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Résumé 
 

Le récepteur de chimiokine CXCR3 est un récepteur couplé à la protéine G (RCPG) exprimé, 

entre autre, sur les cellules T activées lors d’une réponse immune. CXCR3 est activé par trois 

ligands inductibles par l’interféron-γ (CXCL9, 10, 11) et, plus récemment, il a été découvert 

que CXCL4 liait CXCR3. Nous savons que CXCR3 joue un rôle dans la chimiotaxie des 

leucocytes, mais une attention limitée a été portée sur la signalisation biaisée induite par ces 

quatre ligands. Alors que l’homodimérisation entre récepteurs de chimiokine est un concept 

grandement observé, l’hétéromérisation entre deux récepteurs reste un domaine de recherche 

active. Enfin, certains récepteurs de chimiokine (decoy) jouent sur le gradient de chimiokines 

en les dégradant. À ce jour, aucune donnée n’a présenté CXCR3 en tant que récepteur decoy. 

La signalisation biaisée et l’hétéromérisation ont été testées grâce à la technique de 

bioluminescene resonance energy transfer (BRET) dans des cellules HEK293E. L’activité 

decoy de CXCR3 a été investiguée grâce à un essai de dégradation de chimiokines radio-

marquées à l’iode 125. Nous présentons une caractérisation pharmacologique des quatre 

ligands de CXCR3 et démontrons l’hétéromérisation de CXCR3 avec CXCR4 et avec 

CXCR7. Nous démontrons que CXCR3 peut agir comme decoy en dégradant CXCL11 radio-

marqué. Nos résultats suggèrent que les ligands de CXCR3 n’agissent pas de manière 

redondante. De plus, nos résultats de dégradation suggèrent l’absence de compétition entre les 

ligands de CXCR3. Enfin, nous montrons que CXCL12 n’affecte pas la dégradation de 

CXCL11 par CXCR3 ni par l’hétéromère CXCR3/CXCR4. 

Mots clés 

CXCR3, RCPG, Signalisation biaisée, Hétéromérisation, BRET, Récepteur decoy, CXCL11 

radio-marquée.  
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Abstract 
 

The chemokine receptor CXCR3 is a G-protein-coupled receptor (GPCR) rapidly induced on 

naïve T cells upon activation. CXCR3 is activated by three interferon-γ inducible ligands 

(CXCL9, 10, 11) and, more recently, CXCL4 has been discovered as a functional ligand for 

CXCR3. It is known that CXCR3 acts as a chemotactic receptor, but limited attention has been 

directed to the biased signaling induced by all four ligands. Chemokine receptor 

homodimerization is now a widely accepted concept, but the extent to which 

heterodimerization is prevalent remain matter of active research. Some chemokine (decoy) 

receptors have been reported to maintain/re-shape specific chemokine gradients by degrading 

chemokines. To date, CXCR3 has never been described as a decoy receptor.  

In this work, biased signalling and heterodimerization were assessed with bioluminescence 

resonance energy transfer (BRET) in HEK293E cells. CXCR3 decoy properties were 

investigated by radiolabelled chemokine degradation assays. We present pharmacological 

characterization of all four ligands of CXCR3 and heterodimerization of CXCR3 with CXCR4 

or CXCR7. Finally, we present CXCR3 decoy activities on radiolabelled CXCL11. Our results 

suggest that CXCR3 ligands are not redundant and that CXCR3 heterodimerizes with CXCR4 

and with CXCR7. Our results also suggest that CXCR3 is able of CXCL11 scavenging. Our 

degradation assays demonstrated the absence of competition between ligands. Finally, 

CXCL12 did not affect CXCL11 scavenging neither by CXCR3 nor by CXCR3/4 

heterodimer. 

Key words 

CXCR3, GPCR, Biased signalling, Heteromerization, BRET, Decoy receptor, Radiolabelled 

CXCL11.  
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1. Introduction 

1.1 Chemokines and chemokine receptors 

Chemokines form a large family of proteins that can be divided into sub-families based on 

their structures and on their functions.  

1.1.1. Nomenclature of chemokines and chemokine receptors 

Originally, chemokines have been named randomly without a clear system of nomenclature. 

Some chemokines were included in the large family of interleukins (e.g. IL-8), while others 

were given a name suggesting their function (e.g. I-TAC for Interferon-inducible T-cell Alpha 

Chemoattractant) [1].  

More recently, members of the chemokine family were classified into four different groups 

according to their NH2-terminal cysteine-motifs. There are now C chemokines, CC 

chemokines, CXC chemokines and finally, CX3C chemokines [1]. For example, the first 

chemokine of a group having one residue between its two cysteines would be named CXCL1. 

Here, L stands for ligand.  

Chemokine receptors are classified according to their ability to respond to a certain chemokine 

family. For instance, a chemokine receptor capable to interact with CXCL1 would be called a 

CXC Receptor, or CXCR.  

The present master’s thesis deals mainly with the chemokine receptor CXCR3 and with its 

interactions with the chemokine receptors CXCR4 and CXCR7. 

1.1.2 Biological functions of chemokines 

Chemokine are chemotactic cytokines involved in the directed migration of cells; a process 

called chemotaxis. Chemotaxis needs the formation of a concentration gradient of 
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chemokines. Cells that are attracted by chemokines move through the gradient from lower to 

higher concentration.  

It has been established that some chemokines play essential roles in hematopoiesis and organ 

development [2]. For instance, CXCL12 is a constitutively expressed chemokine from bone 

marrow stromal cells. This homeostatic chemokine promotes proliferation of B cell 

progenitors [3]. CXCL12 also induces the migration of hematopoietic precursors to the bone 

marrow during embryogenesis [4, 5]. Of note, CXCL12 binds two different chemokine 

receptors: CXCR4 and CXCR7.  

Chemokines are chemotactic, homeostatic, but also immunoregulatory proteins. In fact, 

chemokine were originally discovered as mediators of relocalization processes during 

inflammatory and immune responses. For example, some chemokines guide immune cells 

from tissues to the lymph nodes so they can act as antigen-presenting cells [2]. When 

microorganisms are phagocytosed by dendritic cells in peripheral tissues, these dendritic cells 

mature [2]. Then, the mature dendritic cells start to express the chemokine receptor CCR7. 

This chemokine receptor allows the dendritic cells to migrate in response to CCR7 ligands into 

the lymph nodes in order to present processed antigen to T cells [2].  

During an immune response, different subsets of T cells are generated following the 

interaction of naïve T cells with antigen-presenting cells in the lymphoid compartment [6]. 

Once activated, these T cell subsets upregulate chemokine receptors, which guide them out of 

the lymphoid compartment towards sites of injury [6]. For instance, CXCR3 is upregulated on 

T cells following activation and is implicated in their migration.  
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1.2 Pathophysiological relevance of CXCR3 and its ligands 

The expression of CXCR3 is associated with CD4+ type-1 helper and CD8+ cytotoxic 

lymphocytes [7-10] but is also expressed on various other cells types like B cells, NK cells, 

smooth muscle cells and endothelial cells [2].  

CXCR3 is activated by three ligands: CXCL9 (Monokine induced by IFN-γ or MIG), 

CXCL10 (IFN-γ inducible Protein 10 or IP-10) and CXCL11 (Interferon-inducible T-cell 

Alpha Chemoattractant or I-TAC). In contrast to the constitutive chemokine CXCL12 secreted 

by the bone marrow stromal cells, the three ligands of CXCR3 are not constitutively 

expressed, but are up-regulated in an IFN-γ cytokine environment [11]. Neutrophils, 

monocytes/macrophages, dendritic cells, CD4+, CD8+, NK and NK-T cells, in response to 

IFN-γ, can secrete CXCL9, CXCL10 or CXCL11 [11-14]. 

Consequently, the role of CXCL9-10-11 is to recruit immune cells to inflammation sites [6, 

15]. Therefore, a prevailing function in inflammatory and immune diseases has been suggested 

for CXCR3 and its ligands. For instance, it has been proposed that CXCR3 pathways are 

involved in local amplification loops of inflammation in targeted regions [6, 15].  

We will briefly discuss the pathophysiological relevance of CXCR3 and its ligands in auto-

immune/inflammatory diseases such as atherosclerosis, multiple sclerosis and asthma.  

1.2.1 Role of CXCR3 and its ligands in atherosclerosis 

The early phase of atherosclerosis, atherogenesis, is characterized by the adherence of blood 

circulating monocytes to the surface of arterial walls and by their migration to the sub-

endothelial space where they undergo transformation into macrophages and causes fibrotic 

plaques [16, 17]. These plaques, called atheroma, are accumulated fatty substance and cells in 
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the inner layer of arterial walls. The worsening accumulation of cells and debris causes 

atherosclerosis.  

These plaques contain the cytokine IFN-γ, considered as the master regulator of 

atherosclerosis [18]. The differential expression of the three IFN-γ–inducible chemokines 

CXCL9, CXCL10 and CXCL11 by atheroma-associated cells was reported [19]. These 

findings suggest that the expression of CXCR3 ligands by atheroma-associated cells act as 

recruiters and retainers of activated T lymphocytes within the vascular wall lesions in the 

course of atherogenesis [19]. Moreover, the expression CXCR3 by all T lymphocytes within 

human atherosclerotic lesions in situ was observed [19]. Since these cells persist at the site of 

the lesion, it has been suggested that they may play an important role in the development of 

atherosclerosis. 

Combined treatment with two drugs, simvastatin with niacin, provided clinical benefits in 

patients suffering from atherosclerosis [20]. Simvastatin is an inhibitor of HMG-CoA 

reductase, it reduces low-density lipoproteins also called the "bad" cholesterol [21]. Niacin, 

also known as vitamin B3, appears to reduce the risk of cardiovascular disease [22]. However, 

since the complications of advanced atherosclerosis are chronic, there is an emerging need for 

alternative or complementary therapeutic interventions. For instance, these alternatives could 

target molecular mechanisms underlying the initiation of cell recruitment into the arterial 

wall’s plaques [17]. It was reported that a CXCR3 antagonist attenuated atherosclerotic lesion 

formation by blocking direct migration of CXCR3+ effector cells from the circulation into the 

atherosclerotic plaque in mice [23]. Therefore, CXCR3 antagonists may be a possible therapy 

to inhibit inflammation-induced leukocyte migration and to subsequently reduce atherogenesis 

[23]. A better understanding of CXCR3 signalling is mandatory for better drug development in 

atherosclerosis.  

1.2.2. Role of CXCR3 and its ligands in multiple sclerosis 
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Multiple sclerosis (MS) is an inflammatory disorder of the human central nervous system 

(CNS) [24]. This inflammatory disease largely involves mononuclear phagocytes and T cells 

[25]. These cells enter into the brain through a permissive brain-blood barrier [26] and attack 

myelin because they recognize it as an antigen [27]. Thus, it was argued that chemokine and 

chemokine receptors expressed on these cells may play a role in MS. However, other 

immunomodulatory cytokines, like tumor necrosis factor alpha (TNFα) or interferons-β (IFN-

β), can also be implicated in MS [28].  

It was reported that CXCL10 and CXCR3 co-localized in the inflamed CNS [29]. In addition, 

elevated levels of three chemokines, CXCL9, CXCL10 and CCL5 (the ligands of the 

chemokine receptors CCR1, CCR3 and CCR5) were observed in the cerebrospinal fluid of 

patients [25]. Compared with the circulation, the cerebrospinal fluid was significantly enriched 

in CXCR3+CCR5+ cells [25, 30]. These findings imply that specific chemokine–chemokine 

receptor interactions, and more precisely CXCR3 and CCR5 with their ligands, play important 

pathogenic roles in MS.  

Current MS treatments include interferon immunosuppressive agents and antibodies [31]. 

However, these treatments often have unsatisfactory outcomes [31][32]. For example, the 

neutralizing antibodies persist in the body and reduce the biologic activity of IFN-β therapies. 

This persistence of neutralizing antibodies is also associated with a reduced treatment efficacy 

[32]. One promising avenue to overcome this issue is the CXCR3/CXCL10 axis. A better 

comprehension of CXCR3+ cells chemotaxis towards the CNS will surely gives us precious 

insight into how to block their migration. This could lead to an alternative treatment of MS 

patients that are now treated with antibodies and immunosuppressive agents.  

1.2.3 Role of CXCR3 and its ligands in asthma  

Asthma is an inflammatory lung disease characterized by airflow obstruction, airway 

contraction and hyper-responsiveness. The infiltration of airway smooth muscle (ASM) by 

mastocytes, also called mast cells, is a major determinant of the asthmatic phenotype [33]. 
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The localization of mast cells within the airway structures is important in the pathophysiology 

of inflammatory lung disease [34]. Cytokine expression is also observed in airway pathology 

[35, 36]. Chemokines are likely candidates mediating mast cells migration into lung tissues.  

