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Abstract 

This paper introduces and examines the logicist construction of Peano Arithmetic 
that can be performed into Leśniewski’s logical calculus of names called Ontology. 
Against neo-Fregeans, it is argued that a logicist program cannot be based on 
implicit definitions of the mathematical concepts. Using only explicit definitions, 
the construction to be presented here constitutes a real reduction of arithmetic to 
Leśniewski’s logic with the addition of an axiom of infinity. I argue however that 
such a program is not reductionist, for it only provides what I will call a picture of 
arithmetic, that is to say a specific interpretation of arithmetic in which purely 
logical entities play the role of natural numbers. The reduction does not show that 
arithmetic is simply a part of logic. The process is not of ontological significance, 
for numbers are not shown to be logical entities. This neo-logicist program 
nevertheless shows the existence of a purely analytical route to the knowledge of 
arithmetical laws. 

1. Logicism and reductionism 

Since Frege, Whitehead and Russell, logicism has been widely 
conceived as a program for the reduction of arithmetic to pure logic. 
If the goal of the intended reduction is clear and can be summarized 
by the short claim that arithmetic is nothing but logic, it is 
nevertheless far from easy to describe accurately what such a 
reduction is and what is its very significance. Technically speaking, 
the reducibility of a theory S1 to a theory S2 lies on the possibility to 
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prove in S2 the axioms of S1 by means of explicit definitions of the 
primitive terms of S1 in the language of S2. But this does not mean 
that S1 is nothing but S2. It only means that S1 can be interpreted in S2. 
However, in this technical sense, the significance of a reduction’s 
existence is not inconsiderable: first, it gives a consistency proof of S1 
relative to the consistency of S2; second, it shows that certain S2-
entities can play the role of the objects of S1, even if it does not 
guarantee that these two groups of entities are simply identical. 

As we know, the kind of reduction logicists usually had in mind is 
much stronger than this technical process of reduction. For them, the 
definition of “number” was supposed to grasp the very notion of 
number. For original logicists, the aim of the search of a reduction of 
arithmetic to pure logic was actually to provide the most basic 
mathematical theory with a reliable epistemic foundation. Our 
mathematical knowledge would have been strongly secured if 
numbers had been shown to be logical entities, with properties 
depending only on basic logical laws. 

Nevertheless, this form of logicism was a failure: Frege was faced 
with Russell’s antinomy and the authors of the Principia Mathematica 
were forced to enlarge their logical basis with three non-logical 
axioms. After this historical impasse, the only way for logicism was 
the search of the weakest addition to pure logic allowing the 
reduction of Peano-Dedekind Arithmetic (PA), while preserving the 
epistemic component of the original program. 

We know today, first from C. Parsons (1965), but also from C. 
Wright (1983) and G. Boolos (1987), that Russell’s paradox was not 
actually the death sentence of Frege’s work on the foundation of 
mathematics. What is now called Frege’s Theorem – the proof that the 
fundamental laws of arithmetic can be derived from second-order 
logic through the addition of a single proper axiom – is considered as 
an extremely interesting result for the philosophy of mathematics. 
This axiom, usually called Hume’s Principle, is the formula which is 
discussed by Frege in his Grundlagen, just before the unfortunate 
introduction of extensions. It can be formulated as 

 
(HP)   ( )( )( ( ) ( ) )F G N F N G F G∀ ∀ = ≡ ∞  
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where ( )N F stands for “the cardinal number of the concept F” and 
∞  for the relation of equinumerosity between concepts. 

But C. Wright’s and B. Hale’s claim that Frege’s Theorem is still a 
form of logicism is highly controversial (Hale & Wright 2001). 
Introducing “cardinal number” as a new primitive term, HP is clearly 
a proper axiom which cannot be said to be logical. According to 
Wright, though they are not purely logical truths, the laws of 
arithmetic are still shown to be analytic or purely conceptual by 
Frege’s Theorem. The neo-Fregeans from St Andrews1 indeed 
consider HP as an analytical truth. But it is then quite difficult to 
understand what they intend to mean when they argue that stipulating 
HP as true is meaning-constitutive of the expression ( )N − . If it is 
(analytically) true, HP is a proposition and its truth does not depend 
at all on our stipulation. And if it is not a proposition, it is an open 
formula, with ( )N −  as a free variable. Actually, the only way I can 

understand “I stipulate HP as true” is as “let me consider ( )N −  with 
one of these meanings (if any!) which satisfy the open formula in 
question”. 

