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Abstract 13 

Cereal commodities are frequently contaminated with mycotoxins produced by the 14 

secondary metabolism of fungal infection. Among these contaminants, deoxynivalenol 15 

(DON), also known as vomitoxin, is the most prevalent type B trichothecene mycotoxin 16 

worldwide. Pigs are very sensitive to the toxic effects of DON and are frequently exposed 17 

to naturally contaminated feed. Recently, DON naturally contaminated feed has been 18 

shown to decrease porcine reproductive and respiratory syndrome virus (PRRSV) 19 

specific antibody responses following experimental infection. The objective of this study 20 

was to determine the impact of DON naturally contaminated feed on the immune 21 

response generated following vaccination with PRRSV live attenuated vaccine. Eighteen 22 

pigs were randomly divided into three experimental groups of 6 animals based on DON 23 

content of the diets (0, 2.5 and 3.5 mg DON/Kg). They were fed these rations one week 24 

prior to the vaccination and for all the duration of the immune response evaluation. All 25 

pigs were vaccinated intra-muscularly with one dose of Ingelvac® PRRSV modified live 26 

vaccine (MLV). Blood samples were collected at day -1, 6, 13, 20, 27 and 35 post 27 

vaccination (pv) and tested for PRRSV RNA by RT-qPCR and for virus specific 28 

antibodies by ELISA. Results showed that ingestion of DON-contaminated diets 29 

significantly decreased PRRSV viremia. All pigs fed control diet were viremic while only 30 

1 (17%) and 3 (50%) out of 6 pigs were viremic in the groups receiving 3.5 and 2.5 mg of 31 

DON/Kg, respectively. Subsequently, all pigs fed control diet developed PRRSV specific 32 

antibodies while only viremic pigs that were fed contaminated diets have developed 33 

PRRSV specific antibodies. These results suggest that feeding pigs with DON-34 
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contaminated diet could inhibit vaccination efficiency of PRRSV MLV by severely 35 

impairing viral replication. 36 

Keywords:  Pig; DON mycotoxin; PRRSV; Vaccination  37 
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1. Introduction 38 

Animal feeds are frequently contaminated with various mycotoxins produced by the 39 

secondary metabolism of diverse fungal contaminants in response to stress [1]. Among 40 

them, Fusarium spp. are the most prevalent mycotoxin producing fungi in temperate 41 

regions [2]. Trichothecenes, including deoxynivalenol (DON) and T-2 toxin, zearalenone 42 

and fumonisin B1, are toxicologically significant Fusarium spp. mycotoxins [3]. DON, 43 

also known as vomitoxin, is the most prevalent mycotoxin in grain [4] and because of the 44 

high percentage of cereal in pig diets, swine are frequently exposed to this toxin. In this 45 

animal, dietary concentrations between 2 to 5 mg DON/kg are associated with feed 46 

refusal and reduced weight gain, whereas concentrations over 20 mg DON/kg cause 47 

abdominal distress, diarrhea, vomiting and even shock or death [5]. High contamination 48 

levels are rare in modern agricultural practice, instead chronic exposure to low doses of 49 

DON is more frequent [6]. DON possesses also immunomodulatory properties [7]; in 50 

mouse, low concentrations exert pro-inflammatory effects by inducing cytokines and 51 

chemokines expression in mononuclear phagocytes, as a consequence of mitogen-52 

activated protein kinases (MAPK) activation [8]. In the same model, dietary exposure to 53 

DON upregulates serum IgA and leads to decreased serum concentrations of IgM and 54 

IgG [9]. In pigs, DON has also been shown to activate MAPK in the intestine [10]. 55 

However, studies in primary porcine macrophages provide evidence for a lack of COX-2 56 

and IL-6 activation by DON in this cell type, suggesting a distinct mode of action in this 57 

species [11]. Unlike mice, several investigations on pigs indicate only marginal or no 58 

effects of DON on IgA level [4]. Nonetheless, other studies reported an increase of 59 

specific-IgA accompanied with a decrease of specific IgG and cytokines activation 60 
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following immunisation with ovalbumin in DON-fed piglets [12, 13]. More recently, 61 