Compared to mast cells localized elsewhere, human lung mast cells (HLMC) highly express 

CXCR3 [34]. In addition to CXCR3, it has been found that more than 10 % of ex vivo HLMC 

were expressing other chemokine receptors such as CCR3 and CXCR4 [34]. A fundamental 

question is how mast cells accumulate in the ASM in asthma. This is a key question because 

if this accumulation can be repressed, the symptoms can be attenuated [37]. It has been 

suggested that the interaction between CXCL10 derived from ASM and CXCR3+ mast cell 

may be the dominant pathway facilitating the migration of mast cells into the ASM bundles 

[37].  

It has been demonstrated that the neutralization of CXCL10 strongly reduced allergic airway 

inflammation in a mouse model of asthma [38]. However, to date, no approved drug targeting 

CXCR3 is available. In fact, inhaled corticosteroids are the preferred treatment for long-term 

control of symptoms in asthmatic patients [39].  

1.2.4 An example of a clinical trial 

Even though CXCR3 is considered as a promising drug target [40], the outcome of clinical 

trials were disappointing. For instance, AMG487, a CXCR3 antagonist, has been tested for 

the treatment of psoriasis, a skin inflammatory disease in which CXCR3 plays an important 

role in the development of the pathology [41-43]. In preclinical studies, AMG-487 blocked 

immune-cell migration and showed excellent potency, selectivity and bioavailability [44]. In a 

phase 1 trial, the safety and tolerability of AMG487 was confirmed [45]. However, the phase 

2 trial was discontinued due to a lack of clinical efficacy [45, 46]. This failure of using a small 

synthetic ligand of CXCR3 is one example among others that suggests that the CXCR3 mode 

of operation remains still insufficiently understood. Further investigations are needed to 
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develop new small molecule CXCR3 antagonists for the treatment of autoimmune diseases, 

including rheumatoid arthritis (RA) and MS. 

1.3 Challenges and misconceptions in chemokine receptor drug design 

Chemokine receptors are attractive therapeutic drug targets because they are central in many 

pathophysiological processes. To date, drugs inhibiting chemokine receptors (antagonists) are 

approved for the treatment of HIV infection and for stem cell mobilization [47]. However, no 

drugs have been approved yet for the treatment of inflammatory and autoimmune diseases [41, 

47]. Why is that so? We will here briefly discuss the challenges of developing compounds 

antagonizing chemokine receptors.  

The easiest way to explain our incapacity to successfully target these receptors in 

inflammatory diseases would be that we do not comprehend enough the chemokine receptor 

biology. Although this is true, this generality only superficially seizes the problem. It has been 

proposed that inappropriate target selection and animal models – and not the chemokine 

redundancy (see below) – are among the main hurdles to the use of chemokine receptor 

antagonists as anti-inflammatory treatments [41, 47].  

1.3.1 Inappropriate target selection  

Inappropriate target selection is a simple way to explain a complex reality: several chemokine 

receptor targets can exist for a given clinical condition but only some receptors can lead to 

clinical benefits. In addition, some animal models are irrelevant mirrors of human diseases in 

particular cases. We will use the case MS to explain these barriers to the design of drugs 

antagonizing chemokine receptors.  

CCR1, CCR2, CCR3, CCR4, CXCR2 and CXCR3 have all been reported to be expressed in 

inflammatory diseases [47-51]. Although the presence of these receptors has been 



8 
 

demonstrated, the functions of cells expressing such receptors are not always crystal clear. 

Therefore, inhibiting one of these receptors might not necessarily lead to clinical benefits in a 

specific disease.  

For instance, a CCR1 antagonist has been used in a phase II trial in patients suffering from MS 

without good clinical outcomes [41, 47]. The clinical study was stopped after the failure to 

show a reduction in the number of new inflammatory CNS lesions [52]. Was CCR1 a good 

target selection for MS? Some authors do believe it is [41, 52, 53]. However, even if evidence 

tends to demonstrate the implication of CCR1 in MS [41, 54, 55], there is no indication 

whether the expression of CCR1 is pathological, homeostatic or circumstantial [47]. In fact, 

the cells expressing CCR1 could either be aggressive, passive or regulatory cells. For instance, 

it has been shown that TREG cells can express CCR1 [56]. Ultimately, the blockade of CCR1 

expressing TREGS by a CCR1 antagonist might worsen the condition instead of improving it.  

1.3.2 Inappropriate animal models 

In the case of animal disease models, some of them are not always predictive of human 

disease or even representative of human biology [57, 58]. There are several examples 

illustrating the unrecognized pitfalls of using an animal model to screen for potential 

treatments. This is especially true for the experimental autoimmune encephalomyelitis (EAE) 

model, an animal model of brain inflammation used to represent MS [41, 58].  

First, tumour-necrosis factor inhibitors ameliorated the symptoms in animal models of MS but 

actually worsened the disease in patients [59, 60]. Second, CCR1 is constitutively expressed 

on neutrophils in rodents but is mainly expressed on monocytes and activated T cells in 

humans [41, 61]. According to these observations, it is possible that the inhibition of CCR1+ 

neutrophils could account for the beneficial effect of CCR1 antagonist in the EAE model [41]. 

However, CCR1-expressing neutrophils are not considered as a driving force of MS in humans 

[41]. This is in line with the inappropriate drug target choice mentioned earlier. In fact, both 
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arguments (inappropriate target and model) could account for the clinical failure of this 

chemokine receptor antagonist. 

Finally, we see that the presence of multiple receptors can lead researchers to think they are all 

involved in a specific disease. This chemokine receptor overlap may reflect a certain 

redundancy of targets and surely causes problems in drug development. Therefore, the 

generation of drugs that can target and inhibit multiple receptors might represent a way to 

overcome this issue [41]. Also, animal models can mimic symptoms of a disease but only to a 

certain extent. In some cases, animal models can even be inappropriate.  

We will now introduce another form of redundancy that misled researchers investigating the 

chemokine system.  

 1.3.3 The misconception of chemokine redundancy 

The notion of redundancy, also referred to as ligand promiscuity, implies that a single receptor 

binds multiple ligands, and conversely, a single ligand can bind several receptors. The 

chemokine system displays considerable promiscuity with multiple ligands and chemokine 

receptors shared in common. This promiscuity led to the belief that several chemokines or 

chemokine receptors can carry out the same functions in vivo [47]. This perception of 

redundancy in the chemokine system may have developed for different reasons. 

The redundancy model seems to be supported by the number of possible interactions between 

chemokines and their receptors. For instance, CXCR3 has three potential ligands (CXCL9, 

CXCL10, and CXCL11). However, CXCL11 is also a ligand for CXCR7. In addition, CXCR7 

shares CXCL12 with CXCR4 (Figure 1).  
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Figure 1. Schematic view of the possible interactions between different ligands and CXC-

chemokine receptors. 

The chemokine system is large and complex: about 50 chemokines for only 20 receptors [62]. 

The disparity between the number of chemokines and the limited number of receptors may 

have led researchers to oversimplify the biological functions of the chemokine system. This 

was especially true for early in vitro experiments describing chemokine activities [47, 63]. 

Indeed, in the early phase of chemokine discovery, many assessments of chemokines reported 

their ability to induce migration of given cell types in vitro. This led to the oversimplified 

conclusion that, because many chemokines could induce migration of the same cell type, they 

were redundant.  

However, several reports indicate that different chemokines do not necessarily result in the 

same biological response on a given receptor or vice versa [47, 64, 65]. For instance, CCL5 is 

the ligand of three receptors: CCR1, CCR3 and CCR5. CCL5 induces very different patterns 

of receptor recycling to the cell surface on the different receptors. Specifically, CCR5 recycles 

to the cell surface [66]. CCR3 is partially restored to the cell surface and partially degraded in 

lysosomes [67]. Finally, CCR1 does not recycle at all [68].  



11 
 

In fact, several other examples demonstrated that redundancy does not exist at the molecular 

level of chemokine receptors (see also the section 1.4.3). Obviously, this includes CXCR3 [64, 

69, 70]. Therefore, the failure of targeting chemokine receptors has nothing to do with the 

chemokine redundancy. The notion of redundancy rather suggests a fine-tuning of the 

chemokine system.  

That being said, we will now elaborate on the molecular level of chemokine receptor 

functions. More precisely, we will focus on CXCR3.  

1.4 Molecular basis of the chemokine system 

1.4.1 Chemokine receptor signaling through G proteins and desensitization by β-arrestin 

Chemokines are ligands that bind to members of the super-family of heptahelical G-protein-

coupled receptors (GPCRs). As their name suggests, the signalization of GPCRs is through 

heterotrimeric G protein subunits (αβγ). Ligand binging on a GPCR causes subsequent 

conformational change in the receptor. This conformational change then activates the G 

protein by exchanging a GDP for a GTP. The Gα protein subunit, now bound to a GTP, 

dissociate from βγ subunits to further activate downstream signaling pathways (Figure 2, step 

1). Most commonly, chemokine receptors are coupled to the Gαi subunit, which has as major 

function to modulate cAMP production by inhibiting adenylate cyclase (Figure 2, step 1). 

However, there is considerable evidence for alternative Gαq coupling that activates 

phospholipase C (Figure 2, step 1) [71, 72]. Finally, it has never been reported that a 

chemokine receptor stimulates adenylate cyclase through Gαs coupling (Figure 2, step 1).  

One process that regulates GPCRs is desensitization when a receptor is exposed to its ligand 

for a prolonged time. Following receptor activation by a ligand, GPCR kinase (GRK) 

phosphorylates the cytoplasmic C-terminal of the agonist-bound receptor (Figure 2, step 2). 

This phosphorylation initiates impairment of the signaling and allows desensitization by the 

the subsequent recruitment of β-arrestin, which uncouples the receptor from further G protein 
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activation (Figure 2, step 3). In addition, β-arrestin recruitment may lead to internalization or 

other signalisation pathways (Figure 2, step 4). 

 

Figure 2. Schematic view of chemokine receptor signalisation, phosphorylation by GRK, 

desensitization and subsequent internalization by β-arrestin. 

Inspired from Ma et al. Journal of Cell Science, 2007 [73]. 

 

1.4.2 Some principles of pharmacology 

The present work mainly deals with CXCR3 at a pharmacogical level. Therefore, it is 

important to recall certain essential concepts in pharmacology such as affinity, efficacy, 

potency, agonist, partial agonist. These concepts will be especially useful in the section 

treating of functional selectivity, also called biased agonism (see section 1.4.3.).  

Affinity, efficacy and potency are essential referential quantities used in drug discovery and in 

fundamental studies on receptors. Agonist affinity can be explained in terms of the 
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dissociation constant (Kd) for agonist binding to a receptor using in vitro techniques such as 

ligand binding assays [74]. The lower the dissociation constant is, the higher is the affinity of 

an agonist to its receptor.  

Efficacy is associated to the maximal activity in a specific assay using a range of 

concentrations of the agonist (Figure 3). Therefore, the assay can also be referred to as a dose 

response experiment. In contrast to efficacy, potency is associated with the concentration of 

drug required to produce an effect of given intensity (Figure 3). The higher the potency is, the 

lower is the amount of drug required to produce a response. Figure 3 describes the difference 

between potency and efficacy.  

 

Figure 3. The principles of efficacy and potency in pharmacology. 

Agonist A has a higher efficacy then agonist B, while agonist B has a higher potency then agonist A. 

 

A full agonist is a ligand or a drug with high efficacy (defining maximal response). Generally, 

full agonists are defined as a reference ligand, most commonly associated to the endogenous 

ligand with the highest efficacy. For instance, CCR2 has been reported to bind seven natural 

ligands. However, CCL2 is the only ligand to elicit maximal response in the different 
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pathways [75]. Therefore, it is considered as the reference for the determination of relative 

agonist efficacy on CCR2. A partial agonist is a ligand or a drug that activates a given receptor 

but only has partial efficacy in comparison to a full agonist.  

Noteworthy, the determination of a full agonist is pathway dependent. This implies that a full 

agonist in one assay can turn into a partial agonist in a different assay, assessing a different 

pathway. This is explained by the concept of functional selectivity.  

1.4.3 The concept of functional selectivity (or biased agonism) 

Over the past 20 years, several articles reported different agonists with different potencies and 

efficacies on their respective receptor [76]. In some cases, the different ligands of a same 

receptor can all be agonists for one pathway but with different potencies and efficacies. For 

example, CCL2 acts as a full agonist for the recruitment of β-arrestin on CCR2 [75]. 