HP is clearly considered as an implicit definition of ( )N − . But the 
problems with implicit definitions abound. On the one hand, as any 
other additional axiom, they modify the whole system and can even 
lead to contradiction (like Frege’s Basic Law V, which is exactly 
shaped like HP). But even if HP is consistent, it is too strong as a 
definition of a single proper term, for it also modifies the logical 
constants with which the term to be defined is explained. For 
example, due to its impredicative character, HP excludes all finite 
models. In other terms, it involves an axiom of infinity. From a 
purely proof-theoretical point of view, the addition of HP makes 
provable formulas which contains only logical terms and which are 
not theorems of pure logic. For example: 

______________ 

1 See in particular: Wright (1983), Hale & Wright (2001), Ebert & Rossberg 
(2007). 
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1 2 1 2( )( )( )x x x x∃ ∃ ≠  

On the other hand, HP is too weak to be a logicist definition, for it 
does not warrant a definite and unique meaning for the concept to be 
introduced. The so-called “Caesar problem” is a consequence of this 
weakness. Saying, with neo-Fregeans, that open sentences of the 
form “ ( )y N F= ” are only satisfied by objects falling under the 
identity conditions expressed by HP is not enough, for we cannot 
exclude that there is no (non-standard) “system of objects” (possibly 
including Julius Caesar) and satisfying HP however (even if Julius 
Caesar clearly does not fall under the identity conditions which 
follows from our intended interpretation of ( )N − ). 

In spite of its elegance and very economical character, it is not 
clear whether Frege Arithmetic (FA = second-order logic + HP) is 
more logicist than Peano-Dedekind Arithmetic (PA). After all, Peano’s 
axioms (as a whole) also constitute an implicit definition of “zero”, 
“number” and “successor”, explaining the related concepts in terms 
of pure logic. The unsolved Caesar problem shows that FA also 
invites the criticism Russell opposed to PA: 

We want our numbers to be such as can be used for 
counting common objects, and this requires that our 
numbers should have a definite meaning, not merely that 
they should have certain formal properties. (Russell 1919: 
10). 

But a reduction of a theory to another one does not signify that 
the reduced theory itself is derivable in (or a part of) the other one. It 
only means that the former is interpretable in the latter. Strictly 
speaking, the very mathematical notion of number cannot be defined 
in logic or in any other theory, for numbers would, then, have 
properties we are not ready to recognize as arithmetical ones. 
Mathematicians’ positive integers cannot be such things as extensions 
or other logical objects abstracted from concepts; they cannot be 
classes of classes, or a certain kind of Zermelo-Fraenkel sets, neither 
– as suggested by P. Simons (2007) – properties of multitudes. In all 
these cases, numbers would have mathematically irrelevant 
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properties, expressed by propositions which do not belong to 
arithmetic2. What I am ready to call “number” in mathematics is only 
one of these abstract and general entities which strictly satisfy all the 
theorems of arithmetic and no other. 

In this perspective, what a logicist approach to a mathematical 
theory can provide is only what I will call a picture of this theory, that 
is to say a specific interpretation in which purely logical objects or 
constructions can play the role of mathematical notions or entities 
(numbers, in particular). Nevertheless, the existence of such a purely 
logical picture is far from pointless for the philosophy of 
mathematics. Naturally, it first gives a relative proof of consistency. 
But it especially provides an objective and conceptual path to 
arithmetical knowledge. A logicist picture gives such a secured 
epistemic justification, because it allows for a conceptual construction 
to replace the intuitive content and naïve notions which lead 
mathematicians, step by step, in the development of their practice, to 
the axiomatic characterization of their theory. The route thus 
constructed is epistemically secured, for the truth of the propositions 
it consists of depends only on logic. 

The possibility of reinterpretations is today widely recognized by 
logicians and mathematicians as an essential advantage of axiomatic 
theories. Russell’s above mentioned criticism was clearly overtaken by 
further developments of formal sciences. Nonetheless, his 
requirements – that our numbers can be used for counting common 
objects and that they have a definite meaning – are perfectly relevant 
relative to what I have called a picture of arithmetic. In order to 
provide the kind of justification I have just described, the picture 
must be materially adequate in Tarski’s sense – it must present an 
adequate analysis of the naïve notion of number we use when 
counting concrete objects. On the other hand, it must also be definite 
in meaning. This requires the meaning of the defined terms to be 
fully determined by the meaning of logical constants. For this reason, 
the use of any implicit definition should be prohibited. 

