The following scientific article was officially published in the journal *Computerized Medical Imaging and Graphics*, published by Elsevier. This article’s citation is as follows:

doi: [10.1016/j.compmedimag.2014.11.002](http://dx.doi.org/10.1016/j.compmedimag.2014.11.002)

The manuscript, as submitted in 2013 by the first author (preprint), is reproduced here, as it appears in the first author’s Ph.D. thesis, entitled *Modélisation physique des tissus mous du tronc scoliotique pour la simulation de l'apparence post-chirurgicale*. The thesis citation is as follows:

© 2013 Kondo Claude Assi. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit: http://creativecommons.org/licenses/by-nc-nd/4.0/
ARTICLE 1: A PHYSICALLY BASED TRUNK SOFT TISSUE MODELING FOR SCOLIOSIS SURGERY PLANNING SYSTEMS

K. C. Assi1,2, S. Grenier1,2, S. Parent2, H. Labelle2, and F. Cheriet1,2

(1) École Polytechnique de Montréal, P.O. Box 6097, Succursale Centre-ville, Montréal, Québec, Canada H3C 3A7
(2) Sainte-Justine Hospital Research Center, 3175 Côte-Sainte-Catherine, Montréal, Québec, Canada H3T 1C5

4.1 Abstract

One of the major concerns of scoliotic patients undergoing spinal correction surgery is the trunk’s external appearance after the surgery. This paper presents a novel incremental approach for simulating postoperative trunk shape in scoliosis surgery. Preoperative and postoperative trunk shapes data were obtained using three-dimensional medical imaging techniques for seven patients with adolescent idiopathic scoliosis. Results of qualitative and quantitative evaluations, based on the comparison of the simulated and actual postoperative trunk surfaces, showed an adequate accuracy of the method. Our approach provides a candidate simulation tool to be used in a clinical environment for the surgery planning process.

4.2 Introduction

Adolescent idiopathic scoliosis (AIS) is a complex three-dimensional deformation of the trunk. In severe cases, a spine surgery treatment is required. Most of the surgical procedures use specialized instrumentation attached to the spine to correct the deformities (Fig. 4.1). One

Figure 4.1 Surgical instrumentation of a scoliotic spine for the correction of spinal deformities. A. Preoperative radiograph. B. Postoperative radiograph.
of the concerns of the patient (and, in fact, a major factor of satisfaction) is the trunk’s appearance after the surgery. In addition to the surgeon’s priorities in the surgery planning process, a tool for simulating the trunk’s postoperative appearance is of importance to take into account the patient’s concerns in the treatment planning.

Aubin et al. [4] have developed a spinal surgery simulation system in the context of the optimal planning of surgical procedures to correct scoliotic deformities. The overall goal of this biomechanical engineering research project is to develop a user-oriented simulator for virtual prototyping of spinal deformities surgeries: a fully operational, safe and reliable patient-specific tool that will permit advanced planning of surgery with predictable outcomes, and rationalized design of surgical instrumentation [3, 4]. It addresses the problems faced by orthopedic surgeons treating spinal deformities when making surgical planning decisions. The developed system is, however, only concerned with the configuration of the spine, and does not furnish any estimate of the effects of the surgical treatment on the external appearance of the trunk. A desirable complement to this spine simulator would be to develop a full trunk model that would allow the propagation of the surgical correction on the spine toward the external trunk surface through the soft tissue deformation.

Physics-based models of deformable objects have been studied since the early 80’s and are common in animation where physical laws are applied to an object to simulate realistic movements. Deformable physics-based models are also used in biomedical applications, in particular for surgery simulation [30]. These applications require visual and physical realism, but the real biomechanical properties involved are not always well known. The two most popular approaches to physically modeling soft tissues are the Finite Element Method (FEM) and Mass-Spring Model (MSM). Commonly used in engineering to accurately analyze structures and continua, the conventional FEM still has a large memory cost and computation times that limit interactive applications. Variants of FEM-based methods have thus been introduced to solve these issues [36, 38, 37]. However most of them are applicable only to linear deformations valid for small displacements. Improvements have been made to include large deformations in real-time [39] but a small number of elements must be considered in order to attain interactivity due to the increased computational cost. Application examples are the simulation of plastic and maxillofacial surgeries [31, 40, 2] and breast reconstructive surgery [41]. The MSM approach is less physically accurate than continuum biomechanical models. Nonetheless, with different stiffness springs, Terzopoulos and Waters [33] animated a face composed of several layers of springs representing the epidermis, dermis, sub-cutaneous connective tissue, fascia and muscles. A generic model was adapted to real digitized faces by an optimization of the masses’ positions using facial features [80]. Koch et al. [31] used a finite element surface connected to the skull by springs to simulate a facial
plastic surgery. The MSM approach has also been used to model hip joint replacement [81]. In general, mass-spring methods have many advantages: simple implementation, intuitiveness, efficiency, good first interactive impression and easy parallelization. On the other hand, classical MSM present some disadvantages: (i) since no volume behavior of the tetrahedra is incorporated into the model, flip-over of springs may possibly occur; (ii) there is no way to control the volume conservation during simulation.

