limited blood supply (associated with low energy delivery). 
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This imbalance of energy supply and demand, combined with the fact that action potentials are 

conducted in a non-saltatory fashion (the action potential travels the full length of the axon in 

the absence of Ranvier’s node), makes non-myelinated axons more vulnerable to ischemic 

injury. Also, the RGC axons in the optic nerve head (ONH) appear to be highly vulnerable to 

injury. Indeed, the ONH is considered to be the primary site of axonal injury in glaucoma 

(Chidlow et al., 2011). Axonal injury has deleterious effect on axonal cytoskeleton and axonal 

transport (Yu et al., 2013) and also affects ONH structure including astrocytes (Hernandez et 

al., 2008), levels of nitric oxide synthase (Neufeld et al., 1997) and mitochondrial cytochrome 

c oxydase expression (Balaratnasingam et al., 2009). In fact, axonal injury promotes a 

decrease of glutathione leading to oxidative stress in glial cells and neurons (Hernandez et al., 

2008). In addition, some studies have demonstrated that maintaining axonal integrity is vital to 

enhance neuronal survival and prevent glial reactivity (Yu et al., 2013), Thus, the axonal 

compartment plays an important role in RGC injury. 

I.1.2. Glial cells 

As previously mentioned, the retina’s main goal is to convey light information 

captured by photoreceptors to the brain for further processing. To achieve this function, 

neurons need an appropriate and favourable environment, which is supported by glial cells, the 

non-neuronal cells that also play a large role in damage repair in the retina. In this section I 

will discuss the role of glial cells in the healthy retina. 

I.1.2.1. Müller cells 

Müller cells are considered to be the major glial cell type in the retina, spanning the 

entire thickness of the tissue. The somata of Müller cells are located in the INL, with two 
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processes extending in opposite directions. Müller cells processes and soma extend side 

branches,  allowing the cell to be in close contact with, and in many cases ensheath, virtually 

all neuronal elements as well as the blood vessels in the retina (Bringmann et al., 2006). In the 

healthy retina, Müller cells are active contributors to the retinal structure and function. They 

create a favorable environment by regulating the concentration of neurotransmitters, including 

glutamate and GABA. The clearance of glutamate, mainly via glutamate-aspartate transporter 

(GLAST), is important to prevent neurotoxicity (Reichenbach and Bringmann, 2013). In 

Müller cells, glutamine synthetase (GS) converts glutamate to glutamine. Glutamine is then 

taken up by neurons as a precursor for the synthesis of glutamate and GABA (Pow and Crook, 

1996). Several studies have reported that Müller cells protect retinal neurons, particularly 

cones, by secreting neurotrophic factors, growth factors and cytokines. Also, Müller cells 

phagocytose debris from dead neurons or pigment epithelial cells (Francke et al., 2001; 

Bringmann et al., 2009). In addition, it has been shown that these cells, and not astrocytes, act 

as living fibers by guiding the light through the inner retina towards the photoreceptors 

(Franze et al., 2007). Another very important role of Müller cell is the control of osmotic and 

ionic homeostasis through the actions of the glial water channel aquaporin-4 (AQP4) and the 

potassium-dependent Kir4.1 channels, respectively (Nagelhus et al., 1999). In addition, Müller 

cells maintain the inner blood-retinal barrier and provide a permanent anti-proliferative 

environment for retinal vascular endothelial cells, by secreting pigment epithelium-derived 

factor (PDEF), thrombospondin-1 and glial cell-line derived neurotrophic factors (GDNF) 

(Eichler et al., 2004; Nishikiori et al., 2007). During the last decade, it has been found that 

Müller cells regulate synaptic transmission by releasing excitatory gliotransmitters such as 

glutamate and adenosine triphosphate (ATP) (Newman, 2004) as well as inhibitory 
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gliotransmitters such as adenosine (Housley et al., 2009), These gliotransmitters act on retinal 

neurons and on Müller cells themselves by mediating the propagation of intracellular calcium 

waves. Mechanosensory Ca2+ ion channels, such as TRPV4 have been reported in Müller 

cells, and not in retinal astrocytes, to provide the retina with biomechanical sensors (Ryskamp 

et al., 2011; Ryskamp et al., 2014) Interestingly, it has been recently shown that, based on 

their gene profile, some mature Müller cells can generate neural stem cells (Das et al., 2006; 

Bernardos et al., 2007). The ability of Müller cells to dedifferentiate makes them an interesting 

cell-type to study in the development of regenerative therapies in retinal neurodegenerative 

diseases. 

I.1.2.2. Astrocytes 

Astrocytes originate from the optic nerve and then migrate to the nerve fiber layer  

(NFL) (Watanabe and Raff, 1988). In the retina, astrocytes share some functions with Müller 

cells. Indeed, astrocytes are involved in the development and function of the retinal 

vasculature, blood flow and maintenance of the blood-retinal barrier (Zhang and Stone, 1997; 

Kur et al., 2012). In addition, astrocytes play an important role in the maintenance of the 

glutamate homeostasis and clearance (Kimelberg, 2010), and modulation of synaptic 

transmission (Newman, 2004). In the non-myelinated ONH, astrocytes are the most abundant 

glial cells, supporting the function of the axons. Astrocytes supply energy substrates to the 

axons and maintain the extracellular pH and ion homeostasis in the periaxonal space 

(Hernandez et al., 2008). 
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I.1.2.3. Microglia 

Microglia are specialized mesodermal/mesenchymal-derived cells with immunological 

properties in the CNS (Chan et al., 2007). Recently, genetic-fate mapping essays have 

demonstrated that microglia are derived from the yolk sac and the monocytes are derived from 

haematopoiesis in the bone marrow (Ginhoux et al., 2010; Kierdorf et al., 2013; Prinz and 

Priller, 2014). In the mature healthy retina, ramified resting microglia form a dynamic and 

highly organized non-overlapping network. This configuration allows the microglia to survey 

the microenvironment and participate in cell-cell interactions with retinal neurons and other 

macroglia (Karlstetter et al., 2014). In fact, the presence of surface proteins such as receptors 

for cytokines, growth factors, purinergic ligands, toll like receptors (TLR), chemokines, and 

complement components allows microglia to systematically sense their environment. 

Microglial activation is a highly regulated process. Several inhibitory mechanisms regulate 

microglia activation. For example, the transmembrane glycoprotein CD200, expressed in 

many different retinal cell types serves as a ligand for CD200R, which is the CD200 cognate 

receptor expressed by microglia. The physical interaction between CD200 and CD200R 

blocks pro-inflammatory activation of microglia. In fact, CD200-deficient mice have a highly 

density of microglia and an early onset of experimental autoimmune encephalomyelitis (EAE) 

(Hoek et al., 2000; Wright et al., 2000). In addition, blockade of CD200R increases the 

inflammatory response in the retina and aggravates experimental autoimmune uveoretinitis 

(Banerjee and Dick, 2004). Another well-known example is the binding of CX3CL1 to 

CX3CR1, which prevents neurotoxicity, by attenuating microglia reactivity (Cardona et al., 

2006). Finally, microglia also interact with Müller cells to maintain an optimal level of 

neurotrophic factors necessary for the survival of neurons. Thus, microglia can produce or 
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trigger the release of several neurotrophic factors including brain-derived neurotrophic factor 

(BDNF), ciliary neurotrophic factor (CNTF), glial cell line-derived neurotrophic factor 

(GDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3), and basic fibroblast growth 

factor (bFGF) from Müller cells. These neurotrophic factors, which are secreted following 

injury and light induced degeneration, are thought to support photoreceptor survival (Harada 

et al., 2002; Harada et al., 2003; Langmann, 2007) 

I.2. Glaucoma 

I.2.1. Definition, epidemiology and risk factors 

The term “glaucoma” represents a group of optic neuropathies in which progressive 

visual field loss is caused by the cupping of the ONH (damaged nerve accompanied by an 

enlarged central cup and thin rim) and the loss of RGCs and their axons. Glaucoma is one of 

the leading causes of blindness worldwide. At the present time, more than 64 million people 

are affected by the disease. The number of affected people is expected to increase to 76 

million by 2020 and 111.8 million by 2040 (Quigley and Broman, 2006; Tham et al., 2014). 

Despite many studies examining the cause of glaucoma, the etiology of this disease is 

still unknown. However, there are several risks factors associated with increased likelihood of 

developing glaucoma. Among these factors elevated intraocular pressure (IOP) is the primary 

risk factor to develop glaucomatous damage (Gordon et al., 2002) as well as for the 

progression of the disease (Anderson and Normal Tension Glaucoma, 2003). Interestingly, it 

has been reported that in patients with high IOP, thin central corneal thickness is also 

considered an additional risk factor for developing the disease (European Glaucoma 

Prevention Study et al., 2007; Manni et al., 2008). Although elevated IOP can be lowered 
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either surgically or using pharmacological treatment, visual field loss continues to progress in 

many glaucoma patients. Indeed, approximately 50% of glaucoma patients have IOP-

independent mechanisms of optic nerve damage (Giangiacomo, 2009). Increasing age is 

another critical risk factor for the development of glaucoma and for patients who already 

suffer from ocular hypertension (OHT). In fact, individuals aged 40 years or older are at a 

much higher risk of developing glaucoma than other age groups (Coleman and Miglior, 2008). 

Older age is considered as a surrogate risk factor for many biological processes associated 

with aging. For example, age-related increase in oxidative damage and autophagy promotes 

dysfunction of the trabecular meshwork, thereby resulting in elevated IOP (Sacca and Izzotti, 

2008; Pulliero et al., 2014). Several others factors that have been suggested to increase the risk 

of developing glaucoma including: myopia (Xu et al., 2007), family history (Klein et al., 

2004), hypertension (Mitchell et al., 2004) and ethnicity (Leske et al., 1994; Boland and 

Quigley, 2007). 

I.2.2. Types of glaucoma 

 Although damage of RGC axons is a common feature of all forms of glaucoma, 

different pathophysiological mechanisms contribute to the disease. Here, I will discuss the two 

most common types of glaucoma associated with IOP elevation: Primary Open-Angle 

Glaucoma (POAG) and Primary Angle-Closure Glaucoma (PACG). Both POAG and PACG 

are generated by increased resistance to aqueous humor drainage. Aqueous humor is produced 

by the epithelium of the ciliary body. Filling the posterior and anterior chambers, aqueous 

humor provides nutrients to the lens, cornea and retina. In addition, aqueous humor removes 

metabolic waste as it flows from the posterior chamber through the pupil to the anterior 

chamber where it exits the eye via the trabecular meshwork (Kiel et al., 2011). In the 
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iridocorneal angle, the aqueous humor is drained from the eye by passing through the 

trabecular meshwork and the inner wall of Schlemm’s canal, eventually collecting into the 

episcleral veins (Goel et al., 2010) (Fig. 2A). Lastly, I will discuss normal tension glaucoma 

(NTG), which occurs independently of resistance to aqueous humor drainage. 

I.2.2.1. Primary Open-Angle Glaucoma 

POAG is the most common type of glaucoma with a prevalence of 3.05% and a 

particularly high incidence in people of African ancestry. It has been estimated that there will 

be 52.7 million of cases by the year 2020 (Tham et al., 2014). POAG is characterized by 

changes at the level of the optic disc, atrophy of the RGC axons in the optic nerve and loss of 

RGCs in the retina, which results in progressive loss of visual field (Quigley, 2005). Elevated 

IOP is a major risk factor for developing POAG. Unlike other forms of glaucoma, this 

increase in IOP is not caused by any anatomical obstruction in the aqueous humor flow 

pathway. (Fig.2B). Instead, the increase in IOP is caused by resistance to the aqueous humor 

outflow, which  has been associated with age-related and/or pathological changes in the 

trabecular meshwork or Schlemm’s channel. Indeed, the presence of free radicals, the main 

factor contributing to cell aging, has been reported to affect directly trabecular meshwork cells 

(Wordinger and Clark, 1999; Gabelt and Kaufman, 2005; Sacca and Izzotti, 2008; Pulliero et 

al., 2014).  

I.2.2.2. Primary Angle-Closure Glaucoma 

The prevalence of PACG is 0.50% with high incidence occurring primarily in Asian. It 

has been estimated that 23.4 million of people will have PACG by 2020 (Tham et al., 2014). 

Even though there are less cases of PACG relative to POAG, more PACG patients become 
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blind. PACG is characterized by the resistance of the aqueous humor flow through the pupil 

caused by abnormal anatomy of the iris including pupillary blockage and angle crowding (Fig. 

2C). Both mechanisms often co-exist to trigger OHT (Quigley et al., 2003; Tarongoy et al., 

2009). Pupillary blockage occurs when the iris-lens channel impedes the normal flow of 

aqueous humor from the posterior chamber to the anterior chamber. As a result, the pressure 

increases in the posterior chamber and pushes the periphery of the iris forward resulting in 

closure of the iridocorneal angle. Angle crowding occurs when the peripheral iris and the TM 

are in contact with each other, thereby impeding the drainage of aqueous humor from the 

trabecular meshwork. 

I.2.2.3. Normal Tension Glaucoma 

NTG is considered a subtype of POAG. NTG patients present with an unobstructed 

iridocorneal angle and IOP considered to be in the normal range. Several studies have shown 

that 40-75% of people diagnosed with POAG have NTG (Desai and Caprioli, 2008). The 

visual field loss in NTG patient progresses with a similar rate as POAG patients. Although the 

cause of NTG is currently unknown, decreased blood flow at the optic disc has been 

associated with the development of NTG (Sato et al., 2006). Vascular dysfunction has been 

confirmed by magnetic resonance imaging studies in NTG patients. The over-expression of 

endothelin-1 (ET-1) in vascular endothelial cells has also been associated with the 

development of NTG. Application of ET-1 is used to induce ischemic optic neuropathy in 

different animals such as monkeys, rabbits, and rats (Mi et al., 2014). Another IOP-

independent mechanism that has been reported is the elevated expression of antibodies against 

heat shock proteins (HSPs) in the sera of NTG patients (Wax et al., 1994; Wax et al., 1998), 

suggesting an immunogenic factor underlying the pathology of NTG.  
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Figure 2. A schematic presentation of the structures involved in the aqueous humor 

circulation within the eye in healthy and glaucomatous eyes. A. The vitreous humor is 

produced by the ciliary body in the posterior chamber and enters the anterior chamber through 

the pupil bringing nutrients to the lens, iris and cornea. Subsequently, the aqueous humor is 

drained at the trabecular meshwork through the Schlemm’s canal. B. In primary open-angle 

glaucoma (POAG) there is an increased resistance to aqueous humor outflow at the level of 

trabecular meshwork. These resistance creates elevated intraocular pressure (IOP). C. In 

primary angle-closed glaucoma (PACG), there is a physical closure due to anatomical 

abnormalities such as pupillary block and angle crowding. These modifications are present 

together or individually creating also a resitance to the aqueous humor drainaged. Source: 

(Weinreb et al., 2014) The Pathophysiology and Treatment of Glaucoma: A 

Review. Copyright © American Medical Association. 
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I.2.3. Models of experimental glaucoma: advantages and disadvantages 

Without a doubt, animal models have improved our understanding of a variety of 

mechanisms that cause human disease. Animal models are also a useful tool to discover new 

targets for therapeutic drugs and the processes by which these drugs act. Many models of 

spontaneous and induced OHT have been used to study glaucoma. These models have 

provided us with new information on the cellular and molecular mechanisms concerning the 

pathology of RGCs death and axon degeneration. In this section, I will discuss the most 

relevant models of experimental glaucoma currently available for research purposes. 

I.2.3.1 Non-human primate models 

 In Puerto Rico, a naturally-occurring group of rhesus monkeys with high tension 

POAG were discovered. These animals show RGC death, atrophy of the optic nerve, and loss 

of visual field (Dawson et al., 1993). OHT has also been induced in non-human primates. For 

example, argon laser photocoagulation results in successful IOP elevation in 70% of induced 

monkeys. In these monkeys, histopathological analysis shows loss of RGCs, ONH cupping, 

and thinning of the NFL (Gaasterland and Kupfer, 1974). OHT in non-human primates was 

also achieved by using latex microspheres (Weber and Zelenak, 2001) and ghost of red blood 

cells (RBC) that consist of RBC which lave lost much or all of their hemoglobin, conferring to 

the cells rigidity (Quigley and Addicks, 1980). The close phylogeny and anatomical 

similarities between the optic nerve of humans and non-human primates make monkeys an 

excellent model for studying glaucoma. However, the high cost of purchasing and housing 

monkeys together with their limited availability are major disadvantages, particularly for 
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neuroprotective studies where large number of animals are necessary. Another disadvantage is 

the need for experienced personnel to handle these animals. 

I.2.3.2. Rodent models of glaucoma 

Rodent models are a good alternative to non-human primate models. Rodents are 

relatively inexpensive to purchase and maintain, allowing for the use of more animals per 

experiment. Another advantage is that they are also easy to handle. In fact, we are able to 

accurately measure IOP in awake animals, without the use of anesthetics. However, one major 

limitation of rodent models is the presence of important anatomical differences with respect to 

primates. For example, unlike humans, the rat ONH does not have a well-developed lamina 

cribrosa. Lamina cribrosa in primates is a structure comprised of approximately 10 plates of 

connective tissue through which the axons travel. These plates are composed by laminin, 

elastine, collagens, and provide a substrate for different cell types including astrocytes and 

lamina cribrosa cells (Morrison et al., 2005). In rodents, there is not lamina cribrosa. The rat 

laninar region has sparse collagenous beams containing elastin fibrils and is called glial lamina 

(Howell et al., 2007). Nonetheless, there are several similarities between the human and rat 

ocular tissues including the presence of astrocytes and unmyelinated axons in the ONH 

(Morrison et al., 1995), and the anterior chamber structures that are important for proper 

aqueous humor outflow to occur (van der Zypen, 1977). Here, I will first discuss the inducible 

rodent models of glaucoma, followed by the genetic rodent models of glaucoma. 

I.2.3.2.1. Hypertonic saline injection 

In this model, a hypertonic saline solution (NaCl 1.8 M) is injected into the episcleral 

vein of rats. The injection of the saline solution causes cell membrane damage and scarring in 
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the trabecular meshwork. Therefore, IOP increases as the aqueous humor is no longer able to 

properly drain from the anterior chamber. In this model, damage in the ONH occurs. Enlarged 

axons with accumulation of mitochondria as well as membrane-bound vesicles associated with 

astrocytes are seen in this model (Morrison et al., 1997). This model is cost-effective and 

highly reproducible. More importantly, this model produces many of the important hallmarks 

of glaucoma including progressive death of RGCs and axonal degeneration (Almasieh et al., 

2010). On the other hand, this model requires a high level of dexterity by the experimenter to 

construct the glass needles and tubing necessary to deliver the saline solution as well as to 

perform the microinjection of saline into the vein. 

I.2.3.2.2. Laser treatment of limbal tissue 

In this model, an argon or diode laser is applied to the TM and/or episcleral and limbal 

veins (WoldeMussie et al., 2001; Levkovitch-Verbin et al., 2002). This treatment successfully 

produces elevated IOP in rats by coagulating the limbal vasculature and inducing scarring in 

the anterior chamber angle resulting in resistance to the aqueous humor outflow (Morrison et 

al., 2008). This technique produces peaks of IOP between 35-49 mmHg and remains elevated 

for at least 3 weeks. During this time period a substantial loss of RGCs occurs. This method is 

also reliable and simple, but requires specialized equipment to be performed. In addition, this 

is not a chronic model and thus, maintaining the OHT for more than 3 weeks requires further 

laser treatments, which increases the occurrence of corneal decompensation (corneal edema 

resulting from failure of the corneal endothelium to maintain its transparency) (Levkovitch-

Verbin et al., 2002). Laser photocoagulation has also been performed in mice to decrease 

aqueous humor outflow and elevate the IOP. This treatment in C57BL/6J mice leads to a 

marked RGC loss and axonal degeneration (Gross et al., 2003; Yun et al., 2014). 
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I.2.3.2.3. Episcleral vein cauterization 

In this model, elevated IOP is achieved by cauterizing several episcleral veins. IOP is 

elevated up to six-fold compared with the untouched eye and persist for 6 month after the 

procedure (Sawada and Neufeld, 1999). Although some controversial data have been reported 

concerning the OHT variability and the mechanisms underlying the elevation of IOP 

(Morrison et al., 2008), at the present time, this technique is successfully used by several 

laboratories (Roh et al., 2012; Bai et al., 2014).  

I.2.3.2.4. Occlusion models based on microbead injection 

In this model, polystyrene beads are injected into the anterior chamber. The 

microbeads move to the iridocorneal region where the trabecular meshwork is located, 

blocking aqueous humor outflow. There is an approximate 30% increase in IOP (Sappington 

et al., 2010). This model results in RGC death and optic nerve damage including axonal 

degeneration. Relative to the previous models of glaucoma induction, this model is easy to 

perform. The major disadvantage of polystyrene beads is the potential for the beads to reflux 

after the injection. When reflux occurs, the quantity of beads varies per injection creating 

variability in the results. To avoid the reflux, some groups inject a viscoelastic solution 

immediately following the injection of microbeads (Cone et al., 2010). Others use magnetic 

microspheres (Samsel et al., 2011). Another disadvantage of microbead occlusion models is 

that the injected beads accumulate in the anterior chamber and block the passage of light, 

therefore in vivo retinal imaging or/and behavioral experiments are not possible. 
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I.2.3.2.5. Genetic model: the DBA/2J mouse 

The DBA/2J mice spontaneously develop a chronic age-related glaucoma phenotype. 

DBA/2J mice have homozygous mutations in two genes: tyrosinase-related protein 1 (Tyrp1) 

and glycosylated transmembrane protein nmb (Gpnmb). Mice homozygous for mutations in 

these two genes exhibit pigment dispersion, iris transillumination, iris atrophy and anterior 

synechiae (Anderson et al., 2002). Formation of synechiae is the result of the accumulation of 

dispersed pigment into the anterior chamber, contributing to the blockade of drainage 

structures and the subsequent elevation of IOP (McKinnon et al., 2009; Johnson and Tomarev, 

2010). The main advantage of this model is that age-related IOP occurs spontaneously, which 

leads to RGC death and axonal degeneration. However, only 70% of mice develop OHT. 

Thus, a large number of animals is required because of the high degree of phenotypic 

variability and asymmetry. Also, a long incubation time of 9 to 12 months is required and 

many of these mice develop corneal abnormalities. 

I.3. The neuroinflammatory response in glaucoma 

A considerable amount of data supports the presence of an early inflammatory 

response in the glaucomatous retina in both human patients and in animal models. However, it 

is still uncertain whether early inflammatory signaling is beneficial or detrimental for RGCs 

following axonal injury (Nickells et al., 2012). The inflammatory response is mediated by the 

interaction of neurons with Müller cells, astrocytes, and microglia (Fig. 3). Here, I will discuss 

the role of glial cells in the neuroinflammatory response in glaucoma. 

 

 



24 
 

I.3.1. Reactive gliosis 

I.3.1.1. Macroglial response 

At the onset of disease, the response of Müller cells has a neuroprotective effect on the 

retina. Indeed, injury to the retina initially results in physiological and molecular changes in 

Müller cells that attempt to re-establish homeostasis in the retinal tissue. However, when the 

insult persists, these changes may become detrimental and even accelerate the 

neurodegenerative process. This transition is accompanied by dysregulation of the blood-

retinal-barrier, expression of proinflammatory factors, and infiltration of immune cells 

(Bringmann et al., 2009). The over-expression of  glial fibrillary acidic protein (GFAP) and 

phosphorylation of extracellular signal-regulated kinases (ERK) are considered markers of 

reactive Müller cells which are detected between 2 and 3 days after OHT induction (Kanamori 

et al., 2005; Bringmann et al., 2006). In fact, GFAP upregulation in both astrocytes and Muller 

cells is considered an indicator of retinal injury and glial cell activation (Luna et al., 2010). It 

has been reported that after injury, Nuclear Factor-kappa B (NF-κB) is activated in Müller 

cells, triggering over-expression of tumor necrosis factor alpha (TNFα) (Lebrun-Julien et al., 

2009). Moreover, Müller cells contribute to RGC dysfunction by secreting toxic factors such 

as alpha2-macroglobulin, and nitric oxide (NO) (Tezel and Wax, 2000; Bai et al., 2011). 

Müller cells also contribute to the RGC death in glaucoma by dysregulation of the glutamate-

glutamine cycle, in which glutamate uptake and glutamine synthetase activity are both reduced 

(Moreno et al., 2005). Indeed, GLAST knockout mice exhibit spontaneous RGC soma and 

axon degeneration and are used as a model of NTG (Harada et al., 2007). Recently, it has been 

reported that swelling and proinflammatory cytokines over-activate the transient receptor 

potential vanilloid type 4 (TRPV4) channels at the endfoot of Müller cells generating  calcium 
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ions (Ca2+) waves that affect the interglial, gliovascular and neuroglial signals (Ryskamp et al., 

2014). Although new insights regarding the role of Müller cell in retinal diseases are 

increasing, the processes by which these cells establish dialogue with other cells in the retina 

remain to be clarified. 

 Without a doubt, reactive astrocytes, which are abundant in the NFL and the ONH, are 

involved in several mechanisms that cause RGC death and axonal degeneration. Following 

IOP elevation, astrocytes show morphological changes such as cellular hypertrophy likely due 

to the mechanical stress induced by the lamina cribrosa (Yu et al., 2013). These morphological 

changes are accompanied by an upregulation of GFAP, matrix metalloproteinases, and 

extracellular matrix components such as laminin, tenascin C, and proteoglycans (Hernandez et 

al., 2008). All of these changes result in ONH remodelling. Furthermore, reactive astrocytes 

migrate from the cribiform plates to the nerve bundles, where they cause RGC death by 

releasing NO and TNFα (Liu and Neufeld, 2000, 2004; Tezel et al., 2004). The upregulation 

of phagocytosis-related Mac-2 mRNA in reactive astrocytes located in the laminar and orbital 

regions of the optic nerve suggest that astrocytes increase their phagocytic activity in 

glaucomatous retina (Nguyen et al., 2011). Reactive astrocytes are involved in several 

mechanisms leading to RGC death and axon degeneration in the NFL as well as ONH, where 

they are abundant. Interestingly, it has been shown that morphological integrity of ONH 

astrocytes are preserved by blocking excitotoxicity with memantine. Furthermore, memantine 

treatment increased mitochondrial fission, volume density and length in astrocytes of glial 

lamina in glaucomatous mice. This protection is mediated by preventing mitochondria 

dysfunction and decreasing the formation of autophagosome/autolysosome (Ju et al., 2014). 
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These findings show mitochondria dysfunction in ONH astrocytes and axons have a 

detrimental effect on RGC survival. 

