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Abstract

Each item in a given collection is characterized by a set of possible performances. A (ranking)

method is a function that assigns an ordering of the items to every performance profile.

Ranking by Rating consists in evaluating each item’s performance by using an exogenous

rating function, and ranking items according to their performance ratings. Any such method

is separable: the ordering of two items does not depend on the performances of the remaining

items. We prove that every separable method must be of the ranking-by-rating type if (i) the

set of possible performances is the same for all items and the method is anonymous, or (ii) the

set of performances of each item is ordered and the method is monotonic. When performances

are vectors in Rm+ , a separable, continuous, anonymous, monotonic, and invariant method
must rank items according to a weighted geometric mean of their performances along the m

dimensions.

JEL Classification: D71, D89.
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1 Introduction

The issue. This note studies separable methods for constructing performance-based rankings.

The problem under consideration is the following. Each of n items is characterized by a set

of possible performances. A ranking method assigns an ordering of the items to every possible

performance profile. Such a method is separable if the ordering of two items does not depend

on the performances of the remaining items. The simplest separable methods work as follows:

each item’s performance is evaluated using an exogenous rating function defined over the set of

its possible performances, and the items are then ranked according to their resulting performance

ratings. We refer to this type of methods as ranking by rating. We ask whether all separable

methods are of this type, and, if not, under what conditions that may be the case.
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Section 2 shows that there exist separable methods other than ranking by rating. Those

methods need not be degenerate and can be quite flexible; their range may include all the linear

orderings of the items.

Next, we identify two separate sets of conditions under which a separable method must be of

the ranking-by-rating variety. Theorem 1 in Section 3 establishes that this is the case if the set

of possible performances is the same for all items and the method is anonymous. Theorem 2 in

Section 4 shows that separable methods must also be of the ranking-by-rating type if the set of

performances of each item is (completely) ordered and the method is monotonic. Both of these

results are rather elementary and perhaps folk knowledge, but were, to the best of our knowledge,

in need of a proof.

Section 5 illustrates the usefulness of Theorem 1. We revisit the particular case of our model

where the items’performances are evaluated according to different criteria: they are represented by

vectors in Rm+ . The recent literature emphasizes that when performances according tom criteria are
measured in non-comparable units, a ranking method should be invariant under multiplication

of the items’ performances with respect to a given criterion by a constant. We show that a

separable, continuous, anonymous, monotonic, and invariant method must rank items according to

a weighted geometric mean of their performances according to the m criteria. We argue that, from

an axiomatic viewpoint, these simple methods are serious competitors of the more sophisticated

non-separable methods of the fixed-point type.

Related work. A sizable literature addresses the problem of characterizing separable orderings

defined over a set of multidimensional alternatives such as a subset of Rm+ . Separability, in that
literature, means that the ordering of two alternatives whose coordinates coincide along one di-

mension does not change with the value of that coordinate. The seminal contribution is that of

Gorman (1968), who showed that, under suitable (and important) topological assumptions, such

an ordering can be represented by an additively separable function. Bradley, Hodge and Kilgour

(2005) show that Gorman’s result does not carry over to the finite case, and study properties

of discrete separable orderings. Despite a formal similarity, our work is essentially unrelated to

that literature. Even when the sets of possible performances of the n items are infinite, we are

interested in ordering only the finite sets containing precisely n performances, one for each item.

On the other hand, we want to order all such sets, and our separability condition is precisely a

restriction on how these different rankings should be related: the ordering of two performances

should not depend on what the remaining performances are.

Our separability condition is closely related to Arrow’s (1963) axiom of Independence of Irrel-

evant Alternatives and its weakening by Hansson (1973). Arrow’s aggregation problem, however,

cannot be rephrased as a ranking problem of the type we analyze. If candidates (or social alter-

natives) are regarded as items, and each candidate’s performance is defined as the list of ranks

he occupies in the preferences of the voters, then the set of possible performance profiles is not a
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Cartesian product: two candidates cannot both be ranked first by the same voter.

The sub-model discussed in Section 5 received a lot of attention. Our work differs from the bulk

of the literature in two essential aspects: we study ranking methods that are ordinal and separable

whereas the literature focuses on cardinal non-separable methods. A more detailed discussion is

postponed to Section 5.

2 Separability

Let N = {1, ..., n} be a finite set of items, n ≥ 2. Each item i ∈ N is characterized by a nonempty

set of possible performances Ai. A performance profile is a list a = (a1, ..., an) ∈ AN := ×i∈NAi.
Let RN denote the set of (weak) orderings on N. A (ranking) method is a function R : AN →
RN that assigns to each performance profile a an ordering R(a) of the items. The statement

(i, j) ∈ R(a), also written iR(a)j, means that the method R considers i at least as strong as j

when the performance profile is a. Let P (a) and I(a) denote, respectively, the strict ordering and

the equivalence relation associated with R(a). If R(a) is a linear ordering, it will sometimes be

convenient to express it by listing the items according to their rank in that ordering: for instance,

the linear ordering iR(a)j ⇔ i ≤ j will be written R(a) = 1 2 ... n.