In general, large deformations of soft tissue are dealt with by introducing nonlinearities in the formulation of the tissue properties. Nonlinear elasticity has been proven to yield better results as compared to linear elasticity in the case of large deformations [37, 39]. However, the complexity of the computation is increased with this solution. In this paper, we propose a novel incremental approach for simulating the trunk shape correction that takes into account the large deformations involved in the preoperative-to-postoperative changes, while maintaining the linear approximation. The main idea consists in reducing the nonlinear deformation process into a sequence of small deformations for which the linear elastic behavior holds, so that one can keep the initial linear formalism in the course of the simulation. The method is then applied to a set of real data of scoliotic patients \(n = 7 \) who have undergone spine surgery and for whom preoperative and postoperative data are available.

4.3 Methodology

4.3.1 The scoliotic patients sample

Consenting AIS patients \(n = 7 \) with thoracic (spinal) curve having undergone corrective spine surgery at Sainte-Justine University Hospital Center in Montréal, Canada were considered. The hospital’s Research Ethics Committee has approved the study protocol. The average patient age at the time of surgery was \(13.9 \pm 1.5 \) (mean ± standard deviation) years old, and Cobb angles before surgery averaged \(65.3^\circ \) (standard deviation: \(1.5^\circ \)).

4.3.2 Data acquisition and construction of patient-specific trunk geometric model

A non-invasive active vision system and a calibrated biplanar X-ray imaging system are used respectively to acquire the trunk surface topography and to reconstruct the 3D geometry of the trunk’s bone structures (spine, rib cage and pelvis). The surface geometry of the trunk is acquired using a calibrated system composed of four 3D optical digitizers (Creaform Inc., Levis, Canada), each one comprising a CCD camera and a structured light projector, placed around the patient (Fig. 5.1). The acquisition process, identical for each scanner, consists in projecting and capturing four fringe patterns deformed by the trunk’s external shape. The system then computes, by triangulation, the depth of each surface point relative
to the reference plane of the digitizer. A fifth image, captured without fringes, defines the texture data mapped on the surface. The entire trunk geometry is obtained by registering and merging the partial surfaces obtained by each digitizer. This process takes 4-6 seconds with the patient standing still in the upright position, arms slightly abducted to prevent occluded areas in the field of view of the lateral scanners. The resulting surface mesh (containing 50k-

90k vertices, depending on the patient’s height) was proven to have a reconstruction accuracy of 1.4mm over the whole torso (when applied to a mannequin). The 3D reconstruction of the bone structures (Fig. 5.2) has an accuracy evaluated at 2.1±1.5 mm over a set of 3D positions of identified landmarks [20]. A detailed surface mesh of the patient’s skeletal structures is then obtained by fitting a high-resolution atlas of 3D generic bone structures to the personalized data of the patient using dual kriging. The atlas was created using computed tomography scans of a dry cadaveric specimen and the accuracy of the resulting geometrical model was evaluated at 3.5±4.1 mm [82]. The external trunk surface is then closed and registered with the bone structure data, and a tetrahedral mesh of the whole trunk is thereafter generated using Tetgen [83], a public domain tetrahedral mesh generator based on Shewchuk’s Delaunay refinement algorithm [84].

Figure 4.2 Trunk topography measurement and reconstruction. (A) Experimental set-up at Sainte-Justine Hospital of four Creaform optical digitizers. (B) Example of a Capturor II LF 3D optical digitizer, consisting of a CCD camera coupled with a structured light projector. (C) Set of four fringe images, each offset by \(\frac{1}{4} \) phase, projected by a digitizer onto the back of a mannequin; the fifth image provided the surface texture. (D) Resulting phase image from the four fringe images; surface reconstruction uses the interferometry principle combined with active triangulation. (E) The process of registering and merging the partial surfaces from the different digitizers produces the complete trunk surface.
4.3.3 Numerical simulation of postoperative trunk shapes

We introduce a novel incremental approach for simulating the trunk deformation. Fig. 4.4 represents a flow chart of our postoperative trunk appearance simulation system, where only the key components of the simulation engine are indicated. The process starts with the preoperative data (the bone structures and the trunk surface). From these data, a patient-specific trunk geometry model is built. The resulting model along with the target postoperative internal configuration are then input into the trunk deformation simulator. The simulator outputs a new trunk shape which can then be further evaluated.

4.3.4 Modeling the trunk soft tissue deformation

The surgery of the scoliotic spine consists in attaching one or more metallic rods to the spine and performing certain maneuvers to correct its curvature. As a result of the change in the
spine configuration, one expects the whole trunk (and particularly the external surface) to change accordingly. We consider the human trunk as a deformable continuum occupying a bounded domain $\Omega \in \mathbb{R}^3$, with a continuous boundary Γ_Ω. A two-material body model (consisting in a bone structures region in Ω_b and a soft tissue region in $\Omega_s = \Omega \setminus \Omega_b$) is considered. In the following, spatial domains related to the preoperative trunk will be indicated by the superscript 0, while domains related to the postoperative trunk will be indicated by the superscript 1. One may view the trunk shape changes as follow: an arbitrary point in the trunk at $\mathbf{x}^0 \in \Omega^0$ is moved to a new position $\mathbf{x}^1 \in \Omega^1$, and the overall process induces a change from shape state Ω^0 to shape state Ω^1.