I.3.1.2. Microglia response 

Similar to Müller cells, reactive microglia appear to initially play a protective role 

against inflammation early after injury. However, the persistence of elevated IOP and/or other 

contributing factors switch the initial protective response into a detrimental one that promotes 

inflammation (Nickells et al., 2012). Furthermore, it has also been suggested that both 

protective and detrimental effects may occur at the same time (Seitz et al., 2013). Optic nerve 

lesions cause microglial proliferation (Wohl et al., 2010). In addition, the microglia become 

reactive in both human glaucoma patients (Yuan and Neufeld, 2001) and in experimental 

animal models of OHT (Bosco et al., 2011). Interestingly, upon neuronal degeneration, 

activation of microglia is not only found in the retina, but also in the lateral geniculate nucleus 

(LGN) and correlates with neuronal degeneration (Shimazawa et al., 2012). Activation of 

microglia involves morphological changes, cell displacement, and increased phagocytic 

capacity. Microglial phagocytosis is regulated by several signals received form the 

environment involving the complement components C1q and C3. In glaucoma, C1q is 

upregulated in the synapses, axons and cells bodies before synapse loss and RGC death. These 

findings suggest that microglia phagocytosis occurs in neurons previously marked by 

complement (Stevens et al., 2007). Also, microglial activation results in upregulation of 

several proteins including those that promote inflammation including TNFα and IL-6 (Yuan 

and Neufeld, 2000; Sappington and Calkins, 2006; Sappington et al., 2006; Chi et al., 2014), 

complement proteins (Stephan et al., 2012) and other neurotoxic factors (Colton and Gilbert, 

1987; Neufeld et al., 1997; Neufeld et al., 2002; Vidal et al., 2006). When microglia become 
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activated, their cell body size increases and they appear round as the ramification is lost 

(Ransohoff and Perry, 2009). Interestingly, a higher number of reactive non-ramified 

microglia has been observed around the ONH in several models of OHT (Taylor et al., 2011; 

Roh et al., 2012), suggesting that after injury, microglia migrate to the ONH. In other animal 

models of glaucoma, reactive microglia have been detected in the contralateral non-treated 

retina (Gallego et al., 2012; Rojas et al., 2014). Inhibiting the activation of microglia using 

minocycline leads to RGC protection after optic nerve lesion (Levkovitch-Verbin et al., 2006; 

Bosco et al., 2008), suggesting that activation of microglia is involved in RGC loss after optic 

nerve injury. Moreover, blocking microglia activation by deleting the receptor CD11b results 

in neuroprotection in an experimental glaucoma model (Nakazawa et al., 2006).  
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Figure 3. Model of early neuroinflammatory responses in glaucoma mediated by resident 

glial cells. Early after OHT induction TNFα is secreted by Müller cells. TNFα has detrimental 

effects on RGCs (green) and also could activates microglia (red) and astrocytes (light blue) 

through TNFR1. Glial cells express pattern recognition receptors (PRRs) such as toll-like 

receptors (TLRs). After OHT induction, TLRs activate the production and secretion of new 

pro-inflammatory cytokines, increasing the neuroinflammatory response. Cytokines and 

chemokines induce changes in the endothelial cells and the retinal-blood-barrier integrity, 

allowing the infiltration of blood-derived immune cells (purple), amplifying the immune 

response in the retina. Elevated IOP also leads to upregulation of C1qa in microglia, but 

deposition of C1qa was also observed in RGC dendrites. Source: Jorge Luis Cueva Vargas, 

modified from (Soto and Howell, 2014). Cold Spring Harbor Perspectives in Medicine. 

Copyright © 2014. Cold Spring Harbor Laboratory Press. 
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I.3.2. Proinflammatory cytokines 

 Cytokines are comprised of a family of soluble proteins that are released by immune 

cells. In the CNS, neurons, glia, and endothelial cells produce and release cytokines, which act 

in a paracrine or autocrine manner. Cytokines modulate neuronal activity by promoting the 

release of neuroactive molecules such as NO, glutamate, and neurotrophins. In addition, 

cytokines bind to their cognate receptors in the target cells to further activate various 

signalling pathways (Vezzani and Viviani, 2014). Here, I will discuss the pro-inflammatory 

cytokines that are the most relevant to glaucomatous neurodegeneration,, including TNFα, 

interleukin-1β (IL-1β), interleukin-6 (IL-6) and macrophage migration inhibitory factor (MIF).  

I.3.2.1. Tumor necrosis factor alpha 

TNFα, a homotrimer 17 KDa protein, is first synthesized as a trans-membrane peptide 

which is then cleaved by the matrix metalloprotease TNFα-converting enzyme (TACE) to 

generate the soluble form of TNFα (Moss et al., 1997). Both trans-membrane TNFα and 

soluble TNFα are physiologically active and play different roles in vivo, depending on their 

binding to TNFα receptor 1 (TNFR1) or TNFα receptor 2 (TNFR2). Soluble TNFα has higher 

affinity for TNFR1 while trans-membrane TNFα has higher affinity for TNFR2 (Tartaglia and 

Goeddel, 1992; Idriss and Naismith, 2000). The two receptors have different downstream-

signal transduction effects.  

TNFR1 is associated with cytotoxic and apoptotic effects conferred by the cytoplasmic 

death domain. Briefly, TNFα binding induces TNFR1 trimerization and recruitment of TNF 

receptor-associated death domain (TRADD) followed by additional recruitment including, 

receptor-interacting protein (RIP), TNF receptor-associated factor 2 (TRAF2) and Fas-
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associated death domain (FADD). This complex leads to the recruitment and activation of 

caspase-8 and 10, which in turn promotes the initiation of apoptosis (Chen and Goeddel, 2002; 

Micheau and Tschopp, 2003). TNFR1 signaling can also mediate survival by activation of NF-

κB. Indeed, TRADD-TRAF2/5 complex is able to recruit and ubiquitinate RIP in the presence 

of the cellular inhibitor of apoptosis 1/2 (c-IAP 1/2). RIP can also be ubiquitinated in the 

absence of TRADD. Ubiquitinated RIP can phosphorylate the catalytic IκB kinase (IKK), 

which in turn phosphorylates the inhibitor of kappaB-alpha (IκBα), leading to activation of 

NF-κB (Naude et al., 2011). TNFR2 does not possess death domain and trans-membrane 

TNFα/TNFR2 binding leads to anti-apoptotic signals and NF-κB activation through TRAF2 

recruitment (Fontaine et al., 2002; Olmos and Llado, 2014). However, the role of TNFR2 in 

cell death has already been documented (Depuydt et al., 2005; Nakazawa et al., 2006). In 

2006, the group of Benowitz and colleagues reported that elevated IOP does not lead to RGC 

death in TNR2-deficient mice compared to TNFR1-deficient mice. They argue that TNFα 

exerts its detrimental effect via TNFR2 expressed on microglia which release reactive oxygen 

species and TNFα (Nakazawa et al., 2006). To better understand how TNFR2 is involved in 

cell toxicity further research is still needed. 

In the CNS, TNFα is endogenously expressed at low levels and plays an important role 

in synaptic plasticity (Stellwagen, 2011), glial transmission (Beattie et al., 2002), learning and 

memory (Baune et al., 2008) and sleep (Krueger, 2008). Under pathological conditions, 

elevated levels of TNFα has detrimental effects in many neurodegenerative conditions 

including Alzheimer’s disease (McAlpine et al., 2009), Parkinson’s disease (McCoy et al., 

2006), multiple sclerosis (Eugster et al., 1999), ischemic and traumatic injuries (Esposito and 

Cuzzocrea, 2009), chronic pain (Hess et al., 2011), and epilepsy (Vezzani et al., 2008). 
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Despite these toxic effects of TNF-α, the protective ability of glial-derived TNFα has also 

been reported (Lambertsen et al., 2009). These seemingly contradictory effects may be 

dependent on the compensatory effects produced by other cytokines such as IL-1β, the 

differential expression of TNFR1 and TNFR2, and by the variability, time course, and 

magnitude of the pathology. 

In the retina, the physiological role of endogenous TNFα is poorly understood. Intravitreal 

injection of TNFα has been shown to be toxic for RGCs and their axons in the optic nerve 

(Nakazawa et al., 2006; Lebrun-Julien et al., 2010). Indeed, high levels of TNFα are observed 

in experimental (Roh et al., 2012) and human glaucoma (Yuan and Neufeld, 2000). In 

addition, high levels of TNFα have been detected in the aqueous humor of glaucoma patients 

(Balaiya et al., 2011). Furthermore, inhibiting TNFα by using etanercept, an inhibitor of 

soluble and transmembrane TNFα, promotes protection of RGC soma and axons in 

experimental glaucoma (Roh et al., 2012).  The mechanism by which TNFα promotes RGC 

loss remains unclear. One potential mechanism suggests that TNFα mediates the insertion of 

Ca2+-permeable AMPA receptors into the membrane during excitotoxic injury, leading to 

RGC death (Lebrun-Julien et al., 2009). 
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Figure 4. TNFα signal transduction via TNFR1 and TNFR2. A. Binding of soluble TNFα 

to TNFR1 results in TRADD, RIP and TRAF2 recruitment; subsequently RIP become 

ubiquitinated and dissociated from TNFR1. The DD of TRADD binds FADD, resulting in 

caspase-8 recruitment and apoptosis. On the other hand, polyubiquitinated RIP1 leads to 

phosphorylation of IκBα, allowing its degradation via the ubiquitin-proteasome pathway. 

Thus, NF-κB translocates to the nucleus and initiates transcription. NF-κB activation blocks 

apoptosis by producing cFLIP leading to cell survival. B. Binding of trans-membraneTNFα to 

TNFR2 leads to the recruitment of TRAF2 and cIAP1/2 and the subsequent phosphorylation 

of IKKα and the NF-κB precursor protein p100. p100 is then cleaved, resulting in activation of 

p52-containing NF-κB. Source: Jorge Luis Cueva Vargas. 
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I.3.2.2. Interleukin-1β 

IL-1β belongs to the IL-1 family which is involved in inflammation and host defense. 

The precursor factor (pro-IL-1β) is cleaved by caspase-1 to produce the active form of the 

protein which is 17 KDa (Thornberry et al., 1992). IL-1β exerts its biological function by 

binding to IL-1R. This interleukin is constitutively expressed in the CNS and responds to 

stimulus coming from the neuroendocrine system and the local tissue environment. Thus, IL-

1β participates in a variety of processes including the regulation of appetite, body temperature, 

epilepsy, sleep/wake cycle, and the modulation of inflammatory processes in the event of 

injury or disease (Shaftel et al., 2008).  

High levels of IL-1β have been reported in the cerebrospinal fluid of patients with 

brain injury and stroke, Alzheimer’s disease, Parkinson disease, multiple sclerosis, and 

epilepsy. Inhibiting IL-1β action using an antagonist (IL-1ra) protects against neuronal injury 

(Allan et al., 2005). Although the exact mechanisms by which IL-1β modulates toxicity 

remain to be elucidated, a functional interaction between IL-1β/IL-1R complex to N-methyl-

D-aspartate receptors (NMDA) receptors appears to be involved in the promotion of cell 

death. In fact, IL-1R interacts specifically and physically with GluN2B subunit of the NMDA 

receptor. Furthermore, high levels of IL-1β have been proposed to enhance NMDA-mediated 

neuronal Ca2+ influx leading to excitoxicity (Vezzani and Viviani, 2014). 

In the retina, IL-1β expression increases after retinal/ischemia reperfusion. This 

damage is reduced by inhibiting IL-1β activity further confirming that high levels of IL-1β 

have toxic effects on retinal neurons (Yoneda et al., 2001; Chi et al., 2014). Recently, it has 

been shown that IL-1β protein is increased in microglia in response to excitotoxicity and IL-1β 
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mRNA is upregulated when IOP increases (Chidlow et al., 2012). Furthermore, high levels of 

IL-1β have been reported in the aqueous humor of patients with POAG (Takai et al., 2012). In 

light of these reports, the role of IL-1β after OHT induction requires further investigation. 

I.3.2.3.Interleukine-6 

In the CNS, astrocytes and microglia are the major source of IL-6; however, neurons 

can also synthesize IL-6 paricularly in conditions of stress as injury or sustained neuronal 

activity. IL-6, a 21-28 KDa protein, utilizes the signal transducing receptor subunit gp130. The 

IL-6-IL-6R complex binds to two molecules of gp130, also known as CD130, to activate 

signal transduction pathways including janus kinase/signal transducer and activator of 

transcription (JAK/STAT), ERK and phosphatidylinositide 3-kinases (PI3K) (Scheller et al., 

2011). IL-6 has a wide-range of roles in neuronal physiology, neurodevelopment, 

neuroprotection, and neurotoxicity (Juttler et al., 2002; Gruol, 2014) Neurotoxic effects of IL-

6 have been observed in Alzheimer’s disease, multiple sclerosis, Parkinson’s disease, 

Huntington’s disease, stroke as well as some psychiatric disorders, such as depression (Erta et 

al., 2012). In contrast, some reports have demostrated that IL-6 mediates neuronal protection 

(Sanchez et al., 2003; Sappington et al., 2006; Liu et al., 2011; Perigolo-Vicente et al., 2013) 

and axon regeneration (Leibinger et al., 2013).  

In the retina, IL-6 expression is observed in microglia during ischemia-reperfusion 

injury (Sanchez et al., 2003). However, in experimental glaucoma, IL-6 is mainly expressed 

by RGCs and it is anterogradely transported to the optic nerve (Chidlow et al., 2012). In 

addition, high levels of IL-6 mRNA are found in the ONH early after glaucoma induction 
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(Johnson et al., 2011). Although the mechanism of action is not well defined, these results 

suggest that IL-6 is dynamically involved during the development of the disease.  

I.3.2.4.Macrophage migration inhibitory factor 

MIF was first described as a T-cell-secreted cytokine that inhibited the random 

migration of macrophages from capillary tubes (David, 1966). MIF is a 12.5 KDa protein that 

is highly conserved. MIF is highly conserved and it is constitutively expressed in many cells 

types and tissues. Macrophages are the major source of MIF (Calandra et al., 1994). Currently, 

three receptors that interact with MIF have been identified, CD74, CXCR2 and CXCR4 (Leng 

et al., 2003; Bernhagen et al., 2007). CD74 is the MHC class II invariant chain. MIF-CD74 

binding results in activation of the ERK 1/2, mitogen-activated protein kinases (MAPK), and 

activator protein 1 (AP-1) pathways (Leng et al., 2003). MIF binding to CXCR2 and CXCR4 

results in trafficking of immune cells to the inflammation site (Glabinski et al., 2000; 

Bernhagen et al., 2007; Carlson et al., 2008). 

In the brain, MIF expression increases after exposure to inflammatory stimuli (Bacher 

et al., 1998; Ogata et al., 1998; Bacher et al., 2002). In response to inflammatory factors such 

as TNFα, MIF is released to mediate different cellular events including cell survival, 

phagocytosis, proinflammatory cytokine production, and inducible nitric oxide synthase 

(iNOS) (Onodera et al., 1997; Mitchell et al., 2002). MIF has been involved in adult 

neurogenesis, learning and memory, depression (Conboy et al., 2011) and stroke (Inacio et al., 

2011), and can participate in the pathogenesis of Alzheimer’s disease and EAE (Popp et al., 

2009; Bacher et al., 2010; Cox et al., 2013). 
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In the retina, MIF is expressed by astrocytes and Müller cells (Matsuda et al., 1997). 

However, the function of MIF in the retina is largely unknown. Recently, in a diabetic 

retinopathy model, its receptor CD74 was has been detected in activated microglia (Wang et 

al., 2014b), suggesting that MIF might play a role in the retina. 

I.3.3. Role of the complement cascade 

In the immune system, complement proteins aid phagocytic cells clear up cell debris 

and pathogens. The complement system is comprised of three primary pathways: the classical 

pathway, the lectin pathway, and the alternative pathway. All three pathways generate C3 and 

C5 convertases, as well as bound C5b, which is converted into the membrane-attack complex 

(MAC). The classical pathway, which first component is C1q, has been implicated in 

glaucoma and synaptic pruning (Stevens et al., 2007). Indeed, C1q is upregulated in animal 

glaucoma models and human glaucoma (Stasi et al., 2006). In the glaucomatous DBA/2J mice, 

where synapse loss precedes neuronal death, high levels of Cq1 and C3 are found in the IPL at 

the early glaucoma stages. Moreover, neuronal protection is observed in DBA/2J mice 

deficient in C1q (Howell et al., 2011). In the IPL, binding of C1q and C3 at synapses leads to 

activation of the complement cascade. Subsequently, activated microglia may phagocytize 

C1q and/or C3-tagged synapses. 

Independently of microglia activation, loss of synapses may be triggered by MAC 

formation (Rosen and Stevens, 2010). Importantly, MAC formation was increased in 

glaucomatous RGCs in human retinas and in experimental models of OHT (Kuehn et al., 

2006; Jha et al., 2011; Soto and Howell, 2014). In addition, MAC formation increases Ca2+ 

influx in RGCs, leading to neuronal apoptosis. On the other hand, depletion of the 
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complement system blocks Ca2+ influx in RGCs (Jha et al., 2011), confirming the pathological 

role of complement activation in glaucoma. Complement activation has also been reported in 

other neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, 

Huntington’s disease and multiple sclerosis (Stephan et al., 2012). 

I.3.4. Role of the phosphodiesterase 4  in neuroinflammation 

The phosphodiesterases (PDEs) superfamily comprises 11 gene families (PDE1-

PDE11), which are encoded by more than 20 genes. Each family represents 1 to 4 genes, 

resulting in more than 50 functionally different PDE proteins (Lugnier, 2006). These families 

are grouped according to substrate specificity, sensitivity to inhibitors, regulations and amino 

acid sequences. PDEs regulate the levels of 3’-5’-cyclic adenosine monophosphate (cAMP) 

and/or 3’-5’-cyclic guanosine monophosphate (cGMP) by hydrolyzing them. In the CNS, 

PDE4 is the most abundant and it is characterized by being only cAMP specific (Bolger et al., 

1994). PDE4 family is encoded by four different proteins: PDE4A, PDE4B, PDE4C and 

PDE4D. Each gene contains alternative mRNA splicing, resulting in more than 30 isoforms 

(Lugnier, 2006). PDE4C is not expressed in the CNS (Lamontagne et al., 2001; Whitaker and 

Cooper, 2009). 

PDE4 is the most studied PDE and its presence has been reported in the retina 

(Whitaker and Cooper, 2009). PDE4 is involved in a number of pathological processes 

including neuroinflammation through modulation of cAMP (Fig. 5). An increase of cAMP 

levels through PDE4 inhibition results in activation of the cAMP-dependent protein kinase A 

(PKA), exchange proteins directly activated by cAMP (EPAC1 and EPAC2) or cAMP-gated 

channels, which are implicated in a wide range of cellular functions. PKA is the most 
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important target of cAMP signaling. Upon binding of cAMP, inactive PKA becomes active, 

which in turn is able to phosphorylate serine and threonine residues on the transcription factor 

cAMP-response element binding protein (CREB) (Gerlo et al., 2011). Phosphorylated CREB 

can then regulate several molecules including BDNF, which enhances neuronal survival (Di 

Polo et al., 1998; Lipsky and Marini, 2007) (Fig. 5A). 

cAMP has also been reported to have an anti-inflammatory effect by interfering with 

the proinflammatory transcription factor NF-κB mainly by blocking IKKβ activity and 

increasing cellular levels of IκB (Fig. 5B)  (Gerlo et al., 2011). In addition, activated PKA has 

also been shown to be anti-inflammatory most likely by attenuating activation of NF-κB p65 

(Parry and Mackman, 1997), which is involved in the upregulation of proinflammatory 

cytokines such as TNFα in Müller glia (Lebrun-Julien et al., 2009). Of interest, increasing the 

level of cAMP using PDE4 inhibitors has been shown to attenuate the inflammatory response 

in a number of neurodegenerative diseases including Alzheimer’s disease (Wang et al., 2012), 

spinal cord injury (Schaal et al., 2012), and multiple sclerosis (Rolan et al., 2009). 

Furthermore, PDE4 inhibitors also reduces glial activation (Kiebala and Maggirwar, 2011; 

Ghosh et al., 2012), the main source of proinflammatory cytokines in the nervous system 

(Soto and Howell, 2014). 
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Figure 5. Phosphodiesterase type-4-mediated signal transduction processes. A. PDE4 

degrades cAMP to 5’AMP. An inhibition of PDE4 triggers higher level of cAMP, which can 

bind to PKA holoenzyme releasing the two catalytic subunits. The activated subunits then 

translocate to the nucleus where they can phosphorylates multiple substrates among them the 

transcription factor CREB. Phosphorylated CREB induces the transcription of a number of 

target genes including BDNF. B. Elevated intracellular cAMP inhibits NF-κB activity by 

increasing cytoplasmic levels of IκKα, blocking IKKβ activity and increasing IκB levels by 

blocking ubiquitinylation of IκB. Source: Jorge Luis Cueva Vargas.  
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I.4. Excitotoxic damage in glaucoma 

Glutamate is the primary excitatory neurotransmitter in the CNS and, under 

physiological conditions, it is a key regulator of neuronal transmission (Thoreson and 

Witkovsky, 1999). Dysregulation of glutamate signaling has been associated with a variety of 

disorders including ischemia induced by retinal or choroidal vessel occlusion, diabetes 

retinopathy and glaucoma (Casson, 2006; Ishikawa, 2013). Glutamate is released by 

presynaptic terminals and binds to glutamate receptors on the dendrites of postsynaptic 

neurons leading to membrane depolarization. Levels of glutamate are tightly regulated as high 

levels are toxic for neurons  (Ishikawa, 2013). In fact, an injection of glutamate or its analog 

NMDA into the eye has been reported to induce death of retinal neurons (Lucas and 

Newhouse, 1957). Moreover, the use of glutamate receptor antagonists has been shown to 

revert this toxicity. Collectivelly, these findings suggest that glutamate mediates toxicity by a 

similar mechanism found in excitatory glutamatergic synapse (Olney, 1969). Indeed, John 

Olney has demonstrated that the postsynaptic neurons were the targets of this cell death, where 

the dendrites of target neurons were swollen while the pre-synaptic endings were spared 

(Olney, 1969). In glaucoma, glutamate-induced excitotoxicity has been proposed to mediate 

Ca2+-dependent apoptosis of RGCs (Fig. 6). Indeed, excitotoxicity occurs when there is 

prolonged or excessive activation of glutamate receptors resulting in excessive accumulation 

of intracellular Ca2+ and subsequent activation of Ca2+-dependent apoptotic processes (Qu et 

al., 2010). Three mechanisms have been proposed to mediate excitotoxicity (Ishikawa, 2013). 

First, excitotoxicity may occur when there is impairment of glutamate transport. 

Downregulation of GLAST expression has been proposed to mediate neuronal loss in 

experimental glaucoma and in human glaucoma patients (Naskar et al., 2000; Martin et al., 
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2002). Interestingly, GLAST-deficient mice show spontaneous RGC death and axonal 

degeneration without elevated IOP (Harada et al., 2007). In addition, GLT-1, a glutamate 

transporter located in cones photoreceptors and bipolar cells, appears to contribute to RGC 

death (Martin et al., 2002). Second, an impairment of the glutamate/glutamine cycle leading to 

excitotoxicity has been reported in experimental glaucoma (Moreno et al., 2005). Third, 

reduction of intracellular ATP mediated by mitochondrial impairment also affects neuron 

survival and axonal transport through glutamate excitotoxicity. A decrease in ATP levels 

results in dysfunction of the Na+/K+ exchanger, resulting in an increase in intracellular Na+ 

and a subsequent release of glutamate (Rossi et al., 2000). 

I.4.1. Glutamate receptors 

To mediate excitatory neurotransmission, glutamate acts on different membrane 

receptors that include ionotropic and metabotropic glutamate receptors (mGluR). Ionotropic 

receptors act postsynaptically where they mediate fast synaptic transmission. Ionotropic 

receptors can also mediate neurotransmitter release at the presynaptic site (Pinheiro and Mulle, 

2008). mGluRs function as a single protein and exert their effect by influencing several 

intracellular second messenger systems via interaction with membrane-bound G proteins. 

Ionotropic glutamate receptors include: NMDA, α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) and kainate receptors.  

I.4.1.1. NMDA receptors 

Functional NMDA receptors are heterotetramers. NMDA receptors exhibit unique 

properties depending on the type and combination of subunits present in the heterotetramer 

receptor complex There are fourteen different subunits including: eight GluN1 subunits, four 
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GluN2 subunits (GluN2A-D), and two GluN3 subunits (GluN3A-B), which are encoded by 

one, four, or two genes, respectively (Paoletti et al., 2013; Glasgow et al., 2014). The four 

GluN2 subunits are considered to play a particularly important role in determining receptor 

function.  

At resting membrane potential, NMDA receptors are blocked by magnesium ions 

(Mg2+). Activation of NMDA receptors requires glutamate and either glycine or D-serine as 

co-agonists. Upon activation of the NMDA receptor, the Mg2+ block is expelled, the ion 

channel opens and there is an influx of Na+ and Ca2+ and an efflux of K+, causing a transient 

depolarization and activation of Ca2+-dependent signaling pathway. This event is crucial for 

neuronal survival and plasticity. The specific downstream effect is determined by alternative 

splicing and subunit composition of the NMDA receptor (Zito, 2009). 