A method R is a ranking-by-rating method if there exist real-valued functions v1, ..., vn defined,

respectively, on A1, ..., An, such that iR(a)j ⇔ vi(ai) ≥ vj(aj) for all i, j ∈ N and all a ∈ AN . We
call v1, ..., vn rating functions.

If R is a ranking-by-rating method, the relative ordering of two items depends only on the

performances of these items. Formally, R satisfies the following property.

Separability. For all i, j ∈ N and a, a′ ∈ AN ,
[
ai = a′i and aj = a′j

]
⇒ [iR(a)j ⇔ iR(a′)j] .

This property is vacuous if n = 2. We ask whether it characterizes the ranking-by-rating

methods when n ≥ 3. The following example shows that this is not the case.

Example 1. Let N = {1, 2, 3} , Ai = {0, 1} for all i ∈ N, and

R(a) =

{
1 2 3 if a1 = a2,

2 1 3 if a1 6= a2.

Since 3 is always ranked last, the relative ordering of 1 and 3 and the relative ordering of 2 and 3

are constant. The relative ordering of 1 and 2 varies, but it does not depend upon a3. Thus, R is
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separable. If the rating functions v1, v2, v3 represent R, we must have

1P (0, 0, 0)2 ⇒ v1(0) > v2(0),

2P (1, 0, 0)1 ⇒ v2(0) > v1(1),

1P (1, 1, 0)2 ⇒ v1(1) > v2(1),

2P (0, 1, 0)1 ⇒ v2(1) > v1(0).

Since these inequalities are incompatible, R is not a ranking-by-rating method.

In this example, the range of R is very small. But there exist separable methods whose

range contain all strict orderings on N that are not ranking-by-rating methods. For instance, let

N = {1, 2, 3} , Ai = {0, 1, 2} for all i ∈ N, and consider the method R depicted in Figure 1. It is
tedious but straightforward to check that R is separable, and the same argument as above shows

that it is not a ranking-by-rating method.

3 Anonymity

This section studies the case where the performance sets of all items coincide, that is, A1 = ... =

An = A, hence AN = AN , and the ranking method is anonymous in the sense of the following

definition.

Anonymity. For all i, j ∈ N, all a ∈ AN , and every bijection π from N to N, iR(a)j ⇔
π(i)R(πa)π(j), where πa is the performance profile defined by (πa)π(i) = ai for all i ∈ N.

Theorem 1. Let n ≥ 3 and let A1 = ... = An = A be a finite set. A ranking method R :

AN → RN is separable and anonymous if and only if there exists a function v : A→ R such that
iR(a)j ⇔ v(ai) ≥ v(aj) for all i, j ∈ N and all a ∈ AN .

Proof. The “if”statement requires no proof. To prove the “only if”statement, fix a separable
and anonymous method R. Define the binary relations �,∼, and % on A as follows.

α � β ⇔ ∃a3, ..., an ∈ A such that 1P (α, β, a3, ..., an)2,

α ∼ β ⇔ ∃a3, ..., an ∈ A such that 1I(α, β, a3, ..., an)2,

α % β ⇔ α � β or α ∼ β.

We claim that % is an ordering.

Step 1. To see that % is reflexive, fix α ∈ A, and note that Anonymity implies 1I(α, α, a3, ..., an)2

for all a3, ..., an ∈ A, hence α ∼ α.

Step 2. Observe that ∼ is symmetric. Indeed, let α, β ∈ A and suppose α ∼ β. Then there exist

a3, ..., an ∈ A such that 1I(α, β, a3, ..., an)2. By Anonymity, 2I(β, α, a3, ..., an)1, hence β ∼ α.
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Step 3. To prove that % is complete, let α, β ∈ A, α 6= β, and suppose (α, β) /∈ % . Fix

a3, ..., an ∈ A. Then (1, 2) /∈ P (α, β, a3, ..., an), hence (2, 1) ∈ R(α, β, a3, ..., an) by completeness of

R(α, β, a3, ..., an). Anonymity then implies (1, 2) ∈ R(β, α, a3, ..., an), which implies β % α.

Step 4. Finally, let us check that % is transitive. Fix α, β, γ ∈ A and suppose (α, β), (β, γ) ∈ %.
Suppose, by way of contradiction, that (α, γ) /∈ %. By Steps 2 and 3, (γ, α) ∈ �. Now

α % β ⇒ ∃a3, ..., an ∈ A such that 1R(α, β, a3, ..., an)2,

β % γ ⇒ ∃b3, ..., bn ∈ A such that 1R(β, γ, b3, ..., bn)2,

γ � α⇒ ∃c3, ..., cn ∈ A such that 1P (γ, α, c3, ..., cn)2.

By Separability,

1R(α, β, γ, a4, ..., an)2,

1R(β, γ, α, a4, ..., an)2,

1P (γ, α, β, a4, ..., an)2,

and by Anonymity,

1R(α, β, γ, a4, ..., an)2,

2R(α, β, γ, a4, ..., an)3,

3P (α, β, γ, a4, ..., an)1,

violating the transitivity of R(α, β, γ, a4, ..., an).