Incremental approach to simulate the postoperative trunk external surface

From now on, we denote by $C(\Omega)$ the space of smooth mappings from Ω to \mathbb{R}^3, and $B(\Omega)$ the subspace of $C(\Omega)$ corresponding to small deformations on Ω. Let $\mathcal{E}(\omega, \Omega^0; f)$ denote the deformation energy required to deform Ω^0 into ω through a deformation $f \in \mathcal{F}$, where \mathcal{F} denotes the space of (smooth) mappings such that

$$\mathcal{F} = \{ f \in C(\Omega) | f(\Omega^0_b) = \Omega^1_b \}.$$

Let us represent the deformation of a scoliotic trunk from the preoperative to the postoperative configurations by $\phi(\mathbf{x})$ for $\mathbf{x} = (x, y, z) \in \Omega^0$. By considering the principle of least action, the state of equilibrium of the postoperative trunk shape model is reached when the deformation energy is a minimum:

$$\begin{cases}
\Omega^1 = \phi(\Omega^0), \\
\phi = \text{argmin}_{f \in \mathcal{F}} \{ \mathcal{E}(\omega, \Omega^0; f) : \omega = f(\Omega^0) \},
\end{cases} \quad (4.1)$$

for an energy functional $\mathcal{E}(\omega, \Omega^0; f)$ to be discussed later (Section 4.3.4). Eq. (4.1) may be rewritten as

$$\Omega^1 = \text{argmin}_{\omega = f(\Omega^0)} \{ \mathcal{E}(\omega, \Omega^0; f) : f \in \mathcal{F} \}. \quad (4.2)$$

While Eq. (4.1) is primarily concerned with the search for the deformation ϕ in the space of smooth mappings \mathcal{F}, Eq. (4.2) processes admissible shapes and selects the optimal one which is the deformed trunk shape at equilibrium. We define the space of mappings \mathcal{U} as

$$\mathcal{U} = \{ \tilde{f} \in C(\Omega) | \tilde{f}(\Omega_b) = \text{Id} \}.$$
where Id is the identity map. Let $\omega = \omega_s \cup \omega_b$ be a trunk shape variable. Let us define the mapping $\tilde{\varphi}$ (relaxation), $\tilde{\varphi}(x)$ for $x \in \omega$, as follows:

$$
\tilde{\varphi} \in \mathcal{U},
\tilde{\varphi}(\omega) = \bar{\omega}_s \cup \omega_b,
\bar{\omega}_s = \arg\min_{\omega^+} \left\{ E(\omega^+, \Omega^0; \tilde{f}) : \omega^+ = \tilde{f}(\omega), \tilde{f} \in \mathcal{U} \right\},
$$

(4.3)

where $E(\omega, \Omega^0; f)$ is the deformation energy model.

We now introduce a novel incremental approach for the simulation of postoperative trunk shape. Let $(t_k)_{k=0,1,2,\ldots,N}$ be a sequence of real numbers such that $t_k \in [0,1]$, $t_{k+1} > t_k$ for $k \in \{0,1,2,\ldots,N-1\}$, $t_0 = 0$ and $t_N = 1$. Let $L^0 = \{l_i^0 \in \Omega^0_b, i = 1,\ldots,n\}$ and $L^1 = \{l_i^1 \in \Omega^1_b, i = 1,\ldots,n\}$ be, respectively, a collection of landmarks on the preoperative bone structures and the collection of corresponding anatomical landmarks on the target postoperative bone configuration. Let \mathcal{S} denote the space of smooth transformations, defined as

$$
\mathcal{S} = \{ f \in C(\Omega) | f(l_i^0) \approx l_i^1, i = 1,\ldots,n \}.
$$

We have $\mathcal{S} \subset \mathcal{F}$. Let \mathcal{G}_0 denote the collection of sequences of transformations $\Phi = (\phi_{t_k})_{k=0,\ldots,m}$, with small increments (See definition in 4.6, Definition 1), such that

$$
\mathcal{G}_0 = \left\{ (\phi_{t_k})_{k=0,\ldots,m} \in \mathcal{G}, \quad m \in \mathbb{N} \mid \phi_{t_0} = \text{Id}_{\mathbb{R}^3}, \quad \phi_{t_m} \circ \phi_{t_{m-1}} \circ \ldots \circ \phi_{t_1} \circ \phi_{t_0} \in \mathcal{S} \right\}.
$$

(4.4)