Compared with CCL2, other CCR2 ligands were described as partial agonists with reduced 

efficacy and potency on the same pathway [75]. Moreover, the different ligands of a same 

receptor can be agonists for some pathways and antagonists for others. For instance, 

angiotensin II acts as an agonist of β-arrestin pathways but as an antagonist of G protein 

pathways on the angiotensin II type 1A receptor [77]. This phenomenon is named biased 

agonism and the ligands that display such behavior are called biased agonists[78]. These 

biased agonists have been classified as being functionally selective or biased toward certain 

response pathways compared with the other agonists [76]. 

This new concept provoked a paradigm shift in GPCR pharmacology, in that different ligands 

targeting the same receptor do not necessarily induce qualitatively similar intracellular signals. 

Different signalling axes, such as G-protein signalling versus β-arrestin signalling, are 

activated independently from one another. The promiscuous ligand-receptor relations in the 

chemokine system make chemokines one of the ideal systems to study “ligand-biased 

signalling”. 
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Biased agonism has been described for other chemokine receptors such as CCR2 [75]. Few 

articles reported the functional selectivity for CXCR3 and its ligands [64, 79]. For instance, it 

has been shown that CXCL11 was the most potent and efficacious inducer of CXCR3 

internalization and chemotaxis in a leukemia cell line [79]. At the time the present work 

started, no data reported the biased agonism of CXCR3 and its ligands for Gαi and β-arrestin 

pathways. However, two groups now reported the biased agonism of CXCR3 [64, 80].  

1.4.4 Chemokine receptor heteromerization 

 

A factor further complicating the picture in the chemokine system is GPCR homo-and 

heteromerization. Before the introduction of the concept of receptor homo- or 

heteromerization, the results of GPCR signaling studies were attributed to the interaction of 

agonists with receptor monomers [81]. Now, GPCRs homo- and heteromerization have been 

assessed by a broad range of techniques: from co-immunoprecipitation, complementation, 

bioluminescence resonance energy transfer (BRET), fluorescence resonance energy transfer 

(FRET), to crystallography [81, 82].  

While chemokine receptor homomerization is now widely accepted, the extent to which 

heteromerization is prevalent, and its functional consequences, remain matter of active 

research. One striking example of heteromerization effects is the negative modulation of 

CXCR4 signaling by heteromerization with CXCR7 [83]. Of note, these receptors share the 

common ligand CXCL12 (see Figure 1). On the functional side, CXCR7 attenuates CXCR4-

mediated signals, and this may occur via CXCR4/7 heteromerization.  

Potential heteromerization of CXCR7 with CXCR3 (with which it shares the CXCL11 

ligand), and possible effects of CXCR7 on CXCR3 signalling have not been reported and 

remain to be tested. The same holds true for potential heteromerization of CXCR3 and 

CXCR4 (but see reference 56).  
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1.4.5 CXCR3 splicing 

Alternative splicing is a crucial mechanism for gene regulation. It results from a single gene 

coding for multiple proteins. Chemokine receptor splicing affects the chemokine system by 

increasing its diversity.  

For example, the ccr2 gene encodes for two alternatively spliced transcript variants of the 

receptor: CCR2A and CCR2B. These two variants share common functions and differ only in 

their terminal carboxyl tails [84]. Both CCR2A and CCR2B mediate inhibition of adenylyl 

cyclase via coupling to Gαi [85]. Finally, both receptors are present on monocytes and 

macrophages but CCR2B is the predominant isoform [86].  

Another example of splicing is CXCR3. Northern blot analysis revealed that CXCR3 mRNA 

was alternatively spliced to generate two variants: CXCR3A and CXCR3B [87]. The 

translation of CXCR3B mRNA generates a receptor containing a longer N-terminal 

extracellular domain, different from the CXCR3A sequence [87].  

The two splice variants of CXCR3 are reported to have opposite functions. CXCR3A 

promotes cell growth and plays a major role in IFN-γ-inducible immune responses, whereas 

CXCR3B mediates apoptosis and inhibits cellular proliferation [87, 88]. In addition, the two 

variants are expressed on different cell types. CXCR3A is mainly expressed on T cells, B cells 

and NK cells, whereas CXCR3B is mainly expressed on endothelial cells [89]. The expression 

of variants is not exclusive to one cell type since both CXCR3 isoforms were detected in 

activated T lymphocytes [87]; CXCR3A being the predominant one [87, 90].  
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Another variant of CXCR3, named CXCR3-alt, results from alternative splicing via exon 

skipping [91]. CXCR3-alt has severe structural changes comparatively to CXCR3A but still 

localizes to the cell surface [91]. CXCR3-alt responds exclusively to CXCL11 [91].  

The existence of CXCR3 splice variants is matter of debate. Campanella et al. suggested that 

CXCR3B does not even exist in mice [92]. They argued that an in-frame stop codon would 

terminate the CXCR3B splice variant in mice. This master’s thesis focuses on CXCR3A and 

its ligands.   

1.4.6 CXCL4 as a novel ligand for CXCR3  

Platelets are cells involved in the process of blood clotting and act as reservoirs of some 

chemokines with inflammatory properties. For example, once activated, platelets release 

CXCL4 (or Platelet factor-4) in micromolar concentrations [93, 94]. For long, CXCL4 was 

considered as an orphan ligand since it acted as a chemoattractant for leukocytes via an 

unidentified receptor.  

CXCR3 was described as a receptor for CXCL4 [87, 95]. For instance, it has been reported 

that CXCL4 acts as a chemoattractant on a murine cell line transiently expressing CXCR3A or 

CXCR3B. It also has been shown that CXCL4 can induce intracellular calcium release and the 

migration of activated human T lymphocytes [95]. 

The study of the CXCL4/CXCR3 axis is of a particular importance since it has been suggested 

that it was involved in T lymphocyte recruitment and the subsequent amplification of 

inflammation reported in diseases such as atherosclerosis [95]. In addition, studies suggested 

that platelets are involved in inflammatory phenomena, like bronchial asthma [96]. For 

instance, the plasma level of CXCL4 of patients suffering from asthma attacks is significantly 

higher than those of controls [97].  

Although the discovery of CXCL4 as a ligand of CXCR3 was a step forward in elucidating the 

role of CXCL4, pharmacological characterizations of CXCL4 on CXCR3 are still missing. For 
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example, no publication assessed yet the recruitment of β-arrestin or the activation of Gαi on 

CXCR3 upon CXCL4 stimulation. 

1.4.7 Chemokine gradient remodelling 

During chemotaxis, cells that are attracted by chemokines move through the extracellular 

chemokine concentration gradients. During in vitro experiments, the gradient is diffused from 

a lower well, containing high concentrations of chemokines, to higher wells containing the 

cells. Therefore, cells are attracted by diffusion of chemokines. However, the chemokine 

gradient in vivo is much more complex.  

In vivo maintenance and remodelling of these gradients require chemokine inactivation by 

extracellular proteases. However, cleavage of chemokine by proteases is another of layer of 

complexity since cleaved chemokine can bind to unexpected receptors. For instance, ligation 

of CXCR3 by proteolytically-processed CXCL12 has been implicated especially in brain 

diseases such as neuro-AIDS [98]. 

The maintenance of gradients in vivo can also happen through chemokine degrading receptors 

which internalize and, subsequently, degrade chemokines. These receptors, such as CXCR7, 

are commonly called decoy or atypical chemokine receptors (ACKRs) [99]. CXCR7 is 

atypical in that it does not mediate chemotaxis [100]. Also, unlike the well described CXCR3 

and CXCR4 signalling (Gαi signalling followed by β-arrestin recruitment), CXCR7 does not 

mediate classical G-protein responses. No proximal intracellular CXCR7 signalling was 

known at all until our group discovered that CXCR7 does recruit β-arrestin in response to 

CXCL12 [101]. 

Atypical receptors like CXCR7 reshape gradients by constantly recycling to the cell surface. 

Until recently, this gradient remodelling was considered exclusive to ACKRs. To date, CCR2 

is the only known typical receptor to have decoy properties [102]. However, it has been 
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reported that signalling chemokine receptors (typical), including CXCR3, could play a role in 

the clearance of chemokines from circulation and tissues [103]. 

  



20 
 

1.5 Objectives 

 

There are several lines of evidence suggesting a prevalent role of CXCR3 in different diseases. 

However, clinical trials investigating CXCR3 antagonists were often terminated due to a lack 

of efficacy [41, 45]. This suggests that the mode of operation of CXCR3 and its ligands is not 

sufficiently understood and warrants further exploration. There are thus unmet needs for better 

understanding in many aspects of CXCR3 biology. Theses aspects are illustrated in Figure 4. 

 

Figure 4. Overall overview of the chemokine system studied in this present work.  

Biased agonist, decoy activity of CXCR3 and its heteromerization with CXCR4 or CXCR7 warrant 

further investigation. Figure inspired from Singh et al. [104].  
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In this present work, we propose to better delineate CXCR3A functions taking new 

developments such as new CXCR3 ligands, biased agonism, chemokine receptor 

heteromerization and decoy properties of classical (typical) chemokine receptor into account. 

We will achieve our goal by pursuing the following specific aims:  

i) To test for agonist bias of CXCR3A ligands, including CXCL4 ; 

ii) To demonstrate heteromerization of CXCR3A with CXCR4 and CXCR7;  

iii) To address the effects of CXCR3A/CXCR4 or CXCR3A/CXCR7 heteromerization on 

CXCR3 biased signaling ;  

iv) To demonstrate the decoy properties of the typical receptor CXCR3A ; 

v) To address the effects of CXCR3A/CXCR4 or CXCR3A/CXCR7 heteromerization on 

CXCR3 decoy properties. 

Taken together, this work adds new aspects to our knowledge on the molecular mechanism of 

CXCR3A function, a recognized potential drug target. Furthermore, this work provides 

fundamental insight into the organization of chemokine receptor heterodimers and potential 

mechanism underlying chemokine gradient shaping in vivo. 
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2. Materials and methods 

2.1 Plasmids 

The expression vectors containing CXCR3, CXCR4 and CXCR7 were obtained from the 

Missouri S&T cDNA Resource Center (www.cdna.org). CXCR3, CXCR4 and CXCR7 

receptor sequences were subcloned to yield -YFP and -RLuc fusion proteins as described in 

Berchiche et al and in Kalatskaya et al.[101, 105] β-arrestin-RLuc was a generous gift from 

Dr. Michel Bouvier and the GFP10-EPAC-RLucIII was obtained as described in Leduc et 

al.[106]  

2.2 Reagents 

 

CXCR3 ligands (CXCL4, CXCL9, CXCL10 and CXCL11) were purchased from PeproTech 

(USA). They were dissolved as 100 μM stocks in phosphate buffered saline (PBS) 1 % bovine 

serum albumin (BSA) and used freshly diluted at the concentration indicated. Radiolabelled 

ligand (
125

I-CXCL11) was purchased from Perkin Elmer (USA). 

2.3 Cell culture and transfection 

 

Human embryonic kidney (HEK) 293E (passage number 10 to 30) were maintained in 

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum 

(WisEnt), 100 units/mL penicillin/streptomycin (Invitrogen) and 200 μg/mL G418 and 

incubated at 37 ºC, 5% CO2. Twenty-four hours before transfection, cells were plated at a 

density of 800,000 cells per well in 6-wells plates. Transient transfections were performed in 

6-wells plates using the polyethylenimine method [107].  
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2.4 BRET measurements  

 

Twenty-four hours post-transfection, transfected cells were plated in 96 wells plates pretreated 

with poly-D-lysine. Forty-eight hours post-transfection, DMEM media was changed for BRET 

buffer, containing PBS, 0.1% fetal bovine serum and 0.5 mM MgCl2, at room temperature. 

Then, coelenterazine H (BRET1) or coelenterazine 400a (BRET2) were added to reach a final 

concentration of 10 uM. Total fluorescence and luminescence were measured with a Mithras 

LB940 luminometer (Berthold technologies) as described in Berchiche et al [105].  

2.5 Gαi activity assays 

 

Inhibition of forskolin-induced cAMP production was measured as previously in Leduc et 

al.[106]. Briefly, HEK293E cells were cotransfected with 1 μg of CXCR3 and 0.04 μg of an 

intramolecular GFP10-EPAC-RLucIII BRET
2
 biosensor. Each condition was adjusted to 2 ug 

of DNA per well with the empty vector pcDNA3. Ten minutes after addition of the BRET
2
 

substrate coelenterazine 400a (Biotium, Hayward, CA), cells were stimulated with the 

indicated chemokine concentration in the presence or absence of 10 μM forskolin. Then, 

BRET measurements were performed. Experiments were carried out in triplicate and 

presented as mean ± SEM. 