Since % is an ordering on the finite set A, it admits a numerical representation v : A→ R. It
is straightforward to check that iR(a)j ⇔ v(ai) ≥ v(aj) for all i, j ∈ N and all a ∈ AN . Indeed,
suppose iR(a)j. Let π : N → N be a bijection such that π(i) = 1 and π(j) = 2. Then 1R(πa)2 and,

by definition of %, (πa)1 % (πa)2. But π(i) = 1 and π(j) = 2 imply (πa)1 = ai and (πa)2 = aj,

hence ai % aj. Since v is a numerical representation of %, v(ai) ≥ v(aj). The same argument shows

that iP (a)j implies v(ai) > v(aj), completing the proof.�

The finiteness assumption in Theorem 1 is used to ensure the representability of the revealed

dominance relation defined in the proof. Theorem 1 can be adapted to the infinite case if A is

endowed with a topology and a suitable continuity condition is imposed on the method R. An

example will be given in Section 5.
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4 Monotonicity

This section considers the case where the performance sets need not coincide but each of them

is endowed with an order structure. For simplicity, we assume that the performance sets are

intervals: for each i ∈ N, there exist real numbers αi < βi, such that Ai = [αi, βi], so that

AN = ×i∈N [αi, βi] .

We require that our ranking method be monotonic in the sense that a higher performance

improves an item’s position in the associated ranking. For all i ∈ N, a ∈ AN , and a′i ∈ Ai, let

(a′i, a−i) denote the performance profile obtained from a by replacing ai with a′i.

Monotonicity. For all distinct i, j ∈ N and a, a′ ∈ AN , [iR(a)j and a′i > ai]⇒ [iP (a′i, a−i)j] .

Notice that this is a strict version of the monotonicity principle. Observe also that Monotonicity

implies
[
iR(a)j and a′j < aj

]
⇒
[
iP (a′j, a−j)j

]
for all distinct i, j ∈ N and a, a′ ∈ AN .

We further require that the method be continuous in the sense that any strict ordering of two

items is robust to small changes in the performance profile.

Continuity. For all distinct i, j ∈ N , the set {a ∈ AN | iP (a)j} is relatively open in AN .
For each i ∈ N, let Vi denote the set of increasing and continuous functions from Ai to R.

Theorem 2. Let AN = ×i∈N [αi, βi] . A method R : AN → RN is separable, monotonic, and

continuous if and only if there exist v1 ∈ V1, ..., vn ∈ Vn such that iR(a)j ⇔ vi(ai) ≥ vj(aj) for all

i, j ∈ N and all a ∈ AN .

Contrary to Theorem 1, the assumption n ≥ 3 is not needed. When n = 2, Separability is

vacuous but Monotonicity and Continuity suffi ce to pin down the ranking-by-rating methods. This

fact, recorded as Lemma 1 below, is the first step in the proof of Theorem 2.

Lemma 1. Let A{1,2} = [α1, β1] × [α2, β2] . A method R : A{1,2} → R{1,2} is monotonic and
continuous if and only if there exist v1 ∈ V1 and v2 ∈ V2 such that 1R(a)2⇔ v1(a1) ≥ v2(a2) for

all a ∈ A{1,2}.

Proof. The “if”statement being obvious, we only prove the “only if”statement. Let R : A{1,2} →
R{1,2} be a monotonic and continuous method. For each i ∈ {1, 2} , define

A=i = {ai ∈ Ai | ∃aj ∈ Aj such that iI(ai, aj)j} ,

where j denotes the item other than i in {1, 2} .
Either both A=1 and A

=
2 are empty, or both are nonempty. If both are empty, either 1P (a)2

for all a ∈ A{1,2} or 2P (a)1 for all a ∈ A{1,2}. Without loss of generality, assume the first case.

Defining v1(a1) = a1 for all a1 ∈ A1 and v2(a2) = a2−β2 +α1− 1 for all a2 ∈ A2 proves the claim.
From now on, assume that both A=1 and A

=
2 are nonempty. For each i ∈ {1, 2} , Monotonicity

implies that for each ai ∈ A=i there is a unique aj ∈ Aj such that iI(ai, aj)j : denote this unique

aj by e(ai); note that e(Ai) ∈ A=j .
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For each i ∈ {1, 2} , A=i is a closed interval. That A=i is a closed set follows from Continuity. To
see that it is an interval, fix ai, a′i, a

′′
i ∈ Ai such that ai < a′i < a′′i and ai, a

′′
i ∈ A=i . By Monotonicity,

iI(ai, e(ai))j ⇒ iP (a′i, e(ai))j,

jI(a′′i , e(a
′′
i ))i ⇒ jP (a′i, e(a

′′
i ))i.