Our incremental approach defines a sequence of trunk shapes $(\Omega^k)_{k=0,\ldots,m}$, $m \in \mathbb{N}$, moving from the undeformed state Ω^0 to the deformed state Ω^1 based on a sequence of mappings $\Phi \in \mathcal{G}_0$. Let Ω^k_b and Ω^k_s be, respectively, the bone and soft tissue configurations of the trunk shape Ω^k ($\Omega^k = \Omega^k_b \cup \Omega^k_s$) at increment step k, within the sequence starting at Ω^0 under successive deformations. Our method computes Ω^1 as the final shape of the sequence.
In Algorithm (4.5), the first equation refers to the initial state of the trunk, the second one refers to the the indexed trunk shape state at increment step t_k, and the third one states the transition rule from step k to step $k + 1$. Our first analytical result deals with the properties of independence of the final equilibrium state from the chosen sequence $\Phi \in \mathcal{G}_0$. These properties are established by Theorem 1 and Theorem 2 (See 4.6). Our second analytical result establishes that Algorithm (4.5) gives the solution to the problem stated in Eq. 4.2 (See 4.6, Theorem 3). In this paper, we consider a family of thin plate spline mappings, $(\varphi_{t_k})_{k=0,1,...,N} \in \mathcal{G}_0$, associated with the matching of the bone structure landmarks.

The incremental approach proposed in this section is usable for any appropriate deformation energy functional of the trunk. In the next section, we address a specific energy model to be used in the present work.

Deformation energy model

Let us assume that we have a conformal tetrahedral mesh describing the geometry of the anatomical structures of the trunk. We denote the mesh at its rest position as \mathcal{M}^0 and the initial position of each vertex as P_i^0. We denote the vertex position of a deformed mesh \mathcal{M}^1 as P_i. Let us represent the deformation by a displacement vector field $U(x)$ for $x = (x, y, z) \in \mathcal{M}^0$, and we write $f = \text{Id} + U$, where Id is the identity transformation. Given a deformed model \mathcal{M}^1, let us define the displacement vector for each point of the domain by linearly interpolating the displacement $U_i \equiv P_i - P_i^0$ of the vertices inside each tetrahedron. If T_i represents the tetrahedron defined by the four vertices P_j^0, $j = 1, \cdots, 4$, in their rest position, then the displacement vector at a given point $x = (x, y, z)$ is defined as:

$$U_{T_i}(x) = \sum_{j=1}^{4} a_{T_i}^{T_i}(x) U_j,$$

where $a_{T_i}^{T_i}(x)$ are the barycentric coordinates of the point x inside T_i. The deformation energy $W_{T_i}(U)$ of a tetrahedron T_i can be expressed as an expansion over its features (characterized...
by \{\mathbf{P}_T(j), j = 0, \ldots, 3\}, its vertices coordinates) as:

\[W_{T_i} = \sum_j W_{T_i}^j + \sum_{j,k} W_{T_i}^{jk} + \sum_{j,k,l} W_{T_i}^{jkl} + W_{T_i}^{jklm}, \]

where the terms \(W_{T_i}^j, W_{T_i}^{jk}, W_{T_i}^{jkl}, \) and \(W_{T_i}^{jklm} \), are the energy contributions from the nodes, edges, faces (triangles) and volume, respectively. The total deformation energy \(E \) required to deform \(\mathcal{M}^0 \) into \(\mathcal{M}^1 \) is the sum of the energies associated with each tetrahedron:

\[E(\mathcal{M}, \mathcal{M}^0, \mathbf{f}) = \sum_{T_i \in \mathcal{M}} W_{T_i}. \]

Incompressible Tetrahedral Mass System Model

The incompressible tetrahedral mass system model (ITMSM), in its original form, was introduced by Teschner et al. [85]. The model has some similarities with the FEM and MSM approaches, in that it is based on a tetrahedral discretization of the deformed domain. We adapt the original deformable model [85] to take into account the contribution of gravity. The energy \(\mathcal{W}_T \) of a tetrahedron \(T \) in the soft tissue mesh is given by:

\[\mathcal{W}_T = \alpha \bar{E}_G + \bar{E}_D + \epsilon \bar{E}_A + \theta \bar{E}_V \quad (4.6) \]

with \(\alpha = \frac{2gM_0H_0}{k_D} \), \(\epsilon = \frac{k_A}{k_D} \) and \(\theta = \frac{k_V}{k_D} \). The energy terms \(\bar{E}_G, \bar{E}_D, \bar{E}_A \) and \(\bar{E}_V \) are given by:

\[
\begin{align*}
\bar{E}_G &= \sum_{i \in T} \bar{W}_i \quad (4.7) \\
\bar{E}_D &= \sum_{i \neq j \in T} \frac{1}{|K_{ij}|} \bar{W}_{ij} \quad (4.8) \\
\bar{E}_A &= \sum_{i \neq j \neq k \in T} \frac{1}{|K_{ijk}|} \bar{W}_{ijk} \quad (4.9) \\
\bar{E}_V &= \bar{W}_{ijkl} \quad (4.10)
\end{align*}
\]

where \(K_{ij} \) and \(K_{ijk} \) are the collections of tetrahedra in the soft tissue mesh containing edge \(ij \) and face \(ijk \), respectively (\(|K_{ij}| \) and \(|K_{ijk}| \) represent the cardinality of these collections).
\(\tilde{W}_i, \tilde{W}_{ij}, \tilde{W}_{ijk} \) and \(\tilde{W}_{ijkl} \) are given by:

\[
\begin{align*}
\tilde{W}_i &= -\left(\frac{m_i}{M_0} \right) \left(\frac{P_i \cdot z}{H_0} \right) \\
\tilde{W}_{ij} &= \left(\frac{\|P_{ji}\| - D_0}{D_0} \right)^2 \\
\tilde{W}_{ijk} &= \left(\frac{\frac{1}{2} \|P_{ji} \times P_{ki}\| - A_0}{A_0} \right)^2 \\
\tilde{W}_{ijkl} &= \left(\frac{\frac{1}{6} P_{ji} \cdot (P_{ki} \times P_{li}) - V_0}{V_0} \right)^2
\end{align*}
\] (4.11) (4.12) (4.13) (4.14)

where \(P_{ji} = P_j - P_i, \) \(z \) is the vertical upward oriented unit vector and \(m_i \) is the partial mass associated to mass point \(x_i, \) defined as:

\[
m_i = \frac{1}{4} \rho_T V_T,
\] (4.15)

with \(\rho_T \) representing the local density of the tissue and \(V_T \) the volume of tetrahedron \(T. \)

The initial distance or rest length of the edge is denoted by \(D_0, \) \(A_0 \) is the initial area of the triangle and \(V_0 \) is the initial volume of the tetrahedron. The mean tetrahedral mass and the trunk height are respectively \(M_0 \) and \(H_0, \) while \(k_D \) is the stiffness associated to tetrahedra edges (considered uniform throughout the soft tissue). The coefficients \(\theta \) and \(\epsilon \) introduced in Eq. (4.6) are the weights of the different potential energy contributions: \(\theta \) is the stiffness ratio between volume- and distance-preserving energies, while \(\epsilon \) is the stiffness ratio between area- and distance-preserving energies. The coefficients \(\alpha, \epsilon, \) and \(\theta \) are empirically determined. See the properties of the energy model in 4.6 (Lemma 3 and Theorem 4). We coined the name ITMSM for our model due to the tetrahedron volume energy term appearing in the model, which acts as an incompressibility constraint.

4.3.5 Evaluation of the simulation

Evaluations are conducted using the preoperative and postoperative data of scoliotic patients (3D reconstructions of the bone structures and trunk surface geometry acquisitions). First, a 3D visualization allows for a qualitative comparison of the simulated and the real postoperative trunk shapes. Then, the simulation accuracy is evaluated based on the measurement of the back surface rotation (BSR) on the simulated trunk and on the actual postoperative trunk, at thoracic vertebral levels between \(T4 \) (4th thoracic vertebra) and \(T12 \) (12th thoracic vertebra). The BSR index is measured in a series of horizontal cross-sections of the external trunk surface. It is defined as the angle formed between the dual tangent to the posterior
side of a given cross-section and the axis passing through the patient’s anterior superior iliac spines (ASIS), projected onto the axial plane. This trunk asymmetry index is widely considered to be clinically relevant in the study of the scoliotic trunk shape [86]. We exploit Figure 4.5 Graphical user interface of the software tool used to compute the BSR indices from cross-sections at various vertebral levels

the BSR index for our quantitative evaluation as follows. First, by exploiting a common set of radio-opaque markers purposely placed on the skin surface, an elastic registration of the trunk surface geometry with the internal bone structures is performed [87]. Trunk surface cross-sections are then extracted by computing the intersections of the surface topography (mesh) with a set of horizontal planes passing through the centroids of the vertebrae. Finally, the BSR index at each vertebral level is measured from the associated trunk horizontal cross section (Fig. 4.5).

4.4 Results

Simulation results for a patient are presented in Fig. 4.6 where a qualitative comparison of the preoperative trunk surface (Fig. 4.6-A), the simulated postoperative surface (Fig. 4.6-B) and the actual postoperative trunk shape (Fig. 4.6-C) is shown. A visual inspection of the

Figure 4.6 Example of simulation results. (A) Preoperative patient trunk, (B) simulated trunk shape, (C) real postoperative trunk.
results for all the patients in our test set shows a qualitative similarity between the simulated postoperative trunk shape and the real postoperative trunk shape. The overall appearance of the postoperative trunk is qualitatively well reproduced. The region of the back along the spine (back valley) is satisfactorily well reproduced. However, a rib hump is still observable on the simulated trunk surface when compared to the actual postoperative trunk, and the actual shape is less well reproduced in the lumbar region of the back. As well, some discrepancies are noticeable in the upper region of the back around the scapulae.

For the present study, the thoracic region was considered as the main region of interest of the scoliotic trunk, since the rib humps are located in that part of the body. The BSR indices measured at different vertebral levels on the simulated postoperative trunks are compared with those measured on the actual postoperative and preoperative trunks of six patients (Fig. 4.7). For these case studies, which are all characterized by a thoracic spinal curve, the simulated trunks are quantitatively close to the actual postoperative trunk surfaces. This is consistent with the results of the qualitative comparison. The mean absolute error of the BSR index measured on the simulated trunks ranges from $1.20^\circ (\pm0.73^\circ)$ to $3.2^\circ (\pm0.83^\circ)$ in the thoracic region.