2.6 Arrestin recruitment assays 

 

β2-Arrestin recruitment assays were conducted as BRET1 experiments and protocols were 

previously described in Kalatskaya et al.[108] Briefly, HEK293E cells were cotransfected 

with 1 μg of CXCR3A-YFP and 0.05 μg of β2-Arrestin-RLuc. Each condition was adjusted to 

2 μg of DNA per well with the empty vector pcDNA3. Cells were stimulated with the 

indicated chemokine concentration and then incubated for 5 min at 37ºC, 5% CO2. Ten 

minutes after addition of the BRET1 substrate coelenterazine H, BRET measurements were 

performed. BRET values were corrected to Net BRET by subtracting the background BRET 

signal detected when the β2-Arrestin-RLuc construct was expressed alone. Total fluorescence 
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and luminescence were used as a relative measure of total expression of the acceptor and 

donor proteins, respectively. Experiments were carried out in triplicate and presented as mean 

± SEM. 

2.7 BRET saturation assays 

 

BRET titration experiments were done as described in Mercier et al.[109] Briefly, HEK293E 

cells were cotransfected with a constant amount of receptor-RLuc (0.03 ug) and increasing 

concentration of plasmids encoding YFP-tagged receptors, from 0 ug to 1.9 ug. BRET signal 

was determined by calculating the ratio of the receptor-YFP over the receptor-RLuc emission 

without ligand stimulation 10 minutes after coelenterazine H addition. Values were corrected 

to Net BRET by subtracting the background BRET signal detected when the receptor-RLuc 

construct was expressed alone. Saturation curves were obtained by plotting Net BRET values 

as a function of the [acceptor]/[donor] ratio. Total fluorescence and luminescence were used as 

a relative measure of total expression of the acceptor and donor proteins, respectively. 

Experiments were carried out in triplicate and presented as mean ± SEM. Each plotted point 

represents a different transfection.  

2.8 Degradation assays 

 

CXCR3 decoy properties have be assessed with radio-labelled 
125

I-CXCL11 degradation 

assays. HEK293E cells were incubated with DMEM 0.1% BSA 50 pM 
125

I-CXCL11 (Perkin 

Elmer) followed by 150 minutes incubation at 37 ºC, 5% CO2. Then, supernatants were 

collected and cell surface–bound chemokines were removed by the addition of a 3M glycine 

solution (pH 2.7). Trichloroacetic acid (TCA) precipitation was used to distinguish between 

the radioactivity associated with intact chemokine (TCA-precipitable fraction) and degraded 

chemokine (TCA-non precipitable fraction). The TCA-precipitable fraction was dissolved in 

250 μL PBS and collected. The cell layers (cell uptake) were harvested with PBS 1 % SDS. 

The radioactivity associated with all fractions was measured with a Cobra II gamma counter. 

Figures are represented either as in percent of the total input of radioactivity, or as the absolute 
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counts of degraded chemokines. Unlabelled ligand competitions (CXCL4-9-10-11) of 
125

I-

CXCL11 degradation have been tested by adding the indicating unlabelled chemokines. As 

controls of membrane expression of chemokine receptors, cell membrane staining assays were 

performed with antibodies coupled to fluorochromes. Data acquisition and analyses by flow 

cytometry were done on a BD FACSCalibur (BD biosciences). 

2.9 Flow cytometry 

 

HEK293E cells were washed once with PBS than stained (30 minutes, 4ºC) with the following 

antibodies: human (h) CXCR3-Phycoerythrin, hCXCR4-allophycocyanin, hCXCR7-

allophycocyanin, murine (m) IgG2A-allophycocyanin, mIgG1-Phycoerythrin (R&D systems). 

Cells were washed twice and fixed with fixation buffer (PBS 2 % formaldehyde). 

2.10 Data analysis 

 

Data from BRET and degradation assays are the mean of independent experiments performed 

in triplicate and duplicate, respectively. Curve-fitting and statistical analyses were done with 

GraphPad Prism 5 software (GraphPad Software Inc., San Diego, CA). Statistical significance 

of the differences between more than two groups was calculated by one-way ANOVA, 

followed by Bonferroni’s post-test.  
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3. Results 

3.1 CXCR3A biased signaling 

Although CXCR3A functions seem to be thoroughly described in the literature, few 

pharmacological characterizations have been done on its three endogenous ligands - CXCL9, 

CXCL10 and CXCL11. Studying the role of CXCR3A and its ligands on a pharmacological 

level will undoubtedly provide new insights on the regulation of T cell function [6], but also 

on every subsets of cells expressing CXCR3A [110-113]. Therefore, we investigated 

downstream CXCR3A signaling induced by its three ligands using bioluminescence resonance 

energy transfer (BRET). These assays investigate the activation of the Gαi subunit, and β-

Arrestin recruitment to the receptor. Here, β-arrestin recruitment is assessed with BRET1 and 

Gαi activation is assessed with BRET2. The differences between both assays are explained in 

Figure 5 and Table 2.   

To monitor the Gαi-dependent pathway in living cells, we used a BRET2 version of the 

EPAC-based BRET sensor, for which the inactive cytosolic mutant form of human EPAC was 

inserted between GFP10 and RLucIII. This cAMP response assay has been previously 

described in Jiang et al and in Leduc et al [106, 114]. Briefly, cells were stimulated with a 

final concentration of 20 μM forskolin, which activates adenylate cyclase (AC) and leads to an 

increased concentration of cAMP. Bound to GFP10-EPAC-RLucIII, cAMP induces a 

conformational change that increases the distance between RLucIII and GFP, leading to a 

decrease in BRET signal. When stimulated with ligand, the Gα/i-CXCR3A complex inhibits 

AC. By inhibiting AC, Gα/i-CXCR3A signaling reduces cAMP production. This leads to a 

reduction of the forskolin-dependent decrease of the BRET signal (increase of BRET signal) 

(see Figure 6). Increase in BRET signal reflects inhibition of AC (and thus Gai activation), as 

represented in figure 2. Raw BRET2 ratios have been normalized by using forskolin stimulated 

results as 0 % of inhibition of AC activity, and by using the non-stimulated (no ligand, no 

forskolin) results as 100 % of inhibition of AC.  
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Figure 5. Schematic representation of BRET1 and BRET2 assays  

Figure inspired from Institut Cochin website  

 

 

Table 1. Distinction between BRET1 and BRET2 assays 

 

 

 BRET1 BRET2 

Energy donor Rluc Rluc 

Energy acceptor YFP GFP2 

Energy donor 

substrate 
Coelenterazine Coelenterazine 400a 

Peak donor emission 480 nm 400 nm 

Peak acceptor 

reemission 
535 nm 510 nm 

Advantage 
Higher intensity of emitted 

light 

Superior separation of donor and acceptor 

peaks 
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Figure 6. Schematic representation of EPAC BRET2 assays. 

After stimulation with forskolin, cAMP level increases in the cells. This leads to a 

conformational reorganisation of RLuc-EPAC-YFP biosensor. This reorganisation leads to a 

decrease of the BRET signal due to the increased distance and unfavorable orientation 

between the energy donor RLuc and the energy acceptor YFP. After ligand stimulation of 

Gα/i-CXCR3A, cAMP concentration decreases in the cells, leading to a conformational 

change in RLuc-EPAC-YFP biosensor. This reorganisation leads to an increase in BRET 

signal due to the reduced distance and favorable conformation between the energy donor RLuc 

and the energy acceptor YFP. Figures adapted from Salahpour et al., Front Endocrinology, 

2012. [115] (F, Forskolin. AC, Adenylate cyclase. L, Ligand.) 

 

 

Stimulation of HEK293E cells coexpressing this EPAC biosensor and CXCR3A receptor with 

its three ligands lead to different concentration-dependent cAMP responses (Figure 7 and 

Table 2). Out of the three ligands tested, CXCL11 was the most efficient and potent with an 

EC50 of 0.43 nM, leading to 53±2% inhibition of AC activity. Although CXCL10 shows 
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efficacy, with an EC50 of 5 nM, and it shows a smaller efficacy than CXCL11 with 22±1% 

inhibition of AC activity. As of CXCL9, it shows very little potency with an EC50 of 122
 
nM, 

but reaches an efficacy of 34±4 % inhibition of AC activity at a concentration of 1uM. Of 

note, CXCL9 BRETmax and EC50 were derived from curved fitting. Therefore, the EC50 must 

be interpreted carefully.  

To test β-arrestin recruitment to CXCR3A, we used a BRET-based proximity assay system in 

HEK293E cells transiently coexpressing the BRET donor β-arrestin-2-RLuc and CXCR3A 

fused to the BRET acceptor YFP. If both proteins, RLuc and YFP, are brought close enough 

for resonance energy transfer to occur, the bioluminescence energy generated by RLuc can be 

transferred to YFP, which then emits yellow light [116]. This light is detected as the BRET 

signal. Background BRET, which is the signal obtained from cells only expressing β-arrestin-

2-RLuc, has been deduced from raw BRET. This leads to the plotted Net BRET. Dose-

response experiments revealed the following potency rank order of the chemokines: CXCL11 

> CXCL10 > CXCL9 (EC50 of 19 nM for CXCL11, 32 nM for CXCL10 and 207 nM for 

CXCL9) (Figure 8 and Table 2). As observed for AC inhibition assays, CXCL9 induced β-

arrestin responses but did not reach saturation even at highest chemokine doses, leaving some 

uncertainty concerning the EC50 values, which had to be determined by curve fitting. CXCL11 

showed the strongest efficacy and potency compared with CXCL10 and CXCL9. Here, we 

observed the same pattern of potency as in the cAMP assays; CXCL11 being the most potent 

and efficient of all three ligands of CXCR3A. Ligands with high affinities for a receptor can 

sometimes have low efficacies and/or potencies in different pathways. However, it is 

interesting to mention that our results are congruent with the different affinities of CXCR3 

ligands described in Cox et al. [117]. The ligand with the highest affinity for CXCR3A 

(CXCL11) is also the ligand with the highest efficacy and potency [117]. 

 

 



30 
 

 

-13 -12 -11 -10 -9 -8 -7 -6 -5
0

10

20

30

40

50

60

70
CXCL11

CXCL9

CXCL10

Log[Chemokine]

%
 I

n
h

ib
it

io
n

 o
f 

A
C

 a
c
ti

v
it

y

 

Figure 7. Inhibition of Adenylate cyclase activity followed by stimulation of CXCR3A by 

chemokine CXCL11, CXCL10 or CXCL9. 

HEK293E cells coexpressing CXCR3A and EPAC reporter were incubated with indicated 

concentrations of ligand and resulting BRET was measured after 10 min at room temperature. 

(Blue) ○ CXCL11, (Green) □ CXCL10, (Red) ∆ CXCL9. Data are means of three 

independent experiments performed in triplicate and presented as mean ± S.E.M. 
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Figure 8. β-Arrestin-2 recruitment to CXCR3A followed by chemokine CXCL11 , 

CXCL10 or CXCL9 stimulation. 

HEK293E cells transiently coexpressing CXCR3A-YFP and β-arrestin2-RLuc were incubated 

with indicated concentrations of ligand and resulting BRET was measured after 10 min at 

room temperature. (Blue) ○ CXCL11, (Green) □ CXCL10, (Red) ∆ CXCL9. Data are means 

of three independent experiments performed in triplicate and presented as mean ± S.E.M. 
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Table 2. Pharmalogical parameters of CXCR3A biased signalling 

 

 

  Ligand  

Adenylate cyclase Inhibition CXCL9* CXCL10 CXCL11 

n=3    

EC50 (nM) 1.273e
-7

 5.015e
-9

 4.388e
-10

 

LogEC50 -6.90±0.18 -8.30±0.19 -9.358±0.103 

BRETmax 34.22±3.79 21.69±1.45 52.90±1.897 

Β-Arrestin Recruitment    

n=3    

EC50 (nM) 2.076e
-6

 3.259e
-8

 1.907e
-8

 

LogEC50 -5.68±0.69 -7.487±0.259 -7.720±0.105 

BRETmax 0.061±0.001 0.018±0.002 0.094±0.004 

Affinity (Ki)    

Cox et al. [117]  1.2±0.4 nM 0.033±0.006 nM 0.079±0.027 nM 

Heise et al.[118] 45.2 nM 12.5 nM 0.069 nM 

*BRETmax and EC50 derived from curve fitting 
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3.2 CXCR3A Heterodimerization  

 

CXCR3, CXCR4 and CXCR7 are implicated in many cancers and inflammatory and auto-

immune diseases [119]. Previously, CXCR4 has been shown to form heterodimer complexes 

with CXCR7 [83]. Also, these receptors and their ligands are expressed in tumour 

microenvironment and on various immune and cancer cells [104]. Finally, because this 

receptor trio is an attractive target for therapeutic uses, we investigated whether CXCR3 could 

form heterodimer complexes with CXCR4 or with CXCR7.  

