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RÉSUMÉ 

 Suite à une centaine de publications sur la réduction de la PIO post-exercice, il est 

connu que parmi un grand nombre de programme d'exercices de différentes durées et 

intensités, les effets hypotenseurs de l'exercice sur la PIO sont atténués chez les sujets en 

bonne condition physique. Le mécanisme proposé est l'augmentation potentielle de l'efficacité 

du système parasympathique avec l'activité physique. Le principal objectif de cette thèse est 

d'identifier les facteurs contribuants à la réduction de la PIO post-exercice et d'élucider les 

différents mécanismes possibles.   

 

 L'étude 1, une méta-analyse, a été menée afin de quantifier les contributions relatives 

de l'intensité et de la durée de l'effet de l'exercice sur la PIO et la mesure dans laquelle ces 

variables affectent les sujets sédentaires et normalement actifs. La tendance ressortant des 

résultats est que la diminution de la PIO suite à de l'exercice aérobie est plus élevée chez les 

sujets sédentaires que les sujets en bonne condition physique. (ES = -4.198 mm Hg et -2.340 

mm Hg, respectivement). L'absence d'un contrôle des liquides ingérés avant l'activité physique 

est à souligné dans cette étude.  

 

 L'hyperosmolarité (un effet secondaire de la déshydratation) est l'un des mécanismes 

proposés influant l'effet hypotenseur de l'exercice. L'étude 2 comparait la réduction de la PIO 

dans deux conditions, soit hypohydraté et hyperhydraté, avant, pendant et après un effort de 90 

minutes sur un ergocycle. Après une diminution initiale pour les deux conditions, la PIO 

revient aux valeurs de départ pour la condition hypohydratée malgré une perte de poids 

significative et elle augmente pour la condition hyperhydratée (résultat du protocole 

d'hydratation).  

 

 Étant donné le niveau élevé de participants en bonne condition physique dans l'étude 2, 

la troisième étude a été conçue afin de etude la relation entre la PIO et la condition physique. 

À l'aide d'analyses corrélationnelles il a été possible d'observer la relation entre le test de 

vo2max et la moyenne des mesures de PIO prises sur un intervalle de huit semaines. Une 

relation significative n'existait que pour les participants se situant dans la portion supérieure du 

continuum de la condition physique.  
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 Conclusion: Les résultats de la présente étude suggèrent que l'effet hypotenseur de 

l'exercice sur la PIO est probablement une réponse homéostatique à la dérégulation de 

l'humeur aqueuse causée par l'initiation de l'exercice et le protocole d'ingestion de fluides pré-

exercice.  

 

Mots-clés	:	la pression intraoculaire, exercice, condition physique, ingestion de liquide, 

intensité, déshydration, homéostasie, sédentaire, Glaucoma, activité	physique 
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Abstract 
 

 After over 100 papers on post exercise reductions in IOP it is known that under a vast 

number of exercise protocols, of differing intensities and durations, the hypotensive effects of 

exercise on IOP are attenuated in the physically fit. A proposed mechanism is the 

parasympathetic nervous system that potentially increases in efficacy with physical training. 

The general objective of this thesis was to further tease apart those factors that contribute to 

post exercise reductions in IOP and to elucidate possible mechanisms.  

  

 Study 1, a meta-analysis, was conducted to quantify the relative contributions of 

intensity and duration to the effect of exercise on IOP and the degree to which these variables 

affect sedentary and normally active populations. A pattern of results emerged such that those 

persons who are Sedentary experience a greater drop in IOP after aerobic exercise than those 

who are physically fit (ES = -4.198 mm Hg and -2.340 mm Hg, respectively). A lack of pre-

exercise control over covariates such as fluid ingestion was also observed. 

 

 Hyperosmolarity (a side effect of dehydration) is one of the proposed mechanisms 

driving the hypotensive effect of exercise. Study 2 compared reductions in IOP in both a hypo-

hydrated (water restricted) and hyper-hydrated condition before, during and after an ergocycle 

ride of 90 minutes. After an initial decrease in both conditions, IOP returned to baseline in the 

Hypo-hydrated condition despite a significant loss of bodyweight and increased in the Hyper-

hydrated condition as a result of the hydration protocol.  

 

 Given the high level of physical fitness among our participants in Study 2, Study 3 was 

designed to further elucidate the relationship between physical conditioning and IOP. Using 

correlational analyses we observed the relationship between a test of VO2max and an average 

of IOP measurements made over the course of eight weeks. A significant relationship existed 

only for those participants in the upper range of the fitness continuum.  
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 Conclusion. The results of the current study suggest that the hypotensive effect of 

exercise on IOP is likely a homeostatic response to dysregulation of the aqueous humor caused 

by the initiation of exercise and pre-exercise fluid intake protocols.  

 

Key Words: intraocular pressure, exercise, physical fitness, fluid intake, intensity, dehydration, 

homeostasis, sedentary, Glaucoma, physical activity  
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Chapter 1 

 

General History of the Relationship Between Exercise and IOP 

 It is well known that exercise helps to control weight, improves musculoskeletal health 

and reduces the risk of Type 2 Diabetes, hypertension, cardiovascular diseases and numerous 

other pathologies (Sesso, Paffenbarger, & Lee, 2000; Vuori, 2004; Wannamethee, Shaper, & 

Alberti, 2000; World Health Organization [WHO], 2010). It also exhibits a hypotensive effect 

on intraocular pressure (IOP), which is the ratio between production and outflow of the 

aqueous humour (Reviews: Gale, Wells, & Wilson, 2009; Risner at al., 2009). Early links 

between exercise and IOP appeared simultaneously in fields such as aerospace medicine 

(Cooper et al., 1965) and exercise science (Janiszewska, 1963. In: Risner et al., 2009). 

Currently, there are well over 100 experimental papers on exercise and IOP, as well as case 

studies and reviews (e.g., Gale et al., 2009; Risner et al., 2009). Much of this research is 

produced with the intent of exploring the usefulness of the hypotensive effect of exercise on 

IOP in the management and prevention of certain eye diseases. However, despite decades of 

research on this topic there is little standardization with regard to exercise protocols and 

participant stratification across fitness, age and clinical categories. These elements are 

necessary to ascertain whether the magnitude of decreases in IOP produced by aerobic 

exercise are reliable, predictable and controllable, and ultimately clinically viable as a 

complimentary therapy or even a reliable biomarker of eye health. Neither is there a consensus 

on the mechanism driving the effect of exercise on IOP possibly because the fluctuating value 

is part of a simple homeostatic response to aerobic exercise and offers no further benefit 

outside of the holistic benefit of exercise itself. 

  

 Exercise lowers IOP to different degrees after both aerobic and isometric exercise 

protocols of varying duration and intensity, although some types of resistance exercises can 

also produce an increase in IOP. In some studies a significant reduction occurs less than 5 

minutes after beginning the exercise protocol (Buckingham & Young, 1986; Dane, Koçer, 

Demirel, Ucok & Tan, 2006a; Orgül & Flammer, 1994; Qureshi, 1995a,b). After the cessation 
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of exercise, IOP returns to baseline, usually within 60 minutes (Risner et al., 2009). Although 

the magnitude of reductions in IOP differ across studies, in general, the pattern of these 

findings hold true for healthy, normally active adults of all ages (Era, Parsimony, Kallinen, & 

Suominen, 1993; Gale et al., 2009; Marcus, Krupin, Podos, & Becker, 1970; Qureshi, Xi, 

Huang, & Wu, 1996b; Risner et al., 2009), sedentary subjects (Dane et al., 2006a,b; Qureshi, 

1995a,b; Qureshi, 1996a; Qureshi et al., 1996b), physically conditioned people (Dane et al., 

2006a,b; Harris, Malinovsky, & Martin, 1994; Passo, Goldberg, Elliot, & Van Buskirk, 1987, 

1991; Qureshi et al., 1996b; Qureshi, 1996a; Qureshi, Wu, Xi, Yang, & Huang, 1997a; 

Qureshi, 1997b) and those with elevated IOP (Passo et al., 1991; Qureshi, 1995b; Shapiro, 

Wolf, Ferber, & Merin, 1983).  

  

 Another pattern that characterizes the hypotensive effect of exercise on IOP is 

emerging from the disparate results across studies. The results of some studies show that 

participants with greater physical conditioning exhibit lower baseline IOP values than 

sedentary and elderly participants. Further, there is an attenuated effect on IOP after acute 

exercise in those who are physically fit (Dane et al., 2006a,b; Harris et al., 1994; Passo et al., 

1987; 1991; Qureshi, 1996a) but there is also evidence to the contrary (Dane et al., 2006a; Era 

et al., 1993). In the exploration of mechanisms driving the hypotensive effect of exercise the 

stratification of participants is especially important. A physically conditioned body will react 

differently to various intensities of exercise than will a sedentary one and many mechanisms 

proposed throughout the literature on exercise and IOP are involved in thermal and fluid 

regulation and are themselves conditioned by exercise (deVries & Housh, 1994a-e, Harris et 

al., 1994). 

  

 The general objective of this thesis was to further tease apart those factors that 

contribute to post exercise reductions in IOP and to elucidate possible mechanisms. To first 

establish the magnitude of the hypotensive effect of aerobic exercise and make a possible step 

toward quantifying a pattern of dose-response, the first study will compare the relative 

contributions of duration, intensity and physical fitness to post exercise reductions in IOP.  
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 The literature search pertaining to the relationship between aerobic exercise and IOP 

contains many suggestions as to the mechanism driving the relationship between exercise and 

IOP and it is often suggested that ocular hyperosmolarity such as might occur during systemic 

dehydration plays a role (Hunt, Feigl, & Stewart, 2012; Passo et al., 1987; Sollanek et al., 

2012; Qureshi, 1996a; Williams, 2009). However, there are studies that produced results to the 

contrary (Harris et al., 1994; Martin, Harris, Hammel, & Malinovsky, 1999). It is possible that 

systemic dehydration could contribute post exercise reductions in IOP provided the duration of 

the exercise protocol is long enough. However, there is often an initial drop in IOP that could 

not possibly be related to dehydration (Buckingham & Young, 1986; Orgül & Flammer, 1994; 

Qureshi, 1995a; Dane et al., 2006a). 

  

 Given this potential relationship between IOP and dehydration, and based on the 

findings of Study 1, Study 2 will explore the notion that dehydration could ultimately cause 

hyperosmolarity that correlates with a decrease in IOP. To that end we will observe 

participants exercising in both a state of Hypo-hydration (water restricted) and Hyper-

hydration.  

  

 Finally, given the high fitness level of the participants both across the literature and 

within our own studies, Study 3 will explore the relationship between baseline IOP and 

increased physical conditioning. V02max, one test of maximal aerobic capacity, will be used to 

examine a possible correlation such that the higher a person’s V02max the lower the baseline 

intraocular pressure.  

 

 The sheer number of variables attached to every aspect of the relationship between 

exercise and IOP demands that the current exploration begin with an overview of the 

variations that occur during measurement as well as those factors unrelated to exercise 

specifically but which contribute to the overall fluctuation of IOP. These fluctuations in IOP 

are often of the same magnitude as those produced by aerobic exercise and will therefore 

affect study results in terms of response magnitude.  
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Chapter 2 

Intraocular Pressure 

 

2.1 The Eye and IOP 

  

 Post aerobic exercise reductions in IOP are produced time and again under many 

circumstances. To fully understand the nature of these reductions it is necessary to first 

understand the cycle of the production and outflow of the aqueous humour, a clear fluid that 

circulates the orb of the eye and is responsible for hydration, nutrition of the avascular cornea 

and lens, and the removal of metabolic waste products.  

 

2.2 Production and Evacuation of the Aqueous Fluid  

	
 The aqueous fluid is formed by secretion of the epithelium of the ciliary processes, the 

folded layers of the vascular area of the eye known as the choroid. First sodium, chloride and 

bicarbonate ions are transported into spaces in the epithelial cells. This results in osmosis of 

water from blood capillaries lying below the same epithelial spaces. This solution washes from 

the posterior chambers of the eye, passes around the equator of the lens, and flows through the 

pupil into the anterior chamber of the eye (Guyton & Hall, 2006a, Quigley, 2011). 

 

 The aqueous fluid leaves the eye via drainage canals between the cornea and the outer 

edges of the iris and then through the trabecular meshwork into a circular channel in the eye 

(Canal of Schlemm) that collects the aqueous humor and finally delivers it into the 

bloodstream where it is absorbed. This process of production and removal generates IOP. 

When IOP is approximately 15 mm Hg it means that the amount of fluid leaving the eye is 

averaging 2.5 microlitres per minute thus approximating the production inflow (Guyton & 

Hall, 2006a; Quigley, 2011). As such IOP is a relatively simple homeostatic function. It can be 

expressed as: 

 

 IOP = F / C + EPV, 
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Where F = aqueous fluid formation rate, C = outflow rate, EPV = episcleral venous pressure 

[of the movement away from the eye] (Guyton & Hall, 2006a; Quigley, 2011). 

  

 This regulatory control of IOP is well documented and the range of normal IOP levels 

are generally thought to range from 10 to 21 millimetres mercury (mm Hg). Clinically high 

IOP is often differentiated by repeated readings over 21.0 to 24.0 mm Hg (Bengtsson & Heijl, 

2005; Quigley, 2011; Wilson, 1997). The transient reductions in IOP after exercise are usually 

between 1.4 and 5 mm Hg. These fluctuations are in a small range ultimately affected by many 

variables in addition to those produced by exercise. For example, there is an abundance of 

literature that examines the disruption of this homeostatic control of IOP after fluid ingestion 

(Diestelhorst & Krieglstein, 1994). As previously mentioned, exercise protocols are not 

standardized across the literature and pre-exercise fluid ingestion is one factor that could be 

greatly affecting study results (See section 3.13). This relationship between IOP and fluid 

ingestion is examined further in Study 2.  

 

2.3 Types of Measurement Tools  

 

 Given the small range of values of post exercise reductions in IOP it is important that 

the measurement of IOP be as precise as possible. There are however, a great many factors 

involved in obtaining IOP measurements. IOP is most often measured with a process known 

as applanation or indentation tonometry, whereby the resistance to pressure used to applanate 

(flatten) or indent a small area of the cornea is quantified. The problem with most forms of 

applanation tonometry is that the repeated pressure of the instrument itself during the course of 

a study interferes with the regulation of IOP possibly by increasing the outflow of the aqueous 

humour (Molina, Milla, Bitrian, Larena, & Martíneza, 2010; Whitacre & Stein, 1993). 

  

 The resulting IOP values are further compromised by the thickness of the cornea. 

Central corneal thickness affects most applanation measurement tools by varying resistance to 

the tonometer probe. A thick cornea gives rise to a greater probability of an IOP being 

overestimated and a thinner cornea causes underestimation all of which can affect the results 

of studies on exercise and IOP. (Lee, Khaw, Ficker, & Shah, 2002). 
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The following non-exhaustive list outlines some of the differences and difficulties with the 

tools used to measure IOP across the literature to date.  

 

 2.3.1 The Goldmann Applanation Tonometer (GAT). The GAT is considered the 

gold standard in applanation tonometry (Kaufmann, Bachmann, & Thiel, 2004; Molina et al., 

2010; Tonnu et al., 2005; Whitacre & Stein, 1993). The GAT uses a disinfected prism 

mounted on the tonometer head, which is placed against the cornea. Local anesthetic drops are 

administered as the probe sits on the eye for number of seconds. The GAT has an inter-

observer variability of 0.4 mm Hg and an intra-observer reliability of 1.7 mm Hg, 95% Limit 

of agreement [± 2.6 mm Hg] (Kotecha, White, Shewry, & Garway-Heath, 2005). It is the GAT 

to which other methods of measurement are compared.  

 

 2.3.2 Rebound tonometry (RB). The rebound tonometer uses a very lightweight 

probe to make momentary contact with the cornea. The higher the IOP, the faster the probe 

decelerates and the shorter the contact time. The measurement is barely noticed by the patient 

and anesthesia is not required (Kim, Jeoung, Park, Yang, & Kim, 2013). At lower GAT values 

the rebound tonometer can overestimate IOP but it still shows a good correlation with GAT (r 

= 0.6995, p < 0.001) (Kim et al., 2013). The rebound tonometer will be described in detail in 

the Method section of Study 2. 

 

 2.3.3 Dynamic contour tonometry (DCT). DCT uses the principle of contour 

matching instead of applanation. The tip contains a hollow the same shape as the cornea with a 

miniature pressure sensor in its centre. In contrast to applanation tonometry it is designed to 

avoid deforming the cornea during measurement and is therefore less influenced by corneal 

thickness. However, because the shape of the tip is designed for the shape of a normal cornea 

it is more influenced by corneal curvature. In one comparative study the group with the lowest 

baseline IOP produced the greatest differences between GAT and DCT (3.55+/-3.1), the 

intermediate baseline group showed a negative relationship (-1.86+/-2.60), and the highest 

group more negative still (-3.88+/-3.3; P<0.0001) (Francis et al., 2007). 

 



	 7	

 2.3.4 Pneumatonometer. A pneumatonometer utilizes a pneumatic (a piston floating 

on an air bearing) sensor. Filtered air is pumped into the piston and travels through a small (5-

mm diameter) perforated membrane at one end, which is placed against the cornea. The 

balance between the flow of air from the machine and the resistance to flow from the cornea 

affect the movement of the piston and this movement is used to calculate the intra-ocular 

pressure. The pneumatonometer has a mean difference of 0.72 ± 2.82 mm Hg from the GAT 

(Molina et al., 2010).  

 

 2.3.5 Impression tonometry (IT). IT measures the depth of corneal indentation made 

by a small plunger carrying a known weight. The higher the intraocular pressure, the harder it 

is to push against and indent the cornea. The movement of the plunger is measured using a 

calibrated scale. The Schiøtz tonometer, which has a mean difference from GAT of +0.24 (SD 

= 3.18) mm Hg, is the most common device to use this principle, however it is not widely used 

in current research (Jain, Saini, & Gupta, 2000).  

 

 2.3.6. Non Contact Tonometry (NCT). Currently the emphasis is on creating a 

measurement instrument that does not interfere with the circulation of IOP around the eye. 

This means developing instruments that have limited, or no contact with the eye such as non-

contact tonometry, which uses a rapid air pulse to applanate the cornea. Intraocular pressure is 

estimated by detecting the force of the air jet at the instance of applanation. Historically, non-

contact tonometers were not considered to be an accurate way to measure IOP in the lab. 

However, modern non-contact tonometers correlate well with the GAT (mean difference from 

GAT ≈ 1.5 mm Hg, 95% Limit of agreement ≈ ± 3.0; Ogbuehi, 2006). 
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Chapter 3 

 

Fluctuations in Intraocular Pressure (IOP) 

  

3.1 Normal Fluctuations of Intraocular Pressure (IOP)  

 

 Complicating the process of obtaining accurate IOP measurements, there is a circadian 

fluctuation of IOP and there are a number of variables that can affect that natural rhythm (Liu 

& Weinreb, 2011; Liu, Zhang, Kripke, & Weinreb, 2003a; Sit, 2014). It is well known that 

fluctuations of IOP are ongoing throughout the day (Hamilton et al., 2007; Liu & Weinreb, 

2011). They are influenced by any number of variables that are difficult to control for in any 

one study and greatly affect the possibility of accurate comparisons of the hypotensive effect 

of exercise across studies. Therefore the protocols governing IOP measurements during 

research need to control for these factors. Relevant to the current discussion are those factors 

that would necessarily affect an examination of the hypotensive effect of exercise on IOP and 

mechanisms related to either increased physical fitness or dehydration.  

 

3.1.1 Diurnal variation of IOP. IOP fluctuates significantly over the course of a 24-

hour period (Liu & Weinreb, 2011; Liu et al., 2003a; Liu, Bouligny, Kripke, & Weinreb, 

2003b; Sit, 2014). In the general population, IOP ranges between 10 and 21 mm Hg with a 

mean of about 15 or 16 mm Hg, plus or minus 2.75 mmHg to 3.5 mm Hg during a 24-hour 

cycle (Liu & Weinreb, 2011; Quigley, 2011). It is observed that IOP quickly increases by 

about 3mm Hg to 4mm Hg in normal eyes when a person assumes a supine posture (lying 

down) regardless of the time of day. After the initial increase IOP settles at an elevated 

plateau, possibly because of a redistribution of body fluid in the supine position which results 

in a decrease in aqueous humour production (Liu et al, 2003a; Liu et al., 2003b). However, 

although aqueous humour production decreases at night, IOP increases nocturnally, regardless 

of posture (Brubaker, 1991; Liu et al., 2003b; Mosaed, Liu, & Weinreb, 2005). When a person 

wakes IOP is initially elevated before decreasing back to the current baseline IOP. Because the 

fluctuations caused by nocturnal and diurnal variation are so great, fluctuations of IOP can be 

greater than the post exercise reductions in IOP produced in many studies. For this reason 
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most studies on exercise and IOP are constrained to the daylight hours, usually at the same 

time each day and all measurements are taken in an upright position (Brubaker, 1991; Gale et 

al., 2009; Risner et al., 2009; Liu & Weinreb, 2011). However, it is also important to control 

for the activities of the participants in the hours leading up to the actual experiment, especially 

close to the participant’s normal waking hour.  

  

 3.1.2 Seasonal variation of IOP. It also common, in the exploration of exercise and 

IOP, to find that studies are confined to one of the four seasons because there is literature to 

suggest that IOP is subject to seasonal as well as diurnal variation. IOP is low in the summer 

and high in the winter and can fluctuate as much as 0.14 to 0.39 mmHg (p ≤ 0.02; Gardiner, 

Demirel, Gordon, & Kass; 2013), with a peak in January or February (Gardiner et al., 2013; 

Qureshi et al., 1996c). The mechanism responsible for seasonal fluctuations remains unclear. 

One suggestion is changes in the secretion of Melatonin from the pineal gland, which is 

affected by the daily total amount of light entering the eyes. Melatonin affects the anterior 

pituitary gland, and the resulting increase in the secretion of progesterone and estrogen could 

be increasing the outflow of IOP in the summer months (Gardiner et al., 2013). Regardless, 

given the small range produced by most experimental studies on exercise and IOP a change 

from winter to summer, or vice versa could easily obscure study results. 

 

 3.1.3 The impact of fluid ingestion on normal IOP. The ingestion of fluid has a 

direct and lasting effect on IOP. Yet, the protocols of many studies do not allow for 

comparison of this variable, although there are exceptions (Hunt et al., 2012; Moura, 

Rodrigues, Waisberg, de Almeida, & Silami-Garcia, 2002). This is important with regard to 

the discussion of mechanisms governing post exercise reductions in IOP. In the short term, 

water ingestion might interfere by elevating IOP, while hyperosmolarity, caused by 

dehydration, would be modulated by pre-exercise water ingestion in exercise protocols of a 

longer duration. Control of covariates such as pre-exercise fluid intake would greatly improve 

the generalization of results across studies (Sollanek et al., 2012). 