By Continuity, iP (a′i, e(ai))j and jP (a′i, e(a
′′
i ))i imply that there exists aj ∈ Aj such that iI(a′i, aj))j,

that is, a′i ∈ A=i .
Let A=i =

[
a−i , a

+
i

]
. By Monotonicity, we have that for all a ∈ A{1,2} and all i ∈ {1, 2} ,

jP (a)i if ai < a−i , (1)

iP (a)j if ai > a+i . (2)

It follows that a−1 = α1 or a−2 = α2. Indeed, if αi < a−i for i = 1, 2, then 1P (a)2 and 2P (a)1 for

all a such that ai < a−i for i = 1, 2, which is impossible. From now on we assume, without loss of

generality,

a−1 = α1. (3)

By the same argument as above,

a+1 = β1 or a
+
2 = β2. (4)

Define the functions v1 : A1 → R and v2 : A2 → R by

v1(a1) = a1,

v2(a2) =


α1 + a2 − a−2 if a2 < a−2 ,

e(a2) if a−2 ≤ a2 ≤ a+2 ,

β1 + a2 − a+2 if a+2 < a2.

We claim that 1R(a)2⇔ v1(a1) ≥ v2(a2) for all a ∈ A{1,2}.

If 1P (a)2, then by (2) a2 ≤ a+2 . If a2 < a−2 , then v1(a1) = a1 ≥ α1 > α1 + a2 − a−2 = v2(a2). If

a−2 ≤ a2 ≤ a+2 , then e(a2) is well defined and 1I(e(a2), a2)2 and 1P (a)2 imply, by Monotonicity,

a1 > e(a2), that is, v1(a1) > v2(a2).

If 2P (a)1, then by (1) a2 ≥ a−2 . If a2 > a+2 , then v2(a2) = β1 + a2 − a+2 > β1 ≥ a1 = v1(a1). If

a−2 ≤ a2 ≤ a+2 , then e(a2) is well defined and 1I(e(a2), a2)2 and 2P (a)1 imply, by Monotonicity,

a1 < e(a2), that is, v1(a1) < v2(a2).

If 1I(a)2, then a−2 ≤ a2 ≤ a+2 and a1 = e(a2), hence, v1(a1) = v2(a2).

It is straightforward to check that e : A=2 → R is increasing and continuous. To complete the
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proof of Lemma 1, we check that

e(a−2 ) = α1 (5)

and

e(a+2 ) = β1 if a
+
2 < β2. (6)

By Monotonicity and the definition of A=1 , A
=
2 , we have e(a

−
2 ) = a−1 , hence (5) follows from (3).

Likewise, e(a+2 ) = a+1 and (6) follows from (4).�

Proof of Theorem 2. Again, we only prove the “only if”statement. Fix a continuous, monotonic,
and separable method R : AN → RN . With some abuse of notation, we write iR(ai,aj)j if

and only if iR(ai,aj, a−ij)j for all a−ij ∈ AN\{i,j}. Because of Separability, iR(ai,aj)j if and

only if iR(ai,aj, a−ij)j for some a−ij ∈ AN\{i,j}. Similarly, we write iR(ai,aj, ak)j if and only if

iR(ai,aj, ak, a−ijk)j for all a−ijk ∈ AN\{i,j,k}.
By Lemma 1 and Separability, we know that for each pair of items {i, j} there exist functions

v
{i,j}
i ∈ Vi and v{i,j}j ∈ Vj such that

iR(a)j ⇔ v
{i,j}
i (ai) ≥ v

{i,j}
j (aj) for all a ∈ A. (7)

From now on, we write ij instead of {i, j} .
We claim that there exist functions v1 ∈ V1, ..., vn ∈ Vn such that, for all i, j ∈ N,

iR(a)j ⇔ vi(ai) ≥ vj(aj) for all a ∈ A. (8)

Define v1 := v121 , v2 := v122 , and observe that statement (8) is true for i, j ∈ {1, 2} . Now fix

k ∈ {3, ..., n} and make the induction hypothesis that there exist v1 ∈ V1, ..., vk−1 ∈ Vk−1 such
that statement (8) is true for all i, j ∈ {1, ..., k − 1} . In order to prove our claim, it suffi ces to
construct a function vk ∈ Vk such that

iR(a)k ⇔ vi(ai) ≥ vk(ak) for all a ∈ A and all i ∈ {1, ..., k − 1} . (9)

The construction of vk proceeds in two steps. We first construct the function on the subset of

item k’s performances where the method may tie k with some other item, then extend the function

to the whole of Ak. For all i, j ∈ N, define

Ai(j) = {ai ∈ Ai | ∃aj ∈ Aj such that iI(ai, aj)j} . (10)

If this set is nonempty, Monotonicity and Continuity ensure that it is a closed interval, and we

define a−i (j) = minAi(j) and a+i (j) = maxAi(j). Define K = {i ∈ {1, ..., k − 1} | Ak(i) 6= ∅} .
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For each i ∈ K, define wik : Ak(i)→ R by

wik(ak) = (vi ◦ (viki )−1 ◦ vikk )(ak). (11)

This function is well defined because vikk (Ak(i)) = viki (Ai(k)). To check this fact, let z ∈ vikk (Ak(i)).

Pick ak ∈ Ak(i) such that vikk (ak) = z. Since ak ∈ Ak(i), there exists ai ∈ Ai such that kI(ai, ak)i.

Observe that ai ∈ Ai(k). By (7), viki (ai) = vikk (ak) = z, hence z ∈ Ai(k). This proves that

Ak(i) ⊆ Ai(k) and the reverse inclusion is proved similarly.