We have characterized the relative propensities of CXCR3A to heterodimerize with CXCR4 

and CXCR7 using a BRET-based saturation assay as described in Mercier et al. [109]. 

Constant (low) quantities of CXCR3A, CXCR4 or CXCR7 fused to RLuc were cotransfected 

with increasing quantities of CXCR3A or CXCR7 fused to YFP. The level of energy transfer 

detected for a given concentration of the RLuc (energy donor) rises with increasing 

concentration of the YFP (energy acceptor), until all RLuc fused molecules are engaged by a 

YFP fused molecule [109]. The level of energy transfer rises because more YFP acceptor 

molecules are expressed in the cells. Background BRET, which is the signal obtained from 

cells only expressing RLuc-fused receptor, has been deduced from raw BRET. This leads to 

the plotted Net BRET. The concentration of acceptor yielding 50% of the maximal energy 

transfer (BRET50) can be interpreted as a measure of the relative propensity of two proteins to 

interact (Figure 9) [109].  
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Figure 9. Interpretation of BRET saturation curves 

The two proteins interacting in curve 1 (black) have a higher affinity towards each other 

comparatively to the two proteins interacting in curve 2 (grey). The straight line (red) 

represents a non specific interaction between two proteins.  

 

In cells expressing RLuc-fused CXCR4 (Figure 10), CXCR3A (Figure 12) or CXCR7 (Figure 

10 and 12), increasing the concentration of CXCR3A receptor tagged with YFP resulted in 

BRET signals that increased hyperbolically, reaching an asymptote when all RLuc-tagged 

receptors are associated with those fused to YFP (BRET max). In contrast, we observed non-

specific interactions between CXCR3A-RLuc and CXCR7-YFP that led to a linear BRET 

signal increasing with YFP/RLuc ratios in cells coexpressing the YFP and RLuc-tagged 

receptors (Figure 9-13). Interestingly, an exchange between the two fusion proteins in the two 

receptors (CXCR3A and CXCR7) led to an unfavorable proximity or orientation for energy 
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transfer to occur. These arrangements (CXCR3A-RLuc/CXCR7-YFP) led to a straight linear 

BRET signal increasing with YFP/RLuc ratios. Constructions known to lead to straight linear 

BRET signal are often used as negative controls for BRET saturation curves since they 

represent non specific interaction (Figure 9). That being said, the two first saturation curves 

presented here lack negative controls. For example, experiments could be reproduced with 

RLuc-tagged receptor with increasing concentration of YFP alone or any unrelated receptor 

(for instance, GABA receptor) tagged with YFP.  

The BRET50, which is an instrument-dependent relative value of the YFP/RLuc ratio when 

half of the BRET max is reached, represents the propensity of two proteins to interact. A 

smaller BRET50 reflects a greater propensity of two proteins to interact (Figure 9). BRET50 

values were not significantly different for both heterodimers CXCR3A-CXCR4 and 

CXCR3A-CXCR7 (Figure 10). However, BRET50 values for the CXCR7 homodimer were 

lower than for the CXCR3A-CXCR7 heterodimer, even though this difference did not reach 

statistical significance (Figure 14). It is tempting to suggest that this difference reflects the 

preference of CXCR7 to form homodimers, instead of heteromers with CXCR3A. As for the 

CXCR3A homodimer, the BRET50 values cannot be compared to those of CXCR3A-CXCR7 

heterodimer since saturation curves values did not produce a hyperbole (Figure 13). By 

comparing the calculated BRET50, we cannot speculate that CXCR3A also has a propensity 

for homomerization over heteromerization with CXCR7 (Figure 14). Intriguingly, Watts et al. 

found comparable BRET50 values for all CXCR3 and CXCR4 homo- and heterodimers, 

suggesting that CXCR3 and CXCR4 have comparable propensities to form homo- and 

heterodimer complexes [80]. In the same order of idea, Levoye et al. found comparable 

BRET50 for CXCR4 and CXCR7 homodimers and CXCR4/7 heterodimer [83]. This suggests 

that heterodimerization of CXCR4 and CXCR7 occurs with the same efficiency as receptor 

homodimerization. Of note, Levoye et al. performed the saturation curves for CXCR4/7 

heterodimers with two distinct constructions (CXCR4-RLuc-CXCR7-YFP and CXCR7-RLuc-

CXCR4-YFP) [83]. This might explain the difference observed for the published BRET50 of 

CXCR4/7 heterodimers[83]. This will be further discussed in the discussion.   
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Figure 10. CXCR3A forms heterodimer with CXCR7 and with CXCR4 in HEK293E 

cells. 

Saturation curves were generated in cells expressing a constant amount of CXCR7/CXCR4-

RLuc and an increasing amount of CXCR3A-YFP without stimulation. BRETmax and BRET50 

were calculated by nonlinear regression curve fit base on the model of one site total. 

Saturation curves represent pool data of 3 experiments performed in triplicate and presented as 

mean ± SEM. Each point represents a different transfection. BRET50 of CXCR3/4 is 77±9. B 

BRET50 of CXCR3/7 is 47±9. BRET50 of the two heterodimers are not significatively 

different. (Black) ■ CXCR3A-YFP + CXCR7-RLuc, (Green) ● CXCR3A-YFP + CXCR4-

RLuc.  
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Figure 11. CXCR3 has no preference for heterodimerization with CXCR4 or CXCR7.  

BRET50 values of chemokine receptor dimerization were extracted from three curves. 

Saturation curves were generated in cells expressing a constant amount of CXCR7-RLuc or 

CXCR4-RLuc and an increasing amount of CXCR3A-YFP without ligand stimulation. 

BRET50s were calculated by nonlinear regression curve fit (based on the model of one site 

total binding). Data are from three to six experiments, each performed in triplicate and 

presented as mean ±SEM. Unpaired T test was performed and the difference between the 

BRET50 values did not reach significance (p value of 0.6772).  
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Figure 12. CXCR7 forms homodimers and heterodimers with CXCR3A in HEK293E 

cells. Saturation curves were generated in cells expressing a constant amount of CXCR7-RLuc 

and an increasing amount of Receptor-YFP (CXCR3A and CXCR7) without stimulation. 

BRETmax and BRET50 were calculated by nonlinear regression curve fit base on the model of 

one site total. Saturation curves represent pool data of 3 experiments performed in triplicate 

and presented as mean ± SEM. Each point represents a different transfection. BRET50 of 

CXCR3/7 is 29±4. BRET50 of CXCR7/7 is 4.0±0.5. BRET50 of homodimer is not 

significatively lower than the BRET50 of the heterodimer. (Blue) ■ CXCR3A-YFP + CXCR7-

RLuc, (Red) ● CXCR7-YFP + CXCR7-RLuc.  
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Figure 13. CXCR3 forms homodimers in HEK293E cells.  

Saturation curves were generated in cells expressing a constant amount of CXCR3A-RLuc and 

an increasing amount of Receptor-YFP (CXCR3A and CXCR7) without stimulation. BRET50 

were calculated by nonlinear regression curve fit base on the model of one site total. 

Saturation curves represent pool data of 3 experiments performed in triplicate and presented as 

mean ± SEM. Each point represents a different transfection. BRET50 of CXCR3/7 is 29±4. 

BRET50 of CXCR7/7 is 4.0±0.5. (Blue) ■ CXCR3A-RLuc + CXCR3-YFP, (Black) ● 

CXCR3-RLuc + CXCR7-YFP  
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Figure 14. CXCR7 tendency for homodimerization.  

BRET50 values of chemokine receptor dimerization were extracted from three to six curves. 

Saturation curves were generated in cells expressing a constant amount of CXCR3A-RLuc or 

CXCR7-RLuc and an increasing amount of Receptor-YFP (CXCR3A and CXCR7) without 

stimulation. BRET50 were calculated by nonlinear regression curve fit base on the model of 

one site total. Data are from three to six experiments performed in triplicate and presented as 

mean ±SEM. One way ANOVA with Bonferroni’s multiple comparison  tests were performed 

and BRET50 values did not reach significance. 
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3.3 CXCR3A Decoy properties 

 

Some chemokine receptors, commonly called decoy receptor, act as modulators of specific 

chemokine gradients by degrading or remodeling gradients involved in the biological process 

of chemotaxis. It is known that CXCR3A acts as a conventional chemotaxis receptor (typical 

receptor) via their interaction with CXCL9, CXCL10 and CXCL11. Considering that the 

typical chemokine receptor CCR2 also acts as a decoy receptor [102], we wondered whether 

CXCR3A had similar decoy proprieties as CCR2. This is of particular relevance given that 

chemokine degradation plays an important role in regulation of chemotaxis and termination of 

inflammatory states.  

CXCR3 decoy properties have been assessed using radiolabelled 
125

I-CXCL11 in chemokine 

degradation assays. HEK293E cells were incubated with 50 pM radiolabelled chemokines. 

After two hours of incubation, supernatants were precipitated with TCA. Proteins degraded or 

cleaved do not undergo TCA precipitation, while undegraded chemokines precipitate. Cell-

associated radioactivity, TCA precipitated (pellet) and unprecipitated chemokine degradation 

products (supernatant) was measured with a Cobra II gamma counter. Results from 

degradation assays are presented as the percentage of total input of 
125

I-CXCL11 (Figures 15, 

16, 18, 19, 21, 26). For ligand competition with radio-labelled chemokines, 100 nM of the 

indicated unlabelled chemokines were added. As controls for chemokine receptor expression 

at the plasma membrane, cell surface staining assays were performed with antibodies coupled 

to fluorochromes and analyzed by flow cytometry (Figures 17, 20, 23).  

HEK293E cells transiently overexpressing CXCR3A are capable of higher CXCL11 

scavenging compared to HEK293E cells transfected with an empty vector, plotted as control 

(Figure 15). Of note, HEK293E cells constitutively express a high level of CXCR3. This 

endogenous expression could account for the basal degradation of CXCL11 we observed. It 

has been reported that CXCR7 is capable of CXCL11 and CXCL12 scavenging [120], 

therefore we used CXCR7 as a positive control for 
125

I-CXCL11 scavenging. We observed 

between 35 to 40 % of 
125

I-CXCL11 total input associated with the CXCR3A expressing cells; 
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such uptake was between 25 to 30% for CXCR7 expressing cells. In addition, we observed 

that 35% of 
125

I-CXCL11 was degraded when cells expressed CXCR7, and between 20 and 

25% for CXCR3A expressing cells (Figures 13 and 14). As expected, addition of unlabelled 

CXCL12 interferes with CXCL11 degradation by CXCR7, but not by CXCR3A (Figures 15 

and 16). 

We also investigated whether unlabelled ligand could impede radiolabelled ligand degradation 

(Figures 18 and 19). After adding 100 nM of the different ligand of CXCR3A, we observed 

that only unlabelled CXCL11, but not unlabelled CXCL9 or CXCL10, lowered 
125

I-CXCL11 

degradation via CXCR3A. As proposed in Cox et al. [117], these results suggest differential 

binding properties of CXCR3 ligands. It was also suggested that CXCR3 ligands are have 

allotopic properties. This implies that these three ligands bind to distinct, non-overlapping, 

recognition sites on CXCR3.  

We then investigated the effect of coexpression of CXCR3A and CXCR4 on radiolabelled 

CXCL11 degradation. As expected, cells expressing CXCR4 do not show decoy properties 

(Figures 21 and 22). Furthermore, we did see a significant effect on CXCL11 scavenging 

when both receptors are co-expressed and incubated with CXCL12. This could suggest an 

effect on CXCL11 scavenging by CXCR3A via the CXCR4/CXCL12 axis. However, the 

difference in degraded 
125

I-CXCL11 between CXCR3A and CXCR3A/CXCR4 transfected 

cells (Figure 22) may alternatively simply result from different CXCR3A expression levels. 