 

 A test used to diagnose pathologically elevated IOP, the water provocation test, 

requires that the patient rapidly drink one litre of water, then IOP is measured at 10 to 15-
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minute intervals. Greater increases are thought to mean greater risk (Diestelhorst & 

Krieglstein, 1994). In one study that looked at water drinking and IOP in normally active 

people without ocular disease, one litre of water caused a 2.0 mm Hg increase in IOP at ten 

minutes post consumption and another increase at 70 minutes to 4.0 mm Hg. Baseline IOP 

was not regained for over 140 minutes (Buckingham & Young, 1986). These increases are as 

great as some post exercise reductions in IOP and would serve to nullify the effect of exercise 

if water is consumed to close to the beginning of the exercise protocol. 

 

 3.1.4.1 Caffeine and IOP. Because caffeine is a stimulant it has a slightly different 

pattern of effect than simple water on IOP and is important to this study with regard to the 

coffee habits of participants in experimental studies. Tachycardia (abnormally rapid heart 

rate), such as can occur after coffee consumption, and increased blood flow through the 

vessels increases aqueous production efficacy. The results of one study found that two cups of 

coffee produces a rapid increase in IOP of 3.3 mm Hg that peaks between 20 and 30 minutes. 

IOP returned to basal values 95 minutes later (Buckingham & Young, 1986). Another study 

finds the same magnitude of increase and longer recovery times (Okimi, Sportsman, Pickaerd, 

& Fritsche, 1991). It should be noted that a more recent study found that the effect of caffeine 

on IOP differs with population, those with normal IOP saw no effect, while those with 

pathologically elevated IOP and ocular hypertension saw a significant increase (Li, Wang, 

Guo, Wang, & Sun, 2011). 

 

3.2 Other Factors in the Fluctuation of IOP 

 

 3.2.1 Age. Although hemodynamics do not often correlate with changes in IOP after 

exercise (Harris et al., 1994; Karabatkis et al., 2004, Kiuchi et al., 1994; Passo et al., 1987; 

1991), there could be a relationship between IOP and age mediated by the dual effects of 

systolic blood pressure and aging (Klein & Klein, 1981; Klein, Klein, & Knudston, 1995; 

Leske and Podger, 1983; McLeod, West, & Quigley et al., 1990; Qureshi, 1995c; Schulzer & 

Drance, 1987). However, Schulzer and Drance (1987) suggest that systolic blood pressure 

does not necessarily rise with age before IOP begins to increase. Qureshi (1995c) observed 

that IOP was significantly negatively correlated with systolic blood pressure in 8036 
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participants. A progressive analysis revealed that the increase is non-significant until 40 years 

of age but highly significant (P < 0.001) from 41 to 60 years of age. Interestingly there is a 

nominal decrease during the ages of 61 to 70 and another, greater, increase in participants 70 

years and older. Overall the researchers found an average increase in IOP of 0.28 mmHg per 

decade (Qureshi, 1995c).  

 

 Obviously, as in most research of the human body, factors of aging potentially 

influence any study of post exercise reductions in IOP. As we age some diseases of the eye 

(see the following section for an example) become increasingly prevalent, therefore the 

majority of studies on exercise and IOP use participants under the age of 40.  

 

 3.2.2 Pathologically elevated IOP. Glaucoma is a group of eye diseases characterized 

by a progressive loss of retinal ganglion cells. It is often diagnosed because of repeated higher 

than normal IOP measurements (Quigley, 2011). Currently Glaucoma is described as a 

neurodegenerative disease with many unknown factors. However, increased IOP is still the 

most easily recognizable and treatable symptom of Glaucoma (Bengtsson & Heijl, 2005; 

Quigley, 2011). Primary Open Angle Glaucoma (POAG) is the most common subtype of 

Glaucoma and it occurs when the aqueous humour cannot drain properly or at all. Pressure 

builds within the eye damaging the sensitive nerve fibres that run from the retina to the optic 

nerve. Eventually visual information is lost before it reaches the cortex (Quigley, 2011). The 

pattern of visual field loss for those with Glaucoma is not vastly different than that of normal 

aging of the eyes. For that reason, coupled with the fact that elevated IOP is not painful unless 

the drainage canals are fully blocked, Glaucoma is often not detected until there has already 

been irreversible visual field loss (Gordon & Kass, 1999; Jay & Murdoch, 1993; Quigley, 

2011). This is a problem when screening participants for inclusion in this type of research. 

Traditionally, participants with elevated IOP are not included unless the study is specifically 

targeting a clinical population, although that does not necessarily mean the participant has 

Glaucoma, especially in the absence of other factors.  

 

 The majority of studies on post-exercise reductions in IOP, which compared a clinical 

population to normally active or physically fit individuals, find that there is a greater reduction 
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in post-exercise IOP for those with Glaucoma (Passo et al., 1991; Qureshi, 1995b). It is for 

this reason that research on exercise and IOP is often elaborated with the aim of 

complimentary therapy. Although clinical populations are not represented in the studies 

included in this thesis, it is important to understand that this is one of the motivations driving 

this body of literature. 

 

 Space does not permit a thorough examination of all factors that could potentially 

affect IOP during exercise. Therefore, the current discussion focused on those factors that 

appeared most often within the literature on the hypotensive effects of aerobic exercise on IOP 

and which are most relevant to the studies contained herein. However, there are many more 

factors at play such as second hand effects on IOP through systemic diseases affecting the 

cardiovascular system, Type 11 diabetes, and conditions that affect the normal contraction of 

intraocular and extraocular muscles (Bengtsson & Heijl, 2005; Gale et al., 2009; Portmann et 

al., 2011; Quigley, 2011).
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Chapter 4 

 

Exercise And IOP 

 

4.1 The Pattern of the Hypotensive Effects of Exercise on IOP 

 

 As previously mentioned there are decades of research on the hypotensive effects of 

exercise on IOP. For the most part the general protocol of most experimental studies proceeds 

in the following manner. First, there is a pre-exercise measurement of IOP and of the vitals of 

the participants. After which, the participant engages in an exercise intervention of some kind, 

usually 90 or less minutes, the intensity of which is determined by a test of maximal (or sub 

maximal) capacity. IOP might or might not be measured during exercise. Finally, post exercise 

measurements of IOP are conducted, continuing up to 2 or 3 hours after exercise in some 

studies (Reviews: Gale et al., 2009 and Risner et al., 2009). It is there that the similarities 

between studies end. There are large variations in types of exercise, durations and intensities 

of exercise, fluid protocols, group descriptions, and the list goes on. For that reason the 

relationship between exercise and IOP, while it certainly does exist, is difficult to fully 

characterize.  

 

 4.1.1 Aerobic Exercise and IOP. Aerobic or dynamic exercise is generally defined as 

moderate intensity (≈60%) exercise that is within the cardio respiratory system’s capacity to 

replenish oxygen in the working muscles (Guyton & Hall, 2006b). The majority of research on 

the hypotensive effects of IOP centre on the acute effects produced after one bout of moderate 

aerobic exercise. On average research shows reductions in IOP from pre-exercise values on 

the order of 1.4 to 8.0 mm Hg in sedentary and normally active populations. (Reviews: Gale et 

al., 2009 and Risner et al., 2009). 

 

 When it comes to reductions in IOP however, all aerobic exercise is not equal. For 

example, Qureshi (1995b) showed that IOP decreased 2.43 mm Hg (±0.30) after walking, 3.85 
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mm Hg (±0.55) after jogging, and 4.0 mm Hg (±0.37) after running. The effects were 

magnified in a clinical population with elevated IOP but the pattern remained the same 

(Qureshi, 1995a). This discrepancy between reductions is constant in those studies that 

compared exercise intensity (Harris et al., 1994; Kiuchi et al., 1994; Qureshi et al., 1996b). It 

is suggested by these authors that exercise intensity is the limiting factor in the magnitude of 

reduction in IOP that can be expected post exercise. 

 

 4.1.2 Effects of intensity and duration on post aerobic exercise reductions in IOP. 

Across the literature there is a general consensus that relative intensity rather than duration is 

correlated to post exercise reductions in IOP (Harris et al., 1994; Kiuchi et al., 1994; Qureshi, 

1995a,b; Qureshi et al., 1996b). The interaction between duration and intensity with regard to 

the hypotensive effect of exercise is less clear. Field running for 15 minutes produced 

reductions in IOP of 4.3 mmHg in normally active people (Kiuchi et al., 1994) and running up 

and down seven flights of stairs, which takes only 2 minutes but is a higher intensity exercise 

also produced a reduction of 4.3 mmHg (Buckingham & Young, 1986). Finally, Ashkenazi, 

Melamed and Blumenthal (1992) also found a decrease of 4.1 mm Hg after a 24-hour march.  

 

 An interesting study from Conte et al. (2014), found that 30 minutes of high intensity 

interval training (HIT), which included 2 minutes of walking at 50% of heart rate reserve 

alternated with 1 minute of jogging at 80% heart rate reserve, and 30 minutes of continuous 

moderate exercise (CME), jogging at 60% of heart rate reserve, exerted an equally 

hypotensive effect on IOP. It appears that intensity is indeed a factor in the post exercise 

reductions in IOP but there is a potential interaction between duration and intensity that bears 

further examination. 

 

 4.1.3 Isometric exercise and IOP. Static exercise, such as gripping a bar or holding a 

lunge, involves predominantly isometric activity (the muscle and joint angles do not change 

during contraction) and the active muscles usually require the anaerobic metabolism. Some 

research finds nominal decreases after isometric exercise, although the magnitude is 

considerably less than after aerobic exercise (Avunduk, Yilmaz, Sahin, Kapicioglu, & 
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Dayanir, 1999; Marcus, Edelhauser, Maksud, & Wiley, 1974; Ozmerdivenli, Simsek, Bulut, 

Karacabey, & Saygin, 2006; Rüfer et al. 2014).  

 

 Isometric exercise can lead to hyperventilation and hypocapnia (decreased carbon 

dioxide levels), which is thought to correlate with reductions in IOP (Imms & Mehta, 1989; 

Kielar, Teraslinna, Rowe, & Jackson, 1977; Marcus et al. 1974). The results of one study 

showed a reduction in IOP of 2.7 mm Hg after isometric exercise (Harris, Malinovsky, Cantor, 

Henderson, & Martin, 1992). However, when participants maintained a normal breathing 

pattern rather than hyperventilating, thus maintaining carbon dioxide levels, no reduction in 

IOP was observed (Harris et al., 1992).  

 

 Even when discussing only isometric exercise, the type of exercise is still a factor. 

Chromiak, Abadie, Braswell, Koh and Chilek (2003) found the return to baseline IOP was 

slower after lower-body resistance training than upper-body resistance training (Chromiak, 

Abadie, Braswell, Koh, & Chilek, 2003). This same group also found that IOP was reduced 

following chest press and leg press exercises, provided the intensity of the exercise amounted 

to 70% of a repetition’s maximum force (Chromiak et al., 2003). 

 

 4.1.4 Aerobic versus isometric exercise. A couple of studies attempted to compare 

directly the disparate effects of isometric and aerobic exercise on IOP. Ozmerdivenli et al., 

(2006) found that aerobic exercise produced a 27% change from baseline IOP as compared to 

a 17% change caused by isometric exercise in a study using matched duration rather than 

matched intensity (Ozmerdivenli et al. 2006). Conversely. Kielar et al. (1975) compared 

aerobic and isometric exercise of a matched intensity and found no significant difference in 

the reductions in IOP.  

 

 Rüfer et al., (2014) compared aerobic exercise on a cycle ergometer to isometric 

exercise on a leg curl machine for the lower limbs and on a butterfly machine for the upper 

body. The researchers found a reduction in IOP of 2 mm Hg after cycling and did not find any 

reductions in IOP after upper or lower body resistance. The researchers suggested that the 

nominal increase (<1 mmHg) after upper body exercise might be related to an involuntary 
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Valsalva maneuver (a forced exhalation against closed lips) (Rüfer et al., 2014).   

 

 4.1.5 Weightlifting and the Valsalva maneuver. During a sustained isometric 

muscular contraction or extreme effort participants sometimes perform what is known as a 

Valsalva Manoeuvre, which is a forceful exhalation against a closed airway. When this 

happens during an isometric contraction, such as during weightlifting, IOP typically increases 

(Dickerman et al., 1999; Kiss et al., 2001; Vieira, Oliveira, de Andrade, Bottaro, & Ritch 

2006). When the contraction is relaxed IOP gradually returns to baseline (Marcus et al., 1974; 

Movaffaghy, Chamot, Petrig, & Riva, 1998; Vieira et al., 2006).  

 

 With respect to weightlifting specifically it was found that the increase in IOP occurs 

whether the breath is held or not, but the magnitude of that increase changes. Vieira, Oliveira, 

de Andrade, Bottaro and Ritch (2006) found that IOP increased 4.3 mm Hg (±4.2) when 

participants held their breath and only 2.2 mmHg (±3.0) when breathing was normal (Vieira et 

al., 2006). Brody, Erb, Veit, and Rau (1999) further showed that a Valsalva maneuver 

increases IOP whether one is exercising or not. 

 

4.2 The Impact of Long-Term Physical Conditioning on Baseline IOP  

 

 There is evidence that physical conditioning (Harris et al., 1994; Passo et al., 

1987,1991; Qureshi, 1996a; Williams, 2009) and physical labour in the workplace (Qureshi et 

al., 1997a), induce adaptations of the sympathetic nervous system that contribute to an overall 

reduction in baseline IOP. Study 3 explores this notion further but in general a greater 

reduction in IOP after exercise is observed in sedentary populations, some of who exhibit a 

higher baseline IOP, as compared to those who are physically active, however, this is not often 

quantified (Harris et al., 1994; Passo et al., 1987, 1991; Qureshi, 1996a). As of the writing of 

this thesis there are very few controlled studies on the long-term effects of exercise on IOP 

and the relationship between levels of IOP and level of physical fitness are far from clear. 

 

 In one field study, Qureshi, Wu, Xi, Yang and Huang (1997a) divided 150 male 

volunteers from a steel factory into two groups. The subjects of Group 1 were sedentary 
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workers, whereas the job descriptions of Group 2 included regular heavy exertion. Physical 

fitness was evaluated by the measurement of maximal oxygen uptake (VO2max). IOP was 

significantly lower in those whose job description included moderate or severe exertion. The 

VO2max difference between Groups 1 and 2 was found to be 5.1 ± 1.1 ml/kg/min (p <0.001) 

and the difference in baseline IOP was 1.9 ± 0.7 mmHg (p <0.001). 

 

 Passo, Goldberg, Elliot and Van Buskirk (1987) found that baseline IOP was reduced 

by 1.3 mmHg (p <0.02) after long-term exercise conditioning of three months and it returned 

to pre-conditioning levels after three weeks. Qureshi (1996a) replicated this pattern of results 

in a study of 32 sedentary age-matched males, categorized equally into control and exercise 

groups. After three months, baseline IOP values decreased by 0.31 mm Hg (+/- 0.11, p < 0.05) 

and 1.37 mm Hg (+/- 0.15, p < 0.001) in control and exercise groups, respectively (Qureshi et 

al., 1996b). The combined evidence suggests those who are physically fit could potentially 

maintain a baseline IOP that is lower than those who are sedentary (Harris et al., 1994; Passo 

et al., 1987, 1991; Qureshi, 1996a).   

 
 Conversely, Sargent et al. (1981) found that although the physically conditioned 

participants in their study had a lower baseline IOP as compared to those who were sedentary, 

both groups experienced a significant and comparable decrease in IOP over 6 months of 

conditioning. The researchers concluded that there is no correlation between physical fitness 

and baseline IOP. They performed a multiple regression analysis for each individual group and 

for combined groups and found that changes in IOP were not dependent upon changes in 

physical fitness. However, IOP is generally higher in the winter. Because the study was 6 

months in duration and covered fall to winter it is possible that the seasonal drop in the 

summer months obscured the results between the groups (Gardiner et al., 2013; Qureshi et al., 

1996c). 

 

4.3 Long-Term Physical Conditioning and Acute Post Aerobic Exercise Reductions in 

IOP 

 
 There is research to suggest that long-term physical conditioning affects acute post-
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aerobic-exercise reductions as well as baseline IOP, such that those who are physically fit 

experience a blunted effect of exercise on IOP. In the aforementioned study, Passo et al. 

(1987) found that before 3 months of training, acute exercise decreased IOP in Sedentary 

participants by 41% from baseline. After three months of exercise conditioning, three days per 

week, acute exercise reduced IOP by 12% from baseline, a reduction that persisted for an 

average of three weeks in some participants (Passo et al., 1987).  

 

 Qureshi and colleagues replicated the decrease in baseline IOP after exercise in a 

number of studies (1995b, 1996b, 1997a, 1997b). In one study the acute decreases following 

the first exercise test were 4.18 mmHg (±0.41) and 4.38 mmHg (±0.47) in control and 

experimental groups, respectively. After 3 months these values were 4.12 (±0.45) and 2.69 

(±0.28) mmHg and the mean recovery time, post exercise, was reduced by 43.03% (Qureshi et 

al., 1996b).  

 

 The opinion on the effect of physical fitness on reductions in IOP is not unanimous 

however. A study by Dane et al. (2002a) showed that highly conditioned athletes produced a 

significant increase in IOP before decreasing to baseline. In the sedentary group IOP 

immediately decreased and remained decreased at 30 minutes and up to 2 hours post exercise 

(Dane et al., 2002a,b). Ozmerdivenli et al. (2006) found IOP was significantly decreased 

compared with pre-exercise values when measured after both aerobic and anaerobic exercise 

in both athletes and sedentarians. However, they also found that the magnitude of the decrease 

was not significantly different between the two groups (Ozmerdivenli et al., 2006). 

 

4.4 Potentially Damaging Increases in IOP With Exercise  

 

 It is important to note that in some clinical populations the effect of vigorous exercise 

on IOP is a negative one and participant selection criteria should be designed accordingly. 

Although this thesis does not deal with clinical populations, this section serves to illustrate the 

transient nature of the relationship between exercise and IOP. 
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 4.4.1 Severe Glaucoma and vigorous exercise. The majority of studies suggest that 

exercise not only lowers IOP in those with Glaucoma, but that it does so to a greater degree 

than in normal populations. However, there is some evidence to show that vigorous aerobic 

exercise might be damaging to those with severe Glaucoma. The results of three case studies 

in young adults show a transient visual field decrease in patients with Glaucoma after vigorous 

aerobic exercise (Uhthoff’s Syndrome). Although the researchers were unable to infer the 

mechanism of the transient vision loss, processes related to demyelination of the optic nerve 

and disruption of the optic blood flow were discussed (Haynes, Johnson, & Alward, 1992; 

Shah, Whittaker, Wells, & Khaw, 2001).  

 

 4.4.2 Yoga. There is also some controversy regarding the effect of regularly practiced 

headstands, such as during yoga classes. One notable study looked at the effects of the 

headstand on IOP in 75 long-term yoga practitioners. They found that despite a two-fold 

increase in IOP during the headstand, across age groups, there was no increased incidence of 

ocular hypertension, and no correlation between risk factors contributing to Glaucoma and the 

magnitude of the increase in IOP (Baskaran et al., 2006). However, other studies find that 

repeated and prolonged headstands can potentially cause deficits in the visual field 

(Bertschinger, Mendrinos, & Dosso, 2007; Gallardo, Aggarwal, Cavanagh, & Whitson, 2006; 

Jonas, 2007).  

 

 Although the aforementioned anomalies exist, overall, the literature on the hypotensive 

effect of exercise on IOP is of a positive nature, or at least part of a normally functioning 

ocular system. There is no doubt that exercise has an effect on IOP. Whether the effect is 

hypotensive or hypertensive, IOP fluctuates with all exercise, to some degree, in the majority 

of populations. The enormous variety of pre-exercise control and exercise protocols across the 

literature make the results of these studies difficult to synthesize. Further, a possible 

relationship between physical fitness and IOP could have significant implications regarding 

the mechanism or mechanisms driving the hypotensive effect of exercise on IOP. 
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Chapter 5 

 

Mechanisms 

 

 There is no consensus on what mechanisms contribute to the reduction of IOP after 

acute aerobic exercise. Over the decades changes in colloid osmotic pressure (one factor in 

capillary fluid exchange), increases in plasma osmolarity, ocular blood flow, increased blood 

lactate, and decreases in blood PH were all posited as possible mechanisms that initiate a 

reduction in IOP (Harris et al., 1992; Harris et al., 1994; Hunt et al., 2012; Karabatakis et al., 

2004; Kiuchi et al., 1994; Martin et al., 1999). However, Ashkenazi et al. (1992) found no 

correlation between the magnitude of reduction in IOP and blood lactate level, pH, serum 

proteins or haematological parameters after a 24-hour march that produced reductions in IOP 

of 4.1 mm Hg (Ashkenazi et al, 1992).  

 

 Although all of the aforementioned mechanisms are present in both anaerobic and 

aerobic exercise, increased osmolarity (hyperosmolarity) is found only during aerobic 

exercise. Hyper-osmolarity, such as occurs during systemic dehydration, has received renewed 

interest in recent literature as a possible modulator of exercise induced reductions in IOP in 

exercise protocols of longer durations (Hunt et al., 2012; Moura et al., 2002; Sollanek et al., 

2012). 

 

5.1 Factors Related to Dehydration and IOP  

 

 When people sweat over time processes such as an increase in plasma osmolarity, 

which results in low sodium, potassium and chlorine (electrolytes) and colloid osmotic 

pressure (pressure exerted by proteins in blood plasma) occurs. This is because the sweating 

that occurs during moderate to heavy exercise results in shift of fluid from the plasma to the 

interstitial fluid (Guyton & Hall, 2006b, c, d). To maintain normal osmotic pressure water 

diffuses in the direction necessary through cell membrane. This raises the concentration of 

non-diffusible substances of interstitial fluid, resulting in water transfer across cell membranes 

of various tissue cells from intra to extracellular components therefore the tissues also become 
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dehydrated. Thus a higher proportion of electrolytes (sodium, potassium and chlorine) are 

secreted through sweat (deVries & Housh, 1994a, b, d; Guyton & Hall, 2006c, d). This 

homeostatic process has the potential to cause osmotic changes in the retinal and uveal 

vasculature. It is suggested that it could that ultimately could reduce the volume and formation 

of intraocular fluids, thereby reducing IOP (Guyton & Hall, 2006b, Martin et al., 1999). 

 

 As humans acclimatize to progressive heat through training they sweat more profusely 

which increases the plasma volume and diminishes the loss of electrolytes, thereby 

maintaining plasma osmolarity (deVries & Housh, 1994a, b, d; Guyton & Hall, 2006d). Via 

this mechanism, dehydration is delayed and possibly the deregulation of IOP as well (Martin 

et al., 1999). Other indices of hydration such as hematocrit and plasma protein concentration 

are not shown to exert effect on IOP (Feitl & Krupin, 1996). Because the sweating mechanism 

is known to improve with physical conditioning, it is an important variable in any study of 

IOP as a possible marker of hydration.  