The pathological activation of the NMDA receptors is involved in several diseases of 

the CNS including cerebral ischemia, traumatic brain injury, Alzheimer’s disease, Parkinson’s 

disease, Huntington’s disease, depression, pain, schizophrenia (Paoletti et al., 2013). In the 

retina, NMDA receptor-mediated excitotoxicity contributes to RGC injury in several diseases 

including retinal ischemia and glaucoma. Intravitreal injection of NMDA is highly toxic for 

RGCs partly due to the activation of NF-κB leading to the production of TNFα (Lebrun-Julien 

et al., 2009). In addition, it has been shown that NMDA toxicity is mediated by the GluN2B 

subunit of NMDA receptor. GluN2B also mediates RGC loss in GLAST-/- mice, a model of 

normal tension glaucoma (Bai et al., 2013).  
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Figure 6. Classical model of excitotoxicity in the retina. Higher levels of glutamate (red 

circles) bind to ionotropic glutamate receptors (NMDA and AMPA receptors) allowing an 

excess Ca2+ influx (green circles). Excessive Ca2+ entry into neurons stimulates death signals. 

Ca2+ can also be sequestered intracellularly by the mitochondria and endoplasmic reticulum 

leading to oxidative stress and subsequent activation of apoptotic signals. Source: Jorge Luis 

Cueva Vargas, modified from (Almasieh et al., 2012). Copyright © 2011 Published by 

Elsevier Ltd. 
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I.4.1.2. AMPA receptors 

Similar to NMDA receptors, AMPA receptors are homomeric or heteromeric proteins 

made up of four GluA subunits (GluA1-4) (Mellor, 2010). Each subunit has four membrane 

domains of which three are transmembrane (M1, M3 and M4). M2 is a re-entrant loop and 

does not traverse the membrane. The glutamate binding site is in the intracellular domain 

formed by M1, M3 and M4. These glutamine binding sites are known as the S1 and S2 sites. 

The M2 domain includes the ion selectivity filter. (Fig.7). Upon glutamate binding, the 

channel opens to allow the influx of Na+ and the efflux of K+, mediating fast excitatory 

synaptic neurotransmission. Under physiological conditions, most AMPA receptors are not 

permeable to Ca2+ due to the presence of the GluA2 subunits. The GluA2 subunit plays an 

important role in modulating the biophysical properties of the channel’s ion permeability. 

AMPA receptors that do not have the GluA2 subunit are largely considered Ca2+-permeable 

AMPA receptors (CP-AMPAR). Although CP-AMPAR in the healthy CNS are not permeable 

to Ca2+, the expression of CP-AMPAR has been reported in several brain regions including 

inhibitory interneurons and non-neuronal cells such as the Bergmann glial cells (Burnashev et 

al., 1992). Neuronal CP-AMPARs are found in several aspiny dendrites in the hippocampus, 

neocortex, striatum, amygdale, spine cord, basal ganglia, brainstem, auditory system and the 

retina. In these cells, CP-AMPARs have been proposed to mediate Ca2+ based plasticity, 

ensuring precise Ca2+ localization (Goldberg et al., 2003). Dysregulation of CP-AMPARs has 

been proposed to be an underlying factor in the development of several brain diseases 

including Alzheimer’s disease, multiple sclerosis, and amyotrophic lateral sclerosis (ALS) 

(Mellor, 2010).  
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Figure 7.  Schematic model of AMPA receptors ionic permeability. A. GluA2-containing 

AMPA receptor (left) is not permeable to Ca2+ while the GluA2-lacking AMPA receptor 

(right) is highly permeable to both Ca2+ and Zn2+. B. Model of GluA2 subunit of AMPA 

receptor showing the transmembrane domain (M1, M3 and M4) and the re-entrant loop 

domain (M2). The glutamate binding site is formed by S1 and S2. Two post-transcriptional 

modifications occur through RNA editing at the Q/R and R/G sites. Source: Jorge Luis Cueva 

Vargas. Modified from (Mellor, 2010). Copiright © 2010 Future Science Ltd. 
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I.4.1.2.1. GluA2 subunit modification by RNA editing 

As mentioned above, the presence or absence of the GluA2 subunit has important 

functional consequences for AMPA receptors. AMPA receptors containing the GluA2 subunit 

are impermeable to divalent cations (Ca2+ and Zn2+). Furthermore, they cannot be blocked by 

intracellular polyamines, have a small unitary conductance, and exhibit a linear current-

voltage relationship. All these characteristics are due to the presence of a positively charged 

arginine residue (R+) in the pore loop of M2 (Fig. 7), specifically at the amino acid position 

607. Interestingly, at the DNA nucleotide level, this site is encoded by the glutamine residue 

(Q). Post-transcriptional RNA editing results in the switch from a glutamine residue to an 

arginine residue at this site, hence its name Q/R site. RNA editing at the Q/R site occurs when 

the adenosine deaminase enzyme ADAR2 converts adenosine to inosine in double-stranded 

RNA substrates (Higuchi et al., 1993; Nishikura, 2010). Briefly, the adenosine (A) present in 

the CAG codon (encoding glutamine) is converted into inosine (I), resulting in the CIG codon 

(encoding arginine). This post-transcriptional modification, which occurs exclusively in 

GluA2, is very efficient as almost 100% of GluA2 mRNA is edited. Deficient RNA editing 

has been reported in motor neurons in ALS and in CA1 pyramidal neurons after ischemia 

(Kwak and Kawahara, 2005; Peng et al., 2006) Nonetheless, some studies have reported that 

GluA2 editing is not altered in a number of diseases (Rump et al., 1996; Kortenbruck et al., 

2001). 

I.4.1.2.2. Trafficking of GluA2 subunit 

Unedited GluA2 enables AMPA receptors to become permeable to Ca2+. Another 

mechanism involves GluA2 subunit modulation. For example, under physiological conditions, 
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AMPA receptors are very dynamic and the levels of CP-AMPARs are regulated by a process 

involving GluA2 trafficking. Recently, it has been reported that NMDA activation of ON 

RGCs leads to endocytosis of GluA2-containing AMPA receptors and their replacement by 

CP-AMPARs (Jones et al., 2012). Although this study does not identify a precise mechanism 

by which endocytosis of GluA2-containing AMPA receptor leads to excitotoxicity, it has been 

suggested that AMPA receptors are replaced by CP-AMPARs. Under pathological ischemic 

conditions, the number of CP-AMPARs in hippocampal pyramidal neurons markedly 

increases (Pellegrini-Giampietro et al., 1997). These data suggest that endocytosis of GluA2 

mediates synaptic changes and, in some cases, neuronal toxicity. There are many proteins 

involved in GluA2 trafficking including the protein interacting with C-kinase-1 (PICK1), 

which has been associated with GluA2 endocytosis after neuronal trauma. Upon glutamate 

binding, protein kinase C alpha (PKCα) is activated and trafficked to the plasma membrane by 

PICK1. This PICK1-PKCα interaction leads to the phosphorylation of GluA2 at serine residue 

880. Phosphorylated GluA2 then binds PICK1, resulting in the endocytosis of GluA2 (Bell et 

al., 2009). Of interest, PICK1-deficient mice show high levels of GluA2 at the surface, 

suggesting that PICK1 is involved in the internalization and retention of GluA2-containing 

AMPA receptors within intracellular stores (Clem et al., 2010).  

I.4.1.2.3. GluA2-lacking AMPA receptors as mediator of neurotoxicity 

In both unedited GluA2 and GluA2-lacking AMPA receptors, toxicity is mediated by 

the excessive influx of Ca2+ and Zn2+. Levels of intracellular Ca2+are controlled by neurons 

through a complex balance of Ca2+ influx, efflux, buffering, and storage (Arundine and 

Tymianski, 2003). During excitotoxicity, high levels of intracellular Ca2+ can compromise the 

integrity of organelles such as the mitochondria and the endoplasmic reticulum. Also, high 
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levels of intracellular Ca2+ can lead to the activation of different proteins including calpains, 

phospholipase A2, caspases, endonucleases and Ca2+/calmodulin-dependent protein kinase 

(CaMK) (Orrenius et al., 2003). The activation of these proteins is often toxic and is a major 

cause of cell death (Szydlowska and Tymianski, 2010). In experimental glaucoma, calpain 

activation cleaves the protein phosphatase calcineurin leading to RGC death (Huang et al., 

2010). Recently, it has been reported that activation of CP-AMPAR leads to NO production, 

which activates Src tyrosine kinase resulting in retinal neuron death (Socodato et al., 2012). 

Toxicity of CP-AMPAR has also been reported in Purkinje neurons (Bliss et al., 2011) and 

hippocampal pyramidal neurons (Ogoshi et al., 2005). High permeability of CP-AMPARs to 

Zn2+ also appears to contribute to neurotoxicity. In fact, Zn2+ translocation and accumulation 

has been proposed to contribute to mitochondria-mediated neuronal injury. Its effect has been 

proposed to be more potent than that of Ca2+ (Sensi et al., 2000; Weiss and Sensi, 2000) 

I.4.1.3. Kainate receptors 

Kainate (KA) receptors are tetramers formed by a combination of five subunits 

(GluK1-GluK5). GluK1, K2, and K3 are low-affinity subunits, while GluK4 and K5 are high-

affinity subunits. Low-affinity subunits are able to form a functional receptor while high-

affinity subunits need to form a complex with low-affinity subunits in order to produce a 

functional receptor (Pahl et al., 2014). KA receptors mediate postsynaptic depolarization, 

modulate synaptic release of GABA and glutamate, and play a role in the maturation of neural 

circuits during development. KA receptors become activated following presynaptic inhibition 

of GABA release. Interestingly, unlike NMDA and AMPA receptors, KA receptors activate a 

non-conventional metabotropic signaling pathway involving G proteins and second 

messengers. Dysfunction of KA receptor has been implicated in several CNS diseases 
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including schizophrenia, epilepsy, autism, depression, bipolar disorders, Huntington’s disease, 

and mental retardation (Lerma and Marques, 2013).  

I.4.1.4. Metabotropic glutamate receptors 

mGluRs are members of the G-protein-coupled receptor (GPCR) superfamily. mGluRs 

are not ion channels. Instead, upon glutamate binding, G-protein is activated initiating an 

intracellular cascade that is important for the modulation of synaptic plasticity. There are eight 

mGluR subtypes which are classified into three groups: Group I includes mGluR1 and 

mGluR5. Group II includes mGluR2 and mGluR3. Finally, group III includes mGluR4 and 

mGluR6-8 (Lee et al., 2004). Group I is involved in phospholipase C activation, ERK kinase 

phosphorylation and, in some cases, the stimulation of adenyl cyclase. Activation of this group 

increases during neuronal excitability. Group II and III are involved in the inhibition of adenyl 

cyclase and Ca2+ channels and the activation of K+ channels. These groups are implicated in 

the induction of  long-term depression (LTD) (Niswender and Conn, 2010). It has been 

proposed that the use of either agonists for mGluRs II and III or an antagonist for mGluA I 

may have protective effects (Nicoletti et al., 1996). Dysfunction of mGluRs has been reported 

in different types of neurodegenerative diseases such as ALS, multiple sclerosis, and 

Alzheimer’s disease. In the retina, all mGluRs are expressed presynaptically, where they are 

important modulators of synaptic transmission. mGluR6 plays particularly important role in 

the retina as it mediates feedforward transmission from photoreceptors to ON bipolar cells. 

(Dhingra and Vardi, 2012).  Elevated IOP increased mRNA levels of mGluR1a, mGluR2, 

mGluR4a, mGluR4b, mGluR6 and mGluR7a, while mGluR5a/b and mGluR8a mRNA levels 

become decreased (Dyka et al., 2004). In addition, the combination of MK801, a non-selective 

antagonist of NMDA, with LY354740, an agonist of the group II mGluRs, leads to partial 
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RGC protection in a rat model of glaucoma (Guo et al., 2006). These results suggest that the 

mGluR group II might contribute to RGC death. 

I.4.2. Link between neuroinflammation and excitotoxicity. 

 Emerging evidence suggests that cytokines modulate ionotropic glutamate receptors. In 

fact, high levels of TNFα and IL-1β lead to the enhancement of glutamate transmission and 

neurodegeneration. Glial cells and neurons are essential for this process to occur (Fig. 8). 

Firstly, microglia release TNFα, which further stimulates TNFα release as well as glutamate 

release from themselves and astrocytes. Increase extracellular glutamate also stimulates TNFα 

release in microglia (Taylor et al., 2005). Second, astrocytes and Müller cells express high-

affinity glutamate transporters (GLAST) (Ju et al., 2014). GLAST expression is reduced by 

TNFα (Tilleux and Hermans, 2007). Furthermore, TNFα stimulates glutamate release, 

resulting in increased levels of extracellular glutamate. Lastly, TNFα increases the synaptic 

excitatory/inhibitory ratio, ultimately resulting in excitotoxic cell death. TNFα acts on TNFR1 

to increase the synaptic expression of GluA2-lacking AMPA receptors (Olmos and Llado, 

2014; Viviani et al., 2014). This process is mediated by phosphatidylinositol 3-kinase (PI3-K) 

(Stellwagen et al., 2005). This mechanism was later confirmed in an excitotoxicity model. 

Intravitreal injection of NMDA leads to TNFα upregulation by Müller cells, mediating the 

surface expression of GluA2-lacking AMPA receptor (Lebrun-Julien et al., 2009). 

 IL-1β, which has been involved in the neuroinflammatory response, appears to also 

participate in glutamate-dependent excitotoxicity (Fogal and Hewett, 2008). Indeed, NMDA-

induced excitotoxicity leads to over expression of IL-1β by microglia and astrocytes in the 

cortex and striatum of rats (Pearson et al., 1999). NMDA receptor antagonists result in down-
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regulation of IL-1β following cerebral ischemia (Jander et al., 2000). In addition, exogenous 

IL-1β leads to an accumulation of intracellular Ca2+ through NMDA receptors. Neuronal death 

results from the activation of the Src family kinases and the phosphorylation of GluN2B 

(Viviani et al., 2003). IL-1β dysfunction has been suggested to contribute to several 

neurological disorders including Huntington’s disease, Parkinson’s disease, ALS, multiple 

sclerosis, HIV-associated dementia, and Alzheimer’s disease  (Fogal and Hewett, 2008). In the 

retina, IL-1β mediates increased glutamate uptake by Müller cells through a mechanism that 

involves increased Na+/K+ ATPase localization, in a model of NTG (Namekata et al., 2009). 

Collectively, these findings indicate that IL-1β plays contradicting roles depending on the cell 

type and experimental conditions. Therefore, more research is needed to better understand the 

interaction between IL-1β and glutamate excitotoxicity in CNS disorders. 
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Figure 8. Schematic model showing the link between neuroinflammation and 

excitotoxicity. Early after induction of ocular hypertension, TNFα is released by Müller cells. 

In microglia, TNFα-mediated TNFR1 signaling promotes additional TNFα release and also 

glutamate release from hemichannels at gap junctions. In neurons, TNFα/TNFR1 binding 

increases the excitatory synaptic strength by inducing CP-AMPA receptors and/or NMDA 

receptors and decreasing the surface expression of GABA receptors. High levels of Ca2+ 

promote neuron death and excessive ROS, disrupting glutamate transport in neighboring glial 

cells. Source: Jorge Luis Cueva Vargas. Modified from: Copyright © 2014 Gabriel Olmos and 

Jerònia Lladó. Creative Commons Attribution License. 
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I.5. Current treatment and neuroprotective strategies for glaucoma 

The standard current treatments for glaucoma focus primarily on the reduction of IOP. 

While this treatment is effective in some patients, delaying disease progression, IOP reduction 

is not always effective. There has been great interest in finding agents to promote 

neuroprotection to prevent or slow down the loss of RGCs and the progressive degeneration of 

the optic nerve. In addition, there is much interest in developing drugs to enhance blood flow 

to the retina and optic nerve. To date, there are no neuroprotective drugs clinically approved 

for use in glaucoma patients. Memantine, an NMDA open-channel receptor, was shown to 

have neuroprotective effects in a non-human primate glaucoma model (Hare et al., 2004; 

Yucel et al., 2006). However, in clinical trials, memantine failed to have a protective effect in 

glaucoma patients when compared to placebo-treated patients (Danesh-Meyer, 2011). In the 

following sections, I will discuss current treatments and recent approaches used for glaucoma. 

I.5.1. Pharmacotherapy and regulation of IOP 

Current glaucoma medications, which exert their effect by lowering IOP are grouped 

into five classes: beta-blockers, prostaglandins analogs, alpha-agonists, carbonic anhydrase 

inhibitors, and myotics. Beta blockers decrease the IOP by reducing aqueous humor 

production (Hayreh et al., 1999), however, their side effects cause exacerbation of respiratory 

symptoms, therefore they are not recommended for patients with asthma (Schwartz and 

Budenz, 2004). Non-selective beta-blockers include timolol and levobunolol. Betaxolol is a 

beta1-selective beta blocker (Vetrugno et al., 2008). Prostaglandins decrease the IOP by 

increasing the aqueous humor outflow through the uveoscleral pathway. In this pathway, the 

aqueous humor that passes from the anterior chamber through the uveal meshwork diffuses 
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through intercellular spaces of the ciliary body (Llobet et al., 2003). The side effects of 

prostaglandins include hyperemia, burning, tearing, itching, and changes in iris pigmentation. 

This group includes latanoprost, travoprost and bimatoprost (Vetrugno et al., 2008). Alpha-

agonists include brimonidine, which is an α2-adrenoceptor agonist that lowers IOP by reducing 

aqueous humor production and increasing outflow through the uveoscleral pathway (Adkins 

and Balfour, 1998). Side effects include dry mouth, systemic hypotension, fatigue and 

conjunctival blanching (Vetrugno et al., 2008). Carbonic anhydrase inhibitors lower IOP by 

decreasing the production of aqueous humor. This group includes dorzolamide, brinzolamide 

and the side effects include allergic reactions such as uticaria, angioderma or pruritus (Schmidl 

et al., 2015). Lastly, myotics include pilocarpine, aceclidine, acetylcholine, and carbachol. 

Since they are not well tolerated by many patients and are contraindicated for individuals 

younger than 40, they are not frequently used (Vetrugno et al., 2008). 

I.5.2. Laser approaches 

Laser surgery is another method to decrease the IOP. For the treatment of POAG, laser 

trabeculoplasty is used most frequently and successfully reduces IOP in 20-30% of glaucoma 

cases. The laser spots dilate and elongate the trabecular meshwork and/or Schlemm’s canal 

(Wise and Witter, 1979). This technique is recommended for patients who do not tolerate 

pharmacologically-based IOP modification, as well as patients with pseudoexfoliative 

glaucoma and pigmentary glaucoma (Scuderi and Pasquale, 2008). Selective laser 

trabeculoplasty is another technique in which pigmented cells of the trabecular meshwork are 

selectively lysed without causing damage to the adjacent non-pigmented cells. This technique 

often produces better results than laser trabeculoplasty in eyes with non-pigmented angles 

(Schwartz and Budenz, 2004). 
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For patients with PACG, laser iridotomy, in which a hole is created in the iris to allow 

better flow of the aqueous humor, is an effective alternative treatment option. In 70-85% of 

treated patients, IOP was successfully reduced for one to three years without the use of 

additional drug therapy. Laser iridoplasty or gonioplasty is recommended when patients show 

plateau iris syndrome in which the iridocorneal angle is very narrow. This treatment is also 

highly effective and safe. In fact, 85-90% of patients with plateau iris syndrome retain an open 

angular recess for 10 years after a single surgery (Ritch et al., 2004; Scuderi and Pasquale, 

2008). Finally, laser cyclophotocoagulation is considered a last resort glaucoma treatment in 

which non-pigmented epithelial cells of the ciliary body are destroyed to reduce IOP. This 

technique is performed either from inside the eye or through the sclera without opening the 

globe (Dietlein et al., 2009). It was recently reported to be useful in lowering IOP at any stage 

of the disease (Seibold et al., 2015) 

I.5.3. Gene therapies 

Gene therapy involves the replacement of a defective gene with a functional gene, the 

supplementation of a deficient gene, or the introduction of genetic material to reduce gene 

expression (gene silencing). Gene therapy is based on the introduction of DNA material to 

treat or prevent a disease by selectively targeting the affected cells. In glaucoma, gene therapy 

has focused on promoting RGC survival and decreasing IOP (Demetriades, 2011). The 

strategy of delivery includes the use of viral vectors, non-viral synthetic vectors, hybrid 

synthetic-viral systems, and the delivery of genetically manipulated cells. Among them, the 

use of viral vectors has been extensively used in preventing RGC death. The most commonly 

used viral vectors include adeno-associated virus (AAV), adenovirus and lentivirus vectors.  
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I.5.3.1. Adeno-associated virus 

 AAV are non-enveloped single-stranded DNA viruses belonging to the parvoviridae 

family. AAVs require a helper virus for replication. AAVs are generally considered to be non-

pathogenic and non-toxic (Harvey et al., 2009), and can mediate long-term transgene 

expression, sometimes lasting for several years in the retina (Stieger et al., 2008). In addition, 

a new generation of self-complementary AAV (scAAV), which can be injected into the 

anterior chamber, has been reported to confer stable long term-expression of a reporter gene in 

rats and non-human primates (Buie et al., 2010). A disadvantage of AAV has been the limit in 

the size of the gene to be packaged, which is presently limited to 4.7 kb. Another limitation 

includes the laborious work needed to produce AAV vectors. Different AAV serotypes have 

been used to transduce cells into the retina, but AAV serotype 2 displays high tropism for 

RGCs after intravitreal injection (Cheng et al., 2002; Harvey et al., 2002). BDNF is one of the 

most potent pro-survival neurotrophic factor for injured RGCs. A pioneer study showed that 

intravitreal injection of an AAV vector encoding the BDNF receptor tropomyosin receptor 

kinase B (TrkB) in combination with exogenous BDNF promoted effective and long-term 

RGC survival after optic nerve injury (Cheng et al., 2002). In an ocular hypertension model, 

an AAV encoding BDNF promoted RGC survival one month after IOP elevation (Martin et 

al., 2003). AAV has also been used to deliver other trophic molecules including CNTF that 

promotes RGC survival and axonal regrowth after optic nerve crush (Leaver et al., 2006). 

Other neurotrophic factors delivered using gene therapy include GDNF (Schmeer et al., 2002) 

and fibroblast growth factor (FGF-2) (Sapieha et al., 2003).  
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I.5.3.2. Adenovirus 

 Adenovirus (Ad) is a linear double-stranded non-enveloped DNA virus. The 

advantages of using Ad include the ability to infect cells in different stages, to achieve high 

levels of foreign gene expression, and the relative ease to produce high titers Ad stocks (Liu et 

al., 2009). The main disadvantage of Ad virus, especially first generation vectors, is that it can 

result in severe complications including a severe inflammatory reaction and cytotoxic effect 

that limit their usefulness for longer periods (Isenmann et al., 2004). New modified Ad vectors 

have been designed, which are less immunogenic and provide long-term transfer of genetic 

material (Lamartina et al., 2007).  Intravitreal injection of Ad vectors encoding BDNF (Di 

Polo et al., 1998), CNTF (Weise et al., 2000) or GDNF (Schmeer et al., 2002) have been 

shown to protect RGCs. In these studies Müller cells were also consistently transduced, 

suggesting that indirect trophic factors also contribute to the effect on RGC survival. 

I.5.3.3. Lentivirus 

 Lentiviruses are a type of retrovirus that contains the necessary cellular and molecular 

machinery required to achieve efficient and stable gene expression in both dividing and non-

dividing cells. The viral RNA is converted into double-stranded DNA by the reverse 

transcriptase and then transported to the nucleus. These vectors have large transgene carrying 

capacities compared to AAV. Also, their stable integration allows for long-term expression. 

Lentiviral vectors are derived from the primate lentiviruses HIV-1, HIV-2, and simian 

immunodeficiency virus. Vectors can also be generated from non-primate lentiviruses such as 

feline immunodeficiency virus, bovine immunodeficiency virus, and equine infectious anemia 

virus (Greenberg et al., 2006; Balaggan and Ali, 2012). The HIV based vectors have three 
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genes which are essential for gene delivery (gag, pol and rev), which are flanked by long-

terminal repeats. Strategies for the treatment of glaucoma using lentivirus vectors include the 

ability to increase aqueous outflow through the drainage pathways in the trabecular meshwork. 

In this context, lentiviruses have shown high transduction efficiency of trabecular meshwork 

cells. Recently, an HIV-based lentivirus encoding enhanced green fluorescent protein (EGFP) 

gene was delivered into human trabecular meshwork cells with 92.3% efficiency in vitro and 

88.16% efficiency ex vivo. These results suggest that HIV-based lentivirus have high potential 

for modification of trabecular meshwork gene expression, and consequently aqueous humor 

outflow, that might be useful for IOP regulation (Xiang et al., 2014). 

I.5.4. Stem cells 

Stem cells are defined as cells with an intrinsic ability to self-renew indefinitely and to 

differentiate into a variety of cell types. There are two sources of potential stem cells: i) 

embryonic stem cells, derived from the blastocysts and from the fetal retina, and ii) adult 

tissue-derived stem cells including: retinal stem cells from the ciliary epithelium, Müller stem 

cells, hippocampal stem cells, mesenchymal stem cells, oligodendrocyte precursor cells, 

olfactory ensheathing cells, and induced pluripotent stem cells (Sun et al., 2015). The use of 

stem cells should ideally provide chronic neuroprotection for a number of neurodegenerative 

diseases after a single treatment. However, hurdles in the implementation of stem cell-based 

strategies for brain diseases still need to be overcome to make the use of stem cells a clinical 

reality. Nonetheless, several studies have demonstrated that stem cell transplantation leads to 

synthesis and release of neurotrophic factors and results in immunomodulation (Bull et al., 

2008). For example, in a rat model of glaucoma, mesenchymal stem cells were able to rescue 

RGCs by the secretion of growth factors and the modulation of the inflammatory process 
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(Emre et al., 2015). In addition, when neural stem cells genetically modified to secrete CNTF 

were differentiated into astrocytes, there was a significant reduction in the loss of axotomized 

RGCs (Flachsbarth et al., 2014). Cell-based therapies have also focused on re-establishing a 

healthy IOP. In fact, human induced pluripotent stem cells have been used to replace 

trabecular meshwork cells in an in vitro anterior segment organ culture and restored normal 

IOP levels (Abu-Hassan et al., 2015). Although this is a promising therapy for patients with 

adequate IOP elevation and visual impairment, it is not yet recommended due to limited 

knowledge regarding their safety (Sun et al., 2015). 