Indeed, in flow cytometry expression experiments, a reduction of CXCR3A in co-transfected 

cells is seen, compared to single receptor-transfected cells (Figure 23). The difference in 

receptor surface expression may be explained by the saturation of the transcription and 

translation machineries of the cells, which were transfected with double the quantity of DNA 

coding for receptors (2 μg of receptor instead of 1μg of receptor complemented with 1 μg of 

empty vector). Finally, as expected, CXCR4 has no CXCL11 scavenging properties. We 

conclude that decoy CXCR3A is not affected by the presence of the CXCR4/CXCL12 axis.  
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Figure 15. The typical chemokine receptor CXCR3 acts as scavenger for CXCL11. 

 HEK293E cells transiently expressing pcDNA3 (control), CXCR3A or CXCR7 were 

incubated 2h30 with 50 pM 
125

I-CXCL11with or without 100 nM CXCL12. After incubation, 

cells were spun out, and the supernatant was subjected to TCA precipitation. Radioactivity 

associated with the TCA pellet, the non-TCA precipitable fraction, and the cells themselves 

was counted and is presented as the percentage of the total input of radioactivity. Pooled data 

from 3 experiments performed in duplicate and presented as mean ± SEM. (Black) cell uptake, 

(Grey) TCA precipitated, (White) non-TCA precipitated.  
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Figure 16. CXCL11 is degraded by CXCR3 and CXCR7.  

125
I-CXCL11 scavenging via CXCR3 is significantly higher than control condition (empty 

vector without 100 μM CXCL12) (p value < 0.001).
 125

I-CXCL11 scavenging via CXCR7 

without CXCL12 reached significance compared to the condition with 100 μM CXCL12 (p 

value < 0.001).
 
One way ANOVA tests with Bonferroni’s multiple comparison tests were 

performed. Pooled data from 3 experiments performed in duplicate and presented as mean ± 

SEM.  
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Figure 17. Membrane expression of CXCR3A and CXCR7.  

Flow cytometry analysis of membrane expression of CXCR3A and CXCR7 in HEK293 cells. 

Upper left, non specific staining with IgG1- Phycoerythrin (isotype control); Upper Middle, 

endogenous expression stained with CXCR3A-Phycoerythrin. Upper right, transfected 

expression stained with CXCR3A-Phycoerythrin. Lower left nonspecific stain IgG2a- 

Allophycocyanin, Lower Middle endogenous expression stained with CXCR7-

Allophycocyanin. Lower right, transfected expression stained with CXCR7-Allophycocyanin. 

Data show one representative out of three experiments. 
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Figure 18. Decoy properties of chemokine receptors CXCR3A in the presence or absence 

of other ligands.  

HEK293E cells transiently transfected with pcDNA3 (control) or CXCR3A were incubated 

2h30 with 50 pM 
125

I-CXCL11 in the presence or absence of 100 nM CXCL11, CXCL10, or 

CXCL9. After incubation, cells were spun out, and the supernatant was subjected to TCA 

precipitation. Radioactivity associated with the TCA pellet, the non-TCA precipitable fraction, 

and the cells themselves was counted and is presented as a percentage of the total input of 

radioactivity. Samples of each condition were done in duplicate. (Black) cell uptake, (Grey) 

TCA precipitated, (White) non-TCA precipitated. Pooled data from 3 experiments performed 

in duplicate and presented as mean ± SEM. 
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Figure 19. CXCR3A ligands have allotopic properties.  

125
I-CXCL11 scavenging via CXCR3 is significantly higher than control condition (empty 

vector without chemokine) (p value < 0.001).
 125

I-CXCL11 scavenging via CXCR3 with 100 

nM CXCL10 or CXCL9 is significantly higher than control condition (p value < 0.001).
 
).

 125
I-

CXCL11 scavenging via CXCR3 is significantly reduced in presence of 100 μM CXCL11. 

One way ANOVA tests with Bonferroni’s multiple comparison tests were performed. Pooled 

data from 3 experiments performed in duplicate and presented as mean ± SEM.  
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Figure 20. Membrane expression of CXCR3A.  

Flow cytometry analysis of membrane expression of CXCR3A in HEK293 cells Left, IgG1-

Phycoerythrin. Middle, non-transfected labelled with CXCR3A-Phycoerythrin. Right, 

transfected and labelled with CXCR3A-Phycoerythrin. 
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Figure 21. Decoy properties of chemokine receptors CXCR3A, CXCR4 and the 

CXCR3A/CXCR4 heterodimer in the presence or absence of CXCL12.  

HEK293E cells transiently expressing pcDNA3, CXCR3A, CXCR4 or CXCR3A+CXCR4 

were incubated 2h30 with 50 pM 
125

I-CXCL11
 
in the presence or absence of 100 nM 

CXCL12. After incubation, cells were spun out, and the supernatant was subjected to TCA 

precipitation. Radioactivity associated with the TCA pellet, the non-TCA precipitable fraction, 

and the cells themselves was counted and is presented as the percentage of the total input of 

radioactivity. Samples of each condition were done in duplicate. (Black) cell uptake, (Grey) 

TCA precipitated, (White) non-TCA precipitated. Pooled data from 3 experiments performed 

in duplicate and presented as mean ± SEM. 
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Figure 22. CXCL12 does not affect CXCL11 scavenging neither by CXCR3A nor 

CXCR3A/4.  

125
I-CXCL11 scavenging via CXCR3 with or without 100 μM CXCL12 is significantly higher 

than control condition (empty vector without 100 μM CXCL12) (P value < 0.001).
 I125-

CXCL11 scavenging via CXCR3/4 heterodimer in presence or absence of 100 uM CXCL12 is 

significantly higher than control condition (P value < 0.001).
 125

I-CXCL11 scavenging via 

CXCR3 is significantly higher than via the CXCR3/4 heterodimer in presence of 100 μM 

CXCL12 (P value < 0.001). One way ANOVA tests with Bonferroni’s multiple comparison 

tests were performed. Pooled data from 3 experiments performed in duplicate and presented as 

mean ± SEM. 
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Figure 23. Membrane expression of CXCR3A, CXCR4 and CXCR3A/4.  

Flow cytometry analysis of membrane expression of CXCR3A and CXCR4 in HEK293 cells 

Left, IgG1-Phycoerythrin and IgG2-Allophycocyanin. Right, transfected cells labelled with 

CXCR3A-Phycoerythrin, CXCR4-Allophycocyanin and CXCR3A-Phycoerythrin+CXCR4-

Allophycocyanin.  
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3.4 Effects of CXCL4 on CXCR3A 

 

Platelets play a role in hemostasis, but also participate in the inductive phase of inflammatory 

responses [121]. CXCL4 was long time considered as an orphan ligand. Only recently, it has 

been found to bind CXCR3A with a low affinity (order of μM) and its role is still not well 

understood [87]. CXCL4 is a platelet-associated chemokine that modulates tumor 

angiogenesis, inflammation within the tumor microenvironment, and turn tumor growth [122]. 

Released at micromolar concentrations upon platelet activation, CXCL4 represent the most 

abundant protein contained within platelet α-granules [123, 124]. Considering that CXCL4 is 

released in high concentration, we hypothesized that CXCL4 might block chemotaxis via 

CXCR3A. The effect of synthetic ligand on CXCL4 binding to CXCR3A remains unexplored, 

as do the functional consequences of CXCL4 binding to CXCR3A. This is potentially of high 

importance given that plasma CXCL4 levels are increased in acute asthma attacks [97]. 

Therefore, to establish a better understanding of CXCL4-CXCR3A signalling, we investigated 

downstream CXCR3A signaling induced by CXCL4 using BRET assays. These assays 

investigate AMPc concentration and β-Arrestin recruitment. We also investigated whether 

CXCL4 could block degradation of radiolabelled CXCL11 by CXCR3A.  

Out of our BRET assays, we cannot conclude that CXCL4 activates the Gαi subunit 

(inhibiting adenylate cyclase) (Figure 24), nor recruit β-arrestin (Figure 25). The EC50 value 

for CXCL11 was approximately 1.8 nM, which is a little bit smaller than the value obtained 

previously (Table 1), but still is in the single digit nanomolar. In addition, we stimulated cells 

transfected with an empty vector with 100 nM of chemokine and did not observe an 

significant increase in inhibition of adenylate cyclase, showing that what we observed due to 

overexpression of CXCR3A alone (Figure 24). Concerning the chemokine degradation assay, 

a massive concentration of CXCL4 (1 μM) was still not able to compete for radiolabelled 

CXCL11 (Figures 26 and 27).  
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Figure 24. Inhibition of adenylate cyclase following stimulation of CXCR3A by 

chemokine CXCL11 or CXCL4.  

HEK293E cells coexpressing CXCR3A and the EPAC reporter were incubated with indicated 

concentrations of ligand and resulting BRET measured after 10 min at room temperature. 

(Blue) ○ CXCL11, (Black) □ CXCL4, (Red) ∆ vector + 100 nM CXCL4, (Green) ∆ vector 

+ 100 nM CXCL11. Data are means of three independent experiments performed in triplicate 

and presented as mean ± S.E.M. 
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Figure 25. β-Arrestin-2 recruitment to CXCR3A followed by chemokine CXCL11 or 

CXCL4 stimulation.  

HEK293E cells transiently coexpressing CXCR3A-YFP and β-arrestin2-RLuc were incubated 

with indicated concentrations of ligand and resulting BRET measured after 10 min at room 

temperature. (Blue) ○ CXCL11, (Black) □ CXCL4. Data are means of two independent 

experiments performed in triplicate and presented as mean ± S.E.M 
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Figure 26. Decoy properties of chemokine receptor CXCR3A in the presence or absence 

CXCL4.  

HEK293E cells transiently expressing pcDNA3 or CXCR3A were incubated 2 h 30 with 

50pM 
125

I-CXCL11
 
in the presence or absence of 1 μM CXCL4. After incubation, cells were 

spun out, and the supernatant was subjected to TCA precipitation. Radioactivity associated 

with the TCA pellet, the non-TCA precipitable fraction, and the cells themselves was counted 

and is presented as a percentage of the total input of radioactivity. Samples of each condition 

were done in duplicate. (Black) cell uptake, (Grey) TCA precipitated, (White) non-TCA 

precipitated. Pooled data from 3 experiments performed in duplicate and presented as mean ± 

SEM. 
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Figure 27. High concentration of CXCL4 does not block CXCL11 scavenging by 

CXCR3A. 

125
I-CXCL11 scavenging via CXCR3 with or without 1 μM CXCL4 is significantly higher 

than control condition (empty vector without chemokine) (p value < 0.001). One way 

ANOVA tests with Bonferroni’s multiple comparison tests were performed. Pooled data from 

3 experiments performed in duplicate and presented as mean ± SEM.  
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4. Discussion 
 

Since our work investigated different aspects of chemokine receptor biology, we decided to 

discuss these different aspects separately. We are first going to discuss CXCR3A biased 

signaling, followed by the concept of heteromerization and its importance in chemokine 

receptor biology. The potential physiological role and relevance of CXCR3A decoy properties 

will then be covered and finally, we will close the discussion with CXCL4 as a novel ligand 

for CXCR3A.  

4.1 CXCR3A biased signaling 

 

Over the past few years, it became clear that GPCRs are able to activate many different 

signaling pathways. It has also been demonstrated that different ligands of a same receptor 

may have different potencies and efficacies for different pathways. This paradigm, called 

biased agonism, has first been described as a consequence of GPCR complexity and was 

considered as a property of synthetic drugs. This phenomenon has been studied in various 

systems such as the serotonin, opioid, dopamine, vasopressin, and adrenergic receptor systems 

[125-128]. However, whether biased signalling was a property inherent to endogenous 

systems was still unknown. For long, the different endogenous ligands of a same receptor, like 

CXCL9, CXCL10 and CXCL11 for CXCR3, were seen as redundant. Biased signaling has 

extensively been addressed with synthetic drugs, but cannot be investigated in many 

endogenous systems. Because of the promiscuity between ligands and their receptors, the 

chemokine and chemokine receptors represent a unique endogenous system to study biased 

signaling. Now, an increasing number of studies report biased signaling as a mechanism used 

by chemokine receptors for the fine-tuning of different response associated with different 

ligands [64, 75, 129, 130]. 

In the present study, we have addressed whether the different ligands of CXCR3A were biased 

towards different signalisation pathways (Gαi vs β-arrestin). Compared to the full agonist 

CXCL11, we found that CXCL10 and CXCL9 were partial agonists with reduced efficacy 
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and/or potency. We showed that despite the fact that CXCL10 is more potent than CXCL9, 

CXCL9 is more efficacious than CXCL10. However, we did not observe ligand rank order 

shifts in between our BRET assays, contrary to what was previously described for other 

chemokine receptors such as CCR10  [64]. Consistent with others studies investigating 

calcium mobilization, GTPγ
35

S binding assays and migration assays [79, 95, 117, 118], we 

report the following potency rank order: CXCL11 > CXCL10 > CXCL9. We also report the 

following efficacy rank order CXCL11 > CXCL9 > CXCL10. Hence, we observe a difference 

between potency and efficacy rank orders in both assays (Gαi signaling and β-arrestin 

recruitment).  

