Université de Montréal

Trois Essais dans I’ Analyse des Fluctuations Economiques
par

Haldun F. Sarlan

Département des sciences économiques
Faculté des arts et des sciences

These présentée a la Faculté des études supérieures
en vue de I'obtention du grade de
Philosohiae Doctor (Ph.D.)
en sciences économiques

Juin 1997

©Haldun F. Sarlan, 1997



Page d’identification du jury
Umniversité de Montréal
Faculté des études supérieures
Cette these intitulée:
Trois Essais dans 1" Analyse des Fluctuations Economiques
présentée par

Haldun F. Sarlan

a été évaluée par un jury composé des personnes suivantes:

These aCCePLEE 1€: ....oovviiiiiiiiececeeee e

président du jury

.........................................................

directeur de recherche

.................................................

membre du jury

...........................................................

examinateur externe

....................................................

représentant(e) du doyen

.............................................




Summary

The analysis and characterization of economic fluctuations constitutes one of the
fundemental areas of research in macroeconomics. This thesis consists of three essays
on the analysis of economic fluctuations. The main objective of this dissertation is to
propose new ways of analyzing the persistence and cyclical properties of fluctuations
in economic variables. The essays aim to improve our understanding on the nature
of fluctuations by providing new desciptive techniques for the measurement and
interpretation of economic fluctuations. In the first two essays, we propose a new
approach that measures the persistence of economic fluctuations. The third essay
relates to the analysis of periodicities in turning point chronologies.

In the first essay, we propose an alternative approach to the assesment of per-
sistence in economic fluctuations. After criticizing the traditional approach which
is based on looking at the effect of shocks on forecasts at different horizons, we
propose instead to look at return (or crossing) probabilities as a way to assess the
extent to which fluctuations should be taken as “permanent”. Similar to the ruin
problem of a gambler, the current fluctuation is viewed as an initial capital and we
then measure the probability that the fluctuation not be cancelled by future fluctua-
tions. We propose estimators of non-return (or non-crossing) probabilities and study
their asymptotic distributions. Proposed estimators remain invariant with respect to
monotonically increasing trasformations of data. The examination of quarterly U.S.
postwar data shows that fluctuations in real GNP have probability 4/5 to persist at
least one quarter and probability 1/2 to persist 10 years. There is no qualitative dif-
ference between “trend stationary” and “integrated processes”: return probabilities
simply tend to be somewhat larger for the second class of processes.

In the second essay, we extend our approach to the measurement of economic
fluctuation persistence to the case where the observations are unequally spaced with
random occurence dates. The basic difficulty in evaluating the persistence of ir-
regular observations is the fact that the dates of the observations are random. We

propose a notion of persistence (non-return) probability at different horizons which



is applicable in that case and define natural estimators for these probabilities. The
proposed measure of persistence preserves invariance properties. Furthermore, it
does not require arbitrary data discretization procedures which induce spurious per-
sistence at seasonal frequencies. As an application, we consider the real time bid
and ask quotes on USD/DM, USD/JY and JY/DM exchange rates in worldwide
foreign exchange rates markets (Olsen & Associates, HFDF dataset). Speculators
acting in these markets are viewed as gamblers who take decisions to buy or sell
currencies by observing continuously (bid/ask) quotes. In these data, we find that
fluctuations in exchange rates have less than 1/2 probability to survive more than
five minutes. After 90 working days, these probabilities do not tend to zero which
support the hypothesis that the market does have long memory.

In the third essay, we suggest applying spectral methods on business cycles char-
acterized by turning point chronologies. Cyclical chronologies are viewed as a re-
alization of a random variable over a discrete space, usually two states, resulting
in an alternating sequence of expansions and recessions like the one produced by
the NBER, which covers a sample of monthly observations starting in 1854. Ap-
plying spectral methods to such discrete processes provides an easy tool to assess
the similarities and differences between alternative reference chronologies. Indeed, a
formal comparison via coherence can inform us how the two chronologies are related.
Moreover, using the algorithm proposed by Bry and Boschan, we can date peaks
and troughs in a set of individual time series like the prices or monetary aggregates,
allowing us to study the comovements between the process identified by the NBER
chrononlogy and the turning point process associated with any individual series.
Such analysis allows us to describe the association of cycles between different series
measuring real activity and monetary aggregates in a very novel perspective. The
spectral density estimates of business cycle chronologies show multiple pics within
the conventional business cycle band. Furthermore, the Walsh-Fourier spectrum
presents additional pics. The presence of multiple pics is then attributed to the

caracteristics of cycles before and after World War II.



Résumé

L’analyse et la caractérisation des fluctuations économiques constituent des themes
fondamentaux de la macro-économie. Les deux premiers essais de cette thése abor-
dent le probleme de persistance des fluctuations économiques et le troisieme essai
concerne la periodicité des points de retournement des variables macro-économiques.
Les définitions préliminaires de ces deux aspects des fluctuations économiques seront
éclairantes pour encadrer le contenu des esssais et préciser Penvergure des contri-
butions. Premiérement, une fluctuation économique est persistante si I'effet du
changement ne disparait pas dans I’horizon de la prévision. Inversement, elle est
non-persistante si l’effet du changement disparait dans un horizon proche. L’analyse
de la persistance a une importance primordiale dans la compréhension de la nature
des mouvements économiques ainsi que dans ’évaluation des politiques économiques.
Deuxiemement, les théories de fluctuations économiques suggerent que les économies
de marché traversent des périodes d’expansions et de récessions récurrentes et non-
périodiques. Autrement dit, les fluctuations d’une période d’expansion n’ont pas le
méme degré de persistance que celles qui se produisent au cours d’une récession. Un
processus stochastique est périodique s’il existe une corrélation importante entre les
valeurs de différents délais. L’analyse de la périodicité des points de retournement
souleve l'importance des méchanismes d’impulsion-propagation et la stabilité des
politiques macro-économiques.

Les contributions de cette thése consistent en deux nouvelles approches. Dans
les deux premiers essais nous proposons une approche probabiliste afin de mesurer le
degré de persistance des fluctuations économiques : le premier de ces essais aborde
le cas des processus en temps discret et le second le cas des processus en temps
réel c.a.d. observations avec des dates irrégulieres. Dans le troisieme essal, nous
proposons une approche séquentielle afin d’analyser la périodicité des points de re-
tournement. Chacun de ces essais est constitué d’une section empirique qui utilisent
des bases de données populaires et intéressantes. Les résultats empiriques obtenus

sont riches et concluants et permettent des nouvelles interprétations des fluctuations



macro-économiques et financiéres.

Dans le premier chapitre, nous proposons une approche probabiliste afin de
mesurer la persistance des fluctuations. Cette appoche amene deux contributions
originales dans |’analyse de la persistance : 1'un au niveau de la conceptualisation
et l'autre au niveau de la mesure. La persistance (non-persistance) d’une fluctu-
ation est considérée comme un phénomeéne de non-annulation (annulation) d’un
changement a la hausse ou & la baisse du processus. Une fluctuation est donc per-
sistante (non-persistante) si le processus ne retourne pas (retourne) & sa position
initiale dans le future. Etant donné que les mouvements futures du processus ne
sont pas observés, il sera préférable d’avoir une mesure probabiliste d’annulation
(non-annulation) d’une fluctuation. La persistance (non-persistance) est mesurée
en estimant la probabilité que la fluctuation n’ait pas été annulée (ait été annulée)
par des fluctuations futures.

La majorité des débats concernant la persistance se préoccupent de savoir de
combien le choc dans I’output agrégé va affecter les prévisions optimales dans un
horizon infini (Nelson et Plosser, 1982). Si la réponse & cette question est zéro,
les agrégats macro-économiques seront mieux représentés par des fluctuations au-
tour d’une tendance déterministe. Néanmoins, si la réponse est non-nulle, il sera
préférable de les représenter par une marche aléatoire additionnée d’une composante
stationnaire. Par example, Campbell et Mankiw (1987) concluent qu’une innovation
d’un pourcent dans le PNB réel change les prévisions de ce dernier de plus d’un pour-
cent. D’autre part, Clark (1987) et Watson (1986) conlcuent qu’un pourcentage du
choc engendre moins d’un pourcentage de changement dans Poutput. Les résultats
empiriques qui découlent de ces études et plusieurs d’autres sont ambigus et il est
fort probable que I’activité économique soit représentée par une classe de processus
qui soit différente de celles que I'on a considérées jusqu’a maintenant, Christiano and
Eichenbaum (1990). En particulier, la composante cyclique semble plus faible que
la composante de marche aléatoire. En conséquence les fluctuations économiques

ressemblent aux jeux de hasard (Fisher, 1925). Cette proposition a une importance



capitale en ce qui concerne les prévisions et évaluations des politiques économiques.
En effet les changements permanents d’aujourd’hui auront alors des effets amplifiés
dans un futur lointain tandis que les changements temporaires auront des effets qui
disparaitront graduellement dans un futur proche. Cette facon d’évaluer la perma-
nence des chocs est équivalente & une simulation incompatible avec la structure du
processus dans laquelle les valeurs de tous les chocs futurs sont fixées & zéro. Il est
clair que si I’économie subit un changement structurel, il n’y aura aucune raison de
croire que le modele retenu expliquera pertinemment le processus de génération des
chocs (Lucas, 1973).

L’approche probabiliste change la formulation de la quesiton traditionnelle. la
question consiste a connaitre la probabilité de persistance d’une fluctuation durant
I’horizon de prévision. Cette question s’inspire du probléme de la ruine de la théorie
classique des marches aléatoires. Similaire au probléme de la ruine, les fluctuations
économiques peuvent étre vues comme les gains et les pertes d’un joueur de hasard
qui débute le jeu avec un capital pouvant possiblement étre négatif. La perte de cette
richesse se termine avec la ruine du joueur. Cependant, les acquisitions de capital
tout au long du jeu peuvent retarder ou accélérer la durée du jeu. Il s’agit donc d’un
concept dynamique des fluctuations économiques et de leurs mécanismes d’auto-
propagation : les fluctuations peuvent avoir des effets transitoires si les fluctuations
futures réduisent suffisamment I’effet de la premiére impulsion ou bien elles peuvent
avoir des effets permanents si le flux des fluctuations futures prolongent 'impact de
Pimpulsion initiale. Dans la suite, nous proposons des estimateurs de ces probabilités
et étudions leurs distributions asymptotiques.

Les résultats empiriques concernant ’économie des E.U. d’aprés la Seconde
Guerre Mondiale suggerent qu’une fluctuation dans le PNB réel a une chance de
plus de 4/5 de persister durant un trimestre et une chance de plus d’1/2 de per-
sister durant dix ans. Les fluctuations autour de la tendance séculaire et au-
tour de la moyenne ont des probabilités de persistance statistiquement similaires

ces probabilités ne dépassent pas 1/4 sur un horizon de dix ans. Nous four-



nissons des probabilités de persistance conditionnelles aux périodes d’expansions et
de récessions. Nous examinons la persistance des fluctuations de plusieurs aggrégats
macro-économiques incluant la consommation, I'investissement, les prix, 'inflation,
le taux d’intérét, 'emploi, le taux de chomage et les indicateurs financiers. Con-
trairement aux mesures de persistance traditionnelles, comme celle du rapport des
variances proposée par Cochrane (1986), nos résultats révelent différents degrés de
persistance.

Le deuxieme chapitre est une extension du premier essai. Nous proposons des
mesures de persistance pour des observations qui ne sont pas équidistantes dans le
temps. Cette situation est trés courante pour des séries macro-économiques et en
particulier pour des séries financieres. La difficulté dans 1’évaluation de la persis-
tance des fluctuations non-équidistantes est que, pour un horizon de la prévision fixe
le nombre de fluctuations futures est lui-méme un processus aléatoire. Dans ce cas-
ci, les estimateurs du premier chapitre ne sont plus applicables. Nous surmontons
cette difficulté en introduisant des mesures de persistance qui ne dépendent pas de
la durée des mouvements futures du processus. Nous proposons des estimateurs de
ces probabilités et étudions leurs propriétés. Cette fagon d’évaluer la persistance des
fluctuations en temps réel souleve deux avantages qui valent la peine d’étre men-
tionnés. D’abord, comme dans le cas des mesures de persistance en temps discret,
les estimateurs demeurent invariants par rapport aux transformations monotonique-
ment croissantes du processus. Deuxiémement, par construction, ils ne nécéssitent
aucune procédure de discrétisation des observations qui induisent des persistances
fausses dans des fréquences saisonnieres, Wasserfalen et Zimmerman (1985).

Les resultats empiriques de ce chapitre concernent le marché mondial des taux de
change. Une des caractéristiques importante de ce marché est que les négociations
se font sur un réseau télé-électronique ouvert 24h/24h & travers le monde. Les par-
tipants du marché, les grandes banques internationales proposent des prix qui appa-
raissent instantanément sur les écrans électroniques. Les instants de communication

(avec une précision de 1/60 de la minute) et les propositions de prix forment une in-



formation pour tous les participants potentiels du marché. Similaire au probleme de
la ruine mentionné ci-haut, les spéculateurs de ces marchés sont considérés comme
des joueurs de hasard qui prennent des décisions d’achats ou de ventes des monnaies
étrangeres. La question d’intérét est de savoir la probabilité de persistance d’une
fluctuation dans le taux de change pour différents horizons de prévision. Nous con-
sidérons trois taux de change: dollar americain versus mark allemand, dollar versus
yen japonais et mark versus yen pour la période allant du ler octobre 1992 au 31
septembre 1993. Les resultats empiriques suggerent qu’une fluctuation dans le taux
de change dollar/mark a 1/10 chance de persister dans les cing premiers minutes
suivant la fluctuation. La probabilité de persistance atteint les 1/20 et 1 /40 respec-
tivement pour les taux de changes dollar/yen et mark/yen. Apreés les 90 journées du
marché, ces probabilités ne s’annullent pas qui confirment I’hypothése de la mémoire
longue des taux de changes.

Dans le troisieme chapitre, nous proposons d’analyser les fluctuations économi-
ques a travers le spectre de la chronologie des points de retournement des séries
temporelles. Notre objectif est de fournir une méthode qui sera capable d’identi-
fier la périodicité des points de retournements. Un spectre d’un processus spécifie
la contribution de chaque fréquence & la variance totale. La représentation spec-
trale des variables macro-économiques correctement désaisonnalisées a une pente
décroissante aussi longtemps que la fréquence augmente (Granger, 1966). Un pic
dans des basses fréquences indique une persistance & longue-terme alors qu’un pic
dans la tranche des fréquences des cycles économiques correspondant aux périodes
d’un jusqu’a dix ans (Burns et Mitchell, 1946) indique un comportement cyclique
de DPactivité économique. La majorité des variables macro-économiques ont des
composantes cycliques, Sargent et Sims (1977). Dans ce troisieme essai, les dates
de retournement d’un cycle, c.a.d. les périodes d’expansions et de récessions sont
considérées comme des variables connues, soit par exemple a partir des annonces
publiques du “National Bureau of Economic Research” ou soit & partir d’un al-

gorithme de datation des points de retournement, Bry et Boschan (1971). Nous



construisons des variables binaires qui dépendent de 1’état cyclique de I’économie :
expansions ou récessions. Etant donné que chaque cycle a un sommet et un creux
avec une distance d’au moins six mois de durée, ce processus binaire représente des
séquences de “+1” et de “-1” - similaire aux circuits on/off - d’au moins six mois
consécutifs avec des croisements de zéro qui corréspondent exactement aux dates
des points de retournement prédéterminés. Ce processus localement linéaire et sans
tendance fait ’objet du troisiéme essai.

Les densités spectrales des processus filtrés aux points de retournement sont
estimées en utilisant les transformations de Walsh basées sur les fonctions qui sont
des oscillations rectangulaires similaires aux fonctions sinusoidales utilisées pour
des transformations de Fourier. Nous présentons les estimations spectrales de deux
types de transformations, Walsh et Fourier comme deux méthodes complémentaires
plutdt que compétitives. Toutefois, les transformations Walsh s’averent adéquates
pour des processus discrets ou qualitatifs, Beauchamp (1984) et Stoffer (1991).

Les spectres des chronologies indiquent des pics multiples localisés dans une
bande de fréquence plus large que celle suggérée par la théorie conventionnelle. A for-
tiori, les spectres de Walsh-Fourier présentent des pics additionnels. La présence de
pics multiples est attribuée aux caractéristiques des cycles des périodes précédant et
suivant la Seconde Guerre et aux mécanismes d’impulsion-propagation intrinseques
a chaque période. Nous évaluons les similarités et les différences entre les chronolo-
gies alternatives. Ensuite nous mesurons les mouvements communs entre les points
de retournement déterminés par un algorithme formel et la chronologie proposée par

les comités de sélection du “National Bureau”.
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Chapter 1

Persistence Measures Based on
Return Probabilities

With Macroeconomic Applications

(in collaboration with Jean-Marie Dufour)

1.1 Introduction

Since the earlier 1980’s, the authors have been opposed to classical business cycle
theories which suggest that a given fluctuation in aggregate output will necessarily
be reversed through trend. Instead, they have argued that the fluctuations are
persistent and there is no sense in which recessions or expansions are temporary.
The persistence of shocks in a time series is typically measured by looking at the
effect of these shocks on the forecast of a given time series at long horizons. More
precisely, the effect of a shock is deemed to be “permanent” if changes in forecasts
associated with a shock do not tend to vanish as the forecast horizon increases.
Therefore, the forecasts of all future values are modified by an amount which does
not go to zero as the forecast horizon goes to infinity. It is easy to see that the same

property holds for general integrated processes, see Beveridge and Nelson (1981).
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This way of assessing the permanence of shocks is equivalent to a counter-factural
simulation where the values of all future shocks are set to zero. Obviously, if the
distribution of future shocks suddenly became degenerate at zero, this would rep-
resent a major structural change and there would be no reason to expect that the
model considered be relevant (Lucas critique)!. In this paper, we propose a different
“more realistic” way of assessing the permanent character of fluctuations or (shocks),
which is based on the idea of return (or crossing) probabilities. More precisely, the
persistence (non-persistence) of a fluctuation is considered as the non-annulation
(annulation) of an upward or downward change in economic activity. We then mea-
sure the persistence (non-persistence) of a fluctuation by estimating the probability
that it has not been cancelled (has been cancelled) by future fluctuations. The mo-
tivation behind this idea goes back to the classical ruin problem of a gambler in a
random walk theory. The present fluctuation is viewed as the initial (possible nega-
tive) capital of an economy. We introduce dynamic in the time evolution of shocks
by asking whether this initial capital (fluctuation) is or is not ruined by the future
capital flows (fluctuations). More precisely, we propose to measure the permanence
of shocks by computing the probability that a given fluctuation in a time series not
be cancelled by future fluctuations.

The basic advantage of proposed estimators is the invariance with respect to
monotonically increasing transformation of data. A well-known example of such
transformation is the natural logarithm of GNP. Since the estimators of persistence
probabilities are based upon the sign transformation of fluctuations, taking the log-
arithm of observations does not affect the value of estimated probabilities. Other
persistence measures, for instance Cochrane’s (1988) variance-ratio procedure and
Campbell and Mankiw’s (1987) impulse-response analysis which is based on para-

metric shock generating functions are definitely affected by increasing transforma-

1The critique is based on the following simple syllogism: “given that the structure of econometric
model consists of optimal decision rules vary systematically with changes in the structure of series
relevant to the decision maker, it follows that any change in policy will systematically alter the

structure of econometric models”.
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tions. Furthermore, unlike the impulse-response analysis, the return probabilities do
not require model building and selecting procedures prior to the persistence analysis.

The results in this paper are closely related on the theory of random walks for
integers, which use the frequency of level (or zero) crossings to test for a unit roots
in a given time series. For example, Feller (1971), Granger and Hallman (1991)
and Feuerverger et al. (1994) exploit the integer properties of a random walks by
making use of a number of level (zero) crossings. It is also akin to various sign-based
statistical methods in econometrics and time series. For further work and references
in this area, the reader may consult Dufour (1981), Dufour, Lepage and Zeidan
(1982), Dufour and Hallin (1991), and Campbell and Dufour (1991, 1995, 1997).

The persistence of fluctuation in macroeconomic aggregates have been subject of
large literature. Majority of debates concerning the persistence aim to measure effect
of a shock on the forecasting horizon. If a shock does not affect optimal forecasts
of processes it was concluded that macroeconomic aggregates are well represented
by fluctuations around deterministic time trend, otherwise they are represented
by a random walk plus a stationary composant, Nelson and Plosser (1982). For
instance, Campbell and Mankiw (1987) conclude that one percent innovation to
GNP changes the forecast more than a percent. Clark (1987) and Watson (1986)
conclude that a percent shock generates less than percent change in output. Testing
for the presence of random walk Phillips (1987), Phillips and Perron (1988), Perron
(1988, 1989a, 1989b) are stimulated numerous works, Campbell and Perron (1991),
Delong et.al.(1992) among many others. Christiano and Eichenbaum (1991) argue
that most of debate related to the persistence of fluctuations are inconclusive and
it is possible that macroeconomic variables must be represented by another class of
process never been considered.

The examination of quarterly U.S. postwar data shows that fluctuations in real
GNP have probability 4/5 chance to persist at least one quarter and probability 1/2
to persist ten years. The fluctuations around the deterministic trend and demeaned

first differences have statistically similar persistence probabilities. For the latters,
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the probability that a fluctuation would persist after ten years is less than a 1 /4.
The results concerning fluctuations in major macroeconomic aggregates, such as the
consumption, investment, employment, inflation, interest rates, money and financial
indicators and many others show different persistence when compared with the mea-
sure based variance-ratio proposed by Cochrane (1988). Confirming the asymmetry
hypothesis of business cycles Neftci (1984), fluctuations occuring during the periods
of expansion are more persistent than those occuring during the recessions.

The Chapter is organized as follows. In section 1.2, we give a brief overview
of the different approaches taken to analyze the persistence of macroeconomic fluc-
tuations. The aim of section 1.3 is to provide motivation and prepare the ground
for our persistence measures based on return probabilities. Section 1.4 outlines the
persistence measures based on return probabilities. Section 1.5 is devoted to the
asymptotic properties of our estimators. Section 1.6 presents the empirical results.

Our conclusions are presented in Section 1.7.

1.2 Persistence Measures in Univariate Models

A measurement of the permanence of economic fluctuations is crucial to both the
theoretical and practical point of view in macroeconomics. The highly persistent
shocks to the economy imply that a substantially large part of a given shock would
persist through time. This conflicts with traditional standings of both Keynesian
and classical macroeconomic theories, where output fluctuations are temporary de-
viations from a slowly growing natural or equilibrium level of output. On the other
hand, for policymakers, the implications of strong persistence in output fluctuations
would call into questions the appropriateness of counter-cyclical policies. If the
cyclical component is no matter and there is no steady trend to which the economy
returns, attempts that the counter-cyclical policies are at best misguided. A fortiori,
if the fluctuations are largely permanent, the costs and benefits of policy making

are different than when the fluctuations are transitory.
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The dichotomy between trend and cycle has played an important role in the
analysis of macroeconomic fluctuations. According to the traditional view, fluctua-
tions in output represent temporary deviations from trend. The traditional model

can be written as

y: =7t + a(L)e (1.2.1)

where y; stands for log GNP, a(L) is an infinite polynomial in the lag operator L
such that a(L)e is a covariance stationary process, vt is a deterministic trend and
€ is the zero mean, serially uncorrelated innovation of y,. We denote the variance
of ¢ by 2. Since y; is a covariance stationary Ea? and ¢? are both finite. For
convenience, let us assume that X|a;| < co. As a result, an unexpected change in
output today should not substantially change one’s forecast of output in the future.

The reexamination of this traditional point of view was motivated in part by
developments in the econometrics of nonstationary time series (Dickey and Fuller
1979) and the applications of new econometric techniques to macroeconomic data
(Nelson and Plosser 1982). Specifically, Nelson and Plosser (1982) argue that output
fluctuations modelled as a deviations around deterministic trend are misspecified and
find that the long run character of output is well described as a stochastic trend or

a random walk (typically with drift). Consider the first difference of log GNP
Ayy = p+ b(L)u, (1.2.2)

where b(L) is an infinite polynomial in the lag operator I, y is a drift term, X)bj| < o0
and u; is a zero mean, serially uncorrelated innovation of y:. Denote the variance
of u; by o2. In addition we must impose the requirement that b(1) # 0, that is an
unit root in the polynomial 6(L). This suggest that a natural measure of the size
of the random walk, or the unit root component is to the sum of the coefficients of
present and past innovations u,.

There are basically two interpretations related to 5(1) in determining the degree
of persistence in y;. According to the first interpretation, a measure of persistence

centers on the response to u; of the optimal forecast of y; into the infinite horizon.
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Let E; denotes the time t expectations operator conditional on the information
set containing the present and past innovations {u¢, us—1,us—2,...}. Beveridge and

Nelson (1981) show that
hli—rr{olo[Etyt_i_h - Et—lyt-Hz] = b(l)ut (1.23)

This means that (1) completely characterizes the revisions in the long run forecast
for y; induced by the present innovation on y;. If y; is difference stationary, then
b(1) # 0, so that u, affects the forecast of the level y; into the infinite future. On the
other hand, if y; can be represented as (1.2.1), an innovation to y; should have no
impact on our forecast about the level y; into the infinite future. This interpretation
rises to the question of how much should an innovation to y; at time ¢, affects our
predictions into infinite horizon.

The other common measure of persistence revolves around the fact that the
long-run forecast of a difference stationary process is always changing over the time.
According to Beverdige-Nelson decomposition (1.2.3), the time revision to the long-
run forecast of y; is the random variable b(1)u;. A natural measure of the amount of
variation in this random variable is its variance [b(1)]* ¢2. If y; is trend stationary,
then fluctuations in u; induce only transitory movements in y;; that is the long-run
forecast is deterministic. Consequently, the variance of the revision to the long-run
forecast of a trend stationary random variable [a(L)]*¢? is zero.

In order to review the literature on the measures of persistence, let us suppose

that y; contains a unit root, so that it admits the representation

Ayt = a+¢(L)77ta

= a+t i‘ bine-; (1.2.4)
7=0

where 7, is the white noise innovation to y;, with variance ag. The impact of a
shock in period ¢, 7;, on the change in y; 4, that is Ay,yp is ¥;4n. The impact of the
shock on the level of y;1p is therefore 1 + 4} + - - - + t,. The ultimate impact of the

shock on the level is the infinite sum of these moving average coefficients, defined
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as ¢(1). The value ¢)(L) can then be taken as a measure of how persistent shocks
to y are. When (L) = 0, (1.2.4) is a trend stationary, since ¢)(L) must contain a
factor (1 — L), whereas ¢)(1) = 1 for a random walk , since ¥; = 0 for j > 0. Other
positive values of 1)(1) are possible for more general processes.

Difficulties arise in estimating ©(1) because it is an infinite sum of moving average
coefficients requiring the estimation of an infinite number of coefficients. Various
measures have thus been proposed in the literature to circumvent this problem. Two
of the most popular being the impulse-response measure proposed by Campbell and
Mankiw (1987) and the variance ratio measure proposed by Cochrane (1988).

Campbell and Mankiw (1987) present a measure of ¢(1) based on approximating

(L) by a ratio of finite order polynomials

P(L) = %% (1.2.5)

where ¢(L) and 0(L) are polynomials in the lag operator of order p and q respec-
tively. Equation 1.2.4 is then interperted as the moving average representation or
impulse-response function of Ay,. To test the hypothesis that y, is trend station-
ary, Campbell and Mankiw obtain both an unconstrained estimate of /(L) and an
estimate of (L) subject to the constraint (1) = 0. From the equality (1.2.5), the
measure (1) can then be calculated directly as 1(1) = #(1)~16(1).

Unlike the parametric structure of impulse-response analysis, Cochrane (1988)
propose an alternative persistence measure based on the ratio of variances, defined
as

o h7'Var(y; — yi-n)

h:_: . /N
= o T V- 120

o1
This measure is based on the following argument. If y, is a pure random walk, then

the variance of its h-th differences will grow linearly with h:
Var(ys — ye-n) = Var(ys —yio1) + - + Var(ye-nsr — yen),

h
= Zvaf(yt—jﬂ — Yi-j) = h072)7
j=1

hence the ratio in (1.2.6) equals to unity. If, on the other hand, y, is trend station-

ary, the variance of its h-th differences approaches a constant, this being twice the
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unconditional variance of the series

Var(y; — y.-n) = Var (ha + Z Yini—; — Z ¢j77t—j*h) )
= (Z Yimi—; + Z Vg — 77[)] Mt—j— h) ’

= o Z ¥+ o, Z(¢h+y‘ -
j=0 7=0

which, as b — oo, tends to 202 3°%2, ¢; = 2Var(y,), hence (1.2.6) approaches zero.
Cochrane (1988) suggests plotting a sample estimate of o as a function of h. In
providing sample estimate of o7, Cochrane (1988, A3, p. 917) corrects for two
possible small sample bias. First, the sample mean of first differences y;11 — y; is
used to estimate the drift term for all & differences. Second, a degrees of freedom
correction T'/(T — h — 1) is included. Without this Var{ysins1 — 2} will decline
towards zero as h — T because a variance cannot be taken with one observation.
These corrections produce an estimator of Var{y;4rs1 — y;:} that is unbiased when
applied to a pure random walk with drift. The actual formula used to compute the

estimator from the sample {y;}7 is,

- T
h

T RT -R) T -h— 1) g[yj —Yj-h — %(yT — yo)]%. (1.2.7)

From Cochrane (1988), the asymptotic standard error of c/rz is (4h/3T);§. The
variance ratio can then be estimated as V* = ;2 / ;?. If y; is a random walk, the
plot should be constant at o2, whereas if y, is trend stationary the plot should de-
cline towards zero. If fluctuations in y, are partly permanent and partly temporary,
so that the series can be modelled as a combination of random walk and station-
ary components, the plot of o7 versus h should settle down to the variance of the
innovation to the random walk component.
Cochrane shows that the variance ratio (1.2.6) can also be written as

h=142 1——— 1.2.8
- 129
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where p; is the jth autocorrelation of first differences. To motivate the usefulness of
V" as a measure of persistence, Cochrane considers the limit of this variance ratio
when h tends to infinity

V= lim v = 22l (1.2.9)

h—oc0 Uzy

where Sa, (1) is the spectral density of first differences evaluated at frequency zero.

Allowing z = e for w € [0,27] then Sa,(z) = ¥(2)¥ (2102, consequently

n?