I.5.5 Neuroprotection independent of IOP modulation 

 New drugs are developed based on our understanding of the mechanisms involved in 

the pathogenesis of the disease. Pharmacological neuroprotection, independent of IOP, 

represents an interesting alternative in order to prevent further progression of RGC death. 

During the last two decades, many experiments in animal glaucoma models have successfully 

identified potential targets for neuroprotection. Although these experiments show promising 

results, they cannot easily be transferred into clinical practice. These experiments include 

inhibiting apoptosis by blocking specific caspases, inhibiting excitotoxicity, increasing the 

availability of trophic factors, inhibiting acetylcholinesterase activity, maintaining normal 

mitochondria function, inhibiting oxidative stress, and finally, attenuating gliosis and 

inflammatory response (Osborne, 2008; Almasieh et al., 2010; Schmidl et al., 2015). 

I.6. Objectives of the thesis, hypothesis and experimental approaches. 

Problem and objectives: Glaucoma is the leading cause of irreversible blindness 

worldwide, affecting more than 70 million people. The disease is characterized by progressive 
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optic nerve degeneration and RGC death, resulting in visual field loss and blindness. Several 

risk factors have been proposed to contribute to the disease including elevated intraocular 

pressure, age, and genetic background. However the mechanism by which these risk factors 

promote RGC death is not well understood. At present, treatments for glaucoma are limited to 

lowering the IOP by medication or surgery. However, a large number of patients continue to 

experience optic nerve degeneration and vision loss in spite of responding well to treatment 

that regulate IOP. Therefore, understanding the mechanisms leading to RGC death in 

glaucoma is essential to develop new therapeutic approaches for the treatment and 

management of this disease. The main objectives of this thesis are: 

i) To assess the cellular source of TNFα in the retina and changes in gene and 

protein expression in a rat model of ocular hypertension glaucoma. 

ii) To characterize the role of soluble TNFα on RGC death and to establish its 

potential link with CP-AMPARS in experimental glaucoma. 

iii) To establish whether anti-inflammatory therapies are effective at promoting 

RGC survival in glaucoma. Specifically, the role of ibudilast, an inhibitor of 

PDE4, on the response of IOP-dependent RGC survival will be explored. 

Hypothesis: An important neuroinflammatory component has been proposed to 

mediate RGC death in glaucoma. TNFα, the most important pro-inflammatory cytokine, has 

been shown to play a key role in the development of an inflammatory reaction contributing to 

neuronal death. Therefore, the principal hypothesis of my thesis is that glial-derived soluble 

TNFα plays a critical role in RGC death by stimulating surface expression of CP-AMPARs in 

experimental glaucoma. Secondary hypothesis were also tested and include: i) that the use of 

selective inhibitors of TNFα or CP-AMPARs would enhance the survival of RGCs in 
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experimental glaucoma, and ii) that ibudilast, an anti-inflammatory clinically approved drug, 

can mediate RGC protection by attenuating gliosis and by reducing expression of pro-

inflammatory cytokines including TNFα. 

Experimental approaches: To achieve my research objectives, several experimental 

approaches were used: 

i) The use of a rat model of experimental glaucoma, which consists of increasing 

the IOP by injecting a hypertonic saline solution into the episcleral vein in 

Brown Norway rats. 

ii) The visualization and quantification of RGC survival using retrograde labeling 

with fluorescent tracers applied to the superior colliculus. 

iii) The delivery of pharmacological reagents by intraperitoneal or intravitreal 

injections was used to determine the functional relevance of signaling pathways 

and determine their neuroprotective effect. 

iv) The visualization and quantification of endogenous proteins was assessed by 

western blot analysis of fresh retinas and immunohistochemistry of retinal cross 

sections. 

v) The levels of gene expression and the presence of edited GluA2 in control and 

glaucomatous retinas was carried out by polymerase chain reaction (PCR) 

technique 

vi) The expression and function of CP-AMPARs in retinal neurons was established 

using the cobalt permeability assay and single-cell electrophysiological 

techniques 
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vii) The isolation of retinal-derive microglia (CD11b+) was carried out using 

fluorescence-activated cell sorting (FACS) and the presence of genes of interest 

was performed using real-time quantitative PCR. 
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Soluble tumor necrosis factor alpha promotes retinal ganglion cell death in 
glaucoma via calcium-permeable AMPA receptor activation. 
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II.1. ABSTRACT  

Loss of vision in glaucoma results from the selective death of retinal ganglion cells 

(RGCs). Tumor necrosis factor α (TNFα) signaling has been linked to RGC damage, however, 

the mechanism by which TNFα promotes neuronal death remains poorly defined. Using an in 

vivo rat glaucoma model, we show that TNFα is upregulated by Müller cells and 

microglia/macrophages soon after induction of ocular hypertension. Administration of 

XPro1595, a selective inhibitor of soluble TNFα, effectively protects RGC soma and axons. 

Using cobalt permeability assays, we further demonstrate that endogenous soluble TNFα triggers 

the upregulation of Ca2+-permeable AMPA receptor (CP-AMPAR) expression in RGCs of 

glaucomatous eyes. CP-AMPAR activation is not caused by defects in GluA2 subunit mRNA 

editing, but rather reflects selective downregulation of GluA2 in neurons exposed to elevated eye 

pressure. Intraocular administration of selective CP-AMPAR blockers promotes robust RGC 

survival supporting a critical role for non-NMDA glutamate receptors in neuronal death. Our 

study identifies glia-derived soluble TNFα as a major inducer of RGC death through activation 

of CP-AMPARs, thereby establishing a novel link between neuroinflammation and cell loss in 

glaucoma. 
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II.2. INTRODUCTION 

Glaucoma is the leading cause of irreversible blindness worldwide affecting more than 60 

million people (Tham et al., 2014). The disease is characterized by progressive optic nerve 

degeneration resulting in vision loss. A crucial element in the pathophysiology of all forms of 

glaucoma is the death of retinal ganglion cells (RGCs), the neurons that convey visual 

information from the retina to the brain. High intraocular pressure has been identified as a major 

risk factor for developing the disease, but the mechanism by which elevated pressure injures 

RGCs is unknown. There is no cure for glaucoma and the standard of care is to lower eye 

pressure by medication or surgery. Many patients, however, continue to experience visual field 

loss even when pressure lowering treatments are implemented (Caprioli, 1997; Georgopoulos et 

al., 1997). A better understanding of the mechanisms involved in glaucomatous 

neurodegeneration is, therefore, essential to develop effective therapeutics.  

Recent data demonstrate a neuroinflammatory component in glaucoma characterized by 

upregulation of proinflammatory cytokines, most notably tumor necrosis factor α (TNFα)  

(Tezel, 2013; Soto and Howell, 2014). TNFα is a pleiotropic cytokine with physiological and 

pathological functions that include regulation of inflammation, innate immunity, cancer, synaptic 

function and neurogenesis (Marin and Kipnis, 2013). TNFα is produced as a 22 kDa membrane-

bound precursor that is cleaved by ADAM-17 (a disintegrin and metalloproteinase-17) to release 

the soluble 17 kDa mature TNFα (Moss et al., 1997). Both the transmembrane and soluble forms 

of TNFα are active and play distinct biological roles (Alexopoulou et al., 2006). Soluble TNFα 

binds primarily to TNFR1 and mediates apoptosis and chronic inflammation (Holtmann and 

Neurath, 2004; Brambilla et al., 2011; Novrup et al., 2014), whereas membrane-bound TNFα 

displays higher affinity for TNFR2 and regulates immunity against pathogens, resolution of 
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inflammation and myelination (Pasparakis et al., 1996; Arnett et al., 2001; Canault et al., 2004; 

Olleros et al., 2005; Alexopoulou et al., 2006; Ierna et al., 2009). Consistent with this, mice 

expressing only transmembrane TNFα suppress the onset and progression of autoimmune 

demyelination while maintaining host defenses against bacterial infection, septic shock and 

pulmonary fibrosis (Mueller et al., 1999; Olleros et al., 2002; Alexopoulou et al., 2006; 

Oikonomou et al., 2006).  

TNFα signaling is linked to RGC damage. Exogenous administration of TNFα promotes 

RGC loss and optic nerve degeneration (Nakazawa et al., 2006; Lebrun-Julien et al., 2009b) and 

RGCs lacking TNFR1 are protected from mechanical injury (Tezel et al., 2004). TNFR2 

deficiency was associated with increased RGC loss during retinal ischemia (Fontaine et al., 

2002), yet lack of TNFR2 has been reported to protect RGCs from ocular hypertension damage 

(Nakazawa et al., 2006). The differential affinity of soluble versus transmembrane TNFα for its 

receptors as well as the timing of injury-related TNFα signaling (Mac Nair et al., 2014) may 

underlie these disparate data. Recently, high-throughput characterization of the retinal proteome 

revealed prominent upregulation of TNFα/TNFR1 signaling in human glaucoma (Yang et al., 

2011). Notably, TNFα levels are elevated in aqueous humor samples from glaucoma patients 

(Sawada et al., 2010; Balaiya et al., 2011) and TNFα gene polymorphisms are associated with 

primary open angle glaucoma (Xin et al., 2013). In spite of these correlative data, the mechanism 

by which TNFα promotes RGC death is poorly understood.  

TNFα exerts homeostatic control of synaptic strength by regulating α-amino-3-hydroxy-

5-methyl-isoxazolepropionic acid receptor (AMPAR) trafficking in the CNS (Pribiag and 

Stellwagen, 2014). Administration of exogenous TNFα to hippocampal neuron cultures induces 

cell surface expression of GluA2-lacking AMPARs, which are calcium (Ca+2)-permeable 
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(Beattie et al., 2002; Ogoshi et al., 2005; Stellwagen et al., 2005; Stellwagen and Malenka, 

2006). Moreover, TNFα-induced expression of Ca+2-permeable-AMPARs (CP-AMPAR) 

exacerbates neuronal death during acute ischemia and excitotoxicity (Ferguson et al., 2008; 

Leonoudakis et al., 2008; Lebrun-Julien et al., 2009b; Yin et al., 2012). In this study, we 

investigated whether soluble TNFα is an effector of RGC death and its mechanism of action in a 

rat glaucoma model. Our data reveal that ocular hypertension stimulates production of glia-

derived soluble TNFα which triggers RGC surface expression of CP-AMPAR contributing to 

neuronal death.  

 

II.3. MATERIALS AND METHODS 

II.3.1. Experimental animals 

All procedures were performed in male Brown Norway rats (300–400 g; Charles River 

Laboratories International, Inc., St-Constant, QC, Canada) in compliance with the guidelines of 

the Canadian Council on Animal Care for the Use of Experimental Animals 

(http://www.ccac.ca). The number of animals used in each experiment is indicated in the 

corresponding figure legend and table.  

II.3.2. Ocular hypertension 

 Unilateral elevation of intraocular pressure was induced by injection of hypertonic saline 

solution into an episcleral vein as previously described (Morrison model) (Morrison et al., 1997; 

Almasieh et al., 2010). Briefly, a plastic ring was applied to the ocular equator to confine the 

injection to the limbal plexus and a microneedle was used to inject 50 µl of sterile 1.85 M NaCl 

through an episcleral vein. Following injection, the plastic ring was removed and the eyes were 

examined to assess the extent to which the saline solution traversed the limbal microvasculature. 



71 
 

Polysporin ophthalmic ointment (Pfizer Canada Inc., Kirkland, QC) was applied to the operated 

eye and the animal was allowed to recover. Eye pressure measurements were taken from awake 

animals after corneal application of one drop of proparacaine hydrochloride (0.5%, Alcon 

Laboratories, Inc., Fort Worth, TX) using a calibrated tonometer (TonoPen XL; Medtronic 

Solan, Jacksonville, FL). The tonometer was held perpendicular to the corneal surface and ten 

consecutive readings per eye were taken and averaged. Intraocular pressure was measured every 

other day, at the same time, for the entire duration of the experiment. The mean and peak 

(maximum) intraocular pressure values for each eye were calculated and used to estimate the 

mean and peak pressure for experimental and control groups.  

II.3.3. Drug delivery 

The following compounds were injected into the vitreous chamber in a total volume of 5 

µl using a Hamilton syringe adapted with a 32-gauge glass microneedle: XPro1595 (50 µg/µl, 

Xencor Inc., Monrovia, CA), GYKI 52466 (250 µM, Tocris, Bristol, UK), or Philantotoxin 343 

(PhTx 343) (250 µM, Sigma, St Louis, MO). Control animals received sterile phosphate buffer 

(PBS) vehicle. The tip of the needle was inserted into the superior hemisphere of the eye at a 

~45° angle through the sclera into the vitreous body to avoid retinal detachment or injury to eye 

structures. Surgical glue (Indermill, Tyco Health Care, Mansfield, MA) was used to seal the 

injection site. For electrophysiological recordings, XPro1595 (Xencor Inc.) was administered 

every other day by intraperitoneal injection at a concentration shown to inhibit soluble TNFα in 

vivo (10 mg/kg) (Brambilla et al., 2011; Barnum et al., 2014). 

II.3.4. Quantification of RGC soma and axons 

Prior to induction of ocular hypertension, RGCs were retrogradely labeled with the 

indocarbocyanine dye DiI (1,1'-dioctadecyl-3,3,3’,3’-tetramethyl-indocarbocyanine perchlorate; 
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Molecular Probes, Junction City, OR) prepared by dissolving crystals (3%) in 0.9% NaCl. The 

superior colliculus was exposed and a small piece of gelfoam (Pharmacia and Upjohn Inc., 

Mississauga, ON) soaked in tracer was applied to the surface. For RGC density counts, rats were 

deeply anesthetized and perfused transcardially with 4% paraformaldehyde (PFA), the retinas 

were dissected out and flat-mounted on a glass slide with the ganglion cell layer side up. DiI-

labeled RGCs were counted in three square areas at 1, 2 and 3 mm from the optic disc in each 

retinal quadrant for a total of 12 retinal areas encompassing a total area of 1 mm2. Macrophages 

and microglia that incorporated DiI after phagocytosis of dying RGCs were excluded from our 

quantitative analysis (Lebrun-Julien et al., 2009a). For axon counts, animals received a 

transcardial injection of heparin (1000 u/kg) and sodium nitroprusside (10 mg/kg) followed by 

perfusion with 2% PFA and 2.5% glutaraldehyde in 0.1 M PBS. Optic nerves were dissected, 

fixed in 2% osmium tetroxide, and embedded in epon resin. Semi-thin sections (0.7 µm) were 

cut on a microtome (Reichert, Vienna, Austria) and stained with 1% toluidine blue. RGC axons 

were counted at 1 mm from the optic nerve head in five non-overlapping areas of each optic 

nerve section, encompassing a total area of 5,500 µm2 per nerve. The five optic nerve areas 

analyzed included: one in the center of the nerve, two peripheral dorsal and two peripheral 

ventral regions. The total area per optic nerve cross-section was measured using Northern 

Eclipse image analysis software (Empix Imaging, Toronto, ON), and this value was used to 

estimate the total number of axons per optic nerve.  

II.3.5. Retinal immunohistochemistry 

Animals were perfused transcardially with 4% PFA and retinal cryosections (16 µm) 

were prepared. The following primary antibodies were added to the retinal sections in blocking 

solution and incubated overnight at 4°C: TNFα (0.4 µg/ml; Millipore, Temecula, CA), Cellular 
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Retinaldehyde-Binding Protein (CRALBP, 1 µg/ml; ThermoFisher Scientific, Waltham, MA), 

TNFR1 (2 µg/ml Hycult biotech), TNFR2 (1.5 µg/ml Antibodies on-line), RNA-Binding Protein 

with Multiple Splicing (RBPMS, 0.01 µg/ml, PhosphoSolutions, Aurora, CO), and GluA2 (6C4, 

2 µg/ml, Millipore, Temecula, CA). Sections were washed and incubated with secondary 

antibodies: anti-rabbit IgG (1 µg/ml, Cy3, Jackson ImmunoResearch Laboratories Inc., West 

Grove, PA) or anti-mouse IgG (1 µg/ml, FITC, Sigma-Aldrich). Some animals were subjected to 

application of Fluorogold (2%, Fluorochrome, Englewood, CO) to the superior colliculus, as 

described above, for visualization of RGCs on retinal sections. For whole-mount 

immunostaining, retinas were incubated at -80°C for 15 min, then overnight at 4°C in blocking 

solution (2% normal donkey serum, 2% Triton X-100 in PBS) containing an antibody against 

ionized calcium-binding adaptor molecule 1 (Iba1, 1.5 µg/ml, Wako Pure Chemicals Industries, 

Ltd., Osaka, Japan) and TNFα (4 µg/ml, R&D Systems), followed by secondary donkey anti-

rabbit IgG Alexa Fluor 594 and anti-mouse IgG Alexa Fluor 488 (6 µg/ml Molecular Probes). 

Retinas were mounted on glass slides using an antifade reagent (Invitrogen, Eugene, OR, USA) 

for visualization with a Zeiss AxioSkop 2 Plus microscope (Carl Zeiss, Canada). 

II.3.6. Semi-quantitative RT-PCR and Q/R site editing assay 

Total RNA was isolated from individual retinas using the RNeasy Plus Mini kit (Qiagen, 

Hilden, Germany) according to the manufacturer’s instructions. First-strand cDNA synthesis was 

carried out using SuperScript III First-Strand Synthesis System (Life Technologies, Grand 

Island, NY) and oligo (dT)20 primers. PCR was performed using the following primers (300 nM): 

TNFα forward: 5'-TCCCAACAAGGAGGAGAAGTTCCC-3', TNFα reverse: 5'-AATGGCAA 

ATCGGCTGACGGTG-3', TNFR1 forward: 5'- ACCCCGGCTTCAACCCCACT-3', TNFR1 

reverse: 5'-GGGTCTGCAGTGTCAAGCCGT-3', TNFR2 forward: 5'-GTGCAGGCCCCACCG 
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CATTT-3', TNFR2 reverse: 5'-TGGGCCTCCGCTGTGACTCT-3', GluA2 forward: 5'-CTATTT 

CCAAGGGGCGCTGAT-3', GluA2 reverse: 5'-CAGTCCAGGATTACACGCCG-3', β-actin 

forward: 5'-CACCACTTTCTACAATGAGC-3´,  and β-actin reverse: 5'-CGGTCAGGATCTTC 

ATGAGG-3´. To assess Q/R site editing, the GluA2 open reading frame containing the Q/R site 

was amplified using forward (5’-GAATGGTATGGTTGGAGAGC-3’) and reverse (5’-CACTT 

TCGATGGGAGACAC-3’) primers. The expected 527 bp amplicon was obtained using a 

forward nested primer (5’-GCACACTGAGGAATTTGAAG-3’) and an identical reverse primer 

resulting in a smaller 254 bp product, which was purified (MinElute; Qiagen, Toronto, ON) and 

digested with Bbvl (New England Biolabs, Whitby, ON). The reaction products were separated 

on agarose gels and visualized using a GelDoc™ imaging system (Biorad, Hercules, CA). 

Densitometry was performed using ImageJ software (http://imagej.nih.gov) and the purified PCR 

products were sequenced (McGill University and Génome Québec Innovation Centre, QC). 

II.3.7. Subcellular fractionation and western blot analyses 

Whole retinas were isolated and homogenized in fractionation buffer: 250 mM sucrose, 

20 mM HEPES pH 7.4, 10 mM KCl, 1.5 mM MgCl2, 1 mM EDTA, and 1 mM EGTA 

supplemented with protease inhibitors. Samples were centrifuged for 13 min at 8700 x g to 

separate the nuclear fraction. The supernatant was centrifuged for an additional 6 min and 40 sec 

at 43000 x g to separate the mitochondria and lysosomal fraction (pellet). The supernatant 

containing the total membrane and cytosolic fractions was further centrifuged for 1 hr at 110000 

x g, the pellet was resuspended in fractionation buffer. Retinal samples not subjected to 

fractionation were homogenized with an electric pestle (Kontes, Vineland, NJ) in ice-cold lysis 

buffer: 50 mM Tris pH 7.4, 150 mM NaCl, 1% NP-40, 5 mM Na fluoride, 0.25% Na 

deoxycholate and 2 nM NaVO3 supplemented with protease and phosphatase inhibitors. Samples 
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were separated in 7.5-15% sodium dodecyl sulfate polyacrylamide gels (SDS-PAGE) and 

transferred to nitrocellulose membranes (Bio-Rad Life Science, Mississauga, ON). Blots were 

incubated overnight at 4°C in blocking buffer (10 mM Tris pH 8.0, 150 mM NaCl, 0.1 % Tween-

20 and 5% bovine serum albumin) containing each of the following primary antibodies: TNFα (1 

µg/ml R&D Systems), TNFR1 (2 µg/ml Hycult Biotech, Plymouth Meeting, PA), TNFR2 (1 

µg/ml Antibodies on-line, Atlanta, GA), GluA2 (4 µg/ml; Abcam, Cambridge, MA), Na+/K+ 

ATPase (0.1 µg/ml, Thermo Scientific, Rockford, IL), glyceraldehyde 3 phosphate 

dehydrogenase (GAPDH, 0.5 µg/ml, Cedarlane, Burlington, ON) or β-actin (0.5 µg/ml; Sigma-

Aldrich, Oakville, ON). Membranes were washed and incubated in peroxidase-linked anti-mouse 

or anti-rabbit secondary antibodies (0.5 µg/ml, GE Healthcare, Mississauga, ON). Blots were 

developed with a chemiluminescence reagent (ECL, Amersham Biosciences) and exposed to X-

OMAT imaging film (Eastman Kodak, Rochester, NY). Densitometry was performed using 

ImageJ software on scanned autoradiographic films obtained from a series of three independent 

western blots each carried out using retinal samples from distinct experimental or control groups. 

II.3.8. Cobalt permeability assay 

Retinas were dissected out, cut in small pieces and incubated for 30 min in oxygenated 

assay buffer (5 mM KCl, 2 mM MgCl2, 12 mM glucose, 20 mM bicarbonate, 139 mM sucrose, 

57.5 mM NaCl and 0.75 mM CaCl2). The tissue was then incubated in 5 mM CoCl2 and 10 mM 

L-glutamic acid in the presence or absence of AMPA receptor blockers GYKI 52466 (40 µM, 

Tocris) or the polyamine derivative PhTx 343 (50 µM, Sigma, St Louis, MO, USA). Cobalt 

(Co2+) was precipitated with 0.24% ammonium sulfide and the retina was then fixed in 0.8% 

glutaraldehyde and sections were prepared (20 µm). Silver enhancement of the Co2+ sulfide 

precipitate was performed with the Amersham Intense kit (GE Healthcare, Buckinghamshire, 
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UK), then retinal sections were rinsed, mounted and imaged with a Zeiss Axioplan 2 imaging 

microscope.  

II.3.9. Statistical analyses  

Data analysis and statistics were performed using the GraphPad Instat software (GraphPad 

Software Inc., San Diego, CA) by a one-way analysis of variance (ANOVA), followed by the 

Tukey’s Multiple Comparison post hoc test, or by a Student’s t test as indicated in the legends. 

 

II.4. RESULTS 

 II.4.1. TNFα and its receptors are rapidly upregulated in experimental glaucoma. 

Unilateral ocular hypertension was induced in Brown Norway rats by a single injection of 

hypertonic saline into an episcleral vein as described (Almasieh et al., 2010; Almasieh et al., 

2013). This procedure leads to blockade of aqueous humor outflow, gradual increase of eye 

pressure and selective loss of RGC soma and axons (Fig. 1A-C), producing a model that displays 

an excellent linear correlation between intraocular pressure and neuronal death. Inner retinal 

atrophy, optic nerve degeneration, and optic nerve head remodeling in this model are similar to 

those observed in human glaucoma (Morrison et al., 2005) therefore it is an excellent in vivo 

paradigm of glaucomatous damage.  

We first asked whether there are variations in endogenous TNFα levels following 

glaucoma induction. Because early changes are more likely to play a causative role in RGC loss, 

our analysis focused on events at 1 and 3 weeks after hypertonic saline injection. Quantitative 

RT-PCR of retinal samples demonstrated a gradual and significant increase of TNFα mRNA in 

glaucomatous retinas compared to non-injured controls (intact) (Fig. 1D and E). Similarly, 

western blot analysis showed a marked increase in TNFα protein levels in retinas with high 
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intraocular pressure (Fig. 1F and G). Immunohistochemistry confirmed that while retinal TNFα 

was low in control non-injured eyes, it increased substantially with ocular hypertension (Fig 1H 

and I). Co-labeling experiments using cellular retinaldehyde binding protein (CRALBP), a 

Müller cell-specific marker, demonstrated that these glial cells upregulate TNFα soon after 

glaucoma induction (Fig. J-M). On flat-mounted retinas, analysis of the inner plexiform layer 

using Iba1, a pan-microglia and macrophage marker (Imai and Kohsaka, 2002), revealed reduced 

ramifications and increased soma size in Iba1-positive cells suggestive of an activated state 

during ocular hypertension (Fig. 1N, O). TNFα was not detected in highly ramified, presumably 

quiescent, Iba1-positive cells found in non-injured retinas, but increased markedly in cells with 

round somata and simplified processes (Fig. 1P-U).  

We then asked whether the expression of TNFα receptors, TNFR1 and TNFR2, was 

altered in this glaucoma model. Our findings reveal a progressive increase of both TNFR1 and 

TNFR2 mRNA (Fig. 2A and B) and protein (Fig. 2C-F) detected as early as 1 week after 

induction of ocular hypertension. Retinal immunohistochemistry confirmed an increase in 

TNFR1- and TNFR2-positive cells (Fig. 2G and H). In the ganglion cell layer, TNFR1 and 

TNFR2 were upregulated in RGCs, visualized with the retrograde tracer Fluorogold (FG) (Fig. 

2I and J). We conclude that high intraocular pressure rapidly stimulates TNFα production by 

retinal glia and increases TNFR1/2 expression in RGCs.  

II.4.2. Inhibition of soluble TNFα promotes robust RGC soma and axon protection.  