While the present work was under way, another group also investigated the different responses 

of CXCR3A to its ligands [64]. Using enzyme fragment complementation assays, they showed 

CXCL11 was the most potent and efficacious ligand in Gαi signalling and β-arrestin 

recruitment [64]. Consistent with their results, we did observe CXCL11 as the most potent and 

efficient ligand. Moreover, our results concur with their potency rank order for Gαi signalling 

and β-arrestin recruitment (CXCL11 > CXCL10 > CXCL9) (Figures 5 and 6, Table 1) [64]. 

Interestingly, we also observed a different efficacy rank order in both readouts (CXCL11 > 

CXCL9 > CXCL10) (Figures 7 and 8, Table 2) [64]. Rajagopal et al. stated that a subtle form 

of biased agonism was present because their relative ligand efficacies (compared to the 

maximal response) changed for different signalling pathways [64]. We also observed such a 

difference in efficacies in between ligands. However, the classical view of biased signalling 

involves a rearrangement in rank order of ligand efficacy for different assays. Therefore, we 

cannot conclude we observed biased agonism since we do not observe any efficacy rank order 

shift in between our BRET assays (see EC50 in Table 2).  

Compared to CXCL11, we concluded that CXCL9 and CXCL10 were partial agonists on both 

BRET readouts. Partial agonists are ligands that activate a given receptor but have only partial 

efficacy relative to a full agonist. Comparatively to the full agonist CXCL11, we claim that 

CXCL9 and CXCL10 are partial agonists on CXCR3A. It has been reported that CXCL11 has 

the highest affinity, followed by CXCL10 and CXCL9 [117]. This may in part explain our 
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potency rank order. The difference in signalling efficacy may be explained by the receptor-

ligand interactions in which different ligands stabilize different receptor conformations. It has 

been reported that CXCR3A ligands bind differentially to their receptor [117]. Therefore, it is 

plausible to suggest that CXCR3A adopts different conformations depending on the bound 

ligand. The different conformations adopted by the receptor could imply different potencies 

and efficacies to transduce signal to downstream effectors, like Gαi subunit or β-arrestin.  

Even if we did not observe an efficacy rank order shift, our results are compatible with the 

concept of functional selectivity: different ligands can stabilize different receptor 

conformations leading to different efficacies on various downstream signalling pathways 

[131]. In the case of our β-arrestin recruitment assays, BRET signals depend on orientation 

and distance between the two proteins of interest. Therefore, we could speculate that the 

orientation and the distance between the BRET donor and acceptor were not favorable upon 

CXCL9 and CXCL10 binding to CXCR3A in this specific assay. In other words, CXCR3A-

CXCL10 or CXCR3A-CXCL9 complexes might not be stabilized in a favorable way for 

energy transfer to occur between β-arrestin and the receptor. This may in part explain the 

observed difference in efficacy in between ligands. To support this explanation, it has been 

shown that CXCL10 and CXCL11 have differential binding to CXCR3A receptor states, 

depending if it is coupled or uncoupled to G protein [117]. CXCL10 and CXCL11 also have 

disparate binding sites [70], which strongly suggest they are allotopic ligands of CXCR3A.  

In light of our results, further investigation the CXCR3 biased signaling is required. 

Chemokine receptors are best described as coupled to Gαi subunit. However, chemokine 

receptors are also able of Gαq coupling, leading to PLC activation and an increase of 

intracellular Ca
2+ 

upon receptor activation [132]. In fact, it has been demonstrated that CXCR3 

was able to activate PLC once stimulated with CXCL10 or CXCL11 [133]. Considering this, it 

would be interesting to investigate CXCR3A biased signaling with the intracellular calcium 

biosensor obeline in order to validate previously published data about CXCR3A calcium 

mobilization and PLC activation [79, 133, 134]. We could expect the following potency rank 

order for PLC activation: CXCL11 > CXCL10 > CXCL9. Furthermore, no studies have yet 
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investigated biased signalling of CXCR3B. The difference between splice variants could be 

considered as a logical continuation of our investigation of CXCR3 biased signalling. 

Nevertheless, our results suggest that CXCR3A ligands should not be considered redundant in 

vivo since CXCL9 and CXCL10 are partial agonists: they do not quantitatively induce the 

same signalling as CXCL11.   
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4.2 CXCR3 homo- and heteromerization 

 

Chemokine receptors are potential drug targets considering their role in autoimmune and 

inflammatory diseases [15, 135]. Unfortunately for drug development, chemokine receptors 

can form heterodimers or higher order oligomer complexes. In addition, few approaches can 

study GPCR high order oligomers. For instance, a sequential three-color FRET was used to 

study oligomeric complexes of the α1b-adrenoceptor [136]. Lopez-Gimenez et al. showed that 

the α1b-adrenoceptor was able to form high order oligomers and that disruption of effective 

oligomerization had profound consequences on cell surface expression and function [136].  

Homo/hetero/oligomerization adds another level of complexity, as these structures may be 

harder to target individually and, thus, specifically. Initially, the concept of receptor 

heterodimerization was not as consensual as it is today. In fact, the first widely accepted 

evidence that GPCR heterodimerization could play an important role in GPCR signaling came 

from the GABAB receptors in the 1990’s [137]. The relevance of receptor dimerization for 

their signaling is now a widely accepted. Also, this concept is studied in multiple models such 

as GABAB, taste, adrenergic, opiod, somatostatin, purinergic, and chemokine receptors [137, 

138].  

CXCR3 and CXCR7 share a common ligand, CXCL11. CXCR3 and CXCR4 are co-expressed 

on activated T-cells, natural killer cells, dendritic cells and cancer cells [139, 140]. 

Considering this, we hypothesized that CXCR3 might form heterodimers with CXCR4 or with 

CXCR7. We also hypothesized that CXCR3 heterodimerization with CXCR4 or CXCR7 

would modulate its signaling. A good example of GPCR heteromerization affecting 

chemokine receptor signalisation was described by Levoye et al. [83]. They reported that 

CXCR7 heterodimerizes with CXCR4 and regulates CXCL12-mediated G protein signaling 

[83].  

Here, using BRET titration saturation assays, we demonstrated that CXCR3 could form homo- 

and heterodimer complexes with CXCR4 and CXCR7. Although this did not reach statistical 
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significance, the BRET50 values of CXCR7/7 homodimer was lower than CXCR3/7 

heterodimer and CXCR3/3 homodimer. If BRET50 values were different, we could conclude 

that CXCR7 prefers to form homodimer complexes. The population of heterodimers would 

then be marginal. In some cases, GPCR heteromerization has been shown to be essential for 

the formation of a functional receptor [141]. For instance, the heterodimerization of γ-

aminobutyric acid receptors (GABAB1 and GABAB2) is essential in the formation of a 

functional GABAB receptor [142]. Other receptors, like dopamine receptors, have different 

relative affinities to form homo- and heterodimers. Indeed, it has been showed that dopamine 

receptors D4R form oligomers with different affinities with other dopamine receptors [143]. 

However, this preference for homodimerization over heterodimerization has never been 

described for chemokine receptors. The similarity in our BRET50 values between homo- and 

heterodimers is in accordance with Levoye et al. [83]. They showed similar BRET50 values for 

CXCR7 and CXCR4 homodimers versus CXCR4/CXCR7 heterodimer using BRET titration 

saturation assays [83]. While the present work was under way, Watts et al. published similar 

results assessing heterodimerization between CXCR3/CXCR4 using co-immunoprecipitation, 

time-resolved fluorescence resonance energy transfer, saturation BRET and GPCR-heteromer 

identification technology approaches [80]. In that study, they found comparable BRET50 

values for all CXCR3 and CXCR4 homo- and heterodimer combinations [80]. They also 

found evidence for specific β-arrestin2 recruitment to CXCR3-CXCR4 heteromers in response 

to agonist stimulation [80]. The impact of heteromerization on β-arrestin recruitment or G 

protein activation has not been studied in the present work.  

We are now going to discuss the BRET saturation assay specificity. In the case of CXCR3A/7 

(Figure 11) heterodimer, we observed a straight line for CXCR3A-RLuc/CXCR7-YFP, which 

is interpreted as the absence of heteromers. Once the energy donor and acceptor were inverted, 

we observed a hyperbolic curve for CXCR3A-YFP/CXCR7-RLuc, suggesting 

heteromerization, and thus seemingly at odds with the first result. Even if the CXCR4 crystal 

structure has been reported, it is unknown whether all chemokine receptor C-terminals have a 

determined structure [144]. It is possible that RLuc or YFP fused to the C-terminal of a 

receptor can affect its interaction with other proteins, especially with other receptors nearby. 
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Therefore, we cannot exclude the possibility that fusion proteins impair the formation of 

heterodimers, as their sizes are relatively big and restricting. Still, this observation adds 

specificity and conclusiveness to the BRET saturation assays because it shows that not all 

configurations yield hyperbolic curves (which represent specific interaction between two 

proteins). Thus, the CXCR3A-Rluc/CXCR7-YFP configuration can be seen like a negative 

control. Therefore, we can conclude that not all configurations between energy donor and 

acceptor are permissive and that BRET saturation assays are useful and specific tools to assess 

receptor dimerization.  

What are the biological implications of chemokine receptor heterodimerization? It has been 

shown that CCR2/CCR5/CXCR4 could form heterodimer complexes and that negative 

binding cooperativity occurred between the binding pockets of these chemokines receptors 

highly expressed on leukocytes [145]. Sohy et al. also showed that CCR2 and CCR5 

antagonists inhibit cell migration via the CXCR4/CXCL12 axis, reinforcing the concept of 

cross-inhibition between receptors in the context of heterodimers [145]. Taken together, these 

results illustrate how antagonists targeting one receptor can regulate functional responses of 

another receptor to which they do not bind directly [146]. It has been demonstrated that 

AMD3100, a highly selective CXCR4 antagonist [147, 148], has clinical benefit in the 

treatment of asthma [149]. Interestingly, CXCR4 is not an inflammatory but a homeostatic 

receptor; its anti-inflammatory effects are not quite understood [150]. Of note, CXCR4 is 

widely expressed on T-lymphocytes, B-lymphocytes, monocytes and macrophages, 

neutrophils [151]. For instance, AMD3100 had significant effect in down-regulating the 

inflammation and pathophysiology of the allergen-induced response in a mouse model of 

asthma [149]. It is tempting to suggest that AMD3100 benefits are mediated through 

CXCR3/CXCR4 heterodimers. Considering this hypothesis, questions arise. For example, 

could inhibitors of CXCR4 reduce asthma symptoms strongly related to CXCR3+ mast cells 

[152, 153]?  

What role can CXCR3/CXCR4 heterodimers play in others auto-immune diseases? For 

instance, what role does CCR2/CCR5/CXCR4 plays in RA, an auto-immune disease in which 
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CXCR3 is also strongly involved [154]? It has been reported that most T lymphocytes in RA 

synovial fluids were CXCR3 and CXCR4 positive [155, 156]. Furthermore, several papers 

support the involvement of CXCL12 and its receptor CXCR4 in memory T cell migration in 

the inflamed RA synovium [155]. Interestingly, T140, a CXCR4 antagonist, significantly 

ameliorated clinical severity in collagen-induced arthritis in mice [157]. As perspectives to 

investigate the possible role of chemokine receptor heterodimers in diseases, it could be 

interesting to assess negative binding cooperativity or trans-inhibition between 

CXCR3/CXCR4 complexes. For instance, we could investigate whether AMD3100 or T140 

could interfere with CXCR3 signalling. In the same order of idea, we could investigate 

whether CXCR4/CXCL12 axis can influence CXCR3 signalling through its endogenous 

ligands. The same holds true for CXCR3/CXCR7 heterodimers. The influence of 

CXCR3/CXCR4 heteromerization will further be discussed in the CXCR3 decoy activities 

section. 
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4.3 CXCR3 decoy activities 

 

Chemotaxis is defined as the directed locomotion of a cell from a lower to a higher 

concentration of chemoattractant. Cells reshape this gradient to maintain their locomotion, but 

the mechanisms underlying gradient remodelling are not well understood and are still a matter 

of active research. In fact, this process is studied in various fields from immunology to 

embryogenesis [158-160].  