The seventh case study is a patient characterized by a double major spinal curve. It is presented separately in Fig. 4.8 since it exhibits a relatively high discrepancy between the simulated and actual trunk shapes, compared to the other cases. The mean absolute error of the BSR index on the simulated trunks, for double major and thoraco-lumbar curves patients, range from $3.1^\circ (\pm1.45^\circ)$ to $5.23^\circ (\pm1.44^\circ)$, in the thoracic region.

4.5 Discussion

In the present work, the BSR index has been considered as an evaluation metric for the postoperative trunk simulation outcomes. This choice is appropriate since the patient’s first concern is for their trunk asymmetry and the BSR quantity has been proven to capture the information related to the rotation of the trunk and the rib hump [86, 87, 88].

A smallest detectable difference of 2.5° for the maximum BSR index was reported by Pazos et al. [88] and therefore it is considered here as a threshold value to judge the accuracy of the simulation with regard to trunk asymmetry. The method proposed in the present work produced simulated postoperative trunks that are not only qualitatively similar to their real counterparts but that also quantitatively fall within the acceptable error range for the BSR index in the thoracic region, as given by the threshold value.

One source of discrepancy in the simulated trunk shapes may be the effect of posture, i.e. differences in standing posture between the pre- and post-operative trunk acquisitions. Simi-
Figure 4.7 BSR indices (in degrees), measured at different vertebral levels from T4 to T12, for six patients. Blue: actual postoperative trunk, green: simulated trunk, yellow: preoperative trunk. Note that the horizontal scales are not the same on all the graphs.
Figure 4.8 Left: Double major curve scoliotic patient (preoperative geometry). Right: BSR indices measured on the actual postoperative trunk, the simulated trunk and the preoperative trunk surface. Blue: actual postoperative trunk, green: simulated trunk, yellow: preoperative trunk.

larly, another factor is possible weight change (i.e. loss or gain) between the preoperative and postoperative acquisitions. Of course, such factors would be difficult to remove totally. However, other sources of discrepancy may be attributed to certain limitations of our approach. Firstly, we considered uniform tissue materials properties throughout the trunk instead of more realistic nonuniform physical properties. Indeed, the soft tissues were approximated by a uniform volumetric mesh and no differentiation was made between actual soft tissue layers (i.e. skin, fat, muscles). This may have affected the accuracy of the simulation. Secondly, materials property coefficients were tuned manually since we have not yet implemented a rigorous method to provide them to the simulator. Finally, a monolithic/non-articulated organization of the bone structures was used, and this does not reflect the exact configuration of the spine.

In future work, some of the present limitations will be addressed. In particular, a personalized tetrahedral mesh can be obtained from MRI images of the trunk, from which the thickness of each tissue layer (skin, fat, muscle) can be extracted. This clinical data will be incorporated into the model and will allow us to simulate the propagation of the spinal correction to the external surface through a mesh composed of three personalized layers. Additionally, we believe that the accuracy of the simulation will be improved by using rigidity constants calibrated from real data of a representative cohort of scoliotic patients with different types of spinal curvature.

In addition, our team is currently developing a non-invasive tool to assess the reducibility of the trunk deformity by using the acquisition of the external trunk surface in voluntary lateral bending position. This could lead to new constraints that will be incorporated into our model to simulate the propagation of the spinal correction through the tetrahedral mesh.
composed of three personalized layers.

4.6 Conclusion

Spinal correction surgery treats deformities of the trunk bone structures. Since the external appearance of the trunk is one of the main concerns of the patient and one of the factors of his/her satisfaction, a surgery planning strategy that takes into account the outcome for the external 3D shape of the trunk would be a significant contribution.

In this paper, we presented an incremental approach to the soft tissue deformation problem for the simulation of the postoperative trunk shape of scoliotic patients. The evaluation of the method was based on the preoperative and postoperative clinical data of scoliotic patients who underwent spine correction surgery. Although the soft tissues of the human trunk were approximated by a uniform volumetric mesh, our method achieves promising results in the simulation of the postoperative trunk surface.

Conflict of interest statement

The authors declare that there are no conflicts of interest.

Acknowledgments

This research was funded by the Natural Sciences and Engineering Research Council of Canada. The equipment was financed by the Canadian Foundation for Innovation. Author 1 was supported, in part, by the Fondation Sainte-Justine and Fondation des Étoiles foundations of Sainte-Justine University Hospital Center. All the authors are grateful to Philippe Labelle, who performed the initial calibration of the data. We would also like to thank Philippe Debanné for his useful comments and for providing some of the data.

APPENDIX: Modeling the trunk soft tissue deformation

Our first analytical result deals with the properties of independence of the final equilibrium state from the chosen sequence of small incremental mappings. First, we introduce the following definition of a sequence of mappings of small increments.