______________ 

2 As a basic example, if zero is defined as the empty set in ZF set theory, it 
receives the non-arithmetical property to be part of all the sets. 
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Frege’s requirement that only logical constants occur in his Basic 
Laws is not followed by the neo-Fregeans. FA is undoubtedly a very 
nice theory to which arithmetic can be reduced. Nevertheless, it is 
neither arithmetic itself (as PA is), nor is it a good logicist picture of 
arithmetic, for it does not exclude reinterpretations of the proper 
term introduced by HP. For the latter condition to be satisfied, only 
explicit definitions must be used in the picture’s construction. 

In the following pages, I am going to show that a valuable logicist 
picture of arithmetic can be constructed from logic using only explicit 
definitions. This will be done without introducing extensions of 
concepts or classes – even as incomplete symbols or way of speaking 
– but on the ground of Stanisław Leśniewki’s logical notion of name. 
Like plural terms do in natural languages, Leśniewki’s names enable 
the expression of pluralities of things in the logical language. 

2. A logic of names 

When we assert a numerical statement like “there are five 
continents”, according to Frege, we are speaking about a property of 
the concept continent. For Russell and Whitehead, it is to the class of 
continents that the property is asserted. Of course, neither the 
concept, nor the class can simply be said to be five. Before being 
analyzed by means of the logical relation of equinumerosity, the 
property in question can only be described as having five objects falling 
under it (for the concept), or being a member of it (for the class). On the 
other hand, being five is obviously not a property of the objects 
themselves: the continents are five, but none of them is five. 
According to P. Simons (2007), the property in question is a property 
of the “multitude” of continents (a notion he says to be akin to 
Husserl’s “Vielheit” or Russell’s “class as many”). But where is the 
expected solution? Like with “the concept of continent” or “the class 
of continents”, “the multitude of continents” is obviously a singular 
term. The ordinary fact that we can use a single word or a single 
expression in order to refer to several objects seems to be mysterious 
for logicians as long as we do not postulate the existence of a single 
intermediate entity which has the (still mysterious?) virtue to gather 
together the things in question. 
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The idea underlying the logical picture of arithmetic to be 
presented hereafter is much more unsophisticated. Without trying to 
explain the one-to-many link between expressions and objects, one 
just observes that ordinary language involves expressions or words 
which are used to refer sometimes to a single thing (for example, 
“Cairo” or “the capital of Egypt”), sometimes to several things (“the 
African capitals”, “horses”) and also sometimes to nothing (“the 
capital of Africa”, “Ulysses”, “round circles”). The basic idea is to 
interpret numbers as certain semantic properties of names. Zero will then 
be depicted as the property of a name to be empty, one as the 
property of a name to be singular and three as the property of a name 
to refer to three things. 

Leśniewski’s calculus 
Called Ontology, Leśniewski’s system is grounded on such basic 

observations. It is an expansion of a quantified propositional calculus 
(called Protothetic). It has a single specific axiom introducing the 
constant copula epsilon and variables for names: 

AxOnto:

( ( ) )ab a b c c a cd c a d a c d c c a c bε ε ε ε ε ε ε ≡ ∃ ∧ ∧ ⊃ ∧ ⊃                        
The left-hand side of the equivalence ‘ a bε ’ is the general form of 

a singular proposition. It can be read as “a is b”, or more precisely 
“the only object denoted by ‘a’ is also denoted by ‘b’ ”. In other 
words, ‘ a bε ’ is truly asserted if and only if ‘a’ stands for a singular 
name and ‘b’ for a singular or plural name which denotes (possibly 
among others) the object denoted by ‘a’. 

Definition rules 
Among several peculiarities of Ontology, the system includes rules 

for stating explicit definitions of two kinds. Instead of stating 
definitions in the meta-language – like in the Principia, using the 
unspecified symbol ‘=df’ and introducing only convenient 
abbreviations – Leśniewski uses his primitive logical constants for 
expressing the equivalence relation between the definiendum (Dum) and 
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the definiens (Diens)3. The first rule allows the introduction of 
propositional constants and functors while the second one allows the 
introduction of nominal constants or functors. The definitional 
equivalence is thus expressed by one of the two forms4: 

1 nv v Dum Diens≡      ⋯  DefS (propositional rule) 