It is easy to check that wik is continuous and increasing. Its range is therefore a closed interval

which we denote Ωk(i) =
[
ω−k (i), ω+k (i)

]
.We are going to use the functions wik, i ∈ K, to construct

the required function vk on ∪i∈KAi(k). In order to do so, we establish two important properties

of the functions wik, i ∈ K. First, these functions are compatible.

Property 1. For all i, j ∈ K and all ak ∈ Ak(i) ∩ Ak(j), wik(ak) = wjk(ak).

To prove this, fix i, j ∈ K and ak ∈ Ak(i) ∩ Ak(j). By way of contradiction, suppose, say

wik(ak) > wjk(ak). (12)

By (7) and Separability, ak ∈ Ak(i) implies that there exists ai ∈ Ai such that viki (ai) = vikk (ak),

hence (vi ◦ (viki )−1 ◦ viki )(ai) = (vi ◦ (viki )−1 ◦ vikk )(ak), that is,

vi(ai) = wik(ak). (13)

By the same argument applied to j instead of i, there exists aj ∈ Aj such that vjkj (aj) = vjkk (ak),

hence

vj(aj) = wjk(ak). (14)

Since viki (ai) = vikk (ak) and v
jk
j (aj) = vjkk (ak), (7) implies iI(ai, aj, ak)k and jI(ai, aj, ak)k. But

(12), (13), (14) imply vi(ai) > vj(aj), which by the induction hypothesis implies iP (ai, aj, ak)j,

contradicting the transitivity of R(ai, aj, ak).�

The second property pertains to the ranges of two functions wik, w
j
k whose domains are disjoint.

For any two sets X, Y ⊆ R, write X < Y if x < y for all x ∈ X and all y ∈ Y.

Property 2. For all i, j ∈ K, Ak(i) < Ak(j)⇒ Ωk(i) < Ωk(j).

To prove this, fix i, j ∈ K, suppose Ak(i) < Ak(j), and let ak ∈ Ak(i) and bk ∈ Ak(j).We must
show that wik(ak) < wjk(bk). By definition of Ak(i), Ak(j) and by Separability, there exist ai ∈ Ai
and aj ∈ Aj such that

kI(ai, aj, ak)i (15)
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and

kI(ai, aj, bk)j. (16)

By (15) and (7), vikk (ak) = viki (ai). This implies (vi ◦ (viki )−1 ◦ vikk )(ak) = (vi ◦ (viki )−1 ◦ viki )(ai),

that is,

wik(ak) = vi(ai). (17)

Likewise, (16) and (7) imply vjkk (bk) = vjkj (aj), hence (vj ◦(vjkj )−1◦vjkk )(bk) = (vj ◦(vjkj )−1◦vjkj )(aj),

that is,

wjk(bk) = vj(aj). (18)

Since ak < bk, Monotonicity and (16) imply jP (ai, aj, ak)k. Combining this statement with

(15) yields jP (ai, aj, ak)i. Hence, by the induction hypothesis, vi(ai) < vj(aj), and, by (17), (18),

wik(ak) < wjk(bk).�

Let Bk = ∪i∈KAk(i). Because of Property 1, there is a uniquely defined function wk : Bk → R
such that

wk(ak) = wik(ak) if i ∈ K and ak ∈ Ak(i). (19)

Since the functions wik, i ∈ K, are increasing and continuous, it follows from Property 2 that wk
too is increasing and continuous. Its range is ∪i∈KΩk(i), which we denote by Ωk. We now extend

wk to Ak by linear interpolation.

Let a−k = minBk and a+k = maxBk. Let ω−k = min Ωk and ω+k = max Ωk. Observe that Ak \Bk

is a finite union of intervals (relatively open in A). Define vk : Ak → R to be the unique continuous
extension of wk which is affi ne on each of these intervals and satisfies the normalization condition

vk(ak) =

{
ω−k + (ak − a−k ) if ak < a−k ,

ω+k + (ak − a+k ) if ak > a+k .

By construction, vk ∈ Vk.
Having constructed vk, we now check that (9) is satisfied. Fix a ∈ A and i ∈ {1, ..., k − 1} .

Case 1. ak ∈ Ak(i).

This implies that i ∈ K and ak ∈ Bk. Then,

iR(a)k ⇔ viki (ai) ≥ vikk (ak) by (7)

⇔ vi(ai) ≥ (vi ◦ (viki )−1 ◦ vikk )(ak) because vi ◦ (viki )−1 is increasing

⇔ vi(ai) ≥ wik(ak) by (11)

⇔ vi(ai) ≥ wk(ak) by (19)

⇔ vi(ai) ≥ vk(ak) by definition of vk.
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Case 2. ak ∈ Bk \ Ak(i).

In this case there exists j ∈ K \ {k} such that ak ∈ Ak(j) and either (i) ak < a−k (i) or (ii)

ak > a+k (i). Assume (i); the argument is similar if (ii) holds. Since a−k (i) = minAk(i),

iP (ai, ak)k for all ai ∈ Ai, (20)

and we must show that vi(ai) > vk(ak) for all ai ∈ Ai.
Fix ai ∈ Ai. From (20), iP (ai, ak)k. Since ak ∈ Ak(j), there exists aj ∈ Aj such that kI(aj, ak)j.