V= |¢(1)|20%’7. (1.2.10)

Combining these results, we see that the trend stationarity (1) = 0 and difference
stationary (1) # 0 time series can be distinguished by looking to the spectral
density of Ay, at frequency zero (z = 1) is zero or not respectively.

The crucial identifying assumptions underlying this measure of persistence is the
assumption that whatever value of h is choosen, the higher autocorrelations are of
negligible importance. Campbell and Mankiw (1987a,b) show that the measures

based on impulse-response functions and variance-ratio are related by relationship
(1) = /V/(1 — R?) (1.2.11)

where R? is the fraction of the variance predictable from the knowledge of the history
of the process. Thus the square root of Cochrane’s measure V is a lower bound on
Campbell and Mankiw’s persistence measure 1(1): the more highly predictable
Ayy, the greater the difference between the two measures. Campbell and Mankiw
(1987a,b) suggest computing an approximative estimates of (1) by remplacing R
with the square of the first sample autocorrelation of first differences.

The variance ratio can also be used to obtain an estimate of (1) from an un-
observed components model (UCM). Campbell and Mankiw (1987) note that the
assumption of independence between the trend and noise components implies that
V' can be written as a weighted average of the variance ratios of two components.

If these are denoted V, and V,, respectively, then
V=V, +(1 -1V,
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where A\ = ¢20?. Since the UCM assumes that z is a random walk and Uug 18

stationary, V; =1 and V, = 0, so that V = )\ = ¢Zo2.

Each of these approaches to estimating persistence has its advantages and draw-
backs. Impulse-response functions have the advantage of using the well-known
ARMA models. Cochrane (1988), however, criticises the use of such models in
this context, because they are designed to capture short-run dynamics rather than
the long-run correlations that are of interest here. The UCM have also been crit-
icised on similar grounds, in that the identifying restrictions required to estimate
long-run behaviour are themselves based on short-run dynamics. Furthermore, such
models rule out highly persistent processes. Nelson (1988) has provided Monte Carlo
evidence to suggest that they also have tendency to indicate that a series consists
of cyclical variations around a smooth trend when the data is actually generated
by a random walk, thus biasing estimates of 1)(1) downwards. Nonetheless, UCM
captures long-run correlations much better than ARMA models. The nonparamet-
ric measure provides only an approximate estimate of (1), is accompanied by large
standard errors, and the window size h can be difficult to determine?. Neverthless,
Cochrane (1988) argues that it is the only measure which is explicitly designed to
model long-run dynamics and to isolate random walk components without being
contaminated by short-run correlations.

Several studies have provided estimates of these alternative persistence measures
for the real gross national product in the United States. These estimates vary
considerably depending on the data set used and the estimation procedure adopted.
On the basis of low-order ARIMA models estimated on the quarterly U.S. data over
the period 1947-1985, Campbell and Mankiw (1987a) conclude that “a 1 percent
innovation to real GNP should change one’s forecast of GNP over a long horizon by
over 1 percent”. Harvey (1985) obtains a similar results using an UCM applied to
annual data over the period 1948-1970. However, Clark (1987) and Watson (1986)

have obtained substantially lower estimates of persistence using an UCM estimated

2Cochrane (1988) argues that for real GNP a good value for h is in the region of 20-30 years.
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on a quarterly data set comparable to that employed by Campbell and Mankiw. In
these studies, a 1 percent shock would lead to around a 0.6 percent change in output
in the long-run. Cochrane (1988) using a nonparametric procedure also finds little
evidence of persistence in GNP. The evidence on the persistence of aggregate output
fluctuations in the U.S. is mixed and inconclusive, and as argued in Christiano and
Eichenbaum (1989) the issues of whether real GNP is trend or difference stationary
may be very difficult to resolve on the basis of the available post-war quarterly data.

The random walks on integer are able to discover several attractive futures then
the random walks on the reals. The reason for this is the fact that any path between
two levels must pass at least once through every intervening level. The problem is
known as a level (or zero) crossings in statistical theory. Granger and Hallman
(1991) consider the unit root tests on the numerous transformed series such as the
sign or sinusoidal transformations. Consider a simple symmetrical random walk
with unit step

Yt = Y1+ €& (1.2.12)

with yo = 0 and where ¢ is an independently, identically distributed series which
follows the probabilities p = pr{e; = 1}, ¢ = pr{e; = —1} and p = ¢ = 1/2. They

consider the sign transformation of the series y;,
ry = sgn(y;) (1.2.13)

where sgn(y;) is the sign function such that

1 ,ify>0
sgn(y) = X Tf Y -0 (1.2.14)
- y 1L Y

and show that the Dickey-Fuller (DF) test of transformed series is proportional
to the number of zero crossings of the original series y;. Evaluating the empirical
distributions of the DF and augmented DF test on sign transformation r; of a
Gaussian random walk y;, they found that the hypothesis that the transformed
series is I(1) against 1(0) is usually rejected. Burridge and Guerre (1995) provides

the generalization of this result to Brownian motion.
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1.3 Macroeconomic Fluctuations,

Gambling and Ruin Problem

The idea that GNP may contain a random walk goes back to Irving Fisher’s “Monte
Carlo Hypothesis”, examined further by McCulloch (1975) which suggest that busi-
ness cycles are nothing more than “Monte Carlo Cycles”, these are the cycles su-
perstitious gamblers believe they are discerning in their luck at casinos like the one
at Monte Carlo. Following this hypothesis, the information about past fluctuations
would be of no help to us in predicting the future values of output. Let us consider
a casino gambler, like the one at Monte Carlo, playing with an initial capital, say
z dollars. The game consists of a sequence of independent turns and in each turn
the gambler wins or loses a dollar. Therefore, the gambler’s capital evolves by unit
step in upward and downward directions with probability p and ¢ respectively. The
game continues until the initial capital z either is reduced to zero (ruined) or has
increased to some fixed quantity z. Thus the walk is restricted on (0, ). Clearly
the case p > ¢ corresponds to a drift to the right when shocks from the left are
more probable; when p = ¢ = %, the random walk is called symmetric. The above
phenomenon is known as the ruin problem in random walk theory, see for instance
Feller (1971). The question of interest is to compute the ruin probability of the
initial capital z, say ¢, and the duration of the game. When z — oo, that is playing
against infinitely rich adversary, Feller (1971) gives the limiting ruin probabilities in

the form

1 Lifp <
¢ = np=d (1.3.15)

(¢/p)* ,ifp>gq
which state that if p < ¢, the process starting at z > 0 will ever reach the origin
and the probability of ever returning to its initial position is equals to (¢/p)* when
p > g, Feller (1971, p.127).
If the first trial results in success, the game continues as if the initial position

had been z+1. The conditional expectation of the duration assuming success at the
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Figure 1.1: Fluctuations in U.S. Unemployment Rate: 1954:Q1-1994:Q4

first trial is therefore D,y + 1. This argument shows that the expected duration

D, satisfies the difference equation
Dz = p_Dz+1 + qu—l + 1 (1316)

for 0 < z < z, with boundary conditions Dy = 0 and D; = 0. The solution of this

nonhomogeneous difference equation is given in Feller (1971) by

P =R =r= R A (1.3.17)
2(Z — z) ,ifp=gq.
In the limiting case Z — oo, the game may go on forever for p > ¢ and it makes no
sense to talk about its expected duration. When p < ¢, we get for expected duration
z(q—p)~", but when the upward and downward moves are equally probable, p = ¢,
the expected duration of the game is infinite.
Our persistence concept is similar to gambler’s ruin problem. Figure 1.1 illus-

trates the situation. The Figure plots the quarterly fluctuations in U.S. unemploy-
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ment rate during the period 1954:Q1-1994:Q4. The series displays distinguishable
fluctuations matching closely with the post-war business cycles. We retain three
particular points in order to explain our persistence concept. First, just before the
point A, a positive (upward) fluctuation in 1961:Q2 yields the unemployment rate to
increase to the level of 6.2. This corresponds to the beginning of a longer expansion
from the post-war II era. As the horizontal line from the point A indicates, the
economy never returned to this unemployment rate until 1975 where the first oil-
price shock in 1973 shows recessionnist effects. The two other points in the Figure
1.1, B and C, show the effects of the fluctuations occuring in 1973:Q3 and 1979:Q2.
These fluctuations are caused largely by the OPEC oil price boosts. The difference
between the two points is the in fact that the first oil-shock in 1973:Q3, the point
B, is never cancelled, in other words, the economy is never returned to its unem-
ployment rate at 1973:Q3, while the positive fluctuation just before 1979:Q2, the
point C which correspond to the the second oil-price shock is cancelled earlier in
1988. Many authors, for example Perron (1988), suggest that the non-rejection of a
unit-root hypothesis after second world-war is due in large part to the occurence of
slowdown in growth after 1973, where the slope is changed.

The three fluctuations in unemployment rate occuring at the points A, B and
C can be ordered according to the duration of these fluctuations. The negative
fluctuation occuring at the point B persists longer than the fluctuation occuring at
the point A and the latter persists longer than the fluctuation at the point C. This
way of conceptualizing economic fluctuations is not new in economics. For instance,
Romer (1990) provides loss rules when applied to data on industrial production data
yield postwar business cycle dates that match the NBER reference dates as closely
as possible. Following Romer’s loss rules, the area under the horizontal line from
the peak at the point A to the level crossing point at 1975, shows the cumulative
output loss that has occured between that peak and the time when output returns
to its previous peak level. Since, the unemployment rate has an inverted cycle, i.e.

increasing during the business recessions and decreasing during business expansions,
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Figure 1.2: Cancellation Frequencies in Unemployment Rate Fluctuations

it would be convenient to speak about the output gain rather then the loss for that
point. The area under the fluctuations beginning at the points B and C are then
the cumulative losses in unemployment rate. Romer ( 1990) use the output loss rule
to show the historical inconsistency of U.S. business cycles dating during the pre-
and post-World War II areas. The inconsistency of historical reference dates would
be examined further in Chapter 3.

In Figure 1.2, we count the number of fluctuations in U.S. unemployment rate
which have been cancelled within h quarters. Among 163 fluctuations displayed in
the Figure 1.1, more than fifty fluctuations are cancelled within a quarter. The
number of cancelled fluctuations decrease as long as the forecast horizon get larger.
For example, the number of cancelled fluctuations are less than five for each horizon
longer than two years. This stimulates the computation of the probability that the

current fluctuation is or is not cancelled within the fixed forecasting horizon.
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1.4 Persistence Measures Based on Return Prob-
abilities

Although the degree of persistence of shocks in economic time series has been the
subject of intensive investigation over the last few decades, a variety of problems
related on the persistence measure of economic fluctuations remain unexploited.
One of these concerns the return problem (or zero crossing) of a unit shock. A
fluctuation in a time series is a random deviation from some level, stochastically
or deterministically determined by the intrinsic dynamic of a time series. In this
section we define persistence (non-persistence) measures based on whether the sign
of a fluctuation in a time series is reversed or not after & periods. Consider a
real valued time series y;. Between times ¢ — 1 and ¢, the value of y, changes by
Ay = ys—yi-1, and we are interested in knowing the probability that the fluctuation
will be cancelled (or not) after & periods. This leads one to consider a return (or

crossing) indicator,

re(h) = sgnfyern — yi1] - sgnys — ye-1] (1.4.1)

where sgn(y) is as defined in (1.2.14). Clearly r;(h) < 0 entails that the fluctuation
Ay; has been cancelled at least once during the next A periods. In other words,
the current fluctuation expressed in terms of unitary jump sgn[y, — Y¢—1) will return
to zero after h periods if the sign of h-periods ahead fluctuation sgn[y;ys — y;_y] is
the inverse of the sign of present fluctuation. Note that the first term on the right
hand side of (1.4.1) is the sum of the & future shocks. Associated with the nature of
current fluctuation in a time series, we can define several interesting return indicators
similar to what is given in (1.4.1). For example, a large body of empirical literature
related to the persistence debate examined the presence of a permanent component
in the first differenced, as opposed to a trend removed time series. This approach
suggests that the business cycles are of purely stochastic nature and there is no
reason for the reversion to deterministic equilibrium path. The classical business

cycle theories, instead, look at the residuals of a least square regression of the level
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of a series on time trend as a relevent data for the analysis of business cycles.
These two competing theories can be written in terms of a return indicator in the
following way. First, consider a trend removed series 7, = y; — o — 8¢, where « is a
constant and 3 is the slope of a time trend. The current fluctuation in trend removed
series is ¥, — ¥;_y = Y — Ys—1 — B is cancelled by the h periods ahead fluctuation

Yerh = Ji—1 = Ye+h — Ye—1 — S(h + 1) when the return indicator,

Ti(h) = sgn[yesn — ye-1 — B(h + 1)] - sgnly: — yey — B, (1.4.2)

crosses zero for any horizons h. The coefficient of a time trend 3 in the expression
(1.4.2)can be estimated consistently by least squares regression. It is worth noting
that the crossing indicator of trend removed time series 7 (k) close up to the ry(h)
when 8 = 0. On the other hand, a stochastic fluctuation for time series which

contains a drift term p, that is Ay, — g has the cancellation indicator given by
re (h) = sgnlyesn — ye-1 — u(h + 1)] - sgnfy: — yea — ] (1.4.3)

for A = 1,2,---. The difference between (1.4.2) and (1.4.3) depends clearly on
the assumption retained about the nature of the current fluctuation. Of course,
numerous other return indicators can be produced. Instead, we would like to provide
a crossing indicator counterpart of the most popular half life of a shock, which gives
the lenght of time until the impact of a unit shock is half of its initial magnitude.
For the difference stationary without drift, (1.4.1), we are looking for a unit shock
y:—y;—1 that would be cancelled when future fluctuations discount half of the current
shock. Therefore we consider, the half life of a return based on

1 1
r¢(h) = sgnlyern — Yo — 5 = ye-1)] - senfys — yea). (1.4.4)

Given the above crossing indicators, it will be convenient to define the following

probabilities:

c; () = Pr{ryh) <0} (1.4.5)
cf(h) = Pr{r(h) >0} (1.4.6)
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for A =1,2,---, where (-) refers to cancellation (or return to zero) and (+) refers
to the persistence of a current fluctuation. It is easy to see that the probabilities

(1.4.5) and (1.4.5) sum up to unity
e (R)+¢f(h) = 1. (1.4.7)

The probabilities ¢; (k) and ¢f (k) give essentially the expected cancellation number
of current fluctuation by future fluctuations measured in terms of unit of time.
One of the disadventage in using these measures is the fact that they don’t take
an account the sign of the fluctuations capitalized within the forecasting period h.
For example, when the current fluctuation have a positive sign, the cancellation
probability would be positive if & periods ahead position of a time series is below of
its initial at time ¢ irrespective from pattern of the series during the forecast horizon.
However, there are many situations where the sequence of positive (negative) shocks
are followed by dramatic reversion, such as the panics (booms) in financial markets.
Consequently we define the probability that the current fluctuation Ay, be cancelled
after h periods eractly for h = 1,2,--- by

dy () = Pr{ri(1) > 0,7(2) > 0,---,rs(h — 1) > 0,7,(h) < 0} (1.4.8)
and the probability that it “persists” for at least k periods is
df (h) =Pr{ry(1) > 0,7(2) > 0,---,ry(h — 1) > 0,7r:(h) > 0}. (1.4.9)

The probabilities (1.4.8) and (1.4.9) are the basic ones, because they consider the
evolution of the cancellation indicators during the forecast period. For example, the
cancellation probability d; (h) measures the joint probability that y;41 > Y41, yeq2 >
Yt-1, " s Yteh=1 > Ys-1, Ye4n < Yg—1 which implies that the process is never returned
until time ¢ + h — 1 before returning at time ¢ + h. Moreover, the position at time
t + h is below of its inital value at time ¢ — 1.

The probability that the fluctuation Ay; be cancelled at least once inside h

periods is
D7 (h) = Pr{r(1) <0} +Pr{r(1) > 0,7,(2) <0} +---
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+Pr{r(1) > 0,74(2) > 0, -+, 7y (h — 1) > 0, 74(h) < 0} (1.4.10)

From the definitions (1.4.8) and (1.4.9), the probabilities d; (h) and df (k) are re-

cursively related by
dy (h)+df(h) =df(h—-1), h=1,2,-- (1.4.11)
Rearranging the terms and proceeding back to horizon h = 1, we see that

df(h+1) = df(R)—d;7(h+1)

= df(l)—}fdt_(k)
= 1-Dr(ht1). (1.4.12)

Starting from the above persistence (non-persistence) definitions and making the
use of the fundemental probability law which relates the marginal distribution of a
variable to its conditional distribution, we can easely extend our persistence (non-
persistence) probability measures. For notational simplicity, let us define the vector

valued return indicator.
Ft-(h) = {7‘,5(1), rt(2)v et art(h - 1)7 rt(h)}' (1'4'13)

Therefore, the unconditional persistence (or non-persistence) probabilities can be
rewritten as d; (h) = Pr{ri(h — 1) > 0,r,(k) < 0} and df (h) = Pr{m(h — 1) >
0,r;(h) > 0}. Hence, the probability that a fluctuation has been cancelled by h-
period ahead fluctuation given that it has not been cancelled during the h—1 periods
18,

Pr{r:{(h) <0,7(h — 1) > 0}

Pr{r;(h — 1) > 0}

_ E?_%% (1.4.14)
and similarly, the probability that a fluctuation has been persisted by h-period ahead

Pr{ri(h) <O|7(h—1) >0} =

fluctuation given that it has been persisted during the h — 1 periods is,
Pr{r,(h) > 0,7 (h — 1) > 0}
Pr{ri(h — 1) > 0}
df (h)

= Fo-1 (1.4.15)

Pr{r:(h) > 0|7 (h — 1) > 0}
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Using the recursive relationship between unconditional probabilities, we see that the

conditional probabilities sum up to unity,

dy (h) df (h)
=1 4.
Fh-1 T aFh-1) (1:4.16)
for h = 2,3,.... These conditional persistence (non-persistence) probabilities have

an interesting interpretation as a duration dependence of the macroeconomic fluc-
tuations. The duration dependence are traditionally analyzed by hasard functions,
which is the conditional probability that a process will end after a duration of length
h, given that it has not terminated earlier, Diebold and Rudebusch (1988, p.598).
Economic literature has been focused on two duration specifications; (1) the con-
stant hasard function, where the termination probability is constant through time,
Hamilton (1989) ; and (2) increasing hazard function, where the termination proba-
bility increase with the age, Neft¢i (1982). By analogy to the duration data analysis,
we can argue that the constant conditional persistence (non-persistence) probability
will provide a probability measure of how much a fluctuation is equally probable
during the forecasting period and increasing persistence (non-persistence) probabil-
ity will reflect that the persistence is more likely when the forecast horizon increases.
As a related issue, we can investigate whether the conditional persistence probabil-
ities of expansion and recession periods. The comparison between two conditional
probabilities gives insights of how about the business cycles are symmetric, Neftci
(1982).

The simulated values of persistence (non-persistence) probabilities ¢; (h), ¢f (),
d; (h), df (k) and D; (k) are presented in Table 1.1. The simulation experiments
consist of 10000 independent replications of a series of lenght 7" = 190. This is
approximatively equal to the number of quarterly observations in the majority of
post war II U.S. macroeconomic time series analysed in the section 1.6. The included
models are typical in standard time series analysis. We consider a noise, a pure
random walk, a stationary AR(1) with drift, a random walk with drift, an AR(2)
without intercept, an AR(2) with intercept and finally an ARMA(2,1) with drift.

The models are parametrized as follows :
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Table 1.1: Simulated Return Probabilities
1 2 3 4 8 12 16 20 24 28 32
(1) ye = wy
¢ (h) 0333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333
c+(h) 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667
d-(h) 0.333 0.166 0.100 0.067 0.022 0.011 0.007 0.004 0.003 0.002 0.002
d*(h) 0.667 0.500 0.400 0.334 0.200 0.143 0.111 0.091 0.077 0.067 0.059
D=(h) 0.333 0500 0.600 0.666 0.800 0.857 0.889 0.909 0.923 0.933 0.941
)y =y-1+w
¢~ (h) 0.250 0.304 0.333 0.353 0.392 0.411 0.422 0430 0437 0.441 0.445
c+(h) 0.750 0.696 0.667 0.647 0.608 0.589 0.578 0.570 0.563 0.559 0.555
d=(h) 0.250 0.125 0.078 0.055 0.022 0.013 0.008 0.006 0.005 0.004 0.003
d+(h) 0.750 0.625 0.547 0492 0.370 0.309 0.271 0.244 0.224 0.208 0.195
D=(h) 0.250 0.375 0.453 0.508 0.630 0.691 0.729 0.755 0.776 0.792 0.805
(3) yr = 1.0+ 0Ty 1 + uy
¢”(h) 0273 0.330 0.359 0.376 0.402 0.407 0.409 0.409 0.408 0.408 0.408
ct(h) 0727 0.670 0.641 0.624 0.598 0.593 0.591 0.591 0.592 0.592 0.592
d-(h) 0.273 0.143 0.093 0.066 0.027 0.014 0.009 0.006 0.004 0.003 0.003
d+(h) 0.727 0.584 0.491 0.425 0.277 0.205 0.162 0.134 0.114 0.099 0.088
D=(h) 0273 0416 0509 0.575 0.723 0.795 0.838 0.866 0.886 0.901 0.912
() e = 1.0+ y—1 + w
¢ (h) 0134 0.150 0.155 0.157 0.159 0.159 0.159 0.159 0.159 0.159 0.159
c+(h) 0.866 0.850 0.845 0.843 0.841 0.841 0.841 0.841 0.841 0.841 0.841
d=(h) 0.134 0.039 0.015 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.000
d"‘(h) 0.866 0.827 0.812 0.806 0.801 0.800 0.800 0.800 0.800 0.800 0.800
D-(h) 0.134 0.173 0.188 0.194 0.199 0.200 0.200 0.200 0.200 0.200 0.200
(5) Yy = 1.98!/1—1 - 0.993/1;_2 + u;
¢ (h) 0.038 0.060 0.080 0.099 0.168 0.234 0.298 0.360 0.421 0.480 0.535
c+(h) 0.962 0.940 0.920 0.901 0.832 0.766 0.702 0.640 0.579 0.520 0.465
d-(h) 0.038 0.026 0.023 0.021 0.018 0.018 0.017 0.017 0.016 0.016 0.015
d+(h) 0.962 0.936 0.913 0.892 0.815 0.744 0.675 0.608 0.542 0476 0.413
D=(h) 0.038 0.064 0.087 0.108 0.184 0.256 0.325 0.392 0.458 0.523 0.587
(6) yr = 1.0+ 1.98y,—1 — 0.99y_2 + uy
¢ (h) 0.025 0.042 0.057 0.072 0.132 0.190 0.248 0.307 0.367 0.426 0.483
ct(h) 0976 0.959 0.943 0.928 0.868 0.810 0.751 0.693 0.633 0.574 0.517
d=(h) 0.025 0.019 0.017 0.016 0015 0.015 0.015 0.015 0.015 0.015 0.015
d"’(h) 0.976 0.957 0.940 0.923 0.862 0.801 0.741 0.681 0.620 0.560 0.500
D=(h) 0.025 0.043 0.060 0.077 0.138 0.199 0.259 0.319 0.380 0.440 0.500
(MY v = 1.0+ 1.98y-1 — 0.99y; 9 + 1z — 0.99u,_,
c“(h) 0.025 0.046 0.064 0.082 0.146 0.207 0.267 0.326 0.384 0.442 0.499
c+(h) 0.975 0.954 0.936 0.918 0.854 0.793 0.733 0.674 0.616 0.558 0.501
d-(h) 0.025 0.022 0.020 0.019 0.017 0.016 0.016 0.016 0.015 0.015 0.015
d"'(h) 0.975 0.953 0.933 0.915 0.846 0.781 0.719 0.656 0.595 0.533 0.472
D~(hy 0.025 0.047 0.067 0.085 0.154 0.219 0.281 0.344 0.405 0.467 0.527




(1)

(2)

(3) o = 1.0+ 0.7y, + u,

(4) v = 1.0 + ye1 + w

(5) ye = 1.98y:—1 — 0.99y;—2 + u;

(6) y: = 1.0 4+ 1.98y,_1 — 0.99y,_5 + u,

(7) ye = 1.0 + 1.98y,1 — 0.99y;_5 + w; — 0.99u;_;

where the innovation term u, is N(0,1). Each of the above model are initiated at
zero. For each replication of the models (1)-(7) we then compute the sign crossing
indicator r;(h) up to horizon h = 32. The return (non-return) probabilities given in
(1.4.5) and (1.4.10) are then computed as the average of 10000 replications.

The persistence probabilities of noisy process when measured in terms of c*(h)
are equal to 2/3 for all horizons while when measured in terms of d*(h) the persis-
tence probabilities decrease quickly, half of ¢t (k) at h = 4 and approaches zero for
larger horizons. The non-persistence probabilities D; (k) show that the fluctuations
in noise process have 94.1 % probability of cancelling by A = 32. A fluctuation in
a pure random walk without intercept, the model (2), persists with 3/4 chance in
h = 1. The non-persistence probability d; (k) approaches zero very quickly. After
h = 32, the persistence probability d*(h) is less then 1/5. The pure random walk
becomes more persistent, when we add a constant term in the model (2). More
precisely, a fluctuation in the random walk with intercept, model (4) persist 86.6 %
probability in one horizon while when the forecasting horizon get larger, it persists
80.0 % probability. The non-persistence probabilities, d~(k) in the random walk
with drift process is zero after h = 4. The stationary AR(1) model with drift, the
model (3), have the return probabilities similar to those given for the noisy model
but they are slightly more persistent. The difference between the model (1) and (3)
comes from the value of autoregressive coefficient which is taken ¢ = 0.7. When
¢ — 0 the return probabilities match the probabilities of noise process. The models

(5)-(7) show the persistence (non-persistence) probabilities for different processes

36



1.0

[P

02 03 04 05 06 07 08 09

00 01

% L " L L L :
(o] <4 8 12 16 20 24 28 32 36 <4 Q

forecasting horizon

Figure 1.3: Simultated Persistence Probabilities: dt (k)

having the autoregressive coefficients near the unit circle. For the AR(2) without
intercept, the persistence (non-persistence) probabilities are lower (higher) than the
AR(2) with intercept.

Figure 1.3 shows the persistence probabilities d* (k) for the models (1)-(7). As
it can be expected a noise is the least persistent process of our experiments. A
stationary AR(1) and I(1) are both decreasing persistence probabilities as long as
the forecasting horizon gets larger. The hyperbolic shape of persistence probabilities
for the noisy model, AR(1) and I(1) means that the change in persistence probability
d; (k) decreases with the forecast horizon and for the series of lenght 190 considered
here, they never reaches the zero probability at longer horizons. On the other hand,
the change in persistence probabilities from one horizon to other is constant, for the
models (5)-(7). More interestingly, we see that these models display more persistence
at short horizons, say 8 to 12, than a pure random walk without drift (4). For the

latter model, the change in persistence probabilities is constant after 8 forecasting
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horizons.

1.5 Statistical Inferences on Return Probabilities

The above measures are essentially based on the zero crossings of the transformed
series r;(h) for different horizons h. We are concerned with statistical inference on
the length of time that it takes a process to return to zero level, given that it crossed
the zero at a particular previous time. Our parameters of interest in this persistence
problem are the expected number of zero crossings per unit time and the variance of
zero crossings per unit time. Distributional properties will be examined in the next
Section. Note that the above probabilities may depend on ¢. However if the process
Ay, is strictly stationary, these probabilities will also be time invariant, so that the
index may be dropped from ¢; (h), ¢f (h), di (k), df (k) and Dy (h). Therefore the
expected cancellation probability for (1.4.5) and (1.4.6) are given by

(k) = E{6[r(h)]} (1.5.1)
ct(h) = E{6*[r(h)]) (15.2)

where 6~ [z] and é%[z] are defined by

6] 1 ifz<0
Tri =
0 ifz>0,

1 ife>0
§ta)=1-6"[z] =
0 ifz<0.
A nice feature of the above measures is the fact that they can be estimated quite
easily at least under the assumption that Ay, is strictly stationary. In particular,

unbiased estimators of ¢~ (h) and ¢t (k) are given by:

) | T=h
c(h) = T— Zl 6~ [re(h)] (1.5.3)
GHh) = _Ti—h _jl 5+ re(h)] (1.5.4)
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for h = 1,2,3,.... Similarly the expected number of cancellation and persistence of

the present fluctuation after h periods exactly are respectively,

d~(h) = E{A;(h)} (1.5.5)
dH(h) = E{AHR)} (1.5.6)

where A; (k) and Af (k) are indicator functions defined by

A7 (h) = 6~ [re(1)] ,forh=1
{TIE2Y 6% [ro(R)]} 67 [re(R)] , for b > 1

and
A¥(h) = { 5‘h[7“t(1)] forh =1
[Tioy 6F[re(k)] , for A > 1.
Similarly,
d=(h L S
2 LS At 1.5.8
S T—-h&= (1.5.8)

for h = 1,2,3,..., provide unbiased estimators of d~(h) and d*(h). Finally the
expected probability that the fluctuation does not persist for h perods is

D=(h) = E{z—: A7 (k)} (1.5.9)
which can be estimated by
D-(h) :ISZA;(/C) (1.5.10)

In the remaining part of this section we look at the large sample distribution of
the estimators of return probabilities. In order to obtain a compact form enough
and avoid unnecessary repetition of formulas, we define a variable §(4) for any fixed

horizon h representing the return probabilities given in (1.4.5)-(1.4.10), that is
0(h) € {c™(R), c*(h), d=(h), d*(R), D=(h)}
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and 6,(h)
0:(h) € {6~ [re(R)], 6F[re(R)], A7 (R), Af(R), Tiey AT (k) }

where each element is a (T' — k) vector of functions r;(h) based on sign reversion
between present and h period ahead fluctuation in the raw data and the unbiased
estimators of these return probabilities given in (1.5.3) to (1.5.10) from a sample of

lenght T' by,

~(h), d*(h), D~(h)}

Ly
~
o~~~
-~
N
m
=~
B
-
:_/
9}
B,
-
:_/
K.)