 

 There are many other proposed mechanisms that are not as widely studied in the 

current literature on exercise and IOP but were posited as contenders in the past. In all cases 

the proposed mechanisms are a part of systems that increase in efficacy with long-term 

physical conditioning and they bear mentioning because of their relationship to the fitness 

level of the participants. 

 

5.2 Other Proposed Mechanisms 

 

 5.2.1. Lactic Acid. The discrepant results across studies with regard to the role of 

lactic acid in post exercise reductions of IOP might be explained by differences in how our 

energy system works under different conditions. When exercise is so vigorous (>75% 

VO2max) so as not to allow sufficient oxygen exchange, the metabolic cycle is abbreviated 

resulting in lactate production (deVries & Housh, 1994b; Guyton & Hall, 2006b). Therefore, a 

long moderate run and a short sprint will use different energy systems and might lower IOP 

through different mechanisms (Harris et al., 1994).  
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 It is also argued that the relationship between IOP and increased lactate is seen only in 

anaerobic exercise (Kielar et al., 1975). In people who are extremely physically fit lactate 

production is slower to occur as such they can perform at high intensities longer than those 

who are sedentary before build up occurs (deVries & Housh, 1994b; Farrell, Wilmore, Coyle, 

Billing & Costill, 1979; Harris et al., 1994). Although the exact punitive effects of increased 

lactic acid on IOP are unknown, a correlation between reductions in IOP and increased lactate 

production would suggest a relationship to absolute rather than relative intensity markers 

contrary to much of the literature on post exercise reductions in IOP. 

 

 5.2.2 Vascular factors. There are many other factors that potentially contribute to 

normal fluctuations in IOP that have to do with the hemodynamics of the body and eyes. With 

regard to exercise their influence is widely debated. The majority of studies on exercise and 

IOP report no relationship with IOP and blood lactate, blood PH, diastolic blood pressure, 

heart rate or ocular perfusion pressure or blood flow (Harris et al., 1992; Karabatakis et al., 

2004; Kiuchi et al., 1994; Krejci, Gordon, Moran, Sargent, & Magun, 1981; Passo et al., 1987; 

Qureshi, 1996a). The studies contained within the current thesis did not pursue the vascular 

influences on IOP during exercise therefore they are not discussed in detail here.  

 

 5.2.3 Adrenaline. Another possible mechanism driving the hypotensive effect of 

exercise on IOP is hormonal regulation by an increased release of adrenaline (Güngör et al., 

2002; Qureshi et al., 1997a; Qureshi, 1997b). There is the suggestion that the extra adrenaline 

increases outflow through the trabecular meshwork and reduces aqueous humour formation 

(Wang, Hayashi, Yablonski, & Toris, 2002). In clinical practice, patients often begin treatment 

with β-adrenergic antagonist eye drops to lower IOP (Quigley, 2011). However, there is a 

steeper increase in metabolic demand when sedentary people begin exercising causing the 

adrenaline to be released in a different time pattern than that of very fit participants. 

 

 To further complicate the characterization of the relationship between exercise and 

IOP, the results of some studies show an initial drop in IOP that could not possibly be related 

to dehydration (Buckingham & Young, 1986; Dane et al., 2006a; Orgül & Flammer, 1994; 

Qureshi, 1995a,b) and would likely be driven by a different mechanism. 
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5.3 Initial Reduction in IOP in the Moments After Beginning Exercise 

 

 The progression of reductions in IOP during exercise is not clearly linear. Often, when 

exercise first begins IOP drops significantly within the first 5 minutes, after which IOP usually 

fluctuates to varying degrees, most often decreasing further as exercise continues 

(Buckingham & Young, 1986; Dane et al., 2006a; Orgül & Flammer, 1994; Qureshi, 1995a,b; 

Qureshi et al., 1996b). 

 

 Orgül and Flammer (1994) took a closer look at this pattern and found that even 8 to 

10 seconds of deep knee bending produces nominal post-exercise reductions of 1.9 +/- 0.3 

mmHg in 17 young men, compared with 0.8 +/- 0.2 mmHg for the 15 men who did nothing 

before the second IOP measurement. If hyperosmolarity is indeed a factor in the mechanisms 

that govern post exercise IOP it could not occur in the first 5 minutes of exercise. Orgül and 

Flammer (1994) found a correlation between the relative decrease in IOP and increase in heart 

rate, a correlation not often found after longer durations (Harris et al., 1992; Karabatakis et al., 

2004; Kiuchi et al., 1994; Krejci et al., 1981; Passo et al., 1987; Qureshi, 1996a; Qureshi et al., 

1996b). Possibly, mechanisms related to acute homeostatic balance are at play for shorter 

duration exercise protocols or when exercise is initiated. 

 

 There is no doubt that exercise exerts an effect on IOP. The effect can be nominal or 

robust, and occurs under a vast number of combinations of intensity and duration of exercise. 

The hypotensive effect of IOP seems to present in participants differently dependent on their 

level of physical conditioning. It is possible that exactly for that reason, the mechanism, or 

mechanisms remain unknown. It is also possible that different mechanisms are at play for the 

initiation of exercise and for exercise protocols of longer durations.  
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5.4 Objective of Thesis 

 

 The general objective of this thesis was to further elucidate the pattern of results 

emerging from the vast literature on the effect of exercise on IOP and begin to clarify a 

possible direction for the standardization of exercise protocols in this area of study. A further 

aim of the current thesis is to elucidate the mechanisms at play during post aerobic exercise 

reductions in IOP, specifically those that relate to the parasympathetic nervous system. 

 

5.5 Objectives by Study 

 

 In the first study of this thesis, a meta-analysis will be conducted to quantify the 

relative contributions of intensity and duration to the effect of exercise on IOP and the degree 

to which these variables affect sedentary and normally active populations (Section 6.4, Study 

1). It is posited that the effect will be greater for those that are deemed to be physically fit than 

for those who are sedentary. 

 In the second study, we will observe participants riding an ergocycle for 90 minutes to 

further explore relationship between dehydration and post exercise reductions in IOP (Section 

6.5, Study 2). We propose that after an initial decrease, further reductions in IOP will correlate 

with loss of body weight when fluids are restricted and that there will be little movement in 

IOP when fluids are held constant.  

 Finally, Study 3 will attempt to clarify the relationship between physical fitness and 

baseline IOP by correlating four discrete baseline measures conducted over an eight-week 

period, and a single test of VO2max on an ergocycle (Section 6.6, Study 3). We suggest a 

linear relationship between baseline IOP and V02max such that the higher a person’s V02max 

the lower the baseline intraocular pressure. 

 

5.6 Conclusion 

 

 The hypotensive effect of exercise is widely studied and much debated. Study 

protocols and the magnitude of results are inconsistent across the literature, regardless, there 

are patterns emerging from these results that bear examination. One pattern shows that 
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reductions in IOP are blunted for those who are physically fit compared to those who are 

sedentary or who have elevated IOP. The attenuated effect of exercise in a conditioned person 

is possibly related to an increased efficacy of the parasympathetic system. A better 

understanding of the way exercise impacts the IOP of people of differing fitness levels and 

how the duration and intensity of the various exercise protocols factor into that relationship, is 

necessary to elucidate our understanding of the mechanisms that drive the hypotensive effects 

of exercise on IOP.
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Chapter 6 

 

Experimental Studies: Research Questions and Hypothesis 

 

6.1 Study 1. A meta-analysis on post exercise change in IOP via acute aerobic exercise 

 

 Objectives. The meta-analysis was designed to analyse the data from a group of 

studies that investigated the relationship between acute aerobic exercise and IOP, in order to 

obtain a quantitative estimate of the overall effect of this intervention. Specifically, our 

objective was to quantify the relative contributions of intensity and duration to the effect of 

exercise on IOP and the degree to which these variables affect sedentary and normally active 

populations.    

  

 Hypotheses.  

 H1) We propose that the hypotensive effect of exercise on IOP will be robust and will 

differ between populations that are sedentary and those that are physically fit. 

 

6.2 Study 2. Post exercise change in IOP and Dehydration 

 

 Objectives. To observe a possible correlation between progressive reductions in IOP 

during exercise and systemic dehydration participants will perform a 90-minute ride on an 

ergocycle. In the hyper-hydrated condition water will be available during the ride. In the hypo-

hydrated condition water will be restricted. Both weight and IOP will be measured before, 

during and after the exercise protocol. 

 

  Hypotheses.  

 H1) Using change in body weight as a measure of hydration, we propose that IOP will 

correlate with loss of body weight when fluids are restricted and that there will be little 

movement in IOP when fluids are held constant.  
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 H2) It is possible that we will also replicate initial reductions in IOP when the exercise 

begins that are unrelated to dehydration and more likely related to changes in level of activity.  

 

6.3 Study 3. The Correlation Between Baseline IOP and Physical Fitness 

 

 Objectives. To clarify the relationship between maintained physical conditioning and 

baseline IOP the current study will perform four discrete baseline measures conducted over an 

eight-week period, and a single test of VO2max on an ergocycle. In this way we hope to 

analyze the correlation between baseline IOP and a person’s level of physical conditioning.  

 

 Hypothesis.  

 H1) There will be a negative correlation between baseline IOP and V02max such that 

the higher a person’s V02max the lower the baseline intraocular pressure.  

 

 H2) At the higher end of V02max values, it is further proposed that baseline IOP will 

be stable from week to week.



	

 

 

6.4 Article 1 

Reductions in intraocular pressure after acute aerobic exercise: a meta-analysis 
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ABSTRACT 

 

Purpose. Aerobic exercise is known to reduce elevated intraocular pressure (IOP), a primary 

risk factor for a disease of the eye known as Primary Open Angle Glaucoma (POAG). Given 

the disparate nature of experimental protocols across the literature an analysis of studies, on 

the effect of acute aerobic exercise on IOP, is necessary to verify the influence of participant 

characteristics, exercise intensity and duration. 

 

Method. The electronic databases PubMed, Web of Science and Embase were searched 

producing 35 empirical studies for review. Ten studies producing 14 independent groups were 

chosen as per the criteria of the analysis. 

 

Results. Random-effects models were used to produce subgroup analyses and meta-

regressions were used to verify the impact of group allocation, intensity and duration on the 

inter-study variability of the effect size. The outcome variable of post exercise change in IOP 

produced a significant effect of exercise, almost two-fold greater for sedentary populations 

than for normally active populations (ES = -4.198 [CI -5.151, -3.245], ES =-2.340 [CI -3.305, 

- 1.375], respectively). Intensity and duration do not contribute to the overall effect size nor do 

they explain the difference between sedentary and normally active populations. 

 

Conclusions. There is a robust effect of exercise on IOP for sedentary participants. However, 

the heterogeneity across study parameters such as exercise protocol, IOP measurement and 

participant selection prohibited the inclusion of studies in this analysis that may have 

influenced the results. The current analysis makes clear the need for standardization of 

protocol across this field of research.  
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Introduction 

 

 Primary Open Angle Glaucoma (POAG) is a disease of the eye that progresses 

asymptomatically for many years, until visual deficits and irreversible damage to the retina 

have already occurred (Quigley & Broman, 2006; Quigley, 2011). POAG is the second 

leading cause of blindness worldwide and will affect 80 million people by the year 2020 

(Quigley & Broman, 2006). Complementary lifestyle changes alongside clinical treatment of 

POAG are becoming increasingly important as prevalence of the disease increases coupled 

with decreasing access to eye health care for low-income, elderly populations (Winters, 2008). 

Of the many implicated risk factors including age, heredity and corneal thickness, elevated 

intraocular pressure (IOP) remains the only controllable risk factor for POAG (Bengtsson & 

Heijl, 2005; Chauhan et al., 2008; Quigley. 2011). Exercise is a significant factor in the 

prevention and management of many chronic and age-related diseases and the literature on the 

relationship between exercise and IOP spans over five decades (Gale, Wells, & Wilson, 2009; 

Risner et al., 2009). Although studies vary widely with regard to population descriptions and 

exercise protocol, the majority show a transient reduction in IOP after acute aerobic exercise 

(Gale et al., 2009; Risner et al., 2009). 

  

 Normal IOP levels are generally thought to range from 10 to 21 millimeters mercury 

(mm Hg) and clinically high IOP is often differentiated by repeated readings over 21.0 to 24.0 

mm Hg (Gordon & Kass, 1999; Quigley, 2011) (see Wilson [1997] for a discussion on this 

topic). The majority of studies on the effect of aerobic exercise on IOP find reductions from 

pre-exercise values on the order of 1.4 to 8.0 mm Hg in sedentary and normally active 

populations (Risner et al., 2009; Gale et al., 2009; Hamilton & Feeney, 2012; Karabatakis et 

al., 2004).  

  

 Acute aerobic exercise produces transient reductions in IOP across intensity levels that 

range from very light, such as a brisk walk, to vigorous running on a treadmill, to volitional 

exhaustion on treadmills or cycle ergometers (Risner et al., 2009). There is evidence that it is 

exercise intensity alone and not exercise duration that is the key factor involved in the 

magnitude of the reduction in IOP (Harris, Malinovsky, & Martin, 1994; Kiuchi et al., 1994; 
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Qureshi, 1995a,b; Qureshi, Xi, Huang, & Wu, 1996b).  

  

 A qualitative comparison of results across studies suggests the relationship between the 

intensity of aerobic exercise and IOP is not entirely clear. Field running for 15 minutes and 

walking for 13.5 minutes in normally active participants (Kiuchi et al., 1994; Hamilton-

Maxwell & Feeney, 2012, respectively) produce reductions in IOP of 4.3 and 1.4 mm Hg, 

respectively. There is a nominal difference in duration between the two conditions but running 

is a higher intensity exercise than walking and produces a greater reduction in IOP (Ainsworth 

et al., 2003; Ainsworth et al., 2011). However, an even higher intensity exercise, running up 

and down seven flights of stairs, also produces a reduction of 4.3 mm Hg (Buckingham & 

Young, 1986). If intensity is a major factor in the reduction of IOP there may be a ceiling 

effect, a level beyond which intensity no longer impacts the magnitude of reduction in IOP. 

  

 Another factor affecting post exercise IOP is the current fitness profile of a participant. 

A greater reduction is observed in sedentary populations when compared to those who are 

physically active (Risner et al., 2009; Harris et al., 1994; Dane et al., 2006a). Harris et al. 

(1994), compared two groups of participants divided posteriori into sedentary and active 

groups by the concentration of lactate (lactic acid which has diffused out of the muscle) in the 

bloodstream after a vigorous 10-minute session on a cycle ergometer. The point at which 

lactate increases faster than the body can flush it from the muscle is known as the Lactate 

Threshold. The lower the threshold is, the more sedentary the individual (Gibbons et al., 1996; 

McArdle, Katch, & Katch, 2006). When the results were stratified, the sedentary group 

experienced an almost two-fold reduction in IOP as compared to the active group (-4.7 versus 

-2.7 mm Hg, respectively, Harris et al., 1994). 

 

Objectives 

  

 The current meta-analysis was designed to obtain a quantitative estimate of the overall 

effect of acute aerobic exercise on IOP as well as the relative contributions of exercise 

intensity and duration, and the degree to which these variables affect sedentary and normally 

active populations. For those populations most at risk for the development of POAG it is 
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important to examine the potential of aerobic exercise as a factor in the management of 

continued eye health. 

Materials and Methods 

Search Strategy 

  

 An open search was performed on the electronic databases PubMed from 1977, Web of 

Science from 1979 (including Medline from 1950) and Embase from 1974, through to March 

2, 2012.  

  

 The Cochrane List of Registered Trials and the archived abstracts from the annual 

meetings of the Association for Research in Vision and Ophthalmology and the Vision 

Sciences Society, from 2001 to the present, were also searched for unpublished studies. The 

references of relevant studies were hand searched. The keywords used in a pilot search of 

PubMed for related literature were physical activity or exercise* AND intraocular pressure OR 

ocular blood flow OR ocular tension OR glaucoma. For the final search the MeSH (PubMed), 

EMTREE (Embase) and free text keywords “exercise*” and “intraocular pressure” were used. 

   

 Identification of studies. The search yielded 658 papers as follows: PubMed (n 

= 188), Web of Science/Medline (n = 230) and Embase (n = 240) including 355 duplicates. Of 

the remaining studies, 268 of the studies were excluded by abstract (Figure 1.1). There were 

35 potentially relevant sources from which two were excluded because the results pertaining 

to a specific set of participants were used in a previous publication. Nineteen studies were 

excluded because of missing statistical information that could not be obtained from the authors 

contacted (n = 8). Ten studies were included in this meta-analysis producing fourteen 

independent groups (Table 1.1). 

  

 An independent reviewer (Dave Ellemberg, PhD) was consulted for all questions 

regarding inclusion of a potentially relevant study. 

 

Inclusion Criteria 

 



	 34	

The following inclusion criteria were imposed: 

1) Studies must include post exercise Δ IOP measured after the first acute bout of aerobic 

exercise on a given test day, and associated SD or SE, or raw participant data. 

2) Participants should be sedentary, normally active or athletic (excluding professional 

athletes) displaying no pre-existing ocular pathologies or IOP over 18 mm Hg. 

3) To reduce the likelihood of age related pathologies that may affect the eye, all participants 

should be no more than 55 years of age (Klein & Klein, 1981; Schulzer & Drance, 1987).  

4) Exercise should be aerobic in nature and the intensity must be quantifiable using 

physiological target measures such as a percentage of VO2max or sub maximal heart rate 

(MHR). 

5) The duration of exercise should be no less than 2 minutes ensuring at least partial 

recruitment of the aerobic system and no more than 60 minutes within daylight hours to 

constrain the effect of diurnal variation (Liu, Zhang, Kripke, & Weinreb, 2003; Hamilton, Pye, 

Aggarwala, Evian, Khosla, & Perera, 2007). 

 

Assessment of Risk and Bias 

 

 Of potential studies to be included in this analysis only Harris et al. (1994) and Passo, 

Goldberg, Elliot and Van Buskirk (1987) are included in the Cochrane Register of Controlled 

Trials (Higgins & Altman, 2011). In both cases, only a subset of the conditions could be 

included. Therefore the evaluation tool for assessing risk of bias was not employed. 

  

 An independent reviewer (Dave Ellemberg, PhD) was consulted for all questions 

regarding inclusion of a potentially relevant study. 

 

Data Extraction 

  

 The following information was extracted from each study: post exercise Δ IOP 

measured in mm Hg and associated variance, participant characteristics, type and duration of 

exercise, physiological and absolute measures of exercise intensity, IOP measurement 

methodology and tools, latency of the post exercise measure, authors, date and country of 
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publication and any information pertaining to the control of covariates. 

 

Outcome Variables 

 

 The primary outcome variable to be examined in this analysis was post exercise Δ 

IOP. The relative contribution of exercise intensity and duration to the relationship between 

exercise and IOP, and their differential effects on each population, were also evaluated.  

To standardize the energy cost of the exercises across studies, physiological markers of 

intensity were converted to a metabolic equivalent of task (MET; see Table 1.2). For studies 

using a submaximal percentage of VO2max as the target training range the standard formula for 

conversion from VO2max to a MET value was applied (%VO2max [ml•kg•min]/ 3.5) (ACSM, 

2010, p. 162; Dane et al., 2006a; Passo, Goldberg, Elliot and Van Buskirk, 1987). Four studies 

required a conversion of the given sub MHR to a percentage of VO2max for which we used a 

linear regression (% MHR = 0.646 × [%VO2max x 100] + 37.182) (Dane et al., 2006a; 

Karabatakis et al., 2004; Kiuchi et al., 1994; Read & Collins, 2011; Swain, Abernathy, Smith, 

Lee, & Bunn, 1994). Where necessary MET values were weighted for sex using VO2max 

normative tables for females and males between 20 and 29 years of age in the 50th percentile 

(Dane et al., 2006a; Hoffman, 2006; Karabatakis et al., 2004; Read & Collins, 2011). For the 

remaining four studies MET values were assigned using the 1993 and 2011 Compendia of 

Physical Activities (Ainsworth et al., 1993; Ainsworth et al., 2011; Hamilton-Maxwell & 

Feeney, 2012; Harris et al., 1994; Buckingham & Young 1986; Qureshi et al., 1996b).  

 

Statistical analyses 

 

 Assuming that all studies were not functionally equivalent, random-effects models 

were used to produce subgroup analyses and a forest plot. Meta-regressions were used to 

verify the impact of group allocation, intensity and duration on the inter-study variability of 

the effect size (ES). Analyses were done with Stata version 12.1 using a significance level of 

5%. 

Results 
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Search Results 

 

 Participant characteristics. The combined studies produced 231 participants of which 

67 were female and 130 were male (Table 1.1). The gender of 34 participants was not 

specified (Harris et al., 1994; Buckingham & Young, 1986). The normally active group 

includes all participants described as trained, athletic or otherwise normally active (n = 124). 

  

 Study characteristics. Four studies produced two independent groups each (Table 

1.1). The preconditioning results from both the experimental and control group in the long-

term study by Qureshi (1996a) are included as two sedentary groups. In the study by 

Karabatakis et al. (2004) the results from a single group including "Untrained" and "Athletic" 

participants were divided into a sedentary group (Group U, n = 4) and a normally active group 

(Group A, n = 25). The two groups in the "fixed" intensity condition from Harris et al. (1994) 

and both the sedentary and the Athletic group from the Dane et al. (2006a) were included in 

this analysis. The preconditioning results from all ten participants included in Passo et al. 

(1987) are included in this analysis as a single sedentary group. 

  

 Two of the studies included in this analysis tested different intensity conditions in a 

within subjects design (Table 1.2). Qureshi et al. (1996b) had sedentary participants ride a 

cycle ergometer at six combinations of intensity and duration over six days. We included only 

the 15-minute, 60% MHR condition in the current analysis. Kiuchi et al. (1994) had normally 

active participants run at five combinations of intensity and duration. The 15-minute, 

70% MHR condition was included in this analysis. In both cases, the condition chosen 

represented a duration and intensity not represented by the other included studies. 
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Figure 1.1. Literature Search and Exclusions 
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* Participant descriptions are verbatim from the respective studies. 
† The 29 participants in the study by Karabatakis et al. (2004) are divided into two groups, Gr A comprises 25 
participants categorized as Athletic and Gr U comprises the four Untrained participants. 
‡No variance was provided. 