DON naturally contaminated diet has also been shown to decrease porcine reproductive 62 

and respiratory syndrome (PRRS) virus-specific antibody responses following 63 

experimental infection [14]. 64 

Economically, PRRS is the most important viral disease in swine livestock worldwide 65 

[15]. Causative agent of PRRS is a small enveloped positive-sense single-stranded RNA 66 

virus classified in the order Nidovirales, family Arteriviridae, genus Arterivirus, which 67 

also includes lactate dehydrogenase-elevating virus of mice, simian hemorrhagic fever 68 

virus and equine arteritis virus [16]. PRRSV causes common clinical signs such as 69 

anorexia, fever, and lethargy. In sows, PRRSV is responsible for reproductive failure, 70 

characterized by late-term abortions, increased numbers of stillborn fetuses, and/or 71 

premature, weak pigs. Furthermore, PRRSV is responsible for respiratory problems in 72 

growing and finishing pigs [17, 18]. Measures currently used to control PRRS include 73 

management practices such as whole herd depopulation/repopulation or herd closure, 74 

constraining bio-security measures, surveillance of herd status and vaccination [19]. 75 

Modified live vaccines (MLV) against PRRSV have been widely used and have shown 76 

some efficacy in reducing clinical disease severity, as well as viremia duration and virus 77 

shedding [20]. Given the impact of DON on the pig immune response and wide spread 78 

use of PRRS MLV vaccine for the control of this economically devastating disease, the 79 

objective of this study was to determine the effect of DON naturally contaminated feed 80 

on the immune response generated following vaccination with PRRS MLV. 81 

82 
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2. Materials and Methods 83 

2.1. Animals 84 

The experiment was conducted at the Faculté de médecine vétérinaire, Université de 85 

Montréal. Animal care procedures followed the guidelines of the Canadian Council on 86 

Animal Care and the protocol was approved by the institutional animal care committee 87 

(Protocol #14-Rech-1751). Eighteen commercial crossbred piglets, PCR and serum-88 

negative for PRRSV were purchased locally at 4 weeks of age. After one week of 89 

acclimation on a commercial ration, piglets were randomly divided into 3 experimental 90 

groups of 6 animals, housed separately and fed ad libitum naturally contaminated diets 91 

containing 0 (control diet), 2.5 or 3.5 mg/kg of DON for the duration of the experiment.  92 

2.2. Experimental diets 93 

The experimental diets used in this study were formulated according to the energy and 94 

amino acid requirements for piglets as previously described [14]. Dietary contents of 95 

mycotoxins were analysed in the final diet through ultra-performance liquid 96 

chromatography/electrospray ionization tandem mass spectrometry as previously 97 

described [14]. 98 

2.3. PRRSV vaccination 99 

Before the beginning of the study, animals were weighed to assure the homogeneity of 100 

the experimental groups. No significant difference in body weight was found between 101 

experimental groups with a one-way ANOVA model using the parametric Tukey test 102 

(P>0.05) (data not shown). After 1 week of acclimation with experimental diet, all 103 

animals were vaccinated intramuscularly (im) into the neck muscles using a 20G 1 inch 104 
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needle with Ingelvac® PRRS MLV vaccine (lot #245-F31) as recommended by the 105 

manufacturer (Boehringer Ingelheim Vetmedica, St.-joseph, MO, USA).  106 

2.4. Body weight and blood collection 107 

Pigs were weekly monitored for body weight before vaccination and for 35 days post-108 

vaccination (pv). Average daily gain (ADG) was calculated for each week of the 109 

experiment by subtracting the body weight from the previous week of the body weight at 110 

the measured time and divided by 7 days.  111 

Blood samples were collected at days -1, 6, 13, 20, 27 and 35 pv to evaluate PRRSV 112 

viremia by RT-qPCR and to measure specific antibody response by ELISA. Serum 113 

samples were stored frozen at -80 °C for further analysis. 114 

2.5. PRRSV quantification  115 

Sera were analyzed for the presence of PRRSV RNA viral genome using RT-qPCR assay 116 

as previously described [21]. QIAamp Viral RNA kit (Qiagen) was used to isolate viral 117 

