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CHAPITRE 6
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6.1 Abstract

The main objective of this letter is to formulate a new approach of learning a Mahalanobis

distance metric for nearest neighbor regression from a training sample set. We propose a

modified version of the large margin nearest neighbor metric learning method to deal with

regression problems. As an application, the prediction of post-operative trunk 3D shapes in

scoliosis surgery using nearest neighbor regression is described. Accuracy of the proposed

method is quantitatively evaluated through experiments on real medical data.

6.2 Introduction

The k-nearest neighbors (k-NN) rule [70] is one of the oldest and simplest methods in sta-

tistical prediction. Nearest neighbor regression consists in assigning to a new data point

the response of the most similar in a dataset [73]. In k-NN regression, the output variable

is predicted as a weighted average of the k nearest observations in a dataset, where the

neighborhood is defined in terms of a chosen distance metric. Applications of k-NN meth-

ods range from computer vision, image retrieval and classification, to face recognition [108],

speech recognition [109], human activity recognition and pose estimation, text analysis, and

wireless sensor networks [110].

One of the key point in nearest neighbor based methods is to define a distance measure

in the input space to identify nearest neighbors, and this mostly depends on the domain ap-

plication. The default distance metric often used is the Euclidean distance. However ideally,

each application requires a specific adapted distance metric since nearest neighbor methods

have been demonstrated to have improved performance when used with a learned appropriate

distance metric from a sample examples. One of the most learned metric is the Mahalanobis

distance, and one of the most widely used Mahalanobis distance learning methods for k-NN
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classification is the large margin nearest neighbor (LMNN) proposed by Weinberger et al.

[75, 77]. Other metric learning methods for classification have also been proposed by differ-

ent researchers such as adaptive metric nearest neighbor (ADAMENN) [78], and discriminant

adaptive nearest neighbor (DANN) [79]. However these approaches have the disadvantage of

requiring more than one parameter to be tuned, which make them less attractive compared

to LMNN. The LMNN method has since been extended to other distances, for example in the

χ2-LMNN [111] where the χ2 histogram distance is used in place of the Mahalanobis distance.

Unfortunately most of the metric learning for k-NN approaches are essentially designed for

classification problems [112]. Although nearest neighbors regression play an important role

in statistical prediction [72], to the best of our knowledge, very few metric learning methods

were proposed for nearest neighbor regression problems. The k-NN regression gives fairly

similar performance as linear regression with respect to the average RMSEs in some appli-

cations, and it would be interesting to design an appropriate metric learning algorithm for

k-NN regression.

In this letter, we propose a metric learning method for k-NN regression. We extend the

LMNN method proposed in [75, 77] to the case of nearest neighbor regression. Although

based on the same framework, however, our method introduces new features to deal with the

specific case of regression, which otherwise can not be addressed in the classical LMNN. We

then apply our model to the nearest neighbor prediction of postoperative 3D trunk shapes of

scoliotic patients.

6.3 Modified large margin nearest neighbor metric learning

Let Dn = {zi = (xi,yi) : xi ∈ X ,yi ∈ Y , i = 1, ..., n} be a dataset where X and Y are some

metric spaces. We will refer to X and Y as the input and response space, respectively. The

desired properties of distance metrics for regression are expressed as follows. Intuitively, in

order to reduce regression prediction error, one may wish that two inputs xi and xj are close

one to another in the input space if their respective responses yi and yj are also close one

to another in the response space. More specifically, we would like, for any triplet of pairs

(xi,yi), (xj,yj), (xl,yl), if xi is much closer to xj than to xl with respect to a distance δX

defined on X then it is likely yi is much closer to yj than to yl with respect to a chosen error

distance δY in the response space. In this case, the proximity order of the triplet is preserved.

6.3.1 Intuition of our modified LMNN

We base our model on the following intuitions to insure an accurate nearest neighbor regres-

sion: (i) each training input xi and its k nearest neighbors should preserve proximity order,
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Figure 6.1 Illustration of the intuition behind the modified LMNN metric learning for re-
gression. The point xj is referred to as the target neighbor. The point xl is referred to as
an impostor since it violates the proximity order preservation (in this case). The training
consists in finding a learned metric δX such that: (1) the target neighbor is pushed closer to
the input query point within a smaller radius after training, (2) impostor is pushed outside
the smaller radius domain by a finite margin.