We next sought to test whether soluble TNFα contributes to RGC loss using XPro1595, a 

dominant-negative protein that selectively inhibits soluble TNFα without interfering with 

transmembrane TNFα or TNFR (Zalevsky et al., 2007). XPro1595 was injected intraocularly at 1 

and 2 weeks after induction of ocular hypertension, and RGC survival was evaluated a week later 
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(3 weeks after injury onset). Cell soma and axon quantification was performed blinded to 

treatment. Flat-mounted retinas from eyes treated with XPro1595 showed higher densities of 

DiI-positive RGCs compared to control retinas treated with vehicle (PBS) (Fig. 3A-C). 

Quantitative analysis demonstrated that XPro1595 promoted significant RGC survival (94%: 

1785 ± 27 RGCs/mm2, mean ± S.E.M., n=7) with respect to eyes that received vehicle (65%: 

1244 ± 55 RGCs/mm2, n=6) (Fig. 3G).  

A hallmark of glaucoma is the degeneration of RGC axons in the optic nerve posterior to 

the lamina cribrosa; therefore, we also investigated the capacity of XPro1595 to protect axons. 

Analysis of optic nerve cross-sections showed a substantially larger number of RGC axon fibers 

with normal morphology in XPro1595-treated eyes compared to vehicle-treated controls (Fig. 

3D-F). The latter displayed extensive axon degeneration including disarray of fascicular 

organization and degradation of myelin sheaths. Quantitative analysis confirmed that XPro1595 

promoted marked protection of RGC axons (80%: 79917 ± 1574 axons/nerve, mean ± S.E.M., 

n=6) compared to vehicle treatment (45%: 45345 ± 7583 axons/nerve, n=6) (Fig. 3H).  

To assess whether XPro1595 reduced intraocular pressure, which could account for its 

neuroprotective effect, we measured eye pressure every other day after glaucoma induction. Our 

results show that XPro1595 administration did not reduce eye pressure and that the pressure 

elevations among XPro1595-treated and vehicle-treated groups were similar (Table 1). Given 

that the rate of RGC death is proportional to ocular hypertension, the similar increase in 

intraocular pressure amongst groups allowed for reliable comparison of the neuroprotective 

effect of XPro1595 versus vehicle. Our results demonstrate that XPro1595 protects both RGC 

soma and axons, without altering eye pressure, suggesting a prominent role for soluble TNFα in 

glaucoma downstream ocular hypertension. 
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II.4.3. Ocular hypertension-induced TNFα triggers CP-AMPAR activity in RGCs. 

 To investigate whether soluble TNFα modulates CP-AMPAR in glaucoma, we used an in 

situ cobalt (Co2+) permeability assay (Aurousseau et al., 2012). Co2+ is transported into neurons 

expressing CP-AMPAR in the plasma membrane, but it does not permeate through other Ca2+ 

channels or NMDA receptors (Hagiwara and Byerly, 1981; Mayer and Westbrook, 1987). 

Following Co2+ precipitation, the appearance of a dark brown color is visualized only in neurons 

containing CP-AMPAR. In non-injured retinas, Co2+ accumulation was detected solely in cells of 

the inner nuclear layer (INL, Fig. 4A), previously identified as horizontal and AII amacrine cells 

(Osswald et al., 2007). Remarkably, ocular hypertension induced massive Co2+ accumulation in 

the ganglion cell layer (GCL), where RGC soma are located, and in the inner plexiform layer 

(IPL), where dendrites are present (Fig. 4B). Displaced amacrine cells account for ~40-50% of 

the total number of neurons in the GCL (Perry, 1981; Schlamp et al., 2013). Hence, we 

performed co-labeling with the RGC-specific marker ‘RNA binding protein with multiple 

splicing’ (RBPMS) (Kwong et al., 2010; Rodriguez et al., 2013) to selectively label RGCs in 

intact and glaucomatous retinas (Fig 4C and D). Co-localization of Co2+ precipitate with RBPMS 

confirmed that Co2+ accumulated in RGCs (Fig. 4E-G).  

To test whether soluble TNFα was required for increased CP-AMPAR levels leading to 

Co2+ accumulation, XPro1595 was injected intraocularly 2 weeks after glaucoma induction and 

Co2+ staining was performed a week later. Figure 4H shows that XPro1595 strongly inhibited 

Co2+ uptake by RGCs. Treatment with GYKI 52466, a non-competitive AMPAR antagonist 

(Mellor, 2010), or Philantotoxin 343 (PhTx 343), a polyamine-derived compound that selectively 

antagonizes CP-AMPAR (Stromgaard et al., 2005), effectively blocked Co2+ uptake (Fig. 4I and 

J). These data indicate that Co2+ accumulation in RGCs was due to selective flux through CP-
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AMPAR and rule out the contribution of other glutamate receptors. We conclude that, in 

glaucoma, soluble TNFα triggers the CP-AMPAR activity detected in RGCs. 

II.4.4. Retinal AMPAR GluA2 subunit is fully edited at the Q/R site in glaucoma. 

The Ca2+ permeability of AMPAR varies depending on whether the GluA2 subunit is 

present and, if so, whether it has undergone mRNA editing. GluA2 mRNA editing switches an 

uncharged amino acid glutamine (Q) to a positively-charged arginine (R) and, as a result, Ca2+ 

cannot be transported due to electrostatic repulsion by the arginine residues lining the AMPAR 

pore (Burnashev et al., 1992). We then asked whether GluA2 mRNA transcripts were edited as a 

mechanism accounting for AMPAR Ca2+ permeability in glaucoma. To this end, a 254-bp 

amplicon of rat GluA2 incorporating the Q/R site was amplified from cDNA generated by RT-

PCR using retinal mRNA. Taking advantage of the presence of an additional Bbvl restriction site 

unique to the unedited GluA2 (Q) sequence, digestion of the PCR product resulted in a distinct 

band pattern consistent with GluA2 control plasmid coding for arginine at the Q/R site in both 

intact and glaucomatous retinas (Fig. 5A, 5B). In addition, parallel sequencing of the amplicon 

confirmed that GluA2 transcripts from both control and glaucoma samples encoded an arginine 

residue at the Q/R site (Fig. 5 C-F). Our data demonstrate that the GluA2 subunit is fully edited 

in glaucoma, and strongly suggest that GluA2 editing is not the cause for increased CP-AMPAR 

expression.   

II.4.5. GluA2 expression in RGCs is downregulated by ocular hypertension.  

Reduced expression or absence of the GluA2 subunit results in AMPARs that are 

permeable to Ca+2 (Dingledine et al., 1999). To determine whether TNFα-mediated loss of 

GluA2 could account for increased CP-AMPAR activity in RGCs, we examined GluA2 levels in 

glaucomatous retinas. Our results show that ocular hypertension triggers a gradual and 
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substantial decrease of both retinal GluA2 mRNA and protein (Fig. 6A-D). Subcellular 

fractionation of membrane and cytosolic fractions confirmed a significant reduction of 

membrane-associated GluA2 in hypertensive retinas (Fig. 6E and F). The enrichment of each 

fraction for membrane or cytosolic proteins was confirmed using Na+/K+ ATPase or GAPDH, 

respectively (Fig. 6E). To establish whether GluA2 was downregulated in RGCs, retinal 

immunofluorescence was performed. A striking reduction of GluA2 labeling was observed in the 

ganglion cell layer of retinas subjected to ocular hypertension (GCL, Fig. 6G and H). Co-staining 

of GluA2 with the RGC-specific marker RBPMS confirmed that loss of GluA2 labeling reflected 

protein downregulation and not death of RGCs (Fig. 6G and H). We conclude that RGC levels of 

GluA2 are markedly reduced in glaucoma.  

II.4.6. CP-AMPAR blockade promotes RGC soma and axon survival.  

To determine if TNFα mediates RGC death by modulating plasma membrane levels of 

CP-AMPAR, we examined the neuroprotective effect of AMPAR channel blockers. Our data 

show that a single injection of GYKI 52466 or PhTx 343 promoted RGC soma and axon 

protection at 3 weeks after ocular hypertension compared to vehicle-treated retinas (Fig. 7A-F). 

Quantitative analysis was performed blinded to treatment and confirmed that GYKI 52466 and 

PhTx 343 resulted in striking RGC soma survival (88% and 91%, respectively) compared to 

vehicle (65%) (Fig. 7G). Similarly, quantification of RGC axons in optic nerve cross sections 

revealed robust axonal protection by GYKI 52466 (70%) and PhTx 343 (73%) with respect to 

vehicle-treated controls (46%) (Fig. 7H). Consistent with the idea that the primary site of 

degeneration in glaucoma is at the level of the axon, we observed more pronounced axon loss 

than soma loss. Nonetheless, both GYKI 52466 and PhTx protected a similar proportion of RGC 

soma and axons. Our data demonstrate a critical role for CP-AMPAR in RGC death in glaucoma.  
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II.5. DISCUSSION 

 Despite data linking TNFα with glaucomatous neurodegeneration, little is known about 

the form of TNFα that promotes RGC death and its underlying mechanism of action. In this 

regard, the data presented here, using a well characterized rat glaucoma model reveal several 

novel findings. First, we show that ocular hypertension rapidly stimulates production of TNFα 

by Müller cells and microglia/macrophages, and increases TNFR1 and TNFR2 expression in 

RGCs. Second, we demonstrate that XPro1595, an inhibitor of soluble TNFα, effectively 

protects RGC soma and axons. Third, we show that TNFα stimulates the expression of CP-

AMPAR in RGCs, a response that does not depend on defects in GluA2 mRNA editing but 

reflects selective downregulation of GluA2 by these neurons. Lastly, our results demonstrate that 

CP-AMPAR blockers promote robust RGC survival supporting a critical role for non-NMDA 

glutamate receptors in glaucomatous damage. Collectively, this study identifies a novel 

mechanism by which glia-derived soluble TNFα modulates neuronal CP-AMPA function 

leading to RGC death, and establishes a critical link between neuroinflammation and cell damage 

in glaucoma. 

During glaucoma, chronically reactive glial cells are thought to become a sustained 

source of proinflammatory cytokines (Seitz et al., 2013). Our data demonstrate that Iba1-positive 

microglia/macrophages are a source of TNFα in ocular hypertensive eyes. TNFα expression was 

observed primarily in microglia/macrophages with amoeboid shape, characteristic of a reactive 

state, rather than in resting cells with ramified morphology. This finding is consistent with 

previous reports showing TNFα expression in microglia from human glaucomatous optic nerve 

head (Yuan and Neufeld, 2001) and rat retinas subjected to episcleral vein cauterization (Roh et 

al., 2012). Of interest, high-dose irradiation leading to reduced microglial activation, and 
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presumably decreased levels of proinflammatory mediators, attenuated RGC degeneration in a 

mouse model of inherited pigmentary glaucoma (Bosco et al., 2012; Howell et al., 2012). 

Moreover, our results demonstrate that Müller cells, the most abundant glial cell type in the 

retina, upregulate TNFα in response to increased eye pressure. Excitotoxic damage has also been 

shown to rapidly increase NFκB (nuclear factor kappa B) activation and TNFα production by 

Müller cells (Lebrun-Julien et al., 2009b). It is currently unknown how ocular hypertension 

stimulates TNFα output by reactive glia but it might involve mechanisms dependent on 

ischemia/hypoxia. For example, cultured microglia subjected to hypoxia release more TNFα and 

interleukin 1β than cells exposed to normal oxygen levels (Sivakumar et al., 2011). 

Accumulation of toxic factors may also increase glia reactivity and subsequent 

neuroinflammation. Indeed, we have previously shown that the precursor form of nerve growth 

factor activates neurotrophin receptor p75NTR-dependent signaling mechanisms on Müller cells, 

leading to increased production of TNFα and subsequent RGC death (Lebrun-Julien et al., 

2010). 

 The two active forms of TNFα, soluble and transmembrane, play distinct biological roles. 

We employed XPro1595 to block soluble TNFα and to elucidate its role in glaucomatous 

neurodegeneration. XPro1595 is an engineered protein that selectively binds with soluble TNFα 

monomers to form inactive heterotrimers unable to interact with TNFα receptors. Therefore, 

XPro1595 eliminates signaling from soluble TNFα without interfering with the transmembrane 

form (Steed et al., 2003; Zalevsky et al., 2007). Our data demonstrate that XPro1595 effectively 

promotes RGC survival, without altering intraocular pressure. Given that both TNFR1 and 

TNFR2 are upregulated by RGCs during ocular hypertension, we speculate that blockade of 

soluble TNFα minimizes the detrimental effect of TNFR1 activation while preserving beneficial 
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TNFR2-mediated signaling. Recent studies also reported a neuroprotective effect of XPro1595 in 

models of experimental autoimmune encephalomyelitis, spinal cord injury, Parkinson’s and 

Huntington’s disease, confirming a harmful role for soluble TNFα in neurodegenerative 

conditions (Brambilla et al., 2011; Barnum et al., 2014; Hsiao et al., 2014; Novrup et al., 2014). 

Etanercept, a drug that blocks both soluble and transmembrane TNFα, has been shown to protect 

RGCs in a rat glaucoma model (Roh et al., 2012). However, non-selective TNFα inhibitors, 

including etanercept, infliximab and adalimumab, have been linked to serious adverse effects 

such as impaired host defense, autoimmunity, lupus, demyelination syndromes and congestive 

heart failure (van Oosten et al., 1996; Shakoor et al., 2002; Slifman et al., 2003; Sfikakis, 2010; 

Keane et al., 2001; Lee et al., 2002). Collectively, these findings highlight the benefits of 

inhibiting soluble TNFα while preserving transmembrane TNFα function during 

neurodegeneration.   

 In physiological conditions, TNFα is an important modulator of synaptic plasticity by its 

ability to regulate AMPA receptor trafficking. In hippocampal pyramidal neurons, TNFα 

strengthens synapses by rapid exocytosis of AMPAR that lack or have low stoichiometric 

amounts of the GluA2 subunit thus enhancing intracellular Ca+2 rises (Ogoshi et al., 2005; 

Stellwagen et al., 2005). We found low levels of endogenous TNFα in the uninjured adult rat 

retina that correlated with sparse expression of CP-AMPAR. Using a Co2+ permeability assay 

applied to adult intact retinas, we confirmed that CP-AMPAR expression was restricted to 

inhibitory interneurons, horizontal and AII amacrine cells, as shown previously (Mørkve et al., 

2002; Singer and Diamond, 2003; Veruki et al., 2003; Osswald et al., 2007). Although CP-

AMPAR have been reported in acutely purified neonatal RGCs and can contribute to 

excitotoxicity (Park et al., 2015), CP-AMPAR have not been previously detected in adult RGCs. 
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Remarkably, we show that ocular hypertension triggers robust CP-AMPAR upregulation in these 

neurons. Our finding that XPro1595 attenuates Co2+ accumulation in RGCs indicates that soluble 

TNFα contributes to the increase of CP-AMPAR. Our data suggest that while basal levels of 

TNFα are required for retinal homeostasis and neurotransmission, excess soluble TNFα results in 

CP-AMPAR upregulation and cell death in glaucoma.  

Despite the presence of CP-AMPAR in horizontal and AII amacrine cells, these neurons 

are not lost in glaucoma. Indeed, morphological alterations in amacrine and horizontal cells have 

been described in ocular hypertension models, but the general consensus is that these 

interneurons do not die (Kielczewski et al., 2005; Gunn et al., 2011; Vidal-Sanz et al., 2012; 

Fernández-Sánchez et al., 2014). Several factors may contribute to the susceptibility of RGCs to 

excitotoxicity via CP-AMPAR including poor cytosolic Ca2+ buffering leading to mitochondrial 

Ca2+ overload and generation of reactive oxygen species (Crish and Calkins, 2011). Although 

much emphasis has been placed on Ca2+, other divalent cations that permeate through CP-

AMPAR might also contribute to RGC loss. For example, AMPARs are highly permeable to 

zinc (Zn2+), which can be extremely toxic for neurons (Sensi et al., 1999; Jiang et al., 2001; Kim 

and Koh, 2002; Sensi et al., 2003), and Zn2+ is known to rapidly accumulate in hippocampal 

neurons following ischemia (Koh et al., 1996; Lee et al., 2003). Recently, Zn2+ has been shown 

to play a role in oxidative stress and age-related neurodegeneration (McCord and Aizenman, 

2014). The future elucidation of the role of Zn2+ in RGC death is of interest to understand its 

potential contribution to CP-AMPAR-mediated damage in glaucoma.  

How do AMPAR become permeable to divalent ions in glaucoma? One possibility is 

defective GluA2 mRNA editing. Typically, the change from an uncharged amino acid glutamine 

(Q) to a positively charged arginine (R) in GluA2 is sufficient to confer Ca2+ impermeability 
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(Burnashev et al., 1992). Abnormal mRNA processing failing to complete this process will result 

in a Ca2+-permeable AMPAR pore. Our findings show that retinal GluA2 is fully edited in 

glaucoma, ruling out a post-transcriptional editing defect as a mechanism by which AMPARs 

become divalent permeable. A second possibility is a decrease in GluA2 leading to AMPARs 

that are permeable to divalent ions. Using biochemical and immunohistochemical analyses, we 

demonstrate that GluA2 expression is substantially downregulated in RGCs subjected to ocular 

hypertension. GluA2-lacking CP-AMPAR are traditionally thought of as Ca2+ permeable 

channels that are blocked by exogenous and endogenous polyamines, while GluA2-containing 

receptors are impermeable to Ca2+ and lack polyamine sensitivity (Bowie et al., 1999; 

Dingledine et al., 1999). Of interest, a third class of AMPAR characterized by divalent 

permeability and weak sensitivity to polyamine block has been proposed to exist in some CNS 

regions including the retina (Bowie, 2012). Indeed, while divalent permeability through AMPAR 

in horizontal and AII amacrine cells was effectively blocked with the polyamine derivative 

PhTX 343 before eye opening, these AMPAR became insensitive to PhTX 343 by postnatal day 

14 (Osswald et al., 2007). Our data show that PhTX 343 blocks divalent permeability through 

CP-AMPAR and, in doing so, promotes robust RGC survival in glaucomatous eyes. These 

observations suggest that adult retinal neurons exposed to ocular hypertension revert to an 

immature phenotype characterized by CP-AMPAR that are permeable to divalent cations and 

sensitive to polyamine block. Our findings also reveal the potential to use of polyamine-derived 

compounds as neuroprotective agents for glaucoma.  

 In conclusion, using multiple complementary techniques we demonstrate a crucial role of 

glia-derived soluble TNFα in glaucomatous neurodegeneration. Importantly, our data identify a 

novel and important mechanism of soluble TNFα-induced damage involving GluA2 
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downregulation and increased CP-AMPAR leading to RGC death. These findings expand our 

understanding of the molecular basis of RGC damage during neuroinflammation and might have 

implications in the design of neuroprotective strategies for glaucoma. 
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Figure 1. TNFα mRNA and protein are rapidly upregulated in experimental glaucoma. (A) 

Intraocular pressure (IOP) increased gradually after hypertonic saline injection into an episcleral 

vein. (B, C) Ocular hypertension (OHT) led to progressive loss of RGC soma and axons. (D) 

RT-PCR analysis of glaucomatous retinas showed rapid TNFα mRNA upregulation after OHT 

induction compared to intact controls. (E) Densitometry analysis of amplification products with 

respect ß-actin controls loaded in the same gel, confirmed TNFα gene expression upregulation in 

glaucoma (n=3, ANOVA *=p<0.05). (F) Analysis of protein homogenates showed that retinal 

TNFα levels increased at 1 and 3 weeks after OHT induction. The lower panel shows the same 

blot but probed with an antibody that recognizes β-actin to confirm equal protein loading. (G) 

Densitometry analysis of western blots showing the ratio of TNFα relative to β-actin (n=7, 

ANOVA, *=p<0.05, **=p<0.01). (H-M) Immunohistochemistry using antibodies against TNFα 

and CRALBP, a Müller cell-specific marker, demonstrated that these glial cells upregulate 

TNFα soon after glaucoma induction. (N-U) Analysis of the inner plexiform layer on whole-

mounted retinas revealed that presumptive microglia/macrophages, visualized with Iba1, are a 

source of TNFα in glaucoma. Scale bars: 50 µm. Outer Nuclear Layer; OPL: Outer Plexiform 

Layer; INL: Inner Nuclear Layer; IPL: Inner Plexiform Layer; GCL: Ganglion Cell Layer. 
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Figure 2. Ocular hypertension increases TNFR1 and TNFR2 expression by RGCs.  

(A) Rapid upregulation of TNFR1 and TNFR2 mRNA in glaucomatous retinas was detected by 

RT-PCR. (B) Densitometry analysis of amplification products with respect to ß-actin control 

loaded in the same blot confirmed upregulation of TNFR1/2 gene expression (n=4, ANOVA 

*=p<0.05, **=p<0.01). Western blot analysis demonstrated increased levels of retinal TNFR1 

(C) and TNFR2 (D). The lower panel is the same blot but probed with an antibody against β-

actin to confirm equal protein loading. Densitometry showed increased ratio of TNFR1 (E) or 

TNFR2 (F) proteins relative to β-actin in glaucomatous retinas (n=4, ANOVA, *=p<0.05, 

**=p<0.01). (G, H) Retinal immunohistochemistry confirmed an increase in TNFR1- and 

TNFR2-positive cells. (I, J) Both TNFR1 and TNFR2 were upregulated by RGCs, visualized 

with the retrograde tracer Fluorogold (FG). Scale bars: 50 µm. INL: Inner Nuclear Layer; IPL: 

Inner Plexiform Layer; GCL: Ganglion Cell Layer. 
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Figure 3. Inhibition of soluble TNFα promotes RGC soma and axon protection.  

(A-C) Flat-mounted retinas from eyes treated with XPro1595 displayed higher densities of DiI-

positive RGCs compared to control retinas treated with vehicle at 3 weeks after ocular 

hypertension (OHT). Scale bars: 50 µm. (D-F) Optic nerves in XPro1595-treated eyes contained 

more RGC axon fibers with normal morphology compared to control eyes. Scale bars: 10 µm. 

(G, H) Quantitative analysis confirmed that XPro1595 (black bars) promoted significant RGC 

soma and axon survival compared to control eyes treated with vehicle (grey bars). The densities 

of RGC soma and axons in intact, non-glaucomatous Brown Norway rat retinas are shown as 

reference (white bars, 100% survival). Values are expressed as the mean ± S.E.M. (intact: n=7; 

XPro1595: n=7, vehicle: n=6, ANOVA, ***=p<0.001). 
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Figure 4. TNFα stimulates the expression of CP-AMPAR by RGCs. 

(A) Co2+ accumulation in non-injured (intact) retinas, was detected solely in cells of the inner 

nuclear layer (INL) previously identified as horizontal and AII amacrine cells. (B) Ocular 

hypertension (OHT) promoted Co2+ accumulation in the ganglion cell layer (GCL) and inner 

plexiform layer (IPL), where RGC soma and dendrites are located (n=6-8/group). 

Immunohistochemistry with RBPMS, which allowed identification of RGCs in both intact and 

glaucomatous retinas (C, D), demonstrated Co2+ accumulation in RBPMS-positive cells (E-G). 

Glaucoma-induced Co2+ uptake was blocked by XPro1595, GYKI 52466 and PhTx 343 (H-J) 

indicating that Co2+ accumulation in RGCs was due to increased flux of divalent cations 

exclusively through TNFα-induced CP-AMPAR (n=6-8/group). Scale bars: 20 µm. PS: 

Photoreceptor Segments; ONL: Outer Nuclear Layer; OPL: Outer Plexiform Layer; INL: Inner 

Nuclear Layer; IPL: Inner Plexiform Layer; GCL: Ganglion Cell Layer. 
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Figure 5. AMPAR GluA2 subunits are fully edited at the Q/R site in glaucoma. 

 (A) The presence of an additional Bbvl restriction site at the Q/R site was used to determine the 

editing state of GluA2. Bbvl digestion of a 254-bp amplicon comprising the Q/R site led to the 

appearance of two or three fragments, corresponding to the presence of edited (R) and unedited 

(Q) GluA2 forms, respectively. (B) The Bbvl digestion pattern of the GluA2 amplicon amplified 

from cDNA generated from intact and glaucomatous retina matched that of the fully edited 

GluA2 (R) plasmid control. (C-F) Sanger sequencing shows that both uninjured (intact) and 

glaucomatous (OHT) retinas encoded for arginine (CGG) at the Q/R site (highlighted yellow).  
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Figure 6. GluA2 is downregulated in RGCs subjected to ocular hypertension. 

(A) RT-PCR analysis of glaucomatous retinas showed GluA2 mRNA downregulation after OHT 

induction compared to intact controls. (B) Densitometry analysis of amplification products with 

respect to ß-actin controls confirmed GluA2 gene expression downregulation in glaucoma (n=3, 

ANOVA *=p<0.05). (C) Analysis of protein homogenates showed a decrease in retinal GluA2 

levels after OHT induction. The lower panel is the same blot probed with an antibody that 

recognizes β-actin to confirm equal protein loading. (D) Densitometry analysis of western blots, 

showing the ratio of GluA2 relative to β-actin (n=11, ANOVA, **=p<0.01). (E) Subcellular 

fractionation showed a decrease in membrane-associated GluA2 in hypertensive retinas. 

Enrichment of each fraction for membrane or cytosolic proteins was confirmed using Na+/K+ 

ATPase or GAPDH, respectively (F) Densitometry analysis revealed a significant decrease of 

GluA2 in the membrane fraction from ocular hypertensive (OHT) retinas compared to intact 

controls (n=4, Student’s t test, *=p<0.05). (G, H) Double immunohistochemistry showed that 

GluA2 (red) co-localized with the RGC-specific marker RBPMS (green), and that GluA2 protein 

expression decreased in glaucomatous (OHT) retinas. Scale bar: 50 µm. ONL: Outer Nuclear 

Layer; OPL: Outer Plexiform Layer; INL: Inner Nuclear Layer; IPL: Inner Plexiform Layer; 

GCL: Ganglion Cell Layer. 
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Figure 7. CP-AMPAR blockade promotes RGC survival.  