By Separability, these two statements imply iP (ai, aj, ak)k and

kI(ai, aj, ak)j, (21)

hence also,

iP (ai, aj, ak)j. (22)

From (21) and (7), vjkk (ak) = vjkj (aj), hence,

aj = ((vjkj )−1 ◦ vjkk )(ak).

From (22) and the induction hypothesis, vi(ai) > vj(aj), hence,

vi(ai) > (vj ◦ (vjkj )−1 ◦ vjkk )(ak) = wjk(ak) = vk(ak).

Case 3. ak ∈ Ak \Bk.

Case 3.1. ak < a−k or ak > a+k .

Assume the first inequality; the argument is similar if the second holds. In this case we know

that iP (ai, ak)k for all ai ∈ Ai, and we must show that vi(ai) > vk(ak) for all ai ∈ Ai.
Fix ai ∈ Ai. Since a−k (i) = minAk(i), we have iR(ai, a

−
k (i))k, hence by (7), viki (ai) ≥ vikk (a−k (i)).

It follows that

vi(ai) ≥ (vi ◦ (viki )−1 ◦ vikk )(a−k (i)) = wik(a
−
k (i)) ≥ ω−k > ω−k + (ak − a−k ) = vk(ak).

Case 3.2. There exists j ∈ K such that

(i) a+k (i) < ak < a−k (j) and vk(ak) =

(
a−k (j)− ak
a−k (j)− a+k (i)

)
ω+k (i) +

(
ak − a+k (i)

a−k (j)− a+k (i)

)
ω−k (j),

or (ii) the statement obtained by exchanging i and j in (i) is true.

Assume (i); the proof is similar if (ii) holds. Because of (i) we know that kP (ai, ak)i for all

ai ∈ Ai and we must prove that vi(ai) < vk(ak) for all ai ∈ Ai.
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Fix ai ∈ Ai. Since a+k (i) = maxAk(i), we have kR(ai, a
+
k (i))i, hence by (7), viki (ai) ≤ vikk (a+k (i)).

It follows that

vi(ai) ≤ (vi ◦ (viki )−1 ◦ vikk )(a+k (i)) = wik(a
+
k (i)) = ω+k (i) < vk(ak).�

Theorem 2 assumes that each item’s performance set is completely ordered. The result does

not extend to the case where these sets are intervals in Rm, m ≥ 2, and the method is assumed to

be monotonic with respect to the usual partial order of Rm.

Example 2. Let N = {1, 2, 3} , Ai = A = [0, 1]2 for all i ∈ N. A generic performance profile is a
vector a = (a1, a2, a3) = ((a11, a

2
1), (a

1
2, a

2
2), (a

1
3, a

2
3)) ∈ A{1,2,3}. Define the functions w1, w2, w3 from

A{1,2,3} to R by

w1(a) = (1− a22)a11 + (1− a12)a21,

w2(a) =
1

2
a12 +

1

2
a22,

w3(a) = −1

for all a ∈ A{1,2,3}. Note that w1(a) varies with a2. Define the method R by

iR(a)j ⇔ wi(a) ≥ wj(a)

for all a ∈ A{1,2,3} and all i, j ∈ {1, 2, 3} . Since w1(a), w2(a) ≥ 0 for all a, item 3 is ranked last at

every performance profile. Moreover, the ranking of items 1 and 2 does not change with 3’s per-

formance. So R is separable. Since w1, w2, w3 are continuous, R is also continuous. Furthermore,

it is monotonic because w1 is increasing in a1 and w2 is increasing in a2.

This method is not a ranking-by-rating method. By definition of w1, w2, w3 and R,

1P ((1, 0), (1, 0), (0, 0))2,

2P ((0, 1), (1, 0), (0, 0))1,

1P ((0, 1), (0, 1), (0, 0))2,

2P ((1, 0), (0, 1), (0, 0))1.

If v1, v2, v3 were rating functions from A to R such that iR(a)j ⇔ vi(ai) ≥ wj(aj) for all a ∈ A{1,2,3}
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and all i, j ∈ {1, 2, 3} , then

v1(1, 0) > v2(1, 0),

v2(1, 0) > v1(0, 1),

v1(0, 1) > v2(0, 1),

v2(0, 1) > v1(1, 0),

which are incompatible inequalities.

5 Invariance

This section considers the case where the performance sets of the items coincide and are endowed

with a partial order structure. More precisely, we assume that there is a finite set of criteria

M = {1, ...,m} and that Ai = A = RM+ for each item i ∈ N. A generic performance for item i is

a vector ai = (a1i , ..., a
m
i ) ∈ A. A performance profile is a matrix a = (ahi ) ∈ AN : rows correspond

to items, columns to criteria, and the number ahi measures item i’s performance according to

criterion h. We write bi > ai if bhi ≥ ahi for all h ∈ M and bhi > ahi for some h ∈ M. The

monotonicity condition of the previous section is extended to the current setting: its formal

definition is unchanged but > is now interpreted as the partial order of RM+ .
This is a well known model. The particular case M = N received considerable attention, with

applications to the problem of ranking webpages (Kleinberg (1999)) or academic journals (see,

e.g., Palacio-Huerta and Volij (2004) and the references therein). Demange (2014) studies the

general model where M need not be equal to N, and contains more references. As mentioned in

the Introduction, the bulk of that literature analyzes cardinal methods (with some exceptions such

as Altman and Tennenholtz (2005)) and focuses on non separable methods: the cardinal scores

of two items (and even their relative ranking) may depend on the entire performance profile. We

briefly discuss cardinal methods at the end of this section.