1 ( )nv v a Dum a a Diensε ε≡ ∧      ⋯  DefN (nominal rule) 

where 1. the left and right-hand sides of the equivalence involve the 
same (free) variables 

1, , nv v…  ; 2. Diens is a formula with only 

primitive or already defined symbols; 3. Dum is of the following form, 
where #  is the symbol to be defined and no symbol occur more than 
once: 

Dum: 1 1#( )( ) ( )i i j k nv v v v v v+⋯ ⋯ ⋯ ⋯

 
As we will see, this general form of Dum relates to three 

possibilities. First, there can be no variable in Dum. The defined 
symbol is then either a constant proposition (with DefS), or a 
constant name (with DefN), like in the following examples: 

D1. T p p p≡ ≡                            DefS ( T  : constant true) 

D2. ( ( ))a a a a a aε ε ε≡ ∧ ∼      ∧  DefN ( ∧  : empty name) 

D3. ( )a a a a a aε ε ε≡ ∧      ∨  DefN (∨  : universal name) 

In the second case, the variables of Dum occur in a single pair of 
parentheses. The defined symbol is then a functor: 

D4. { } ( )ab ab a b b aε ε= ≡ ∧        DefS 

 ( { }ab= : a is the same object as b) 

D5. { }ab ab c c a c bε ε≅ ≡ ≡              DefS 

______________ 

3 About Leśniewskian internal definitions vs classical external and meta-
linguistic definitions, see Joray (2005), (2006) & (2011). 
4 Where, in Leśniewski’s notation, the first pair of square brackets expresses 
the universal quantifiers and the second pair contains the formula on which 
it is applied. 
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 ( { }ab≅ : a and b have the same reference(s)) 

D6. 0{ }a a b b aε ≡ ∼ ∃              DefS ( 0{ }a : a is empty) 

D7. 1{ }a a a aε≡        DefS (1{ }a : a is singular) 

D8. [ ] { } { }ab a a aϕψ ϕ ψ≈ ≡ ≡              DefS 

 ( [ ]ϕψ≈ :ϕ  and ψ  are co-extensive) 
D9. ( · ) ( )ab a b c a b a cε ε ε≡ ∧        DefN  

(nominal intersection) 
D10. ( ) ( )ab a b c a b a cε ε ε+ ≡ ∨        DefN         (nominal union) 

D11. ( ) ( ( ))ab a b c a b a cε ε ε− ≡ ∧ ∼        DefN  
(nominal complement) 
In the last case, the variables of Dum split up into more than one 

pair of parentheses. The symbol to be defined is thus a multi-link or 
parametric functor, i.e. a functor-forming functor: 

D12. { } { }ab a b ba≅〈 〉 ≡ ≅        DefS 

(parametric co-reference; a≅〈 〉 : denoting like a) 

D13. { }ab a b b aε ε〈 〉 ≡        DefS 

 (parametric epsilon; aε〈 〉 : being one of the a’s) 
Without going into the details, I will just underline certain aspects 

of the definition rules which are central for the understanding of the 
definition of numbers in the next section. 

First, it has to be noticed that the definition rules allow 
introducing symbols of categories which are not previously available 
in the language. This is quite obvious in the case of multi-link or 
parametric functors. In D12, for example, the parametric functor of 
co-reference is defined on the basis of the usual identity binary 
relation. The parametric functor is the result of a different analysis of 
the same content: first, it applies to ‘a’ and the result ‘‹› a≅〈 〉 ’ 
expresses the nominal property “denoting-(exactly)-the-a’s”; this 
property can, then, be applied to a name ‘b’, obtaining ‘ { }a b≅〈 〉 ’ 
which expresses that ‘b’ denotes (exactly) the a’s. This process of 
definition is very similar to a λ -abstraction, and, in Leśniewski’s 
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language, ‘ a≅〈 〉 ’ is exactly what would be expressed by 

‘ .( { })b baλ ≅ ’ in λ -notation. 
Secondly, Leśniewski’s system is such that the definition of a 

functor in a new category allows the use of variables of that category 
and the binding of these variables by quantifiers. 

The power of definition rules makes Ontology a strong analytical 
tool. Every semantic category can be reached progressively and the 
order of the formal language depends on its specific definitional 
development. One of Leśniewski’s main achievements was his ability 
to elaborate completely explicit semantic and syntactic constraints in 
order to impose extensionality to every category and to avoid 
ambiguity and contradiction in the potentially infinite process of 
definition5. 