Definition 1. We say that a sequence of mappings \(\Phi = (\phi_{t_k})_{k \in \{0, ..., m\}} \) is of small increments if \(\delta \Phi_{k,k-1} \in B(\Omega) \) for all \(k \in \{1, ..., m\} \), where \(\delta \Phi_{k,k-1} \equiv \phi_{t_k} \circ \phi_{t_{k-1}} - \phi_{t_{k-1}} \). We write: \(\Phi \in G \).

For small deformations of the trunk, we then have:
Theorem 1. Let $Ω^0$ and $Ω^1$ be preoperative and postoperative trunks where $Ω^1$ resulted from a small deformation of $Ω^0$ and let $ℋ = \{h \in C(Ω^0)| h(Ω^0_b) = Ω_b\}$. Then $\tilde{Ω}^* = \tilde{φ} \circ g(Ω^0)$ is independent of g for $g \in ℋ$.

Proof. Let $g_1, g_2 \in B(Ω)$ be two arbitrary smooth and small deformations on $Ω$. Let $Ω_1 = \tilde{φ} \circ g_1(ω^0)$. Then, by definition, $Ω_1^* = \tilde{ω}^* \cup g_1(ω_b^0)$, with

$$\tilde{ω}^* = \arg\min_{ω^+} \left\{ E(ω^+, Ω^0; \tilde{f}) : ω^+ = \tilde{f}(ω), \tilde{f} \in U \right\},$$

Then $ω_2^* = \tilde{φ} \circ g_2(ω^0)$. Then $ω_2^* = \tilde{ω}^* \cup g_2(ω_b^0)$, with

$$\tilde{ω}^* = \arg\min_{ω^+} \left\{ E(ω^+, Ω^0; \tilde{f}) : ω^+ = \tilde{f}(ω), \tilde{f} \in U \right\},$$

Since $g_1, g_2 \in B(Ω)$, we have $g_1(ω_b^0) = g_2(ω_b^0) = ω_b^1$. Thus,

$$\tilde{ω}^* = \arg\min_{ω^+} \left\{ E(ω^+, Ω^0; \tilde{f}) : ω^+ = \tilde{f}(ω), \tilde{f} \in U \right\} = \tilde{ω}^*$$

and

$$ω_1^* = \tilde{ω}^* \cup ω_b^1 = \tilde{ω}^* \cup ω_b^1 = ω_2^*.$$

This establishes the conclusion of Theorem 1.

For large deformations of the trunk, we have:

Theorem 2. Let N_1 and N_2 be two positive integers, and let $G^{(1)} = (g^{(1)}_{t_{k_1}})_{k_1=0,...,N_1}, G^{(2)} = (g^{(1)}_{t_{k_2}})_{k_2=0,...,N_2}$, be two sequences of mappings, with $G^{(1)}, G^{(2)} \in G_0$. Let $g^{(1)} = (\tilde{φ} \circ g^{(1)}_{t_{k_1}}) \circ \cdots \circ (\tilde{φ} \circ g^{(1)}_{t_0})$ and $g^{(2)} = (\tilde{φ} \circ g^{(2)}_{t_{N_2}}) \circ \cdots \circ (\tilde{φ} \circ g^{(2)}_{t_0})$, where $\tilde{φ}$ is defined in section 4.3.4. Then $g^{(2)}(ω^0) = g^{(1)}(ω^0)$.

Proof. Let $γ^{(i)} = g^{(i)}_{t_{N_i}} \circ (\tilde{φ} \circ g^{(i)}_{t_{N_i-1}}) \circ \cdots \circ (\tilde{φ} \circ g^{(i)}_{t_0})$, $i = 1, 2$. Then $g^{(i)} = \tilde{φ} \circ γ^{(i)}$, $i = 1, 2$. By the definition of G_0 and $\tilde{φ}$, we have $ω_b^{*(1)} = γ^{(1)}(ω_b^0) = γ^{(2)}(ω_b^0) = ω_b^{*(2)}$, and $g^{(i)}(ω^0) = ω^{*(i)} =
\(\tilde{\omega}_s^{(i)} \cup \omega_b^{(i)} = \tilde{\omega}^{(i)} \cup \gamma^{(i)}(\omega_b^0)\), with

\[
\tilde{\omega}_s^{(i)} = \arg\min_{\omega_s^+ \in \omega_s^+ \setminus \omega_s^{(i)}} \left\{ \mathcal{E}(\omega^+, \Omega^0; \tilde{f}) : \omega^+ = \tilde{f}(\gamma^{(i)}(\omega^0)), \tilde{f} \in \mathcal{U}, i = 1, 2 \right\}.
\]

Thus, \(\omega_s^{(1)} = \omega_s^{(2)}\). It follows that \(g^{(1)}(\omega^0) = g^{(2)}(\omega^0)\).