We know, from the Section 1.4 that aT(h) are the unbiased estimators of return

probabilities 8(h). Let us also define

wr(h) = VT = h(Br(h) — 6(R))
1 T—-h
= = g[et(h)—e(h)] (1.5.11)

sp(h) = V{wr(h)}
h
= 0 E{[0:(h) — 0(R)] [6.(h) — 6(h)]}. (1.5.12)

Newey and West (1987) consider positive-semidefinite, heteroskedastic and autocor-

relation consistent covariance estimator §y(h) which takes the form,
B) =0 + 23 w(j, m)3; (1.5.13)

with weights w(j,m) equal to [1 —j/(m +1)],forj=1,---mand m =1,2,--- and
the empirical autocorrelation functions can be estimated consistently by
T—-h—j

= oy o ) =B = Be(h)] (1514)

Therefore the estimators of variances 57(h), are simply the weighted sums of auto-

covariance functions 7;, with weights w(j, m) which decline as j increases and they
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are numerically equal to 27 times an estimator of the spectral density of 0:(h)—6(h),
at frequency zero. Newey and West ((1987), Theorem 1) demonstrate positive semi-
definiteness of these estimators for a substantially wide choice of weight functions
w(y, m) by making use of positive semi-definiteness of the sample autocovariance
functions. Note that for fixed j, the weights w(j, m) approach one as m grows. It
1s reasonable to expect that estimators $7(h) that are formed by smoothing sample
autocovariances 7; with weights that approach one as m grows should be consistent
if m is allowed to grow with the sample size T. Newey and West (1987, theorem 2)

argue that under the following regularity conditions;

o i) {0:(h) —0(h)} is measurable in 8;(h), for all 8(k) and continuously differen-
tiable in #(h) for all 6(h) in a neighborhood of §*(h) with probability one;

e ii) there is a measurable function m(6(h)) such that supy|0(h)| < m(0(h)) and
supn|0:(h)| < m(6(h)), where for some finite constant D, § > 0 and r > 1,
such that for all E[|9*(h)|**+7)] < D;

e iii) the 6;(h) is a mixing random sequence;

o i) for all t, E{6;(h) — 8(R)} = 0, and /T — h(fr(h) — 6(h)) is bounded in
probability;

e v) the weights w(j,m) j = 1,2,---,m, m = 1,2, satisfy |w(j,m)| < K for
finite constant K and for each j, limy_.c w(j, m) = 1, if the window lenght m
in smoothing autocorrelations is choosen to be a function of the sample size,
m(T), such that limy_.o m(T) = 400 and limy—,e m(T)/T* = 0, for large
T

m(T)
Jo+2 3" w(f,m(T))7; — sr(h) 2 0. (1.5.15)
7=1

These assumptions require that 6;(h) be dominated by a function of 8(A) that
has a uniformly bounded second moment and by (iii) for a given horizon A, the

dependence between observations go to zero as the distance between observations
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go to zero. In any given sample, it is of course necessary to choose m the number
of autocorrelations to include in the estimation $r(h). Choosing a window size low
may obscure cancellation probabilities manifested in higher autocorrelations. On
the other hand, a large window size, may result in excessive cancellation, since as
m approaches the sample size 1’| the estimator 57(h) approaches zero. Note that
since the sample means have been removed from the data, 37(h) is identically zero
at h = T — 1. Hence, while large m appears preferable, m must be small relative
to the sample size. Consistency of the estimator 3y(h) follows the assumptions (iv)
and (v) which suggest to use a window size m(T') growing more slowly than T/4.
If the random variable 6;(h) — (k) are i.i.d. sequences, it is easy to show that

from the classical central limit theorem that, see for instance Davidson (1994, p.366)

wr(h)

2 N(0,1). (1.5.16)

where the theoretical means in wr(h) being substituted by the unbiased estimators

given in (1.5.3)-(1.5.10).

1.6 Macroeconomic Applications

In this section, we examine persistence probabilities of fluctuations in quarterly U.S.
macroeconomic time series during the post War II period. The section is organized
in two parts. First, in section 1.6.1, we discuss the persistence of fluctuations in gross
national product. Second, in section 1.6.2, we analyze twenty individual time series
including the consumption and investment expenditures, prices, inflation, money
stock, interest rates, employment, wages, financial market indicators; stock prices
and volume, productivity and capacity utilization rates. The data were obtained
from the Citibase databank. The complete list of series and their full definitions are
given in Table 1.18 at the end of section. The monthly observations are transformed
to quarterly observations.

We report the estimated values of persistence probabilities d* (%) for forecasting
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horizon h spanning up to 40 quarters (10 years). The results from other probabil-
ity measures (persistence or non-persistence) are not presented in order to avoid
long tabulations. The Gauss program used to compute persistence probabilities is
given at the end of section. The window size m in estimating the Newey-West het-
eroscedastic and autocorrelation consistent standard errors in expression (1.5.13) is
choosen equal to eight quarters.

We examine the persistence probabilities of raw fluctuations as well as the persis-
tence probabilities of fluctuations around linear time trend and the mean of fluctua-
tions. The results are presented in following order. First, we provide a brief summary
of debates for related variables. Secondly, we compare the persistence probabilities
of raw fluctuations at short and long forecasting horizons. We also look at the per-
sistence probabilities of detrended and demeaned fluctuations. Third, we compute
persistence probabilities of raw fluctuations conditional to the business expansions
and recessions identified by NBER dating committees. The details of our results
are presented in corresponding Tables and Figures. The section terminates with
the comparison of our results with those from variance-ratio estimators, Cochrane

(1988).

1.6.1 Persistence Probabilities of U.S. GNP

Several papers have studied the persistence of GNP fluctuations, including Campbell
and Mankiw (1986), Clark (1987), Cochrane (1988), Nelson and Plosser (1982),
Quah (1986), Stock and Watson (1986) and Watson (1986). A major focus of these
papers has been the extent to which GNP movements are well approximated by
a process with unit root plus drift, as opposed to stationary movements around a
time trend. Campbell and Mankiw (1988) and Nelson and Plosser (1982) both argue
that if the random walk approximation is in fact reasonable, there are important
implications for business cycle theory. This is because movements in random walks
are permanent: a shock today has an infinitely long lived effect. The concept of

a stationary natural rate, Campbell and Mankiw note, has little utility if a GNP
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shock is, on average, never offsets by a return to some trend rate of GNP. Nelson and
Plosser (1982) suggest that monetary disturbances are unlikely to be an important
source of GNP fluctuations, since monetary shocks are typically thought to have no
permanent effect. Both papers conlude that if the random walk characterization is
accurate, an implication is that fluctuations in GNP are unlikely to be driven by
nominal demand shocks.

The results from these studies vary considerably depending on the data set used
and the estimation procedure adopted. On the basis of low-order ARIMA models
estimated on the quarterly U.S. data over the post Second War period, Campbell
and Mankiw conclude that a 1 percent innovation to real GNP should change one’s
forecast of GNP over a long horizon by over 1 percent. Harvey (1985) obtains a
similar result using an unobserved component model applied to annual data over
the period 1948-1970. However Clark (1987) and Watson (1986) have obtained
substantially lower estimates of persistence using an unobserved component model
estimated on a quarterly data set comparable to that used by Campbell and Mankiw.
In these studies, a 1 percent shock would lead to around a 0.6 percent change in
output in the long run. Cochrane (1988), using a variance-ratio procedure also finds
little evidence of persistence in GNP. Perron (1989) and (1993) argues that the GNP,
as many macroeconomic variables is better constructed as stationary fluctuations
around a breaking trend. The evidence on the persistence of aggregate output
fluctuations is mixed and inconclusive and as argued in Christiano and Eichenbaum
(1989) the issue of whether real GNP is trend or difference stationary may be very
difficult to resolve on the basis of the available post-War quarterly data.

We give a particular attention to the per capita real GNP rather than the nominal
GNP since movements in the aggregate output induced by the varying population
and inflation will naturally persist and may obscure the persistence intrinsic to the
market economy. However, we provide persistence probabilities of real and nominal
fluctuations in GNP conforming to earlier studies. Table 1.2 presents the results.

Several features of this table are noteworthy. First, the raw fluctnations in real per
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Table 1.2: Persistence Probabilities in U.S. GNP®

Forecasting Horizon
1 2 3 4 8 12 16 20 24 28 32 36 40
Real Per Capita GNP 1947:Q1 - 1994:Q3 [GNPQ/P16]®
(1) 0.847 0.809 0.722 0.694 0.555 0.478 0.460 0.441 0.440 0.426 0.418 0.409 0.393
(0.025)(0.027)(0.040)(0.046)(0‘060)(0.071)(0.074)(0.079)(0.081)(0.080)(0.080)(0.079)(0.076)
(2) 0.836 0.723 0.674 0.624 0.495 0.399 0.345 0.300 0.271 0.247 0.234 0.227 0.227
(0.029)(0.037)(0.035)(0.037)(0.044)(0.048)(0‘053)(0.053)(0.053)(0.050)(0.051)(0.049)(0.051)
(3) 0.836 0.739 0.679 0.624 0.495 0.388 0.328 0.294 0.271 0.247 0.228 0.227 0.227
(0.030)(0.036)(0.033)(0.036)(0.047)(0.052)(0.053)(0.052)(0.053)(0.051)(0.049)(0.050)(0.052)
Real GNP 1947:Q1 - 1994:Q3 [GNPQ]J¢
(1) 0.884 0.835 0.802 0.747 0.676 0.669 0.672 0.682 0.675 0.667 0.658 0.656 0.647
(0.030)(0.037)(0.045)(0.054)(0.068)(0.068)(0.068)(0‘069)(0.069)(0.068)(0.069)(0‘069)(0.069)
(2) 0.847 0.766 0.717 0.661 0.555 0.444 0.379 0.324 0.301 0.296 0.272 0.247 0.227
(0.033)(0.034)(0.036)(0.038)(0.046)(0.053)(0.064)(0.069)(0.070)(0.072)(0.073)(0.073)(0.067)
(3) 0.847 0.771 0.722 0.667 0.560 0.449 0.385 0.324 0.307 0.302 0.272 0.247 0.227
(0.033)(0.034)(0.036)(0.038)(0.046)(0.053)(0.063)(0069)(0.070)(0.072)(0.073)(0‘073)(0.067)
Nominal GNP 1946:Q1 - 1994:Q3 [GNP]¢
(1) 0.959 0.938 0.916 0.905 0.898 0.896 0.893 0.891 0.888 0.886 0.883 0.880 0.877
(0.020)(0.025)(0.034)(0.039)(0.041)(0.042)(0‘042)(0.042)(0.042)(0.043)(0.043)(0.043)(0.044)
(2) 0.948 0.922 0.916 0.911 0.876 0.863 0.865 0.856 0.841 0.825 0.809 0.791 0.773
(0.024)(0.032)(0.035)(0‘039)(0.054)(0.062)(0.062)(0.065)(0.069)(0.073)(0.077)(0.082)(0.085)
(3) 0.959 0.911 0.901 0.895 0.855 0.846 0.848 0.839 0.824 0.807 0.790 0.772 0.747
(0.016)(0.032)(0.037)(0.040)(0.059)(0.064)(0.065)(0.067)(0.072)(0.075)(0‘079)(0.084)(0.088)

“Entries in (1) are the persistence probabilities of raw, (2) trend removed, (3) demeaned fluc-
tuations. The numbers in paranthesis are heteroscedastic and autocorrelation consistent standard
errors of estimates. Citibase mnemonics for the series are in brackets. The estimated trend regres-

sions and the mean of fluctuations are:
by = 0.0134 + 7.2 — 05 -t and E(y; — y.—1) = 0.000.
‘Y = 973.5+21.5-t and E(y; — y1—1) = 21.657.
4y, = —1084.35+431.2 -t and E(y; — y1—1) = 33.913.
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capita GNP have more than 4/5 chance to persist after one quarter and approx-
imately 2/5 chance to persist after 10 years. The persistence probabilities of raw
fluctuations in real GNP are much more higher. After 10 years, the probability that
a fluctuation in real GNP persist is more than 2/3. The fluctuations around a linear
time trend and the mean level have statistically similar persistence probabilities.
For the real per capita GNP series, these fluctuations persist at 83.6 % probability
after one quarter and 22.7 % probability after ten years. When using the real GNP,
the last figures remains almost similar: a fluctuation in real GNP persist at 84.7 %
probability after one quarter and 22.7 % probability in ten years forecasting horizon.
The fluctuations in both series have more than 1/2 chance to persist in one year
horizon. Obviously, the persistence probabilities of nominal fluctuations in GNP are
much more higher than the fluctuations in real GNP since they include fluctuations
in population and prices.

Many recent papers discuss the implications of the assumption that macroeco-
nomic variables are subject to two different probability distribution functions, one of
which applies in business expansions and the other in recessions. The switches from
the former to the latter (or vice versa) are supposed to occur suddenly at random
time points and be unobserved; they can only be inferred from the data according
to some model and prediction rules. For example, Neftci (1982) splits the data on
the composite index of leading indicators for 1948-1970 into downturn and upturn
regimes. He smoothes the historical frequency distribution of the monthly changes
in the index with a month centered moving average to estimate the probability dis-
tributions separately for the two regimes. His formula for assessing the probability of
recessions is recursive and dynamic in that it inludes the previous month’s outcome
and cumulates the probabilities from zero at the start of each expansion to 100 %
at the end. It also involves a prior probability distribution based on the assumption
that the likelihood of a downturn increases slightly in each month as the expan-
sion ages. The assumption that the life of an expansion is a declining function of

its duration has long been questioned. Hamilton (1989)’s econometric analysis ex-
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Table 1.3: Persistence During the Business Cycles @

Forecasting Horizon
1 2 3 4 8 12 16 20 24 28 32 36 40
Real Per Capita GNP 1947:Q1 - 1994:Q3 [GNPQ/P16]
Exp 0.839 0.800 0.742 0.715 0.617 0.553 0.541 0.517 0.518 0.504 0.496 0.488 0.472
(0‘030)(0.036)(0.045)(0.051)(0.058)(0.073)(0.075)(0.083)(0.085)(0.084)(0.085)(0.084)(0.082)
Rec 0.893 0.857 0.607 0.571 0.214 0.071 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0‘051)(0.047)(0‘077)(0.094)(0.104)(0.047)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)
Real GNP 1947:Q1 - 1994:Q3 [GNPQ)]
Exp 0.913 0.887 0.874 0.835 0.799 0.793 0.791 0.800 0.794 0.788 0.782 0.783 0.776
(0.028)(0.032)(0.035)(0.046)(0.055)(0.056)(0.057)(0.057)(0.057)(0.057)(0.058)(0.058)(0.058)
Rec 0.714 0.536 0.393 0.250 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0.070)(0.075)(0.100)(0‘098)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)

“Exp and Rec denotes expansions and recessions.

tends the Neft¢i’s model. He applies a nonlinear iterative filter to quarterly growth
rates in real GNP for 1952-1984 and reports the maximum likelihood estimates of
the parameters of the underlying process. He argues that one possible outcome of
the use of Markov switching regression to infer regime changes might have been an
identification of above-trend and below-trend growth phases. However, he shows
that the data are separated by positive growth periods and negative growth periods
(recessions). The dates of the switches determined by this method agree quite well
with the NBER’s business cycle chronologies.

In Table 1.3, we present persistence probabilities conditional to the business
cycles. We see that a fluctuation in real per capita GNP occuring in business
expansions have 1/2 chance to persist after ten years. On the other hand, the prob-
ability that a fluctuation occuring in business recessions persists more than three
years is statistically equal to zero. The conditional probabilities of the fluctuations
in real GNP are more pronounced. For example, fluctuations occuring during the

business expansions have more than 3/4 chance to persist after ten years while fluc-
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Figure 1.4: Persistence Probabilities in Real Per Capita GNP

tuations during the business recessions reaches the zero probability within the two
years. These results support the hypothesis of the asymmetry of business fluctua-
tions which suggests that the expansions are much longer than recessions during the
post-War II period.

Figure 1.4 summarizes the typical pattern of persistence probabilities of fluc-
tuations in real per capita GNP. In this figure, we show superimposed persistence
probabilities of (1) raw, (2) detrended and (3) demeaned fluctuations as well as
the persistence probabilities conditional to expansions (E) and recessions (R). The
whole cycle persistence probabilities are high during the short forecasting horizons,
but they decline slowly for larger horizons. The raw fluctuations persist at 1/2 prob-
ability for longer horizons. Once the drift (or time trend) is dropped, persistence
probabilities are about 1/4 after ten years. It appears no quantitative difference
between trend or difference stationary fluctuations. Return probabilities associated

with fluctuations (around deterministic time trend and those around stochastic time
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trend) appear to have similar persistence probabilities. The overall picture of return
probabilities during the cyclical regimes were also plotted in the bottom panel of
Figure 1.4. Typically, they show quickly decaying shape when the return probabili-
ties are conditioned to business recessions. After one year, they are zero probability.
On the other hand, conditional to business expansions, the fluctuations persist at a

half probability after 2-3 years.

1.6.2 Some Stylized Facts

in U.S. Macroeconomic Time Series
Consumption and Investment

In this section, we examine the persistence of the fluctuations in total consumption
expenditures which include the expenditures on durable, nondurable and services.
It is known that real consumer expenditures on durable goods have large fluctua-
tions, most of which correspond well to business cycles. In contrast, consumption
of nonduarble goods and services shows relatively small fluctuations, see Moore
and Zarnowitz (1994). Table 1.4 provides the persistence probabilities in real con-
sumption and real investment expenditures. We eliminate the effects of population
growth by dividing both series by the total civil population. The raw fluctuations in
consumption expenditures are highly persistent: 92.1 % after one quarter and only
82.1 % after ten years. Once the time trend or the mean of fluctuations is removed
persistence probabilities becomes 75-80 % after one quarter but fall quickly to 30 %
after ten years. In per capita terms, the second entry in Table 1.4, the consumption
expenditures appears to be less persistent at long forecasting horizon. For instance,
the raw fluctuations in consumption have least than 2/3 chance to survive after ten
years while demeaned or detrended fluctuations persist with 1/9 chance.

‘The third and forth entries of Table 1.4 report persistence probabilities in real
fixed investment. All of these probabilities are less then the probabilities for the

fluctuations in consumption expenditures. These results confirm permanent income
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hypothesis which suggests that fluctuations in real consumption is more persistent
than those in investment. The probability that a raw fluctuation in real per capita
investment expenditures persist after one quarter is 86.8 %. In per capita terms,
the raw fluctuations have approximately the same persistence probabilities as with
detended or demeaned fluctuations.

The results in Table 1.5 show the persistence probabilities of consumption and
investment expenditures during the business cycles. In per capita terms, the fluc-
tuations in consumption expenditures during the business expansions have 94.4 %
chance to persist after one quarter. Looking at the long forecasting horizon, we see
that in per capita terms, the fluctuations in consumption are more persistent during
the expansion periods. On the other hand, the persistence probabilities of fixed in-
vestment expenditures during the recessions are higher at short forecasting horizons
than expansions and reach the zero probability after 16 quarters. The F igure 1.5

plots the patterns of persistence probabilities reported in this section.

Prices and Inflation

The degree of persistence in inflation has several important macroeconomic implica-
tions. Recent economic theory suggests that changes in the persistence of inflation
may result from changes in monetary policymakers’ preferences for inflation or from
changes in monetary regime. Ball (1990) constructs a time-consistent model of
central bank behavior in which temporary and exogeneous macroeconomic shocks
trigger temporary inflations that become persistent and long lasting only if weak
policymakers accommodate these shocks. A change from high and persistent infla-
tion to low and stable inflation only occurs when a new strong policymaker is willing
to incur temporary output losses in order to reduce the inflation under strong policy-
makers. A low and less persistent inflation rate results because these policymakers
do not accommodate temporary macroeconomic shocks. Alogoskoufis and Smith
(1991) use an aggregate demand-supply macroeconometric model with price-setting

firms and staggered wage-setting to show that the persistence in inflation will be
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Table 1.4: Consumption and Investment®

Forecasting Horizon
1 2 3 4 8 12 16 20 24 28 32 36 40
Real Consumption: 1947:Q1 - 1994:Q4 [GCQ)]
(1) 0.921 0.862 0.840 0.840 0.814 0.810 0.817 0.830 0.826 0.822 0.830 0.826 0.821
(0.019)(0.034)(0.043)(0.044)(0.052) (0.053) (0.052) (0.051) (0.052) (0.052) (0.053)(0.053) (0.053)
(2) 0.779 0.714 0.691 0.674 0.563 0.464 0.411 0.380 0.359 0.344 0.346 0.335 0.305
(0.032)(0.038)(0.039)(0.040)(0.051)(0.066) (0.072)(0.077) (0.078) (0.083)(0.083) (0.084) (0.083)
(3) 0.795 0.709 0.681 0.663 0.557 0.464 0.411 0.380 0.353 0.344 0.352 0.329 0.305
(0.032)(0.036)(0.039)(0.040)(0.050) (0.065)(0.071)(0.076) (0.077) (0.081)(0.081)(0.082) (0.081)
Real Per Capita Consumption: 1947:Q1 - 1994:Q4 [GCQ/P16]
(1) 0.868 0.804 0.755 0.722 0.667 0.620 0.611 0.626 0.641 0.638 0.642 0.639 0.636
(0.030)(0.037)(0.041)(0.046) (0.057) (0.066)(0.070)(0.068) (0.067) (0.068) (0.069) (0.069) (0.069)
(2) 0.795 0.714 0.665 0.620 0.481 0.369 0.326 0.251 0.210 0.190 0.170 0.148 0.113
(0.035)(0.036) (0.040)(0.044)(0.051) (0.059) (0.065) (0.065) 0.060) (0.055) (0.053)(0.049) (0.047)
(3) 0.800 0.725 0.665 0.620 0.475 0.369 0.326 0.251 0.210 0.190 0.176 0.148 0.113
(0.032)(0.034) (0.040)(0.044) (0.051) (0.059) (0.065) (0.065)(0.060) (0.055) (0.054) (0.049) (0.047)
Real Investment: 1947:Q1 - 1994:Q4 [GIFQ]
(1) 0.858 0.788 0.745 0.684 0.492 0.380 0.314 0.298 0.305 0.301 0.308 0.316 0.325
(0.026)(0.038)(0.039)(0.042) (0.054) (0.057)(0.065) (0.064) (0.064) (0.061)(0.06 1) (0.061) (0.061)
(2) 0.884 0.810 0.761 0.706 0.519 0.335 0.291 0.234 0.204 0.184 0.145 0.142 0.126
(0.024)(0.029) (0.032)(0.038) (0.046) (0.052) (0.051) (0.054) (0.054) (0.053) (0.043)(0.041) (0.036)
(3) 0.874 0.799 0.739 0.684 0.503 0.374 0.326 0.287 0.240 0.202 0.164 0.123 0.126
(0.026)(0.033) (0.038) (0.041)(0.047) (0.054)(0.055) (0.059) (0.060) (0.061) (0.055) (0.052) (0.052)
Real Per Capita Investment: 1947:Q1 - 1994:Q4 [GIFQ/P16]
(1) 0.868 0.799 0.734 0.701 0.503 0.346 0.286 0.228 0.210 0.202 0.189 0.194 0.199
(0.026)(0.033)(0.039)(0.037)(0.053) (0.053)(0.057) (0.060) (0.061) (0.058) (0.059) (0.060) (0.060)
(2) 0.895 0.804 0.745 0.695 0.508 0.346 0.286 0.263 0.246 0.196 0.164 0.123 0.119
(0-024)(0.030) (0.032) (0.038) 0.044) (0.048) (0.047) (0.050) (0.051) (0.045) (0.039)(0.039) (0.040),
(3) 0.889 0.799 0.739 0.690 0.508 0.346 0.286 0.257 0.240 0.184 0.151 0.123 0.113
(0-022)(0.028)(0.032)(0.038) (0.042) (0.049) (0.047) (0.051)(0.048) (0.045) (0.042)(0.037) (0.038)

“Entries in (1) are the persistence probabilities of raw, (2) trend removed, (3) demeaned fluc-
tuations. The estimated trend regressions and the mean of fluctuations are: 485.1 4+ 15.1 - ¢ and
14.9 for real consumption, 0.0076 + 5.5¢ — 5 - ¢ and 5.5e-5 for real p.c. consumption, 131.6 + 3.5

and 1.5e-5 fir real investment, 0.0019 + 1.2e — 5 - ¢ and 3.88 for real p.c. investment.
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Table 1.5: Consumption and Investment During Business Cycles®

Forecasting Horizon
1 2 3 4 8 12 16 20 24 28 32 36 40
Real Consumption: 1947:Q1 - 1994:Q4 [GCQ)
Exp 0.944 0.913 0.887 0.887 0.871 0.868 0.872 0.877 0.873 0.870 0.881 0.877 0.873
(0.018)(0.028)(0.040)(0.040)(0.045)(0.046) (0.046)(0.046)(0.047)(0.048)(0.048)(0.048) (0.049)
Rec 0.786 0.571 0.571 0.571 0.500 0.500 0.519 0.560 0.560 0.560 0.560 0.560 0.560
(0.070)(0.056)(0.056)(0.056)(0.071)(0.071)(0.066)(0.072)(0.072)(0.072)(0.072)(0.072)(0.072)
Real Per Capita Consumption: 1947:Q1 - 1994:Q4 [GCQ/P16]
Exp 0.883 0.832 0.794 0.780 0.735 0.689 0.676 0.685 0.704 0.703 0.709 0.708 0.706
(0.028)(0.037)(0.042)(0.044)(0.055)(0.065)(0.072)(0.069)(0.067)(0.068)(0.069) (0.070)(0.070)
Rec 0.786 0.643 0.536 0.393 0.286 0.250 0.259 0.280 0.280 0.280 0.280 0.280 0.280
(0.046)(0.084)(0.100)(0.065)(0.074)(0.068)(0.070)(0.079)(0.079)(0.079)(0.079)(0.079)(0.079)
Real Investment: 1947:Q1 - 1994:Q4 [GIFQ]
Exp 0.846 0.783 0.744 0.698 0.542 0.430 0.365 0.342 0.352 0.348 0.358 0.369 0.381
(0.030)(0.042)(0.046)(0.047)(0.058)(0.063)(0.071)(0.071)(0.070)(0.067)(0.066)(0.065)(0.066)
Rec 0.929 0.821 0.750 0.607 0.214 0.107 0.037 0.040 0.040 0.040 0.040 0.040 0.040
(0.059)(0.083)(0.089)(0.109)(0.077)(0.036)(0.032)(0.033)(0.033)(0.033)(0.033)(0.033)(0.033)
Real Per Capita Investment: 1947:Q1 - 1994:Q4 [GIFQ/P16]
Exp 0.858 0.776 0.725 0.704 0.542 0.391 0.331 0.267 0.246 0.239 0.224 0.231 0.238
(0.032)(0.039)(0.044)(0.041)(0.054)(0.058)(0.065)(0.067)(0.068)(0.065)(0.067)(0.068)(0.068)
Rec 0.929 0.929 0.786 0.679 0.286 0.107 0.037 0.000 0.000 0.000 0.000 0.000 0.000
(0.059)(0.059)(0.101)(0.130)(0.105)(0.036)(0.031)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)

“Exp and Rec denotes expansions and recessions.
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positively related to monetary accommodation of price shocks. Barsky (1987) shows
that if inflation is persistent, then ex-post Fisher effects (which refers to the hypoth-
esis that changes in expected inflation should be reflected in nominal interest rates)
are more likely to be observed. Therefore, if inflation has become less persistent
in the 1980’s, the relationship between interest rates and inflation has changed,
moreover the lagged values of inflation will have less predictive power for future
inflation.

The results are presented in Table 1.6 and left panels of Figure 1.6 . The inflation
1s measured by the percent change in the implict price deflator of GNP (nominal
GNP divided by real GNP). The raw fluctuations in inflation have 4/5 chance to
persist after a quarter. At long forecasting horizon raw fluctuations in inflation rate
have 1/5 chance to persist. The fluctuations around linear time trend and the mean
level have almost similar probabilities. We also consider the persistence probabilities
in consumer and producer prices. The persistence probabilities of fluctuations in
consumer prices are higher than the persistence probabilities of producer prices for
all forecasting horizons. This suggests that producer prices are more volatile than
consurmer prices.

The Tables 1.7 and the right hand plots in Figure 1.6 show the persistence
probabilities conditional on business cycles. The fluctuations in inflation rate are
likely persistent up to two quarters when the economy stays in a recessionist regime.
After two quarters, fluctuations occuring in business expansions are more persistent
then those occuring during the business recessions. More precisely, the probability
that a fluctuation occuring in business expansion persists after two quarters is 73.7
% and in business recessions 75.0 % while after ten years fluctuations in inflation
rate are more persistent if the economy is in expansion, 21.5 % against 16.0 %.
The same figures are also valid for consumer prices but with certain lags. The
fluctuations in consumer prices during a business recessions have higher persistence
probabilities than expansions up to four quarters. On the other hand, the persistence

probabilities in producer price fluctuations conditional on business expansions are
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higher than the probabilities when fluctuation occur during the business recessions.
It should be noted that, the conditional persistence probabilities in inflation rate

are much more lower than the consumer and producer prices.

Money and Interest Rates

Shocks to the quantity of money or other measures of Federal Reserve policy have
long been suspected to influence output. Starting from the quantity-theoretic propo-
sition, changes in the stock of money are the main determinant of changes in nominal
income. Given significant lags in wage and price adjustments, high and low growth
rates in the quantity of money lead to corresponding fluctuations in real economic
activity relative to secular trends. Long periods of positive growth rates produce
business slowdowns and long periods of negative monetary growth rates lead to de-
pression (Friedman and Schwarz, 1963). Alternative models emphasize the role of
real variables and minimize or ignores the influence of monetary shocks : Kydland
and Prescott (1983), Long and Plosser (1983), King and Plosser (1984). There are
basicly two reasons for this challenge. First, using annual data, Nelson and Plosser
(1982) suggest that real disturbances are the primary source of the variance of real
output. Second, King and Plosser’s measure of high powered money (monetary base
unadjusted for changes in required reserve ratios) shows a weak relation to real ac-
tivity. They find that much of the relation between money and economic activity
is between bank deposits and real output. This relationship is interpreted as re-
verse causation from economic activity to money. Growth of high powered money
contributes little to fluctuations in real output.