  

Table 1.1 
 
General characteristics of participants 
 
 
First Author 
and  
Country 
 

 
Year 

 
N 
 

 
Participant Description*  
(Female/Male) 

 
Age range  

 
IOP at 
Baseline 
 

Dane  
Turkey 

2006 25 
24 

Sedentary (without any activity) 
Gr 1 (11/14) 
Athletes (Runners from university) 
Gr 2 (11/13) 
 
 

17 - 22 
 
 
17 - 22 

15.0 SD 3.0 
 
 
15.2 SD 3.3 

Harris  
USA 
 

1994 11 
17 

Sedentary Gr 3 
Athletic (Competitive Cyclists) Gr 2 
Both groups mixed gender 
 

Young 
Adults 

16.4 SD .8 
16.3 SD .5 

Passo  
USA 
 

1987 10 Sedentary (3/7) 
 
 

36.6 - 37.4  14.3 SE .7 

Qureshi  
China 
 

1996b 25 Healthy Sedentary (no activity 3 mths)  
Males 
 
 

21 - 26 13.9 SE .5 

†Karabatakis  
Greece 
 

2004 4 
25 

Physically Untrained Gr U (2/2) 
Athletic Gr A (9/16) 
 

13- 18 ≈ 13.5 

Qureshi  
China 

1996a 16 
16 
 

Sedentary (no activity 6 mths) 
Gr 1 
Gr 2 
Both groups Male  
 

 
21-30 
21-30 

 
15.1 SE .6 
15.2 SE .7 
 

Buckingham  
UK 

1986 6 University Students  
Mixed Gender 

18-21 No baseline 
IOP given 

Hamilton-
Maxwell   
Wales 

2011 25 Healthy Students (23/2) 
 
 

19.5 - 22.1 16. SD 2.6 

Read  
Australia 

2011 20 Young Adults (8/12) 
 

21 - 29 16.5±2.2‡ 

Kiuchi  
Japan 

1994 7 Healthy Males  
(exercise 2 hrs./wk. for 6 mths) 
 

20 - 24 13.8 SE .5 
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Table 1.2 

Study descriptions 

 
Activity 
 
 

 
Exercise 
Intensity 
(METs)  

 
Exercise 
Duration 
(minutes) 

 
IOP 
Measurement 
Device 

 
Eye* 

 
Time of Post 
Exercise 
Measure 

 
Post Exercise 
∆ IOP 

Jog	
Treadmill	

7.8	 5	 Pneumo-
tonometer	
	

OD	 End	of	exercise	 -1.72	SE	.56(Gr1)	
+0.33	SE	.40(Gr2)	

Cycle	
Ergometer	-	 

6.8 10 GAT†	
 

OS End	of	exercise -4.70	SE	.40	(Gr	3)	
-2.70	SE	.40	(Gr	2)		
 

Cycle 
Ergometer 

9.2 12.1±.3 GAT 
 

ND 5 minutes post 
exercise 

-5.90 SE .60 

Cycle 
Ergometer	

4.1	 15	 GAT	 OU	 5 minutes post 
exercise	

-3.50 SE .70 
	

Jog	
Treadmill 

5.8 20 Applanation	
Tonometry	
 

OU End	of	exercise -5.75	SE	1.44	(Gr	U)	
-2.92	SE	1.89	(Gr	A)	
 

Cycle	
Ergometer 

4.8	
 

60 GAT OU End	of	exercise -4.18	SE	.41	(Gr1)	
-4.38	SE	.47	(Gr2) 

7 Flight Stair 
Run  

15 
 

2 Noncontact 
Tonometer 
 

OU 3 minutes post 
exercise 

-4.34 SE .63 

Brisk 
Walking 

3.5 
 

13.4±1.4 Topcon CT 80 
Noncontact 
Tonometer 

OD End of exercise -1.4 SE .22 

Cycle 
Ergometer 

5.8 10 Dynamic Contour 
Tonometer 

OD End of exercise -1.71 SE .28  

Field	
Running 

6.2	
 

15 GAT	
 

OU 5 minutes post 
exercise 

-4.30	SE.70	 

*Eye of Measure: OD = data from right eye only; OS = data from left eye only, OU = data averaged for both eyes 
†GAT: Goldmann Applanation Tonometry 
‡Only the pre-conditioning results from the studies by Passo et al. (1987) and Qureshi (1996a) were included in the analysis. 
§These studies use repeated measures. 
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Statistical Results 

  

 The current meta-analysis reveals that there is a significant effect of exercise on post 

exercise IOP, unstandardized effect size (ES) = -3.263, 95% CI [-4.158, -2.368], p < 0.001 

(Figure 1.2). When the ES is stratified by group allocation, both the sedentary group (ES = -

4.198, 95% CI [-5.151, -3.245]) and the normally active group (ES =-2.340, 95% CI [-3.305, -

1.375]) are significantly different than 0 (p <0.000; Figure 1.2, Table 1.3). Group allocation 

(sedentary vs. normally active) contributes significantly to the overall ES (B = -1.886, SE - 

0.818, p = 0.043) and explains 27.60% (R2 adj) of the between-study variability (Table 1.4). 

  

 The residual between-study variability is estimated by tau2
 (T2) in the same metric as 

the Δ IOP (mm Hg). Group allocation produced a T2
 of 2.009 (Table 1.4). The I-squared (I2) 

value of 89% should be interpreted as the proportion of residual variability actually attributed 

to between-study heterogeneity (T2) while the remaining 11% of the between study variability 

assumes within-study sampling error (Higgins, Thompson, Deeks, & Altman, 2003). 

  

 To quantify the contribution of intensity (METs), duration (minutes) and quantity 

(METs*minutes) of exercise to the overall ES, a separate regression was performed for each, 

as there were not enough studies to include all variables in a single meta-regression. 

There was no significant contribution to the overall ES for any of these factors: B = .105, 

SE = .177, p = 0.562; B = -.031, SE = .026, p = 0.252 and B = -.009, SE = .005, p = 0.130, 

respectively (Table 1.4). To analyze whether group differences can be explained by the 

response of each group to intensity or duration of exercise we controlled for the variables one 

at time and added group allocation in a sequential multiple meta-regression. In all cases, group 

allocation remains significant while intensity and duration of exercise remain non-significant 

(Table 1.4). 
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Figure 1.2. Post exercise Δ IOP with a random effect model plotted for 14 independent 
groups. The Δ IOP is plotted along the x-axis and the 95% confidence interval is noted for 
each study. The dotted line indicates the unstandardized ES of post exercise Δ IOP. 

   

 

Table 1.3 

Tests of heterogeneity 

 

  

Heterogeneity Stat (Q) 

 

df 

 

I2 

 

T2 

Sedentary 31.79*** 6 81.1% 1.2515 

Normally active 73.03*** 6 91.8% 1.4973 

Overall 201.39*** 13 93.5% 2.5986 

Note. *** p < .0001 
I2

 (%) = residual variation attributed to the heterogeneity between studies 
T2

 = restricted maximum likelihood approach estimate of between study variance. 
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Table 1.4   

The contribution of group allocation, exercise intensity, duration and quantity to the overall effect size  

 
Variable Coefficient (B) SE t p >|t| T2 I2 (%) R2

adj 95% CI 

†Group allocation -1.8565* .8184 -2.27 .043 2.009 88.55 27.60 -3.640 -.0733 

Intensity (METs) -0.1055 .1770 -0.60 .562 2.919 93.53 -5.22 -.4911 -.2801 

Duration (minutes) -0.0308 .0256 -1.20 .252 2.655 92.56 4.33 -.0866 -.0250 

†Group and -2.0152 .8204 -2.46 .032    -0.3821 -0.2096 

Intensity -0.1713 .1508 -1.14 .280 1.95 88.41 29.72 -0.5034   0.1607 

†Group and -1.6902 .9473 -1.78 .102    -3.7753 -0.3949 

Duration (minutes) -0.0103 .0261 -0.39 .702 2.19 89.33 21.07 -0.0678 -0.0472 

Note. * p < .05 
T2 = restricted maximum likelihood approach estimate of between study variance. 
I2 (%) = residual variation attributed to the heterogeneity between studies 
R2

adj = proportion of between study variance explained by covariate (with Knapp-Hartung modification) 

†Group = Normally active group held constant 
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Discussion 

  

 Over the last five decades a large number of empirical studies investigated the 

relationship between acute aerobic exercise and IOP. However, researchers often neglect to 

report the variance associated with the mean change in IOP after exercise, without which the 

results cannot be interpreted given the small sample sizes in many studies. Further, exercise 

intensity and duration are quantified differently across studies. The objective of the current 

work was to combine the results of studies that looked specifically at the effect of acute 

aerobic exercise on IOP, in order to obtain greater statistical power, and to verify the influence 

of the key factors implicated in the relationship between aerobic exercise and IOP. The results 

of this analysis indicate that there is a significant effect of an acute bout of aerobic exercise on 

post exercise IOP that is almost two-fold greater for sedentary populations than for normally 

active populations, (ES = -4.198 and -2.340, respectively, Figure 1.2). According to the 

available data, group differences cannot be explained by exercise intensity or duration (Table 

1.4). However, given the heterogeneity across studies it is important to consider the limitations 

of this analysis, and the studies within, before the clinical implications of these results can be 

explored. 

 

Limitations of This Analysis and Included Studies 

 

 The difference in methodology across studies is potentially reflected in the elevated I2
 

values (> 88% across analyses, Tables 1.3 to 1.5). I2
 can be thought of as the proportion of 

residual variability attributed to between-study heterogeneity (denoted by tau2, Tables 1.3 and 

1.4) as opposed to within-study sampling error (Higgins et al., 2003). The methodological 

differences range from the determination of population and exercise parameters to the control 

of variables that cause IOP fluctuation beyond that which is caused by exercise.   

 

 The physical fitness of an individual participant is posited as a factor in the magnitude 

of reduction in IOP that can be expected with exercise (Dane et al., 2006a; Passo et al., 1987; 
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Qureshi, 1996a). Therefore, any ambiguity with regard to the parameters governing group 

allocation in the original study is compounded here and may affect the magnitude of the ES. 

By example, normally active participants in Dane et al. (2006a) are described only as “runners 

from the author’s university” without qualification. However, those participants produced a 

+0.33 mm Hg increase in IOP after exercise, as opposed to a decrease, and were likely at a 

higher level of fitness than the other normally active groups in this analysis.  

 

 In accord with the idea that there is an interaction between a participant's current 

fitness level and the effect of exercise on IOP, the magnitude of reduction in post exercise 

IOP is often found to be in proportion with relative rather than absolute intensity measures 

(Hamilton-Maxwell & Feeney, 2012; Harris et al., 1994; Kiuchi et al. 1994; Qureshi et al., 

1996b, Passo et al., 1987). However, as the parameters governing acute exercise were notably 

different across studies, including supporting physiological data, the intensity measures from 

each study were converted to MET values, an absolute measure (ACSM, 2010, pp.4-5). The 

conversion to MET values allowed for comparison across all studies and the ages of the 

participants were in a small range that would not bring too much weight to the higher end of 

the scale. In nine of the ten studies participants ranged between 17 and 30 years of age, with 

the exception of the ten participants in the Passo et al. (1987) study who were ≈ 37 years of 

age. For clarity, stratification by relative intensity is compared to the assigned METs (Table 

1.5). Although there is not enough statistical power, in any one group, to create a subgroup 

analysis by relative intensity category, Table 1.5 provides a clearer picture of how the MET 

values derived for each study compare to approximations of relative values and the nature of 

the discrepancies.  
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Table 5 
 
Comparison of MET values and relative intensity categories. 
 
 
Ref# 

 
*MET value 
determined for 
analysis 

 
Classification of 
exercise intensity 
provided in study 
[Compendia #]  

 
Type of 
Exercise 
 

 
Exercise 
Duration 
(Minutes) 

 
Post Exercise 
∆ IOP in mmHg 

 
Moderate †[METs = 3 to 6; Relative Intensity = 64-76% MHR or 40-59% V02R and HRR] 
10 3.5 

 
1046 m at an average 
of 4.7 +/- .5 km/h 
 

Walk 12-15 -1.40 

15 4.1 ‡60% MHR 
 

Cycle 15 -3.50 
 

32 
 
 

4.8 
 

50cpm@75W 
[02017] 

Cycle 60 -4.18 
-4.38 

11 5.8 70% MHR Jog 20 -5.75 
-2.92 

29 5.8 50-70% HRR 
 

Cycle 10 -1.71 

 
Vigorous  †[METs = > 6 METs; Relative Intensity = 77-93% MHR or 60-84 V02R and HRR] 
13 6.2 

 
‡ 70% MHR 
 

Run 15 -4.30 

12 6.8 10min@90W 
[02012] 

Cycle 10 -4.70 
-2.70 

19 
 
 

7.84 ‡ 70% MHR 
 

Jog 5 -1.72 
 +.33 

26 9.20 ||	VO2max 32.2 

 
Cycle ≈12 -5.90 

18 15 
 

20% increase in BP 
[02170] 

Stair Run 2 -4.34 

*Discrepancies between relative intensity categories and MET values are noted. 
†METs metabolic equivalent units (1 MET = 3.5 mL . kg-1 . min-1); V02R, oxygen uptake reserve (resting V02 - 
VO2max); HRR, heart rate reserve; MHR, maximal heart rate. 
‡ The short duration of the exercise and VO2max gender weighting from normative tables in this analysis may have 
caused discrepancies between the relative measure and MET value. 
||The average VO2max (32.2) falls into the Light relative intensity category (VO2max 20-39). However, the 
conversion to METs (32.2/3.5) placed this study in the Vigorous category by MET (>6). Passo et al. (1987) used an 
average VO2max value with no apparent weighting for gender (7 men to 3 women) and a slightly older sample (≈ 37 
years of age). Each participant cycled to a different exhaustion point both in terms of VO2max and duration.  
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 A qualitative analysis of the MET values assigned to each study reveals that when 

divided into two categories, moderate intensity exercise [3 to 6 METS] or vigorous [> 6 

METS] (ACSM, 2010, pp. 4-5), the difference in the average reduction of IOP is less than 1.0 

mm Hg. The difference is also less than 1.0 mmHg when the studies that straddle categories 

are all placed into the moderate category and when the anomalous study with a MET value of 

15 (Buckingham & Young, 1986) is removed entirely (Table 1.5) (Kiuchi et al. 1994; Qureshi 

et al., 1996a; Dane et al., 2006a; Passo et al., 1987). Regardless of the method of 

categorization, intensity does not bear weight on the outcome as per this analysis.  

 

 The control of covariates is paramount when embarking on an examination of the 

relationship between exercise and reductions in IOP because of physiological factors which 

cause IOP fluctuations including posture, diurnal variation (Hamilton et al., 2007; Liu et al., 

2003), smoking (Wimpissinger at al., 2003) and fluid intake (Li, Wang, Guo, Wang, & Sun, 

2011; Moura, Rodrigues, Waisberg, de Almeida, & Silami-Garcia, 2002). To control for 

fluctuations in posture the exercise criteria of the included studies were constrained to 

walking, jogging, running or cycling. Duration was constrained to one hour in the daytime to 

control for diurnal to nocturnal variation in IOP which can be as high as 5.0 ± 0.3 mm Hg in a 

healthy population (Liu et al., 2003). However, a lack of information across studies did not 

allow the comparison of many other covariates. Pre- exercise fluid intake is a notable example 

as water, coffee and alcohol have differential transient effects on IOP (Buckingham & Young, 

1986; Li et al., 2011; Moura et al., 2002). 

 

 One litre of water is known to cause a 2.0 mm Hg increase in IOP, at ten minutes post 

consumption that increases to 4.0 mm Hg at 70 minutes, with baseline IOP not regained for 

over 140 minutes (Buckingham & Young, 1986). Coffee consumption also creates a transient 

increase in IOP in some populations (≈ 3.0 to 4.0 mm Hg) that persists for up to 1.5 hours after 

consumption (Buckingham & Young, 1986; Li et al, 2011) while alcohol can lower IOP 

significantly for up to 65 minutes (Buckingham & Young, 1986).  
 

 The control of covariates is further complicated by the fact that post exercise 
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measurements of IOP are subject to substantial variation across equipment, and within and 

across observers. Five studies included in this analysis used Goldmann Applanation 

Tonometery (GAT) (see Table 1.2), the standard to which most other methods of IOP 

measurement are compared. The interobserver variability of GAT is 0.4 mm Hg and the 

95% Limit of agreement is ± 2.6 mm Hg (Tonnu, Ho, Sharma, White, Bunce, & Garway-

Heath, 2005). However, GAT overestimates IOP in eyes with thicker corneas and 

underestimates IOP when corneas are thinner (Whitacre, & Stein, 1993). The same is true of 

Non Contact Tonometry (NCT), used by two studies (Buckingham & Young, 1986; Hamilton-

Maxwell & Feeney, 2012), which reads higher than GAT (mean difference from GAT ≈ 1.5 

mm Hg, 95% Limit of agreement ≈ ± 3.0; Ogbuehi, 2006). The contact pneumotonometer used 

in Dane et al. (2006) has a mean difference of 0.72 ± 2.82 mm Hg from GAT (Molina, Milla, 

Bitrian, Larena, & Martíneza, 2010). Dynamic Contour Tonometry (DCT), a contour matching 

method used by Read and Collins (2011) has a mean difference of +1.7 mm Hg from GAT 

(Kaufmann, Bachmann, & Thiel, 2004). It is not only the equipment but also the number of 

IOP measurements that can affect the outcome of a study. Repeated measurements with 

contact tonometers can reduce IOP by increasing outflow of the aqueous humor from the eye 

(Molina et al., 2010). 

 

 The above factors contribute to substantial variations in the outcome of a given study 

and must be kept in mind when interpreting the results of the current analysis. Other factors 

that may impact IOP, such as gender and race are not addressed in this analysis. The above 

limitations notwithstanding, there is a robust effect of exercise on IOP that bears further 

examination. 

 

Initial Observations  

 

 Intensity of exercise. Contrary to much of the literature (Harris et al., 1994; Kiuchi et 

al., 1994; Qureshi et al., 1996b; Kielar, Teraslinna, Rowe, & Jackson, 1975), intensity did not 

contribute significantly to the effect of aerobic exercise on IOP in the current analysis (Table 

1.4). Neither could the difference in the magnitude of reduction in IOP between the sedentary 

and normally active groups be explained by their differential response to intensity (Table 1.4). 
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This is a surprising finding as two of the groups included in this analysis were from studies 

that looked specifically at the relationship between intensity of exercise and the magnitude of 

reduction in IOP (Kiuchi et al., 1994; Qureshi et al., 1996b). In both cases, in a within subjects 

design, the magnitude of reduction in IOP was roughly proportional to relative intensity. 

However, there is considerable research, including the aforementioned studies, that find no 

correlations between blood pressure or heart rate and post exercise change in IOP, as might be 

expected if relative intensity was a key factor (Harris et al., 1994; Kiuchi et al., 1994; Passo et 

al., 1987; Qureshi et al., 1996b).  

 

 It is also of interest that the highest intensity exercise in this analysis, a 2 minute stair 

run at 15 METs created the same reduction in a normally active population (4.34 mm Hg) as 

did a fifteen minute run at 6.2 METs (Buckingham & Young, 1986; Kiuchi et al., 1994, 

respectively). This suggests a floor effect on the magnitude of reduction that can be expected 

with exercise for normally active participants. This in accord with Dane et al. (2006a) who 

showed that the physically fit participants experienced almost no change in IOP as compared 

to the sedentary group. Further, in their studies on the change in IOP after long-term training, 

Passo et al. (1987) and Qureshi (1996b) showed that reductions in IOP were significantly less 

in the trained groups as compared to the controls. It is possible that the magnitude of reduction 

in IOP is solely dependent on where a participant lies along a physical fitness level continuum, 

thus having achieved a certain level of physical adaptation, regardless of the intensity of the 

exercise. This concept is discussed further in the Mechanisms section. 

 

 Duration and quantity of exercise. Like intensity, exercise duration and quantity did 

not significantly contribute to the effect of exercise on IOP. It should be noted that of the ten 

included studies, six used exercise durations of 10 to 15 minutes (see Table 1.2). The three 

sedentary groups from that subset produced an average reduction in IOP of 4.70 mm Hg 

(Harris et al., 1994; Passo et al., 1987; Qureshi, 1996a). The two sedentary groups that 

exercised for 60 minutes produced an average reduction of 4.28 mm Hg (Qureshi, 1996a). To 

examine whether it is the overall output of energy that dictates the magnitude of reduction in 

IOP rather than either intensity or duration alone, exercise intensity is expressed as quantity 

(METs*minutes; ACSM, 1991). 
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 Comparing these two subsets we find that 60 minutes of cycling at 4.8 METs is more 

than three times the average quantity of the other three sedentary groups, yet the average 

reduction of IOP is slightly less. It seems that duration and intensity interact equivocally 

across studies.  

 

 Mechanisms. It remains unclear as to what mechanism contributes to the initial 

reduction of IOP after acute aerobic exercise. Changes in colloid osmotic pressure (one factor 

in capillary fluid exchange), increases in plasma osmolarity (electrolyte-water balance), ocular 

blood flow and blood lactate, and decreases in blood PH have all been suggested as possible 

mechanisms that initiate a reduction in IOP (Ashkenazi, Melamed, & Blumenthal, 1992; 

Harris, Malinovsky, Cantor, Henderson, & Martin, 1992; Harris et al., 1994; Kiuchi et al., 

1994; Martin, Harris, Hammel, & Malinovsky, 1999; Moura et al., 2002; Marcus, Krupin, 

Podos, & Becker, 1970; Orgül & Flammer, 1994). There are two studies that attribute much of 

the transient post exercise decrease in IOP to factors related to dehydration and the amount of 

water ingested pre-exercise. The results of one study suggest the decrease in IOP is a simple 

return to basal values after water ingestion while the other implicates an increase in colloid 

osmotic pressure (Moura et al., 2002; Martin et al., 1999, respectively). However, duration did 

not contribute to the effect of exercise in this analysis as one might expect if increasing 

dehydration were to play a role in the reduction of IOP (Harris et al., 1994). Further, 

significant reductions in IOP were found after aerobic exercise of 5 minutes and less that are 

on par with reductions produced at much longer durations (Askenazi et al., 1992; Buckingham 

& Young, 1986; Dane et al., 2006a; Orgül & Flammer, 1994).  

 

  Some population-based studies report an association between systemic blood 

pressure and fluctuations in IOP (Klein & Klein, 1981). Although exercise is known to 

increase systolic blood pressure through sympathetic stimulation, it is less clear how that 

relationship relates to mechanisms involved in post exercise reductions in IOP. Five studies 

included in our analysis find no linear correlation between blood pressure and post exercise 

reductions in IOP (Harris et al., 1994; Karabatakis et al., 1994; Kiuchi et al., 1994; Passo et 
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al., 1987; Read & Collins, 2011). 