RNA from serum samples according to the manufacturer’s instructions. A commercial 118 

PRRSV RT-qPCR diagnostic kit (NextGen, Tetracore Inc., Gaithersburg, MD, USA) was 119 

used for PRRSV quantification as recommended by the manufacturer. The quantification 120 

of PRRSV was determined by comparing sample results with a standard curve based on 121 

the amount of serially diluted PRRSV IAF-Klop reference strain produced in MARC-145 122 

cells and titrated as TCID50/mL in the MARC-145-infected cell [21]. The PRRSV RT-123 

qPCR results were expressed in TCID50/mL of serum.  124 

2.6. PRRSV specific antibodies 125 

Sera were assayed for virus-specific antibody by ELISA using the Herdchek PRRS X3 126 

diagnostic kits (IDEXX Laboratories, Portland, Maine, USA). Serum were diluted 1/40 in 127 
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a diluent supplied by the manufacturer and the assay was performed following the 128 

manufacturer’s instructions. A sample-to-positive (S:P) ratio equal or greater than 0.4 129 

was considered positive. 130 

2.7. Virus neutralizing antibody titer 131 

Serum samples were heat inactivated (56°C, 30 min) and serially diluted before the 132 

titration. The serial dilutions of serum samples were mixed with equal volume PRRSV 133 

VR-2332 vaccinal strain containing 100 TCID50 of the virus. After incubation at 37°C for 134 

2 h, the mixtures were transferred to MARC-145 monolayers in 96-well plates and 135 

incubated for an additional 72 h at 37°C in a humidified atmosphere containing 5% 136 

CO2. Cells were then examined for cytopathic effects (CPE). CPE was used to determine 137 

the end-point titers that were calculated as the reciprocal of the highest serum dilution 138 

required to neutralize 100 TCID50 of PRRSV.  139 

2.8. Statistical analysis 140 

Results are expressed as mean ± SEM. All statistical analyses were performed using 141 

GraphPad Prism software (version 5.03, GraphPad Prism software Inc., San Diego, CA). 142 

Data were statistically analysed using a one-way ANOVA with Dunnett’s multiple 143 

comparison test, using animal receiving control diet as control group. For PRRSV-144 

specific antibody response, pair-wise mean comparisons between control and DON 145 

treated animals were made using Welch′s unpaired ′t′ test. P<0.05 was considered to 146 

reflect statistically significant differences.  147 

 148 
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3. Results 149 

3.1. Growth performance 150 

ADG was evaluated each week of the experiment. DON naturally contaminated diet had 151 

no significant effect on ADG during the week prior to vaccination [Figure 1 at day -1 152 

post vaccination (dpv)]. Results also showed that contaminated diet with DON at 3.5 153 

mg/kg significantly decreased ADG (P<0.05) after vaccination with a loss of 32%, 24%, 154 

12% and 18% of kg/day at day 6, 13, 27 and 34 respectively, when compared to control 155 

group (Figure 1). 156 

3.2. Viremia  157 

Presence of PRRSV mRNA in sera was evaluated by RT-qPCR prior and after 158 

vaccination, at day -1, 6, 13, 20 pv. All piglets were PCR negative prior to vaccination 159 

(data not shown). All pigs fed control diet were viremic at day 6 pv, while none and 3 out 160 

of 6 pigs were viremic in the groups receiving 3.5 and 2.5 mg of DON/Kg of the diet 161 

respectively (Figure 2A). At day 13 pv, the viral burden was significantly lower (P<0.05) 162 

in both groups fed DON-contaminated diets compared to the group fed control diet 163 

(Figure 2B). At day 20 pi, all piglets had very low PRRSV titers or were PCR negative 164 

and no significant differences were observed between experimental groups (Figure 2C). 165 