(ii) for a given triplet (xi,xj,xl), training inputs xl that violate proximity order should be

widely separated from xi in such a way that proximity order is restored. Borrowing from the

same terminology as in [75], for an input xi with response yi and target neighbor1 xj, we call

an impostor any input xl with response yl such that{
δY(yi,yl) > δY(yi,yj)

δX (xi,xl) ≤ δX (xi,xj) + ε,
(6.1)

where ε > 0 is the margin. Specifically, an impostor xl is any input violating proximity

order and that invades the perimeter within a ε-margin defined by any target neighbor xj

of the input xi. We aim to learn a linear transformation of the input space such that the

training inputs satisfy the above mentioned properties. Figure 6.1 illustrates the main idea

behind our modified LMNN metric learning for regression. This is a regression oriented

adaptation of the idealized error reduction scenario of the classical LMNN [75]. It shows how

nearest neighbor regression errors in the original input space are corrected by learning an

appropriate linear transformation. Before learning, a training input has both target neighbor

and impostor in its local neighborhood. During learning, the impostor is pushed outside the

perimeter established by the target neighbor. After learning, the mapped inputs points are

such that there exists a finite margin between the perimeter and the impostor, and proximity

order in both input and response spaces is restored. From the way they are presented, these

1Target neighbors are selected by using prior knowledge (if available) or by simply computing the k nearest
neighbors using Euclidean distance [75].



57

ideas can be cast into the framework of the large margin nearest neighbor and be stated as

two competing terms in our model’s loss function, where one term penalizes large distances

between nearby inputs that preserve proximity order, while the other term penalizes small

distances between inputs which violate proximity order.

6.3.2 Proximity order preservation indicator

The key point of our metric learning approach for regression problems is the introduction of

the proximity order preservation concept. Let us define the proximity order function FM,δM

for a metric space M equipped with the distance δM, as for τijl = (ui, uj, ul) ∈M3,

FM,δM(τijl) = δM(ui, uj)− δM(ui, ul).

For the triplets of pairs of input and response ((xi,yi), (xj,yj), (xl,yl)), we denote tijl =

(xi,xj,xl) and t∗ijl = (yi,yj,yl) as the triplets in X and Y , respectively. Let us define the

triplets labeling function Π as:

ΠY,δY (t) :=

{
1 if FY,δY (t∗) ≥ 0

0 otherwise
(6.2)

The function ΠY,δY assigns 0/1 labels to triplets (xi,xj,xl) based on a chosen distance δY

used for measuring errors in the response space Y . Let CδX be a function on triplets of X
associated to distance δX defined as :

CδX (t) :=

{
1 if FX ,δX (t) ≥ 0

0 otherwise .
(6.3)

We introduce the proximity order preservation indicator νijl, as

νijl = ν(tijl) = C
δ
(0)
X

(tijl)ΠY,δY (tijl). (6.4)

Note that νijl is equal to 1 only if the proximity order of the triplet is preserved. A k-NN

regression using a distance δX with a lower rate of proximity order violation is likely to have

a better accuracy performance (See Appendix, Proposition 1 and Corrolary 1). We use this

to define a cost term that penalizes small distances between input points which violate the

proximity order.
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6.3.3 Loss function

Given a training set of features xi along with their response yi with (xi,yi) ∈ Rdim1 ×Rdim2 ,

(i = 1, . . . , n), we are interested in learning a Mahalanobis distance metric parameterized by

a linear transformation L, i.e.

DL(xi,xj) = ‖L(xi − xj)‖2 = (xi − xj)
>L>L(xi − xj), (6.5)

which allows an accurate nearest neighbor regression. The parameter matrix L is to be

chosen such as to minimize the distance between the mappings of a vector and its k nearest

neighbors

E1(L) =
∑
ij

ηij‖L(xi − xj)‖2, (6.6)

where ηij is given by

ηij =

{
1 if j is a target neighbor of i

0 otherwise.

The parameter L should also allow that the distance of xi from a target neighbor xj be less

than its distance from an incorrect neighbor xl (referred to as an impostor). To this end, we

use νijl in (6.4) and consider minimizing a hinge loss over triplets of input vectors

E2(L) =
∑
ijl

ηij(1− νijl)
[
ε+ ‖L(xi − xj)‖2 − ‖L(xi − xl)‖2

]
+
, (6.7)

where
[
z
]

+
= max

{
z, 0
}

, and ε is the margin. We end up with a total cost function E(L)

that combines the two competing terms E1 and E2 using a weight parameter µ ∈
(
0, 1
)
:

E(L) = (1− µ)E1(L) + µE2(L). (6.8)

Since M = L>L � 0, and by introducing a nonnegative slack variables ξijl for each triplet,

the minimization of the cost function E(L) can be formulated as a convex semidefinite pro-
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gramming problem (SDP),

minimize
M,ξ

(1− µ)
∑

ηij(xi − xj)
>M(xi − xj)

+ µ
∑
ijl

ηij(1− νijl)ξijl

subject to (xi − xl)
>M(xi − xl)

− (xi − xj)
>M(xi − xj) ≥ ε− ξijl,

ξijl ≥ 0,

M � 0.