(A-C) Flat-mounted retinas from eyes treated with PhTX343 or GYKI 52466 displayed higher 

densities of DiI-positive RGCs compared to control retinas treated with vehicle at 3 weeks after 

ocular hypertension (OHT). Scale bars: 50 µm. (D-F) Optic nerves from PhTX343- or GYKI 

52466-treated eyes contained many more RGC axon fibers with normal morphology compared to 

control eyes. Scale bars: 10 µm. (G, H) Quantitative analysis confirmed that PhTX343 (black 

bars) and GYKI 52466 (dark grey bars) promoted significant RGC soma and axon survival 

compared to control eyes treated with vehicle (light grey bars). The densities of RGC soma and 

axons in intact, non-glaucomatous Brown Norway rat retinas are shown as reference (white bars, 

100% survival). Values are expressed as the mean ± S.E.M. (intact: n=7; PhTX343: n=6, GYKI 

52466: n=6; vehicle: n=6, ANOVA, ***=p<0.001, *=p<0.05). 
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II.7. TABLES 

Table 1. Intraocular pressure (IOP) elevation in glaucomatous eyes treated with different 

compounds. Mean and peak IOP elevations for each cohort of rats exposed to 3 weeks of ocular 

hypertension (OHT) after treatment with XPro1595, GIKY 52466, PhTX 343 or vehicle (n = 5-

15/group).  

 
 
 
 
 
 
 
 
 
 
 
 
  

Table 1. Intraocular pressure (IOP) elevation in glaucomatous eyes 

Peak IOP (mm Hg)) Mean IOP (mm Hg) ± S.E.M. Time after 
OHT surgery 

Vehicle 
XPro1595 

36 ± 0.6 
37 ± 0.7 
35 ± 0.8 
35 ± 1.0 

15 
15 
7 
5 

24 ± 0.2 
25 ± 0.2 
24 ± 0.5 
24 ± 0.6 

12 ± 0.6 
12 ± 0.6 
11 ± 0.7 
11 ± 1.4 

39 ± 0.6 
41 ± 1.7 
39 ± 1.4 
39 ± 1.3 

26 ± 1.2 
26 ± 0.6 
26 ± 0.5 
26 ± 0.6 

 
Treatment 

Glaucoma 
 

N 
 Control 

 
Difference 

 
Glaucoma 

 
Control 

 

3 weeks GIKY 52466 
PhTx 343 
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III.1. ABSTRACT  

 Glaucoma is the leading cause of irreversible blindness worldwide. Loss of vision in 

glaucoma results from the loss of retinal ganglion cells (RGCs). Glial cell-mediated 

neuroinflammation has been proposed to contribute to glaucoma pathophysiology, but whether 

this response is damaging or beneficial for RGC survival is not well understood. To test this, we 

characterized the role of ibudilast, a clinically approved glial cell modulator and a cAMP 

phosphodiesterase (PDE) inhibitor with preferential affinity for PDE type 4 (PDE4). Using a rat 

model of ocular hypertension, our data demonstrate that intraocular administration of ibudilast 

effectively attenuated macroglia and microglia reactivity in the retina and optic nerve. Reduced 

glial cell activation correlated with decreased production of proinflammatory cytokines including 

tumor necrosis factor α, interleukin-1β, interleukin-6 and macrophage migration inhibitory 

factor. Importantly, ibudilast treatment promoted robust RGC soma and axonal survival in 

glaucomatous eyes. Immunohistochemical analysis of intact retinas revealed abundant PDE4 

expression in neurons of the inner nuclear and ganglion cell layers. Intriguingly, ocular 

hypertension triggered substantial PDE4A expression in Müller glia, which correlated with 

accumulation of cAMP in these cells after ibudilast treatment. Co-administration of ibudilast 

with Rp-cAMPS, a cell-permeable and non-hydrolysable cAMP analog that inhibits protein 

kinase A (PKA), completely obliterated the neuroprotective effect of ibudilast. Our study 

demonstrates that ibudilast, a safe and well-tolerated glial cell modulator, attenuates gliosis and 

production of proinflammatory mediators in glaucoma, and enhances neuronal viability through 

activation of the cAMP/PKA pathway. Collectively, these findings identify PDE4/cAMP/PKA 

signaling as a potential target for the modulation of the harmful effects associated with chronic 

neuroinflammation in glaucoma.   
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III.2. INTRODUCTION 

 Glaucoma is an optic neuropathy and a leading cause of irreversible blindness that affects 

over 60 million people worldwide (Tham et al. 2014). Vision loss in glaucoma results from the 

progressive and relentless loss of retinal ganglion cells (RGCs) and their axons in the optic 

nerve. High intraocular pressure (IOP) is a major risk factor for developing glaucoma and, as 

such, therapies have focused on pharmacological or surgical strategies to lower eye pressure 

(Weinreb and Khaw 2004). In many cases, however, visual deficits continue to progress in spite 

of effective pressure control, indicating that mechanisms other than elevated IOP contribute to 

disease progression (Schwartz and London 2008).  

Accumulating evidence suggests that neuroinflammation plays a role in RGC death in 

glaucoma (Soto and Howell 2014a; Tezel 2013). Indeed, a number of studies have confirmed the 

presence of hallmark features of neuroinflammation in glaucoma animal models as well as in 

human specimens including glial cell activation (Bosco et al. 2011; Ebneter et al. 2010; 

Hernandez et al. 2008; Inman and Horner 2007; Johnson and Morrison 2009; Sun et al. 2013; 

Wang et al. 2002; Yuan and Neufeld 2001), increased proinflammatory cytokine signaling 

(Howell et al. 2012; Johnson et al. 2011; Tezel et al. 2012; Yang et al. 2011a), induction of the 

complement cascade (Ahmed et al. 2004; Howell et al. 2011; Kuehn et al. 2008; Ren and Danias 

2010; Stasi et al. 2006; Stevens et al. 2007; Tezel et al. 2010), and trans-endothelial migration of 

leukocytes (Howell et al. 2012). Although chronic inflammation can be damaging for neurons, it 

has been recognized that the recruitment of immune cells is an integral component of the central 

nervous system (CNS) ability for self-repair and for the resolution of inflammation (Schwartz 

and Baruch 2014; Schwartz and London 2009). Based on this, we put forward the hypothesis that 
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strategies that attenuate the inflammatory response in glaucoma, but do not completely eliminate 

it, might have a beneficial effect on neuronal viablity.  

To test this, we characterized the role of ibudilast (3-isobutyryl-2-isopropylpyrazolo[1,5-

a]pyridine), a non-selective 3',5'-cyclic adenosine monophosphate (cAMP) phosphodiesterase 

(PDE) inhibitor with preferential affinity for PDE type 4 (PDE4) (Gibson et al. 2006; Huang et 

al. 2006). Ibudilast is a glial cell modulator that attenuates gliosis and decreases the production 

of proinflammatory cytokines (Mizuno et al. 2004; Rodgers et al. 2014; Suzumura et al. 1999).  

Ibudilast has been clinically used for almost two decades for the treatment of asthma and post-

stroke dizziness, and is currently being developed as a potential therapy for multiple sclerosis, 

neuropathic pain and drug addiction (Rolan et al. 2009).  

Using a rat model of ocular hypertension, we demonstrate that ibudilast effectively attenuated 

glial cell activation in the retina and optic nerve, and reduced the levels of proinflammatory 

cytokines. Importantly, ibudilast promoted robust survival of RGC soma and axons exposed to 

ocular hypertension. Of interest, elevated IOP triggered PDE4A upregulation in Müller glia, and 

ibudilast treatment resulted in cAMP accumulation in these cells. Co-administration of ibudilast 

with Rp-cAMPS, an inhibitor of the cAMP-dependent protein kinase (PKA), blocked ibudilast-

mediated neuroprotection. Collectively, our findings demonstrate that the glial cell modulator 

ibudilast promotes substantial RGC soma and axon survival in a PKA-dependent manner, and 

suggest that ibudilast might counter the injurious phenotype associated with neurodegeneration, 

by increasing cAMP levels in Müller cells. 
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III.3. MATERIALS AND METHODS 

III.3.1. Experimental animals 

All procedures were performed in male Brown Norway rats (300–400 g; Charles River 

Laboratories International, Inc., St-Constant, QC, Canada) in compliance with the guidelines of 

the Canadian Council on Animal Care for the Use of Experimental Animals 

(http://www.ccac.ca). The number of animals used in each experiment is indicated in the 

corresponding figure legend and table. 

III.3.2. Ocular hypertension 

 Unilateral elevation of intraocular pressure was induced by injection of hypertonic saline 

solution into an episcleral vein as previously described (Morrison model) (Cueva Vargas et al. 

2015; Morrison et al. 1997). Briefly, a plastic ring was applied to the ocular equator to confine 

the injection to the limbal plexus and a microneedle was used to inject 50 µl of sterile 1.85 M 

NaCl through an episcleral vein. Following injection, the plastic ring was removed and the eyes 

were examined to assess the extent to which the saline solution traversed the limbal 

microvasculature. Polysporin ophthalmic ointment (Pfizer Canada Inc., Kirkland, QC) was 

applied to the operated eye and the animal was allowed to recover. Eye pressure measurements 

were taken from awake animals after corneal application of one drop of proparacaine 

hydrochloride (0.5%, Alcon Laboratories, Inc., Fort Worth, TX) using a calibrated tonometer 

(TonoPen XL; Medtronic Solan, Jacksonville, FL). The tonometer was held perpendicular to the 

corneal surface and ten consecutive readings per eye were taken and averaged. Intraocular 

pressure was measured every other day, at the same time, for the entire duration of the 

experiment. The mean and peak (maximum) intraocular pressure values for each eye were 

calculated and used to estimate the mean and peak pressure for experimental and control groups. 
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III.3.3. Drug delivery 

The following compounds were injected at one and two weeks after OHT induction into 

the vitreous chamber in a total volume of 5 µl using a Hamilton syringe adapted with a 32-gauge 

glass microneedle: Ibudilast (3-isobutyryl-2-isopropylpyrazolo[1,5-a] pyridine, 500 µM, Sigma, 

St Louis, MO), Rp-cAMPS (Rp-Adenosine 3’,5’-cyclic 

monophosphorothioatetriethylammonium salt, 500 µM; Sigma), or rolipram (150 µM; Sigma). 

Control animals received sterile phosphate buffer (PBS) vehicle. The tip of the needle was 

inserted into the superior hemisphere of the eye at a ~45° angle through the sclera into the 

vitreous body to avoid retinal detachment or injury to eye structures. Surgical glue (Indermill, 

Tyco Health Care, Mansfield, MA) was used to seal the injection site. Animals were sacrificed 

three weeks after OHT induction.  

III.3.4. Retinal immunohistochemistry 

Flat mounted retinas: Rats were perfused transcardially with 4% paraformaldehyde 

(PFA), the eyes were immediately collected, and the retinas were carefully dissected out. Retinas 

were free floated overnight at 4°C in blocking solution: 10% normal goat serum (NGS) or 

normal donkey serum (NDS), 2.5% BSA, and 0.5% Triton X-100 in PBS. Retinas were then 

incubated for 72 h a 4°C in blocking solution containing an antibodies against: brain-specific 

homeobox/POU domain protein 3 (Brn3a; 0.3 µg/ml; Santa Cruz Biotechnologies, Santa Cruz, 

CA, USA), cluster of differentiation 68 (CD68, 5 µg/ml, Millipore, Temeluca, CA), anti-ionized 

calcium binding adapter molecule-1 (Iba1, 1.5 µg/ml, Wako Chemicals, Osaka, JA), or TNFα (4 

µg/ml, R&D Systems, Minneapolis, MN). Samples were then incubated in secondary donkey 

anti-rabbit IgG Alexa Fluor 594 or anti-mouse IgG Alexa Fluor 488 (6 µg/ml Molecular Probes, 

Eugene, OR). The retinas were washed and flat-mounted on glass slides with the retinal ganglion 
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cell layer side up for visualization using a fluorescent microscope (Zeiss AxioSkop 2 Plus, Carl 

Zeiss, Canada). 

Retinal cross sections: Animals were perfused transcardially with 4% PFA and retinal 

cryosections (16 µm) were prepared. The following primary antibodies were added to the retinal 

sections in blocking solution and incubated overnight at 4°C: Glial fibrillary acidic protein 

(GFAP, 1 µg/ml, Millipore), CD68 (2 µg/ml, Millipore), cellular retinaldehyde-binding protein 

(CRALBP, 1 µg/ml; ThermoFisher Scientific, Waltham, MA), Iba1 (1.5 µg/ml, Wako 

Chemicals), RNA-Binding Protein with Multiple Splicing (RBPMS, 0.01 µg/ml, 

PhosphoSolutions, Aurora, CO), glutamine synthetase (GS, Sigma), phosphodiesterase 4 types 

A, B and D (PDE4A, B and D; 2.5 µg/ml, Abcam, Cambridge, MA), or cAMP (1 µg/ml, 

Abcam). Sections were washed and incubated with secondary antibodies: anti-rabbit IgG (1 

µg/ml, Cy3, Jackson ImmunoResearch Laboratories Inc., West Grove, PA) or anti-mouse IgG (1 

µg/ml, FITC, Sigma).  

III.3.5. RGC and microglia quantification 

RGC soma counts: Whole retinas labeled with Brn3a were washed and flat-mounted on 

glass slides with the retinal ganglion cell layer side up for visualization using a fluorescent 

microscope (Zeiss AxioSkop 2 Plus, Carl Zeiss, Canada). Brn3a-labeled RGCs were counted in 

three square areas at 1, 2 and 3 mm from the optic disc in each retinal quadrant for a total of 12 

retinal areas encompassing a total area of 1 mm2.  

RGC axon counts: Animals received a transcardial injection of heparin (1000 u/kg) and 

sodium nitroprusside (10 mg/kg) followed by perfusion with 2% PFA and 2.5% glutaraldehyde 

in 0.1 M PBS. Optic nerves were dissected, fixed in 2% osmium tetroxide, and embedded in 

epon resin. Semi-thin sections (0.7 µm) were cut on a microtome (Reichert, Vienna, Austria) and 
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stained with 1% toluidine blue. RGC axons were counted at 1 mm from the optic nerve head in 

five non-overlapping areas of each optic nerve section, encompassing a total area of 5,500 µm2 

per nerve. The five optic nerve areas analyzed included: one in the center of the nerve, two 

peripheral dorsal and two peripheral ventral regions. The total area per optic nerve cross-section 

was measured using Northern Eclipse image analysis software (Empix Imaging, Toronto, ON), 

and this value was used to estimate the total number of axons per optic nerve.  

Microglia counts: Whole retinas labeled with CD68 were washed and flat-mounted on 

glass slides with the retinal ganglion cell layer side up. CD68-positive cells were counted in three 

square areas at 1, 2 and 3 mm from the optic disc in each retinal quadrant for a total of 12 retinal 

areas encompassing a total area of 1 mm2.  CD68-positive cells were also quantified in 3 non-

overlapping square areas (0.077 mm2/each) on longitudinal sections of optic nerve.  

III.3.6. Western blot analyses 

Retinal samples were homogenized with an electric pestle (Kontes, Vineland, NJ) in ice-

cold lysis buffer: 50 mM Tris pH 7.4, 150 mM NaCl, 1% NP-40, 5 mM Na fluoride, 0.25% Na 

deoxycholate and 2 nM NaVO3 supplemented with protease and phosphatase inhibitors. Samples 

were separated in 7.5-15% sodium dodecyl sulfate polyacrylamide gels (SDS-PAGE) and 

transferred to nitrocellulose membranes (Bio-Rad Life Science, Mississauga, ON). Blots were 

incubated overnight at 4°C in blocking buffer (10 mM Tris pH 8.0, 150 mM NaCl, 0.1 % Tween-

20 and 5% bovine serum albumin) containing each of the following primary antibodies: TNFα, 

interleukin 1β (IL-1β), interleukin 6 (IL-6) (1 µg/ml, R&D Systems), migratory macrophage 

inhibitory factor (MIF, 1 µg/ml, Abcam), or β-actin (0.5 µg/ml; Sigma). Membranes were 

washed and incubated in peroxidase-linked anti-mouse or anti-rabbit secondary antibodies (0.5 

µg/ml, GE Healthcare, Mississauga, ON). Blots were developed using a chemiluminescence 
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reagent (Bio-Rad, Mississauga, ON) followed by exposure of blots to ChemiDoc MP System 

(Bio-Rad). Densitometric analysis was performed using Image Lab capture and analysis software 

(Bio-Rad) on scanned autoradiographic films obtained from a series of three independent 

western blots each carried out using retinal samples from distinct experimental or control groups. 

III.3.7. Statistical analyses  

Data analysis and statistics were performed using the GraphPad Instat software 

(GraphPad Software Inc., San Diego, CA) by a one-way analysis of variance (ANOVA), 

followed by the Tukey’s Multiple Comparison post hoc test, or by a Student’s t test as indicated 

in the legends. 

 

III.4. RESULTS 

III.4.1. Ibudilast attenuates astrocyte reactivity in experimental glaucoma. 

Astrocyte activation is a hallmark of retinal and optic nerve injury (Hernandez et al 

2008). To investigate the effect of ibudilast on astrocytic changes in experimental glaucoma, 

retinal cross sections were evaluated using an antibody against glial fibrillary acidic protein 

(GFAP). A basal level of GFAP labeling was detected in astrocytic processes in the retinal 

ganglion cell layer, as well as astrocytes in the optic nerve head and optic nerve proper of the 

intact (non-injured) eyes (Fig. 1A, D, G). Three weeks after induction of ocular hypertension, a 

marked increase in GFAP immunoreactivity was observed in retinal astrocytes as well as the 

proximal Müller cell radial processes (Fig. 1 B). Similarly, GFAP labeling was noticeably 

upregulated in astrocytes residing in the optic nerve (Fig. 1E, H). Intraocular administration of 

ibudilast resulted in a significant attenuation of GFAP immunostaining both in the retina and 

optic nerve of glaucomatous eyes (Fig. 1C, F, I). Western blot analysis of fresh retinal 
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homogenates demonstrated a robust increase in GFAP protein levels in retinas exposed to ocular 

hypertension compared to intact controls (Fig. 1J, K). Ibudilast treatment resulted in a substantial 

decrease of retinal GFAP expression in glaucoma (Fig. 1J, K), consistent with reduced 

astrogliosis. We conclude that ibudilast effectively attenuates astrocyte and Müller cell reactivity 

in glaucomatous eyes. 

III.4.2. Proliferation and activation of microglia/macrophages are reduced by ibudilast. 

RGC death has been shown to correlate with microglia activation and proliferation (Rojas 

et al. 2014; Wohl et al. 2010). To determine whether ibudilast exerted an effect on microgliosis, 

we first carried out retinal and optic nerve immunolabeling with Iba1, a pan-microglia and 

macrophage marker (Imai and Kohsaka 2002). Ocular hypertension resulted in a marked increase 

in the number of macroglia/macrophages detected in retinal cross section using Iba1 (Fig. 2A, 

B). On flat-mounted retinas, analysis of the inner plexiform layer revealed reduced ramifications 

in Iba1-positive cells, suggestive of an activated state, during ocular hypertension (Fig. 2D, E). 

Ibudilast treatment effectively decreased the number of Iba1-positive cells (Fig. 2C, F). Staining 

of flat-mounted retinas with Iba1 and CD68, a marker of active microglia/macrophages with a 

phagocytic phenotype (Sanchez-Guajardo et al. 2010; Travaglione et al. 2002), demonstrated a 

substantial increase in the number of double-labeled cells, which was markedly reduced in the 

presence of ibudilast (Fig. 2G-O). Quantitative analysis confirmed that ocular hypertension 

resulted in a 5.3-fold increase in the number of CD68/Iba1-positive cells compared to intact 

retinas, and that ibudilast treatment significantly attenuated this response (Fig. 2 P).  

Analysis of the optic nerve at the levels of its head and proximal segment also revealed a 

striking increase in the number of Iba1-positive cells, which was effectively reduced with 

ibudilast treatment (Fig. 3A-F). Double labeling with Iba1 and CD68 revealed a marked increase 
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in the number of active microglia/macrophages in glaucomatous eyes, which was reduced by 

ibudilast (Fig. 3 G-O). Similar to the retina, quantitative analysis confirmed a 2.4-fold increase in 

CD68/Iba1-positive cells in optic nerves subjected to ocular hypertension, and a tangible 

decrease in the number of active microglia/macrophages with ibudilast (Fig. 3P). We conclude 

that there is important microgliosis following induction of ocular hypertension, characterized by 

activation and increased density of microglia/macrophages, and that ibudilast can effectively 

reduce this response.  

III.4.3. Levels of pro-inflammatory cytokines are attenuated by ibudilast in experimental 

glaucoma. 

Glial cell reactivity has been associated with increased production of pro-inflammatory 

cytokines (Soto and Howell 2014b). To assess whether ibudilast influenced the global level of 

cytokines, we performed western blot analyses of retinal homogenates from glaucomatous and 

control eyes. Our data demonstrate that TNFα is upregulated in glaucomatous retinas at three 

weeks after induction of ocular hypertension, and that intravitreal administration of ibudilast 

significantly reduced the levels of retinal TNFα to those found in uninjured retinas (Fig 4A). The 

efficacy of ibudilast to modulate the expression of other proinflammatory cytokines including 

IL-1β, IL-6 and MIF was also evaluated. Similar to TNFα, western blot analysis showed that IL-

β, IL-6 and MIF were upregulated in glaucoma and that ibudilast treatment decrease the amount 

of these cytokines to basal levels found in intact retinas (Fig 4 C, E, F). These findings were 

confirmed by densitometric analysis (Fig. 4C-D, G-H). We conclude that intravitreal injection of 

ibudilast markedly attenuates the expression of TNFα, IL-1β, IL-6 and MIF in experimental 

glaucoma. 
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III.4.4. Ibudilast protects RGC soma and axon protection from ocular hypertension 

damage. 

We next sought to determine whether ibudilast protected RGCs from ocular 

hypertension-induced damage. Ibudilast was injected intraocularly at 1 and 2 weeks after 

induction of ocular hypertension, and RGC survival was evaluated a week later (3 weeks after 

injury onset). Cell soma and axon quantification was performed blinded to treatment. Flat-

mounted retinas from eyes treated with ibudilast showed higher densities of cells positive for 

Brn3a, an RGC-specific marker (Nadal-Nicolas et al. 2009), compared to control retinas treated 

with vehicle (PBS) (Fig. 5A-C). Quantitative analysis demonstrated that ibudilast promoted 

significant RGC survival (92%: 1884 ± 44 RGCs/mm2, mean ± S.E.M., n=5) with respect to eyes 

that received vehicle (68%: 1399 ± 128 RGCs/mm2, n=6) (Fig. 5G).  

A hallmark of glaucoma is the degeneration of RGC axons in the optic nerve posterior to 

the lamina cribrosa, therefore, we also investigated the capacity of ibudilast to protect axons. 

Analysis of optic nerve cross-sections showed a substantially larger number of RGC axon fibers 

with normal morphology in ibudilast-treated eyes compared to vehicle-treated controls (Fig. 5D-

F). The latter displayed extensive axon degeneration including disarray of fascicular organization 

and degradation of myelin sheaths. Quantitative analysis confirmed that ibudilast promoted 

marked protection of RGC axons (91%: 90640 ± 2658 axons/nerve, mean ± S.E.M., n=5) 

compared to vehicle treatment (61%: 61319 ± 8112 axons/nerve, n=6) (Fig. 5H). To assess 

whether ibudilast reduced intraocular pressure, which could account for its neuroprotective 

effect, we measured eye pressure every other day after glaucoma induction. Our results show that 

ibudilast administration did not reduce eye pressure (Table 1). Given that the rate of RGC death 

is proportional to ocular hypertension, the similar increase in intraocular pressure amongst 
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groups allowed for reliable comparison of the neuroprotective effect of ibudilast versus vehicle. 

Our results demonstrate that ibudilast protects both RGC soma and axons, without altering eye 

pressure.  

III.4.5. Ocular hypertension triggers PDE4A expression in Müller cells. 

Next we sought to identify the cellular targets of ibudilast action in the retina. Ibudilast 

exerts its function by inhibiting cAMP PDE activity and has a demonstrated preferential affinity 

for PDE4 (Huang et al. 2006). In mammals, there are multiple variants of PDE4 encoded by four 

non-redundant genes (PDE4A-D) (Houslay et al. 2005). In the rat retina, only PDE4A, PDE4B 

and PDE4D are expressed, with PDE4A being the most abundant (Whitaker and Cooper 2009). 

Immunohistochemical analysis confirmed that PDE4A is expressed in many cells of the inner 

nuclear and ganglion cell layers in the intact, non-injured retina (Fig. 6A).  Similar to previous 

studies, we found that PDE4A was expressed by RGCs, visualized with the RGC-specific marker 

RNA-Binding Protein with Multiple Splicing (RBPMS) (Fig. 6B-D). In glaucomatous retinas, 

however, in addition to PDE4A-positive RGCs, we detected the appearance of strongly labeled 

radial processes resembling presumptive Müller glia (Fig. 6E). Co-localization of PDE4A with 

the Müller cell-specific marker Cellular Retinaldehyde Binding Protein (CRALBP) confirmed 

that ocular hypertension triggered PDE4A expression in these glial cells (Fig. 6F-H). In contrast, 

we did not detect PDE4A expression in Iba1-positive microglia/macrophages in glaucomatous 

retinas (Fig. 6I-K). PDE4B and PDE4D were also detected in cells of the inner nuclear and 

ganglion cell layers, including RGCs, but their expression pattern did not change with glaucoma 

(Fig. 6L-S).  

To establish whether ibudilast altered cAMP levels in the retina, we performed 

immunohistochemical analysis using an antibody against cAMP (Fig. 7). Our results show that 
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intraocular injection of ibudilast stimulated a marked increase in cAMP in glaucomatous retinas 

compared to vehicle-treated controls (Fig. 7A-C), consistent with its activity as a cAMP PDE 

inhibitor. Interestingly, robust accumulation of cAMP was observed in Müller cell end-feet and 

radial processes, visualized with the specific marker glutamine synthetase (GS) (Fig 7C-E). In 

addition, cAMP was also observed in RGCs, identified with RBPMS (Fig. 7F-H). We conclude 

that ibudilast results in cAMP accumulation in target cells, most notably in Müller glia.  