Here, we asked whether the typical chemokine receptor CXCR3A was capable of CXCL11 

scavenging. We found that CXCR3A is able to degrade CXCL11 to a lower extent than the 

atypical receptor CXCR7. However, in contrast with CXCR3A, CXCR7 is constantly recycled 

to the cell membrane [120]. We will discuss this difference in trafficking below. We were also 

wondered whether CXCR3A ligands could inhibit CXCL11 scavenging. We only found that 

CXCL11 was able to displace 
125

I-CXCL11. Since CXCR3A and CXCR4 are co-expressed on 

activated T-cells, natural killer cells, dendritic cells and cancer cells [139, 140, 161], we asked 

whether the CXCR4/CXCL12 axis could interfere with CXCL11 scavenging via CXCR3A. 

Finally, we did not observe such reduction of CXCL11 degradation in CXCR3A/CXCR4 co-

expressing cells. Previously, only one report indicated CCR2 as a typical receptor capable of 

chemokine scavenging [102], which was recently confirmed by another study [162]. 

Therefore, the discovery of CXCL11 scavenging by CXCR3A is very promising since it is the 

second typical receptor to possess such decoy properties. The biological relevance of 

chemokine scavenging by CXCR3A will be discussed below.  

Since CXCL11 scavenging is preeminent in CXCR7 transfected cells, it is important to think 

about the underlying mechanism of chemokine degradation by a typical chemokine receptor. 

The scavenging of CXCL11 via CXCR3A may be the consequence of CXCR3A degradation, 

followed by chemokine stimulation. Previous findings reported CXCL11 as the most potent 

and efficacious ligand to down-regulate CXCR3A surface expression [163]. On one hand, 

chemokine-induced CXCR3A downregulation occurs rapidly with CXCL11 [163]. On the 

other hand, chemokine receptors are usually recycled to the cell surface within an hour [163, 
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164]. However, in the case of CXCR3A, it has been shown that cell surface replenishment of 

CXCR3A occurred only after several hours in T lymphocytes and CXCR3 transfectants [163]. 

This replenishment was dependent on mRNA transcription, de novo protein synthesis and 

transport through the ER and Golgi [163]. It is tempting to suggest that CXCL11 scavenging is 

the indirect product of CXCR3A degradation. To validate this hypothesis, future experiments 

should use cycloheximide, a protein synthesis inhibitor, in our degradation assays. Contrary to 

the constant recycling of CXCR7 [120], we can suppose that the fate of CXCR3A is to be 

directed towards degradation. Therefore, in the presence of cycloheximide, we would expect 

to observe a diminution over time of CXCL11 scavenging via CXCR3A but not via CXCR7.  

We wondered whether CXCR3A ligands could inhibit CXCL11 scavenging. We observed 

homologous but not heterologous competition (Figures 16, 17). It may not be possible to 

observe heterologous ligand competition because CXCR3A ligands are allotopic (different 

binding sites on CXCR3A) [117]. This implies that, unable to displace CXCL11 from its 

binding pocket, neither CXCL10 nor CXCL9 can inhibit CXCL11 scavenging. It will be 

interesting to use radiolabelled CXCL9 and CXCL10 to further assess the decoy activity of 

CXCR3A. Of note, these radiolabelled ligands are not commercially available. Since 

CXCR3A ligands are allotopic, we could expect the same pattern of homologous competition 

in CXCL9 and CXCL10 degradation assays. However, the inability of CXCR3A to scavenge 

two of its three classical ligands would have tremendous biological implication. It has been 

reported that distinct domains of CXCR3 mediate its functions [95]. For instance, the C-

terminal domain was predominantly required by CXCL9 and CXCL10 for β-arrestin 

recruitment, and the third intracellular loop was predominantly required by CXCL11 for 

internalization [95]. This CXCR3 biased trafficking could explain the hypothetical case in 

which CXCR3A only scavenges CXCL11. If this happens to be true, it could in part explain 

the pathological abundance of CXCL9 and accumulation of CXCR3+ T cells in lymphocyte-

rich gastric carcinoma [165] or in systemic sclerosis [166].  

We are now going to discuss the CXCR3/CXCR4 heterodimer in the context of chemokine 

degradation. Cross-inhibition between chemokine receptors has been observed [145], and we 
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demonstrated CXCR3 heterodimerization with CXCR4. Hence, we asked whether the 

CXCR4/CXCL12 axis could interfere with CXCL11 scavenging via CXCR3A. Considering 

the similar BRET50 values observed for CXCR3A and CXCR4 homo and heterodimer [80], 

we would expect a population composed of half heterodimer (CXCR3A/4, CXCR4/3A), one 

quarter CXCR4 homodimers and one quarter CXCR3A/3A homodimers in cells  transfected 

with equal amounts of each plasmid (Figure 28). Consequently, we expected CXCL12 to 

block or, at least, reduce scavenging by CXCR3A/4 heterodimers. We did not observe such 

reduction (Figures 19 and 20). This suggests the incapacity of CXCR4 to impede CXCR3A of 

CXCL11 scavenging. In perspective, it would be insightful to confirm binding of CXCL11 to 

CXCR3A/4 heterodimers. Since the CXCR4/CXCL12 axis does not interfere with CXCR3A, 

we do not expect to find any difference of CXCL11-binding between CXCR3A or CXCR3/4 

cells. We could also look whether CXCR3A/4 heterodimers are capable of CXCL12 

scavenging. As for the CXCR3/7 heterodimer, it is less tempting to investigate since they both 

have decoy activities.  

 

Figure 28. Probabilities of homo- and heterodimers formation in co-transfected cells. 

 

What is the relevance of gradient remodelling by CXCR3A expressing cells? For instance, 

CXCR7 self-generates a gradient of CXCL12 during embryogenesis. This gradient acts as the 

predominant mechanism by which cells generate robust collective migration [160]. Another 

publication suggested that CXCR7 continuously cycles between the plasma membrane and 

intracellular compartments, while the chemokine cargo is targeted for degradation [120]. In 
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light of these results, CXCR3A decoy properties seem to be different than the ones of CXCR7. 

It is tempting to suggest that CXCR3A expressing cells reshape their own chemokine gradient 

to migrate towards injured sites during the inflammatory/immune response. Moreover, does 

this unusual chemokine degradation occur only in migrating cells, or does it also occur in 

endothelial cells? What is the role played by CXCR3+ endothelial cells highly expressing the 

CXCR3B variant [87]? We could imagine that endothelial cells are involved in the termination 

of the chemoattractant signal. To support this statement, it has been shown that CXCR3B is 

able to inhibit cell migration [87]. We suggest that this inhibition is most probably due to 

chemokine clearance, which affects the concentration gradient necessary for the chemotaxis 

process. In summary, we suggest that endothelial cells are a source of chemokines until 

enough inflammatory cells reached the site of injury. Then, endothelial cells terminate the 

chemoattractant signal in order to limit the inflammatory response and further cell migration 

that could be potentially harmful.  

The decoy properties of cells endogenously expressing CXCR3, most likely activated T cells 

isolated from human peripheral blood, should be further investigated. Finally, it would also be 

important to investigate chemokine degradation in cells expressing endogenously the 

CXCR3B splice variant.  
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4.4 Characterization of CXCL4, a novel ligand of CXCR3 

 

Following platelet activation, CXCL4 is released at high (micromolar) concentrations from α-

granules and promotes leukocytes recruitment [93, 95]. The receptor by which CXCL4 signals 

was for long unknown and its underlying signaling pathways remain to be elucidated. 

Lasagni et al. were first to demonstrate CXCR3B as a functional receptor for CXCL4 [87]. 

They showed CXCL4 able to transduce, at high concentration, apoptotic, but not chemotactic 

signals in human microvascular endothelial cells (HMVEC) [167]. Another group showed 

CXCR3-mediated migration of activated T lymphocytes toward CXCL4 [95]. This CXCL4-

induced chemotaxis was inhibited by CXCR3 antagonist and pretreatment of cells with 

pertussis toxin, a Gαi inhibitor, suggesting the role of the CXCR3 GPCR [95]. Other studies 

showed activation of p38 MAPK and Src kinase in CXCR3A transfected cells followed by 

CXCL4 stimulation [168]. Furthermore, CXCL4 slightly enhanced forskolin-stimulated cAMP 

production in HMVEC [168]. These studies confirmed that CXCL4 activates both CXCR3A 

and CXCR3B. In the light of these results, we hypothesized that CXCL4 could induce a 

cAMP response and β-arrestin recruitment in CXCR3A transfected cells. In addition, we 

investigated whether CXCL4 could inhibit CXCR3A mediated CXCL11 degradation.  

We did not observe any Gαi activation or β-arrestin recruitment to CXCR3 followed by 

CXCL4 stimulation in our BRET assays. Since CXCL4 enhanced forskolin-stimulated cAMP 

production, it would be interesting to investigate whether the CXCR3A/CXCL4 axis signals 

through the Gαs subunit. For instance, the cAMP BRET assay in the absence of forskolin 

might be a good way to assess Gαs signaling. CXCR3/CXCL4 signalling has been observed in 

HMVEC and may not be observable in HEK293E cells. As an alternative, it could be useful to 

consider primary cell lines in order to validate our results. Also, we cannot exclude the 

possibility that conformational changes in the receptor upon CXCL4 binding do not favor 

energy transfer between the donor and acceptor in our BRET assays. As an alternative, we 

could invert YFP and RLuc from both proteins, in the case of β-arrestin2 recruitment assays, 

to see if we can detect such recruitment.  
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Once released from platelets, CXCL4 is present in micromolar concentrations [93]. CXCL4 

avidly binds to glycosaminoglycans but only binds to CXCR3 with a low affinity [87]. 

CXCL4 is ten times less potent than CXCL11: 1 μM CXCL4 is necessary to induce migration 

when it only needs 100 nM for CXCL11 [95]. However, the biological relevance of 

CXCR3/CXCL4 interaction is still important considering the high concentration of in situ 

CXCL4 following platelet activation. Considering this, the competition of CXCL11 with 1μM 

CXCL4 was far from excessive. Previously, it has been described that CXCL10 could not 

compete with CXCL4 in binding assays, suggesting both ligands are allotopic [95]. This might 

explain why we did not see a blockade by CXCL4 on CXCL11 scavenging (Figures 12A and 

12B).  

The CXCR3B variant is specifically expressed on endothelial cells, and most probably 

involved in gradient termination and angiostatic effects during inflammatory states [87]. It was 

suggested that the CXCR3/CXCL4 axis may play a role in T lymphocyte recruitment and the 

subsequent amplification of inflammation [95]. Moreover, it is known that CXCR3B 

overexpression in prostatic cancer cells blocked chemokine-induced cell motility and invasion 

[113]. Therefore, it is tempting to suggest that CXCR3B is capable of CXCL4 scavenging. 

The investigation of CXCL4 scavenging and, most probably, CXCL4 scavenging via 

CXCR3B is surely a promising avenue for further investigations.  
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5. Conclusion 
 

So far, no drugs efficiently target chemokine receptors for the treatment of inflammatory 

and/or auto-immunes diseases [47]. However, this is not a sufficient reason to claim that 

chemokine and chemokine receptors are inappropriate targets [47]. With different examples 

and at different levels, we showed how much more complex the chemokine biology is 

comparatively to what we previously though. Obviously, in order to overcome the challenges 

we face in drug discovery, a better understanding of chemokine and chemokine receptor is 

mandatory. 

 In this present work, we illustrated the complexity of this particular system. For instance, we 

showed that chemokines can act differentially on the same chemokine receptor. We 

demonstrated that different ligands of CXCR3 act differentially by being full agonists 

(CXL11) or partial agonists (CXCL9, CXCL10) in different pathways. In contrast to what was 

previously reported [64], the chemokine receptor CXCR3A does not seem to elicit biased 

agonism in our readouts. 

We also illustrated and discussed about chemokine heteromerization and its tremendous 

potential implications in chemokine biology. For instance, we discussed that different 

receptors can be expressed on a same cell type and that, instead of the classical monomers, 

these receptors could form higher-order complexes.  For instance, CXCR3 can form 

homodimers, but also heterodimers with CXCR4 or with CXCR7.  

We also demonstrated that chemokine receptors can endorse diverse biological functions such 

as chemokine scavenging. According to the literature, the chemokine gradient remodelling is 

almost exclusive to atypical chemokine receptors (ACKRs). Since ACKRs do not mediate 

chemotaxis or classical signaling, their assigned role was to clear or reshape the gradient. 

However, we showed here that the classical chemokine receptor CXCR3A can share this 

function with the ACKR CXCR7 by degrading CXCL11.  
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