We examine the fluctuations in real money stock (M2) as an indicator of real
money supply fluctuations. The choice seems to be common to many contributions.
The results are presented in Table 1.8. The raw fluctuations in real money balances
seem to be highly persistent. They have 90.9 % probability to persist after one
quarter and more than fifty percent probability after ten years. Fluctuations around

deterministic time trend and constant mean level of fluctuations in money balances
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Table 1.6: Prices and Inflation®

Forecasting Horizon
1 2 3 4 8 12 16 20 24 28 32 36 40
Inflation: 1947:Q1 - 1994:Q3 (Annual Growth Rate of GNP deflator [GNP/GNPQ]) *
(1) 0.805 0.739 0.683 0.604 0.466 0.374 0.312 0.283 0.241 0.228 0.227 0.220 0.205
(0.034)(0.036)(0.036)(0.040)(0.051)(0.046)(0.042)(0.038)(0.044)(0.044)(0.045) (0.044) (0.046)
(2) 0.811 0.723 0.667 0.588 0.444 0.356 0.294 0.265 0.222 0.209 0.214 0.200 0.185
(0.035)(0.039)(0.037)(0.041)(0.050)(0.049)(0.045)(0.043)(0.045)(0.044)(0.043) (0.042) (0.045)
(3) 0.805 0.734 0.667 0.615 0.461 0.374 0.312 0.277 0.222 0.215 0.221 0.227 0.219
(0.032)(0.037)(0.034)(0.038)(0.049)(0.048)(0.047)(0.046)(0.050)(0.052)(0.052) (0.052) (0.052)
Consumer Prices: 1947:Q1 - 1994:Q4 [PUNEW] ¢
(1) 0.932 0.921 0.915 0.904 0.869 0.866 0.863 0.860 0.856 0.853 0.849 0.852 (.848
(0.028)(0.030)(0.033)(0.038)(0.055)(0.056)(0.056)(0.057)(0.057)(0.057)(0.058) (0.059) (0.059)
(2) 0.958 0.942 0.936 0.920 0.891 0.877 0.857 0.830 0.808 0.791 0.780 0.787 0.795
(0.018)(0.023)(0.025)(0.032)(0.047)(0.052)(0.059)(0.067)(0.072)(0.076)(0.079) (0.077) (0.078)
(3) 0.958 0.942 0.936 0.920 0.891 0.877 0.857 0.830 0.808 0.791 0.780 0.787 0.795
(0.018)(0.023)(0.025)(0.032)(0.047)(0.052)(0.059)(0.067)(0.072)(0.076)(0.079) (0.077) (0.078)
Producer Prices: 1946:Q1 - 1994:Q4 [PW] ¢
(1) 0.861 0.808 0.766 0.749 0.674 0.645 0.615 0.600 0.585 0.575 0.564 0.572 0.587
(0.033)(0.047)(0.053)(0.057)(0.074)(0.078)(0.085)(0.088)(0.090)(0.090)(0.091) (0.091) (0.089)
(2) 0.871 0.829 0.812 0.796 0.738 0.699 0.665 0.646 0.608 0.581 0.558 0.528 0.516
(0.034)(0.040)(0.045)(0.049)(0.064)(0.072)(0.079)(0.080)(0.086)(0.091)(0.094) (0.099) (0.098)
(3) 0.876 0.829 0.802 0.785 0.711 0.694 0.648 0.634 0.608 0.575 0.552 0.528 0.523
(0.030)(0.040)(0.046)(0.050)(0.069)(0.075)(0.084)(0.085)(0.089)(0.094)(0.096) (0.099) (0.099)

“Entries in (1) are the persistence probabilities of raw, (2) trend removed, (3) demeaned fluc-

tuations. The estimated trend regressions and the mean of fluctuations are:
by = 2.7084 4 0.0157 - ¢ and E(y; — Yr—1) = —0.0251.
‘Yt = —3.7954+0.672 -t and E(y: — ys—1) = 0.6708.
4y, = 3.286 + 0.563 - t and E(y — ye—1) = 0.5273.
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Table 1.7: Prices and Inflation During Business Cycles®

Forecasting Horizon
1 2 3 4 8 12 16 20 24 28 32 36 40
Inflation: 1948:Q1 - 1994:Q3 (Annual Growth Rate of GNP deflator [GNP/GNPQ)])
Exp 0.790 0.737 0.690 0.604 0.513 0.404 0.333 0.298 0.248 0.241 0.240 0.232 0.215
(0.040)(0.038)(0.038)(0.042)(0.058)(0.053)(0.049)(0.043)(0.049)(0.047)(0.046) (0.045) (0.047)
Rec 0.893 0.750 0.643 0.607 0.214 0.214 0.192 0.200 0.200 0.160 0.160 0.160 0.160
(0.077)(0.089)(0.072)(0.077)(0.124)(0.124)(0.116)(0.124)(0.124)(0.133)(0.133)(0.133) (0.133)
Consumer Prices: 1947:Q1 - 1994:Q4 [PUNEW]
Exp 0.920 0.907 0.906 0.899 0.877 0.874 0.878 0.870 0.866 0.862 0.858 0.862 0.857
(0.033)(0.036)(0.037)(0.040)(0.050)(0.051)(0.051)(0.051)(0.051)(0.052)(0.053) (0.054) (0.054)
Rec 0.964 0.964 0.929 0.893 0.786 0.786 0.741 0.760 0.760 0.760 0.760 0.760 0.760
(0.032)(0.032)(0.062)(0.088)(0.163)(0.163)(0.160)(0.167)(0.167)(0.167)(0.167) (0.167) (0.167)
Producer Prices: 1946:Q1 - 1994:Q4 [PW]
Exp 0.867 0.824 0.787 0.767 0.698 0.665 0.638 0.627 0.610 0.599 0.587 0.597 0.615
(0.039)(0.048)(0.054)(0.060)(0.077)(0.082)(0.090)(0.093)(0.096)(0.096)(0.098) (0.097) (0.094)
Rec 0.821 0.714 0.643 0.643 0.536 0.536 0.481 0.440 0.440 0.440 0.440 0.440 0.440
(0.063)(0.085)(0.100)(0.100)(0.147)(0.147)(0.139)(0.140)(0.140)(0.140)(0.140) (0.140) (0.140)

“Exp and Rec denotes expansions and recessions.
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have surprisingly more persistent than the raw fluctuations from 3 quarters horizon
until four years. After four years, raw fluctuations persist more than the detrended
and demeaned fluctuations. The situation can also be surveyed from the left panel
of Figure 1.7.

The changes in the nominal interest rates are read as signals of changes in the
stock of money and inflation. Their adjustments to inflation were sluggish and in-
complete to suggest that people treated the nominal rates as if they were appropriate
proxies for the real rates. Monetarists opposed to the idea that monetary interven-
tion were seen as causing interest rates to deviate from their equilibrium levels so
that they fail to coordinate saving and investment decisions. McCulloch (1977, 1981)
argues that business fluctuations are associated with unanticipated changes in the
interest rates.

We examine the characteristics of fluctuations in short term nominal interest
rates (three-month bill; yields on actively traded issues adjusted to constant matu-
rities) and corporate bond yield (Moody’s AAA). In Table 1.8, we see that a raw
fluctuation in interest rates has 85.3 % chance to persist in one quarter. At ten years
horizon, persistence probability of a raw fluctuation is about 14.6 %. The detrended
and demeaned fluctuations show similar features, they approach zero probability at
ten years horizon. The probability that fluctuation around the mean or time trend
persists after ten years is 6.0 %. The overall pictures of persistence probabilities
are displayed in the second row of Figure 1.7. Corporate Bond Yield seems to be
more persistent than the short term interest rates at long horizons. The raw fluctua-
tions persist at 30.5 % probability after ten years while the persistence probabilities
of demeaned and detrended fluctuations are 13.9 %. The persistence probabilities
conditional to cyclical regimes are plotted in the right panels of Figure 1.7. Table
1.8 provides associated return probabilities. The fluctuations occuring during the

expansions seem to be more persistent in the long term.
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Table 1.8: Money and Interest Rates®

Forecasting Horizon
1 2 3 4 8 12 16 20 24 28 32 36 40
Real Money Stock (M2): 1948:Q1 - 1994:Q4 [FM2DQ)] *
(1) 0.909 0.870 0.804 0.749 0.631 0.571 0.544 0.515 0.521 0.528 0.535 0.536 0.524
(0.021)(0.029)(0.041)(0.050)(0.073)(0.082)(0.087)(0.093)(0.092)(0.093)(0‘093)(0.094)(0.093)
(2) 0.882 0.865 0.815 0.798 0.687 0.589 0.550 0.497 0.442 0.396 0.335 0.311 0.279
(0.026)(0.029)(0.038)(0.041)(0.060) (0.077)(0.082)(0.085)(0.084) (0.083)(0.084) (0.084) (0.086)
(3) 0.925 0.865 0.810 0.765 0.693 0.600 0.561 0.473 0.448 0.403 0.361 0.344 0.313
(0.022)(0.030)(0.038)(0.046)(0.057)(0.073)(0.080)(0.085)(0.086) (0.088)(0.093) (0.092) (0.090)
Short Term Interest Rates: 1947:Q1 - 1994:Q4 [FYGM3) ©
(1) 0.853 0.746 0.686 0.642 0.470 0.363 0.263 0.216 0.186 0.178 0.157 0.148 0.146
(0.026)(0.039)(0.039)(0.042)(0.050) (0.054) (0.053)(0.053)(0.051) (0.048) (0.042) (0.040) (0.040)
(2) 0.863 0.725 0.638 0.604 0.426 0.313 0.200 0.164 0.144 0.123 0.107 0.077 0.060
(0.025)(0.037)(0.038)(0.041)(0.049) (0.052)(0.049)(0.044)(0.043) (0.038) (0.033)(0.027) (0.024)
(3) 0.858 0.720 0.654 0.620 0.437 0.324 0.211 0.181 0.156 0.129 0.119 0.090 0.060
(0.028)(0.039) (0.039)(0.042) (0.051) (0.052) (0.052)(0.049) (0.047) (0.042) (0.038)(0.030) (0.024)
Bond Yield (Corporate): 1947:Q1 - 1994:Q4 [FYBAAC] ¢
(1) 0.842 0.751 0.686 0.642 0.508 0.441 0.366 0.351 0.335 0.325 0.321 0.323 0.305
(0.028)(0.031)(0.036)(0.040)(0.051)(0.058)(0.065)(0.067)(0.069) (0.070)(0.069)(0.070) (0.069)
(2) 0.853 0.741 0.691 0.647 0.530 0.430 0.343 0.322 0.287 0.227 0.201 0.161 0.139
(0.028)(0.035)(0.039)(0.038)(0.047)(0.054)(0.059)(0.063)(0.063)(0.060)(0‘058)(0.056)(0.050)
(3) 0.832 0.741 0.665 0.604 0.497 0.408 0.320 0.298 0.269 0.239 0.208 0.181 0.139
(0.030)(0.033)(0.039)(0.043)(0.048)(0.053)(0.057)(0.058) (0.057) (0.057)(0.057)(0.057) (0.053)

“Entries in (1) are the persistence probabilities of raw, (2) trend removed, (3) demeaned fluc-

tuations. The estimated trend regressions and the mean of fluctuations are:
by = 725.1+ 12.2-¢ and E(y: —yi—1) = 9.385.
‘y¢ = 1.324+0.04 -t and E(y: — y:—1) = 0.025.
4y, = 2.662+ 0.053 -t and E(y; — y11) = 0.032.
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Table 1.9: Money and Interest Rates During Business Cycles ®

Forecasting Horizon
1 2 3 4 8 12 16 20 24 28 32 36 40
Real Money Stock (M2): 1948:Q1 - 1994:Q4 [FM2DQ)]
Exp 0.911 0.879 0.814 0.761 0.662 0.592 0.556 0.528 0.536 0.545 0.554 0.556 0.541
(0.024)(0.030)(0.045)(0.054)(0.073)(0.081)(0.086)(0.094)(0.093)(0.093)(0.093)(0.094) (0.093)
Rec 0.893 0.821 0.750 0.679 0.464 0.464 0.481 0.440 0.440 0.440 0.440 0.440 0.440
(0.046)(0.065)(0.072)(0.107)(0.129)(0.129)(0.140)(0.124)(0.124)(0.124) (0.124)(0.124)(0.124)
Short Term Interest Rates: 1947:Q1 - 1994:Q4 [FYGM3]
Exp 0.840 0.745 0.688 0.648 0.471 0.358 0.270 0.233 0.197 0.188 0.164 0.154 0.151
(0.030)(0.043)(0.043)(0.046)(0.060)(0.066)(0.058)(0.061)(0.057)(0.054)(0.047)(0.045)(0.045)
Rec 0.929 0.750 0.679 0.607 0.464 0.393 0.222 0.120 0.120 0.120 0.120 0.120 0.120
(0.039)(0.085)(0.087)(0.092)(0.127)(0.158)(0.138)(0.100)(0.100)(0.100)(0.100)(0.100)(0.100)
Bond Yield (Corporate): 1947:Q1 - 1994:Q4 [FYBAAC]
Exp 0.827 0.745 0.688 0.642 0.516 0.470 0.385 0.363 0.359 0.348 0.343 0.346 0.325
(0.031)(0.036)(0.042)(0.046)(0.061)(0.065)(0.075)(0.077)(0.077)(0.078)(0.077)(0.079)(0.078)
Rec 0.929 0.786 0.679 0.643 0.464 0.286 0.259 0.280 0.200 0.200 0.200 0.200 0.200
(0.040)(0.087)(0.078)(0‘092)(0.064)(0.093)(0.089)(0.095)(0.088)(0.088)(0.088)(0.088)(0.088)

?Exp and Rec denotes expansions and recessions.
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Labor Market and Employment

Real wages discussed in this section are money wages deflated by the consumer
price index, not by the producer price index of current output of labor. The wage
in terms of consumables is of prime interest to workers, whereas the wage in terms
of the products of work (product wage rate) is of prime interest to firms. Producer
prices tend to vary more than consumer prices, if money wages are less flexible than
producer prices but more flexible than CPI, then the real wages deflated by PPI
could turn to be counter-cyclical and the CPI deflated real wages procyclical.
Table 1.10 shows the persistence probabilities in employment, unemployment
rate, real and nominal wages fluctuations. The raw fluctuations in employment
have 93.7 % chance to persist after one quarter. In the long term the probability
that a current fluctuation does not return is more than 1/2. The similarities between
detrended and demeaned fluctuations are again apparant. The persisence probability
of demeaned or detrended fluctuations is less than 1/4 over long horizon (10 years)

while in the short-run fluctuations around the mean seem to be more persistent.

Financial Markets

A number of recent models of stock market behavior yield the prediction of stock
returns, far from being unpredictable, should exhibit negative autocorrelation over
long time horizons, that they should be mean reverting. These models use the tech-
niques to examine time dependence in expected returns, or equivalently, the presence
of temporary components in stock prices. Fama and French (1988a) and Poterba
and Summers (1988) found some evidence that lagged returns forecast future re-
turns. Richardson (1989) and others have argued that the apparent forecast power
of lagged returns is statistically insignificant. However Fama and French (1988b)
find that other variables, and the divident/price ratio in particular, are strong and
statistically significant predictors of future returns.

A striking feature of financial indicators is that they lead the business cycles,

Moore and Zarnowitz (1994). The Table 1.13 and right hand panel of Figure 1.9
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Table 1.10: Labor Markets and Employment®

Forecasting Horizon
1 2 3 4 8 12 16 20 24 28 32 36 40
Employment: 1947:Q1 - 1994:Q4 [LPNAG]
(1) 0.937 0.873 0.824 0.775 0.639 0.603 0.611 0.626 0.617 0.607 0.597 0.587 0.576
(0.021)(0.030)(0.039) (0.049)(0.078) (0.084) (0.083)(0.084) (0.084) (0.084) (0.083) (0.083) (0.082)
(2) 0.911 0.841 0.771 0.717 0.590 0.486 0.400 0.357 0.311 0.294 0.277 0.277 0.245
(0.024)(0.029) (0.032)(0.039) (0.048) (0.062) (0.071)(0.070)(0.068) (0.067)(0.071)(0.073)(0.065)
(3) 0.895 0.825 0.771 0.701 0.585 0.480 0.383 0.333 0.299 0.282 0.283 0.265 0.245
(0.024)(0.030)(0.034)(0.043) (0.050) (0.061) (0.072) (0.070) (0.069) (0.070)(0.072) (0.070) (0.064)
Unemployment Rate: 1947:Q1 - 1994:Q4 [LHMUR]
(1) 0.821 0.745 0.700 0.654 0.529 0.424 0.374 0.308 0.252 0.215 0.168 0.157 0.146
(0.032)(0.036) (0.036)(0.041)(0.052) (0.060) (0.061) (0.061)(0.061) (0.058)(0.051)(0.052) (0.053)
(2) 0.821 0.720 0.688 0.648 0.523 0.424 0.361 0.322 0.273 0.215 0.176 0.181 0.179
(0.032)(0.036) (0.037)(0.042)(0.052) (0.063) (0.063) (0.062) (0.063) (0.059)(0.060) (0.06 1) (0.062)
(3) 0.821 0.739 0.706 0.667 0.529 0.424 0.381 0.315 0.266 0.215 0.168 0.157 0.146
(0.032)(0.033)(0.033)(0.039)(0.052) (0.061) (0.061) (0.063) (0.062) (0.058) (0.051) (0.052) (0.053)
Real Wages: 1947:Q1 - 1994:Q4 [LEHM/PUNEW]
(1) 0.821 0.725 0.686 0.663 0.623 0.570 0.543 0.520 0.503 0.491 0.478 0.458 0.470
(0.027)(0.039) (0.047)(0.050)(0.057) (0.068) (0.077) (0.083) (0.084) (0.083) (0.083) (0.086) (0.085)
(2) 0.800 0.709 0.676 0.652 0.596 0.525 0.486 0.456 0.443 0.429 0.415 0.406 0.397
(0.032)(0.038) (0.040)(0.044)(0.050) (0.064) (0.071) (0.072) (0.070) (0.067) (0.066)(0.069) (0.068)
(3) 0.795 0.704 0.676 0.647 0.590 0.525 0.480 0.444 0.431 0.417 0.403 0.394 0.384
(0.032)(0.039) (0.041)(0.044)(0.050) (0.061) (0.070) (0.073)(0.070) (0.068) (0.066) (0.069) (0.069)
Nominal Wages: 1947:Q1 - 1994:Q4 [LEHM]
(1) 0.958 0.958 0.952 0.952 0.951 0.950 0.949 0.947 0.946 0.945 0.943 0.942 0.940
(0-020)(0.020)(0.024)(0.024)(0.024) (0.024) (0.025) (0.025)(0.025) (0.025) (0.025) (0.026) (0.026)
(2) 0.916 0.899 0.894 0.882 0.852 0.849 0.834 0.807 0.796 0.785 0.792 0.800 0.808
(0.032)(0.038)(0.039)(0.042)(0.054) (0.058) (0.066) (0.075)(0.080) (0.084) (0.082) (0.081) (0.082)
(3) 0.932 0.910 0.904 0.893 0.863 0.849 0.846 0.825 0.814 0.791 0.792 0.800 0.808
(0.028)(0.034)(0.036)(0.040) (0.050) (0.062) (0.065) (0.071)(0.077) (0.083)(0.083) (0.082) (0.084)

“Entries in (1) are the persistence probabilities of raw, (2) trend removed, (3) demeaned fluctu-
ations. The estimated trend regressions and the mean of fluctuations are : 36009.496 + 392.103 - ¢
and 372.82 for employment, 4.284 + 0.012 - ¢ and 0.0004 for unemployment rate, 0.0659 + 0.0001-¢

and 0.0001 for real wages, —0.762 + 0.061 - ¢ and 0.058 for nominal wages.
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Table 1.11: Labor Markets and Employment During Business Cycles ®

Forecasting Horizon
1 2 3 4 8 12 16 20 24 28 32 36 40
Employment: 1947:Q1 - 1994:Q4 [LPNAG]
Exp 0.938 0.870 0.844 0.824 0.742 0.715 0.723 0.733 0.725 0.717 0.709 0.700 0.690
(0.024)(0.039)(0.044)(0.049)(0.069)(0.078)(0.077)(0.078)(0.078)(0.078)(0.079)(0.079)(0.078)
Rec 0.929 0.893 0.714 0.500 0.071 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0.035)(0.058)(0.083)(0.105)(0.068)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)
Unemployment Rate: 1954:Q1 - 1994:Q4 [LHMUR]
Exp 0.793 0.712 0.659 0.613 0.489 0.380 0.341 0.282 0.217 0.190 0.143 0.130 0.115
(0.035)(0.037)(0.043)(0.049)(0.056)(0.064)(0.064)(0.063)(0.061)(0.062)(0.052)(0.052)(0.051)
Rec 1.000 0.955 0.955 0.909 0.773 0.682 0.571 0.474 0.474 0.368 0.316 0.316 0.316
(0.000)(0.048)(0.048)(0.055)(0.088)(0.116)(0.109)(0.128)(0.128)(0.145)(0.159)(0.159)(0.159)
Real Wages: 1947:Q1 - 1994:Q4 [LEHM/PUNEW]
Exp 0.821 0.745 0.706 0.692 0.658 0.603 0.568 0.548 0.535 0.522 0.507 0.485 0.500
(0.033)(0.042)(0.049)(0.051)(0.055)(0.070)(0.080)(0.089)(0.087)(0.086)(0.086)(0.091)(0.089)
Rec 0.821 0.607 0.571 0.500 0.429 0.393 0.407 0.360 0.320 0.320 0.320 0.320 0.320
(0.060)(0.104)(0.118)(0.123)(0.152)(0.171)(0.177)(0.182)(0.195)(0.195)(0.195)(0.195)(0.195)
Nominal Wages: 1947:Q1 - 1994:Q4 [LEHM]
Exp 0.969 0.969 0.969 0.969 0.968 0.967 0.966 0.966 0.965 0.964 0.963 0.962 0.960
(0.013)(0.013)(0.013)(0.013)(0.013)(0.014)(0.014)(0.014)(0.014)(0.014)(0.014)(0.014)(0.014)
Rec 0.893 0.893 0.857 0.857 0.857 0.857 0.852 0.840 0.840 0.840 0.840 0.840 0.840
(0.071)(0.071)(0.099)(0.099)(0.099)(0.099)(0.100)(0.102)(0.102)(0.102)(0.102)(0.102)(0.102)

Exp and Rec denotes expansions and recessions.
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Table 1.12: Financial Markets®

Forecasting Horizon
1 2 3 4 8 12 16 20 24 28 32 36 40
S&P Common Stock Price Index: 1947:Q1 - 1994:Q4 [FSPCOM] *
(1) 0.832 0.735 0.654 0.599 0.475 0.425 0.394 0.404 0.389 0.368 0.365 0.348 0.331
(0.026)(0.035)(0.040)(0.048)(0.059) (0.063)(0.069) (0.070) (0.069) (0.070)(0.072)(0.068) (0.066)
(2) 0.842 0.762 0.697 0.647 0.536 0.453 0.423 0.433 0.431 0.411 0.415 0.400 0.377
(0.029)(0.035)(0.043)(0.051)(0.061) (0.071)(0.077)(0.077)(0.078) (0.080) (0.081)(0.080) (0.079)
(3) 0.826 0.757 0.686 0.663 0.552 0.508 0.491 0.503 0.497 0.479 0.484 0.471 0.457
(0.034)(0.039)(0.048) (0.048)(0.063) (0.069) (0.072)(0.072) (0.074) (0.076)(0.077) (0.078) (0.078)
Common Stock Prices: Dow Jones: 1947:Q1 - 1994:Q4 [FSDJ] ¢
(1) 0.821 0.725 0.654 0.588 0.454 0.391 0.343 0.339 0.323 0.301 0.302 0.290 0.272
(0.031)(0.034) (0.042)(0.047) (0.052) (0.057) (0.063) (0.067)(0.065) (0.066) (0.066) (0.064) (0.061)
(2) 0.811 0.714 0.649 0.626 0.492 0.425 0.360 0.363 0.341 0.331 0.333 0.303 0.272
(0.031)(0.036) (0.043)(0.046)(0.051) (0.052) (0.061)(0.063) (0.062) (0.062) (0.063) (0.060) (0.060)
(3) 0.837 0.735 0.676 0.642 0.552 0.508 0.474 0.480 0.479 0.466 0.465 0.439 0.404
(0.028)(0.038) (0.043)(0.050)(0.057) (0.063) (0.068) (0.068)(0.069) (0.071)(0.071)(0.072) (0.075)
NYSE Volume: 1947:Q1 - 1994:Q4 [FSVOL] ¢
(1) 0.721 0.587 0.479 0.455 0.383 0.363 0.331 0.333 0.335 0.344 0.352 0.342 0.338
(0.029)(0.031)(0.029)(0.031)(0.038) (0.040) (0.045) (0.045) (0.045)(0.045) (0.046) (0.045) (0.045)
(2) 0.832 0.746 0.686 0.668 0.617 0.609 0.600 0.602 0.605 0.620 0.635 0.645 0.629
(0.034)(0.049) (0.063) (0.065)(0.076) (0.079)(0.084)(0.085) (0.087) (0.085) (0.083)(0.083) (0.089)
(3) 0.805 0.762 0.702 0.690 0.617 0.615 0.606 0.608 0.623 0.632 0.648 0.652 0.642
(0.038)(0.048) (0.061)(0.063)(0.080) (0.082)(0.086) (0.088) (0.086) (0.086) (0.084) (0.086) (0.090)

“Entries in (1) are the persistence probabilities of raw, (2) trend removed, (3) demeaned fluc-

tuations. The estimated trend regressions and the mean of fluctuations are:
by = —46.7053 + 1.820 -t and E(y; — yo_q) = 2.328.
‘yr = —212.1269+ 13.474 - t and E(y; — y—1) = 19.017.
dy, = —1162.934 + 23.333 - ¢ and E(y: — y1—1) = 32.986.
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Table 1.13:  Financial Markets During Business Cycles ®

Forecasting Horizon
1 2 3 4 8 12 16 20 24 28 32 36 40
S&P Common Stock Price Index: 1947:Q1 - 1994:Q4 [FSPCOM]
Exp 0.840 0.752 0.688 0.635 0.510 0.457 0.426 0.432 0.415 0.391 0.388 0.369 0.349
(0.029)(0.038)(0.041)(0.046)(0.060)(0.068)(0.075)(0.076)(0.075)(0.075)(0.077)(0.073)(0.070)
Rec 0.786 0.643 0.464 0.393 0.286 0.250 0.222 0.240 0.240 0.240 0.240 0.240 0.240
(0.066)(0.095)(0.080)(0.083)(0.091)(0.107)(0.113)(0.113)(0.113)(0.113)(0.113)(0.113)(0.113)
Common Stock Prices: Dow Jones: 1947:Q1 - 1994:Q4 [FSDJ]
Exp 0.827 0.733 0.681 0.616 0.484 0.411 0.358 0.349 0.331 0.304 0.306 0.292 0.270
(0.031)(0.036)(0.042)(0.044)(0.052)(0.058)(0.066)(0.070)(0.068)(0.069)(0.070)(0.066)(0.062)
Rec 0.786 0.679 0.500 0.429 0.286 0.286 0.259 0.280 0.280 0.280 0.280 0.280 0.280
(0.058)(0.041)(0.058)(0.061)(0.103)(0.103)(0.104)(0.108)(0.108)(0.108)(0.108)(0.108)(0.108)
NYSE Volume: 1947:Q1 - 1994:Q4 [FSVOL]
Exp 0.704 0.565 0.450 0.428 0.342 0.318 0.284 0.288 0.289 0.297 0.306 0.292 0.286
(0.030)(0.039)(0.035)(0.036)(0.042)(0.044)(0.050)(0.050)(0.051)(0.051)(0.052)(0.051)(0.050)
Rec 0.821 0.714 0.643 0.607 0.607 0.607 0.593 0.600 0.600 0.600 0.600 0.600 0.600
(0.056)(0.060)(0.077)(0.083)(0.083)(0.083)(0.080)(0.083)(0.083)(0.083)(0.083)(0.083)(0.083)

“Exp and Rec denotes expansions and recessions.

show the persistence probabilities in S&P composite stock price index, Dow Jones
industrial average and NYSE reported share volume conditional to business cycle
regimes. The fluctuations in stock prices occuring in business expansions persist
more likely than those occuring during the business recessions. In contrast, the fluc-
tuations in shared volume in New York Stok Exchange Market have more chance to
persist during business recessions than business expansions. A fortiori, stock prices,
measured either by S&P index or by Dow Jones average have decreasing persistence
probabilities as long as the prediction horizon gets larger. The fluctuations in shared
volume have 3/5 chance to persist after five years, while the persistence probabilities

stabilizes at around 1/5 after five years.
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Figure 1.9: (a) S&P Prices, (b) Dow Jones, (¢) NYSE Volume
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Production and Productivity

The literature investigating the trend properties of economic time series has focused
almost entirely on variables such as GNP or aggregate industrial production. In this
section, we consider three key variables in the industrial production sector: industrial
production index, capacity utilization rate and the productivity of labor. It has
been stressed that the fluctuations in aggregate industrial production show greater
persistence than dissagregated industrial production indices. Instead of considering
the industries individually, we prefer to give a general idea about the persistence
degree of the fluctuations in the total industry. Two other related quantities are
also included. First, we consider a very procyclical series, capacity utilization rate
in manufacturing industry. Second, we consider the labor productivity, by dividing
the industrial production by the employee-hours in nonagricultural sectors. This
gives a rough measure of the industrial production per employee-hour. Table 1.14
and Figure 1.10 present the results from our estimates.

In the remaining part of this section, we compare the performance of our persis-
tence measure based on return probabilities of current fluctuation with the variance-
ratio measure proposed by Cochrane ( 1988). The comparison is established via the
ranking of series according to the extent that they persist at long horizons. Since,
both persistence measures are invariant with respect to the monotonic transforma-
tion of the series, the persistence ranking is a way that provides an idea about the
divergence and similarities between measures. In analyzing the ranking of series,
we have dropped, the nominal quantities, such as the GNP in current prices and
the wages in manufacturing industry. Population growth was also eliminated by
considering only the per capita measure of consumption and investment expendi-
tures. Part A of the Table 1.16 reports the ranking based on return probabilities of
eighteen series, up to ten years. The part B reports the ranking based on Cochrane
variance ratio procedures. The variance ratio at one quarter horizon are not ranked
since they are all equal to unity for all series.