 

 Long-term effects of exercise. There is evidence that, over time, continued exercise 

(Passo et al., 1987; Read & Collins, 2011; Williams, 2009) and physical labour in the 

workplace (Qureshi, Wu, Xi, Yang, & Huang, 1997a) induce adaptations of the sympathetic 

nervous system that contribute to an overall reduction in baseline IOP. During exercise, the 

increase in metabolic muscle heat during exercise increases overall body temperature, which 

in turn activates mechanisms to cool the body. Loss of water and electrolytes via sweat during 

exercise cause increased plasma osmolarity, changes in colloid osmotic pressure and 

ultimately dehydration (Martin et al., 1999; Moura et al., 2002; Guyton & Hall, 2006b, c, d). 

As humans acclimatize to progressive heat they sweat more profusely which increases the 

plasma volume and diminishes the loss of electrolytes, thereby maintaining plasma osmolarity 

(Guyton & Hall, 2006b).  

 

 Two studies included in the current analysis, Qureshi (1996b) and Passo et al. (1987) 

found reductions in baseline IOP of .8 to 1.3 mmHg after long-term exercise conditioning. 

Passo et al. (1987) in particular, found that pre-training acute exercise decreased IOP in 

Sedentary participants by 41% from baseline. After 3 months of exercise conditioning, three 

days per week, acute exercise reduced IOP by 12% from baseline, a reduction that persisted 

for an average of three weeks in some participants (Passo et al., 1987). The combined 

evidence suggests an enduring effect of exercise on IOP that is in accord with the idea that 

those who are physically fit will maintain a baseline IOP that is lower than those who do not 

exercise (Dane et al., 2006a; Passo et al., 1987; Qureshi, 1996b; Qureshi et al., 1997a; 

Williams, 2009). It remains unclear whether exercise can slow down the progressive elevation 

of IOP that is part of the normal aging process (Schulzer & Drance, 1987; Qureshi, 1995b). 

 

 It is possible that an increase in plasma osmolarity of a magnitude sufficient to affect 

post exercise IOP would occur only after longer durations of exercise than are seen in this 

analysis. A study looking at the fluctuation of IOP over a 24 hour 110 km march found an 

inverse relationship between reduction in IOP and plasma osmolarity (Ashkenazi et al., 1992). 
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This finding stands in contrast to that of Harris et al. (1994) who reports no mean change in the 

plasma osmolarity of participants after 10 minutes of cycling. These two results suggest that 

mechanisms that govern reduction of IOP over long exercise durations may be different than 

those that affect shorter durations.  

 

 Clinical implications. The robust effect of exercise on IOP in the sedentary group in 

this analysis outlines the need to continue this research with elderly and clinical populations. 

There are inherent complications affecting these populations that dictate the need for 

standardization of population parameters and exercise protocol. Generally, research finds 

differential reductions in IOP in elderly populations, dependent on baseline IOP (Qureshi, 

1995b; Era, Parssinen, Kallinen, & Suominen, 1993), and reductions of up to ≈ 12.0 mm Hg 

for clinical populations (Qureshi, 1995b). Complicating matters is the fact that as patients age 

they are far more likely to have undiagnosed POAG and co morbid age-related pathologies 

both of which progress slowly over years, making studies involving clinical populations hard 

to compare (Winters & Pihos, 2008; Schulzer & Drance, 1987; Qureshi, 1995c).  
 

 It should be noted that there is some controversy with regard to the effect of exercise 

on IOP in clinical populations. Studies including populations with advanced Glaucoma, or 

other severe subtypes such as pigmentary dispersion Glaucoma, have found increases in IOP 

and temporary vision loss after exercise of varied intensity (Haynes, Johnson, & Alward, 

1992; Shah, Whittaker, Wells, & Khaw, 2001). 

 

 With regard to implementation of exercise as a complimentary reduction therapy, 

timing is of the essence. There is a protective effect when IOP is pharmacologically reduced 

immediately after diagnoses, as compared to later treatment. Unfortunately, only 

60 to 70% of patients comply with long-term drug regimes, because of the slow progression of 

the disease and negative side effects of the medication (Friedman et al., 2007; Leske et al., 

2003; Schwartz, & Quigley, 2008). Further, population screening outside the healthcare 

system is not cost effective and therefore many people are not even diagnosed until noticeable 

symptoms bring them to see their doctor (Schwartz & Quigley, 2008; Winters & Pihos, 2008).  
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 The possibility that exercise could be another useful tool in an eye health regime is not 

a remote one. The results of the current analysis suggest that physical exercise can produce the 

magnitude of reduction in IOP required to have an impact clinically. The target reduction of 

IOP in a clinical setting is often 20 to 40% of baseline IOP (Winters & Pihos, 2008). The 

average baseline for the sedentary group is ≈15 mm Hg and the post exercise change in IOP is 

4.198 mm Hg, a 28% reduction. This is encouraging as statistics from the Early Manifest 

Glaucoma Trial suggest that for every 1.0 mm Hg decrease in IOP there is a 10% reduction in 

the rate of disease progression (Leske et al., 2003). Conversely, for every 1.0 mm Hg increase 

in IOP there is a 19% increase in the progression of POAG (Chauhan et al., 2008). Exercise 

could also impact the rate of visual field loss, which increases exponentially with increasing 

IOP in those patients with POAG (Jay & Murdoch, 1993). 

 

 Future research needs to concentrate on whether that transient post exercise reduction 

can be stabilized with the introduction of a regular aerobic exercise program (Vermeire, 

Hearnshaw, Van Royen, & Denekens, 2001). 

 

Conclusion 

 

 The current analysis brought together studies that looked specifically at a single bout 

of aerobic exercise and post exercise change in IOP. There is a clear effect of aerobic exercise 

on IOP, most importantly for the sedentary group (ES = 4.198 mm Hg) as compared to the 

normally active group (ES = 2.340 mm Hg). The differential effect of exercise between the 

two groups is not explained by exercise intensity or duration. There are a number of 

limitations in this study, largely related to the sheer number of variables that affect transient 

changes in post exercise IOP and the variation in parameters across studies. Regardless, the 

magnitude of the overall post exercise change in IOP, for the sedentary group especially, 

suggests continued exploration into the usefulness of aerobic exercise as an additional factor 

in the management of continued eye health. 

 

Key Words: intensity; duration; sedentary; active; Glaucoma prevention; physical activity 
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ABSTRACT  

 

Purpose. A transient reduction in IOP after a single bout of aerobic exercise is found time and 

again across studies of exercise-induced change in intraocular pressure (IOP). There is a 

suggestion in the literature that the mechanisms implicated in the hypotensive effect of 

exercise on IOP involve metabolic changes that occur during the progression to systemic 

dehydration. 

 

Methods. In the current study, 13 participants rode an ergocycle in a temperate room for 90 

minutes, at 59% of their maximal aerobic capacity, in a state of either hyper- or 

hypohydration. IOP was measured at 0, 5, 30, 60 and 90 minutes, and 30 minutes after 

exercise. Body weight was measured at 0, 30, 60 and 90 minutes. 

 

Results. There is an initial drop in IOP under both conditions followed by a rise in IOP at 

30 minutes that is nearly equal to baseline. From that point on, IOP hovers around baseline 

values in the hypo-hydrated condition and increases until the end of the exercise protocol in 

the hyper-hydrated condition. There was a reduction in body weight in both conditions, 

however it was significantly greater in the hypo-hydrated condition and was not significantly 

correlated with change in IOP in either condition. 

 

Conclusions. Fluctuations in IOP during and after exercise are likely a homeostatic response 

to dysregulation of the aqueous humor caused by fluid intake, posture changes and large 

changes in activity level and do not seem to be related to physical exercise on its own. 

 

Keywords: intraocular pressure, exercise, physical fitness, dehydration, fluid intake, 

homeostasis 
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Introduction 

 

 There are over five decades of research on the hypotensive effect of aerobic exercise 

on intraocular pressure (IOP). In general, researchers find a transient reduction from baseline 

IOP (10 to 21 mm Hg) on the order of 1.2 to 8.0 mm Hg, in a normal population, after a single 

bout of moderate to vigorous exercise (Gale, Wells, & Wilson, 2009; Risner et al., 2009; 

Roddy, Curnier, & Ellemberg, 2014). A meta-analysis conducted by our group confirmed a 

mean post exercise change in IOP of -2.340 mm Hg 95% CI [-3.305, -1.375] for normally 

active participants and -4.18 mm Hg 95% CI [-5.151, -3.245] for sedentary participants 

(Roddy et al., 2014).   

 

The mechanism driving post exercise reductions in IOP is still unknown but one 

suggestion is that it involves metabolic changes that occur during the progression to systemic 

dehydration (Hunt, Feigl, & Stewart, 2012; Martin, Harris, Hammel, & Malinovsky, 1999, 

Sollanek et al., 2012). As a person sweats electrolytes are lost and plasma osmolarity or 

hyperosmolarity increases (low electrolytes as compared to water), as does colloid osmotic 

pressure (pressure exerted by the increased proteins in blood plasma) if fluids are not 

maintained. Both of these homeostatic processes have the potential to cause osmotic changes 

in the retinal and uveal vasculature that could ultimately reduce the volume and formation of 

intraocular fluids, thereby reducing IOP (Guyton & Hall, 2006b, Martin et al., 1999). Given 

this proposed relationship between decreasing IOP values and individual levels of hydration, it 

is suggested that IOP measurements could provide immediate and useful information 

regarding a person’s hydration status at a given point in time, such as during sport activities 

(Ashkenazi, Melamed, & Blumenthal, 1992; Hunt et al., 2012; Sollanek et al., 2012).  

 

Hunt, Feigl and Stewart (2102) explored how room temperature changes the 

relationship between aerobic exercise and IOP. Participants were asked to perform 90 minutes 

of walking on a treadmill in two climate conditions, 22°C (temperate) and 43°C (hot). All 

participants were pre-hydrated with an isotonic solution the night before testing and 250 ml at 

least 60 minutes before exercise. The researchers found that IOP decreased to a significantly 

greater extent in the hot compared to the temperate condition (≈ -3.4 versus -1.1 mm Hg, 
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respectively). Weight loss due to an increased volume of sweat was also significantly greater 

during the hot condition (≈-3.13 versus -.78 kg, respectively) and accounted for 51% of the 

variance when results were normalized for baseline IOP. The authors of the study attributed 

the post exercise change in IOP to mechanisms associated with dehydration in the hot 

condition only.  

 

It is suggested that without manipulation (e.g. room temperature) to induce increased 

sweating, dehydration might not affect post exercise IOP (Buckingham & Young 1986; Harris, 

Malinovsky, & Martin, 1994; Moura, Rodrigues, Waisberg, de Almeida, & Silami-Garcia, 

2012). Moura, Rodrigues, Waisberg, de Almeida and Silami-Garcia (2002) explored the 

combined effect of water intake, water temperature and exercise on IOP. Participants were 

asked to ingest 600 ml of water 15 minutes before either 45 minutes of seated rest or before 90 

minutes of exercise on an ergocycle. Participants also ingested 240 ml of water at 15, 30 and 

45 minutes over the course of both the exercise and rest conditions, for a total 1320 ml of 

water ingested. IOP was measured during six different experimental sessions, pre- and post 

exercise or rest at one of three different water temperatures.  

 

IOP increased from an average of 12.4 mm Hg to 14.3 mm Hg in both the exercise and 

rest conditions and the participants lost an average of 0.3 kg body weight during the exercise 

condition and gained 0.5 kg body weight in the resting condition. The fluctuation in IOP was 

the same in both the exercise and rest conditions and returned to basal values after both 

exercise and rest. There was no effect of water temperature on IOP. Moura et al. (2002) 

concluded that changes in IOP were largely attributable to the 1320 mL of water ingested pre- 

and during exercise and rest. 

 

 The relationship between exercise induced fluctuations in IOP and systemic 

dehydration is complicated by at least three factors. Firstly, the range of fluid ingestion 

protocols before and during exercise does not allow for an accurate comparison of progressive 

change from baseline across studies (Harris et al., 1994; Hunt et al., 2012; Moura et al., 2002; 

Sollanek et al., 2012). This is further complicated by individual variations based on physical 
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fitness, the temperature of the room and the composition of the fluid (water or isotonic) 

ingested (Hunt et al., 2012; Sawka et al., 2007; Sollanek et al., 2012).  

 

Secondly, the duration of exercise required to bring a participant to a minimum level of 

dehydration (e.g., ≥ 2% reduction in body weight) also varies with the manipulation of the 

temperature and fluid ingestion protocols, as well as exercise intensity (Casa, Armstrong, 

Hillman, Montain et al., 2000; Sawka et al., 2007). The majority of studies on exercise and 

IOP include only 10 to 60 minutes of low to vigorous bouts of exercise in a temperate room, 

with varying levels of control on pre-exercise fluid intake (Gale et al., 2009; Risner et al., 

2009; Roddy et al., 2014). Ten to 20 minutes in a temperate room is too short a duration to 

cause dehydration, however, across the literature, many studies find reductions in IOP despite 

the short durations and large variation in fluid ingestion protocols (Roddy et al., 2014).  

  

 Orgül and Flammer (1994) found that IOP and heart rate were positively correlated in 

an aerobic test of 8 seconds (deep knee bends) suggesting that those reductions in IOP were 

more likely related to the immediate responses of the parasympathetic nervous system that 

ultimately affect choroidal blood flow and vascular resistance. It is possible that the reported 

decreases in IOP when a person initiates exercise is the result of the parasympathetic nervous 

system producing homeostatic responses to sudden changes in energy demands (Guyton & 

Hall, 2006b,c,d).  

 

 Finally, the results of a number of studies suggest that increased physical fitness 

reduces the hypotensive effect of exercise on IOP (Gale et al., 2009; Harris et al., 1994; 

Qureshi, 1996a, 1997b; Risner et al., 2009; Roddy et al., 2014). When a person engages in 

chronic exercise the efficacy of the sweating mechanism increases. Plasma volume increases 

instead of osmolarity, diminishing the loss of electrolytes through the sweat and urine (Guyton 

& Hall, 2006b,c). The state of being Hypo- (a water deficit) versus Hyper- (a water surplus) 

hydrated before and during exercise could modulate the overall volume and composition of a 

participant’s sweat and affect the speed of electrolyte loss which would influence the time it 

takes for systemic dehydration (Guyton & Hall, 2006b; Moura et al., 2002).  
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The current study uses a within subject experimental design to investigate the 

relationship between IOP and hydration during aerobic exercise. Participants rode an 

ergocycle in a temperate room for 90 minutes in a state of either hyper- or hypo-hydration. 

IOP was measured at 0, 5, 30, 60 and 90 minutes, and 30 minutes after exercise. Body weight 

was measured at 0, 30, 60 and 90 minutes. 

 

 Using change in body weight as a measure of hydration, we propose that IOP will 

correlate with loss of body weight when fluids are restricted and that there will be little 

movement in IOP when fluids are held constant. It is possible that we will also replicate initial 

reductions in IOP when the exercise begins that are unrelated to dehydration and more likely 

related to homeostatic responses to changes in level of activity. 

 

Methods 

 

 The current study was approved by the ethics committee for research in health sciences 

of the University of Montreal. Ten females and six males were recruited from the University 

of Montreal, QC, Canada and from the city of Montreal, QC, Canada, via posters and social 

media. One female and one male did not validate the Test of Maximal Oxygen Intake 

(VO2max) and could not be included in the experiment. Another female participant could not 

complete the final day of exercise and her data were excluded from the analyses. The 

remaining 13 participants were between 20 and 46 years of age (M = 32.2, SD = 7.0), were 

free of ocular and systemic diseases that affect IOP and had no history of steroid use (Quigley, 

2011). Characteristic data are presented in Table 2.1. Weekly exercise routines and physical 

demands with regard to occupation were monitored via self-report on all three days of the 

experimental procedure. 

 

The experiment required three visits from each participant. Day 1 was a test of 

VO2max to determine the relative intensity of the exercise protocol over the next two test 

days. On days 2 and 3 participants began the session with baseline readings of IOP, heart rate, 

blood pressure (BP) and weight followed by a 90-minute ride on an ergocycle. The experiment  
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was a within subjects design, as such, the two hydration conditions were 

counterbalanced across the two days. Measurement protocols and intervals are described in 

detail below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Baseline IOP was not significantly different between conditions therefore the value is an average of both 
conditions at Time 0.  

 

Test of Maximal Oxygen Intake (VO2max) 

 

Aerobic capacity was determined with a VO2max test performed on a Lode ergocycle 

(Corival 906900, LODE B.V. Medical Technology, Groningen, The Netherlands). During the 

test, the Ultima™ CardiO2® (790705-006, 12 lead ECG CPX Testing, Medgraphics 

Cardiorespiratory Diagnostics, St Paul, MI) was used to monitor the gas exchange via the 

exhaled breath of the participant. Data were collected with the Breeze Suite software (V. 

7.2.0.52, 2001-2011, Medgraphics Corporation, St Paul, MI). To validate the test we measured 

both the respiratory exchange rate (less oxygen inhaled and more carbon dioxide exhaled) and 

the plateau in VO2 as the workload increased (Poole, Wilkerson, & Jones, 2008). 

 

To begin the test, participants warmed up on the bike for 5 minutes at 50 watts (1 watt 

= 3600 J/hour, or 6.1183 kg-m/min). After the warm up, intensity was increased by 25 watts at 

2-minute intervals until the participant could no longer maintain a range of 80 to 90 

Table 2.1.   

Descriptive statistics  

Variable Mean SD  

Age 32.23 7.05  

*IOP Baseline (mm Hg) 14.11 4.03  

Baseline Body weight (Kg) 65.96 10.43  

VO2max (ml•kg•min) 40.56 5.65  

Height (cm) 167.48 6.79  
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revolutions per minute (RPMs). Participants were monitored via their heart rate (T31 coded™ 

Transmitter, Polar® Electro, Lachine, Qc) and the BORG scale of perceived exertion for the 

duration of the ride (Borg, 1982). Blood pressure was measured with a stethoscope and 

sphygmomanometer to monitor participants for excessive increases greater than 250 mm Hg in 

systolic BP and greater than 115 mm Hg in diastolic BP or decreases in baseline BP (>10 mm 

Hg) during exercise (American College of Sports Medicine [ACSM] 2010b).  

 

The results of the VO2max test were used to calculate the intensity at which the 

participants would ride on their next two testing days, using the formula 40-59% VO2R 

[VO2max - resting VO2] (ACSM, 2010a,c).  

 

 After the VO2max test the participants were given a standardized water bottle for the 

pre-hydration protocol to be followed during the three hours before each of the two testing 

days. 

 

Pre-test Criteria 

 

 To ensure that the pre-hydration protocol could be fulfilled on each of the two testing 

days, and to mitigate the effects of diurnal fluctuation, the participants were instructed to be 

awake for 3 hours preceding the test (Hamilton et al., 2007). They were further instructed to 

abstain from a) contact lens wear for the 24 hours preceding the exercise portion of the test, b) 

drinking liquids such as caffeine, alcohol or sports drinks for 12 hours preceding exercise 

(Buckingham & Young, 1986; Li, Wang, Guo, Wang, & Sun, 2011), and c) tobacco, food or 

medication for a minimum of 3 hours preceding exercise (Wimpissinger et al., 2003). 
 

 To ensure that the participants were fully hydrated before starting to cycle they were 

asked to drink 7 mL.kg-1 of water per kilogram of body weight, 2 hours before arriving at the 

lab (Casa et al., 2000; Cheuvront, Kenefick, Charkoudian, & Sawka, 2013; Sawka et al., 

2007). This amount is based on recommendations made in the “Position Stand on Exercise and 

Fluid Replacement” put forth by the ACSM (Casa et al., 2007). All participants used the same 

model and size of water bottle. 
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Exercise Protocol 

 

 The participants performed two 90-minute rides on an ergocycle (Lode, Covivial 

Ergometer, LODE B.V. Medical Technology, Groningen, The Netherlands) at a moderate 

intensity (≈59%) of their VO2max. The ergocycle was chosen to replicate the only study in a 

previous meta-analysis (Roddy et al., 2014) that looked at exercise protocols including 

durations of longer than 20 minutes. A moderate intensity as defined by the American College 

of Sports Medicine (2010a) is equal to 40-59% V02R [VO2max - resting VO2] or 64-76% of 

maximal HR (ACSM, 2010a). This intensity was chosen for the current study to best replicate 

the majority of studies that looked specifically at exercise, IOP and factors of hydration (Hunt 

et al., 2014; Moura et al., 2002). It is also the range of intensity that is most prevalent in the 

literature on exercise and IOP as a whole (Roddy et al., 2014). 

 

 The exercise protocol was performed on two different days, separated by no less than 

one week and no more than four weeks. The riding was done between the hours of 9:00:00 and 

12:00:00 to mitigate the effects of diurnal fluctuation on IOP (Hamilton et al., 2007). The 

room was maintained at an average temperature of 22.2º (SD = 1.0) and the humidity was kept 

within 21º and 53º Celsius (deVries & Housh, 1994d,e). A 5-minute warm up was performed 

at the lower of 50 watts or 40% of the participant’s VO2max.  

 

To ensure that participants were riding in their target range, heart rate was measured 

throughout the test using a monitor worn around the chest (T31 coded™ Transmitter, Polar 

Electro, Lachine, Qc). Blood pressure was measured with a stethoscope and 

sphygmomanometer to monitor participants for excessive increases in systolic or diastolic BP 

or decreases in baseline BP (>10 mm Hg) during exercise (ACSM, 2010b). 

 

IOP Measurement Protocol  

 

 The same researcher, using the iCare® TA01i rebound tonometer (Icare Finland Oy, 

Vantaa, Finland), took all IOP measurements. A previous meta-analysis from this lab found 
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that across studies all reported measurement tools were those that required anaesthesia and had 

the potential to produce increased outflow from repeated measures (Roddy et al., 2014). The 

surface area applanated by the Rebound tonometer is much smaller than other methods (e.g., 

approximately 1.80 mm versus 3.06 mm for the GAT) and requires no anaesthetic thereby 

mitigating some of those measurement difficulties (Kim, Jeoung, Park, Yang, & Kim, 2013). 

Further the rebound tonometer is a fully portable and self-contained unit. The iCare® has an 

accuracy of ±1.2 mm Hg at ≤20 mm Hg and ±2.2 mm Hg at >20 mm Hg (Kim et al., 2013; 

Molina, Milla, Bitrian, Larena, & Martíneza, 2010; Tonnu et al., 2005). The recorded IOP 

values are an average of six measures per eye at each measurement. Measurements occurred at 

0, 5, 30, 60 and 90 minutes and 30 minutes after the exercise stopped. 

 

 Participants were seated on the ergocycle for all IOP measurements. The first 

measurement was taken immediately before participants started pedalling (0 minutes). For 

each measurement thereafter the resistance of the bike was decreased over 60 seconds and the 

participant sat still for 60 seconds while the IOP measurement occurred. After the 

measurement, participants were brought back to the wattage at which they left off with the 

exception of the 90-minute measure. A final measure was made 30 minutes post exercise. At 

all time points, IOP was measured before any other measure was taken or the participant 

dismounted to be weighed. 