Both Palacio-Huerta and Volij (2004) and Demange (2014) emphasize the importance of (in-

tensity) invariant methods. In our ordinal formulation, the condition of invariance says that the

ordering of the items remains unchanged if the performance of every item according to a given

criterion is multiplied by the same positive number. This is compelling if the items’performances

are measured on non-comparable scales across criteria.

To express the condition formally, we use the following notation. For every λ = (λ1, ..., λm) ∈
RM++, let dg(λ) denote the m × m diagonal matrix whose hth diagonal entry is λh. With this

notation, a · dg(λ) is the performance matrix obtained by multiplying each column h of a by λh.

Invariance. For all a ∈ AN and λ ∈ RM++, R(a · dg(λ)) = R(a).

Let ∆M
++ denote the relative interior of the unit simplex of RM .
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Theorem 3. Let n ≥ 3 and let A1 = ... = An = A = RM+ . A ranking method R : AN → RN

is separable, continuous, anonymous, monotonic, and invariant if and only if there exists β =

(β1, ..., βm) ∈ ∆M
++ such that

iR(a)j ⇔
∏
h∈M

(ahi )
βh ≥

∏
h∈M

(ahj )
βh for all i, j ∈ N and all a ∈ AN . (23)

Proof. The “if” statement is clear. The proof of the “only if” statement is a straightforward
consequence of Theorem 1 and Osborne’s (1976) characterization of the monotonic transformations

of the weighted geometric means.

Fix a separable, continuous, anonymous, monotonic, and invariant method R. Separability,

Anonymity and Continuity ensure the existence of a (continuous) function w : RM+ → R such that

iR(a)j ⇔ w(ai) ≥ w(aj) for all i, j ∈ N and all a ∈ AN . (24)

To see this, define the binary relation % on A = RM+ as in the proof of Theorem 1. The argument

there shows that % is an ordering. Because R is continuous, so is %. It therefore admits a
(continuous) numerical representation w. The argument in the proof of Theorem 1 establishes

(24).

Since R is monotonic, (24) implies that w is increasing: ai < aj ⇒ w(ai) < w(aj). Because R

is invariant, w is ordinally invariant in the sense that

w(ai) ≤ w(aj)⇔ w(λ1a1i , ..., λ
mami ) ≤ w(λ1a1j , ..., λ

mamj )

for all λ ∈ RM++. By Osborne (1976), there exist β = (β1, ..., βm) ∈ RM++ and an increasing function
f : R→ R such that

w(ai) = f

( ∏
h∈M

(ahi )
βh
)

(25)

for all ai ∈ A. (In Osborne’s theorem, w is nondecreasing and β ∈ RM+ . In our case, the fact that
w is increasing guarantees that β ∈ RM++. The normalization β ∈ ∆M

++ is innocuous.) Statement

(23) now follows from (24) and (25).�

Of course, the weighted geometric mean numerical representation in Theorem 3 is unique only

up to an increasing transformation.

We conclude with a digression on the use of separable methods in the context of cardinal

evaluation of multidimensional performances. From now on, for comparability with existing work,

we restrict our attention to the set AN+ of positive n×m matrices. A grading method is a function

G : AN+ → ∆N , where ∆N denotes the unit simplex of RN . The vector G(a) = (G1(a), ..., Gn(a)) is

the grade distribution assigned by the method G to the performance matrix a. The grade of item
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i, Gi(a), is interpreted as a cardinal measure of its multidimensional performance. The grading

method G clearly induces a ranking method RG defined on AN+ by iRG(a)j ⇔ Gi(a) ≥ Gj(a),

but the information contained in the grade distribution G(a) is richer than that in the induced

ranking RG(a).

When performances are cardinally measurable on non-comparable scales, two axioms appear

to be unavoidable. The first is the cardinal version of the invariance axiom discussed earlier.

Cardinal Invariance. For all a ∈ AN+ and λ ∈ RM++, G(a · dg(λ)) = G(a).

The second condition is Homogeneity. It requires that if an item’s performance with respect

to every criterion is multiplied by the same positive number, the ratio of that item’s grade to any

other item’s grade is multiplied by the same number. This is compelling if performances with

respect to each criterion are cardinally measurable. For every µ = (µ1, ..., µn) ∈ RN++, let dg(µ)

denote the n× n diagonal matrix whose ith diagonal entry is µi. With this notation, dg(µ) · a is
the performance matrix obtained by multiplying each row i of a by µi.

Homogeneity. For all a ∈ AN+ and µ ∈ RN++, G(dg(µ) · a) is proportional to dg(µ) ·G(a).