Regarding the return probabilities d* (%), Table 1.16 shows that the real per
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Table 1.14: Production and Productivity®

Forecasting Horizon
1 2 3 4 8 12 16 20 24 28 32 36 40
Industrial Production: 1947:Q1 - 1994:Q4 [IP] ¢
(1) 0.858 0.767 0.697 0.668 0.514 0.430 0.423 0.433 0.443 0.448 0.434 0432 0.424
(0.030)(0.042)(0.048)(0.052)(0.074)(0.078)(0.079)(0‘078)(0.078)(0.079)(0.078)(0.079)(0.079)
(2) 0.816 0.730 0.681 0.631 0.481 0.402 0.326 0.281 0.240 0.227 0.208 0.181 0.172
(0.025)(0.031)(0.030)(0.035)(0.045)(0‘054)(0‘059)(0,058)(0.053)(0.052)(0.050)(0.048)(0.050)
(3) 0.816 0.730 0.681 0.631 0.481 0.402 0.326 0.281 0.240 0.227 0.208 0.181 0.172
(0‘025)(0.031)(0.030)(0.035)(0.045)(0.054)(0.059)(0.058)(0.053)(0.052)(0.050)(0.048)(0.050)
Capacity Utilization Rate: 1947:Q1 - 1994:Q4 [IPXMCA] °
(1) 0.844 0.768 0.723 0.656 0.492 0.394 0.287 0.263 0.227 0.201 0.161 0.119 0.122
(0.026)(0.031)(0.037)(0.038)(0.049)(0‘051)(0.055)(0.058)(0.054)(0.049)(0.041)(0.036)(0.036)
(2) 0.849 0.773 0.723 0.661 0.492 0.394 0.287 0.263 0.221 0.201 0.161 0.119 0.192
(0.026)(0.031)(0.037)(0.039)(0.051)(0.053)(0.056)(0.058)(0.054)(0.050)(0.042)(0.034)(0.035)
(3) 0.860 0.778 0.728 0.661 0.497 0.406 0.292 0.269 0.233 0.208 0.168 0.126 0.129
(0.025)(0.029)(0.036)(0.037)(0.049)(0.052)(0.056)(0.059)(0.056)(0.051)(0.043)(0.038)(0.038)
Labor Productivity: 1947:Q1 - 1994:Q4 [IP/LPHMU] ¢
(1) 0.842 0.741 0.654 0.588 0.437 0.346 0.297 0.304 0.305 0.313 0.321 0.323 0.331
(0.033)(0.037)(0.043)(0048)(0.065)(0.068)(0.072)(0.072)(0‘071)(0.071)(0.071)(0‘072)(0.072)
(2) 0.811 0.714 0.660 0.599 0.432 0.358 0.286 0.269 0.246 0.202 0.201 0.206 0.192
(0.030)(0.034)(0.037)(0.041)(0.055)(0.056)(0.063)(0.060)(0.058)(0.055)(0.055)(0.056)(0.054)
(3) 0.811 0.714 0.660 0.599 0.437 0.358 0.286 0.269 0.246 0.196 0.195 0.200 0.185
(0.030)(0.034)(0.037)(0.041)(0.054)(0.056)(0.063)(0.060)(0‘058)(0.054)(0.053)(0.055)(0.053)

“Entries in (1) are the persistence probabilities of raw, (2) trend removed, (3) demeaned fluc-

tuations. The estimated trend regressions and the mean of fluctuations are:
"y = 14.9434 + 0.512 - t and E(y: — yi—1) = 0.513.
‘yr = 83.950 — 0.0196 - ¢ and E(y; — —1) = 0.003.
dy; = 0.2673 4 0.0016 - ¢ and E(y: — yi—1) = 0.002.
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Table 1.15:  Production and Productivity During Business Cycles ©

Forecasting Horizon
1 2 3 4 8 12 16 20 24 28 32 36 40
Industrial Production: 1947:Q1 - 1994:Q4 [IP]
Exp 0.858 0.758 0.706 0.686 0.594 0.510 0.500 0.507 0.521 0.529 0.515 0.515 0.508
(0.035)(0.049)(0.053)(0.057)(0.073)(0.078)(0.080)(0.079)(0.078)(0.079)(0.079)(0.080)(0.081)
Rec 0.857 0.821 0.643 0.571 0.071 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0.041)(0.041)(0.057)(0.077)(0.053)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)
Capacity Utilization Rate: 1947:Q1 - 1994:Q4 [IPXMCA]
Exp 0.823 0.739 0.686 0.632 0.497 0.401 0.306 0.282 0.239 0.209 0.162 0.119 0.123
(0.031)(0.036)(0.042)(0.044)(0.058)(0.057)(0.064)(0.067)(0.063)(0.056)(0.046)(0.041)(0.041)
Rec 0.964 0.929 0.929 0.786 0.464 0.357 0.185 0.160 0.160 0.160 0.160 0.120 0.120
(0.035)(0.055)(0.055)(0.086)(0.098)(0.085)(0.062)(0.051)(0.051)(0.051)(0.051)(0.056)(0.056)
Labor Productivity: 1947:Q1 - 1994:Q4 [IP/LPHMU]
Exp 0.827 0.745 0.662 0.610 0.484 0.391 0.338 0.342 0.345 0.355 0.366 0.369 0.381
(0.037)(0.042)(0.048)(0.052)(0.069)(0.075)(0.080)(0.080)(0.078)(0.078)(0.078)(0.079) (0.078)
Rec 0.929 0.714 0.607 0.464 0.179 0.107 0.074 0.080 0.080 0.080 0.080 0.080 0.080
(0.042)(0.060)(0.085)(0.105)(0.063)(0.048)(0.056)(0.057)(0.057)(0.057)(0.057)(0.057)(0.057)

“Exp and Rec denotes expansions and recessions.
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capita consumption, prices (consumer and producer prices), real money stock (M2),
employment are the most persistent series of our sample. On the other hand, we see
that inflation, short term interest rates, unemployment rate, labor productivity and
financial indicators, S&P stock price index, Dow Jones industrial index and NYSE
volume and labor productivity are the least persistent series. With the exception
of the fixed real investment, the ranking of series seems approximately stable up to
ten years horizon. In the case of real per capita investment expenditures, the series
being in 5 to 7th position, ranked after the consumption expenditures, up to one
year horizon, fall dramatically to the end of the ranking during the business cycle
frequencies (2 to 6 years) and reaches 15th position at 10 years horizon. The real per
capita GNP and the industrial production stays in the upper middle of the ranking
for all horizon. The inflation appears to be less persistent than the unemployement
rate up to 6 years horizon, but at long term, fluctuations in inflation persist more
than the unemployement rate.

Turning to ranking based on Cochrane’s variance-ratio procedure, we see that the
above results does not hold in general. The prices (both consumer and producer),
real money balances, employement have again the most persistent fluctuations. The
rankings between consumption and investment expenditures have been reversed; at
short horizon, investments are more persistent than consumption, but after 3 years
horizon, the fluctuations in consumption persist more than those in investment,
contradicting the permanent income hypothesis. Another interesting results is the
propagation mechanism related to the fluctuations in financial indicators. The stock
prices and volume having relatively transitory fluctuations at short horizon exhibit
a high volatility in their persistence rankings and becomes the most persistent se-
ries. The situation can be explained by the presence of long memory in financial
indicators. It is worth to note that the same proporty is not valid for the rankings
of Table 1.16.

In Table 1.17, we turn our attention to the ranking of persistence probabilitites

d*(h) conditional to the business cycle regimes; expansions and recessions identified
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by the quarterly NBER. turning point chronologies. We do not provide similar rank-
ings for the variance-ratio procedures. The ranking in Table 1.17 shows comparative
persistence of fluctuations during business cycles. There are few series for which the
ranking are equal during the expansions and recession periods. For example, the
real per capita GNP is ranked between 6th and 10th place during the expansions

while during recessions, the rankings changes between 6th and 18th.

1.7 Conclusion

The evaluation of the persistence of economic fluctuations (shocks) is an important
research area in macroeconomics. Most controversy has focused on whether macroe-
conomic aggregates are better approximated by fluctuations around deterministic
trend, or by a random walk plus a stationary component. The empirical results
from these studies are ambiguous and it seems probable that the macroeconomic
aggregates belong to a much wider class of processes than previously considered. In
this paper, we have proposed persistence (non-persistence) measures which depend
on the probability of sign reversion (non-reversion) between present and A periods
ahead fluctuations in a given time series. In other terms, we measure the persistence
(non-persistence) of a fluctuation by estimating the probability that a current fluc-
tuation is not cancelled (is cancelled) by future fluctuations. This way of assessing
the permanence to the economic fluctuations is entirely new in time series analysis.
The basic contribution of this paper is the association of a probability measure to
the evolution of fluctuations in forecasting horizon. More precisely, the persistence
(non-persistence) measures proposed in this paper attribute a special attention to
the flows of future fluctuations. The future effect of today’s impulse in a given time
series can be reduced or aggravated in a given horizon. Consequently, the persis-
tence or non-persistence probabilities of a time series may be low or high depending
on the flow of future fluctuations.

Hencefort, the rejection or non-rejection of permanence or transitory components
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Table 1.16: Persistence Ranking of Raw Fluctuations ¢

Forecasting Horizon

Series 1 2 3 4 8 12 16 20 24 28 32 36 40
A. Ranking Based on Return Probabilities
Real Per Capita GNP 9 4 8 7 7 7T 7T 7 8 8 8 8 8
Real P.C. Consumption 4 6 5 5 3 3 3 2 2 2 2 2 2
Real P.C. Investment 5 7 6 6 11 18 17 17 17 16 15 15 15
Inflation 17 14 14 14 15 14 14 15 15 14 14 14 14
Consumer Prices 2 1 1 1 1 1 1 1 1 1 1 1 1
Producer Prices 6 5 4 3 2 2 4 4 4 4 4 3
Real Money Stock 3 3 3 4 5 5 H 6 5 5 5 5 5
Short Term Int. Rate 8 11 12 13 14 16 18 18 18 18 18 17 17
Bond Yield 11 10 11 12 10 8 11 10 10 11 11 11 12
Employment 1 2 2 2 4 4 3 3 3 3 3 4
Unemployment Rate 6 12 9 11 8 11 10 13 14 15 16 16 16
Real Wages 14 17 13 9 6 6 5 6 6 6 6 6
S&P Stock Prices 13 15 17 15 13 10 9 9 9 9 9 9 11
Dow Jones 15 16 15 16 16 13 12 11 12 13 13 13 13
NYSE Volume 18 18 18 18 18 15 13 12 11 10 10 10 9
Industrial Production T 9 10 8 9 9 8 8 7T T 71 7 7
Capacity Utilization 0 8 7 10 12 12 16 16 16 17 17 18 18
Labor Productivity 12 13 16 17 17 17 15 14 13 12 12 12 10
B. Ranking Based on Cochrane’s Variance Ratio
Real Per Capita GNP - 11 10 10 9 7 7 9 9 9 9 9 10
Real P.C. Consumption - 16 14 13 11 10 8 10 10 10 10 10 11
Real P.C. Investment - 6 6 6 7 8 12 13 16 17 17 17 17
Inflation - 10 11 12 17 18 18 18 17 16 16 16 15
Consumer Prices - 1 1 1 1 1 1 1 1 1 1 1 1
Producer Prices - 5 4 2 2 2 2 2 2 2
Real Money Stock -3 3 3 3 3 3 4 4 4 4 4 6
Short Term Int. Rate - 14 17 17 16 14 14 14 15 15 15 15 16
Bond Yield -9 7 7 6 6 6 6 6 6 7 8 8
Employment - 2 2 2 4 5 5 5 5 5 5§ 6 5
Unemployment Rate -4 5 5 8 9 11 11 11 11 11 12 13
Real Wages - 12 12 9 5 4 4 3 3 3 3
S&P Stock Prices - 17 15 15 15 12 9 7 7 7T 6 5 4
Dow Jones - 15 16 16 14 13 10 8 8 8 8 7 7
NYSE Volume - 18 18 18 18 17 15 15 14 12 12 11 9
Industrial Production - 7T 8 8 10 11 13 12 13 14 14 14 14
Capacity Utilization - 8 9 11 12 15 17 17 18 18 18 18 18
Labor Productivity - 13 18 14 13 16 16 16 12 13 13 13 12

“The ranking of a series is high if the persistence probability is high.
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Table 1.17: Persistence Ranking During Business Cycles ¢

Forecasting Horizon
Series 1 2 3 4 8 12 16 20 24 28 32 36 40
Real Per Capita GNP Exp 10 6 6 6 7 7 7 7 8 8 8 7 8
Reec 9 6 14 11 15 16 17 18 17 17 17 171 17
Real P.C. Consumption Exp 4 4 4 3 3 3 3 3 3 3 2 2 2
Rec 17 17 16 17 12 11 8 8 7 7 7 7 7
Real P.C. Investment Exp 7 7T 7 7 9 15 1 17 15 15 15 15 14
Rec 8 4 4 4 11 15 15 15 16 15 15 15 15
Inflation Exp 17 15 10 17 11 12 14 13 14 14 14 14 15

Rec 10 10 10 9 14 13 12 11 10 12 12 11 11
Consumer Prices Exp 2 1 1 1 1 1 1 1 1 1 1 1 1
Rec 3 2 1 1 1 1 1 1 1 1 1
Producer Prices Exp b5 5 5 4 4 4 4 4 4 4 4 4 4
Rec 15 14 11 7 4 4 4 4 4 3 3 3 3
Real Money Stock Exp 3 2 5 5 6 6 6 5 5 5 5 5
Ree 11 8 5 5 8 5 &5 5 5 4 4 4 4

Short Term Int. Rate Exp 8 11 12 10 17 17 18 18 18 18 16 16 16
Ree 4 11 7 8 5 6 10 13 13 13 13 12 12
Bond Yield Exp 11 12 11 11 10 9
Ree 5 9 8 6 7 9 7 7 11 10 10 10 10
2

Employment Exp
Rec 7 5 6 14 18 17 16 17 15 16 16 18 18

Unemployment Rate Exp 16 17 17 15 14 16 12 15 17 17 18 17 18

—
w
3™
[N]
(V]

Ree 1 2 1 1 2 2 3 3 3 5 6 6 6
Real Wages Exp 15 10 9 8 6 5 5 5 6 7 7 8 7
Ree 13 18 15 13 9 7 6 6 6 6 5 5 b
S&P Stock Prices Exp 9 9 13 12 12 10 9 9 9 9 9 10 10
Rec 18 16 18 18 10 12 11 10 ¢ 9 9 9 9
Dow Jones Exp 13 16 15 14 15 11 11 11 12 12 13 13 13
Rec 16 15 17 16 13 10 ¢ 9 8 8 8 8
NYSE Volume Exp 18 18 18 18 18 18 17 14 13 13 12 12 12

Rec 14 12 12 10 3 3 2 2 2 2 2 2
Industrial Production Exp 6 8 8 9 8 8 8 8 7 6 6 6 6
Ree 12 7 9 12 17 18 18 16 18 18 18 16 16
Capacity Utilization Exp 14 14 14 13 13 13 16 16 16 16 17 18 17
Ree 2 3 2 3 6 8 13 12 12 11 11 13 13
Labor Productivity Exp 12 13 16 16 16 14 13 12 11 10 10 9 9
Rec 6 13 13 15 16 14 14 14 14 14 14 14 14

“Exp and Rec denotes expansions and recessions. The ranking of a series is high if the persistence
probability is high.
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in a given time series may be responded in terms of probability measures. Namely,
it is possible to say how much today’s fluctuation is more likely persistent (tran-
sient) in finite forecasting horizon. Our persistence probabilities are not only simple
to compute but they are also quantitatively invariant with respect to monotonically
increasing transformation of the data. This property is particularly important, when
one wish to compare the persistence degree of economic aggregates. Traditional dis-
satisfaction with the conventional methods, for instance from the impulse-response
functions by Campbell and Mankiw (1988) and the variance ratio procedures by
Cochrane (1988) leads the probabilistic approach more attractive.

We found that a today’s fluctuation in real GNP has more than 1/2 chance to
persist after one year and less than 2/5 chance to persist after ten years. We do
not find a quantitative difference between the fluctuations around linear time trend
and the mean of fluctuations. For the latters, fluctuations have nearly 1/2 chance to
persist after one year and less than 1/4 chance after ten years. The fluctuations in
real GNP appear to be more persistent when the economy is in business expansions.
The probability that a fluctuation which occurs during the business recessions persist
after three years is statistically equal to zero. Regarding the individual time series,
we found different persistent degrees than the variance-ratio procedures in the sense

that, the persistence rankings altered considerably.
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Table 1.18: Citibase Data Definitions®

M F P N  Definition
FM2DQ M 1948:1-1995:1 565 Money Supply M2 (Bil. 1987 $) BCI-106.
FSDJ M 1947:1-1995:2 578 Common Stock Prices: Dow Jones Industrial Average.
FSPCOM M  1947:1-1995:2 578 S&P Common Stock Price Index: Composite (1941-43=100).
FSVOL M 1947:1-1995:1 577 Stock Market: NYSE Reported Share Volume
(Mil. of Shares, NSA).
FYBAAC M 1947:1-1995:1 577 Bond Yield: Moody’s BAA Corporate (% Per Annum).
FYGM3 M 1947:1-1995:1 577 Interest Rate: U.S. Treasury Bills, Sec. Mkt. 3mo.
(% Per Annum, NSA).
GCQ Q 1947:1-1994:4 192 Personal Consumption Expenditures (Bil. 1987 $) (T.1.2).
GIFQ Q 1947:1-1994:4 192 Gross Private Domestic Investment: Fixed Investment
(Bil. 1987 $) (T.1.2).
GNP Q 1946:1-1994:3 195 Gross National Product, Total.
GNPQ Q 1947:1-1994:3 191 Gross National Product, (Bil. 1987 $) (T.10).
IP M 1947:1-1995:1 577 Industrial Production: Total Index (1987=100, SA).
IPXMCA M 1948:1-1995:1 565 Capacity Utilization Rate: Manufacturing Total
(% of Capacity, SA) (FRB).
LEHM M 1947:1-1995:1 577 Average Hr. Earnings of Prod. Workers:
Manufacturing ($, SA).
LHMUR M 1954:1-1995:1 493 Unemployment Rate: Men, 20 Yeas & Over (%, SA).
LPHMU M 1947:1-1995:1 577 Employee-hours in nonagric. est. (Bil. hours, SAAR).
LPNAG M 1947:1-1995:1 577 Employees on Nonagr. Payrolls, Total (Thous., SA).
P16 M 1947:1-1994:12 576 Population: Total Civilian Noninstitutional, (Thous., NSA).
PUNEW M 1947:1-1995:1 577 CPI-U: All Items (1982-84=100, SA).
PW M 1946:1-1995:1 589 Producer Price Index: All Commodities (1982=100), NSA).

“The series was obtained from 26 September 1995 release of Citibase. The Citibase mnemonics

are in the first column. Nobs. is the number of observations. The abbreviations are; FRB: Board of

Governors of the Federal Reserve System, SA: Seasonally Adjusted, NSA: Not Seasonally Adjusted.
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Gauss Code For Persistence Probabilities
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PROC (1) = persist{x,hmax,m,dfact,staton,state);
local w,cneg, cpos,dneg, dpos,cumnd, r, h, j,cn,cp,dn,dp, dcn, sdc, dure;

@
persistence probabilities and standard deviations, dufour & sarlan {1996) .

“ypnosis
. W } = persist(x,hmax,m,dfact,staton,state);

input requirements
{(n.1) vector of data.

hmax : forecasting horizon

m : window width in smoothing Newey-West variance estimator

dfact : constant, deflating the h-period fluctuation by a factor "dfact*.

state : (n.l) vector of binary state variable. The vector takes values 1 if data
are in one state, say expansion and 0 if data are in other state, say
recession.

staton : activates the state conditionning. if staton = 1, the state variable is ‘“on"

otherwise the state variable is "off".

outputs

W (hmax,1l) matrix of persistence probabilities and their heteroscedastic and

autocorrelation consistent standard errors.

The columns of the matrix W contain the following quantities.
Wi.,1:2] c-(h) and its standard deviation, for h=1,2,...,hmax.
W[.,3:4] c+(h) and its standard deviation, for h=1,2,...,hmax.
W[.,5:6] d-(h) and its standard deviation, for h=1,2, , hmax.
Wl.,7:8] d+(h) and its standard deviation, for h=1,2, , hmax.
W[.,9:10] D- (h) and its standard deviation, for h=1,2, , hmax .
Wi.,11)] c-(h) and its standard deviation, for h=2,3, , hmax.
@
@ window weights @

= l-seqga(l,1l,m)/(m+l);

@ initialize the estimators @
cneg = zeros (hmax,2);
cpos = zeros (hmax,2);
dneg = zeros(hmax,2);
dpos = zeros (hmax,2);
cumd = zeros (hmax,2);
dure = zeros (hmax,1);
h = 1; do while h <= hmax;
@ compute the return indicator r(h) @
r = (lagn(x,-h)-lagl(x)-(h+l) *dfact).* (x-lagl (x)-dfact) ;
r = packr(r);
@ check for state variable @
if staton == 1;
r = selif(r,trimr (state,1l,h));
endif;
@ compute the persistence indicators @
cn o= r .le 0; @ non persistence c-(h) @
cp = r .gt 0; @ persistence c+(h) @
r = rows(cn);

f h == 1;
Jll = Cn; @ non persistence d-(1) @
dp = cp; @ persistence d+(1l) @
sdc = dn;
den = sdc; @ non persistence D-(1) @
else;
dn = dpll:r].*cn; @ non persistence d-(h) @



dp = dpll:r].*cp; @ persistence d+(h) @
sdc = gdc(l:r]+dn;
den = sde; @ non persistence D-(h) @
endif;
A mean and variance of persistence indicators @
cneglh,.] = meanc(cn)~vex(cn);
cpos{h,.] = meanc(cp)~vcx(cp);
dneglh,.] = meanc(dn)~vcx{dn);
dpos[h,.] = meanc (dp)~vex(dp);
cumd[h, .] = meanc(dcn)~vex(den);
durelh] = sumc {dp) ;
@ newey-west standard errors @

J = 1; do while j <= m;
cnegih,2] = cneglh,2]+2*w[j]*

sumc ( (cn{l:r-j)l-cneglh,1]).*{cnl[l+j:r)-cnegl(h,1]))/r;

cposlh, 2] cpos(h,2]+2*w[j]*

sumc ( (cp[l:r-jl-cpos[h,1]).*(cp[l+j:r]-cpos([h,1]))/r;

dneglh,2] = dneglh,2]+2*w[jl*

sumc ((dn[l:r~j]l~dneg(h,1]).*{(dn[l+j:r]-dneglh,1]))/r;

dpos[h,2] = dpos[h,2]+2*w[j1*
sumc ({dp(l:r-j]l-dpos[h,1]).*(dp[l+j:r]-dpos[h,1]))/r;
cumd(h,2] = cumdl[h,2]+2*w[j]*
sumc ( {denf[l:r-jl-cumd(h,1]).*(den[l+j:r]-cumd(h,1]))/r;
j =3 + 1; endo;
h =h + 1; endo;
cnegl.,2] = sgrt{cnegl.,2]1/r);
cpos(.,2] = sqgrt(cpos(.,2]1/r);
dneg(.,2] = sqrt(dnegl.,2]/1r);
oos{.,2] = sqgrt(dpos[.,2]1/r);
.umd(.,2] = sqgrt(cumdl[.,2]/r);
W = cneg~cpos~dneg~dpos~cumd~dure;
retp{w);
endp;

PROC (0) = prtl(w);:
"PERSISTENCE PROBABILITIES and STANDARD DEVIATIONS";

W,
I

u h c- (sc-) C+ {sc+) da- (sd-) d+

format /rdn 7,3;
seqa(l,1l,rows(w))~wl[.,1:10];

endp;

PROC (0) = prt2(w);
"DEPENDENCE PROBABILITIES ";
" h dd+ ",

format /rdn 7,3;
seqa(2,1,rows (w)-1)~w[2:rows(w),11]./wll:rows(w)-1,11];
endp;

PROC (2) = detrend(x);
local n,z,b;

n rows (x);

z ones{n,l)~seqga(l,1l,n);

b invpd(z’'z)*(z'x);
2tp(b, x-z*Db);

<ndp;

PROC (1) = demean(x);
retp (meanc (packr (x-lagl(x))));
endp;
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Chapter 2

Nonparametric Persistence
Analysis of

Irregularly Spaced Observations
with Application to High

Frequency Foreign Exchange Rates

(in collaboration with Jean-Marie Dufour)

2.1 Introduction

The objective of this essay is to analyze the persistence of fluctuations in unequally
spaced observations. In earlier work (Dufour and Sarlan, 1996), we proposed to
measure the persistence of economic fluctuations in discrete time series by looking at
the probability that a given fluctuation not be cancelled by subsequent fluctuations
(over different horizons). According to this approach, persistence is measured by the
probability that the sign of present and future fluctuations are reversed (or not) at

different forecasting horizons. We argue that this way of assessing the permanence of
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economic fluctuations is more realistic than traditional persistence measures where
future shocks are set to zero, which can be irrelevant under the structure of an
econometric model.

We extend our analysis to the case where the fluctuations are unequally spaced
with random dates. This situation arises frequently with macroeconomic and fi-
nancial observations. In this context, the results in Dufour and Sarlan (1996) are
not directly applicable because the numbers and dates of observations are them-
selves random processes. Instead, we propose a notion of persistence (non-return)
probability at different horizons and define natural estimators for these probabil-
ities. Proposed measure of persistence is invariant with respect to monotonically
increasing transformation of data. Furthermore, it does not require arbitrary data
discretisation procedures.

A striking example of such observations is microdata on quotes in worldwide
foreign exchange market. The distributional characteristics of daily and lower fre-
quency returns in this market have been the subject of a very large literature. Now
the increasing availability of tick-by-tick data has stimulated interest in analysing
intraday variation in returns and volatility. The popular example of this data is
the Olsen & Associates “HFDF93” data set compiled from the interbank Reuters
network for the period October 1, 1992 to September 29, 1993. These data include
tick-by-tick bid and ask quotes for the Deutsche Mark - U.S. Dollar, Japanese Yen
- U.S. Dollar, and Japanese Yen - Deutsche Mark currencies. The interbank foreign
exchange market has an interesting feature which consists in allowing investement
opportunities around the world. For instance, when American markets (say New
York) are closed, speculators look at quotes from Tokyo and Frankfurt markets. The
worldwide market stays open 24/24 hours and 7/7 days. The observations (bid/ask)
are electronically recorded up to the nearest second. The time distance between ob-
servations are then unevenly spaced. Similar to our probabilistic approach to the
persistence of economic fluctuations (Dufour and Sarlan, 1996) speculators acting

in worldwide foreign exchange markets are viewed as gamblers who take decisions
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to buy or sell currencies by looking regularly at bid and ask quotes. A fluctuation
of an exchange rate (initial capital invested in the game) persists at a given horizon
d if the price level does not return to its current level before d periods in the future.

We found that fluctuations in USD/DM have a probability of barely 1/10 to
survive more than five minutes. On the other hand the exchange rates USD/JY and
JY /DM are much less volatile in the sense that five-minute survival probabilities of
fluctuations are 2/10 and 4/10. After 90 working days, these probabilities do not
tend to zero which support the hypothesis that the market does have a long memory :
Ding, Granger and Engle (1993). We also consider conditional probability measures.
First, by conditioning on the sign of fluctuations, we obtain a measure of asymmetry
in exchange rate movements. Typically, the USD/DM rate appears more persistent
in response to positive fluctuations, while the USD/JY and JY/DM rates are more
persistent to negative fluctuations. On the other hand, conditioning on the size
of fluctuations provides measures related to the reversion horizon of small or big
fluctuations. Our results support the market efficiency hypothesis, in the sense that
for all currency rates in our dataset, big jumps seem to be more persistent than
small jumps .

The chapter is organized as follows. In Section 2.2, we define probability mea-
sures of persistence for unequally spaced observations. We provide probability mea-
sures conditional on the sign and size of fluctuations. Section 2.3 deals with estima-

tion of persistence probabilities. In section 2.4, we apply our theoretical results to

USD/DM, USD/JY and JY/DM exchange rates. Section 2.5 concludes this chapter.

2.2 Persistence Measures of
Unequally Spaced Observations

The measurement of persistence in real time data requires the definition of some pre-
liminary concepts. Consider a sequence {y:;,0 =0,1,---, N} observed at irregularly

spaced time points to, ¢y, --,%;, -+, tn, where N is the total number of observations
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up to time ¢y, with the convention to = 0. Let us first define the random variable
£(tj,t;4x) as the product of the latest fluctuation Yt, — Yt;_, with the k observation

ahead fluctuation Ytie — Yi,y

€(tj7tj+k) = (ytj - yfj—l)(ytj+k - ytj—l)’ for k = 1>27 T (221)

for j = 1,2,---,N — k. Depending on whether a given fluctuation Y, — Yi,_, 18
positive or negative, we will say that the latter has persisted up to time 4k 1f the
observed values of the process up to time #,,; are all strictly above or below the
initial value at time¢;_;. The time distance ;4% —1t; between each future observation
and the latest one, measures the persistence horizon of the fluctuation Y1, —Yt;_,- On
the other hand, a negative sign of £(¢;,¢;,1) indicates that the fluctuation Yi; ~ Yt
has been cancelled by subsequent fluctuations at the horizon tj+x — t; or earlier.

Formally, we will say the fluctuation Yt; — Yi,_, has persisted up to horizon d if
£(t5,t54x) > 0, for all k such that t;4, —t; < d ; (2.2.2)

we shall denote by S(¢;,d) the latter event. On the other hand, we will say it has

been cancelled at horizon d if

E(tj tjp) >0, for [=1,2,--- vk —1, and £(¢,t4%) <0,
for some k such that ¢;,, — t; < d, (2.2.3)

an event we shall denote by C(t;,d). In (2.2.2) and (2.2.3), the time horizon d
1s a measure of duration that can be defined in terms of seconds, minutes, hours
or days. Note the timings ¢;,; and the number of the observations which satisfy
0 < ;o1 —tj4x < d are random, a feature which differentiate this setup from the one
considered in Dufour and Sarlan (1996). We wish to study the probabilities that the
events 5(t;,d) and C(t;,d) do or do not occur for different horizons d. Specifically
the probability that a fluctuation Y, — Yt,_, persists for at least d periods is

p(tj,d) = P[S(t),d)]
= P[{(t;,t;4x) > 0, for all k such that ;45 —¢; < d]  (2.2.4)
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and the probability that y;, — y:,_, be cancelled at horizon d or earlier is

= P[f(tj,tj_'.l) >0, for{=1,2,---,k—1,
and £(t;,t;41) < 0, for some k such that ¢;,; —¢; < d]

= 1-P[S(t;,d)] =1 - p(t;,d). (2.2.5)

In earlier work (Dufour and Sarlan, 1996), we studied the persistence (or cancella-
tion) probabilities of fluctuations given that they have persisted for a given period
and we related the resulting conditional probabilities to the duration dependence of
macroeconomic fluctuations. Similarly if we start from the probabilities of the events
S(t;,d) and C(t;,d), it would be interesting to study conditional persistence (cancel-
lation) probabilities for unequally spaced observations. For instance, the probability
that a fluctuation at time ¢; persists for d periods given that it has persisted up to

time ¢;_; can be written by conditioning the event S(¢;,d) upon S(t;_y,d), i.e.