 

Hyper- and Hypo- Hydration Protocol 

 

  For each of the two testing days, a nude weight measurement was obtained at 0, 30, 60 

and 90 minutes immediately after the IOP. Hydration was measured as a function of weight 

loss. The participants began each of their two rides two hours after finishing their prescribed 

water amount and then either ingested water as per the hyper-hydration condition, or ingested 

no water during exercise (hypo-hydration condition). 

 

 In the hyper-hydration condition, participants drank 5 mL.kg-1 (per body weight) of 

water at 30 and 60 minutes during exercise in addition to their pre-exercise amount (Casa et 

al., 2000; Sawka et al., 2007). Fluid replacement was calculated to approximate sweat and 
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urine losses and maintain hydration at less than a 2% body weight reduction. The water 

temperature averaged 17.6ºC (SD = 3.9) (Casa et al., 2000; Sawka et al., 2007).   

 

 

Body Weight Measurements 

 

 Participants were instructed to void their bladders completely before their initial 

weight measurement. Body weight was measured at all time points with a Tanita BF-350 

Body Composition Analyzer calibrated for accuracy up to 200 kg in increments of .1 kg 

(Tanita Corporation, Tokyo Japan).  

 

Data Collection 

 

 Each IOP data point represents an average of 6 readings. The average was corrected 

for corneal thickness using the following formula: 

   

 IOP Corrected = IOP +0.02*(545-CCT).  

 

 The manufacturer's correction is based on the results of Ehlers, Bramsen and Sperling 

(1975). 

 

There was no significant difference between the IOP readings of the two eyes, 

therefore only the right eye data were used.  

  

 Body weight loss was calculated with the following equation:  

 

% change in body weight (Kg) = {[baseline weight (kg) - post exercise 

body weight (kg)] - urine volume (L) (Casa et al., 2000; Sawka et al., 

2007). 

 

To account for the dry and saturated weight of the heart monitor, the weight 
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measurements of each participant include .06 kg. For the final nude weight .1 kg was deducted 

to reflect the saturated weight. 

 

Statistical Analysis 

 

 A repeated-measures Analyses of Variance (ANOVA) was conducted for IOP with 

condition (hyper- and hypo-hydrated) and time (0, 5, 30, 60, 90 and 120 minutes) as factors. A 

separate ANOVA was also conducted for body weight with condition (hyper- and hypo-

hydrated) and time (0, 30, 60, and 90 minutes) as factors. Simple effect analyses were 

performed to decompose any interaction. Effect sizes for significant ANOVAs were estimated 

by calculating a partial eta-squared and, for simple effects, they were estimated using Cohen’s 

d statistic. Finally, we carried out a bivariate correlation to verify the relationship between 

change in IOP and bodyweight over time. Statistical analyses were performed with IBM® 

SPSS® Statistics V22.0. 

 

 

Results 

 

Intraocular Pressure 

 Figure 2.1 presents mean IOP for the hyper- and hypo-hydrated conditions as a 

function of time. Inspection of the figure indicates that IOP at baseline and at 5 minutes into 

the exercise protocol is the same for the both conditions. Interestingly, there is an initial and 

similar drop in IOP under both conditions followed by a rise in IOP 30 minutes into the 

exercise protocol that is nearly equal to baseline. From that point on, IOP hovers around 

baseline values for the hypo-hydrated condition, whilst it increases continuously until the end 

of the exercise protocol for the hyper-hydrated condition. Although IOP decreases 30 minutes 

post-exercise in the hyper-hydrated condition, it is still well above baseline. The ANOVA 

indicates a significant interaction between time and condition F(5, 60) = 3.99, p = .003, ηp
2

 

= 

.25, as well as a main effect of time F(5,60) = 7.90, p < .001, ηp
2

 

= .40 and a main effect of 

condition F(1,12) = 5.83, p = .033, ηp
2

 

= .33.  
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 A series of planned comparisons were conducted to identify the origin of the 

interaction. IOP was significantly higher in the hyper-hydrated condition as compared to the 

hypo-hydrated condition at 60 and 90 minutes into the exercise protocol (M = 1.50, SD = 1.87, 

p = .013, d = .81, 95% CI [.376, 2.624]; M = 2.15, SD = 2.24, p = .005, d = .96, 95% CI [.795, 

3.513], respectively) and also at 30 minutes post-exercise (M = 1.85, SD = 2.49, p = .018, d = 

.05, 95% CI [.369, 3.323]. In the hyper-hydrated condition, there was a significant increase in 

IOP at the end of the exercise protocol compared to baseline (M = 1.96, SD = 1.77, p = .028, d 

= -1.10, 95% CI [.15, 3.77] and a significant difference between the first measure taken 5 

minutes into the exercise session and the measures taken 60 (M = 2.65, SD = 1.80, p = .003, d 

= -1.48, 95% CI [.84, 4.47] and 90 (M = 3.00, SD = 1.84, p = .001, d = -1.62, 95% CI [1.13, 

4.87] minutes into the exercise and 30 minutes post-exercise (M = 2.15, SD = 1.88, p = .021, d 

= -1.14, 95% CI [.24, 4.06]. Finally, at no time point was IOP significantly different than 

baseline in the hypo-hydrated condition. 

 

 

Figure 2.1. Change in IOP pre-, during and 30 minutes post exercise for the hyper and hypo-

hydrated conditions, plotted as a function of time. The error bars represent one standard error 

of the mean. 
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Body Weight Loss 

 Figure 2.2 presents the mean body weight at baseline and throughout the exercise 

protocol for the hyper- and hypo-hydrated conditions. Inspection of the figure shows that body 

weight changes very little over time in the hyper-hydrated condition, whilst it decreases 

constantly over time in the hypo-hydrated condition. The ANOVA found a significant 

interaction between time and condition F(3, 36) = 82.14, p < 001, ηp
2

 

= .87; a main effect of 

time F(3,36) = 50.95, p < .001, ηp
2

 

= .81; and a main effect of condition F(1,12) = 5.34, p = 

.039, ηp
2

 

= .31.  

  

 A series of planned comparisons were conducted to identify the origin of the 

interaction. Body weight was significantly lower in the hypo-hydrated condition as compared 

to the hyper-hydrated condition at 60 and 90 minutes into the exercise protocol (M = -.55, SD 

= .79, p = .024, d = -.71, 95% CI [-1.02, -.08]; M = -.93, SD = .83, p = .001, d = -1.15, 95% CI 

[-1.42, -.44, respectively]). In the hyper-hydrated condition, bodyweight was significantly 

reduced from baseline at 30 (M = -.27, SD = .07, p < .001, d = -3.10, 95% CI [-.34, -1.9], 60 

(M = -.34, SD = .22, p = .001, d = -1.17, 95% CI [-.53, -.15] and 90 minutes (M = -.43, SD = 

.29, p = .001, d = -1.51, 95% CI [-.69, -.18]. Body weight was also significantly lower at 90 

minutes compared to 60 minutes into the exercise protocol (M = -.09, SD = .11, p = .044, d = -

.90, 95% CI [-1.86, -.002].  
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Figure 2.2. Change in body weight pre-, during and post exercise for the hyper- and hypo-

hydrated conditions plotted as a function of time. The error bars represent one standard error 

of the mean. 

 

 In the hypo-hydrated condition, bodyweight was significantly reduced from baseline at 

30 (M = -.25, SD = .11, p < .001, d = -2.13, 95% CI [-.35, -1.49], 60 (M = -.65, SD = .29, p < 

.001, d = -2.21, 95% CI [-.90, -.39], and 90 minutes (M = -1.12, SD = .47, p < .001, d = -2.36, 

95% CI [-1.53, -.70]. There was also a significant decrease in body weight for each time point 

compared to the previous measure taken. Specifically, body weight was significantly lower at 

60 minutes compared to 30 minutes into the exercise protocol (M = -.39, SD = .18, p < .001, d 

= -2.09, 95% CI [-.56, -.23], and at 90 minutes compared to 30 minutes (M = -.86, SD = .36, p 

< .001, d = -2.32, 95% CI [-1.19, -.54] and 60 minutes (M = -.47, SD = .22, p < .001, d = -

2.29, 95% CI [-.65, -.29]. 

  

 A bivariate correlation was used to verify the relationship between change in IOP and 

body weight. No significant correlation was found. 

 

Room Temperature and Humidity 

 

 There were no significant differences between the hyper- and hypo-hydrated 
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conditions in room temperature and humidity over the duration of the experiment.  

 

Discussion 

 

 The post-exercise reduction in IOP is a well-documented phenomenon, however, the 

mechanisms driving those reductions remains unknown. The aim of the current study was to 

verify a possible relationship between exercise-induced changes in IOP and dehydration 

during aerobic exercise. Participants rode an ergocycle in a temperate room for 90 minutes, at 

59% of their maximal aerobic capacity, in a state of either hyper- or hypo-hydration. Contrary 

to much of the literature, we did not find a significant post exercise reduction in IOP in either 

condition. The decrease in IOP, after 90 minutes of exercise in the hypo-hydrated condition, 

was only -.08 mm Hg (SD = 1.80) despite a 1.12 kg (SD = .47) reduction in body weight. 

Further, even though participants also lost weight at the end of the 90-minute exercise protocol 

in the hyper-hydrated condition (M = -.432 kg, SD = .29), we found an increase in IOP of 

1.962 mm Hg (SD = 1.77) likely caused by the continued ingestion of water.  

 

Relationship Between Post Exercise Body Weight and IOP 

 

In the hypo-hydrated condition, the participants in the current study lost an average 

39% more body weight than did the participants in the hyper-hydrated condition. We can 

assume from this outcome that the hydration protocol was sufficient to create a bimodal 

distribution and induce dehydration in the experimental group. However, we observed no 

correlation between loss of body weight and reductions in IOP.  

 

These results are interesting when we consider that the participants lost an average 

30% more body weight than did the participants in the temperate condition (22ºC) in the study 

by Hunt et al. (2012), in which they compare room temperature differences on post exercise 

IOP. Yet, the participants of Hunt et al. produced a significant post exercise reduction in IOP 

of -1.1 mm Hg, contrary to our results in which IOP was not significantly reduced post 

exercise. If dehydration, as measured by loss of body weight, is implicit in the mechanisms 

driving post exercise IOP we should have observed an even greater decrease than Hunt et al. 
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In other words, either dehydration is not a factor in post exercise reductions in IOP or it is 

possible that the relationship between dehydration and post exercise IOP is not a linear one.  

 

The Influence of Water Intake on IOP 

 

 In the hyper-hydrated condition there was a significant increase in IOP at the end of 

the 90-minute exercise protocol as compared to baseline. At 30 and 60 minutes into the 

exercise protocol IOP was significantly higher than the first measure taken at 5 minutes. These 

increases in IOP are in accord with Moura et al. (2002) who suggested that change in IOP is 

due to fluid ingestion pre- and during exercise regardless of the relative level of hydration. In 

the current study, in both conditions, participants were required to finish their prescribed water 

two hours before the exercise portion of the test. At 30 and 60 minutes, in the hyper-hydrated 

condition only, participants ingested a further 5 mL.kg-1 (per body weight) of water and IOP 

rose accordingly, whereas in the hypo-hydrated condition it hovered around baseline. Moura et 

al. observed that their participants exhibited the same magnitude and pattern of fluctuation in 

IOP during the 45-minute rest condition as when they were in the exercise condition if water 

was consumed in the same intervals. The results of both studies taken together suggest that 

ingestion of water causes IOP increase whether the participant is resting, exercising or in the 

first stages of dehydration.  

 

 Given the robust effect of water consumption on IOP, it is possible that we did not find 

a significant post exercise reduction in the hypo-hydrated condition because we over-hydrated 

our participants before they started the exercise protocol. The pre-exercise criteria for both 

experimental days of this study required that most participants finish drinking nearly half a 

litre of water (average 432 ml of water per participant, SD = 142), two hours before beginning 

to exercise, to allow time for fluid induced increases in IOP to subside. It is possible that two 

hours was not enough time and therefore the participants were over-hydrated at the start of the 

exercise protocol. This would prevent the degree of dehydration necessary to cause the 

increase in plasma osmolarity and colloid osmotic pressure implicated in post exercise 

reductions in IOP (Martin et al., 1999). In contrast to our results, Hunt et al. (2012) required 

all participants to drink 250 ml of an isotonic sports drink upon rising and no later than 60 
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minutes before the trial. Although this is 90 ml less than the amount of water drank by our 

smallest participant and closer to the start of the exercise protocol, none of their participants 

exhibited an increase in IOP. 

 

 Habitual water intake and IOP. It seems that water consumption alone does not 

explain the difference in results between the current study and that of Hunt et al. (2012). There 

is also the possibility that a post-exercise reduction in IOP was prevented not just by the water 

ingestion on the test day but also by a discrepancy between habitual water intake and the pre-

exercise criteria of the current study. In the hyper-hydrated condition, the IOP of our 

participants remained significantly elevated even 30 minutes after exercise ceased. There is 

evidence that hydration, as measured via urine and plasma osmolarity, is responsive to 

changes in habitual fluid ingestion, and only stabilizes within 24 hours of modifying the 

volume of water consumed (Perrier et al., 2013a; Perrier et al., 2013b). Although the relative 

volume of water for each participant was chosen based on the recommendations made by the 

American College of Sports Medicine (Sawka et al., 2007) on the ingestion of fluid during 

physical activity and sports it is possible that IOP was too greatly elevated for those 

participants that do not habitually drink a lot of water upon rising in the morning (Perrier et 

al., 2013a; Perrier et al., 2013b; Sawka et al., 2007).  

 

The Initial Drop in Post Exercise IOP 

 

 There was an initial drop in IOP at 5 minutes in both the hyper- and hypo-hydration 

conditions on the order of -.846 to -1.038 mm Hg, respectively (SD = 1.13, SD = 1.52, 

respectively) that replicates a pattern in the literature whereby the initiation of exercise 

produces an immediate reduction in IOP (Roddy et al., 2014). This initial drop in IOP might 

occur because when the body changes posture or changes dynamic intensity, such as when 

initiating exercise, IOP fluctuates (Barkana, 2014; Orgül & Flammer, 1994). Barring 

pathology of the eye, the fluctuations eventually move towards basal values or an adjusted 

plateau until the next major postural or physiological change (Acott, Kelley, Keller, & Vranka 

et al., 2014; Barkana, 2014; Johnstone, 2013; Hamilton et al., 2007; Moura et al., 2002).  
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 If fluctuations in IOP predominantly reflect homeostatic processes, it is also possible 

that, like other systems of the human body, the ocular system can overshoot the return to basal 

levels (Guyton & Hall, 2006d; Roberts, Reiss, & Monger, 2000). For example, in most cases, 

IOP rises when a person lies down and it settles at an elevated plateau. After waking and 

sitting, IOP gradually returns to baseline within a couple of hours. Jumping up quickly or a 

short intense bout of movement could produce a reduction in IOP that overshoots the baseline 

before its ascent back to basal values (Barkana, 2014; Guyton & Hall, 2006d; Roberts et al., 

2000; Orgül & Flammer, 1994). Measurements taken too soon after the cessation of intense 

exercise could be simply reflecting this fluctuation, such as in studies whereby the post 

exercise measures of IOP occur at10 minutes post exercise or less (Conte, Baldin, Russo, & 

Storti, 2014; Hunt et al., 2012).  

 

Limitations 

 

 There were two possible limitations with the current study. Firstly, our participants 

were relatively high on the continuum of VO2max and were under represented at the lower 

end of the VO2max scale. A recent meta-analysis revealed that sedentary participants 

experience an almost twofold reduction in post exercise IOP than is seen in the normally 

active group, confirming a pattern often seen in the literature (Gale et al., 2009; Risner et al., 

2009; Roddy et al., 2014). In the current study, the high fitness level of the participants may 

have elevated the average post exercise IOP.   

 

 Secondly, there is research to show that a valsalva manoeuvre (a forced exhalation 

when the airway is closed) during intense isometric exercises or weight lifting elevates IOP 

(Aykan, Erdurmus, Yilmaz, Bilge et al., 2010; Bakke, Hisdal, & Semb, 2009; Harris, 

Malinovsky, Cantor, Henderson, & Martin, 1992; Rüfer et al., 2014; Vieira, Oliveira, de 

Andrade, Bottaro, & Ritch, 2006). In the current study, this could have prevented the reduction 

in IOP observed in other studies that used walking, such as on a treadmill, as the exercise 

mode (Gale et al., 2009; Hunt et al., 2012; Risner et al., 2009; Roddy et al., 2014). When using 

a test of maximal aerobic capacity to establish a target range for exercise, it happens that those 



	 82	

participants at the higher end of the fitness scale achieve power settings on the ergocycle that 

exceed 150 watts. The duration of a VO2max test is usually no more than 10 to 12 minutes. 

The protocol of the current study called for 90 minutes of riding at 59% of one’s VO2max. A 

combination of subjective reporting by the participants and their responses on the Borg scale 

(Borg, 1982) suggested that leg fatigue was causing increased muscular effort to press down 

on the pedals. Increased effort from exerting pressure, such as that which occurs during 

weightlifting, might have begun to elevate rather than reduce IOP (Bakke et al., 2009; Vieira 

et al., 2006). Although this does not explain the difference between the hypo- and hyper- 

condition of the current study and does not affect our main conclusions, it is relevant to the 

overall discussion of appropriate exercise protocols for the study of aerobic exercise on 

changes in IOP.  

 

Conclusion 

 

One of the mechanisms implicated in the hypotensive effect of exercise on IOP is 

hyperosmolarity potentially caused by systemic dehydration. The results of the current study 

did not support that theory. IOP remained close to baseline for the duration of exercise when 

fluid was restricted, and increased with water consumption when participants drank during 

exercise. Reductions in body weight (dehydration) were not significantly correlated in either 

the hyper- or hypo-hydrated conditions. The results of the current study suggest that 

fluctuations in IOP during and after exercise are likely a homeostatic response to 

dysregulation of the aqueous humor caused by fluid intake and large changes in activity level 

that initiate a parasympathetic response and do not seem to be related to physical exercise on 

its own. 
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ABSTRACT  

 

 Across the majority of the literature on the hypotensive effect of aerobic exercise on 

intraocular pressure (IOP) a consistent pattern is found. Baseline IOP is often lower in those 

who are physically fit as compared those who are sedentary. In addition, acute post exercise 

reductions in IOP are attenuated. Long-term physiological changes that occur with physical 

conditioning make it important to correctly define the fitness level of participants when 

conducting research on the possible mechanisms driving the acute hypotensive effects of 

exercise on IOP.  

 

 Thirty-one participants were included in the current study. The objective was to 

determine the degree of correlation between IOP, reported as an average of four discrete 

measures conducted over an eight-week period, and a single test of maximal aerobic capacity 

(VO2max) used to determine the participant’s level of conditioning. 

 

 A significant negative correlation was observed between Absolute VO2max and 

baseline IOP, such that, as Absolute VO2max increased baseline IOP decreased, but only in 

the upper third of the VO2max continuum. There was no significant correlation between 

Relative VO2max and baseline IOP contrary to existing literature. Across the 4 measures 

baseline IOP measurements were significantly correlated with each other, potentially 

reflecting the high fitness level of the participants. There was a small range of VO2max scores 

in the current study. Therefore, although it is possible that a relationship between VO2max and 

baseline IOP only exists within the elite levels of the physically fit, it is equally possible that 

there were not enough participants represented at the low end of the fitness continuum.  

 

Keywords: intraocular pressure, exercise, aerobic, VO2max, physical fitness, homeostasis 
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 Introduction  

 A vast literature exists on the relationship between changes in intraocular pressure 

(IOP) and aerobic exercise. The majority of the research centres on 10 to 60 minutes of 

moderate to vigorous exercise and, in general, there is a transient reduction from normal 

baseline IOP (10 to 21 mm Hg, see Quigley, 2011) on the order of 1.2 to 8.0 mm Hg (Gale, 

Wells, & Wilson, 2009; Risner et al., 2009; Roddy, Curnier, & Ellemberg, 2014). However, 

there are a few notable exceptions in which researchers found no change or an increase in IOP 

(Dane, Koçer, Demirel, Ucok & Tan, 2006a; Moura, Rodrigues, Waisberg, de Almeida &. 

Garcia, 2002; Shah, Whittaker, Wells, & Khaw, 2001). One factor that causes variability 

across studies is the physical fitness of the participants.  

 

 In studies wherein the participants were stratified by level of physical conditioning, 

people at the higher end of the fitness continuum experience less of a reduction in IOP after 

acute aerobic exercise, or even an increase (see Dane et al., 2006a), than do people who are 

sedentary (Harris, Malinovsky, & Martin, 1994; Passo, Goldberg, Elliot, & Van Buskirk, 

1987; Qureshi, 1996a).  

 

 A meta-analysis on reductions in IOP after acute aerobic exercise conducted by this 

group revealed that sedentary participants experience an almost twofold reduction in IOP, post 

exercise, than do the normally active groups (Roddy et al., 2014). In addition group 

differences (Sedentary versus Normally Active) explained 27.60% of the between-study 

variability (R2 adj). Another finding was that characterization of fitness level varied across 

studies, and often, participants deemed normally active were actually at the high end of the 

fitness continuum. 

 

 There is also the suggestion in the literature that it is not only acute post-exercise 

reductions in IOP that are blunted in those who are physically fit, but that baseline IOP is also 

lower than in those who are sedentary (Harris et al., 1994; Passo et al. 1987; Qureshi, 1996a). 

A correlational study by Qureshi, Wu, Xi, Yang and Huang (1997a) found that the relative 
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VO2max of steel workers who performed a moderate or vigorous task at work was 5.1 (SD = 

1.1) ml/kg/min (p < 0.001) higher than those who worked sedentary desk jobs. Further, 

baseline IOP was 1.9 (SD = 0.7) mm Hg (p < 0.001) lower in the more active group. 

 

 The observations of Qureshi et al. (1997a) concur with three studies that used exercise 

interventions of three months to determine both the effect of long-term physical conditioning 

on baseline and the acute effects of post exercise IOP. These studies found reductions in 

baseline IOP of .31 to 1.5 mm Hg in normal participants and up to 4.6 mm Hg for those 

participants with Glaucoma (Passo et al. 1987, 1991; Qureshi, 1996a; Qureshi, 1995b). 

Further, there was at least a threefold difference between the control and experimental groups, 

across the three studies, after long-term physical conditioning.  

 

 Conversely, Sargent, Blair and Magun (1981) found no difference in acute post-

exercise changes in IOP between the experimental and control group after a 6-month exercise 

intervention. They did, however, find a reduction in baseline IOP for both groups, after the six 

months, of a similar magnitude found in the aforementioned studies. It was suggested by the 

authors that the reductions in baseline IOP were caused by seasonal fluctuation (Sargent, 

Blair, & Magun, 1981). IOP can fluctuate as much as 0.14 to 0.39 mmHg (P ≤ 0.02; Gardiner, 

Demirel, Gordon, & Kass, 2013) with a peak in January or February (Bengtsson, 1973; 

Gardiner et al., 2013; Qureshi, Xi, Lu, Wu, Huang, & Shiarkar, 1996c). This factor is also 

important when considering the exercise protocol of research on physical conditioning over 

time and the resultant effects on baseline IOP. 