(6.9)

The SDP problem (6.9) resulting from our formulation has the same form as the one proposed

by Weinberger et al. [75] for their LMNN. However there are some differences in the terms

involved, in particular the introduction of the proximity order preservation indicator νijl (6.4)

in the loss function. Equation (6.9) addresses nearest neighbor regression problems, whereas

[75] aimed to solve only nearest neighbor classification problems.

6.4 Results

Applications to prediction of scoliotic trunk 3D shapes after spine surgery using nearest

neighbor (NN) regression were conducted. For the experiments, some characteristic feature

curves of the human scoliotic trunk surface topography were considered. The so-called back

valley curves were extracted on preoperative and postoperative trunk surfaces. The shape

of this feature curve almost follows that of the spine, but is also influenced by the muscle

surrounding the spine and supporting the trunk in the upright posture. The upper and lower

end points of the curve are anatomical landmarks corresponding to the spinous process of

C7 (seventh cervical vertebra) and L5 (the fifth lumbar vertebra), respectively. This fea-

ture curve has the advantage of capturing the changing taking place in the back from the

preoperative to the postoperative state. It is indeed the feature curve on the trunk surface

whose shape change is the most directly influenced by a spine surgery instrumentation. Fig-

ure 6.2 (Left) shows the back valley curve along the spinous processes of a scoliotic patient

in the preoperative (red) and the postoperative (blue) status overlayed on the patient post-

operative trunk mesh. The associated deformation field is depicted on Figure 6.2 (Right).

A dataset of 141 pairs of scoliotic shapes data, from teenagers aged between 11 − 18 years

old, is considered. Our proposed Mahalanobis distance metric learning is evaluated using

the leave-one-out cross-validation procedure. Each sample point is composed of a pair (the

preoperative and postoperative shapes). The predicted curve can then be compared with
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Figure 6.2 Left: Overlayed back valley curves (preoperative (blue) and postoperative (red))
on a patient surface mesh. Right: Displacement vector field along the back valley curve from
preoperative to postoperative state.

the actual postoperative feature curve and a shape prediction error can be computed. To

evaluate our results, we compute the prediction error in terms of the normalized root mean

square prediction error, which has the advantage of allowing prediction error to be measured

on the same scale for all observations. Quarter polar plots are used to visualize pointwise

prediction errors along the back valley curve. The radius represents errors values while the

angles θ (or the points along the arc) correspond each to the location of points along the

back valley curve, where θ = 0 is the bottom endpoint and θ = 90 is the upper endpoint.

The error unit is relative to the span of the spine, which is set to 1 after a common rigid

registration of all trunk shapes data. Distances with better performances have errors graph

closer to the origin point of the polar plot.

The proposed learned metric is compared with two other metrics: the default Euclidean

distance and an arbitrary Mahalanobis metric which is defined by a random semidefinite

positive matrix. The quarter polar plots of the mean errors are presented in Figure 6.3.

The mean errors for the learned Mahalanobis are less than the ones for the Euclidean and

arbitrary Mahalanobis metrics, all along the back valley, with a maximum mean error (0.043)

attained around the mid-level of the trunk for the learned Mahalanobis and a maximum of

0.055, 0.056 for the Euclidean and arbitrary Mahalanobis respectively attained around the

mid-lumbar level. A maximum error difference between the learned Mahalanobis and the

Euclidean distance is found around the mid-lumbar level (MLL). The mean prediction error

at the MLL level decreased significantly (0.016) between NN prediction using the Euclidean

metric (Mean ± SD: 0.0531 ± 0.037, N = 141) and prediction using learned Mahalanobis

metric (Mean ± SD: 0.0371± 0.0213, N = 141), (two-sample t-test assuming equal variance

[113], p < 0.001). It appears that the NN regression using our learned Mahalanobis metric
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Figure 6.3 Quarter polar plots of the mean pointwise prediction errors distribution along the
back valley curve of N = 141 scoliotic patients. (a) Red: Learned Mahalanobis metric, (b)
Green: Arbitrary Mahalanobis metric, (c) Black: Euclidean metric.

has the lower errors, on average, for the nearest neighbor regression prediction.