PIS(tj-1,d) 0 5(t;, d)]

P[S(t;,d)|S(tj-1,d)] = DS d)] (2.2.6)
and for cancellation probabilities
PIC( DIS(t5-1,8) = S 0 Clnd)
= 1—-P[S(t;,d)|S(tj-1,d)] (2.2.7)

More generally, consider any (measurable) function g(-) of past fluctuations:

2t = g(ytj Yt Yt T Yty s Yy — yto) (228)

where g(-) may be a continous or discontinous. Many types of conditioning can
be considered. For instance, it may be of interest to determine the persistence
probabilities of positive (as opposed to negative) fluctuations, hence giving insight
on the asymmetry of fluctuations. This can be interpreted as conditioning on the
sign of fluctuations. Another possibility would consist in considering the size of

fluctuations to see whether large jumps are more likely to persist than small jumps.
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This issue is closely related to mean reverting properties of macroeconomic time
series.

Formally, the sign of a fluctuation y, 5~ Yty 18

ze; = sgn(ys; — Yr,_, ) (2.2.9)
for 7 =1,2,---, N, where
1 L,ifx>0
sgn(z) =4 0 ,ifz=0 (2.2.10)
-1 ,ifz <0.

The effect of the sign of y,, — Yt;_, on persistence may then be measured by the
conditional probabilities

P[S(tjvd) n {th = z}]
Plz;, = z]

P[S(t;,d)|z, = z] = (2.2.11)

where x = —1,0 or 1.
Similarly, to study the effect of size on persistence, it is intuitively attractive to

measure the latter by absolute relative changes

th = |ytj - ytj—1 |/ytj (2212)

for j =1,2,---, N. The probabilities of S(¢;,d) and C(t;,d) may then be evaluated
conditional on z;; > z, yielding:

{2, > 2} 0 S(t;,d)]

e S ] (2.2.13)

PIS(t;, d))=, > 2] = Lo

and

P[{z, > 2z} N C(t;,d)]
Plz; > 2] '

P[C(t;,d)|z:, > 2] = (2.2.14)

Of course, it is also possible to replace z;, > z by z, < z in (2.2.13)-(2.2.14).
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2.3 Estimation

Denote the collection of time points at which observations are available by T' = {t, :
J=0,1,---,N,tg = 0}, where N +1 is the total number of observations and define

the indicator

1 ifz>0
Slz)=4 " (2.3.1)
0 ifz<0

Than the event §[£(%;,2;44)] = 1 means that a (non-zero) fluctuation has persisted
up to time ¢;4; (at least), while 8[£(¢;,%,4%)] = 0 means it has been cancelled at

time ¢4+ (or before). Now let

T(tjd)={reT:0<r~t;<d}, j=0,1,---,N (2.3.2)
and
AS(t;,d) = T 6l€t;, 7). (2.3.3)
T€T(t;,d)

Then the event AS(t;,d) = 1 means that the fluctuation Yt; — Yt,_, is non-zero
(yt, = ¥1,_, # 0) and has persisted for at least d periods (up to horizon d). Similarly,
the event A°(¢;,d) = 1, where
Ac(tj’d) =1- As(tj7d) = H (1- 6[E(¢5, )]s (2‘3'4)
T€T(t),d)
means the fluctuation Yt; — Yi;_, 1s zero or has been cancelled at the horizon d (or

before). The set of points ¢; for which we can evaluate AS(t;,d) and A®(¢;,d) is
T(d) = {ij el :dre T(tj,d)} (235)

and we denote by N(d) = card(T'(d)) the number of elements in T'(d). The sets
T(tj,d) and T'(d) are random.

Let us now assume the probabilities p(t;,d) and ¢(t;,d) do not depend on t;.
For example this will be the case if the process Yt, — Ys, 1s strictly stationary as a

process on the non-negative integers Zg = {0,1,2,---}. Then we can write
p(d) = p(tjv d)a q(d) - Q(tjy d) (236)
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and it is natural to estimate the persistence probability p(d) by

S(d) = S(4.
5(d) = e tj;w)a (t;,d) (2.3.7)

and the cancellation probability ¢(d) by

1

q(d) = N@)

> A%, d). (2.3.8)
t;€T(d)

Similarly, under an appropriate stationarity assumption, the conditional probabili-
ties in (2.2.11) or (2.2.13)-(2.2.14) do not depend on ¢; and they can be estimated
by the corresponding sample analogues. For instance, the estimator of persistence

given z;;, > z, as in (2.2.13), is

ﬁ(d th > Z)

H(dlz, . =T 2.3.
Bldlz, > =) = B = (2:39)
where
pld,z; > 2) = —— AS(t,d)8[z, — 2 2.3.10
( t ) N(d) GZT(d) J ) t ] ( )
and
Pz, > 2) N‘l‘lt%é 2y — z]. (2.3.11)

We can estimate the probability of persistence given zi; < z by

ﬁ(d’ th S Z)

5(dlz,. < 2) = 3.
p(d|z; < z) e < 2) (2.3.12)
where
p(d, 2, < z) Z (5, d)(1 — [z, — 2]) (2.3.13)
€T(d
and
play, < z) = — Z (1= 8lzy, — 2]) = 1 — p(d|z, > 2) (2.3.14)

N et
Other types of conditional probabilities such as those in (2.2.11) or (2.2.14) can be

estimated in a similar way.

92



2.4 Applications : Interbank Foreign Exchange
Markets

The empirical results of this paper deal with the around-the-clock trading in the
interbank foreign exchange (FX) market. Understanding the basic characteristics of
this market has been the subject of an increasing literature in recent years. How-
ever, the distributional properties of exchange rates negociated on this market are
less known and seem to offer great challenges to econometricians. The main reason
is the availability of tick-by-tick data. In this section, we look at the persistence of
fluctuations in the level of exchange rate. A large body of literature is concerned
with persistence issues of higher moments particularly on the investigation of po-
tential sources of exchange rates return volatilities. As we shall see further in the
following sub-section, these studies sample the unequally spaced observations at
equally spaced time instants. In this section, we summarize discussions surrounding
the interbank foreign exchange market, describe briefly our data set and interpret

the results.

2.4.1 Discussions on High Frequency Exchange Rate Data

The literature using high frequency exchange rate data has become increasingly pop-
ular, with most of the attention given to the occurence times of price negociations.
For instance, in Bollerslev and Domowitz’s [1993] model, the quote arrival times
measure the activity level of the market and approximate the arrival of information.
They include the lagged values of the quote arrival number and the duration between
trades on the conditional volatility of DM/USD exchange rate returns spanned at
five minute intervals and find statistically negligible market activity effect. Muller et
al 1990} and Dacarogna [1993] present an empirical law which states that the mean
absolute price changes over a time interval are proportional to a power of interval
size. They find that the price change distributions become increasingly leptokurtic

with decreasing time intervals and argue that it is impossible to identify the power

93



of the interval size associated with the characteristic exponent of stable distribu-
tions. Goodhard and Figliuoli [1991] documented the first-order autocorrelation in
the data especially after jumps in the level of exchange rate, the changing level of ac-
tivity throughout a 24-hours as well as the time aggregation effects. Goodhard et al.
[1993] used eight weeks of data to estimate a GARCH-M model of the sterling-dollar
exchange rate. They conclude that news effects to the conditional variance equation
had a significant effect. Andersen and Bollerslev [1994] examined the seasonality and
volatility persistence for both intraday stock market returns and intraday foreign
exchange data. The conclude that conventional seasonal adjustment techniques are
less useful on the analysis of high frequency data. They provide detailed summary
statistics for five minutes returns and absolute returns. Intraday heteroskedasticity
patterns are illustrated using a plot of the average absolute returns for each of the
288 intervals associated with the 24-hours trading day. Eddelbuttel and McCurdy
(1997) investigates the impacct of the frequency of general and currency-specified
news headlines from the Reuters screen on intraday exchange rate changes.

The probabilistic approach to the persistence of exchange rate fluctuations is not
new in the literature of financial economics. For instance, Krasker [1980] argues that
market may indeed be concerned with a major disaster with low probability each
period that would completely destroy the value of all stocks. In studies of foreign
exchange market efficieny, the possibility of such a disaster has been called “peso
problem” referring to the fluctuation in the peso forward rate in anticipation of a
devaluation that did not occur in the sample period, see also Lewis [1988], Evans
and Lewis [1992], Kaminsky [1993] and Lewis [1994].

Computing the return probabilities of high frequency data allows two remarkable
advantages. First they do not require ad hoc procedures for sampling the observa-
tions at equally spaced dates : see for example Wasserfalen and Zimmermann [1985]
for a discussion of the bias inherent to periodic sampling procedure of unequally
spaced data. On the other hand, Muller et al. (1990), Andersen and Bollerslev
(1994), Melvin and Yin (1996), DeGennaro and Shrieves (1995) among many others
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argue that data contain strong intraday seasonality patterns. Classical measures of
persistence, such as those based on autocorrelation functions of asset returns exhibit
spurious persistence at these seasonal frequencies. Second, they are invariant with
respect to any monotonic nonlinear transformation of observations. For instance,
Granger et al. [1993], Andersen and Bollerslev [1995] among many others, document
different degrees of persistence of data similar to those used in this paper. They show
that real valued powers of fluctuations in prices have different persistences accross

their first and higher moments.

2.4.2 Data Issues

The data studied in this paper consists of interbank price negociations (bid/ ask) on
U.S. Dollars in terms of Deutsch Marks, U.S. Dollars in terms of Japanese Yens and
Deutsch Marks in terms of Japanese Yens for a period of a year, from October 1,
1992 to September 30, 1993'. One of the striking features of the interbank foreign
exchange market is the absence of a specific market place. Instead price propositions
(bid/ask) are carried out by means of a worldwide communication network. The
communication network stays open without interruption twenty-four hours a day
including weekends and holidays. The arrival of quotes is, of course, irregular,
depending for example on the opening and closing hours of local markets around
the world. The communication network records price negociations individually (one-
by-one) on electronic market bulletins up to the nearest second. The total number
of price records exceeds thousands of propositions each day. Care is needed in
interpreting pricing behavior of banking institutions. Goodhart and Figliuoli [1991]
state that the quotes are the price advertisements at which the banks are willing
to deal, but may not be representative of true transaction prices. For the potential
biases inherent in intraday quotation data for the examination of pricing behavior,

see Goodhard and Figliuoli [1991, p. 25-26] and Goodhart et al. [1993]. The

'The data have been collected by Reuters and provided by the Swiss instititute Olsen and

Associates. More about this dataset may be found in Dacarogna et.al. [1993].
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main entries in the dataset consist of the following quantities: ) the record time t;
measured up to the nearest second in Greenwich Mean Time, ii ) the bid prices b,
wi) the ask prices ay;, and iv) the country and institution codes of recorded prices.
Following the notation from the survey by Guillaume et al. [1994] we express the
exchange rate at time ¢; by the arithmetic mean of bid and ask prices, that is

btj + atj

5 fory=1,---,N (2.4.1)

Y, =

where NV is the total number of prices in worldwide exchange rate markets. Two
advantages of our persistence measures become immediately obvious. First, our
persistence measures are invariant with respect to monotonically increasing trans-
formation of the data, hence taking the logarithm of b ; and a;, and constructing the
logarithmic middle price, see Guillaume [1994], as a price of a foreign currency at
time ¢ is not necessary. Secondly, unlike the other studies working on high frequency
FX data we are no deal with time scale discretisation. For instance, Muller et al.
[1990] advocate interpolating the data from adjacent ticks (bid/ask), or Wasserfallen
and Zimmermann [1985] use the most recent price ys; before time instant .

The total number of price propositions during this period is impressive: N =
1,463,896 for USD/DM, N = 566,709 for USD/JY and N = 158,416 for DM/JY.
The observations on Fridays also include such bias because during the weekends,
particularly after 21h00 on Friday until 21h00 Sunday there are relatively few price
propositions. These observations are systematically excluded from the sample and
the time scale of the remaining observations are rescaled in such a way that after

21h00 Friday the first second becomes 21h00 Sunday.

2.4.3 Empirical Results

Tables 2.1 to 2.3 present the persistence probabilities of fluctuations in USD/DM,
USD/JY and JY/DM exchange rates respectively with five persistence probabilities
in columns. In the first columns, we indicate the forecasting horizon of fluctuations.

They span periods beginning from five minutes (300 seconds) to three months (90
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working days of 86400 seconds). The forecasting horizons d are considered as the
integer multiples of a minute (60 seconds). This is just for practical purposes.
The footnotes at the bottom of Tables provide statistics used in the estimation of
probabilities: the number of observations NV, the probability of observing positive
or negative fluctuations and median of fluctuation sizes. Since zero fluctuations die
out immediately with probability one, the sum of up and down fluctuations do not
sum to unity exactly.

In the second columns of Tables 2.1 to 2.3, we show the unconditional persistence
probabilities. For instance, the fluctuations in the USD/DM exchange rate have
10.6 percent chance to persist after five minutes in the future. In other word, the
probability that a level of USD/DM do not return back within the five minutes is
about 1/10. After one hour (3600 seconds), the persistence probability is only 2.8
percent. We can state that many fluctuations in the level of USD/DM exchange
rate occur at horizons shorter than an hour. For example, the fluctuations surviving
more than a working day (86400 seconds) are noticeably low. They reach almost zero
probability for horizons longer than three months. Similarly, from the second column
of Table 2.2, we notice that fluctuations in USD/JY exchange rate have 19.1 percent
and from the Table 2.3 fluctuations in JY/DM rate have 42.1 percent probability to
persist after five minutes. These unconditional probabilities show that short term
(five minutes) speculations have at least 1/10 chance to be cost-effective given that
investors are communicated the value of ascending (positive return) currency. We
shall return to this topic.

The fluctuations in USD/DM persist with probability less than 1.0 percent after
six working hours. In the case of USD/JY, 1.0 percent persistence is reached at 24
hours horizon and for JY /DM it takes 20 working days that a fluctuation in any sign
has a probability of persistence less than a percent. These figures are closely related
to the memory content of exchange rate data. As a general tendency, fluctuations
in more active markets have a small chance to persist at long horizons.

Some special features of these fluctuations are in our interest. First, we con-
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sider the sign of fluctuations as providing a measure of asymmetry for exchange rate
movements. Since the exchange rate data measure the value of a parent currency
in terms of its competitor, positive fluctuations in relative price mean that invest-
ing on parent currency yields non-negative profits against its competitor. Inversely,
negative returns mean the gain of the competitor. If the continuous time process is
difference stationary, the probability of observing positive return would be equal to
observing the negative return. However, the probability that an upward or down-
ward fluctuations persist for a given horizon d may not be equal if the returns in
holding the parent (alternative) currency are higher for longer periods than holding

the alternative (parent) currency. Formally the sign of a fluctuation y:;, — ys,_, is

computed
zt; = sgn(yy; — Vi) (2.4.2)
for j =1,2,---, N, where
1 ,ifz >0
sgn(z) =4 0 ,ifz=0 (2.4.3)
-1 ,ifz<0.

Excluding the zero fluctuations which die out immediately, we found that investing
on U.S. dollar against deustch mark yields slightly more than investing for deutsch
marks. For example, the probability that a positive fluctuation (positive return for
U.S. dollars in investing against deutsch marks) persist five minutes is 12.4 percent,
while the probability that a negative fluctuation (positive return for deutsch marks
in investing against U.S. dollars) is only 11.8 percent. The short term (five minutes)
difference between the persistence probabilities of up and down behavior of data can
be related to the presence of a trend in USD/DM exchange rates. This trend still
be alive for periods longer than three months. The reverse fact holds for USD/JY
and JY /DM rates, where the persistence of negative fluctuations is more likely than
positive fluctuations.

Whereas the fact that the conditioning on the sign of fluctuations can be related

to the non-symmetrical behavior around zero, conditioning on the size of fluctuations
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can be related to the reversion horizon of fluctuations with different sizes. The
persistence horizon of fluctuations may be short or long depending upon the size of
fluctuations, while the size of fluctuations may be small or big depending upon the
scope of underlying shocks. To study the effect of size on persistence, it is intuitively

attractive to measure the latter by absolute relative changes

Rt; = lyt,' — Yt; |/ytj (2'4'4)

The parameter z in expression (2.2.12) specifies the size of fluctuation and it can
be estimated separately from the sample. We assume that the parameter z is the
sample median of observed returns. Of course, other measures such as a quadratic

one
2, = (v, — tr,,)? (2.4.5)

could be considered; see for instance Ding et al. [1993], Granger and Ding [1994]
who studied the memory properties of exchange rate returns, and Dacarogna [1993].
The parsimony in the fluctuation size are then obtained at the cost of losing high
resolution for fluctuation size. Clearly, when z is the median fluctuation size, the
size-conditioned probabilities become two times the joint probabilities. For the
other letter values of relative fluctuation size, say the hinges or eights of exchange
rates returns, we obtain four or eight times the joint persistence (non-persistence)
probabilities as conditional persistence (non-persistence) probabilities. Our results
over three exchange rates in our dataset suggest that upper-median sized fluctuations
are almost two times more persistent than lower-median sized fluctuations. At
longer forecast horizons, say 90 working days, the persistence probabilities approach
steadily zero suggesting that the market remembers the fluctuations occured three
months ago with propability less than one percent. The overall results are plotted
in Figure 2.1. The horizontal axis show 24 hours forecasting horizons in fifteen
minutes intervals. The unconditional (raw), positive, negative, upper- and lower
median sized conditioning are superimposed. The decreasing patterns of persistence

probabilities are clear.
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Table 2.1: Persistence Probabilities of USD/DM *

Horizon d p(d) p(d]z; > 0) p(d]z;; < 0) p(d]z;; > m) p(d]z; < m)
Zt; = Sgn(ytj - ytj—l) 2y = Iy—t’;—ty"r—ll

5 minutes 0.1057 0.1236 0.1183 0.1613 0.0500
10 minutes 0.0749 0.0876 0.0838 0.1156 0.0341
15 minutes 0.0607 0.0714 0.0677 0.0944 0.0271
30 minutes 0.0416 0.0487 0.0465 0.0651 0.0181
45 minutes 0.0332 0.0389 0.0371 0.0523 0.0142
1 hour 0.0284 0.0334 0.0317 0.0448 0.0121
2 hours 0.0199 0.0236 0.0220 0.0316 0.0082
3 hours 0.0164 0.0196 0.0180 0.0262 0.0067
4 hours 0.0142 0.0170 0.0156 0.0228 0.0056
5 hours 0.0127 0.0152 0.0140 0.0205 0.0050
6 hours 0.0116 0.0137 0.0127 0.0186 0.0045
12 hours 0.0086 0.0105 0.0092 0.0139 0.0033
24 hours 0.0061 0.0076 0.0064 0.0098 0.0025
2 days 0.0042 0.0055 0.0040 0.0066 0.0017
3 days 0.0034 0.0046 0.0032 0.0054 0.0014
4 days 0.0030 0.0041 0.0026 0.0047 0.0012
5 days 0.0026 0.0038 0.0022 0.0041 0.0011
6 days 0.0024 0.0035 0.0020 0.0038 0.0010
7 days 0.0022 0.0033 0.0018 0.0035 0.0009
8 days 0.0021 0.0031 0.0017 0.0033 0.0008
9 days 0.0020 0.0029 0.0017 0.0032 0.0008
10 days 0.0019 0.0028 0.0015 0.0030 0.0008
20 days 0.0013 0.0020 0.0009 0.0021 0.0005
30 days 0.0011 0.0019 0.0006 0.0018 0.0004
60 days 0.0006 0.0012 0.0001 0.0010 0.0002
90 days 0.0004 0.0010 0.0000 0.0007 0.0001

"N = 1439816, pr{sgn(y:; — w,_,) > 0} = 0.4405, pr{sgn(y:, — y:;_,) < 0} = 0.4330 and
m = 1.2931.
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Table 2.2: Persistence Probabilities of JY/USD *

Horizon d

5 minutes
10 minutes
15 minutes
30 minutes
45 minutes
1 hour
2 hours
3 hours
4 hours
5 hours
6 hours
12 hours
24 hours
2 days
3 days
4 days
5 days
6 days
7 days
8 days
9 days
10 days
20 days
30 days
60 days
90 days

*N = 556962, pr{sgn(y;,

m = 1.8458.

p(d) p(d|z; > 0) p(d]z; < 0) p(dlz; > m) p(d]z;; < m)
Zt; = Sgn(ytj - yt,»_l) Zt; = eyl
0.1910 0.2213 0.2258 0.2727 0.1094
0.1376 0.1593 0.1629 0.2012 0.0741
0.1129 0.1307 0.1336 0.1666 0.0592
0.0792 0.0920 0.0935 0.1188 0.0397
0.0636 0.0738 0.0752 0.0962 0.0311
0.0546 0.0631 0.0646 0.0828 0.0263
0.0378 0.0439 0.0446 0.0577 0.0179
0.0302 0.0350 0.0357 0.0465 0.0139
0.0257 0.0296 0.0306 0.0397 0.0117
0.0227 0.0261 0.0271 0.0352 0.0102
0.0205 0.0235 0.0245 0.0319 0.0092
0.0143 0.0159 0.0177 0.0221 0.0066
0.0104 0.0112 0.0131 0.0160 0.0047
0.0074 0.0078 0.0096 0.0115 0.0034
0.0060 0.0058 0.0082 0.0092 0.0028
0.0051 0.0048 0.0071 0.0078 0.0024
0.0044 0.0040 0.0063 0.0067 0.0021
0.0039 0.0034 0.0057 0.0059 0.0018
0.0035 0.0031 0.0052 0.0053 0.0017
0.0032 0.0025 0.0049 0.0048 0.0015
0.0030 0.0022 0.0048 0.0045 0.0015
0.0028 0.0021 0.0046 0.0043 0.0014
0.0019 0.0012 0.0034 0.0029 0.0010
0.0017 0.0008 0.0032 0.0025 0.0009
0.0014 0.0006 0.0026 0.0020 0.0007
0.0011 0.0001 0.0024 0.0016 0.0005
= Y,;_,) > 0} = 0.4350, pr{sgn(y:; — ws,_,) < 0} = 0.4195 and
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Table 2.3: Persistence Probabilities of JY /DM *

Horizon d p(d) p(d|z;; > 0) p(d]z; < 0) p(d|z;; > m) p(d]z:; < m)
2y = Sgn(ytj - ytj-l) Z; = lﬂ’;_ty:’:l—l

5 minutes 0.4207 0.4734 0.4742 0.5720 0.2694
10 minutes 0.3399 0.3809 0.3845 0.4694 0.2103
15 minutes 0.2948 0.3297 0.3342 0.4107 0.1794
30 minutes 0.2228 0.2488 0.2530 0.3149 0.1311
45 minutes 0.1870 0.2082 0.2129 0.2662 0.1081
1 hour 0.1655 0.1840 0.1887 0.2369 0.0944
2 hours 0.1219 0.1330 0.1415 0.1755 0.0685
3 hours 0.1012 0.1097 0.1181 0.1461 0.0564
4 hours 0.0891 0.0961 0.1045 0.1288 0.0494
5 hours 0.0798 0.0857 0.0939 0.1158 0.0439
6 hours 0.0728 0.0774 0.0865 0.1056 0.0401
12 hours 0.0522 0.0530 0.0645 0.0756 0.0288
24 hours 0.0372 0.0359 0.0478 0.0544 0.0201
2 days 0.0265 0.0224 0.0371 0.0389 0.0141
3 days 0.0220 0.0172 0.0323 0.0320 0.0121
4 days 0.0194 0.0141 0.0296 0.0282 0.0107
5 days 0.0177 0.0117 0.0280 0.0256 0.0098
6 days 0.0164 0.0103 0.0265 0.0237 0.0091
7 days 0.0148 0.0087 0.0247 0.0213 0.0084
8 days 0.0139 0.0082 0.0230 0.0196 0.0081
9 days 0.0132 0.0077 0.0220 0.0187 0.0077
10 days 0.0127 0.0069 0.0217 0.0180 0.0074
20 days 0.0102 0.0038 0.0192 0.0144 0.0060
30 days 0.0081 0.0008 0.0175 0.0110 0.0053
60 days 0.0072 0.0000 0.0162 0.0095 0.0049
90 days 0.0065 0.0000 0.0147 0.0087 (0.0044

"N = 156296, pr{sgn(y:; — y:,_,) > 0} = 0.4434, pr{sgn(y; — yr,_,) < 0} = 0.4446 and
m = 1.5616.
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Figure 2.1: Persistence Probabilities in HF Foreign Exchange Rates
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2.5 Conclusion

The probabilistic approach to the persistence measures of economic fluctuations in
Dufour and Sarlan (1996) is extended to the case where observations are unequally
spaced through time. We have proposed estimators for these observations and ap-
plied then to the second-by-second interbank foreign exchange rate fluctuations in
USD/DM, USD/JY and JY/DM for a period from October 1st, 1992 to September
30th, 1993.

Among the million price propositions, we observed that only 1/10 of them persist
at the five minutes horizon in the case of USD/DM, 2/10 in the case of USD/JY and
4/10 in the case of JY/DM fluctuations. At long forecasting horizons, say 90 work-
ing days, the persistence probabilities do not reach zero supporting the hypothesis
that the market contains a long memory, Ding et al. (1993). We are also consid-
ered conditional probabilities of persistence. First, by conditioning on the sign of
fluctuations, we obtain a measure of asymmetry in exchange rate movements. The
USD/DM rate appears more persistent in response to positive fluctuations, while the
USD/JY and JY/DM rates are more persistent to negative fluctuations. Second,
conditioning on the size of fluctuations provide measures related to the reversion
horizon of small or big fluctuations. Our results support the market efficiency hy-
pothesis, in the sense that for all currenies big jumps seem to be more persistent
than small jumps .

It is worth to note that the persistence probabilities proposed in this paper can
explain the volatility of stock prices only if persistence (non-cancellation) proba-
bilities change substantially from period to period. The results obtained in this
paper are useful both for practicioners working on worldwide markets who would
like to know which price can reveal important business opportunities and also for
theoreticians who are interested in knowing the distributional properties of future

prices.
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Chapter 3

Spectral Analysis of Business

Cycle Chronologies

(in collaboration with Eric Ghysels)

3.1 Introduction

The measurement of business cycle phenomena has been a very active area of re-
search since at least the thirties, when Burns, Mitchell and Tinbergen proposed a
variety of statistical methods to examine macroeconomic data. To some, the phe-
nomenon of business cycles was one of regimes, like expansions and recessions, which
led to the work by Burns and Mitchell (1946) who proposed to study business cycles
via chronologies. To others, when discussing cyclical phenomena, the picture that
came to mind was a sine wave with its regular and recurrent pattern. This led to the
more modern techniques of spectral analysis initiated in econometrics by Hannan
(1960), Granger and Hatanaka (1964) and Nerlove (1964). See also Sargent (1987)
for a fairly extensive coverage of business cycle phenomena and spectral decompo-
sitions. Business cycle chronologies and spectral analysis of time series have been
largely independent developments, as they were techniques associated with two very

different views about modeling business cycles. In this paper, we propose to pair
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the two developments. Indeed, we suggest to apply spectral methods not to the
data directly but instead to time series consisting of business cycle chronologies.
A business cycle chronology, such as the one produced by the National Bureau of
Economic Research (NBER) which covers a sample of monthly observations starting
in 1854, can be viewed as a realization of a random variable over a discrete space,
usually two states, resulting in an alternating sequence of expansions and reces-
sions. Such a time series, when stationary, has a spectral representation allowing us
to take advantage of tools developed over the last several decades but hitherto not
exploited?.

Before we get into the technicalities about how to apply spectral methods to such
discrete processes, let us explain what the advantages could be. First, they provide
an easy tool to assess the similarities and differences between alternative reference
chronologies. Indeed, two chronologies may be different not only in the dating of
peaks and troughs but also in the number of recessions and expansions. A formal
comparison via the coherence can inform us how the two chronologies are related.
Second, using an algorithm such as the one proposed by Bry and Boschan (1971), we
can date peaks and troughs in a set of individual time series like interest rates, money
supply, etc., allowing us to study the comovements between the process identified by
the NBER chronology and the turning point process associated with any individual
series. Such is an alternative way to describe the association of cycles between
different series measuring real activity and monetary aggregates. Third, while it is
true that by focusing on business cycle phases instead of the actual series like GNP
much information is thrown out, it should be noted that applying spectral analysis
to chronologies aims at investigating nonlinear properties of the data instead of

the linear ones. Namely, the spectral methods are applied to time series reflecting

'Hatanaka (1964) proposed an approach somewhat similar to ours when he estimated the spec-
tral density of a zigzagged pattern of the U.S. business cycles with a discrete-valued triangular
pattern, taking its maximum values at the business cycle peaks and its minimum values at the
troughs. Moore and Zarnowitz (1986) also displayed such zigzagged patterns to show the matching

time of reference chronologies for four countries.
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duration of cycles, regime switches and turning points. A related issue is the critical
dependence of empirical stylized facts regarding business cycles on the detrending
of the data. The methods we propose put emphasis on turning points instead of
trends, which has certain advantages.

Applying spectral methods to the rectangular processes of two states requires
some technical discussions. The well-known Fourier transform based on sinusoidal
functions is one of at least two ways to proceed and compute a spectral decompo-
sition of a series within a class of orthogonal functions. An alternative approach
consists of a frequency-based analysis of time series via the Walsh-Fourier transform
based on Walsh functions, which are similar to trigonometric functions, except that
they take rectangular shapes®. Both Fourier and Walsh-Fourier representations have
their merits in the analysis of discrete-valued time series and will be used throughout
the paper. There are, however, some clear advantages to using the Walsh-Fourier
analysis for decomposing chronologies. Section 3.3.2 includes a brief introduction
to the Walsh-Fourier analysis. We discuss the univariate spectral analysis of two
alternative U.S. reference cycle chronologies given by the NBER and Romer (1992).
Several major individual chronologies are also considered. The reference dates of
the latter were selected by the Bry and Boschan (1971) dating algorithm for cyclical
turning points.