 

 The observations made by Qureshi et al. (1997a) are pertinent to a common suggestion 

running through the literature, that post exercise reductions in IOP could potentially offset the 

increase in IOP seen in a subtype of a group of degenerative diseases, known as Glaucoma, a 

disease characterized by consistently high baseline IOP values (Gale et al., 2009; Risner et al., 

2009; Roddy et al., 2014; Qureshi, 1997b). It should be noted, that although elevated IOP 

remains the most easily controllable risk factor for this disease, research is inconclusive as to 

whether or not the addition of chronic aerobic exercise will impact the course of the disease in 

a person at risk (Bengtsson & Heijl, 2005; Gale et al., 2009; Passo et al., 1991; Qureshi, 
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1995b; Williams, 2009). That said if there is a potential application in preventative therapy the 

relationship between physical fitness and baseline IOP must be made clear.  

  

 When conducting research on the mechanisms driving the hypotensive effects of 

exercise on IOP it is important to understand that many of the proposed mechanisms driving 

the hypotensive effect of exercise on IOP are themselves a part of physiological systems that 

work differently in a physically conditioned body as opposed to a sedentary one (deVries & 

Housh, 1994a, b, c, d; Guyton and Hall, 2006b, d). For example, highly trained athletes show 

an increased efficacy of the sweating mechanism and a delay in lactic acid increases during 

vigorous exercise allowing them to perform longer than sedentary people (deVries & Housh, 

1994a,b; Guyton and Hall, 2006b,d). These changes that occur with physical conditioning are 

often representative of an increase in the body’s efficiency to regulate different physiological 

systems when they are provoked by different exercises, changes in posture, fluid ingestion or 

deprivation, stress and many other factors (Buckingham & Young, 1986; Li, Wang, Guo, 

Wang, & Sun, 2011; Loewen, Liu, & Weinreb, 2010; Read & Collins, 2011; Roddy et al., 

2014; Sollanek, Kenefick, Walsh, Fortes, Esmaeelpour, & Cheuvront, 2012). Not only do 

these changes lead to a lower baseline IOP, they seem to also have an effect on acute post 

exercise reductions in IOP (Hunt, Feigl, & Stewart, 2012; Sollanek et al., 2012). Averaging 

IOP measurements across participants, even within a small range of the fitness continuum, 

could be obscuring changes in baseline IOP that correlate with fitness level.  

   

 Another factor in the relationship between long-term physical conditioning and IOP is 

that reductions in baseline IOP are not permanent and the return to basal values is imminent 

when the conditioning stops. Most studies that include one acute aerobic exercise session 

show a return to baseline IOP within 60 minutes post-exercise (Risner et al., 2009; Roddy et 

al., 2014). Long-term physical conditioning is shown to maintain a reduction in baseline IOP 

for up to three weeks after the cessation of a three-month exercise intervention (Passo et al., 

1987) but those results have not been replicated. It is important to note that across the 

literature on exercise-induced reductions in IOP there is a return to basal levels, without 

exception. This occurs whether IOP is elevated or reduced immediately after the manipulation, 



	 97	

regardless of the magnitude of the fluctuation, or the duration or intensity of exercise (Gale et 

al., 2009; Risner et al., 2009; Roddy et al., 2014).  

 

 There is a another complicating factor when it comes to research on exercise and IOP 

and that is the fact that the majority of studies on the hypotensive effects of exercise use single 

measures of IOP for the baseline measure or, in the case of the rebound tonometer, an average 

of six or more values taken in quick succession, one set in each eye (Risner et al., 2009; 

Roddy et al., 2014). A possible issue arises in that every discrete measure of IOP is affected by 

the season (Gardiner et al., 2013), time of day (Hamilton et al., 2007, Liu & Weinreb, 2011), 

amount and type of liquid ingested pre-measure (Buckingham & Young, 1986; Li et al., 2011; 

Moura et al., 2002), how long a participant was awake (Hamilton et al., 2007; Liu & Weinreb, 

2011; Liu, Zhang, Kripke, & Weinreb, 2003a; Liu, Bouligny, Kripke, & Weinreb, 2003b), and 

any number of physiological factors (Loewen et al., 2010; Read & Collins, 2011; Sollanek et 

al., 2012).   

 

 The current study explores further the relationship between physical fitness and 

baseline IOP. Four baseline IOP measures will be obtained over an eight-week period, with 

regular intervals between days, all measures performed between the hours of 12:00:00 and 

17:00:00. The measures will be compared, as 4 discrete measures and as a series of 

compounding averages, to a single test of VO2max on an ergo cycle. We propose that there 

will be a negative correlation between baseline IOP and V02max such that the higher a 

person’s V02max the lower the baseline IOP. 

 

 Given the enormous amount of factors that affect IOP a single measure, or a group of 

measures taken in one sitting, might not register a true baseline. It is possible that sedentary 

people might exhibit greater fluctuation in IOP caused by external factors such as rushing to 

the lab for testing, water deprivation or stress. Conversely, if long-term physical conditioning 

has the effect of maintaining a low, or even optimal baseline IOP, the values of those 

participants at the higher end of the fitness continuum could be quite stable across measures 

taken on different days. 
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Method 

 

Participants and Recruitment 

 

 The current study was approved by the ethics committee for research in health sciences 

of the University of Montreal. The 23 women and 8 men included in the study were recruited 

from the University of Montreal, QC, Canada and from the city of Montreal, QC, Canada, via 

posters and social media. Participants were between 20 and 43 years of age (SD = 6.87). 

Characteristic data are presented in Table 3.1.  

 

 Control questionnaires. Before being eligible for participation all interested persons 

filled in questionnaires to ensure that they were free of i) ocular disease and previous ocular 

surgery, ii) Diabetes Type II, cardiovascular conditions and hypertension, iii) and that they did 

not currently use steroids, beta blockers or medication for elevated IOP (Schulzer & Drance, 

1987). Participants also completed a questionnaire to determine their physical readiness to 

undertake the VO2max test (the PAR-Q in English/Q-AAAP in French). 

 

 The experiment required a total of four visits, to be done within eight weeks of the first 

visit no closer than 5 days apart and no farther than 10 days apart, to the School of Optometry 

at the University of Montreal. On each visit the participant sat for one minute and then their 

baseline IOP was measured with the iCare® TA01i rebound tonometer (Icare Finland Oy, 

Vantaa, Finland). One visit to the department of kinesiology for a test of maximal aerobic 

capacity (VO2max), during that same eight-week period, was also required. Weekly exercise 

routines and physical demands with regard to occupation were monitored via self-report on all 

five days of the experimental procedure. Measurement protocols and intervals are described in 

detail below. 

 

Intraocular Pressure Measurements   

 

 A single researcher, using the iCare® TA01i rebound tonometer (Icare Finland Oy, 

Vantaa, Finland), took all IOP measurements. The iCare® has an accuracy of ±1.2 mm Hg at 
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≤20 mm Hg and ±2.2 mm Hg at >20 mm Hg (Kim, Jeoung, Park, Yang, & Kim, 2013; 

Molina, Milla, Bitrian, Larena, & Martíneza, 2010; Tonnu, Ho, Sharma, White, Bunce, & 

Garway-Heath, 2005). The recorded values are an average of six measures per eye at each 

measurement interval. All measurements were performed in both eyes.  

 

 Participants were required to be awake for a minimum of two hours before IOP 

measures were taken on each testing day. All visits were conducted between the hours of 

12:00:00 and 17:00:00, Tuesday, Wednesday or Thursday, during the months of September, 

October and November of 2014 too avoid the effects of diurnal and seasonal fluctuation 

(Hamilton et al., 2007; Liu & Weinreb, 2011; Liu et al., 2003a; Sit, 2014 and Gardiner et al., 

2013, respectively). 

 

 In the 24 hours leading up to each of the four IOP measurements participants were 

asked to abstain from contact lens wear, alcohol (Buckingham & Young, 1986) or exercise.  

 

Tests of Physical Fitness  

 

 Test of maximal oxygen uptake. Aerobic capacity was determined with a test of 

maximum oxygen consumption (VO2max) performed on a Lode ergocycle (Corival 906900, 

LODE B.V. Medical Technology, Groningen, The Netherlands). During the test, the Ultima™ 

CardiO2® (790705-006, 12 lead ECG CPX Testing, Medgraphics Cardiorespiratory 

Diagnostics, St Paul, MI) was used to monitor the gas exchange via the exhaled breath of the 

participant. Data were collected with the Breeze Suite software (V. 7.2.0.52, 2001-2011, 

Medgraphics Corporation, St Paul, MI). To validate the test we measured both the respiratory 

exchange rate (less oxygen inhaled and more carbon dioxide exhaled) and the plateau in VO2 

as the workload increased (Poole, Wilkerson, & Jones, 2008). 

 

 To begin the test, participants warmed up on the bike for 5 minutes at 50 watts (1 watt 

= 3600 J/hr, or 6.1183 kg-m/min). After the warm up, intensity was increased by 25 watts at 2-

minute intervals until the participant could no longer maintain a range of 80 to 90 revolutions 

per minute (RPMs). Participants were monitored via their heart rate (T31 coded™ 
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Transmitter, Polar® Electro, Lachine, Qc) and the BORG scale of perceived exertion for the 

duration of the ride (Borg, 1982). Blood pressure was measured with a stethoscope and 

sphygmomanometer to monitor participants for excessive increases greater than 250 mm Hg in 

systolic BP and greater than 115 mm Hg in diastolic BP or decreases in baseline BP (>10 mm 

Hg) during exercise (ACSM, 2010b). 

 

 Self-Reports of health and fitness. Weekly exercise routines and physical demands 

with regard to physical exertion were monitored via self-report on all five days of the 

experimental procedure to ensure that there were no extreme changes in the pattern of physical 

activity since the last measurement.    

 
 
Table 3.1. Characteristic Data 

Variable 

Mean 

(Female) 

N = 23 

SD 

Mean 

(Male) 

N = 8 

SD 

 

Age (year) 

 

25.1 

 

6.4 

 

26.5 

 

8.4 

Weight (Kg)  59.9 8.0 73.8 10.1 

Height (cm) 164.5 6.1 177.4 5.5 

Resting Heart Rate (BPM) 92.0 17.6 88.8 21.0 

*N = 31  

 

Statistical Analysis 

 

 Correlational analysis was used to assess the relationship between relative and absolute 

VO2max and baseline IOP. Separate bivariate correlations were conducted for each of the four 

discrete measures (IOPT1, IOPT2, IOPT3 and IOPT4) and for the cumulative measure 

(IOP1234), and Relative and Absolute VO2max. 
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 In the final analysis, the Relative VO2max scores were trichotomized in the following 

manner, below 36.08 mL/kg/min, 36.08 - 41.83 mL/kg/min and greater than 41.83 kg/mL/min 

and a correlational analysis was performed with each level and (IOPT1, IOPT2, IOPT3, 

IOPT4 and IOP1234) and (absolute or relative) VO2max. The cut-off criteria was chosen so 

that all Relative VO2max scores in the lower third of the range were confined to the 3 lower 

categories of VO2max normative data (by age), Very Poor, Poor and Fair (Table Reference: 

Heyward, 1998 [revised in 1997 from The Physical Fitness Specialist Certification Manual]). 

There were no men represented in this category. The values in the upper third of the range 

were confined to the upper 3 categories of VO2max normative data, Good, Excellent and 

Superior. Five men and five women comprised the upper category. The remaining men (3) and 

women (8) straddled the upper four categories.  

 Although trichotomization of data is an imperfect analysis the impetus in this case was 

to compare more directly the results of this study to that of Moura et al. (2002) whose 6 young 

male participants averaged 47.8 ± 9.1 (kg1min1) and Hunt et al. (2012) whose 7 young male 

participants 59.7 ± 7.2 (kg1min1). Although the top third of our participants in terms of their 

V02max test results are of mixed gender (5 men and 5 women) the range of 42.8 to 55.6 

(kg1min1) is a closer approximation to the results of the aforementioned studies. 

 

Results 

 

 There were no significant differences between the right and left eye measurements of 

IOP; therefore, the results are for the right eye only. Five females and one male presented with 

IOP readings between 21 and 29 mm Hg for three of the four visits. In all cases the 

participants were given a complete optical examination at the School of Optometry, University 

of Montreal. There were no pathologies or historical risk factors present for any of the 

participants. Because the purpose of the current study is to examine a relationship between 

IOP and VO2max along a fitness continuum, all 5 participants were included in the study.  

 

Stability of Baseline Measures 
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 Baseline IOP at Time 1 (IOPT1) was significantly correlated with IOPT2, IOPT3 and 

IOPT4 (r (31) = .764, .806 and .813, p < .001), IOP2 was significantly correlated with IOPT3 

and IOPT4(r (31) = .781 and .861, p < .001) and IOPT3 was significantly correlated with 

IOPT4 (r (31) = .833, p < .001), suggesting that IOP values were stable over the weekly 

measures. Relative V02max and Absolute V02max were also significantly positively correlated 

(r (31) = .743, p < .001), confirming that the two values reflect the same parameter.  

 

IOP and VO2max 

 

 Separate bivariate correlations were carried out for each of the four discrete measures 

(IOPT1, IOPT2, IOPT3 and IOPT4) and Relative and Absolute VO2max, and for the 

cumulative measure (IOP1234) and Relative and Absolute VO2max. Relative VO2max was 

not significantly correlated with IOPT1, IOPT2, IOPT3 or IOPT4, or the cumulative measure 

IOPT1234 (Table 3.2). Absolute VO2max was significantly correlated with IOP at IOPT4 

(r(31) = -.360, p = .047) but was not correlated at IOPT1, IOPT2, IOPT3 or IOPT1234 (Table 

3.2). 
 

 IOPT1 p IOPT2 p IOPT3 p IOPT4 p IOPT1234 p 

VO2maxREL .018 .924 -.102 .585 .005 .980 -.166 .372 -.065 .730 

VO2maxABS -.198 .286 -.335 .065 -.322 .077 -.360**  .047** -.326 .073 

 
VO2maxREL = Relative VO2max (mL/kg/min) 
VO2maxABS = Absolute VO2max (mL/min) 
N = 31 

 

 

IOP and Fitness Level   

 

 When the Relative VO2max data was trichotomized (Table 3.3) there was a significant 

negative correlation between Absolute VO2max values greater than 41.83 mL/min (N = 10) 

and baseline IOP, such that, as Absolute VO2max increases, for both men and women, 

 

Table 3.2. 

Pearson Correlation table between VO2max and IOP measurements at each time point. 
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baseline IOP decreases, IOPT1 (r(10) = -.673, p = .033, R2 = .452), IOPT2 (r(10) = -.727, p = 

.017, R2 = .528), IOPT3 (r(10) = -.800, p = .005, R2 = .640), IOPT4 (r(10) = -.859, p = .001, 

R2 = .696) (Figures 3.1 to 3.4) and IOPT1234 (r(10) = -.798, p = .006) (Figure 3.5).  

 

 

 

 

 

	  
Figure 3.1  Time 1      Figure 3.2  Time 2 

	  

Figure 3.3  Time 3      Figure 3.4  Time 4 

 

Figures 3.1 to 3.4. Scatterplots showing data trichotomized by Relative V02max. IOP is plotted as a function of Absolute 

V02max at Times 1 to 4. Squares represent IOP values below 36.08 mm Hg, triangles represent IOP values between 36.08 and 

41.83 mm Hg and circles represent IOP scores above 41.83 mm Hg. The linear trendline is presented for the scores above 

41.83 mm Hg only. The R2 values are as follows, .053, .528, .640 and .696, respectively. See Table 3.3.  
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Figure 3.5. Scatterplot showing data trichotomized by Relative V02max. IOP is averaged over Times 1 to 4 and plotted as a 

function of Absolute V02max. Squares represent IOP values below 36.08 mm Hg, triangles represent IOP values between 

36.08 and 41.83 mm Hg and circles represent IOP scores above 41.83 (R2  = .636).	See Table 3.3. 

  

 There were no correlations between Relative VO2max and baseline measures of IOP, 

below 36.08 mL/kg/min Relative VO2max for IOPT1 (r(10) = .120, p = .741), IOPT2 (r(10) = 

-.313, p = .379), IOPT3 (r(10) = .005, p = .990), IOPT4 (r(10) = -.282, p = .430) and 

IOPT1234 (r(10) = -.104, p = .776). Neither were there significant correlations between 

Relative VO2max and baseline measures of IOP in the middle third of the dataset, 36.08 to 

41.83 mL/kg/min Relative VO2max, for IOPT1 (r(10) = .307, p = .359), IOPT2 (r(10) = .008, 

p = .981), IOPT3 (r(10) = .432, p = .185), IOPT4 (r(10) = .273, p = .416) and IOPT1234 

(r(10) = .264, p = .433) (Table 3.3). 

 

 There were no correlations between Absolute VO2max and baseline measures of IOP, 

below 36.08 mL/kg/min Relative VO2max for IOPT1 (r(10) = .175, p = .629), IOPT2 (r(10) = 

-.282, p = .431), IOPT3 (r(10) = .178, p = .623), IOPT4 (r(10) = -.064, p = .862) and 

IOPT1234 (r(10) = .064, p = .861). Neither were there significant correlations between 

Absolute VO2max and baseline measures of IOP in the middle third of the dataset, 36.08 to 

41.83 mL/kg/min Relative VO2max, for IOPT1 (r(11) = -.122, p = .720), IOPT2 (r(11) = -

.324, p = .330), IOPT3 (r(11) = -.199, p = .558), IOPT4 (r(11) = --.125, p = .713) and 

IOPT1234 (r(11) = -.246, p = .543) (Table 3.3). 
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 Finally, there were no correlations between Relative VO2max and baseline measures of 

IOP values greater than 41.83 mL/min Relative VO2max (N = 10) for IOPT1 (r(10) = -.287, p 

= .421), IOPT2 (r(10) = -.331, p = .351), IOPT3 (r(10) = -.239, p = .506), IOPT4 (r(10) = -

.425, p = .221) and IOPT1234 (r(10) = -.336, p = .342) (Table 3.3).  
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Table 3.3. 

 Pearson Correlation (r) table of VO2max at 3 levels and IOP measurements at each time point 

¥VO2max 
RELATIVE	 

VO2max 
Category 

 
IOPT1 

r  
 

 
p 

 
IOPT2  

r  
 

 
p 

 
IOPT3  

r  
 

 
p 

 
IOPT4  

r  
 

 
p 

 
IOPT1234  

r  
 

 
p 

            

< 36,08 
N = 10 

Relative .120 .741 -.313 .379 .005 .990 -.282 .430 -.104 .776 

Absolute .175 .629 -.282 .431 .178 .623 .064 .862 .064 .861 

36,08 - 41,83 
N = 11 

Relative .307 .359 .008 .981 .432 .185 .273 .416 .264 .433 

Absolute -.122 .720 -.324 .330 -.199 .558 -.125 .713 -.206 .533 

> 41,83 
N = 10 

Relative -.287 .421 -.331 .351 -.239 .506 -.425 .221 -.336 .342 

Absolute -.673 .003* -.727 .017* -.800 .005** -.859 .001*** -.798 .006** 

¥VO2max Relative values were used to divide the data into three groups.  
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  Discussion  

 

 Across decades of research on the hypotensive effects of exercise and IOP a consistent 

pattern emerges. Participants at the higher end of the physical fitness continuum do not 

produce the same magnitude of acute post exercise reductions in IOP, and often exhibit lower 

baseline IOP, than do sedentary and clinical populations (Gale et al., 2009; Risner et al., 2009; 

Roddy et al., 2014). The current study was conducted to ascertain whether physical fitness, as 

measured by a VO2max test, correlates negatively with baseline IOP values. There was a 

significant negative correlation between Absolute V02max and baseline IOP but only in highly 

fit participants (the upper third of the V02max continuum). There was no correlation between 

Relative V02max and IOP.   

 

IOP and Relative versus Absolute VO2max 

 

 At first glance the results are somewhat perplexing because unlike Relative VO2max, 

Absolute VO2max does not consider a person’s weight. This seems contrary to the literature 

that suggests that the acute post exercise reductions in IOP are more affected by relative than 

by absolute exercise intensity (Harris et al., 1994; Kiuchi, Mishima, & Hotehama et al., 1994; 

Qureshi, Xi, Huang, & Wu, 1996b). However, VO2max generally does not vary linearly with 

body mass and further improvements in performance can still occur once a VO2max plateau is 

reached (deVries & Housh, 1994a,b). This is because athletes are able to perform at a higher 

percentage of their VO2max for prolonged periods (deVries & Housh, 1994a,b; Bryant & 

Green, 2010). For example, highly trained runners can use more than 90% of their VO2max 

for 25 to 30 minutes with only small amounts of lactate build up compared to sedentary people 

(deVries & Housh, 1994b). Therefore, it is possible then that an optimal baseline IOP can only 

be maintained when people continue to train close to the VO2max threshold.  

 

 Our results concur with a previous questionnaire-based study conducted to assess the 

dose-response relationship of exercise to the risk of Glaucoma in 29,854 middle-aged men 

(Willams, 2009). Among other considerations, declining glaucoma risk suggests consistently 

lower IOP values than those at risk for the disease or already diagnosed. After following the 
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sample for 7.7 years, Willams (2009) found that the risk for reported glaucoma declined as the 

distance run per week increased and acute performance on a10-km footrace improved. 

Relevant to the current study is the fact that the top tier of 781 men who exceeded 5.0 m/s (p = 

0.03) on the footrace reported 0% glaucoma diagnoses. Further, the risk for reported glaucoma 

decreased 5% per kilometer-per-day run (p = 0.04). The results of the study suggest that to 

maintain the hypotensive effects of exercise on IOP one must train vigorously and 

consistently.  

 

IOP and Superior Physical Fitness 

 

 As in many recent studies, the majority of our participants were at the high end of the 

fitness continuum (e.g., Conte et al., 2014; Hunt et al., 2012; Moura et al., 2002; Rüfer, 

Schiller, & Klettner et al., 2014). The average Relative V02max value for the female 

participants (average 25.09 years of age, SD = 6.4) is 37.11 mL/kg/min (SD = 6.3). This places 

the results at Excellent on the V02max Normative Scale for the age range (ACSM, 2010b; 

Heyword, 1998). The average Relative V02max value for the men (average 26.05 years of age, 

SD = 8.4) is 44.4 mL/kg/min (SD = 5.6) (ACSM, 2010b; Heyword, 1998). Further, only 5 of 

the 23 female participants and 2 of the 8 male participants fell into the bottom three categories 

while the other 24 participants are considered to possess good, excellent or superior V02max 

(ACSM, 2010b; Heyword, 1998). The relatively high fitness level, and by extension the 

superior aerobic conditioning, of the majority of the participants likely explains the stability of 

the IOP measures from week to week.  