We cast our metric learning for nearest neighbor regression as the SDP problem (6.9),

which has the same form as the classical LMNN formulation. However, it is important to men-

tion the main differences. Weinberger et al.’s LMNN was aimed to solve k-NN classification

problems and for that the second term of their loss function contains an indicator (yil) which

expresses whether or not target neighbors have the same label (i.e yil = 1 if and only if yi = yl

and, yil = 0 otherwise). This indicator is no longer relevant in the case of a k-NN regres-

sion problem since the response space is continuous, and had to be replaced by some other

appropriate relevant indicator. Here in our formulation, we make use of a triplet indicator

νijl which expresses whether or not proximity order, under the distance used, between target

neighbors is preserved from the input space to the response space. This indicator is fixed

during the learning process for a given training set, and has the advantage of allowing us to

keep the same form of the metric learning SDP as LMNN in [75], while at the same time

allowing to deal with regression. Our proposed modified LMNN metric learning method

produces a Mahalanobis metric that outperforms the Euclidean metric for nearest neighbor

regression on scoliotic trunk 3D shapes data.

6.5 Conclusion

In this letter, we have presented a new metric learning method for regression. The proposed

method is an extension of the large margin nearest neighbor metric learning method to tackle

nearest neighbor regression problems. It has been successfully applied to the prediction of
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3D trunk shapes data, and the learned metric has significantely improved the accuracy of the

prediction compared to the default Euclidean metric. The modified LMNN described here

could also be applied to general functional nearest neighbor regression.

APPENDIX: Risk of a distance metric for nearest neighbor regression

In nearest neighbor regression, the response estimate ỹ ∈ Y of a new data point x ∈ X , is

given by

ỹ = rNNδX
(x) = yk:xk=NNδX (x), (6.10)

where NNδX (x) denotes the nearest neighbor of x in DXn = {xi : (xi,yi) ∈ Dn, i = 1, ..., n}
with respect to the distance δX . Let (X0, Y0) ∈ Dn such that X0 is the true nearest neighbor

of X in DXn with respect to δX . We define the error errNNδX
(X, Y ) = δY(Y, rNNδX

(X)) =

‖Y − rNNδX
(X)‖. We are interested in selecting a distance δX to reduce the expected error

E[errNNδX
]. From the initial dataset Dn, one can derive a dataset D of {0, 1}-labeled triplets

D = {s =(tijl, λijl) ∈ X 3 × {0, 1},

tijl = (xi,xj,xl), λijl = ΠY,δY (tijl)}.
(6.11)

When CδX (t) 6= λ, a violation of the proximity order occurs. The loss function for the distance

δX is defined for s = (t, λ) ∈ X 3 × {0, 1} as

`(δX , s) = 1{CδX (t)6=λ} = 1− νt, (6.12)

where νt = CδX (t)ΠY,δY (t) is obtained from (6.4). The risk of a distance δX is then defined

as the expected loss :

R(δX ) = E[`] = Ps=(t,λ)∼P ′
{
CδX (t) 6= λ

}
. (6.13)

The key property of distances supporting our metric learning approach is: the lower the prox-

imity order violation rate, the better the nearest neighbor regression. Let us illustrate this

idea on a single triplet. Consider the three points sample setD3 = {(x0,y0), (x1,y1), (x2,y2)},
and let s0 = (t012, λ012), with t012 = (x0,x1,x2) and λ012 = 1. Without loss of generality, let

us choose (x0,y0) as the test point. Suppose that δ
(1)
X and δ

(2)
X are two distances in X such that

`(δ
(1)
X , s0) = 0 and `(δ

(2)
X , s0) = 1, i.e., `(δ

(1)
X , s0) < `(δ

(2)
X , s0). In this case, rNN

δ
(1)
X

(x0) = y1,

rNN
δ
(2)
X

(x0) = y2 and errNN
δ
(1)
X

(x0,y0) = ‖y0 − y1‖ < ‖y0 − y2‖ = errNN
δ
(2)
X

(x0,y0). This

property is formally stated as:

Proposition 1. Let δ
(1)
X and δ

(2)
X be two distances in X with risk R(δ

(1)
X ) and R(δ

(2)
X ) respec-
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tively, such that R(δ
(1)
X ) < R(δ

(2)
X ). Then

E[errNN
δ
(1)
X

] < E[errNN
δ
(2)
X

]. (6.14)

The best distance δX in X is the one with minimum risk. The minimum risk distance δ∗ is

δ∗ = arg inf
δX
R(δX ). (6.15)

and

Corollary 1. For all δX ∈ D,

E[errNNδ∗ ] ≤ E[errNNδX
]. (6.16)

Minimizing the distance risk may allow us to design a metric learning method for regression.
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