Proposing a new fancy time series technique should not be an aim itself. Its
use should instead be justified when it sheds a different light on some outstanding
business cycle facts. Let us therefore briefly describe some of the results obtained.
The univariate spectral analysis of the NBER and the Romer chronologies reveal a
double peak in the spectrum for cycles between two and six years. Such heterogeneity
suggests that not all cycles are alike and that probably different sources of impulses
and propagation mechanisms may be at work. This result holds before WWII as

well as in the post-WWII era. It should parenthetically be noted that a standard

*References regarding Walsh functions and their use include Ahmed and Rao (1975); Kohn
(1980a,b); Morettin (1981) and Stoffer (1987, 1990, 1991).
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application of spectral methods to raw data such as industrial production series
does not reveal such double peaks. There is also a peak at the seasonal frequency
before the WWII. When we compute the coherency of the NBER and the Romer
chronologies, we find that it averages to about 0.95 in the post-WWII era, yet only to
0.79 before WWII. Outside the business cycle frequency band, the two chronologies
do not match very closely, as the average coherencies at high and low frequencies
are at most 50 to 60 percent.

Studying comovements among individual series also yields interesting insights
about business cycle comovements. Using Walsh coherencies, we first compare pre-
and post-WWII cycles and find striking differences in the cyclical behavior of prices,
bond yields and the stock market across the two eras. The pattern of comovements
between industrial production and the NBER reference cycle also shows dramatic
changes at the short end of the spectrum around seasonal frequencies. A com-
parable exercise involving standard applications of spectral methods again shows
significantly different results.

Besides comparisons of pre- and post-WWII eras, we also investigate the stylized
facts for the latter period for a larger set of series. Alternative detrending methods
tend to affect business cycle frequencies differently, as noted by Canova (1991) for
instance, in his elaborate study of detrending and stylized facts. As a result, some
important empirical evidence regarding business cycle behavior critically depends
on detrending methods. The approach via spectral decompositions of chronologies
has the advantage that it does not depend in any direct way on detrending®. We
therefore study post-WWII business cycle facts, via coherence analysis, through
the spectral representation of several chronologies associated with a set of major
economic time series.

In Section 3.3.1 and 3.3.2, we review some of the basic tools of the Fourier and

Walsh-Fourier analysis used in the remainder of the paper. Section 3.5 is devoted

30bviously, some algorithms for selecting turning points proceed according to a certain trend

specification.
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to the spectral decomposition of the basic reference chronologies. Section 3.6 covers
comovements between individual series, including a separate study of pre- and post-
WWII eras as well as a review of stylized facts since WWIL. Conclusions appear in

section 3.7.

3.2 The Use of Spectral Analysis in Econometrics

The forerunners of modern spectral analysis were Fourier series fitting techniques,
which assumed a series contained important deterministic cycles of known period,
and the periodograms, which assumed the same model but the components had peri-
ods that need to be determined. These models were used by economists, despite the
considerable computing costs, the best examples being the works by Moore (1914)
and Beveridge (1921, 1922). An account of these and other early applications can
be found in Cargill (1974). The main objective of this work was to search for cy-
cles in data with the hope that cycles of similar periods in pairs of series would
indicate relationships between these series, an example being sunspots and rainfall
and hence wheat prices. In a sense the search for cycles was too successful, for
instance Beveridge found evidence of over twenty in his long English wheat price
series. This unlikely multiplicity of cycles brought the basic model into some disre-
pute and undoubtedly this was partly responsible for Yule developing the alternative
autoregressive and moving average models in the late 1929s and early 1930s. The
resulting tension between the time-domain and frequency-domain approaches lasted
until quite recently. Now there is a better understanding of the reason for the pe-
riodogram giving evidence of too many apparent cycles. It is explained by the low
correlation between estimates at adjacent frequencies and the fact that it is an in-
consistent estimator of the theoretical spectrum. Smoothing procedures now used
to estimate spectra circumvent these problems.

The link between Fourier series, the periodogram and modern spectral methods

was pointed out by Davis (1941). By 1959 spectral methods still had not been ap-
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plied to economic data. However, in that year Morgenstern initiated a project to
investigate the usefulness of spectral methods in economics. The project was super-
vised by Tukey, who had developed the interpretation of cross-spectral techniques,
and was staffed by Hatanaka, Granger and Godfrey. The first report of this project
was published in Granger (1961) and the complete report resulted in the book by
Granger and Hatanaka (1964). At the same time Nerlove was using these techniques
to study seasonal adjustment problems, and Hannan (1960) had previously worked
on the same problem.

Nerlove (1964) considered the effects of the Bureau of Labor Statistics method
of seasonal adjustment on seventy-five U.S. employment, unemployment and labor
force series. The most surprising finding was that the adjusted series often had
spectra with dips at seasonal frequencies, suggesting in a sense that the adjustment
procedure had removed too much. Nerlove (1964) also examined the cross spectrum
between the adjusted and unadjusted series and found that the gain at nonseasonal
frequencies was usually substantially lower than one, particularly at higher frequen-
cies. This suggest that the higher-frequency components could have been disrupted.

Empirical studies in econometrics appear to go through phases where different
techniques become particularly popular. Initially single-equation regressions were
dominant but were then replaced by the more appropriate simultaneous equation
models. In the late 1960’s and very early 1970s spectral methods became popular
and probably more papers were published using these techniques than using the more
classical simultaneous models. By the mid 1970s time-domain time-series techniques
came into vogue, due to the appearance of the influential book by Box and Jenkins
(1970). Nold (1972) produced a bibliography of applications of spectral methods
in economics covering much of the most active period, listing 101 papers by 68
different authors. Recently, spectral techniques have largely been out of favour by
applied econometricians although they are still used as one of the bundle of empirical
techniques available for analysis of time-series data. The theoretical aspects of the

frequency domain representations remain i mportant when the properties of these
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various techniques are considered.

The obvious features of a univariate, power spectrum that can be easily noted are
any peaks, such as at the seasonal frequencies, 2rk/12,k = 1,2,...,6, for monthly
data and any shape that is complicated compared to the simple shapes that arise
from a white noise or first-order autoregressive and moving average models. Eco-
nomic fluctuations are often characterized as alternating periods of expansion and
depression, known as the business cycle. An obvious application of spectral tech-
niques was to investigate these fluctuations. It should be emphasized that the
business cycle is not regular, or deterministic, and so corresponds to several fre-
quency band. The business cycle corresponds to rather low frequencies at least 12
months whole cycle length and so estimation of this component is difficult even with
monthly or quarterly data, unless very long series are available. The situation is lit-
tle improved by considering a number of different series from the same economy,
as this provides little extra information; most parts of the economy are inclined to
move together at low frequencies. Although some evidence was found for certain
low-frequency components being especially important, in general all low frequencies
were usually observed to be important for the levels of major economic variables,
and so the business cycle component did not prove to be special or outstanding. The
relative importance of low-frequency components compared to all higher-frequency
components was found so frequently that a spectrum that steadily declined from
low to higher frequencies, except possibly at seasonal frequencies, was called typical
spectral shape in Granger (1966). Unfortunately there are a number of different
time-domain models that produce such a spectral shape, including AR(1) with a
parameter near one and integrated models of order d, where d can be a fraction and
which includes the random walk model.

Because it is difficult to estimate the spectrum at very low frequencies it is also
difficult to distinguish between these models using the estimated power spectrum
of the original series. Sometimes it is easier to distinguish between some of these

models by looking at the spectrum, of the first differenced series. The typical spec-
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tral shape was found so frequently that it was used as a method of evaluating a
large-scale econometric model by Howrey (1971, 1972). The Klein-Goldberger and
Wharton econometric models were used to produce simulated data and the spectra
of these data compared to the typical shape. In general the models passed this not
particularly stringent test. The typical spectral shape is of course an oversimplifi-
cation and actual spectra may have other discernable properties, as Nerlove (1971)
found in a study of U.S. price series. He also found difficulty in interpreting these
properties.

The other obvious use of the power spectrum is to investigate the relevance
of a particular model suggested by a theory. For example, a number of economic
theories suggests that the change in particular series should be white noise, so that
the spectra of these changes will be flat over all frequencies if the theory is correct.
This procedure was used by Sargent (1972) to test rational expectations for forward
interest rates, by Granger and Morgenstern (1963, 1970) to test the random walk
theory for stock market prices and Labys and Granger (1970) to test the same theory
for commodity prices. The method was found useful and occasionally some slight
deviations from the predicted spectral shape were found. It would be possible to
use a similar method to test other specific time-domain models.

Potentially the most important technique available in the early period was the
cross spectrum and the functions derived from it, the coherence and the phase and
gain diagrams. The coherence measures the strength of relationships (squared cor-
relation coeflicient) between corresponding frequency components in the two series.
As components with different frequencies are necessarily uncorrelated for jointly
stationary series, the coherence thus totally measures the (second-order) strength
of relationships between the series and has the added advantage that in theory its
value is not altered by applications of the same linear filters to the individual series.
The gain essentially represents the regression coefficient of the frequency component
of one series on the corresponding frequency component of the other. In the case

where one series is leading the other, the phase diagram can be used to measure
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this lead. The cross spectrum may also be used to identify or select time-domain
models. Engle (1976) has used this approach to specify the relationship between
housing investment and interest rates. He found that the distributed lag weights
change sign as would be predicted by an accelerator-type model. Thus spectral
spectral methods may be useful in a first exploratory look at economic data to pick
acceptable models.

Many other studies have applied spectral techniques to economic time series. A
brief summary will be given of results in two areas, the term structure of interest
rates and the evaluation of leading indicators. The interest rates charged on loans
depend in part on their maturity. Sargent (1968) found that coherences were gen-
erally high, particularly between rates of similar maturity, and that in general the
longer rates lead the shorter rates with the lead increasing as the differences in ma-
turity increase. Granger and Rees (1968) using British data found similar coherence
results but with the lags reversed.

The timing of the long swings in the macroeconomy is very irregular. The pre-
diction of turning points, the upturns and downturns, is of considerable interest to
governments and companies. One method of prediction is to find series that consis-
tently lead at the turns and the NBER has suggested many such leading indicators
and also an index of these indicators. Another application of spectral techniques is
the evaluation of leading indicators. A possible way of evaluating the performance
of such indicators, in terms of their consistency and the extend of their lead, is
by examining the coherence and phase diagrams at low frequencies from the cross-
spectrum between the indicator series and a measure of the state of the economy
such as the index of industrial production. Hatanaka (1964) and Hymans (1973)
found that the indicators did lead, in that the phase diagrams indicate such a lead,
but the coherences are often lower than might be hoped for and the leads are less
than those suggested by the NBER. These indicators include for instance, housing
starts, new business formation, changes in business inventories, new orders for con-

sumer goods and materials, productivity, capacity utilization, average workweek,
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bond prices, real money supply and monetary growth rates. Hymans point out that
the NBER'’s index of leading indicators could be improved by a better choice of the
weights, with some of the present components given zero weight. Rather similar
results have been found by Neft¢ (1979) using time-domain methods. The main
criticism of these papers is that the NBER chooses series that lead at turning points
and these series do not necessarily lead at other parts of the cycle, whereas the
studies mentioned assume a constant lead throughout the cycle.

Simulated business cycle patterns were also suggested in the earlier literature
of U.5. business cycles. Hatanaka (1969) estimated the spectral density of a zigzag
pattern of U.S. business cycles where the discrete-valued triangular pattern takes its
hypothetical maximum values at the business cycle peaks and its minimum values at
the troughs. He found roughly strong coherence between industrial production index
and triangular series obtained from the NBER chronology. Moore and Zarnowitz
(1986) also display such zigzag patterns to show the matched timing of the reference
chronologies of four countries.

Another domain where spectral methods have been adapted is the frequency
domain version of the factor analytic models implemented by combining spectral
analysis and factor analysis. A variety of economic applications of the frequency
domain factor model have been suggested including the Sargent and Sims (1977)
macroeconomic model, Geweke’s (1977) model of production and Singleton’s (1980)
model of the term structure of interest rates. In each case, both the economic
questions asked and the estimation methods are novel. Recently, Stock and Watson
(1990) examined the business cycle properties of numerous monthly U.S. economic
time series from 1959 to 1988 by means of spectral techniques. They measure the
comovements of each individual time series with a reference series, such as the Index
of Coincident Indicators. They also provide a new lists of leading indicators based

on predictive contents for overall economic activity.
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3.3 Fourier and Walsh-Fourier Analysis

3.3.1 Frequency Domain Analysis of Stationary Processes

Spectral analysis is well covered in many textbooks of time series analysis. Its
conventional use involves Fourier transforms of weakly stationary processes. For a
univariate time series y, which has time invariant mean and autocovariances Yy(h) =
C'ov(ys, yt-1), one has two fundamental relationships: (1) the Cramer representation

Yr = / e dz(w) (3.3.1)

where

E(dz(w)dz(X)) = 0, forw# A
= fy(w)dw, forw=2A (3.3.2)

where f,(w) is the spectrum of the process y; and (2) the spectral representation of
the autocovariances is

k) = [ e, (w)de. (3.3.3)
Equations (3.3.1) and (3.3.3) both involve Fourier transforms. The first equation
states that a stationary process can be thought of as a noncountably infinite sum of
uncorrelated components, and the second equation provides the spectral represen-
tation f,(w) of the autocovariance structure of the process. Roughly, the represen-
tation theorems say that we may think of a stationary time series as being formed

by the random superposition of sine and cosine waveforms,

q

yr = Y _(A(5) cos(2mw;t) + B(j) sin(2rw;t)) (3.3.4)
J=1
where wy, ..., w, are different frequencies measured in cycles per unit time and the

A(j)’s and B(j)’s are mutually uncorrelated random variables with Var{A(j)} =
Var{B(j)} = . Thisimplies that the total variance in the time series is Var{y,} =

i a]?, and it can be decomposed into components 0]2- corresponding to sinusoidal
waveforms at various frequencies of oscillation. That is in fact what is in (3.3.3).

118



.

When a sample of size T' of the series y; is available, we can compute the cosine
transform
T-1
Cylw;) = T2 3 y, cos(2mw;t) (3.3.5)

t=1
which is essentially the correlation of the data y, with cosines and the sine transform

T-1
Sy(w;) =T? > yisin(2mw;t) (3.3.6)
t=1
which is essentially the correlation of y, with sines. The frequencies w; is equal to
the inverse of a period, w; = j/T, that is j cycles per T time points; 1 < j < T/2.
Typically the Fourier periodogram of the data

IF (w;) = CHw;) + S2(w;) (3.3.7)

is computed and a plot of If (wj) versus w; is inspected for peaks. The idea here
is that If (w;) will be large when the time series y; contains harmonic components
near the frequency w;. The periodogram is essentially the squared correlation of the
data with the sine and cosine waves that oscillate at frequency w;.

The usefulness of spectral techniques is increased when several series are con-
sidered. If z; and y; are both stationary and they are also second-order jointly
stationary so that the cross-covariances v;,(h) = Cov(z:, y:—4) are not time depen-
dent, then expanding the notation (3.3.1) in an obvious way, the bivariate version
of (3.3.2) is

E(dzg(w)dz, (X)) = 0. forw s A
= frlw)dw, forw=2A (3.3.8)

where f;,(w) is the cross-spectrum. The equation (3.3.3) becomes

Yeylh) = /_’ e (W) duw. (3.3.9)

As Yzy(h) # Yzy(—h) in general, f,,(w) will not be a real function of frequency. A

more convenient pair of functions is the coherence, defined by

F _ {fxy(w)[z
Bl =7 079
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where F' denotes Fourier. The coherence K (w) measures the strength of relation-
ship between corresponding frequency components in the series z; and y;. A good
introduction to the spectral (Fourier) analysis of time series can be found in Priestley

(1981) who provide a comprehensive treatment of spectral methods.

3.3.2 Walsh-Fourier Analysis of Discrete-Valued Time Se-
ries

Recently, attention has been focused on the Walsh-Fourier analysis of real time sta-
tionary time series. Kohn (1980a,b) laid the groundwork by showing that many
of the results concerning the decomposition of stationary time series using trigono-
metric functions have their Walsh function analogs, although Morettin (1974) had
obtained limit theorems for the Walsh-Fourier transform of stationary time series.
Statistical data analysis via the Walsh-Fourier transform can be found in Ott and
Kronmal (1976) where the transform is used in classification problems for strictly
binary data and in Stoffer (1988), where an analysis of variance based on the Walsh-
Fourier transform is used to assess the effect of maternal alcohol consumption on
neaonatal sleep-state cycling. Further applications of Walsh spectral analysis can
be found in Ahmed and Rao (1975).

The aformentioned works demonstrate that the Walsh-Fourier transform can be
a powerful tool in the statistical analysis of spectra. Hence it is of considerable
importance that Walsh-Fourier theory for statistical analysis of time series data and
in particular processes with a limited number of levels such as discrete-valued and
categorical procceses (square waveforms), be extended at least to the point of de-
velopment of the statistical theory of Fourier (trigonometric) analysis for sinusoidal
waveforms. In this section, we give a brief account of the Walsh-Fourier theory
for stationary time series. Specific details and references may be found in Kohn
(1980a,b), Morettin (1981) and Stoffer (1987).

The Walsh functions are similar in some respects to sinusoidal harmonics used in

Fourier analysis and the same basic ideas in Section 3.3.1 are valid in Walsh-Fourier

120



spectral analysis. There are a number of formal definitions of Walsh functions, eg.,
Ahmed and Rao (1975), Beauchamp (1984), Kohn (1980a), Morettin (1981), but
we adopt Stoffer (1991)’s definition which give more insight about their generation.
Unlike their sinusoidal counterparts, the Walsh functions are square waveforms that
form a complete orthonormal sequence on [0,1) and take only two values —1 and
+1 (up and down). Although the various definitions of the Walsh functions lead
to different orderings, we shall be interrested primarly in the Walsh or sequency
ordering since this ordering is comparable to the frequency ordering of sines and
cosines. The sequency ordered Walsh functions will be denoted by W (¢, A), where t =
0,1,2,..;0 £ A < 1. In Figure 3.1 the first eight continuous sequency ordered Walsh
functions, W(t, A) for t = 0,1,2,...,7, were superimposed on Fourier harmonics. On
the top panel of Figure 3.1, W(0, A) and cos(0) always take the value +1, and makes
no sign changes or zero crossings. The first Walsh function W (1, A) makes one sign
change when A = 1/2*. Similarly, for example W (4,w) switches four times on the
interval 0 < w < 1 from 41 to —1 at 1/8, then from ~1 to +1 at 3/8, from +1 to
—1 at 5/8 and, finally, from —1 to +1 at 7/8. As it can be easely seen from the
Figure 3.1 the fundemental difference between sinusoids and Walsh functions is that
the latter are aperiodic. This is in contrast to the sinusoids cos(27tw) and sin(27tw)
for t = 1,2, ... which are characterized by their frequency of oscillation ¢ in terms of
the complete cycles they make in the interval 0 <« < 1. The frequency parameter
t 1n sinusoidals may be interpreted as one half the number of zero crossings or sign
changes that a sinusoidals make per unit time (Harmuth (1969)). For example, when
t = 4 as above, the Fourier harmonics cos(27rtw) and sin(27tw) each cross zero eight
times. Roughly speaking, while frequency is inversely related to the length of a full
cycle, a sequency is inversely related to the length of half a cycle.

Suppose that a sample of lenth 7 = 2P, p is a positive integer, is available.
The discrete valued Walsh functions are calculated via the Hadamard matrix H(p),

which is defined to be the symmetric orthogonal (7.T) matrix whose (u, v)th element

*For sine functions the zero crossings at A = 0 is counted but not the one at A = 1.
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Figure 3.1: Walsh and Fourier Harmonics

u,v=0,1,...,T—1, ¢(u,v) is equal to H?;(l,(——l)“f”i where the binary representations
of u and v are given by (up_1,Up_g, -+, tg) and (vg-1,v4-2," - -, vo) rESPectively, u;
and v; are either 0 or 1. For example, with T' = 8, the (1,5) th element of H(3) is
6(5,1) = (=1)%*%*! = —1. whereas the (3,7) element is 6(3.7) = (—1)0+1+! = 1,
The Hadamard matrix gives the discrete Walsh functions as rows (or columns) in
what is called natural or Hadamard ordering. To obtain the Walsh functions in
sequency order, we can reorder the rows of H(p) according to the number of sign
changes. We denonte the sequency or Walsh ordered Hadamard matrix by Hyw (p).
An alternate method of obtaining Hw(p) from H(p) exists but they involve counting
the sign changes and they are not efficient procedures. We shall discuss fast Walsh-
ordered Hadamard transform (FWT) of the data. Consider the recursive generation

of the Hadamard matrix by setting initially H(0) = 1 and then processing by

Hik+1) = (3.3.1)



for k=1,2,...,(p—1). The Walsh-ordered Hadamard matrix Hw(p) can be com-
puted by

Hy(p) = i, Hi(p) - B (3.32)
where,
F, 0
G,
Hi(p) = L , s=271 (3.3.3)
Fs
0 G,
. IS .[3 Is —Is . - . .

with F, = ; ; ,Gs = I and I, being the (s x s) identity matrix.

The matrix B in (3.3.2) bit reverses the order of the matrix H(p). Namely, matrix
B counts the number of sign changes in each row (column) of the H(p) and then
reorders the rows (columns) to obtain Hw(p). As an example, suppose that p = 3,

that is V = 8. The Walsh ordered Hadamard matrix is,

Hw(3) = II_,H;(p) B

Fr 0 0 0
0 Gy 0 0 (F2 0)
= . .F,-B
0 0 F 0 0 G,
0 0 0 G
11 1 1 1 1 1 1
1 1 1 1 =1 =1 =1 -1
1 1 -1 -1 -1 -1 1 1
[ [ SR TS S R B RS Rt
Sl 1 -1 -1 11 -1 -1 1
1 -1 =1 1 -1 1 1 -1
1 -1 1 -1 -1 1 -1 1
1 -1 1 -1 1 -1 1 -1




where the matrix B is given by,

1 0000O0O0CO
600001000
001 00O0O0OTO
B 000O0O0O0OCT1TO (3.3.4)
01000000
00000100
00010000
0 000O0O0CTO0OT1

Let y(0),y(1),...,y(T — 1) by a sample of length T = 27, p > 0 integer, from
a weakly stationary time series {y(¢);t = 0, F1,¥2,....} with absolutely summable
autocovariance function v,(h) = Cov{y(t),y(t — 2)},h = 0, F1,F2, ..... We assume
for instant that the constant mean value of y(t) is zero. Let W(t,A) be the ¢ th

Walsh function in sequency order and let
dr(\) = T~Y? Z y(OW(t,A), 0< A<l (3.3.5)

be the finite (or discrete) Walsh-Fourier transform of the data. The logical covariance

of y(t) (Kohn (1980a) is defined to be
o Z V(i &k —k) 3.3.6)

where by (j & k), is the dyadic addition of j and & 5. It can be shown (Kohn 1980a)

that the variance of dy(A) is given by
T-1

Var{dr(\)} = Y 7,(/)W (5, V). (3.3.7)

7=0

Taking the limit as 7' — oo in (3.3.7), we have that Var{dr(\)} — g,(\), where

Z DWW, 0<A<1 (3.3.8)

The dyadic addition of j and k, where j = S°7_ 52 and k = I k2 isgivenby j2k =
S o ldi — kil2'. Note that, in dyadic addition 161 =0=0®0and 10 =1=0>1. For
example, when j = 5 and k¥ = 3, the addition yields to (101) & (011) = (100) = 6.
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is called the Walsh-Fourier spectral density of y(t). We note that g,()\) exists since
the absolute summability of v,(A) implies the absolute summability of 7,(j). Specif-
ically, Kohn (1980, Lemma a) shows that if

. J :

lim > ( - l;;’) I (J)] < (3.3.9)

4

then 332, [7y(s)] < oo and g,(}) is well defined. If y(0),y(1),...,y(T — 1) is a
sample of length T' = 27, the finite transform (3.3.3) is calculated for Ay = s/T,
for s = 0,1,...,T — 1. Since the discrete Walsh functions are symmetric in their

arguments for 7' = 27, that is
Wit s/T)=W(s,t/T) (s,t=0,1,....,T —1) (3.3.10)

the value of Az in the finite Walsh-Fourier transform corresponds to sequency. As
with the usual Fourier analysis, if the mean of the series is unknown, the only
sequency of the form Ay = s/T for which the transform cannot be evaluated is at
the zero (s = 0) sequency. To see this, let § = E{y(¢)}, all t, and note that for

t=01,...T—1,
1T—-1

7 Y Wi(t,s/T) =6 (3.3.11)
t==0
where § is the Kronecker delta (see Kohn, 1980a, Lemma 1). It is clear from (3.3.11)
that the mean-centered transform will be the uncentered transform except at (s = 0),
and in particular
T-1
E{dr(s/T)} = T '3 oW (t,s/T)
=

0

= T3 (3.3.12)

for s =0,1,...,7—1. Kohn (1980a, Corollary 3) gives the following useful results on
the convergence of the second moment of the finite Walsh-Fourier transform under
condition (3.3.9). Let the binary representation of Ar be finite. If Ar & A — 0 as
T = 2P — oc, then

E{dZF (A1)} — g4(N). (3.3.13)
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In general, the asymptotic covariance of the Walsh-Fourier transform at two distinct
sequencies is not zero (Kohn, 1980s, Theorem 3). However, if the binary represen-
tation of A;r and Ay 7 are both finite and |A\; 7 — Ay 7| > T~ with (Air@® A7) — 0,

1=1,2as T =27 — oo, then
E{dr(A7)dr(Mer)} — 0. (3.3.14)

Various authors have been established central limit theorems for the finite Walsh-
Fourier transform under a wide range of conditions, see for instance, (Kohn (1980a),
Morettin (1983), Stoffer (1985).

The basic result is that, under appropriate conditions (that typically include
some mizing conditions -loosely, events that occur far apart in time are nearly inde-
pendent), dr(Ar) A N(0,94(A)) as T — ooj; that is, the large sample distribution of
the transform dr(Ar) is Normal with mean zero and variance g,()) given in (3.3.8).
Under these conditions, if {A1,r,...,Asr} is a collection of S sequencies that are all
chosen close to sequency of interest, A, such that [\;7 — A\p7| > T~1 for j # k, and
(Mr®A)—=0forj=1,2,...,5, then as T — oo

S
2 dz(hir) = 9, (). (3.3.15)
.
where % denotes a chi-squared distributionb with S degrees of freedom. From this

we deduce that S71 57,

d%(\jr) is an estimate of g,(\) having variance 2g2(N)/S.
If welet S — o0 as I' — oo with §/T — 0. then the estimate is a mean squared
consistent estimate of g,(A) on (0 < \ < 1). Hence a consistent estimate of the
Walsh-Fourier sprectrum g,(A), is sifnply the average of the Walsh periodogram
(3.3.17) at sequencies near the sequencies of interest.

Like the usual trigonometric spectrum estimate, the consistent estimate of the
Walsh-Fourier spectrum can be obtained by smoothing the periodogram ordinates.
The fast Walsh-Fourier transform (FWT) corresponding to equation (3.3.5) for the

data vector Y = (y(0).---,y(T — 1)) is computed as
dr(Ar) = T7'*Hw(p) Y
= T7Y?Hi(p)-B-Y. (3.3.16)
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where Ay = (0/T,1/T,-,(T - 1)/T). The vector of periodogram ordinates can be
obtained by squaring each element of d7(A7). Let [;V(s) = d%(s/T) denote the s’th

periodogram ordinate s = 0,1,....N — 1. It is seen that

T-1
LY(s) = Z 7(1IW(5,s/T) (3.3.17)
where
1 T-1
() =5 2 v(k)y( @ k). (3.3.18)
k=0

Employing relationships (3.3.10) and (3.3.11), we may write

T-1
#0) = 5 3 I (W(s.5/T). (33.19)

=0

Thus, for large T', the quickest way to compute 7,(J) is to use the fast Walsh-Fourier
transform twice, once to compute I, ;V (s) and once to compute the logical covariance.
In the empirical framework, we make use of both fast Fourier transform FFT and
the fast Walsh-Fourier transform FWT. In order to make the two techniques compa-
rable, we use Harmuth (1969)’s definition of sequency®. Harmuth (1969) introduced
the term sequency to describe generalized frequency to distinguish functions, like
Walsh functions, that are not necessarily periodic. In this approach, the frequency
parameter n in sinusoidals is interpreted as one half the number of zero crossings
or sign changes per unit time. So the term sequency will simply denote the half of
frequency. This concept can be applied to aperiodic as well as periodic functions
and the definitions of Harmuth -sequency coincides with that of frequency when ap-
plied to sinusoidal functions”. As previously mentioned, the discrete Walsh function
W(t,A) makes t zero-crossings (or switches) per unit time, and its corresponding
sequency value is ¢; the Harmuth sequency of that function is #/2 if ¢ is even, and
(t+1)/2if t is odd (recall that Harmuth sequency and frequency coincide for sinu-

soids). To differentiate between the two definitions of sequency one will note that

®See, Stoffer (1991) for a similar treatment of Walsh-Fourier spectrum.
"The reader may easely convert back and forth between the two measures since the Harmuth

sequency is two times the frequency.



two Walsh functions W (2t, ) and W(2t—1,A) for t = 1,2, ... each have an Harmuth
sequency of ¢; this is also true for sinusoids, that is, cos(2wtA) and sin(27t)) each
have a frequency of t. Thus the Walsh-Fourier periodogram given in (3.3.17) can be
modified to look like the Fourier periodogram by setting, ’-

L) =LV(25 - 1) + 1YV (25) (3.3.20)

where A; represents the Harmuth sequency. Since I; I¥(A;) = 23 IF ();) excluding
Aj = 0 and A; = 1/2, we can superimpose /;(};)/2 and I](};) and make the
comparison between Fourier and Walsh-Fourier periodograms, see Stoffer (1991).
Note that, the Fourier comparable Walsh spectrum of y(t) would be the average of
I3(A;) at Harmuth sequency (or frequency) A;. This spectrum can be denoted by
95 (V). |

A useful measure of the degree of association between two time series z(t) and

y(t) is coherency

(3 2

ke (1) = L)
9z(N)gz(A)
where g;()) and g;(}) are the Walsh-Fourier spectra of series z(¢) and y(t) respec-

(3.3.21)

tively and g7, (A) is the cross-spectrum of two series, all are measured on the Harmuth
sequency A. The cross-spectrum is related to the covariance of the Walsh-Fourier
transform of series z(t) and y(t) similarly to its Fourier counterpart expressed in
(3.3.9). Thus, coherency is a sequency dependent measure of correlation and anal-
ogous to the usual correlation inequality —1 < K7 (\) < 1. Remember that in the
trigonometric (Fourier) case, the cross-spectra is complex-valued and hence squared
coherency rather than coherency is measured. That is one advantage of working in
the real-valued Walsh-Fourier domain. Consequently the Walsh-Fourier coherence
K7, (\) measures not only a strength of association but also its sign.