III.4.6. The neuroprotective effect of ibudilast is mediated by protein kinase A (PKA) 

activation. 

cAMP exerts its biological functions primarily by activating PKA (Scott 1991). 

Therefore, we asked whether the effect of ibudilast on the glial response and subsequent 

neuroprotection in glaucoma involved PKA activation. To test this, we administered ibudilast in 

combination with Rp-cAMPS, a cell permeable, non-hydrolysable cAMP analog and a 

competitive inhibitor of PKA (Dostmann 1995). Our data show that co-administration of 

ibudilast and Rp-cAMPS completely blocked the pro-survival effect of ibudilast on RGC soma 

and axons to levels found in vehicle-treated eyes (Fig. 8A, B; light grey bars). Injection of Rp-

cAMPS into intact, non-injured retinas did not show any toxic effects (Fig. 8A, B; hatched bars). 

Furthermore, treatment with rolipram, a selective inhibitor of PDE4, resulted in a 

neuroprotective effect of both RGC soma and axons similar to that obtained with ibudilast (Fig. 

8A, B; dark grey bars). Collectively, our data demonstrate that ibudilast mediates RGC survival 

through activation of the PKA pathway.  
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III.5. DISCUSSION 

Despite accumulating evidence linking glial activation and neuroinflammation with 

glaucomatous damage, little is known about whether interfering with the inflammatory response 

is beneficial for neuronal viablity. In this regard, the data presented here, using a well 

characterized rat model of glaucoma reveal several novel findings. First, we show that ocular 

hypertension results in astrocyte reactivity, microgliosis and accumulation of pro-inflammatory 

cytokines, a response that is markedly attenuated by ibudilast. Second, we demonstrate that 

intraocular administration of ibudilast effectively protects RGC soma and axons in glaucomatous 

eyes. Third, we show that elevated IOP triggers PDE4A expression in Müller glia and that 

ibudilast leads to cAMP accumulation in target cells. Lastly, our results indicate that the effect of 

ibudilast on the glial cell response and subsequent RGC survival in glaucoma are dependent on 

PKA activation. This study identifies ibudilast as a useful glial cell modulator with favourable 

effects on neuronal viability in glaucoma, and reveals that the cAMP/PKA pathway is a key 

regulator of this response. Collectively, our data suggest that attenuation of some aspects of the 

inflammatory response during glaucoma, including overt glial reactivity, might be helpful to 

enhance viability of neurons subjected to chronic ocular hypertension. 

A prominent neuroinflammatory component, reported in glaucomatous human retinas and 

in animal models of the disease, has been proposed to contribute to RGC damage (Soto and 

Howell 2014b). This inflammatory response is mediated by reactive astrocytes, Müller cells, 

microglia, and infiltrating monocytes acting in a coordinated manner  (Chong and Martin 2015). 

Astrocytes form a cellular network in close association with the retinal vasculature, where they 

regulate the blood-retinal interface. In the rodent optic nerve head, GFAP-positive astrocytes 

form a dense meshwork that ensheaths RGC axons organizing them into fiber bundles (Sun et al. 
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2009). Recent data demonstrate that astrocytes in the optic nerve head are endowed with a 

constitutive phagocytic activity and engulf mitochondria-containing RGC axon segments for 

degradation (Davis and Marsh-Armstrong 2014). Müller cells are specialized radial glia that span 

the entire thickness of the retina and have processes that closely wrap around neuronal cell 

bodies and dendrites. They provide metabolic support and regulate the retinal microenvironment 

(Bringmann et al. 2006), hence are ideally suited to control neuronal viability. Our data 

demonstrate that reactive astrocytes and Müller glia upregulate GFAP in the rat retina and optic 

nerve following induction of ocular hypertension. This is consistent with previous studies 

showing that both astrocytes and Müller cells rapidly upregulate GFAP and undergo important 

morphological changes characterized by cell body hypertrophy and loss of processes  

(Bringmann and Wiedemann 2009; Lye-Barthel et al. 2013; Varela and Hernandez 1997). 

Importantly, we show that intraocular administration of ibudilast markedly attenuated the 

number of GFAP-positive astrocytes and Müller cell processes, as well as the overall levels of 

GFAP expression, demonstrating the ability of ibudilast as a glial cell modulator in vivo.  

Retinal and optic nerve microglia represent a self-renewing population of innate immune 

cells that perform surveillance activities, monitor their environment and clear away metabolic 

products and tissue debris (Cuenca et al. 2014). Recent studies using DBA/2J mice, a strain that 

develops spontaneous age-related glaucoma, indicate that microgliosis occurs at early stages of 

the disease and that the level of microglia activation correlates with the severity of 

neurodegeneration (Bosco et al. 2015; Bosco et al. 2011). Our data demonstrate a substantial 

increase in the density of Iba1-positive cells in the retina and optic nerve of rats subjected to 

ocular hypertension, which was accompanied by morphological changes characterized by 

reduced ramifications and rounded morphology suggestive of an activated state. We also 
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observed increased CD68 expression in Iba1-positive cells, which has been correlated with 

increased phagocytic activity (Penfold et al. 1991). These findings are consistent with previous 

studies showing proliferation of microglia after optic nerve injury (Wohl et al. 2010) and the 

presence of CD68-positive cells with amoeboid morphology in rodent models of ocular 

hypertension (Ebneter et al. 2010; Rojas et al. 2014). Ibudilast effectively decreased the density 

of Iba1/CD68-positive cells suggesting that it reduces proliferation and activation of 

microglia/macrophages in glaucoma. 

 Reactive glia are the primary source of pro-inflammatory cytokines in the CNS. Our data 

show that TNFα, IL-1β, IL-6 and MIF are markedly upregulated during ocular hypertension. 

Importantly, ibudilast-mediated attenuation of glial cell reactivity correlated with a significant 

decrease in the levels of these inflammatory factors. Among these, TNFα plays a prominent role 

in glaucomatous neurodegeneration. For example, exogenous TNFα promotes death of RGCs 

(Lebrun-Julien et al. 2009a; Nakazawa et al. 2006) and lack of TNFR1 protects these neurons 

from mechanical injury (Tezel et al. 2004). High-throughput characterization of the retinal 

proteome revealed prominent upregulation of TNFα/TNFR1 signaling in human glaucoma (Yang 

et al. 2011b). Furthermore, TNFα levels are elevated in aqueous humor samples from glaucoma 

patients (Balaiya et al. 2011; Sawada et al. 2010), and TNFα gene polymorphisms are associated 

with primary open angle glaucoma (Xin et al. 2013). Of interest, a recent study demonstrated that 

soluble TNFα promotes RGC death by increasing cell surface expression of calcium permeable 

AMPA receptors (Cueva Vargas JL. 2015). Although the role of IL-1β, IL-6 and MIF is not well 

understood in the context of glaucoma, there is evidence suggesting that the levels of expression 

of these cytokines are modulated by retinal and optic nerve damage. IL-1β and IL-6 have been 

shown to be upregulated by retinal microglia during ischemia-reperfusion injury (Sanchez et al. 
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2003) and after optic nerve crush injury or induction of ocular hypertension (Chidlow et al. 2012; 

Leibinger et al. 2013). In the retina, MIF is expressed by astrocytes and Müller cells (Matsuda et 

al. 1997). MIF has been shown to contribute to the pathogenesis of Alzheimer’s disease and 

experimental autoimmune encephalomyelitis (Bacher et al. 2010; Popp et al. 2009), and to 

promote neuronal death in experimental stroke (Inacio et al. 2011). Based on this, it is plausible 

that the ability of ibudilast to confer robust RGC survival in glaucoma is partly mediated by a 

reduction of glia-derived TNFα and possibly other pro-inflammatory cytokines. 

 Recent evidence indicates that PDEs are important regulators of inflammation in the CNS 

(Paterniti et al. 2014). PDEs are classified depending on their substrate specificity, location and 

structure (Charbonneau et al. 1986; Mehats et al. 2002). Among these, PDE4 is considered of 

particular functional relevance due to its abundance in neural tissue (Iona et al. 1998). Ibudilast 

is a cAMP PDE inhibitor with high affinity for PDE4 (Huang et al. 2006) , and PDE4 is 

abundantly expressed by retinal cells (Whitaker and Cooper 2009). Our data demonstrate that 

PDE4A, B and D are expressed in many cell-types in the inner nuclear and ganglion cell layers, 

including RGCs. Of interest, we found that ocular hypertension triggered a noticeable increase of 

PDE4A in Müller glia, which correlated with detectable accumulation of cAMP in these cells in 

the presence of ibudilast. This finding suggests that Müller glia are likely to be an important 

cellular target of ibudilast action. Given that RGCs express constitutive levels of PDE4A, it is 

also possible that these neurons are directly affected by ibudilast which can result in further 

increase of endogenous cAMP. Intriguingly, in spite of the robust response elicited in 

microglia/macrophages by ibudilast, we did not detect PDE4A expression in Iba1-positive cells 

suggesting that PDE4A in microglia is below detection levels or that microglia respond 

indirectly through dynamic cross-talk with Müller cells. Indeed, Müller cells have been shown to 
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signal microglia via the translocator protein (TSPO) to regulate microglial activity and hence 

modulate the resolution of inflammation (Wang et al. 2014). 

 How does ibudilast attenuate glial reactivity and promote neuronal survival in glaucoma? 

Our data suggest a scenario in which ibudilast inhibits PDE4 in target cells leading to increased 

cAMP levels and PKA activation. This hypothesis is supported by our finding that co-

administration of ibudilast with the PKA inhibitor Rp-cAMPS completely obliterated the 

neuroprotective effect of ibudilast alone. Furthermore, the observation that rolipram, a selective 

inhibitor of PDE4, promoted a survival effect similar to that of ibudilast supports a crucial role 

for PDE4. Nonetheless, it is conceivable that the activation of the cAMP/PKA pathway might 

have distinct responses in glia versus neurons. While increased cAMP and PKA activity is likely 

to reduce glial cell reactivity and production of pro-inflammatory cytokines, the same response 

might stimulate survival pathways in injured neurons. For example, low cAMP levels and 

reduced PKA activity has been attributed to an interaction between PDE4A and p75NTR (Sachs 

and Akassoglou 2007), a death receptor solely expressed by Müller cells in the adult retina 

(Lebrun-Julien et al. 2010; Lebrun-Julien et al. 2009b). Indeed, p75NTR activation stimulates 

nuclear factor κB (NF-κB) and TNFα production by Müller cells (Lebrun-Julien et al. 2010), and 

p75NTR inhibition protects RGCs from axonal injury-induced death (Lebrun-Julien et al. 2009b). 

When ibudilast inhibits PDE4A, the inflammatory process is reversed by increasing cAMP 

levels, which has been shown to inhibit NF-κB thus switching off gene expression of numerous 

inflammatory and immune mediators (Gerlo et al. 2011). In contrast, increased cAMP/PKA 

signaling in RGCs has been associated with neuronal survival, axonal growth, electrical activity, 

enhanced responsiveness to neurotrophic factors and synaptogenesis (Corredor et al. 2012; Cui et 

al. 2003; Firth et al. 2005; Goldberg et al. 2002; Li et al. 2003; Meyer-Franke et al. 1998; 
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Stellwagen et al. 1999; Watanabe et al. 2003). By increasing the levels of cAMP in RGCs, 

ibudilast activates PKA which in turn might stimulate the cAMP regulatory element-binding 

protein (CREB) (Fujino et al. 2009; Mali et al. 2011; Park et al. 2015) thus triggering a 

transcriptional program that enhances neuronal survival in glaucoma. 

In conclusion, our study identifies ibudilast, a safe and well-tolerated glial cell modulator, 

to effectively attenuate gliosis and production of pro-inflammatory mediators while enhancing 

neuronal viability in glaucoma. Our data support a model in which ibudilast promotes RGC 

survival through inhibition of PDE4 activity leading to increased cAMP levels and subsequent 

PKA activation. This study sheds light on the potential utility of modulators of the 

PDE4/cAMP/PKA pathway to counter the damaging effects of the inflammatory response in 

glaucomatous neurodegeneration. 
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Figure 1. Ibudilast attenuates astrocyte reactivity in experimental glaucoma.  

A, D, and G) Basal level of GFAP labeling was detected in astrocytic processes in the retinal 

GCL, as well as astrocytes in the optic nerve head and optic nerve proper of the non-injured 

eyes. B) Three weeks after induction of ocular hypertension, high levels of GFAP was observed 

in retinal astrocytes as well as the proximal Müller cell radial processes. E and H) GFAP 

labeling was upregulated in astrocytes residing in the optic nerve. C, F and I) Intraocular 

injection of ibudilast attenuated GFAP immunostaining both in the retina and optic nerve of 

glaucomatous eyes. J-K) Western blot analysis showed an increase in GFAP protein levels in 

retinas exposed to ocular hypertension compared to intact controls. Ibudilast treatment resulted 

in a substantial decrease of retinal GFAP expression in glaucoma. Values are expressed as mean 

± S.E.M. (ANOVA, *=p<0.05, **p=<0.01; Tukey’s multiple comparison test). ONL: outer 

nuclear layer, OPL: outer plexiform layer, INL: inner nuclear layer, IPL: inner plexiform layer, 

GCL: ganglion cell layer. Scale bars: A-C= 20 μm, D-I= 100 μm. 
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Figure 2. Retinal microgliosis is reduced by ibudilast. 

A-B) Retinal cross section showed an increase in the number of microglia/macrophages in the 

glaucomatous eye using Iba1. D-E) Flat-mounted retinas showed reduced ramifications in Iba1-

positive cells during ocular hypertension. C, F) Ibudilast treatment reduced the number of Iba1-

positive cells. G-O) Staining of flat-mounted retinas with Iba1 and CD68, demonstrated a 

substantial increase in the number of double-labeled cells, which was markedly reduced in the 

presence of ibudilast. P) Quantitative analysis confirmed the increase in the number of 

CD68/Iba1-positive cells compared to intact retinas, and that ibudilast treatment significantly 

attenuated this response. Values are expressed as mean ± S.E.M. (ANOVA, *p<0.05; Tukey’s 

multiple comparison test). Values are expressed as mean ± S.E.M. (ANOVA, *p<0.05; Tukey’s 

multiple comparison test). ONL: outer nuclear layer, OPL: outer plexiform layer, INL: inner 

nuclear layer, IPL: inner plexiform layer, GCL: ganglion cell layer. Scale bar = 50 μm. 

 

  



138 
 

Figure 3. Activation of microglia/macrophages in the optic nerve is reduced by ibudilast.  

A-F) Optic nerve at the levels of its head and proximal segment demonstrated an increase in the 

number of Iba1-positive cells after induction of ocular hypertension, which was effectively 

reduced with ibudilast treatment. G-O) Double labeling with Iba1 and CD68 revealed an 

increase of active microglia/macrophages in glaucomatous eyes, which was reduced by ibudilast. 

P) Quantitative analysis confirmed an increase in CD68/Iba1-positive cells in optic nerves 

subjected to ocular hypertension, and a tangible decrease in the number of active 

microglia/macrophages with ibudilast. Values are expressed as mean ± S.E.M. (ANOVA, 

**p<0.01; Tukey’s multiple comparison test). Scale bars: A-F = 100 μm, G-O = 20 μm. 
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Figure 4.  Ibudilast attenuates the production of glial-derived pro-inflammatory cytokines 

in glaucoma. 

Western blots analysis of A) TNFα, C) IL-1β, E) IL-6 and G) MIF from retinal homogenates 

showed that these cytokines are upregulated in glaucomatous retinas at three weeks after 

induction of ocular hypertension compared to the intact retina. This upregulation was 

significantly reduced by the intravitreal administration of ibudilast. We used β-actin to confirm 

equal protein loading. B, D, F and H) Densitometric analysis confirmed that ibudilast reduced 

the upregulation of these pro-inflammatory cytokines. Values are expressed as mean ± S.E.M. 

(ANOVA, *p<0.05, **p<0.01 and ***p<0.001; Tukey’s multiple comparison test).  
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Figure 5. Ibudilast protects RGC soma and axon protection from ocular hypertension 

damage.  

A-C) Flat-mounted retinas from eyes treated with ibudilast showed higher densities of cells 

positive for Brn3a, an RGC-specific marker(Nadal-Nicolas et al. 2009)(Nadal-Nicolas et al. 

2009)(Nadal-Nicolas et al. 2009)(Nadal-Nicolas et al. 2009), compared to control retinas treated 

with vehicle (PBS). Scale bar: 50 µm. D-F) Analysis of optic nerve cross-sections showed a 

substantially larger number of RGC axon fibers with normal morphology in ibudilast-treated 

eyes compared to vehicle-treated controls. Scale bar: 10 µm. G-H) Quantitative analysis of RGC 

soma and axons confirmed that ibudilast-treated eyes (black bars) promoted significant RGCs 

soma and axons protection in experimental glaucoma compared to the vehicle-treated eyes (grey 

bars). Non-glaucomatous Brown Norway rat retinas are shown as reference (white bars, 100% 

survival). Values are expressed as mean ± S.E.M. (ANOVA, **p<0.01, ***p<0,001; Tukey’s 

multiple comparison test). 
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Figure 6. Ocular hypertension triggers PDE4A expression in Müller cells.  

A) Immunohistochemical analysis confirmed that PDE4A is expressed in many cells of the inner 

nuclear and ganglion cell layers in the intact, non-injured retina.  B-D) PDE4A was expressed by 

RGCs, visualized with RBPMS. E) In glaucomatous retinas, PDE4A was presumptively detected 

in Müller glia. F-H) Co-localization of PDE4A with the Müller cell-specific marker Cellular 

Retinaldehyde Binding Protein (CRALBP) confirmed that ocular hypertension triggered PDE4A 

expression in these glial cells. I-K) PDE4A expression did not co-localize with Iba1-positive 

microglia/macrophages in glaucomatous retinas. L-S) PDE4B and PDE4D were also detected in 

cells of the inner nuclear and ganglion cell layers, including RGCs, but their expression pattern 

did not change with glaucoma (Fig. 6L-S). Scale bar= 20 µm. 
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Figure 7. Ibudilast treatment leads to cAMP accumulation in target cells.  

A-C) Intraocular injection of ibudilast stimulated a marked increase in cAMP in glaucomatous 

retinas compared to vehicle-treated controls. C-E) Accumulation of cAMP was observed in 

Müller cell end-feet and radial processes, visualized with the specific marker GS. F-H) cAMP 

was also observed in RGCs, identified with RBPMS. Scale bars = 20 μm. 
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Figure 8. The neuroprotective effect of ibudilast is mediated by protein kinase A (PKA) 

activation. 

A-B) Co-administration of ibudilast and Rp-cAMPS (light grey bars) completely blocked the 

pro-survival effect of ibudilast (black bars) on RGC soma and axons to levels found in vehicle-

treated eyes. Injection of Rp-cAMPS into intact, non-injured retinas, did not show any toxic 

effects (hatched bars). Furthermore, treatment with rolipram, a selective inhibitor of PDE4, 

resulted in a neuroprotective effect of both RGC soma and axons similar to that obtained with 

ibudilast (dark grey bars). Intact retinas (white bars) represent 100% survival. Values are 

expressed as mean ± S.E.M. (ANOVA, **p<0.01 and *** p<0.001; Tukey’s multiple 

comparison test). 
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III.7. TABLES 

Table 1. Intraocular pressure (IOP) elevation in glaucomatous eyes treated with different 

compounds. Mean and peak IOP elevations for each cohort of rats exposed to 3 weeks of ocular 

hypertension (OHT) after treatment with ibudilast and Rp-cAMPS, or vehicle (n = 6-15/group).  

 

 
 
 
 
 
 
 

 

 

 
  

Table 1.  Intraocular pressure (IOP) elevation in glaucomatous eyes 

Peak IOP (mm Hg)) Mean IOP (mm Hg) ± S.E.M. Time after 
OHT surgery 

Vehicle 
Ibudilast 

Rp-cAMPS 

36.4 ± 0.62 
36.6 ± 0.52 
36.0 ± 1.20 

15 
15 
6 

24.4 ± 0.19 
25.0 ± 0.23 
24.5 ± 0.42 

12.0 ± 0.53 
11.6 ± 0.45 
11.4 ± 1.20 

40.0 ± 0.71 
40.2 ± 1.77 
40.2 ± 2.18 

25.2 ± 1.16 
26.6 ± 0.68 
25.6 ± 0.93 

Glaucoma 
N 

  Control Difference Glaucoma Control 

3 weeks 

 
Treatment 
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IV.1. Rat model of ocular hypertension (Morrison model) 

The studies presented in this thesis were carried out using a well-characterized rat 

model of ocular hypertension glaucoma. This experimental paradigm is based on scarring of 

the trabecular meshwork tissue following injection of a hypertonic saline solution (NaCl 1.8 

M) which increases the resistance to aqueous humor outflow resulting in gradual elevation of 

eye pressure and selective loss of RGCs. The ocular hypertension produced by this model is 

variable and depends on many factors, including the quantity of aqueous humor produced by 

the animal as well as the degree of obstruction generated by the surgery. Variability is also a 

normal phenomenon observed in human glaucomatous eyes. Nonetheless, this model displays 

an excellent linear correlation between intraocular pressure (IOP) and neuronal death with 

similar pathologies to those observed in human glaucoma (Morrison et al., 1997; Morrison et 

al., 2005) 

IV.2. Glial response and TNFα modulation in experimental glaucoma 

Early neuroinflammatory responses mediated by glial cells have been proposed to 

contribute to the pathogenesis of glaucoma. However, the mechanisms by which glial cells 

mediate neuronal death in this disease are poorly understood. A better understanding of the 

progression of the inflammatory response at different stages of the disease is likely to have a 

significant impact on the identification of novel therapeutic targets for glaucoma.  

The first article, presented in chapter 2 of this thesis, is focused on the role of glia-

derived soluble TNFα in our rat model of glaucoma. TNFα is one of the most important pro-

inflammatory cytokines involved in several physiological and pathological conditions in the 

CNS. Constitutive levels of TNFα are essential for mediating homeostasis, regulating the 
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circadian rhythm, glial transmission and synaptic plasticity (Stellwagen, 2011; Santello and 

Volterra, 2012). However, TNFα appears to be detrimental as high levels of this cytokine have 

been found in several neurodegenerative diseases, including glaucoma, suggesting a potential 

role in neuronal death (Yuan and Neufeld, 2000; Sawada et al., 2010). In addition, intravitreal 

injection of TNFα-induced optic nerve axonal damage as well as RGC death, mimicking the 

pathology observed in different animal glaucoma models (Nakazawa et al., 2006). Our data 

showed that induction of glaucoma in rats through the elevation of IOP rapidly stimulates 

production of TNFα by Müller cells and Iba1-positive microglia/macrophages with 

macrophage-like morphology. This finding supports previous studies showing that microglia 

in the glaucomatous rat retina and human optic nerve head express TNFα (Yuan and Neufeld, 

2001; Roh et al., 2012). TNFα production is the result of nuclear factor kappa B (NF-κB) 

activation in Müller cells (Lebrun-Julien et al., 2009) and astrocytes (Tezel et al., 2012) 

suggesting that NF-κB, the major regulator of inflammatory gene expression, might play a 

role in the upregulation of glial-derived TNFα in the injured retina. Since TNFα has also been 

shown to activate NF-κB, it is also possible that TNFα acts directly on glial cells through a 

positive feedback autocrine loop to enhance their activation and further production of pro-

inflammatory cytokines (Kuno et al., 2005). 

TNFα signal transduction involves two distinct receptors, TNF receptor 1 (TNFR1) 

containing a cytoplasmic death domain and TNF receptor 2 (TNFR2) that lacks a functional 

death domain. These differences contribute to their distinct biological roles. TNFR1, which is 

expressed in most CNS cell types, has been associated with cell death and inflammation, 

whereas TNFR2, expressed by some neurons, microglia, and endothelial cells, leads to 

activation of anti-apoptotic and pro-inflammatory signaling pathways.  
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The data presented in this thesis indicate that there is a significant increase of TNFR1 

mRNA and protein levels in the glaucomatous retina compared to the intact (non-injured) 

retina. Moreover, immunohistochemical analysis demostrated that TNFR1 increases in RGCs 

and astrocytes. Our findings are consistent with other studies showing upregulation of TNFR1 

in RGCs and the optic nerve head of glaucomatous patients (Yan et al., 2000; Tezel et al., 

2001). Furthermore, the progression of optic nerve damage has been associated with the 

upregulation of TNFR1 (Yuan and Neufeld, 2000). Thus, these results suggest that ocular 

hypertension-induced upregulation of TNFR1 in RGCs contributes to these cells being highly 

sensitive to TNFα-mediate damage. Of interest, the upregulation of TNFR1 has also been 

reported in astrocytes (Tezel et al., 2012). However, the upregulation of TNFR1 in astrocytes 

does not lead to apoptosis. Indeed, astrocytes appear to be more resistant to apoptosis-inducing 

signals likely due to the presence of the protein enriched in astrocytes-15 KDa (PEA-15), 

which inhibits pro-apoptotic TNFR1-elicited signals (Kitsberg et al., 1999; Song et al., 2006).  