  

 

IOP and Exercise Modality 

 

 It is difficult to adequately quantify the intensity and duration of exercise conditioning 

required to develop and maintain low baseline IOP. In the few studies that exist the long-term 

exercise interventions include hockey, supervised group aerobics and various jogging 

protocols (Passo et al. 1987; Qureshi, 1996a; Sargent et al. 1991). Similarly, in the current 

study, the habitual exercise practices of the participants varied from yoga to running to a 
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variation of full body aerobic and muscle conditioning programs.  

 

 There is evidence that the type of exercise does play a role in both the acute and long-

term hypotensive effect of exercise on IOP (Gale et al., 2009; Harris et al., 1994; Roddy et al., 

2014). An observation of the studies included in a meta analysis by this group revealed that 

cycling produced an almost two-fold greater average reduction in IOP than the treadmill for 

the sedentary participants across studies (  = -4.53 vs. = -2.49 mm Hg, respectively). That 

trend was reversed for the normally active group (  = -2.21 vs. = -3.16 mm Hg, 

respectively) (Buckingham & Young 1986; Dane et al., 2006a; Harris et al., 1994; Karabatakis 

et al., 2004; Kiuchi et al, 1994; Passo et al., 1987; Qureshi, 1996a; Qureshi, 1995a; Read & 

Collins, 2011). Many factors could be at play here that relate to demands placed on the body 

because of increasingly localized muscle fatigue in the legs, increased metabolic needs, and 

reduced peripheral blood flow across different modalities of exercise, all of which affect the 

efficacy of the test to determine a true V02max (Miles et al., 1980). For some participants 

VO2max values are as much as 5% lower on an ergocyle (Heyword, 1998). Although 

participants at the higher end of the scale would be less susceptible to these effects it could 

still affect results, especially for those who do not ride a bike regularly. 

 

Low Baseline IOP and VO2max 

 

 The current study could not establish a correlation between VO2max values in the 

lower third of the sample and baseline IOP, possibly because the VO2max values were not low 

enough. As previously mentioned the range of fitness in our sample tended towards the high 

end of the fitness continuum. The relationship between exercise and IOP would likely be 

clearer where the aerobic range extends to lower VO2max values so that a full progression, 

from extremely sedentary to extremely physically fit, can be established. It is possible that the 

same relationship exists for high baseline IOP values and very low VO2max values, as exists 

for low baseline IOP and very high VO2max values in the current study. It is also possible that 

the relationship between baseline IOP and physical fitness occurs only at the very top of the 

fitness continuum and that there is no relationship between the two for people who are more 

sedentary. 

x x

x x
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 The hypotensive effect of physical conditioning on IOP could also be subject to floor 

effect because baseline IOP can only be reduced so far without having incurred damage to the 

eye. Ocular hypotony occurs when intraocular pressure is equal to or less than 6.5 mm Hg. 

Such low values can adversely impact the eye in many ways, including corneal 

decomposition, accelerated cataract formation, macular irregularities and fluid leakage (Costa 

& Arcieri, 2007). In no study reviewed by this team over the course of a meta-analysis and our 

own lab research do baseline IOP values drop below 8 mm Hg after exercise or long-term 

conditioning (Roddy et al., 2014). In other words, the hypotensive effect of exercise on IOP 

might correlate with VO2max at the high end of the fitness continuum but only to the 

physiological lower boundary of IOP.  

 

Conclusion 

 

 The current study explored further the relationship between physical fitness and 

baseline IOP. Four baseline IOP measures were obtained over an eight-week period and 

compared to a single test of VO2max on an ergo cycle. We did find a relationship between 

baseline IOP and physical fitness but only in the top third of the fitness continuum and only 

when absolute VO2max values were used in the comparison. It is unknown whether the range 

of fitness levels was too small to create a full progression of baseline values or if the 

relationship only exists in those who are at the top end of the VO2max scale. Continued 

research on the mechanisms driving the hypotensive effect of exercise on IOP should explore 

further the pattern of change across the fitness continuum and include participants at the lower 

end of the range. The attenuated response observed in the physically fit possibly reflects the 

improved efficacy of parasympathetic responses to exercise.  
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Chapter 7 

General Discussion 

 The general objective of this thesis was to tease apart factors that influence the aerobic 

effect of exercise on IOP. After over 100 papers on the subject of exercise and IOP it is known 

that in the majority of cases, aerobic exercise produces a reduction in IOP, both the chronic 

and acute effects of exercise are attenuated in the physically fit and for all populations IOP 

always returns to baseline. The lack of standardization with regard to exercise protocols and 

stratification of participants across the literature to date complicates generalization and 

application of study results in a clinical or sports related setting. 

 The first study included in the thesis was designed as a meta-analysis to bring greater 

statistical power to a quantitative estimation of the overall contributions of intensity, duration 

and physical fitness to the effect of acute aerobic exercise on IOP. Large variations across 

studies with regard to control of pre-exercise fluid ingestion were observed during the 

literature search for Study 1. How hydrated one is before beginning an exercise protocol is 

necessarily a factor in dehydration, one of the many proposed mechanisms driving the 

hypotensive effect of exercise. To explore this interaction further in Study 2, the progressive 

changes in hydration levels, as per body weight, and in IOP were measured in both a hypo-

hydrated (water restricted) and hyper-hydrated condition. Study 3 was designed to further 

elucidate the relationship between physical fitness and IOP. The following section provides a 

summary of the results of the three studies contained herein. 

 

7.1 Summary of Study 1 Results. Reductions in intraocular pressure after acute aerobic 

exercise: a meta-analysis 

 The objective of the meta-analysis was to combine the results of studies that looked 

specifically at the effect of acute aerobic exercise on IOP, in normally active and sedentary 

people, and to examine the influence of factors implicated in that relationship. There was a 
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significant hypotensive effect of acute aerobic exercise on IOP that was almost two-fold 

greater for sedentary populations than for normally active populations, -4.2 mm Hg 95% CI [-

5.151, -3.245] versus -2.3 mm Hg 95% CI [-3.305, -1.375], respectively, values that are in 

accord with much of the literature (Gale at el., 2009; Harris et al., 1994; Passo et al., 1987; 

Passo et al., 1991; Qureshi, 1996a; Qureshi et al., 1996b; Risner et al., 2009). A multiple 

regression revealed that group differences were not be explained by exercise intensity or 

duration. Only group allocation (sedentary or normally active) contributed significantly to the 

overall effect size (B = -1.886, SE = - 0.818, p = 0.043). This is an important finding as many 

studies on the acute effect of exercise in IOP show a decrease in IOP, relative to the intensity 

of exercise (e.g., Harris et al., 1994; Kiuchi et al., 1994; Qureshi, 1995b; Qureshi, 1996a). 

 

 Other important findings of this analysis were the sheer number of variables mediating 

the effect of exercise on IOP and the variation in exercise parameters and protocol and 

participant characterization across studies.  

 

7.2 Summary of Study 2 Results. The Progression of Exercise Induced Changes in 

Intraocular Pressure as a Function of Dehydration 

 

 One of the mechanisms implicated in the hypotensive effect of exercise on IOP is 

systemic dehydration leading to ocular hyperosmolarity (Hunt et al., 2012; Martin et al., 1999; 

Sollanek et al., 2012). The results of this study did not support that theory. Thirteen 

participants rode an ergocycle for 90 minutes in either a hypo- or hyper-hydrated condition. 

IOP was measured at 5, 30, 60, and 90 minutes and hydration, as a function of reduction in 

body weight, was measured at 0, 30, 60 and 90 minutes. 

 

 As exercise began there was an initial drop in IOP under both conditions, in accord 

with observations made in Study 1 that often IOP decreases significantly in the first 5 minutes 

of initiating exercise. Subsequently, IOP hovered close to baseline for the duration of exercise 

when fluid was restricted, and increased with water consumption when participants drank 

during exercise.  
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 There was a reduction in body weight in both conditions that was significantly greater 

in the hypo-hydrated condition but was not significantly correlated with change in IOP in 

either condition. The results of the current study suggest that fluctuations in IOP during and 

after exercise, regardless of duration, are likely a homeostatic response to dysregulation of the 

aqueous humor caused by fluid intake and large changes in activity level. The hypotensive 

effect of IOP does not seem to be related to dehydration caused by exercise.  

 

7.3 Summary of Study 3 Results. Is There a Relationship Between IOP and Physical 

Fitness? 

 

 Across the literature participants at the higher end of the physical fitness continuum 

exhibit lower baseline IOP and do not produce the same magnitude of acute post exercise 

reductions in IOP, as do sedentary and clinical populations (Gale et al., 2009; Risner et al., 

2009; Study 1: Roddy, Curnier, & Ellemberg, et al., 2014). Study 3 attempted to clarify the 

relationship between physical fitness and baseline IOP by performing four discrete baseline 

measures conducted over an eight-week period, and a single test of VO2max on an ergocycle. 

 

 The results showed a significant negative correlation between Absolute VO2max and 

baseline IOP but only in the upper third of the VO2max continuum. There was no correlation 

between Relative VO2max and baseline IOP. Across participants, baseline IOP measurements 

were stable from week to week.  

 

 The three studies combined add some degree of clarification to the ongoing exploration 

of exercise and IOP. Study 1 found that post exercise reductions in IOP are not explained by 

either exercise intensity or duration and only group allocation (normally active versus 

sedentary) contributes significantly to the effect of exercise on IOP. Study 3 breaks down the 

relationship between fitness and baseline IOP further and reveals that baseline IOP is lower 

when VO2max is higher but only for participants in the top third of the fitness continuum.  

 

 Study 2 did not support the idea that systemic dehydration causing hyperosmolarity is 

involved in post exercise reductions in IOP, even after 90 minutes of riding. It is more likely 
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that fluctuations in IOP immediately after starting exercise, as well as during and after 

exercise are various homeostatic responses to dysregulation of the aqueous humor caused by 

pre-exercise fluid intake and large changes in activity level.  

 

 The remainder of Chapter 7 incorporates the results of the Studies 1, 2 and 3 into the 

literature on exercise and IOP in a general discussion that covers 1) post exercise reductions in 

IOP and homeostatic balance in the physically fit versus the sedentary, 2) the usefulness of 

IOP as a marker of hydration 3) and the clinical usefulness of post exercise reductions in IOP.  

 

7.4 The Homeostatic Balance of IOP During Exercise in The Physically Fit and the 

Sedentary 

 

 It is important to note that across the literature on exercise-induced reductions in IOP 

there is a return to basal levels, without exception. This homeostatic correction occurs whether 

IOP is elevated or reduced, regardless of the magnitude of the fluctuation, or the duration or 

intensity of exercise (Gale et al., 2009; Hunt et al., 2012; Moura et al., 2002; Risner et al., 

2009; Study 1: Roddy et al., 2014). Even after 5-minute headstands, which produce twofold 

increases from baseline IOP, there is a return to basal values within 30 minutes (Baskaran et 

al., 2006).  

 

 Study 2 found no significant reductions in IOP after a 90-minute ride without water 

(hypo-hydrated condition). In fact, after the initial decrease, IOP hovered around baseline. We 

did find that IOP increased significantly in the hyper-hydrated conditioned as the participants 

continued to ingest water throughout the duration of the exercise protocol (Study 2) and began 

to descend towards baseline 30 minutes after the last drink of water. The results of this study 

concur with those of Moura et al. (2002) in that fluctuations in IOP after exercise have a great 

deal to due with the fluid ingested pre-exercise and the body’s attempt to absorb it and restore 

basal values.  

 

 Mechanisms driving the hypotensive effect of exercise on IOP proposed across the 

literature are often part of homeostatic systems that improve with conditioning. The most 
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common suggested mechanism, ocular hyperosmolarity as caused by systemic dehydration, is 

possibly linked to the sweating mechanism, which becomes increasingly efficient at 

preserving electrolytes to delay dehydration (deVries & Housh, 1994b,d; Guyton & Hall, 

2006b,c,d; Martin et al., 1999). The preservation of electrolytes is a function of homeostatic 

correction and when that correction is successful reductions in post exercise IOP do not occur 

(Martin et al., 1999; Study 2 this Thesis).   

 

 Finally, the initial decrease in IOP observed in Study 2, in both conditions, speaks to 

the homeostatic theory in that when moderate to vigorous exercise is initiated metabolic 

demands on the body immediately change. These results compliment the results of Orgül and 

Flammer (1994) who found decreases in IOP after approximately 8 to 10 seconds. The 

parasympathetic nervous system produces responses to sudden changes in energy demands, 

some of which present immediately such as an increase in heart rate (Guyton & Hall, 2006e) 

and some of which present over longer durations, such as the increased efficacy of the sweat 

mechanism (Guyton & Hall, 2006b,d). In all cases, as previously mentioned IOP eventually 

returns to its current baseline. 

 

 In Study 3 we found that a relationship between increased physical fitness and lowered 

baseline values only existed for the top third of the absolute VO2max values of the 

participants. With regard to the maintenance of optimal baseline IOP, it is possible that for 

physical fitness to impact these processes in the long-term, the training must be intense and 

frequent enough to exact change in the efficacy of all systems involved in homeostatic balance 

(This concept is discussed further in 7.3). 

 

7.5 The Usefulness of IOP as a Biomarker of Hydration 

 

 There is renewed interest in IOP and exercise in the field of exercise science. The 

possibility that ocular hyperosmolarity as a function of systemic dehydration is involved in 

reductions in IOP over longer durations of exercise suggests that, in turn, decreasing IOP 

should indicate the level of hydration of the participants. However, the results of Study 3, 
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along with those of Moura, Rodrigues, Waisberg, de Almeida, and Silami-Garcia (2002) 

suggest that there are a number of complications. 

 

 The most obvious complication is pre-exercise fluid control. This includes fluid 

ingestion not just in the few hours before, but also habitual water intake over the long term. 

Homeostatic balance is such that when water is scarce dehydration occurs and when water is 

ingested it must at some point be absorbed. However, the homeostatic balance of fluid is 

individually conditioned through physiological concerns such as habitual water intake and 

sweat rate, in addition to the individual level of physical conditioning (Perrier et al., 2013a; 

Perrier et al., 2013b). In other words, different people dehydrate at different rates for many 

reasons. To use fluctuations of IOP during exercise as a marker of hydration requires that 

individual patterns of sweat rate and habitual water intake are calculated and continuously 

monitored for changes in these parameters which could potentially obscuring results. Further, 

if IOP is used as a biomarker of hydration in the physically fit the attenuated changes in IOP 

could be obscured by any number of other factors including diurnal and seasonal variation. 

 

 After exercise begins, the physically fit should be closer to homeostatic balance and 

therefore produce parallel reductions in IOP and total body weight (as a measure of hydration) 

when water is restricted. Study 2 did not confirm that correlation however, in accord with 

Moura et al. (2002) and converse to Hunt, Feigl and Stewart (2012). None of the three 

aforementioned studies, including Study 2 in this thesis, included sedentary controls to see if a 

relationship between dehydration and IOP is more or less prevalent in that population. It is 

possible that sedentary participants would simply exhibit a greater magnitude of fluctuation in 

IOP as the parasympathetic nervous system works to maintain homeostatic balance. By 

example, Dane et al. (2006a) found that extremely fit participants actually incurred an increase 

in IOP of .33 mm Hg after 5 minutes of exercise therefore, if the exercise continues post 

exercise reductions would be calculated from a value higher than baseline. The post exercise 

fluctuations of IOP might simply be too small in the physically fit to be separated from other 

extenuating factors and would not therefore reflect the true relationship between hydration and 

IOP.   

 



	 125	

7.6 The Clinical Usefulness of Post Exercise Reductions in IOP 

 

 The implications of the hypotensive effects of exercise on IOP are often presented in 

the context of a lifestyle change that could offset the increase in IOP that characterizes high 

tension POAG (Gale et al., 2009; Harris et al., 1994; Risner et al., 2009; Study 1: Roddy et al., 

2014). It is important that this concept be addressed realistically. Elevation of IOP is largely 

controlled through pharmacology and when treatment is administered early, and adhered to, 

the outcome is usually successful (Friedman et al., 2003; Leske et al., 2003; Leske, 2007; 

Quigley, 2011; Schwartz & Quigley, 2008; Vermeire, Hearnshaw, Van Royen, & Denekens, 

2001). Research is inconclusive as to whether or not the addition of chronic aerobic exercise 

will significantly lower baseline IOP to a degree that would impact the course of the disease in 

a person at risk (Gale et al., 2009; Harris et al., 1994; Quigley, 2011).  

 

 Based on the degree of target reduction set for some patients in the early stages of 

Glaucoma there is a distant possibility that exercise could help maintain a lower baseline. 

However, if exercise could be considered a complimentary therapy to maintain reductions in 

IOP, as for any intervention, dose response must be considered. Study 1 revealed a vast array 

of pre-exercise protocols that would need to be standardized and replicated until a specific 

intensity, frequency and mode of exercise produces a reliable (and adjustable) magnitude of 

reduction in IOP. Also, as group allocation was the most significant predictor of the magnitude 

of reduction in post exercise IOP, exercise prescription guidelines would need to reflect the 

fitness continuum. 

 

 Although it is unlikely that exercise would be prescribed specifically for ocular health 

there is still evidence that staying at the top end of the fitness continuum will promote a 

healthy baseline IOP the same way it promotes healthy baselines in other systems of the body 

(Passo et al., 1987; Qureshi, 1996a, Qureshi et al, 1997a; Qureshi, 1997b; Williams, 2009). 

The majority of studies on acute exercise find a return to baseline within an hour or two 

dependent on the exercise protocol. Passo et al. (1987) found some participants did not return 

to baseline until three weeks after the cessation of a 3-month intervention of regular hockey 

games; further, the hypotensive effect after acute exercise was still attenuated after 3 weeks. 
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Williams (2009) found that the possible long-term benefits of exercise on baseline IOP were 

most robust at the top end of the fitness continuum of a group of highly trained runners. 

Qureshi et al. (1997a) found lower baseline IOP values in the relative VO2max of steel 

workers who performed a moderate or vigorous task at work than those who worked sedentary 

desk jobs. The results of Study 3 together with Passo, Williams and Qureshi and colleagues 

(1987, 2009, & 1997a,b, respectively) suggest that being fit could potentially help maintain a 

lower baseline IOP. However, the dose response of such an intervention remains unknown. It 

is possible that consistent moderate exercise improves the efficacy of mechanisms that drive 

the hypotensive effects of exercise on IOP and that those gains are lost when physical 

conditioning is no longer maintained.    

 

7.7 Limitations of the Thesis 

 

 Across the literature on the acute effects of exercise on IOP the methodological 

differences range from variations in participant categorization, intensity and duration 

differences in exercise protocols, to the control of variables that cause IOP fluctuation beyond 

that which is caused by exercise. With regard to Study 1, lack of standardization of exercise 

protocol and pre-exercise criteria and under reporting of variance constrained the meta-

analysis to a small number of studies. This in turn constrained the number of variables that we 

could include and factors such as age and gender might have changed the results somewhat 

(Dane et al., 2006a,b; Leske & Podger, 1983; Qureshi, 1995c). 

 

 Studies 2 and 3 suffered from the same limitations as much of the literature on the 

hypotensive effects of exercise and IOP. In both studies participants were relatively high on 

the continuum of VO2max and were under represented at the lower end of the VO2max scale. 

It is likely a bias created by the fact that sedentary people are not interested in either riding a 

bicycle for 90 minutes or performing the VO2max test itself.  

 

 In fact, using only a bicycle for both tests of VO2max (Studies 1 and 2) and the 

exercise protocol of Study 2 might also have changed our pattern of results by not allowing all 

participants to achieve a true VO2max. Many more people walk than do ride a bicycle and 



	 127	

VO2max values are regularly shown to be almost 5% higher when a test of maximal aerobic 

capacity is performed on a treadmill rather than an ergocycle (Heyword, 1998). As reported in 

Study 2 of this paper (pg. 106), increasingly localized muscle fatigue in the legs, increased 

metabolic needs, and reduced peripheral blood flow across different modalities of exercise, 

could affect V02max test results (Miles et al., 1980).  

 

7.8 The Future of this Research 

 

 The results of the 3 studies included in this thesis, taken together with the literature to 

date, suggest that greater attention must be paid to a possible relationship between physical 

conditioning and posited mechanisms that potentially drive the hypotensive effects of exercise. 

It would be interesting to know how the results of Study 2 would have changed if we had been 

able to compare dehydration in a sedentary group, over the course of 90 minutes of exercise, 

to the level of dehydration experienced in our sample of relatively fit people.  

 

 It would also be of interest to expand the correlational analysis of Study 3 to include 

participants at the lower end of the fitness continuum. Whether the mechanisms involved act 

directly on the hypotensive effect of exercise or are simply a part of homeostatic systems 

compensating for the initial change in activity as exercise begins, it would be interesting to 

know at what level of fitness do these changes take place. It is quite possible that relationship 

between physical conditioning and baseline IOP is not a linear one partly because of the 

physiological constraints of the floor effect. IOP can only be reduced to 6.5 mm Hg without 

having incurred trauma to the eye, (Costa & Arcieri, 2007). 

 

 Conclusion 

 

 The three studies that comprise this thesis add some degree of clarification to the 

ongoing exploration of exercise and IOP. Study 1 found that group allocation (normally active 

or sedentary) made the greatest contribution to post exercise reductions in IOP. Study 3 breaks 

down the relationship between fitness and baseline IOP further and reveals that baseline IOP is 

lower when VO2max is higher with but only for participants in the top third of the fitness 
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continuum. The inclusion of more sedentary participants might have created a clearer 

progression of that relationship. 

 

 Study 2 could not confirm the hypothesis that systemic dehydration causing 

hyperosmolarity is involved in post exercise reductions in IOP, even after 90 minutes of 

riding. It is more likely that the observed fluctuations in IOP immediately after starting 

exercise, as well as during and after exercise were caused by pre-exercise fluid intake and 

large changes in activity level. It is also possible that the relatively high fitness level of our 

participants obscured our results in both Studies 2 and 3.  

 

 The results of this thesis suggest that the hypotensive effect of exercise on IOP is likely 

a homeostatic response to dysregulation of the aqueous humor caused by the initiation of 

exercise and exercise fluid intake protocols. It is important to understand how the magnitude 

of fluctuation in IOP changes as physical fitness improves. The attenuated response of IOP 

after an exercise protocol possibly reflects the improved efficacy of parasympathetic responses 

to exercise. Continued research on the mechanisms driving the hypotensive effect of exercise 

on IOP should explore further the pattern of change across the fitness continuum and include 

participants of all levels.  
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