Beauchamp (1984, Chapter 3) provides numerous comparisons between Walsh-
Fourier and Fourier spectral analysis. He finds that Fourier analysis is most relevant

for smooth-varying time series, while the Walsh-Fourier analvsis is more suitable

for series with sharp discontinuities and a limited number of discrete realizations.
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In the remainder of this Chapter, we will use both types of spectral methods as

complementary rather than as substitutes.

3.4 Business Cycle Chronologies

and Their Transformation

Bry and Boschan (1971) present the possibility of using computer programs to sim-
ulate the NBER’s procedure. This method consists essentially, in first identifying
major cyclical swings in an economic time series, then sketching out the neighbour-
hoods of their extrema throughout a set of ad hoc filters and finally narrowing the
search for turning points to specific calendar dates. The results are remarkably en-
couraging in the sense that the dates selected formerly by the NBER’s specialist
are, in general, reproduced by the programmed procedures. This stepwise filtering
procedure is necessary because most economic time series contain short quick waves
which make it difficult to implement any direct selection mechanism of cyclical ex-
trema. The first filter from which turning points are determined is a 12-month
moving average filter. The MA(12) filter eliminates the fluctuations of subcyclical
duration or of very shallow amplitude of the seasonally adjusted data. The rule
for selecting turning points is this: any month whose value is higher than those of
the five preceding months and the five following months is regarded as the date of
a tentative peak; analogously, the month whose value is lower than the five values
on either side of it is regarded as the date of a tentative trough. These tentative
turns are tested for compliance with a set of constraint rules concerning alternation
of phases and duration of phases and cycles. The second step in the process is the
determination of tentative cyclical turns on the Spencer curve. Bry and Boschan
argue that Spencer curve’s turns tend to be closer to those of the unsmoothed data
than are those of MA(12) filter. Basically, the program search, in the neighbourhood
(defined as plus or minus five months) of the turns established on the twelve-month

moving average, for like turns on the Spencer curve. That is, in the neighbourhood
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of peaks, it search for the highest of the eleven points on the Spencer curve; in the
neighbourhood of troughs, for the lowest. The Spencer curve turns thus located are
then subjected to several tests. A turn is rejected when it is ( 1) less than six months
from either end of the series; (2) one of a pair of like turns less than fifteen months
apart; or (3) one of a pair of like turns without an intervening opposite turn. The
accepted turns in the Spencer curve provide the basis for the next step in the search
for turns in the unsmoothed data. In this step, the series is smoothed by a MA(3)
to MA(6) filter. The exact number of months of these filters depends on the time
that the cyclical component take to exceed the irregular component. The method
of deriving turning points in these short-term MA fiters is practically the same
as that for the Spencer curve. The last step of the procedure is to find the peak
and trough values in the unsmoothed, seasonally adjusted data which correspond
to the short-term MA turns previously established. This search is analogous to the
previous ones. The program establishes the highest values in the unsmoothed data
within a span of plus or minus five months from the peak in the short-term moving
average curve; similarly, the lowest value of the unsmoothed data in the neighbour-
hood of MA troughs is established. Any turns not complying with the rules having
been eliminated, the remaining ones are the final programmed turning points of the
series. It should be noted that the computer program does not utilize directly any
information on the amplitude of cycles. The only way in which amplitude plays a
role is that the moving averages, especially the initial twelve-month [NOVIng aver-
age, tend to iron out minor swings ( trough only if they are also brief). But there is
no specification of amplitude minima because setting them would involve problems
that would greatly complicate the program. One major difficulty is that the typical
amplitude of a series changes over time, so that standards derived from an earlier
period may be entirely inappropriate in a later one. The program’s disregard for
amplitudes makes the good agreement between programmed and traditional specific
cycles even more remarkable, because amplitudes are among the factors considered

in the selecting turns by traditional methods although no minimum amplitudes are

130



prescribed. Consistent with practice at the NBER, the dates produced by Bry-
Boschan algorithm use the level of the series rather than the detrended series. Thus
recessions correspond to sequences of absolute declines in a series. This will be im-
portant when interpreing the changes in the pre- and post-War average period of
oscillation.

The analysis of Romer (1992) starts from the observation that there appear to
be inconsistencies between the determination of NBER dates before and after World
War II. Romer proposed an algorithm that chooses postwar turning points which
match the NBER dates, but produces a chronology quite different both in terms of
length of cycles and number of recessions and expansions. The binary series obtained
from the Romer chronology will be denoted bf.

Table 3.1 reports the average length of whole cycle duration in peak-to-peak
(PP), trough-to-trough (TT) formats as well as the average length of recessions

(PT) and the expansions (TP)®. A distinction is made between the pre-WWII and

8The data sources are as follows. The NBER and Romer chronologies were taken from Romer
(1992). The pre-WWII series were obtained from Watson (1992). The mnemonics indicate the
NBER, BCD, ID numbers. m01585 is the pig iron production, (1877:1 - 1941:12), SPPRWARR is
the S&P common stock price index, (1871:1 - 1940:12), m04010 is wholesale price index, (1890:1 -
1940:12), m13024 is the RR bond yields, (1857:1 - 1940:12). The post-WWII series were obtained
from Citibase. The Citibase mnemonics are preserved to identify the series. The whole definition
of series are as follows. [P is the industrial production index, total, (1947:1 - 1993:8). The
FSPCOMPR is the Real S&P’s common stock price index, (1947:1 - 1993:8). It is obtained by
FSPCOMR = FSPCOM/PUNEW, where PUNEW is all items CPI-U (sa). PW is the Producer
Price Index for all commodities (1946:1 - 1993:8). FYBAAC is the Bond Yield, Moody’s BAA
corporate, percentage per annum, (1947:1 - 1993:8). The price Inflation INFLP (1948:1 - 1993:8)
is defined as INFLP = 100xlog(PUNEW,t/PUN EW,_12). The wage inflation INFLW (1947:1 -
1993:8)is INFLW = 100*log(LEH M:/LEH M,_,5), where LEHM is the average hourly earnings
in manufacturing industry. The nominal short term interest rate FYGM3 is the U.S. treasury bills
(1947:1 - 1993:8). The Real short-Term interest rate FYGM3R (1948:1 - 1993:8) is the difference
between series FYGM3 and INFLP. LHMUR is the unemployment rate, me, 20 years and over,
percentage, sa, (1948:1 - 1993:8). LHOURS is the Man-hours of Employed Labour Force, (1947:1
- 1993:7). Finally the labor productivity LPROD (1947:1 - 1993:7) is the ratio between IP and
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post-WWII data series for two reasons: (1) in some cases, the series involved are
not exactly the same over those two eras, and (2) there has been much discussion
about the distinct business cycle patterns.? 4

It is not uncommon to apply spectral analysis to transformed series instead of
the raw data z,. Perhaps the best example is that of seasonal adjustment, where
the spectral properties of =74 instead of z, are studied. Such transformations are,
at least in principle, designed to extract from the raw series those features of the
data that are of interest to the researcher. We essentially apply a similar principle

here in a different context. Namely, let us construct a binary time series b;, where:

bt = CH(Xt_k,...,Xt,...Xt.*_[,t) (34.1)
by € {—1,1} vt (3.4.2)°
Xt = (T4, Ys, 2. .) (3.4.3)

For convention, the rectangular patterns are scaled according to whether the econ-
omy Is in expansion, b; = +1 or in recession, b = —1.! Note that the function C H,
generating a chronology, may be a function of several series when X, is multivari-
ate. Such is the case, for instance, with the NBER chronology, designed by dating
committees gathering evidence from a multitude of series. The function mapping
X into b; may also vary through time, hence C H(- t), since the dating commit-
tees may change the modus operand: of defining the phases of the business cycle.
Moreover, producing a chronology may involve future as well as past observations,
hence the leads and lags appearing in (3.4.1). The algorithm proposed by Bry and
Boschan (1971) is another example where a specific rule applies to a single series, i.e.,
be = CH(Zy-k,..-,%¢,... Teqq, t). Yet, another example is the algorithm proposed
by Hamilton (1989) based on a Markov switching regime framework. F igure 3.2

displays the business cycle rectangular patterns b, for a variety of series ranging from

LHOURS.
9Some of the most recent papers on this subject include Diebold and Rudebusch (1992), Romer

(1992), Watson (1992), among many others.
'The values +1 and —1 are arbitrary and the procedures we use are invariant to scaling.

132



Table 3.1: Average Phase Durations in Months @

Series Sample Period P-T-P T-P-T P-T T-P
NBER (entire) 1905:3 - 1990:7 55.4 51.2 14.6 40.4
NBER (prewar) 1896:1 - 1938:6 45.0 44.7 19.0 25.7
NBER (postwar) 1948:1 - 1990:8 63.4 56.7 11.0 51.5
Romer (entire) 1905:3 - 1990:7 52.4 53.8 12.7 40.0
Romer (prewar) 1896:1 - 1938:6 40.7 414 12.4 29.0
Romer {postwar) 1948:1 - 1990:8 63.3 57.4 12.4 50.2
Pig Iron Production 1878:4 - 1938:6 445 44.8 15.0 29.3
S&P Common Stock Price 1872:8 - 1939:7 42.3 42.8 18.5 23.8
M0401X 1890:10 - 1939:8 46.8 47.3 19.8 27.5
RR Bond Yields 1857:12 - 1940:11 43.3 44.0 20.1 23.2
Industrial Production 1948:7 - 1991:3 63.4 57.0 37.1 19.8
Real S&P Price Index 1949:7 - 1990:10 41.5 45.1 19.2 25.9
Producer Price Index 1948:9 - 1990:10 63.2 62.8 13.2 50.0
Bond Yield 1948:4 - 1990:10 51.1 51.7 24.5 26.6
Price Inflation 1949:9 - 1993:2 45.6 46.3 23.6 21.8
Wage Inflation 1949:12 - 1992:11 36.6 36.8 20.0 16.8
Short Term Int. Rate (Nominal) 1949:2 - 1989:3 53.5 55.8 16.9 36.7
Short Term Int. Rate (Real) 1949:11 - 1993:4 42.0 42.2 21.6 20.1
Unemployment Rate 1949:11 - 1992:6 56.9 57.0 37.1 19.8
Man-hours of Labor 1948:5 - 1991:8 62.6 62.7 16.4 46 .4
Labor Productivity 1948:6 - 1991:4 43.9 45.7 16.3 29.0

“P-P : Peak to Peak, T-T : Trough to Trough, P-T : Peak to Trough. T-P : Trough to Peak.
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Figure 3.2: Historical Plots of U.S. Business Cycles
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the NBER and the Romer chronologies to several major individual series generated
by the Bry and Boschan dating algorithm for turning points. The rectangularization
of NBER chronology according to (3.4.2) reproduces the time series appearing at
the top of Figure 3.2. We denote, this rectangular pattern by bVBER,

The switching points with zero crossings from +1 to —1 correspond to downturns
and from —1 to +1 represent upturns. Hence, the length between ZEro-Crossings

reflects the durations of cycles.

3.5 Spectral Decomposition of NBER. and Romer
Chronologies

We would now like to investigate several features of the series b;,. First, in analogy
with standard spectral analysis, we would like to decompose the square wave pattern
of series b, in orthogonal harmonic components. We expect, of course, that the
business cycle frequencies will be dominant in the spectral shape, yet other cycles
may be revealed as well. Moreover, inside the business cycle frequency band certain
patterns of interest may appear. Second, we would also like to study comovements
across chronologies using a frequency-domain representation. Such analysis serves
two purposes: namely, (1) to examine competing chronologies. like the NBER and
the alternative proposed by Romer (1992) for instance, and (2) to study relationships
between different series of economic activity through their chronology transforms.
For instance, one may investigate the stock market and cyclical comovements with b,
series obtained from the Dow Jones and the NBER. It is clear that spectral analysis
enables us to formally assess the similarities and differences between two chronologies
of the business cycle. Such comparisons are generally not straightforward, since
chronologies may not only differ with respect to the location of a turning point.
but may also involve a different number of recessions and expansions. Furthermore,
when the b, series of say the NBER and the Dow Jones are examined, it is clear that

we apply spectral analysis in the context of a regime switching framework. Namely.
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we by-pass the linear properties of the series through the C H(,-) filter and study
the association of business cycle phase patterns across series.

When the b, series is weakly stationary, then the fundamental spectral represen-
tation theorem tells us we can apply Fourier transforms of the series and compute
cos Cy(w) and sin transform Sy(w) and proceed as usual to compute a spectral de-
composition. Yet, as the b; series is a square-waved series, an alternative spectral
decomposition may be considered as well. To approximate square waves, one can
replace the sine and cosine functions by so-called Walsh functions.

Such functions, which will be discussed shortly, are displayed in Figure 3.1 on
top of the standard Fourier harmonic functions. The spectral analysis based on such
functions is called the Walsh-Fourier analysis and is, to our knowledge, new in terms
of econometric applications.

Obviously, one may expect Walsh functions, appearing in Figure 3.1, to be a bet-
ter approximation to decompose the patterns displayed in Figure 3.2 for the various
macroeconomic chronologies. Let us first investigate whether there are noticable
differences between the Fourier spectrum and the Walsh-Fourier spectrum. As illus-
trated in Figure 3.2, the data have different lengths, and hence to utilize the Fourier
and Walsh-Fourier transformations, the length of the series were truncated to the
nearest power. For the sake of comparability between sinusoidal and asinusoidal
waves, the spectral density estimates were computed using and asinusoidal win-
dow generator, namely a tent-type kernel with eleven equally weighted periodogram
ordinates in the frequency domain.

The sample periods in Figures 3.3 and 3.4 consist of either 512 monthly obser-
vations or, in the case of the entire sample of reference chronologies, 1,024. Thus,
any arbitrary padding schemes were avoided by the truncation of the series, as both
sample sizes are integer powers of 2. The spectral densitv ordinates f(w;) were
decomposed over the following three nonoverlapping business cycle bands: for the
number of observations N = 512 (p = 9), the frequency domain was decomposed as

J=1,...,7,7=8,...,21, ; = 22,...,42. Hence, these bands are centered at peri-
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odicities of 189.6, 38.5 and 16.6 months respectively. The first band ranges between
periodicities of 512 to 73.1 months and is thus the band in which long oscillations
occur. The remaining bands are considered as business cycle oscillations and higher
frequencies. When N = 1,024 (p = 10), then the bands considered were quite simi-
lar to the previous ones by setting j = 1,...,14, 7 = 15,...,42, j =43, ... , 85 with
averaged periodicities of 237, 39.3 and 16.6 months.

Let d4(w) and dp(w) denote the Walsh-Fourier transforms of the rectangular
cyclical pattern of b; and b,. The sample coherency between b, and by was com-
puted according to (2.15), where the cross-spectral estimation flg(W) was obtained
by averaging the values of the product dy(m/N)dy(m/N) over values of m in the
neighborhood of w. Similarly, fu(w) and f22(w) were obtained by averaging the
Walsh periodograms dj(m/N) and d}(m/N) over values of m in the neighborhood
of w.

Figure 3.3 displays both types of spectral densities for the NBER chronology
over three samples. Recall that there are restrictions in choosing a sample length
(N = 2P where p is an integer) for computing Walsh-Fourier spectra. We selected
the following samples: (1)1905:3-1990:7, (2) 1896:1-1938:6, (3)1948:1-1990:8. The
first sample is approximately the “entire sample,” though the earlier part of the
chronology was deleted®. The second sample covers the pre-WWII era and, finally.
the last sample covers the post-WWII era. The Fourier and Walsh-Fourier spectra
for each of the three samples appear in Figure 3.3. For the chronology proposed
by Romer, the spectra are reported in Figure 3.4. The two curves in each of the
plots match fairly closely, yet there are some significant differences worth noting.
Namely, the Walsh-Fourier spectrum of the NBER and Romer series gives rise to

extra spectral peaks in the business cycle frequency range.® The frequency band of

*We chose to delete the 19th century part of the chronology to have sample size matching V =
1024 data points (p = 10). The earlier part was deleted, as there is greater uncertainty regarding
the location of turning points [see, e.g., Diebold and Rudebusch (1989) for discussion]. This choice

of entire sample also allowed for a direct comparison of the NBER and Romer chronologies.
3Stoffer (1991) also reports and discusses peaks uncovered by Walsh-Fourier which do not appear
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cycles of two to six years long are identified via two vertical lines appearing in each
plot. The economic interpretation of several peaks in business cycle bands will be
discussed below. The differences appear to be in the number of spectral peaks and
their location, which means that the average period of oscillation in rectangular b,
patterns differ remarkably if one approximates them via Fourier or Walsh functions.
For the entire sample of the NBER series in Figure 3.3, we notice three distinct
peaks in the Walsh-Fourier spectrum for cycles of two years and more. The Fourier
spectrum on the other hand, has only a single peak located almost exactly at a dip
in the Walsh-Fourier spectrum. A similar exercise applied to the Romer chronol-
ogy, which appears in Figure 3.4, confirms this finding. In fact, with the Romer
chronology, the three peaks in the Walsh-Fourier spectrum are much stronger. This
seems to indicate that there is a certain degree of heterogeneity in business cycle
patterns uncovered by the Walsh-Fourier analysis which remains concealed with the
Fourier spectrum. The heterogeneity, suggested by the Walsh-Fourier spectrum,
can be attributed to at least two sources. As the sample includes both pre- and
post-WWII observations one may expect heterogeneity in business cycle lengths to
emerge because of the distinct character of business cycles before and after World
War II. Another source of heterogeneity can be explained in the context of the im-
pulse propagation framework introduced by Frisch (1933) and Slutsky (1937). There
are different views regarding the nature of shocks and their propagation mechanism.
This leads to the question. as noted, for instance, by Blanchard and Watson (1986),
whether all business cycles are alike.

The first possible source of heterogeneity, namely the pre- versus the post-WWII
eras having different characteristics can be investigated by simply studying the sub-
samples. Let us therefore focus on the separate pre- and post-WWII samples. The
Fourier and Walsh-Fourier spectra once again do not entirely agree on some critical
issues. In particular, for the Romer pre-WWII spectra, we notice again a double-

dip pattern with the Walsh-Fourier spectrum, not revealed by the Fourier spectrum.

in the Fourier spectra.
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This is also the case with post-WWII NBER chronology. Several other observations
emerge from the pre- and post-WWII comparison. We notice a very different spec-
tral shape for the two eras, particularly with the Walsh-Fourier analysis, but also
with the standard spectral representation. Moreover, one also observes significant
differences between the NBER and Romer chronologies. Indeed, before WWII, we
found a double-dip pattern with Walsh-Fourier applied to the Romer chronology, but
no such pattern emerged with the NBER chronology. Both post-WWII chronolo-
gies suggest two distinct peaks in the business cycle frequency bands, though this is
more evident for the NBER chronology. Hence, the only chronology not exhibiting
a double-peak is the NBER one before WWII. The double peak spectrum emerging
from our analysis suggests that the heterogeneity does not only appear to be related
to the so-called stabilization hypothesis after WWII. There is indeed evidence of a
mixture of business cycle patterns, relatively long cycles of over five years and cy-
cles that are much shorter, that is, less than three years. The advantage of spectral
decompositions is to uncover such peaks. We cannot, of course, from this univari-
ate decomposition derive the sources of shocks and propagation mechanism which
generate the heterogeneity.

The double peak obtained from applying spectral methods to chronologies does
not appear in conventional spectral analysis. Indeed, in Figure 3.5, we computed the
spectrum of the log first-differenced industrial production series for three different
sample and series configurations. The first two spectra cover the pre-WWII era for
two alternative measures, one related to Pig Iron production, the other consisting
of an index proposed by Miron and Romer (see data sources in the Appendix). The
third spectrum applies to the post-WWII era. Clearly, none of the plots display
patterns uncovered by the spectral analysis of chronologies. It is also worth noting
that at the end of the frequency domain plotted in Figures 3.3 and 3.4, we observe
a peak at yearly cycles for the entire sample as well as the pre-WWII sample, par-
ticularly for the Romer chronology. The appearance of such a peak at the seasonal

frequency is related to the observations made in Ghysels (1991, 1992) and regarding

141



log-wpectium

a.a

Pig Iron Production

Miran—Rormer Production index

incdustriot Proauction

1896:7 — 1938:8 1896:1 - 1938:8 1948:1 — 1990:8
ae o.e
as
ar
ar
as |
o
as |
H 4
Eos i
¥ F
o
a
aax b
s
! ;
i j \
.z ‘\
o3 '\\
{
73.1 z24.3 12.0 3.1 24.3 V2.0 73 24.3 12.0
o o

Gyois ln menthe

Figure 3.5: Fourier-Spectrum of Growth Rates in Industrial Production

oyaim In montne

142

evaie in montne




Table 3.2: Average Coherencies Between N and b°

Spectra over 73.1 months 94.4 to 64.0 months 93.3 to 12.1 months
Entire Sample, 1905:3-1990:7
Walsh-Fourier 0.82 0.85 0.77
Fourier 0.81 0.87 0.67
Pre WWIIL Sample, 1896:1-1938:6
Walsh-Fourier 0.63 0.80 0.45
Fourier 0.68 0.79 0.47
Post-WWIL Sample, 1948:1-1990:8
Walsh-Fourier 0.95 0.95 0.89
Fourier 0.97 0.96 0.78

I T R

the nonuniform distribution of turning points throughout the calendar year. Namely,
it suggests that the propensity of the economy 0 emerge from 2 recession Or end
an expansion is calendar-dependent. Obviously, the peak which emerges is not as
dominant as those in the business cycle frequency band, yet it 1s clearly present n
almost all the plots. This finding, which 1s essentially obtained via nonparametric
methods, 1.€- spectral methods, complements the nonparametric duration analysis
discussed 11 Ghysels (1991).

The spectral plots 1n Figure 3.3 suggest differences between the NBER and
Romer chronologies- We can measure the association of the two chronologies via
the multivariate spectral analysis discussed 10 section 3.3.2. In particular, W€ can
compute the coherence between two chronologies. In Table 3.1, we report the aver:
age coherencies over different frequency bands. Clearly, after WWIL, the two spectra
are much in agreement, as the coherencies Tun on average at 0.95 and higher in the
business cycle frequency band. However, pefore WWII, the two spectra are substan-
tially more IR disagreement with a coherency of 80% or less. Over the entire sample,
the coherency 18 below 90%. Outside the business cycle band, there is far less agree
ment. In fact, at the low and high frequencies, there appears 10 be less than 60%

to 50% coherence- These measures quantify much of the discussion regarding the
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.

differences between the two alternative chronologies. It may also be worth noting
that this time the results obtained from the standard spectral methods appear to

be in agreement with the Walsh-Fourier coherencies.

3.6 Comovements Between Individual Series

A key characteristic of the business cycle is that fluctuations are common across
sectors of the economy. We turn our attention here to a set of individual series
covering real activity, prices and financial indicators. We will be interested in a
pre- and post-WWTII comparison of comovements as well as a more detailed study of
post-WWII series, since a wider range of data series are available for this era. Unlike
reference chronologies, which are the output of some C H(-,t) procedure defined in
(3.4.1), there is no direct turning point chronology available for individual series.
Hence, for each series we need to construct a binary business cycle phase series.
Like Watson (1992), we opted to use the Bry and Boschan (1971) algorithm to
date business cycle phases. The merit of this method is that it reproduces the
NBER chronology quite accurately. All chronologies appearing in the remainder of
this section will be based on the Bry-Boschan algorithm. A first subsection will
be devoted to pre- and post-WWII comparisons. while a second section covers the

post-WWII era.

3.6.1 Business Cycle Comovements Before and After WWII

Comparing business cycle features before and after WWII has been the subject of
many research papers. A very incomplete list of the most recent papers includes
Moore and Zarnowitz (1986), Romer (1992), Diebold and Rudebusch (1992) and
Watson (1992). The question whether there has been a fundamental change in the
nature of business cycles has been vigorously debated among economists for several
reasons, particularly with respect to the success of postwar stabilization policies.

A comparison of both eras is limited to a relatively small set of series, as there
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are not many matching pairs of uniformly defined or approximately similar series.
A total of eight series were considered similar to those studied by Watson (1992).
Sources of all the data series are described in the Appendix, while Figure 3.2 displays
the binary processes extracted via the Bry-Boschan algorithm for a subset of those
series. We focus our attention on four series of broad measures of economic activity,
namely the industrial production (IP) turning point series, denoted 5", the S&P
common stock price index b5F | the producer price index 67°F and bond yields 52Y.
Figure 3.6 shows the coherency among these four individual series as well as their
coherency with the NBER reference cycle. The coherency was computed before and
after WWII so that each plot in Figure 3.6 has two curves. The frequency band of
cycles of two to six years are again marked on each plot. It is worth recalling from
section 3.3.2 that the Walsh-Fourier cross-spectrum is real, unlike the Fourier cross-
spectrum. Consequently, the Walsh-Fourier coherency can assume negative values,
a clear advantage over its Fourier counterpart which will be discussed shortly, as it
reveals the magnitude as well as the sign of comovements.

The last row of plots in Figure 3.6 shows the coherency of bIP PP bBY and b7 P
respectively with the NBER reference cycle. Among the four individual series, bEPP
shows a most dramatic change in cyclical pattern. After WWITI, there was virtually
no cyclical pattern in prices, while before the war, prices moved strongly pro-cyclical.
Kydland and Prescott (1990) also noted the change in price level business cycle
patterns, yet they claimed that prices moved countercyclical after WWIIL. Our results
do not support such a view of post-WW!II price behavior. The bond yield chronology
also displays very different patterns across the two samples with two strong and
distinct peaks after WWII, including one of a short-cycle comovement with the
NBER series (under two years). At the short end of the spectrum, we also notice a
sharp change of b/¥ and b comovements with a strong seasonal coherency before
WWII, which virtually disappeared in the last forty vears. It is also interesting and
not surprising to note that 6/F and 67T show the same dramatic change in coherency

as b and bF’” do. The stock market was strongly negatively correlated across the
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frequency domain with prices, but this is no longer the case since WWII. Bond yields
and the stock market also appear negatively related across all frequencies before the
war but little remains since.

Let us briefly turn our attention to coherencies obtained from conventional
Fourier transforms of the raw (first-differenced) data. Those appear in Figure 3.7
except for the four plots at the bottom of Figure 3.6 it takes the same structure.
The top panel covering S&P and bond yield coherencies shows both very strong (of
course always positive by construction) coherencies before and after WWII between
both series. This differs significantly from the findings in Figure 3.6. Moving to the
next row, we notice that bond yields and production show almost no coherency in
the business cycle frequency bond. Before WWII, there appear to be two peaks, one
similar to the Walsh-Fourier chronology analysis result and is located at the seasonal
frequencies but the other is at the low frequencies. The next and final row displays
comovements with prices. Overall, there appear in this case not as strong differences

with the chronology-based coherencies apart for the sign changes of course.

3.6.2 Coherency Since WWII

Stylized facts of business cycle comovements over the post-WWII era have been
documented by a large variety of authors, sometimes using quite diverse statistical
methods and data transformations for detrending, seasonal adjustment, etc. In
general, one analyzes the timing relation between various series and some reference
series, usually real GNP, by means of cross-correlation coefficients. There exist
more complicated procedures, however, such as VAR impulse response analysis,
common factor and index models. Documenting stylized facts is quite sensitive
to prefiltering data. Such prefiltering occurs either when detrending or seasonally
adjusting series. For instance, Canova (1991) shows in detail that a multitude of

key stylized facts in business cycle analyses are inconclusive because of prefiltering
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effects®. There probably is less disagreement regarding the location of turning points,
particularly for the post-WWII era, than there is regarding the specification of the
secular component of macroeconomic time series. Therefore, we suggest to use the
Walsh-Fourier coherency methods here as an alternative tool of studying post-WWII
business cycle features.

Over the typical business cycle, it is claimed that employment varies substan-
tially, while the determinants of labor supply, like real wages and real interest rates,
vary only slightly [see, e.g., Mankiw (1989)]. The Walsh-Fourier coherencies be-
tween the NBER and individual series plotted in Figure 3.8 confirm this finding
to a large degree, except for the comovements between real interest rates and the
NBER chronology. They appear indeed important, compared to the de facto zero
coherence between NBER and real wages at all frequencies of the spectrum®. In
contrast to the real wage, we observe strong procyclicality of labor productivity. It
was already noted that the price level, measured via the PPI, is neither procycli-
cal nor countercyclical. Also, in Figure 3.8, we notice that the unemployment rate
is strongly countercyclical, yet there appears to be a sharp (positive) peak at the
seasonal frequency. Hours worked and real wages are typically found to have low
correlation. Figure 3.9 shows a zigzag coherence pattern which decomposes the low
correlation in a sharp positive peak around the seasonal frequency as well as a large
dip in the business cycle frequency band. Unemployment and real wages also show
mostly a positive coherency, as would be expected, but again labor productivity and
the real wage are basically uncorrelated across frequencies. Finally, inflation against
the nominal interest rate as well as against the real interest rate also yields some
peculiar patterns. Inflation and real interest rates show a strong negative correla-

tion in the business cycle frequency band. For the nominal rate, there are two sharp

4Geveral other papers have raised this question, including Singleton (1988), Cogley (1990) and

Ghysels, Lee and Siklos(1993).
5Tt is often claimed that real wages are procyclical. While they are for certain business cycle

frequencies, they also appear negatively correlated with the reference cycle over other business

cycle frequencies.
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positive peaks decomposing the comovements.

We also computed the standard spectral decompositions from the raw series.
Figure 3.10 is comparable to the previous figure. The differences between the plots
in Figures 3.9 and 3.10 are clearly not as important as in some of the other cases

covered before.

3.7 Conclusion

In this paper, we have introduced spectral methods as a tool for analyzing business
cycle chronologies. It is a fairly convenient way to examine the nature of comove-
ments across the chronologies of different series, and it is also an ideal tool to com-
pare competing chronologies of reference or other cycles. We uncovered interesting
features regarding (1) the relation between the NBER and Romer chronology, (2)
the nature of pre- and post-WWII business cycle fluctuations and (3) some stylized
facts with respect to the post-WWII era.

Of course, as with any application of spectral analysis, one can only rely on
it as a method for decomposing observed series in orthogonal cycles. It does not
readily yield economic interpretations of the decomposition. But if one is only
paying attention to stylized facts, there are some clear advantages to pairing spectral

methods with chronologies.
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