3.4. Antibody response 166 

Presence of PRRSV-specific IgG was evaluated using a commercial ELISA kit 167 

(Herdcheck PRRS X3) at day -1, 13, 20, 27 and 34 pv. All piglets were serum-negative 168 

prior to vaccination (data not shown). At day 13 pv, 5 out of 6 pigs fed control diet had 169 

seroconverted, while none and 3 out of 6 pigs had seroconverted in groups receiving 3.5 170 

and 2.5 mg of DON/Kg of the diet respectively (Figure 3 A). Antibody titers were 171 
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significantly higher (P<0.05) in group fed control diet compared to the group fed DON-172 

contaminated diet at 3.5 mg/kg for all evaluated days (Figure 3A-D). From day 27 pv, all 173 

pigs fed control diet developed PRRSV specific antibodies while only viremic pigs, i.e 1 174 

and 3 that were fed 3.5 and 2.5 mg of DON/Kg of the diet respectively, developed 175 

PRRSV specific antibodies (Figure 3C,D).  176 

3.5. Neutralizing antibody response 177 

Presence of PRRSV-neutralizing antibodies was evaluated at day 34 pv, using a PRRSV 178 

microneutralizing assay in MARC-145 cells. Results showed that the majority (5 out of 179 

6) of pigs fed control diet mounted a neutralizing antibody response compared to 1 and 3 180 

in pigs fed 3.5 and 2.5 mg of DON/kg of the diet respectively (Figure 4). PRRSV-181 

neutralizing antibody response was significantly lower in pigs fed DON-contaminated 182 

diet at 3.5mg/kg.  183 
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4. Discussion  184 

Contamination of cereal by mycotoxins produced by Fusarium spp. is a serious problem 185 

in animal nutrition worldwide, especially in pigs [22]. Main toxicological effects of 186 

DON-contaminated feed are decreased body weight gain and voluntary feed intake [23, 187 

24]. Here, DON naturally contaminated feed had no significant impact on ADG prior to 188 

vaccination. Even though one other study, also showed no significant effect of DON on 189 

ADG [13], these results must be analyzed carefully because chronic effects of DON on 190 

ADG might be observed after 3 weeks of diet consumption [25]. However the ADG 191 

decreased significantly after vaccination in the group fed 3.5 mg/kg of DON. Decreased 192 

ADG in pig has also been observed soon after vaccination [26, 27]. The present results 193 

show that diets contaminated with DON interact with PRRS attenuated vaccine and 194 

increases the loss of weight gain after vaccination. Similar effects have been previously 195 

observed after experimental infection with PRRSV in pigs fed DON naturally 196 

contaminated diet [14].  197 

PRRS MLV vaccine has shown some protective efficacy against PRRSV clinical disease 198 

induced by the strains that are genetically related to the vaccine [28]. However, this 199 

vaccine elicits relatively weak neutralizing antibody and cell-mediated immune 200 

responses. PRRSV-specific antibodies appear approximately two weeks, and peak around 201 

four weeks after vaccination [29]. The majority of the antibodies are directed against viral 202 

nucleocapsid proteins (N) which have no neutralizing activity [29]. Generation of 203 

neutralizing antibodies is delayed in PRRSV infection and usually appears three to four 204 

weeks after vaccination [30]. Typically, serum neutralizing antibody titers are unusually 205 

low in comparison to those induced by other viruses [20]. The present results showed that 206 
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DON naturally contaminated feed significantly decreased the antibody response 207 

generated following PRRS MLV vaccination. Vaccine failures are not uncommon in the 208 

field [31] and can be virus related due to a lack of cross-protection between the vaccine 209 

and field strains [32, 33] or immune related due to inefficient immune response [34]. 210 

Here, PRRS vaccine failure appears to be caused by an inefficient immune response 211 

following the ingestion of feed naturally contaminated with DON. Indeed, contamination 212 

of feed with DON has been previously implicated in vaccine failure due to the effects of 213 