Cardinally invariant and homogeneous grading methods admit a compact characterization.

Call a performance matrix a ∈ AN+ doubly balanced if
∑

i∈N a
h
i = 1 for all h ∈M and

∑
h∈M ahi =

m/n for all i ∈ N . LetAN∗ denote the set of doubly balanced matrices. Sinkhorn (1967) proved that
for every matrix a ∈ AN+ there exist a unique vector λ(a) ∈ RM++ and a unique vector µ(a) ∈ RN++
such that dg(µ(a)) · a · dg(λ(a)) =: a∗ is doubly balanced. This means that every positive matrix

a can be reduced to a uniquely defined doubly balanced matrix a∗ through a rescaling of its rows

and columns. A cardinally invariant and homogeneous grading method G is therefore completely

determined by its restriction to AN∗ , which itself is arbitrary. Formally, G : AN+ → ∆N is cardinally

invariant and homogeneous if and only if there exists a function G∗ : AN∗ → ∆N such that G(a) is

proportional to (dg(µ(a)))−1 ·G∗(a∗) for all a ∈ AN+ .
The invariant grading method proposed by Pinski and Narin (1976) and axiomatized by

Palacio-Huerta and Volij (2004) is cardinally invariant but not homogeneous. Demange’s (2014)

handicap-based grading method is the unique cardinally invariant and homogeneous method that

ties all items whenever the performance matrix is doubly balanced:

Uniformity. For all a ∈ AN∗ , G(a) = ( 1
n
, ..., 1

n
).

The doubly balanced matrix a∗ associated with a given a is computed through an iterative

process of alternate rescaling of rows and columns. This makes the handicap-based method a

rather sophisticated method whose behavior is somewhat diffi cult to apprehend. In particular, to

the best of our knowledge, it is unknown whether the ranking method it induces is monotonic.

It may therefore be worth pointing out that for any β ∈ ∆M
++ the (relative and weighted)
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geometric mean grading method

Gi(a) =

∏
h∈M

(ahi )
βh∑

j∈N

∏
h∈M

(ahj )
βh

satisfies Cardinal Invariance and Homogeneity. Moreover, the ranking method induced by such a

grading method is monotonic and separable. Neutrality, which requires that the grade distribution

G(a) should be unaffected by a permutation of the criteria, may be used to single out the uniform

weight vector β = ( 1
m
, ..., 1

m
). Overall, in spite of all its dullness, the geometric mean grading

method seems to be a serious competitor of the non-separable methods proposed in the literature.

Of course, the method violates Uniformity. This need not be a weakness, however. Ranking

item 1 above 2 and 3 in a doubly balanced matrix such as 3/9 3/9 3/9

2/9 3/9 4/9

4/9 3/9 2/9

 ,

as the geometric mean does, seems to be reasonable. It is supported by a simple argument of

variability aversion: the fact that the scores of item 1 coincide on all criteria gives them added

value. Insisting on using the arithmetic mean on the doubly balanced matrices creates a tension

with the requirements of Cardinal Invariance and Homogeneity that, remarkably, can only be

resolved through the iterative procedure associated with the handicap method. If the geometric

mean is regarded as an acceptable criterion on the doubly balanced matrices however, then there

is no need to resort to a non-separable iterative method to guarantee Cardinal Invariance and

Homogeneity.

To be sure, the geometric mean grading method does not endogenize the weights attached to

the different criteria. Doing so is precisely the goal of any iterative method, but that goal does

not seem to be captured by the Uniformity axiom.

6 References

Altman, A. and Tennenholtz, M. (2005), “Ranking systems: the PageRank axioms,” in EC’05

Proceedings of the 6th ACM Conference on Electronic Commerce, 1-8, ACM, New York.

Arrow, K.J. (1963), Social choice and individual values, 2nd edition, New York: Wiley.

Bradley, W.J.., Hodge, J.K., and Kilgour, D.M. (2005), “Separable discrete preferences,”Mathe-

matical Social Sciences, 49, 335-353.

Demange, G. (2014), “A ranking method based on handicaps,”Theoretical Economics, 9, 915-942.

Gorman, W.M. (1968), “The structure of utility functions,”Review of Economic Studies, 35, 367—
390.

16



Hansson, B. (1973), “The independence condition in the theory of social choice,” Theory and

Decision, 4, 25-49.

Kleinberg, J.M. (1999), “Authoritative sources in a hyperlinked environment,” Journal of the

ACM, 46, 604-632.

Osborne, D.K. (1976), “Irrelevant alternatives and social welfare,”Econometrica, 44, 1001-1015.

Palacio-Huerta, I. and Volij, O. (2004), “The measurement of intellectual influence,”Econometrica,

72, 963—977.

Pinski, G. and Narin, F. (1976), “Citation influence for journal aggregates of scientific publications:

theory, with application to the literature of physics,” Information Processing and Management,

12, 297-312.

Sinkhorn, R. (1967), “Diagonal equivalence to matrices with prescribed row and column sums,”

The American Mathematical Monthly, 74, 402-405.

17



Figure 1. A full-range separable method not of the
ranking-by-rating type
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