Our second analytical result deals with the solution of the problem stated in Eq. (4.2). We have the following:

Theorem 3. For any \(F = (f_j)_{j=0,1,...,m} \in \mathcal{G}_0\), if \(\tilde{\Omega}^*\) is the final deformed shape of the sequence \((\Omega^s)_{j=0,1,...,m}\) produced by Algorithm (4.5), then \(\tilde{\Omega}^*\) satisfies Eq. (4.2), that is,

\[
\mathcal{E}(\tilde{\Omega}^*) = \min_{\omega^* \in \mathcal{F}} \left\{ \mathcal{E}(\omega, \Omega^0; f) : f \in \mathcal{F} \right\}.
\]

In order to prove Theorem 3, we need the following lemmas:

Lemma 1. Let \(F = (f_j)_{j=0,1,...,m} \in \mathcal{G}_0\) be a fixed sequence. Let \(\hat{\phi}_m, \hat{\phi}_{m-1}, \ldots, \hat{\phi}_0 \in \mathcal{U}\). Then \((\hat{\phi}_m \circ f_{t_m}) \circ \cdots \circ (\hat{\phi}_0 \circ f_{t_0}) \in \mathcal{F}\).

Proof. Let \(h = (\hat{\phi}_m \circ f_{t_m}) \circ \cdots \circ (\hat{\phi}_0 \circ f_{t_0})\). Then \(h\) is smooth since the composition of smooth functions is smooth. Furthermore, \(h \in \mathcal{F}\) since \(\hat{\phi}_j |_{\omega_b^0} = \text{Id}\), and we have \(h(\Omega_b^0) = (\hat{\phi}_m \circ f_{t_m}) \circ \cdots \circ (\hat{\phi}_0 \circ f_{t_0})(\Omega_b^0) = f_{t_m} \circ \cdots \circ f_{t_0}(\Omega_b^0) = \Omega_b^1\).

The next lemma states that any smooth function can be expressed as the composition of a sequence of small deformations.

Lemma 2. Suppose \(F = (f_j)_{j=0,1,...,m} \in \mathcal{G}_0\) is given. For any \(f \in \mathcal{F}\), there exists \(\hat{\phi}_m, \hat{\phi}_{m-1}, \ldots, \hat{\phi}_0 \in \mathcal{U}\) such that \(f = (\hat{\phi}_m \circ f_{t_m}) \circ \cdots \circ (\hat{\phi}_0 \circ f_{t_0})\).

Proof. Let us consider an arbitrary \(\hat{\phi}_m, \ldots, \hat{\phi}_0 \in \mathcal{U}\) (for example, one can consider \(\hat{\phi}_m = \cdots = \hat{\phi}_0 = \tilde{\phi}\) where \(\tilde{\phi}\) is defined in section 4.3.4). Let us define \(f_m = f_{t_m} \circ (\hat{\phi}_{m-1} \circ f_{t_{m-1}}) \circ \cdots \circ (\hat{\phi}_0 \circ f_{t_0})\). Then \(\tilde{\phi}_m = f - f_m \in \mathcal{U}\) (small deformation and \(\tilde{\phi}_m |_{\omega_b} = \text{Id}\)), and we have \(f = \tilde{\phi}_m \circ f_m\) which has the desired form.

Finally, let us prove that \(\tilde{\Omega}^*\) produced by Algorithm (4.5) satisfies Eq. (4.2). Let us write \(\phi^* = (\tilde{\phi} \circ f_{t_m}) \circ \cdots \circ (\tilde{\phi} \circ f_{t_0})\). Then, from Algorithm (4.5), we have \(\tilde{\Omega}^* = \phi^*(\Omega^0)\). By Lemma 2, for any \(f \in \mathcal{F}\), there exists \(\hat{\phi}_m, \hat{\phi}_{m-1}, \ldots, \hat{\phi}_0 \in \mathcal{U}\) such that \(f = (\hat{\phi}_m \circ f_{t_m}) \circ \cdots \circ (\hat{\phi}_0 \circ f_{t_0})\). The mapping \(\phi^*\) produces the sequence of shapes \((\tilde{\Omega}^s)_{j=0,...,m}\) to which is associated the sequence
of energies $E_0^*, E_1^*, \ldots, E_m^*$. On the other hand, f (through its expansion) produces the sequence of shapes $(\tilde{\Omega}^t_j)_{j=0,\ldots,m}$ to which is associated the sequence of energies $\bar{E}_0^*, \bar{E}_1^*, \ldots, \bar{E}_m^*$. From the definition of $\tilde{\varphi}$, we have $E_j^* \leq \bar{E}_j^*$, $j = 0, \ldots, m$. Thus, it follows that

$$E(\bar{\Omega}) = E(\bar{\Omega}^t_m) \leq E\{\omega : \omega = f(\Omega^0), f \in \mathcal{F}\}.$$

This establishes the conclusion of Theorem 3.\qed

The energy model presented in the paper has the following property:

Lemma 3. The energy functional $E(\Omega, \Omega^0, f)$, given by Eq. (4.6), is (strictly) convex.

Proof. The energy E is a superposition of convex functions. It follows that E is convex. \qed

It follows that the trunk shape obtained by solving the optimization problem has the following property, stated as a theorem:

Theorem 4. The optimal shape from Eq. (4.2), associated with the energy functional from Eq. (4.6), is unique.

Proof. Since the energy functional is convex, a local minimum is also a global minimum. The conclusion of Theorem 4 follows, since the global minimum of a convex functional is unique. \qed
Références