3. A logicist construction6 

In the following construction, natural numbers are going to be 
depicted as cardinal properties of finite names (names which denote only a 
finite quantity of objects). Before going into the definition of the 
general notion of natural number, let me first consider how any 
particular natural number can be defined. Zero and one have already 
been introduced by definitions D6 and D7: 

D6. 0{ }a a b b aε ≡ ∼ ∃              DefS  
D7. 1{ }a a a aε≡                   DefS 

In order to define the successor n’ of a previously defined number 
n, one has to state that a name a has the number n’ if and only if a 
name which denotes exactly the a’s excepted one of them has the 
number n : 

______________ 

5 For a complete presentation of Leśniewski’s Ontology, see Miéville (1984), 
(2004) and also the papers in Srzednicki & Rickey (1984). 
6 For the full presentation of the following logicist construction, with proofs 
and technical details, see Gessler, Joray, Degrange (2005: 73-137). The 
construction is partially inspired from Canty (1967). 
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D14. ( ){ } { }a S a b b a a bϕ ϕ ε ϕ ≡ ∧ −             DefS (successor) 

From this, it is obvious that a symbol n  for any natural number 
> 0n  can be introduced with a definition of the following form, 

where ‘ ( )S ⋯ ’ is iterated n times: 

{ } ( ( (0) )){ }a a S S S a≡      n … …         DefS 

Let me turn now to the definition of equinumerosity. Two names 
will be said to be equinumerous if and only if there is a one-to-one 
correspondence between the references of the first name and the 
references of the other one. In other terms, the one-to-one relation 
must have the first name as its domain and the second name as its co-
domain. Let then consider the following preliminary definitions of one-
to-one relation, domain and co-domain of a relation: 

 
D15.

1-1[ ] ( { } { }) ( { } { }) { }R R abc R ac R bc R ca R cb ab ≡ ∧ ∨ ∧ ⊃ =            
 DefN 

D16. ( { } )aR a Dom R a a b R abε ε 〈 〉 ≡ ∧ ∃              DefN 

D17. ( { } )aR a CoDom R a a b R baε ε 〈 〉 ≡ ∧ ∃            
 DefN 

And finally the definition of equinumerosity: 
D18.

{ } 1-1[ ] { } { }ab ab R R Dom R a CoDom R b∞ ≡ ∃ ∧ 〈 〉 ∧ 〈 〉            ≃ ≃

 DefS 
The cardinality of a name is, thus, simply defined as the 

parametric version of ‘ ∞ ’: 

D19. { } { }ab a b ba∞〈 〉 ≡ ∞        DefS 

 
By the abstraction of ‘b’ in ‘ { }ba∞ ’, one gets the complex functor 

‘ a∞〈 〉 ’, which expresses the nominal property “denoting as many 
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objects as a” or “having the cardinality of a”. ‘ ∞〈 〉⋯ ’ is then a 
parametric functor. When it is applied to a name, the result is a 
functor expressing the cardinal property of this name. As numbers 
are depicted as properties of names, it is natural to read ‘ a∞〈 〉 ’ as 

“the cardinal number of a”7 and the following theorem, which is easy 
to prove from D19, as the Leśniewskian version of HP: 

[ ] { }ab a b ab≈ ∞〈 〉∞〈 〉 ≡ ∞        
Contrary to the Fregean version of HP, here, the left-hand side 

does not express an identity between singular names, but an identity 
between nominal functors. Leśniewskian versions of Fregean 
“abstraction principles” are strictly predicative. This has important 
consequences on the construction. First, Leśniewskian versions of 
the “abstraction principles” never lead to contradiction. In particular, 
the analogue of Frege’s Basic Law V is perfectly harmless and can be 
easily inferred from D12: 

[ ] { }ab a b ab≈ 〈 〉 〈 〉 ≡      ≃ ≃ ≃

 
Second, the fact that abstraction’s results are not designated as 

objects preserves the ontological neutrality of logic. The theorems of 
Leśniewski’s calculus are logically true in the sense that they are true 
in all domains, including the empty domain. A consequence of this is 
that there will be no way to avoid the addition of an axiom of infinity 
for the derivation of all Peano’s propositions. 