DON on the immune system [12, 35, 36]. Moreover, ingestion of DON naturally 214 

contaminated feed have been previously shown to decrease PRRSV-specific antibody 215 

titers after experimental PRRSV infection [14]. In the case of PRRS MLV, live PRRSV 216 

replication is required to provide immunological protection against PRRSV infection 217 

[37]. The present results showed that ingestion of DON at different concentrations (2.5 218 

and 3.5 mg/kg) severely decreases the replication of the attenuated vaccine strain in 219 

vaccinated pigs. This suggests that the effect of DON on the immune response generated 220 

by the MLV vaccine is more related to its impact on the replication of vaccinal virus in 221 

swine. DON has been shown previously to inhibit PRRSV replication in MARC-145 and 222 

porcine alveolar macrophages (PAM) cell models [38]. In that study, it was suggested 223 

that the early activation of pro-inflammatory genes and apoptosis following DON 224 

exposure was detrimental to PRRSV replication. In studies with concomitant viral 225 

infections, previous porcine respiratory coronavirus (PRCV) [39] and porcine circovirus 226 

type 2 (PCV2) [40], two potent inducer of endogenous IFN, have also been shown to 227 

decrease significantly PRRSV replication following experimental infection. Involvement 228 
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of pro-inflammatory genes in the inhibition of PRRSV replication following DON-229 

contaminated feed ingestion remains to be determined.  230 

In conclusion, the present study showed for the first time an adverse effect of DON 231 

naturally contaminated feed on the immune response generated by a modified live 232 

vaccine. Live viral vaccines are among the most effective strategies for the induction of 233 

lifelong immunity and many of these vaccines are routinely used to provide protection 234 

against many human [41] and animal viral diseases [42]. It is difficult to predict if the 235 

present findings can be applied to other live viral vaccine, because of the small size of 236 

groups used in this study but also the impact of DON-contaminated feed might be virus-237 

specific. In the particular case of PRRS vaccine, the immune response was blunted by an 238 

impairment of virus replication following ingestion of DON-contaminated feed. Further 239 

studies are needed to describe the exact mechanism by which DON-contaminated feed 240 

impairs the replication of PRRSV vaccinal strains.  241 
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Figure Captions 369 

Figure 1. Week by week average daily gain (ADG) before and after vaccination. 370 

ADG was calculated for each week of the experiment by subtracting pigs’ body weights 371 

of the previous week with the body weight at the measured time and divided by 7 days.  372 

*Indicates difference between DON fed groups and control for each time point (P<0.05), 373 

** (P<0.01). 374 

 375 

Figure 2. Effect of DON naturally contaminated diets on PRRSV viremia following 376 

vaccination with PRRS MLV vaccine.  377 

Blood was collected at day 6 (A), 13 (B), and 20 (C) pv and serum tested for the presence 378 

of PRRSV RNA by RT-qPCR. Data are expressed in TCID50/mL. * Indicates difference 379 

between DON fed groups and control for each time point (P<0.05), *** (P<0.001). 380 

 381 

Figure 3. Effect of DON naturally contaminated diets on PRRS-specific antibody titer. 382 

Blood was collected at day A) 13, B) 20, C) 27 and D) 34 pv and sera were tested for the 383 

presence of specific PRRSV antibodies using a commercial ELISA kit (HerdChek-384 

PRRS®,IDEXX). Data are expressed in sample to positive (S:P) ratio. S:P ratio equal or 385 

greater than 0.4 was considered positive. The dash bar represents value of negative-386 

positive cut-off s/p ratio. * Indicates difference between DON fed groups and control for 387 

each time point (P<0.05). 388 

Figures



Figure 4. Effect of DON naturally contaminated diets on PRRSV neutralizing antibody 389 

titer. 390 

Blood was collected at day 34 pv and sera were tested for the presence of PRRSV 391 

neutralizing antibodies to VR-2332 strain. Data are expressed as reciprocal dilution titer. 392 

The dash bar represents the limit of detection. * Indicates difference between DON fed 393 

groups and control (P<0.05). 394 

395 
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