Our data also demonstrate that TNFR2 mRNA and protein expression is upregulated in 

the retina early after induction of ocular hypertension. Immunohistochemical analysis 

confirmed that TNFR2 increases primarily in glaucomatous RGCs. The expression of TNFR2 

has been mainly associated to neuronal survival/neuroprotection. For example, retinal TNFR2 

is upregulated after ischemia, and TNFR2-deficient mice display exacerbated neuronal death 

possibly due to defects in PI3K/Akt signaling which have been reported to inhibit the pro-

apoptotic proteins (Fontaine et al., 2002). These results suggest a protective role of TNFR2 

during retinal ischemia. Conversely, RGC soma and axon protection was observed in TNFR2-

deficient mice after induction of ocular hypertension, suggesting that TNFR2 has a toxic effect 

in this model (Nakazawa et al., 2006).  These contradictory results are partially due to 
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compensatory mechanisms achieved in those animals. To clarify the role of soluble versus 

trans-membrane TNFα, and their potential impact on TNFR1 or TNFR2 signaling in 

glaucoma, we utilized XPro1595, a dominant-negative engineered peptide that selectively 

binds soluble TNFα. Xpro1595 binds with wild-type TNFα monomers and blocks its  

interaction with TNF receptors without interfering with the transmembrane TNFα. Since 

soluble TNFα has higher affinity for TNFR1 and trans-membrane TNFα has higher affinity for 

TNFR2, Xpro1595 is ideal for discerning the specific effect of soluble TNFα on TNFR1 

(Steed et al., 2003; Zalevsky et al., 2007). However, due to the differing roles of the two 

receptors, it would be essential to evaluate the role of each receptor separately. One approach 

to achieve this evaluation would be the use of small interfering-RNA (siRNA) to directly 

knock down either TNFR1 or TNFR2 expression. Another possibility would be the use of 

conditional ablation of TNFRs. Of interest, it has recently been reported that TNFR2 signaling 

in microglia/macrophages has detrimental effect in EAE, whereas in oligodendrocytes TNFR2 

has been associated to promote remyelination in the same model (Gao H, 2014; Madsen P, 

2014). These approaches suggest that TNFα exerts different functions, depending on its cell 

target. Our lab is currently testing AAV containing MiniPromoters, small promoters 

bioinformatically designed, that exhibit highly specific expression patterns. For instance, 

knock down TNFα expression in Müller cells would be possible by delivery of siRNA inserted 

in AAV containing Müller cells-specific MiniPromoter.  

IV.3. Protection of RGC soma and axons with XPro1595 in glaucoma 

In the study presented in chapter 2, we used XPro1595 due to its advantages for the 

treatment of chronic neurodegenerative disease like glaucoma. First, XPro1595 is a small 

synthetic peptide that easily crosses the blood-retinal-barrier. Second, unlike non-selective 
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inhibitors, including etanercept, infliximab and adalimumab, Xpro1595 preserves the 

transmembrane TNFα function, maintaining the significant benefits of targeting soluble TNFα. 

Our data showed that intravitreal injection of XPro1595, and thus, blockade of TNFR1 

signaling, in glaucomatous eyes effectively promoted RGC soma protection without affecting 

the IOP, suggesting that TNFR1-mediated signaling has a toxic effect. Another hallmark of 

glaucomatous damage is the degeneration of RGC axons in the optic nerve. RGC axons 

convey the information from the retina to the brain, where they establish synapses with other 

neurons in the superior colliculus or the lateral geniculate nucleus. In glaucoma, RGC axon 

degeneration becomes evident due to the presence of irregularities in the axon bundles 

including loss of their myelin sheaths and axonal swelling (Quigley et al., 1988; Morrison et 

al., 1997; Chauhan et al., 2002). Our results also showed that blockade of soluble TNFα by 

intravitreal injection of XPro1595 leads to a robust RGC axons protection suggesting that 

TNFR1 signaling contributes to RGC axon degeneration. 

IV.4. TNFα mediates membrane insertion of CP-AMPARs in RGCs after ocular 

hypertension induction. 

The classical pathway suggests that TNFα/TNFR1 signaling leads to apoptosis by 

cleaving pro-caspase-8 into caspase-8 (Hsu et al., 1996; Thorburn, 2004). However, previous 

studies, including our own have shown that TNFα-mediated toxicity involves alternative 

mechanisms rather than caspase-8 activation (Tezel and Yang, 2004; Lebrun-Julien et al., 

2009). Indeed, our data demonstrated that inhibiting caspase-8 activation using z-IETD-fmk 

did not promote RGC survival in glaucomatous retina (Fig.1). TNFα modulates synaptic 

transmission and plasticity by its ability to interact with AMPA receptors. Particularly, soluble 

TNFα strengthens synapses in hippocampal neurons by recruiting AMPA receptors lacking the 
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subunit GluA2, thus enhancing neuronal Ca2+ influx and the response to glutamate (Beattie et 

al., 2002; Stellwagen et al., 2005). To address the hypothesis that soluble TNFα modulates 

CP-AMPAR expression in glaucoma, we performed a Co2+ permeability assay which is based 

on the principle that Co2+, like Ca2+, permeates CP-AMPARs with equal ability (Pruss et al., 

1991). Importantly, Co2+ does not permeate NMDA receptors (Mayer and Westbrook, 1987) 

or voltage-gated channels (Hagiwara and Byerly, 1981). These properties make the Co2+ 

permeability assay very useful when evaluating the presence of CP-AMPARs in the retina. 

Our results show that basal expression of CP-AMPARs is restricted to inhibitory cells, 

horizontal cells, AII and A17 amacrine cells, confirming previous reports (Morkve et al., 

2002; Osswald et al., 2007; Diamond, 2011). Interestingly, elevated IOP triggered 

upregulation of CP-AMPARs in the inner plexiform layer and the RGCs, which was blocked 

by XPro1595. These results indicate that high IOP increases the level of soluble TNFα 

expression, which in turn mediates the membrane insertion of CP-AMPARs in RGCs. 

Increased cell surface insertion of CP-AMPARs triggers Ca2+-dependent RGC death. Indeed, 

excessive intracellular Ca2+ may be taken up by mitochondria resulting in the generation of 

reactive oxygen species and release of cytochrome c. Ca2+ accumulation could also lead to the 

generation of nitric oxide and the release of mitochondrial apoptosis inducing factor (AIF). In 

addition, cell death could be triggered by Zn2+-dependent mechanisms as CP-AMPARs are 

highly permeable to this cation. Zn2+ is more potent at inducing mitochondrial disruption 

(Sensi et al., 2000; Sensi et al., 2003). For example while 10-20 µM of Ca2+ is toxic, only 10-

100 nM of Zn2+ is necessary to produce the same level of neuronal loss. Zn2+ toxicity has been 

reported in oxidative stress and age-related neurodegeneration such as Alzheimer’s disease, 
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where it has been shown to contribute to the aggregation and toxicity of amyloid-β (Sensi et 

al., 2009).  

Of interest, it has been demonstrated in primary microglia the TNFα/TNFR1 complex 

promotes excitotoxicity by increasing glutamate release in an autocrine manner (Takeuchi et 

al., 2006). TNFα can also increase the extracellular levels of glutamate by inducing glutamate 

release from astrocytes through a Ca2+-dependent process mediated by prostaglandins (Bezzi 

et al., 1998). In the retina, increased levels of glutamate impairment of glutamate metabolism 

by inhibition of glutamate transporter and glutamine synthetase could lead to the damage of 

RGCs as well as ONH astrocyte dysfunction (Ju et al., 2014). These studies suggest that glial 

glutamate release could have detrimental effects in a model of glaucoma, which could be 

through CP-AMPAR. 
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Figure 1. Glial-derived soluble TNFα mediates neuronal loss by mechanisms caspase 8-

independent. A-C. Immunohistochemistry analysis of flat-mounted retinas showed higher 

densities of DiI-labeled RGCs compared to the retinas treated with z-IETD-fmk, a caspase-8 

inhibitor, and vehicle. D.  Quantitative analysis of RGCs confirmed that z-IETD-fmk-treated 

retina did not promote significant RGC protection in experimental glaucoma. Values are 

expressed as mean ± S.E.M. (Student’s t-test, p>0.05). Scale bar: 70 µm. 
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IV.5. AMPA receptors become CP-AMPARs 

Under physiological conditions, AMPA receptors are not Ca2+ permeable. However, 

under certain circumstances they become permeable to divalent ions. Ca2+ permeability occurs 

when there is failure of GluA2 mRNA post-transcriptional editing, where the change from the 

uncharged amino acid glutamine (Q) to the positively charge arginine (R) in the GluA2 

subunit confers permeability to Ca2+ and Zn2+. Also, AMPA receptors become permeable to 

Ca2+ when there is decrease in GluA2 expression leading to GluA2-lacking AMPA receptors 

which is highly permeable to divalent ions.  

Our results are consistent with a fully edited GluA2 subunit in retinas with elevated 

IOP. We performed a nested PCR to isolate a GluA2 254 bp amplicon. This amplicon was not 

digested with the Bbvl restriction enzyme, indicating it did not have the specific restriction site 

(GCAGC), which is unique to the unedited GluA2 (Q) site. Additionally, the sequence of the 

254 bp amplicon confirmed the presence of arginine (R) in the Q/R site of the GluA2 subunit. 

Contrary to our results, it has been recently suggested that Ca2+ permeability is due to the 

unedited GluA2 in a mouse model of glaucoma (Wang et al., 2014a). This study showed a 

decrease of ADAR2 expression, the enzyme that converts adenosine to inosine in the double-

stranded RNA substrates at six weeks after glaucoma induction compared to the three week 

time-line of our study. However, a limitation of the Wang et al. study is that a decrease in 

ADAR2 expression could result from RGC loss at 6 weeks after induction of ocular 

hypertension. Moreover, the authors did not verify the presence of glutamine (Q) in the Q/R 

site of the GluA2 subunit as a consequence of elevated IOP. Thus, it remains a possibility that 

although there is a decrease in ADAR2 expression in response to the induction of glaucoma, 

this does not necessarily translate to RNA editing of the GluA2 subunit. Another drawback of 
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this study is that the effect of ADAR2 was only evaluated in vitro (Wang et al. 2014), which is 

often confounded by the culture conditions and does not provide an accurate representation of 

glaucomatous damage. 

Our findings demonstrate that elevated IOP leads to downregulation of GluA2 

expression in RGCs. Also, we showed that the blockade of CP-AMPARs using selective 

antagonists promoted robust RGC soma and axon protection. These results suggest that 

downregulation of GluA2 in glaucoma is an important mechanism leading to increased Ca2+ 

permeability through AMPA receptors that contributes to the RGC loss. Therefore, 

maintaining the expression of the GluA2 subunit could potentially be used to protect RGCs. 

To achieve this, the use of AAV containing the GluA2 gene may be a promising approach. 

The relative level of neuronal GluA2 expression is not stable, but rather closely regulated by 

the environment, drugs, seizures and ischemic damage (Pollard et al., 1993; Fitzgerald et al., 

1995; Prince et al., 1995; Gorter et al., 1997; Liu and Cull-Candy, 2000). During forebrain 

ischemia, GluA2 expression is selectively downregulated in CA1 hippocampal neurons 

destined to die, a process that involves suppression of GluA2 promoter activity by REST 

(repressor element-1 silencing transcription factor) (Pellegrini-Giampietro et al., 1992; 

Calderone et al., 2003). A recent study demonstrated that the interaction of GluA2 and NSF 

(N-ethylmaleimide-sensitive fusion protein), an ATPase involved in stabilization of GluA2 at 

the membrane, is disrupted by Plk2 (Polo-like kinase-2) leading to extensive loss of cell 

surface GluA2 in primary hippocampal neurons (Evers et al., 2010). TNFα has been shown to 

preferentially promote exocytosis of GluA2-lacking AMPAR through a PI3K-dependent 

process downstream of TNFR1, but not TNFR2 (Stellwagen et al., 2005). Although the 

mechanism by which TNFα downregulates GluA2 expression leading to increased CP-
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AMPAR activity in RGCs is currently unknown, it could potentially involve disrupted 

trafficking, altered gene transcription and/or modification of local protein synthesis (Liu and 

Savtchouk, 2012). 

IV.6. Ibudilast attenuates reactive gliosis in experimental glaucoma 

In the second paper presented in Chapter 3 of this thesis, we evaluated the 

neuroprotective properties of ibudilast in experimental glaucoma. Ibudilast is a non-selective 

phosphodiesterase (PDE) inhibitor that has been used for more than 20 years in Japan for the 

treatment of asthma and stroke (Rolan et al., 2009). In addition, the drug was launched for the 

topical treatment of conjunctivitis (Yokogaki, 2002). Currently, it is being evaluated for the 

treatment of multiple sclerosis, amyotrophic lateral sclerosis, neuropathic pain, and drug 

addiction. Ibudilast has many advantages over other compounds because it crosses the blood-

brain-barrier, it has a safe pharmacological profile, and, unlike specific PDE4 inhibitors, it can 

be administered as an ophthalmic or as an oral solution. 

As discussed extensively in this thesis, elevated IOP generates several changes in the 

retina including activation of glial cells. Microglia activation has been associated with RGC 

neurodegeneration by the release of toxic factors such as TNFα, morphological changes, 

proliferation, and increased phagocytic activity (Rojas et al., 2014). Consistent with this, our 

results show that elevated IOP results in higher density of Iba1-positive 

microglia/macrophages in the retina, optic nerve head and the optic nerve proper. This high 

density of Iba1-positive cells could be due to a dysregulation of the blood-retinal-barrier and a 

subsequent infiltration of immune cells (Bringmann et al., 2009). Moreover, circulating 

monocytes have been reported in the retina and optic nerve of age glaucomatous DBA/2J mice 
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(Howell et al., 2012). In addition, Iba1-positive cells in glaucomatous retinas also upregulate 

CD68, a low density lipoprotein and a marker for various cells of monocyte origin with high 

phagocytic activity.  Macroglia cells such astrocytes and Müller cells can also become 

activated in glaucoma causing direct or indirect damage to neurons. Macroglia activation is 

characterized by the overexpression of GFAP (Hernandez et al., 2008) and, similar to 

microglia, by the expression TNFα (Lebrun-Julien et al., 2009; Tezel et al., 2012). Our data 

confirmed that ocular hypertension leads to upregulation of GFAP, TNFα, and others pro-

inflammatory such as IL-6, IL-1β, and MIF. High levels of IL-6 have been proposed to have a 

protective regenerative effect on axons in glaucomatous eyes (Chidlow et al., 2012). Recently, 

high levels of IL-1β, mediated by a caspase-1-independent mechanism, have been reported in 

an acute model of ocular hypertension (Chi et al., 2014). MIF expression has not been reported 

in glaucomatous retina. Of interest, MIF is required for the microglial activation and 

production of TNFα, IL-6, IL-1β in a model of EAE (Cox et al., 2013). The role of these 

cytokines in the pathogenesis of glaucoma remains largely unknown and further research is 

deserved to unravel their mechanism of action. Intraocular injections of ibudilast attenuated 

gliosis and the upregulation of the pro-inflammatory cytokines mentioned above in our 

experimental model of glaucoma. The mechanism proposed by which ibudilast regulates the 

neuroinflammatory response in glaucoma will be discussed.   

IV.7. Intravitreal injection of ibudilast attenuates neuroinflammation in glaucomatous 

retina. 

We found that intravitreal injection of ibudilast exerts a positive effect in protecting 

RGCs by attenuating gliosis. Ibudilast exerts its function primarily by inhibiting PDE4, the 

most abundant cAMP-specific PDE in the CNS (Bolger et al., 1994) and in the immune 



 
 

166 
 

system (Verghese et al., 1995). In 2009, the group of Cooper and colleagues reported that 

whereas none of the PDE4 subtypes are expressed by Müller cells, all of them are expressed 

by RGCs in non-injured retinas (Whitaker and Cooper, 2009).  However, they did not evaluate 

whether or not retinal or optic nerve injury, such as ocular hypertension, modulated the 

expression of PDE4 subtypes. Intriguingly, our findings demonstrate that elevated IOP leads 

to the appearance of PDE4A protein, but not PDE4B or PDE4D, in Müller cells. High levels 

of PDE4 expression have been associated with a decrease of intracellular cAMP, a selective 

modulator of the pro-inflammatory transcription factor NF-κB. For example, cAMP has been 

shown to trigger a negative effect on NF-κB (Parry and Mackman, 1997). Our data 

demonstrated a decrease of cAMP levels after induction of ocular hypertension. These 

findings suggest that elevated IOP could lead to NF-κB activation in Müller cells. In fact, 

unpublished data generated by our lab showed that NF-κB becomes activated in Müller cells 

in a murine model of glaucoma. Furthermore, previous studies have shown that there is 

activation of NF-κB in Müller cells after intravitreal injection of NMDA (Lebrun-Julien et al., 

2009) or TNFα (Mac Nair et al., 2014). Given that PDE activity results in low cAMP levels, 

we examined whether inhibition of PDE4 by intravitreal injection of ibudilast leads to cAMP 

accumulation in target cells (Huang et al., 2006). We demonstrate that cAMP expression is 

upregulated in Müller cells of glaucomatous retina after intravitreal injection of ibudilast. 

cAMP is a key second messenger that regulates many cellular processes, including 

inflammatory response (Bourne et al., 1974) neuronal survival and axonal growth (Corredor et 

al., 2012). Given that cAMP signaling might negatively regulate NF-κB-dependent 

inflammatory responses, we put forward the idea that ibudilast might attenuate inflammation 

by increasing cAMP levels in Müller cells. Indeed, increased cAMP through activation of its 
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target protein kinase A (PKA) modulates gene transcription in favor of an anti-inflammatory 

response. Of interest, it has been reported that PDE4A selectively interacts with 

p75NTR leading to cAMP hydrolysis and decreased PKA activation. In fact, p75NTR-deficient 

mice showed increased levels of cAMP after nerve injury (Sachs et al., 2007). p75NTR is 

exclusively expressed by the Müller cells in the adult retina and it has been associated with 

TNFα synthesis by these glial cells (Lebrun-Julien et al., 2010). Moreover, p75NTR mRNA 

upregulation has been reported in experimental glaucoma (Guo et al., 2009). Since p75NTR 

plays multiples roles in tissue repair, blocking its function would most likely cause unintended 

and adverse effects on retina. Therefore, targeting p75NTR-PDE4A may be a more suitable 

strategy in glaucoma and thus, preserving other p75NT-dependent functions. cAMP regulation 

is mediated by the interaction of p75NT and the unique C-terminal region of PDE4A. Since this 

C-terminal is not shared by other PDE4 isoforms, it is an excellent target for inhibiting 

p75NTR-PDE4A interaction. Another possibility is the use of AAV. This is likely the most 

specific strategy to inhibit the expression and interaction of PDE4A selectively in Müller cells. 

In this context, knock down PDE4A expression in Müller cells would be possible by delivery 

of siRNA inserted in AAV containing Müller cells-specific MiniPromoter.  

Our results also showed the presence of PDE4A, PDE4B and PDE4D in RGCs, which 

raise the possibility of additional targets for the action of ibudilast on these neurons. We found 

a marked increased expression of cAMP in RGCs after ibudilast treatment. However, since 

activation of NF-κB in RGCs has not been observed in glaucomatous retina, it is plausible that 

the effect of ibudilast on RGCs differs from that on the Müller cells. Previous studies have 

shown that elevated cAMP strongly promotes RGC survival. For example, cAMP induced by 

electrical stimulation leads to RGC protection by a mechanism dependent on PKA activation. 
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These studies have reported translocation and increased levels of TrkB expression, enhancing 

neurotropic factor responsiveness (Meyer-Franke et al., 1995; Meyer-Franke et al., 1998). 

Moreover, in the presence of elevated cAMP levels, several trophic factors had a beneficial 

effect on RGC survival and axonal growth (Goldberg et al., 2002). Downstream of cAMP, the 

transcription factor cyclic AMP response element-binding protein (CREB) has been proposed 

to be a major mediator of the neurotrophin response in neurons (Finkbeiner et al., 1997). 

Indeed, CREB is a transcription factor that regulates several biological processes, including 

neurotrophin-mediated neuronal survival (Finkbeiner et al., 1997; Riccio et al., 1999). 

Therefore, we speculate that CREB activation might be another mechanism by which ibudilast 

could promote RGC soma and axons survival. Lastly, using Rp-cAMPS, a specific membrane-

permeable antagonist of cAMP and PKA inhibitor resistant to hydrolysis by PDEs, we 

demonstrate that ibudilast-induced RGC survival depends on PKA activation. Importantly, our 

study demonstrates for the first time that elevated IOP triggers PDE4A protein expression in 

Muller glia identifying these cells as potential targets for beneficial modulation of 

neuroinflammation in glaucoma. 

The results in the current work are selective for soluble TNFα, and therefore, the use of 

XPro1595 could be recommended for the treatment of glaucoma due to its positive effects in 

inhibiting neuroinflammation, whereas inhibition of transmembrane TNFα signaling could 

have detrimental effects on host defense. In addition, XPro1595 is the only commercially 

available FDA-approved TNFα-antagonist able to cross the blood-brain-barrier (BBB) and 

attenuate neuroinflammation and subsequent RGCs death in experimental glaucoma. In 

contrast, TNFα antagonists including infliximab have been demonstrated to have detrimental 

effects in patients with neurological diseases due to suppression of the immune system and 
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inhibition of myelination. On the other hand, ibudilast, a non-selective phosphodiesterase 

inhibitor that was developed in Japan and marketed there since 1989 to treat asthma and post-

stroke complications, is known to attenuate glial cell activation (Rolan et al., 2009). Unlike 

other selective PDE4 inhibitors, ibudilast appears to be well tolerated at the doses used in the 

treatment of asthma. Ibudilast also is a FDA-approved drug which is able to cross the BBB 

(Ledeboer et al., 2006; Rolan et al., 2009). In this thesis, we show that ibudilast is a promising 

treatment for glaucoma by attenuating gliosis and proinflammatory cytokines including TNFα. 

Both studies have clear clinical implications and support compelling rationale for 

moving toward a clinical trial for glaucoma treatment. I would not recommend the use of both 

approaches simultaneously to abrogate the consequences of having high ocular hypertension. I 

would recommend a strategy focused on targeting specifically PDE4 in Müller cells. In fact, 

inhibition of PDE4 in Müller cells could be involved not only in attenuating glial cell 

activation and neuroinflammation, but also in promoting neurotrophic factors such as BDNF. 

 

IV.8. GENERAL CONCLUSIONS 

A better understanding of the molecular and cellular mechanisms underlying glaucoma 

pathophysiology is essential for the development of more effective therapeutics to prevent 

neuronal death and vision loss in this disease. The work presented in this thesis uncovered a 

new role for glia-derived TNFα signaling and RGC death induced by ocular hypertension. 

Here, we used a small dominant-negative protein, XPro1595, to neutralize soluble TNFα. The 

robust neuroprotective of XPro1595 allowed the identification of soluble TNFα as an 

important mediator of RGC death in glaucoma.   Our study revealed that soluble TNFα 



 
 

170 
 

stimulates the membrane insertion of CP-AMPARs in RGCs contributing to excitotoxicity in 

glaucomatous retinas. Collectively, these results establish a new link between 

neuroinflammation and excitotoxic damage in a well-established pre-clinical model of 

glaucoma.  

Reactive gliosis and neuroinflammation have been proposed to contribute to the 

pathology of glaucoma. To assess the role of the inflammatory response in this disease, we 

tested the effect of ibudilast, a phosphodiesterase-4 inhibitor and clinically-approved anti-

inflammatory drug. Our data show that ibudilast attenuates gliosis, reduces the expression of 

pro-inflammatory cytokines, and promotes significant RGC soma and axon protection in 

experimental glaucoma. We demonstrate that while PDE4A, PDE4B and PDE4D are 

constitutively expressed by RGCs in intact and glaucomatous retinas, intriguingly, ocular 

hypertension triggers PDE4A protein expression only in Müller cells.  Importantly, our results 

also showed that ibudilast resulted in an increase in cAMP levels in Müller cells, consistent 

with its ability to inhibit PDE4. These findings suggest that PDE4A expressed by Müller cells 

could be a potential target to attenuate gliosis and its detrimental effect on RGCs (Fig. 2).  

In conclusion, this thesis demonstrates a tangible neuroinflammatory response that 

contributes to RGC neurodegeneration in glaucoma. Specifically, I addressed the role of 

reactive macroglia and microglia, and the contribution of pro-inflammatory cytokines, 

particularly soluble TNFα. Importantly; I also demonstrated that strategies that reduce glial 

cell activation and the activity of pro-inflammatory mediators are beneficial for RGC 

neuroprotection and might have implications for the development of novel therapeutic 

strategies for the treatment and management of glaucoma.  
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Figure 2.  Schematic model showing the role of TNFα and PDE4 in experimental 

glaucoma. A) Elevated IOP leads to substantial expression of PDE4A in Müller cells. The 

presence of PDE4A decreases cAMP levels which have a positive effect on NF-κB activation 

and the subsequent expression of TNFα. B) TNFα released from Müller cells acts on RCGs 

mediating the membrane insertion of CP-AMPARs. C) Inhibition of PDE4A by administration 

of ibudilast triggers an increase of cAMP levels in Müller cells. High levels of cAMP have a 

negative effect on NF-κB activation. D) In RGCs, ibudilast treatment leads to activation of 

PKA. Source: Jorge Luis Cueva Vargas. 
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APPENDIX A  

CONTRIBUTION TO THE ARTICLES  

For the article “Soluble tumor necrosis factor alpha promotes retinal ganglion cell death 

in glaucoma via calcium-permeable AMPA receptor activation” (Chapter 2 in this thesis), 

I played a key role in the acquisition, analysis and interpretation of the data. My supervisor 

was responsible for the conception of the study in collaboration with Dr. Derek Bowie and Dr. 

Philip Barker. We wrote the article together. The study was principally performed on Brown 

Norway rats. I performed all the rat surgeries (retrograde Fluorogold and DiI labelling, 

intraocular injections, ocular hypertension surgeries) as well as the immunohistochemistry 

experiments, western blotting and RGC survival and quantification on rat retinas as well as 

axons counting on optic nerves. The laboratory of Dr. Philip Barker provided the reverse 

transcription PCR results, representing 4 of the 74 panels comprising the 7 figures of this 

paper. The laboratory of Dr. Derek Bowie performed the cobalt staining results, and the nested 

PCR representing 11 of the 74 panels of the article. I provided the data for 59 of the 74 panels 

of the article, and on the 15 remaining panels I performed the glaucoma model. I performed all 

the statistical analyses and worked alongside my supervisor on the data interpretation.  

For the article “The glial cell modulator ibudilast attenuates the neuroinflammatory 

response and enhances neuronal viability in glaucoma” (Chapter 3 in this thesis), Nicolas 

Belforte and I played a key role in the acquisition, analysis and interpretation of the data. We 

were responsible for the conception of the study. We wrote the article together. Nicolas and I 

performed all the animal surgeries as well as the immunohistochemistries, westerns and 

survival quantifications. Nicolas and I performed all the statistical analysis and worked 

alongside my supervisor on the data interpretation. 
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