From D19, the general definition of cardinal number can then be 
stated as: 

D20. [ ] [ ]Cn a aϕ ϕ ϕ ≡ ∃ ≈ ∞〈 〉              DefS 
In order to specify which cardinal numbers are natural numbers 

the definition of finite names is required. Like in Frege’s Grundlagen, 
this will be done using the notion of inductivity: a name is said to be 
inductive if it has all the properties of the empty name that are 
preserved by the addition of a single denotation: 

______________ 

7 This is of course only a way of speaking, for ‘∞〈a〉’ is not the name of an 
object, but a symbol for a function. 
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D21.

{ } ( { } ( { } 1{ }) { } ) { }a Ind a bc c b c b aϕ ϕ ϕ ϕ ϕ ≡  ∧ ∧ ⊃ + ⊃                 ∧

 DefN 
From this, natural numbers can be characterized as the cardinal 

numbers of finite names: 

D22. [ ] ( [ ] { } { }Nn Cn a a Ind aϕ ϕ ϕ ϕ ≡ ∧ ⊃               DefS 

D6, D14 and D22 are the respective definitions in Leśniewski’s 
Ontology of Peano’s primitive terms zero, successor and number. Peano’s 
propositions I, IV and V are derivable from these definitions in pure 
Ontology 

 
PI  [0]Nn  (zero is a number) 

PIV [ ] ( [ ( )0])Nn Sϕ ϕ ϕ⊃ ∼ ≈         

(zero is not the successor of a number) 

PV ( [0] ( [ ] [ ]) [ ( )] ) [ ] [ ]P P Nn P P S Nn Pϕ ϕ ϕ ϕ ψ ψ ψ ∧ ∧ ⊃ ⊃ ⊃                      

 (mathematical induction) 

the remaining two propositions being only derivable in infinite 
Ontology: 

PII  [ ] [ ( )]Nn Nn Sϕ ϕ ϕ⊃        

   (the successor of a number is a number) 

PIII  ( [ ] [ ]) ( [ ( ) ( )] [ ])Nn Nn S Sϕψ ϕ ψ ϕ ψ ϕψ∧ ⊃ ≈ ⊃ ≈        

         (different numbers have different successors) 

The proofs, which are quite long, can be found by the reader in 
Gessler, Joray, Degrange 2005: 75-137. 

The full picture of Peano Arithmetic is thus constructed in a 
third-order development of infinite Ontology: a system of pure logic 
with the addition of an axiom of infinity. 

One can notice that the dependence of Peano’s propositions vis-
à-vis the single non-logical axiom is not in the same dependence one 
can read about in the Principia. Here, not only PIII, but also PII (“the 
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successor of a number is a number”) requires the existence of 
infinitely many objects. This is due to the fact that PII cannot be read 
here as “ambiguous as to type”, avoiding the artificial meaning of PII 
in the Principia: for every number n, there is a type t in which the successor of n 
(in fact the analogue of n for t) is a number. 

As it has been shown by Nadine Gessler8, type ambiguity is not 
required to warrant the unity of all the higher-degree arithmetics that 
can be developed in Ontology. Anyhow, since what is to be 
constructed is not arithmetic itself, but a logical picture of it – an 
interpretation of general arithmetic in a system of certain definite 
logical entities – the classical question of the unity of the type 
hierarchy of arithmetics becomes almost superfluous. 

Conclusion 

Considering the above logicist construction of Peano Arithmetic 
as a logical picture of the mathematical theory, I claim that the 
existence of the reduction of PA to Leśniewski’s Ontology does not 
inform us about the nature or the essence of numbers. The reduction 
does not show that arithmetic is a part of logic. The kind of 
foundation obtained through this process is not of ontological 
significance. But the possibility to reach arithmetical laws in the realm 
of logic has an epistemic value. Using only explicit definitions, it 
shows a purely analytic route to the knowledge of arithmetic. 

Of course the need of an axiom expressing the existence of 
infinitely many objects can certainly be considered as a limitation of 
this program. But neither in common counting, nor in any 
application of arithmetic, does the assumption that there will always 
be enough available objects for the successor of a given number to be 
different from the number in question imply any commitment 
concerning the nature of the real world. The axiom of infinity is not 
an empirical hypothesis, but a conceptual assumption specifying the 
kind of idealization through which we apply arithmetic to specific 
concrete or abstract situations. 

______________ 

8 Cf. Gessler, Joray, Degrange (2005: 9-36). 
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Hence, providing a purely conceptual content which guides us to 
Peano’s axioms, the reduction to infinite Ontology gives an analytic 
justification for the adoption of these axioms as forming the basis for 
our coherent and applicable theory of pure mathematics. 
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